Estudio comparativo de las técnicas de inteligencia artificial para el diagnóstico de enfermedades en la agricultura
Para citar o enlazar este item, por favor use el siguiente identificador:
http://dspace.ups.edu.ec/handle/123456789/20941
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Quiroz Martinez, Miguel Angel | - |
dc.contributor.author | Valdivieso Duarte, Joseline Alfonsina | - |
dc.date.accessioned | 2021-09-16T17:49:11Z | - |
dc.date.available | 2021-09-16T17:49:11Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | http://dspace.ups.edu.ec/handle/123456789/20941 | - |
dc.description | El proceso de diagnóstico mediante criterios y métodos complementarios es un arte muy complejo aplicado a la identificación de la enfermedad responsable del padecimiento o la estimación del riesgo de las complicaciones. El diagnóstico, tanto humano como animal y vegetal, es una tarea que requiere precisión, dada la importancia que puede tener una decisión equivocada. Gracias al desarrollo de las tecnologías de la información y la comunicación y a los inagotables avances de la informática, el diagnóstico fitosanitario en la agricultura, en la actualidad, se basa en las aplicaciones de la inteligencia artificial, que ve como referencia en varias de sus principales técnicas, así como en los sistemas expertos, la lógica difusa, las redes neuronales, la minería de datos. | spa |
dc.description.abstract | The diagnostic process using complementary criteria and methods is a very complex art applied to identifying the disease responsible for the condition or estimating the risk of complications. Diagnosis, both human, animal and plant, is a task that requires precision, given the importance that a wrong decision can have. Thanks to the development of information and communication technologies and the inexhaustible advances in information technology, phytosanitary diagnosis in agriculture is currently based on the applications of artificial intelligence, which it sees as a reference in several of its main techniques, as well as expert systems, fuzzy logic, neural networks, data mining. | spa |
dc.language.iso | spa | spa |
dc.rights | openAccess | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Ecuador | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ec/ | * |
dc.subject | DIAGNOSTICO FITOSANITARIO | spa |
dc.subject | INTELIGENCIA ARTIFICIAL | spa |
dc.subject | REDES NEURONALES | spa |
dc.subject | SISTEMAS EXPERTOS | spa |
dc.subject | MINERÍA DE DATOS | spa |
dc.subject | BASES DE DATOS | spa |
dc.title | Estudio comparativo de las técnicas de inteligencia artificial para el diagnóstico de enfermedades en la agricultura | spa |
dc.type | bachelorThesis | spa |
ups.carrera | Ingeniería de Sistemas | spa |
ups.sede | Sede Guayaquil | spa |
Pertenece a las colecciones: | Grado |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
UPS-GT003388.pdf | Texto completo | 714,49 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons