UNIVERSIDAD POLITÉCNICA SALESIANA
SEDE QUITO

CARRERA: INGENIERÍA AGROPECUARIA

Tesis previa la obtención del Título de:

INGENIERA AGROPECUARIA

TEMA:

"INFLUENCIA DE DOS MEDIOS DE CULTIVO EN LA PRODUCTIVIDAD DE TRES CULTIVARES DE COLIFLOR (Brassica Oleracea, L) DE COLORES (SUNSET, VERDE TREVI Y GRAFITI), BAJO CONDICIONES ORGÁNICAS DE CULTIVO, A 2.450 m.s.n.m. EL QUINCHE–PICHINCHA 2013"

AUTORA:

CEVALLOS GUATEMAL GINA ALEXANDRA

DIRECTORA:

ING. GINA TAFUR

QUITO, JULIO DEL 2013
DECLARATORIA DE RESPONSABILIDAD

Los conceptos desarrollados, resultados, conclusiones y recomendaciones son de exclusiva responsabilidad de la autora.

Quito, Julio 2013

(f) ______________________________

GINA ALEXANDRA CEVALLOS GUATEMAL
DEDICATORIA

A mi Dios por haberme dado la vida e iluminado mi ser, por brindarme el maravilloso milagro de tener una familia y por haber sido mi pilar y fortaleza para llegar a cumplir mis más anheladas metas.

A mis padres: Papito Manuel y Mamita Lali, por ser mi apoyo incondicional, por su amor y sacrificio entregado con la más hermosa abnegación, por todo lo que me han dado benditos sean.

A mi hijo Jairo Martín mi tesoro más valioso y lo más hermoso que tengo, cada sonrisa suya me ayuda a romper barreras y salir adelante

A mi Esposo Freddy Raúl, sin cuyo apoyo no hubiese sido posible el que pueda culminar con éxito mi carrera

A mis hermanos Lucy, Katty, y Henry por su cariño y por el apoyo que me han brindado durante toda mi vida.

A mis abuelitos Luis y María (.), con quienes compartí momentos inolvidables, durante mi niñez.

A todas aquellas personas que han confiado en mí, para ustedes éste mi trabajo.

Alexandra Cevallos
AGRADECIMIENTO

Me complace de sobre manera a través de este trabajo exteriorizar mi sincero agradecimiento a la Universidad POLITÉCNICA SALESIANA, carrera de Ingeniería Agropecuaria y en ella a los distinguidos docentes quienes con su profesionalismo y ética puesto de manifiesto en las aulas enrumban a cada uno de los que acudimos con sus conocimientos que nos servirán para ser útiles a la sociedad.

Al ingeniero Janss Beltrán Director de la Carrera de Ingeniería Agropecuaria.

A mi Directora Ingeniera Gina Tafur quien con su experiencia como docente ha sido la guía idónea, durante el proceso que ha llevado el realizar esta tesis, me ha brindado el tiempo necesario, como la información para que este anhelo llegue a ser felizmente culminado.

Al ingeniero Freddy Cuarán lector de tesis.

A todas aquellas personas principalmente a la familia de mi esposo: Don Raúl, Sra. Hilda y Rubén porque de una u otra manera contribuyeron con un granito de arena con el desarrollo y culminación de la presente investigación.

Alexandra Cevallos
ÍNDICE GENERAL

1. INTRODUCCIÓN ... 15
2. OBJETIVOS .. 16
 2.1. Objetivo General ... 16
 2.2. Objetivos Específicos .. 16
3. MARCO TEÓRICO ... 17
 3.1. Cultivo de coliflor ... 17
 3.1.1. Origen y distribución Geográfica 17
 3.1.2. Clasificación botánica ... 17
 3.1.3. Morfología ... 17
 3.1.4. Valor nutricional ... 18
 3.2. Requerimientos del cultivo .. 19
 3.2.1. Suelo ... 19
 3.2.2. pH ... 20
 3.2.3. Agua ... 20
 3.2.4. Clima ... 20
 3.2.5. Luminosidad ... 20
 3.2.6. Alturas ... 21
 3.2.7. Fertilización ... 21
 3.2.8. Conductividad Eléctrica 24
 3.3. Híbridos de coliflor de colores 25
 3.3.1. Coliflor Sunset F1 ... 25
 3.3.2. Coliflor Grafiti F1 .. 25
 3.3.3. Coliflor Verde Trevi F1 26
 3.4. Manejo de cultivo .. 27
 3.4.1. Preparación de terreno 27
 3.4.2. Semillero ... 27
 3.4.3. Trasplante ... 27
 3.4.4. Riego ... 28
 3.4.5. Labores culturales .. 28
 3.4.6. Cosecha .. 28
 3.4.7. Rendimiento ... 28
3.5. Manejo de plagas y enfermedades ... 29
3.5.1. Plagas ... 29
3.5.2. Enfermedades .. 29
3.6. Pella de la coliflor ... 30
3.6.1. Forma de la pella (cabeza) de la coliflor ... 30
3.6.2. Calidad de la pella ... 31
3.7. Abonos .. 32
3.7.1. Abono orgánico ... 32
3.7.2. Humus de lombriz .. 33
3.7.3. Estiércol de gallinaza .. 33
3.7.4. Sustrato .. 34
3.7.5. Tierra negra .. 36
4. UBICACIÓN .. 37
4.1. Ubicación política territorial .. 37
4.2. Ubicación geográfica .. 37
4.3. Clima ... 37
4.4. Suelo local .. 37
4.5. Sustrato compuesto ... 38
4.6. Textura: Franco arenoso .. 38
5. MATERIALES Y MÉTODOS ... 39
5.1. Materiales ... 39
5.2. Métodos ... 40
5.2.1. Diseño Experimental ... 40
5.2.1.1. Esquema del ADEVA .. 40
5.2.1.2. Factores en estudio .. 40
5.2.2. Tratamientos .. 41
5.2.3. Unidad Experimental y Parcela Neta ... 41
5.2.4. Variables y Métodos de Evaluación ... 43
5.2.4.1. Porcentaje de prendimiento al trasplante ... 43
5.2.4.2. Número de hojas ... 43
5.2.4.3. Ancho de la hoja .. 43
5.2.4.4. Largo de la hoja ... 43
5.2.4.5. Tamaño de pella ... 43
5.2.4.6. Peso de pella ... 43
5.2.4.7. Compactación ... 44
5.2.4.8. Rendimiento ... 44
5.2.4.9. Análisis económico .. 44
6. MANEJO ESPECÍFICO DEL EXPERIMENTO 45
6.1. Preparación cultivo en suelo .. 45
6.1.1. Preparación del terreno (cultivo en suelo) 45
6.2. Preparación cultivo en sustrato ... 45
6.2.1. Preparación del sustrato ... 45
6.1. Trasplante ... 45
6.2. Fertilización foliar ... 45
6.3. Riego .. 46
6.4. Control de malezas ... 47
6.5. Aporque ... 47
6.6. Control fitosanitario .. 47
6.7. Cosecha .. 47
6.8. Toma de datos de precipitación y temperatura 48
7. RESULTADOS Y DISCUSIÓN ... 49
7.1. Porcentaje de prendimiento al trasplante 49
7.2. Cuadros comparativos de variables 51
7.2.1. Número, largo y ancho de hojas ... 51
7.2.1.1. Interacciones para número de hojas 54
7.2.1.2. Interacciones para largo de hojas 55
7.2.1.3. Interacciones para ancho de hojas 55
7.2.2. Compactación de pella ... 56
7.2.3. Tamaño y peso de la pella .. 58
7.2.3.1. Interacción tamaño pella ... 62
7.2.3.2. Interacción peso pella .. 62
7.2.4. Rendimiento en kg/ha ... 63
7.2.4.1. Interacción rendimiento kg/ha 65
7.3. Análisis económico ... 65
7.3.1. Tratamientos y rendimiento promedio en pellas/ha................................. 65
7.3.1. Costos que varían y precio de un kilogramo de coliflor............................. 66
7.3.2. Costo que varían y precio de un kilogramo de coliflor............................. 67
7.3.3. Análisis de Dominancia ... 67
7.3.4. Tasa de retorno marginal .. 68

8. CONCLUSIONES .. 69
9. RECOMENDACIONES .. 70
10. RESUMEN .. 71
SUMARY ... 74
11. BIBLIOGRAFÍA ... 76
12. ANEXOS .. 78
13. FOTOGRAFÍAS .. 88
<table>
<thead>
<tr>
<th>CUADRO 1.</th>
<th>Materiales y equipos utilizados en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” .. 39</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUADRO 2.</td>
<td>Esquema del Adeva en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” .. 40</td>
</tr>
<tr>
<td>CUADRO 3.</td>
<td>Tratamientos en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” .. 41</td>
</tr>
<tr>
<td>CUADRO 4.</td>
<td>Porcentaje de prendimiento al trasplante en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” .. 49</td>
</tr>
<tr>
<td>CUADRO 5.</td>
<td>Significancia y Tukey al 5% para número, largo y ancho de hojas en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” .. 51</td>
</tr>
<tr>
<td>CUADRO 6.</td>
<td>Grados de compactación de la pella en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” .. 56</td>
</tr>
<tr>
<td>CUADRO 7.</td>
<td>Significancia y Tukey al 5% para tamaño y peso de la pella en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” .. 58</td>
</tr>
<tr>
<td>CUADRO 8.</td>
<td>Significancia y Tukey L 5% Rendimiento kg/ha en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” .. 58</td>
</tr>
<tr>
<td>CUADRO 9.</td>
<td>Tratamientos y rendimiento promedio en pellas/ha de cada uno en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” .. 63</td>
</tr>
</tbody>
</table>
CUADRO 10. Costos que varían y precio de un kilogramo de coliflor. “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (*Brassica oleracea*, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”. .. 66

CUADRO 11. Costo que varían y precio de un kilogramo de coliflor. “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (*Brassica oleracea*, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”; .. 67

CUADRO 12. Análisis de dominancia en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (*Brassica oleracea*, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”. .. 67

CUADRO 13. Tasa de retorno marginal. “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (*Brassica oleracea*, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”... 68
ÍNDICE GRÁFICOS

GRÁFICO 1. Promedios de interacciones para número de hojas. “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” ... 54

GRÁFICO 2. Promedios de las interacciones para largo de hoja. “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” 55

GRÁFICO 3. Promedios de interacciones para ancho de hojas. “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” 55

GRÁFICO 4. Interacción de tamaño de pella. “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” ... 62

GRÁFICO 5. Interacción del peso de pella. “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” ... 62

GRAFICO 6. Interacción rendimiento kg/ha. “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” ... 65
ÍNDICE DE ANEXOS

ANEXO 1. ANÁLISIS DE SUELO... 78
ANEXO 2. ANÁLISIS DEL SUSTRATO.. 80
ANEXO 3. Cuadro de registros de temperaturas mensuales durante los meses del ensayo.. 82
ANEXO 4. Cuadro de registros de precipitaciones mensuales durante los meses del ensayo.. 83
ANEXO 5. FICHA TÉCNICA VARIEDAD SNOWBALL......................... 84
ANEXO 6. NÚMERO DE HOJAS ... 85
ANEXO 7. LARGO DE HOJAS... 85
ANEXO 8. ANCHO DE HOJAS ... 85
ANEXO 9. TAMAÑO DE LA PELLA... 86
ANEXO 10. PESO DE LA PELLA .. 86
ANEXO 11. RENDIMIENTO kg/ha.. 87
ÍNDICE DE FOTOGRÁFÍAS

Fotografía 1. Instalación del ensayo. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*Brassica Oleracea, l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013” ... 88

Fotografía 2. Instalación del pluviómetro y termómetro en la “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*Brassica oleracea, l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”. .. 88

Fotografía 3. Realización de camas y surcos en la “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*Brassica oleracea, l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013” 89

Fotografía 4. Preparación y mezcla del sustrato. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*Brassica oleracea, l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013” ... 89

Fotografía 5. Enfundado y pesado del sustrato. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*Brassica oleracea, l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”. 90

Fotografía 6. Semillero. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*Brassica oleracea, l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”. 90

Fotografía 7. Trasplante en suelo local y sustrato. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*Brassica oleracea, l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”. ... 90

Fotografía 8. Hoja con problemas de minador de hoja. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*Brassica oleracea, l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”. ... 91

Fotografía 9. Medición de largo y ancho de hojas. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*Brassica oleracea, l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”. ... 92

13
Fotografía 10. Amarre de hojas en el T4 (suelo local) y T8 (sustrato). “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*brassica oleracea*, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013” 93

Fotografía 11. Peso (g) y diámetro (cm) de la pella de los tratamientos T1 y T5 (naranja sunset). “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*brassica oleracea*, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013” 93

Fotografía 12. Peso (g) y diámetro (cm) de la pella de los tratamientos T2 y T6 (verde trevi). “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*brassica oleracea*, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”. 94

Fotografía 13. Peso (g) y diámetro (cm) de la pella de los tratamientos T3 y T7 (morada grafiti). “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*brassica oleracea*, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”. 94

Fotografía 14. Peso (g) y diámetro (cm) de la pella de los tratamientos T4 y T8 (blanca) en la “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*brassica oleracea*, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”. 95
1. **INTRODUCCIÓN**

La coliflor es una hortaliza de gran consumo en la dieta diaria, ya que es un alimento que posee un alto valor nutricional así: proteína 1.98g; grasa 0.21g; carbohidratos 5.20g; fibra 2.5g; calcio 22mg; fósforo 44mg; hierro 0.44mg; cenizas 0.71g, vitamina C 46.4mg, agua un 91.91%; calorías 25Kcal (FAO, 2006) lo que hace de este producto importante para la alimentación, mismo que además de contener gran cantidad de agua y potasio colabora con la eliminación de líquidos corporales y posterior pérdida del exceso de peso.

Según la (Cámara de Agricultura, 2008) actualmente la producción de coliflor en el Ecuador, en su mayoría se encuentra en las provincias de Cotopaxi con 25.200 t. y Pichincha Con 14.652 t. siendo los cultivares de pella blanca los más cultivados.

Sin embargo, nuevos cultivares de coliflor (*Brassica oleracea, L.*) con pellas de colores se están ofertando en el mercado, productos que de acuerdo a la casa comercial que los distribuye, aportan a los agricultores granos más finos, olores menos penetrantes, diferentes colores, mayor tamaño y peso de sus pellas, siendo esta última una característica de suma importancia para competir en el mercado nacional, sin embargo investigaciones previas realizadas en la Carrera de Ingeniería Agropecuaria, indican que en la zona de El Quinche existen problemas en cuanto al tamaño y peso de la pella de estos cultivares afectando el rendimiento del cultivo.

Con este antecedente se planteó la presente investigación, con la finalidad de utilizando dos medios y 3 cultivares de coliflor de colores, se busca mejorar la productividad, todo esto manejado orgánicamente ya que la tendencia mundial está hacia la reducción de agroquímicos tóxicos para la salud de los consumidores y el medio ambiente.
2. OBJETIVOS

2.1. Objetivo General

Determinar la influencia de dos medios de cultivo (suelo local y sustrato) en la productividad de tres cultivares de coliflor (*Brassica oleracea, L*) de colores (*Sunset, verde Trevi y Grafiti*) a una altitud de 2.450 m.s.n.m., bajo condiciones de producción orgánica.

2.2. Objetivos Específicos

- Evaluar la influencia de dos medios de cultivo en la producción de tres cultivares de coliflor (*Sunset, verde Trevi y Grafiti*).

- Evaluar la influencia de dos medios de cultivo en la calidad de la pella de tres cultivares de coliflor.

- Realizar el análisis económico.
3. MARCO TEÓRICO

3.1. Cultivo de coliflor

3.1.1. Origen y distribución Geográfica
Según (INFOAGRO, 2012) diversos estudios concluyen que los tipos cultivados de *Brassica oleracea* se originaron a partir de un único progenitor similar a la forma silvestre; esta fue llevada desde las costas atlánticas hasta el Mediterráneo; la evolución y selección de los distintos tipos cultivados tuvo lugar en el Mediterráneo oriental, la especie a partir de la cual se derivaron sería *B. Oleraceae*.

En un principio el cultivo de la coliflor se concentró en la península italiana y debido a las intensas relaciones comerciales en la época romana tendría como resultado su difusión entre distintas zonas del Mediterráneo, durante el siglo XVI el cultivo se extendió en Francia y apareció en Inglaterra en 1586. En el siglo XVII se generaliza por toda Europa, finalmente durante el siglo XIX las potencias coloniales europeas extendieron el cultivo a todo el mundo.

3.1.2. Clasificación botánica

3.1.1. Morfología
La coliflor es una planta de ciclo anual o bienal; el sistema radical como el de todas las *Brassicas* es reducido, con una raíz pivotante de cerca de 50 cm de largo y raíces laterales relativamente pequeñas provistas de numerosos pelos radicales, la capacidad de exploración del suelo es muy restringida.

El tallo es cilíndrico, corto y engrosa casi a la misma extensión que en la pella, las hojas son sésiles, enteras, poco a muy onduladas, oblongas, extendiéndose en forma más vertical y cerrada que en el brócoli.
La coliflor produce una cabeza floral no desarrollada llamada pella o pan corresponde a una masa voluminosa compacta, densa, apelmazada y esférica de hasta 30 cm de diámetro y generalmente de color blanquecino.

3.1.2. Valor nutricional

(INFOAGRO, 2012) señala que la coliflor presenta un bajo contenido en calorías, aunque éste puede variar dependiendo de la variedad empleada y de las condiciones de cultivo, sin embargo son ricas en minerales.

Contenido vitamínico por cada 100 gramos de pella de coliflor blanca.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Contenido</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamina A</td>
<td>115</td>
<td>IU</td>
</tr>
<tr>
<td>Vitamina B1</td>
<td>0.12</td>
<td>Mg</td>
</tr>
<tr>
<td>Vitamina B2</td>
<td>0.12</td>
<td>Mg</td>
</tr>
<tr>
<td>Vitamina PP</td>
<td>0.57</td>
<td>Mg</td>
</tr>
<tr>
<td>Vitamina C</td>
<td>112</td>
<td>Mg</td>
</tr>
<tr>
<td>Vitamina K</td>
<td>3.5</td>
<td>Mg</td>
</tr>
</tbody>
</table>
Contenido de minerales en 100 gramos de pella de coliflor.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Contenido/mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potasio</td>
<td>140</td>
</tr>
<tr>
<td>Fósforo</td>
<td>91</td>
</tr>
<tr>
<td>Azufre</td>
<td>84</td>
</tr>
<tr>
<td>Calcio</td>
<td>69</td>
</tr>
<tr>
<td>Sodio</td>
<td>56</td>
</tr>
<tr>
<td>Cloro</td>
<td>29</td>
</tr>
<tr>
<td>Magnesio</td>
<td>28</td>
</tr>
<tr>
<td>Hierro</td>
<td>2</td>
</tr>
</tbody>
</table>

3.2. Requerimientos del cultivo

3.2.1. Suelo

El terreno ideal para la coliflor debe tener reacción neutra y estar bien provisto de potasio. Se puede producir en distintos tipos de suelos, pero dice que la mayor calidad se logrará en un suelo relativamente pesado, con una elevada capacidad de retención de humedad. La coliflor es un cultivo que tiene preferencia por los suelos porosos, no encharcados, pero que al mismo tiempo tengan capacidad de retener la humedad del suelo y se desarrolla bien en cualquier tipo de suelos, desde arenosos hasta orgánicos, prefiriendo aquellos con buen contenido de materia orgánica y
drenaje adecuado. Con una profundidad de 50 a 60 cm, de textura franco o franco arenoso.

3.2.1. pH
El pH óptimo está alrededor de 6,5 a 7,0 en suelos más alcalinos desarrolla estados carenciales. Frecuentemente existen suelos que tienen un pH elevado, por lo tanto se recomienda la aplicación de abonos que no ejerzan un efecto alcalinizante sobre el suelo.

3.2.2. Agua
La coliflor es un cultivo medianamente sensible a la salinidad del agua de riego. Por ello es recomendable la aplicación de un abono que no incremente la salinidad del agua de riego y del suelo.

3.2.3. Clima
(FXSA, 2012) señala que la coliflor es una planta de clima frío. Esta hortaliza es susceptible a temperaturas altas (>26°C) y bajas (0°C) sobre todo cuando la parte comestible casi ha madurado. Las semillas germinan a temperaturas de 5 o 6°C; a 8°C emergen del suelo a los 15 días y a los 18°C en 4 a 5 días. Las temperaturas óptimas para el desarrollo son de 15,5°C a 21,5°C durante el día y de 12,5 a 15,5°C durante la noche. Las temperaturas para la formación de la parte comestible (cabeza) son de 20 a 25°C, siendo la óptima de 22°C.

3.2.1. Luminosidad
El cultivo requiere un promedio de 4 a 8 horas sol por día en cielo despejado, Una luminosidad deficiente durante la formación de las pellas influye desfavorablemente en su calidad. Por el contrario un exceso de luz, cuando las pellas están formadas y comienza su crecimiento, produce una coloración crema, en éstas que hace que se deprecien sensiblemente. En este sentido, se recomienda, en las variedades que no arrepollan bien, proteger las pellas de los rayos solares tapándolas con las hojas de las plantas, práctica útil, pero enormemente cara.
3.2.2. Alturas
Ecológicamente la coliflor se cultiva desde los 1000 hasta los 3100 m. s. n. m.

3.2.3. Fertilización
La extracción de minerales por parte de la coliflor es: N: 198 Kg/ha, P2O5: 67Kg/ha, K2O: 295Kg/ha, NaO: 10Kg/ha, CaO: 186Kg/ha, MgO: 21Kg/ha.

A modo orientativo se indican las siguientes dosis de abono por hectárea: estiércol (30 T preferiblemente aportadas 6 meses antes), nitrato sulfato amónico (1500kg), superfósforo de cal (400kg), sulfato potásico (250 kg), es una planta exigente en boro, por lo que puede ser conveniente la adición de bórax en el abono de fondo en dosis moderadas (menos de 15 kg/ha).

Según (INFOAGRO, 2012) una buena abonadura de 500 a 1000 quintales por hectárea de materia orgánica en el cultivo de coliflor da buenos resultados.

Un programa de abonado recomendado en el cultivo de la coliflor sería, abonado de fondo en la cual se utiliza, 12 – 24 t/ha de estiércol o gallinaza fermentados y 600 kg/ha de complejo NPK (15-15-15). 240 kg/ha de sulfato de magnesio.

Para abonado de cobertura 240 kg/ha de nitrato sulfato amónico a los 10 – 20 días de la plantación, 300kg/ha de nitrato potásico a los 30 – 40 días de la plantación y 240 kg/ha de nitrato sulfato amónico al cubrir la vegetación totalmente el suelo.

Macronutrientes del suelo

Está relacionado con la fotosíntesis, la mayor parte del N de las células se encuentra en los cloroplastos; es un elemento móvil. Función del (N): Favorece el crecimiento de tallos y hojas. Acentúa el color verde. Exceso de (N): debilita la planta creciendo exageradamente, aunque débil pudiendo, bajando la calidad de la misma y
provocando menos resistencia a enfermedades. Carencia del (N). Tiene como consecuencia la clorosis generalizada, sobre todo en las hojas viejas; es la pérdida del color verde se tornan amarillas.

(P) Fósforo: Después del N es el macronutriente en importancia; se utiliza para la formación de la molécula ATP, la cual interviene en los procesos metabólicos – respiración y fotosíntesis– y para la síntesis de nucleótidos ADN y ARN. Depende de la materia orgánica y del pH del suelo. Es un elemento poco móvil. Función del (P): Favorece el desarrollo de las raíces y plántulas, mejorando su resistencia a las bajas Tº y a algunas enfermedades. Mejora la eficiencia del uso del agua. Neutraliza el N. La carencia del (P). Provoca un crecimiento limitado y lento, produciendo en los bordes de las hojas -generalmente viejas- un color rojizo dorado por acumulación de antocianas, consecuentemente la floración disminuye de manera significativa.

Potasio: Es uno de los elementos básicos para la formación y elaboración de la materia vegetal, siendo imprescindible en toda fertilización frutal. No hay equilibrio nutritivo en el organismo vegetal sin la cantidad necesaria de K; actúa como elemento regulador del N y otros elementos para el buen desarrollo de las plantas. Es un elemento móvil. Función del (K): Favorece el crecimiento vegetativo, la fructificación, la maduración y la calidad de los frutos. Participa en la activación enzimática, regulando el potencial osmótico -mantenimiento de la turgencia de las hojas- cantidad de agua que retiene en los tejidos. La carencia del K provoca manchas necróticas dispersas, en las hojas viejas, y bordes amarillentos y puntas secas. Así como se ven perjudicados los frutos de manera significante, con la caída prematura de los éstos y también afectando la caída a las flores.

La deficiencia: de este elemento se observa sobre todo en suelos arenosos y con alto contenido de calcio.

(S) Azufre: Es un elemento poco móvil, forma parte constituyente de los aminoácidos y vitaminas. Función del S: Activa el crecimiento. Complementa la acción del N, interviene en la formación de la clorofila. Contribuye a un desarrollo más eficiente
del sistema radicular y de las bacterias nodulares que asimilan el N atmosférico. La carencia del S provoca clorosis generalizada – amarillamiento principalmente de las nervaduras- en las hojas jóvenes; incluso puede provocar manchas oscuras en algunos frutos u hortalizas, como también la formación incompleta de éstos.

(M)Magnesio: Constituye un elemento móvil y esencial para la formación de la clorofila, influyendo también en la regulación del agua en el organismo de la planta y en su desarrollo. Después del Ca el M es el elemento más generalizado en todos los suelos alcalinos y se suele ver su carencia en los suelos ácidos con PH bajo, así como también en los suelos muy ligeros y arenosos. Función del M: Beneficia la coloración de la hoja. La carencia de M en los suelos provoca una menor resistencia de los tejidos vegetales, como por ejemplo haciendo las ramas más quebradizas, perdiendo las hojas y con la caída prematura del fruto. Un suelo carente de M sería un suelo estéril y de tener en exceso resultaría incultivable.

(Ca)Calcio: Se encuentra en todos los suelos de cultivo, encontrándose en altos niveles en suelos áridos y calcáreos y en menor escala en los arcillosos y aún menor en los arenosos. Función del Ca: Fortalece la pared celular. Protege las membranas contra daños y retrasa la senescencia - envejecimiento de la hoja- y la -abscisión caída de frutos, hojas y semillas-. Brinda mayor resistencia a la planta. La carencia del Ca en el suelo aumenta su acidez impidiendo la formación de bases en los fertilizantes, los cuales difícilmente serán aprovechados por la planta.

Las plantas tienen gran necesidad de Ca y de faltarles se desarrollarán con ciertas dificultades, engrosándose los tallos con una reducción de los entrenudos y raíces hasta el punto de atrofiarse sus extremidades, impidiendo su óptimo desarrollo. Las hojas jóvenes se deforman y los ápices se necrosan.
Macronutrientes esenciales en la coliflor

(INFOJARDIN, 2012) Nitrógeno en la coliflor: Es un cultivo ávido de nitrógeno, principalmente en los primeros 2/3 de su cultivo. La aplicación de nitrógeno en forma de nitrógeno estabilizado reduce la concentración de nitratos en hojas y pella entre un 10-20%. Por ello los abonos estabilizados son especialmente adecuados en el cultivo de la coliflor.

(INFOJARDIN, 2012) Fósforo en la coliflor: No debe excederse en cuanto a su abonado, pues favorece la subida de flor. Es el macro nutriente absorbido en menor cantidad por el cultivo descendiendo posteriormente hasta la recolección. En tallo sigue una pauta similar a la de las hojas y en los frutos la concentración más alta se produjo al inicio de la inflorescencia, disminuyendo posteriormente en el período de mayor crecimiento de las inflorescencias. La tasa más alta de acumulación específica de P se produjo en las primeras fases de crecimiento del cultivo, disminuyendo posteriormente hasta la recolección.

Según el (Instituto Nacional de investigación y tecnología Agraria Agroalimentaria, 2008) Potasio en la coliflor: El potasio es importante en el desarrollo de la inflorescencia (pella), ya que contribuye con unos 3,6% en materia seca depositadas en la pella, ofreciendo así un engrose de la inflorescencia en donde se obtiene una mayor absorción de potasio.

3.2.4. Conductividad Eléctrica

(Bassaure, 2005) La conductividad eléctrica (CE) es la medida utilizada para medir la cantidad de sales (FC).

Los valores de conductividad eléctrica es un indicador de la cantidad de nutrientes disponibles en la solución para ser absorbidos por el sistema de raíces de la planta. La coliflor es un cultivo Medianamente tolerante, como (C.E.) tenemos (conductividad eléctrica = 10 ds/m).
3.3. Híbridos de coliflor de colores

3.3.1. Coliflor Sunset F1

(IMPORTADORA ALASKA, 2012) señala que el primer híbrido de coliflor color naranja en el mercado, es una planta compacta con pellas bien formadas de buen color naranja, híbrido de maduración temprana, es única por su fabuloso color anaranjado, planta de hábito de crecimiento erecto y vigoroso, buena cobertura de domos, su color atractivo es ideal para la barra de ensaladas, su cosecha es entre 60-70 días después del trasplante y 50-60 días como mínimo. Las pellas necesitan luz para obtener una coloración completa, buena luminosidad por su alto contenido de caroteno.

3.3.1. Coliflor Grafiti F1

(IMPORTADORA ALASKA, 2012) híbrido de maduración mediana, es única por su fabuloso color púrpura, planta de hábito de crecimiento erecto y vigoroso, buena cobertura de domos, su peso es de 0.7-1.1 kg, su color atractivo es ideal para la barra de ensaladas, su cosecha es entre 85-90 días después del trasplante.
Las pellas necesitan luz para obtener una coloración completa, maduración temprana mediana, forma cúpula lisa, crecimiento plantabien erecta, vigorosa, cubierta mediana buena, color cabeza lila oscuro, peso 0.7-1.1 kg, condiciones de crecimiento frío-mediada, resistencia al mildiu.

3.3.2. Coliflor Verde Trevi F1

(IMPORTADORA ALASKA, 2012) ciclo de 90 días Planta vigorosa con pellas de buen tamaño, lisas de color verde oscuro y compacto, Maduración temprana, forma cúpula lisa verde, crecimiento de planta bien erecta, Cubierta buena, color de cabeza verde, peso 800-900 gramos, condiciones de crecimiento frío-mediano, uso mercado fresco e industria, resistencia buena tolerancia al mildiu y altornado.

Ventajas de los híbridos de coliflor

- Mayor calidad (visual y organoléptica)
- Mayor adaptación (ciclo, rendimiento y resistencia a enfermedades)
- Cultivares uniformes
- Mayor producción
- Resistencia al transporte (GALVÁN, 2010)

Desventajas de los híbridos

- No es posible la propagación por parte de los agricultores
- Mayores requerimientos
- Mayor costo por semilla (AGRO.UNCOR ,2012)
Ventajas de la coliflor blanca

- Comportamiento Productivo (adaptación)
- Disponibilidad en tiempo, en la cantidad deseada con un comportamiento conocido
- Bajo costo de semilla (GALVÁN, 2010)

Desventajas de la coliflor blanca

- Baja uniformidad
- Baja calidad
- Sensibilidad al termofotoperiodo
- Susceptibilidad a enfermedades (GALVÁN, 2010)

3.4. Manejo de cultivo

3.4.1. Preparación de terreno
INFOAGRO, 2012 la preparación del terreno consiste en la nivelación, especialmente donde se realice riego por surcos, se trata de evitar desniveles que propicien encharcamientos para lograr riegos uniformes. Posteriormente se realiza una labor profunda con reparto de estiércol y abonado de fondo, luego surca y quebranta.

3.4.2. Semillero
(INFOAGRO 2012), la siembra se realiza generalmente en bandejas de polietileno con alvéolos rellenos con sustrato a base de mezclas de turbas, al cabo de 4-6 semanas las plantas deberán de estar dispuestas para el trasplante.

3.4.1. Trasplante
El trasplante se hace sobre surcos elevados, empleando una densidad de plantación de 4 plantas/m2.
En sistema de riego por surcos, se suelen separar las hileras entre 0,5-0,8 m y 0,40-0,50 m entre plantas, ajustando la separación entre plantas hasta obtener la densidad requerida.

3.4.2. Riego
(INFOAGRO, 2012) la coliflor demanda un poco más de agua que el brócoli, debido a que su ciclo de cultivo es más largo, se suelen aplicar de 8-14 riegos con una frecuencia semanal.

3.4.3. Labores culturales
El cultivo debe mantenerse limpio de malas hierbas hasta el inicio de la cosecha, por tanto, se controlarán las malas hierbas con herbicidas selectivos empleados en pre trasplante o pos trasplante del cultivo y/o a través de escardas mecánicas con el aporcado a los 15 ó 30 días del trasplante o, bien combinar el empleo de herbicidas localizados en el lomo del surco y aporcados en el vacío con aperos adecuados.

3.4.4. Cosecha
Las coliflores son seleccionadas por su tamaño y por el grado de compactación de la inflorescencia, las partes florales protuberantes o sueltas, que crean una apariencia granulosa, son señal de sobre madurez.

3.4.5. Rendimiento
Los rendimientos de las variedades más productivas pueden llegar a los 20.000-30.000kg/ha debiendo alcanzar para ello pesos de pella del orden de 2kg y a veces superiores, mientras que las variedades con menor producción solo alcanzan rendimientos de 15.000-20.000 kg/ha, con pesos de pella de 1kg o poco más.

Las coliflores son seleccionadas por su tamaño y por el grado de compactación de la inflorescencia.
3.5. Manejo de plagas y enfermedades

3.5.1. Plagas

Principales plagas y enfermedades que afectan al cultivo de coliflor:

Gusanos de foliadores, trozadores y barrenadores: En estado de larvas (gusanos) comen las hojas de coliflor, pellas y otros los tallos de las plantas.

Control: Para estas plagas es posible realizando aspersiones al follaje con Dipel (*bacillus thuringiensis*).

Pulgón: Se localiza en los tallos y en el envés de las hojas, actúa succionando la savia e inyectando toxinas tornando amarillentas y débiles a las hojas y causando finalmente la muerte.

Control: Se realiza con piretroides o a base de insecticidas botánicos de ortiga, tabaco, cebolla paiteña, papa, ají, ajo, ruibarbo o jabón negro.

Minador de la hoja: Las zonas más afectadas son las cercanas al nervio central de las hojas jóvenes.

Control: La utilización de trampas (plástico de color amarillo embebido de aceite), extractos o controles con dimethoato.

Caracoles y babosas: comen y producen desgarros en las hojas de las plantas así como también muerden las pellas.

Control: Es posible de realizar mediante trampas (atrayentes con fermento).

3.5.2. Enfermedades

Mal de almácigo: Marchitamiento de las plántulas causado por *rhizoctonia solani* provocando estrangulamiento del cuello de la planta, su combate se lo puede realizar mediante la aplicación de kocide 101 en dosis de 2.5 g/l.
Mildiu: El agente causal de este es *peronosporaparasítica*, sus síntomas son la manifestación de una pelusilla blanca en el envés de las hojas y en el haz clorosis o amarillamiento, posteriormente las manchas del haz se tornan de color oscuro, su control se lo realiza a base de Kocide101 en dosis de 2.5 ml/l maneb o mancozeb.

Cenicilla: causada por el hongo *erysiphepolygoni* presenta una cenicilla blanquecina sobre el haz y el envés, para el control eficaz se realizan aplicaciones de Cosan o Elosan en dosis de 2.5 g/l.

Botrytis (*Botrytis cinérea*): Es el causante de la pudrición de los tejidos, los ataques suelen encontrarse tanto en hojas como en el cuello y pellas de las plantas, presentando siempre su micelio característico de color gris-ceniza.

3.6. Pella de la coliflor

3.6.1. Forma de la pella (cabeza) de la coliflor

La forma de la “cabeza” en la coliflor presenta algunas diferencias que son interesantes para su utilización en las descripciones varietales:

Esférico: la forma de las “cabezas” es relativamente esférica, con base plana reducida, siendo el resto de forma redondeada hasta la cúspide.

Abombado: la base plana es más amplia que en el tipo esférico, la relación del diámetro a la altura es mayor y la forma de la superficie en su mitad superior es más amplia.

Cónico: los rudimentos florales forman aglomerados cónicos parciales, en conjunto toman la forma apuntada o cónica, especialmente apuntada en al cúspide de la “cabeza”.

Aplanado: la superficie superior de la “cabeza” es tan amplia como la base, siendo la relación diámetro-altura mayor que en el tipo abombado, resultando en conjunto una “cabeza” aplastada.
Hueco: es el tipo que forman las “cabezas” más ramificadas interiormente.

3.6.2. Calidad de la pella

(FAO, 2012) entre los índices de calidad de la coliflor o en este caso de la pella de coliflor, se encuentran el tamaño, la ausencia de amarillamiento debido a la exposición al sol, la ausencia de defectos debidos al manejo y pudriciones y la ausencia de granulosidad. Esto indica un producto de excelente calidad y suple la exigencia que el mercado demanda, un producto fresco y agradable a la vista.

Características y categorías: El tamaño óptimo de la pella de la coliflor es de 30 cm de diámetro y que llegue a pesar más de 2,2 libras o de 1,0 kg. El color de la masa puede ser blanco amarillento, verde o violeta según la variedad cultivada. El sabor que el mercado pide debe ser suave y en ocasiones, ligeramente dulzón.

En el mercado la categoría de la pella se detalla por su tamaño, es decir, existen pellas de 30 cm de diámetro que es la de “primera”; existen Pellas de 20 cm de diámetro que, en el mercado son llamadas de “segunda” y un diámetro inferior a este son llamadas pequeñas o de tercera y a partir de estos diámetros se determina el costo de la de coliflor.

Engrose de la pella: El rendimiento de las hortalizas está determinado por el peso del producto dividido entre la superficie.

La unidad de medida más utilizada es la tonelada por hectárea (t/ha). Un mayor rendimiento indica una mejor calidad de la tierra (por suelo, clima u otra característica física) o una explotación más intensiva, en trabajo o en técnicas agrícolas (abonos, regadío, productos fitosanitarios, semillas seleccionadas, transgénicos, etc.).

La mecanización no implica un aumento del rendimiento, sino de la rapidez en el cultivo, de la productividad (se disminuye la cantidad de trabajo por unidad de producto) y de la rentabilidad (se aumenta el ingreso monetario por unidad invertida).
3.7. Abonos

3.7.1. Abono orgánico

El abono orgánico es el producto de la descomposición de materia vegetal, animal y residuos industriales. Los abonos orgánicos constituyen una buena alternativa para el manejo adecuado de los desechos que resultan de la producción diaria. La incorporación de estos abonos orgánicos incrementa la cantidad de microorganismos generando un suelo equilibrado.

La forma de funcionamiento general de los abonos orgánicos no sólo se basa en el aporte de nutrientes que suponen como abono. Las características que la materia orgánica aporta al suelo hacen que estos abonos funciones como agentes de estabilización del suelo, mejorando la estructura y las propiedades químicas.

Los abonos orgánicos hacen que el complejo húmico del suelo aumente, con lo que el suelo tiene mayor capacidad de tampón. Esto es, absorbe con mayor intensidad los diferentes excesos que él puede producir.

Ventajas de los abonos orgánicos:

- Mejora el nivel y fertilidad del suelo.
- Mejora la aireación y penetración del agua y de igual manera la capacidad de retención de la humedad.
- Se multiplica la población microbiana.
- Mejora la estructura del suelo, aumenta el espacio de los poros.
- Impide la erosión del suelo y reduce el peligro de inundaciones.
- Al ser suelos oscuros absorben mejor el calor y hacen germinar antes la semilla.
- Actúa como agente regulador para evitar cambios abruptos de pH en los suelos.
- Al preparar compost se matan patógenos y semillas no deseadas.
- Suministra reservas de nutrientes, particularmente nitrógeno y fósforo requeridos para la actividad biológica.
Calidad y efectos generales del abono orgánico:

En comparación con abonos minerales la disponibilidad de nitrógeno en abonos orgánicos suele ser muy inferior, la de fósforo y potasio similar o incluso superior así como el efecto residual, suponiendo un contenido similar de nitrógeno comúnmente se puede esperar un rendimiento del 80 al 90% del que se obtiene con fertilizante mineral, aunque los resultados varían con la nutrición de la plantas

3.7.2. Humus de lombriz

Influencia física del humus: Incrementa la capacidad de intercambio catiónico del suelo, da Consistencia a los suelos ligeros y a los compactos; en suelos arenosos compacta mientras que en suelos arcillosos tiene un efecto de dispersión, hace más sencillo labrar la tierra, por el mejoramiento de las propiedades físicas del suelo, evita la formación de costras, y de la compactación, ayuda a la retención de agua y al drenado de la misma, incrementa la porosidad del suelo.

Influencia química del humus: Regula la nutrición vegetal, mejora el intercambio de iones la asimilación de abonos minerales, ayuda con el proceso del potasio y el fósforo en el suelo, produce gas carbónico que mejora la solubilidad de los minerales, aporta productos nitrogenados al suelo.

Influencia biológica del humus: Porta microorganismos útiles al suelo, sirve a su vez de soporte y alimento de los microorganismos, no tiene semillas perjudiciales (malezas) por la temperatura que alcanza durante la fermentación, mejora la resistencia de las plantas, mejora la reproducción sexual.

3.7.3. Estiércol de gallinaza

El estiércol de gallina y de las diferentes aves de corral es excelente para las huertas, se aplica superficialmente al suelo en el que previamente ha debido practicarse una ligera bina.
La gallinaza posee una composición nutrimental que varía de acuerdo a la calidad y cantidad de residuos como plumas, tierra, restos de comida y material de cama.

La gallinaza tiene un mayor efecto residual en el suelo con respecto a otros abonos orgánicos, por lo cual su aplicación debe realizarse cada 2 años y en volumen que no exceda las 25 toneladas por hectárea.

La gallinaza se obtiene del sacado de las camas de los gallineros, en las que se encuentran mezclados los excrementos, orín, restos de plumas y el material absorbente que generalmente es paja, aserrín o papel. El estiércol de gallinaza contiene un elevado contenido de nitrógeno y cal dependiendo del sistema de recolección de excrementos que se utilice en la granja los contenidos de humedad varían así como también el valor como abono, entre los principales sistemas de recolección se encuentran los siguientes:

En foso: Se trata de la forma más antigua en la cual los excrementos caen a canales o vías de recogida desde ahí se transportan hacia un gran foso de almacenaje situado en un extremo de la explotación, cuando el foso está lleno se vacía su contenido habiendo permanecido los residuos en condiciones anaerobias, el subproducto se obtiene con una humedad del 75-80%.

En cintas: El abono es más compacto con menos del 50% de humedad, mínimos elementos inertes y ricos en sustancias nutritivas.

En cintas con sistema de secado: El excremento recorre un conducto por el que pasa una corriente de aire así se obtiene la gallinaza en forma de bolas con una humedad del 45 a 50%.

3.7.4. Sustrato

(INFOAGRO 2012), el término sustrato se refiere al material que utilizamos para llenar el recipiente de cultivo y que, en cierto modo, es el sustituto de la tierra. Es pues el medio donde van a crecer las raíces, y de donde estas van extraer todos los nutrientes necesarios para repartir entre todas las partes de la planta durante su
crecimiento. La elección de un buen sustrato es el factor más importante para el éxito del cultivo.

Características del sustrato ideal

El mejor medio de cultivo depende de numerosos factores como son el tipo de material vegetal con el que se trabaja (semillas, plantas, estacas, etc.), especie vegetal, condiciones climáticas, sistemas y programas de riego y fertilización. Para obtener buenos resultados durante la germinación, el enraizamiento y el crecimiento de las plantas, se requieren las siguientes características del medio de cultivo:

Propiedades físicas

- Elevada capacidad de retención de agua fácilmente disponible.
- Suficiente suministro de aire.
- Distribución del tamaño de las partículas que mantenga las condiciones anteriores.
- Baja densidad aparente.
- Elevada porosidad.
- Estructura estable, que impida la contracción (o hinchazón del medio).

Propiedades químicas

- Baja o apreciable capacidad de intercambio catiónico, dependiendo de que la fertirrigación se aplique permanentemente o de modo intermitente, respectivamente.
- Suficiente nivel de nutrientes asimilables.
- Baja salinidad.
- Elevada capacidad tampón y capacidad para mantener constante el pH.
- Mínima velocidad de descomposición.
Otras propiedades

- Libre de semillas de malas hierbas, nematodos y otros patógenos y sustancias fitotóxicas.
- Reproductividad y disponibilidad.
- Bajo coste.
- Fácil de mezclar.
- Fácil de desinfectar y estabilidad frente a la desinfección.
- Resistencia a cambios externos físicos, químicos y ambientales.

3.7.5. Tierra negra

La tierra de bosque y la tierra común son una materia importante para la elaboración de los compostajes ya que estimula la actividad microbiana para el proceso de fermentación y le da una mayor uniformidad a la mezcla, una tierra buena aporta también minerales y microorganismos.
4. UBICACIÓN

4.1. Ubicación política territorial

País : Ecuador
Provincia : Pichincha
Cantón : Quito
Parroquia : El Quinche
Comunidad : San Miguel
Lugar : Barrio San Miguel

4.2. Ubicación geográfica

Longitud : 76° 16´00´´ Oeste.
Latitud : 00° 06´ 00 ´´ Sur
Altitud : 2450 m.s.n.m.

4.1. Clima

Temperatura promedio : 17.2 °C
Precipitación : 400 - 700 mm

4.2. Suelo local

Textura : Franco arenoso
pH : 7.14
Topografía : Plano
Materia orgánica : 1.5%
4.3. Sustrato compuesto

- Compost
- Gallinaza
- Humus
- Tierra negra

4.4. Textura: Franco arenoso

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.4</td>
</tr>
<tr>
<td>Materia orgánica</td>
<td>4.5%</td>
</tr>
</tbody>
</table>
5. MATERIALES Y MÉTODOS

5.1. Materiales

CUADRO 1. Materiales y equipos utilizados en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

<table>
<thead>
<tr>
<th>FASE</th>
<th>MATERIALES Y EQUIPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instalación del ensayo</td>
<td>Estacas, Semillas, Bandejas, Piolas</td>
</tr>
<tr>
<td>Elaboración de semilleros</td>
<td>sustrato (humus de lombriz, cascacho, tierra negra 1:1:1)</td>
</tr>
<tr>
<td></td>
<td>Nebulizadores, Manguera, Plástico, Sarán</td>
</tr>
<tr>
<td>Fase de producción en medio 1 (suelo)</td>
<td>Azadones, Rastrillos, Bomba de mochila, Biol</td>
</tr>
<tr>
<td></td>
<td>Insecticida a base de (ají, ajo y cebolla)</td>
</tr>
<tr>
<td></td>
<td>Caldo bórdelas</td>
</tr>
<tr>
<td>Fase de producción en medio 2 (sustrato)</td>
<td>sustrato (humus de lombriz, tierra negra, tierra común, compost, gallinaza 1:1:1:05:05)</td>
</tr>
<tr>
<td></td>
<td>Fundas negras de polietileno (35x35”)</td>
</tr>
<tr>
<td>Cosecha</td>
<td>Gavetas, Cuchilla, Balanza (g/kg), Cinta métrica (cm)</td>
</tr>
</tbody>
</table>

Fuente: La Investigación

Elaborado por: La Autora
5.2. Métodos

5.2.1. Diseño Experimental

Se utilizó el DISEÑO COMPLETAMENTE AL AZAR (DCA), con arreglo factorial AxB con 8 tratamientos y 4 repeticiones.

5.2.1.1. Esquema del ADEVA

CUADRO 2. Esquema del ADEVA en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (Sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

<table>
<thead>
<tr>
<th>F. V.</th>
<th>G.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>7</td>
</tr>
<tr>
<td>Suelo (S)</td>
<td>1</td>
</tr>
<tr>
<td>Cultivares (C)</td>
<td>3</td>
</tr>
<tr>
<td>S x C</td>
<td>3</td>
</tr>
<tr>
<td>Error Experimental</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora

5.2.1. Factores en estudio

Factor A: Medios de cultivo

M 1: Suelo local
M 2: Sustrato

Factor B: Cultivares de coliflor (Brassica oleracea, l)

C1: coliflor (Naranja Sunset)
C2: coliflor (Verde Trevi)
C3: coliflor (Morada Grafiti)
C4: coliflor blanca (var. snowball)
5.2.2. Tratamientos

CUADRO 3. Tratamientos en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (Sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (M1xC1)</td>
<td>(Suelo local x coliflor naranja sunset)</td>
</tr>
<tr>
<td>T2 (M1xC2)</td>
<td>(Suelo local x coliflor verde trevi)</td>
</tr>
<tr>
<td>T3 (M1xC3)</td>
<td>(Suelo local x coliflor morada grafiti)</td>
</tr>
<tr>
<td>T4 (M1xC4)</td>
<td>(Suelo local x coliflor blanca)</td>
</tr>
<tr>
<td>T5 (M2xC1)</td>
<td>(Sustrato x coliflor naranja Sunset)</td>
</tr>
<tr>
<td>T6 (M2xC2)</td>
<td>(Sustrato x coliflor verde trevi)</td>
</tr>
<tr>
<td>T7 (M2xC3)</td>
<td>(Sustrato x coliflor morada grafiti)</td>
</tr>
<tr>
<td>T8 (M2xC4)</td>
<td>(Sustrato x coliflor blanca)</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora

5.2.3. Unidad Experimental y Parcela Neta

El ensayo para esta investigación estuvo conformado por 32 unidades experimentales, cada una de las cuales estuvo constituida por 35 plantas, sembradas en 12 m² dando una superficie de 192m² por cada condición de suelo, quedando una superficie total de 384 m². La parcela neta fue de 15 plantas.
CROQUIS DEL ENSAYO

<table>
<thead>
<tr>
<th>División de Medios de Cultivo</th>
<th>Medio de cultivo 1 (suelo local)</th>
<th>Medio de cultivo 2 (sustrato)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>M1 C4</td>
<td>M2</td>
</tr>
<tr>
<td></td>
<td>M1 C2</td>
<td>M2 C2</td>
</tr>
<tr>
<td></td>
<td>M1 C1</td>
<td>M2 C1</td>
</tr>
<tr>
<td></td>
<td>M1 C3</td>
<td>M2 C3</td>
</tr>
<tr>
<td>R2</td>
<td>M1 C3</td>
<td>M2</td>
</tr>
<tr>
<td></td>
<td>M1 C1</td>
<td>M2 C2</td>
</tr>
<tr>
<td></td>
<td>M1 C2</td>
<td>M2 C1</td>
</tr>
<tr>
<td></td>
<td>M1 C4</td>
<td>M2 C3</td>
</tr>
<tr>
<td>R3</td>
<td>M1 C2</td>
<td>M2</td>
</tr>
<tr>
<td></td>
<td>M1 C3</td>
<td>M2 C2</td>
</tr>
<tr>
<td></td>
<td>M1 C4</td>
<td>M2 C1</td>
</tr>
<tr>
<td></td>
<td>M1 C1</td>
<td>M2 C3</td>
</tr>
<tr>
<td>R4</td>
<td>M1 C1</td>
<td>M2</td>
</tr>
<tr>
<td></td>
<td>M1 C4</td>
<td>M2 C2</td>
</tr>
<tr>
<td></td>
<td>M1 C3</td>
<td>M2 C3</td>
</tr>
<tr>
<td></td>
<td>M1 C2</td>
<td>M2 C1</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora
5.2.4. Variables y Métodos de Evaluación

5.2.4.1. Porcentaje de prendimiento al trasplante

A los 10 días después del trasplante se contó el número de plantas prendidas en cada uno de los tratamientos y se expresó en porcentaje en relación a la cantidad de plantas trasplantadas.

5.2.4.2. Número de hojas

Se procedió a contar el número de hojas, a los 55 días después del trasplante (etapa juvenil) que corresponde de 5-7 semanas esto se lo hizo para todos los tratamientos.

5.2.4.3. Ancho de la hoja

Con una cinta métrica graduada en cm se midió el ancho de la hoja en la parte media de ésta, se lo realizó a los 55 días después del trasplante.

5.2.4.4. Largo de la hoja

Con una cinta métrica dada en cm se midió el largo de la hoja desde la base al ápice, esto se lo hizo a los 55 días después del trasplante, (porque ya se detiene el crecimiento) para todos los tratamientos.

5.2.4.5. Tamaño de pella

Se midió el contorno del área ecuatorial de las pellas con una cinta métrica, para el resultado expresarlo en cm.

5.2.4.6. Peso de pella

Con la ayuda de una balanza, se pesó cada una de las pellas, el resultado se lo expresó en g.
5.2.4.7. Compactación

Se evaluó al tacto según la escala de compactación para cada uno de los cultivares de coliflor de colores.

ESCALA DE COMPACTACIÓN DE LA PELLA

<table>
<thead>
<tr>
<th>Características</th>
<th>Puntaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compacta</td>
<td>2</td>
</tr>
<tr>
<td>Floja</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora

5.2.4.8. Rendimiento

Se pesó las pellas con una balanza y el resultado se expresó en Kg/ha.

5.2.4.9. Análisis económico

En cuanto a análisis económico, se determinó los beneficios brutos menos los costos variables, en la que el beneficio bruto, se estimó multiplicando el rendimiento del cultivo por el precio dado en el mercado. Se realizó también el análisis de dominancia, en donde el tratamiento dominado es aquel que a igual o menor beneficio neto presenta un mayor costo variable, y con los tratamientos no dominados, se realizó el análisis marginal de donde se obtuvo la tasa interna de retorno marginal, que permite determinar los tratamientos económicos más rentables.
6. MANEJO ESPECÍFICO DEL EXPERIMENTO

6.1. Preparación cultivo en suelo

6.1.1. Preparación del terreno (cultivo en suelo)
Para la preparación del suelo se lo hizo mecánicamente un mes antes, con la ayuda de un tractor, dejando arado y rastrado quedando el suelo mullido, posteriormente se elaboró los surcos.

6.2. Preparación cultivo en sustrato

6.2.1. Preparación del sustrato
Se incorporó una mezcla de sustrato en relación a: 1:1:0.5:0.5 de tierra negra, tierra común, gallinaza descompuesta, humus de lombriz y compost quedando una mezcla homogénea, de acuerdo a los requerimientos del cultivo, lo cual se definió luego de varios análisis de laboratorio. Este sustrato se colocó en fundas agrícolas 35x35 cm para luego proceder al trasplante.

6.1. Trasplante
Cuando las plántulas presentaban de 3 a 4 hojas verdaderas se procedió a la siembra en el suelo y sustrato previo riego a capacidad de campo (es el contenido de agua o humedad que es capaz de retener el suelo luego de saturación o de haber sido mojado abundantemente y después dejado drenar libremente, evitando perdida por evapotranspiración hasta que el Potencial hídrico del suelo se estabilice (alrededor de 24 a 48 horas después de la lluvia o riego). A una distancia de 40cm entre plantas y 60cm entre hileras, dando un total de 1.120 plántulas en el ensayo.

6.2. Fertilización foliar
Se realizó una fertilización a base de Biol (que fue elaborado para el presente trabajo de investigación), quince días después del trasplante, en una dosis de 100 cc por cada bomba de 20 litros de agua.
A los 30 días del trasplante, se procedió a realizar una segunda aplicación de Biol a una dosis de 100 cc en 20 l de agua, esta actividad se repitió a los 30 y 45 días.

6.3. Riego

Se dotó riego un día antes al trasplante para tener el suelo y el sustrato a capacidad de campo.

Considerando las condiciones climáticas y las necesidades propias del cultivo, se ejecutaron riegos con ducha durante todo el ciclo de cultivo como se indica a continuación.

Suelo local = 9 riegos

- Fase juvenil 50-63 l/riego
- Fase de inducción floral 63-130 l/riego
- Fase de crecimiento de la pella 130-200 l/riego
- Al culminar a la cosecha 50 l/riego
- Con un total=536 litros en el ciclo

Sustrato = 13 riegos

- Fase juvenil 50-63 l/riego
- Fase de inducción floral 63-130 l/riego
- Fase de crecimiento de la pella 130-200 l/riego
- Al culminar a la cosecha 50 l/riego
- Con un total =1366 litros en el ciclo

Se dieron mayor número de riegos (13) porque hubo más sequía.
6.4. Control de malezas

Se efectuó en forma manual, realizando dos labores de deshierba la primera a los 30 días y la segunda a los 45 días después del trasplante con la finalidad de que el terreno se mantenga limpio de malezas y no afecte el desarrollo de la investigación. Cabe señalar que en las fundas la presencia de maleza fue mínima.

6.5. Aporque

Suelo

Se efectuó en forma manual con azada realizando dos labores de aporque la primera a los 30 días y la segunda a los 45 días después del trasplante, conjuntamente con las deshierbas.

Sustrato

Se realizó en forma manual adicionando sustrato en las fundas.

6.6. Control fitosanitario

Para el control de plagas: Gusano trozador (*Agrotis sp*), Minador (*Plutella sp*) se utilizó un insecticida a base de ají+ajo (250gc/u) macerados en 4 litros de alcohol durante 8 días, se aplicó 7cc/l. Con una frecuencia de 15 días.

Polilla (*Plutella xylostera*) se utilizó Bt (*Bacillus thuringiensis*) en dosis de 1g/l. Con una frecuencia de 8 días.

Enfermedades: No hubo presencia de enfermedades

6.7. Cosecha

Esta labor se realizó una vez que la pella de coliflor alcanzó su madurez comercial (antes de que se abra su inflorescencia) esto se realizó manualmente usando un cuchillo, cortando a ras cada una de las pellas separándola de las hojas.
6.8. Toma de datos de precipitación y temperatura

Precipitación

Con un pluviómetro se midió la precipitación luego de cada lluvia, realizando 21 lecturas hasta la finalización de la investigación.

Temperatura

Con un termómetro se midió las temperaturas diarias hasta la finalización del ensayo, realizando dos lecturas diarias a las siguientes horas 6 a.m. y 12 p.m.
7. RESULTADOS Y DISCUSIÓN

7.1. Porcentaje de prendimiento al trasplante

CUADRO 4. Porcentaje de prendimiento al trasplante en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>(%) de prendimiento al trasplante</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (coliflor naranja Sunset en suelo local)</td>
<td>100</td>
</tr>
<tr>
<td>T2 (coliflor verde trevi en suelo local)</td>
<td>100</td>
</tr>
<tr>
<td>T3 (coliflor morada grafiti en suelo local)</td>
<td>100</td>
</tr>
<tr>
<td>T4 (coliflor blanca en suelo local)</td>
<td>100</td>
</tr>
<tr>
<td>T5 (coliflor naranja Sunset en sustrato)</td>
<td>100</td>
</tr>
<tr>
<td>T6 (coliflor verde trevi en sustrato)</td>
<td>100</td>
</tr>
<tr>
<td>T7 (coliflor morada grafiti en sustrato)</td>
<td>100</td>
</tr>
<tr>
<td>T8 (coliflor blanca en sustrato)</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora
Para la variable porcentaje de prendimiento (cuadro 4) se observa que todos los tratamientos presentaron 100% de prendimiento.

Al respecto (Ilbay J., 2009) señala que el porcentaje de prendimiento de los híbridos en condiciones adecuadas de clima para la planta presenta un valor de prendimiento mayor al 90%. Así mismo, (Cuadrado G., 2011) indica que los cultivares en esta etapa del cultivo, dependen de la sanidad de la planta, condiciones adecuadas de humedad en el suelo, control de insectos cortadores y damping, situaciones que fueron consideradas en la investigación de ahí el excelente resultado.

Si bien la humedad es muy importante en esta etapa, precipitaciones fuertes pueden causar graves problemas de prendimiento en este cultivo, de ahí que la baja precipitación en la zona en esta etapa fue positiva (ver anexo 4), solventando humedad con riegos controlados.
7.2. Cuadros comparativos de variables

7.2.1. Número, largo y ancho de hojas

CUADRO 5. Significancia y Tukey al 5% para número, largo y ancho de hojas en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (Sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche – Pichincha 2013”.

<table>
<thead>
<tr>
<th>Significancia</th>
<th>Nº DE HOJAS</th>
<th>LARGO DE HOJA (cm)</th>
<th>ANCHO DE HOJA (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Medios de cultivo</td>
<td>Promedios</td>
<td>Rangos</td>
<td>Promedios</td>
</tr>
<tr>
<td>M1</td>
<td>7.78 b</td>
<td>23.93 b</td>
<td>13.20 b</td>
</tr>
<tr>
<td>M2</td>
<td>10.36 a</td>
<td>30.91 a</td>
<td>16.82 a</td>
</tr>
<tr>
<td>Cultivares</td>
<td>Promedios</td>
<td>Rangos</td>
<td>Promedios</td>
</tr>
<tr>
<td>C1</td>
<td>7.92 b</td>
<td>23.88 b</td>
<td>15.00 a</td>
</tr>
<tr>
<td>C2</td>
<td>9.45 a</td>
<td>32.88 a</td>
<td>14.31 a</td>
</tr>
<tr>
<td>C3</td>
<td>9.08 ab</td>
<td>26.28 b</td>
<td>14.54 a</td>
</tr>
<tr>
<td>C4</td>
<td>9.83 a</td>
<td>26.64 b</td>
<td>16.18 a</td>
</tr>
<tr>
<td>Significancia</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Interacción (AxB)</td>
<td>Promedios</td>
<td>Rangos</td>
<td>Promedios</td>
</tr>
<tr>
<td>T1 (M1C1)</td>
<td>6.38 d</td>
<td>20.42 c</td>
<td>12.62 c</td>
</tr>
<tr>
<td>T2 (M1C2)</td>
<td>8.15 cd</td>
<td>29.45 ab</td>
<td>13.01 bc</td>
</tr>
<tr>
<td>T3 (M1C3)</td>
<td>7.82 cd</td>
<td>23.14 bc</td>
<td>12.84 c</td>
</tr>
<tr>
<td>T4 (M1C4)</td>
<td>8.76 bc</td>
<td>22.72 bc</td>
<td>14.33 abc</td>
</tr>
<tr>
<td>T5 (M2C1)</td>
<td>9.45 abc</td>
<td>27.33 bc</td>
<td>17.39 ab</td>
</tr>
<tr>
<td>T6 (M2C2)</td>
<td>10.75 ab</td>
<td>36.31 a</td>
<td>15.60 abc</td>
</tr>
<tr>
<td>T7 (M2C3)</td>
<td>10.34 ab</td>
<td>29.43 ab</td>
<td>16.24 abc</td>
</tr>
<tr>
<td>T8 (M2C4)</td>
<td>10.90 a</td>
<td>30.55 ab</td>
<td>18.03 a</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora
Según el análisis de varianza, para número, largo y ancho de hojas (Cuadro 5) para medios de cultivo y cultivares se obtuvo una alta significancia estadística, mientras que para cultivares en ancho de hojas se obtuvo no significancia estadística, finalmente para interacciones (medios de cultivo x cultivares) para las tres variables no se obtuvo significancia estadística.

En relación al factor A (medios de cultivo), para número, largo y ancho de hojas Tukey al 5% (cuadro 5), registra dos rangos de significancia, donde los cultivares con mayor número, largo y ancho de hojas son los tratamientos que fueron sembrados en el sustrato con promedios de 10.36 hojas, 30.91 cm de largo y 16.82 cm de ancho ubicándose en el rango a, mientras que los cultivares que fueron sembrados en el suelo local reportaron el menor número, largo y ancho de hojas con promedios de 7.77 hojas, 23.93 cm. de largo y 13.20 cm de ancho ubicándose en el rango b.

Al respecto INFOAGRO, 2012) indica que con un buen sustrato se mantiene la capacidad de retención de agua, suficiente suministro de aire, elevada porosidad, buena capacidad de intercambio catiónico, suficiente nivel de nutrientes asimilables de N, P y K, baja salinidad, capacidad para mantener constante el pH y mínima velocidad de descomposición, lo que favorece el desarrollo del cultivo.

Por otro lado, el uso de sustratos vitaliza al espécimen permitiendo la producción de follaje y fruto abundante.

Con respecto a la precipitación, no se dieron lluvias excesivas durante todo el ciclo de cultivo para esto se dotó de agua de riego en todo su ciclo, al respecto la (Guía práctica para el cultivo de coliflor, 2012) señala que de no darse condiciones de abundante pluviometría se realicen riegos muy frecuentes para mantener la humedad del suelo y por ende el desarrollo del cultivo.

De acuerdo a lo mencionado anteriormente, los mejores resultados para el sustrato se debió a que éste fue preparado a base de gallinaza, humus de lombriz, compost, tierra negra de acuerdo al requerimiento del cultivo, (ver anexo 1), pues la coliflor es más
exigente en cuanto a suelo que los restantes cultivos de su especie, necesitando suelos con buena fertilidad y con gran aporte de nitrógeno, materia orgánica y de agua lo que se tomó en cuenta al momento de preparar dicho sustrato.

Por otro lado, la coliflor es un cultivo que tiene preferencia por suelos porosos, no encharcados, pero que al mismo tiempo tengan capacidad de retener la humedad, lo que al parecer en la investigación afectó al cultivo en suelo, ya que de acuerdo al análisis de laboratorio éste presenta porcentajes elevados de arena, baja cantidad de materia orgánica, baja conductividad eléctrica de 0.14 ds/m, etc. (ver nexo 2)

En relación al factor B (cultivares de coliflor), Tukey al 5% (cuadro 5), muestra al cultivar C2 (coliflor verde) como el mejor tanto en número y largo de hoja con promedios de 9.45 hojas y 32.88 cm de largo, respectivamente, aunque en ancho el promedio fue menor sin embargo la diferencia no es significativa en relación a los demás, de ahí que en general presenta mayor follaje.

Mientras que el cultivar con los más bajos resultados es el C1 (coliflor naranja Sunset) con promedios de 7.92 hojas, 23.88 cm de largo y 15 cm de ancho presentando un menor follaje lo que influyó negativamente en el rendimiento al final del ensayo.

Cabe resaltar que, el cultivar C4 (coliflor blanca var. snowball) presentó buenos resultados para las tres variables, es así que este cultivar presento mayor follaje, sin embargo al final no tuvo buenos rendimientos.

Al respecto, como se conoce en el desarrollo del cultivo, a más de la nutrición y humedad influyen también otros factores entre ellos la temperatura, es así que (Baixauli C., 2006) señala que la coliflor para su desarrollo inicial necesita rangos de temperatura de 6-10°C, tolerando de 12-25°C. Lo que muestra que la temperatura de la zona durante la etapa de crecimiento de las plantas en la investigación, tuvo los rangos adecuados ver (anexo 3).
En cuanto a interacciones, si bien no existe significancia, Tukey al 5% (cuadro 5) muestra diferentes rangos para tratamientos, donde el mejor fue el tratamiento T6 (coliflor verde trevi en sustrato) pues en general presenta mayor follaje mientras que el tratamiento T1 (coliflor naranja Sunset) tiene la peor respuesta con respecto a la cantidad de follaje lo que tiene lógica ya que el mejor cultivar fue verde Trevi y el mejor medio fue el sustrato. Como se puede apreciar más claramente en los gráficos 1,2 y 3.

Cabe señalar que en general el número de hojas, largo y ancho estuvo dentro de los rangos indicados para este cultivo según (Cotrina, 1981) (número de hojas 7-20, largo de hoja 25 a 50cm y de ancho 20cm) lo que concuerda con los resultados obtenidos en la investigación.

7.2.1.1. Interacciones para número de hojas

![Gráfico 1](image-url)

Fuente: La Investigación
Elaborado por: La Autora

GRÁFICO 1. Promedios de interacciones para número de hojas en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

54
7.2.1.2. Interacciones para largo de hojas

GRÁFICO 2. Promedios de las interacciones para largo de hojas en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

7.2.1.3. Interacciones para ancho de hojas

GRÁFICO 3. Promedios de interacciones para ancho de hojas en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

55
7.2.2. Compactación de pella

CUADRO 6. Grados de compactación de la pella en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>PROMEDIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (coliflor naranja Sunset en suelo local)</td>
<td>2 **</td>
</tr>
<tr>
<td>T2 (coliflor verde trevi en suelo local)</td>
<td>2 **</td>
</tr>
<tr>
<td>T3 (coliflor morada grafiti en suelo local)</td>
<td>2 **</td>
</tr>
<tr>
<td>T4 (coliflor blanca en suelo local)</td>
<td>1 *</td>
</tr>
<tr>
<td>T5 (coliflor naranja Sunset en sustrato)</td>
<td>2 **</td>
</tr>
<tr>
<td>T6 (coliflor verde trevi en sustrato)</td>
<td>2 **</td>
</tr>
<tr>
<td>T7 (coliflor morada grafiti en sustrato)</td>
<td>2 **</td>
</tr>
<tr>
<td>T8 (coliflor blanca en sustrato)</td>
<td>1 *</td>
</tr>
</tbody>
</table>

COMPACTA **

FLOJA *

Fuente: La Investigación

Elaborado por: La Autora

Según el (Cuadro 6) para el grado de compactación de la pella los tratamientos T1, T2, T3, T5, T6, T7 se ubicaron en el grado de compactación 2 (compacta) lo que coincide con lo mencionado por (CAULIFLOWER, 2012) que indica que la coliflor pertenece al grupo (Brassica oleracea L. var. botrytis,) forma cauliflora que se cultiva para el consumo de sus inflorescencias tupidas y compactas formadas por un conjunto de pequeños botones florales, como consecuencia de que en estas plantas la inflorescencia se encuentra hipertrofiada, formando una masa de pecíolos y botones foliares apelmazados.
En cambio los tratamientos T4 (coliflor blanca var. snowball en suelo local) y T8 (coliflor blanca var. snowball en sustrato) se ubicaron en el grado de compactación 1 (floja).

En general se observa que los cultivares respondieron bien a esta variable, excepto la coliflor blanca, lo que podría deberse a características propias genéticas de la variedad en estudio, pues como indica (Bellet, 2013) una buena variedad genéticamente va a tener resistencia a enfermedades, calidad, rendimiento y adaptabilidad es decir que el cultivar (coliflor blanca) no tuvo un buen potencial genético pues al parecer no influye ni el clima ni la nutrición ni la humedad ya que los demás cultivares respondieron muy bien.
7.2.3. Tamaño y peso de la pella

CUADRO 7. Significancia y Tukey al 5% para tamaño y peso de la pella en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (*Brassica oleracea, f*) de colores (Sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche – Pichincha 2013”.

<table>
<thead>
<tr>
<th>TAMAÑO DE PELLA (cm)</th>
<th>PESO DE PELLA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significancia</td>
<td>****</td>
</tr>
<tr>
<td>Medios de cultivo</td>
<td>Promedios</td>
</tr>
<tr>
<td>M1</td>
<td>33.80 b</td>
</tr>
<tr>
<td>M2</td>
<td>45.83 a</td>
</tr>
<tr>
<td>Significancia</td>
<td>****</td>
</tr>
<tr>
<td>Cultivares</td>
<td>Promedios</td>
</tr>
<tr>
<td>C1</td>
<td>42.16 b</td>
</tr>
<tr>
<td>C2</td>
<td>59.90 a</td>
</tr>
<tr>
<td>C3</td>
<td>57.19 a</td>
</tr>
<tr>
<td>C4</td>
<td>0.00 c</td>
</tr>
<tr>
<td>Significancia</td>
<td>****</td>
</tr>
<tr>
<td>Interacción (AxB)</td>
<td>Promedios</td>
</tr>
<tr>
<td>T1 (M1C1)</td>
<td>35.05 c</td>
</tr>
<tr>
<td>T2 (M1C2)</td>
<td>50.95 b</td>
</tr>
<tr>
<td>T3 (M1C3)</td>
<td>49.19 b</td>
</tr>
<tr>
<td>T4 (M1C4)</td>
<td>0.00 d</td>
</tr>
<tr>
<td>T5 (M2C1)</td>
<td>49.28 b</td>
</tr>
<tr>
<td>T6 (M2C2)</td>
<td>68.85 a</td>
</tr>
<tr>
<td>T7 (M2C3)</td>
<td>65.20 a</td>
</tr>
<tr>
<td>T8 (M2C4)</td>
<td>0.00 d</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora
Según el análisis de varianza, para tamaño y peso de la pella (Cuadro 7) en medios de cultivo, cultivares e interacciones se obtuvo una alta significancia estadística, para las dos variables.

En relación al factor A (medios de cultivo), para tamaño y peso de la pella Tukey al 5% (cuadro 7), registra dos rangos de significancia, donde los cultivares con mayor tamaño y peso pertenecieron a los tratamientos que fueron sembrados en el sustrato con promedios de 45.83cm., en tamaño, y 565.42 gr. en peso ubicándose en el rango a, mientras para los cultivares que fueron sembrados en el suelo local reportaron el menor tamaño, y peso de la pella con promedios de 33.80cm en tamaño, y 328.70 gr. en peso ubicándose en el rango b.

Al respecto (INFOAGRO, 2012) señala que la elaboración del sustrato base de abonos orgánicos no sólo aporta materiales nutritivos, sino que además influye favorablemente en la estructura del suelo. Asimismo, aportan nutrientes y modifican la población de microorganismos en general, de esta manera se asegura la formación de agregados que permiten una mayor retención de agua, intercambio de gases y nutrientes, a nivel de las raíces de las plantas. Esto permite explicar que los cultivares que fueron sembrados mediante abonos orgánicos tuvieron mejor respuesta ante los demás cultivares que fueron sembrados en el suelo ya que no cumplió con todas las características requeridas para este cultivo puesto que es muy exigente en cuanto a nutrientes, pH, CE, etc.

En relación al factor B (cultivares de coliflor), Tukey al 5% (cuadro 7), muestra como el mejor cultivar para tamaño y peso a (coliflor verde trevi) con promedios de 59.90cm en tamaño y 785.47g en peso mientras que el peor cultivar fue (coliflor blanca var. snowball) ya que no se obtuvo pellas comerciales, sin embargo cabe señalar que en esta investigación el cultivar con menor promedio para las dos variables fue (coliflor naranja Sunset) con 42.16cm de tamaño y 302.89 g de peso.
Al respecto, la temperatura es de suma importancia en la fase de desarrollo de la inflorescencia, (Zaccari, F) señala que las temperaturas mínimas para este cultivo son de 12°C, máximas de 18°C y óptimas de 15°C pero si existen temperaturas menores a 10°C y mayores a 25°C presentan baja calidad. La temperatura de la zona durante esta etapa en la investigación, tuvo los rangos adecuados ver (anexo 3) Con esto se puede decir que se debe a diversos factores como aclimatación de los cultivares a dicha zona de investigación, vigor de los híbridos, capacidad y requerimientos de absorción de nutrientes, o también se deba a la genética de cada cultivar, es decir los tres cultivares(Sunset, verde trevi y grafiti) del sustrato respondieron bien a estos factores ya que se encuentran en los rangos aceptables e incluso hasta valores más altos que por los dados en la casa comercial (IMPORTADORA ALASKA) siendo los siguientes: para Sunset 280g, verde trevi de 800 a 900g y grafiti de 700 a 1110g lo que concuerda con los resultados obtenidos en esta investigación siendo para Sunset 350.07g, verde trevi 1003.64g y grafiti 907.97g.

Los resultados obtenidos de acuerdo a las interacciones Según Tukey al 5% (cuadro 7) señala que para tamaño y peso de la pella el mejor tratamiento fue T2 (coliflor verde trevi en sustrato) con promedios de 68.85 cm de tamaño y 1003.64g ubicándose en el rango a, mientras que el tratamiento T4 y T8 (coliflor blanca var, snowball) para los dos medios de cultivo fue el peor ya que no formaron pellas comerciales pues estas se abrieron muy prematuramente. Ante esto cabe destacar que tanto para tamaño como peso de la pella el tratamiento T1 (coliflor naranja Sunset en suelo local) es el que tuvo menor en relación a los demás cultivares con 35.05 cm de tamaño y 255.72 g de peso. Como se puede apreciar más claramente en los gráficos 4, y 5.

(CAULIFLOWER, 2012) menciona es conveniente que la variedad de coliflor seleccionada tenga la mayor cantidad de hojas posibles y que sean erectas y abrazadoras para obtener un mayor tamaño de la pella. Esto permite explicar el porqué del tratamiento T6 (coliflor verde trevi en sustrato) puesto que fue el mejor, ya que tuvo mayor follaje, por lo tanto mayor cantidad de sustancias de reserva para
estimular la floración, mientras que el tratamiento T1 (coliflor naranja sunset en suelo local) es el que tuvo menor follaje de ahí su menor desarrollo de la pella el mismo que no alcanzo el peso dado por la casa comercial siendo este de 280g.

Cabe acotar que la coliflor blanca aún a pesar de los requerimientos nutricionales tanto del suelo como del sustrato y demás de la temperatura y riego que se dio en la zona no respondió favorablemente en esta investigación más bien su mal desarrollo de la pella se debió al potencial genético propio del cultivar.

Cabe señalar que en la investigación de (Vásquez, 2011) para el peso de los cultivares se obtuvo rangos mínimos aceptables para la comercialización local siendo para Sunset 255.85g, verde trevi 565.94g y grafiti 494.57g lo que hace similar a los resultados obtenidos en el medio de cultivo (suelo local) de la investigación, con los siguientes pesos para Sunset 255.72g, verde trevi 567.30g y grafiti 491.79g esto cabe indicar que en relación a los pesos establecidos por la casa comercial no alcanzaron los valores establecidos que son para Sunset 280g, verde trevi de 800 a 900 y grafiti de 700 a 1110g.
7.2.3.1. Interacción tamaño pella

Gráfico 4. Interacción de tamaño de pella en la "Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

7.2.3.2. Interacción peso pella

Gráfico 5. Interacción del peso de pella en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

62
7.2.4. Rendimiento en kg/ha

CUADRO 8. Significancia y Tukey L 5% Rendimiento kg/ha en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

<table>
<thead>
<tr>
<th>Significancia</th>
<th>**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medios de cultivo</td>
<td>Promedios</td>
</tr>
<tr>
<td>M1</td>
<td>6976.62</td>
</tr>
<tr>
<td>M2</td>
<td>9860.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significancia</th>
<th>**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivares</td>
<td>Promedios</td>
</tr>
<tr>
<td>C2</td>
<td>14415.06</td>
</tr>
<tr>
<td>C3</td>
<td>12758.75</td>
</tr>
<tr>
<td>C1</td>
<td>6500.00</td>
</tr>
<tr>
<td>C4</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significancia</th>
<th>**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interacción (AxB)</td>
<td>Promedios</td>
</tr>
<tr>
<td>T6 (M2C2)</td>
<td>16727.22</td>
</tr>
<tr>
<td>T7 (M2C3)</td>
<td>15225.28</td>
</tr>
<tr>
<td>T2 (M1C2)</td>
<td>12102.89</td>
</tr>
<tr>
<td>T3 (M1C3)</td>
<td>10292.89</td>
</tr>
<tr>
<td>T5 (M2C1)</td>
<td>7488.61</td>
</tr>
<tr>
<td>T1 (M1C1)</td>
<td>5511.39</td>
</tr>
<tr>
<td>T8 (M2C4)</td>
<td>0.00</td>
</tr>
<tr>
<td>T4 (M1C4)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora
Según el análisis de varianza, para rendimiento kg/ha (Cuadro 8) en medios de cultivo, cultivares e interacciones se obtuvo alta significancia estadística.

En relación al factor A (medios de cultivo), para rendimiento Tukey al 5% (cuadro 8), registra dos rangos de significancia, donde los cultivares con mayor rendimiento pertenecieron a los tratamientos que fueron sembrados en el sustrato con un promedio de 9860.28 kg/ha ubicándose en el rango a, mientras para los cultivares que fueron sembrados en el suelo local reportaron el menor rendimiento con un promedio de 6976.62 kg/ha ubicándose en el rango b.

Como ya se había mencionado anteriormente el sustrato utilizado actuó favorablemente ante los cultivares puesto que cumplió con los requerimientos de nutrientes para el cultivo de ahí su mejor respuesta en rendimiento.

En relación al factor B (cultivares de coliflor), Tukey al 5% (cuadro 8), para rendimiento el mejor fue el cultivar C2 (verde trevi) con un promedio de 14415.06 kg/ha mientras que el peor fue el cultivar C4 (coliflor blanca var. snowball) que no produjo pellas comerciales ya que fue una característica genética del cultivar, sin embargo de las coliflores de colores cabe recalcar que el menor rendimiento tuvo el cultivar C1 (coliflor naranja Sunset) con un promedio de 6500.00 kg/ha.

Tukey al 5% para interacciones en la variable rendimiento (Cuadro 8) muestra que el tratamiento T6 (coliflor verde Trevi en sustrato) se ubicó en el rango a, como el mejor con un promedio de 16727.22 kg/ha; seguido por el tratamiento T7 (coliflor morada grafiti en sustrato) que también se ubicó en el mismo rango pero con un promedio de 15225.28 kg/ha el peor fue el T4 (coliflor blanca var. snowball en suelo local) y T8 (coliflor blanca var. Snowball en sustrato), con promedios de 0.00 para los dos medios de cultivo. Esto corrobora los resultados encontrados en las variables anteriores.

Cabe señalar que en el ensayo realizado por (Vásquez, 2011) en cuanto a rendimiento kg/ha concuerdan con los resultados obtenidos de esta investigación en el medio de cultivo (suelo local) donde los cultivares no alcanzaron los pesos y
tamaños dados por la casa comercial pues no se tuvo los nutrientes necesarios mientras que los cultivares que fueron sembrados en el sustrato alcanzaron los rendimientos promedios ubicados por la casa comercial de ahí su mejor tamaño y peso por ende mejor productividad.

7.2.4.1. Interacción rendimiento kg/ha

[GRAFICO 6. Interacción rendimiento kg/ha en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”]

7.3. Análisis económico

7.3.1. Tratamientos y rendimiento promedio en pellas/ha

[CUADRO 9. Tratamientos y rendimiento promedio en pellas/ha de cada uno en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (Sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

65
7.3.1. Costos que varían y precio de un kilogramo de coliflor

CUADRO 10. Costos que varían y precio de un kilogramo de coliflor en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (Sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche – Pichincha 2013”.

<table>
<thead>
<tr>
<th>TECNOLOGÍA</th>
<th>TRATAMIENTOS</th>
<th>RENDIMIENTO PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pellas/planta</td>
</tr>
<tr>
<td>T1 (M1C1)</td>
<td>suelo local x coliflor Sunset</td>
<td>1,00</td>
</tr>
<tr>
<td>T2 (M1C2)</td>
<td>suelo local coliflor verde trevi</td>
<td>1,00</td>
</tr>
<tr>
<td>T3 (M1C3)</td>
<td>suelo local coliflor grafiti</td>
<td>1,00</td>
</tr>
<tr>
<td>T4 (M1C4)</td>
<td>suelo local coliflor blanca</td>
<td>1,00</td>
</tr>
<tr>
<td>T5 (M2C1)</td>
<td>sustrato x coliflor Sunset</td>
<td>1,00</td>
</tr>
<tr>
<td>T6 (M2C2)</td>
<td>sustrato coliflor verde trevi</td>
<td>1,00</td>
</tr>
<tr>
<td>T7 (M2C3)</td>
<td>sustrato coliflor grafiti</td>
<td>1,00</td>
</tr>
<tr>
<td>T8 (M2C4)</td>
<td>sustrato coliflor blanca</td>
<td>1,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TECNOLOGÍA</th>
<th>TRATAMIENTOS</th>
<th>costo de semilla utilizada</th>
<th>PRECIO UNITARIO POR PELLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1(M1C1)</td>
<td>suelo local x coliflor Sunset</td>
<td>1128,00</td>
<td>0,17496875</td>
</tr>
<tr>
<td>T2 (M1C2)</td>
<td>suelo local x coliflor verde trevi</td>
<td>340,00</td>
<td>0,174911875</td>
</tr>
<tr>
<td>T3 (M1C3)</td>
<td>suelo local x coliflor grafiti</td>
<td>400,00</td>
<td>0,174973438</td>
</tr>
<tr>
<td>T4 (M1C4)</td>
<td>suelo local x coliflor blanca</td>
<td>80,00</td>
<td>0,174992188</td>
</tr>
<tr>
<td>T5 (M2C1)</td>
<td>sustrato x coliflor Sunset</td>
<td>1128,00</td>
<td>0,350693125</td>
</tr>
<tr>
<td>T6 (M2C2)</td>
<td>sustrato x coliflor verde trevi</td>
<td>340,00</td>
<td>0,350754688</td>
</tr>
<tr>
<td>T7 (M2C3)</td>
<td>sustrato x coliflor grafiti</td>
<td>400,00</td>
<td>0,35075000</td>
</tr>
<tr>
<td>T8 (M2C4)</td>
<td>sustrato x coliflor blanca</td>
<td>80,00</td>
<td>0,350773438</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora
7.3.2. Costo que varían y precio de un kilogramo de coliflor

CUADRO 11. Costo que varían y precio de un kilogramo de coliflor en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>RENDIMIENTO PROMEDIO</th>
<th>BENEFICIO BRUTO EN CAMPO (U.S.D/ha)</th>
<th>COSTO SEMILLAS DE COLIFLOR (U.S.D/ha)</th>
<th>TOTALES QUE VARÍAN (U.S.D/ha)</th>
<th>BENEFICIO NETO (U.S.D/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>suelo local x coliflor Sunset</td>
<td>1,00 5511,39</td>
<td>1058,73 1128,00</td>
<td>1128,00</td>
<td>-69,27</td>
<td></td>
</tr>
<tr>
<td>suelo local coliflor verde trevi</td>
<td>1,00 12102,89</td>
<td>2325,70 340,00</td>
<td>340,00</td>
<td>1985,70</td>
<td></td>
</tr>
<tr>
<td>suelo local coliflor grafiti</td>
<td>1,00 10292,22</td>
<td>19977,7 400,00</td>
<td>400,00</td>
<td>1577,71</td>
<td></td>
</tr>
<tr>
<td>suelo local coliflor blanca</td>
<td>1,00 0,00</td>
<td>80,00 80,00</td>
<td>80,00</td>
<td>-80</td>
<td></td>
</tr>
<tr>
<td>sustrato x coliflor Sunset</td>
<td>1,00 7488,61</td>
<td>2626,20 1128,00</td>
<td>1128,00</td>
<td>1498,20</td>
<td></td>
</tr>
<tr>
<td>sustrato x coliflor verde trevi</td>
<td>1,00 16727,22</td>
<td>5867,15 340,00</td>
<td>340,00</td>
<td>5527,15</td>
<td></td>
</tr>
<tr>
<td>sustrato x coliflor grafiti</td>
<td>1,00 15225,28</td>
<td>5340,27 400,00</td>
<td>400,00</td>
<td>4940,27</td>
<td></td>
</tr>
<tr>
<td>sustrato x coliflor blanca</td>
<td>1,00 0,00</td>
<td>80,00 80,00</td>
<td>80,00</td>
<td>-80</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora

7.3.3. Análisis de Dominancia

CUADRO 12. Análisis de dominancia en la “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (Sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

<table>
<thead>
<tr>
<th>TECNOLOGÍA</th>
<th>COSTOS TOTALES QUE VARÍAN (U.S.D/ha)</th>
<th>BENEFICIO NETO (U.S.D/ha)</th>
<th>DOMINANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T8 (M2C4)</td>
<td>80,00</td>
<td>-80,00</td>
<td>Nd</td>
</tr>
<tr>
<td>T4 (M1C4)</td>
<td>80,00</td>
<td>-80,00</td>
<td>Nd</td>
</tr>
<tr>
<td>T6 (M2C2)</td>
<td>340,00</td>
<td>6407,94</td>
<td>dominado</td>
</tr>
<tr>
<td>T2 (M1C2)</td>
<td>340,00</td>
<td>1985,70</td>
<td>dominado</td>
</tr>
<tr>
<td>T7 (M2C3)</td>
<td>400,00</td>
<td>4940,27</td>
<td>Nd</td>
</tr>
<tr>
<td>T3 (M1C3)</td>
<td>400,00</td>
<td>1577,71</td>
<td>Nd</td>
</tr>
<tr>
<td>T5 (M2C1)</td>
<td>1128,00</td>
<td>1498,20</td>
<td>Nd</td>
</tr>
<tr>
<td>T1 (M1C1)</td>
<td>1128,00</td>
<td>-69,27</td>
<td>Nd</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora

67
7.3.4. Tasa de retorno marginal

CUADRO 13. Tasa de retorno marginal. “Influencia de dos medios de cultivo en la productividad de tres híbridos de coliflor (Brassica oleracea, l) de colores (Sunset, verde trevi y grafitti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013”.

<table>
<thead>
<tr>
<th>TECNOLOGÍA</th>
<th>COSTOS QUE VARÍAN</th>
<th>BENEFICIOS NETOS</th>
<th>TASA DE RETORNO MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>340,00</td>
<td>340,00</td>
<td>1985,70</td>
</tr>
<tr>
<td>T6</td>
<td>340,00</td>
<td>340,00</td>
<td>6407,94</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora

El T6 (sustrato x verde trevi) es el mejor tratamiento desde el punto de vista económico, permitiendo una recuperación de 18.84 dólares por cada dólar invertido.
8. CONCLUSIONES

Los cultivares de coliflor tanto blanca (var. Snowball) como de colores (Sunset, verde trevi y grafiti) en cuanto a producción respondieron positivamente en el sustrato así como en el suelo, ya que presentaron 100% de prendimiento y estuvieron en los rangos establecidos para este cultivo respecto ancho, largo y número de hojas, siendo de ellos el mejor el tratamiento T6 (coliflor verde trevi en sustrato).

Se mejoró la productividad de los cultivares de coliflor de colores, utilizando un sustrato que fue elaborado a base de abonos orgánicos de acuerdo a los requerimientos del cultivo, pues se incrementó el tamaño y peso de la pella y con ello el rendimiento. Siendo de igual manera el tratamiento T6 (coliflor verde trevi en sustrato) con promedios de 68.85cm para tamaño de pella, 1003.64g de peso y 16727kg/ha el que tuvo mejor respuesta. Cabe señalar que la coliflor Sunset naranja, pese a que mejoró la calidad respecto al suelo, sigue siendo la de menor tamaño y peso de pella entendiéndose que son características propias del cultivar.

La coliflor blanca (var. snowball) tanto en suelo como en el sustrato, no presentó pellas comerciales (pellas compactas), puesto que estas tuvieron un crecimiento desmedido de sus brácteas, lo que indica que no es una característica relacionada ni con la nutrición ni con el clima.

Desde el punto de vista económico el tratamiento T6 (coliflor verde trevi en sustrato) fue el que presentó la mejor tasa de retorno marginal, de 1884,68% es decir que por cada dólar invertido permitirá recuperar 18.84 dólares.

Mejorando características física y químicas de los suelos de la zona de San Miguel de El Quinche, de acuerdo a las necesidades del cultivo, si se puede mejorar la calidad de la pella y con ello los rendimientos en los cultivos de coliflor de colores, no así en la coliflor blanca en la que no se logró una pella compacta y por ende no hubo rendimiento, deduciéndose que la subida a flor es una condición genética de la semilla de éste cultivar.
9. RECOMENDACIONES

En la parroquia El Quinche barrio San Miguel se recomienda la siembra de los tres cultivares de coliflor (Sunset, verde trevi y grafiti), principalmente la coliflor verde trevi ya que presentó los mejores resultados en cuanto a producción y productividad, siempre y cuando se mejore las características físicas y químicas del suelo de acuerdo al requerimiento del cultivo esto bajo condiciones de producción orgánica.

No cultivar la coliflor blanca (variedad snowball) ya que no forma pella comercial, lo que provocará pérdidas económicas.
10. RESUMEN

La presente investigación cuyo tema es “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (Brassica oleracea, L) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche –Pichincha 2013” se llevó a cabo en el Barrio San Miguel de la parroquia El Quinche con la finalidad de conseguir los siguientes objetivos:

Objetivo General:

Determinar la influencia de dos medios de cultivo (suelo local y sustrato) en la productividad de tres cultivares de coliflor (Brassita oleracea, L) de colores (Sunset, verde Trevi y Grafiti) a una altitud de 2.450 m.s.n.m., bajo condiciones de producción orgánica.

Objetivos Específicos:

Evaluar la influencia de dos medios de cultivo en la producción de tres cultivares de coliflor (Sunset, verde Trevi y Grafiti).

Evaluar la influencia de dos medios de cultivo en la calidad de la pella de tres cultivares de coliflor.

Realizar el análisis económico.

La investigación se planteó como un diseño completamente al azar (DCA), con arreglo factorial A x B con 8 tratamientos y 4 repeticiones., donde las variables evaluadas fueron: Porcentaje de prendimiento, grado de compactación, tamaño y peso de la pella y Rendimiento en kg/ha.

El manejo del cultivo se lo realizó bajo condiciones de producción orgánicas, para ello se utilizó bio insumos para la prevención de plagas y enfermedades así como para la fertilización. Por otro lado con la ayuda de un termómetro y pluviómetro se registró los cambios ambientales durante la investigación.
Una vez terminada la presente investigación se llegó a las siguientes conclusiones:

Los cultivares de coliflor tanto blanca (var. Snowball) como de colores (sunset, verde trevi y grafiti) en cuanto a producción respondieron positivamente en el sustrato así como en el suelo, ya que presentaron 100% de prendimiento y estuvieron en los rangos establecidos para este cultivo respecto ancho, largo y número de hojas, siendo de ellos el mejor el tratamiento T6 (coliflor verde trevi en sustrato).

Se mejoró la productividad de los cultivares de coliflor de colores, utilizando un sustrato que fue elaborado a base de abonos orgánicos de acuerdo a los requerimientos del cultivo, pues se incrementó el tamaño y peso de la pella y con ello el rendimiento. Siendo de igual manera el tratamiento T6 (coliflor verde trevi en sustrato) con promedios de 68.85cm para tamaño de pella, 1003.64g de peso y 16727kg/ha el que tuvo mejor respuesta. Cabe señalar que la coliflor Sunset naranja, pese a que mejoró la calidad respecto al suelo, sigue siendo la de menor tamaño y peso de pella entendiéndose que son características propias del cultivar.

La coliflor blanca (var. snowball) tanto en suelo como en el sustrato, no presentó pellas comerciales (pellas compactas), puesto que estas tuvieron un crecimiento desmedido de sus brácteas, lo que indica que no es una característica relacionada ni con la nutrición ni con el clima.

Desde el punto de vista económico el tratamiento T6 (coliflor verde trevi en sustrato) fue el que presentó la mejor tasa de retorno marginal, de 1884,68% es decir que por cada dólar invertido permitirá recuperar 18.84 dólares.

Mejorando características física y químicas de los suelos de la zona de San Miguel de El Quinche, de acuerdo a las necesidades del cultivo, si se puede mejorar la calidad de la pella y con ello los rendimientos en los cultivares de coliflor de colores, no así en la coliflor blanca en la que no se logró una pella compacta y por ende no hubo rendimiento, deduciéndose que la subida a flor es una condición genética de la semilla de éste cultivar.
Por lo que se recomienda:

En la parroquia El Quinche barrio San Miguel se recomienda la siembra de los tres cultivares de coliflor (Sunset, verde trevi y grafiti), principalmente la coliflor verde trevi ya que presentó los mejores resultados en cuanto a producción y productividad, siempre y cuando se mejore las características físicas y químicas del suelo de acuerdo al requerimiento del cultivo.

No cultivar la coliflor blanca (variedad snowball) ya que no forma pella comercial, lo que provocará pérdidas económicas.
SUMMARY

This research on the theme "Influence of two culture media in the productivity of three cultivars of cauliflower (Brassica oleracea, L) colors (sunset, green trevi and graffiti), growing under organic conditions, at 2,450mPichinchaQuinche-2013" was held in Barrio San Miguel parish Quinche fulfilling the following objectives:

Objective General

Determine the influence of two media (local soil and substrate) in the productivity of three cultivars of cauliflower (Brassica oleracea, L) of colors (Sunset, green Trevi and graffiti) at an altitude of 2,450 meters above sea level, under the conditions of organic production.

Specific objectives

Evaluate the influence of two media in the production of three cultivars of cauliflower (Sunset, green Trevi and graffiti).

Evaluate the influence of two culture media in the quality of the pella of three cultivars of cauliflower.

The economic analysis

The investigation arose as a completely random (DCA) design, with factorial arrangement A x B with 8 treatments and 4 replications. Where the evaluated variables were: percentage of arrest, degree of compaction, size and weight of the pella and performance in kg / has.

The crop management carried out under organic conditions of production, this was used bio inputs for the prevention of pests and diseases as well as for fertilization. On the other hand with the help of a thermometer and rain gauge recorded environmental changes during the investigation.

Once this investigation reached the following conclusions: the cultivars of cauliflower both white (var. Snowball) as colors (sunset, green trevi and graffiti) as
regards production responded positively in the substrate as well as in the soil, since they presented 100% of arrest and were in the established ranges for this crop regarding width, length and number of leaves, still with the best T6 (green cauliflower trevi in substrate) treatment.

Improved productivity of cultivars of cauliflower of colors, using a substrate that was made with fertilizers according to the requirements of the crop, because increased the size and weight of the pella and thus performance. Being in the same way (green cauliflower trevi in substrate) T6 treatment with averages of 68.85 cm for size of Pella, 1003.64 g weight and 16727kg / has him had better response. It should be noted that sunset Orange cauliflower, while improved the quality from the ground, is still the smaller size and weight of pella understanding are characteristics of the cultivar.

White cauliflower (var. snowball) both on ground and in the substrate, not presented commercial pellas (compact pellets), since these had a sprawl of its bracts, which indicates that it is not a feature or related to nutrition or with the climate. From the economic point of view (green cauliflower trevi in substrate) T6 treatment was which presented the best marginal, 1884.68% return rate is that for every dollar invested will allow to recover 18.84 dollars. Improving physical properties and chemistry of soils in the area of San Miguel de El Quinche, according to the needs of the crop, if you can improve the quality of the pella and thus yields in cultivars of cauliflower of colors, not so in the white cauliflower in which a compact pella was not achieved and therefore there was no performance Deducing is that up to flower is a genetic condition of this seed grow.

What is recommended: parish El Quinche barrio San Miguel recommends planting of three cultivars of cauliflower (sunset, green trevi and graffiti), mainly green cauliflower trevi since it presented the best results in terms of production and productivity provided it improves the physical and chemical characteristics of the soil according to the requirement of the crop. Not grow white cauliflower (snowball variety) because it is not a commercial Pella, causing economic losses.
11. BIBLIOGRAFÍA

CUADRADO, Geraldo, Evaluación de la aclimatación y rendimiento de 18 cultivares de coliflor (Brassica oleracea l. var. botrytis), ESPOCH, Facultad de Recursos Naturales, Riobamba, 2011. 30-32pp.

VASQUEZ, Yolanda, Estudio de adaptabilidad de tres híbridos de coliflor (Brassica oleracea, l) de colores (coliflor Sunset, coliflor verde trevi y coliflor grafiti), bajo condiciones orgánicas de cultivo, UPS, Facultad de Ciencias Agropecuarias y ambientales, Quito, 2011. 57pp.

REFERENCIAS ELECTRÓNICAS

Efectos del sustrato sobre los seres vivientes, año de publicación 13/03/2012 http://www.behance.net/gallery/Efectos-del-Sustrato-sobre-los-Seres-Vivientes/3362039

FAO, 2006,
http://www.fao.org/inpho_archive/content/documents/vlibrary/ae620s/pfrescos/COLIFLOR.HTM.

Ficha técnica, variedad SNOWBALL
http://www.bna.com.co:88/LinkClick.aspx?fileticket=zDDisUZ9OJs%3D&tabid=411&mid=642

Guía práctica para cultivo de coliflor orgánico hidropónico, 2012,

GALVÁN, Guillermo, 2010, Curso de Horticultura, Facultad de Agronomía,

INFOAGRO 2012,

ZACCARI, Fernanda, Cruciferae (Brassicaceae) - Facultad de Agronomía, www.fagro.edu.uy/~horticultura/CURSO%20HORTICULTURA/Cruciferas
ANEXOS

ANEXO 1. ANÁLISIS DE SUELO

<table>
<thead>
<tr>
<th>IDENTIFICACIÓN DEL尤EMO</th>
<th>UNIDAD</th>
<th>IDENTIFICACIÓN DEL SUELO</th>
<th>UNIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>%</td>
<td>LS-12-007</td>
<td></td>
</tr>
<tr>
<td>CONDUCTIVIDAD</td>
<td>MPm</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>TEXTURA</td>
<td>(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% A</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% B</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% C</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLASE TEXTURAL</td>
<td></td>
<td>VARIEDAD/FORMA</td>
<td></td>
</tr>
<tr>
<td>MATERIA ORGÁNICA</td>
<td>%</td>
<td>1.0</td>
<td>B</td>
</tr>
<tr>
<td>NITROGENO TOTAL</td>
<td>%</td>
<td>0.1</td>
<td>B</td>
</tr>
<tr>
<td>NITRÓGENO</td>
<td>%</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>POTÁSIO</td>
<td>%</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>FOSFATO</td>
<td>%</td>
<td>32.0</td>
<td>A</td>
</tr>
<tr>
<td>CA</td>
<td>%</td>
<td>1.5</td>
<td>A</td>
</tr>
<tr>
<td>CALCE</td>
<td>%</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>MOLIBDENO</td>
<td>%</td>
<td>2.5</td>
<td>A</td>
</tr>
<tr>
<td>ASP</td>
<td>%</td>
<td>0.0</td>
<td>B</td>
</tr>
<tr>
<td>NITRATO</td>
<td>%</td>
<td>0.0</td>
<td>B</td>
</tr>
<tr>
<td>NITRATO</td>
<td>%</td>
<td>0.0</td>
<td>B</td>
</tr>
<tr>
<td>SÓDIO</td>
<td>%</td>
<td>0.2</td>
<td>B</td>
</tr>
<tr>
<td>CAPACIDAD INTERCALAR CATIONICA (CMC)</td>
<td>%</td>
<td>16.1</td>
<td>B</td>
</tr>
<tr>
<td>CÁLCULO</td>
<td>%</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>CÁLCULO</td>
<td>%</td>
<td>2.1</td>
<td>B</td>
</tr>
<tr>
<td>CÁLCULO</td>
<td>%</td>
<td>0.5</td>
<td>B</td>
</tr>
</tbody>
</table>

Nota: Los resultados corresponden únicamente a las muestras entregadas por el cliente.

LABORATORIO DE SUELOS Y AGUA

Cayambe, Au. Nataisia Jarrín: 12 de Octubre. Teléfono: (593) 2396 2946
Correo electrónico: o.gualavis@ups.edu.ec / bioagrolab@ups.edu.ec

78
INTERPRETACIÓN DE RANGOS DEL CONTENIDO DE NUTRIENTES (SUELOS-REGIÓN SIERRA)

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>M.O.</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>S</th>
<th>Fe</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
<th>B</th>
<th>C.I.C</th>
<th>Al/H +</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>ppm</td>
<td>cmol/kg</td>
<td>ppm</td>
</tr>
<tr>
<td><3.1</td>
<td>0.15</td>
<td><0.06</td>
<td><0.06</td>
<td><5</td>
<td><1.0</td>
<td><1.0</td>
<td><10.0</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>3.1-4.9</td>
<td>0.16-0.30</td>
<td>11.0-20.0</td>
<td>0.3-0.36</td>
<td>5-9.0</td>
<td>1.6-2.30</td>
<td>1-2.9</td>
<td>10.0-24.0</td>
<td>21.0-40.0</td>
<td>6.0-15.0</td>
<td>1.1-4.0</td>
<td>3.1-6.0</td>
<td>1.0-2.0</td>
<td>11.0-20.0</td>
<td>0.5-1.0</td>
<td></td>
</tr>
<tr>
<td>>6.0</td>
<td>>0.30</td>
<td>>20.0</td>
<td>>0.38</td>
<td>>9.0</td>
<td>>2.30</td>
<td>>2.0</td>
<td>>24.0</td>
<td>>40.0</td>
<td>>16.0</td>
<td>>4.0</td>
<td>>4.0</td>
<td>>4.0</td>
<td>>5.0</td>
<td>>10.0</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

INTERPRETACIÓN DE RANGOS DE PARÁMETROS FÍSICOS (SUELOS-REGIÓN SIERRA)

<table>
<thead>
<tr>
<th>pH</th>
<th>Conductividad (dS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido (Ac)</td>
<td>< 0.5,5</td>
</tr>
<tr>
<td>Ligeramente Acid (La)</td>
<td>0.5-6.4</td>
</tr>
<tr>
<td>Ligeramente Neutros (Ph)</td>
<td>6.5-7,5</td>
</tr>
<tr>
<td>Ligeramente Alcalinos (La)</td>
<td>7.6-8,0</td>
</tr>
<tr>
<td>Alcalinos (Alc)</td>
<td>8.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH</th>
<th>Evaluación Relaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca/Mg</td>
</tr>
<tr>
<td>Bajo (B)</td>
<td><2.1</td>
</tr>
<tr>
<td>Alto (A)</td>
<td>>4.1</td>
</tr>
</tbody>
</table>

RECOMENDACIONES

La disponibilidad de nutrientes de la(s) muestra(s) analizada(s) se detalla(n) a continuación:

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>ppm Ca+</th>
<th>ppm Mg+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrógeno (kg/ha N)</td>
<td>50.1</td>
<td>cmol/kg*200.45</td>
</tr>
<tr>
<td>Fósforo (kg/ha P2O5)</td>
<td>89.1</td>
<td>ppm Mg+ cmol/kg*121.55</td>
</tr>
<tr>
<td>Potasio (kg/ha K2O)</td>
<td>648.8</td>
<td></td>
</tr>
</tbody>
</table>

Metodología de Conservación: ppm Ca+ cmol/kg*200.45

Laboratorio BIOS AGROPLUS S.F.I. SUELOS

Técnico de Suelos y Agua
ANEXO 2. ANÁLISIS DEL SUSTRATO

| IDENTIFICADOR DE USUARIO | UNIDAD | 7,6 | 7,8 | 74 | 7 | NA | FRANCISCO ARIZQUE
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CÓDIGO DE LABORATORIO</td>
<td>LS-12-479</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATERIA ORGÁNICA</td>
<td>%</td>
<td>4,5</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITRÓGENO TOTAL</td>
<td>%</td>
<td>0,2</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITRATOS</td>
<td>ppm NO3</td>
<td>30,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FÓSFORO (ASIMILABLE)</td>
<td>ppm P</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PÓS FOSFORO (ASIMILABLE)</td>
<td>ppm P</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALCIO INTERCAMBIABLE</td>
<td>cmm Ca/kg</td>
<td>17,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGNESIO INTERCAMBIABLE</td>
<td>cmm Mg/kg</td>
<td>7,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZUFRE</td>
<td>ppm S</td>
<td>11,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHERO</td>
<td>ppm B</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MERIO</td>
<td>mg/kg</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANGANESO</td>
<td>mg/kg</td>
<td>40,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**CAPACIDAD DE RETENCIÓN DE CATIONES (C-L) | cmol/kg | 33,3 | M

LAUSATO
Método de Análisis: Conductividad Eléctrica, Azúcar, Met.Orgánico 0.1-0.5:2007, 9.8 N, Textura, Hidratometro Bioanalítica.

Sintetización: No Aplica (NA).
Nota Acertatana: Los resultados corresponden únicamente a las muestras entregadas por el cliente.

LABORATORIO DE SUELOS Y AGUA
Cayambe, Av. Natalia Jarrín 12-03 y 9 de Octubre · Teléfono: (593) 2396 2946
Correo electrónico: ogualavis@ups.edu.ec / biolab@ups.edu.ec
INTERPRETACIÓN DE RANGOS DEL CONTENIDO DE NUTRIENTES (SUELOS-REGIÓN SIERRA)

<table>
<thead>
<tr>
<th>Material</th>
<th>Órgano</th>
<th>Nitrógeno</th>
<th>Fósforo</th>
<th>Potasio</th>
<th>Calcio</th>
<th>Magnesio</th>
<th>Sodio</th>
<th>Azufre</th>
<th>Hierro</th>
<th>Manganoso</th>
<th>Cobre</th>
<th>Zinc</th>
<th>Boro</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>ppm</td>
<td>cmol/kg</td>
<td>ppm</td>
<td>cmol/kg</td>
<td>ppm</td>
<td>cmol/kg</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>< 3,1</td>
<td>0-0,15</td>
<td>0-10</td>
<td>< 0,20</td>
<td>< 5</td>
<td>< 1,0</td>
<td>< 1,0</td>
<td>< 12,0</td>
<td>0-5,0</td>
<td>0-1,0</td>
<td>0-3,0</td>
<td>0-1,0</td>
<td>0-0,5</td>
<td>< 0,1</td>
</tr>
<tr>
<td>3,1-3,9</td>
<td>0,1-0,30</td>
<td>0,1-0,30</td>
<td>0,3-0,38</td>
<td>0,0-0,9</td>
<td>0,5-3,0</td>
<td>1,0-3,0</td>
<td>1,0-2,0</td>
<td>3,0-4,0</td>
<td>0-6,0</td>
<td>1-4,0</td>
<td>0-3,0</td>
<td>0-1,0</td>
<td>0-1,0</td>
</tr>
<tr>
<td>> 3,9</td>
<td>> 0,30</td>
<td>> 0,38</td>
<td>> 0,5</td>
<td>> 2,0</td>
<td>> 4,0</td>
<td>> 6,0</td>
<td>> 15,0</td>
<td>> 4,0</td>
<td>> 6,0</td>
<td>> 3,0</td>
<td>> 1,0</td>
<td>Alto</td>
<td></td>
</tr>
</tbody>
</table>

INTERPRETACIÓN DE RANGOS DE PARÁMETROS FÍSICOS (SUELOS-REGIÓN SIERRA)

<table>
<thead>
<tr>
<th>pH</th>
<th>Conductividad (dS/m)</th>
<th>pH Evaluación</th>
<th>Relaciones</th>
<th>Ca/Mg</th>
<th>Mg/K</th>
<th>Ca+Mg/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acido (Ac)</td>
<td>< 0,5</td>
<td>No Salinos (Nual)</td>
<td>< 2,0</td>
<td>Bajo (B)</td>
<td>< 2,1</td>
<td>< 3,0</td>
</tr>
<tr>
<td>Ligeramente Acido (La)</td>
<td>0,5-1,5</td>
<td>Ligeramente Salinos (Lual)</td>
<td>2,0-4,0</td>
<td>Adecuado (Ad)</td>
<td>2,1-6,1</td>
<td>3,0-10,0</td>
</tr>
<tr>
<td>Prácticamente Neutro (Pn)</td>
<td>1,6-7,5</td>
<td>Salinos (Sal)</td>
<td>4,0-8,0</td>
<td>Alto (A)</td>
<td>> 6,1</td>
<td>> 10,0</td>
</tr>
<tr>
<td>Ligeramente Alcalino (La)</td>
<td>7,5-8,0</td>
<td>May Salinos (Masal)</td>
<td>8,0-15,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcalino (Ac)</td>
<td>> 8,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECOMENDACIONES

La disponibilidad de nutrientes de la muestra analizada se detalla a continuación:

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>Método de Conversión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrógeno (kg/ha N)</td>
<td>ppm Ca, cmol/kg x 200.45</td>
</tr>
<tr>
<td>Fósforo (kg/ha P2O5)</td>
<td>ppm Mg, cmol/kg x 121.55</td>
</tr>
<tr>
<td>Potasio (kg/ha K2O)</td>
<td>ppm Mg, cmol/kg x 121.55</td>
</tr>
</tbody>
</table>

Técnico de Suelos y Agua

LABORATORIOS BIOAGROP S.A. DE C.V.
ANEXO 3. Cuadro de registros de temperaturas mensuales durante los meses del ensayo.

<table>
<thead>
<tr>
<th>FEBRERO</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>$T°a_{29}/T°b_{4}$</td>
<td>$T°a_{25}/T°b_{5}$</td>
<td>$T°a_{24}/T°b_{4}$</td>
<td>$T°a_{17}/T°b_{4}$</td>
<td>$T°a_{19}/T°b_{4}$</td>
<td>$T°a_{16}/T°b_{5}$</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>$T°a_{21}/T°b_{6}$</td>
<td>$T°a_{28}/T°b_{7}$</td>
<td>$T°a_{16}/T°b_{6}$</td>
<td>$T°a_{20}/T°b_{8}$</td>
<td>$T°a_{14}/T°b_{9}$</td>
<td>$T°a_{12}/T°b_{6}$</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>$T°a_{20}/T°b_{6}$</td>
<td>$T°a_{14}/T°b_{7}$</td>
<td>$T°a_{12}/T°b_{5}$</td>
<td>$T°a_{20}/T°b_{10}$</td>
<td>$T°a_{20}/T°b_{10}$</td>
<td>$T°a_{13}/T°b_{9}$</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>$T°a_{26}/T°b_{11}$</td>
<td>$T°a_{22}/T°b_{12}$</td>
<td>$T°a_{24}/T°b_{12}$</td>
<td>$T°a_{20}/T°b_{13}$</td>
<td>$T°a_{20}/T°b_{12}$</td>
<td>$T°a_{25}/T°b_{13}$</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T°a_{27}/T°b_{14}$</td>
<td>$T°a_{23}/T°b_{13}$</td>
<td>$T°a_{20}/T°b_{10}$</td>
<td>$T°a_{19}/T°b_{9}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora

<table>
<thead>
<tr>
<th>MARZO</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>$T°a_{27}/T°b_{8}$</td>
<td>$T°a_{25}/T°b_{9}$</td>
<td>$T°a_{28}/T°b_{10}$</td>
<td>$T°a_{26}/T°b_{8}$</td>
<td>$T°a_{26}/T°b_{9}$</td>
<td>$T°a_{21}/T°b_{10}$</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>$T°a_{26}/T°b_{10}$</td>
<td>$T°a_{29}/T°b_{11}$</td>
<td>$T°a_{24}/T°b_{8}$</td>
<td>$T°a_{27}/T°b_{10}$</td>
<td>$T°a_{24}/T°b_{9}$</td>
<td>$T°a_{27}/T°b_{7}$</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>$T°a_{21}/T°b_{9}$</td>
<td>$T°a_{26}/T°b_{11}$</td>
<td>$T°a_{29}/T°b_{10}$</td>
<td>$T°a_{31}/T°b_{12}$</td>
<td>$T°a_{28}/T°b_{10}$</td>
<td>$T°a_{30}/T°b_{8}$</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>$T°a_{23}/T°b_{9}$</td>
<td>$T°a_{27}/T°b_{10}$</td>
<td>$T°a_{14}/T°b_{10}$</td>
<td>$T°a_{29}/T°b_{11}$</td>
<td>$T°a_{28}/T°b_{10}$</td>
<td>$T°a_{21}/T°b_{9}$</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>$T°a_{34}/T°b_{8}$</td>
<td>$T°a_{34}/T°b_{9}$</td>
<td>$T°a_{34}/T°b_{9}$</td>
<td>$T°a_{34}/T°b_{9}$</td>
<td>$T°a_{34}/T°b_{10}$</td>
<td>$T°a_{34}/T°b_{8}$</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T°a_{29}/T°b_{9}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora
ANEXO 4. Cuadro de registros de precipitaciones mensuales durante los meses del ensayo.

MES/DÍA	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	**Total Mensual**
---------	---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	**Total precipitación en el ensayo**			
ENERO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	**Total Mensual**
FEBRERO	2	10	15	18	25	5	3	4	6.5	4	92.5mm																					
MARZO	5					9	6	7	2	2	31mm																					
ABRIL		2	1			3	20	7			33mm																					

Fuente: La Investigación
Elaborado por: La Autora
ANEXO 5. FICHA TÉCNICA VARIEDAD SNOWBALL

SEMILLA: COLIFLOR VARIEDAD SNOWBALL

(Brassica oleracea L. var. brotytis)

FICHA TÉCNICA

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CARACTERÍSTICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICLO DE VIDA TOTAL</td>
<td>120 Días</td>
</tr>
<tr>
<td>TIPO DE SIEMBRA</td>
<td>Directa - transplante</td>
</tr>
<tr>
<td>PLANTULACION</td>
<td>30 Días (Clima frío)</td>
</tr>
<tr>
<td>COSECHA</td>
<td>90 DDT</td>
</tr>
<tr>
<td>DISTANCIA DE SIEMBRA</td>
<td>35 X 35 cm.</td>
</tr>
<tr>
<td>(surcos X plantas)</td>
<td></td>
</tr>
<tr>
<td>DIMENSIONES DE CAMAS</td>
<td>1.2 ancho x 20 cm. alto</td>
</tr>
<tr>
<td>DENSIDAD DE SIEMBRA</td>
<td>60.000 – 70.000 plantas / Ha.</td>
</tr>
<tr>
<td>RENDIMIENTO</td>
<td>25 – 30 Ton. / Ha.</td>
</tr>
<tr>
<td>CONTROL DE MALEZAS</td>
<td>Manual</td>
</tr>
<tr>
<td>No. SEMILLAS / Lb.</td>
<td>100.000 – 120.000</td>
</tr>
<tr>
<td>DOSIS DE SEMILLA / HA.</td>
<td>250 a 350 gr.</td>
</tr>
<tr>
<td>SISTEMA DE CULTIVO</td>
<td>Libre exposición</td>
</tr>
<tr>
<td>ADAPTABILIDAD</td>
<td>1500 – 2800 m.s.n.m.</td>
</tr>
</tbody>
</table>

Código: 65CR110116
ANEXO 6. NÚMERO DE HOJAS

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Factor A (medios cultivo)</th>
<th>Factor B (cultivares)</th>
<th>Repeticiones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>T1</td>
<td>Suelo local M1</td>
<td>Naranja C1</td>
<td>6.73</td>
</tr>
<tr>
<td>T2</td>
<td>Suelo local M1</td>
<td>Verde C2</td>
<td>6.60</td>
</tr>
<tr>
<td>T3</td>
<td>Suelo local M1</td>
<td>Morada C3</td>
<td>7.07</td>
</tr>
<tr>
<td>T4</td>
<td>Suelo local M1</td>
<td>Blanca C4</td>
<td>8.47</td>
</tr>
<tr>
<td>T5</td>
<td>Sustrato M2</td>
<td>Naranja C1</td>
<td>9.00</td>
</tr>
<tr>
<td>T6</td>
<td>Sustrato M2</td>
<td>Verde C2</td>
<td>11.20</td>
</tr>
<tr>
<td>T7</td>
<td>Sustrato M2</td>
<td>Morada C3</td>
<td>10.07</td>
</tr>
<tr>
<td>T8</td>
<td>Sustrato M2</td>
<td>Blanca C4</td>
<td>10.93</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora

ANEXO 7. LARGO DE HOJAS

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Factor A (medios cultivo)</th>
<th>Factor B (cultivares)</th>
<th>Repeticiones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>T1</td>
<td>Suelo local M1</td>
<td>Naranja C1</td>
<td>23.33</td>
</tr>
<tr>
<td>T2</td>
<td>Suelo local M1</td>
<td>Verde C2</td>
<td>25.26</td>
</tr>
<tr>
<td>T3</td>
<td>Suelo local M1</td>
<td>Morada C3</td>
<td>15.70</td>
</tr>
<tr>
<td>T4</td>
<td>Suelo local M1</td>
<td>Blanca C4</td>
<td>22.80</td>
</tr>
<tr>
<td>T5</td>
<td>Sustrato M2</td>
<td>Naranja C1</td>
<td>27.23</td>
</tr>
<tr>
<td>T6</td>
<td>Sustrato M2</td>
<td>Verde C2</td>
<td>34.61</td>
</tr>
<tr>
<td>T7</td>
<td>Sustrato M2</td>
<td>Morada C3</td>
<td>29.49</td>
</tr>
<tr>
<td>T8</td>
<td>Sustrato M2</td>
<td>Blanca C4</td>
<td>31.46</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora

ANEXO 8. ANCHO DE HOJAS
<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Factor A (medios cultivo)</th>
<th>Factor B (cultivares)</th>
<th>Repeticiones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>T1</td>
<td>Suelo local M1</td>
<td>Naranja C1</td>
<td>14.33</td>
</tr>
<tr>
<td>T2</td>
<td>Suelo local M1</td>
<td>Verde C2</td>
<td>11.81</td>
</tr>
<tr>
<td>T3</td>
<td>Suelo local M1</td>
<td>Morada C3</td>
<td>8.81</td>
</tr>
<tr>
<td>T4</td>
<td>Suelo local M1</td>
<td>Blanca C4</td>
<td>14.51</td>
</tr>
<tr>
<td>T5</td>
<td>Sustrato M2</td>
<td>Naranja C1</td>
<td>17.04</td>
</tr>
<tr>
<td>T6</td>
<td>Sustrato M2</td>
<td>Verde C2</td>
<td>15.16</td>
</tr>
<tr>
<td>T7</td>
<td>Sustrato M2</td>
<td>Morada C3</td>
<td>15.37</td>
</tr>
<tr>
<td>T8</td>
<td>Sustrato M2</td>
<td>Blanca C4</td>
<td>17.40</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora

ANEXO 9. TAMAÑO DE LA PELLA

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Factor A (medios cultivo)</th>
<th>Factor B (cultivares)</th>
<th>Repeticiones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>T1</td>
<td>Suelo local M1</td>
<td>Naranja C1</td>
<td>35.27</td>
</tr>
<tr>
<td>T2</td>
<td>Suelo local M1</td>
<td>Verde C2</td>
<td>53.13</td>
</tr>
<tr>
<td>T3</td>
<td>Suelo local M1</td>
<td>Morada C3</td>
<td>37.00</td>
</tr>
<tr>
<td>T4</td>
<td>Suelo local M1</td>
<td>Blanca C4</td>
<td>0.00</td>
</tr>
<tr>
<td>T5</td>
<td>Sustrato M2</td>
<td>Naranja C1</td>
<td>45.50</td>
</tr>
<tr>
<td>T6</td>
<td>Sustrato M2</td>
<td>Verde C2</td>
<td>68.40</td>
</tr>
<tr>
<td>T7</td>
<td>Sustrato M2</td>
<td>Morada C3</td>
<td>65.20</td>
</tr>
<tr>
<td>T8</td>
<td>Sustrato M2</td>
<td>Blanca C4</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autora

ANEXO 10. PESO DE LA PELLA
ANEXO 11. RENDIMIENTO kg/ha

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Factor A (medios cultivo)</th>
<th>Factor B (cultivares)</th>
<th>Repeticiones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>T1</td>
<td>Suelo local M1</td>
<td>Naranja C1</td>
<td>248.47</td>
</tr>
<tr>
<td>T2</td>
<td>Suelo local M1</td>
<td>Verde C2</td>
<td>498.60</td>
</tr>
<tr>
<td>T3</td>
<td>Suelo local M1</td>
<td>Morada C3</td>
<td>492.00</td>
</tr>
<tr>
<td>T4</td>
<td>Suelo local M1</td>
<td>Blanca C4</td>
<td>0.00</td>
</tr>
<tr>
<td>T5</td>
<td>Sustrato M2</td>
<td>Naranja C1</td>
<td>339.53</td>
</tr>
<tr>
<td>T6</td>
<td>Sustrato M2</td>
<td>Verde C2</td>
<td>779.47</td>
</tr>
<tr>
<td>T7</td>
<td>Sustrato M2</td>
<td>Morada C3</td>
<td>943.53</td>
</tr>
<tr>
<td>T8</td>
<td>Sustrato M2</td>
<td>Blanca C4</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Fuente: La Investigación
Elaborado por: La Autor
12. FOTOGRAFÍAS

Fotografía 1. Instalación del ensayo. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*Brassica Oleracea*, *l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”.

![Fotografía 1](image1.jpg)

Fuente: La Investigación
Elaborado por: La Autor

Fotografía 2. Instalación del pluviómetro y termómetro en la “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*brassica oleracea*, *l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”.

![Fotografía 2](image2.jpg)

Fuente: La Investigación
Elaborado por: La Autora
Fotografía 3. Realización de camas y surcos en la “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”.

Fuente: La Investigación
Elaborado por: La Autora

Fotografía 4. Preparación y mezcla del sustrato. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”

Fuente: La Investigación
Elaborado por: La Autora
Fotografía 5. Enfundado y pesado del sustrato. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”.

Fuente: La Investigación
Elaborado por: La Autora

Fotografía 6. Semillero. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”.

Fuente: La Investigación
Elaborado por: La Autora
Fotografía 7. Trasplante en suelo local y sustrato. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*brassica oleracea, l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”.

Fuente: La Investigación
Elaborado por: La Autora
Fotografía 8. Hoja con problemas de minador de hoja. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”.

Fuente: La Investigación
Elaborado por: La Autora

Fotografía 9. Medición de largo y ancho de hojas. “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”.

Fuente: La Investigación
Elaborado por: La Autor
Fotografía 10. Amarre de hojas en el T4 (suelo local) y T8 (sustrato). “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*brassica oleracea, l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”

![Fotografía 10](image10.jpg)

Fuente: La Investigación
Elaborado por: La Autor

Fotografía 11. Peso (g) y diámetro (cm) de la pella de los tratamientos T1 y T5 (naranja sunset). “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (*brassica oleracea, l*) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”

![Fotografía 11](image11.jpg)

Fuente: La Investigación
Elaborado por: La Autor
Fotografía 12. Peso (g) y diámetro (cm) de la pella de los tratamientos T2 y T6 (verde trevi). “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”.

Fuente: La Investigación
Elaborado por: La Autor

Fotografía 13. Peso (g) y diámetro (cm) de la pella de los tratamientos T3 y T7 (morada grafiti). “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”.

Fuente: La Investigación
Elaborado por: La Autor
Fotografía 14. Peso (g) y diámetro (cm) de la pella de los tratamientos T4 y T8 (blanca) en la “Influencia de dos medios de cultivo en la productividad de tres cultivares de coliflor (brassica oleracea, l) de colores (sunset, verde trevi y grafiti), bajo condiciones orgánicas de cultivo, a 2.450 m.s.n.m. el Quinche–Pichincha 2013”.

Fuente: La Investigación
Elaborado por: La Autor