UNIVERSIDAD POLITÉCNICA SALESIANA
SEDE QUITO

CARRERA:
INGENIERÍA EN SISTEMAS

Trabajo de titulación previa a la obtención del título de: INGENIERO EN SISTEMAS

TEMA:
ANÁLISIS, DISEÑO, CODIFICACIÓN E IMPLEMENTACIÓN DEL SISTEMA INFORMÁTICO EDUPRINTSISTEM PARA LA GESTIÓN EMPRESARIAL Y DE RETROALIMENTACIÓN EDUCATIVA PARA EL CENTRO DE DESARROLLO INFANTIL UNIVERSO

AUTORES:
LEOPOLDO ANDRÉS HINOJOSA VINUEZA
ALEX FABIÁN YAMBA AUQUI

DIRECTOR:
DANIEL GEOVANNY DÍAZ ORTIZ

Quito, enero 2015
DECLARATORIA DE RESPONSABILIDAD Y AUTORIZACIÓN DE USO DEL TRABAJO DE GRADO

Nosotros autorizamos a la Universidad Politécnica Salesiana la publicación total o parcial de este trabajo de grado y su reproducción sin fines de lucro.

Además declaramos que los conceptos y análisis desarrollados y las conclusiones del presente trabajo son de exclusiva responsabilidad de los autores.

__________________________ __________________________
Alex Fabián Yamba Auqui Leopoldo Andrés Hinojosa Vinueza
1721840955 1721443677
DEDICATORIA

A Dios por permitirnos culminar este periodo de formación e iluminar nuestro camino.

Alex Yamba
A su inmensa responsabilidad, amor y entusiasmo, porque fue inmenso su sacrificio para ayudarme a cumplir mi meta profesional, gracias por estar junto a mí en este arduo proceso, los amo mamá y papá.

Andrés Hinojosa
Quiero dedicar este trabajo a mi familia que con su esfuerzo, dedicación y cariño me han apoyado con fuerza y confianza para conseguir y alcanzar mis sueños y conquistar nuevas metas.
AGRADECIMIENTO

Al ingeniero Daniel Díaz por habernos apoyado en todo este tiempo con su paciencia y dedicación como director de tesis y docente.

A la Universidad Politécnica Salesiana, por haber sido un actor transcendental en nuestro desarrollo académico a través de la dedicación de sus docentes que nos han brindado sus enseñanzas en estos años de preparación.
ÍNDICE

INTRODUCCIÓN ... 1

CAPÍTULO 1 ... 2

PRESENTACIÓN Y GENERALIDADES .. 2

1.1. Antecedentes del “Centro de Desarrollo Infantil Universo” ... 2

1.2. Formulación de objetivos del sistema .. 3

1.2.1. Objetivo general .. 3

1.2.2. Objetivos específicos ... 3

1.3. Justificación del problema .. 3

1.4. Perspectivas del sistema ... 6

1.4.1. Perspectiva del padre de familia .. 6

1.5.2. Perspectiva del de usuario del sistema .. 7

1.5.3. Perspectiva del desarrollador ... 7

1.5.4. Perspectiva general ... 8

CAPÍTULO 2 .. 9

GENERALIDADES ... 9

2.1. Sistemas educacionales ... 9

2.1.1. Estructura básica de los sistemas educacionales ... 10

2.2. Metodología de desarrollo: características y fases ... 12

2.2.1. Metodología XP (Extreme programing) .. 12

2.2.2. Características de la metodología XP .. 12

2.2.3. Fases .. 14

2.3. Estructura del CDIU ... 18

2.4. Seguridad en sistemas educacionales .. 21

2.5. Análisis de los procesos y documentación actual del CDIU y del sistema 23

2.5.1. Diagramas de procesos ... 23

2.6. Herramientas de desarrollo .. 31

CAPÍTULO 3 .. 34

DISEÑO Y MODELACIÓN DE LOS PROCESOS ... 34

3.1. Especificación de requerimientos funcionales ... 34

3.1.1. Requerimiento ... 34
3.2. Modelo relacional ... 36
3.4. Modelo de clases ... 37
3.4. Diagramas de casos de usos ... 49
3.5. Diagramas de secuencia ... 60
3.6. Diagramas de navegación ... 69
3.7. Definición de interfaz de usuario ... 76

CAPÍTULO 4 .. 97

DESARROLLO DEL SISTEMA PROPUESTO 97

4.1. Diagramas de componentes .. 97
4.2. Estándares de programación ... 98
4.2.1. Consideraciones de desarrollo y aplicación de estándares 98
4.3. Codificación del sistema ... 99
4.3.1. Creación del menú dinámico de acuerdo a nivel de relevancia. 99

CAPÍTULO 5 ... 107

IMPLEMENTACIÓN Y PRUEBAS DEL SISTEMA 107

5.1. Despliegue del sistema .. 107
5.2. Pruebas de rendimiento y recuperación de datos 108
5.2.1. Ejecución de pruebas. ... 109
5.3. Pruebas para detección y corrección de errores 112
5.3.1. Pruebas de caja negra ... 113
5.4. Pruebas de carga y estrés ... 119

CONCLUSIONES .. 127

RECOMENDACIONES .. 128

LISTA DE REFERENCIA ... 129
ÍNDICE DE FIGURAS

Figura 1. Modelo de base de datos ... 8
Figura 2. Organigrama "CDIU" .. 18
Figura 3. Diagrama de proceso de inscripción ... 23
Figura 4. Proceso de matriculación ... 24
Figura 5. Proceso de creación de horarios .. 25
Figura 6. Proceso de creación de lista de útiles .. 26
Figura 7. Proceso de recepción de listas de útiles .. 27
Figura 8. Ficha de evaluación médica ... 28
Figura 9. Apertura de ficha psicológica ... 29
Figura 10. Proceso de llegada y arribo al CDIU .. 30
Figura 11. Proceso de convocatoria a reuniones ... 31
Figura 12. Modelorelacionaldelabasededatos .. 36
Figura 13. Diagrama A del módulo de acceso ... 37
Figura 14. Diagrama B del módulo de acceso ... 38
Figura 15. Diagrama del módulo alumnos ... 39
Figura 16. Diagrama del módulo docentes .. 40
Figura 17. Diagrama de módulos generales .. 41
Figura 18. Diagrama de módulo representantes ... 42
Figura 19. Diagrama del módulo accesos ... 43
Figura 20. Diagrama del módulo alumnos .. 44
Figura 21. Diagrama módulo docente ... 45
Figura 22. Diagrama del módulo mensajes ... 46
Figura 23. Diagrama del módulo representantes .. 47
Figura 24. Diagrama del webservices .. 48
Figura 25. Caso de uso ingreso general al sistema ... 50
Figura 26. Caso de uso general para la gestión general de datos 51
Figura 27. Casos de uso funciones director administrativo 53
Figura 28. Caso de uso para la gestión de información e inscripción 54
Figura 29. Caso de uso funciones para la directora pedagógica 56
Figura 30. Caso de uso funciones del docente ... 58
Figura 31. Caso de uso funciones de la psicóloga .. 59
Figura 32. Caso de uso funciones del médico pediatra 60
Figura 33. Diagrama de secuencia de registro de nuevos usuarios 61
Figura 34. Diagrama de secuencia para la creación de nuevos servicios 62
Figura 35. Diagrama de secuencia de modificación de servicios 63
Figura 36. Diagrama de secuencia inscripción y matrículación 64
Figura 37. Diagrama de secuencia de gestión de cursos 65
Figura 38. Diagrama de secuencia para asignación docente 66
Figura 39. Diagrama de secuencia de actividad docente 67
Figura 40. Diagrama de secuencia asistencia y novedades 68
Figura 41. Diagrama de navegación principal ... 69
Figura 42. Diagrama de navegación ingreso pantalla inicial 70
Figura 43. Diagrama de navegación menú director administrativo 70
Figura 44. Diagrama de navegación menú directora pedagógica 71
Figura 45. Diagrama de navegación menú secretaria – colectora 72
Figura 46. Diagrama de navegación menú docente ... 73
Figura 47. Diagrama de navegación menú médico pediatra 74
Figura 48. Diagrama de navegación menú psicólogo .. 75
Figura 49. Cambio de contraseña ... 76
Figura 50. Ingreso de usuario al sistema ... 76
Figura 51. Interfaz de información general ... 77
Figura 52. Interfaz inscripción ... 78
Figura 53. Interfaz matrícula ... 79
Figura 54. Interfaz de pagos .. 80
Figura 55. Interfaz de ingreso nueva persona ... 81
Figura 56. Asignar rol a persona ... 81
Figura 57. Interfaz información general ... 82
Figura 58. Interfaz inscripción ... 83
Figura 59. Interfaz matriculación ... 84
Figura 60. Interfaz de pagos .. 85
Figura 61. Interfaz de noticias y novedades ... 86
Figura 62. Interfaz de ingreso de horarios ... 87
Figura 63. Interfaz de ingreso y consulta de actividades 88
Figura 64. Interfaz ingreso de esquelas .. 89
Figura 65. Interfaz de control de asistencia .. 90
Figura 66. Interfaz de ficha psicológica .. 91
Figura 67. Interfaz de ficha médica ... 92
Figura 68. Interfaz reporte de horarios... 92
Figura 69. Interfaz de ingreso y consulta de actividades docente..................... 93
Figura 70. Interfaz de ingreso y consulta de noticias del docente 94
Figura 71. Interfaz de novedades del día docente... 95
Figura 72. Interfaz ingreso y consulta de ficha medica 96
Figura 73. Diagrama de componentes... 97
Figura 74. Despliegue del sistema .. 107
Figura 75. Configuración y especificación de número de usuarios 109
Figura 76. Asignación de URL y petición HTTP .. 109
Figura 77. Resultado de ejecución de pruebas con 20 usuarios simultáneos 110
Figura 78. Resultado de ejecución de pruebas con 200 usuarios simultáneos 111
Figura 79. Mensaje de clave incorrecta... 114
Figura 80. Mensaje de confirmación de datos ingresados 114
Figura 81. Asignación de nombre de usuario y perfil 115
Figura 82. Mensaje de confirmación de almacenamiento 115
Figura 83. Mensaje de cambio de clave .. 116
Figura 84. Consulta de usuarios registrados .. 117
Figura 85. Detalles de la configuración de la prueba .. 119
Figura 86. Configuración de URL y Contraseña para la prueba 120
Figura 87. Tiempo de espera entre usuarios y número de clicks 120
Figura 88. Utilización del ancho de banda por usuario 121
Figura 89. Transferencia de datos, sistema de memoria y CPU local 122
Figura 90. Utilización de recursos sin el sistema .. 124
Figura 91. Dirección máquina local .. 125
Figura 92. Utilización de recursos sin el sistema .. 125
Figura 93. Despliegue de las opciones de menú .. 126
Figura 94. Utilización de recursos sin el sistema .. 126
ÍNDICE DE TABLAS

Tabla 1. Historia de usuario caso ingreso al sistema ... 49
Tabla 2. Historia de usuario caso cambio de contraseña ... 50
Tabla 3. Historial de usuario caso funciones director administrativo 52
Tabla 4. Historia de usuario caso gestión de información general 54
Tabla 5. Historia de usuario caso gestión de información pedagógica 55
Tabla 6. Historia de usuario caso actividad docente .. 57
Tabla 7. Historia de usuario caso de uso gestión información ficha psicológica 58
Tabla 8. Historia de usuario caso gestión de información ficha médica 59
Tabla 9. Ejemplo de identificadores ... 98
Tabla 10. Comparación de resultado para 20 y 200 usuarios 111
Tabla 11. Prueba 1 inicio de sesión de usuarios ... 113
Tabla 12. Prueba 2 registro de persona nueva en el sistema 114
Tabla 13. Prueba 3 asignaciones de usuario y perfil a persona nueva. 115
Tabla 14. Prueba 4 Comprobar cambio y actualización de contraseña 116
Tabla 15. Prueba 5 consultar registro de usuarios en el sistema 117
Tabla 16. Prueba 6 consulta de reportes .. 118
Tabla 17. Prueba 7 exportar reportes ... 118
Tabla 18. Resultados finales por cada usuario ... 123
Tabla 19. Resultados finales globales para la prueba del sistema 123
RESUMEN

El sistema informático EDUPRINTSISTEM es un sistema orientado a la web que brinda información al CENTRO DE DESARROLLO INFANTIL UNIVERSO (CDIU), basado en el almacenaje y ordenamiento de datos que provienen de los usuarios del software. Este proyecto se desarrolló utilizando la metodología de desarrollo extreme programing (XP), ya que se ajusta a los requerimiento del modelo de negocios de la institución educativa, al igual que el haberlo desarrolladopara la web.

El objetivo principal de este proyecto informático es optimizar los tiempos y recursos en los procesos que se llevan a cabo manualmente en el CDIU al tecnificarlos con un software.

En el primer capítulo se detallará la situación actual del CDIU y la forma como se maneja la información que se genera en la institución y como el sistema informático a través de su implementación puede apoyar al mejoramiento del servicio educativo. De igual manera se detalla los objetivos que orientan software a lo largo de su desarrollo, documentación e implementación y su justificación.

En el segundo capítulo se analiza de forma general los sistemas educacionales existentes, su estructura, su orientación de desarrollo funcionalidad y seguridad. Por otro lado se define y analiza la metodología de desarrollo a utilizar en la construcción del sistema la misma será la extreme programing o (XP). En este capítulo se define qué aspectos del sistema institucional y procesos que serán abarcados por el desarrollo software.

En el capítulo tres se documenta la estructura de la base de datos y del sistema en torno a las herramientas de desarrollo y sus requerimientos tecnológicos. De igual manera se establece los parámetros hardware y software que requiere la institución para ejecutar el sistema.

En el capítulo cuarto y capitulo quinto se analizará, documentará y evaluará el software. Aquí se encuentran los diagramas de construcción del sistema, estándares de programación utilizados, secuencias de código relevantes y pruebas realizadas.
ABSTRACT

EDUPRINTSISTEM is web software that provides information about CENTRO DE DESARROLLO INFANTIL UNIVERSO (CDIU), it’s works on the storage and management of data coming from users of the software.

This project was developed using extreme programing development methodology (XP), because it meets the requirement of CDIU business model, also the web development was chose for the same requirement.

The main objective of this project is to optimize the time and resources in the processes that are performed manually in the CDIU with software.

The first chapter details the current situation of CDIU. Also analyze the information generated by the institution. How it is managed and how the computer system through its implementation may support the improvement of educational services. Similarly this chapter has the objectives that guide software throughout its development, documentation, implementation and detailed justification about it development.

The second chapter discusses in general terms the education software in the commercial market also their structure, development orientation functionality and safety. Furthermore it describes and analyzes the development methodology used in the construction of the system; it is the extreme programing or (XP). Also this chapter will describe aspects of the CDIU institutional system and processes that will be covered by the defined software development.

The third chapter documents the structure of the database and the system around the development tools and technology requirements. Likewise, the hardware and software required for the parameters to run the system institution is established.

The fourth and fifth chapters have the documentation and the software evaluation. Here are the system constructions diagrams, programming standards used sequences of relevant code and tests.
INTRODUCCIÓN

Hoy en día el mundo se presenta con una gran cantidad de infraestructura tecnológica informática independientemente de la actividad que se desarrolle y se ha tornado indispensable la automatización de los procesos mediante sistemas informáticos que los asisten para su optimización, mejoramiento y crecimiento organizacional, por lo cual un sistema informático se presenta como una herramienta ideal e indispensable para satisfacer las necesidades que el desarrollo económico y productivo, exigen actualmente y en el futuro.

La educación es un eje importante y trascendental en el desarrollo del País, ya que es aquella que guía a lo largo del perfeccionamiento integral científico social y humano de sus participantes.

Además de que al ser la educación formal fundamental para todo individuo debe ser cultivada y orientada desde las bases, desde sus inicios, ya que es ahí donde se adquiere rasgos, aptitudes y costumbres que se desarrollan a lo largo del crecimiento de los niños y niñas. Por lo tanto las instituciones educativas deben tener estructuras formativas y administrativas que se adapten al desarrollo de los tiempos actuales, proyectándolos al futuro y otorgando así a sus alumnos las herramientas pedagógico-affectivas para su educación a través del uso de tecnologías vanguardistas acorde a la evolución de los tiempos actuales evidenciadas en el avance en las comunicaciones y las redes de información.

Debido a estas necesidades se presenta esta solución informática, la misma que pretende dar una herramienta tecnológica a la institución educativa y padres de familia para que les asista en la organización sus planes pedagógicos acorde a los requerimientos de ley. Logrando así administrar sus recursos y espacios de una manera rápida, sencilla y eficaz optimizando su tiempo. Se entregará a padres de familia e institución información actualizada y oportuna de la situación de sus niños, para proveer una asistencia oportuna lo que logrará mejorar las aéreas de acción en la institución así como en su desarrollo educativo, social en base a una visión e información específica y global de estudiantes, padres e institución educativa.
CAPÍTULO 1
PRESENTACIÓN Y GENERALIDADES

1.1. Antecedentes del “Centro de Desarrollo Infantil Universo”

El Centro De Desarrollo Infantil Universo (CDIU) se encuentra ubicado en el sector de Quitumbe entre las calles Llira ñañ y Amaru ñañ Oe 1-357, en la ciudad de Quito provincia de Pichincha, es un centro de desarrollo infantil particular con objetivos de interés social y de educación de calidad, que busca contribuir al desarrollo integral de los niños y niñas.

CDIU presenta alternativas de Educación Preescolar, que favorecen al desarrollo de las capacidades básicas y la estructuración del conocimiento integral y significativo de niños y niñas del sector.

La institución se crea como consecuencia de un sueño familiar, el mismo que consiste en desarrollar procesos óptimos para alcanzar un desempeño educativo de calidad moral y en ciencias.

La idea nace por la década de los ochenta en que sus fundadores fueron educadores en sus respectivas aéreas educativas, padres y madres de familia, respectivamente, los mismos que mirando las necesidades de fortalecimiento en las bases del desarrollo educativo y moral con las que llegaban sus alumnos y observando cómo se desarrollaban sus hijos, visualizan en un futuro fundar primero un centro de desarrollo infantil y posteriormente crecer hasta lograr ofrecer servicios educativos varios de alto nivel.

Posteriormente en el año 2000 empieza cobrar forma al adquirir el lugar donde subsiguientemente se construiría las instalaciones para este objetivo que hasta ese momento aún se encontraba como una idea.

Para el 2010 se dan las condiciones ideales para poner en marcha dicho proyecto que nació hace varios años como una idea de sus fundadores y que ahora esa idea se vio reflejada en hechos tangibles.
Los dueños y directivos del centro creen que una educación de calidad desde los inicios del desarrollo humano garantizará un mejor futuro y una mejor calidad de vida; por lo cual se ha decidido invertir tiempo, dinero y esfuerzo para fundar un lugar con tales características (Proyecto CDIU, 2010, pág. 3).

1.2. Formulación de objetivos del sistema

1.2.1. Objetivo general

Analizar, diseñar, codificar e implementar un sistema informático orientado a la web que permita dar seguimiento a la planificación, cumplimiento de actividades, tareas de docentes, administrativos, padres de familia y estudiantes; para optimizar los procesos educativos, gestión de recursos materiales y talento humano en el CDIU.

1.2.2. Objetivos específicos

- Analizar la información administrativa y educativa generada por las diferentes áreas y departamentos del Centro de Desarrollo Infantil Universo para el diseño de la capa de negocio del sistema.
- Diseñar la arquitectura, base de datos e interfaces gráficas del software, que permita dar seguimiento a la planificación y cumplimiento de actividades, tareas de docentes, administrativos, padres de familia y estudiantes.
- Desarrollar la base de datos y codificar las interfaces gráficas del sistema en base a la metodología XP (Extream Programig).
- Implementar el sistema informático EDUPRINTSISTEM.
- Realizar pruebas de funcionamiento y rendimiento.

1.3. Justificación del problema

El presente proyecto pretende dar una solución tecnológica a la necesidad informativa de la institución principalmente y para los padres de familia que en vista de sus obligaciones laborales, dejan sus niños y niñas en el CDIU. A través de este sistema informático se obtendrá de manera oportuna información sobre las
novedades de sus niños. El sistema informático busca dar soporte tecnológico al Centro de Desarrollo Infantil Universo, para soluciones a problemas como:

Los procesos organizacionales del CDIU se gestionan y administran de forma manual retardando el tiempo de control en la administración de recursos materiales y gestión del talento humano.

El CDIU ha tenido un crecimiento constante en la demanda de sus servicios educativos los que se hacen evidentes en el número de estudiantes y familias ya que atiende a 70 estudiantes y familias aproximadamente. Cuenta con un personal docente y administrativo de 16 personas. Estos factores han convertido al CDIU en un actor importante del entorno geográfico en el que se desarrolla (Sector Quitumbe Sur de Quito), demanda un mejoramiento tecnológico de estructura general.

El CDIU tiene problemas en el control de asistencia pedagógica de niños, niñas y padres de familia en las diferentes actividades curriculares a lo largo del periodo lectivo de forma oportuna debido que se lleva a través de un registro escrito, manual, lo que dificulta el trabajo del CDIU ya que sus acciones sufren un retraso originado por el tiempo que lleva el análisis de la información generada, llegando muchas veces tarde la atención cuando se identifican problemas derivados de la inasistencia de los niños y niñas a clases y de sus representantes a las reuniones y eventos de la institución. Por las mismas razones la organización de actividades y difusión de las mismas tienden a demorarse por la cantidad de usuarios dando como resultado la poca presencia de padres y representante en estas etapas importantes del desarrollo de los estudiantes.

Se requiere solucionar inconvenientes de logística interna debido a que la organización de actividades y difusión de convocatorias de reuniones de padres de familia, la organización de chequeos médicos a los niños dentro de la institución que entre otras, no llega en su totalidad a ser del conocimiento por todos sus actores debido a los canales de difusión manual que se utilizan por ejemplo esquelas pegadas en las agendas de los niños.
Otro de los aspectos a mejorar son los procesos de inscripción y matriculación de estudiantes, asignación docente, registro de padres de familia y representantes; que actualmente generan aglomeración debido a que el registro es manual, lo cual demanda una importante inversión de tiempo y recursos.

Uno de los inconvenientes primordiales que el CDIU debe afrontar es el registro y análisis de pagos y cuotas por concepto de matrículas, pensiones e inscripciones, actividades propias de la actividad educativa y a la administración del mismo.

El CDIU presenta dificultades en el control y evaluación del cumplimiento de la planificación docente y administrativa debido a que para realizarlas implica una inversión de tiempo considerable, tiempo que se podría invertir en otras actividades.

A través de este análisis inicial de los problemas que afronta el CDIU se proponen las siguientes soluciones informáticas, que a lo largo del desarrollo del presente proyecto se profundizaran de acuerdo a los requerimientos del CDIU; por lo tanto:

Es necesaria la automatización de los procesos organizacionales del CDIU para mejorar el control y administración de sus recursos y gestión del talento humano a través de la información presentada por el sistema informático producto del análisis y procesamiento de los datos ingresados por los usuarios al sistema.

Mediante el uso de tecnologías informáticas (Sistema Informático) se organizará las actividades institucionales y procesos de difusión de las mismas, de manera efectiva y oportuna, mediante documentos electrónicos e impresos que se enviarán a padres, docentes y administrativos. Por ejemplo: convocatoria de reuniones de padres de familia; organización de chequeos médicos a los niños dentro de la institución; entre otros. De esta manera se tendrá el control de dichas actividades de forma eficiente: identificación de problemas, con soluciones oportunas.

Con la implementación del software informático se logrará reducir el tiempo de atención al cliente automatizando los procesos de inscripción y matriculación de estudiantes, asignación docente, registro de padres de familia y representantes generando una reducción de tiempo y procesos.
El sistema informático generará notificaciones de cobros actuales y vencidos, pagos de inscripciones, matrículas, pensiones, cuotas para un manejo adecuado de los mismos; además implementará funciones para el control y evaluación del cumplimiento de la planificación docente y administrativa; y así se optimizará el cumplimiento de dichas actividades de forma mensual y anual.

El eje del presente software gira en torno a la generación y difusión de notificación y procesamiento de información que llegara a padres de familia, docentes y administrativos del CDIU para mejorar la educación de los niños y niñas del centro infantil, así como utilizar estos datos para apoyarlos en su desarrollo personal.

A través de este breve análisis de los problemas y sus posibles soluciones informáticas en el CDIU, se justifica el desarrollo del sistema informático propuesto. El aporte de esta solución tecnológica se basa en el procesamiento de la información que generan las diferentes áreas del CDIU; para poder detectar casos que presenten una problemática que requiera de una atención oportuna con eficiencia, eficacia y calidez humana por parte del personal docente, administrativo.

1.4. Perspectivas del sistema

1.4.1. Perspectiva del padre de familia

EDUPRINTSISTEM ayudará a tener una pronta y adecuada información sobre las actividades y procesos que se llevan a cabo en el CDIU de tal manera de proporcionar una breve respuesta a diferentes problemas y requerimientos que se puedan presentar a lo largo del periodo lectivo, para así poder dar solución en el menor tiempo posible en caso de existir alguna anomalía en el proceso educativo de sus hijos a través de la información que recibirá de la institución educativa, información que genera el sistema informático EDUPRINTSISTEM.

Información que el padre de familia puede consultar mediante su correo electrónico como son: Actividades de los alumnos, reportes, mensajes importantes, calificaciones entre otros.
EDUPRINTSISTEM se orienta a realizar procesos automáticos, los mismos que reemplazarán paulatinamente a aquellos procesos que hoy en día se llevan a cabo manualmente, para lo cual se deberá generar y fomentar un cambio en las costumbres de los padres de familia orientado al uso de la tecnología.

1.5.2. Perspectiva del de usuario del sistema

EDUPRINTSISTEM está pensado para ayudar a los usuarios que antes llevaban a cabo procesos completamente manuales, para ahora convertirlos en automáticos, ahorrando así valioso tiempo, que se puede invertir en trabajos más importantes y que aporten al crecimiento de la institución y formación académica de los alumnos. Todos los usuarios que tengan acceso al sistema, de alguna manera siempre deben utilizar un tipo identificación personal para poder ingresar.

El usuario al trabajar directamente con los módulos habilitados de acuerdo a su perfil laboral en la institución tendrá la seguridad de obtener información consistente, oportuna y confiable para su óptima utilización logrando así mejorar su desempeño profesional y el mejoramiento en la prestación de servicios.

1.5.3. Perspectiva del desarrollador

EDUPRINTSISTEM embeberá procesos internos completamente transparentes para los usuarios finales del sistema, así por ejemplo habrán cálculos, validaciones, reportes, etc., que se realizarán de manera automática y breve acorde a las necesidades de los usuarios.

El usuario que desee acceder a los procesos del sistema, debe necesariamente contar con un nombre de usuario y una clave (que podrá ser cambiada), tomando en cuenta que toda acción realizada dentro de éste, será registrada transparentemente.

Los procesos de desarrollo se llevan a cabo en forma ordenada y estructurada, de tal manera que cualquier cambio o implementación se la realice de forma rápida. La distribución de las clases en el sistema ayuda a mantener un orden lógico de las cosas, haciendo que se reutilicen porciones de código cuando sea necesario.
Finalmente para ayudar al sistema en tiempos de respuesta, se ha pensado en trabajar a nivel de bases de datos, haciendo uso de Procedimientos Almacenados, en casos en donde se tenga que obtener gran cantidad de información, ya sean para reportes, consultas o cuando se tenga que obtener datos cruzados de muchas tablas.

1.5.4. Perspectiva general

- Representación gráfica

![Diagrama de modelo de base de datos](image_url)

Descripción de la figura 1:

- Base de datos: contiene toda la información almacenada que genera el sistema EDUPRINTSISTEM.
- Capa de datos: es la capa en donde se maneja los procesos de interconexión entre el cliente y base de datos (conexión entre el sistema y la base de datos).
- Capa entidad: es la capa que contiene todas las entidades que harán referencia al modelo de base de datos.
- Capa negocio: es la capa que contiene los métodos necesarios que contiene la lógica del negocio.
- Webservices: contiene los servicios web que se utilizarán para comunicación entre el servidor y el cliente.
- Website: contiene las interfaces de usuario.
2.1. Sistemas educacionales

Actualmente los sistemas educacionales se orientan a la enseñanza de diferentes materias, intentando facilitar el acceso a la información de los alumnos mediante asociación y simulación de trabajos, eventos y realidades. Intentando crear entornos de interacción para facilitar el aprendizaje.

Se entiende como sistema educacional a aquellos que se orientan a la enseñanza didáctica pedagógica utilizando la tecnología informática para dicho fin.

Por otro lado están los sistemas orientados a la administración empresarial de las instituciones educativas que se presentan como sistemas que no aportan información estratégica inmediata a los usuarios y alumnos de las diferentes instituciones educativas que los utilizan, si no que se orientan a la administración de los recursos económicos.

A pesar de que existe multitud de sistemas educativos se puede decir que todos comparten características esenciales como:

- Su utilidad tiene una finalidad didáctica.
- Utilizan computadores y periféricos para el procesamiento informático e interacción usuario-sistema.
- Son interactivos y buscan ser intuitivos para responder eficientemente a las acciones de los usuarios permitiendo un flujo e intercambio de información.
- Poseen autonomía e individualización del trabajo de los usuarios y se adaptan a su ritmo de trabajo.

A diferencia de los sistemas educacionales que existen en el mercado EDUPRINTSISTEM no se orienta a la enseñanza pedagógica sino que se orienta al tratamiento de la información que genera la actividad educativa y que acciones se pueden llevar a cabo al utilizarla.
Su funcionamiento se basa en la interacción de los usuarios con el mismo para generar información útil con el objetivo de identificar problemas administrativos y educativos, es así que su utilidad radica en la respuesta inmediata a factores decisivos como por ejemplo observaciones en las fichas médicas, de igual forma ayuda en la toma de decisiones que se llevan a cabo en la institución así como el ordenamiento estratégico de la información obtenida como es la información de los niños y niñas de la institución.

2.1.1. Estructura básica de los sistemas educacionales.

Los sistemas educacionales nacidos sin finalidad educativa generalmente, tienen tres módulos principales como son:

- El módulo que gestiona la comunicación con el usuario (entrada y salida).
- La base de datos.
- El módulo que gestiona las actuaciones del ordenador y sus respuestas a las acciones de los usuarios (motor).(Marqués, 2013)

a) El entorno de comunicación o interface

La comunicación usuario-sistema es decir la estructura de la interface es el entorno a través del cual los programas establecen el diálogo con sus usuarios, y es la que posibilita la interactividad característica de las pantallas del sistema y los roles de los usuarios. Está integrada por:

- El sistema de comunicación sistema informático-usuario, facilita el flujo de datos e información que genera o procesa el programa informático e interacciona con el cliente o usuario del mismo, dicho flujo de información se lo realiza mediante la utilización de dispositivos hardware como son las pantallas de computadores, documentos impresos o mediante altavoces.

- El sistema de comunicación usuario-sistema informático, es el que permite la transmisión de información del usuario hacia el computador a través de sus dispositivos de entrada como son:
- Pantallas táctiles
- Tabletas digitalizadoras
- Teclados
- Ratones (mouse).
- Cámaras web
- Micrófonos, entre otros.

b) Características de las bases de datos en los sistemas educacionales.

Las bases de datos contienen la información específica que cada programa presentará a los usuarios, en su forma más básica están compuestos de:

- **Modelos de comportamiento.** Representan la dinámica de los sistemas, tiene las siguientes características:
 - Modelos físico-matemáticos, que tienen unas leyes perfectamente determinadas por unas ecuaciones.
 - Modelos no deterministas, regidos por unas leyes no totalmente deterministas, que son representadas por ecuaciones con variables aleatorias, por grafos y por tablas de comportamiento.

- **Datos de tipo texto, información alfanumérica.**

- **Datos gráficos.** Las bases de datos pueden estar constituidas por dibujos, fotografías, secuencias de vídeo, etc.

- **Sonido.** (Fernández & Delavaut, 2008, pág. 93)

c) El algoritmo y código fuente.

El algoritmo del programa gestiona las secuencias en que se presenta la información de las bases de datos y las actividades que pueden realizar los usuarios en base una sucesión de comandos previamente programados en un lenguaje de programación.

“El código fuente está formado por líneas de instrucciones escritas en un determinado lenguaje de programación que permite desarrollar una aplicación o software y que este execute las tareas para las que ha sido creado”(Cobo, 2005, pág. 27).
2.2. Metodología de desarrollo: características y fases

2.2.1. Metodología XP (Extreme programing)

XP (Extreme programing) es una metodología utilizada para desarrollar software de alta calidad de la manera más rápida posible y con el mayor beneficio para el cliente. Se caracteriza por tener ciclos de desarrollo extremadamente breves, integración constante, retroalimentación continua por parte del cliente, pruebas automatizadas regulares y enfoque de equipo (Borrero, 2003, pág. 11).

2.2.2. Características de la metodología XP

Para la programación extrema es importante que se declaren los valores y principios que crean el contexto para la colaboración entre programadores y clientes. (Kendall & Kendall, 2005)

La metodología XP tiene cuatro valores que definen su desarrollo y son: “La comunicación, la simpleza, la retroalimentación, nivel de confianza del equipo de desarrollo” (Kendall & Kendall, 2005, pág. 165).

La programación extrema usa ciclos de retroalimentación cada vez más rápidos e intensos, que proporciona más información.(Kendall & Kendall, 2005, pág. 165)

EDUPRINTSISTEM utiliza estos ciclos de retroalimentación para obtener información útil para el desarrollo de los módulos, interfaces y funciones del sistema, de tal manera que al implementarse sean eficientes para la empresa que utiliza el software.

- Se enfoca en la adaptabilidad que en la previsibilidad: EDUPRINTSISTEM tendrá adaptabilidad continua, ya que crecerá y se retroalimenta continuamente con la información y requerimientos del cliente, basado en plantillas de código lo que permite que los cambios se realicen con facilidad.
Es dinámico y continúo durante el ciclo de vida del software: EDUPRINTSISTEM crece mediante la comunicación directa con los usuarios durante su desarrollo.

Los individuos e interacciones son más importantes que los procesos y herramientas. El cliente y la gente es el principal factor de éxito de un proyecto software. Ya que son los que poseen la información necesaria para el desarrollo de un sistema informático.

EDUPRINTSISTEM se diseña en equipo (2 personas fijas para el desarrollo y varios usuarios que complementan conocimientos) de confianza y mutuo apoyo, de esta manera se conjuga trabajo y comunicación constante que aporta un entorno agradable de conocimiento y crecimiento.

Software que funcione es más importante que documentación exhaustiva: EDUPRINTSISTEM se enfoca a la funcionalidad de procesos que se requieren por parte de los usuarios.

Desarrollar software que funciona más que conseguir una buena documentación. La regla a seguir es no producir documentos a menos que sean necesarios de forma inmediata para tomar una decisión importante. Estos documentos deben ser cortos y centrarse en lo fundamental: EDUPRINTSISTEM avanza mediante reuniones con los usuarios.

La colaboración con el cliente es más importante que la negociación de contratos: EDUPRINTSISTEM cuenta con la colaboración y aporte de información directa de los directivos del CDIU.

Propone que exista una interacción constante entre el cliente y el equipo de desarrollo. Esta colaboración entre ambos será la que marque la marcha del proyecto y asegure su éxito: EDUPRINTSISTEM se desarrolla en conjunto con los usuarios que lo requieren.

La respuesta ante el cambio es más importante que el seguimiento de un plan: EDUPRINTSISTEM es susceptible a cambios rápidos ante los requerimientos del usuario.
2.2.3. Fases

La programación extrema implica varias prácticas como:

- El desarrollo incremental: se lleva a cabo a través de entregas frecuentes y pequeñas del sistema.
- La participación del cliente: A través del compromiso a tiempo completo del cliente en el equipo de desarrollo ya que definen las pruebas y aceptación del sistema.
- El interés en las personas en vez de en los procesos, se lleva a cabo a través de la programación en pareja a través de un desarrollo sostenible que no implique excesivas jornadas de trabajo.
- El cambio se lleva a cabo por medio de entregas regulares del sistema, un desarrollo previamente aprobado.
- El mantenimiento de la simplicidad se lleva a través de la mejora continua de la calidad del código y la utilización de diseños sencillos (Sommerville & Alfonso Galipienso, 2005, pág. 364)

En el desarrollo del sistema EDUPRINTSISTEM se aplicará la programación extrema de la siguiente manera:

- Primera fase: Planificación del proyecto.
- Segunda fase: Desarrollo, integración y prueba
- Tercera fase: Entrega del software
- Cuarta fase: Evaluación.

2.2.3.1. Primera fase: planificación del proyecto

Investigación de usuario: Se define un historial de la relación usuario con el cliente, su propósito es identificar cuales solo los procesos que se realiza y cuáles son los más relevantes en la organización. Su objetivo de identificar los procesos a automatizar, para lo cual se realizan entrevistas a los usuarios así como se revisan los manuales de la organización.

Colocar historias en tareas: Cada investigación e historial de usuario investigado se coloca en tareas de desarrollo.

Plan de publicaciones y entregas pequeñas: Se sintetiza el historial de usuarios y su información para definir las funcionalidades y requerimientos para el desarrollo de
cada versión del programa y así como las fechas en las que se publicarán estas versiones.

Iteraciones: El proyecto se ha de dividir en iteraciones de aproximadamente 3 semanas de duración, cada iteración los clientes deben seleccionar las historias de usuario definidas en el plan de publicaciones que serán implementadas.

Velocidad del proyecto: La velocidad del proyecto representa la rapidez con la que se desarrolla el proyecto y de determina a través del número de historias o tareas de usuario que se pueden implementar en una iteración; de esta forma, se sabrá el cupo de historias que se pueden desarrollar en las distintas iteraciones.

Los tiempos son variables a medida que se va evaluando internamente el avance.

Programación en pareja: Las parejas de desarrolladores verifican el trabajo el uno del otro y prestan ayuda de ser necesario con el fin de mejorar el trabajo.

Cliente presente: Es necesario que los desarrolladores se reúnan diariamente con los usuarios finales y expongan sus problemas, soluciones e ideas de forma conjunta. Las reuniones tienen que ser fluidas y todo el mundo tiene que tener voz y voto. Para esta fase las reuniones se realizan vía Skype entre otros medios de comunicación que existen. Las reuniones personales normalmente hacen cada dos o tres semanas y se aportan ideas claves para el desarrollo del proyecto.

2.2.3.2. Fase: diseño

“Diseños simples: Sólo se lleva a cabo el diseño necesario para cumplir los requerimientos actuales”(Sommerville & Alfonso Galipienso, 2005, pág. 365).

La metodología X.P. sugiere que hay que conseguir diseños simples y sencillos. Hay que procurar hacerlo todo lo menos complicado posible para conseguir un diseño fácilmente entendible e implementable que a la larga costará menos tiempo y esfuerzo desarrollar. Para esta fase se ha implementado plantillas que ayudan a la reutilización de código y de diseños.
Glosarios de términos: Usar glosarios de términos es útil para establecer estándares de programación donde se especifica la utilización de los nombres de métodos que ayuda a comprender el diseño, el desarrollo facilitando sus posteriores ampliaciones y la reutilización del código.

Refactorizar: Es mejorar o modificar la estructura y codificación de códigos ya creados sin alterar su funcionalidad.

“Supone revisar de nuevo estos códigos para procurar optimizar su funcionamiento. Se espera que todos los desarrolladores refactoricen el código continuamente tan pronto como encuentren posibles mejoras en el código, esto conserva el código sencillo y mantenible” (Sommerville & Alfonso Galipienso, 2005, pág. 365).

2.2.3.3. **Fase: codificación.**

La fase de codificación es cíclica y se requiere una recopilación minuciosa de los requerimientos del usuario, ya que en base a esta información se establecen los procesos de desarrollo del sistema en función a estándares de codificación ya creados.

Cuando se programa utilizando estándares definidos y procesos de desarrollo bien establecidos se logra que el código de programación sea consistente permitiendo así una fácil comprensión y escalabilidad del mismo.

En esta fase se realiza pruebas de funcionamiento en los códigos implementados de tal manera que se pueda reutilizar código sin errores y continuamente, de igual manera estas pruebas permiten identificar qué es lo que hacer exactamente cada código a implementar.

“Las tareas a programas se dividen en unidades pequeñas y se prueba cada unidad para posteriormente unir las unidades del código programado y probado para desarrollar y cumplir los requerimiento especificados a cumplir en el software”(Castillo Oswaldo, 2013).
La fase de codificación se busca primero que el código funcione y sea correcto para en lo posterior optimizarlo.

2.2.3.4. Fase: evaluación

Al igual que el diseño y codificación las pruebas son procesos cíclicos que se implementan desde la puesta en marca de proyecto.

Dentro de la metodología XP existen características clave para su ejecución así como para evitar problemas en esta fase y para la validación del código y estas son:

- Desarrollo previamente probado
- Desarrollo de pruebas incremental a partir de los escenarios
- Participación del usuario en el desarrollo de las pruebas y en la validación.
- El uso de bancos de pruebas automatizadas (Sommerville & Alfonso Galipienso, 2005, pág. 367).

“El desarrollo previamente probado es una de las innovaciones más importantes en XP. Al escribir primero las pruebas se define implícitamente tanto una interfaz como una especificación del funcionamiento para la funcionalidad a desarrollar” (Sommerville & Alfonso Galipienso, 2005, pág. 367).

Cabe recalcar que el vínculo existente entre el desarrollador del sistema y la interacción con el usuario de forma constante y permanente permiten evaluar al software y corregirlo de ser necesario de forma constante y no se requiere esperar a la culminación total del sistema informático para realizar pruebas a la funcionalidad del código.
2.3 Estructura del CDIU

El CDIU se organiza de la siguiente manera para lograr un desarrollo integral de los menores de edad y asegurar la prestación de un servicio totalitario, igualitario, ético y profesional. El CDIU cuenta con una estructura organizacional que determina diferentes funciones y propósitos, los cuales están relacionados multidisciplinariamente y promueven un servicio de mayor calidad. Para tales efectos el CDIU cuentan con la siguiente organización funcional:

![Organigrama CDIU](image)

Figura 2. Organigrama "CDIU"

Fuente. (Proyecto CDIU, 2010, pág. 6)
• **Director Pedagógico**

- La directora pedagógica evalúa y analiza los procesos educativos pedagógicos donde está representada la comunidad del CDIU, obtiene información y procesa la misma para asuntos técnico pedagógicos para la toma de decisiones sobre el proceso de enseñanza-aprendizaje.

- La directora pedagógica trabaja en conjunto con padres de familia y docentes para alcanzar los objetivos y de desarrollo planteados en el proyecto educativo.

- Propone criterios generales de los procedimientos de trabajo, exigencia de la práctica pedagógica y la planeación de acciones para el seguimiento y evaluación de proyectos en el CDIU.

- Presentar al director administrativo ideas innovadoras y creativas que puedan ser aplicadas para garantizar la excelencia educativa en el CDIU.

- Desarrolla elementos para evaluar la calidad educativa con base en los programas establecidos en el modelo educativo que exigen los Ministerios de Educación y el MIES-INFA.

• **Psicóloga**

Impulsa la interacción entre el CDIU, el núcleo familiar y la comunidad, a través de la programación de actividades sociales que coadyuven siempre en el desarrollo integral del menor de edad, y para cumplir con sus propósitos el Área de Trabajo Social deberá:

- Integra el expediente único de los menores de edad a su ingreso.

- Propicia una comunicación efectiva y de calidad entre los derechohabientes y el personal del CDIU, orientándolos para que coadyuven en el mejor desarrollo social de los menores de edad.

- Verifica que se tengan actualizados los datos de identificación y localización de los padres de familia.

- Propone y participa en actividades tendentes a mantener un buen ambiente psicosocial entre los miembros de la comunidad educativa del CDIU.

- Dicta talleres de escuela para padres con el fin de dar soporte a los derechohabientes con el proceso de crianza de los menores de edad.
Informa a los derechohabientes sobre los servicios que brinda el CDIU, y sensibiliza a los padres de familia sobre la importancia del cumplimiento de los lineamientos que rigen la operatividad del CDIU y aplicar en su caso las medidas disciplinarias, con visto bueno de la Dirección del CDIU.

- **Médico**

 - Atiende en el área médica y odontológica a los menores de edad mensualmente.

 - Se efectúan revisiones médicas y odontológicas específicas a los menores de edad cuando se sospeche o detecte alguna enfermedad o cuando sufran algún accidente y, de ser necesario, se dará aviso de inmediato a los padres de familia para que los trasladen al Centro Médico.

 - Se aplican, previa autorización del médico del CDIU, tratamientos de carácter preventivo y curativo para los estudiantes que así lo requieran.

 - Serán aplicados, previa autorización del médico del CDIU, tratamientos prescritos por médico externo al CDIU autorizado legalmente para ello. Este proceso se realiza mediante la apertura de fichas médicas aprobadas por los padres de familia al momento de la inscripción.

 - Se promueven acciones de higiene y salud, en coordinación con los padres de familia a lo largo del año lectivo.

 - Aplica evaluaciones psicológicas y del desarrollo a los menores de edad, así como acciones específicas para la modificación de conductas dentro del salón y de apoyo al lenguaje.

 - Canaliza al menor de edad que lo requiera a instituciones especializadas que atiendan el problema específico detectado.

- **Parvularia / Auxiliar Parvularia**

 - Propicia el óptimo desarrollo físico, cognoscitivo y afectivo-social de los menores de edad, a través de la aplicación de estrategias educativas que potencien sus competencias educativas de acuerdo con la etapa de desarrollo en la cual se encuentren, así como promueve la adquisición de hábitos y valores que refuerzan su desarrollo social, estimulación de la motricidad
gruesa, de la motricidad fina, la coordinación ojo-cerebro-mano y la coordinación fono-articuladora, así como la atención de sus necesidades básicas, promoviendo la adquisición de hábitos y valores.

- Colabora en el desarrollo de la personalidad del menor de edad, lactante, maternal y preescolar, fomentando la confianza en sí mismos y su mejor relación con su medio ambiente.

- Orienta al menor de edad para que determine las propiedades físicas de los seres y objetos, establezca relaciones causa-efecto, desarrolle su pensamiento lógico-matemático, amplíe su comprensión del lenguaje, desarrolle su capacidad creativa y en la etapa preescolar inicie su preparación para el aprendizaje de la lectura y escritura.

- Planea y evalúa actividades de carácter cívico, cultural y recreativo, que fomenten en los menores de edad su identidad y nacionalismo e inicien el proceso de su integración a la sociedad, e informa a los derechohabientes sobre el avance en el desarrollo de sus hijos, los problemas de aprendizaje detectados y el tipo de atención que requiere el menor de edad.

2.4. Seguridad en sistemas educacionales

“La seguridad informática es la disciplina que se ocupa de diseñar las normas, procedimientos métodos y técnicas destinadas a conseguir un sistema seguro y confiable”(Aguilera, 2010, pág. 9).

La seguridad en sistemas informáticos se orienta a la protección de la información que generan los diferentes procesos de obtención, registro y procesamiento de datos que se realizan en el software y que se almacenan en una base de datos. La seguridad en los sistemas software toma en cuenta aspectos principales como la confidencialidad, integridad y posterior disponibilidad de los registros que se encuentran en la base de datos y que se manejan por medio del sistema informático educativo.

La seguridad toma en cuenta aspectos importantes para que dicha información pueda ser procesada por los usuarios y también para evitar un posible ataque informático y robo o daño de dicha información. Estos elementos establecen un control en el
sistema informático a base autentificación de usuarios, niveles de autorización de acceso para usuarios autenticados que determinará el tipo de operaciones y transacciones que pueden efectuar los usuarios.

Así mismo, se evalúan los registros de auditoría para llevar un control de las operaciones e interacción realizados por los usuarios dentro del sistema.

Todos estos elementos en el entorno web en el que se desarrolla el sistema son de particular importancia dado el incremento de los dispositivos con acceso a las plataformas web y de internet.

En la seguridad de aplicaciones web se deben considerar no sólo las amenazas externas a la empresa sino también las internas (administradores malintencionados, usuarios que provocan accidentes, etc.), el presente trabajo se enfoca principalmente en las amenazas externas, por ser las más peligrosas e impredecibles. Las aplicaciones más robustas y resistentes a ataques son aquellas en las cuales las cuestiones de seguridad fueron consideradas desde las primeras etapas del desarrollo. Objetivos de la seguridad informática: “Disponibilidad y accesibilidad, integridad, confidencialidad de datos y de la información del sistema, responsabilidad a nivel individual, aseguramiento” (Areitio, 2008, pág. 3).

Lo que permite:
- Acceder a los datos cuando sean requeridos y solo por el personal autorizado, protege al sistema de la utilización o borrado de datos por personal no autorizado.
- Garantizar que los datos e información del sistema no haya sido alterada por usuarios no autorizados (Areitio, 2008, pág. 3).
- Definir perfiles para que la información sea secreta y solo pueda ser vista por el perfil autorizado.
- Analizar las acciones o tareas de forma única así como las actividades de los usuarios en base a un registro de auditorías.
- Garantizar que los cuatro objetivos anteriores se han cumplido adecuadamente. Es la base de la confianza en que las medidas de
seguridad, tanto técnicas, como operacionales, funcionan tal y como se idearon para proteger el sistema y la información que procesa.

Dentro de los procesos de seguridad que utilizara el sistema EDUPRINTSISTEM se desarrolla el concepto de encriptación que permiten codificar los datos bajo una secuencia de sentencias que solo se pueden decodificar por el usuario y características del software que posea el algoritmo de decodificación.

Encriptación: Proceso de transformación de un texto denominado texto plano para convertirlo a una forma que no pueda ser leída por alguien que no tenga los mecanismos utilizados para llevar a cabo la encriptación. El texto transformado recibe el nombre de texto cifrado (Oxford, 2003, pág. 149).

2.5. Análisis de los procesos y documentación actual del CDIU y del sistema

2.5.1. Diagramas de procesos

- **Inscripción**

![Diagrama de proceso de inscripción](image)

Figura 3. Diagrama de proceso de inscripción

Elaborado por: Andrés Hinojosa, Alex Yamba
Matriculación

Figura 4. Proceso de matriculación
Elaborado por: Andrés Hinojosa, Alex Yamba
- Creación de horarios

Figura 5. Proceso de creación de horarios
Elaborado por: Andrés Hinojosa, Alex Yamba
• Creación lista de útiles

Figura 6. Proceso de creación de lista de útiles
Elaborado por. Andrés Hinojosa, Alex Yamba
Recepción de listas de útiles

Figura 7. Proceso de recepción de listas de útiles
Elaborado por: Andrés Hinojosa, Alex Yamba
Apertura de ficha de evaluación médica

Figura 8. Ficha de evaluación médica
Elaborado por: Andrés Hinojosa, Alex Yamba
Apertura de ficha psicológica

Figura 9. Apertura de ficha psicológica
Elaborado por. Andrés Hinojosa, Alex Yamba
• Llegada y arribo de estudiantes al CDIU

Figura 10. Proceso de llegada y arribo al CDIU
Elaborado por: Andrés Hinojosa, Alex Yamba
Convocatoria

Figura 11. Proceso de convocatoria a reuniones
Elaborado por: Andrés Hinojosa, Alex Yamba

2.6. Herramientas de desarrollo

A continuación se presentara una breve descripción de las herramientas informáticas para el desarrollo del software.

- **Microsoft SQL Server 2012**

Microsoft® SQL Server™ es un sistema de administración y análisis de bases de datos relacionales de Microsoft para soluciones de comercio electrónico, línea de negocio y almacenamiento de datos. En esta sección, encontrará información sobre varias versiones de SQL Server. También encontrará artículos sobre bases de datos y aplicaciones de diseño de bases de datos así como ejemplos de los usos de SQL Server. SQL Server 2012 añade nuevas soluciones de alta disponibilidad y de recuperación de desastres mediante clústeres AlwaysOn y grupos de disponibilidad, xVelocity en almacenamiento de memoria para una ejecución de consultas extremadamente rápida, una veloz exploración de datos y Business
Intelligence escalable mediante Power View y un modelado tabular en Analysis Services y una nueva capacidad de administración de datos mediante Data Quality Services (Microsoft, msdn.microsoft.com, 2014).

Esta herramienta se usará para elaborar y diseñar la base de datos que utilizara el software EDUPRINTSISTEM

- **Microsoft VISUAL STUDIO 2010 Y C#**

Esta herramienta se usará para elaborar es software e interfaces que interactúan con el cliente, basados en el lenguaje de programación C#.

- **VISUAL C#**

C# es un lenguaje de programación que se ha diseñado para generar diversas aplicaciones que se ejecutan en .NET Framework. C# es simple, eficaz, con seguridad de tipos y orientado a objetos. Las numerosas innovaciones de C# permiten desarrollar aplicaciones rápidamente y mantener la expresividad y elegancia de los lenguajes de estilo de C.

Visual C# es una implementación del lenguaje de C# de Microsoft. Visual Studio ofrece compatibilidad con Visual C# con un completo editor de código, un compilador, plantillas de proyecto, diseñadores, asistentes para código, un depurador eficaz y de fácil uso y otras herramientas. La biblioteca de clases de .NET Framework ofrece acceso a numerosos servicios de sistema operativo y a otras clases útiles y adecuadamente diseñadas que aceleran el ciclo de desarrollo de manera significativa (Microsoft, msdn.microsoft.com, 2014).

Sera el lenguaje de programación que se usará para elaborar el software.
HTML 5

“HyperText Markup Language (HTML) es un lenguaje de programación. A diferencia de otros lenguajes, HTML no está compuesto por comandos o instrucciones sino por un conjunto de etiquetas que organizan y declaran el propósito del contenido del documento” (Gauchat J. D., 2014, pág. 2).

“HTML es un lenguaje que se compone por elementos que permiten definir la estructura del documento. Estos elementos son los que nos posibilitan determinar cómo estará armada la página y sus secciones” (De Luca, 2011, pág. 66).

HTML provee básicamente tres características: estructura, estilo y funcionalidad, HTML5 considerado el producto de la combinación de HTML, CSS y Javascript. Estas tecnologías son altamente dependientes y actúan como una sola unidad organizada bajo la especificación de HTML5 (Gauchat J. D., 2012, pág. 1).
CAPÍTULO 3
DISEÑO Y MODELACIÓN DE LOS PROCESOS

3.1. Especificación de requerimientos funcionales

El sistema EDUPRINTSISTEM se ha desarrollado en base a tecnologías informáticas como son Microsoft .Net y SQL server 2012 y con los lenguajes de programación como son el HTML5 y C#; por lo tanto los requerimientos funcionales que el sistema requiere para trabajar de la mejor manera se engloban en dos ejes fundamentales como son: los requerimientos de software en el cual se incluirá tanto las características que deben tener los servidores WEB en los cuales alojaremos el sistema ya que EDUPRINTSISTEM está orientado a la WEB y también el requerimiento del software que deben tener las estaciones de trabajo acceso al sistema.

Estación de trabajo se entiende a todos aquellos puntos de acceso al sistema que tienen únicamente las personas a las que se les asignado roles en el mismo y laboran en la institución en la que el software está en marcha.

3.1.1. Requerimiento

- Servidores web.

Los servidores web deben tener tecnológicamente la capacidad de alojar y procesar información generada en lenguaje HTML, C# con soporte para tecnologías en ASP.net y bases de datos desarrolladas en Microsoft SQL server 2012.
• **Estaciones de trabajo.**

Las estaciones de trabajo por las cuales se puede acceder al sistema EDUPRINTSISTEM son:

- **Computadores personales o PC:** deben tener navegadores web actualizados y vigentes como son: google chrome, internet explorer 9 o versiones posteriores, navegador opera, mozilla firefox. Al ser un sistema orientado a la WEB el mismo puede funcionar en cualquier sistema operativo siempre y cuando esté actualizado, y que posea acceso a la internet.

- **Tabletas digitales:** Deben tener navegadores WEB actualizados a la fecha, y contar con acceso al internet.
3.2. Modelo relacional

Figura 12. Modelo relacional de la base de datos
Fuente: Andrés Hinojosa, Alex Yamba
3.4. Modelo de clases

- Capa datos
 - Módulo acceso

Figura 13. Diagrama A del módulo de acceso
Fuente: Andrés Hinojosa, Alex Yamba
La figura trece y catorce corresponden al mismo diagrama del módulo de acceso dividido en dos partes para que se pueda observar su contenido de mejor manera.

Figura 14. Diagrama B del módulo de acceso
Fuente: Andrés Hinojosa, Alex Yamba
- Módulo alumnos

Figura 15. Diagrama del módulo alumnos
Fuente: Andrés Hinojosa, Alex Yamba
- Módulo docentes

Figura 16. Diagrama del módulo docentes

Fuente: Andrés Hinojosa, Alex Yamba
- **Módulo generales**

Figura 17. Diagrama de módulos generales
Fuente: Andrés Hinojosa, Alex Yamba
- Módulo representantes

Figura 18. Diagrama de módulo representantes
Fuente: Andrés Hinojosa, Alex Yamba
- Capa entidad
 - Módulo accesos

Figura 19. Diagrama del módulo accesos
Fuente: Andrés Hinojosa, Alex Yamba
- Módulo alumnos

Figura 20. Diagrama del módulo alumnos
Fuente: Andrés Hinojosa, Alex Yamba
- Módulo docentes

Figura 21. Diagrama módulo docente

Fuente: Andrés Hinojosa, Alex Yamba
- **Módulo mensajes**

Figura 22. Diagrama del módulo mensajes

Fuente: Andrés Hinojosa, Alex Yamba
- Módulo representantes

Figura 23. Diagrama del módulo representantes

Fuente: Andrés Hinojosa, Alex Yamba
• Webservices

Figura 24. Diagrama del webservices
Fuente: Andrés Hinojosa, Alex Yamba
3.4. Diagramas de casos de usos

“Sirven para mostrar las funciones de un sistema de software desde el punto de vista de sus interacciones con el exterior y sin entrar ni en la descripción detallada ni en la implementación de estas funciones” (Campderrich, 2003, pág. 83).

Los diagramas de casos de uso que se explican a continuación describen las tareas y actividades que realizan cada uno de los usuarios del sistema. Cada caso de uso definirá las funciones de los colaboradores del CDIU.

Cabe recalcar que el sistema EDUPRINTSISTEM permite asignar a cada uno de los usuarios funciones adicionales o desactivarlas de ser el caso, de forma flexible y de acuerdo a los requerimientos del negocio.

Los usuarios son:
- Directora administrativa
- Directora pedagógica
- Secretaria-colectora
- Docente
- Psicóloga
- Médico pediatra

Ingreso al sistema

<table>
<thead>
<tr>
<th>Caso de uso autenticar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación:</td>
</tr>
<tr>
<td>Nombre:</td>
</tr>
<tr>
<td>Descripción:</td>
</tr>
<tr>
<td>Actores:</td>
</tr>
<tr>
<td>Pre-condiciones:</td>
</tr>
<tr>
<td>Flujo normal:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Flujo alternativo:
2.1 Si los datos de usuario y contraseña son incorrectas el sistema genera un mensaje de error de autenticación y solicita re ingresar los datos

Elaborado por: Andrés Hinojosa, Alex Yamba
Gestión general de datos

Tabla 2. Historia de usuario caso cambio de contraseña

<table>
<thead>
<tr>
<th>Caso de uso cambiar contraseña</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación:</td>
</tr>
<tr>
<td>Nombre:</td>
</tr>
<tr>
<td>Descripción:</td>
</tr>
<tr>
<td>Actores:</td>
</tr>
<tr>
<td>Pre-condiciones:</td>
</tr>
</tbody>
</table>

Flujo normal:

1. El usuario ingresa al sistema con la contraseña actual.
2. Seleccionar la opción acceso, dentro de esta categoría elije la opción Cambiar Contraseña.
3. Para el cambiar de contraseña se realiza:
 3.1 Ingresar la contraseña actual
 3.2 Ingresar la contraseña nueva
 3.3 Confirmar la nueva contraseña
 3.4 Guarda el cambio de contraseña
4. El sistema valida la contraseña actual sea correcta.
5. El sistema valida que la contraseña nueva y la confirmación sean idénticas.
6. Se guarda la nueva contraseña validada para el usuario del sistema.
7. El sistema envía el mensaje cambio de contraseña exitoso.

Flujo alternativo:
1.1. Si los datos son incorrectas el sistema devuelve un mensaje de clave actual incorrecta
3.1. Si la nueva contraseña no coincide con la confirmación de nueva contraseña el sistema entrega un mensaje de error.

Elaborado por: Andrés Hinojosa, Alex Yamba

Figura 26. Caso de uso general para la gestión general de datos
Elaborado por: Andrés Hinojosa, Alex Yamba
- **Gestión Particular de datos.**

Tabla 3. Historial de usuario caso funciones director administrativo

<table>
<thead>
<tr>
<th>Caso de uso funciones director administrativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación: 3</td>
</tr>
<tr>
<td>Nombre: Funciones director administrativo</td>
</tr>
<tr>
<td>Descripción: Proceso que permite gestionar las actividades del director administrativo</td>
</tr>
<tr>
<td>Actores: Director administrativo</td>
</tr>
<tr>
<td>Pre-condiciones: El director administrativo debe estar registrado en el sistema</td>
</tr>
</tbody>
</table>

Flujo normal:
1. Ingresal al sistema con su usuario y contraseña, el administrador de base de datos crea el usuario administrador.
2. Gestiona la información general y costos por servicios esto corresponde a la creación, modificación, cambio de estado y eliminación de la información de horarios de servicios educativos, costos de los servicios, documentos necesarios para inscripciones y matriculas.
3. Gestión de inscripción y matriculas, esto corresponde a las consultas de los alumnos inscritos y los matriculados.
4. Gestión de usuarios del sistema, esto corresponde a la creación, modificación y cambio de estado de usuarios del sistema y su asignación a un perfil específico.
5. Gestión de contraseña esto corresponde al hecho de reenviar una contraseña de recuperación para un usuario o el cambio de la contraseña particular

Flujo alternativo:
1.1. Si los datos son incorrectas el sistema devuelve mensaje de clave incorrecta

Elaborado por: Andrés Hinojosa, Alex Yamba
Figura 27. Casos de uso funciones director administrativo
Fuente: Andrés Hinojosa, Alex Yamba
Tabla 4. Historia de usuario caso gestión de información general

| Caso de uso gestión de información general |
|------------------------|------------------|
| Identificación: | 4 |
| Nombre: | Gestión de información general |
| Descripción: | Proceso que permite gestionar las actividades de la secretaria |
| Actores: | Secretaria-colectora |
| Pre-condiciones: | La secretaria-colectora debe estar registrado en el sistema |

Flujo normal:

1. Ingresa al sistema con su usuario y contraseña.
2. Consulta la información general y costos por servicios esto corresponde a la consulta de horarios de servicios educativos, costos de los servicios, documentos necesarios para inscripciones y matrículas.
3. Gestión de inscripción y matrículas, esto corresponde a al ingreso, modificación, cambio de estado y eliminación de inscripciones y matrículas de los alumnos.
4. Realiza cobros esto corresponde al cobro de rubros y costos por los servicios recibidos por parte del CDIU.
5. Gestión de contraseña esto corresponde al hecho de cambiar la contraseña particular.

Flujo alternativo:

1.1. Si los datos son incorrectas el sistema devuelve mensaje de clave incorrecta
2.1. No se puede activar el estado de matriculado si no se ha inscrito primero.

Elaborado por: Andrés Hinojosa, Alex Yamba

Figura 28. Caso de uso para la gestión de información e inscripción
Fuente: Andres Hinojosa, Alex Yamba
Tabla 5. Historia de usuario caso gestión de información pedagógica

<table>
<thead>
<tr>
<th>Caso de uso gestión de información pedagógica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación:</td>
</tr>
<tr>
<td>Nombre:</td>
</tr>
<tr>
<td>Descripción:</td>
</tr>
<tr>
<td>Actores:</td>
</tr>
<tr>
<td>Pre-condiciones:</td>
</tr>
</tbody>
</table>

Flujo normal:
1. Ingresa al sistema con su usuario y contraseña
2. Gestiona la información que se genera por novedades, noticias o acontecimientos que se ingresa a lo largo del día o la semana.
3. Gestión de niveles o cursos, esto corresponde a la creación, modificación, eliminación o cambio de estado de los niveles.
4. Gestión de asignación docente, esto corresponde a la asignación de un docente a un nivel o curso.
5. Gestión de actividad docente, esto corresponde a la consulta, modificación, eliminación o cambio de estado de las actividades mensuales, semanales y diarias creadas por los docentes.
6. Gestión de esquelas, esto corresponde a la capacidad de consulta, modificación, eliminación o cambio de estado de las esquelas y envió por correo electrónico a los padres de los mismos.
7. Consulta de fichas psicológicas de los niños y niñas del CDIU
8. Consulta de médica de los niños y niñas del CDIU
9. Gestión de contraseña esto corresponde al hecho del cambio de la contraseña particular.

Flujo alternativo:
1.2. Si los datos son incorrectas el sistema devuelve mensaje de clave incorrecta.

Elaborado por: Andrés Hinojosa, Alex Yamba
Figura 29. Caso de uso funciones para la directora pedagógica
Fuente: Andrés Hinojosa, Alex Yamba
Tabla 6. Historia de usuario caso actividad docente

<table>
<thead>
<tr>
<th>Caso de uso actividad docente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación:</td>
</tr>
<tr>
<td>Nombre:</td>
</tr>
<tr>
<td>Descripción:</td>
</tr>
<tr>
<td>Actores:</td>
</tr>
<tr>
<td>Pre-condiciones:</td>
</tr>
</tbody>
</table>

Flujo normal:
1. Ingresar al sistema con su usuario y contraseña
2. Cargar al sistema los horarios pre-aprobados
3. Gestión de actividad docente, esto corresponde a la creación, consulta, modificación, eliminación o cambio de estado de las actividades mensuales, semanales y diarias creadas por los docentes.
4. Gestión particular de esquelas, esto corresponde a la creación, consulta, modificación, eliminación o cambio de estado de las esquelas y enviado a revisión de las mismas a el director pedagógico.
5. Control de asistencia de sus alumnos.
6. Gestión particular de novedades esto corresponde a la creación, consulta, modificación, eliminación o cambio de estado de las novedades de sus alumnos.
7. Gestión de contraseña esto corresponde al cambio de la contraseña particular.

Flujo alternativo:
1.1. Si los datos son incorrectas el sistema devuelve mensaje de clave incorrecta.

Elaborado por: Andrés Hinojosa, Alex Yamba
Tabla 7. Historia de usuario caso de uso gestión información ficha psicológica

<table>
<thead>
<tr>
<th>Caso de uso gestión información ficha psicológica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación: 7</td>
</tr>
<tr>
<td>Nombre: Gestión información ficha psicológica</td>
</tr>
<tr>
<td>Descripción: Proceso que permite gestionar las actividades del psicólogo</td>
</tr>
<tr>
<td>Actores: Psicólogo</td>
</tr>
<tr>
<td>Pre-condiciones: El psicólogo debe estar registrado en el sistema</td>
</tr>
<tr>
<td>Flujo normal:</td>
</tr>
<tr>
<td>1. Ingresal sistema con su usuario y contraseña.</td>
</tr>
<tr>
<td>2. Consulta fichas anteriores.</td>
</tr>
<tr>
<td>3. Crea nuevas fichas de informe psicológico</td>
</tr>
<tr>
<td>4. Gestión de contraseña esto corresponde al hecho de cambiar la contraseña particular.</td>
</tr>
<tr>
<td>Flujo alternativo:</td>
</tr>
<tr>
<td>1.2. Si los datos son incorrectas el sistema devuelve mensaje de clave incorrecta.</td>
</tr>
</tbody>
</table>

Elaborado por: Andrés Hinojosa, Alex Yamba
Tabla 8. Historia de usuario caso gestión de información ficha médica

<table>
<thead>
<tr>
<th>Caso de uso gestión información ficha médica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación:</td>
</tr>
<tr>
<td>Nombre:</td>
</tr>
<tr>
<td>Descripción:</td>
</tr>
<tr>
<td>Actores:</td>
</tr>
<tr>
<td>Pre-condiciones:</td>
</tr>
</tbody>
</table>

Flujo normal:
1. Ingresa al sistema con su usuario y contraseña.
2.Consulta fichas médicas anteriores.
3. Crea nuevas fichas de informe médico.
4. Gestión de contraseña esto corresponde al hecho de cambiar la contraseña particular.

Flujo alternativo:
1.3. Si los datos son incorrectas el sistema devuelve mensaje de clave incorrecta.

Elaborado por: Andrés Hinojosa, Alex Yamba
Diagramas de secuencia

"Un diagrama de secuencia muestra las secuencias de acciones implicadas en un caso de uso" (Sommerville & Alfonso Galipienso, 2005, pág. 169).

"Un diagrama de secuencia permite representar la ordenación temporal de los mensajes (invocación de métodos). Este diagrama permite definir o modelar el comportamiento dinámico de los distintos elementos que componen un sistema" (Hernández & Hernández, 2001, pág. 469).
Figura 33. Diagrama de secuencia de registro de nuevos usuarios
Fuente: Andrés Hinojosa, Alex Yamba
Figura 34. Diagrama de secuencia para la creación de nuevos servicios
Fuente: Andrés Hinojosa, Alex Yamba
Figura 35. Diagrama de secuencia de modificación de servicios
Fuente: Andrés Hinojosa, Alex Yamba
Figura 36. Diagrama de secuencia inscripción y matriculación

Fuente: Andrés Hinojosa, Alex Yamba
Figura 37. Diagrama de secuencia de gestión de cursos
Fuente: Andrés Hinojosa, Alex Yamba
Figura 38. Diagrama de secuencia para asignación docente
Fuente: Andrés Hinojosa, Alex Yamba
Figura 39. Diagrama de secuencia de actividad docente
Fuente: Andrés Hinojosa, Alex Yamba
Figura 40. Diagrama de secuencia asistencia y novedades
Fuente: Andrés Hinojosa, Alex Yamba
3.6. Diagramas de navegación

Figura 41. Diagrama de navegación principal
Fuente: Andrés Hinojosa, Alex Yamba
Figura 42. Diagrama de navegación ingreso pantalla inicial
Elaborado por: Andres Hinojosa, Alex Yamba

Figura 43. Diagrama de navegación menú director administrativo
Fuente: Andrés Hinojosa, Alex Yamba.
Figura 44. Diagrama de navegación menú directora pedagógica
Fuente: Andrés Hinojosa, Alex Yamba
Figura 45. Diagrama de navegación menú secretaria – colectora
Fuente: Andrés Hinojosa, Alex Yamba
Figura 46. Diagrama de navegación menú docente
Fuente: Andrés Hinojosa, Alex Yamba
Figura 47. Diagrama de navegación menú médico pediatra
Fuente: Andrés Hinojosa, Alex Yamba
Figura 48. Diagrama de navegación menú psicólogo
Fuente: Andrés Hinojosa, Alex Yamba
3.7. Definición de interfaz de usuario

En esta literal se describe las tablas que interactúan con las pantallas en el sistema EDUPRINTSISTEM

Cabe recalcar que en el sistema existen módulos para realizar cada una de las actividades que solicitan los usuarios, es así que existen tanto actividades comunes y actividades específicas al usuario.

- **Interfaces comunes o generales.**

<table>
<thead>
<tr>
<th>Tablas utilizadas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceso.login</td>
</tr>
</tbody>
</table>

Figura 49. Cambio de contraseña
a) Pantalla de petición de cambio de contraseña
b) Pantalla de cambio de contraseña
Fuente: Andrés Hinojosa, Alex Yamba

<table>
<thead>
<tr>
<th>Tablas utilizadas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulotabla</td>
</tr>
<tr>
<td>Accesos.login</td>
</tr>
</tbody>
</table>

Figura 50. Ingreso de usuario al sistema
Fuente: Andrés Hinojosa, Alex Yamba
- Interfaces específicos
 - Usuario directora administrativa

Figura 51. Interfaz de información general

Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas:
- Acceso.período
- Generales.horarioasistencia
- Pagos.rubro
- Generales.documento
- Pagos.horarioasistencialrubro
Figura 52. Interfaz inscripción
Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas:
- Alumnos.inscripción
- Alumnos.estudiantetutor
- Alumnos.personaestudiante
- Alumnos.estudianteservicioalimentacion
- Alumnos.estudianteserviciodealimentacion
- Accesos.persona
- Accesos.periodo
- Accesos.personatelefono
- Representantes.personatutor
- Representantes.personasolicitante
- Representantes.personaautorizada
- Generales.estadocivil
- Generales.tipoindentificacion
- Generales.tipotelefono
- Generales.parentesco
- Generales.horarioasistencia
- Generales.serviciotransporte
- Generales.servicioalimentacion
Figura 53. Interfaz matrícula
Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas:

- Alumnos.inscripción
- Alumnos.estudiantetutor
- Alumnos.personaestudiante
- Alumnos.estudianteservicioalimentacion
- Alumnos.estudianteservicioservicioalimentacion
- Accesos.persona
- Accesos.periodo
- Accesos.personatelefono
- Representantes.personatutor
- Representantes.personasolicitante
- Representantes.personaautorizadaaretirar
- Generales.estadocivil
- Generales.tipoidentificacion
- Generales.tipotelefono
- Generales.parentesco
- Generales.horarioasistencia
- Generales.serviciotransporte
- Generales.servicioalimentacion
- Generales.sexo
Figura 54. Interfaz de pagos

Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas:

- Alumnos.estudianterubrospagados
- Alumnos.estudianteservicioalimentacionpagado
- Alumnos.serviciotransportepagado
- Alumnos.personaestudiante
- Accesos.persona
- Accesos.personatелефono
Figura 55. Interfaz de ingreso nueva persona

Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas:
- Accesos.persona
- Accesos.personadetalle
- Generales.sexo
- Generales.estadocivil
- Generales.tipoidentificacion

Figura 56. Asignar rol a persona

Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas:
- Creación de rol a usuario
- Accesos.login
- Accesos.rol
- Accesos.persona
• Secretaria

Figura 57. Interfaz información general
Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas:
- Acceso.periodo
- Generales.horarioasistencia
- Pagos.rubro
- Generales.documento
- Pagos.horarioasistenciarubro
Figura 58. Interfaz de inscripción
Fuente: Andrés Hinojosa, Alex Yamba
Figura 59. Interfaz matriculación
Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas:
- Alumnos.inscripción - Representantes.personasolicitante
- Alumnos.estudiantetutor - Representantes.personaautorizadaret
- Alumnos.personaestudiante - Generales.estadocivil
- Alumnos.estudianteservicioalimentacion - Generales.tipoindentificacion
- Alumnos.estudianteservicioalimentacion - Generales.tipotelefono
- Accesos.persona - Generales.parentesco
- Accesos.periodo - Generales.horarioasistencia
- Accesos.personatelefono - Generales.serviciotransporte
- Representantes.personatutor - Generales.servicioalimentacion
- Generales.sexo
Figura 60. interfaz de pagos

Elaborado por: Andrés Hinojosa, Alex Yamba

Tablas utilizadas

- Alumnos.estudianterubrospagados
- Alumnos.estudianteservicioalimentacionpagado
- Alumnos.serviciotransportepagado
- Alumnos.personaestudiante
- Accesos.persona
- Accesos.personatelefono
• Directora pedagógica

Figura 61. Interfaz de noticias y novedades

Elaborado por: Andrés Hinojosa, Alex Yamba

Tablas utilizadas:
- Personaestudiante
- Grado
- Personadocente
- Novedades
Figura 62. Interfaz de ingreso de horarios
Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas
- Grado
- Horario
Figura 63. Interfaz de ingreso y consulta de actividades
Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas:

- Grado
- Accesos rol
- Accesos persona
- Actividades
- Frecuencia actividad
- Grado
Figura 64. Interfaz ingreso de esquelas
Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas:
- Noticias
- Grado
- Perfil
- Persona
Figura 65. Interfaz de control de asistencia

Fuente: Andrés Hinojosa, Alex Yamba

Tabla utilizadas

- Personaestudiante
- Grado
- Personadocente
- Novedades
Figura 66. Interfaz de ficha psicológica

Fuente: Andrés Hinojosa, Alex Yamba.

Tablas utilizadas

- Fichapsicologica
- Estudainteconsultapsicologo
- Personaestudiante
- Personarepresentante
Docente

Figura 67. Interfaz de ficha médica
Fuente: Andrés Hinojosa, Alex Yamba.

Tablas utilizadas
- Fichamedico
- Estudianteconsultamedica
- Personaestudiante
- Inscripcion

Docente

Figura 68. Interfaz reporte de horarios
Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas:
- Grado
- Horario
Figura 69. Interfaz de ingreso y consulta de actividades docente

Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas
- Grado
- Accesos.rol
- Accesos.persona
- Actividades
- Frecuencia actividad
- Grado
Figura 70. Interfaz de ingreso y consulta de noticias del docente

Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas

- Noticias
- Grado
- Perfil
- Persona
- Persona.estudiante
- Persona.docente
- novedades
Figura 71. Interfaz de novedades del día docente

Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas

- Personaestudiante
- Grado
- Personadocente
- Novedades
• Médico pediatra

Figura 72. Interfaz ingreso y consulta de ficha medica

Fuente: Andrés Hinojosa, Alex Yamba

Tablas utilizadas

• Fichamedico
• Estudianteconsultamedica
• Personaestudiante
• Inscripcion
CAPÍTULO 4
DESARROLLO DEL SISTEMA PROPUESTO

4.1. Diagramas de componentes

Figura 73. Diagrama de componentes
Elaborado por: Andrés Hinojosa, Alex Yamba
4.2. Estándares de programación

Se describen formatos y directivas del desarrollo del sistema, directrices que permiten la estandarización del código de programación, así como su mantenimiento. Los estándares permiten identificar y coordinar de manera más eficiente las actividades de desarrollo.

4.2.1. Consideraciones de desarrollo y aplicación de estándares

A continuación se describen las reglas que se tomaron en el desarrollo del sistema así como convenciones en el uso de letras minúsculas, mayúsculas y nombres que se usan en el código.

Consideraciones:

Los nombres que se usen en el código se basan en procedimiento de asociación para que se facilite el entendimiento de los contenidos.

Los nombres que se usen serán sugestivos, de tal manera que se pueda entender su función solo con leerlo.

- **Reglas de nomenclatura**

<table>
<thead>
<tr>
<th>Tabla 9. Ejemplo de identificadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificador</td>
</tr>
<tr>
<td>Clase</td>
</tr>
<tr>
<td>Método</td>
</tr>
<tr>
<td>Controles y componentes</td>
</tr>
<tr>
<td>Propiedades</td>
</tr>
</tbody>
</table>

Elaborado por: Andrés Hinojosa, Alex Yamba

En los nombres no se utilizarán tildes.

Abreviaturas, Acrónimos y Siglas:

- Se busca especificar todos los nombres, no se utiliza abreviaturas.
Nomenclatura de Clases
- Se escribe cada palabra con Mayúscula
- Se utiliza guion bajo “_” para los nombres de los atributos

Nomenclatura de Métodos
- Se ocupan verbos y frases.
- Se escribe cada palabra con Mayúscula

Como estándar general en todas las páginas no se usa o se crea variables de sesión por seguridad y se manejan en segundo plano.
Las variables de sesión creadas se usaran en la autenticación para verificar sesión activa y rol.

El desarrollo del sistema se utiliza el ViewState o variables de estado, estas no permanecen con datos durante la ejecución del sistema sino solamente durante el trabajo con el formulario, si se cierra el formulario los datos no permanecen en sesión.

4.3. Codificación del sistema

A continuación se describe el código fuente de los métodos más relevantes que se utilizó en el desarrollo del sistema EDUPRINTSISTEM.

4.3.1. Creación del menú dinámico de acuerdo a nivel de relevancia.

El siguiente fragmento de código arma el menú que se mostrará en el sistema de acuerdo al perfil de usuario que asigne el administrador.

```csharp
/// <summary>
/// Control tipo Menú, es el control menú de VB
/// <param name="idpadre">Es el ID de la opción padre al incio recibe 0</param>
/// <param name="dt">DataTable con toda la informacion recuperada de la
```
```csharp
protected void Menu(MenuItemCollection items, int idpadre, DataTable dt)
{
    int id;
    string nombreMenu;
    string referencia;
    bool existeUrlPorRol = false;
    try
    {
        // filtramos por el id que toma este, el primero es "0" que son los padres
        DataRow[] hijos = dt.Select("idPadre=" + idpadre.ToString());
        // validamos que encontremos resultados, si no retornamos
        if (hijos.Length == 0)
        return;
        // recorremos la información filtrada
        foreach (DataRow hijo in hijos)
        {
            // asignamos las variables al menu
            id = Convert.ToInt32(hijo[0]);
            nombreMenu = Convert.ToString(hijo[1]); // Nombre de la opción de menú
            referencia = Convert.ToString(hijo[3]); // Path para redirección
            // creamos el item
            MenuItem nuevoItem = new MenuItem(nombreMenu, id.ToString(), "", referencia);
            items.Add(nuevoItem);
            // llamamos a la funcion nuevamente para que revise si tiene mas informacion asociada, es decir si el item tiene hijos
            Menu(nuevoItem.ChildItems, id, dt);
        }
    }
    catch (Exception) {
    }
    // validamos que encontremos resultados, si no retornamos
    if (hijos.Length == 0)
    return;
    }
```
// recorremos la información filtrada
foreach (DataRow hijo in hijos)
{
 // asignamos las variables al menú
 id = Convert.ToInt32(hijo[0]);
 nombreMenu = Convert.ToString(hijo[1]); // Nombre de la opción de menú
 referencia = Convert.ToString(hijo[3]); // Path para redirección
 // creamos el item
 MenuItem nuevoItem = new MenuItem(nombreMenu, id.ToString(), "", referencia);
 items.Add(nuevoItem);
 // llamamos a la funcion nuevamente para que revise si tiene mas informacion asociada, es decir si el item tiene hijos
 Menu(nuevoItem.ChildItems, id, dt);
} } catch (Exception) { } }

El siguiente fragmento de código permite la correcta validación de la fecha cuando donde el servidor en que se aloja el sistema maneja un formado de distribución diferente en cuanto al día/mes/año, por motivos geográficos o de lengua extranjera.

public static bool ValidaFecha(string fecha)
{
 bool esTextoValido = true;
 try
 {
 // Verifica si la cadena de entrada no esta vacia
 if (!string.IsNullOrEmpty(fecha))
 {
 Match match =
 Regex.Match(Convert.ToDateTime(fecha).ToString("dd/MM/yyyy"),
 @"^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|[1-2]\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1,2}|[\-]\d{2})\s([0-3]\d|\d)\s([0-1]\d|2[0-9]|3[0-1])$|^[\d]{1,2}(\/[\d]{1}
Método de verificación de acceso y llamada a un servicio por una página.
El método que verifica el acceso a página llama a un Servicio el cual recibe como parámetros el formulario al que trate de acceder el ID del perfil de usuario, y devuelve true en caso que tenga acceso o false en caso que no lo tenga.

```csharp
public bool VerificaAccesosAPagina()
{
    MenuServicioW menuServicioW = new MenuServicioW();
    string webForm = HelperC.ObtenerWebFormDeUlr();

    WebFormIdRolDE de = new WebFormIdRolDE();
    de.webForm = webForm;
    de.IdRol = Convert.ToInt32(Session["RolID"]);
    return menuServicioW.TieneAccesoAPagina(de);
}
```

El load de la página maestro contiene:

La verificación de las variables de sesión de la página de autenticación:

```csharp
if (((PeriodoDES)Session["PeriodoDES"]) == null || Session["RolID"] == null || Session["UsuarioID"] == r
{
    Response.Redirect("~/default.aspx", false);
    return;
}
```
El tiempo para expirar la sesión:

```csharp
ExprireSession.RegisterRedirectOnSessionEndScript(Page);
```

La carga del menú se realiza en esta página también:

```csharp
CargaMenu(Convert.ToInt32(rol));
```

El siguiente código describe cómo se carga el menú:

```csharp
protected void Menu(MenuItemCollection items, int idpadre, DataTable dt)
{
    int id;
    string nombreMenu;
    string referencia;
    bool existeUrlPorRol = false;
    try
    {
        // filtramos por el id que toma este, el primero es "0" que son los padres
        DataRow[] hijos = dt.Select("idPadre=" + idpadre.ToString());

        // validamos que encontremos resultados, si no retornamos
        if (hijos.Length == 0)
            return;

        // recorremos la información filtrada
        foreach (DataRow hijo in hijos)
        {
            // asignamos las variables al menú
            id = Convert.ToInt32(hijo[0]);
            nombreMenu = Convert.ToString(hijo[1]); // Nombre de la opción de menú
            referencia = Convert.ToString(hijo[3]); // Path para redirección

            // creamos el item
            MenuItem nuevoItem = new MenuItem(nombreMenu, id.ToString(), "", referencia);
            items.Add(nuevoItem);

            // llamamos a la función nuevamente para que revise si tiene más información asociada, es decir si el item tiene hijos
            Menu(nuevoItem.ChildItems, id, dt);
        }
    }
}
```
catch (Exception) {}
}
Carga de permisos del perfil de usuario:

// Carga Permisos en pantallas
RolPermisoServicioW rolPermisoServicioW = new RolPermisoServicioW();
IdDE idDE = new IdDE();
idDE.Id = Convert.ToInt32(Session["RolID"]);
RolPermisoDESLista rolPermisoDESLista =
rolPermisoServicioW.RecuperaListaPorIdRol(idDE);
Session["RolPermisoDESLista"] = rolPermisoDESLista;

La sección anterior contiene código que recupera una lista de permisos, en esta lista se define si el perfil puede modificar o almacenar nuevos registros, esto se cargara para cualquier usuario que ingrese y se mantendrá en sesión ya que se necesita para validar a cada página que se acceda.

Al cerrar sesión se definen las variables de sesión como null para obligar al usuario a autentificarse nuevamente si desea ingresar nuevamente

protected void cerrarSesionLkbtn_Click(object sender, EventArgs e)
{
 Session["UsuarioID"] = null;
 Session["IdPersonaLogeada"] = null;
 Session["RolID"] = null;
 Session["UsuarioNombre"] = null;
 Session["RolNombre"] = null;
 Session["PeriodoDES"] = null;
 Session["FechaServidorBD"] = null;
 Response.Redirect("~/default.aspx");
}

El siguiente método se encarga de verificar los permisos de cada página para el usuario, este método es llamado por cada formulario al igual que VerificarAccesosAPagina
Todos los formularios tienen la siguiente estructura para cargar una página:

```csharp
protected void Page_Load(object sender, EventArgs e)
{
    try
    {
        string userId = (string)Session["UsuarioId"];
        if (!Page.IsPostBack)
        {
            ViewState["EsParaNuevo"] = false;
            ViewState["EsAvancePagina"] = true;
            ViewState["EsActualizaPagina"] = false;
            if (userId == "" || userId == null)
                Response.Redirect("~/default.aspx", false);
        } else
        {  //region Verifica Acceso a Pagina
            if (!Master.TieneAccesosAPagina)
            {
                ScriptManager.RegisterStartupScript(this, typeof(Page), UniqueID, "alert('No tiene acceso a la pagina solicitada');", true);
                return;
            }
            #endregion
            MultiViewLista.ActiveViewIndex = 0;
            CargaPagina();
            HelperC.ColorValidadores(this.Controls);
        }
    }
}
```
catch (Exception ex)
{
 ScriptManager.RegisterStartupScript(this, typeof(Page), UniqueID, "alert('" + ex.Message + "');", true);
}

Código para obtener el ID de usuario:
string userId = (string)Session["UsuarioId"];

Verificamos si no es PostBack de la pagina declaramos las variables a usar en la pagina:
ViewState["EsParaNuevo"] = false;
ViewState["EsAvancePagina"] = true;
ViewState["EsActualizaPagina"] = false;

En todas las páginas que contengan una lista de registros paginados, se declaran las variables anteriores.

Verificación de existe un usuario autentificado (logueado), si no hay se re-direcciona a la página de autenticación.

if (userId == "" || userId == null)
 Response.Redirect("~/default.aspx", false);

Se verifica si el usuario tiene accesos a la pagina, si no se muestra un mensaje y no se le permite acceder:
#region Verifica Acceso a Pagina
if (!User.IsInRole("adm"))
{
 ScriptManager.RegisterStartupScript(this, typeof(Page), UniqueID, "alert('No tiene acceso a la pagina solicitada');", true);
 return;
}
#endregion

Se muestra la vista se carga la lista de registros y se ponen colores a los validadores de la página:
MultiViewLista.ActiveViewIndex = 0;
CargaPagina();
HelperC.ColorValidadores(this.Controls);
CAPÍTULO 5
IMPLEMENTACIÓN Y PRUEBAS DEL SISTEMA

5.1. Despliegue del sistema

Figura 74. Despliegue del sistema
Fuente: Andres Hinojosa – Alex Yamba
5.2. Pruebas de rendimiento y recuperación de datos

Las pruebas de rendimiento se realizaran utilizando la aplicación Apache JMeter.

Plan de pruebas:

En esta sección se desarrollará una serie de acciones automáticas orientadas a evaluar el rendimiento del sistema frente a una carga considerable de usuarios que podrían llegar a usarlo simultáneamente y establecer el número máximo de usuarios simultáneos que pueden trabajar de forma adecuada y sin retardo en el mismo.

El plan se lo ejecutará una vez que el sistema este cargado y alojado en el servidor. Para desarrollar la evaluación la base de datos ya se encuentra con registros suficientes, de tal manera que todo el sistema informático esté funcionando adecuadamente.

Esta evaluación se realizara directamente sobre el sistema que se encuentra alojado en su servidor web con la dirección http://eduprintsistemcdiu.com/

Condiciones para la ejecución del plan de pruebas.

1.- Ejecutar el software de prueba “Apache Jmeter”.
2.- Crear un plan de pruebas y la petición HTTP, que son propias del “Apache Jmeter” para llevar a cabo las pruebas.
3.- Configuración y especificación de número de usuarios.
4.- Especificación de periodos de tiempo para las peticiones al sistema entre cada usuario.
5.- Ejecutar pruebas de rendimiento del sistema.
Un grupo de hilos define un grupo de usuarios que ejecutarán un caso de prueba particular contra su servidor. En la interfaz gráfica de usuario de grupo hilo, se puede controlar el número de usuarios simulados (número de hilos) y el tiempo que tarda para iniciar todos los hilos, el número de veces que se realice la prueba y, opcionalmente, un nuevo comienzo y detener el tiempo para la prueba (Apache Software, 2013)

Figura 75. Configuración y especificación de número de usuarios.
Elaborado por: Andrés Hinojosa, Alex Yamba

Detalle:
- Captura de pantalla de la configuración de grupo de hilos para las pruebas con la utilización Apache Jmeter.

Un grupo de hilos define un grupo de usuarios que ejecutarán un caso de prueba particular contra su servidor. En la interfaz gráfica de usuario de grupo hilo, se puede controlar el número de usuarios simulados (número de hilos) y el tiempo que tarda para iniciar todos los hilos, el número de veces que se realice la prueba y, opcionalmente, un nuevo comienzo y detener el tiempo para la prueba (Apache Software, 2013)

Figura 76. Asignación de URL y petición HTTP
Elaborado por: Andrés Hinojosa, Alex Yamba

Detalle:
Especificación y asignación de peticiones HTTP con la URL: (http://cdiuniverso-001-site1.smarterasp.net).

5.2.1. Ejecución de pruebas.
Resultado de la prueba con una carga de 20 usuarios

La media de latencia para 20 usuarios fue de 544,25 ms.

La latencia es el tiempo de espera para obtener respuesta del servidor.

La media de bytes transmitidos para 20 usuarios fue de 12122 bytes.

La media de tiempo de muestreo fue de 736,5 ms.

Incremento de las pruebas a 200 usuarios.

Figura 77. Resultado de ejecución de pruebas con 20 usuarios simultáneos
Elaborado por: Andrés Hinojosa, Alex Yamba

Detalle:
La figura 77 muestra los resultados de la evaluación a la interacción de 20 usuarios simultáneos, los mismos que fueron positivos y no presentaron errores como se puede observar en el grafico anteriormente mencionado.
Resultado

La media de latencia para 200 usuarios fue de 2600,73 ms.

La latencia es tiempo de espera para obtener respuesta del servidor.

La media de bytes transmitidos para 200 usuarios fue de 10671,885 bytes.

La media de tiempo de muestreo fue de 10616,655 ms.

Tabla 10. Comparación de resultado para 20 y 200 usuarios
<table>
<thead>
<tr>
<th></th>
<th>20 usuarios</th>
<th>200 usuarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media de latencia</td>
<td>544,25 ms</td>
<td>2600,73 ms.</td>
</tr>
<tr>
<td>La media de tiempo de</td>
<td>736,5 ms.</td>
<td>10616,655 ms.</td>
</tr>
<tr>
<td>muestreo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La media de bytes</td>
<td>12122 bytes.</td>
<td>10671,885 bytes.</td>
</tr>
<tr>
<td>transmitidos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elaborado por: Andrés Hinojosa, Alex Yamba.

En la tabla 10 se puede observar la comparación de la media de los resultados obtenidos para las pruebas que se realizó al sistema donde se observa que al incrementar a 200 usuarios el tiempo de latencia aumenta considerablemente al igual que la media del tiempo que toma realizar cada muestra. En cuanto a la media de bytes transmitidos podemos determinar que el sistema permite una transmisión de datos relativamente constante y no disminuye considerablemente en el flujo de bytes.

Por otro lado al analizar los resultados podemos observar que el apache jmeter despliega un mensaje de error cuando no logró transmitir más de 513 bytes.

Mediante los resultados de la figura 78 y la tabla 10 se puede concluir que al pasar de 200 usuarios el sistema empieza a tener tiempos muy altos de respuesta a la interacción con el usuario, al igual que empieza a disminuir la cantidad de bytes transmitidos dando como resultado que el apache jmeter despliegue mensajes de alerta y de prueba insatisfactoria para esos usuarios, por lo que se concluye que el número máximo de usuarios que pueden interactúan simultáneamente con el sistema de forma correcta es de 200.

5.3. Pruebas para detección y corrección de errores
5.3.1. Pruebas de caja negra
Analiza las entradas y salidas del sistema obviando la estructura interna del mismo, esta prueba se la realizó directamente en la interfaz del sistema EDUPRINTSISTEM.

Objetivos de la prueba de caja negra

- Evaluar las funcionalidades del sistema.
- Analizar que las entradas de los datos y las salidas de información sean de forma adecuada y correcta.
- Determinar la integridad de los datos del sistema.

Resultados

Tabla 11. Prueba 1 inicio de sesión de usuarios

<table>
<thead>
<tr>
<th>Prueba</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso:</td>
<td>Inicio de sesión de usuarios</td>
</tr>
<tr>
<td>Datos de Entrada</td>
<td></td>
</tr>
<tr>
<td>Ingresar datos de usuario incorrecto o inexistente.</td>
<td></td>
</tr>
<tr>
<td>Ingresar datos de clave incorrecta o inexistente.</td>
<td></td>
</tr>
<tr>
<td>Condición</td>
<td></td>
</tr>
<tr>
<td>No existen datos de usuario en la base de datos.</td>
<td></td>
</tr>
<tr>
<td>Resultado esperado</td>
<td></td>
</tr>
<tr>
<td>Despliega un mensaje de Usuario y/o contraseña incorrectos.</td>
<td></td>
</tr>
<tr>
<td>Salida</td>
<td></td>
</tr>
<tr>
<td>No inicia sesión, no ingresa al sistema.</td>
<td></td>
</tr>
</tbody>
</table>

Elaborado por: Andrés Hinojosa, Alex Yamba
Tabla 12. Prueba 2 registro de persona nueva en el sistema

<table>
<thead>
<tr>
<th>Prueba</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso:</td>
<td>Registro de persona nueva en el sistema.</td>
</tr>
<tr>
<td>Datos de Entrada</td>
<td>Ingresar datos de persona.</td>
</tr>
<tr>
<td>Condición</td>
<td>No existen datos de persona en la base de datos.</td>
</tr>
<tr>
<td>Resultado esperado</td>
<td>Despliega un mensaje de datos insertados correctamente.</td>
</tr>
<tr>
<td>Salida</td>
<td>Ingreso y registro de datos exitoso.</td>
</tr>
</tbody>
</table>

Elaborado por: Andrés Hinojosa, Alex Yamba

Figura 79. Mensaje de clave incorrecta
Fuente. Andrés Hinojosa, Alex Yamba

Figura 80. Figura. Mensaje de confirmación de datos ingresados.
Elaborado por: Andrés Hinojosa, Alex Yamba
Tabla 13. Prueba 3 asignaciones de usuario y perfil a persona nueva.

<table>
<thead>
<tr>
<th>Prueba</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso</td>
<td>Asignación de nombre de usuario y perfil a persona nueva.</td>
</tr>
</tbody>
</table>

Datos de Entrada
- Ingresar datos de nombre de usuario a persona.
- Asignar perfil de usuario a persona.

Condición
No existen datos de nombre de usuario y perfil asignados a persona en la base de datos.

Resultado esperado
Despliega un mensaje de datos de usuario guardados correctamente.

Salida
Registro de datos exitoso.

Elaborado por: Andrés Hinojosa, Alex Yamba

![Figura 81. Asignación de nombre de usuario y perfil](image1)

Fuente. Andrés Hinojosa, Alex Yamba

![Figura 82. Mensaje de confirmación de almacenamiento](image2)

Fuente. Andrés Hinojosa, Alex Yamba
Tabla 14. Prueba 4 Comprobar cambio y actualización de contraseña

<table>
<thead>
<tr>
<th>Prueba</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso</td>
<td>Comprobar cambio y actualización de contraseña</td>
</tr>
</tbody>
</table>

Datos de Entrada

- Ingresar contraseña actual para usuario NCHUCUYAN: 669976
- Ingresar nueva contraseña: ninfa1

Condición

- Existen datos de usuario y contraseña en la base de datos.
- No existe nueva contraseña a asignar.

Resultado esperado

Despliega un mensaje de password cambiado correctamente.

Salida

Cambio de contraseña exitoso.

Elaborado por: Andrés Hinojosa, Alex Yamba

Figura 83. Mensaje de cambio de clave

Fuente: Andrés Hinojosa, Alex Yamba
Tabla 15. Prueba 5 consultar registro de usuarios en el sistema

<table>
<thead>
<tr>
<th>Prueba</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso:</td>
<td>Consultar registro de usuarios en el sistema</td>
</tr>
<tr>
<td>Datos de Entrada</td>
<td></td>
</tr>
<tr>
<td>Ingresar parámetro de búsqueda.</td>
<td></td>
</tr>
<tr>
<td>Parámetro Nombre: Andrés.</td>
<td></td>
</tr>
<tr>
<td>Condición</td>
<td></td>
</tr>
<tr>
<td>Existen datos de usuario en la base de datos.</td>
<td></td>
</tr>
<tr>
<td>Resultado esperado</td>
<td></td>
</tr>
<tr>
<td>Despliega información de usuario consultado.</td>
<td></td>
</tr>
<tr>
<td>Salida</td>
<td></td>
</tr>
<tr>
<td>Despliega lista de colaboradores que incluye parámetro buscado.</td>
<td></td>
</tr>
</tbody>
</table>

Elaborado por: Andrés Hinojosa, Alex Yamba

En la figura 84 se observa el resultado de la consulta de un usuario consultado.

Figura 84. Consulta de usuarios registrados
Fuente. Andrés Hinojosa, Alex Yamba
Tabla 16. Prueba 6 consulta de reportes

<table>
<thead>
<tr>
<th>Prueba</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso:</td>
<td>Consulta de reportes</td>
</tr>
<tr>
<td>Datos de Entrada</td>
<td></td>
</tr>
<tr>
<td>Selecciona reporte, parámetro: Inscripción</td>
<td></td>
</tr>
<tr>
<td>Ingresar parámetro de búsqueda específica, parámetro por apellido dos: Lojano</td>
<td></td>
</tr>
<tr>
<td>Condición</td>
<td></td>
</tr>
<tr>
<td>Existen datos de usuario en la base de datos.</td>
<td></td>
</tr>
<tr>
<td>Resultado esperado</td>
<td></td>
</tr>
<tr>
<td>Despliega información del reporte de usuario consultado</td>
<td></td>
</tr>
<tr>
<td>Salida</td>
<td></td>
</tr>
<tr>
<td>Despliega reporte de lista de inscripción del usuario consultado.</td>
<td></td>
</tr>
<tr>
<td>Elaborado por: Andrés Hinojosa, Alex Yamba</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 17. Prueba 7 exportar reportes

<table>
<thead>
<tr>
<th>Prueba</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso:</td>
<td>Exportar reportes</td>
</tr>
<tr>
<td>Datos de Entrada</td>
<td></td>
</tr>
<tr>
<td>Selecciona reporte a exportar: Contrato educativo.</td>
<td></td>
</tr>
<tr>
<td>Selecciona parámetro de exportación: PDF</td>
<td></td>
</tr>
<tr>
<td>Condición</td>
<td></td>
</tr>
<tr>
<td>Existe reporte consultado.</td>
<td></td>
</tr>
<tr>
<td>Resultado esperado</td>
<td></td>
</tr>
<tr>
<td>Despliega descarga de archivo.</td>
<td></td>
</tr>
<tr>
<td>Salida</td>
<td></td>
</tr>
<tr>
<td>Inicia descarga del archivo del reporte consultado.</td>
<td></td>
</tr>
<tr>
<td>Elaborado por: Andrés Hinojosa, Alex Yamba</td>
<td></td>
</tr>
</tbody>
</table>
5.4. Pruebas de carga y estrés

Estas pruebas tienen como objetivo determinar si el sistema cumple con un desempeño aceptable y un rendimiento óptimo al momento de su ejecución y producción. Estas pruebas se llevarán a cabo con la utilización del software “WebServer Stress Tool”. Esta evaluación se realizará directamente sobre el sistema que se encuentra alojado en su servidor web con la dirección http://cdiuniverso-001-site1.smarterasp.net/.

La simulación se realizó con la utilización de 10 usuarios, y 20 segundos de espera entre cada clic y 10 clics por usuario.

- Configuración del software para la realización de las pruebas

![Configuración del software para la realización de las pruebas](image)

Figura 85. Detalles de la configuración de la prueba

Fuente: Andrés Hinojosa – Alex Yamba

Detalle:
Se muestra la configuración del WebServer Stress Tool para las pruebas sobre el sistema EDUPRINTSISTEM
Figura 86. Configuración de URL y Contraseña para la prueba
Fuente: Andrés Hinojosa, Alex Yamba

Detalle:
Se muestra la configuración del WebServer Stress Tool con el usuario y contraseña del usuario administrador para la ejecución de las pruebas.

- Tiempo de espera por usuario

Figura 87. Tiempo de espera entre usuarios y número de clics
Fuente: Andrés Hinojosa, Alex Yamba

Detalle:
Se muestra los tiempos de espera correspondiente al número de clics en relación a los 10 usuarios utilizados para esta prueba y con una configuración de 10 clics por usuario.

El tiempo máximo de espera por los usuarios es de 2 segundos que es un tiempo muy pequeño lo que implica que el usuario tendrá una experiencia de respuesta rápida al utilizar el sistema.
Relación ancho de banda usuario-servidor

Figura 88. Utilización del ancho de banda por usuario.
Fuente: Andrés Hinojosa, Alex Yamba

Detalle:
Este gráfico muestra el ancho de banda que el servidor fue capaz de entregar, así como el ancho de banda que se experimentó por los usuarios simulados, donde el pico más alto de ancho de banda para un usuario y el servidor fue de 130 kbp/s.

Transferencia de datos, sistema de memoria y carga del CPU local
En la figura 88 se puede observar la relación que existe entre el tráfico de datos, uso de memoria y carga del CPU local, que se genera por la interacción de 10 usuarios simultáneamente, lo que da como resultado que el tráfico de red a lo largo del tiempo en que se llevó a cabo la prueba fue disminuyendo hasta situarse en un rango menor al 40 % así también como el sistema de memoria en un rango menor 12 % con una tendencia al descenso, es decir que no produce una excesiva utilización de recursos del servidor al momento de su ejecución.
Resultados finales por usuario

En la tabla se muestra el resultado de la prueba por usuario, numero de clics, errores, tiempo y kbit/S transferidos al momento de realizar el test al software, donde los picos de utilización de recursos tienden a la baja y se ubican en un rango menor al 45% del rendimiento en la carga del CPU local.

Figura 89: Transferencia de datos, sistema de memoria y CPU local
Fuente: Andrés Hinojosa, Alex Yamba

Detalles:
La figura 89 mide constantemente los parámetros de rendimiento como son la carga del CPU local y la memoria que la máquina utiliza al ejecutar el sistema.

“La línea de la carga de la CPU (rosa) debe estar muy por debajo del 100%. Si constantemente golpea los valores por encima del 90 % para la carga de la CPU de los resultados de la prueba pueden ser incorrectos” (Webserver stress tool, 2014).

“El tráfico de la red (línea azul) debe estar por debajo de los límites físicos de su conexión con el servidor”(Webserver stress tool, 2014).
El tiempo promedio de espera para los usuarios es de 3.968 milisegundos, respecto a un transferencia promedio de 30.613 Bytes a una velocidad media de 49 kbit/s. Es decir que en promedio por usuario se debe esperar 0,39 segundos en una transferencia promedio de 30613 Bytes a una velocidad media de 49 kbit/s por usuario.

Resultados totales para la dirección (http://cdiuniverso-001-site1.smarterasp.net)

Tabla 19. Resultados finales globales para la prueba del sistema.

<table>
<thead>
<tr>
<th>URL No.</th>
<th>Name</th>
<th>Clicks</th>
<th>Errors</th>
<th>Errors [%]</th>
<th>Time Spent [ms]</th>
<th>Avg. Click Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prueba 2</td>
<td>99</td>
<td>1</td>
<td>1,01</td>
<td>37.359</td>
<td>381</td>
</tr>
</tbody>
</table>

Elaborado por: Andrés Hinojosa, Alex Yamba
Luego de haber realizado y finalizado las pruebas de carga y estrés se ha demostrado que el sistema EDUPRINTSOFT cumple con las necesidades y requerimientos de calidad y eficiencia. En la tabla se puede observar la interacción de 10 usuarios simultáneamente dando como resultado un el porcentaje de error del 1,01 % con 99 clics efectuados, en un tiempo de 37.35 ms lo que demuestra que el sistema es totalmente efectivo y funcional cumpliendo así los objetivos plantados al inicio de este proyecto.

- **Recursos utilizados por el sistema en un servidor local**

Para establecer el rendimiento y el nivel de eficiencia del sistema respecto a la utilización de recursos hardware por el software se ha procedido a realizar una evaluación de forma local.

- **Características del hardware y software**
 - Modelo: Hp Pavillo G6
 - Procesador: Intel core i5 2.4 Ghz.
 - Memoria: 4Gb en ram
 - Sistema operativo: Windows 7 Professional de 64bits
 - Navegador a utilizar: Opera 12

Condiciones para la prueba
Todas las aplicaciones del sistema operativo se cerraron para las pruebas excepto Visual Studio .net y la base de datos en Microsoft SQL server 2008.

- **Utilización de recursos previo a la ejecución del sistema**

![Figura 90. Utilización de recursos sin el sistema](image)

Fuente: Andrés Hinojosa, Alex Yamba
Detalle:
- Uso del CPU al 1%
- Memoria física al 36 %
• **Ejecución del sistema**

Ingreso al sistema en la maquina local con el usuario administrador, mediante el navegador opera.

![Figura 91. Dirección máquina local](image1)

Fuente: Andrés Hinojosa, Alex Yamba

• **Utilización de recursos del servidor local al momento de la autentificación**

![Figura 92. Utilización de recursos sin el sistema](image2)

Fuente: Andrés Hinojosa, Alex Yamba

Detalle:
- Uso del CPU al 6% frente al 1% correspondiente a la no ejecución del sistema, marca una diferencia del 5%.
- Memoria física al 40% frente al 36% correspondiente a la no ejecución del sistema, marca una diferencia del 4%.
• Ejecución de peticiones al servidor

Figura 93. Despliegue de las opciones de menú.
Fuente: Andrés Hinojosa, Alex Yamba
Detalle:
- Captura de pantalla del sistema con el despliegue de la lista de menús

Figura 94. Utilización de recursos sin el sistema
Fuente: Andrés Hinojosa, Alex Yamba
Detalle:
- Uso del CPU al 27 % frente al 1% correspondiente a la no ejecución del sistema, marca una diferencia del 26 %.
- Memoria física al 46 % frente al 36 % correspondiente a la no ejecución del sistema, marca una diferencia del 10 %.
CONCLUSIONES

1. El haber realizado un adecuado análisis de los requerimientos de la institución permitió diseñar, codificar e implementar un sistema informático orientado a la web que se ajustó al modelo de negocios del CDIU.

2. A través del sistema EDUPRINTSISTEM se puede dar seguimiento a la planificación, cumplimiento de actividades, tareas de docentes y actividades administrativas mediante la entrega de información acorde al proyecto institucional anual de sus niños y niñas a padres de familia y establecimiento.

3. La metodología utilizada se ajustó adecuadamente a los requerimientos del CENTRO DE DESARROLLO INFANTIL UNIVERSO y de su modelo de negocios ya que permitió un desarrollo flexible de sus módulos.

4. El sistema implementado en el servidor web tiene consistencia en el manejo de la información y en la recuperación de datos almacenados en el mismo, de igual manera presenta tiempos de espera cortos cuando se realizan consultas al servidor como lo demostraron las pruebas realizadas.

5. Los procesos de capacitación que se dictó para la utilización del sistema informático a los usuarios del mismo, permito optimizar los módulos del programa mediante el intercambio de información logrando mejorar la experiencia del usuario respecto a la utilización del software en la web.

6. El servidor WEB en el que se encuentra alojado el sistema informático ha demostrado ser robusto, consistente y satisface los requerimientos del software a lo largo del proceso de implementación y ejecución de pruebas.
RECOMENDACIONES

- Para que un proyecto alcance los objetivos planteados se debe definir bien las tecnologías para el desarrollo.
- La mejor manera de modificar un diseño o estilo de página de forma rápida, efectiva y eficiente es con la utilización de plantillas y CSS.
- Para subir la base de datos en el servidor se debe realizar un backup o script de la base datos con cualquier cambio que se realice.
- Es esencial definir un plan de capacitación para los usuarios que manejaran el sistema para asegurar su correcta utilización y funcionamiento.
- Las políticas y procesos para el manejo de la información y documentación por parte de la institución educativa determinará que la seguridad del sistema sea eficiente.
- Para la implementación del sistema es importante tener un servidor web confiable que soporte las tecnologías de Microsoft Visual Studio 2012, el lenguaje de programación C# y una base de datos desarrollada en Microsoft SQL server.
- Para un correcto funcionamiento del sistema se requiere que el dispositivo de accesos tenga conexión a internet, así como un navegador web actualizado, caso contrario no se tiene acceso al sistema.
- La utilización de estándares de programación permite avanzar rápidamente en el desarrollo software.
LISTA DE REFERENCIA

