Aplicación de una red neuronal feed-forward backpropagation para el diagnóstico de fallas mecánicas en motores de encendido provocado

Para citar o enlazar este item, por favor use el siguiente identificador: http://dspace.ups.edu.ec/handle/123456789/16736
Title: Aplicación de una red neuronal feed-forward backpropagation para el diagnóstico de fallas mecánicas en motores de encendido provocado
Authors: Contreras Urgilés, Wilmer
Maldonado Ortega, José
León Japa, Rogelio
Abstract: En la presente investigación se explica la metodología para la creación de un sistema de diagnóstico aplicado a la detección de fallas mecánicas en vehículos con motores a gasolina mediante redes neuronales artificiales, el sistema se basa en el estudio de la fase de admisión del ciclo Otto, el cual es registrado a través de la implementación física de un sensor MAP (Manifold Absolute Pressure). Se emplea un estricto protocolo de muestreo y su correspondiente análisis estadístico. Los valores estadísticos de la señal del sensor MAP: área, energía, entropía, máximo, media, mínimo, potencia y RMS se seleccionaron en función al mayor aporte de información y diferencia significativa. Los datos se obtuvieron con la aplicación de 3 métodos estadísticos (ANOVA, matriz de correlación y Random Forest) para tener una base de datos que permita el entrenamiento de una red neuronal feedforward backpropagation, con la cual se obtiene un error de clasificación de 1.89e−11. La validación del sistema de diagnóstico se llevó a cabo mediante la provocación de fallas supervisadas en diferentes motores de encendido provocado.// This research explains the methodology for the creation of a diagnostic system applied to the detection of mechanical failures in vehicles with gasoline engines through artificial neural networks, the system is based on the study of the phase of Admission of the Otto cycle, which is recorded through the physical implementation of a MAP sensor (Manifold Absolute Pressure). A strict sampling protocol and its corresponding statistical analysis are applied. The statistical values of the MAP sensor signal as: area, energy, entropy, maximum, mean, minimum, power and RMS, were selected according to the greater input of information and significant difference. The data were obtained with the application of 3 statistical methods (ANOVA, correlation matrix and Random Forest) to obtain a database that allows the training of a neural network feed-forward backpropagation, with which you get an error of Classification of 1.89 e−11. The validation of the diagnostic system was carried out by the generating supervised failures in different engines with provoked ignition.
Keywords: diagnóstico; diagnosis
fallos mecánicos; mechanical failures
red feed-forward backpropagation; network feed-forward backpropagation
ANOVA; ANOVA
matriz de correlación; correlation matrix
Random Forest; Random Forest
Issue Date: Jan-2019
URI: http://dspace.ups.edu.ec/handle/123456789/16736
Language: spa
Appears in Collections:Volumen No. 21

Files in This Item:
File Description SizeFormat 
ings_v21_Contreras_Maldonado_León.pdf2.33 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons