UNIVERSIDAD POLITÉCNICA SALESIANA

SEDE CUENCA CARRERA DE INGENIERÍA MECÁNICA AUTOMOTRIZ

ESTUDIO DE LA COMBUSTION DE UN MOTOR AUSTIN 1.3L DE ENCENDIDO PROVOCADO DURANTE LA INYECCION DE OXIDO NITROSO

> TESIS DE GRADO PREVIO A LA OBTENCION DEL TITULO DE INGENIERO MECANICO AUTOMOTRIZ

AUTOR: SANTIAGO SEBASTIAN VALDIVIESO POLO

DIRECTOR: ING. FERNANDO CHICA SEGOVIA

Cuenca – Ecuador

DECLARACIÓN

Yo Santiago Sebastián Valdivieso Polo, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mi derecho de propiedad intelectual correspondiente a este trabajo, a la Universidad Politécnica Salesiana, según lo establecido por la ley de Propiedad Intelectual, por su reglamento y por la normatividad institucional vigente.

F: Santiago Valdivieso Polo

1103994040

CERTIFICACIÓN

Certifico que el presente trabajo fue desarrollado por Santiago Sebastián Valdivieso Polo, bajo mi supervisión.

0 1 Ing. Fernando Chica Segovia DIRECTOR DE PROYECTO

AGRADECIMIENTO

Agradezco primeramente a Dios porque él es aquel que me ha dado la fuerza, sabiduría e inteligencia necesaria para llegar a cumplir uno de los objetivos que me he planteado en la vida que es la obtención del Título de Ing. Mecánico Automotriz, mis maestros transmitirme а por sus conocimientos, a mi padre por ese apoyo incondicional, a mi madre por levantarme en esos momentos difíciles, y a mis hermanos por la confianza que supieron depositar en mi creyendo en que lo iba a lograr y a mi hija que es la motivación para alcanzar nuevas metas en mi vida.

Santiago Sebastián Valdivieso Polo

ÍNDICE DE CONTENIDOS

NON	MENCLATURAxix
RES	UMENxxi
CAI	PITULO I
1.	FUNDAMENTACIÓN TEÓRICA DE LA COMBUSTIÓN DEL MOTOR DE
	ENCENDIDO PROVOCADO (MEP) DURANTE LA INYECCIÓN DE ÓXIDO
	NITROSO2
1.1.	MÁQUINA DE COMBUSTIÓN INTERNA. CICLO TERMODINÁMICO2
1.2.	CICLO REAL EN EL MOTOR DE ENCENDIDO PROVOCADO. SALIDA DE
	TRABAJO ÚTIL
1.3.	CICLO DE OTTO IDEAL. SUPOSICIONES DE AIRE ESTÁNDAR 4
	1.3.1. BALANCE DE ENERGÍA. PRIMERA LEY DE LA
	TERMODINÁMICA7
	1.3.2. EFICIENCIA TÉRMICA. CICLO DE OTTO IDEAL
	1.3.2.1. PRESIÓN Y TEMPERATURA MÁXIMAS10
1.4.	COMBUSTIÓN. TEORÍA DE REACCIONES10
	1.4.1. EL COMBUSTIBLE Y EL OXIDANTE
	1.4.2. REACTIVOS Y PRODUCTOS EN LA COMBUSTIÓN
	TEMPERATURA DE IGNICIÓN13
1.5.	PRINCIPIO DE LA CONSERVACIÓN DE LA MASA. PRIMERA LEY DE LA
	TERMODINÁMICA. RELACIÓN AIRE-COMBUSTIBLE AC16
	1.5.1. BALANCE DE MASA CON PRESENCIA DE ÓXIDO NITROSO 18
1.6.	COMBUSTIÓN TEÓRICA. AIRE TEÓRICO 18
1.7.	ENTALPÍA DE COMBUSTIÓN. PODER CALORÍFICO 20

1.8.	BALANCE DE ENERGÍA PARA LA CÁMARA DE COMBUSTIÓN	
	PRIMERA LEY: FLUJO ESTABLE	23
1.9.	ANÁLISIS DE LA SEGUNDA LEY PARA LA COMBUSTIÓN.	
	BASES PARA DETERMINAR EL TRABAJO REVERSIBLE W_{rev}	25
1 10	ENUNCIADO DE LA SEGUNDA LEY PARA LA VALIDEZ DE	
1.10		77
	LA CONTINUIDAD DE LA OPERACIÓN DE COMBUSTION	27
1.11	. ANÁLISIS DE LA SEGUNDA LEY EN LA DETERMINACIÓN DE	
	\mathbf{v}	• •
	LA ENERGIA DESTRUIDA A $_{destruida}$. ENTROPIA ABSOLUTA s°	30
1 1 2	ANÁLISIS DE LA SECUMDA LEV EN LA DETERMINACIÓN DE	71
1.12.	ANALISIS DE LA SECUNDA LEI EN LA DETERMINACIÓN DE	L.
	POTENCIAL DE TRABAJO MÁXIMO W_{rev}	33
1.13.	CURVAS CARACTERÍSTICAS DEL MOTOR. POTENCIA, TORQUE Y	
	CONSUMO ESPECÍFICO	34
	1.13.1. CURVA DE POTENCIA	35
	1.13.2. CURVA DE TORQUE	36
	1.13.3. CURVAS DE CONSUMO DE OCTANO	38
	1.13.3.1. CARBURACIÓN	39
	1.1.1.3.2. MASA DE OCTANO	39

CAPITULO II

2.	ANÁLISIS TERMODINÁMICO DE LA COMBUSTIÓN DEL MEP DURANTE	
	LA INYECCIÓN DE N2O)
2.1.	ECUACIONES DE COMBUSTIÓN. RELACIONES AC46	1
	2.1.1. BALANCE DE MASA PARA DÉFICIT DE AIRE RELACIÓN 14:147	
	2.1.2. BALANCE DE MASA PARA COMBUSTIÓN COMPLETA48	
	2.1.3. BALANCE DE MASA PARA EXCESO DE AIRE)

2.2. CALOR LIBERADO EN LA COMBUSTIÓN	. 52
2.2.1. CALOR LIBERADO POR REGÍMENES	. 54
2.3. TRABAJO REVERSIBLE EN LA COMBUSTIÓN	. 56
2.3.1. CURVAS Y ECUACIONES DE CALOR LIBERADO EN LA	
COMBUSTIÓN $-Q_{sal}$ y trabajo reversible W_{rev}	. 58
2.4. PARÁMETROS DEL CICLO DE POTENCIA. CICLO DE OTTO	. 60
2.4.1. POTENCIA Y TORQUE PERDIDOS POR ENFRIAMIENTO DE LOS	
GASES DE COMBUSTIÓN	. 61
2.4.1.1. RADIACIÓN DE LOS GASES DE COMBUSTIÓN	. 62
2.4.2. PÉRDIDA DE PRESIÓN POR ROZAMIENTO MECÁNICO PMPM	. 69
2.4.3. EVALUACIÓN DE PARÁMETROS DE OTTO	. 73
2.4.3.1. TRABAJOS REVERSIBLES TEÓRICOS W _{rev} VERSUS	
LOS TRABAJOS INDICADOS W _{net i}	.74
2.5. CUDVA DE ΤΟΡΟΠΕ ΒΑΡΑ Ι Α DESENCIA DE ÓVIDO ΝΙΤΡΟΩΟ	75
2.5. CURVA DE TORQUE PARA LA PRESENCIA DE OXIDO NITROSO	.13
2.5.1 TRABAJO INDICADO Y LOS PARAMETROS DEL CICLO OTTO	77
PAKA LA PRESENCIA DE OXIDO NITROSO	//
2.5.2. ECUACIONES DE COMBUSTION CON PRESENCIA DE OXIDO	-
NITROSO	79

CAPITULO III

3. SIMULACIÓN MEDIANTE SOFTWARE DE LA COMBUSTIÓN DEL MEP		
	DURANTE LA INYECCIÓN DE OXIDO NITROSO	83
3.1.	CÁMARA DE COMBUSTIÓN DE FLUJO ESTABLE	83
	3.1.1. COMBUSTIÓN EN ASPIRACIÓN NORMAL	83
	3.1.2. COMBUSTIÓN CON PRESENCIA DE ÓXIDO NITROSO	85
3.2.	APROXIMACIÓN A LA COMBUSTIÓN DURANTE EL MEP	89

3.2.1. APROXIMACIÓN A LA COMBUSTIÓN DURANTE EL MEP EN	
ASPIRACIÓN NORMAL	91
3.2.2. APROXIMACIÓN A LA COMBUSTIÓN DURANTE EL MEP CON	
PRESENCIA DE ÓXIDO NITROSO	94
3.3. LOS CICLOS DE OTTO Y EL TRABAJO REVERSIBLE EN DISTINTOS	
REGÍMENES. MEP TABULADO MANUALMENTE	97
3.3.1. TORQUES EFECTIVOS A ALCANZAR CON LA INYECCIÓN DE	
ÓXIDO NITROSO	97
3.3.2. PARÁMETROS EN EL CICLO IDEAL DE OTTO.	
PRESENCIA DE ÓXIDO NITROSO	98

3.3.3. DETERMINACIÓN	DE LAS ECUACIONES DE COM	IBUSTIÓN
CON LA PRESENC	IA DE ÓXIDO NITROSO	

CAPITULO IV

4. ANÁLISIS DE RESULTADOS	105
4.1. DELIMITACIÓN DE ANÁLISIS	105
4.1.1. EL TRABAJO INDICADO EN TEORÍA DE REACCIONES	105
4.1.2. PREDICCIÓN DEL INCREMENTO DE POTENCIA	106
4.1.3. VARIACIÓN DE PRESIÓN Y TEMPERATURA EN LA COMBUSTIÓN	Γ.
AFIRMACIONES BASADAS EN SIMULACIÓN POR SOFTWARE	108
4.2. CONSIDERACIONES RESPECTO A LAS CANTIDADES MOLARES	
DE AIRE Y ÓXIDO NITROSO	112
4.3. RELACIÓN ENTRE LA ENERGÍAS DE COMBUSTIÓN Y LA	
ADICIONADA EN EL DEL CICLO IDEAL DE OTTO	114
4.4. EL TRABAJO REVERSIBLE NO ADIABÁTICO	114

BIBLIOGRAFIA	116
ANEXOS	

ÍNDICE DE FIGURAS

CAPITULO I

Fig. I Ciclo mecánico del émbolo para el motor de encendido por chispa de cuatro tiempos real
Fig. 2 Diagrama P-v para el ciclo mecánico del émbolo para el motor de encendido por chispa de cuatro tiempos real
Fig. 3 Diagrama P-v Ciclo Otto Ideal del émbolo para el motor de encendido por chispa de cuatro tiempos
Fig. 4 Ciclo Otto Ideal del émbolo para el motor de encendido por chispa de cuatro tiempos
Fig. 5 Ciclo ideal de adición de calor7
Fig. 6 Proceso Real de combustión7
Fig. 7 Combustión Real en el cilindro10
Fig. 8 Por cada kmol de oxígeno O_2 en el aire existe 3.76 kmol de nitrógeno N_2 12
Fig. 9 Diagrama T-s en el ciclo de Otto Ideal y las temperaturas de compresión isoentrópica del aire y de auto ignición del Octano puro15
 Fig. 9 Diagrama T-s en el ciclo de Otto Ideal y las temperaturas de compresión isoentrópica del aire y de auto ignición del Octano puro
 Fig. 9 Diagrama T-s en el ciclo de Otto Ideal y las temperaturas de compresión isoentrópica del aire y de auto ignición del Octano puro

Fig. 13 Los productos a la derecha indican que todo el combustible se quema, todo el carbón se transforma en CO ₂ y todo el hidrógeno se transforma en H ₂ O19
Fig. 14 Los productos a la derecha, aparte de combustible o componentes no quemados se entiende que existe CO_2 , H_2O y N_2
Fig. 15 Temperatura de los reactivos y los gases de combustión son diferente20
Fig. 16 Bajo condiciones de flujo estable, los contenidos de masa y de energía de un volumen de control permanecen constantes
Fig. 17 La energía que entra al sistema por masa es igual a la energía que abandona el sistema
Fig. 18 Ejecución del ciclo de Carnot en una máquina de combustión externa28
Fig. 19 Potencia a diferentes regímenes (Tabla 1) para la normalización 50 kW y 5750 rpm
Fig. 20 Torque del motor a distintos regímenes
Fig. 21 Curvas de Potencia y Torque para distintos regímenes
Fig. 22 Consumo de combustible en g/km a distintas velocidades en km/h38
Fig. 23 Secuencia de potencia, aspiración de mezcla aire-octano y vaciado de gases de combustión durante la rotación del cigüeñal40
Fig. 24 Masa de octano necesaria para producir potencia a tal régimen41
Fig. 25 Consumo de octano por unidad de tiempo a distintos regímenes en la relación42

Fig. 26 Consumo específico de combustible kg/kWh a distintos regímenes en la relación	de
ransmisión 1:1	43
Fig. 27 Consumo específico de combustible kg/kWh a distintos regímenes en la relación	de
ransmisión 1:1	44

CAPITULO II

Fig. 28 Variación entre las cantidades CO ₂ y CO durante la combustión con déficit de
aire
Fig. 29 Aumento de nitrógeno N_2 a medida que aumenta la presencia de aire
en la combustión
Fig. 30 Presencia de O_2 y N_2 en la combustión con exceso de aire
Fig. 31 Diagrama T - V para el ciclo ideal de Otto53
Fig. 32 Proceso de combustión completa de 1 kmol octano53
Fig. 33 Curvas de calor liberado en la combustión $-Q_{sal}$ y trabajo reversible
W _{rev}
Fig. 34 Gradiente de temperatura entre los gases de combustión y el bloque motor.
T_g , T_P , T_{H2O} , T_O temperaturas de los gases de combustión, de las paredes del
cilindro, del agua del refrigerante, del medio circundante \cong al aire exterior
Fig. 35 Cilindro representativo para determinar la transferencia de calor por radiación de
los gases de combustión al cilindro
Eig 26 Curries constanísticos de teneros motores de combustión interne ser
Fig. 50 Curvas características de torque para motores de combustion interna para
ei wier, en aspiracion normal y supercargados/5

Fig. 37 Trazado de una '	'curva suave"	de torque para	la alimentación d	e óxido nitroso a la
combustión actual				76

CAPITULO III

Fig. 40 Simulación de la quema de 1 kmol de Octano con 20,86 kmol de aire dentro de
el cilindro que corresponde al régimen 4446 rpm en aspiración normal, con un tiempo
esperado de 137.65 s para la quema
Fig.41 Desing Modeler 2D. Geometría del cilindro para la simulación de la quema de 1
kmol de Octano con 20,86 kmol de aire
Fig. 42 Simulación de la quema de 1 kmol de Octano con 14,7 kmol de aire y 16.025
kmol dentro de el cilindro de óxido nitroso que corresponde al régimen 4446 rpm con un
tiempo esperado de 80 s para la quema
Fig. 43 Desing Modeler 2D. Geometría del cilindro para la simulación de la quema de 1
kmol de Octano con 17,7 kmol de aire y 16,025 kmol de óxido nitroso
Fig. 44 Aproximación del cambio de temperatura y presión de la mezcla aire-octano
por el ciclo de Otto ideal para una temperatura y presión iniciales de 293 K
y 100 kPa para 9,77 en la relación de compresión del motor del Austin 1.3L90

Fig. 45 Entrada de los componentes de los reactivos de las ecuaciones químicas
62 y 67 a las cámaras de combustión que se encuentran a 2 362 518 Pa,
Figuras 45a y 45b respectivamente
Fig. 46 Representación de desarrollo de temperatura con el desplazamiento del pistón para
la combustión normal
Fig. 47 Representación de desarrollo de presión con el desplazamiento del pistón
para la combustión normal
Fig. 48 Representación de desarrollo de temperatura con el desplazamiento del pistón para
la combustión con presencia de óxido nitroso
Fig. 49 Representación de desarrollo de presión con el desplazamiento del pistón para la
combustión con presencia de óxido nitroso96
Fig. 50 Torques efectivo e indicado a alcanzar con la invección de óxido
nitroso
Fig. 51 Parámetros del Ciclo Ideal de Otto a 3642 rpm para determinar T ₄ con el objetivo
de encontrar la ecuación de combustión con la presencia de óxido nitroso, Tabla 2699
Fig. 52 Parámetros del Ciclo Ideal de Otto a 4446 rpm para determinar T ₄ con el obietivo
de encontrar la ecuación de combustión con la presencia de óxido nitroso, Tabla 26100

Fig. 53 Parámetros del Ciclo Ideal de Otto a 5020 rpm para determinar T_4 con el objetivo de encontrar la ecuación de combustión con la presencia de óxido nitroso, Tabla 26.....100

Fig. 54 Parámetros del Ciclo Ideal de Otto a 5712 rpm para determinar T_4 con el objetivo de encontrar la ecuación de combustión con la presencia de óxido nitroso, Tabla 26.....101

CAPITULO IV

Fig. 55 Predicción de la Potencia a diferentes regímenes (Tabla 39) para la presencia de
óxido nitroso en los reactivos106
Fig 56 Curvas de Potencia a diferentes regímenes (Tabla 40) en condiciones normales de
funcionamiento para la presencia de óxido nitroso en los reactivos
Fig. 57 Desarrollo de Temperatura durante la combustión a medida del avance del
pistón109
Fig. 58 Regiones de Temperatura durante la combustión110
Fig. 59 Desarrollo de Presión durante la combustión a medida del avance del
pistón111
Fig. 60 Regiones de Presiones durante la combustión112
Fig. 61 Cantidades molares de aire y óxido nitroso a lo largo del desarrollo de
regímenes113
Fig.62 Cantidades molares de aire a lo largo del desarrollo de regímenes en la
combustión de aspiración normal

ÍNDICE DE TABLAS

CAPITULO I

Tabla 1. Valores de potencia para potencia y régimen normalizados, 50 kW y 5750
rpm35
Tabla 2. Torque del motor para las correspondientes potencias de la tabla 1
Tabla 3. Consumo en g/h para distintas velocidades en km/h para la relación de
transmisión 1:1
Tabla 4. Regímenes a las distintas velocidades, Consumos para la relación de transmisión 1:1
Tabla 5. Consumo de octano para desarrollo de potencia continúa a distintos
regímenes
Tabla 6. Consumo de octano por unidad de tiempo a distintos regímenes
Tabla 7. Consumo específico de combustible kg/kWh a distintos regímenes

CAPITULO II

Tabla 8. Consumo de combustible por cada 100 km recorridos en determinado régimen	
y el correspondiente consumo de combustible por admisión por alimentación para cada	
explosión	.46

Tabla 11. Ecuaciones químicas correspondientes a distintos regímenes para determinar el
calor liberado -Q _{sal}
Tabla 12. Calor liberado en la combustión a 3642rpm correspondiente a una temperatura
de 750°C para los gases de combustión
Tabla 13. Calores liberados en la combustión a distintos regímenes a diferentes
temperatura para los gases de combustión
Tabla 14. Valor del trabajo reversible para la combustión a un régimen de 3642rpm a
750°C para los gases de combustión
Tabla 15. Valores de Trabajo Reversible W _{rev} y porcentaje de oportunidad frente al
calor liberado en la combustión
Tabla 16. Tiempos de duración de la radiación de los gases a las paredes del
cilindro
Tabla 17. Trabajo y potencia pérdidas por efecto de refrigeración
Tabla 18. Valores de Pérdida de Presión Media pmpm por regímenes71
Tabla 19. Caídas de trabajo y potencia por pérdidas mecánicas
Tabla 20. Equivalencia de energía perdida por rozamiento frente al trabajo disipado en
rozamiento73
Tabla 21. Valores del calor de entrada al ciclo de Otto por regímenes
Tabla 22. Valores calculados en el ciclo de Otto para el motor del Austin 1,3L.
$T_o = 20^{\circ}C, r=9,77, p_o = 101.325 \text{ kPa}$

Tabla 23. Comparación de los trabajos :	indicados y los trabajos	reversibles
---	--------------------------	-------------

Tabla 24. Trabajo indicado W_{neto} necesario para elevar el torque con la presencia de
Óxido Nitroso en los reactivos
Tabla 25. Valores calculados en el ciclo de Otto para el motor del Austin 1,3L bajo la
presencia de óxido nitroso78
Tabla 26. Valores calculados en el ciclo de Otto para el motor del Austin 1,3L bajo la
presencia de óxido nitroso
Tabla 27. Masas de aire y óxido nitroso por regímenes para la combustión con
N ₂ O
Tabla 28. Determinación del trabajo reversible W _{rev} en la combustión con la presencia de
N ₂ O a 3642 rpm

CAPITULO III

Tabla 29. Datos para la quema de 1 kmol de Octano con 20,86 kmol de aire que
corresponde al régimen 4446 rpm en aspiración normal, con un tiempo esperado de
137.65 s para la quema
Tabla 30. Determinación del trabajo reversible W_{rev} en la combustión con la presencia
de N ₂ O a 4446 rpm
Tabla 31. Determinación de Q_{sal} en la combustión con la presencia de N ₂ O para la
ecuación 67
Tabla 32. Datos para la quema de 1 kmol de Octano con 14,7 kmol de aire y 16,025
kmol de óxido nitroso que corresponde al régimen 4446 rpm con un tiempo esperado
de 80 s para la quema

CAPITULO IV

Tabla 39. Valores de la potencia idealizada para la presencia de óxido nitroso en los	
reactivos	107
Tabla 40. Valores de la potencia neta actual e idealizada para la presencia de óxido	
nitroso en los reactivos	107
Tabla 41. Cantidades molares de aire y óxido nitroso	

NOMENCLATURA

AC	Relación aire-combustible
С	Calor especifico, KJ/(kg.K)
C_p	Calor especifico a presión constante, KJ/(kg.K)
C_{v}	Calor especifico a volumen constante, KJ/(kg.K)
Ε	Energía total, KJ
h	Entalpía específica, KJ/kg
\overline{h}	Entalpia sensible en estado especificado
$\overline{h^o}$	Entalpía sensible en el estado de referencia estándar a 25 °C y 1 atm
Н	Entalpía total, KJ
$\overline{h_c}$	Entalpía de combustión, KJ/kmol combustible
$\overline{h_f}$	Entalpia de formación, KJ/kmol
$\overline{h_r}$	Entalpia de reacción, KJ/kmol
М	Torque
М	Masa Molar
т	masa, kg
m	Velocidad de flujo de masa, kg/s
n	rpm
Ν	Número de Moles
P_m	presión total de la mezcla
PME	Presión Media Efectiva
Pot_i	Potencia Indicada
Pote	Potencia Efectiva
q	Calor
Q	Transferencia de Calor total, KJ
• Q	Velocidad de transferencia de calor, KW
r	Relación de compresión
R_u	Constante Universal de los gases, KJ/(kmol.K)
S	Entropía específica, KJ/(kg.K)
S	Entropía Total, KJ/K
$\overline{S^0}$	Entropía Absoluta

Sgen	Generación de entropía específica, KJ/(kg.K)
Sgen	Generación de entropía total, KJ/K
Т	Temperatura, ⁰ C o ⁰ K
T_g	Temperatura gases de combustión
T_p	Temperatura de las paredes
T_{H2O}	Temperatura del agua
To	Temperatura absoluta de los alrededores
t	Tiempo
U	Energía interna específica, KJ/kg
V	Volumen
W	Trabajo
$X_{destruida}$	Energía destruida
yi	Fracción molar
З	Emisividad
α	Absortividad
ρ	Densidad
η	Eficiencia

RESUMEN

El siguiente estudio de *combustión interna en el motor del Austin 1.3L durante la inyección de Óxido Nitroso* desarrollado en cuatro capítulos tiene como finalidad:

- ✓ Conocer los aspectos relacionados con la combustión de las mezclas octano-aire y octano-aire-óxido nitroso en lo que tiene que ver con definir las ecuaciones químicas en diferentes regímenes de manera que se pueda precisar los calores entregados en la combustión así como también los trabajos reversibles, esto, dentro de la teoría de reacciones, y las presiones, temperaturas y trabajos netos indicados para los ciclos termodinámicos de la combustión por medio del ciclo ideal de Otto.
- ✓ Plantear las ecuaciones químicas que precisen el valor del trabajo reversible equivalente al trabajo indicado que se adapten a una nueva curva idealizada de torque mayor a la actual con la intensión de predecir un incremento de potencia en el funcionamiento del motor, lo que quiere decir la reducción de los tiempos de cambio entre regímenes, esto, debido a la idealización del aumento de las fuerzas de empuje de los gases de combustión.

El Primer Capítulo abarca:

- ✓ La Fundamentación de la Teoría de Reacciones Químicas de Combustión con la finalidad de definir los calores liberados y los trabajos reversibles para las ecuaciones químicas correspondientes a diferentes regímenes, tanto en la combustión normal, octano-aire, como en la combustión octano-aire-óxido nitroso. Tablas 11 y 26.
- ✓ El Ciclo Ideal de Otto con la finalidad de precisar presiones, temperaturas y trabajos netos indicados en el caso de las combustiones indicadas en el párrafo anterior. Tablas 22 y 25.
- ✓ La presentación de las curvas características del motor del Austin 1.3*L*; Potencia, Torque y consumo de octano por admisión y por k*Wh*. La confección de las

últimas curvas conlleva al planteamiento de las ecuaciones químicas para la combustión en distintos regímenes puesto que ofrecen las cantidades de masa de octano por admisión, y eso permite saber las cantidades de aire para calcular las relaciones aire-combustible *AC*, ítem 2.1.

El Segundo Capítulo abarca:

- ✓ Las reacciones químicas de la combustión en aspiración normal, octano-aire, en varios regímenes, obviamente, en base a las ecuaciones químicas que corresponden a cada uno de los regímenes con el fin de encontrar los valores de los calores liberados Q_{sal} (se explica al final del ítem 3.1.2 y en el cuarto capítulo) y los trabajos reversibles W_{rev} en función de la temperatura de los gases de combustión. Los trabajos reversibles son de gran valor por ser el equivalente del trabajo neto indicado $w_{neto i}$, tabla 23, que ofrece el ciclo de Otto, lo cual también se estudia en primera instancia. Es de suma importancia que exista correspondencia entre el trabajo reversible y el trabajo neto indicado pues el primero es el resultado del comportamiento de la materia cuando se somete a reacciones químicas de combustión, mientras que el trabajo neto indicado es el trabajo de los gases de combustión sobre la cabeza del émbolo, que por supuesto es determinado por medio de la idealización del Ciclo de Otto.
- ✓ En segundo lugar, se idealiza una nueva curva de torque efectivo, figura 39, mayor a la actual curva, figura 20, a la que se suma los trabajos perdidos; por refrigeración del motor y rozamiento mecánico, para con ayuda del Ciclo Ideal de Otto obtener presiones y temperaturas, tabla 25, que serán las nuevas presiones y temperaturas bajo la presencia de óxido nitroso en los reactivos, ecuaciones de la tabla 26, las cuales se encuentran tomando las mismas relaciones de aire-combustible para las condiciones actuales del funcionamiento del motor y balanceando la ecuación 61, ítem 2.5.2., de manera que los trabajos reversibles ofrecidos por las ecuaciones con presencia de óxido nitroso de la tabla 26 ofrezcan el mismo trabajo neto indicado encontrado en el ciclo de Otto de la tabla 25.

El Tercer Capítulo abarca:

✓ Apreciar la diferencia entre las quemas de; octano-aire y octano-aire-óxido nitroso, figuras 40 y 42, lo que permite apreciar la diferencia de temperaturas alcanzadas en tales combustiones y los calores liberados Q_{sal} en la quema de 1 kmol de octano, ítems 3.1.1. y 3.1.2., seguido a esto, se aprecia el desarrollo del avance de la llama representativa para el MEP en aspiración normal y con presencia de óxido nitroso lo que hace posible reconocer la variación de presión y temperatura durante el avance de la combustión. Al final, se presenta la tabulación de los parámetros del Ciclo de Otto y el Trabajo Reversible en distintos regímenes para inyección de óxido nitroso, lo que se trató en el segundo capítulo a partir del ítem 2.5.1.

El Cuarto Capítulo abarca:

- ✓ El Análisis de Resultados, el cual se delimita a enfocar la precisión de trabajo reversible W_{rev} que ofrece la teoría de reacciones para un régimen determinado, es decir, para una ecuación química definida para tal régimen a la temperatura de los gases de combustión $T_g = T_4$ obtenida en el ciclo de Otto durante el MEP y, la comparación del comportamiento de la llama en la combustión con la presencia de óxido nitroso frente a la combustión normal de octano con aire en lo que respecta a la formación de presiones dentro del cilindro.
- ✓ También explica la relación de la energía del calor liberado en la combustión, Q_{sal} , con el calor adicionado al proceso 2-3 del ciclo de Otto y la valoración del trabajo reversible en condiciones no adiabáticas.

CAPITULO I

1. FUNDAMENTACIÓN TEÓRICA DE LA COMBUSTIÓN DEL MOTOR DE ENCENDIDO PROVOCADO (MEP) DURANTE LA INYECCIÓN DE ÓXIDO NITROSO

1.1. MÁQUINA DE COMBUSTIÓN INTERNA.

Ciclo Termodinámico

El motor del automóvil es una *máquina de combustión interna*, ya que la energía para *producir la potencia neta* se genera al quemar mezcla de aire-octano dentro de las fronteras internas del sistema (dentro del cilindro).La máquina opera en un *ciclo termodinámico*, llamado también *ciclo de potencia*. Puesto que el fluido de trabajo (mezcla aire-combustible) durante todo el ciclo termodinámico está en la fase gaseosa, se categoriza como *ciclo de gas*, así, durante el desarrollo de la investigación se puede hablar de ciclo de gas y se entenderá como el ciclo termodinámico, o bien se puede decir ciclo de potencia.

Cabe indicar que en el motor del automóvil, en el ciclo termodinámico en la máquina de combustión interna, el fluido de trabajo no se somete a un ciclo entero, o sea que una vez que se produce la combustión del mismo, los gases de tal combustión se descargan y se sustituyen por una mezcla fresca al final de cada ciclo. Este ciclo termodinámico se caracteriza como un *ciclo abierto*. Esto debe estar muy claro para no confundirse con un ciclo termodinámico de máquinas térmicas como por ejemplo; Calderas de Potencia de vapor estudiadas en el ciclo de Carnot en las cuales el fluido de trabajo es agua que recircula en un *ciclo cerrado* (ver figura 18).

Entonces, por ciclo abierto se entiende el caso en el que el fluido de trabajo se renueva al final de cada ciclo térmico aunque el motor opere en un ciclo mecánico.

1.2. CICLO REAL EN EL MOTOR DE ENCENDIDO PROVOCADO. Salida de Trabajo Útil.

Para el motor de cuatro tiempos real:

Al principio, tanto la válvula de admisión como la de escape están cerradas y el pistón se encuentra en la parte más baja, PMI, figura 1. Durante el tiempo de compresión, el émbolo se mueve hacia arriba y comprime la mezcla de airecombustible. Un poco antes de que el émbolo alcance la parte más alta (PMS), la bujía produce una chispa y la mezcla se enciende con lo cual aumenta la presión y la temperatura del sistema. Los gases de alta presión impulsan el émbolo hacia abajo, el cual a su vez obliga a rotar el cigüeñal, produciendo la salida de trabajo útil durante el *tiempo de expansión o potencia*.

Figura 1: Ciclo mecánico del émbolo para el motor de encendido por chispa de cuatro tiempos real Fuente: CENGEL Yunus A, BOLES Michael A, Termodinámica, cuarta edición, Mc Graw Hill, México, 2002, 829.

Al final de este tiempo el émbolo se encuentra en la parte más baja (la terminación del primer ciclo mecánico) y el cilindro se llena con productos de combustión. Después el émbolo se mueve hacia arriba una vez más y evacúa los gases de escape por la válvula de escape (*el tiempo de escape*), y desciende por segunda vez extrayendo una mezcla fresca de aire-combustible a través de la válvula de admisión (*el tiempo de admisión*). Advierta que la presión en el cilindro está un poco por arriba del valor atmosférico durante el tiempo de escape y un poco por abajo durante el tiempo de admisión¹.

¹CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 445-446

En la Figura 2 se muestra el diagrama de *presión-volumen* para el ciclo de potencia descrito anteriormente. Es fácil advertir como aumenta la presión considerablemente una vez que se enciende la mezcla aire- combustible (comprimida) con la chispa. Este tiempo se ahondará con intensidad pues se predecirá el aumento de presión de la condición actual de la mezcla aire-gasolina a la condición de la mezcla aire-gasolina-óxido nitroso.

Figura 2: Diagrama P-v para el ciclo mecánico del émbolo para el motor de encendido por chispa de cuatro tiempos real Fuente: CENGEL Yunus A, BOLES Michael A, Termodinámica, cuarta edición, Mc Graw Hill, México, 2002, 829.

1.3. CICLO DE OTTO IDEAL.

Suposiciones de aire estándar²

El ciclo descrito para la máquina de combustión interna real en el ítem anterior, el que se aprecia en el diagrama de la figura 2, es una tarea compleja de analizar, por tal razón se lo analiza y evalúa por medio del ciclo de Otto Ideal que adecua cada tiempo, *de compresión*, *de potencia, de escape* y *de admisión* a los siguientes procesos:

- 1-2 Compresión isoentrópica
- 2-3 Adición de calor a volumen constante
- 3-4 Expansión isoentrópica
- 4-1 Rechazo de calor a volumen constante

² CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 444

Tales procesos del ciclo ideal de Otto se visualizan en el diagrama P-v de la figura 3, y en la figura 4 se puede ver el ciclo del émbolo que se ajusta al diagrama P-v.

Figura 3: Diagrama P-V Ciclo Otto Ideal del émbolo para el motor de encendido por chispa de cuatro tiempos Fuente: CENGEL Yunus A, BOLES Michael A, Termodinámica, cuarta edición, Mc Graw Hill, México, 2002, 829.

Figura 4: Ciclo Otto Ideal del émbolo para el motor de encendido por chispa de cuatro tiempos Fuente: CENGEL Yunus A, BOLES Michael A, Termodinámica, cuarta edición, Mc Graw Hill, México, 2002, 829.

Estos procesos ideales son posibles gracias a las suposiciones de aire estándar que son tan útiles para simplificar la labor del análisis termodinámico.

Debido a que el fluido de trabajo, mezcla de aire-octano se *gasifica* luego de la carburación en el múltiple de admisión gracias a la transferencia de calor desde el múltiple de escape, y por la razón que la cantidad de aire en la mezcla predomina sobre el octano en catorce partes a una, o sea que el 93% es aire y el 7% combustible, se puede *aproximar el fluido de trabajo a aire*.

Por la razón de que el nitrógeno en el aire predomina sobre el oxígeno en 3.76 moles a 1 exactamente, y al recordar que el nitrógeno no reacciona con ningún elemento de los reactivos en el proceso de combustión, entonces cabe decir que *el aire circula de modo continuo*.

Si bien se explicó en 1.1 que las máquinas de combustión interna trabajan en un ciclo abierto por cuanto el fluido de trabajo se renueva al final de cada ciclo térmico, en este caso se considera un circuito cerrado por cuanto el tiempo en que el cilindro estará vacío (expulsión de los gases de escape) es muy pequeño, se puede considerar que continuamente habrá fluido de trabajo (aire) en el cilindro.

Ya que se considera el aire como fluido de trabajo y, debido a que el aire para estudios termodinámicos se lo considera un *gas ideal*, se puede presentar la primera suposición de aire estándar de la siguiente manera;

El fluido de trabajo es aire que circula de modo continuo en un circuito cerrado y siempre se comporta como gas ideal.

Si el aire circula de modo continuo, entonces se considera que los *procesos que integran el ciclo son internamente reversibles*, es decir que el fluido de trabajo regresa a su estado inicial al final de cada ciclo. Las *suposiciones de aire estándar* que permiten llevar el análisis de ciclos de gas a un nivel manejable se fijan así:

- 1. El fluido de trabajo es aire que circula de modo continuo un circuito cerrado y siempre se comporta como gas ideal.
- 2. Todos los procesos que integran el ciclo son internamente reversibles.
- 3. El proceso de combustión es sustituido por un proceso de adición de calor desde una fuente externa. Figura 5
- 4. El proceso de escape es sustituido por un proceso de rechazo de calor que regresa el fluido de trabajo a su estado inicial.

Figura 5: Ciclo ideal de adición de calor Fuente: Autor

Estas suposiciones son para idealizar la situación de que en las máquinas de combustión real, el émbolo regresa a su posición inicial al final de cada revolución y en esto el fluido de trabajo no se somete a un ciclo termodinámico sino que es lanzado como gases de escape, figura 6, en algún punto del ciclo en lugar de regresarlo al estado inicial.

1.3.1. BALANCE DE ENERGÍA.

Primera Ley de la Termodinámica³

El balance de energía para cualquiera de los procesos; Compresión isoentrópica, Adición de calor a *volumen constante*, Expansión isoentrópica o Rechazo de calor a *volumen constante*, para la idealización del ciclo de Otto que se ejecuta en un *sistema cerrado* y se expresa por unidad de masa como:

$$(q_{en} - q_{sal}) + (w_{en} - w_{sal}) = \Delta u \qquad (kJ/kg) \qquad (1)$$

Como ya se explicó con anterioridad, en el ciclo Ideal de Otto, los procesos de adición de calor no implican trabajo ya que suceden a volumen constante, en consecuencia, la transferencia de calor hacia y desde el fluido puede expresarse como:

³CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 164

$$q_{en} = \Delta u_{2 \to 3} = u_3 - u_2$$
 (2)

$$q_{sal} = \Delta u_{4\to 1} = u_4 - u_1$$
 (3)

Ya que la adición y rechazo de calor se producen a volumen constante, se pueden evaluar entre la temperatura final e inicial para cada proceso de la siguiente manera⁴:

$$q_{en} = C_v (T_3 - T_2)$$
 (4)

$$q_{sal} = C_v (T_4 - T_1)$$
 (5)

1.3.2. EFICIENCIA TÉRMICA.⁵

Ciclo de Otto Ideal

Ya que el motor de combustión interna es una máquina térmica, a pesar que el fluido de trabajo, aire- octano no complete un ciclo en la combustión real, se cumplen los tres primeros procedimientos de funcionamiento que caracterizan a las máquinas térmicas:

- 1. Reciben calor de una fuente de alta temperatura (calderas)
- 2. Convierten parte de este calor en trabajo
- Liberan el calor de desecho remanente a un depósito de baja temperatura (condensadores).

La *eficiencia no se evalúa en el ciclo real*, ya que el depósito de baja temperatura para liberar el calor de desecho para el motor del automóvil es la atmósfera, y además, el fluido de trabajo aire-octano (reactivos) no recircula porque cambia sus características químicas (proceso 100% irreversible) a los gases de combustión. Esto, a diferencia del ciclo de las

⁴CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 447

⁵ Idem., p. 245.

máquinas térmicas del estudio de Carnot, como el caso de la caldera, el fluido de trabajo, vapor, libera calor en el condensador (punto de baja temperatura) para recobrar su estado inicial, liquido saturado, para volver a recircular en la caldera (fuente de alta temperatura), y por lo tanto se puede evaluar la eficiencia para ese fluido entre los puntos de alta y baja temperatura.

Es por esto que la *eficiencia térmica para el motor del automóvil se la evalúa para el ciclo de Otto Ideal*, ya que en ese planteamiento se entiende es un ciclo termodinámico completo con adición y rechazo de calor a volúmenes constantes, así que la eficiencia térmica es:

$$\eta_{t.Otto} = \frac{W_{neto}}{q_{en}} \tag{6}$$

El trabajo neto, al igual que las máquinas térmicas es:

$$w_{neto} = q_{en} - q_{sal} \tag{7}$$

entonces:

$$w_{neto} = q_{neto} \ \eta_{t.Otto} \tag{8}$$

Es preciso manifestar explícitamente la necesidad de obtener la eficiencia térmica ideal en el ciclo de Otto ya que es la *eficiencia teórica* en un *ciclo reversible*, y para interés del estudio termodinámico de la combustión interna en el motor del automóvil, tal eficiencia permitirá obtener los *valores de presión y temperatura* que serán por ende la mayor presión de trabajo y la mayor temperatura de calentamiento para el motor.

1.3.2.1. Presión y Temperatura Máximas

Del proceso 2-3 de entrada de calor en el ciclo ideal de Otto, figura 3, dependen la temperatura y presión máximas para llevarlas a teorizar en *los trabajos netos de salida en el motor luego de la combustión*, proceso en el que se encontrarán estos valores en la inyección de óxido nitroso.

Es necesario aclarar que los trabajos netos obtenidos por medio de las idealizaciones del ciclo de Otto deben ser iguales a los trabajos reversibles estudiados en reacciones químicas.

1.4. COMBUSTIÓN.⁶

Teoría de Reacciones

Si bien en el ciclo ideal de Otto se consideró el aire como el fluido de trabajo, es decir que *se utilizó las propiedades del aire para obtener los parámetros principales para aproximarse al desempeño de máquinas reales*, el calor q_{en} que se adicionó en el proceso 2-3, figura 3, tal energía es el resultado de la combustión de la mezcla octano-aire, o sea, de la *oxidación de la gasolina*, figura 7.

Figura 7: Combustión Real en el cilindro Fuente: PAYRI F, DESANTES J. M, Motores de Combustión Interna Alternativos, Editorial Reverte, España, 2011, 1002.

⁶CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 682

En el ciclo Ideal de Otto se consideró la *energía interna sensible* asociada a los cambios de presión y temperatura para el aire, pero en el caso de la combustión interna, que se trata de un sistema reactivo, se considera también la *energía química*.

La energía química está relacionada con la destrucción de enlaces químicos entre átomos para formar nuevos enlaces, como para el caso del enlace químico del carbón y el hidrógeno en el octano, C_8H_{18} , que en unión con aire, $O_2 + 3,76N_2$, al reaccionar (teóricamente. Ítem 1.5) se descomponen para formar dióxido de carbono CO_2 y agua H_2O y nitrógeno N_2 .

El valor de la energía química asociada a la oxidación del octano líquido en una reacción teórica equivale a su *poder calorífico*, 47890 kJ/kg. (poder calorífico superior por que contempla agua en los productos de combustión en la fase líquida).

Para llevar a cabo los *balances de energía* de acuerdo a la primera ley de la termodinámica se deben incluir los términos de la energía química (a más de la energía sensible asociadas al estado de la materia)al sistema de reacción, tal como la entalpia de formación \overline{h}°_{f} , que es la energía relacionada en la formación del compuesto, que para el octano, C_8H_{18} es -249 950 kJ/k*mol* (el signo negativo obedece a que la combustión del octano es una reacción exotérmica, reacción durante la cual la energía química se libera en forma de calor).

A diferencia del ciclo ideal de Otto, en el que no se considera las irreversilidades en ningún proceso, en la combustión se adoptará los aspectos de la segunda ley de la termodinámica para considerar muy seriamente el trabajo útil máximo o exergía que puede obtenerse de la combustión interna en el motor del automóvil para obtener la *eficiencia real de la combustión*, para confiar en el *rango de potencia* que se pueda obtener con la inyección de óxido nitroso.

1.4.1. EL COMBUSTIBLE Y EL OXIDANTE

El *combustible* y el *oxidante* tratados en la *combustión* inicial de este trabajo son el octano y el aire respectivamente. El octano, al igual que los hidrocarburos líquidos, es una mezcla de diferentes hidrocarburos, pero se lo trata como octano C_8H_{18} , combustible constituido de 8 átomos de carbón y 18 átomos de hidrogeno (en el desarrollo de la tesis se tratará a la gasolina como octano).

El aire para oxidar el combustible se considera aproximadamente en números molares como 21% de oxígeno y 79% de nitrógeno. La realidad es que el aire está compuesto de 20,9% de oxígeno, 78,1% de nitrógeno y 0,9 % de argón y pequeñas cantidades de dióxido de carbón, helio, neón e hidrógeno, pero para los casos de combustión el argón se considera como nitrógeno, figura 8, y los gases que existen en pequeñas cantidades se descartan.

Figura 8: Por cada kmol de oxígeno O₂ en el aire existe 3.76 kmol de nitrógeno N₂ **Fuente:** Autor

El cociente 0,79/0,21 hace evidente que 3,76 k*mol* de nitrógeno acompañan a cada k*mol* de oxígeno que entra a la cámara de combustión.

$$1 kmol O_2 + 3,76 kmol N_2 = 4,76 kmol aire$$
 (9)

Durante el desarrollo de éste trabajo (en el que se considera procesos de combustión teórica) se tiene presente que durante la combustión el nitrógeno no reacciona con otros
elementos, se comporta como un gas inerte (en los procesos de combustión real si reacciona aunque sea para formar muy pequeñas cantidades de óxidos nítricos *NO*).

El interés de la *presencia de nitrógeno en la combustión está en su capacidad de absorción de calor liberado en la reacción química.* Se entiende por este hecho que el nitrógeno entra a la cámara de combustión en grandes cantidades a bajas temperaturas y sale a temperaturas considerablemente elevadas.

A la cámara de combustión, conjuntamente con el aire ingresa vapor de agua, el cual se considera al igual que el nitrógeno, un gas inerte. Recordando que durante todo éste trabajo se idealiza combustión teórica, no necesariamente estequiométrica por lo que abra formación de O_2 ya que para las combustiones dentro del motor el Austin 1.3L son reacciones con exceso de aire, tabla 11, pero no se considera ninguna formación de H₂, ni tampoco H, O u OH a partir del vapor agua, lo que suele suceder en la combustión real a altas temperaturas.

A continuación de la reacción inicial aire-octano, lo normal en la reacción de combustión interna en el motor del automóvil, se considera la presencia de óxido nitroso para lograr mayor oxidación del octano, y a su vez, aprovechar la presencia del nitrógeno para absorber gran proporción de calor.

1.4.2. REACTIVOS Y PRODUCTOS EN LA COMBUSTIÓN.

Temperatura de ignición

La combustión es posible gracias a la presencia de los reactivos, *que son los componentes que existen antes de la combustión*. Esta tesis enfoca las combustiones a partir de los reactivos:

a) octano:
$$C_8H_{18}$$
 - aire: $a_t(O_2 + 3,76N_2)$,
b) octano: C_8H_{18} - aire: $a_t(O_2 + 3,76N_2)$ - óxido nitroso: N_2O

Una vez realizada la reacción de combustión, los reactivos cambian a productos, denominados *gases de combustión*, que para los reactivos a y b indicados anteriormente, se obtienen los mismos productos, salvo que las cantidades molares serán distintas (coeficientes x, y en las ecuaciones 10 y 11):

Las ecuaciones 10 y 11 representan las reacciones *a* y *b* respectivamente:

$$\overbrace{C_8H_{18} + a_t(O_2 + 3.76N_2)}^{\text{Reactives}} \rightarrow \overbrace{8CO_2 + 9H_2O + xO_2 + zN_2}^{\text{Productos}}$$
(10)

$$\overbrace{C_8H_{18} + a_t(O_2 + 3.76N_2) + N_2O}^{\text{Reactivos}} \rightarrow \overbrace{xCO_2 + yH_2O + xO_2 + zN_2}^{\text{Productos}} \quad (11)$$

La combustión *octano-aire*, ecuación 10, es necesaria para saber el valor de la energía $q_{en.Inicial}$ liberada en la combustión como una base del "funcionamiento inicial" del motor del Austin Cooper 1.3L y poderlo usar en el proceso 2-3 de adición de calor en el ciclo Ideal de Otto, y la combustión *octano-aire-óxido nitroso*, ecuación 11, para determinar $q_{en.N_2O}$ bajo la influencia del óxido nitroso con el fin de *determinar el rango de posible aumento de potencia*.

La posición que tiene el nitrógeno biatómico N_2 en la combustión, siendo uno de los reactivos, no necesariamente va a reaccionar químicamente en la cámara de combustión, sino que entra como N_2 y sale como N_2 .

Hay que tener en cuenta que aun en el estrecho contacto aire-octano que ingresa al sistema (cilindro) para la combustión, y bajo la presión que provoca el émbolo, no es suficiente

para iniciar la combustión por sí sola, es decir, la mezcla que se rige en la relación estequiométrica 14 a 1 respectivamente, se enciende por acción de la chispa de la bujía, no porque se supere la temperatura de ignición, que para el caso del octano puro es de 699 K.

La combustión de la mezcla inicia por el encendido de la bujía, como sucede en la actualidad del motor del Austin debido a que no tiene problemas de golpeteo en el motor por situaciones de pre-ignición, se presenta en el diagrama T-s de la figura 9 en la que se señalan las temperaturas; de auto ignición del octano y de compresión isoentrópica del aire en el punto 2 en el ciclo de Otto, 708,57K, ítem 2.4.3, lo que demuestra que la mezcla de octano con aire en proporción de 1 a 14, a elevado el valor de la temperatura de auto ignición del octano por contener aire en gran cantidad.

Como se demuestra en el ítem 2.5.1, la temperatura en el punto 2 no se eleva por el hecho de inyectar óxido nitroso a los reactivos puesto que esto aumenta el calor de combustión (en la combustión con óxido nitroso) y no la presión y temperatura por compresión de aire, lo que si sucede es que se eleva la temperatura máxima en el punto 3 que aumenta por el hecho de elevarse el valor del calor adicionado q_{en} al ciclo de Otto.

Figura 9: Diagrama T-s en el ciclo de Otto Ideal y las temperaturas de compresión isoentrópica del aire y de auto ignición del Octano puro Fuente: Autor

1.5. PRINCIPIO DE LA CONSERVACIÓN DE LA MASA

Primera Ley de la Termodinámica. Relación Aire-Octano AC

Las ecuaciones químicas que se plantean para las combustiones de los reactivos citados en el ítem anterior se llevan a cabo con el principio de la conservación de la masa o balance de masa que dicta: *La masa total de cada elemento se conserva durante la reacción química* aunque los elementos existan en compuestos diferentes en los reactivos y en los productos, es decir, *la masa total de un elemento específico en los productos es igual a la masa total de aquel elemento en los reactivos*; figura 10.

Figura 10: La masa de cada elemento se conserva durante la reacción química, por ende, el número de átomos. Figura: Autor

También, la suma de las masas de los elementos en los compuestos de los reactivos, 1830 kg, es igual a la suma de las masas de los elementos en los compuestos de los productos. Todo esto indica que el número de átomos de cada elemento se conserva durante la combustión debido a que el número de átomos N de un elemento es el cociente de su masa M entre su masa molar M, figura 11.

Figura 11: La suma de las masas de cada elemento en los compuestos de los reactivos es igual a la suma de las masas de cada elemento en los compuestos de los productos Fuente: Autor

Lo que no se conserva durante la combustión *es el número total de moles*, así, en los reactivos es 60,5 k*mol* (el aire tiene 4,76 k*mol* ya que por 1 k*mol* de oxígeno que entra a la cámara de combustión, entran 3,76 k*mol* de nitrógeno) mientras que en los productos es 64 k*mol*, figura 12.

Figura 12: El número total de moles no se conserva durante la combustión Fuente: Autor

Para los análisis de combustión se usará la proporción entre la *masa del aire* y la *masa del combustible*, conocida como la relación aire-combustible, justamente para cuantificar las cantidades del aire y octano.

$$AC = \frac{m_{aire}}{m_{combustible}} \tag{12}$$

1.5.1. BALANCES DE MASA CON PRESENCIA DE ÓXIDO NITROSO

Para comenzar con los balances de masa en las ecuaciones químicas en las que aparece el óxido nitroso en los reactivos, ecuación 11, es necesario indicar que tal compuesto se descompone en un átomo de nitrógeno y medio átomo de oxígeno durante la combustión, así:

$$N_2 O \to N_2 + \frac{1}{2}O_2$$
 (13)

Tenga en cuenta que las ecuaciones químicas usadas para la combustión con óxido nitroso en los reactivos en ésta investigación no incluyen más combustible del que ingresa al múltiple de admisión por efectos de carburación, es decir, el ingreso de octano a los cilindros no varía.

La siguiente es una ecuación de combustión básica para incluir la presencia de óxido nitroso:

$$C_8H_{18} + 12.5 * (O_2 + 3.76N_2) + N_2O \longrightarrow 8CO_2 + 9H_2O + \frac{1}{2}O_2 + 1N_2 + 47N_2 (14)$$

Para ésta ecuación con óxido nitroso se observa que aparece oxígeno no utilizado en los productos, $1/2O_2$.

1.6. COMBUSTIÓN TEÓRICA.⁷

Aire teórico

El presente estudio termodinámico de la combustión en un motor Austin 1.3L de encendido provocado durante la inyección de óxido nitroso, que contiene exceso de aire se muestra en la figura 13.

⁷ CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 686

Figura 13: Los productos a la derecha indican que todo el combustible se quema, todo el carbón se transforma en CO₂ y todo el hidrógeno se transforma en H₂O. Fuente: Autor

En la combustión teórica *se entiende que todo el combustible se quema*, todo el carbón se transforma en CO_2 y todo el hidrógeno se transforma en H_2O , y como at es mayor a 12,5 *kmol* en todos los regímenes en el funcionamiento del motor del Austin 1,3L, tabla 11, existe O_2 libre en los reactivos.

En el caso contrario, en la *combustión real*, figura 14, los productos contienen algo de combustible o componentes de combustible no quemados; C, H_2 , CO u OH, a parte de los compuestos citados en la reacción completa descritos en la figura 13.

Figura 14: Los productos a la derecha, aparte de combustible o componentes no quemados se entiende que existeCO₂, H₂Oy N₂. Fuente: Autor

Ya que se supondrá combustión teórica, hay que sentar todas las bases en las que ésta sucederá:

- *a)* Mezcla homogénea de aire-octano, con lo que se considera que el oxígeno está en contacto con el combustible.
- b) No se considera la disociación entre los elementos del aire y el octano ya que a elevadas temperaturas aumenta, el oxígeno es atraído con más fuerza hacia el hidrógeno que hacia el carbón.

La combustión estequiométrica del octano es:

$$C_8H_{18} + 12,5(O_2 + 3,76N_2) \rightarrow 8CO_2 + 9H_2O + 47N_2$$
 (15)

1.7. ENTALPIA DE COMBUSTIÓN.⁸

Poder Calorífico

Se recuerda que en éste capítulo se desea definir todos los parámetros necesarios para determinar el calor q_{en} que se adiciona en el ciclo ideal de Otto, ésta energía, obtenida de la combustión del octano, no es exactamente igual al poder calorífico del combustible, ya que en el caso de la combustión interna en el motor del automóvil los gases de combustión no están a la misma temperatura que los reactivos, porque de ser así, es decir, que los reactivos y los productos estén en un mismo estado, tal calor, q_{en} , seria simplemente el poder calorífico, el cual se define como *la cantidad de energía liberada cuando un combustible se quema por completo en un proceso de flujo estable y los productos vuelen al estado de los reactivos*.

Aclarado que la temperatura para los reactivos y los productos es diferente, el cambio de energía en el sistema (cámara de combustión) durante la combustión se debe a un cambio en el estado y a un cambio en la composición química, ecuación 16, figura 15:

$$\Delta E_{sistema} = \Delta E_{estado} + \Delta E_{química} \tag{16}$$

Figura 15: Temperatura de los reactivos y los gases de combustión son diferentes. Fuente: Autor

⁸CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 691

El cambio de energía debido al cambio en el estado, ΔE_{estado} considera el cambio en la energía *sensible* (relacionada con la energía cinética de las moléculas) mas no en la energía *latente* (relacionada con el cambio de fase) ya que se considera que tanto los reactivos como los productos están en la misma fase ya que en la combustión de octano se tiene diferentes compuestos a los reactivos en los productos debido a la ruptura de algunos enlaces químicos que unen a los átomos en las moléculas, y además a diferentes temperaturas, el cambio de energía en el sistema $\Delta E_{sistema}$ también considera el cambio en la energía química asociada a los reactivos y los productos, $\Delta E_{química}$.

Ahora es importante obtener el cambio en la energía del sistema sin tomar en cuenta la energía inicial de los reactivos, es decir que se debe descontar la energía referida a la temperatura ambiente y que en termodinámica se conoce como la energía en el estado de referencia estándar, que es común para todas las sustancias a $25^{\circ}C$ ($77^{\circ}C$) y latm⁹, y los valores de las propiedades en el estado de referencia estándar se indicarán por un superíndice como por ejemplo h° , u° .

Se considera que la oxidación del octano, que es una *reacción exotérmica*, no incluye interacciones de trabajo, es decir que no se considera que la mezcla ha sido previamente comprimida antes de ser encendida por la bujía, el balance de energía para flujo estable es igual a la transferencia de calor hacia el sistema que se determina de la diferencia entre la entalpía de los productos y la entalpía de los reactivos:

$$Q = H_{productos} - H_{reactivos}$$
 (17)

Se debe recordar que éstas entalpías comprenden; los cambios de estado ya que los reactivos y los productos están a diferentes temperaturas, y los cambios en la composición química.

⁹ Son los valores designados para evaluación de reacciones en Termodinámica.

Aquí es necesario tener una propiedad que represente estos cambios en la energía química durante la reacción exotérmica, la entalpía de combustión h_c , *la cual representa la cantidad de calor liberada durante el proceso de combustión de flujo estable*.

$$h_{C} = H_{productos} - H_{reactivos}$$
(18)

Por ejemplo, para la ecuación 18, en el caso del octano líquido la entalpía de combustión es 249950 kJ/kmol, e indica la energía química liberada cuando se combina con aire estequiométrico para formar 8 kmol de CO_2 , 9 kmol de H_2O y 47 kmol de N_2 , por eso el signo negativo de la tabla 10.

Si se quiere comprender mejor el hecho del signo negativo se puede enfocar que la entalpía de 8 k*mol* de CO_2 , 9 k*mol* de H_2O y 47 k*mol* de N_2 a 25°C y 1 *atm* es 249950 kJ menos que la entalpía de 1 k*mol* de octano y 59.5 k*mol* de aire.

La misma entalpía en unidades de energía por unidad de masa; 47890 kJ/kg, es el valor calorífico superior ya que el agua en los productos está en forma líquida. Justamente los términos; *poder calorífico* y *entalpía de combustión* son empleados en combustión de combustibles y se relacionan entre sí por la relación:

Poder calorífico =
$$|h_c|$$
 (19)

Para tener una concepción más clara de los cambios en la energía química durante un proceso de reacción es el concepto de la entalpía de reacción h_R , que se define como la diferencia entre la entalpía de los productos en un estado especificado y la entalpía de los reactivos en el mismo estado para una reacción completa.

$$h_{R} = H_{productos} - H_{reactivos}$$
 (20)

Las ecuaciones 19 y 20 son iguales, $h_c = h_R$ ya que la entalpía de combustión es una especificación de las reacciones químicas en el caso de combustión.

1.8. BALANCE DE ENERGÍA PARA LA CÁMARA DE COMBUSTIÓN.

Primera Ley: Flujo Estable.¹⁰

Al igual que la ecuación 17 que representa el cambio de energía en un sistema no reactivo de flujo estable, el balance de energía para un sistema reactivo, figura 16 también se determina por:

Figura 16: Bajo condiciones de flujo estable, los contenidos de masa y de energía de un volumen de control permanecen constantes. Fuente: Autor

Para el sistema reactivo de combustión del motor del Austin Cooper 1.3L en flujo estable, el cambio de energía es igual a la transferencia de calor durante el proceso, y es igual a la diferencia entre la entalpía de los productos y la entalpía de los reactivos (ecuación 21), entonces, al relacionar las ecuaciones 17 y 21, el cambio de energía para el sistema reactivo en cuestión, se tiene:

$$\Delta E_{sistema} = Q \tag{22}$$

$$H_{productos} - H_{reactivos} = \left(\Delta E_{estado} + \Delta E_{química}\right)_{productos} - \left(\Delta E_{estado} + \Delta E_{química}\right)_{reactivoss}$$
(23)

¹⁰ CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 695

Esta ecuación hace referencia a que las entalpías de los reactivos y los productos deben considerar tanto la entalpía de las sustancias en un estado especifico debido a su composición química, o sea, la entalpía de formación \bar{h}_f , como la entalpía sensible, ambas, relativas al estado de referencia estándar.

Para esto hay que expresar la entalpía de un componente en forma adecuada para usarla en el sistema reactivo del motor de combustión interna y debe estar referida al estado estándar de referencia, así:

$$\overline{h} = \overline{h}^{\circ}_{f} + (\overline{h} - \overline{h}^{\circ}) \qquad (24)$$

El término $(\overline{h} - \overline{h}^{\circ})$ representa la entalpía sensible relativa al estado de referencia estándar, que es la diferencia entre la entalpia sensible en el estado especificado \overline{h} , y la entalpía sensible en el estado de referencia estándar a 25 °C y 1 *atm*, \overline{h}° .

Los valores de la entalpia para los reactantes y los productos y de la ecuación 17 son:

$$H_{reactivos} = N_r (\bar{h}^\circ{}_f + \bar{h} - \bar{h}^\circ)_r \qquad (25)$$
$$H_{productos} = N_p (\bar{h}^\circ{}_f + \bar{h} - \bar{h}^\circ)_p \qquad (26)$$

Para la cámara de combustión con reacción exotérmica sin interacción de trabajo la ecuación $\Delta E_{sistema} = Q$ se convierte en:

$$Q_{sal} = \sum N_r \left(\bar{h}^{\circ}{}_f + \bar{h} - \bar{h}^{\circ} \right)_{\mathbf{r}} - \sum N_p \left(\bar{h}^{\circ}{}_f + \bar{h} - \bar{h}^{\circ} \right)_p$$
(27)

1.9. ANÁLISIS DE LA SEGUNDA LEY PARA LA COMBUSTIÓN.

Bases para Determinar el Trabajo Reversible W_{rev}

Hasta ahora, en el *Balance de Masa para los Reactivos y los Productos* y el *Balance de Energía para la Combustión* se han basado en el principio de la Primera Ley que expresa *la Conservación de la Materia y de la Energía* respectivamente, pero no se ha mencionado nada respecto a *cuánto Trabajo es posible obtener en condiciones de Reversibilidad,* W_{rev} .

Hay que entender que la *Primera Ley* de la termodinámica es un enunciado de *realización máxima de la transformación de los reactivos* (oxidación de octano con y sin la inyección de óxido nitroso) en la combustión para obtener la entalpía de combustión (poder calorífico) sin tomar en cuenta las irreversilidades.

Pero como se verá en el análisis de la combustión del octano (con y sin la inyección de óxido nitroso) en el segundo capítulo, se notará que el *Potencial de Trabajo* que se destruye en la reacción es altamente irreversible aun en el caso de considerar procesos reversibles para efectuar las evaluaciones. Las consideraciones de la Segunda Ley de la termodinámica acercan a comprender y evaluar la *Exergía de Trabajo* o *Mayor Potencial de Trabajo* posible W_{rev} .

Para acercarse a descubrir el trabajo posible W_{rev} que se puede obtener de la combustión en el motor del automóvil se debe tener presente la *Calidad*. Si bien la *Energía se Conserva*, no sucede lo mismo con la *Calidad* o *Potencial de Trabajo de la Energía*. En la figura 17 se aprecia la conservación de energía para el flujo de la mezcla de aire-octano en la combustión, y la ecuación 27 para el balance de energía en base a las entalpias de los reactivos y los productos que se basa en un sistema de flujo, ecuación 28.

Figura 17: La energía que entra al sistema por masa es igual a la energía que abandona el sistema. Figura: Autor

La cámara de combustión del motor del automóvil involucra salida de calor, no entrada del mismo. Para que se entienda bien esta situación, la salida de calor no significa que el calor abandone la cámara de combustión, a pesar que si sucede eso con los gases de combustión, pues se lleva parte de la energía, *cierta degradación de la misma* pues posee mayor temperatura que la de los reactivos que entran a la cámara de combustión a 25 °C y 1 *atm*, sino el calor liberado en la oxidación de la mezcla aire-octano, o sea que el calor de salida, Q_{sal} , se debe entender como calor liberado $Q_{liberado}$ dentro de la frontera interna de la cámara de combustión.

En base a la consideración de flujo estable para el sistema de control, la ecuación 28 queda:

$$Q_{en} + W_{en} + \sum H_{reac} = Q_{sal} + W_{sal} + \sum H_{prod}$$

Reordenando términos:

$$(Q_{en} - Q_{sal}) + (W_{en} - W_{sal}) = \sum H_{prod} - \sum H_{reac}$$

Se considera que en sistemas de combustión no existe interacción de trabajo, por tanto $W_{en} - W_{sal}$ es igual a cero. Además, en el sistema de combustión exotérmica sale calor, y es este calor, Q_{sal} o calor liberado $Q_{liberado}$ el que se necesita para evaluar el ciclo Ideal de

Otto, en el que si se considera la expansión del émbolo, o sea, donde se considera *las interacciones de trabajo*. Al utilizar las ecuaciones 25 y 26, la última ecuación lleva a:

$$-Q_{sal} = \sum N_p \left(\bar{h}^{\circ}{}_f + \bar{h} - \bar{h}^{\circ} \right)_p - \sum N_r \left(\bar{h}^{\circ}{}_f + \bar{h} - \bar{h}^{\circ} \right)_r$$

Al cambiar de signo se llega a la ecuación 27:

$$Q_{sal} = \sum N_r \left(\bar{h}^{\circ}{}_f + \bar{h} - \bar{h}^{\circ} \right)_{\mathbf{r}} - \sum N_p \left(\bar{h}^{\circ}{}_f + \bar{h} - \bar{h}^{\circ} \right)_p$$

Así, *todo lo que entra, sale*, pero dónde está la disminución de la *calidad*, en parte está en la *degradación* pues no todo el calor liberado en la combustión tiene la capacidad o el potencial para efectuar un *posible trabajo*.

Siendo así, dentro de la Primera Ley no existe ningún concepto basado en alguna propiedad de la materia o característica en el sistema para poder medir cuánto trabajo es posible hacer. La disminución de potencial, conocido como la destrucción de la energía *se mide en términos del desorden de la materia* (propiedad microscópica) generado tanto en el cambio de estado como en las transformaciones químicas.

1.10. ENUNCIADO DE LA SEGUNDA LEY PARA LA VALIDEZ DE LA CONTINUIDAD DE LA OPERACIÓN DE COMBUSTIÓN

Antes de enunciar los *Postulados de la Segunda Ley* es necesario aclarar los *procedimientos de funcionamiento que caracterizan a las máquinas térmicas*¹¹:

- 1. Reciben calor de una fuente de alta temperatura (calderas)
- 2. Convierten parte de este calor en trabajo

¹¹ CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 244

- 3. Liberan el calor de desecho remanente a un depósito de baja temperatura (condensadores).
- 4. Funcionan en un ciclo

El gráfico esquemático de la figura 18 muestra los procedimientos de funcionamiento que condicionan la operación a las maquinas térmicas:

Figura 18: Ejecución del ciclo de Carnot en una máquina de combustión externa Fuente: Autor

En el caso del motor del automóvil se cumplen las tres primeras condiciones ya que el fluido de trabajo en la cámara de combustión opera en un *ciclo abierto*, es decir que el fluido de trabajo no se renueva al final de cada ciclo mecánico porque es expulsado como gases de combustión, y en lugar de recircular, se renueva por una mezcla fresca de aire-octano.

El recibir calor de una fuente de alta temperatura, lo que no sucede en la cámara de combustión del motor del automóvil, pero se asemeja mucho a esto ya que el calor recibido es el calor liberado en la reacción exotérmica de la mezcla aire-octano, o sea, sólo difiere en la manera en la que obtiene el calor para ejecutar un ciclo térmico.

En el caso de la combustión, el trabajo posible que se puede efectuar de la reacción de combustión se examina por medio de la disponibilidad de energía como el trabajo reversible W_{rev} antes que de la evaluación en las ecuaciones 2 o 4 en el ciclo de Otto ideal.

Ahora, con respecto a la tercera condición, la liberación de calor de desecho remanente en un depósito de baja temperatura, como por ejemplo los equipos de condensación en el caso de las calderas con el fin de recircular el fluido de trabajo (líquido subenfriado), en el caso del motor del vehículo, no sucede igual, sino que el calor remanente se lo expulsa como gases de combustión a la atmósfera, que en este caso representa la fuente de calor de baja temperatura con el fin de introducir mezcla fresca aire-octano para la nueva explosión con lo que se obtendrá *continuidad en el ciclo térmico*.

Si bien el fluido de trabajo en el motor del automóvil no recircula por que cambia de composición química, lo que representa un proceso totalmente irreversible, la sustitución de los gases de combustión por la mezcla fresca, puede asemejarse a un *circuito cerrado* como se analizó en las suposiciones del ciclo ideal de Otto.

Esta limitación en la eficiencia térmica de las máquinas térmicas, explicada en la situación que ninguna máquina térmica convierte todo el calor que recibe en trabajo útil, forma la base del enunciado de Kelvin-Planck que expresa:

"Es Imposible para cualquier dispositivo que funcione en un ciclo recibir calor de un solo depósito térmico y producir una cantidad neta de trabajo"¹²

Lo que para el caso del motor del automóvil se puede plantear:

Para que el motor del automóvil funcione continuamente, el fluido de trabajo debe intercambiar calor en la combustión interna así como con el medio ambiente.

¹² CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 249

1.11. ANÁLISIS DE LA SEGUNDA LEY EN LA DETERMINACIÓN DE LA ENERGIA DESTRUIDA $X_{destruida}$. ENTROPÍA ABSOLUTA \overline{s}° .¹³

La evaluación de la Segunda Ley al proceso de combustión para la determinación del mayor trabajo posible, W_{rev} para realizar el torque del cigüeñal por medio del émbolo es posible gracias a la Propiedad Entropía, entendida de aquí en adelante como la *medida del desorden molecular o aleatoriedad molecular* de un sistema (conforme un sistema se vuelve más desordenado, las posiciones de las partículas son menos predecibles y aumenta la entropía), que relacionándolo con la labor de la investigación, *equivale a la degradación de la energía durante la combustión con la consecuencia de reducción de la "habilidad molecular" durante expansión isoentrópica del gas en la conjunta realización de trabajo.* Entiéndase que no se trata de las pérdidas de trabajo por fricciones émbolo-cilindro o en los accionamientos del motor para brindar movimiento al vehículo, ni por enfriamiento de los gases de combustión en el enfriamiento del motor en la refrigeración sino de la *posibilidad que la energía tiene para hacer el trabajo neto.*

En cuanto a las evaluaciones de entropía en las reacciones químicas es útil un punto de referencia absoluto para determinarla, y es la Entropía Absoluta, lo cual dicta la Tercera Ley de la Termodinámica e indica que *la entropía de una sustancia cristalina pura a la temperatura del cero absoluto es cero* puesto que no hay incertidumbre en torno al estado de las moléculas en ese instante. Si bien hasta ahora se han analizado los procesos de combustión desde el punto de vista de la conservación de la masa y la energía, el proceso resulta incompleto sin el examen de los aspectos de la Segunda Ley, y en este caso es de especial interés la *Destrucción de la Energía*, lo cual se relaciona con el concepto de la entropía que empieza con la siguiente ecuación:

¹³ CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 702

Esta ecuación es aplicada a *sistemas reactivos de flujo estable* de manera más explícita a como:

$$-\sum \frac{Q_k}{T_k} + S_{gen} = S_{productos} - S_{reactios}$$
 (30)

siempre que se evalúe en una base común las entropías de los constituyentes *entropías absolutas*, y al tomar la dirección positiva de la transferencia de calor hacia el sistema.

 T_k es la temperatura en la frontera donde Q_k la cruza. Se recuerda que para el sistema reactivo, la cámara de combustión del automóvil, la transferencia de calor es hacia el sistema con el calor liberado por la combustión, $Q_{liberado} = Q_{sal}$, y aclarando que *parte de entropía se transfiere con el calor*, conlleva transferencia de entropía, S_{en} al sistema.

Si se aprecia que la reacción es instantánea y que parte de ese calor se transforma en trabajo y otra parte del calor abandona el sistema con los gases de combustión, se puede decir que la entropía generada tiene muy poco tiempo para efectuar irreversilidades, y a contra parte, la entropía que abandona el sistema por transferencia de calor con los alrededores que están a la temperatura ambiente T_o ; lleva consigo entropía S_{sal} .

Debido a que el área del sistema para la transferencia de calor (pérdidas de calor) con los alrededores es relativamente grande (contando también con la refrigeración del motor que

involucra enfriamiento), se puede igualar la entropía que entra S_{en} a la entropía que sale S_{sal} , lo cual lleva a considerar un sistema adiabático; esto es:

$$S_{en} - S_{sal} = \sum \frac{Q_k}{T_k} = \mathbf{0}$$
 (31)

Y así, las reacciones de flujo estable para los propósitos de la investigación considerarán *procesos adiabáticos*, esto es:

$$S_{gen.Adiabático} = S_{productos} - S_{reactios}$$
 (32)

Hay que considerar que en los sistemas de combustión interna como en el caso de los motores de automóvil, *es deseable lograr el mayor trabajo y no el mayor calor* (como en el caso de hornos), por lo cual sería ideal se absorba todo el calor en la expansión del émbolo.

Hay que recordar que en ingeniería de motores a gasolina, de ninguna manera se intenta tener una caldera, en la cual la energía de mayor calidad, o sea, energía de mayor temperatura haga el trabajo, sino que se haga trabajo por la combustión misma antes que por la energía de mayor calidad, es decir que fuera excelente tener una "*combustión fría*" (entiéndase que es una frase idealizada para expresar un sistema muy ordenado que hace buen trabajo). Pero ahí está el dilema, no se puede lograr una combustión de calidad sin alta temperatura, y es por eso que para el cálculo de la generación de entropía es deseable considerar sistema adiabático.

La determinación del cambio de entropía en los sistemas de combustión, $S_{productos} - S_{reactios}$, implican entropías absolutas \overline{s}° de los componentes tal como se evaluó las entalpías en la ecuaciones 25 y 26. Una vez que se evalúa el cambio de entropía total del sistema (o generación de entropía en el caso de sistemas adiabáticos), la Energía Destruida¹⁴ asociada con las reacciones químicas se determina de:

$$X_{destruida} = T_o S_{gen} \tag{33}$$

Donde T_0 es la temperatura absoluta de los alrededores.

1.12. ANÁLISIS DE LA SEGUNDA LEY EN LA DETERMINACIÓN DEL POTENCIAL DE TRABAJO MÁXIMO W_{rev}^{15}

El trabajo máximo W_{rev} que se puede efectuar en un proceso de combustión de flujo estable se puede conseguir sustrayendo al término de entalpia en la ecuación 27 la porción de la energía destruida, esto es; $\overline{h} - S_{gen}T_o$, tanto a los componentes de los reactivos como a los componentes de los productos. Esto se efectúa en la ecuación 28 de balance de energía de flujo estable $E_{en} = E_{sal}$ que incluye transferencia de calor sólo con los alrededores a T_o .

$$(Q_{en} - Q_{sal}) + (W_{en} - W_{sal}) = \sum H_{prod} - \sum H_{reac}$$
$$W_{en} - W_{sal} = \sum H_{prod} - \sum H_{reac} - (Q_{en} - Q_{sal})$$

En la última ecuación la diferencia entre el trabajo que entra y el trabajo que sale es el trabajo neto del sistema, y ya que se está retirando la porción de la energía destruida a las entalpías en los componentes de los productos y de los reactivos, tal diferencia representa el trabajo reversible:

$$W_{rev} = \sum N_{p} (\bar{h} - S_{gen} T_{o})_{p} - \sum N_{r} (\bar{h} - S_{gen} T_{o})_{r}$$
(34)

 ¹⁴CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002,
 829. Página 703

¹⁵ Idem., p. 704.

En la última ecuación no aparece el término relacionado con el calor que entra y sale del sistema por cuanto la relación de trabajo reversible para un proceso de combustión de flujo estable incluye transferencia de calor sólo con los alrededores a T_o , como se mencionó anteriormente en este mismo ítem, lo que significa: $Q_{en} = 0$ y ya que $Q_{scal} \approx$ transferencia de calor sólo con los alrededores a T_o , es una magnitud negativa, lo que en la ecuación 32 significa el mayor trabajo reversible.

En la ecuación 34 se debe mostrar adecuadamente los términos de entalpía \overline{h} como $\overline{h}^{\circ}_{f} + (\overline{h} - \overline{h}^{\circ})$.

$$W_{rev} = \sum N_{p} (\bar{h}^{\circ}{}_{f} + \bar{h} - \bar{h}^{\circ} - S_{gen} T_{o})_{p} - \sum N_{r} (\bar{h}^{\circ}{}_{f} + \bar{h} - \bar{h}^{\circ} - S_{gen} T_{o})_{r} \quad (35a)$$

Cuando se conoce el cambio de entropía asociado a una reacción química, el trabajo reversible se determina de:

$$W_{rev} = T_o S_{gen} \tag{35b}$$

1.13. CURVAS CARACTERÍSTICAS DEL MOTOR

Potencia, Torque y Consumo de Combustible

El comportamiento del *torque* del motor a distintos regímenes por efecto de la combustión de la mezcla aire-octano en los cilindros y la consecuente expansión de los gases para mover los pistones lo que conduce a transformar el movimiento lineal de los mismos en el giro del cigüeñal por medio del brazo de biela, no solo es esencial para el desempeño de *potencia* del motor sino que es impredecible para trazar una curva idealizada de torque para efectos de la combustión de octano con la presencia de óxido nitroso, a más del aire, como carburante, figura 39.

El *consumo* de octano (kilogramos) en los distintos regímenes es indispensable para determinar la fracción de trabajo neto que corresponde a una masa fija de combustible que se quema dentro de la cámara de combustión.

1.13.1. CURVA DE POTENCIA¹⁶

El trazo de la curva de potencia en la figura 19 es posible gracias al modelo matemático empírico, ecuación 36, resultado de varias pruebas realizadas a un gran número de motores de cuatro tiempos en la obra de Zhelesko, "Fundamentos de la teoría y dinámica de motores para automóviles y tractores".

$$Pot = Pot_{o} \frac{n}{n_{o}} \left[0,81 + 1,19 \frac{n}{n_{o}} - \left(\frac{n}{n_{o}}\right)^{2} \right]$$
 (36)

En la que n_o es régimen máximo, 5750 *rpm* en el que el fabricante indica la potencia máxima Pot_o 50 kW, anexo 1. La tabla 1 muestra los pares ordenados para la ecuación 36.

n <i>rpm</i>	Pot _o kW	n _o <i>rpm</i>	Pot kW
3000			30,23
3500			35,42
4000			40,14
4500		5750	44,17
5000	50		47,33
5500	50		49,42
5750			50
6000			50,24

Tabla1: Valores de potencia para potencia y régimen normalizados, 50 kW y 5750 rpmFuente: Autor

Se puede apreciar en la tabla 1 que existe un error del 0,48% ya que no precisamente a las 5750 *rpm* la potencia es máxima, siendo la potencia máxima de 50,24 kW a 6000 *rpm*.

¹⁶ ZHELESKO V, Fundamentos de la Teoría y Dinámica de Motores para Automóviles y Tractores, tercera edición, Moscú, 1985,582.

Figura 19: Potencia a diferentes regímenes (Tabla 1) para la normalización 50 kW y 5750 rpm. Fuente: Autor

1.13.2. CURVA DE TORQUE 17

Una vez obtenida la variación de la potencia en los distintos regímenes, el torque M se lo encuentra por medio de la ecuación 37 con la que se crea la tabla 2 y la curva de la figura 20.

$$M = \frac{9550Pot}{n} \qquad [Nm] \qquad (37)$$

 Tabla 2: Torque del motor para las correspondientes potencias de la tabla 1

 Fuente: Autor

n <i>rpm</i>	Pot _o kW	n _o <i>rpm</i>	Pot kW	Torque Nm
3000			30,23	96,23
3500			35,42	96,65
4000			40,14	95,83
4500			44,17	93,74
5000	50	5750	47,33	90,4
5500			49,42	85,81
5750			50	83,04

¹⁷ ZHELESKO V, Fundamentos de la Teoría y Dinámica de Motores para Automóviles y Tractores, tercera edición, Moscú, 1985,582.

Figura 20: Torque del motor a distintos regímenes Fuente: Autor

Figura 21: Curvas de Potencia y Torque para distintos regímenes Fuente: Autor

1.13.3. CURVAS DE CONSUMO DE OCTANO

El consumo por rodaje en el cuarto cambio, relación uno a uno se muestra en la figura 22

Figura 22: Consumo de combustible en g/km a distintas velocidades en km/h Fuente: Autor

La curva de la figura 22 responde a los pares ordenados de la tabla 3, ver anexo 2 y anexo 12.

Velocidad	Consumo de Combustible
km/h	g/km
95	52,58
116	60,95
131	71,21
149	81,48

Tabla 3: Consumo en g/h para distintas velocidades en km/h para la relación de transmisión 1:1Fuente: Autor

Es interesante apreciar el consumo en gramos por kilómetro para la velocidad del vehículo en kilómetros por hora, da una idea de el llenado de los cilindros con el aumento de la velocidad, por supuesto que la relación de velocidad-consumo es de un vehículo de carburador significa que el paso de octano responde a una señal mecánica.

Ya que la potencia mostrada en la curva de la figura 19 está en función de las revoluciones del cigüeñal, el consumo de octano para fines de cálculo de trabajos netos del motor, es el consumo por llenado de cilindro o llenado por admisión, y se lo define como el *consumo por requerimiento de torque* que se aprecia en la figura 24 y que responde a la tabla 5.

1.13.3.1. Carburación

Ya que la carburación es el efecto de mezclado del aire atmosférico con octano, lo que se realiza en el carburador del motor del automóvil, es necesario, a partir del "llenado de los cilindros" con octano, determinar la cantidad de aire para la mezcla aire-octano, lo que se aprecia en el ítem 2.1.

1.13.3.2. Masa de Octano

La cantidad de octano que ingresa en los cilindros para la correspondiente explosión, es una función directa del consumo de combustible por kilómetros recorridos a determinada velocidad para una misma relación de transmisión y, el régimen correspondiente a tal velocidad.

A más de la cantidad de combustible consumido por kilómetros recorridos de la tabla 3, en la tabla 4 se expone los regímenes correspondientes a las velocidades, ver anexo 3.

Velocidad	Regímenes	Consumo de Combustible
km/h	rpm	g/km
95	3642	52,58
116	4446	60,95
131	5020	71,21
149	5712	81,48

Tabla 4: Regímenes a las distintas velocidades, Consumos para la relación de
transmisión 1:1Fuente: Autor

Para determinar la cantidad de octano que ingresa a los cilindros en la mezcla con el aire, se debe tomar en cuenta el número de rotaciones del cigüeñal, ya que para cada vuelta del cigüeñal se tienen dos ingresos de mezcla a los cilindros, ver figura 23.

En la primera vuelta del cigüeñal, a partir de una posición de inicio, se pueden apreciar *dos válvulas de admisión abiertas*(color azul) *por las que ingresa aire* (flecha azul), y para el ciclo termodinámico completo de un pistón, en el que se realiza dos ciclos mecánicos o

dos vueltas del cigüeñal, se realiza cuatro admisiones de mezcla por cuánto en esos dos giros completos del cigüeñal, los cuatro pistones desarrollan potencia, justamente por tener mezcla aire-octano para que se dé la combustión. Esto aclara el hecho que por *cada vuelta del cigüeñal se realiza dos admisiones de mezcla aire-combustible*, por lo que para un régimen determinado se tiene el doble de aspiraciones durante un minuto. La tabla 5 muestra el consumo de octano

Figura 23: Secuencia de potencia, aspiración de mezcla aire-octano y vaciado de gases de combustión durante la rotación del cigüeñal. Fuente: Autor

En la tabla 5 se contempla la masa de octano para cada combustión, la cantidad de combustible con aire en una mezcla determinada de la que se desprende el calor que genera la expansión de los gases para obtener el correspondiente trabajo que desarrolla el par de torsión para el giro del cigüeñal. Ver anexo 13.

Velocidad	Regímenes	Consumo de Combustible	tiempo t	Admisiones de Octano	Ingreso de Octano
km/h	rpm	kg/ 100 km	<i>h; min; s</i> (minutos)	para el tiempo	por admisión. kg
95	3642	5,26	1; 3; 9,5 (63,16)	460057,44	1,1 4334E-05
116	4446	6,095	0; 51; 43,45 (51,72)	459894,24	1,3253E-05
131	5020	7,12	0; 45; 48,1 (45,802)	459852,08	1,54832E-05
149	5712	8,15	0; 40; 16,11 (40,27)	460044,48	1,77157E-05

Tabla 5: Consumo de octano para desarrollo de potencia continúa a distintos regímenesFuente: Autor

La curva masa-régimen se aprecia en la figura 24

Figura 24: Masa de octano necesaria para producir potencia a tal régimen Fuente: Autor

Hay que entender que tal consumo en la figura 24, es el consumo para lograr continuidad en la potencia de salida del cigüeñal puesto que existe una combustión con la correspondiente expansión de los gases por cada media vuelta del cigüeñal. Para la velocidad de 95km/h existe 121.4 admisiones/s, que multiplicado por la masa de octano por admisión, el gasto de combustible es de 0.0014kg/s. éste consumo se considera como el consumo por unidad de tiempo a un régimen determinado, en éste caso, en la relación de transmisión 1:1, a 3642 *rpm* que corresponde a una velocidad de 95 *km/h*. En la tabla 6 y la

figura 25 se aprecia tales consumos, ver anexo 14. Sin embargo en los cálculos de calor de salida -Qsal de la combustión en el capítulo 2 se utiliza la masa de octano por admisión.

 Tabla 6: Consumo de octano por unidad de tiempo a distintos regímenes

 Fuente: Autor

Figura 25: Consumo de octano por unidad de tiempo a distintos regímenes en la relación de transmisión 1:1 Fuente: Autor

Ya que los consumos de la tabla 6 están considerados por unidad de tiempo al igual que la potencia, *kJ/s*, se pueden considerar también como *consumos específicos*, no obstante, el consumo específico en éste trabajo se lo trata como el consumo de combustible para un *kWh*, es decir, *la masa necesaria de combustible para producir una potencia continua en un régimen especificado a una relación de transmisión determinada durante una hora*.

Así, para el régimen 3642 *rpm*, el consumo específico es 5,04 kg/kWh, que se obtiene transformando 0.0014 kg/s a kg/h. Ver tabla 7 y figura 26.

Regímenes	Consumo Especiíico
rpm	kg/kWh
3642	5,04
4446	6,84
5020	9
5712	12,24

Tabla 7: Consumo específico de combustible kg/kWh a distintos regímenesFuente: Autor

Figura 26: Consumo específico de combustible kg/kWh a distintos regímenes en la relación de transmisión 1:1 Fuente: Autor

Figura 27: Consumo específico de combustible kg/kWh a distintos regímenes en la relación de transmisión 1:1 Fuente: Autor

CAPITULO II

2. ANÁLISIS TERMODINÁMICO DE LA COMBUSTIÓN DEL MEP DURANTE LA INYECCIÓN DE *N*₂*O*

2.1. ECUACIONES DE COMBUSTIÓN

Relaciones AC¹⁸

Las ecuaciones químicas a considerar para las combustiones de flujo estable en la cámara de combustión del automóvil son en base a las alimentaciones de mezcla aire-octano al cilindro, anexos 5, tabla 8, por admisión para cada combustión en un régimen determinado, ver tabla 11.

 Tabla 8: Consumo de combustible por cada 100 km recorridos en determinado régimen y el correspondiente consumo de combustible por admisión por alimentación para cada explosión.

 Fuente: Autor

Velocidad	Regímenes	Consumo de Combustible	Ingreso de Octano
km/h	rpm	kg/ 100 km	por admisión. kg
95	3642	5,26	1,14E-05
116	4446	6,095	1,33E-05
131	5020	7,12	1,55E-05
149	5712	8,15	1,77E-05

El ingreso de aire para cada régimen se determina al relacionar las masas de octano y aire en una ecuación en la que la suma de los volúmenes de combustible y aire debe ser igual al volumen libre del cilindro (anexo 5E), la cual debe estar en función de las masas y densidades del octano y aire, 703 kg/m^3 y 1.204 kg/m^3 respectivamente. Es así que la masa de aire en orden de los regímenes de la tabla 8 son; 0.000335kg, 0.000319kg, 0.000316kg y 0.000313kg. Ver Anexo 15.

A pesar que las ecuaciones químicas para la determinación de los trabajos indicados en el ciclo de Otto y en el Trabajo Reversible de la Combustión en Flujo Estable, tabla 23, no estequiometrias de aire, tablas 9 y 11, se hace mención a éstas dos situaciones para tener una idea de las relaciones *AC* en tales casos.

¹⁸ CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 684

2.1.1. BALANCE DE MASA PARA DÉFICIT DE AIRE.

Relación 14:1.

Como se dijo en el primer capítulo, las ecuaciones de masa para los reactivos en la combustión no necesariamente son para una combustión estequiometria o teórica, ya que la relación normal aire-octano es 14:1, que conlleva a obtener 11,56 k*mol* de aire, lo que en el caso de la combustión estequiometria son 12,5 k*mol*. Obsérvese:

 $AC = 14 \frac{\text{kg de aire}}{\text{kg de combustible}}$

$$\frac{14}{1} = \frac{4.76a29}{1 \times 114}$$

a = 11.56 kmol de aire

Las cantidades 4,76*a* y 1 representan el número de moles del aire y octano. 29 kg/kmol y 114 kg/kmol, sus masas molares.

Ya que la cantidad de aire para la combustión completa es 12,5 k*mol*, ecuación 15, se tiene un déficit de aire:

déficit de aire =
$$\frac{11,56}{12,5} = 0,925$$

que quiere decir el 92,5% de aire teórico o el 7,5% de deficiencia de aire, con lo que se descubre que acarrea algo de CO en los productos

$$C_8H_{18} + 11.56(O_2 + 3.76N_2) \longrightarrow xCO_2 + tCO + yH_2O + zN_2$$

Los coeficientes desconocidos en la ecuación 38 se encuentran a partir de un balance de masa en diversos elementos.

C:
$$8 = x + t$$

 O_2 : $11.56 = x + \frac{1}{2}t + \frac{9}{2}$
H: $18 = 2y$
 N_2 : $11.56x3.76 = z$

de esta forma se tiene:

$$C_8H_{18} + 11.56(O_2 + 3.76N_2) \longrightarrow 6,12CO_2 + 1,88CO + 9H_2O + 43,46N_2$$

Para una ecuación con el 20% de déficit de aire o el 80% de exceso de aire se tiene:

$$C_8H_{18} + 0.8 \times 12.5(O_2 + 3.76N_2) \longrightarrow 3CO_2 + 5CO + 9H_2O + 37, 6N_2$$

Que corresponde a una relación AC:

$$AC = \frac{(4,76 \times 0,8 \times 12,5) \text{ kmol} \times 29 \text{ kg/kmol}}{1 \text{ kmol} \times 114 \text{ kg/kmol}}$$
$$AC = 12,109 \frac{\text{kg de aire}}{\text{kg de combustible}}$$

Estas ecuaciones son útiles para lograr precisar los calores liberados $-Q_{salida}$ en la combustión en los diferentes regímenes. En la tabla 9 se observa los contenidos molares de aire en los reactivos; dióxido de carbón, monóxido de carbón, así como oxígeno y nitrógeno en los productos para las diferentes relaciones aire-octano.

2.1.2. BALANCE DE MASA PARA COMBUSTIÓN COMPLETA

Para una combustión completa;

$$C_8H_{18} + 12.5(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 47N_2$$
Cuya relación AC es:

$$AC = \frac{(4,76 \times 12,5) \, kmol \times 29 \, kg \, / kmol}{1 \, kmol \times 114 \, kg \, / kmol}$$
$$AC = 15,135 \frac{kg \ de \ aire}{kg \ de \ combustible}$$

2.1.3. BALANCE DE MASA PARA EXCESO DE AIRE

La ecuación de masa para el 200% de exceso de aire y la respectiva AC :

$$C_8H_{18} + 2 \times 12, 5(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 12, 5O_2 + 94N_2$$

y la relación aire-octano:

$$AC = \frac{(4,76 \times 2 \times 12,5) \text{ kmol} \times 29 \text{ kg/kmol}}{1 \text{ kmol} \times 114 \text{ kg/kmol}}$$
$$AC = 30,27 \frac{\text{kg de aire}}{\text{kg de combustible}}$$

Las ecuaciones de masa que se aprecian en la tabla 9 y sus respectivas relaciones AC, se valoran desde una mezcla con el 20% de déficit de aire hasta una mezcla con el 200% de exceso de aire con un valor central del 92.5% de aire, es decir, para el 7,5% de déficit de aire que corresponde a la relación 14:1.

	AC	Exceso de aire	Moles de aire	<i>CO</i> ₂	CO	<i>O</i> ₂	H_2O	N 2
	$m_{ m aire}/m_{ m comb}$	%	kmol			kmol		
Dir.e	12,109	80	0,8x12,5 = 10	3	5	-	9	37,6
de de	12,87	85	0,85x12,5 = 10,625	4,25	3,75	-	9	39,95
icit	13,62	90	0,9x12,5 = 11,25	5,5	2,5	-	9	42,3
déf	14,38	95	0,95x12,5 =11,875	6,75	1,25	-	9	44,65
aire teórico	15,135	100	1x12,5 =12,5	8		-	9	47
e	18,16	120	1,2x12,5 =15	8	-	2,5	9	56,4
0	21,19	140	1,4x12,5 =17,5	8	-	5	9	65,8
σ o	24,22	160	1,6x12,5 =20	8	-	7,5	9	75,2
Ces	27,24	180	1,8x12,5 =22,5	8	-	10	9	84,6
ô	30,27	200	2x12,5 =25	8	-	12,5	9	94

 Tabla 9: Cantidades molares de los compuestos y elementos en los productos de combustión según porcentaje de aire y sus correspondientes relaciones AC

 Fuente: Autor

En el rango *AC* 12,109 a 14,38 que corresponde a un déficit de aire, se observa la presencia de monóxido de carbono *CO*, tendiendo a disminuir a medida que se aproxima a la cantidad de aire teórico, ver curva de la figura 28.

Figura 28: Variación entre las cantidades CO₂ y CO durante la combustión con déficit de aire *Fuente:* Autor

Ya que el CO es un componente no quemado del combustible, conlleva a tener menores valores en el calor de salida $-Q_{sal}$ durante la combustión. En la figura 29 se aprecia el aumento de nitrógeno N_2 que no reacciona con ningún elemento, y ya que por cada 1 kmol de oxigeno ingresa 3,76 kmol de nitrógeno, tiende a aumentar rápidamente.

Figura 29: Aumento de nitrógeno N₂ a medida que aumenta la presencia de aire en la combustión Fuente: Autor

Para los excesos positivos de aire indicados en el rango 18,16 a 30,27 de la relación *AC* en los reactivos, tabla 9, hay que tener presente que la cantidad estequiométrica de aire $a_tO_2 = 12,5O_2$ sirve para oxidar el combustible y la cantidad de exceso restante, $1,4a_tO_2 = 17,5O_2$ (para un exceso de aire del 140%) aparece en los productos como oxígeno no utilizado, $5O_2$, ver figura 30.

Figura 30: Presencia de O₂ y N₂ en la combustión con exceso de aire. *Fuente:* Autor

2.2. CALOR LIBERADO EN LA COMBUSTIÓN

El calor liberado en la combustión, ecuación 27, ofrece la primera referencia de energía para condiciones de funcionamiento de fábrica. Se recuerda que el calor liberado está en función de la temperatura de entrada de los reactivos a la cámara de combustión y de la temperatura de los gases de escape,

$$-Q_{sal} = \sum N_p \left(\overline{h}^{\circ}{}_f + \overline{h} - \overline{h}^{\circ} \right)_p - \sum N_r \left(\overline{h}^{\circ}{}_f + \overline{h} - \overline{h}^{\circ} \right)_r$$

La temperatura de entrada de los reactivos depende de las condiciones atmosféricas. En nuestro medio se tienen temperaturas muy bajas, $10 \,^{\circ}C$, así como temperaturas altas alrededor de $30 \,^{\circ}C$, siendo lo ordinario, temperaturas entre $14 \,^{\circ}C$ y $25 \,^{\circ}C$. En base a éstas últimas, la temperatura de entrada de los reactivos se fija en $20 \,^{\circ}C$ como temperatura promedio de tal manera que la medida de desviación de los datos de temperatura sea mínima, en cambio que la temperatura de los gases de escape depende entre otras cosas de la cantidad de combustible quemado con una cantidad definida de aire, el nivel de compresión de la mezcla, las rapideces de la explosión de la mezcla y la expulsión de los gases de escape, nenor es la temperatura de los gases de combustión de los gases de escape, menor es la temperatura de los gases de combustión de los gases de consume gran parte de la energía del calor de salida, lo cual se puede apreciar en la tabla 13 y en las curvas de la figura 33.

La temperatura de los gases de combustión coincide con la temperatura en el punto 4 del ciclo de Otto que corresponde al momento final de expansión del émbolo, o sea, una vez que disminuyen la presión y temperatura máximas en el punto 3 luego de la adición de calor. Figura 31

Figura 31: Diagrama T-V para el ciclo ideal de Otto Fuente: Autor

Al llegar la temperatura al punto 4, que en la combustión real corresponde a la temperatura de los gases de combustión, momento en el cual se expiden al medio ambiente para nuevamente llegar a la temperatura del punto 1 donde comienza tanto el ciclo de Otto ideal como combustión real.

La evaluación $-Q_{sal}$ que se aprecia en la tabla 10 corresponde a la ecuación estequiométrica o teórica de la oxidación de 1 *kmol* C_8H_{18} para una temperatura de 20°C para los reactivos y 650°C para los gases de escape. Figura 32, para los datos de las tablas del anexo 6.

Figura 32: Proceso de combustión completa de 1 kmol octano Fuente: Autor

$C_8H_{18} + 12,5(O_2 + 3,76N_2) \rightarrow 8CO_2 + 9H_2O + 47N_2$							
	PRODUCTOS						
			\overline{h}				
Sustancia	Ν	$\overline{h}^{\circ}{}_{f}$	650°C/923K	\overline{h}°	$N_p(\bar{h}_f^o + \bar{h} - \bar{h}^o)_p$		
C02	8	-393520	38626,9	9364	-2914056,8		
H_2O	9	-241820	32749,9	9904	-1970766,9		
N ₂	47	0	27628,6	8669	891101,2		
	REACTIVOS						
			\overline{h}				
Sustancia	Ν	$\overline{h}^{\circ}{}_{f}$	20 ⁰	\overline{h}°	$N_r(\bar{h}_f^o + \bar{h} - \bar{h}^o)_r$		
$C_{8}H_{18}$	1	-249950			249950		
02	12,5	0	8532,625	8682	1867,1875		
N2	47	0	8520,875	8669	6961,875		
$Q_{sal} = \sum N_r (\bar{h}_f^o + \bar{h} - \bar{h}^o)_r - \sum N_p (\bar{h}_f^o + \bar{h} - \bar{h}^o)_p = -37349434 KJ/kmol$							

Tabla 10: Q_{sal} para la combustión estequiométrica de 1 kmol C_8H_{18} Fuente: Autor

Para evaluar la tabla 10 hay que tener presente las explicaciones del ítem 1.9 al respecto de las entalpías de los reactivos y los productos, estas deben considerar tanto la entalpía de las sustancias en un estado especifico debido a su composición química, o sea, la entalpía de formación $\overline{h_f}$, como la entalpía sensible, $(\overline{h}-\overline{h}^\circ)$, ambas relativas al estado de referencia estándar a 25°C y 1 atm.

El valor -3734943,4 kJ/kmol C_8H_{18} equivale a -32762,66 kJ/kg C_8H_{18} puesto que 1 kmol de octano tienen una masa de 114 kg.

2.2.1. CALOR LIBERADO POR REGÍMENES

De acuerdo a las condiciones de funcionamiento del motor tal como muestran las curvas características de la figura 21, las necesidades de calor liberado en cada régimen para producir un torque y potencia precisa, depende entre otras cosas de la mezcla aire-octano que responde a una relación estequiométrica definida, y esto en base a un consumo definido de combustible, figura 24, así como la temperatura de los gases de combustión.

Para encontrar la cantidad de calor liberado por regímenes se lo hace en base a la ecuación de combustión precisada por la cantidad molar indicada en la Tabla 11. Ver anexo 16.

REGÍMNENES rpm	ECUACIONES QUÍMICAS
3642	$C_8H_{18} + 24.25(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 11.75O_2 + 91.18N_2$
4446	$C_8H_{18} + 20.86(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 8.36O_2 + 78.434N_2$
5020	$C_8H_{18} + 17.86(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 5.35O_2 + 67.12N_2$
5712	$C_8H_{18} + 15.61(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 3.11O_2 + 58.7N_2$

Tabla 11: Ecuaciones químicas correspondientes a distintos regímenes para determinar el calor liberado -Q_{sal} **Fuente:** Autor

El procedimiento que se muestra en la tabla 12, cuyos valores de entalpia se muestran en las tablas del anexo 6, para el régimen 3642*rpm*, similar al que se muestra en la tabla 10, es el proceso con el que se obtienen los valores de la tabla 13.

					1		
C ₈ 1	$C_8H_{18} + 24,25(O_2 + 3,76N_2) \rightarrow 8CO_2 + 9H_2O + 11,75O_2 + 91,18N_2$						
	PRODUCTOS						
			\overline{h}				
Sustancia	N	\overline{h}°_{f}	$750^{\circ}C/1023K$	\overline{h}°	$N_p(\bar{h}_f^o + \bar{h} - \bar{h}^o)_p$		
CO2	8	-393520	44023,1	9364	-2914056,8		
H ₂ O	9	-241820	36834	9904	-1970766,9		
02	11,8	0	32193,2	8682	276256,6		
N2	91,2	0	30882,7	8669	2025445,166		
			REACTIVOS				
			\overline{h}				
Sustancia	N	\overline{h}°_{f}	20 ⁰ C/293K	\overline{h}°	$N_r(\bar{h}_f^o + \bar{h} - \bar{h}^o)_r$		
C ₈ H ₁₈	1	-249950			249950		
<i>O</i> ₂	24,3	0	8532,625	8682	3622,34375		
N2	91,2	0	8520,875	8669	13506,0375		
$Q_{sal} = \sum N_r (\bar{h}_f^o + \bar{h} - \bar{h}^o)_r - \sum N_p (\bar{h}_f^o + \bar{h} - \bar{h}^o)_p = -2236117,053 KJ/kmol$							
				= -196	15,06187 KJ/kg		

Tabla 12: Calor liberado en la combustión a 3642rpm correspondiente a una temperatura de 750 °C para los gases de combustión Fuente: Autor

Régimenes	Temperatura de los gases	Calor liberado
rpm	de combustion T_g	- $Q_{\it sal}$ (kJ/kg)
3642	650°C	23276,95
	750°C	19615,062
	850°C	15420,017
4446	650°C	26013,61
	750°C	22818,862
	850°C	19563,75
5020	650°C	28442,95
	750°C	25662,88
	850°C	22829,17
5712	650°C	30250,9
	750°C	27779,443
	850°C	25259,33

Tabla 13: Calores liberados en la combustión a distintos regímenes a diferentes temperaturas paralos gases de combustiónFuente: Autor

En la tabla 13 se puede apreciar fácilmente que mientras más fríos están los gases de combustión la cantidad de calor liberado es más alta.

2.3. TRABAJO REVERSIBLE EN LA COMBUSTIÓN

En base a los conceptos de Entropía, por desorden en el comportamiento de la materia en el momento de la combustión y de la expansión de los gases, no todo el calor liberado en la combustión se puede convertir en trabajo. Hay que tener en cuenta que la evaluación del trabajo reversible a partir del calor liberado en la combustión, considera las irreversibilidades naturales en la materia, o sea, la pérdida de oportunidad de generación de trabajo. La tabla 14 muestra el valor del trabajo reversible para la combustión a un régimen de 3642*rpm* a 750°*C*. Los valores de las entropías están expuestos en las tablas del anexo 6.

		Entropia de los reactivos		Tp	750C	1023K
	Ni	Уі	ົs°;(T,1 <i>atm</i>)	R₄ln (y _{i(} Pm/Po)	[−] _{N;si}	
CO₂g	8	0,066705578	270,454	-22,50987812	2343,711025	
CO	0	0				
H₂O g	9	0,075043776	233,54	-21,53062997	2295,63567	
Oz	11,75	0,097973818	244,27	-19,31387926	3097,110581	
Nz	91,18	0,760276828	228,802	-2,278640132	21069,93277	
	SUMA y	1		Sprad	= 28806,39004	kJ/kmol <i>C</i> _{\$} H
		Entropia de los reactivos		T,=T_=	293	20' <i>C</i>
	N;	Уі	s°;(Τ,1 <i>atm</i>)	R _a ln (y _{i(} Pm/Po)	[−] N _i s _i	
C ₈ H ₁₈ (I)	1	1	360,79	0	360,79	
Oz	24,25	0,210084034	205,04	-12,97189911	5286,788554	
N ₂	91,18	0,789915966	191,61	-1,960679902	17649,77459	
-						

Tabla 14: Valor del trabajo reversible para la combustión a un régimen de 3642rpm a 750 °C para los gases de combustión Fuente: Autor

$$\begin{split} \mathrm{S}_{\mathrm{gen}} &= (\mathrm{S}_{\mathrm{prod}} \text{-} \mathrm{S}_{\mathrm{prod}}) + \mathrm{Q}_{\mathrm{sal}} / \mathrm{T}_{\mathrm{alr}} &= 5575,9825 & \mathrm{kJ/kmol} \ C_{\mathrm{s}} H_{1\mathrm{s}} \\ \mathrm{X}_{\mathrm{destruida}} &= 1633762,873 & \mathrm{kJ/kmol} \ C_{\mathrm{s}} H_{1\mathrm{s}} \\ \mathrm{14331,25327} & \mathrm{kJ/kmol} \ C_{\mathrm{s}} H_{2\mathrm{o}} \end{split}$$

Frente al calor liberado en este mismo régimen, 19 615,062 kJ/kg, para la misma temperatura de los gases de combustión, el trabajo reversible u oportunidad de convertir en trabajo, 14 331, 25 kJ/kg, muestra una pérdida de oportunidad del 26,94%. Justamente, las pérdidas de oportunidad de convertir el calor de la combustión en trabajo mecánico se toma en cuenta desde la destrucción de energía en su estructura interna a causa del desorden interno. La tabla 15 muestra los valores de trabajo reversible para los distintos regímenes a diferentes temperaturas.

		1	
Régimenes	Temperatura de los gases	T rabajo Reversible	Porcentaje aprovechado
rpm	de combustion T_g	W _{rev} (kJ/kg)	frente al calor liberado
3642	650°C	13260,51	56,97
	750°C	14331,25	73,06
	850°C	15313,27	99,31
4446	650°C	11792,01	45,33
	750°C	12726,18	55,77
	850°C	13586,79	69,45
5020	650°C	10468,39	36,80
	750°C	11278,68	43,95
	850°C	12027,43	52,68
5712	650°C	9470,54	31,31
	750°C	10193,244	36,69
	850°C	10859,54	42,99

 Tabla 15: Valores de Trabajo Reversible W_{rev} y porcentaje de oportunidad frente al calor liberado en la combustión

 Fuente: Autor

Para cada grupo de temperaturas para los gases de combustión en cada régimen se aprecia con facilidad, a diferencia de los $-Q_{sal}$ en la tabla 13, que a mayor temperatura de salida de los gases, mayor es la cantidad de aprovechamiento para la realización de trabajo.

2.3.1. CURVAS Y ECUACIONES DE CALOR LIBERADO EN LA COMBUSTION $-Q_{sal}$ Y TRABAJO REVERSIBLE W_{rev}

A continuación se aprecia las curvas de calor liberado $-Q_{sal}$ y trabajo reversible W_{rev} junto a las ecuaciones que las representan, las mismas que están en función de la temperatura de los gases de combustión. Ver anexo 17.

Figura 33: Curvas de calor liberado en la combustión -Q_{sal} y trabajo reversible W_{rev} **Fuente:** Autor

Las ecuaciones $Q_{sal} = f(T)$ y $W_{rev} = g(T)$ permitirían determinar con facilidad la cantidad de calor agredo al ciclo de Otto siguiendo las pendientes de las curvas para determinar las temperaturas y presiones máximas, $T_{máx} = T_3$ y $P_{máx} = P_3$, así como también el trabajo neto W_{neto} , la presión media efectiva *PME*, y la eficiencia térmica durante el ciclo de potencia.

2.4. PARÁMETROS DEL CICLO DE POTENCIA. CICLO DE OTTO

Los parámetros que se determina por medio del ciclo de Otto como son temperaturas y presiones máximas, $T_{máx} = T_3$ y $P_{máx} = P_3$, el trabajo neto w_{neto} , la presión media efectiva *PME*, la eficiencia térmica, aparte de ser información descriptiva del funcionamiento térmico para lograr el trabajo mecánico, w_{neto} del pistón, se convierte en la base inicial para precisar un aumento de presión en la combustión por medio de la inyección de óxido nitroso.

Se recuerda que los datos de potencia y torque que corresponden a la información del motor del Austin Cooper 1.3L brindados por el fabricante corresponden a la potencia y

torque efectivos; Pot_e y $Torque_e$, o sea a la potencia del motor medida en un banco, por lo tanto, estos datos son el resultado de descontar las pérdidas térmicas y mecánicas, y por tanto, antes de trabajar en el ciclo de Otto se debe tener en cuenta tales pérdidas en el torque. De acuerdo a lo explicado se tiene:

$$Pot_{i} = Pot_{e} + Pot_{perdida \ por \ refrigeración} + Pot_{perdida \ por \ rozamiento}$$
(38)

2.4.1. POTENCIA Y TORQUE PERDIDOS POR ENFRIAMIENTO DE LOS GASES DE COMBUSTÓN

El enfriamiento del motor por medio del sistema de refrigeración (por agua) permite mantener las partes del motor dentro de límites de temperatura:

- \Box Cilindro: 200 °*C*
- □ Pistón: 200 a 350 °*C*
- \Box Culata: 300 °*C*
- \Box Válvula de escape: 700 °*C*
- \Box Segmentos: 225 °*C*

Por ende, se entiende que el calor liberado en la combustión dentro del cilindro es disipado por efectos de refrigeración llegando a reducir la posibilidad de producir trabajo mecánico luego de la combustión y durante la expansión de los gases, lo que se evalúa a continuación para aclarar que en el estudio del ciclo de potencia tiene importancia debido que está dentro de un 10%.

La manera en que se modela la pérdida de energía térmica, es a partir de la radiación desde los gases de combustión a las paredes del cilindro y también a la cabeza del pistón.

2.4.1.1. Radiación De Los Gases De Combustión

Se aclara que no se calcula el enfriamiento del motor sino la *pérdida de energía térmica de los gases de combustión* pues el objetivo es determinar la disminución del torque indicado.

En la figura 34 se muestra la dirección de la transferencia de calor desde los gases de combustión hacia las paredes del recipiente que se encuentran a menor temperatura que los gases de combustión.

Figura 34: Gradiente de temperatura entre los gases de combustión y el bloque motor. T_g , T_P , T_{H2O} , T_O temperaturas de los gases de combustión, de las paredes del cilindro, del agua del refrigerante, del medio circundante \cong al aire exterior. **Fuente:** Autor

De acuerdo a la Primera Ley de la Termodinámica se debe tener en cuenta que la pérdida de energía desde el motor en su volumen de construcción al exterior por radiación y convección -libre o forzada- es igual a la pérdida de energía que se da desde los gases de escape a las paredes del cilindro.

Esto explica por qué no se elevan más de lo normal (cilindro: 200 °*C*, pistón: 200 a 350°*C*, culata: $300^{\circ}C$, válvula de escape: $700^{\circ}C$, segmentos: $225^{\circ}C$) las temperaturas en el motor y sus elementos constitutivos.

En la determinación de la pérdida de energía de los gases de escape se tiene dos situaciones particulares, obtener *la emisividad de los gases de combustión*, y *la transferencia de calor por radiación desde los gases de combustión al cilindro*.¹⁹

Para determinar el primer particular, se contempla un cilindro con las dimensiones siguientes, figura 35:

Figura 35: Cilindro representativo para determinar la transferencia de calor por radiación de los gases de combustión al cilindro. Fuente: Autor

La temperatura de los gases de combustión se toma el promedio entre la máxima temperatura alcanzada en el ciclo de Otto, punto 3, luego de la combustión, y la mínima, punto 4, luego de la expansión de los gases. Si se fija la máxima temperatura en 1500*K*, y la mínima en 800K:

$$T_{gases \ de \ combustión} = \frac{T_3 + T_4}{2}$$
 (39)
$$T_{gases \ de \ combustión} = 1150K$$

¹⁹ CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 642

La presión a la que están sometidos los gases de combustión no puede ser promediada como la temperatura pues su efecto es instantáneo y funciona como una pulsación, por esta razón *la presión se contempla* en 4000kPa (P = 39,5atm).

Otro aspecto que se maneja en la determinación de la emisividad, es *la composición de los gases de combustión*. Para esto, se promedia las cantidades molares de la tabla 11 con lo que se obtiene; 80% de N_2 , 9,18% de H_2O , 7% de O_2O_2 y 8,2% de CO_2 . Ver anexo 18.

Para la evaluación de la emisividad de los gases de combustión, las hipótesis es que todos los gases son ideales y la emisividad es un promedio de la radiación emitida hacia todas las superficies del recinto cilíndrico.

El análisis volumétrico de una mezcla de gases permite determinar las fracciones molares y_i de los componentes (ver anexo 19), las cuales son equivalentes a las fracciones de presión para una mezcla de gases ideales, por lo tanto, las presiones parciales del CO_2 y H_2O , son:

$$P_{CO_2} = y_{CO_2}P = 0,082(39,5atm) = 3,239atm$$
 (40)
$$P_{H_2O} = y_{H_2O}P = 0,0918(39,5atm) = 3,63atm$$
 (41)

Como una distancia media para el haz para un cilindro de diámetro y altura iguales, anexo 7, para la radiación emitida en todas las superficies, es:

$$L = 0,60D = 0,60(0,076m) = 0,046m$$
 (42)

En la que $D \cong D_{eq} = (H+D)/2$ de la figura 35.

Entonces,

$$P_{CO_2}L = 0,49 ft \cdot atm$$
 (43)
 $P_{H_2O}L = 0,56 ft \cdot atm$ (44)

Las emisividades de CO_2 y H_2O correspondientes a estos valores, a temperatura de los gases 1150 K y a 1*atm*, de acuerdo a los diagramas del anexo 8 son:

$$\varepsilon_{CO_2 \ latm, \ 1150K} = 0,14$$

 $\varepsilon_{H_2O \ latm, \ 1150K} = 0,16$

Estos son valores base de las emisividades a 1 *atm* y es necesario corregirlos para la presión total de 39,5 *atm*. Dado que:

$$\frac{(P_{H_{2O}} + P)}{2} = 21,57atm$$
 (45)

Los factores de corrección, de acuerdo a los diagramas del anexo 9 son:

$$C_{CO_2} = 1,63$$

 $C_{H_2O} = 1,3$

Tanto el CO_2 como el H_2O están presentes en la misma mezcla y es necesario corregir por el traslape de las bandas de emisión. El factor de corrección de la emisividad a 1150 K. Anexo 10.

$$\begin{array}{c} (46) \\ (47) \\ \hline \\ P_{CO_2}L + P_{H_2O}L = 1,05 \, ft \cdot atm \\ \hline \\ P_{H_2O} \\ \hline \\ P_{H_2O} + P_{CO_2} \\ \hline \\ \end{array} = 0,53 \\ \end{array} \right\} \Delta \varepsilon = 0,035$$

65

Entonces la emisividad efectiva de los gases de combustión queda:

$$\varepsilon_g = C_{CO_2} \varepsilon_{CO_2 \text{ latm}} + C_{H_2O} \varepsilon_{H_2O_{\text{ latm}}} - \Delta \varepsilon = 0,408 \quad (48)$$

Ahora queda por determinar la transferencia de calor por radiación de los gases de combustión hacia las paredes del recinto (cilindro) en la condición de que esté a T_s 200 °C (473 K), pero antes se debe determinar la absortividad de los gases de combustión. Al igual que en la determinación de ε_g , a más de las dos hipótesis planteadas, se supone que todas las superficies dentro del cilindro son negras y que la dispersión por el hollín y otras partículas es despreciable.

Los valores:

$$P_{CO_2} L \frac{T_s}{T_g} = 0,202 \qquad (49)$$

$$P_{H_2O} L \frac{T_s}{T_g} = 0,23 \qquad (50)$$

Las emisividades del CO_2 y el H_2O correspondientes a estos valores y a T_s 200°C y a 1*atm* por medio de los diagramas del anexo 8 son:

$$\varepsilon_{CO_2} = 0,09$$

 $\varepsilon_{H_2O} = 0,16$

Con los valores de corrección iguales a los de la página anterior ya que no cambian con la temperatura:

$$C_{CO_2} = 1,63$$

 $C_{H_2O} = 1,3$

No cambian con la temperatura de las superficies, así, las absortividades de los gases de combustión quedan:

$$\alpha_{CO_2} = C_{CO_2} \left(\frac{T_{gases}}{T_S}\right)^{0.65} \varepsilon_{CO_2 \ laim} = 0,21$$
(51)
$$\alpha_{H_2O} = C_{H_2O} \left(\frac{T_{gases}}{T_S}\right)^{0.45} \varepsilon_{H_2O \ laim} = 0,39$$
(52)

El factor de corrección
$$\Delta \alpha$$
 debe evaluarse a 473 K de acuerdo al diagrama del anexo 10:

(53)
$$P_{CO_{2}}L + P_{H_{2}O}L = 1,05 ft \cdot atm$$
$$\frac{P_{H_{2}O}}{P_{H_{2}O} + P_{CO_{2}}} = 0,53$$
$$\Delta \alpha = 0,014$$

Entonces la absortividad de los gases queda:

$$\alpha_{g} = \alpha_{CO_{2}} + \alpha_{H_{2}O} - \Delta \alpha = 0,586 \qquad (55)$$

Si bien las dimensiones de la figura 35 fueron puestas para encontrar la longitud equivalente para el haz de radiación, el área de radiación del cilindro cerrado por ambos lados se considera de acuerdo a las medidas reales; diámetro 71*mm* y altura 81*mm, igual a* $0,026m^2$, figura 35.

Entonces la velocidad neta de transferencia de calor por radiación de los gases de combustión hacia las paredes del cilindro queda:

$$\dot{Q}_{neta} = A_s \sigma(\varepsilon_g T_{gases}^4 - \alpha_g T_s^4) \approx 1000W \qquad (56)$$

 σ es la constante de Stefan-Boltzmann; 5,67x10⁻⁸ *W*/*m*²*K*⁴.

Ya que la velocidad neta de transferencia de calor por radiación de los gases de combustión hacia las paredes del cilindro es un flujo constante de energía es necesario evaluar la cantidad de energía perdida en cada régimen lo que depende del tiempo de duración de la radiación de los gases de expansión y de los gases de escape hacia las paredes del cilindro.

Si se aprecia en la figura 23, se nota que los gases están en expansión media vuelta del cigüeñal, y también que los gases de escape son expulsados durante media vuelta del cigüeñal, entonces, entre los gases en expansión y los gases en expulsión existe una vuelta del cigüeñal, por lo tanto el tiempo de duración de los gases en el cilindro se considera para tal definición, tabla 16, en la cual también se expone el trabajo por unidad de masa perdido por refrigeración, lo cual se encuentra al dividir los trabajos consumidos de la tabla 17 para la masa de aire contenida en el cilindro, ver masas en ítem 2.1. Ver anexo 20.

	Tiempo de duración	Perdida de energía
Regímenes	de la radiación de	por unidad de masa
	de los gases	por refrigeracion
rpm	S	kJ/kg
3642	0,0165	49,18
4446	0,0135	42,30
5020	0,0120	37,82
5750	0,0104	33,34

Tabla 16: Tiempos de duración de la radiación de los gases a las paredes del cilindro.Fuente: Autor

En la tabla 17 se puede apreciar la cantidad de trabajo y potencia que podrían ser aprovechados en la conversión de trabajo mecánico, cantidades que por la razón de mantener las temperaturas del motor en valores estándares, se disipa por calor de la energía útil de la combustión. Ver anexo 21.

Regímenes	Trabajo consumido	Potencia consumida
rpm	J	kW
3642	16,47	6,28
4446	13,50	6,28
5020	11,95	6,28
5750	10,43	6,28

Tabla 17: Trabajo y potencia pérdidas por efecto de refrigeraciónFuente: Autor

Como se puede apreciar la perdida de potencia es constante e igual a 6,28 *kW*. Por fines de cálculo se sobre dimensiona la energía perdida por unidad de masa de la tabla 16 al doble (ver explicación en el párrafo siguiente a la tabla 22), con eso se espera justificar las imperfecciones de calculó en la radiación y en las perdidas mecánicas que se calculan a continuación.

2.4.2. PÉRDIDA DE PRESIÓN POR ROZAMIENTO MECÁNICO pmpm²⁰

En la determinación de las pérdidas por refrigeración se encontró la energía térmica Q_{rad} disipada por la radiación neta Q_{neta} de los gases de combustión a las paredes del cilindro, pero en la determinación de las pérdidas por rozamiento se encuentra con las pérdidas de presión media *pmpm* lo que se logra por medio de las formulas semiempíricas de Bishop, las cuales contemplan las perdidas en las diferentes partes constitutivas del motor que se encuentran sometidas a las presiones de expansión de los gases.

²⁰ PAYRI F, DESANTES J. M, *Motores de Combustión Interna Alternativos*, Editorial Reverte, España, 2011, 1002.

• Pérdidas en el sistema de distribución

$$pmpm_{SD} = 0,701x10^{-3} \left(30 - \frac{4n}{1000}\right) \frac{D_{\nu}^{1,75}}{D^2 S}$$
 (57)

En la que:

- n: Régimen rpm
- D_v 30 mm Diámetro de la válvula de admisión
- D 70,96 mm Diámetro del pistón

$$S = \frac{c_m}{2n} \tag{58}$$

 C_m : Velocidad lineal media del pistón

13 m/s para automotores normales (MEP a n_{max})

• Pérdidas en cojinetes de bancada y en cabeza de biela

$$pmpm_{CB} = 5,5x10^{-2} \frac{D}{S} \frac{n}{1000}$$
 (59)

• Pérdidas en pistón y segmentadura

$$pmpm_{PS} = 3,69x10^{-3} \frac{S a}{D^2} K + 7,56x10^{-3} \frac{b c_m}{D S}$$
 (60)

En la que:

a = 3 Número de segmentos

b = 70,96 mm Altura de la falda del pistón

K = 0,7 Factor de corrección para tener en cuenta la tensión radial debida a las presiones de los gases entre el punto 2 y 3 del ciclo de Otto a regímenes de giro máximos. Es un cociente entre la eficiencia real, (η_{real} aproximadamente 25%) que es la máxima eficiencia para motores reales de combustión interna a gasolina, y la eficiencia indicada o teórica (η_i aproximadamente 35%) para la combustión que se transforma en trabajo (varia un poco a distintos regímenes).

Para los regímenes de la tabla 17 se aprecian los valores de las presiones perdidas por rozamiento en la tabla 18.

rpm		3642	4446	5020	5712
S (r	m)	0,1071	0,08772	0,0777	0,0683
pmpm _{sD}	(bar)	0,003397	0,003284	0,003011	0,0024696
pmpm _{CB}	(bar)	0,133	0,1978	0,2521	0,3264
pmpm _{PS}	(bar)	1,083	1,155	1,175	1,154
Pérdida toto	Pérdida total (kPa)		136,54	143,585	148,41

Tabla 18: Valores de Pérdida de Presión Media pmpm por regímenesFuente: Autor

Se pudiera pensar que a mayor velocidad de las partes del motor menor pérdida por fricción debido a que el coeficiente de fricción dinámico es menor que el estático, mas es todo lo contrario, pues de acuerdo a la curva de torque, que por cierto es menor a mayores regímenes, encuentra más pérdida por ésta misma razón.

La caída de presión por rozamiento conduce a un consumo de trabajo neto de los gases de combustión y también la potencia o capacidad de realizar el trabajo del movimiento de los pistones en menor tiempo, es decir, los pistones realizan el ciclo mecánico en mayor tiempo. En la tabla 19 se contempla la porción de trabajo y potencia consumidas por rozamiento.

rpm	3642	4446	5020	5712
Pérdida total. $pmpm \approx PME$ (kPa)	122,52	136,54	143,585	148,41
Trabajo cosnsumido. <i>w</i> perdido por rozamiento (kJ/kg)	92,47	103,05	108,37	112,01
Potencia consumida. Pot _{perdida por rozamiento} (kW)	11,80	16,06	19,07	22,42

Tabla 19: Caídas de trabajo y potencia por pérdidas mecánicasFuente: Autor

De la caída de presión a trabajo consumido se lo evalúa por medio de la fórmula de *PME* usada en el ciclo de Otto para $T_1 = 293K$, $P_1 = 100kPa$ con la relación de compresión correspondiente al motor del Austin en estudio, r = 9.77. La potencia disminuida se encuentra por la ecuación 36 con el trabajo en Joule lo que se consigue multiplicándolo por cantidad de masa de aire, 0,000321 *kg* que es el fluido de trabajo en el ciclo de Otto. Ver anexo 22.

A diferencia de la pérdida de potencia por efecto de refrigeración que se mantiene constante, en la pérdida de potencia por rozamiento, de acuerdo a las fórmulas de Bishop, el aumento del régimen eleva la pérdida de potencia.

Se debe entender que estas pérdidas mecánicas a más de contemplar el rozamiento mecánico indican la pérdida de presión por compresión entre el punto 2 y 3 del ciclo de Otto.

La tabla 20 muestra la equivalencia de energía térmica necesaria en el ciclo de Otto que compensa la caída de trabajo y potencia por efectos de fricción mecánica entre los elementos constitutivos del motor durante el tiempo de potencia.

Régimen	<i>w</i> perdido por rozamiento (kJ/kg)	$q_{ m en p\acute{e}rd. roz}$ (kJ/kg)
3642	92,47	159,17
4446	103,05	177,38
5020	108,37	186,54
5712	112,01	192,81

Tabla 20: Equivalencia de energía perdida por rozamiento frente al trabajo disipado en
rozamientoFuente: Autor

2.4.3. EVALUACIÓN DE PARÁMETROS DE OTTO ²¹

En la tabla 22 se aprecia valores correspondientes al ciclo de Otto por regímenes; la energía de entrada q_{en} , temperaturas, presiones, trabajo neto w_{neto} , eficiencias y las presiones medias efectivas *PME* para temperatura y presión iniciales de 20°C y 100 *kPa* y con relación de compresión para el Austin 1.3L de 9,77, ver anexo 5H.

La evaluación de los parámetros del ciclo de Otto se realiza para los valores de la energía de entrada q_{en} que corresponde a la *producción de la potencia indicada*, pues en el ciclo termodinámico, las temperaturas y presiones corresponden a la potencia indicada. De ahí en adelante, la potencia se verá disminuida por pérdida térmica debido a la radiación de los gases de combustión a las paredes del cilindro y por rozamiento mecánico,

En la tabla 21 se aprecia los valores de energía de entrada q_{en} necesarios para producir la potencia indicada, y en la tabla 22 los valores evaluados por medio del ciclo de Otto para el Austin Cooper 1,3L en las condiciones actuales.

²¹ CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829. Página 449

Regímenes rpm	$q_{\it en}$ (kJ/kg)
3642	788,33
4446	775,1
5020	754,99
5712	718,74

 Tabla 21: Valores del calor de entrada al ciclo de Otto por regímenes

 Fuente: Autor

Tabla22: Valores calculados en el ciclo de Otto para el motor del Austin 1,3L.
 $T_o = 20 \,^{\circ}$ C, r=9,77, $p_o = 101.325 \, kPa$
Fuente: Autor

Régimen	$q_{{ m en}}$	W neto i	$T_{ m máx}$	P _{máx}	T _g	η_t	PME
Regimen	(kJ/kg)	(kJ/kg)	(K)	(MPa)	(K)	%	(kPa)
3642	788,33	437,97	1609,74	5,37	759,7	55,5	579,79
4446	775,1	430,62	1595,56	5,32	752,04	55,5	570,36
5020	754,99	419,45	1574	5,32	740,45	55,6	556,03
5712	718,74	399,31	1535,15	5,12	719,6	55,7	530,2

Los trabajos indicados w_{neto} i contienen al torque efectivo de la tabla 2, por supuesto por unidad de masa lo que se logra dividiendo para la masa de aire, por ejemplo, para 3642 *rpm*, 96,41 *J* para 0,000335 *kg*, igual a 287,79 *kJ/ kg*; y los trabajos perdidos por refrigeración de la tabla 16, duplicados, y los trabajos perdidos por rozamiento de la tabla 20.

2.4.3.1. Trabajos Reversibles Teóricos W_{rev} Versus Los Trabajos Indicados $W_{neto i}$

Los trabajos reversibles descritos por las ecuaciones de la figura 33, los cuales están en función de la temperatura de los gases de escape, deben ser evaluadas a la temperatura de los gases de combustión mostrada en la tabla 22 con lo cual *se aprecia la diferencia entre el* trabajo reversible *descrito en teoría de reacciones y los* trabajos netos indicados *estudiados en el ciclo de Otto*.

Regímenes (rpm)	T_{g} (К)	W _{neto i} (kJ/kg)	${W}_{rev}$ (kJ/kg)	error
3642	759,7	437,97	394,47	9,93%
4446	752,04	430,62	412,02	4,32%
5020	740,45	419,45	418,71	0,18%
5712	719,6	399,31	425,95	6,67%

Tabla 23: Comparación de los trabajos indicados y los trabajos reversibles.Fuente: Autor

2.5. CURVA DE TORQUE PARA LA PRESENCIA DE ÓXIDO NITROSO

De acuerdo a las curvas características de torque con aspiración normal y supercargados de la figura 36, ofrece la posibilidad de conocer el comportamiento de la nueva curva de torque cuando la combustión se realiza con la presencia de un nuevo carburante, óxido nitroso, N_2O .

Figura 36: Curvas características de torque para motores de combustión interna para el MEP, en aspiración normal y supercargados. Fuente: <u>http://es.slideshare.net/maquinistanaval/sobrealimentacion</u>

La grafica de la figura 37 muestra un "*trazo suave*" de una curva de torque para la supuesta alimentación de los reactivos con óxido nitroso para la combustión en el motor del Austin.

De acuerdo a la curva planteada en la figura 37, el aumento de la potencia a los 3750 *rpm* es 5,51%. Si se deseara tener un aumento de potencia del 50% para éste mismo régimen, es decir, que la potencia del motor sea de 56,67%, el torque debe ser de 144,32*Nm*. Tal situación se aprecia para un torque idealizado en la figura 38.

Figura 38: Trazado de la curva de torque para la alimentación de óxido nitroso a la combustión actual con la intensión de obtener un 50% en la potencia a un régimen de 3750 rpm. Fuente: Autor

En la figura 38 se puede apreciar un aumento brusco en el torque que debe entregar el motor, exactamente, el 50% en el aumento para los 3750 *rpm*.

Como curva definitiva para determinar las ecuaciones de combustión con la presencia de óxido nitroso, se plantea un ascenso más suave, y de tipo lineal para el torque hasta llegar a las 4250 *rpm* para el torque máximo, momento en el que desciende uniformemente hasta normalizarse para el régimen en el que el torque es mínimo, es decir, que no involucraría un aumento de revoluciones por encima del régimen máximo actual, 5750 *rpm*, figura 39.

Figura 39: Trazado de la curva de torque para la alimentación de óxido nitroso a la combustión actual con la intensión de obtener un 26,7% en la potencia a un régimen de 4250 rpm. Fuente: Autor

En las condiciones de la curva de torque en la figura 39, a 4250 *rpm*, los aumentos en el torque y la potencia son del 26,61% y del 26,7% respectivamente.

2.5.1. TRABAJO INDICADO Y LOS PARÁMETROS DEL CICLO OTTO PARA LA PRESENCIA DE ÓXIDO NITROSO

La tabla 24 muestra los valores de los trabajos indicados necesarios a obtener en el ciclo de Otto Ideal, W_{neto} . Estos valores contienen los torques de la figura 39 por unidad de masa de aire dentro del cilindro (se toma 3,35x10⁻⁴ kg de aire para todos los regímenes), más, los valores de los trabajos perdidos por rozamiento y transferencia de calor desde los gases de combustión a las paredes de la recámara para los regímenes considerados en la combustión normal. Tenga en cuenta que los valores de los trabajos perdidos por refrigeración mostrados en la tabla 16 se los toma igual a 57.51 kJ/kg, 46.94 kJ/kg, 41.62 kJ/kg y 36.4 kJ/kg, respectivamente para los regímenes de dicha tabla.

Regímenes	w _{neto} (kJ/kg)		
3642	496,56		
4446	505,53		
5020	486,3		
5712	405,36		

Tabla 24: Trabajo indicado W_{neto} necesario para elevar el torque con la presencia de Óxido Nitroso en los reactivos Fuente: Autor

Tenga en cuenta que no se ha considerado un incremento en las pérdidas por rozamiento mecánico (tabla 20) que se elevan si la presión de los gases de expansión aumentan, ni tampoco se considera el incremento de las pérdidas por radiación (tabla 17) que aumentan si se amplía el diferencial de temperatura entre los gases de combustión y las paredes de la recámara y la cabeza del pistón.

La tabla 25 exhibe valores correspondientes al ciclo de Otto por regímenes; la energía de entrada q_{en} necesaria para realizar el trabajo neto w_{neto} , temperaturas, presiones, eficiencias y las presiones medias efectivas *PME*.

 Tabla 25: Valores calculados en el ciclo de Otto para el motor del Austin 1,3L bajo la presencia de óxido nitroso.

 Fuente: Autor

Régimen	$q_{{ m en}}$	W neto i	T _{máx}	P máx	Tg	η	PME
Regimen	(kJ/kg)	(kJ/kg)	(K)	(MPa)	(K)	%	(kPa)
3642	899,76	496,56	1727,72	5,76	824,49	55,19	657,83
4446	917,41	505,53	1746,46	5,82	835,09	55,1	689,72
5020	879,6	486,31	1706,32	5,69	812,37	55,29	644,25
5712	727,45	405,31	1544,39	5,15	723,86	55,7	536,95

2.5.2. ECUACIONES DE COMBUSTIÓN CON PRESENCIA DE ÓXIDO NITROSO

La tabla 26 muestra las ecuaciones químicas necesarias para la combustión que producirá el trabajo neto $W_{net\phi}$. Tenga en cuenta que el óxido nitroso al ser introducido en el múltiple de alimentación, al combinarse con aire y octano, y al no aumentar el volumen del cilindro, las relaciones *AC* se conservan igual a la aspiración normal.

Al conservarse la relación aire-combustible se plantea la ecuación 61 para 1 kmol

$$AC = \frac{a(NM)_{aire} + bM_{N_2O}}{M_{C_8H_{18}}}$$
 (61)

de combustible con la cual se consiguen los valores de las cantidades molares de los componentes de las ecuaciones de la tabla 26 planteando como conocidas las cantidades molares *b* de óxido nitroso (M_{N_2O} 44 kg/kmol).

Tabla 26: Ecuaciones químicas con la presencia de N2O necesarias para producir el
trabajo reversible mostrado en la curva de la figura 40Fuente: Autor

Régimen rpm	Ecuaciones quimicas con la presencia de N ₂ O
3642	$C_{8}H_{18} + 21.152(O_{2} + 3.76N_{2}) + 9.759N_{2}O \rightarrow 8CO_{2} + 9H_{2}O + 13.532O_{2} + 89.291N_{2}O + 10.532O_{2} + 89.29N_{2}O + 10.53O_{2}O + 10.50O_{2}O + 10.50O_{2}O + 10.50O_{2}O + 10.50O_{2}O_{2}O + 10.50O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}$
4446	$C_{8}H_{18} + 14.7(O_{2} + 3.76N_{2}) + 16.025N_{2}O \rightarrow 8CO_{2} + 9H_{2}O + 10.21O_{2} + 71.297N_{2}$
5020	$C_8H_{18} + 17.225(O_2 + 3.76N_2) + 12.69N_2O \rightarrow 8CO_2 + 9H_2O + 11.07O_2 + 77.46N_2$
5716	$C_{8}H_{18} + 2284(O_{2} + 3.76N_{2}) + 4.455N_{2}O \rightarrow 8CQ + 9H_{2}O + 1257O_{2} + 9034N_{2}$

Ya que las relaciones *AC* se conservan quiere decir que la masa de aire en aspiración normal es igual a la suma de las masas de aire y óxido nitroso en alimentación de éste compuesto a la combustión, es decir que la masa de carburante u oxidante en la combustión con óxido nitroso se conserva, por ende, las masas de aire y óxido nitroso son proporcionales a cada término del numerador de la ecuación 61, es decir, que para una masa de aire en un régimen determinado, por ejemplo, a 3642 *rpm*, 3.35×10^{-4} kg de aire (ítem 2.1), el termino $a(NM)_{aire}$ representa el 87.179%, por ende, la masa de aire es

 $2.92 \times 10^{-4} \text{ kg}$ y la masa de óxido nitroso $4.3 \times 10^{-5} \text{ kg}$ para la combustión con óxido nitroso. La tabla 27 muestra las masas de aire y óxido nitroso en cada régimen.

Régimen rpm	masa de aire kg	masa N 20 kg
3642	2,92x10 ⁻⁴	4,3x10 ⁻⁵
4446	2,37x10 ⁻⁴	8,2x10 ⁻⁵
5020	2,478x10 ⁻⁴	6,82x10 ⁻⁵
5716	2,497x10 ⁻⁴	1,83x10 ⁻⁵

Tabla 27: Masas de aire y óxido nitroso por regímenes para la combustión con N2OFuente: Autor

En cuanto a precisar el trabajo neto W_{neto_i} , como en el ejemplo de la tabla 28 para 3642 *rpm*, hay que tener presente que las entropías \overline{s}^{o} en los reactivos de las ecuaciones de la tabla 26 deben ser evaluadas a la temperatura de los gases de combustión T_g de la tabla 25. Aprecie que la entropía absoluta \overline{s}^{o} (25 °C y 1 *atm*) del óxido nitroso es 219.85 kJ/kmol.K

$C_8H_{18} + 21.152(O_2 + 3.76N_2) + 9.759N_2O \rightarrow 8CO_2 + 9H_2O + 13.532O_2 + 89.291N_2$						
	Entropia de los productos		T,	824,49	к	
	N;	Уі	s";(T,1 <i>atm</i>) R _a ln (y _{i(} Pm/Po)	[−] N _i si	
CO₂g	8	0,066765654	258,96	-22,50239376	2251,6992	
CO	0	0]
H₂Og	9	0,075111361	224,863	-21,52314561	2217,4753]
O₂	13,53151	0,112930048	236,83	-18,13272342	3450,031638]
Nz	89,29057	0,745192937	221,86	-2,445248155	20028,344]
	SUMA y _i	1		S _{prod} =	27947,55	່kJ/kmol C ₈ H ₁₈
	Entropia de los reactivos			T,=T_=	293	20' <i>C</i>
	N;	Уі	s";(T,1 <i>atm</i>) R _a ln (y _{it} Pm/Po)	¯ Ν _i s _i	
C _{\$} H _{1\$} (I)	1	1	360,79	Ó	360,79]
Oz	21,15201	0,210084034	205,04	-12,97189911	4611,3907	
N ₂	79,53157	0,789915966	191,61	-1,960679902	15394,981	
N ₂ O	9,759	9,759	219,85	18,94087113	1960,6722	
	SUMA y _i	11,759		S _{react} =	22327,8334	kJ/kmol C ₂H ₁₂
			Saar=	Sand - Sand=	5619,71664	kJ/kmol C ₂ H ₁₂
			46.0	X _{dortruida} =	1646576,98	kJ/kmol C * H 1
					14443,6577	kJ/kg $\mathcal{L}_{8}\mathcal{H}_{19}$
			S=	(S,-S) + Q/T=	5672,34469	kJ/kmol C . H
			- qen	Xdortruida=	1661996,99	kJ/kmol C ₈ H ₁₈
				W _{rev} =	14578,921	kJ/kg c *##
				W ₁₀₀ =	496,563189	kJ/kg

Tabla 28: Determinación del trabajo reversible W_{rev} con la combustión con la presencia de N₂O a 3642 rpm. **Fuente:** Autor

CAPITULO III

3. SIMULACIÓN MEDIANTE SOFTWARE DE LA COMBUSTIÓN DEL MEP DURANTE LA INYECCIÓN DE ÓXIDO NITROSO

3.1. CAMARA DE COMBUSTIÓN DE FLUJO ESTABLE

Es útil inspeccionar la quema de 1 *kmol* de Octano únicamente con aire y luego con aire más óxido nitroso para apreciar los flujos de calor *-Total Sensible Heat Transfer Rate* en *Fluxes* de *Reports-* que multiplicados por los tiempos, tablas 29 y 32 que corresponden a la quema de 1 *kmol* de octano en las dos condiciones señaladas al inicio de éste párrafo, y cuantificar los calores liberados en la combustión para 1 *kg* de octano y así poderlos comparar los valores obtenidos en la tabla 13.

3.1.1. COMBUSTIÓN EN ASPIRACIÓN NORMAL

De acuerdo a la tablas 13 en la que se puede comparar los Calores Liberados en la combustión a distintos regímenes en varias temperaturas cada uno frente a los trabajos reversibles de la tabla 15, es notorio que la posibilidad de producir trabajo, W_{rev} a partir de una determinada cantidad de calor liberado, Q_{sal} para una combustión definida, es decir, de cantidades definidas de aire y octano, está por debajo del calor liberado debido a las irreversilidades propias del comportamiento de la materia.

En la figura 40 se aprecia la quema de 1 *k*mol de octano y 20,86 *k*mol de aire dentro del cilindro que corresponde al régimen 4446 *rpm*, ecuación 62 (tabla 26) en el motor del Austin 1.3L. La cámara de combustión para ésta combustión está diseñada para las medidas de la figura 41 (los detalles de programación se indican en el anexo 11), lo que permitiría el paso del 1 *k*mol de octano y 20,86 *k*mol de aire en 137,65*s* para los datos de flujos másicos, velocidades de aire y octano, y los radios de las entradas de los fluidos como se muestra en la tabla 29, los que se obtienen con ayuda de las ecuaciones 63 a 66.

Figura 40: Simulación de la quema de 1 kmol de Octano con 20,86 kmol de aire dentro de el cilindro que corresponde al régimen 4446 rpm en aspiración normal, con un tiempo esperado de 137.65 s para la quema.

Respuesta de la simulación al Flujo neto de Calor: 232 173, 8 W Fuente: Autor

$$C_8H_{18} + 20.86(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O + 8.36O_2 + 78.434N_2$$
 (62)

$$\dot{m}_a = \pi r_a^2 v_a \rho_a \qquad (63)$$

$$\dot{m}_a t = a M_a \tag{64}$$

$$m_f = \pi r_f^2 v_f \rho_f \qquad (65)$$

$$m_f t = M_f \tag{66}$$

Las ecuaciones 63 a 66 se las evalúa de manera que se eligen las velocidades del aire y el combustible, v_a y v_f , y el radio de entrada del combustible r_f a la cámara de combustión para obtener la tabla 29 para; a = 20.86 kmol, $\rho_f = 703 kg/m^3$, $\rho_a = 1.204 kg/m^3$, $M_a = 29 kg/kmol$ y $M_f = 114 kg/kmol$.
El -*Total Sensible Heat Transfer Rate* en *Fluxes* de *Reports*- indica 232173,8 *W*, que es el calor de salida por kilogramo de octano, que para el tiempo de 137.65 *s* de la tabla 29, el calor liberado por kilogramo de octano es 31950,72 *kJ/kg*. Si se toma la ecuación $Q_{sal} = -32,25T_g + 55780$ para 4446 *rpm* de la figura 33, y se evalúa a T_g 752,04 *K* de la tabla 22, el calor de salida es 31526,71 *kJ/kg*.

 Tabla 29: Datos para la quema de 1 kmol de Octano con 20,86 kmol de aire que corresponde al régimen 4446 rpm en aspiración normal, con un tiempo esperado de 137.65 s para la quema Fuente: Autor

		Radios de entrada	Velocidad de los	Tiempo de quema	
	Flujo Másico	de fluidos a la	fluidos	de 1 kmol C ₈ H ₁₈	
		cámara de combustión		y 20,86 <i>kmol</i> aire	
	kg/s	mm	m/s	S	
aire	4,39	340	10	127 / 5	
combustible	0,83	2,5	60	137,03	

Figura 41: Desing Modeler 2D. Geometría del cilindro para la simulación de la quema de 1 kmol de Octano con 20,86 kmol de aire. Fuente: Autor

3.1.2. COMBUSTIÓN CON PRESENCIA DE ÓXIDO NITROSO

De acuerdo al trazo de la curva de torque en la figura 39 en el capítulo anterior, para el régimen 4446 *rpm*, cuyo torque es 119 *Nm* la ecuación de combustión con la presencia de óxido nitroso ofrece la Tabla 26, ecuación 67.

$$C_8H_{18} + 14,7(O_2 + 3.76N_2) + 16,025N_2O \rightarrow 8CO_2 + 9H_2O + 10,21O_2 + 71,297N_2$$
 (67)

El trabajo reversible W_{rev} para ésta ecuación a la temperatura de los gases de escape, 835.09 K, tabla 25, se tabula en la tabla 30.

	Entropia de los Productos T_g = 835,09 K							
	N;	Уі	s*;(T,1 <i>atm</i> _)	R₄ln (y _{i(} Pm/Po)	N;s;			
CO ₂ g	8	0,081	259,530	-20,873	2243,222			
H₂O g	9	0,091	225,360	-19,894	2207,282			
Oz	10,35	0,105	237,260	-18,729	2650,162			
Nz	71,14	0,722	222,260	-2,705	16004,411			
		1,000		Sprod ·	→23105,077			
		Entro	pia de los Reactivos	293	Κ			
	N;	Уі	s°;(T,1 <i>atm</i> _)	R₄ln (y _{i(} Pm/Po)	$N_i s_i$			
C 8H 18 (4)	1	1,000	360,790	0,000	360,790			
<i>O</i> 2	14,45	0,210	205,040	-12,972	3150,844			
Nz	54,342	0,790	191,610	-1,961	10518,991			
N ₂ O	16,80	16,800	219,850	23,457	3299,403			
		18,800		S _{react} ·	→17330,028			
			•		•			

Tabla 30: Determinación del trabajo reversible Wrev en la combustión con la presencia de
N2O a 4446 rpm.
Fuente: Autor

 $S_{gen} = S_{prod} - S_{react}$ 5775,049 $W_{rev} = T_0 S_{gen}$ 1692089,412 kJ/kmol $C_1 H_{11}$ $W_{rev} =$ 14842,890 kJ/kg $C_1 H_{11}$ $W_{rev} =$ 505,55 kJ/kg *site*

Hay que tener en cuenta que la simulación por software, figura 42, ofrece el flujo de calor en la quema del combustible con aire y óxido nitroso y no el trabajo reversible, es decir, no ofrece la porción de la energía liberada que es capaz de hacer trabajo, es por esta razón que se debe calcular la cantidad de calor liberado Q_{sal} , tabla 31, para la ecuación química 67 que contiene óxido nitroso en los reactivos y así poder comprobar el calor liberado que ofrece la simulación, 34500,37 kJ/kg, con el calor liberado en la tabla 31, 34560,75 kJ/kg.

$C_8H_{18} + 14.7(O_2 + 3.76N_2) + 16.025N_2O \rightarrow 8CO_2 + 9H_2O + 10.21O_2 + 71.297N_2$									
PRODUCTOS									
Sustancia	Ν	h°,	7 1050K	\overline{h}°	$N_p(\bar{h}_f^o+\bar{h}-\bar{h}^o)_p$				
CO _{2 (g)}	8	-393520	45502	9364	-2859056				
H ₂ O (g)	9	-241820	37961	9904	-1923867				
O ₂	10,21	0	33140	8682	249716,18				
N ₂	N ₂ 71,297		31775	8669	1647388,482				
			REACTIVOS						
Sustancia	Ν	₽°,	<u></u> <i>h</i> 20°C	\overline{h}°	$N_r(\bar{h}_f^o + \bar{h} - \bar{h}^o)_r$				
C ₈ H ₁₈ (I)	1	-249950			249950				
O ₂	14,7	0	8532,625	8682	2195,8125				
N ₂	55,272	0	8520,875	8669	8187,165				
N ₂ O	16,02	82050			-1314441				

Tabla 31: Determinación de Q_{sal} en la combustión con la presencia de N2O para la ecuación67.Fuente: Autor

 $Q_{sal} = \sum N_r (\bar{h}_f^o + \bar{h} - \bar{h}^o)_r - \sum N_p (\bar{h}_f^o + \bar{h} - \bar{h}^o)_p = \frac{-3939926,4}{-34560,758}$ kJ/kmol kJ/kg

La temperatura de 1050 *K* se debe a un aumento del 25.7% a la temperatura de los gases de escape, tabla 25, en vista que el calor de entrada al ciclo de Otto hace evidente éste aumento. Por ejemplo, a 3642 *rpm* en la combustión normal el q_{en} , tabla 22, es 788,33 *kJ/kg*, que multiplicado por 0,000335 *kg* de aire, y dividido por 0,0000114 *kg* de octano equivale a 23165,84 *kJ/kg*_{C8H18}, llevado a la ecuación Q_{sal} de la figura 33, se determina un aumento del 20% en la temperatura, de 759.7K, tabla 22, a 926K, lo que implica un aumento del 20%.

Figura 42: Simulación de la quema de 1 kmol de Octano con 14,7 kmol de aire y 16.025 kmol de óxido nitroso dentro de el cilindro que corresponde al régimen 4446 rpm con un tiempo esperado de 80 s para la quema. Respuesta de la simulación al Flujo neto de Calor: 540 262, 5 W Fuente: Autor

El dimensionamiento para la quema de 1 *k*mol de octano con 14,7 *k*mol de aire y 16,025 *k*mol de óxido nitroso, ecuación 67, se define en la figura 43.

Figura 43: Desing Modeler 2D. Geometría del cilindro para la simulación de la quema de 1 kmol de Octano con 17,7 kmol de aire y 16,025 kmol de óxido nitroso. Fuente: Autor

Las ecuaciones 63 a 66 y 68, 69 se las evalúa de manera que se eligen las velocidades del aire v_a , el combustible v_f y el óxido nitroso v_o , además del radio de entrada del combustible a la cámara de combustión como se muestra en la tabla 32 para; a = 14,7kmol, b = 16,025kmol, $\rho_f = 703kg/m^3$, $\rho_a = 1.204kg/m^3$, $\rho_{N_2O} = 3,16kg/m^3$, $M_a = 29kg/kmol$, $M_f = 114kg/kmol$ y $M_{N_2O} = 44kg/kmol$.

Tabla 32: Datos para la quema de 1 kmol de Octano con 14,7 kmol de aire y 16,025kmol de óxido nitroso que corresponde al régimen 4446 rpm con un tiempo esperadode 80 s para la quemaFuente: Autor

		Radios de entrada		Tiempo de quema
	Flujo Másico	de fluidos a la	Velocidad de los	de 1 kmol C ₈ H ₁₈
		cámara de combustión	fluidos	con 14,7 kmol aire
				y 16,025 kmol N ₂ 0
	kg/s	mm	m/s	S
aire	1,98	320	5	
combustible	0,53	2	60	215,07
óxido nitroso	3,28	330	3]

$$m_{N_2O} = \pi r_{N_2O}^2 v_{N_2O} \rho_{N_2O}$$
(68)

$$m_{N_2O} t = b M_{N_2O}$$
(69)

3.2. APROXIMACIÓN A LA COMBUSTIÓN DURANTE EL MEP

El desarrollo de la llama representativa para el MEP en aspiración normal y con presencia de óxido nitroso hace posible reconocer la variación de la presión y la temperatura durante el avance de la combustión.

Se hace explícito que es una representación pues en la combustión interior del motor del automóvil la mezcla aire-octano inicialmente antes de la combustión es sometida a compresión lo que conlleva aumento de temperatura de 293 K a 708,51 K debido al cambio de presión de la mezcla de 100 kPa a 2362,51 kPa para el caso particular del motor del Austin 1.3L cuya relación de compresión es 9,77, ver datos para el ciclo de Otto en la figura 44.

Figura 44: Aproximación del cambio de temperatura y presión de la mezcla aire-octano por el ciclo de Otto ideal para una temperatura y presión iniciales de 293 K y 100 kPa para 9,77 en la relación de compresión del motor del Austin 1.3L. Fuente: Autor

Los estados representativos del desarrollo de la combustión en simulación por software se hace en base a tener cámaras de combustión cuyas presiones de operación superen la presión atmosférica, en éste caso, 2 362 518 *Pa* (figura 44), que es la presión a la que se somete la masa de aire en el ciclo de Otto antes de agregar calor y es la presión que deben vencer el aire, el octano y el óxido nitroso para entrar a la cámara en simulación para combustionar. Figura 45.

Figura 45: Entrada de los componentes de los reactivos de las ecuaciones químicas 62 y 67 a las cámaras de combustión que se encuentran a 2 362 518 Pa, Figuras 45a y 45b respectivamente. Fuente: Autor

3.2.1. APROXIMACIÓN A LA COMBUSTIÓN DURANTE EL MEP EN ASPIRACIÓN NORMAL

Como se explicó en el ítem anterior, el aire y el octano deben ingresar a la cámara de combustión que se encuentra a 2 362, 52 kPa, para esto, es necesario definir los radios de ingreso y las velocidades por medio de las ecuaciones 64, 65, 66, 70, 71 y 72.

$$P = \frac{1}{2} \rho_{\text{octano}} v_{\text{octano}}^2$$
 (72)

Para los valores; a = 20,86 kmol (correspondiente a la ecuación química 62) $\rho_f = 703 kg/m^3$, $\rho_a = 1.204 kg/m^3$, $M_a = 29 kg/kmol$, $M_f = 114 kg/kmol$, eligiendo la presión P = 5000 kPa para superar la entrada a la recámara que se encuentra a 2362, 52 kPa, un tiempo de 100 s para la quema de 1 kmol de octano y $v_a = 5 m/s$, se tiene $r_a = 56,91 mm$, $r_{octano} = 2,08 mm$ y $v_{octano} = 119,27 m/s$. Al llevar estos valores a simulación a diferentes posiciones del pistón (pared horizontal inferior y solo tomado la mitad del mismo) se tiene los valores representativos de temperatura en la figura 46, y presión en la figura 47:

Figura 46: Representación de desarrollo de temperatura (en K) con el desplazamiento del pistón para la combustión normal. Fuente: Autor

Figura 47: Representación de desarrollo de presión (en KPa) con el desplazamiento del pistón para la combustión normal. Fuente: Autor

3.2.2. APROXIMACIÓN A LA COMBUSTIÓN DURANTE EL MEP CON PRESENCIA DE ÓXIDO NITROSO

Al igual que en el ítem anterior, el óxido nitroso debe ingresar a la cámara de combustión que se encuentra a 2 362, 52 kPa, para esto, es necesario definir los radio de ingreso y la velocidad para el óxido nitroso por medio de las ecuaciones 69, 73 y 74.

Para los valores; b = 16.025 kmol (correspondiente a la ecuación química 67), $\rho_{N_2O} = 3,16 kg/m^3$, $M_{N_2O} = 44 kg/kmol$, eligiendo la presión P = 5000 kPa para superar la entrada a la recámara que se encuentra a 2362, 52 kPa, un tiempo de 100 s para la quema de 16.025 kmol de óxido nitroso y $v_{N_2O} = 8 m/s$, se tiene $r_{N_2O} = 55,8mm$. Los radios de entrada y velocidades para el octano y el aire son iguales al ítem anterior pues el tiempo es el mismo. Al llevar estos valores a simulación a diferentes posiciones del pistón (pared horizontal inferior y solo tomado la mitad del mismo) se tiene los valores representativos de temperatura en la figura 48, y presión en la figura 49:

Figura 48: Representación de desarrollo de temperatura (en K) con el desplazamiento del pistón para la combustión con presencia de óxido nitroso. Fuente: Autor

Figura 49: Representación de desarrollo de presión en (KPa) con el desplazamiento del pistón para la combustión con presencia de óxido nitroso. Fuente: Autor

3.3 EL CICLO DE OTTO Y EL TRABAJO REVERSIBLE EN DISTINTOS REGIMENES PARA INYECCION DE ÓXIDO NITROSO.

MEP tabulado manualmente

Es útil apreciar la evaluación de los parámetros en el Ciclo Ideal de Otto en base a los torques a alcanzar mostrados en la curva elegida para la inyección de óxido nitroso de la figura 39. Es de alertar al investigador que las evaluaciones de los parámetros en el Ciclo Ideal de Otto se realizan sobre las propiedades del aire aun cuando la oxidación del octano contará con un 30% de óxido nitroso, es decir, que el fluido de trabajo que se considera en este ciclo idealizado ya no es solamente aire.

3.3.1. TORQUES EFECTIVOS A ALCANZAR CON LA INYECCIÓN DE ÓXIDO NITROSO

A continuación en la tabla 33 se ofrece los torques efectivos a alcanzar en la inyección de óxido nitroso a distintos regímenes.

n <i>rpm</i>	Torque Nm	Torque con la inyección de N $_2O$ Nm			
3000	96,23	107			
3500	96,65	114			
3642	96,42	116			
4000	95,83	119			
4250	94,77	120			
4446	93,96	119			
4500	93,74	119			
5000	90,4	112,5			
5020	90,21	112,5			
5500	85,81	97,5			
5712	83,46	86			
5750	83,04	83,04			
6000	79,96	79,96			

Tabla	33: Los torques efectivos a alcanzar con la inyección de óxido nitroso	en distintos						
regímenes.								
	Fuente: Autor							

La segunda columna representa los torques en aspiración normal en la actualidad y la tercera columna los torques correspondientes a la curva de la figura 39.

En la tabla 34 se detallan los torques indicados de la tabla 33.

n	rpm	Torque con la	Torque con la	Torque perdido por	Torque perdido por	Trabajo Indicado	
		inyección de N_2O Nm	inyección de N ₂ O kJ/kg	rozamiento mec kJ/kg	enfriamiento -refrig- kJ/kg		
	We		We	W _{rozamiento}	$W_{snfriamisnto}$	W indicado kJ/kg	
3	642 116		346,58	92,47	57,51	496,56	
4	4446 119		119 355,54		46,94	505,53	
5	i020	020 112,5 336,12		108,37 41,62		486,11	
5	712	12 86 256,95		112,01	36,4	405,36	

 Tabla 34: Los torques indicados a alcanzar con la inyección de óxido nitroso en distintos regímenes.

 Fuente: Autor

En la figura 50 se muestra las curvas de torque efectivo e indicado para los regímenes de la tabla 34.

Figura 50: Torques efectivo e indicado a alcanzar con la inyección de óxido nitroso Fuente: Autor

3.3.2. PARÁMETROS EN EL CICLO IDEAL DE OTTO.

Presencia de Óxido Nitroso.

Se obtienen las temperaturas de los gases de combustión $T_g = T_4$ para determinar en el siguiente ítem las ecuaciones de combustión con la presencia de óxido nitroso de manera que ofrezcan los trabajos reversibles o indicados mostrados en la tabla 34.

Tal como se indica en el ítem 3.3, las evaluaciones de los parámetros en el Ciclo Ideal de Otto se realizan sobre las propiedades del aire aun cuando la oxidación del octano contará con un 30% de óxido nitroso, es decir, que el fluido de trabajo que se considera en este ciclo idealizado ya no es solamente aire. Es por esto que en el capítulo final se pretende dar una luz al respecto para poder saber cuan cerca está el uso del ciclo ideal de Otto, cuya finalidad es trabajar con las propiedades del aire para acercarse a un ciclo abierto en el MEP, para predecir el comportamiento en la inyección de óxido nitroso por medio de los parámetros contemplados en este ciclo Ideal.

En las figuras 51 a la 54 se aprecian los parámetros del ciclo ideal de Otto para los regímenes indicados en la tabla 8 con la condición de que el calor de entrada, q_{en} sea tal que se cumpla con los trabajos indicados $w_{indicado}$ de la tabla 34.

Figura 51: Parámetros del Ciclo Ideal de Otto a 3642 rpm para determinar T₄ con el objetivo de encontrar la ecuación de combustión con la presencia de óxido nitroso, Tabla 26. Fuente: Autor

Figura 52: Parámetros del Ciclo Ideal de Otto a 4446 rpm para determinar T₄ con el objetivo de encontrar la ecuación de combustión con la presencia de óxido nitroso, Tabla 26. Fuente: Autor

	F	égimen 5020	rpm		
	Wasta	raguarida 486.31	kl/ka		
Datos Iniciales:	neto			Т	
Dates micraics.				1	
	Presion en 1 P ₁	100 kPa		2000	
	Temperatura en 1: T 1	20 °С @ К	293		1
	Relación de Compresión: r	9,77		1500	
Datos de Entrada:				1000	
				1000	
	ingresar ® q _{en} 8	79,60 kJ/kg		500	
Datos Calculados				0	660
Punto 2	Compresion Isoentrópica			s ₁ -s ₂	: s ₃ =s ₄
	$u_1 = f(T_1)$	209,06 kJ/kg			
	$v_{r1} = g (T_1)$	659,18			
	$v_{r2} = h (v_{r1}, r)$	67,47		$T_2 = i (v_{r2})$	708,51 K
				$u_2 = j(T_2)$	519,05 kJ/kg
			$P_{2} = k (P_{1})$	$, \boldsymbol{T}_{1,2}, \boldsymbol{v}_{1,2}, r)$	2362,51 kPa
Punto 3	Entrada de Calor q _{en}				
	$u_{3} = q_{en} + u_{2}$	1398,65 kJ/kg ®			
T máy P máy					
- max * max				$v_{r3} = n (T_{2})$	4.71
Punto 4	Salida de Calor g sal			13 1 3/	<i>v</i> =
	Entrega de Trabajo w pate :			$T_A = O(V_A)$	812.37 K
	$V_{rA} = r V_{r2}$	45,98		$u_{4} = p(v_{r4})$	602,35 kJ/ka
	-14 • 13				,,
	<i>q</i> _{sal =} <i>u</i> ₄ - <i>u</i> ₁	393,29 kJ/kg			
i	$W_{matrix} = Q_{matrix} = Q_{matrix}$	486.31 kl/ka			

Figura 53: Parámetros del Ciclo Ideal de Otto a 5020 rpm para determinar T₄ con el objetivo de encontrar la ecuación de combustión con la presencia de óxido nitroso, Tabla

26.
Fuente: Autor

Figura 54: Parámetros del Ciclo Ideal de Otto a 5712 rpm para determinar T₄ con el objetivo de encontrar la ecuación de combustión con la presencia de óxido nitroso, Tabla 26. Fuente: Autor

3.3.3. DETERMINACIÓN DE LAS ECUACIONES DE COMBUSTIÓN CON LA PRESENCIA DE ÓXIDO NITROSO

Para la temperatura de los gases de combustión $T_g = T_4$ mostradas en las figuras 51 a 54, y con ayuda de la ecuación 61 (ver ítem 2.5), se fijan las ecuaciones de combustión en las tablas 35 a la 38.

		Entropio	a de los Productos	T _g = 824,49	K
	Ni	yi	s ^₀ i(T,1atm)	R _a ln (y _{i(} Pm/Po)	Nīsi
CO ₂ g	8	0,067	258,960	-22,502	2251,695
H₂O g	9	0,075	224,863	-21,523	2217,470
O ₂	13,62	0,114	236,830	-18,079	3471,257
N ₂	89,20	0,744	221,860	-2,453	20007,928
		1,000		S_{prod}	→ 27948 ,350
		Entropi	a de los Reactivos	293	K K
	Ni	yi	$\tilde{s}_{i}^{o}(T,1atm)$	R _a ln (y _{i(} Pm/Po)	$\bar{N_is_i}$
C ₈ H ₁₈ (4)	1	1,000	360,790	0,000	360,790
<i>O</i> ₂	21,00	0,210	205,040	-12,972	4578,383
N_2	78,962	0,790	191,610	-1,961	15284,784
N_2O	10,23	10,234	219,850	19,336	2052,060
		12,234		$\overline{S}_{\text{react}}$	→22276,017
				$S_{\text{gen}} = S_{\text{prod}} - S_{\text{reac}}$	t 5672,333
				$W_{\rm rev} = T_{\rm o}S_{\rm o}$	_{gen}] 661993,638

Tabla 35: Ecuación de combustión para la presencia de óxido nitroso a 3642 rpm. Tabla 26.Fuente: Autor

						$W_{\rm rev}$ =	- 49	6,56	KJ/K	.g aire	
$1 C_{8}H_{18}$	+	21,00 (<i>O</i> ₂ +3,76 N ₂)	+ 10,23 N ₂ O	\rightarrow	8	CO ₂ +	9	H_2O	+	13,62 O ₂	+ 89,20 N ₂

TT7

Tabla 36: Ecuación de combustión para la presencia de óxido nitroso a 4446 rpm. Tabla 26.Fuente: Autor

Entropia de los Productos T_{g} = 835,09 K									
	Ni	yi	$s_{i}^{\circ}(T,1atm)$	$R_{\alpha} \ln (y_{i\prime} Pm/Po)$	Nisi				
CO ₂ g	8	0,081	259,530	-20,873	2243,222				
H ₂ O g	9	0,091	225,360	-19,894	2207,282				
O ₂	10,35	0,105	237,260	-18,729	2650,162				
N ₂	71,14	0,722	222,260	-2,705	16004,411				
		1,000		S_{prod}	→23105,077				
				*					
		Entrop	oia de los Reacti∨os	293	Κ				
	Ni	yi	$\operatorname{s}^{o}_{i}(T,1atm)$	R _a ln (y _{i(} Pm/Po)	Nisi				
$C_{8}H_{18}$ (4)	1	1,000	360,790	0,000	360,790				
<i>O</i> ₂	14,45	0,210	205,040	-12,972	3150,844				
N 2	54,342	0,790	191,610	-1,961	10518,991				
N ₂ O	16,80	16,800	219,850	23,457	3299,403				
		18,800		S _{react}	→17330,028				

 $S_{\text{gen}} = S_{\text{prod}} - S_{\text{react}}$ 5775,049

 $W_{\rm rev} = T_{\rm o}S_{\rm gen}$] 692089,412 kJ/kmol $C_{\rm s}H_{\rm 18}$

 $W_{\rm rev} = 14842,890 \text{ kJ/kg} C_8 H_{18}$

 $W_{\rm rev}$ = 14578,892 kJ/kg C_8H_{18}

1.1.0

 $W_{\rm rev}$ = 505,55 kJ/kg aire

 $|C_8H_{18} + 14,45 (O_2 + 3,76 N_2) + 16,80 N_2O \rightarrow 8 CO_2 + 9 H_2O + 10,35 O_2 + 71,14 N_2$

Entropia de los Productos		T _g = 812,37 K				
			-	1		
	Ni	yi	s [™] i(T,1 <i>atm</i>)	R _a ln (y _{i(} Pm/Po)	Nisi	
CO ₂ g	8	0,076	258,198	-21,449	2237,173	
H ₂ O g	9	0,085	224,290	-20,469	2202,834	
O ₂	10,76	0,102	263,330	-18,987	3036,847	
N ₂	77,80	0,737	221,684	-2,537	17444,602	
		1,000		S_{prod}	→ 24921,45 7	
Entropia de los Reactivos 293 K					Κ	
	N_i	yi	$s_{i}^{\overline{o}}(T,1atm)$	R _a ln (y _{i(} Pm/Po)	$\bar{N_i s_i}$	
$C_{8}H_{18}$ (2)	1	1,000	360,790	0,000	360,790	
<i>O</i> ₂	17,78	0,210	205,040	-12,972	3875,571	
N 2	66,841	0,790	191,610	-1,961	12938,468	
N_2O	10,96	10,960	219,850	19,906	2191,388	
		12,960		S _{react} →19366,21		

Tabla 37: Ecuación de combustión para la presencia de óxido nitroso a 5020 rpm. Tabla 26.Fuente: Autor

 $S_{\text{gen}} = S_{\text{prod}} - S_{\text{react}}$ 5555,239

 $W_{\rm rev} = T_{\rm o} S_{\rm gen}$ 627685,110 kJ/kmol $C_{\rm B} H_{\rm 18}$

 $W_{\rm rev}$ = 14277,940 kJ/kg C_8H_{18}

 $W_{\rm rev}$ = 486,31 kJ/kg aire

 $1 C_8 H_{18} + 17,78 (O_2 + 3,76 N_2) + 10,96 N_2 O \rightarrow 8 CO_2 + 9 H_2 O + 10,76 O_2 + 77,80 N_2$

Tabla 38: Ecuación de combustión para la presencia de óxido nitroso a 5712 rpm. Tabla 26.Fuente: Autor

			Entropia de los Productos	T _g = 723,86	5 K
	Ni	yi	$-s_i^{\circ}(T,1atm)$	R _a ln (y _i Pm/Po)	$N_i s_i$
CO ₂ g	8	0,067	252,330	-22,508	2198,702
H ₂ O g	9	0,075	219,869	-21,529	2172,578
O ₂	12,75	0,106	232,467	-18,634	3200,939
N ₂	90,15	0,752	217,790	-2,371	19848,061
		1,000		$S_{\text{prod}} \rightarrow$	27420,281
		1	Entropia de los Reactivos	29	3 K
	Ni	yi	$-s_{i}^{\circ}(T,1atm)$	R _a ln (y _i (Pm/Po)	Nisi
C ₈ H ₁₈ (4)	1	1,000	360,790	0,000	360,790
<i>O</i> ₂	22,53	0,210	205,040	-12,972	4912,375
N_2	84,723	0,790	191,610	-1,961	16399,806
N_2O	5,43	5,430	219,850	14,067	1117,403
		7,430		S_{react}	→22790,374
				$S_{\text{gen}} = S_{\text{prod}} - S_{\text{rea}}$	_{ct} 4629,907
				$W_{\rm rev} = T_{\rm o}S$	gen] 356562,78

 $W_{\rm rev}$ = 11899,674 kJ/kg C_8H_{18}

 $W_{rev} = 405,31 \quad kJ/kg \text{ aire}$ $1 C_8 H_{18} + 22,53 (O_2 + 3,76 N_2) + 5,43 \quad N_2 O \rightarrow 8 CO_2 + 9 \quad H_2 O + 12,75 \quad O_2 + 90,15 \quad N_2$

103

CAPITULO IV

4. ANÁLISIS DE RESULTADOS

4.1. DELIMITACION DE ANÁLISIS

Existen tres grandes intereses de análisis en ésta investigación:

La gran precisión entre el trabajo reversible W_{rev} para una ecuación química definida para un régimen específico a partir de la teoría de reacciones de combustión y el trabajo neto indicado $w_{neto i}$ determinado en los cálculos del Ciclo Ideal de Otto, para el trabajo reversible a la temperatura de los gases de combustión en el Ciclo de Otto, tabla 23.

La predicción del incremento de Potencia debido al aumento del trabajo Indicado.

La comparación del comportamiento de la llama representativa para el MEP durante la combustión de octano-aire frente a la combustión octano-aire-óxido nitroso en lo que respecta a la formación de presiones dentro del cilindro. En lo que se compara combustiones también es interesante apreciar las energías liberadas en la quema de 1 k*mol* de octano con oxidantes; aire y aire-óxido nitroso.

4.1.1. EL TRABAJO INDICADO EN TEORÍA DE REACCIONES

Es importante la predicción de los valores de trabajo reversible pues ayuda tanto a definir como cerciorarse acerca del planteamiento de las ecuaciones de combustión para los distintos regímenes, es decir, que se puede ir tabulando por iteraciones hasta que el ciclo de Otto y las ecuaciones químicas concuerden los valores de los trabajos netos indicados y los trabajos reversibles.

Regímenes (rpm)	Т _g (К)	W _{neto i} (kJ/kg)	${W}_{rev}$ (kJ/kg)	error
3642	759,7	437,97	394,47	9,93%
4446	752,04	430,62	412,02	4,32%
5020	740,45	419,45	418,71	0,18%
5712	719,6	399,31	425,95	6,67%

 Tabla 23: Comparación de los trabajos indicados en el Ciclo de Otto y los trabajos reversibles obtenidos por teoría de reacciones.

 Fuente: Autor

4.1.2. PREDICCIÓN DEL INCREMENTO DE POTENCIA

A partir de la curva idealizada de trabajo neto de la figura 39 se deriva la curva de Potencia Efectiva para la presencia de óxido nitroso en los reactivos, figura 55.

Figura 55: Predicción de la Potencia a diferentes regímenes (Tabla 39) para la presencia de óxido nitroso en los reactivos. Fuente: Autor

Tal curva se traza por medio de la ecuación 75 para los valores de la tabla 39:

$$Pot = \frac{Mn}{9550} \qquad [kW] \qquad (75)$$

Tabla 39: Valores de la potencia	idealizada para la	presencia de	e óxido	nitroso	en los	reactivos.
	Fuente: Au	tor				

n <i>rpm</i>	Torque con la inyección de N_2O Nm	Potencia Efectiva para la inyección de N_2O_kW
3642	116	44,24
4250	120	53,40
4446	119	55,40
5020	112,5	59,14
5712	86	51,44

En la figura 56 se muestran las curvas de potencia en condiciones normales de funcionamiento del motor del Austin 1.3L y para la predicción en la inyección de óxido nitroso al múltiple de admisión

Figura 56: Curvas de Potencia a diferentes regímenes (Tabla 40) en condiciones normales de funcionamiento para la presencia de óxido nitroso en los reactivos. Fuente: Autor

Estas curvas de potencia se trazan para los valores de la tabla 40:

n <i>rpm</i>	Pot condición actual kW	Pot iny. $N_2O kW$
3000	30,23	33,61
3500	35,42	41,78
4000	40,14	49,84
4500	44,17	56,07
5000	47,33	58,9
5500	49,42	56,15
5750	50	50

 Tabla
 40: Valores de la potencia neta actual e idealizada para la presencia de óxido nitroso en los reactivos.

 Fuente: Autor

4.1.3. VARIACIÓN DE PRESIÓN Y TEMPERATURA EN LA COMBUSTIÓN Afirmaciones Basadas en Simulación por Software

Al recordar lo mencionado en el ítem 3.2, el desarrollo de la llama representativa para el MEP en aspiración normal y con presencia de óxido nitroso hace posible reconocer la variación de la presión y la temperatura durante el avance de la combustión.

También se hizo explícito que es una representación pues en la combustión interior del motor del automóvil la mezcla aire-octano inicialmente antes de la combustión es sometida a compresión lo que conlleva aumento de temperatura de 293 K a 708,51 K debido al cambio de presión de la mezcla de 100 kPa a 2362,51 kPa para el caso particular del motor del Austin 1.3L cuya relación de compresión es 9,77.

Tal como se explica en el párrafo anterior, el siguiente *análisis es de tipo cualitativo*, no por el hecho de que los valores obtenidos en simulación no sean fiables, sino porque en la simulación se trata de una inyección permanente combustible y oxidantes mientras que en la combustión interna del motor del automóvil la llama se desarrolla por la quema de una masa fija de octano con una porción definida de oxidante u oxidantes, masas que inicialmente son sometidas a mayores presiones por compresión no isoentrópica lo que conlleva aumento de temperatura.

Las siguientes descripciones analizadas de la simulación por software son comunes en ambas situaciones, en la oxidación de octano con aire y también con óxido nitroso:

 La temperatura aumenta a medida que avanza el movimiento de la malla móvil – pared lateral derecha- que representa la superficie del pistón (ver figuras 46 y 48), figura 57 a y b. De acuerdo a las figuras 57 se aprecia que la temperatura es máxima cuando la llama tiene más tiempo para arder y espacio para actuar. Con esta explicación se afirma que la Temperatura es máxima cuando el volumen del cilindro es máximo -punto muerto inferior, lo que contradice las evaluaciones en el Ciclo de Otto, pero en realidad es que durante el avance de la llama en la simulación no existe realización de trabajo lo que conduce a que disminuya la temperatura. Esto es evidente si se aprecia la disminución de energía interna del aire al pasar del punto 3 al punto 4 en el diagrama T-v de la figura 9, proceso en el que existe una entrega de trabajo neto W_{neto} .

Figura 57: Desarrollo de Temperatura durante la combustión a medida del avance del pistón.

a) Combustión Octano-aire b) Combustión Octano-aire-óxido nitroso **Fuente:** Autor

En la figura 57*b* se aprecia que en la presencia de óxido nitroso en la combustión, el combustible se quema mejor puesto que la temperatura al final, punto muerto inferior es mayor que en la combustión normal, figura 57*a*, y también se aprecia un rápido aumento de la misma.

Algo que es interesante apreciar en el desarrollo de la combustión en el caso de la combustión con óxido nitroso es la presencia de mayores regiones de alta temperatura (en realidad son volúmenes de temperatura puesto que las figuras están en 2D) frente a la combustión normal, figuras 58, sobre todo en zonas adyacentes a la superficie del pistón.

Figura 58: Regiones de Temperatura dentro del cilindro durante la combustión (pistón pared horizontal inferior y solo tomado la mitad del mismo):

La presión es mayor cuando el pistón está más cerca del punto muerto superior y disminuye a medida que avanza hacia el punto muerto inferior. (Ver figuras 47 y 49), figura 59 *a* y *b*.

Esto concuerda con el Ciclo Ideal de Otto pues la presión es máxima cuando inicia el movimiento del pistón del punto muerto superior al punto muerto inferior.

Se entiende que al momento de iniciar el movimiento del pistón en la dirección indicada en el párrafo anterior, la fuerza de empuje es mayor al inicio, y que disminuye durante el descenso. En la figura 60, se puede observar que existe un aumento de presión con la presencia de Óxido Nitroso en comparación con la presión de Octano Aire.

Figura 59: Desarrollo de Presión durante la combustión a medida del avance del pistón.

a) Combustión Octano-aire
b) Combustión Octano-aire-óxido nitroso Fuente: Autor

Figura 60: Regiones de Presiones dentro del cilindro durante la combustión (pistón pared horizontal inferior y solo tomado la mitad del mismo):

a) Combustión Octano-aire b) Combustión Octano-aire-óxido nitroso **Fuente:** Autor

4.2. CONSIDERACIONES RESPECTO A LAS CANTIDADES MOLARES DE AIRE Y ÓXIDO NITROSO

En la figura 61 se aprecia las cantidades molares de aire y óxido nitroso a lo largo del desarrollo de regímenes para la tabla 41), y en la figura 62 se puede apreciar el comportamiento de las cantidades molares del aire en la combustión en la aspiración normal de acuerdo a valores mostrados en la tabla 11.

rpm	moles de N_2O	moles de Aire
3642	10,23	21,00
4446	16,80	14,45
5020	10,96	17,78
5716	5,43	22,53

Tabla	41: Cantidades molares de aire y óxido nitroso
	Fuente: Autor

Figura 61: Cantidades molares de aire y óxido nitroso a lo largo del desarrollo de regímenes Fuente: Autor

Figura 62: Cantidades molares de aire a lo largo del desarrollo de regímenes en la combustión de aspiración normal. Fuente: Autor

En la figura 61 se determina que en ningún momento las cantidades de aire y óxido nitroso pueden ir en ascenso o descenso simultáneamente, sino que mientras una sustancia va en aumento la otra necesariamente irá en disminución y viceversa, porque en la aspiración normal, figura 62, es notoria la disminución de entrada de aire a medida que aumenta el régimen, lo que tiene mucho sentido pues a medida que los pistones se mueven más rápidamente es menos probable que se carguen de aire los cilindros debido a la rapidez con que suceden los llenados.

4.3. RELACIÓN ENTRE LA ENERGÍAS DE COMBUSTIÓN Y LA ADICIONADA EN EL DEL CICLO IDEAL DE OTTO.

Los valores de las energías adicionadas en el Ciclo Ideal de Otto, tabla 21, son los valores necesarios para producir los trabajos indicados de la tabla 22, pero su procedencia viene de los calores liberados en la combustión química, tabla 13, los cuales a su vez son obtenidos de las curvas de las figuras 33 que a su vez se encontraron a partir de procedimientos similares a la tabla 12, salvo que son fragmentados para la cantidad de combustible que interviene en cada combustión, o sea, las masas de octano por admisión, tabla 5, y aplicados a la masa de aire correspondiente a ese régimen, ítem 2.1.

Como se explica en ítem 3.1.2., no se cumple exactamente para las temperaturas de los gases de combustión de la tabla 22, sino que supera en la temperatura en un 20%, y es que se considera que se producen irreversilidades desde la energía liberada en la combustión a la energía del trabajo reversible.

4.4. EL TRABAJO REVERSIBLE NO ADIABÁTICO

Se considera así al valor del trabajo reversible que se obtiene considerando pérdida de energía del sistema, en este caso, de todo el motor a la temperatura de los alrededores, 20°C, que es la temperatura ambiente considerada para éste estudio y que marca la condición inicial de temperatura en el ciclo de Otto. Si bien el trabajo reversible se obtiene a partir de la ecuación 33, la entropía generada, S_{gen} , se evalúa por medio de la ecuación 30 antes que con la ecuación 32 pues el valor del trabajo reversible se toma como el mayor posible en éste estudio.

Entiéndase que al tomar la ecuación 30 para evaluar la entropía, con el calor liberado Q_{sal} desde el sistema a los alrededores a la temperatura T_o , el sistema se toma como más

ordenado, *menor entropía* ya que estará a menor temperatura pues existe liberación de energía térmica desde el motor a los alrededores. En realidad el calor liberado Q_{sal} , a pasar de no ser el calor de la combustión de la tabla 13, se toma éste para evaluar la ecuación 33 a pesar que la pérdida de energía es por radiación y convección libre y/o forzada desde el motor a los alrededores, o sea el \dot{Q}_{rad} por unidad de masa de aire de la tabla 16 pues se encuentra más correspondencia entre los trabajos de la tabla 23.

BIBLIOGRAFÍA

- [1] BURGHARDT David, Ingeniería Termodinámica, segunda edición, México, 1984,239.
- [2] CENGEL Yunus A, BOLES Michael A, *Termodinámica*, cuarta edición, Mc Graw Hill, México, 2002, 829.
- [3] CENGEL Yunus A, *Transferencia de Calor*, segunda edición, Mc Graw Hill, México, 2003, 793.
- [4] CULTURAL S.A., Manual Práctico del Automóvil, Melsa, España, 1987, 182.
- [5] PAYRI F, DESANTES J. M, Motores de Combustión Interna Alternativos, Editorial Reverte, España, 2011, 1002.
- [6] ZHELESKO V, Fundamentos de la Teoría y Dinámica de Motores para Automóviles y Tractores, tercera edición, Moscú, 1985,582.
- [7] "Página técnica del Mini Austin 1.3L", Disponible en: http://www.pruebas.pieldetoro.net/web/pruebas/ver.php?ID=132 (Accedido: 8-jun-2014)
- [8] "Pagina Características del Mini 1300" Disponible en: http://www.pruebas.pieldetoro.net/web/pruebas/ver.php?ID=31
- [9] "Curvas de Torque para la inyección de óxido nitroso", Disponible en: http://dspace.internacional.edu.ec:8080/jspui/handle/123456789/85/browse?type=author &order=ASC&rpp=20&value=Toro+Freire%2C+Carlos+Alberto (Accedido: 8-jun-2014)

- [10] "Propiedades termodinámicas del óxido nitroso", Disponible en: http://depa.fquim.unam.mx/amyd/archivero/Tablasdepropiedadestermodinamicas_12182. pdf (Accedido: 12-jun-2014)
- [11] "Presión dinámica", Disponible en: http://es.wikipedia.org/wiki/Presi%C3%B3n_din%C3%A1mica (Accedido: 20-jun-2014)
- [12] "Motores sobrealimentados", Disponible en: http://es.slideshare.net/maquinistanaval/sobrealimentacion (Accedido: 1-jul-2014)

ANEXO 1

CARACTERÍSTICAS TÉCNICAS DEL AUSTIN 1.3L

MOTOR

Tipo: 4 cilindros en línea, bloque y culata en fundición, cigüeñal sobre 3 apoyos.

Posición: delantera transversal, con la caja de cambios integrada en cárter.

Diámetro x carrera: 71 x 81 mm.

Cilindrada: 1319,6 cc.

Relación de compresión: 9,77:1.

Distribución: válvulas en culata accionadas por varillas y balancines desde el árbol de levas lateral.

Refrigeración: líquida, con ventilador movido por correa.

Alimentación: dos carburadores SU HS2.

Potencia: 68 CV SAE a 5.750 rpm.

Par máximo: 9,72 mkg a 3.600 rprn.

TRANSMISIÓN

Tracción: delantera.

Embrague: monodisco en seco con mando hidráulico.

Cambio: 4 velocidades.

Relaciones de cambio (grupo): l^a; 3,52:1, 2^a; 2,22:1, 3^a; 1,43:1 y 4^a; 1,00:1, (3,44:1).

Desarrollos: 7,31 km/h a 1.000 rpm en 1ª, 11,62 km/h en 2ª, 17,99 km/h en 3ª y 25,78 en 4ª.

BASTIDOR

Estructura: carrocería monocasco con bastidores independientes para cada tren.

Suspensión delantera: brazos transversales con tirante oblicuo en el inferior, tacos de goma y amortiguadores telescópicos.

Suspensión trasera: Ruedas tiradas por brazos longitudinales, tacos de goma y amortiguador telescópico.

Frenos: discos delanteros y tambores traseros, servofreno.

Dirección: de cremallera.

Diámetro de giro: 9,6 m.

Llantas: 4,5 x 10 pulgadas.

Neumáticos: 145-SR 10.

CARROCERÍA

Diseño: BMC (Alec Issigonis).

Plazas: 4.

Batalla: 2,036 m.

Vias del/tras.: 1,235/1,200 m.

Largo x ancho x alto: 3,055 x 1,410 x 1,350 m.

Peso: 640 kg.

Depósito de combustible: 36 litros.

PRESTACIONES

Velocidad máxima: 160 km/h.

0 a 100 km/h: 14,7 seg.

0-400 m: 19,2 seg.

0-1.000 m: 35,4 seg.

Consumo: 8 l/100 km en conducción normal.

· Autor: Arturo Andrés (AUTOPISTA, nº 786, 2 de marzo de 1974)

· Gracias a Jaume P. por enviar el texto. Fotos: MOTORCLASICO

CONSUMO DE COMBUSTIBLE DEL AUSTIN 1.3L CONSUMO

Una de las consecuencias de este desarrollo excesivamente corto para las características del coche, es que el consumo se «dispara» en cuanto el coche se le hace andar rápido. Cuando su presentación, según los recorridos, el consumo nos varió entre 10,6 y 12 litros justos. En nuestro resumen se puede observar que. al pasar la marcha de crucero de 5.000 r. p. m. (129 de crono), el consumo también pasa de 10 litros. Y a pesar del nuevo depósito de 36 litros, volviendo de Zaragoza (donde se llenó a tope a la salida) nos quedamos sin gasolina en el último repecho de la autopista de Barajas, ya entrando en Madrid. Aunque haya tráfico, el trayecto desde la capital aragonesa a Madrid, y casi en vacío, no justifica un consumo de 11,6 litros.

En cambio, andando en plan tranquilo, el consumo es bajo, empezando con esos 7,5 litros que se consumen andando a 100 de aguja (95 reales). En ciudad, la cifra de 13 litros es correcta, ya que el coche ha sido conducido como es lógico hacerlo, apretando un poco en las marchas cortas y sacándole el partido que puede dar de sí, realmente, en ciudad es un coche delicioso, pues tiene excepcional aceleración en baja, muy buenos frenos (pero progresivos), y con su dirección y tamaño se maneja con gran facilidad.

Repetimos una vez más que ese 5 por 100 de alargamiento del desarrollo le vendría de perlas al coche por todos los conceptos; esperamos comprobarlo en un plazo no muy largo.

Consumo de Combustible					
Itinerario Crucero Consum					
	km/h	l/ 100 km			
Ciudad	-	12,94			
Carretera	95	7,48			
Carretera	116	8,67			
Carretera	131	10,13			
Carretera	A tope: 149	11,59			

- · Autor: Arturo Andrés (AUTOPISTA, nº 786, 2 de marzo de 1974)
- · Gracias a Jaume P. por enviar el texto. Fotos: MOTORCLASICO
DETERMINACIÓN DEL RÉGIMEN A DISTINTAS VELOCIDADES

De acuerdo al anexo 1 el régimen máximo es 5750 *rpm*, y la velocidad máxima 149,07 *km/h*, equivalente a 150 *km/h* (anexo 4). Ya que la velocidad del automóvil responde a mecanismos de ruedas dentadas en la caja de cambios, las velocidades del motor y el avance del vehículo es una función lineal, y se comportará de acuerdo a la función de la figura del plano cartesiano que se muestra a continuación:

Sabiendo la ecuación de la recta: $V - V_1 = m (rpm - rpm_1)$

$$V - 0 = \frac{150 - 0}{5750 - 0} (rpm - 0)$$
$$V = \frac{150}{5750} rpm$$
$$V = \frac{3}{115} n$$

De acuerdo a esta recta la relación entre las revoluciones del motor y la velocidad es: rpm = n; despejando n $n = \frac{115 v}{3}$

Entonces teniendo la velocidad podemos obtener n:

n	
95	3642
116	4446
131	5020
149	5712

V

PRESTACIONES DEL AUSTIN 1,3L

"Como decíamos al comienzo, el automovilista está en el derecho de esperar que el Mini Cooper 1300 sea una «bomba». Y no lo es. Su velocidad «raspa» simplemente los 150 km/h.; su aceleración es similar a la que tiene un Simca 1200 Special, con igual cilindrada y 240 kilogramos más de peso, por no hablar de la superficie frontal. Un moderno 1430 lo bate en toda regla en cualquier aspecto de prestaciones. No hay potencia, y donde no hay caballos es tontería empeñarse en que ocurran milagros.

Ciertamente hay mejora respecto al anterior 1275-GT, o al 1275-C, que a su vez precedió a éste. En sus tiempos, dichos modelos nos dieron unas velocidades punta de 139 y 141 kilómetros por hora, con unos tiempos en reprise de 20" y 37"6/10 y en aceleración de 19"6/10 y 36"9/10. Así pues, el Mini Cooper marca un paso adelante. Sus prestaciones hubieran sido correctas cuando se presentó el 1275-C hace ya seis o siete años. Hoy en día se han quedado tan escasas como fueron las de aquél en su día.

De todos modos, y tal como ya dijimos cuando la presentación, nos parece equivocado la elección de este grupo final para el coche. La aceleración no perdería mucho volviendo al más largo y es casi seguro que la velocidad punta ganaría. Actualmente, ésta se consigue a un régimen real de 5.800 r. p. m. algo pasadas, lo cual sería excelente si de verdad el régimen de potencia máxima del motor fuese el de 5 .750 r. p. m. No sabemos si puesto en el banco de pruebas será así. Pero instalado en el coche, la potencia está en franca decadencia antes de llegar a las 5.500 r. p.m. El grupo largo le permitiría al motor girar a un régimen más suave, con ventajas de todo tipo: menor consumo, menos ruido, menos desgaste y menos temperatura y consumo de aceite.

Aunque no es seguro, parece ser que; en breve plazo, el grupo largo va a ser instalado en estos coches. En tal caso, nos gustaría volver a probarlo, y con un motor bien rodado y bien puesto a punto, creemos que la punta podría llegar muy cerca de la cifra de los 155 kilómetros por hora, que, sin ser nada exagerado, lo permitiría, al menos no pasar el sonrojo de ser superado por berlinas de turismo como el GS, el 1430, o incluso el 1200 Special y el 12-S "

REPRIS	
400 m, en 4ª, a 40 km/h	19''3/10
1.000 m, en 4ª, a 40 km/h	36''4/10
ACELERACIÓN	
400 metros, con salida parada	19''0/10
1000 metros, con salida parada	35"5/10
VELOCIDAD MÁXIMA	
(km/h)	149,07

- · Autor: Arturo Andrés (AUTOPISTA, nº 786, 2 de marzo de 1974)
- \cdot Gracias a Jaume P. por enviar el texto. Fotos: MOTORCLASICO

DIBUJOS DEL MOTOR

ANEXO 5H

DETERMINACION DE RELACIÓN DE COMPRESIÓN PARA EL AUSTIN 1.3L

$$r = \frac{V_{máx}}{V_{mín}}$$

Referencia: Ver anexo 5E

 $V_{m \acute{a} x}$ = Volumen del cilindro + Volumen de la cavidad del pistón + volumen de la cavidad de la tapa del block + volumen del espacio desde el punto muerto superior y el tope del cilindro

$$V_{max} = 321,72 \ cm^3 + 7 \ cm^3 + 19,5 \ cm^3 + 10,175 \ cm^3 =$$

$$V_{m \acute{a} x} = 358,395 \ cm^3$$

 V_{min} = Volumen de la cavidad del pistón + volumen de la cavidad de la tapa del block + volumen del espacio desde el punto muerto superior y el tope del cilindro =

$$V_{min} = 7 \ cm^3 + 19,5 \ cm^3 + 10,175 \ cm^3 =$$

$$V_{min} = 36,675 \ cm^3$$

$$r = \frac{V_{max}}{V_{min}} = \frac{358,395 \ cm^3}{36,675 \ cm^3} = 9,77$$

TABLAS TERMODINÁMICAS

Ţ	ABLA	A.17										
P	ropieda	ades de ga	s ideal del a	ire			e.	1000	120610	1010	1 123 11 23	1.4971
	T K	h kJ/kg	Р,	u kJ/kg	Vr	s° kJ/kg ∙ K	T K	h kJ/kg	P _r	u kJ/kg	Vr	s° kJ/kg ∙ K
	200	199.97	0.3363	142.56	1 707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
	210	209.97	0.3987	149.69	1 512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
	220	219.97	0.4690	156.82	1 346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
	230	230.02	0.5477	164.00	1 205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
	240	240.02	0.6355	171.13	1 084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
	250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
	260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
	270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.49364
	280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
	285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589
1	290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
	295	295.17	1.3068	210.49	647.9	1.68515	690	702.52	27.29	504.45	72.56	2.55731
	300	300.19	1.3860	214.07	621.2	1.70203	700	713.27	28.80	512.33	69.76	2.57277
	305	305.22	1.4686	217.67	596.0	1.71865	710	724.04	30.38	520.23	67.07	2.58810
	310	310.24	1.5546	221.25	572.3	1.73498	720	734.82	32.02	528.14	64.53	2.60319
	315	315.27	1.6442	224.85	549.8	1.75106	730	745.62	33.72	536.07	62.13	2.61803
	320	320.29	1.7375	228.42	528.6	1.76690	740	756.44	35.50	544.02	59.82	2.63280
	325	325.31	1.8345	232.02	508.4	1.78249	750	767.29	37.35	551.99	57.63	2.64737
	330	330.34	1.9352	235.61	489.4	1.79783	760	778.18	39.27	560.01	55.54	2.66176
	340	340.42	2.149	242.82	454.1	1.82790	780	800.03	43.35	576.12	51.64	2.69013
	350	350.49	2.379	250.02	422.2	1.85708	800	821.95	47.75	592.30	48.08	2.71787
	360	360.58	2.626	257.24	393.4	1.88543	820	843.98	52.59	608.59	44.84	2.74504
	370	370.67	2.892	264.46	367.2	1.91313	840	866.08	57.60	624.95	41.85	2.77170
	380	380.77	3.176	271.69	343.4	1.94001	860	888.27	63.09	641.40	39.12	2.79783
	390	390.88	3.481	278.93	321.5	1.96633	880	910.56	68.98	657.95	36.61	2.82344
	400	400.98	3.806	286.16	301.6	1.99194	900	932.93	75.29	674.58	34.31	2.84856
	410	411.12	4.153	293.43	283.3	2.01699	920	955.38	82.05	691.28	32.18	2.87324
	420	421.26	4.522	300.69	266.6	2.04142	940	977.92	89.28	708.08	30.22	2.89748
	430	431.43	4.915	307.99	251.1	2.06533	960	1 000.55	97.00	725.02	28.40	2.92128
	440	441.61	5.332	315.30	236.8	2.08870	980	1 023.25	105.2	741.98	26.73	2.94468
	450	451.80	5.775	322.62	223.6	2.11161	1 000	1 046.04	114.0	758.94	25.17	2.96770
	460	462.02	6.245	329.97	211.4	2.13407	1 020	1 068.89	123.4	776.10	23.72	2.99034
	470	472.24	6.742	337.32	200.1	2.15604	1 040	1 091.85	133.3	793.36	23.29	3.01260
	480	482.49	7.268	344.70	189.5	2.17760	1 060	1 114.86	143.9	810.62	21.14	3.03449
	490	492.74	7.824	352.08	179.7	2.19876	1 080	1 137.89	155.2	827.88	19.98	3.05608
	500	503.02	8.411	359.49	170.6	2.21952	1 100	1 161.07	167.1	845.33	18.896	3.07732
	510	513.32	9.031	366.92	162.1	2.23993	1 120	1 184.28	179.7	862.79	17.886	3.09825
	520	523.63	9.684	374.36	154.1	2.25997	1 140	1 207.57	193.1	880.35	16.946	3.11883
	530	533.98	10.37	381.84	146.7	2.27967	1 160	1 230.92	207.2	897.91	16.064	3.13916
	540	544.35	11.10	389.34	139.7	2.29906	1 180	1 254.34	222.2	915.57	15.241	3.15916
	550	555.74	11.86	396.86	133.1	2.31809	1 200	1 277.79	238.0	933.33	14.470	3.17888
	560	565.17	12.66	404.42	127.0	2.33685	1 220	1 301.31	254.7	951.09	13.747	3.19834
	570	575.59	13.50	411.97	121.2	2.35531	1 240	1 324.93	272.3	968.95	13.069	3.21751

Т	h		и		S°	Т	h		u	a	S°
K	kJ/kg	P,	kJ/kg	Vr	kJ/kg ∙ K	K	kJ/kg	P _r	kJ/kg	Vr	kJ/kg · K
1 260	1 348.55	290.8	986.90	12.435	3.23638	1 600	1 757.57	791.2	1 298.30	5.804	3.52364
1 280	1 372.24	310.4	1 004.76	11.835	3.25510	1 620	1 782.00	834.1	1 316.96	5.574	3.53879
1 300	1 395.97	330.9	1 022.82	11.275	3.27345	1 640	1 806.46	878.9	1 335.72	5.355	3.55381
1 320	1 419.76	352.5	1 040.88	10.747	3.29160	1 660	1 830.96	925.6	1 354.48	5.147	3.56867
1 340	1 443.60	375.3	1 058.94	10.247	3.30959	1 680	1 855.50	974.2	1 373.24	4.949	3.58335
1 360	1 467.49	399.1	1 077.10	9.780	3.32724	1 700	1 880.1	1 025	1 392.7	4.761	3.5979
1 380	1 491.44	424.2	1 095.26	9.337	3.34474	1 750	1 941.6	1 161	1 439.8	4.328	3.6336
1 400	1 515.42	450.5	1 113.52	8.919	3.36200	1 800	2 003.3	1 310	1 487.2	3.994	3.6684
1 420	1 539.44	478.0	1 131.77	8.526	3.37901	1 850	2 065.3	1 475	1 534.9	3.601	3.7023
1 440	1 563.51	506.9	1 150.13	8.153	3.39586	1 900	2 127.4	1 655	1 582.6	3.295	3.7354
1 460	1 587.63	537.1	1 168.49	7.801	3.41247	1 950	2 189.7	1 852	1 630.6	3.022	3.7677
1 480	1611.79	568.8	1 186.95	7.468	3.42892	2 000	2 252.1	2 068	1 678.7	2.776	3.7994
1 500	1 635.97	601.9	1 205.41	7.152	3.44516	2 0 5 0	2 314.6	2 303	1726.8	2.555	3.8303
1 520	1 660.23	636.5	1 223.87	6.854	3.46120	2 100	2 377.7	2 559	1775.3	2.356	3.8605
1 540	1 684.51	672.8	1 242.43	6.569	3.47712	2 1 5 0	2 440.3	2837	1 823.8	2.175	3.8901
1 560	1 708.82	710.5	1 260.99	6.301	3,49276	2 200	2 503.2	3 1 3 8	1872.4	2.012	3.9191
1 580	1 733 17	750.0	1 279.65	6.046	3,50829	2 2 5 0	2 566.4	3 4 6 4	1 921.3	1.864	3 9474

Aire

Nota: Las propiedades P, (presión relativa) y v, (volumen específico relativo) son cantidades adimensionales utilizadas en el análisis de procesos isentrópicos, y no deberán confundirse con las propiedades de presión y volumen específico.

Fuente: Kenneth Wark, Thermodynamics, 4a. ed. (Nueva York: McGraw-Hill, 1983), pp. 785-786, tabla A.5. Publicada originalmente en J. H. Keenan y J. Kaye, Gas Tables (Nueva York: John Wiley & Sons, 1948).

Propieded							TO A SHARE SHARE
		-		-		_	-
I K	n k Menal	U Is I (Israe a I	S°	T	h	U	S°
N	KJ/KIIIOI	KJ/KIIIOI	KJ/KMOI · K	ĸ	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	17 563	12 574	212.066
220	6 391	4 562	182.639	610	17 864	12 792	212.564
230	6 683	4 770	183.938	620	18 166	13 011	213.055
240	6 975	4 979	185.180	630	18 468	13 230	213.541
250	/ 266	5188	186.370	640	18 772	13 450	214.018
260	7 558	5 3 9 6	187.514	650	19075	13 671	214,489
270	7 849	5604	188.614	660	19 380	13 892	214,954
280	8 1 4 1	5813	189.673	670	19 685	14 114	215.413
290	8 4 3 2	6 0 2 1	190.695	680	19 991	14 337	215 866
298	8 669	6 1 9 0	191.502	690	20 297	14 560	216.314
300	8 723	6 2 2 9	191 682	700	20 604	11 701	216 756
310	9014	6 4 3 7	192 638	710	20 004	14 / 04	210.750
320	9 306	6 6 4 5	193 562	720	21 220	15 224	217.192
330	9 597	6 853	194 459	730	21 529	15 460	217.024
340	9 888	7 061	195.328	740	21 839	15 686	218.039
350	10 180	7 270	106 172	750	00 1 40	15 010	010.000
360	10 471	7 4 7 8	190.175	750	22 149	15913	218.889
370	10 763	7 687	190.995	760	22 460	16 141	219.301
380	11 055	7 895	109 570	770	22772	16370	219.709
390	11 347	8 104	190.372	780	23 085	16 599	220.113
050	11 547	0104	199.331	790	23 398	16 830	220.512
400	11 640	8314	200.071	800	23 714	17 061	220.907
410	11 932	8 523	200.794	810	24 027	17 292	221.298
420	12 225	8/33	201.499	820	24 342	17 524	221.684
430	12518	8 943	202.189	830	24 658	17 757	222.067
440	12 811	9153	202.863	840	24 974	17 990	222,447
450	13 105	9 363	203.523	850	25 292	18 224	222.822
460	13 399	9 5 7 4	204.170	860	25 610	18 459	223,194
470	13 693	9 786	204.803	870	25 928	18 695	223.562
480	13 988	9 997	205.424	880	26 248	18 931	223.927
490	14 285	10 210	206.033	890	26 568	19 168	224.288
500	14 581	10 423	206.630	900	26.890	19/07	224 647
510	14 876	10 635	207.216	910	27 210	19 644	225 002
520	15 172	10 848	207.792	920	27 532	19 883	225.002
530	15 469	11 062	208.358	930	27 854	20 1 22	225.333
540	15 766	11 277	208.914	940	28 178	20 362	226.047
550	16 064	11 492	209 461	950	28 501	20 602	226.200
560	16 363	11 707	209 999	960	28 826	20 803	220.389
570	16 662	11 923	210 528	970	20 020	20 644	220.728
580	16 962	12 139	211.049	980	29 151	21 000	227.064
590	17 262	12 356	211.562	990	29 4/0	21 320	227.398

Т	h	ū	S°	Т	ĥ	Ū	S°
К	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	KJ/KMOI · P
1 000	30 1 29	21 815	228.057	1 760	56 227	41 594	247.396
1 020	30 784	22 304	228.706	1 780	56 938	42 139	247.798
1 040	31 442	22 795	229.344	1 800	57 651	42 685	248.195
1 060	32 101	23 288	229.973	1 820	58 363	43 231	248.589
1 080	32 762	23 782	230.591	1 840	59 075	43 ///	248.979
1 100	33 426	24 280	231.199	1 860	59 790	44 324	249.365
1 1 2 0	34 092	24 780	231.799	1 880	60 504	44 873	249.748
1 140	34 760	25 282	232.391	1 900	61 220	45 423	250.128
1 160	35 430	25 786	232.973	1 920	61 936	45 973	250.502
1 180	36 104	26 291	233.549	1 940	62 654	46 524	250.874
1 200	36 777	26 799	234.115	1 960	63 381	47 075	251.242
1 220	37 452	27 308	234.673	1 980	64 090	47 627	251.607
1 240	38 1 2 9	27 819	235.223	2 000	64 810	48 181	251.969
1 260	38 807	28 331	235.766	2 050	66 612	49 567	252.858
1 280	39 488	28 845	236.302	2 100	68 417	50 957	253.726
1 300	40 170	29 361	236.831	2 1 5 0	70 226	52 351	254.578
1 320	40 853	29 378	237.353	2 200	72 040	53 749	255.412
1 340	41 539	30 398	237.867	2 250	73 856	55 149	256.227
1 360	42 227	30 919	238.376	2 300	75 676	56 553	257.027
1 380	42 915	31 441	238.878	2 350	77 496	57 958	257.810
1 400	43 605	31 964	239.375	2 400	79 320	59 366	258.580
1 420	44 295	32 489	239.865	2 4 5 0	81 149	60 779	259.332
1 440	44 988	33 014	240.350	2 500	82 981	62 195	260.073
1 460	45 682	33 543	240.827	2 550	84 814	63 613	260.799
1 480	46 377	34 071	241.301	2 600	86 650	65 033	261.512
1 500	47 073	34 601	241.768	2 650	88 488	66 455	262.213
1 520	47 771	35 133	242.228	2 700	90 328	67 880	262.902
1 540	48 470	35 665	242.685	2 7 5 0	92 171	69 306	263.577
1 560	49 168	36 197	243.137	2 800	94 014	70 734	264.24
1 580	49 869	36 732	243.585	2 850	95 859	72 163	264.895
1 600	50 571	37 268	244.028	2 900	97 705	73 593	265.538
1 620	51 275	37 806	244.464	2 950	99 556	75 028	266.170
1 640	51 980	38 344	244.896	3 000	101 407	76 464	266.793
1 660	52 686	38 884	245.324	3 050	103 260	77 902	267.404
1 680	53 393	39 424	245.747	3 100	105 115	79 341	268.00
1 700	54 099	39 965	246.166	3 150	106 972	80 782	268.60
1 720	54 807	40 507	246.580	3 200	108 830	82 224	269.18
1 740	55 516	41 049	246,990	3 2 5 0	110 690	83 668	269.76

Fuente: Las tablas A.18 a A.25 se adaptaron de Kenneth Wark, Thermodynamics, 4a. ed. (Nueva York: McGraw-Hill, 1983), pp. 787-798. Publicadas originalmente en JANAF, Thermochemical Tables, NSRDS-NBS-37, 1971.

TABLA A	A.19						
Propiedad	les de gas ideal d	el oxígeno, O ₂					
T	h h	Ū Is I //smal	5°	T	h k l/kmol	u k l/kmol	.s° k l/kmol + K
ĸ	KJ/KMOI	KJ/KIIIOI	KJ/KIIIOI · K	600	17 020	12 9/0	226 346
0	0	4 575	106 171	610	1925	13 178	226.877
220	6 404	4 5/ 5	190.171	620	18 572	13 417	227 400
230	6 6 9 4	4 /82	197.401	620	10 005	13 657	227.918
240	6 984	4 989	198.696	640	10 210	13 898	228 429
250	/2/5	5 197	199.000	040	19219	13 050	220.425
260	7 566	5 405	201.027	650	19 544	14 140	228.932
270	7 858	5613	202.128	660	198/0	14 383	229.430
280	8 1 5 0	5822	203.191	670	20 197	14 626	229.920
290	8 4 4 3	6 0 3 2	204.218	680	20 524	14 871	230.405
298	8 682	6 203	205.033	690	20 854	15 116	230.885
300	8 7 3 6	6 2 4 2	205.213	700	21 184	15 364	231.358
310	9 030	6 4 5 3	206.177	710	21 514	15611	231.827
320	9 3 2 5	6 664	207.112	720	21 845	15859	232.291
330	9 620	6 877	208.020	730	22 177	16 107	232.748
340	9 9 1 6	7 090	208.904	740	22 510	16 357	233.201
250	10 212	7 303	209 765	750	22 844	16 607	233.649
260	10 511	7 518	210 604	760	23 178	16 859	234.091
370	10 909	7 733	211 423	770	23 513	17 111	234,528
200	11 100	7 9/9	212 222	780	23 850	17 364	234,960
390	11 409	8 166	213.002	790	24 186	17 618	235.387
400	11 711	8 384	213 765	800	24 523	17 872	235.810
400	12 012	8 603	214 510	810	24 861	18126	236.230
410	12 314	8 822	215 241	820	25 199	18 382	236,644
420	12 514	9.013	215 955	830	25 537	18 637	237.055
430	12 923	9 264	216.656	840	25 877	18 893	237.462
450	12 000	0.497	217 242	850	26 218	19 150	237 864
450	13 220	940/	217.542	860	26 559	19408	238 264
400	13 525	9710	218.676	870	26 899	19 666	238 660
470	13 042	9 935	210.326	880	27 242	19 925	239 051
480	14 151	10 386	219.963	890	27 584	20 185	239.439
450	14 400	10 000	000 500	000	07.009	20 445	220 022
500	14 //0	10614	220.589	900	2/ 928	20 449	239.023
510	15 082	10 842	221.206	910	28 272	20 700	240.203
520	15 395	110/1	221.812	920	20010	20 907	240.580
530	15 708	11 301	222.409	930	28 960	21 228	240.903
540	16 022	11 533	222.997	940	29 306	21 491	241.323
550	16 338	11 765	223.576	950	29 652	21 754	241.689
560	16 654	11 998	224.146	960	29 999	22 017	242.052
570	16 971	12 232	224.708	970	30 345	22 280	242.411
580	17 290	12 467	225.262	980	30 692	22 544	242.768
590	17 609	12 703	225.808	990	31 041	22 809	242.120

T	ĥ	ū	<u>s</u> °	Т	h	ū	<u>s</u> °
ĸ	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · k
1 000	31 389	23 075	243.471	1 760	58 880	44 247	263.861
1 020	32 088	23 607	244.164	1 780	59 624	44 825	264.283
1 040	32 789	24 142	244.844	1 800	60 371	45 405	264.701
1 060	33 490	24 677	245.513	1 820	61 1 18	45 986	265.113
1 080	34 194	25 214	246.171	1 840	61 866	46 568	265.521
1 100	34 899	25 753	246.818	1 860	62 616	47 151	265.925
1 1 2 0	35 606	26 294	247.454	1 880	63 365	47 734	266.326
1 1 4 0	36 314	26 836	248.081	1 900	64 116	48 319	266.722
1 160	37 023	27 379	248.698	1 920	64 868	48 904	267.115
1 180	37 734	27 923	249.307	1 940	65 620	49 490	267.505
1 200	38 447	28 469	249.906	1 960	66 374	50 078	267.891
1 220	39 162	29 018	250.497	1 980	67 127	50 665	268.275
1 240	39 877	29 568	251.079	2 000	67 881	51 253	268.655
1 260	40 594	30 1 1 8	251.653	2 050	69772	52 727	269.588
1 280	41 312	30 670	252.219	2 100	71 668	54 208	270.504
1 300	42 033	31 224	252.776	2 1 5 0	73 573	55 697	271.399
1 320	42 753	31 778	253.325	2 200	75 484	57 192	272.278
1 340	43 475	32 334	253.868	2 250	77 397	58 690	273.136
1 360	44 198	32 891	254.404	2 300	79 316	60 193	273.891
1 380	44 923	33 449	254.932	2 350	81 243	61 704	274.809
1 400	45 648	34 008	255.454	2 400	83 174	63 219	275.625
1 420	46 374	34 567	255.968	2 450	85 112	64 742	276.424
1 440	47 102	35 129	256.475	2 500	87 057	66 271	277.207
1 460	47 831	35 692	256.978	2 550	89 004	67 802	277.979
1 480	48 561	36 256	257.474	2 600	90 956	69 339	278.738
1 500	49 292	36 821	257.965	2 650	92 916	70 883	279.485
1 520	50 024	37 387	258.450	2 700	94 881	72 433	280.219
1 540	50 7 56	37 952	258.928	2 750	96 852	73 987	280.942
1 560	51 490	38 520	259.402	2 800	98 826	75 546	281.654
1 580	52 224	39 088	259.870	2 850	100 808	77 112	282.357
1 600	52 961	39 658	260.333	2 900	102 793	78 682	283.048
1 620	53 696	40 227	260.791	2 950	104 785	80 258	283.728
1 640	54 434	40 799	261.242	3 000	106 780	81 837	284.399
1 660	55 172	41 370	261.690	3 050	108 778	83 419	285.060
1 680	55 912	41 944	262.132	3 100	110 784	85 009	285.713
1 700	56 652	42 517	262.571	3 150	112 795	86 601	286.355
1720	57 394	43 093	263.005	3 200	114 809	88 203	286.989
1740	58 136	43 669	263,435	3 2 5 0	116 827	89 804	287.614

TABLA A.	20		THE CONTRACTOR				
Propiedades	s de gas ideal de	el dióxido de ca	rbono, CO ₂	1.50 I for a large	Salarin disettin		The short hard
Т	ĥ	ū	<u>s</u> °	Т	ĥ	ū	<u>s</u> °
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	22 280	17 291	243.199
220	6 601	4 772	202.966	610	22 7 5 4	17 683	243.983
230	6 938	5 0 2 6	204.464	620	23 231	18 076	244.758
240	7 280	5 285	205.920	630	23 709	18 471	245.524
250	7 627	5 548	207.337	640	24 190	18 869	246.282
260	7 979	5817	208.717	650	24.674	19 270	247.032
270	8 335	6 0 9 1	210.062	660	25 160	19672	247.773
280	8 6 9 7	6 3 6 9	211.376	670	25 648	20 078	248.507
290	9 0 6 3	6 6 5 1	212.660	680	26 1 38	20 484	249.233
298	9 364	6 885	213.685	690	26 631	20 894	249.952
300	9 4 3 1	6 939	213.915	700	27 125	21 305	250.663
310	9 807	7 230	215.146	710	27 622	21719	251.368
320	10 186	7 526	216.351	720	28 121	22 134	252.065
330	10 570	7 826	217.534	730	28 622	22 522	252.755
340	10 959	8 1 3 1	218.694	740	29 124	22 972	253.439
350	11 351	8 4 3 9	219.831	750	29 629	23 393	254,117
360	11 748	8 7 5 2	220,948	760 ·	20 135	23 817	254,787
370	12 148	9 0 6 8	222.044	770	30 644	24 242	255,452
380	12 552	9 3 9 2	223.122	780	31 154	24 669	256,110
390	12 960	9718	224.182	790	31 665	25 097	256.762
400	13 372	10 046	225.225	800	32 179	25 527	257.408
410	13 7/87	10 378	226.250	810	32 694	25 959	258.048
420	14 206	10714	227.258	820	33 212	26 394	258.682
430	14 628	11 053	228.252	830	33 730	26 829	259.311
440	15 054	11 393	229.230	840	34 251	27 267	259.934
450	15 483	11742	230.194	850	34 773	27 706	260.551
460	15 916	12 091	231.144	860	35 296	28 1 25	261.164
470	16 351	12 444	232.080	870	35 821	28 588	261.770
480	16 791	12 800	233.004	880	36 347	29 031	262.371
490	17 232	13 158	233.916	890	36 876	29 476	262.968
500	17 678	13 521	234.814	900	37 405	29 922	263.559
510	18 126	13 885	235.700	910	37 935	30 369	264,146
520	18 576	14 253	236.575	920	38 467	30 818	264.728
530	19 029	14 622	237.439	930	39 000	31 268	265.304
540	19 485	14 996	238.292	940	39 535	31 719	265.877
550	19 945	15 372	239.135	950	40 070	32 171	266,444
560	20 407	15 751	239.962	960	40 607	32 625	267.007
570	20 870	16 131	240,789	970	41 145	33 081	267,566
580	21 337	16 515	241.602	980	41 685	33 537	268.119
590	21 807	16 902	242.405	990	42 226	33 995	268.670

Т	ħ	ū	5°	Т	h	ū	s°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	К	kJ/kmol	kJ/kmol	kJ/kmol · K
1 000	42 769	34 455	269.215	1 760	86 420	71 787	301.543
1 0 2 0	43 859	35 378	270.293	1 780	87 612	72812	302.217
1 040	44 953	36 306	271.354	1 800	88 806	73 840	302.884
1 060	46 051	37 238	272.400	1 820	90 000	74 868	303.544
1 080	47 153	38 174	273.430	1 840	91 196	75 897	304.198
1 100	48 258	39 112	274.445	1 860	92 394	76 929	304.845
1 1 2 0	49 369	40 057	275.444	1 880	93 593	77 962	305.487
1 1 4 0	50 484	41 006	276.430	1 900	94 793	78 996	306.122
1 160	51 602	41 957	277.403	1 920	95 995	80 031	306.751
1 180	52 724	42 913	278.361	1 940	97 197	81 067	307.374
1 200	53 848	43 871	297.307	1 960	98 401	82 105	307.992
1 220	54 977	44 834	280.238	1 980	99 606	83 144	308.604
1 240	56 108	45 799	281.158	2 000	100 804	84 185	309.210
1 260	57 244	46 768	282.066	2 050	103 835	86 791	310.701
1 280	58 381	47 739	282.962	2 100	106 864	89 404	312.160
1 300	59 522	48 713	283.847	2 1 5 0	109 898	92 023	313.589
1 320	60 666	49 691	284.722	2 200	112 939	94 648	314.988
1 340	61 813	50 672	285.586	2 250	115 984	97 277	316.356
1 360	62 963	51 656	286.439	2 300	119 035	99 912	317.695
1 380	64 116	52 643	287.283	2 350	122 091	102 552	319.011
1 400	65 271	53 631	288.106	2 400	125 152	105 197	320.302
1 420	66 427	54 621	288.934	2 4 5 0	128 219	107 849	321.566
1 4 4 0	67 586	55 614	289.743	2 500	131 290	110 504	322.808
1 460	68 7 4 8	56 609	290.542	2 550	134 368	113 166	324.026
1 480	66 911	57 606	291.333	2 600	137 449	115 832	325.222
1 500	71 078	58 606	292.114	2 650	140 533	118 500	326.396
1 520	72 246	59 609	292.888	2 700	143 620	121 172	327.549
1 540	73 417	60 613	292.654	2 7 5 0	146 713	123 849	328.684
1 560	74 590	61 620	294.411	2 800	149 808	126 528	329.800
1 580	76 767	62 630	295.161	2 850	152 908	129 212	330.896
1 600	76 944	63 741	295.901	2 900	156 009	131 898	331.975
1 620	78 123	64 653	296.632	2 950	159 117	134 589	333.037
1 640	79 303	65 668	297.356	3 000	162 226	137 283	334.084
1 660	80 486	66 592	298.072	3 050	165 341	139 982	335.114
1 680	81 670	67 702	298.781	3 100	168 456	142 681	336.126
1 700	82 856	68 721	299.482	3 150	171 576	145 385	337.124
1 720	84 043	69 742	300.177	3 200	174 695	148 089	338.109
1740	85 231	70 764	300.863	3 2 5 0	177 822	150 801	339.069

Т	h	ū	5°	Т	ħ	ū	<u>s</u> °
К	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · k
0	0	0	0	600	20 402	15 413	212.920
220	7 295	5 4 6 6	178.576	610	20 765	15 693	213.529
230	7 628	5715	180.054	620	21 130	15 975	214.122
240	7 961	5 965	181.471	630	21 495	16 257	214.707
250	8 2 9 4	6 215	182.831	640	21 862	16 541	215.285
260	8 6 2 7	6 4 6 6	184.139	650	22 230	16 826	215.856
270	8 961	6716	185.399	660	22 600	17 112	216.419
280	9 2 9 6	6 968	186.616	670	22 970	17 399	216.976
290	9 631	7 219	187.791	680	23 342	17 688	217.527
298	9 904	7 425	188.720	690	23 714	17 978	218.071
300	9 966	7 472	188.928	700	24 088	18 268	218.610
310	10 302	7 7 2 5	190.030	710	24 464	18 561	219.142
320	10 639	7 978	191.098	720	24 840	18854	219.668
330	10 976	8 2 3 2	192.136	730	25 218	19148	220.189
340	11 314	8 4 8 7	193.144	740	25 597	19 444	220.707
350	11 652	8742	194.125	750	25 977	19741	221.215
360	11 992	8 9 9 8	195.081	760	26 358	20 039	221.720
370	12 331	9 2 5 5	196.012	770	26 741	20 3 39	222.221
380	12 672	9 5 1 3	196,920	780	27 125	20 639	222.717
390	13 014	9771	197.807	790	27 510	20 941	223.207
400	13 356	10 030	198.673	800	27 896	21 245	223.693
410	13 699	10 290	199.521	810	28 284	21 549	224.174
420	14 043	10 551	200.350	820	28 672	21 855	224.651
430	14.388	10813	201.160	830	29 062	22 162	225.123
440	14 734	11 075	201.955	840	29 454	22 470	225.592
450	15 080	11 339	202.734	850	29 846	22 779	226.057
460	15 428	11 603	203.497	860	30 240	23 090	226.517
470	15 777	11 869	204.247	870	30 635	23 402	226.973
480	16 126	12 135	204,982	880	31 032	23 715	227.426
490	16 477	12 403	205.705	890	31 429	24 029	227.875
500	16 828	12 671	206.413	900	31 828	24 345	228.321
510	17 181	12 940	207.112	910	32 228	24 662	228.763
520	17 534	13 211	207.799	920	32 629	24 980	229.202
530	17 889	13 482	208,475	930	33 032	25 300	229.637
540	18 245	13 755	209.139	940	33 436	25 621	230.070
550	18 601	14 028	209.795	950	33 841	25 943	230.499
560	18 959	14 303	210,440	960	34 247	26 265	230.924
570	19318	14 579	211.075	970	34 653	26 588	231.347
580	19678	14 856	211 702	980	35 061	26 913	231.767
500	20.020	15 134	212 220	000	35 172	27 240	232 184

TABLA A	.23				Stand Sections	a set of the	
Propiedade	es de gas ideal d	lel vapor de agu	a, H ₂ O (<i>Conclusión</i>)				
Т	ħ	ū	S°	Т	h	ū	S°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
1 000	35 882	27 568	232.597	1 760	70 535	55 902	258.151
1 020	36 709	28 228	233.415	1 780	71 523	56 723	258.708
1 040	37 542	28 895	234.223	1 800	72 513	57 547	259.262
1 060	38 380	29 567	235.020	1 820	73 507	58 375	259.811
1 080	39 223	30 243	235.806	1 840	74 506	59 207	260.357
1 100	40 071	30 925	236.584	1 860	75 506	60 042	260.898
1 1 2 0	40 923	31 611	237.352	1 880	76 511	60 880	261.436
1 1 4 0	41 780	32 301	238.110	1 900	77 517	61 720	261.969
1 160	42 642	32 997	238.859	1 920	78 527	62 564	262.497
1 180	43 509	33 698	239.600	1 940	79 540	63 411	263.022
1 200	44 380	34 403	240.333	1 960	80 555	64 259	263.542
1 220	45 256	35 1 1 2	241.057	1 980	81 573	65 111	264.059
1 240	46 137	35 827	241.773	2 000	82 593	65 965	264.571
1 260	47 022	36 546	242,482	2 050	85 156	68 111	265.838
1 280	47 912	37 270	243.183	2 100	87 735	70 275	267.081
1 300	48 807	38,000	243 877	2 1 5 0	90,330	72 454	268.301
1 320	49 707	38 732	244 564	2 200	92 940	74 649	269,500
1 340	50 612	39 470	245 243	2 250	95 562	76 855	270.679
1 360	51 521	40 213	245 915	2 300	98 199	79 076	271.839
1 380	52 434	40 960	246.582	2 350	100 846	81 308	272.978
1 400	53 351	<i>A</i> 1 7 11	247 241	2 400	103 508	83 553	274 098
1 400	54 273	41 / 11	247.241	2 450	106 183	85 811	275 201
1 420	54 275	42 400	247.095	2 500	108 868	88 082	276 286
1 440	55 190	43 220	240.343	2 550	111 565	90 364	277 354
1 460	57 062	43 909	249.820	2 600	114 273	92 656	278.407
1 500	57 000	45 500	250 450	2650	116 001	01 058	270 111
1 500	57 999	40 020	250.450	2 0 0 0	110 591	94 950	280,462
1 520	58 942	46 304	251.074	2700	119/1/	97 209	200.402
1 540	59 888	47 084	201.093	2750	122 405	101 017	201.404
1 560	60 838	4/868	252.305	2 800	125 198	101 917	202.400
1 580	61 /92	48 655	252.912	2 850	12/ 952	104 200	203.429
1 600	62 748	49 445	253.513	2 900	130 717	106 605	284.390
1 620	63 709	50 240	254.111	2 950	133 486	108 959	285.338
1 640	64 675	51 039	254.703	3 000	136 264	111 321	286.273
1 660	65 643	51 841	255.290	3 050	139 051	113 692	287.194
1 680	66 614	52 646	255.873	3 100	141 846	116 072	288.102
1 700	67 589	53 455	256.450	3 150	144 648	118 458	288.999
1720	68 567	54 267	257.022	3 200	147 457	120 851	289.884
1740	69 550	55 083	257.589	3 250	150 272	123 250	290.756

 $\mathbf{H}_{2}\mathbf{O}$

TABLA A.26

Entalpía de formación, función de Gibbs de formación y entropía absoluta a 25°C, 1 atm

Sustancia	Fórmula	Π°; kJ/kmol	gr k l/kmol	s° k l/kmol → K
Acetileno	CoHo(g)	+226 730	+209 170	200.85
Agua	$H_{-}O(\ell)$	-285 830	-237 180	69.92
Alcohol etílico	$C_0H_0H(\ell)$	-277 690	-174 890	160.70
Alcohol etílico	$C_{e}H_{e}OH(g)$	-235 310	-168 570	282 59
Alcohol metílico	CH ₂ OH(ℓ)	-238 660	-166 360	126.80
Alcohol metílico	$CH_{2}OH(g)$	-200 670	-162 000	239 70
Amoniaco	NH ₂ (g)	-46 190	-16 590	192 33
Benceno	$C_c H_c(g)$	+82 930	+129 660	269 20
Carbón	C(s)	0	0	5 74
Dióxido de carbono	$CO_{2}(g)$	-393 520	-394 360	213.80
Etano	$C_{-}H_{c}(g)$	-84 680	-32 890	229 49
Etileno	$C_2H_4(g)$	+52 280	+68 120	219.83
Hidrógeno	H(g)	+218 000	+203 290	114.72
Hidrógeno	$H_{2}(g)$	0	0	130.68
Hidroxilo	OH(g)	+39 460	+34 280	183.70
Metano	$CH_{4}(g)$	-74 850	-50 790	186.16
Monóxido de carbono	CO(g)	-110 530	-137 150	197.65
n-butano	$C_4H_{10}(g)$	-126 150	-15 710	310.12
n-dodecano	$C_{12}H_{25}(g)$	-291 010	+50 150	622.83
Nitrógeno	N(g)	+472 650	+455 510	153.30
Nitrógeno	$N_2(g)$	0	0	191.61
n-octano	$C_8H_{18}(\ell)$	-249 950	+6 610	360.79
n-octano	$C_8H_{18}(g)$	-208 450	+16 530	466.73
Oxígeno	O(g)	+249 190	+231 770	161.06
Oxígeno	$O_2(g)$	0	0	205.04
Peróxido de hidrógeno	$H_2O_2(g)$	-136 310	-105 600	232.63
Propano	$C_3H_8(g)$	-103 850	-23 490	269.91
Propileno	$C_3H_6(g)$	+20 410	+62 720	266.94
Vapor de agua	$H_2O(g)$	-241 820	-228 590	188.83

Fuente: De JANAF, Thermochemical Tables (Midland, MI: Dow Chemical Co., 1971); Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; y API Research Project 44 (Carnegie Press, 1953).

LONGITUD MEDIA DEL HAZ L

TABLA 12-4	
Longitud media del haz L para varias formas del volumen de gas	
Configuración geométrica del volumen de gas	L
Hemisferio de radio R irradiando hacia el centro de su base	R
Esfera de diámetro D irradiando hacia su superficie	0.65 <i>D</i>
Cilindro circular infinito de diámetro <i>D</i> irradiando hacia la superficie curva	0.95 <i>D</i>
Cilindro circular semiinfinito de diámetro D irradiando hacia su base	0.65D
Cilindro circular semiinfinito de diámetro D irradiando hacia el centro de su base	0.90 <i>D</i>
Cilindro semicircular infinito de radio R irradiando hacia el centro de su base	1.26 <i>R</i>
Cilindro circular de altura igual al diámetro <i>D</i> irradiando hacia toda la superficie	0.60 <i>D</i>
Cilindro circular de altura igual al diámetro D irradiando hacia el centro de su base	0.71 <i>D</i>
Losa infinita de espesor D irradiando hacia cualquiera de los dos planos que la limitan	1.80 <i>D</i>
Cubo de longitud L por lado irradiando hacia cualquiera de las caras	0.66L
Forma arbitraria de volumen $V{\bf y}$ área superficial ${\cal A}_s$ irradiando hacia la superficie	

EMISIVIDADES DE LOS GASES H_2O y CO_2

FACTORES DE CORRECCIÓN PARA LAS EMISIVIDADES DE LOS GASES H_2O y CO_2

corrección $\Delta \varepsilon$ de la emisividad

Corrección $\Delta \varepsilon$ de la emisividad para usarse en $\varepsilon_g = \varepsilon_w + \varepsilon_c - \Delta \varepsilon$ cuando están presentes tanto el CO₂ como el vapor de H₂O en una mezcla de gases (1 m · atm = 3.28 ft · atm) (tomado de Hottel, 1954, Ref. 6).

Detalles de programación para la quema de 1 *k*mol de octano y 20,86 *k*mol de aire, ecuación 62

$$C_8H_{18} + 20.86(O_2 + 3.76N_2) \rightarrow 8CO_2 + 9H_2O + 8.36O_2 + 78.434N_2$$
 (62)

CONSUMO DE GASOLINA

REFERENCIAS:

- Anexo 2
- Tabla 3

Si a 95 km/h consume 7.48 lt por cada 100km

$$95\frac{km}{h} \rightarrow 7.48\frac{lt}{100km}$$

La densidad del combustible es:

$$\delta = 703 kg/m^3 \approx 703 g/lt \text{ ya que} \qquad 703 \frac{kg}{m^3} * \frac{1 m^3}{1000 lt} * \frac{1000 g}{1 kg} = 703 g/lt$$

Si consume: $7.48lt \to 100km$ $x \to 95km$ $x = \frac{95*7.48}{100} = 7.106 \, lt/95km$

Entonces sí:

$$7.106lt \rightarrow 95km$$

$$y \rightarrow 1km$$

$$y = \frac{1*7.106}{95} = 0.0748 \ lt/km$$

Por lo tanto, al multiplicar por la densidad:

$$0.0748 \frac{lt}{km} * 703 \frac{g}{lt} = 52.58 \ g/km$$

Entonces a 95 km/h consume 52.58 g/km.

Nota: Y así para las demás velocidades.

INGRESO DE OCTANO POR ADMISIÓN

REFERENCIA:

• Tabla 5

Sabemos que a $95 \frac{km}{h} \rightarrow 3642 \ rpm \rightarrow 52.58 \frac{g}{km}$

Consumo de combustible en kg/100km:

$$58.58g \rightarrow 1km$$

$$x \rightarrow 100km$$

$$x = 5258 \frac{g}{100km} * \frac{1kg}{1000g}$$

$$x = 5.26 \ kg/100km$$

Tiempo t:

Si

$$95km \rightarrow 1h$$

$$100km \rightarrow x$$

$$x = 1.053 h$$

$$60 min1$$

$$1.053h * \frac{60 \text{ min}}{1 \text{ h}} = 63.18 \text{ min} \approx 1h; 3 \text{ min}; 9.5 \text{ seg}$$

Admisiones de octano para el tiempo t:

Ya que el número de admisiones es el doble de revoluciones entonces de acuerdo a la figura 23 tendríamos \longrightarrow 230101.56 * 2 = 460057.44 admisiones

Ingreso de octano por admisión en kg:

$$\frac{octano}{admisiones} = \frac{5.26}{460057.44} = 1.14x10^{-5} \ kg/admin$$

Nota: y así para los demás regímenes

CONSUMO (\dot{m}) – GASTO DE COMBUSTIBLE POR UNIDAD DE TIEMPO EN kg/s

A
$$95 \frac{km}{h} \rightarrow 3642 \ rpm$$

 $\frac{460057.44 \ admisiones}{(1.053h * 3600s)} = 121.4 \ adm/s$

🥢 Ingreso de octano por admisión

$$121.4\frac{adm}{s} * 0.0000114\frac{kg}{adm} = 0.0014kg/s$$

Entonces a 3642 rpm se tendrá un consumo de octano de 0.0014kg/s

Nota: y así para los demás regímenes

MASAS DE AIRE

REFERENCIA:

• Item 2.1

El volumen que ocupa el aire y el octano va a ser igual al volumen libre por lo tanto

Anexo 5E
$$V_A + V_{OCT} = V_L$$

 $\delta = \frac{m}{v} \to V = \frac{m}{\delta}$

Reemplazando que
$$V = \frac{m}{\delta}$$
 para aire y octano tenemos

$$\frac{m_a}{\delta_a} + \frac{m_{oct}}{\delta_{oct}} = V_l$$

Despejando m_a

$$m_a = \left(V_L - \frac{m_{oct}}{\delta_{oct}}\right) * \delta_a$$

Como datos tenemos las *densidades* $\delta_{oct} = 703 \frac{kg}{m^3}$, $\delta_a = 1.204 \frac{kg}{m^3}$, el $V_L = 278 cm^3$ y la $m_{oct} = 0.0000114 kg$ (que fue obtenida del ingreso de octano por admisión anexo 13)

Utilizando la ecuación $m_a = \left(V_L - \frac{m_{oct}}{\delta_{oct}}\right) * \delta_a$.

A 3642 $rpm \rightarrow m_{oct} = 0.0000114 kg$ Tenemos:

$$m_a = 0.000335 \, kg$$

A 4446 $rpm \rightarrow m_{oct} = 0.0000133 \ kg$ Tenemos:

$$m_a = 0.000319 \, kg$$

Nota: y así para los demás regímenes

DETERMINACIÓN DE LAS RELACIONES AIRE-COMBUSTIBLE PARADETERMINAR LA CANTIDAD DE AIRE INGRESADO EN CADA RÉGIMEN

REFERENCIA:

- Item 2.2.1
- Anexo 5E

Relación aire combustible

$$\frac{m_a}{\delta_a} + \frac{m_{oct}}{\delta_{oct}} = 0.000278 \ mm^3(V_L)$$
$$V_L = 278 \ cm^3 \rightarrow anexo \ 5E$$

Sabemos que la relación $AC = \frac{m_a}{m_{oct}}$ **despejando** $m_a = AC * m_{oct}$

Por lo tanto reemplazando m_a en $\frac{m_a}{\delta_a} + \frac{m_{oct}}{\delta_{oct}} = 0.000278 \ mm^3(V_L)$ nos queda

$$\frac{AC * m_{oct}}{\delta_a} + \frac{m_{oct}}{\delta_{oct}} = 0.000278$$

Despejando AC

$$AC = \left(0.000278 - \frac{m_{oct}}{\delta_{oct}}\right) * \frac{\delta_a}{m_{oct}}$$

Determinación de la cantidad de aire ingresado para cada régimen

A 3642 $rpm \rightarrow m_{oct} = 0.0000114 \ kg$ (ítem 2.1 / tabla 8)

Como dato: Densidades $\delta_{oct} = 703 \frac{kg}{m^3}$, $\delta_a = 1.204 \frac{kg}{m^3}$

Reemplazando: AC = 29.35

Y
$$AC = \frac{m_a}{m_{oct}} = \frac{a*4.76*29}{1*114}$$

Donde las masas molares del aire y el octano son $M_a = \frac{29kg}{kmol}$; $M_{oct} = \frac{114kg}{kmol}$

Utilizando la ec AC y reemplazando tenemos

$$\frac{a*4.76*29}{1*114} = 29.35$$

Despejando a

$$a = 24.25$$

Entonces para la cantidad a = 24.25 kmol de aire se tiene la ecuación

$$C_8H_{18} + 24.25(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 11.75O_2 + 91.18N_2$$

Nota: y así para cada régimen se encuentra la cantidad de aire ingresado

REGÍMNENES rpm	ECUACIONES QUÍMICAS		
3642	$C_8H_{18} + 24.25(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 11.75O_2 + 91.18N_2$		
4446	$C_8H_{18} + 20.86(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 8.36O_2 + 78.434N_2$		
5020	$C_8H_{18} + 17.86(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 5.35O_2 + 67.12N_2$		
5712	$C_8H_{18} + 15.61(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 3.11O_2 + 58.7N_2$		
ANEXO 17

CURVAS Y ECUACIONES PARA Qsal y Wrev

Q_{sal}

REFERENCIAS:

- Tabla 13
- Excel Q_{sal}

A 3642 rpm

Datos obtenidos de la tabla 13 $P_1(923; 23276.95)$ $P_2(1023; 19615.02)$

Utilizando la ec de la recta $Q_{sal} - Q_{sal1} = m(T - T_1)$

Pendiente $m = \frac{Q_2 - Q_1}{T_2 - T_1}$

$$m = \frac{19615.02 - 23276.95}{1023 - 923}$$
$$m = -36.62$$

Por lo tanto Q_{sal} queda en función de la temperatura T y se obtienen las diferentes figuras para los distintos regímenes

$$Q_{sal} - 23276.95 = -36.62(T - 932)$$

 $Q_{sal} = -36.62T + 57076$

Wrev

REFERENCIAS:

• Tabla 15

A 3642 rpm

De igual forma utilizando la ec de la recta $W_{rev} - W_{rev1} = m(T - T_1)$

Pendiente
$$m = \frac{W_{rev2} - W_{rev1}}{T_2 - T_1}$$

m = 20.26

Por lo tanto W_{rev} queda en función de la temperatura T y se obtienen las diferentes figuras para los distintos regímenes

$$W_{rev} - 13260.51 = 10.26(T - 932)$$

 $W_{rev} = 10.26T + 3787.013$

Nota: se realiza de igual forma para los demás regímenes

ANEXO 18

PROMEDIO DE LAS CANTIDADES MOLARES

REGÍMNENES rpm	ECUACIONES QUÍMICAS
3642	$C_8H_{18} + 24.25(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 11.75O_2 + 91.18N_2$
4446	$C_{8}H_{18} + 20.86(O_{2} + 3.76N_{2}) \longrightarrow 8CO_{2} + 9H_{2}O + 8.36O_{2} + 78.434N_{2}$
5020	$C_8H_{18} + 17.86(O_2 + 3.76N_2) \longrightarrow 8CO_2 + 9H_2O + 5.35O_2 + 67.12N_2$
5712	$C_{8}H_{18} + 15.61(O_{2} + 3.76N_{2}) \longrightarrow 8CO_{2} + 9H_{2}O + 3.11O_{2} + 58.7N_{2}$

8 para CO₂

9 para H₂O

 $\frac{\frac{11.75+8.36+5.35+3.11}{4}}{\frac{9.81+78.43+67.12+58.7}{4}} = 7.143 \text{ para } O_2$

Por lo tanto los gases de combustión promedio

 $8CO_2 + 9H_2O + 7.143O_2 + 73.86N_2$ 8+9+7.143+73.86 = 98.003

%

 $98.003 \rightarrow 100\%$ $8 \rightarrow X_{CO2}$ $X_{CO2} = 8.163\%$

Y así para los demás elementos.

FRANCCIONES MOLARES Yi

Se encuentra dividiendo el número de átomos del elemento a encontrar para la suma de todos los números de átomos de los elementos de los productos.

$$\frac{8}{8+9+7.143+73.86} = 0.082 \ CO_2 \ Y_i$$
$$\frac{9}{8+9+7.143+73.86} = 0.0918 \ H_2O \ Y_i$$

TIEMPO DEDURACIÓN DELA RADIACIÓN DE LOS GASES A LAS PAREDES DEL CILINDRO Y PERDIDA DE ENERGIA POR UNIDAD DE MASA REFERENCIAS:

- Tabla 16
- Fig 23

Tiempo de duración de la radiación de los gases en las paredes del cilindro A 3642 rpm

$$3642 \ \frac{rev}{min} * \frac{1 \ min}{60 \ seg} = 60.7 \ \frac{rev}{s}$$

Entonces si a:

$$60 rev \rightarrow 1 seg$$

$$1 rev \rightarrow x$$

$$x = 0.0165 seg$$

Eso quiere decir que los gases permanecen durante 0.0165 seg dentro del cilindro Nota: así para cada régimen

Perdida de energía por unidad de masa

A 3642 rpm el trabajo consumido es 16.5 J del anexo 21 y tenemos la $m_a = 0.000355 kg$ que fue obtenida anteriormente, por lo tanto:

$$\frac{16.47\,J}{0.000335\,kg} = 49164.18\,J/kg$$

La pérdida de energía es de 49.164 KJ/kg Nota: así para cada régimen

TRABAJO Y POTENCIA CONSUMIDA POR RADIACIÓN

REFERENCIAS:

• Tabla 17

A 3642 rpm

$$Q_{neto} = 1000w \rightarrow ec \ 56$$

 $1000 \frac{J}{s} * 0.0165 \ s = 16.5 \ J = M$
 $Pot = \frac{nM}{9550}$
 $Pot = \frac{3642 * 16.5}{9550}$
 $Pot = 6.29 \ Kw$

Nota: así para los distintos regímenes

TRABAJO CONSUMIDO POR FRICCIÓN Y POTENCIA CONSUMIDA

Trabajo consumido por fricción

Del ciclo de Otto

$$PME = \frac{W_{neto}}{V_1 \left(1 - \frac{1}{r}\right)}$$
$$W_{neto} = PME * V_1 \left(1 - \frac{1}{r}\right)$$

r = 9.77

Donde

$$V_1 = \frac{RT_1}{P_1}$$

R = 0.287T = 293 k $P_1 = 100 kPa$

Por lo tanto a 3642 rpm → PME = 122.52 kPa

$$W_{neto} = 122.52 * 0.841 \left(1 - \frac{1}{9.77} \right)$$
$$W_{neto} = 92.5 \ KJ/kg$$

Nota: así para cada régimen

Potencia consumida

Al trabajo hay que llevarlo a J

92.5
$$\frac{kJ}{kg} * 0.000335 kg * \frac{1000}{1k} = 30.98 J$$

Entonces a 3642 rpm el torque perdido es 30.98J.

Si

$$T = \frac{9550Pot}{n}$$

$$Pot = \frac{T * n}{9550} = \frac{30.98 * 3642}{9550} = 11.81 \, Kw$$

Nota: así para cada régimen