

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE GUAYAQUIL CARRERA DE ELECTRICIDAD

MEJORA DE ESTABILIDAD DE VOLTAJE A LARGO PLAZO EN UN SISTEMA DE 39 BARRAS, USANDO LOS REGULADORES DE VOLTAJES AUTOMÁTICOS (AVR)

Trabajo de titulación previo a la obtención del Título de Ingeniero Eléctrico

AUTOR: JOSUÉ ISRAEL ROJAS RAMÍREZ

TUTOR: ING. CARLOS FERNANDO CHÁVEZ CÓRDOVA, MSc.

Guayaquil-Ecuador 2024-2025

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓN

Yo, Josué Israel Rojas Ramírez con documento de identificación N° 1251213946 manifiesto que:

Soy el autor y responsable del presente trabajo; y, autorizo a que sin fines de lucro la Universidad Politécnica Salesiana pueda usar, difundir, reproducir o publicar de manera total o parcial el presente trabajo de titulación.

Guayaquil, 21 de febrero del 2025

Atentamente,

Ori

Josué Israel Rojas Ramírez 1251213946

CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA

Yo, Josué Israel Rojas Ramírez con documento de identificación N° 1251213946, expreso mi voluntad y por medio del presente documento cedo a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que soy el autor del Proyecto Técnico: "MEJORA DE ESTABILIDAD DE VOLTAJE A LARGO PLAZO EN UN SISTEMA DE 39 BARRAS, USANDO LOS REGULADORES DE VOLTAJES AUTOMÁTICOS (AVR)", el cual ha sido desarrollado para optar por el título de: Ingeniero Eléctrico, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En concordancia con lo manifestado, suscribo este documento en el momento que hago la entrega del trabajo final en formato digital a la Biblioteca de la Universidad Politécnica Salesiana.

Guayaquil, 21 de febrero del 2025

Atentamente,

one

Josué Israel Rojas Ramírez 1251213946

CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN

Yo, CARLOS FERNANDO CHÁVEZ CÓRDOVA con documento de identificación N° 0919553438, docente de la Universidad Politécnica Salesiana, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: "MEJORA DE ESTABILIDAD DE VOLTAJE A LARGO PLAZO EN UN SISTEMA DE 39 BARRAS, USANDO LOS REGULADORES DE VOLTAJES AUTOMÁTICOS (AVR)", realizado por Josué Israel Rojas Ramírez con documento de identificación N° 1251213946, obteniendo como resultado final el trabajo de titulación bajo la opción Proyecto Técnico que cumple con todos los requisitos determinados por la Universidad Politécnica Salesiana.

Guayaquil, 21 de febrero del 2025

Atentamente,

Ing. Carlos Fernando Chávez Córdova, MSc.

0919553438

DEDICATORIA

"Los grandes objetivos no se logran con talento, ni con dinero; se logran con pasión, paciencia y perseverancia."

Hoy que la vida me ha permitido alcanzar esta meta, miro atrás y sin duda veo que el esfuerzo, la constancia y perseverancia de mis padres, familia y de las personas que han confiado en mí, han hecho que este sueño se haga realidad, hoy han dado sus frutos.

Hoy y siempre mis logros los compartiré y celebraré junto a ellos.

Josué Israel Rojas Ramírez

AGRADECIMIENTO

A mi alma máter, a mis docentes, a mi tutor, puesto que sus conocimientos fueron las piezas fundamentales para la realización de este proyecto.

Y, sobre todo a Dios y a mí familia, quienes han sido mi roca, mi sustento y mi abrigo en los tiempos de dificultades y tormentas, por permitirme soñar y cumplir este sueño.

Mis eternos agradecimientos para las personas que de alguna u otra manera me han ayudado y han depositado su confianza en mí; que Dios y la vida los premie.

Josué Israel Rojas Ramírez

RESUMEN

Para efectuar un análisis dentro de los Sistemas Eléctricos de Potencia (SEP), es de vital importancia considerar que, en el proceso de generación, transmisión, o distribución es común que se presenten diversas perturbaciones que vulneran la estabilidad de voltaje.

El presente proyecto se basa en efectuar un modelado en el sistema de 39 BARRAS IEEE desarrollado en el software DIgSILENT Power Factoy, donde se explorará diversos escenarios comunes donde se pueda originar alguna perturbación, falla o puntos críticos en el sistema eléctrico. El objetivo de la simulación será la identificación de las barras críticas donde se buscar una mejora de esta, destacando el uso, eficiencia y ventajas de los reguladores de voltajes automáticos (AVR) ubicados de manera estratégicas para contrarrestar los efectos de la inestabilidad.

Consecuentemente a la evaluación de estos escenarios, se determinará como estas perturbaciones afectan la estabilidad de voltaje, empleando el análisis de estabilidad de voltaje se llegará a los niveles de voltaje en sus rangos de operación, sin comprometer el suministro energético y respetando las normativas.

PALABRAS CLAVES:

DIgSILENT, Reguladores de Voltajes Automáticos, Estabilidad de Voltaje, 39 Barras

ABSTRACT

To perform an analysis within the Electrical Power Systems (EPS), it is of vital importance to consider that, in the process of generation, transmission, or distribution it is common to have several disturbances that violate the voltage stability.

The present project is based on a modeling in the IEEE 39 BARS system developed in the DIgSILENT Power Factoy software, where several common scenarios will be explored where some disturbance, fault or critical points in the electrical system can be originated. The objective of the simulation will be the identification of the critical bars where an improvement is sought, highlighting the use, efficiency and advantages of automatic voltage regulators (AVR) strategically located to counteract the effects of instability.

Consequently, to the evaluation of these scenarios, it will be determined how these disturbances affect voltage stability, employing the voltage stability analysis will reach the voltage levels in their operating ranges, without compromising the power supply and respecting the regulations.

KEYWORDS:

DIgSILENT, Automatic Voltage Regulators, Voltage Stability, 39 Bus Bar.

ÍNDICE DE CONTENIDO

PORTADAI
CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓNII
CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA III
CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓNIV
DEDICATORIA V
AGRADECIMIENTOVI
RESUMENVII
PALABRAS CLAVES: VII
ABSTRACTVIII
KEYWORDS:VIII
ÍNDICE DE CONTENIDOIX
ÍNDICE DE FIGURASXIII
ÍNDICE DE TABLASXV
GLOSARIOS DE ABREVIATURAS, SIMBOLOGÍA Y UNIDADESXVI
INTRODUCCIÓN1
I. PROBLEMA2

1.1.	DESCRIPCIÓN DEL PROBLEMA	2
1.2.	ANTECEDENTES	2
1.3.	MPORTANCIA Y ALCANCES	4
1.4.	DELIMITACIÓN	5
II.)BJETIVOS GENERALES Y ESPECÍFICOS	5
2.1.)BJETIVO GENERAL	5
2.2.)BJETIVOS ESPECÍFICOS	5
III.	REVISIÓN DE LA LITERATURA O FUNDAMENTO	OS TEÓRICOS6
3.1.	REVISIÓN DE LA LITERATURA	6
3.2.	UNDAMENTOS TEÓRICOS	9
3.2.1	Sistema Eléctrico de Potencia (SEP).	9
3.	1.1. Sistema de generación.	9
3.	1.2. Sistema de transmisión.	
3.	1.3. Sistema de distribución	
3.2.2	Estabilidad en un SEP	
3.	2.1. Perturbaciones	
3.	2.2. Clasificación de la Estabilidad en un SEP.	
3.2.3	Estabilidad de voltaje en los SEP.	
3.2.4	Clasificación de la estabilidad de voltaje	
3.	4.1. Estabilidad de voltaje de largo plazo	
3.2.5	Métodos para realizar un análisis de estabilidad de voltaje	
3.	5.1. Curvas P-V	
3.	5.2. Curvas Q-V	
3.2.6	Sistema de 39 barras IEEE.	
3.2.7	DIgSILENT Power Factory	
3.2.8	Regulador de Voltaje Automático	
3.	8.1. Funcionamiento del AVR.	
3.	8.2. Sistema de excitación en los AVR.	
IV.	AARCO METODOLÓGICO	

Х

4.1.	Modelado del sistema base
4.1.	1. Generación
4.2.	Análisis del flujo de carga en el sistema base de 39 Barras IEEE
4.3.	1º Caso: aumento excesivo de carga
4.3.	1. Sobrecarga al 100% sin AVR
4.3.	2. Sobrecarga al 100% con AVR
4.4.	Caso 2, perdida de un elemento
4.4.	1. Líneas de transmisión fuera de servicio sin AVR
4.4.2	2. Líneas de transmisión fuera de servicio con AVR
V.	RESULTADOS
5.1.	Caso 1, aumento excesivo de carga de un elemento
5.1.	1. Comportamientos de las cargas
5.1.2	2. Comportamientos de las barras
5.2.	Caso 2, perdida de un elemento
5.2.	1. Comportamiento de las líneas de transmisión
5.2.	2. Comportamientos de las barras
VI.	CONCLUSIONES
VII.	RECOMENDACIONES
VIII.	REFERENCIAS BIBLIOGRÁFICAS58
IX.	ANEXOS
9.1. IEEE	Anexo A, reporte del flujo de carga del escenario base del sistema de 39 Barras .62
9.2.	Anexo B: Flujo de carga en el caso de sobrecarga al 100% sin AVR66
9.3.	Anexo C: Flujo de carga en el caso de sobrecarga al 100% con AVR

XI

9.4.	Anexo D: Flujo de carga con líneas fuera de servicio sin AVR74		
9.5.	Anexo E: Flujo de carga con líneas fuera de servicio con AVR78		

ÍNDICE DE FIGURAS

Figura 1. Unifilar del recorrido de la L/T Carhuaquero - Moyobanba. Fuente: [1]3
Figura 2. Grafica del comportamiento del blackout. Fuente: [2]
Figura 3. Sistema Eléctrico de Potencia simplificado. Fuente: [15]
Figura 4. Procesos del Sistema Eléctrico de Potencia12
Figura 5. Clasificación de Estabilidad en un SEP. Fuente: El Autor
Figura 6. Análisis de estabilidad de frecuencia, gráfica en función del tiempo. Fuente: [20],
[21]
Figura 7. Clasificación de la estabilidad de voltaje. Fuente: [25]
Figura 8. Característica de la curva P-V. Fuente: [26]18
Figura 9. Característica de la curva Q-V. Fuente: [26]
Figura 10. Sistema de 39 Barras IEEE
Figura 11. Diagrama unifilar del sistema IEEE New England de 39 barras. Fuente: [28] 21
Figura 12. Identificación y símbolo del generador en DIgSILENT Power Factory.
Fuente: Autor
Figura 13. Configuración de parámetros del Generador 8 en DIgSILENT Power Factory.
Fuente: Autor
Figura 14. Identificación y representación de la Barra 18 en el software DIgSILENT Power
Factory. Fuente: Autor
Figura 15. Configuración de parámetros de la barra 18 en el software de DIgSILENT Power
Factory. Fuente: Autor
Figura 16. Identificación y representación de la LT 04-14 en el software DIgSILENT Power
Factory. Fuente: Autor
Figura 17. Configuración de parámetros de la LT 04-14 en DIgSILENT Power Factory. Fuente:
Autor
Figura 18. Identificación y representación del transformador en DIgSILENT Power Factory.
Fuente: Autor
Figura 19. Configuración de parámetros del transformador en DIgSILENT Power Factory.
Fuente: Autor
Figura 20. Identificación y representación de la carga 25. Fuente: Autor
Figura 21. Configuración de parámetros de la carga 25 en DIgSILENT Power Factory. Fuente:
Autor

22. Modelado base del sistema de 39 Barras de la IEEE en DIgSILENT Power Factory.
: Autor
23. Análisis del flujo de carga en el sistema modelado de 39 Barras IEEE. Fuente: Autor
24. Configuración del aumento de carga al 100% en la carga 39. Fuente: Autor 41
25. Flujo de carga con sobrecarga al 100% en la carga 29 sin AVR. Fuente: Autor 42
26. Ubicación del AVR en la barra 08 para optimizar el sistema. Fuente:
27. Flujo de carga con sobrecarga en la carga 39 al 100%. Fuente: Autor
28. Desconexión de las líneas de transmisión 03-04, 09-39,14-15 en el sistema de 39
. Fuente: Autor
29. Flujo de carga con las LT 03-04, 09-39, 14-15 fuera de servicio sin AVR. Fuente:
30. Ubicación de los AVR en la barra 04 y 08. Fuente: Autor
31 Flujo de carga con las LT 03-04, 09-39, 14-15 fuera de servicio con AVR. Fuente:
32. Gráfica de las magnitudes de voltajes en las barras sin AVR. Fuente: Autor 51
33. Gráfica de las magnitudes de voltajes en las barras con AVR. Fuente: Autor 51
34. Gráfica de los perfiles de voltaje en las barras sin AVR. Fuente: Autor
35. Gráfica de los perfiles de voltaje en las barras con AVR. Fuente: Autor

ÍNDICE DE TABLAS

Tabla 1. Datos de los generadores. Fuente: Autor. 26
Tabla 2. Niveles de tensión en las barras identificado con un color distinto.Fuente:
Autor
Tabla 3. Datos de las barras. Fuente: Autor. 30
Tabla 4. Datos de las líneas de transmisión. Fuente: Autor
Tabla 5. Datos del transformador. Fuente: Autor
Tabla 6. Valores obtenidos del flujo de carga sin AVR y con AVR cuando la carga 39 esta
sobrecargada al 100%. Fuente: Autor
Tabla 7. Valores obtenidos del flujo de carga sin AVR y con AVR en las 39 barras del sistema.
Fuente: Autor
Tabla 8. Resultados obtenidos del flujo de carga cuando las LT03-04, 09 -39 y -14-15 están
fueran de servicios. Fuente: Autor
Tabla 9. Resultados obtenidos del flujo de carga con AVR cuando las LT03-04, 09 -39 y -14-
15 y están fueran de servicio. Fuente: Autor
Tabla 10. Valores obtenidos del flujo de carga sin AVR y con AVR cuando las LT03-04, 09 -
39 y -14-15 están fuera de servicio. Fuente: Autor

GLOSARIOS DE ABREVIATURAS, SIMBOLOGÍA Y UNIDADES

AC (CA)	\rightarrow	Corriente Alterna.
AT	\rightarrow	Alta Tensión.
AVR	\rightarrow	Regulador de Voltaje Automático.
BT	\rightarrow	Baja Tensión.
CENACE	\rightarrow	Operador Nacional de Electricidad.
EAC	\rightarrow	Esquema de Alivio de Carga.
EAT	\rightarrow	Extra Alta Tensión.
Et al	\rightarrow	"Y otros".
f	\rightarrow	Frecuencia(s).
FV	\rightarrow	Fotovoltaica(s).
GYE	\rightarrow	Guayaquil.
Ι	\rightarrow	Corriente(s).
IEEE	\rightarrow	Instituto de Ingenieros Eléctricos y Electrónicos
L/T	\rightarrow	Línea(s) de Transmisión.
MATLAB	\rightarrow	Laboratorio de Matrices.
MT	\rightarrow	Media Tensión.
Р	\rightarrow	Potencia(s) / Potencia Activa.
PSO	\rightarrow	Enjambre de Partículas.
Q	\rightarrow	Potencia Reactiva.
R	\rightarrow	Resistencia(s).
T _m	\rightarrow	Torque mecánico.
T _e	\rightarrow	Torque electromagnético.
SEP	\rightarrow	Sistema Eléctrico de Potencia.
SIN	\rightarrow	Sistema Nacional Interconectado.
STATCOM	\rightarrow	Compensador Estático Sincrónico.
S/E	\rightarrow	Subestación Eléctrica.
UPS	\rightarrow	Universidad Politécnica Salesiana.
V	\rightarrow	Voltaje(s) o Tensión(es).

XVI

©	\rightarrow	Copyright.	XVII
®	\rightarrow	Marca Registrada.	21 1 11
ТМ	\rightarrow	Marca Comercial.	
%	\rightarrow	Porcentajes o valores en por unidad.	
А	\rightarrow	Amperio(s).	
km	\rightarrow	Kilometro(s).	
kV	\rightarrow	Kilovoltio(s).	
MVA	\rightarrow	Mega voltios amperios.	
MW	\rightarrow	Megavatio(s).	
TWh	\rightarrow	Tera vatios por hora.	

V \rightarrow Voltio(s).

INTRODUCCIÓN

El Sistema Eléctrico de Potencia (SEP), partes desde la fase de la generación, prosigue en el proceso de la transmisión y se prolonga hasta la distribución de la energía eléctrica cuando esta llegue al consumidor final, sin embargo, es común que en los diferentes procesos de entrega de energía del SEP se presenten diferentes fallas o perturbaciones, es ahí donde el análisis de la estabilidad de voltaje toma un rol muy significativo, dado que un voltaje no óptimo sea causal de algún daño o falla dentro de algún equipo o carga específica.

Este proyecto plantea como red de prueba al sistema de 39 Barras IEEE, puesto que el mismo posee características dinámicas e indispensables para ejecutar la simulación de un SEP, cabe recalcar que para el desarrollo de la simulación se empleará el software DIgSILENT Power Factory.

Los diferentes escenarios donde se desarrollará la simulación y análisis que abordaran el estudio de la estabilidad de voltaje como consecuencias de las perturbaciones pequeñas con respecto a las variaciones de voltaje en las diferentes barras del sistema.

Ante el desafío de mantener y ajustar los parámetros eléctricos en los niveles óptimos, y que estos garanticen que la calidad energética sea segura y confiable para su funcionamiento, se plantea un análisis de la estabilidad de voltaje, en estado estacionario, implementando los métodos de estudios relacionados al aumento abrupto de carga y la salida de operación de un elemento.

Finalmente, la implementación de los Reguladores de Voltaje Automáticos (AVR) en el sistema de 39 Barras permite que el sistema goce de la estabilidad de voltaje que se demanda antes de las diversas perturbaciones.

I. PROBLEMA

1.1. DESCRIPCIÓN DEL PROBLEMA

El sistema de 39 Barra IEEE es un modelo común el cual está conformador por generadores, cargas, transformadores y líneas de transmisión (L/T), un problema frecuente es la inestabilidad del voltaje que se llega a presentar en sus respectivas barras ya sea por variaciones de voltaje o alguna falla existente en algún elemento del SEP o en una L/T, puesto que al existir dicha perdida de línea ya existe el análisis de contingencia y dicho análisis abre una brecha al estudio de sub transitorios y transitorios que llegan a existir en todo el sistema.

La opción para establecer una mejora de estabilidad en el sistema de 39 Barras IEEE, contrarrestando el dilema que ocasiona la variación de voltaje, obteniendo una reducción significativa de perturbaciones dentro del sistema, consiste en ubicar los AVR en puntos estratégicos del sistema.

1.2. ANTECEDENTES

El mundo moderno se enfrenta una crisis energética que está ligada al aumento exponencial de la demanda del consumo energético, y a su vez esta se relaciona con el crecimiento demográfico, social, económico e industrial. Como consecuencia de este aumento de demanda, los sistemas eléctricos de potencia se tornan vulnerables y carecen de estabilidad, interrumpiendo el suministro eléctrico.

La pérdida de una L/T es uno de los antecedentes muy comunes en la transmisión de un SEP, tal es el caso que el investigador Serrano [1] analizo la pérdida por caída de tensión de la L/T Carhuaquero – Moyobanba ubicadas en la "Selva Oriental" con "San Martín" respectivamente, esta L/T que se encuentra en Huancayo – Perú tal como se presenta en el unifilar detallado en la figura 1, dicha investigación finiquita que al presentarse fallas e interrupciones en una L/T, la calidad de energía se ve afectada dado que es inmune a las sobretensiones transitorias y esto conlleva a problemas graves en el área de distribución y comúnmente en las cargas residenciales

Figura 1. Unifilar del recorrido de la L/T Carhuaquero - Moyobanba. Fuente: [1].

Un caso similar sucedió en Ecuador, donde el ministro de Energías y Minas, Roberto Luque Nuques en su cuenta de la red social X emitió el siguiente comunicado: "El reporte inmediato que nos llegó de CENACE es que existe una falla en la L/T que ocasionó una desconexión en cascada, por lo que no hay servicio energético a escala nacional" [2].

Como se observa en la figura 2, la estabilidad de voltaje se reestableció de manera paulatina, alrededor de las 18:41 pm, el servicio eléctrico se encontraba reestablecido en una capacidad del 95% a escala nacional, lo que representa una potencia de 3500 MW. Lo sucedido en este escenario es algo que se vive en el día a día en el mundo moderno y es un reflejo de la crisis energética a las cuales se enfrenta. Diversos estudios destacan que la falta de mantenimiento, el análisis y de inversión en los procesos de generación, transmisión y distribución acarrean estos tediosos y complicados problemas.

Figura 2. Grafica del comportamiento del blackout. Fuente: [2].

1.3. IMPORTANCIA Y ALCANCES

El estudio de análisis de estabilidad de voltaje en cualquier SEP que se presente estará sujeto a diferentes eventualidades como consecuencia del estado dinámico propio del sistema. La complejidad del sistema de 39 Barras IEEE permite simular un comportamiento lo más cercano al de la vida cotidiana, puesto que ahí se destaca la importancia de este proyecto.

De modo que el estudio de estabilidad de voltaje de un sistema eléctrico de potencia tiene gran relevancia para estudiar en detalle los efectos y predicciones de los puntos de colapso y operación del sistema, de manera que el sistema cambia constantemente, puesto que existe un aumento considerable de carga y generación que debe adaptarse [3].

La implementación de los AVR como solución antes las diversas fallas del sistema de 39 Barras IEEE, presentará una mejora antes los diferentes puntos críticos, encontrando un balance del sistema, haciendo que este opere de manera continua y confiable.

Por medio del presente proyecto se pretende brindar un estudio teórico y analítico con métodos y soluciones prácticas, aplicables que contribuyan a lograr una estabilidad de voltaje indistintamente del SEP. Además, se busca contribuir con conocimientos a la comunidad estudiantil de la Universidad Politécnica Salesiana (UPS) para posteriores elaboraciones de proyectos.

1.4. DELIMITACIÓN

Este proyecto se planea llevar a cabo un análisis de estabilidad de voltaje dentro del sistema de 39 Barras IEEE donde se planteará dos casos de estudios, con distintas variables, y por medio del análisis se estudiará los efectos y consecuencias de las perturbaciones pequeñas en el sistema, para una posterior implementación y uso de los reguladores de voltajes automáticos (AVR) en los generados del sistema.

Estas condiciones de simulación representarán un criterio de mejora significativa en la inestabilidad de voltaje del sistema, otorgando la optimización y eficiencia que demanda el sistema. Es fundamental destacar que para el desarrollo de este proyecto se empleará el laboratorio de SEP de la UPS en el campus Centenario de Guayaquil, ya que el mismo cuenta con licencia para hacer uso del software DIgSILENT Power Factory.

II. OBJETIVOS GENERALES Y ESPECÍFICOS

2.1. OBJETIVO GENERAL

Analizar y mejorar la estabilidad de voltaje en un sistema de 39 barras de la IEEE utilizando el software DIgSILENT PowerFactory.

2.2. OBJETIVOS ESPECÍFICOS

- Realizar un modelado del sistema de 39 barras de la IEEE en el software DIgSILENT PowerFactory, incluyendo generadores, transformadores, líneas de transmisión y cargas. Esto implica la incorporación de datos específicos y parámetros relevantes.
- Llevar a cabo simulaciones detalladas de escenarios de perturbación en el sistema, como cortocircuitos o cambios abruptos en la carga, utilizando DIgSILENT PowerFactory.
- Evaluar cómo estas perturbaciones afectan la estabilidad de voltaje y la respuesta dinámica del sistema.
- 4. Implementar los reguladores de voltaje automáticos (AVR) para lograr la estabilidad de voltaje, mejorando la eficiencia y la capacidad de respuesta del sistema ante cambios en la carga y eventos de perturbación.

III. REVISIÓN DE LA LITERATURA O FUNDAMENTOS TEÓRICOS

3.1. REVISIÓN DE LA LITERATURA

El Ph.D. Faiz Jawad en conjunto con sus colegas investigadores [4] realizaron un estudio en el cual se analiza y se simula los diversos efectos que tiene la variación en los sistemas de AVR, dado que la función principal de estos es regular la potencia reactiva y la magnitud de voltaje, es por este motivo que efectuaron un exhaustivo análisis en los parámetros de un controlador proporcional integral derivativo (PID) cuyo modelo fue diseñado y simulado con el software de MATLAB® con el fin de lograr predecir las variaciones de voltaje e identificar cuáles son los valores idóneos de los diferentes parámetros en el estabilizador.

Durante los últimos meses del 2018 los autores Chimbo Campuzano y Molina Vélez [5] lograron presentar su trabajo de titulación en el cual se enfocaron en determinar la ubicación óptima de AVR en sistemas de medio voltaje correspondiente a la subestación Portovelo ubicada en Cuenca – Ecuador mediante la implementación de segregación de flujo de carga con el uso del software CYMDIST para realizar el análisis técnico de ubicación óptima de los AVR, además logro comparar los resultados mediante un método heurístico con el fin de evaluar la precisión y eficiencia del sistema.

A inicios del 2019 Leiva Pazmiño [6] presentó un esquema unifilar con el fin de brindar alivio de carga por sub frecuencia que es ocasionado por diversos desastres naturales y tomó de ejemplos los sistemas de la IEEE de 9 y 39 barras, lo que priorizó fue la carga con el objetivo de establecer una desconexión de carga mínima con el fin de asegurar la continuidad del funcionamiento del SEP para lograr su objetivo se centró en la segmentación óptima de cargas aplicando los softwares de Power Factory DIGSILENT y MATLAB® para la aplicación del algoritmo dentro del esquema de alivio de carga (EAC).

Realizar la ubicación de un sistema de compensación reactiva en una L/T es posible tal como lo efectuó Guzmán Rodríguez [7] a inicios del 2020, dado que desarrolló un modelo de optimización para la óptima ubicación de estos dispositivos los cuales los denominó STATCOM (Compensador Estático Sincrónico) aplicados en los SEP, para lograr fue

necesario realizar una programación no lineal entera mixta con el objetivo de reducir la perdida de potencia reactiva y verificar que los perfiles de voltajes mejoraron, esta aplicación fue implementada en los sistemas de la IEEE de 9 y 39 barras.

A finales del 2020 el investigador Liu Hui en conjunto con sus colaboradores [8] publicaron un artículo científico en el cual demuestran logran proponer y desarrollar un concepto de control descentralizado compatible (CDC) establecido en mediciones locales síncronas con el propósito de superar las limitaciones de un control descentralizado incompatible (IDC) que son aplicado en los AVR, dado que dicho enfoque busca determinar una posible mejora en la estabilidad de energía para que los AVR y los sistema estabilizadores del sistema trabajen en óptimas condiciones, además validaron su investigación mediante simulaciones en diferentes escenarios de los sistemas de la IEEE.

Monitorear el control de voltaje aplicando la operación de los TAPS en los transformadores es una opción la cuál la definió Salazar López [9] mediante una representación de variable discreta cuando efectuó la representación de la operación del transformador mediante el uso de los TAPS y para validar el funcionamiento realizó un flujo de potencia y verificó el estado dinámico de voltaje ante diversos eventos de voltaje, estos eventos fueron simuladores en los modelos de los sistemas de la IEEE de 14 y 39 barras, obteniendo resultados favorables durante la operación.

A finales del 2021 el autor Herrera Guato [10] realizó su trabajo de titulación en el cual se enfocó en el mejoramiento de los perfiles de voltaje en los sistemas de distribución aplicando una metodología para la ubicación óptima de los AVR con el propósito de mejorar la calidad del suministro eléctrico y por consiguiente darle mayor robustez al sistema, esto fue posible mediante la implementación de transformadores con TAPS ajustables que permitan un control efectivo de la potencia reactiva, además implementó un modelo matemático de Newton-Raphson para obtener un control más preciso del voltaje, esto fue posible dado que lo efectuó y validó en el modelo del sistema de 13 barras de la IEEE.

A mediados del 2022 la Doctora Žaneta Eleschová en conjunto con sus colegas [11] lograron publicar un artículo científico en la Conferencia Científica Internacional sobre Ingeniería Eléctrica en el cual analizaron la influencia de los transformadores que tienen AVR con el fin de verificar la estabilidad de tensión en el sistema de potencia específicamente con la aplicación de curvas fotovoltaicas (FV) y cómo es posible mejorar mediante la comprensión de las interacciones que existen entre los transformadores de potencia y los AVR y como estos deben ser empleados en los SEP complejos.

En el 2023 el autor Silva Labanda [12] realizó su trabajo de titulación en el cual se enfocó en el análisis de cargas en acometidas y transformadores de potencia con el propósito de reducir fallas dado que es indispensable analizar y solucionar los inconvenientes de las variaciones de voltaje que existen en las redes eléctricas exclusivamente en industrias, uno de las posibles causas de las variaciones de voltaje son las extremadas longitudes en el cableo y la ausencia de mantenimientos en las hidroeléctricas, para esto se basó en la toma de datos de variaciones y cargas mediante el equipo Fluke 434 con el fin de diagnosticar los problemas de voltaje, con esto se determinó mediante calculo el dimensionamiento correcto de los AVR y así lograr mitigar los efectos de las variaciones y salvaguardar las cargas finales.

A inicios del 2024 Zapata Veloz [13] efectuó un artículo científico con el fin de validar la mejora de estabilidad de voltaje en un sistema de distribución aplicando el análisis modal jacobiano para el control del flujo de potencia y para ello se basó de modelos de la IEEE aplicados, modelas y simulados en el software de MATLAB® siendo validados mediante el algoritmo el cual verifica y monitorear las condiciones de voltaje y corriente que circula en cada barra, este algoritmo fue aplicado en los dos sistemas más robustos que tiene la IEEE los cuales fueron de 33 y 69 barras.

En el 2024 el autor Palacios Brito [14] realizó su proyecto de grado en el cual desarrolló la modelación y validación de un regulador de voltaje aplicado en una de las centrales hidroeléctricas del Ecuador la cuál fue el "Ambi", para ello se dio soporte con la supervisión constante del ente Operador Nacional de Electricidad (CENACE) para realizar la modelación en el software de Power Factory DigSILENT aplicando los modelos del AVR y validó su proyecto mediante la minimización de señales las cuales fueron aplicadas con el algoritmo de PSO (Enjambre de Partículas) para poder corroborar y dar robustez al sistema modelado.

3.2. FUNDAMENTOS TEÓRICOS

3.2.1. Sistema Eléctrico de Potencia (SEP).

Un SEP es la agrupación de diferentes procesos y elementos que conforman la generación, transmisión y distribución de la electricidad, como lo detalla la figura 3. Cada uno de estos responde con características independientes pero cuyo objetivo es el mismo: satisfacer la demanda energética de los consumidores. Un abastecimiento energético accesible y seguro es fundamental para sustentar a un país próspero que beneficie a sus ciudadanos y sectores productivos. Además, la organización del sector energético requiere de datos puntuales y acertados que faculte una toma de decisiones fundamentada [15].

Figura 3. Sistema Eléctrico de Potencia simplificado. Fuente: [15].

A continuación, se pretende detallar los procesos y elementos que conforman un sistema eléctrico de potencia:

3.2.1.1. Sistema de generación.

El sistema de generación es la parte fundamental del SEP, puesto que en ella se transforma la electricidad proveniente de los diferentes recursos ya sea renovables o no renovables. Las energías renovables, también conocidas como energías alternativas son aquellas en las cuales sus recursos primarios empleados para la generación no se agotan y se regeneran con el transcurso del tiempo. Estas pueden ser la energía fotovoltaica, energía geotérmica, energía eólica, energía hidráulica y biomasa. Esta energía se caracteriza por ser limpia y amigable con el medio ambiente.

Las energías no renovables o energías convencionales son aquellas en las cuales sus recursos primarios empleados para la generación se encuentran limitados y estos no se pueden regenerar. Estas pueden ser la energía térmica y nuclear. Indistintamente de la forma en que se genere la energía, el propósito principal de los sistemas de generación es producir energía en cantidades adecuadas y en zonas apropiadas para su producción.

A. Generador.

Un generador es un elemento electromecánico que posee la habilidad de transformar la energía mecánica a energía eléctrica, este proceso lo realiza bajo el fundamento de inducción electromagnética descrito en la ley de Faraday.

El generador es el elemento proveedor de energía del SEP y su importancia en el análisis de estabilidad del voltaje se basa en considerar la capacidad de los generadores para suministrar y absorber la potencia reactiva (Q), conforme a la curva de capacidad y las zonas seguras de operación de este. La generación de electricidad, por lo general se origina en niveles de media tensión (MT) y para su transmisión resulta necesario emplear transformadores elevadores, donde el nivel de voltaje se convierte a alta tensión (AT) o extra alta tensión (EAT).

B. Transformador.

Un transformador es un dispositivo eléctrico que trabaja con corriente alterna (AC), cuya función es cambiar los parámetros de tensión, manteniendo fija la potencia y frecuencia [16].

Por lo general, este elemento se ubica en una subestación eléctrica (S/E), con sus dispositivos de protección. El cambio de tensión lo realiza en el interior de sus devanados o bobinas por medio del fenómeno electromagnético. Los transformadores se clasifican según la necesidad, por ejemplo:

Si se tiene un voltaje en el devanado primario y se desea elevar un nivel de tensión en su salida, el transformador recibe el nombre de transformador elevador. Si se tiene un voltaje en el devanado primario y se desea disminuir nivel de voltaje en la salida, el transformador recibe el nombre de transformador reductor.

La calidad y continuación de la energía eléctrica depende del estado de estos equipos.

3.2.1.2. Sistema de transmisión.

El sistema de transmisión es la vértebra del SEP, puesto que es la encargada de interconectar la energía eléctrica producida en los generadores y trasladarlo hasta los centros de distribución. Para transmitir la energía producida en la generación, se emplean un conjunto de S/E, L/T que se conforman de torres robustas y de gran tamaño, en ella se colocan elementos como los conductores, los aisladores y los soportes ya que manejan niveles altos de tensión. La transmisión de electricidad en estos rangos de voltaje representa un beneficio económico y permitirán que la energía se traslade a diferentes puntos con pérdidas mínimas [17].

Las L/T se clasifican en factor de su longitud, como son las líneas de corta, media y distancia, las cuales manejan los siguientes rangos:

- Líneas de corta distancia, estructuras menores de 80 km.
- Líneas de media distancia, estructuras entre 80 km y 240 km.
- Líneas de larga distancia, estructuras mayores a 240 km.

El sistema de transmisión tiene un alto índice de fallas, debido a que se encuentra a la intemperie, por lo tanto, se instala relés de distancia en los extremos de las L/T, con el objetivo de detectar, despejar y aislar las fallas afectadas, manteniendo la estabilidad del sistema [18].

3.2.1.3. Sistema de distribución.

Después de que la electricidad haya recorrido grandes kilómetros (km) de distancias a partir de su generación, finalmente se encuentra con el sistema de distribución, el cual es el responsable de dirigir la electricidad que se encuentra en las S/E hacia el consumidor final, este consumidor puede tener diferentes cargas como: residencial, comercial o industrial. Estos sistemas de distribución manejan niveles en baja y media tensión (BT, MT). Cabe mencionar que estos consumidores se encuentran regulados por las empresas distribuidoras de energía, al igual que sus tarifas correspondientes al servicio eléctrico.

La entrega de la carga a los usuarios deber cumplir con la demanda que se requiere y garantizar la calidad, confiabilidad y estabilidad propia del sistema.

Los sistemas de distribución se encuentran clasificados según su tipo de construcción, este puede ser aéreo, subterráneo o mixtos. Los componentes del sistema de distribución abarcan desde los alimentadores primarios y secundarios, transformadores, acometidas y equipos de medición.

El óptimo funcionamiento de un SEP radica en que este opere en conjunto con los procesos de generación, transmisión y generación, dentro de los márgenes operativos establecido por la demanda, y a su vez las mediciones de los límites de voltaje y una frecuencia constante demuestra la calidad del suministro. Además, debe de cumplir con la normativa eléctrica vigente de un país. La figura 4, es una representación de los procesos y elementos que conforman un SEP.

Figura 4. Procesos del Sistema Eléctrico de Potencia.

3.2.2. Estabilidad en un SEP.

La estabilidad en un SEP hace referencia a la habilidad que tiene un sistema eléctrico para recuperar su estado de equilibrio operativo después de haber sido sometido a una perturbación física, con la mayoría de las variables delimitadas de modo que prácticamente todo el sistema permanezca intacto [19].

3.2.2.1. Perturbaciones.

Las perturbaciones es una alteración o una serie de alteraciones que vulneran la estabilidad del SEP. Estas se clasifican según su origen y naturaleza, estas pueden ser pequeñas y grandes, a continuación, se detalla:

- Pequeñas perturbaciones. Pequeños eventos que aumentan de forma gradual la carga y se considera normal en un estado operativo del SEP. El análisis de estas perturbaciones se lo realiza en la estabilidad permanente o estable.
- Grandes perturbaciones. Es una falla en el SEP, se pueden ocasionar como consecuencia de los cambios abruptos de las cargas, provocando que las máquinas síncronas salgan del sistema. También se puede considerar una gran perturbación a la desconexión manual de alguna barra. Para efectos de análisis este fenómeno se lo estudia bajo el nombre de estabilidad transitoria.

En el campo eléctrico la estabilidad en un SEP ha sido objeto de estudio por un largo tiempo, puesto a medida que transcurre el tiempo la demanda de la carga en los sistemas eléctricos ha incrementado. Su relevancia radica en analizar detalladamente los puntos críticos de operación donde se producen una alteración de los parámetros iniciales, los efectos producidos por las diferentes perturbaciones y así prevenir y evitar un del sistema.

3.2.2.2. Clasificación de la Estabilidad en un SEP.

La IEEE, clasificó la estabilidad del SEP para mayor facilidad de estudio y comprensión. Como consecuencia del aumento de la integración de diferentes tecnologías para los sistemas de generación, transmisión y estabilidad y para mejor entendimiento, la IEEE en el reporte PES-TR77 agregó dos tipos de estabilidad: Estabilidad de Resonancia y Estabilidad impulsado por convertidores. La clasificación de estabilidad se detallada en la figura 5 y a continuación se detalla sus conceptos [19].

Figura 5. Clasificación de Estabilidad en un SEP. Fuente: El Autor.

A. Estabilidad angular.

La estabilidad angular en un SEP se refiere a la capacidad de un sistema eléctrico para mantener el sincronismo entre sus generadores de corriente alterna posterior a una perturbación [20].

El propósito de la estabilidad angular radica en estudiar las oscilaciones electromecánicas, productos de las variaciones del ángulo del rotor en las salidas de la potencia de las máquinas. La estabilidad angular de las máquinas síncronas está ligada con el torque mecánico (T_m) y el torque electromagnético (T_e) [20], [21].

Por consiguiente, se establece la relación de los siguientes parámetros;

- > Si $T_m > T_e$, aceleración en los rotores.
- > Si $T_e > T_m$, desaceleración en los rotores.

 \blacktriangleright Si $T_e = T_m$, estado estable.

La estabilidad angular se clasifica según el tamaño de su perturbación:

- Estabilidad transitoria, trae como consecuencia desviaciones significativas en el ángulo, las cuales se relacionan con la no linealidad de este. Hace referencias a las grandes perturbaciones.
- Estabilidad pequeña señal, hace referencias a las pequeñas perturbaciones. Se puede dar en dos formas, la primera provoca el aumento del ángulo de manera no oscilatoria, debido a la ausencia de un par sincronizador. La segunda causa son las amplitudes crecientes que muestran amortiguamiento.

B. Estabilidad de frecuencia.

La estabilidad de frecuencia alude a la facultad que tiene un SEP para mantener los valores de frecuencia en un nivel nominal. Por ende, resulta necesario establecer un estado de armonía entra la carga y la generación, incluyendo las pérdidas [20], [21].

Figura 6. Análisis de estabilidad de frecuencia, gráfica en función del tiempo. Fuente: [20], [21].

Para evitar que estas perturbaciones concluyan en un inadecuado funcionamiento operativo en las unidades y evitar un blackout en el sistema, están las respuestas o

controles o regulaciones de frecuencia. Las tres fases de control se conocen como: respuesta primaria de frecuencia (RPF), respuesta secundaria de frecuencia (RSF); y, respuesta terciaria de frecuencia (RTF) [22].

3.2.3. Estabilidad de voltaje en los SEP.

La estabilidad de voltaje está relacionada con la capacidad de un sistema eléctrico de potencia de mantener una magnitud de voltaje estable en todas las barras del sistema, bajo condiciones normales de operación y después de estar sujeto a una perturbación [23].

Por consiguiente, se establece que la estabilidad de voltaje depende del balance entre la carga y entrega de la potencia reactiva (Q) que demande los generadores sistema. La siguiente expresión nos permite relacionar el concepto de la estabilidad de voltaje planteado en dos escenarios diferentes:

$$\uparrow \Delta Q \rightarrow \uparrow \Delta V, estabilidad.$$
$$\uparrow \Delta Q \rightarrow \downarrow \nabla V, inestabilidad.$$

Donde se dice que el SEP esta estable si existe un incremento de potencia reactiva en la barra y el voltaje aumenta. Pero, si existe un incremento de potencia reactiva en la barra, y el voltaje disminuye, el sistema esta inestable [24].

La inestabilidad de voltaje es un fenómeno que acarrea consecuencias perjudiciales dentro de los SEP, una de ellas es la disminución del sistema, como consecuencia de la variación de voltaje ocurren alteraciones en los flujos de potencia por las L/T, variación en los niveles de corrientes y cambios en el nivel de frecuencia [23]. Ante tal fenómeno existen diferentes métodos que ayudan a atenuar los desafíos que presenta la inestabilidad de voltaje, entre ellos:

- Dispositivos de compensación reactiva.
- > Dominio de la tensión de la red y salida de potencia reactiva en los generadores.
- > Armonía con los requerimientos del sistema y los dispositivos de protección
- Control de las posiciones de TAP en los transformadores.
- Seccionamiento de carga por tensión.

3.2.4. Clasificación de la estabilidad de voltaje.

Para concepto de análisis y estudio, es importante clasificar la estabilidad de voltaje de la siguiente manera detallada en la figura 7.

Figura 7. Clasificación de la estabilidad de voltaje. Fuente: [25].

3.2.4.1. Estabilidad de voltaje de largo plazo.

La estabilidad de voltaje a largo plazo está ligada con los dispositivos de acción más lenta, como los trasformadores con cambio de TAP o cargas controladas. En este caso, el periodo de estudio se extiende a un lapso de algunos minutos, con el objetivo de valorar la respuesta que daría el sistema ante un incremento continuo de la demanda, por lo cual resulta necesario de realizar simulaciones a largo plazo y dispositivos que permiten el análisis en estado estable además de la linealización de las ecuaciones del sistema [26].

3.2.5. Métodos para realizar un análisis de estabilidad de voltaje.

La estabilidad de voltaje en un SEP es dinámica y para efectos de su estudio las soluciones se dan en función del tiempo en un estado estacionario. Resulta necesario emplear el uso de ecuaciones lineales.

3.2.5.1. Curvas P-V.

El análisis por medio las curvas P-V establece una relación gráfica entre la potencia activa (P) y el voltaje (V) de cualquier barra del sistema.

La figura 8, es la representación de esta curva, grafica el incremento de la carga mientras el nivel de tensión disminuye con respecto de su punto de operación inicial y llega a su punto crítico máximo.

Figura 8. Característica de la curva P-V. Fuente: [26].

El punto crítico es la carga máxima que el sistema puede tolerar. Después de esto el sistema entra en una zona de inestabilidad donde el voltaje decrementa como consecuencia de operar con sobrecarga [26].

3.2.5.2. Curvas Q-V.

El análisis por medio las curvas Q-V establecer una relación gráfica entre la potencia reactiva (Q) y el voltaje (V). A medida que aumenta la carga en una red eléctrica producto de mayores necesidades de consumo energético, el factor de potencia dentro del SEP va cambiando, por lo tanto, se dificulta trazar las curvas PV en tiempo real de sistemas grandes con diferentes factores de potencia.

Cuando la carga de potencia real o la carga de potencia reactiva excede sus límites, ocurren problemas de estabilidad de voltaje, en consecuencia, la curva PQ pretende utilizar los indicadores más importantes; es decir la potencia activa y la potencia reactiva, para poder graficar el área limite como se muestra en la figura 9 [26].

Figura 9. Característica de la curva Q-V. Fuente: [26].

3.2.6. Sistema de 39 barras IEEE.

El sistema de 39 Barras IEEE fue desarrollado en el año 1970 por la IEEE. A este sistema también se lo conoce como New England Power System, es un modelo largamente utilizado para estudios de análisis y simulación en SEP. Este sistema se desarrolló originalmente como un caso de estudio para evaluar la dinámica de sistemas eléctricos, la estabilidad transitoria, y el análisis de control. Se identifica por representar un sistema realista con una topología relativamente compleja, pero manejable para simulaciones detalladas dicho sistema posee las siguientes características un SEP:

- Sistema de generación: 10 generadores.
- Sistema de transmisión: 34 L/T y 39 Barras.
- Sistema de distribución: 19 cargas.
- ➤ 12 transformadores.

Este sistema trabaja en el sistema por unidad (p.u.), maneja un nivel de frecuencia (f) de 60 Hz y el nivel de voltaje nominal en la red es de 345 kV. El diagrama unifilar del sistema de 39 Barras IEEE se encuentra graficado en la figura 10.

Figura 10. Sistema de 39 Barras IEEE.

Tal como se menciona en [27] es un sistema diseñado específicamente para el estudio de la estabilidad transitoria, y además es muy útil para probar algoritmos de control de estabilidad, control de voltaje.

Otro aspecto fundamental del sistema de 39 Barras IEEE es que sigue siendo un modelo estándar capaz de validar herramientas computacionales como el Power Factory DIgSILENT, así como MATLAB® en el cual se logra dar soporte en diversas investigaciones para analizar casos reales y poder definir una optimización a largo plazo, otro aspecto fundamental es evaluar algoritmos de optimización y estudiar la interpretación de dispositivos de sistemas de transmisión flexibles en corriente alterna (FACTS).

La investigadora Estefanía Tapia Suarez [28] trabajó con el sistema de 39 Barra IEEE tal como se presenta en la figura 11, en la cual definió correctamente la evaluación de la estabilidad de corto plazo y discriminación de inestabilidades transitorias en las diversas barras del sistema mediante la metodología de discriminación del estado de estabilidad en base al monitoreo de una variable representativa del sistema y a la aplicación de

acciones de control de emergencia dirigidas al mecanismo con el fin de determinar el origen de la inestabilidad y con ello solventar la posible falla en el sistema.

Figura 11. Diagrama unifilar del sistema IEEE New England de 39 barras. Fuente: [28].

3.2.7. DIgSILENT Power Factory

DIgSILENT Power Factory es un software eléctrico reconocido y empleado a nivel mundial en el ámbito educativo, investigativo y profesional. La característica de este programa es el diseño de las redes eléctricas, así también la ejecución de diferentes estudios propio un SEP, como es el flujo de carga, estudios de cortocircuitos, optimización de redes distribución y análisis de protecciones, etc.

La importancia de este programa en el presente proyecto radica en la visualización del sistema de 39 Barras IEEE que se encuentra preestablecido, el ajuste de los parámetros de las variables y la simulación de las fallas. Este programa incorpora su propia base de datos e integra dos lenguajes de programación como es el: DIgSILENT Programming Language (DPL) y DIgSILENT Simulation Language (DSL), esto permite crear nuevos

componentes dinámicos para simular la estabilidad transitoria, realizar nuevas funciones de simulación y diferentes tipos de aplicación [29].

3.2.8. Regulador de Voltaje Automático.

Los reguladores de voltajes automáticos (AVR) son dispositivos esenciales en los SEP permiten mantener el voltaje dentro de límites aceptables y su función radica en estabilizar la red eléctrica frente a variaciones de carga y cambios en las condiciones de operación.

El AVR, es un controlador que pertenece al sistema de excitación de la máquina síncrona, su principio fundamental es la detección de errores, la tensión de salida de la máquina en corriente alterna se rectificará, filtrará y se comparará con un voltaje de referencia, con lo cual la diferencia que exista entre estos valores de voltaje se denominará voltaje de error, el cual será amplificado y se lo suministrará al excitador principal [19].

3.2.8.1. Funcionamiento del AVR.

El AVR es aquel dispositivo de control fundamental en los SEP, cuyo propósito fundamental es conservar el voltaje de salida de un generador sincrónico dentro de límites predefinidos. Este control es esencial para garantizar la estabilidad del sistema y la calidad de la energía eléctrica [4]. Un correcto funcionamiento de los AVR se comprende de los siguientes sistemas:

- Sistemas de excitación tipo DC, se basan en generadores DC, donde la fuente de alimentación actuará como un interruptor o conmutador.
- Sistemas de excitación de tipo AC, aquel donde el generador AC se conecta a un puente rectificador de diodos y este al campo del generador.
- Sistemas de excitación tipo ST, en el cual la potencia de campo es suministrada por un devanado o transformador y un puente de rectificadores preveniente de un generador auxiliar.

Una de las grandes ventajas del AVR es que reacciona ágilmente a cambios en las condiciones de carga o perturbaciones en SEP para conservar el voltaje en los terminales del generador constante [11].

3.2.8.2. Sistema de excitación en los AVR.

El sistema de excitación es el conjunto de componentes que abastece y regula la corriente de excitación al devanado de campo de un generador sincrónico, este sistema trabaja en conjunto con el AVR y es esencial para lograr controlar el voltaje y la estabilidad dinámica. Se identifican tres tipos distintivos de sistemas de excitación los cuales se basan en su fuente de alimentación [19]:

- Al existir una perdida repentina de carga, el AVR tiene la capacidad de reducir la sobretensión que se produce por dicho suceso.
- Cuando exista alguna falla en el sistema, se aumentará la excitación con el fin de que al momento que se intente la eliminación de la falla exista una sincronización a máxima potencia.
- Mantiene la estabilidad de la máquina logrando actuar como un controlador de voltaje.
- Si existen alternadores o generadores en paralelo, el AVR permitirá dividir la carga reactiva entre estos.

El sistema de excitación en los AVR tiene un rol crucial dado que deberá garantizar el funcionamiento adecuado y estable en los diferentes generadores síncronos dado que la función principal es proporcionar el campo magnético necesario en los devanados del rotor del generador, dado que el sistema de excitación se deberá encargar exclusivamente de regular la salida de voltaje del generador ajustando la fuerza del campo magnético con el fin de garantizar un voltaje adecuado [30].

IV. MARCO METODOLÓGICO

El SEP en el cual se desencadena este proyecto de trabajo de titulación parte del sistema de 39 Barras de la IEEE, el cual está conformado por diferentes fases como la generación, transmisión y distribución, y estos a su vez se conforman de elementos como los generadores, barras, líneas de transmisión, transformadores y cargas, previamente explicado y detallado de manera conceptual en la sección de los fundamentos teóricos.

Resulta necesario emplear el software DIgSILENT Power Factory para el desarrollo de este proyecto, puesto que el mismo posee características que facilitan realizar el flujo de carga y analizar su comportamiento antes las diferentes perturbaciones originadas para su posterior integración de los AVR como efecto mitigante de las diferentes eventualidades a los que se sujeta el SEP.

Cabe mencionar que, para mayor facilidad de interpretación de resultados se empleó y ejecuto un archivo base en el software de Excel, el cual se detalla y permite tener un análisis comparativo entre los resultados obtenidos. Para el respectivo análisis de este proyecto, se evaluarán tres casos de estudios con diferentes eventualidades comunes a los que los SEP se encuentra vulnerables cuando estos se encuentran en operación, los cuales son:

- 1º caso, aumento excesivo de carga.
- ➢ 2º caso, perdida de un elemento.

Estos casos de estudios se originan en base a las necesidades de prevenir un colapso dentro del sistema eléctrico y evitar consecuencias dañinas en los equipos y pérdidas económicas, además de ser fallas comunes sirve para preparar a los operadores a afrontar desafíos críticos en momentos de operaciones en un SEP.

4.1. Modelado del sistema base.

El modelado del sistema consiste en la replicación del sistema de 39 Barras IEEE que se encuentra configurado en el entorno de DIgSILENT Power Factory. A continuación, se detalla las características de los elementos y sus valores predefinidos por el propio software.

4.1.1. Generación.

La etapa de generación del Sistema de 39 Barras IEEE, lo conforman diez generadores o máquinas síncronas y la figura 12 detalla el símbolo del generador en el software de DIgSILENT Power Factory, además, la figura 13 muestra el entorno de configuración de los parámetros del generador. Cabe mencionar que, la nomenclatura del generador es la letra G seguido del número del transformador y para distinción del resto de elementos los generadores tienen el color verde.

Figura 12. Identificación y símbolo del generador en DIgSILENT Power Factory. Fuente: Autor.

asic Data	General Advanced	Automatic	Dispatch			
oad Flow	Spinning if circuit	breaker is o	pen	Mo	de of Local Voltage Cont	roller
/DE/IEC Short-Circuit	Reference Machi	ne PV		C	Power Factor	
complete Short-Circuit	Corresponding Bus 1	pe: PV			voitage	
NSI Short-Circuit	External Secondary C	ontroller	▼ →			
EC 61363	External Station Contr	oller	▼ →			
C Short-Circuit	Dispatch			C	apability Curve	
MS-Simulation	Input Mode	Default	<u> </u>			P
MT-Simulation	Active Power	540.	MW		1.0000	(0.00/0.77) pratax
armonics/Power Quality	Reactive Power	0.	Mvar		0.0667	0.85
rotection	Voltage	1.0278	p.u.		p 3333	
ptimal Power Flow	Angle	0.	deg			0.21
tate Estimation	Prim. Frequency Bia	IS 0.	MW/Hz		-1.000 -0.333 -1/xd	0.333 1.000
Reliability	Reactive Power On	erational Lin	nits			
eneration Adequacy	Capability Curve	v +				
Description	Use limits specif	ied in type				
	Min0.3	p.u.	-210.	Mvar	Scaling Factor (min.)	100. %
	Max. 0.7	p.u.	490.	Mvar	Scaling Factor (max.)	100. %
	- Active Power Oper	ational Limits	-			
	Min. 150.	MW				
	Max. 595.	MW			Pn	595. MW
	Antina Brune Bett					
	Active Power: Ratin	IG	Dating Faster		1	EDE MW

Figura 13. Configuración de parámetros del Generador 8 en DIgSILENT Power Factory. Fuente: Autor.

En la Tabla 1, se detalla las características individuales de cada generador, como su tipo de Barra, la potencia activa, la reactiva, el voltaje nominal, el factor de potencia, el tipo

de conexión, la potencia reactiva y activa, el voltaje en por unidad (p.u.) y los valores de potencia mínimo y máximo de operación. Además, cabe destacar que la barra 31 se considera es una barra tipo SLACK.

Color Verde

(12)

DATOS DE LOS GENERADORES

N °	Nombre del Generado r	Barra Conectad a	Tipo de Barra	Máquina s en Paralelo	Modelo de Entrad a	P. Activa [MW]	P. Reactiv a [MVAR]	Voltaj en [p.u.]	P. Mín. Operació n [MW]	P. Máx. Operació n [MW]
1	G 01	Barra 39	PV	1	Default	1000.0 0	0.00	1.0300	0.00	8500.00
2	G 02	Barra 31	SLAC K	1	Default	0.00	0.00	0.9820	150.00	595.00
3	G 03	Barra 32	PV	1	Default	650.00	0.00	0.9831	200.00	680.00
4	G 04	Barra 33	PV	1	Default	632.00	0.00	0.9972	200.00	680.00
5	G 05	Barra 34	PV	2	Default	254.00	0.00	1.0123	70.00	255.00
6	G 06	Barra 35	PV	1	Default	650.00	0.00	1.0493	200.00	680.00
7	G 07	Barra 36	PV	1	Default	560.00	0.00	1.0635	150.00	595.00
8	G 08	Barra 37	PV	1	Default	540.00	0.00	1.0278	150.00	595.00
9	G 09	Barra 38	PV	1	Default	830.00	0.00	1.0265	250.00	850.00
10	G 10	Barra 30	PV	1	Default	250.00	0.00	1.0475	0.00	850.00

Tabla 1	. Datos	de los	generadores.	Fuente:	Autor.
---------	---------	--------	--------------	---------	--------

26

4.1.2. Transmisión.

La fase de transmisión del sistema de 39 Barras de la IEEE lo conforman las barras y las líneas de transmisión, las cuales se detalla a continuación:

4.1.2.1. Barras

Como lo indica el nombre, la característica que resalta en este sistema de la IEEE se debe a que lo conforman 39 Barras. Para el modelado correspondiente en el entorno del programa de DIgSILENT Power Factory la configuración de sus parámetros se visualiza en la figura 14, además, el elemento toma la forma como se detalla en la figura 15, y para la etiqueta de identificación se asigna el nombre del elemento como Barra y por consiguiente su número.

Terminal - Grid\Barra 18.Elm	Term					? X
Basic Data	Name	Barra 18				ОК
Load Flow	Туре	▼ →				Cancel
VDE/IEC Short-Circuit	Zone	▼ →				
Complete Short-Circuit	Area	▼ →				Jump to
ANSI Short-Circuit						Cubicles
IEC 61363	Cut of Service					
DC Short-Circuit	System Type	AC 💌	Usage	Busbar	•	
RMS-Simulation	Phase Technology	ABC				
EMT-Simulation	Nominal Voltage				1	
Harmonics/Power Quality	Line-Line	345. kV				
Protection	Line-Ground	199.1858 k V				
Optimal Power Flow						
Reliability	Earthed					
Generation Adequacy						
Tie Open Point Opt.						
Description						

Figura 15. Configuración de parámetros de la barra 18 en el software de DIgSILENT Power Factory. Fuente: Autor.

Figura 14. Identificación y representación de la Barra 18 en el software DIgSILENT Power Factory. Fuente: Autor.

Cabe mencionar que, estas barras están sujetas a diferentes niveles de tensión y para temas de análisis y mayor apreciación visual se asignó un color distinto el cual representa cada nivel de voltaje, como lo detalla la Tabla 2.

Tabla 2. Niveles de tensión en las barras identificado con un color distinto. Fuente: Autor.

También fue útil la elaboración de una Tabla 3, donde se detalla los niveles de tensión de línea a línea (L-L) y línea a neutro (L-N), además se muestra su integración con las líneas de transmisión.

Co	olor Negro (0)) / Todas las Barras en forma Horizontal	DATOS DE LA BAKKA							
N°	Nombre	Elemento(s) Superior(es)	Elemento(s) Inferior(es)	Vol.	Vol. Nom.					
	de Barra			Nom. L-	L-N [kV]					
				L [kV]						
1	Barra 01	Línea de transmisión: "LT 01 - 02"	Línea de transmisión: "LT 01 - 39"	345.00	199.185843					
2	Barra 02	Transformador: "Trf 02 - 30"	Línea de transmisión: "LT 01 - 02"	345.00	199.185843					
		Línea de transmisión: "LT 02 - 25"	Línea de transmisión: "LT 02 - 03"							
3	Barra 03	Línea de transmisión: "LT 02 - 03"	Línea de transmisión: "LT 03 - 04"	345.00	199.185843					
		Línea de transmisión: "LT 03 - 18"	Carga: "Carga 03"							
4	Barra 04	Carga: "Carga 04"	Línea de transmisión: "LT 04 - 05"	345.00	199.185843					
		Línea de transmisión: "LT 03 - 04"								
		Línea de transmisión: "LT 04 - 14"								
5	Barra 05	Línea de transmisión: "LT 04 - 05"	Línea de transmisión: "LT 05 - 08"	345.00	199.185843					
			Línea de transmisión: "LT 05 - 06"							
6	Barra 06	Línea de transmisión: "LT 05 - 06"	Línea de transmisión: "LT 06 - 07"	345.00	199.185843					
			Transformador: "Trf 06 - 31"							
			Línea de transmisión: "LT 06 - 11"							
7	Barra 07	Línea de transmisión: "LT 06 - 07"	Línea de transmisión: "LT 07 - 08"	345.00	199.185843					
			Carga: "Carga 07"							
8	Barra 08	Línea de transmisión: "LT 05 - 08"	Línea de transmisión: "LT 08 - 09"	345.00	199.185843					
		Línea de transmisión: "LT 07 - 08"	Carga: "Carga 08"							
9	Barra 09	Línea de transmisión: "LT 09 - 39"	-	345.00	199.185843					
		Línea de transmisión: "LT 08 - 09"								
10	Barra 10	Línea de transmisión: "LT 10 - 11"	Transformador: "Trf 10 - 32"	345.00	199.185843					
		Línea de transmisión: "LT 10 - 13"								
11	Barra 11	Línea de transmisión: "LT 06 - 11"	Línea de transmisión: "LT 10 - 11"	345.00	199.185843					
		Transformador: "Trf 11 - 12"								
					1					

12	Barra 12	Carga: "Carga 12"	Transformador: "Trf 11 - 12"	138.00	79.674337
			Transformador: "Trf 13 - 12"		
13	Barra 13	Transformador: "Trf 13 - 12"	Línea de transmisión: "LT 10 - 13"	345.00	199.185843
		Línea de transmisión: "LT 13 - 14"			
14	Barra 14	Línea de transmisión: "LT 04 - 14"	Línea de transmisión: "LT 13 - 14"	345.00	199.185843
		Línea de transmisión: "LT 14 - 15"			
15	Barra 15	Línea de transmisión: "LT 15 - 16"	Línea de transmisión: "LT 14 - 15"	345.00	199.185843
			Carga: "Carga 15"		
16	Barra 16	Línea de transmisión: "LT 16 - 17"	Línea de transmisión: "LT 15 - 16"	345.00	199.185843
		Línea de transmisión: "LT 16 - 24"	Carga: "Carga 16"		
			Línea de transmisión: "LT 16 - 19"		
			Línea de transmisión: "LT 16 - 21"		
17	Barra 17	Línea de transmisión: "LT 17 - 18"	Línea de transmisión: "LT 16 - 17"	345.00	199.185843
		Línea de transmisión: "LT 17 - 27"			
18	Barra 18	Línea de transmisión: "LT 17 - 18"	Línea de transmisión: "LT 03 - 18"	345.00	199.185843
			Carga: "Carga 18"		
19	Barra 19	Línea de transmisión: "LT 16 - 19"	Transformador: "Trf 19 - 20"	345.00	199.185843
			Transformador: "Trf 19 - 33"		
20	Barra 20	Carga: "Carga 20"	Transformador: "Trf 20 - 34"	230.00	132.790562
		Transformador: "Trf 19 - 20"			
21	Barra 21	Línea de transmisión: "LT 16 - 21"	Carga: "Carga 21"	345.00	199.185843
		Línea de transmisión: "LT 21 - 22"			
22	Barra 22	Línea de transmisión: "LT 21 - 22"	Línea de transmisión: "LT 22 - 23"	345.00	199.185843
		Transformador: "Trf 22 - 35"	T (1 T (22) 2/	245.00	100 1050 42
23	Barra 23	Carga: "Carga 23"	Iransformador: "Irf 23 - 36"	345.00	199.185843
		Linea de transmision: "L1 $22 - 23$ "			
24	D 24	Linea de transmision: "L1 23 - 24"		245.00	100 1050 42
24	Barra 24	-	Linea de transmision: "Li 16 - 24"	345.00	199.185845
			Línea de transmisión: "IT 23 - 24"		
25	Barra 25	Transformador: "Trf 25 - 37"	Línea de transmisión: "LT 02 - 25"	345.00	100 185843
25	Dulla 25	Huistoffiadol. 11125 57	Carga: "Carga 25"	545.00	177.105045
			Línea de transmisión: "LT 25 - 26"		
26	Barra 26	Carga: "Carga 26"	Línea de transmisión: "LT 25 - 26"	345.00	199.185843
		Línea de transmisión: "LT 26 - 29"	Línea de transmisión: "LT 26 - 27"		
		Línea de transmisión: "LT 26 - 28"			
27	Barra 27	Línea de transmisión: "LT 26 - 27"	Línea de transmisión: "LT 17 - 27"	345.00	199.185843
			Carga: "Carga 27"		
28	Barra 28	Línea de transmisión: "LT 26 - 28"	Carga: "Carga 28"	345.00	199.185843
		Línea de transmisión: "LT 28 - 29"			
29	Barra 29	Línea de transmisión: "LT 28 - 29"	Transformador: "Trf 29 - 38"	345.00	199.185843
		Línea de transmisión: "LT 26 - 29"			
		Carga: "Carga 29"			
30	Barra 30	Generador: "G 10"	Transformador: "Trf 02 - 30"	16.50	9.526279
31	Barra 31	Transformador: "Trf 06 - 31"	Generador: "G 02"	16.50	9.526279
			Carga: "Carga 31"		
32	Barra 32	Transformador: "Trf 10 - 32"	Generador: "G 03"	16.50	9.526279
33	Barra 33	Transformador: "Trf 19 - 33"	Generador: "G 04"	16.50	9.526279
34	Barra 34	Transformador: "Trf 20 - 34"	Generador: "G 05"	16.50	9.526279
35	Barra 35	Generador: "G 06"	Transformador: "Trf 22 - 35"	16.50	9.526279

36	Barra 36	Transformador: "Trf 23 - 36"	Generador: "G 07"	16.50	9.526279
37	Barra 37	Generador: "G 08"	Transformador: "Trf 25 - 37"	16.50	9.526279
38	Barra 38	Transformador: "Trf 29 - 38"	Generador: "G 09"	16.50	9.526279
39	Barra 39	Generador: "G 01"	Carga: "Carga 39"	345.00	199.185843
		Línea de transmisión: "LT 01 - 39"	Línea de transmisión: "LT 09 - 39"		

Tabla 3. Datos de las barras. Fuente:Autor.

4.1.2.2. Líneas de transmisión.

Para la interconexión del sistema de 39 barras, entre los elementos como los generadores, y barras se emplean treinta y cuatro líneas de transmisión, están cubren grandes distancias y poseen características importantes que se detalla en la siguiente Tabla 4, en ella indica que el voltaje de todas las LT es de 345 kV y a su vez la LT 26-29 es la de mayor longitud.

DATOS DE LA LÍNEA DE TRANSMISIÓN

N°	Nombre de	Barra	Barra	Líneas	Longitud	Voltaje	Corriente	Resistencia	Reactancia	Capacitancia
	la Línea de	Inicial	Final	de	en [km]	Nominal	Nominal	AC 20°C	Χ'	C' [µF/km]
	Transmisión			Paralelo		[kV]	[kA]	[Ohm/km]	[Ohm/km]	
1	LT 01 - 39	Barra	Barra	1	99.1875	345	1	0.012	0.3	0.0168514
		01	39							
2	LT 01 - 02	Barra	Barra	1	163.0643	345	1	0.02554745	0.3	0.0095491
		01	02							
3	LT 02 - 25	Barra	Barra	1	34.1205	345	1	0.244186	0.3	0.009536
		02	25							
4	LT 02 - 03	Barra	Barra	1	59.90925	345	1	0.02582781	0.3	0.0095677
		02	03							
5	LT 03 - 18	Barra	Barra	1	52.76775	345	1	0.02481203	0.3	0.0090296
		03	18							
6	LT 03 - 04	Barra	Barra	1	84.50775	345	1	0.01830986	0.3	0.0058386
		03	04							
7	LT 04 - 14	Barra	Barra	1	51.18075	345	1	0.01860465	0.3	0.0060177
		04	14							
8	LT 04 - 05	Barra	Barra	1	50.784	345	1	0.01875	0.3	0.0058892
		04	05							
9	LT 05 - 08	Barra	Barra	1	44.436	345	1	0.02142857	0.3	0.0074026
		05	08							
10	LT 05 - 06	Barra	Barra	1	10.3155	345	1	0.02307692	0.3	0.0093763
		05	06							
11	LT 06 - 07	Barra	Barra	1	36.501	345	1	0.01956522	0.3	0.0068993
		06	07							
12	LT 06 - 11	Barra	Barra	1	32.5335	345	1	0.02560976	0.3	0.0095149
		06	11							
13	LT 07 - 08	Barra	Barra	1	18.2505	345	1	0.02608696	0.3	0.0095247
		07	08							

Color Plomo (166)

14	LT 08 - 09	Barra	Barra	1	144.0202	345	1	0.01900826	0.3	0.0058864	
		08	09								31
15	LT 09 - 39	Barra 09	Barra 39	1	99.1875	345	1	0.012	0.3	0.0269622	
16	LT 10 - 11	Barra 10	Barra 11	1	17.06025	345	1	0.02790698	0.3	0.009523	_
17	LT 10 - 13	Barra 10	Barra 13	1	17.06025	345	1	0.02790698	0.3	0.009523	
18	LT 13 - 14	Barra 13	Barra 14	1	40.07175	345	1	0.02673267	0.3	0.0095825	-
19	LT 14 - 15	Barra 14	Barra 15	1	86.09475	345	1	0.02488479	0.3	0.009474	
20	LT 15 - 16	Barra 15	Barra 16	1	37.2945	345	1	0.0287234	0.3	0.0102184	
21	LT 16 - 17	Barra 16	Barra 17	1	35.31075	345	1	0.02359551	0.3	0.0084699	
22	LT 16 - 24	Barra 16	Barra 24	1	23.40825	345	1	0.01525424	0.3	0.006474	
23	LT 16 - 19	Barra 16	Barra 19	1	77.36625	345	1	0.02461538	0.3	0.0087569	
24	LT 16 - 21	Barra 16	Barra 21	1	53.56125	345	1	0.01777778	0.3	0.0106018	
25	LT 17 - 18	Barra 17	Barra 18	1	32.5335	345	1	0.02560976	0.3	0.0090353	
26	LT 17 - 27	Barra 17	Barra 27	1	68.63775	345	1	0.02254335	0.3	0.010442	
27	LT 21 - 22	Barra 21	Barra 22	1	55.545	345	1	0.01714286	0.3	0.0102914	
28	LT 22 - 23	Barra 22	Barra 23	1	38.088	345	1	0.01875	0.3	0.0108013	_
29	LT 23 - 24	Barra 23	Barra 24	1	138.8625	345	1	0.01885714	0.3	0.0057937	
30	LT 25 - 26	Barra 25	Barra 26	1	128.1503	345	1	0.02972136	0.3	0.0089213	
31	LT 26 - 27	Barra 26	Barra 27	1	58.32225	345	1	0.02857143	0.3	0.0091555	
32	LT 26 - 28	Barra 26	Barra 28	1	188.0595	345	1	0.02721519	0.3	0.0092457	
33	LT 26 - 29	Barra 26	Barra 29	1	247.9688	345	1	0.02736	0.3	0.009248	
34	LT 28 - 29	Barra 28	Barra 29	1	59.90925	345	1	0.02781457	0.3	0.0092627	

Tabla 4. Datos de las líneas de transmisión. Fuente: Autor

Para la identificación de una línea de transmisión usaremos las abreviaturas LT seguido de la barra inicial y la barra final, el caso que se representa en la figura 16, es la LT 04-

14. La representación y configuración de parámetros predefinidos de una línea de transmisión en el software DIgSILENT Power Factory se visualiza en la figura 17.

Figura 16. Identificación y representación de la LT 04-14 en el software DIgSILENT Power Factory. Fuente: Autor.

Line - Grid\LT 04 - 14.ElmLne	•				?	X
Basic Data	Name	LT 04 - 14			ОК	
Load Flow	Туре	► Line Types\Line Type 04 - 14			Canc	el
VDE/IEC Short-Circuit	Teminal i	Select Global Type	Barra 04		Danua	
Complete Short-Circuit	Terminal j	Select Project Type	Barra 14		rigure	>>
ANSI Short-Circuit	Zone	New Project Type			Jump to	o
IEC 61363	Area	Paste Type				
DC Short-Circuit	Cout of Service	Remove Type				
RMS-Simulation	Number of		Resulting Values			
EMT-Simulation	parallel Lines	1	Rated Current (act.) Pos. Seg. Impedance, Z1	1. kA 15.38372 Ohm		
Harmonics/Power Quality	Parameters		Pos. Seq. Impedance, Angle	86.45132 deg		
Optimal Power Flow	Thermal Rating	▼ →	Pos. Seq. Reactance, X1	15.35423 Ohm		
Reliability	Length of Line	51.18075 km	Zero Seq. Resistance, R0	0. Ohm		
Generation Adequacy	Derating Factor	1.	Zero Seq. Reactance, X0 Earth-Fault Current, Ice	0. Ohm 0. A		
Tie Open Point Opt.			Earth Factor, Magnitude	0.3333333		
Cable Sizing	Turne of Line	Overhead Line	Earth Factor, Angle	180. deg		
Description	Type of Line					
	Line Model					
	Lumped Para	meter (PI)				
	O Distributed Pa	arameter				
	Sections/L	ine Loads				
	_				_)

Figura 17. Configuración de parámetros de la LT 04-14 en DIgSILENT

Power Factory. Fuente: Autor.

4.1.3. Transformadores.

Los transformadores que conforman al sistema de 39 Barras de la IEEE son doce, para identificación del elemento estará en color café y su nomenclatura emplea las letras "Trf" seguido del número de la barra del lado de alta tensión y la barra del lado de baja tensión. Como se detalla en la figura 18, es la representación del símbolo del transformador en el DIgSILENT Power Factory. Este indica que su lado de alta tensión está conectado en la barra 06 y en el lado de baja tensión se conecta a la barra 31.

Figura 18. Identificación y representación del transformador en DIgSILENT Power Factory. Fuente: Autor.

En la figura 19 se visualiza el entorno de la configuración de parámetros de los transformadores en el entorno de DIgSILENT Power Factory.

2-Winding Transformer - Gri	d\Trf 06 - 31.ElmTr2	? X
Basic Data	General Grounding/Neutral Conductor	ОК
Load Flow	Name Trf 06 - 31	Cancel
VDE/IEC Short-Circuit	Type	Equip 22
Complete Short-Circuit	HV-Side	Figure >>
ANSI Short-Circuit	LV-Side	Jump to
IEC 61363	Zone HV-Side 💌 🔸	
DC Short-Circuit	Area HV-Side 💌 🍝	
RMS-Simulation	Cut of Service	
EMT-Simulation	Number of Flip Connections	
Harmonics/Power Quality	parallel Transformers	
Protection	Themal Rating	
Optimal Power Flow	Rating Factor 1. Rated Power (act.) 700. MVA	
State Estimation		
Reliability	Supplied Elements	
Generation Adequacy	Mark Elements in Graphic Edit Elements	
Tie Open Point Opt.		
Description		

Figura 19. Configuración de parámetros del transformador en DIgSILENT Power Factory. Fuente: Autor.

Color Café (124)

DATOS DEL TRANSFORMADOR

N	Nomb re del Trafo	Barr a Inici al	Barr a Fina 1	TA P	Trafo en Parale lo	Fact or de Escal a	P. Nomin al [MVA]	Volt. en Alta [kV]	Volt. en Baja [kV]	Grupo Vectori al	Tensión de corto circuito uk	Tensió n SHC (Re(uk)) ukr	Tensión de corto circuito uk0	Tensión SHC (Re(uk 0)) uk0r
1	Trf 02 - 30	Barra 02	Barr a 30	1	1	1	1000.0 0	345.0 0	16.50	YNy0	18.10000 %	0.00%	18.10000 %	0.00%
2	Trf 06 - 31	Barra 06	Barr a 31	2	1	1	700.00	345.0 0	16.50	YNy0	17.50000 %	0.00%	17.50000 %	0.00%
3	Trf 10 - 32	Barra 10	Barr a 32	2	1	1	800.00	345.0 0	16.50	YNy0	16.00000 %	0.00%	16.00000 %	0.00%
4	Trf 11 - 12	Barra 11	Barr a 12	1	1	1	300.00	345.0 0	138.0 0	YNy0	13.05882 %	0.48%	13.05882 %	0.48%
5	Trf 13 - 12	Barra 13	Barr a 12	1	1	1	300.00	345.0 0	138.0 0	YNy0	13.05882 %	0.48%	13.05882 %	0.48%
6	Trf 19 - 20	Barra 19	Barr a 20	2	1	1	1000.0 0	345.0 0	230.0 0	YNy0	13.81774 %	0.70%	13.81774 %	0.70%
7	Trf 19 - 33	Barra 19	Barr a 33	2	1	1	800.00	345.0 0	16.50	YNy0	11.37379 %	0.56%	11.37379 %	0.56%
8	Trf 20 - 34	Barra 20	Barr a 34	1	2	1	300.00	230.0 0	16.50	YNy0	10.81349 %	0.54%	10.81349 %	0.54%
9	Trf 22 - 35	Barra 22	Barr a 35	1	1	1	800.00	345.0 0	16.50	YNy0	11.44000 %	0.00%	11.44000 %	0.00%
10	Trf 23 - 36	Barra 23	Barr a 36	0	1	1	700.00	345.0 0	16.50	YNy0	19.04322 %	0.35%	19.04322 %	0.35%
11	Trf 25 - 37	Barra 25	Barr a 37	1	1	1	700.00	345.0 0	16.50	YNy0	16.24543 %	0.42%	16.24543 %	0.42%
1e 2	Trf 29 - 38	Barra 29	Barr a 38	1	1	1	1000.0 0	345.0 0	16.50	YNy0	15.62050 %	0.80%	15.62050 %	0.80%

La tabla 5 detallas los valores principales de cada transformador y en ella se aprecia la posición de su TAP, el tipo de conexión, sus niveles de voltajes en los devanados de alta tensión (HV) y baja tensión (LV), sus potencias y demás características.

4.1.4. Distribución.

La última fase del sistema de 39 Barras IEEE lo conforma el sistema de distribución, en el cual se presentan diferentes cargas para los distintos consumidores, a continuación, se detalla el modelado de las cargas.

4.1.4.1. Cargas

Un total de diecinueve cargas conforman al sistema de 39 Barras. Una carga toma forma de un triángulo tal cual lo detalla la figura 9 y para su identificación seguirá el nombre de "Carga" continuado del número de la barra a la cual este conectada. En la figura 21 se detalla la configuración de los valores de la carga.

Figura 20. Identificación y representación de la carga 25.

Basic Data	General Advanced				ОК
Load Flow	Input Mode	Defa	ult 💌		Cance
VDE/IEC Short-Circuit	Balanced/Unbalance	ed Bala	nced 🗸		
Complete Short-Circuit	Operating Point	,		Actual Values	Figure
ANSI Short-Circuit	Active Power	224.	MW	224. MW	Jump to
IEC 61363	Reactive Power	47.2	Mvar	47.2 Mvar	
DC Short-Circuit	Voltage	1.	p.u.		
RMS-Simulation	Scaling Factor	1.		1.	
EMT-Simulation	Adjusted by Loa	ad Scaling	Zone Scaling	Factor: 1.	
Harmonics/Power Quality					
Optimal Power Flow					
State Estimation					
Reliability					
Generation Adequacy					
Description					

Fuente: Autor.

Figura 21. Configuración de parámetros de la carga 25 en DIgSILENT Power Factory. Fuente: Autor.

Indistintamente a la barra que se conecte cualquier carga, esta posee demás características que se describen en la Tabla 6 de manera individual. En ella se detalla los parámetros o valores de potencia activa y reactiva, su voltaje por unidad, si se encuentra balanceada o

desbalanceada. Estas características son importantes al momento de realizar algún análisis o estudio.

Nombre	Barra	Modelo	Balanceda o	Р.	Р.	Voltaje	Factor
de la	Conectada	de	Desbalanceada	Activa	Reactiva	[p.u.]	de
Carga		Entrada		[MW]	[MVAR]		Escala
Carga	Barra 03	Default	Balanceada	322.00	2.40	1.0000	1.00
03							
Carga	Barra 04	Default	Balanceada	500.00	184.00	1.0000	1.00
04							
Carga	Barra 07	Default	Balanceada	233.80	84.00	1.0000	1.00
07							
Carga	Barra 08	Default	Balanceada	522.00	176.00	1.0000	1.00
08							
Carga	Barra 12	Default	Balanceada	7.50	88.00	1.0000	1.00
12							
Carga	Barra 15	Default	Balanceada	320.00	153.00	1.0000	1.00
15							
Carga	Barra 16	Default	Balanceada	329.00	32.30	1.0000	1.00
16							
Carga	Barra 18	Default	Balanceada	158.00	30.00	1.0000	1.00
18							
Carga	Barra 20	Default	Balanceada	628.00	103.00	1.0000	1.00
20							
Carga	Barra 21	Default	Balanceada	274.00	115.00	1.0000	1.00
21							
Carga	Barra 23	Default	Balanceada	247.50	84.60	1.0000	1.00
23							
Carga	Barra 24	Default	Balanceada	308.60	-92.20	1.0000	1.00
24							
Carga	Barra 25	Default	Balanceada	224.00	47.20	1.0000	1.00
25							
	Nombrede lade lade laCarga03Carga04Carga07Carga03Carga12Carga12Carga12Carga13Carga16Carga18Carga20Carga21Carga23Carga2425	NombreBarrade laConectadaGargaBarra 0303Barra 0303Barra 0404Tara 0404Tara 0707Barra 0707Barra 0808Tara 0808Tara 0808Barra 1212Barra 1212Barra 1515Tara 1616Sarra 1616Barra 1818Barra 2020Barra 2121Barra 2121Barra 2323Barra 2424Barra 2525Sarra 25	NombreBarraModelode laConectadadeCargaBarra 03Default03-Default03Barra 04Default04-Default04Barra 07Default07Barra 08Default07Barra 08Default08-Default12Barra 10Default12Barra 12Default15-Default16Barra 16Default16Barra 16Default16Barra 18Default16Barra 18Default16Barra 18Default16Barra 18Default17Barra 18Default18-Default20Barra 20Default21Barra 23Default23Barra 24Default23Barra 25Default24Barra 25Default	NombreBarraModeloBalanceada orde laConectadadeDesbalanceadaCargaBarra 03DefaultBalanceada03DefaultBalanceada03DefaultBalanceada04DefaultBalanceada04DefaultBalanceada04DefaultBalanceada04DefaultBalanceada04DefaultBalanceada05DefaultBalanceada07DefaultBalanceada08DefaultBalanceada09Barra 08DefaultBalanceada08DefaultBalanceada09Barra 12DefaultBalanceada12DefaultBalanceada13DefaultBalanceada14DefaultBalanceada15DefaultBalanceada16DefaultBalanceada16DefaultBalanceada18DefaultBalanceada19DefaultBalanceada10DefaultBalanceada10DefaultBalanceada10DefaultBalanceada13DefaultBalanceada14DefaultBalanceada15DefaultBalanceada16DefaultBalanceada17DefaultBalanceada18DefaultBalanceada20DefaultBalanceada21DefaultBalanceada23D	NombreBarraModeloBalanceda oP.de laConectadadeDesbalanceadaActivaCargaBarra 03DefaultBalanceada322.0003DefaultBalanceada500.0004DefaultBalanceada233.8004DefaultBalanceada233.8007DefaultBalanceada233.8007DefaultBalanceada252.0003DefaultBalanceada522.0004DefaultBalanceada7.5007DefaultBalanceada7.5008DefaultBalanceada329.0008DefaultBalanceada329.0012DefaultBalanceada329.0015DefaultBalanceada329.0016DefaultBalanceada329.0016DefaultBalanceada158.0016DefaultBalanceada52.0017DefaultBalanceada224.0018DefaultBalanceada52.0019DefaultBalanceada224.0010DefaultBalanceada247.5010DefaultBalanceada247.5010DefaultBalanceada308.6020DefaultBalanceada308.6021DefaultBalanceada247.5023DefaultBalanceada308.6024DefaultBalanceada308.6023Default	NombreBarraModeloBalanceda oP.P.de laConectadadeDesbalanceadaActivaReactivaCargaBarra 03DefaulBalanceada322.002.4003Barra 04DefaulBalanceada322.00184.0004Barra 07DefaultBalanceada500.00184.0004DefaultBalanceada233.8084.0007Barra 07DefaultBalanceada522.00176.0008DefaultBalanceada7.5088.0010008DefaultBalanceada7.5088.0010008DefaultBalanceada7.5088.0010009DefaultBalanceada320.00153.0010010DefaultBalanceada329.0032.3010011DefaultBalanceada158.0032.3010012DefaultBalanceada158.0032.3010013DefaultBalanceada158.00103.0010014DefaultBalanceada158.00103.0010015DefaultBalanceada224.00103.0010016DefaultBalanceada247.5084.6010018DefaultBalanceada240.00100.00100.0019DefaultBalanceada240.00100.00100.0010DefaultBalanceada240.00100.00100.00 </th <th>NombreBarraModeloBalanceda oP.P.Voltajede laConectada dede BesbalanceadaActiva (Reactiva (Dur))[DU-N][DU-N]CargaBarra 03DefaultBalanceada322.002.4001.000003Barra 03DefaultBalanceada500.00184.001.000004Barra 04DefaultBalanceada233.8084.001.000004Barra 07DefaultBalanceada52.00176.001.000007Barra 08DefaultBalanceada52.00176.001.000008DefaultBalanceada52.00176.001.000008DefaultBalanceada52.00176.001.000009DefaultBalanceada7.5088.001.000010DefaultBalanceada32.00153.001.000012DefaultBalanceada32.00153.001.000013DefaultBalanceada158.001.00001.000016DefaultBalanceada158.001.00001.000016DefaultBalanceada158.001.00001.000016DefaultBalanceada247.001.00001.000017DefaultBalanceada247.001.00001.000018DefaultBalanceada247.001.00001.000010DefaultBalanceada247.0084.601.000010D</th>	NombreBarraModeloBalanceda oP.P.Voltajede laConectada dede BesbalanceadaActiva (Reactiva (Dur))[DU-N][DU-N]CargaBarra 03DefaultBalanceada322.002.4001.000003Barra 03DefaultBalanceada500.00184.001.000004Barra 04DefaultBalanceada233.8084.001.000004Barra 07DefaultBalanceada52.00176.001.000007Barra 08DefaultBalanceada52.00176.001.000008DefaultBalanceada52.00176.001.000008DefaultBalanceada52.00176.001.000009DefaultBalanceada7.5088.001.000010DefaultBalanceada32.00153.001.000012DefaultBalanceada32.00153.001.000013DefaultBalanceada158.001.00001.000016DefaultBalanceada158.001.00001.000016DefaultBalanceada158.001.00001.000016DefaultBalanceada247.001.00001.000017DefaultBalanceada247.001.00001.000018DefaultBalanceada247.001.00001.000010DefaultBalanceada247.0084.601.000010D

DATOS DE LA CARGA

14	Carga	Barra 26	Default	Balanceada	139.00	17.00	1.0000	1.00	37
	26								51
15	Carga	Barra 27	Default	Balanceada	281.00	75.50	1.0000	1.00	-
	27								
16	Carga	Barra 28	Default	Balanceada	206.00	27.60	1.0000	1.00	
	28								
17	Carga	Barra 29	Default	Balanceada	283.50	26.90	1.0000	1.00	-
	29								
18	Carga	Barra 31	Default	Balanceada	9.20	4.60	1.0000	1.00	
	31								
19	Carga	Barra 39	Default	Balanceada	1104.00	250.00	1.0000	1.00	-
	39								
									_

Tabla 6. Datos de las cargas. Fuente: Autor.

Como consecuencia del modelado y la parametrización adecuada en todos los elementos mencionados anteriormente, se conforman al sistema de 39 Barras, como lo presenta la figura 22 el cual se considera como el sistema base y en él se desarrolla los casos a estudiar.

Figura 22. Modelado base del sistema de 39 Barras de la IEEE en DIgSILENT Power Factory. Fuente: Autor.

4.2. Análisis del flujo de carga en el sistema base de 39 Barras IEEE.

Después de realizar el modelamiento y configuración del sistema de 39 Barras IEEE, para comprobar su funcionamiento se procede a ejecutar su respectivo análisis de flujo de carga, el cual detalla y describe el estado de los elementos con respecto a las diferentes normativas y rangos de operación.

Para mayores detalles de los parámetros de los elementos configurados y los resultados del flujo de carga obtenidos en el sistema base del 39 Barras IEEE, en el apartado IX Anexos A se insertará las capturas del archivo propio de DIgSILENT Power Factory. La figura 23 detalla los resultados obtenidos posterior a correr el flujo de carga, en ella se visualiza que la línea de transmisión LT 21-22 está trabajando con un 99.1% de operación, lo cual indica que en ella está circulando una corriente mayor a la cual la línea soporta

. Figura 23. Análisis del flujo de carga en el sistema modelado de 39 Barras IEEE.

Fuente: Autor

4.3. 1º Caso: aumento excesivo de carga.

Este caso de estudio toma como referencia un aumento excesivo de una carga que en términos técnicos se lo conoce como sobrecarga, esto se debe a la cotidianidad del día a día que viven los SEP y por indistintas eventualidades la carga prevista suele exceder sus límites, por lo tanto, el generador no logra abastecer con la demanda y forja una inestabilidad en todo el SEP.

Para efectos de aplicación y demostración se considera a la Carga 39, ya que la misma es la que demanda de mayor potencia activa en todo el sistema y por ende es la que más está sensible a los cambios. Se propone ejecutar un flujo de carga cuando la misma este sobrecargada al 100% de su capacidad, es decir, cuando la Carga 39 pase de 1104 MW a 2208 MW como lo detalla en la imagen 13.

General Load - Grid\Carga 3	9.ElmLod				? ×
Basic Data	General Advanced				ОК
Load Flow	Input Mode	Default	▼		Cancel
VDE/IEC Short-Circuit	Balanced/Unbalanced	d Balance	d 💌		Figure XX
Complete Short-Circuit	Operating Point	,		Actual Values	rigule //
ANSI Short-Circuit	Active Power	2208.	MW	2208. MW	Jump to
IEC 61363	Reactive Power	250.	Mvar	250. Mvar	
DC Short-Circuit	Voltage	1.	p.u.		
RMS-Simulation	Scaling Factor	1.	-	1.	
EMT-Simulation	Adjusted by Load	d Scaling	Zone Scaling Factor:	1.	
Harmonics/Power Quality	L				
Optimal Power Flow					
State Estimation					
Reliability					
Generation Adequacy					
Description					

Figura 24. Configuración del aumento de carga al 100% en la carga 39. Fuente: Autor.

Al evaluar el sistema en este punto, se explora el impacto más significativo que la sobrecarga forje y comprobar la estabilidad y seguridad del sistema eléctrico por medio de la implementación de reguladores de voltaje.

En cada caso de estudio se plantea dos escenarios diferentes. Para este caso el primero especifica el flujo de carga sobrecargado al 100% y el segundo detalla la implementación del AVR como respuesta y mejora ante la inestabilidad de voltaje.

4.3.1. Sobrecarga al 100% sin AVR.

Luego de realizar la configuración de parámetro y sobrecargar al 100% la carga 29 sin AVR, se procede a ejecutar el fujo de carga para realizar el análisis respectivo y validar el comportamiento del sistema,

Figura 25. Flujo de carga con sobrecarga al 100% en la carga 29 sin AVR. Fuente: Autor.

La figura 25 permite tener una vista panorámica del estado de los elementos obtenido previo a la simulación y a su vez nos permite tener una concordancia con lo mencionado anteriormente, donde las LT aledañas a la carga se sobrecargan comprometiendo al sistema. Además, en la sección 9.2 del Anexo B, se muestran las capturas del reporte de los resultados arrojados en el sistema.

4.3.2. Sobrecarga al 100% con AVR.

Como consecuencia de la sobrecarga, se desbalancea el sistema, es ahí donde el AVR toma un papel importante, puesto que el mismo inyectara y regulara el nivel de tensión. Después de realizar varias pruebas con respecto a la ubicación estratégica del AVR se determinó que la ubicación ideal sería en una zona aldeñada a la carga que presenta la sobrecarga, como en este caso fue en la barra 08, como lo detalla la figura 26.

Figura 26. Ubicación del AVR en la barra 08 para optimizar el sistema.

Fuente: Autores.

Como efecto de la inestabilidad de voltaje, varios elementos fueron que se vieron afectado y para que este en operación normal se tuvieron que ejecutar acciones para mejoras sus valores, por ejemplo:

- En la barra 5, del caso 01 con AVR en la, LT 05-06 fue necesario aumentar dos líneas en paralelo,
- En la barra 06, del caso 01 con AVR, se agregó 2 Transformadores en paralelo a la Trf 06 – 31 y se agregó dos LT en paralelo a la LT 06 – 07.
- En la barra 8, del caso 01 con AVR, se agregó el AVR de 345 kV con 30 MVAR.
- En la barra 25, del caso 01 con AVR, se modificó el TAP en posición 0 del transformador Trf 25 – 37.
- En la barra 31, del caso 01 con AVR, Se agregó 2 generadores en paralelo.
- En la barra 36, del caso 01 con AVR, se modificó el valor por unidad de 1.064 a 1.05.

La figura 27 detalla el flujo de carga, donde se observa que como tal ya las barras se encuentran operando en los rangos aceptables. En la sección de Anexos 9.3 se detalla los reportes obtenidos en la simulación.

•

Figura 27. Flujo de carga con sobrecarga en la carga 39 al 100%. Fuente: Autor

4.4. Caso 2, perdida de un elemento.

La pérdida o la salida de un elemento es una perturbación común a los que se enfrentan un SEP, la desconexión de estas se puede dar ya sea por fenómenos naturales, maniobras humanas o que algún parámetro este excediendo sus límites. Para este caso de estudio se plantea que diferentes líneas de transmisión, las mismas con diferentes longitudes y parámetros, estén fuera de servicio y así analizar el impacto que esta represente en el sistema de 39 Barras.

Para este caso, se asimila que hubo la desconexión de las líneas de transmisión LT 03-04, LT 09-39, LT 14-15, como consecuencia de un desastre natural que afectaron a las mismas, como lo detalla la imagen 28. A continuación, se detalla el comportamiento del sistema:

Figura 28. Desconexión de las líneas de transmisión 03-04, 09-39,14-15 en el sistema de 39 Barras. Fuente: Autor.

4.4.1. Líneas de transmisión fuera de servicio sin AVR.

Después de la desconexión de las líneas de transmisión LT 03-04, LT 09-39, LT 14-15, se corre el flujo de carga y la figura 29 muestra de manera general el comportamiento del sistema. Se visualiza que existe una perturbación de inestabilidad tanto como un alto y bajo nivel de voltaje en las barras 02, 04, 05, 06, 07, 08, 09, 19, 22,25,26,28,29 y 35, producto de la desconexión de las LT que se encuentran fuera de servicio.

Figura 29. Flujo de carga con las LT 03-04, 09-39, 14-15 fuera de servicio sin AVR. Fuente: Autor.

4.4.2. Líneas de transmisión fuera de servicio con AVR.

Como consecuencia de las desconexiones de las líneas de transmisión, el sistema presenta una inestabilidad de voltaje y como efecto mitigante se tuvieron que ejecutar varias acciones para mejorar el SEP, entre las acciones ejecutadas fueron la inserción de dos AVR en como los muestra la figura 30.

Figura 30. Ubicación de los AVR en la barra 04 y 08. Fuente: Autor.

A continuación, se detalla las acciones empleadas:

- En la barra 02, del caso 02 Con AVR, se cambió el TAP en posición 0 del transformador Trf 02 – 30.
- En la barra 04, del caso 02 Con AVR, se agregó el AVR de 345 kV con 5 MVAR.
- En la barra 08, del caso 02 Con AVR, se agregó el AVR de 345 kV con 20 MVAR.
- En la barra 13, del caso 02 Con AVR, se cambió el TAP en posición 0 del transformador Trf 13 - 12
- En la barra 19, del caso 02 Con AVR, se cambió el TAP en posición 1 del transformador Trf 19 - 20
- En la barra 25, del caso 02 Con AVR, se cambió el TAP en posición 0 del transformador Trf 25 - 37

 En la barra 36, del caso 02 Con AVR, se modificó el valor en por unidad de 1.0635 a 1.05 en por unidad.

Posterior a los cambios ejecutados, se procede a correr el flujo de carga. Como lo muestra la figura 31, el sistema presenta una estabilidad de voltaje.

Figura 31 Flujo de carga con las LT 03-04, 09-39, 14-15 fuera de servicio con AVR. Fuente: Autor

V. RESULTADOS

En este ítem se presentan los resultados conseguidos en base a los casos de estudios planteados. Con ello, se busca trazar un análisis comparativo entre los valores obtenidos con respecto al flujo de carga con AVR y sin AVR.

5.1. Caso 1, aumento excesivo de carga de un elemento.

5.1.1. Comportamientos de las cargas.

Posterior a la sobrecarga del 100% en la carga 39, la tabla 6 permite identificar que, como consecuencia del aumento de la potencia en la carga 39, la corriente en las demás cargas tiende a subir con respecto al esquema base. A diferencia con los valores obtenidos con la implementación de los AVR, la corriente tiende a disminuir.

0	Color Violeta	Valores	obtenidos d	el Flujo) de	Valores obtenidos del Flujo de					
	(160C)	(Carga Sin A	VR		C	Carga Con A	WR			
N°	Nombre de la	MW	MVAR	FP	kA	MW	MVAR	FP	kA		
	Carga										
1	Carga 03	322.00	2.40	1.00	0.54	322.00	2.40	1.00	0.53		
2	Carga 04	500.00	184.00	0.94	0.94	500.00	184.00	0.94	0.90		
3	Carga 07	233.80	84.00	0.94	0.45	233.80	84.00	0.94	0.42		
4	Carga 08	522.00	176.00	0.95	1.00	522.00	176.00	0.95	0.94		
5	Carga 12	7.50	88.00	0.08	0.39	7.50	88.00	0.08	0.37		
6	Carga 15	320.00	153.00	0.90	0.60	320.00	153.00	0.90	0.59		
7	Carga 16	329.00	32.30	1.00	0.55	329.00	32.30	1.00	0.54		
8	Carga 18	158.00	30.00	0.98	0.27	158.00	30.00	0.98	0.26		
9	Carga 20	628.00	103.00	0.99	1.62	628.00	103.00	0.99	1.61		
10	Carga 21	274.00	115.00	0.92	0.49	274.00	115.00	0.92	0.48		
11	Carga 23	247.50	84.60	0.95	0.42	247.50	84.60	0.95	0.42		
12	Carga 24	308.60	-92.20	0.96	0.53	308.60	-92.20	0.96	0.52		
13	Carga 25	224.00	47.20	0.98	0.37	224.00	47.20	0.98	0.37		
14	Carga 26	139.00	17.00	0.99	0.23	139.00	17.00	0.99	0.22		
15	Carga 27	281.00	75.50	0.97	0.48	281.00	75.50	0.97	0.47		
16	Carga 28	206.00	27.60	0.99	0.33	206.00	27.60	0.99	0.33		
17	Carga 29	283.50	26.90	1.00	0.46	283.50	26.90	1.00	0.46		
18	Carga 31	9.20	4.60	0.89	0.37	9.20	4.60	0.89	0.37		
19	Carga 39	<mark>2208.00</mark>	250.00	0.99	3.61	<mark>2208.00</mark>	250.00	0.99	3.61		

Tabla 6. Valores obtenidos del flujo de carga sin AVR y con AVR cuando la carga 39

esta sobrecargada al 100%. Fuente: Autor.

5.1.2. Comportamientos de las barras.

La tabla 7 detalla de manera textual los resultados obtenidos del flujo de carga y su comportamiento en las barras, en ella se observa que en base a la normativa ANSI C57.15 la barra 36 excede el límite del 1.05 voltaje p.u. y las barras 05, 06, 07 y 08 se encuentran debajo del rango de los 0.95 voltaje p.u.

Co Toda for	lor Negro (0) / as las Barras en ma Horizontal	Valores obto	enidos del F	lujo de Carga	ı Sin AVR	vaiores obtenidos del Flujo de Carga Con AVR						
N•	Nombre de la Barra	Voltaje Nominal [kV]	Voltaje [p.u.]	Voltaje de Barra [kV]	Grados [°]	Voltaje Nominal [kV]	Voltaje [p.u.]	Voltaje de Barra [kV]	Grados [°]			
1	Barra 01	345.00	1.020	351.86	-51.11	345.00	1.023	352.91	-32.80			
2	Barra 02	345.00	1.029	355.11	-37.54	345.00	1.032	356.17	-19.92			
3	Barra 03	345.00	1.002	345.75	-37.26	345.00	1.018	351.15	-19.83			
4	Barra 04	345.00	0.953	328.92	-34.14	345.00	0.992	342.21	-17.08			
5	Barra 05	345.00	0.939	323.84	-30.57	345.00	0.995	343.17	-13.79			
6	Barra 06	345.00	0.941	324.61	-28.80	345.00	<mark>0.997</mark>	343.91	-13.06			
7	Barra 07	345.00	0.924	318.92	-33.46	345.00	0.987	340.48	-15.43			
8	Barra 08	345.00	0.922	318.10	-35.13	345.00	0.982	338.63	-17.21			
9	Barra 09	345.00	0.975	336.27	-50.15	345.00	1.000	344.93	-31.37			
10	Barra 10	345.00	0.973	335.79	-27.61	345.00	1.009	348.02	-11.56			
11	Barra 11	345.00	0.961	331.65	-28.03	345.00	1.004	346.24	-12.09			
12	Barra 12	138.00	0.951	131.23	-28.48	138.00	0.991	136.72	-12.38			
13	Barra 13	345.00	0.970	334.62	-28.81	345.00	1.005	346.75	-12.57			
14	Barra 14	345.00	0.968	334.10	-31.74	345.00	1.001	345.45	-15.03			
15	Barra 15	345.00	0.990	341.64	-34.00	345.00	1.007	347.43	-16.89			
16	Barra 16	345.00	1.015	350.12	-33.30	345.00	1.024	353.38	-16.07			
17	Barra 17	345.00	1.015	350.01	-35.24	345.00	1.024	353.42	-17.89			
18	Barra 18	345.00	1.008	347.87	-36.45	345.00	1.020	352.06	-19.06			
19	Barra 19	345.00	1.044	360.05	-28.07	345.00	1.047	361.25	-10.87			
20	Barra 20	230.00	0.988	227.19	-29.08	230.00	0.990	227.63	-11.87			
21	Barra 21	345.00	1.020	351.85	-30.84	345.00	1.025	353.74	-13.63			
22	Barra 22	345.00	1.043	359.98	-26.33	345.00	1.045	360.41	-9.13			
23	Barra 23	345.00	1.038	358.17	-26.53	345.00	1.037	357.88	-9.32			
24	Barra 24	345.00	1.022	352.55	-33.18	345.00	1.030	355.29	-15.95			
25	Barra 25	345.00	1.047	361.36	-35.76	345.00	1.043	359.99	-17.92			
26	Barra 26	345.00	1.041	359.28	-35.22	345.00	1.044	360.08	-17.62			
27	Barra 27	345.00	1.023	353.06	-36.42	345.00	1.029	355.07	-18.92			
28	Barra 28	345.00	1.045	360.38	-31.68	345.00	1.046	360.80	-14.08			
29	Barra 29	345.00	1.046	360.92	-28.90	345.00	1.047	361.20	-11.31			
30	Barra 30	16.50	1.048	17.28	-35.07	16.50	1.048	17.28	-17.46			
31	Barra 31	16.50	0.982	16.20	0.00	16.50	0.982	16.20	0.00			
32	Barra 32	16.50	0.983	16.22	-19.25	16.50	0.983	16.22	-3.49			
33	Barra 33	16.50	0.997	16.45	-22.83	16.50	0.997	16.45	-5.65			
34	Barra 34	16.50	1.012	16.70	-23.88	16.50	1.012	16.70	-6.68			
35	Barra 35	16.50	1.049	17.31	-21.34	16.50	1.049	17.31	-4.15			
36	Barra 36	16.50	1.064	17.55	-18.63	16.50	1.050	17.32	-1.30			
37	Barra 37	16.50	1.028	16.96	-28.93	16.50	1.028	16.96	-11.20			
38	Barra 38	16.50	1.026	16.94	-21.82	16.50	1.026	16.94	-4.24			
39	Barra 39	345.00	1.030	355.35	-59.21	345.00	1.030	355.35	-40.51			

Tabla 7. Valores obtenidos del flujo de carga sin AVR y con AVR en las 39 barras del

sistema. Fuente: Autor.

Las figuras 32 y 33 grafican en un diagrama el comportamiento de las barras. En la figura 32 se observa y concuerda que la barra 36 ocasiona una inestabilidad de voltaje, al superar el valor de 1.05 p.u., sin embargo, por característica propia software este no gráfica las magnitudes que están en negativos, por ende, se recomienda emplear el recurso de los Anexos B y C para un mejor criterio técnico. En la figura 33 se observa la optimización por medio de la implementación de los AVR estabilizando las barras y estando dentro de los márgenes aceptables, según la norma ANSI C57-15.

Figura 32. Gráfica de las magnitudes de voltajes en las barras sin AVR. Fuente: Autor

Figura 33. Gráfica de las magnitudes de voltajes en las barras con AVR. Fuente: Autor

5.2. Caso 2, perdida de un elemento.

5.2.1. Comportamiento de las líneas de transmisión.

En la tabla 8 y 9 se detalla el comportamiento del sistema cuando líneas de transmisión LT 03-04, 09-39 Y 14-15 están fuera de servicios, estos es lo que se encuentra subrayado con color verde. Se aprecia que tanto en la barra inicial y la barra final toman valores de 0.

En ambas tablas se detalla que las potencias activas y reactivas, así también como el valor del factor de potencia, la corriente tiene valores diferentes. Por lo general el valor de "Operación" es similar entre las barra inicial y final. Cabe mencionar que las pérdidas de potencia y reactiva son diferentes entre las barras inicial y final.

Si se realiza una comparación de los flujos de carga en las líneas de transmisión con del esquema base, representado en la tabla 4 y las tabla 8 y 9 se concluye que la desconexión de las líneas produce que las LT se aumenta.

Col	or Plomo (166)					Valores	obtenidos de	tenidos del Flujo de Carga Sin AVR						
N°	Nombre de la		E	Barra Inio	cial			1	Barra Fin	al		Pérdidas	Pérdidas	
	Línea de Transmisión	MW	MVAR	FP	kA	Operación	MW	MVAR	FP	kA	Operación	de P. Activa en la Barra	de P. Reactiva Carga y	
												[kW]	Barra [MVAR]	
1	LT 01 - 39	211.62	31.17	0.99	0.34	38.01%	-211.17	-100.77	- 0.90	0.38	38.01%	455.37	80.98	
2	LT 01 - 02	-211.62	-31.17	- 0.99	0.34	34.15%	213.05	-29.35	0.99	0.34	34.15%	1428.57	77.30	
3	LT 02 - 25	-248.77	107.43	- 0.92	0.43	44.02%	253.49	-118.00	0.91	0.44	44.02%	4726.46	16.38	
4	LT 02 - 03	285.72	17.05	1.00	0.45	45.78%	-284.75	-34.32	- 0.99	0.46	45.78%	963.87	28.46	
5	LT 03 - 18	-37.25	31.92	0.76	0.08	10.65%	37.28	-54.91	0.56	0.11	10.65%	32.97	23.38	
<u>6</u>	LT 03 - 04	0.00	0.00	1.00	<mark>0.00</mark>	<mark>0.00%</mark>	0.00	<mark>0.00</mark>	1.00	0.00	<mark>0.00%</mark>	0.00	0.00	
7	LT 04 - 14	-298.22	-95.54	- 0.95	0.55	55.46%	299.09	96.99	0.95	0.55	55.46%	868.30	12.55	
8	LT 04 - 05	-201.78	-88.46	0.92	0.39	39.02%	202.21	83.12	0.92	0.38	39.02%	425.70	12.15	
9	LT 05 - 08	321.02	90.30	0.96	0.58	58.88%	-320.04	-89.94	0.96	0.59	58.88%	979.97	13.37	
10	LT 05 - 06	-523.22	-173.42	0.95	0.96	96.27%	523.88	177.99	0.95	0.96	96.27%	660.32	4.01	
11	LT 06 - 07	437.34	141.96	0.95	0.80	80.36%	-435.96	-131.21	0.96	0.80	80.36%	13/4.64	10.33	
12	LT 06 - 11	-340.45	-82.87	0.97	0.61	60.82%	341.36	80.57	0.97	0.60	60.82%	916.93	13.04	
13	LT 07 - 08	202.16	4/.21	0.97	0.37	36.94%	-201.97	-51.98	0.97	0.37	36.94%	193.29	6.99	
14	LT 08 - 09	0.01	-34.08	0.00	0.06	6.04%	0.00	0.00	0.42	0.00	0.00%	7.53	34.20	
	LT 10 11	242.97	124.00	0.04	0.00	0.00%	242.21	125.80	1.00	0.00	0.00%	5(0.80	0.00	
10	LT 10 - 11	20(12	124.90	0.94	0.62	62.80%	-545.51	-125.89	0.94	0.63	62.80%	500.80	0.90	
1/	LT 10 - 13	200.04	134.19	0.92	0.57	57.54%	-305.00	-136.10	0.91	0.58	57.54%	408.91	0.90	
18	LT 13 - 14	500.04	91.55	0.96	0.54	54./8%	-299.09	-90.99	0.95	0.55	0.00%	949.96	10.11	
20	LT 14 - 13	220.00	152.00	1.00	0.00	0.00%	221.00	146.01	0.01	0.00	0.00%	10(4.17	18.10	
20	LT 15 - 10	-320.00	-155.00	0.90	0.58	28.640/	321.00	71.04	0.91	0.57	28.640/	265.79	18.10	
21	LT 16 - 17	225.03	-81.80	0.94	0.39	38.04%	-224.06	/1.94	0.95	0.38	38.04%	365.78	14.50	
22	L1 16 - 24	-42.69	-90.52	0.43	0.16	16.15%	42.72	83.69	0.45	0.15	16.15%	26.13	/.55	

Valores obtenidos del Fluio de Carga Sin AVI

23	LT 16 - 19	-502.76	-30.92	-	0.81	81.28%	506.52	43.63	1.00	0.81	81.28%	3763.43	33.16
				1.00									
24	LT 16 - 21	-329.64	24.93	-	0.53	53.77%	330.46	-38.47	0.99	0.54	53.77%	819.38	27.36
				1.00									
25	LT 17 - 18	195.53	-36.30	0.98	0.32	31.93%	-195.28	24.91	-	0.32	31.93%	251.89	14.34
									0.99				
26	LT 17 - 27	29.13	-35.65	0.63	0.07	7.39%	-29.12	0.82	-	0.05	7.39%	14.12	35.02
									1.00				
27	LT 21 - 22	-604.46	-76.53	-	0.98	98.47%	607.22	96.81	0.99	0.98	98.47%	2755.47	27.94
				0.99									
28	LT 22 - 23	42.78	41.27	0.72	0.09	11.93%	-42.76	-61.20	-	0.12	11.93%	24.30	20.33
									0.57				
29	LT 23 - 24	353.83	-7.87	1.00	0.57	56.58%	-351.32	8.51	-	0.56	56.58%	2516.12	39.39
									1.00				
30	LT 25 - 26	60.85	-16.73	0.96	0.10	11.49%	-60.74	-39.85	-	0.11	11.49%	109.10	57.68
									0.84				
31	LT 26 - 27	252.75	58.92	0.97	0.41	42.15%	-251.88	-76.32	-	0.42	42.15%	864.94	26.48
									0.96				
32	LT 26 - 28	-140.76	-16.13	-	0.22	24.56%	141.55	-62.04	0.92	0.25	24.56%	790.73	86.89
				0.99									
33	LT 26 - 29	-190.24	-19.94	-	0.30	32.73%	192.16	-73.54	0.93	0.33	32.73%	1916.32	114.48
				0.99									
34	LT 28 - 29	-347.55	34.44	-	0.56	56.00%	349.11	-45.26	0.99	0.56	56.00%	1554.52	27.58
				1.00									

Tabla 8. Resultados obtenidos del flujo de carga cuando las LT03-04, 09 -39 y -14-15 están fueran de servicios. Fuente: Autor.

Colo	r Plomo (166)	Valores obtenidos del Flujo de Carga ConAVR											
N°	Nombre de la Línea de		В	arra Ini	cial			E	Barra Fi	nal		Pérdidas de P.	Pérdidas de P.
	Transmisión	MW	MVAR	FP	kA	Operación	MW	MVAR	FP	kA	Operación	Activa	Reactiva
												en la	Carga y
												Barra [kW]	Barra [MVAR]
1	LT 01 - 39	210.99	0.68	1.00	0.34	36.07%	-	-70.41	-	0.36	36.07%	426.78	80.40
							210.57		0.95				
2	LT 01 - 02	- 210.99	-0.68	-	0.34	35.53%	212.48	-57.28	0.97	0.36	35.53%	1483.24	75.38
3	LT 02 - 25	- 247 52	115.02	- 0.91	0.44	45.16%	252.50	- 124 70	0.90	0.45	45.16%	4974.59	15.79
4	LT 02 - 03	285.05	-0.49	1.00	0.46	46.14%	-	-15.58	-	0.46	46.14%	985.15	27.51
5	1703 18	37.04	13.18		0.07	8 17%	284.06	35.63	1.00	0.08	8 17%	21.10	22.71
3	LI 05 - 18	-57.94	13.10	0.94	0.07	0.4770	57.90	-55.05	0.75	0.08	0.4770	21.10	22.71
6	LT 03 - 04	0.00	<mark>0.00</mark>	1.00	<mark>0.00</mark>	<mark>0.00%</mark>	<mark>0.00</mark>	<mark>0.00</mark>	1.00	<mark>0.00</mark>	<mark>0.00%</mark>	0.00	0.00
7	LT 04 - 14	- 298.29	-92.18	- 0.96	0.55	55.01%	299.15	93.29	0.95	0.54	55.01%	854.62	12.67
8	LT 04 - 05	- 201.71	-87.31	- 0.92	0.39	38.73%	202.13	81.75	0.93	0.38	38.73%	419.38	12.27
9	LT 05 - 08	321.02	80.69	0.97	0.58	58.11%	- 320.06	-80.82	- 0.97	0.58	58.11%	955.51	13.51
10	LT 05 - 06	-	-	-	0.95	95.21%	523.79	166.79	0.95	0.95	95.21%	646.02	4.05
11	1706 07	523.15	162.44	0.96	0.79	70 //0%				0.79	70 //0%	13/3 08	10.43
11	L1 00 - 07	437.27	151.00	0.90	0.79	/ 9.44 /0	435.93	121.69	0.96	0.79	/ 9.44 /0	1545.90	10.45
12	LT 06 - 11	-	-74.37	-	0.60	60.22%	341.34	71.77	0.98	0.60	60.22%	899.65	13.14
13	IT 07 - 08	340.44	37.69	0.98	0.36	36 33%		-42.61	-	0.36	36 33%	187.26	7.07
15	L1 07 - 00	202.15	57.07	0.70	0.50	50.5570	201.94	-42.01	0.98	0.50	50.5570	107.20	7.07
14	LT 08 - 09	0.01	-34.50	0.00	0.06	6.07%	0.00	0.00	0.27	0.00	6.07%	7.62	34.62
<mark>15</mark>	LT 09 - 39	<mark>0.00</mark>	<mark>0.00</mark>	1.00	0.00	<mark>0.00%</mark>	<mark>0.00</mark>	<mark>0.00</mark>	1.00	<mark>0.00</mark>	<mark>0.00%</mark>	<mark>0.00</mark>	<mark>0.00</mark>
16	LT 10 - 11	344.07	122.10	0.94	0.62	62.51%	-	-	-	0.63	62.51%	554.58	7.01
15	177.10.12	205.02	102.05	0.02	0.56	56 (10/	343.51	123.14	0.94	0.57	56 610/	151.06	7.01
17	LI 10 - 13	305.93	123.95	0.93	0.56	56.61%	- 305.48	- 126.07	- 0.92	0.57	56.61%	454.06	7.01
18	LT 13 - 14	300.08	87.55	0.96	0.54	54.35%	-	-93.29	-	0.54	54.35%	935.59	16.24
<mark>19</mark>	LT 14 - 15	0.00	0.00	1.00	<mark>0.00</mark>	0.00%	299.15 0.00	<mark>0.00</mark>	0.95	<mark>0.00</mark>	0.00%	0.00	<mark>0.00</mark>
20	LT 15 - 16	-	-	-	0.59	58.79%	321.09	146.64	0.91	0.58	58.79%	1087.95	17.72
		320.00	153.00	0.90									
21	LT 16 - 17	224.77	-60.72	0.97	0.38	37.96%	-	51.06	- 0.08	0.37	37.96%	354.89	14.18
22	LT 16 - 24	-42.25	-94.63	-	0.17	16.90%	42.27	88.00	0.98	0.16	16.90%	28.70	7.20
			22.5.5	0.41	0.77	0.0		1		0.75	0.0 (2045.15	22.5
23	LT 16 - 19	502.68	-33.36	-	0.82	82.15%	506.53	47.69	1.00	0.82	82.15%	3843.12	32.51
24	LT 16 - 21	-	9.77	-	0.54	54.04%	330.76	-22.60	1.00	0.54	54.04%	830.85	26.85
25	1717 10	329.93	16.62	1.00	0.22	22.010/		5 (2		0.22	22.010/	254.94	12.00
25	LI 1/ - 18	196.22	-16.62	1.00	0.32	32.01%	- 195.96	5.65	- 1.00	0.32	32.01%	254.84	13.98

26	LT 17 - 27	28.20	-34.43	0.63	0.07	7.23%	-28.18	0.44	-	0.05	7.23%	13.46	34.18
									1.00				
27	LT 21 - 22	-	-92.40	-	1.00	99.71%	607.58	114.26	0.98	0.99	99.71%	2822.64	27.54
		604.76		0.99									
28	LT 22 - 23	42.42	67.02	0.53	0.13	15.51%	-42.38	-86.37	-	0.16	15.51%	42.52	20.03
									0.44				
29	LT 23 - 24	353.43	-2.20	1.00	0.57	56.98%	-	4.20	-	0.57	56.98%	2556.15	38.66
							350.87		1.00				
30	LT 25 - 26	61.83	-38.92	0.85	0.12	11.72%	-61.72	-15.87	-	0.10	11.72%	115.89	55.95
									0.97				
31	LT 26 - 27	253.71	59.45	0.97	0.42	42.80%	-	-75.94	-	0.43	42.80%	892.33	25.85
							252.82		0.96				
32	LT 26 - 28	-	-28.46	-	0.23	23.93%	141.68	-48.19	0.95	0.24	23.93%	789.26	85.34
		140.89		0.98									
33	LT 26 - 29	-	-32.13	-	0.31	32.12%	192.01	-59.52	0.96	0.32	32.12%	1915.78	112.66
		190.10		0.99									
34	LT 28 - 29	-	20.59	-	0.56	56.02%	349.24	-31.06	1.00	0.56	56.02%	1560.10	27.30
		347.68		1.00									

Tabla 9. Resultados obtenidos del flujo de carga con AVR cuando las LT03-04, 09 -39 y -14-15 y están fueran de servicio. Fuente: Autor.

5.2.2. Comportamientos de las barras.

La tabla 10 es la simplificación de los resultados obtenidos previo a la simulación de los flujos de carga, tanto con AVR y sin AVR. En ella se aprecia como la inestabilidad de voltajes afectan a las barras las barras 02, 18, 21, 24, 25, 28, 29 y 36 presenta un sobrevoltaje, sin embargo, las barras 04, 05, 06, 07, 08, 09, 12 y 14 están por debajo del límite de tensión, esto se subraya con el color rojo. Cuando se integró el AVR y se ejecutaron acciones de mejora, vemos como las mismas barras se encuentran en los límites aceptables de operación, esto se subraya con color verde.

Colo Tod: 	or Negro (0) / as las Barras en forma Iorizontal	Valores obte	enidos del F	'lujo de Carga S	Sin AVR	Valores obtenidos del Flujo de Carga Con AVR							
N°	Nombre de	Voltaje	Voltaje	Voltaje de	Grados	Voltaje	Voltaje	Voltaje de	Grados				
	la Barra	Nominal [kV]	[p.u.]	Barra [kV]	[°]	Nominal [kV]	[p.u.]	Barra [kV]	[°]				
1	Barra 01	345.00	1.048	361.59	2.77	345.00	1.041	359.05	2.80				
2	Barra 02	345.00	1.056	<mark>364.18</mark>	7.29	345.00	1.037	<mark>357.63</mark>	7.48				
3	Barra 03	345.00	1.048	361.69	5.08	345.00	1.032	356.01	5.18				
4	Barra 04	345.00	<mark>0.945</mark>	<mark>326.01</mark>	-12.52	345.00	0.950	<mark>327.67</mark>	-12.45				
5	Barra 05	345.00	0.958	330.59	-10.92	345.00	0.963	332.16	-10.87				
6	Barra 06	345.00	0.964	332.60	-10.10	345.00	0.968	334.07	-10.06				
7	Barra 07	345.00	<mark>0.948</mark>	<mark>327.12</mark>	-12.57	345.00	0.953	<mark>328.93</mark>	-12.50				
8	Barra 08	345.00	0.945	<mark>325.99</mark>	-13.15	345.00	0.951	<mark>327.97</mark>	-13.08				
9	Barra 09	345.00	0.951	328.26	-13.18	345.00	0.957	330.25	-13.10				
10	Barra 10	345.00	0.980	338.23	-7.57	345.00	0.984	339.38	-7.54				
11	Barra 11	345.00	0.973	335.84	-8.43	345.00	0.977	337.04	-8.39				
12	Barra 12	138.00	0.959	132.33	-8.44	138.00	0.960	132.44	-8.40				
13	Barra 13	345.00	0.973	335.74	-8.33	345.00	0.977	337.06	-8.29				
14	Barra 14	345.00	0.961	331.38	-10.13	345.00	0.965	332.85	-10.08				
15	Barra 15	345.00	1.021	352.11	5.75	345.00	1.010	348.32	5.86				
16	Barra 16	345.00	1.037	357.79	7.31	345.00	1.026	354.07	7.45				
17	Barra 17	345.00	1.042	359.54	6.22	345.00	1.030	355.21	6.34				
18	Barra 18	345.00	1.043	359.92	5.36	345.00	1.029	355.06	5.47				
19	Barra 19	345.00	1.052	<mark>362.88</mark>	12.45	345.00	1.042	<mark>359.42</mark>	12.69				
20	Barra 20	230.00	0.992	228.22	11.47	230.00	1.003	230.76	11.76				
21	Barra 21	345.00	1.035	357.25	9.70	345.00	1.027	354.23	9.88				
22	Barra 22	345.00	1.052	<mark>362.87</mark>	14.13	345.00	1.045	<mark>360.67</mark>	14.37				
23	Barra 23	345.00	1.047	361.17	13.93	345.00	1.038	358.14	14.18				
24	Barra 24	345.00	1.042	359.54	7.43	345.00	1.032	355.92	7.57				

25	Barra 25	345.00	1.063	<mark>366.75</mark>	8.80	345.00	1.044	360.01	9.06
26	Barra 26	345.00	1.058	<mark>364.89</mark>	7.82	345.00	1.045	<mark>360.59</mark>	7.99
27	Barra 27	345.00	1.045	360.46	5.94	345.00	1.032	356.10	6.07
28	Barra 28	345.00	1.053	<mark>363.29</mark>	11.31	345.00	1.047	<mark>361.06</mark>	11.53
29	Barra 29	345.00	1.052	362.91	14.06	345.00	1.048	<mark>361.39</mark>	14.30
30	Barra 30	16.50	1.048	17.28	9.70	16.50	1.048	17.28	9.87
31	Barra 31	16.50	0.982	16.20	0.00	16.50	0.982	16.20	0.00
32	Barra 32	16.50	0.983	16.22	0.72	16.50	0.983	16.22	0.73
33	Barra 33	16.50	0.997	16.45	17.67	16.50	0.997	16.45	17.93
34	Barra 34	16.50	1.012	16.70	16.65	16.50	1.012	16.70	16.92
35	Barra 35	16.50	1.049	17.31	19.08	16.50	1.049	17.31	19.35
36	Barra 36	16.50	1.064	17.55	21.77	16.50	1.050	17.32	22.19
37	Barra 37	16.50	1.028	16.96	15.56	16.50	1.028	16.96	15.79
38	Barra 38	16.50	1.026	16.94	21.12	16.50	1.026	16.94	21.37
39	Barra 39	345.00	1.030	355.35	0.00	345.00	1.030	355.35	0.00

Tabla 10. Valores obtenidos del flujo de carga sin AVR y con AVR cuando las LT03-04, 09 -39 y -14-15 están fuera de servicio. Fuente: Autor.

Las imágenes 34 y 35 grafican el resultado de las simulaciones ejecutadas en el software DigSILENT POWER Factory y en ellas se aprecia el comportamiento de las barras con respeto a los límites de voltajes. En la imagen 34 se aprecia como las barras mencionadas en el párrafo anterior presenta la inestabilidad de voltaje, sin embargo, las barras que están por debajo del límite de tensión, por característica propia del software no lo detalla. Por consecuencia a eso se recomienda revisar la sección de Anexos 9.5 y 9.6. La imagen detalla la mejora de voltaje como consecuencia de las acciones a mejora y la integración de los AVR.

Figura 34. Gráfica de los perfiles de voltaje en las barras con AVR. Fuente: Autor.
VI. CONCLUSIONES

En este proyecto técnico, se llevó a cabo con éxito el modelado detallado del sistema de 39 barras de la IEEE en DIgSILENT PowerFactory, integrando los componentes clave como generadores sincrónicos, transformadores, líneas de transmisión y cargas, mediante la parametrización precisa de sus particularidades eléctricas.

Este modelo valió como base para la simulación de diferentes escenarios de perturbaciones, incluyendo una sobrecarga y la salida de servicio de una línea de transmisión, con el propósito de evaluar su impacto en la estabilidad de voltaje y la respuesta dinámica del sistema. El análisis de las simulaciones reveló que las perturbaciones pueden inducir desequilibrios en la tensión, afectando la estabilidad del sistema y su capacidad de operar dentro de límites seguros.

Para mitigar estos efectos, se integraron los reguladores automáticos de voltaje (AVR), en los casos de estudios correspondiente, los cuales permitieron mejorar y estabilizar los niveles de voltaje ante variaciones en la demanda y eventos disruptivos. La implementación de los AVR demostró su efectividad en la reducción de desviaciones de voltaje, optimizando la robustez del sistema eléctrico y mejorando su resiliencia frente a contingencias.

Se destaca que los resultados obtenidos validan la utilidad de DIgSILENT Power Factory como una herramienta avanzada para la modelación y simulación de redes eléctricas complejas, permitiendo un análisis exhaustivo del comportamiento dinámico del sistema. Además, este estudio destaca la importancia de estrategias de regulación automática para garantizar la estabilidad operativa y mejorar el desempeño del sistema de en condiciones de operación realista.

VII. RECOMENDACIONES

- Estudio de optimización: se recomienda emplear y ejecutar un análisis y modelado de optimización en base a la ubicación estratégica y función de los costos e implementación de los AVR, así también el tiempo en que tomará recuperar la inversión.
- Exploración con diferentes softwares, normativas y escenarios similares: se sugiere complementar el análisis de estabilidad de voltaje con escenarios similares, desarrollados bajos normativas diferentes en softwares como ETAP o PSCAD para la comprobación de los resultados obtenidos.
- Integración de nuevas tecnologías: puesto que es crucial garantizar el nivel óptimo de voltaje en un SEP, se recomienda que en estudios posteriores se empleen e integren tecnologías como es la Smart Grid, STATCOM, SVC o reguladores de compensación reactiva.

VIII. REFERENCIAS BIBLIOGRÁFICAS

- J. M. Serrano Carhuallanqui, "Influencia de la pérdida por caída de tensión en la línea de transmisión de la selva oriental – San Martín," Tesis de Grado, Universidad Continental, Huancayo, 2019. Accessed: Dec. 25, 2024. [Online]. Available: https://repositorio.continental.edu.pe/handle/20.500.12394/6989
- R. Luque, "El reporte inmediato que nos llegó de CENACE es que existe una falla en la línea de transmisión," X. [Online]. Available: https://x.com/RobertoLuqueN/status/1803531032978661816
- [3] S. M. JAMI SOLIS, "Estudio de estabilidad de voltaje en estado estacionario de un sistema eléctrico de potencia usando curvas PQ," Tesis de Grado, UNIVERSIDAD POLITÉCNICA SALESIANA, QUITO, 2020. Accessed: Dec. 10, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/19247
- [4] J. Faiz, G. Shahgholian, and M. Arezoomand, "Analysis and Simulation of the AVR System and Parameters Variation Effects," 2007 International Conference on Power Engineering, Energy and Electrical Drives, p. 1, Nov. 2007, doi: 10.1109/POWERENG.2007.4380101.
- [5] M. J. Chimbo Campuzano and H. A. Molina Vélez, "Ubicación óptima de reguladores de voltaje en el sistema de medio voltaje correspondiente a la subestación Portovelo, aplicando segregación de flujo de carga al más crítico," Tesis de Grado, Universidad Politécnica Salesiana, Cuenca, 2018. Accessed: Dec. 25, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/16238
- [6] G. R. Leiva Pazmiño, "Esquema de alivio de carga por subfrecuencia ocacionado por desastres naturales basado en segmentación óptima de cargas.," Tesis de Grado, Universidad Politécnica Salesiana, Quito, 2019. Accessed: Dec. 11, 2024.
 [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/16924
- [7] G. F. Guzmán Rodríguez, "Ubicación de un sistema de compensación reactiva en la red de transmisión de energía eléctrica basado en programación no lineal entera mixta considerando cargabilidad de la red," Tesis de Grado, Universidad Politécnica Salesiana, Quito, 2020. Accessed: Dec. 11, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/18408
- [8] H. Liu, J. Su, Y. Yang, Z. Qin, and C. Li, "Compatible Decentralized Control of AVR and PSS for Improving Power System Stability," *IEEE Syst J*, vol. 15, no. 2, pp. 2410–2419, Jun. 2021, doi: 10.1109/JSYST.2020.3001429.

- [9] J. J. Salazar Lopez, "Control de voltaje mediante transformadores con TAPS usando una representación de variable discreta," Tesis de Grado, Universidad Politécnica Salesiana, Quito, 2020. Accessed: Dec. 11, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/18886
- [10] A. J. Herrera Guato, "Mejoramiento de los perfiles de voltaje en sistemas de distribución mediante óptima ubicación de reguladores de tensión con cambiadores de derivación usando búsqueda exhaustiva," Tesis de Grado, Universidad Politécnica Salesiana, Quito, 2021. Accessed: Dec. 25, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/21341
- [11] Z. Eleschova, A. Belan, B. Cintula, J. Bendik, M. Cenky, and P. Janiga, "Voltage Stability of Power System of the Slovak Republic: Influence of Transformers with AVR," in *Proceedings of the 2022 22nd International Scientific Conference on Electric Power Engineering, EPE 2022*, IEEE, Ed., Czech Republic: Institute of Electrical and Electronics Engineers Inc., Jul. 2022, pp. 1–6. doi: 10.1109/EPE54603.2022.9814132.
- [12] L. A. Silva Labanda, "Análisis de cargas en acometidas y transformadores de potencia en las industrias para reducción fallas," Tesis de Grado, Universidad Politécnica Salesiana, Guayaquil, 2023. Accessed: Dec. 25, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/26144
- [13] E. F. Zapata Veloz, "Mejora de la estabilidad de voltaje en un sistema de distribución mediante el análisis modal jacobiano para el control de flujo de potencia unificado considerando compensadores de potencia reactiva," Tesis de Grado, Universidad Politécnica Salesiana, Quito, 2024. Accessed: Dec. 11, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/27462
- [14] A. M. Palacios Brito, "Modelación y validación del regulador de voltaje de la central hidroeléctrica el Ambi utilizando optimización heurística MVMO y registros de mediciones sincrofasoriales para contribuir al análisis operativo del sistema nacional interconectado," Tesis de Grado, Universidad Politécnica Salesiana, Quito, 2024. Accessed: Dec. 11, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/27843
- [15] Instituto de Investigación Geológico y Energético, Balance Energético Nacional 2022, Primera. Quito: Ministerio de Energía y Minas, 2023. [Online]. Available: www.recursosyenergia.gob.ec

- [16] S. A. Espinoza Loaiza and L. O. Yépez Vásquez, "Análisis en transformadores eléctricos de refrigeración para proponer optimización del consumo energético en planta de lácteos.," Tesis de Grado, Universidad Politécnica Salesiana, Guayaquil, 2022. Accessed: Dec. 10, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/23716
- [17] C. A. Calderón Bernal and J. D. Nieves Sinche, "Estudio de la coordinación de protecciones para la línea en 69 kV de transmisión San Antonio - Alazán," Tesis de Grado, Universidad Politécnica Salesiana, Cuenca, 2022. Accessed: Dec. 10, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/21864
- [18] R. X. Pelaes Ramírez, "Coordinación autimática de protecciones de distancia en líneas de transmisión frente a una contingencia extrema.," Tesis de Grado, Universidad Politécnica Salesiana, Quito, 2019. Accessed: Dec. 10, 2024.
 [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/16920
- [19] N. Hatziargyriou *et al.*, "Definition and Classification of Power System Stability -Revisited & Extended," *IEEE Transactions on Power Systems*, vol. 36, no. 4, pp. 3271–3281, Jul. 2021, doi: 10.1109/TPWRS.2020.3041774.
- [20] I. F. Campaña López, "Determinación del margen de estabilidad angular de sistemas eléctricos de potencia considerando contingencias N-1," Tesis de Grado, Universidad Pol, Quito, 2021. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/19784
- [21] V. D. Paucar Ñacato, "Expansión óptima de sistemas de transmisión considerando ataques intencionales y estabilidad angular," Tesis de Grado, Universidad Politécnica Salesiana, Quito, 2021. Accessed: Dec. 10, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/20343
- [22] P. S. Sánchez Oñate, "Estabilidad de frecuencia en sistemas eléctricos de potencia considerando generación no inercial," Tesis de Grado, Universidad Politécnica Salesiana, Quito, 2020. Accessed: Dec. 10, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/18394
- [23] A. de J. Ortiz López, "Analisis Estabilidad Voltaje en Estado Estable del Sistema de Subtransmisión de la Empresa Eléctrica Quito," *FIEE*, vol. 1, pp. 1–8, Aug. 2012, [Online]. Available: http://bibdigital.epn.edu.ec/handle/15000/4886
- [24] J. A. Sánchez Robayo, "Control jerárquico de voltaje utilizando metodologías híbridas en sistemas eléctricos de potencia: ubicación de nodos pilotos para control secundario de voltaje, utilizando las metodologías: matriz Jacobiana y flujo

extendido de potencia; y, en base a estas metodologías proponer una metodología híbrida.," Tesis de Grado, Escuela Politécnica Nacional, Distro Metropolitáno de Quito, 2023. Accessed: Dec. 11, 2024. [Online]. Available: http://bibdigital.epn.edu.ec/handle/15000/24222

- [25] R. C. Tirira Chulde and A. Barrera Singaña, "Estabilidad de Voltaje de Largo Plazo en Sistemas Eléctricos de Potencia Usando Modelos de Carga," *Revista ITECKNE-Universidad*, vol. 19, no. 1, p. 2022, May 2021, doi: 10.15332/iteckne.
- [26] P. Kundur et al., "Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions," *IEEE Transactions on Power Systems*, vol. 19, no. 3, pp. 1387–1401, Aug. 2004, doi: 10.1109/TPWRS.2004.825981.
- [27] D. E. Echeverria Jurado, J. C. Cepeda Campana, and D. Graciela Colome, "Predicción de la Estabilidad Transitoria de Sistemas Eléctricos utilizando Aprendizaje Automático," in 2022 IEEE Biennial Congress of Argentina, ARGENCON 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/ARGENCON55245.2022.9940023.
- [28] E. A. Tapia Suárez and D. G. Colome, "Evaluación de la Estabilidad de Corto Plazo y Discriminación de Inestabilidades Transitoria y de Tensión," in 2022 IEEE Biennial Congress of Argentina, ARGENCON 2022, San Juan: Institute of Electrical and Electronics Engineers Inc., Nov. 2022, pp. 1–7. doi: 10.1109/ARGENCON55245.2022.9939901.
- [29] L. S. Yépez Escudero and L. J. Caicedo Parrales, "Regulación óptima de voltaje en línea de media tensión en zona rural mediante DIGSILENT," Tesis de Grado, Universidad Politécnica Salesiana, Guayaquil, 2023. Accessed: Dec. 11, 2024. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/24691
- [30] HMDQ, "¿Cuáles son las funciones del sistema de excitación?," Noticias. [Online]. Available: https://www.hvgoldhome.com/news/what-are-the-functionsof-excitation-system-75444866.html

IX. ANEXOS

9.1. Anexo A, reporte del flujo de carga del escenario base del sistema de 39 Barras IEEE.

									DIGSILENT	Project:				
								1	15.1.7	Date: 1/3	/2025			
					G						and a			
Load FIC	w calcul	ation			Compi	ete syster	a Report	: subs	stations, voit	age Profiles	, Grid	a int	ercha	nge
AC I	Load Flow	, balanced, posit	tive sequence	No		Automat	tic Model	l Adap	ptation for Co	nvergence		N	0	
Cons	sider Rea	ctive Power Limit	ts	No		Node	s	5 Dout	A 110W DITOI 1	01		1	.00 k	VA
						Mode	el Equat:	ions				0	.10 %	
Grid: Gr	id	System	n Stage: Grid		St	udv Case:	Power F	low		Annex:			/	1
			. sougo, orra		~ ~ ~	any onco.	10002 1.							~
	rated Voltage [kV]	Bus-voltage [p.u.] [kV]	Active Power [deg] [MW]	Reactive Power [Mvar]	Power Facto [-]	r Current [kA]	Loading [%]		A	dditional Da	ta			
Barra 39														
Cult 1	345.00	1.03 355.35	-10.05	00.00	1 00	1 62	10.04		107					
Cub_1	/Joyn	Carga 39	1104 00	250.00	0.98	1.05	10.04	P10	1104 00 MM	010: 250.00	Maran			
Cub 3	/Lne	LT 01 - 39	-124.15	-104.61	-0.76	0.26	26.38	Pv:	184.91 kW	cLod: 80.92	Mvar	L:	99.1	9 km
Cub_4	/Lne	LT 09 - 39	20.15	-57.11	0.33	0.10	11.84	Pv:	4.23 kW	cLod:127.09	Mvar	L:	99.1	9 km
Barra 01														
	345.00	1.05 361.34	-8.44					-				-		
Cub_2	/Lne /Inc	LT 01 - 39 TT 01 - 02	124.34	28.32	-0.98	0.20	26.38	PV:	184.91 KW	cLod: 80.92	Mvar	L:	162 0	9 km
	/ ште	11 01 02	121.31	20.32	0.50	0.20	21.05	rv.	100.17 KW	C100. /0./3	Mvai	ш.	105.0	0 XIII
Barra 02														
Cult 1	345.00	1.05 361.81	-5.75	-122 22	_0 00	0.45	27 65		1 00	Min1				1
Cub_1	/Tr2	TT 02 = 30 TT 02 = 03	-250.00	92 24	-0.88	0.45	61 11	Tap:	1702 06 kW	GLod: 27 79	Mwar	Max:	59.9	1 1 km
Cub 5	/Lne	LT 01 - 02	124.83	-42.60	0.95	0.21	21.05	Pv:	496.47 kW	cLod: 76.75	Mvar	Ĩ.	163.0	6 km
Cub_6	/Lne	LT 02 - 25	-239.09	82.68	-0.95	0.40	41.25	Pv:	4161.95 kW	cLod: 16.19	Mvar	ь:	34.1	2 km
Barra 03														
Curb 1	345.00	1.03 355.41	-8.60	2 40	1 00	0.50		D10	202 00 100	010. 0.40	Marrie			
Cub_1	/Lod	Carga U3 TAT 03 = 04	322.00	2.40 110 59	1.00	0.52	26 44	PT0:	289 01 km	CLod: 22.40	Mwar	т	84 5	1 km
Cub_2 Cub_3	/Lne	LT 02 - 03	-362.55	-100.26	-0.96	0.61	61.11	Pv:	1702.06 kW	cLod: 27.79	Myar	L:	59.9	1 km
Cub 4	/Lne	LT 03 - 18	-52.33	-12.72	-0.97	0.09	8.75	Pv:	28.41 kW	cLod: 22.71	Mvar	L:	52.7	7 km
_														

Grid: G	rid	Syste	m Stage: Grid		Stu	dy Case:	Power F	low		Annex:		/ 2	
	rated Voltage [kV]	Bus-voltage [p.u.] [kV]	Active Power [deg] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		Ac	dditional Dat	a		
Barra 04 Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Lod /Lne /Lne /Lne	1.00 346.33 Carga 04 LT 04 - 14 LT 03 - 04 LT 04 - 05	-9.61 500.00 -270.41 -92.60 -136.99	184.00 -46.88 -128.75 -8.37	0.94 -0.99 -0.58 -1.00	0.89 0.46 0.26 0.23	45.75 26.44 22.88	P10: Pv: Pv: Pv:	500.00 MW 593.15 kW 289.01 kW 148.99 kW	Q10: 184.00 1 cLod: 14.04 1 cLod: 22.90 1 cLod: 13.54 1	Mvar Mvar L: Mvar L: Mvar L:	51.18 } 84.51 } 50.78 }	km km km
Barra 05 Cub_1 Cub_2 Cub_3	345.00 /Lne /Lne /Lne	1.01 346.83 LT 05 - 08 LT 05 - 06 LT 04 - 05	-8.61 317.29 -454.42 137.14	58.74 -55.95 -2.79	0.98 -0.99 1.00	0.54 0.76 0.23	54.18 76.22 22.88	Pv: Pv: Pv:	831.57 kW 414.37 kW 148.99 kW	cLod: 14.78 1 cLod: 4.40 1 cLod: 13.54 1	Mvar L: Mvar L: Mvar L:	44.44) 10.32) 50.78)	km km km
Barra 06 Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Tr2 /Lne /Lne /Lne	1.01 347.65 Trf 06 - 31 LT 05 - 06 LT 06 - 07 LT 06 - 11	-7.95 -511.61 454.84 420.62 -363.85	-116.07 56.94 91.57 -32.44	-0.98 0.99 0.98 -1.00	0.87 0.76 0.71 0.61	79.58 76.22 71.88 60.67	Tap: Pv: Pv: Pv:	2.00 414.37 kW 1101.38 kW 917.08 kW	Min: -2 cLod: 4.40 cLod: 11.35 cLod: 14.17	Max Mvar L: Mvar L: Mvar L:	: 2 10.32 } 36.50 } 32.53 }	km km km
Barra 07 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.00 343.97 Carga 07 LT 07 - 08 LT 06 - 07	-10.12 233.80 185.72 -419.52	84.00 2.04 -86.04	0.94 1.00 -0.98	0.42 0.31 0.72	31.21 71.88	PlO: Pv: Pv:	233.80 MW 138.94 kW 1101.38 kW	Q10: 84.00 1 cLod: 7.75 1 cLod: 11.35 1	Mvar Mvar L: Mvar L:	18.25) 36.50)	km km
Barra 08 Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Lod /Lne /Lne /Lne	1.00 343.63 Carga 08 LT 08 - 09 LT 07 - 08 LT 05 - 08	-10.62 522.00 -19.96 -185.58 -316.46	176.00 -105.94 -8.19 -61.88	0.95 -0.19 -1.00 -0.98	0.93 0.18 0.31 0.54	18.11 31.21 54.18	P10: Pv: Pv: Pv:	522.00 MW 184.99 kW 138.94 kW 831.57 kW	Q10: 176.00 1 cLod: 38.98 1 cLod: 7.75 1 cLod: 14.78 1	Mvar Mvar L: Mvar L: Mvar L:	144.02) 18.25) 44.44)	km km km
Barra 09 Cub_1 Cub_2	345.00 /Lne /Lne	1.03 354.74 LT 08 - 09 LT 09 - 39	-10.32 20.15 -20.15	69.88 -69.88	0.28 -0.28	0.12	18.11 11.84	Pv: Pv:	184.99 kW 4.23 kW	cLod: 38.98 1 cLod:127.09 1	Mvar L: Mvar L:	144.02) 99.19)	km km
Barra 10 Cub_1 Cub_3 Cub_4	345.00 /Tr2 /Lne /Lne	1.02 350.92 Trf 10 - 32 LT 10 - 13 LT 10 - 11	-5.43 -650.00 284.76 365.24	-109.01 38.65 70.36	-0.99 0.99 0.98	1.08 0.47 0.61	86.67 47.45 61.43	Tap: Pv: Pv:	2.00 320.45 kW 537.02 kW	Min: -2 cLod: 7.52 cLod: 7.51	Max Mvar L: Mvar L:	: 2 17.06 } 17.06 }	km km

Grid: G	rid		Syster	n Stag	e: Grid		Stu	dy Case:	Power F	low			Anne	x :			/	3
	rated Voltage [kV]	Bus- [p.u.]	voltage [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]				Additio	nal Da	ta			
Barra 11																		
Cub_1 Cub_2 Cub_3	345.00 /Tr2 /Lne /Lne	1.01 3 Trf 11 LT 06 LT 10	49.38 - 12 - 11 - 11	-6.28	-0.06 364.76 -364.71	43.09 29.01 -72.10	-0.00 1.00 -0.98	0.07 0.60 0.61	14.18 60.67 61.43	Tap: Pv: Pv:	1.0 917.0 537.0	0 8 kw 2 kw	Min: cLod: cLod:	-1 14.17 7.51	Mvar Mvar	Max: L: L:	32.5 17.0	1 3 km 6 km
Barra 12																		
Cub_1 Cub_2 Cub_3	138.00 /Lod /Tr2 /Tr2	1.00 1 Carga Trf 11 Trf 13	38.02 12 - 12 - 12	-6.24	7.50 0.08 -7.58	88.00 -42.30 -45.70	0.08 0.00 -0.16	0.37 0.18 0.19	14.18 15.53	P10: Tap: Tap:	7.5 1.0 1.0	D MW D D	Q10: Min: Min:	88.00 -1 -1	Mvar	Max: Max:		1
Barra 13																		
Cub_1 Cub_3 Cub_4	345.00 /Tr2 /Lne /Lne	1.01 3 Trf 13 LT 13 LT 10	49.94 - 12 - 14 - 13	-6.10	7.62 276.82 -284.43	46.64 -3.92 -42.72	0.16 1.00 -0.99	0.08 0.46 0.47	15.53 45.69 47.45	Tap: Pv: Pv:	1.0 670.5 320.4	0 4 kW 5 kW	Min: cLod: cLod:	-1 17.68 7.52	Mvar Mvar	Max: L: L:	40.0 17.0	1 7 km 6 km
Barra 14																		
Cub_2 Cub_4 Cub_5	345.00 /Lne /Lne /Lne	1.01 3 LT 04 LT 14 LT 13	49.05 - 14 - 15 - 14	-7.66	271.01 5.14 -276.14	42.41 -36.17 -6.23	0.99 0.14 -1.00	0.45 0.06 0.46	45.75 6.04 45.69	Pv: Pv: Pv:	593.1 5.8 670.5	5 kW 1 kW 4 kW	cLod: cLod: cLod:	14.04 37.60 17.68	Mvar Mvar Mvar	L: L: L:	51.1 86.0 40.0	8 km 9 km 7 km
Barra 15																		
Cub_1 Cub_4 Cub_5	345.00 /Lod /Lne /Lne	1.02 3 Carga LT 15 LT 14	50.31 15 - 16 - 15	-7.74	320.00 -314.87 -5.13	153.00 -151.64 -1.36	0.90 -0.90 -0.97	0.58 0.58 0.01	57.60 6.04	P10: Pv: Pv:	320.0 1043.5 5.8	0 MW 3 kW 1 kW	Q10: cLod: cLod:	153.00 17.92 37.60	Mvar Mvar Mvar	L: L:	37.2 86.0	9 km 9 km
Barra 16																		
Cub_1 Cub_4 Cub_5 Cub_6 Cub_7 Cub_8	345.00 /Lod /Lne /Lne /Lne /Lne	1.03 3 Carga LT 16 LT 16 LT 16 LT 16 LT 15	55.96 16 - 19 - 21 - 24 - 17 - 16	-6.19	329.00 -502.67 -329.59 -42.68 230.03 315.91	32.30 -48.08 13.03 -98.24 -43.62 144.63	1.00 -1.00 -0.40 0.98 0.91	0.54 0.82 0.54 0.17 0.38 0.56	81.90 53.76 17.37 37.98 57.60	P10: Pv: Pv: Pv: Pv: Pv:	329.0 3813.0 821.6 30.3 356.7 1043.5	0 MW 3 kW 7 kW 7 kW 0 kW 3 kW	Q10: cLod: cLod: cLod: cLod: cLod:	32.30 32.93 27.12 7.28 14.31 17.92	Mvar Mvar Mvar Mvar Mvar Mvar	L: L: L: L:	77.3 53.5 23.4 35.3 37.2	7 km 6 km 1 km 1 km 9 km
Barra 17 Cub_1 Cub_4 Cub_5	345.00 /Lne /Lne /Lne	1.03 3 LT 17 LT 17 LT 16	56.58 - 18 - 27 - 17	-7.30	210.65 19.02 -229.68	9.73 -43.58 33.85	1.00 0.40 -0.99	0.34 0.08 0.38	34.31 7.70 37.98	Pv: Pv: Pv:	292.6 12.8 356.7	3 kW 9 kW 0 kW	cLod: cLod: cLod:	14.05 34.49 14.31	Mvar Mvar Mvar	L: L: L:	32.5 68.6 35.3	3 km 4 km 1 km

Grid: G	rid	Syster	n Stage: Grid		Stu	dy Case:	Power F	low		Annex:		1	4
	rated Voltage [kV]	Bus-voltage [p.u.] [kV]	Active Power [deg] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Dat	a		
Barra 18 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.03 355.67 Carga 18 LT 17 - 18 LT 03 - 18	-8.22 158.00 -210.36 52.36	30.00 -20.36 -9.64	0.98 -1.00 0.98	0.26 0.34 0.09	34.31 8.75	PlO: Pv: Pv:	158.00 MW 292.63 kW 28.41 kW	Q10: 30.00 cLod: 14.05 cLod: 22.71	Mvar Mvar L: Mvar L:	32.53 52.77	km km
Barra 19 Cub_1 Cub_2 Cub_3	345.00 /Tr2 /Tr2 /Lne	1.05 362.20 Trf 19 - 20 Trf 19 - 33 LT 16 - 19	-1.02 122.62 -629.10 506.49	-10.48 -51.14 61.62	1.00 -1.00 0.99	0.20 1.01 0.81	12.43 80.41 81.90	Tap: Tap: Pv:	2.00 2.00 3813.03 kW	Min: -2 Min: -2 cLod: 32.93	Max: Max: Mvar L:	2 2 77.37	km
Barra 20 Cub_1 Cub_2 Cub_3	230.00 /Lod /Tr2 /Tr2	0.99 227.97 Carga 20 Trf 19 - 20 Trf 20 - 34	-2.01 628.00 -122.51 -505.49	103.00 12.61 -115.61	0.99 -0.99 -0.97	1.61 0.31 1.31	12.43 87.98	P10: Tap: Tap:	628.00 MW 2.00 1.00	Q10: 103.00 Min: -2 Min: -1	Mvar Max: Max:	2 1	
Barra 21 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.03 355.96 Carga 21 LT 16 - 21 LT 21 - 22	-3.78 274.00 330.42 -604.42	115.00 -26.29 -88.71	0.92 1.00 -0.99	0.48 0.54 0.99	53.76 99.08	PlO: Pv: Pv:	274.00 MW 821.67 kW 2787.73 kW	Q10: 115.00 cLod: 27.12 cLod: 27.79	Mvar Mvar L: Mvar L:	53.56 55.54	km km
Barra 22 Cub_1 Cub_2 Cub_3	345.00 /Tr2 /Lne /Lne	1.05 362.18 Trf 22 - 35 LT 22 - 23 LT 21 - 22	0.67 -650.00 42.80 607.20	-151.68 41.97 109.71	-0.97 0.71 0.98	1.06 0.10 0.98	81.46 12.04 99.08	Tap: Pv: Pv:	1.00 24.77 kW 2787.73 kW	Min: -1 cLod: 20.25 cLod: 27.79	Max: Mvar L: Mvar L:	1 38.09 55.54	km km
Barra 23 Cub_5 Cub_1 Cub_3 Cub_4	345.00 /Lod /Tr2 /Lne /Lne	1.04 360.45 Carga 23 Trf 23 - 36 LT 22 - 23 LT 23 - 24	0.47 247.50 -558.57 -42.77 353.84	84.60 -23.30 -61.82 0.51	0.95 -1.00 -0.57 1.00	0.42 0.90 0.12 0.57	76.44 12.04 56.68	P10: Tap: Pv: Pv:	247.50 MW 0.00 24.77 kW 2531.60 kW	Q10: 84.60 Min: 0 cLod: 20.25 cLod: 39.13	Mvar Max: Mvar L: Mvar L:	0 38.09 138.86	km km
Barra 24 Cub_1 Cub_4 Cub_5	345.00 /Lod /Lne /Lne	1.04 357.87 Carga 24 LT 16 - 24 LT 23 - 24	-6.07 308.60 42.71 -351.31	-92.20 91.56 0.64	0.96 0.42 -1.00	0.52 0.16 0.57	17.37 56.68	PlO: Pv: Pv:	308.60 MW 30.37 kW 2531.60 kW	Q10: -92.20 cLod: 7.28 cLod: 39.13	Mvar Mvar L: Mvar L:	23.41 138.86	km km

Grid: Gr	rid	Syster	m Stage: Grid		Stu	dy Case:	Power F	low		Annex:			/	5
	rated Voltage [kV]	Bus-voltage [p.u.] [kV]	Active Power [deg] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		Ac	dditional Da'	ta			
Barra 25 Cub_1 Cub_2 Cub_4 Cub_5	345.00 /Lod /Tr2 /Lne /Lne	1.06 364.86 Carga 25 Trf 25 - 37 LT 25 - 26 LT 02 - 25	-4.36 224.00 -538.34 71.09 243.25	47.20 63.60 -17.04 -93.76	0.98 -0.99 0.97 0.93	0.36 0.86 0.12 0.41	75.06 12.84 41.25	Pl0: Tap: Pv: Pv:	224.00 MW 1.00 148.48 kW 4161.95 kW	Q10: 47.20 Min: -1 cLod: 57.08 cLod: 16.19	Mvar Mvar 1 Mvar 1	Max: L: 1: L:	1 28.15 34.12	km km
Barra 26 Cub_1 Cub_2 Cub_3 Cub_4 Cub_5	345.00 /Lod /Lne /Lne /Lne /Lne	1.05 362.97 Carga 26 LT 25 - 26 LT 26 - 27 LT 26 - 28 LT 26 - 29	-5.53 139.00 -70.94 262.95 -140.82 -190.18	17.00 -38.54 68.67 -21.69 -25.44	0.99 -0.88 0.97 -0.99 -0.99	0.22 0.13 0.43 0.23 0.31	12.84 44.40 24.26 32.44	P10: Pv: Pv: Pv: Pv:	139.00 MW 148.48 kW 959.44 kW 788.36 kW 1913.75 kW	Q10: 17.00 cLod: 57.08 cLod: 26.16 cLod: 86.20 cLod:113.67	Mvar Mvar I Mvar I Mvar I Mvar :	5: 12 5: 1 5: 1 5: 1 5: 2	28.15 58.32 88.06 47.97	km km km km
Barra 27 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.04 358.02 Carga 27 LT 26 - 27 LT 17 - 27	-7.50 281.00 -261.99 -19.01	75.50 -84.76 9.26	0.97 -0.95 -0.90	0.47 0.44 0.03	44.40 7.70	P10: Pv: Pv:	281.00 MW 959.44 kW 12.89 kW	Q10: 75.50 cLod: 26.16 cLod: 34.49	Mvar Mvar I Mvar :	L: ! L: /	58.32 68.64	km km
Barra 28 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.05 362.29 Carga 28 LT 26 - 28 LT 28 - 29	-2.01 206.00 141.61 -347.61	27.60 -55.82 28.22	0.99 0.93 -1.00	0.33 0.24 0.56	24.26 56.00	Pl0: Pv: Pv:	206.00 MW 788.36 kW 1556.39 kW	Q10: 27.60 cLod: 86.20 cLod: 27.45	Mvar Mvar I Mvar I	L: 1/ L:	88.06 59.91	km km
Barra 29 Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Lod /Tr2 /Lne /Lne	1.05 362.23 Carga 29 Trf 29 - 38 LT 26 - 29 LT 28 - 29	0.74 283.50 -824.77 192.10 349.17	26.90 79.23 -67.24 -38.88	1.00 -1.00 0.94 0.99	0.45 1.32 0.32 0.56	80.89 32.44 56.00	Pl0: Tap: Pv: Pv:	283.50 MW 1.00 1913.75 kW 1556.39 kW	Q10: 26.90 Min: -1 cLod:113.67 cLod: 27.45	Mvar Mvar 1 Mvar 1	Max: L: 2 L:	1 47.97 59.91	km km
Barra 30 Cub_1 Cub_2	16.50 /sym /Tr2	1.05 17.28 G 10 Trf 02 - 30	-3.33 250.00 250.00	146.16 146.16	0.86 0.86	9.67 9.67	28.96 27.65	Тур: Тар:	PV 1.00	Min: -1	1	Max:	1	
Cub_1 Cub_2 Cub_3	16.50 /Sym /Lod /Tr2	0.98 16.20 G 02 Carga 31 Trf 06 - 31	0.00 520.81 9.20 511.61	198.25 4.60 193.65	0.93 0.89 0.94	19.86 0.37 19.49	79.61 79.58	Typ: Pl0: Tap:	SL 9.20 MW 2.00	Q10: 4.60 Min: -2	Mvar 1	Max:	2	t.

Grid: Gr	id	System	m Stage	: Grid		Stu	dy Case:	Power F	low		Annex:			/ 6
	rated Voltage [kV]	e Bus-voltage [p.u.] [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional	Data		
Barra 32 Cub_1 Cub_2	16.50 /Sym /Tr2	0.98 16.22 G 03 Trf 10 - 32	2.57	650.00 650.00	205.14 205.14	0.95	24.26 24.26	85.20 86.67	Тур: Тар:	₽V 2.00	Min:	-2	Max:	2
Barra 33 Cub_1 Cub_2	16.50 /Sym /Tr2	1.00 16.45 G 04 Trf 19 - 33	4.19	632.00 632.00	109.91 109.91	0.99 0.99	22.51 22.51	80.19 80.41	Typ: Tap:	PV 2.00	Min:	-2	Max:	2
Barra 34 Cub_1 Cub_2	16.50 /sym /Tr2	1.01 16.70 G 05 Trf 20 - 34	3.17	508.00 508.00	165.76 165.76	0.95	18.47 18.47	89.06 87.98	Typ: Tap:	PV 1.00	Min:	-1	Max:	1
Barra 35 Cub_1 Cub_2	16.50 /Sym /Tr2	1.05 17.31 G 06 Trf 22 - 35	5.63	650.00 650.00	212.41 212.41	0.95	22.80 22.80	85.48 81.46	Тур: Тар:	PV 1.00	Min:	-1	Max:	1
Barra 36 Cub_1 Cub_2	16.50 /sym /Tr2	1.06 17.55 G 07 Trf 23 - 36	8.32	560.00 560.00	101.18 101.18	0.98	18.72 18.72	81.30 76.44	Тур: Тар:	PV 0.00	Min:	0	Max:	0
Barra 37 Cub_1 Cub_2	16.50 /sym /Tr2	1.03 16.96 G 08 Trf 25 - 37	2.42	540.00 540.00	0.44 0.44	1.00	18.38 18.38	77.14 75.06	Typ: Tap:	PV 1.00	Min:	-1	Max:	1
Barra 38 Cub_1 Cub_2	16.50 /sym /Tr2	1.03 16.94 G 09 Trf 29 - 38	7.81	830.00 830.00	22.84 22.84	1.00 1.00	28.30 28.30	83.03 80.89	Тур: Тар:	PV 1.00	Min:	-1	Max:	1

Load Flow Calcula	ation				Co	mplete System Report	t: Sul	DIGSILENT PowerFactory 15.1.7 bstations, Volta	Project: Date: 1/3/ age Profiles,	2025 Grid Intercl	nange
AC Load Flow, Automatic Tay Consider Read	, balanced, o Adjust o: ctive Powe:	, positiv f Transfo r Limits	ve sequen ormers	ce	No No	Automatic Mode Max. Acceptab Nodes Model Equa	el Add le Loc tions	aptation for Con ad Flow Error fo	nvergence or	No 1.00 0.10	kVA %
Grid: Grid		System S	Stage: Gr	id		Study Case: Power 1	Flow		Annex:		/ 7
	rtd.V [kV]	Bus [p.u.]	- voltag [kV]	e [deg]		-10	-5	Voltage - Dev 0	viation [%] +5	+10	
Barra 39	245.00	1 020	255 25	-10.05							
Barra 01	245.00	1 047	261 24	-9 44							
Barra 02	245 00	1 049	261 91	-5 75							
Barra 03	345.00	1 030	355 41	-8 60							
Barra 04	345 00	1 004	346 33	-0.60					-		
Barra 05	345 00	1 005	346 83	-8 61							
Barra 06	345 00	1 009	347 65	-7 95							
Barra 07	245 00	1.000	242 97	-10 12							
Barra 08	345.00	0.997	242 62	-10.12							
Barra 09	245.00	1 020	254 74	-10.02				-			
Barra 10	245 00	1 017	250 92	-10.32							
Barra 11	345.00	1.012	249 20	-0.43							
Barra 12	120.00	1.013	120.00	-6.28							
Barra 13	245.00	1.000	138.02	-6.24							
Barra 14	345.00	1.014	343.94	-0.10							
Barra 15	345.00	1.012	349.05	-7.66				_			
Barra 16	345.00	1.015	350.31	-/./4							

Grid: Grid		System S	Stage: Gr	id	Study Case	: Power Flow		Annex:		/ 8
	rtd.V [kV]	Bus [p.u.]	- voltag [kV]	e [deg]	-10	-5	Voltage - De 0	viation [%] +5	+10	
Barra 17	345.00	1.032	355.96	-6.19						
Barra 18	345.00	1.034	356.58	-7.30						
Barra 19	345.00	1.031	355.67	-8.22						
Barra 20	345.00	1.050	362.20	-1.02						
Barra 21	230.00	0.991	227.97	-2.01						
Barra 22	345.00	1.032	355.96	-3.78						
Barra 23	345.00	1.050	362.18	0.67						
Barra 24	345.00	1.045	360.45	0.47						
Barra 25	345.00	1.037	357.87	-6.07						
Barra 26	345.00	1.058	364.86	-4.36						
Barra 27	345.00	1.052	362.97	-5.53						
Barra 28	345.00	1.038	358.02	-7.50						
Barra 20	345.00	1.050	362.29	-2.01						
Darra 20	345.00	1.050	362.23	0.74						
Darra 30	16.50	1.048	17.28	-3.33						
Barra 31	16.50	0.982	16.20	0.00						
Darra 32	16.50	0.983	16.22	2.57						
Barra 33	16.50	0.997	16.45	4.19						
Barra 34	16.50	1.012	16.70	3.17						
Barra 35	16.50	1.049	17.31	5.63						
Barra 36	16.50	1.064	17.55	8.32						
Barra 3/	16.50	1.028	16.96	2.42						
Barra 38	16.50	1.026	16.94	7.81						

9.2. Anexo B: Flujo de carga en el caso de sobrecarga al 100% sin AVR.

									DIGSILEN	1T	Proje	ect:					
									15.1.7	JI Y	Date	: 1/2	5/202	5			
Load Fl	ow Calcul	ation			Compl	ete Syste	m Report	: Subs	stations,	Volt	age Pro	ofiles	, Gri	d Ir	iterc	han	ge
AC 1	Load Flow	, balanced, pos	itive sequence			Automa	tic Mode	l Adap	ptation fo	or Co	nverge	nce			No		
Auto	omatic Ta	p Adjust of Tra	nsiormers	NO		Max. A	cceptable	е цоас	a Flow Eri	for I	or				1 00	1-77	
Con	sider Rea	ctive Power Dim	108	NO		Mod	es al Romato	ione							0 10	- K.V.	*
						Piod	or nquae.	10113							0.10	•	
Grid: G:	rid	Syst	em Stage: Grid		St	udy Case:	Power F	low			Anne	x:				7 :	L
	rated		Active	Reactive	Power												
	Voltage	Bus-voltag	e Power	Power	Facto	r Current	Loading			А	dditio	nal Da	ta				
	[kV]	[p.u.] [kV]	[deg] [MW]	[Mvar]	[-]	[kA]	[%]										
																	-
Barra 08	0.45 0.0		05.40														
Cub 1	345.00 /Tod	0.92 318.10	-35.13	176 00	0.95	1 00		p10.	522 00	MINT	010.	176 00	Marcow				
Cub_1	/Loa	tm 08 = 09	522.00	-105.66	0.95	1.00	116 99	PIU:	11155 95	le DT	glo:	34 24	Myar	τ. •	144	0.2	km
Cub_3	/Ine	LT 07 - 08	-538.87	4.15	-1.00	0.98	97.81	Pv:	1366.53	kW	cLod:	6.65	Myar	T	18	.25	km
Cub 4	/Lne	LT 05 - 08	-619.01	-74.50	-0.99	1.13	113.16	Pv:	3649.51	kW	cLod:	12.78	Mvar	L:	44	.44	km
-																	
Barra 07																	
	345.00	0.92 318.92	-33.46					- 2.0									
Cub_1	/Lod	Carga 07	233.80	84.00	0.94	0.45	07 01	PI0:	233.80	MW	QIU:	84.00	Mvar		1.0	0.5	1
Cub_2	/Lne	LT 07 - 08	-774 04	4.92	-0.00	0.98	97.81	PV:	1366.53	KW h-D7	cLoa:	6.65	Mvar	<u>ь</u> : т.	18	.25	Km here
cub_s	/ Lne	PT 06 - 01	-//4.04	-00.92	-0.55	1.41	141.05	PV:	4230.34	K.W	CTOU:	9.05	MVar	ц:	30	. 50	Km
Barra 05																	
	345.00	0.94 323.84	-30.57														
Cub 1	/Lne	LT 05 - 08	622.66	112.81	0.98	1.13	113.16	Pv:	3649.51	kW	cLod:	12.78	Mvar	L:	44	.44	km
Cub_2	/Lne	LT 05 - 06	-1049.86	14.33	-1.00	1.87	187.19	Pv:	2502.50	kW	cLod:	3.83	Mvar	L:	10	.32	km
Cub_3	/Lne	LT 04 - 05	427.20	-127.14	0.96	0.79	79.46	Pv:	1790.44	kW	cLod:	12.01	Mvar	L:	50	.78	km
Barra 04																	
Darra 04	345 00	0 95 328 92	-34 14														
Cub 1	/Lod	Carga 04	500.00	184.00	0.94	0.94		P10:	500.00	MW	010:	184.00	Mvar				
Cub 2	/Lne	LT 04 - 14	-305.04	-91.96	-0.96	0.56	55.92	Pv:	883.55	kW	cLod:	12.76	Mvar	L:	51	.18	km
Cub 3	/Lne	LT 03 - 04	230.45	-235.82	0.70	0.58	57.88	Pv:	1488.41	kW	cLod:	21.18	Mvar	ь:	84	.51	km
Cub_4	/Lne	LT 04 - 05	-425.41	143.78	-0.95	0.79	79.46	Pv:	1790.44	kW	cLod:	12.01	Mvar	L:	50	.78	km
11 -																	

Grid: G	rid	Syste	m Stage: Grid		Stu	dy Case:	Power F	low		Annex:		/ 2	2
	rated Voltage [kV]	Bus-voltage [p.u.] [kV]	Active Power [deg] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Da	ta		
Barra 06 Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Tr2 /Lne /Lne /Lne	0.94 324.61 Trf 06 - 31 LT 05 - 06 LT 06 - 07 LT 06 - 11	-28.80 -1664.00 1052.36 778.30 -166.66	66.18 14.37 144.35 -224.90	-1.00 1.00 0.98 -0.60	2.96 1.87 1.41 0.50	270.54 187.19 141.05 49.79	Tap: Pv: Pv: Pv: Pv:	2.00 2502.50 kW 4256.54 kW 597.98 kW	Min: -2 cLod: 3.83 cLod: 9.83 cLod: 12.57	Max Mvar L: Mvar L: Mvar L:	: 2 10.32 36.50 32.53	km km km
Barra 31 Cub_1 Cub_2 Cub_3	16.50 /Sym /Lod /Tr2	0.98 16.20 G 02 Carga 31 Trf 06 - 31	0.00 1673.20 9.20 1664.00	835.05 4.60 830.45	0.89 0.89 0.89	66.63 0.37 66.27	267.14 270.54	Typ: P10: Tap:	SL 9.20 MW 2.00	Q10: 4.60 Min: -2	Mvar Max	: 2	
Barra 11 Cub_1 Cub_2 Cub_3	345.00 /Tr2 /Lne /Lne	0.96 331.65 Trf 11 - 12 LT 06 - 11 LT 10 - 11	-28.03 17.65 167.26 -184.91	34.82 219.34 -254.16	0.45 0.61 -0.59	0.07 0.48 0.55	13.54 49.79 54.72	Tap: Pv: Pv:	1.00 597.98 kW 420.24 kW	Min: -1 cLod: 12.57 cLod: 6.82	Max Mvar L: Mvar L:	: 1 32.53 17.06	km km
Barra 12 Cub_1 Cub_2 Cub_3	138.00 /Lod /Tr2 /Tr2	0.95 131.23 Carga 12 Trf 11 - 12 Trf 13 - 12	-28.48 7.50 -17.62 10.12	88.00 -34.10 -53.90	0.08 -0.46 0.18	0.39 0.17 0.24	13.54 19.34	P10: Tap: Tap:	7.50 MW 1.00 1.00	Q10: 88.00 Min: -1 Min: -1	Mvar Max Max	: 1 : 1	
Barra 10 Cub_1 Cub_3 Cub_4	345.00 /Tr2 /Lne /Lne	0.97 335.79 Trf 10 - 32 LT 10 - 13 LT 10 - 11	-27.61 -650.00 464.67 185.33	-286.63 34.78 251.85	-0.91 1.00 0.59	1.22 0.80 0.54	97.62 80.20 54.72	Tap: Pv: Pv:	2.00 917.88 kW 420.24 kW	Min: -2 cLod: 6.88 cLod: 6.82	Max Mvar L: Mvar L:	: 2 17.06 17.06	km km
Barra 32 Cub_1 Cub_2	16.50 /Sym /Tr2	0.98 16.22 G 03 Trf 10 - 32	-19.25 650.00 650.00	408.61 408.61	0.85 0.85	27.33 27.33	95.97 97.62	Typ: Tap:	PV 2.00	Min: -2	Max	: 2	
Barra 13 Cub_1 Cub_3 Cub_4	345.00 /Tr2 /Lne /Lne	0.97 334.62 Trf 13 - 12 LT 13 - 14 LT 10 - 13	-28.81 -10.07 473.83 -463.76	55.37 -23.57 -31.79	-0.18 1.00 -1.00	0.10 0.82 0.80	19.34 81.85 80.20	Tap: Pv: Pv:	1.00 2150.13 kW 917.88 kW	Min: -1 cLod: 16.18 cLod: 6.88	Max Mvar L: Mvar L:	: 1 40.07 17.06	km km

Grid: Gr	rid	Syst	em Stage: Grid		Stu	dy Case:	Power Fl	low		Annex:		/ 3
	rated Voltage [kV]	Bus-voltag [p.u.] [kV]	Active Power [deg] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Dat	ta	
Barra 14 Cub_2 Cub_4 Cub_5	345.00 /Lne /Lne /Lne	0.97 334.10 LT 04 - 14 LT 14 - 15 LT 13 - 14	-31.74 305.92 165.75 -471.68	93.44 -124.96 31.52	0.96 0.80 -1.00	0.55 0.36 0.82	55.92 35.87 81.85	Pv: Pv: Pv:	883.55 kW 750.36 kW 2150.13 kW	cLod: 12.76 cLod: 35.11 cLod: 16.18	Mvar L: Mvar L: Mvar L:	51.18 km 86.09 km 40.07 km
Barra 15 Cub_1 Cub_4 Cub_5	345.00 /Lod /Lne /Lne	0.99 341.64 Carga 15 LT 15 - 16 LT 14 - 15	-34.00 320.00 -155.00 -165.00	153.00 -251.90 98.90	0.90 -0.52 -0.86	0.60 0.50 0.33	49.98 35.87	PlO: Pv: Pv:	320.00 MW 764.76 kW 750.36 kW	Q10: 153.00 cLod: 17.19 cLod: 35.11	Mvar Mvar L: Mvar L:	37.29 km 86.09 km
Barra 20 Cub_1 Cub_2 Cub_3	230.00 /Lod /Tr2 /Tr2	0.99 227.19 Carga 20 Trf 19 - 20 Trf 20 - 34	-29.08 628.00 -122.57 -505.43	103.00 30.35 -133.35	0.99 -0.97 -0.97	1.62 0.32 1.33	12.78 88.99	Pl0: Tap: Tap:	628.00 MW 2.00 1.00	Q10: 103.00 Min: -2 Min: -1	Mvar Max: Max:	2 1
Barra 19 Cub_1 Cub_2 Cub_3	345.00 /Tr2 /Tr2 /Lne	1.04 360.05 Trf 19 - 20 Trf 19 - 33 LT 16 - 19	-28.07 122.68 -629.03 506.35	-28.10 -90.46 118.56	0.97 -0.99 0.97	0.20 1.02 0.83	12.78 81.44 84.51	Tap: Tap: Pv:	2.00 2.00 4034.53 kW	Min: -2 Min: -2 cLod: 32.21	Max: Max: Mvar L:	2 2 77.37 km
Barra 34 Cub_1 Cub_2	16.50 /Sym /Tr2	1.01 16.70 G 05 Trf 20 - 34	-23.88 508.00 508.00	184.68 184.68	0.94 0.94	18.68 18.68	90.09 88.99	Typ: Tap:	PV 1.00	Min: -1	Max:	1
Barra 33 Cub_1 Cub_2	16.50 /sym /Tr2	1.00 16.45 G 04 Trf 19 - 33	-22.83 632.00 632.00	150.74 150.74	0.97 0.97	22.80 22.80	81.22 81.44	Typ: Tap:	PV 2.00	Min: -2	Max:	2
Barra 36 Cub_1 Cub_2	16.50 /sym /Tr2	1.06 17.55 G 07 Trf 23 - 36	-18.63 560.00 560.00	127.17 127.17	0.98 0.98	18.89 18.89	82.04 77.14	Typ: Tap:	PV 0.00	Min: 0	Max:	0

Grid: G	rid	Syst	em Stage: Grid		Stu	dy Case:	Power F	low		Annex:		/	4
	rated Voltage [kV]	Bus-voltag [p.u.] [kV]	Activ e Power [deg] [MW]	e Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Da	ta		
Barra 23 Cub_5 Cub_1 Cub_3 Cub_4	345.00 /Lod /Tr2 /Lne /Lne	1.04 358.17 Carga 23 Trf 23 - 36 LT 22 - 23 LT 23 - 24	-26.53 247.50 -558.54 -42.82 353.87	84.60 -47.86 -63.76 27.02	0.95 -1.00 -0.56 1.00	0.42 0.90 0.12 0.57	77.14 12.38 57.66	Pl0: Tap: Pv: Pv:	247.50 MW 0.00 26.33 kW 2600.04 kW	Q10: 84.60 Min: 0 cLod: 20.00 cLod: 38.30	Mvar Max Mvar L: Mvar L:	: 0 38.09 138.86	km km
Barra 22 Cub_1 Cub_2 Cub_3	345.00 /Tr2 /Lne /Lne	1.04 359.98 Trf 22 - 35 LT 22 - 23 LT 21 - 22	-26.33 -650.00 42.85 607.15	-194.72 44.18 150.53	-0.96 0.70 0.97	1.09 0.10 1.00	83.32 12.38 101.32	Tap: Pv: Pv:	1.00 26.33 kW 2907.56 kW	Min: -1 cLod: 20.00 cLod: 27.30	Max Mvar L: Mvar L:	: 1 38.09 55.54	km km
Barra 37 Cub_1 Cub_2	16.50 /sym /Tr2	1.03 16.96 G 08 Trf 25 - 37	-28.93 540.00 540.00	44.52 44.52	1.00	18.45 18.45	77.40 75.31	Typ: Tap:	PV 1.00	Min: -1	Мах	: 1	
Barra 35 Cub_1 Cub_2	16.50 /sym /Tr2	1.05 17.31 G 06 Trf 22 - 35	-21.34 650.00 650.00	258.25 258.25	0.93 0.93	23.32 23.32	87.43 83.32	Typ: Tap:	PV 1.00	Min: -1	Max	: 1	
Barra 24 Cub_1 Cub_4 Cub_5	345.00 /Lod /Lne /Lne	1.02 352.55 Carga 24 LT 16 - 24 LT 23 - 24	-33.18 308.60 42.67 -351.27	-92.20 116.16 -23.96	0.96 0.34 -1.00	0.53 0.20 0.58	21.36 57.66	P10: Pv: Pv:	308.60 MW 46.40 kW 2600.04 kW	Q10: -92.20 cLod: 7.05 cLod: 38.30	Mvar Mvar L: Mvar L:	23.41 138.86	km km
Barra 21 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.02 351.85 Carga 21 LT 16 - 21 LT 21 - 22	-30.84 274.00 330.24 -604.24	115.00 11.95 -126.95	0.92 1.00 -0.98	0.49 0.54 1.01	54.46 101.32	P10: Pv: Pv:	274.00 MW 843.73 kW 2907.56 kW	Q10: 115.00 cLod: 26.37 cLod: 27.30	Mvar Mvar L: Mvar L:	53.56 55.54	km km
Barra 16 Cub_1 Cub_4 Cub_5 Cub_6 Cub_7 Cub_8	345.00 /Lod /Lne /Lne /Lne /Lne /Lne	1.01 350.12 Carga 16 LT 16 - 19 LT 16 - 21 LT 16 - 24 LT 16 - 17 LT 15 - 16	-33.30 329.00 -502.31 -329.40 -42.62 389.57 155.76	32.30 -101.60 -24.09 -122.30 -27.01 242.70	1.00 -0.98 -1.00 -0.33 1.00 0.54	0.55 0.85 0.54 0.21 0.64 0.48	84.51 54.46 21.36 64.39 49.98	P10: Pv: Pv: Pv: Pv: Pv:	329.00 MW 4034.53 kW 843.73 kW 46.40 kW 1034.21 kW 764.76 kW	Q10: 32.30 cLod: 32.21 cLod: 26.37 cLod: 7.05 cLod: 13.82 cLod: 17.19	Mvar Mvar L: Mvar L: Mvar L: Mvar L: Mvar L:	77.37 53.56 23.41 35.31 37.29	km km km km

Grid: G	rid	Syst	em Stage: Grid		Stu	dy Case:	Power F	low		Annex:		/ 5
	rated Voltage [kV]	Bus-voltag	Activ e Power [deg] [MW]	e Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Dat	a	
Barra 17 Cub_1 Cub_4 Cub_5	345.00 /Lne /Lne /Lne	1.01 350.01 LT 17 - 18 LT 17 - 27 LT 16 - 17	-35.24 269.06 119.47 -388.53	49.74 -76.08 26.34	0.98 0.84 -1.00	0.45 0.23 0.64	45.57 23.36 64.39	PV: PV: PV:	514.10 kW 225.04 kW 1034.21 kW	cLod: 13.49 cLod: 33.39 cLod: 13.82	Mvar L: Mvar L: Mvar L:	32.53 km 68.64 km 35.31 km
Barra 27 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.02 353.06 Carga 27 LT 26 - 27 LT 17 - 27	-36.42 281.00 -161.75 -119.25	75.50 -121.18 45.68	0.97 -0.80 -0.93	0.48 0.33 0.21	33.05 23.36	P10: Pv: Pv:	281.00 MW 507.55 kW 225.04 kW	Q10: 75.50 cLod: 25.54 cLod: 33.39	Mvar Mvar L: Mvar L:	58.32 km 68.64 km
Barra 18 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.01 347.87 Carga 18 LT 17 - 18 LT 03 - 18	-36.45 158.00 -268.55 110.55	30.00 -57.21 27.21	0.98 -0.98 0.97	0.27 0.46 0.19	45.57 20.04	P10: Pv: Pv:	158.00 MW 514.10 kW 147.91 kW	Q10: 30.00 cLod: 13.49 cLod: 21.61	Mvar Mvar L: Mvar L:	32.53 km 52.77 km
Barra 03 Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Lod /Lne /Lne /Lne	1.00 345.75 Carga 03 LT 03 - 04 LT 02 - 03 LT 03 - 18	-37.26 322.00 -228.96 17.36 -110.40	2.40 239.02 -194.40 -47.02	1.00 -0.69 0.09 -0.92	0.54 0.55 0.33 0.20	57.88 32.59 20.04	P10: Pv: Pv: Pv:	322.00 MW 1488.41 kW 430.21 kW 147.91 kW	Q10: 2.40 cLod: 21.18 cLod: 26.54 cLod: 21.61	Mvar Mvar L: Mvar L: Mvar L:	84.51 km 59.91 km 52.77 km
Barra 26 Cub_1 Cub_2 Cub_3 Cub_4 Cub_5	345.00 /Lod /Lne /Lne /Lne /Lne	1.04 359.28 Carga 26 LT 25 - 26 LT 26 - 27 LT 26 - 28 LT 26 - 29	-35.22 139.00 29.72 162.26 -140.93 -190.05	17.00 -50.01 100.97 -32.16 -35.80	0.99 0.51 0.85 -0.97 -0.98	0.23 0.09 0.31 0.23 0.31	9.35 33.05 23.77 31.96	Pl0: Pv: Pv: Pv: Pv:	139.00 MW 40.59 kW 507.55 kW 791.57 kW 1919.37 kW	Q10: 17.00 cLod: 55.96 cLod: 25.54 cLod: 84.87 cLod: 112.11	Mvar Mvar L: Mvar L: Mvar L: Mvar L:	128.15 km 58.32 km 188.06 km 247.97 km
Barra 28 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.04 360.38 Carga 28 LT 26 - 28 LT 28 - 29	-31.68 206.00 141.72 -347.72	27.60 -43.98 16.38	0.99 0.96 -1.00	0.33 0.24 0.56	23.77 56.04	P10: Pv: Pv:	206.00 MW 791.57 kW 1562.83 kW	Q10: 27.60 cLod: 84.87 cLod: 27.21	Mvar Mvar L: Mvar L:	188.06 km 59.91 km

							_			
Grid: Grid	Syst	em Stage: Grid		Stu	dy Case:	Power F	low		Annex:	/ 6
rateo Voltao [kV]	d ge Bus-voltag [p.u.] [kV]	Active Power [deg] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Data	
Barra 25 345.00 Cub_1 /Lod Cub_2 /Tr2 Cub_4 /Lne Cub_5 /Lne	1.05 361.36 Carga 25 Trf 25 - 37 LT 25 - 26 LT 02 - 25	-35.76 224.00 -538.33 -29.68 344.01	47.20 19.96 -5.54 -61.62	0.98 -1.00 -0.98 0.98	0.37 0.86 0.05 0.56	75.31 9.35 55.84	P10: Tap: Pv: Pv:	224.00 MW 1.00 40.59 kW 7734.41 kW	Q10: 47.20 Mv Min: -1 cLod: 55.96 Mv cLod: 15.74 Mv	7ar Max: 1 7ar L: 128.15 km 7ar L: 34.12 km
Barra 29 345.00 Cub_1 /Lod Cub_2 /Tr2 Cub_3 /Lne Cub_4 /Lne	1.05 360.92 Carga 29 Trf 29 - 38 LT 26 - 29 LT 28 - 29	-28.90 283.50 -824.75 191.97 349.28	26.90 55.10 -55.26 -26.74	1.00 -1.00 0.96 1.00	0.46 1.32 0.32 0.56	80.99 31.96 56.04	P10: Tap: Pv: Pv:	283.50 MW 1.00 1919.37 kW 1562.83 kW	Q10: 26.90 Mv Min: -1 cLod:112.11 Mv cLod: 27.21 Mv	7ar Max: 1 7ar L: 247.97 ku 7ar L: 59.91 ku
Barra 38 16.50 Cub_1 /Sym Cub_2 /Tr2	1.03 16.94 G 09 Trf 29 - 38	-21.82 830.00 830.00	47.22 47.22	1.00	28.34 28.34	83.13 80.99	Typ: Tap:	PV 1.00	Min: -1	Max: 1
Barra 30 16.50 Cub_1 /Sym Cub_2 /Tr2	1.05 17.28 G 10 Trf 02 - 30	-35.07 250.00 250.00	255.92 255.92	0.70	11.95 11.95	35.78 34.15	Typ: Tap:	PV 1.00	Min: -1	Max: 1
Barra 02 345.00 Cub_1 /Tr2 Cub_4 /Lne Cub_5 /Lne Cub_6 /Lne	1.03 355.11 Trf 02 - 30 LT 02 - 03 LT 01 - 02 LT 02 - 25	-37.54 -250.00 -16.93 603.20 -336.27	-234.80 172.86 6.56 55.38	-0.73 -0.10 1.00 -0.99	0.56 0.28 0.98 0.55	34.15 32.59 98.08 55.84	Tap: Pv: Pv: Pv:	1.00 430.21 kW 12082.62 kW 7734.41 kW	Min: -1 cLod: 26.54 MW cLod: 73.35 MW cLod: 15.74 MW	Max: 1 var L: 59.91 ku var L: 163.06 ku var L: 34.12 ku
Barra 01 345.00 Cub_2 /Lne Cub_3 /Lne	1.02 351.86 LT 01 - 39 LT 01 - 02	-51.11 591.12 -591.12	-61.97 61.97	0.99 -0.99	0.98 0.98	97.52 98.08	Pv: Pv:	3364.34 kW 12082.62 kW	cLod: 78.79 Mv cLod: 73.35 Mv	7ar L: 99.19 ku 7ar L: 163.06 ku
Barra 39 345.00 Cub_1 /Sym Cub_2 /Lod Cub_3 /Lne Cub_4 /Lne	1.03 355.35 G 01 Carga 39 LT 01 - 39 LT 09 - 39	-59.21 1000.00 2208.00 -587.76 -620.24	556.37 250.00 67.29 239.08	0.87 0.99 -0.99 -0.93	1.86 3.61 0.96 1.08	11.44 97.52 115.37	Typ: Pl0: Pv: Pv:	PV 2208.00 MW 3364.34 kW 4490.05 kW	Q10: 250.00 Mv cLod: 78.79 Mv cLod:120.66 Mv	7ar 7ar L: 99.19 ku 7ar L: 99.19 ku

						_			_				
Grid: Gr	rid	F	System Star	je: Grid		Stu	dy Case:	Power F	low		Annex:		/ 7
	rated Voltage [kV]	s Bus-vo] [p.u.] []	ltage kV] [deg	Active Power] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Dat	a	
Barra 09 Cub_1 Cub_2	345.00 /Lne /Lne	0.97 336. LT 08 - (LT 09 - (.27 -50.15 39 39	-624.73 624.73	247.49 -247.49	-0.93 0.93	1.15 1.15	116.99 115.37	Pv: Pv:	11155.95 kW 4490.05 kW	cLod: 34.24 / cLod:120.66	Mvar L: Mvar L:	144.02 kr 99.19 ki

						DIGSILENT	Project:	
						15.1.7	Date: 1/25/	2025
						1	1	
Load Flow Calcul	ation			Co	mplete System Report: S	ubstations, Volt	age Profiles,	Grid Interchange
AC Load Flow	, balanced	, positiv	ve sequence		Automatic Model A	daptation for Co	nvergence	No
Consider Rea	p Adjust o ctive Powe	r Transfo r Limits	ormers	NO NO	Nax. Acceptable L Nodes	oad Flow Error I	or	1.00 kVA
					Model Equation	3		0.10 %
Grid: Grid		System &	Stage: Grid		Study Case: Power Flow	,	Annex:	/ 8
	rtd.V [kV]	Bus [p.u.]	- voltage [kV] [deg]	ľ	-10 -5	Voltage - De O	viation [%] +5	+10
Barra 08	245.00	0 922	210 10 -25 12					
Barra 07	345.00	0.922	310.10 -33.13					
Barra 05	343.00	0.924	310.92 -33.46					
Barra 04	345.00	0.939	323.84 -30.57					
Banna 06	345.00	0.953	328.92 -34.14					
Darra Vo	345.00	0.941	324.61 -28.80					
Barra 31	16.50	0.982	16.20 0.00					
Barra 11	345.00	0.961	331.65 -28.03					
Barra 12	138.00	0.951	131 23 -28 48		_			
Barra 10	245.00	0.070	225 70 -27 61		-			
Barra 32	345.00	0.973	555./9 -2/.61					
Barra 13	16.50	0.983	16.22 -19.25					
Barra 14	345.00	0.970	334.62 -28.81					
Parra 15	345.00	0.968	334.10 -31.74					
Datta 15	345.00	0.990	341.64 -34.00					
Barra 20	230.00	0.988	227.19 -29.08					
Barra 19	345.00	1.044	360.05 -28.07					
Barra 34	16 50	1 010	16 70 -22 00					
Barra 33	10.50	1.012	10.70 -23.88					

Grid: Grid		System 8	Stage: Grid	 Study Case:	Power Flow		Annex:		/ 9
	rtd.V [kV]	Bus [p.u.]	- voltage [kV] [deg]	-10	-5	Voltage - De O	viation [%] +5	+10	
Barra 36	16.50	0.997	16.45 -22.83						
Barra 23	16.50	1.064	17.55 -18.63						
Barra 22	345.00	1.038	358.17 -26.53						
Barra 37	345.00	1.043	359.98 -26.33						
Barra 25	16.50	1.028	16.96 -28.93						
Darra 33	16.50	1.049	17.31 -21.34						
Barra 24	345.00	1.022	352.55 -33.18						
Barra 21	345.00	1.020	351.85 -30.84						
Barra 16	345.00	1.015	350.12 -33.30						
Barra 17	345.00	1.015	350.01 -35.24						
Barra 27	345.00	1.023	353.06 -36.42				l		
Barra 18	345.00	1.008	347.87 -36.45						
Barra 03	345.00	1.002	345.75 -37.26						
Barra 26	345.00	1.041	359.28 -35.22						
Barra 28	345.00	1.045	360.38 -31.68						
Barra 25	345.00	1.047	361.36 -35.76						
Barra 29	345.00	1.046	360.92 -28.90						
Barra 38	16.50	1.026	16.94 -21.82						
Barra 30	16.50	1.048	17.28 -35.07						
Barra 02	345.00	1.029	355.11 -37.54						
Barra 01	345.00	1.020	351.86 -51.11				_		
Barra 39	345.00	1.030	355.35 -59.21						
Barra 09	345.00	0.975	336.27 -50.15						

9.3. Anexo C: Flujo de carga en el caso de sobrecarga al 100% con AVR.

								DIGSILENT	Project:			
								15.1.7	Date: 1/2	26/2025		
Load Flow Calcu	lation			Compl	ete Syste	m Report	: Sub	stations, Vol	tage Profile:	s, Grid I	ntercha	inge
AC Load Flo	w, balanced, posit	ive sequence			Automa	tic Mode.	l Adaj	otation for C	onvergence		No	
Automatic 1	ap Adjust of Trans	lormers	NO		Max. A	cceptable	е цоа	a Flow Error	IOT		1 00 1	
CONSIDER RE	accive Fower Limit	,5	NO		Mode	al Romat:	ione				0 10 9	VA
					MOG	er Equat.	10115				0.10 0	,
Grid: Grid	System	n Stage: Grid		St	udy Case:	Power F	low		Annex:		/	1
rated		Activo	Peactive	Down								
Voltag	e Bus-voltage	Power	Power	Facto	r Current	Loading			Additional Da	ata		
[kV]	[p.u.] [kV]	[deg] [MW]	[Mvar]	[-]	[kA]	[%]						
			-									
Barra 08		47.04										
345.00	0.98 338.63 -	-17.21	176.00	0.05	0.04		-10	500.00.100	alo 176 o			
Cub_1 /Lod	Carga US	522.00	176.00	0.95	0.94		PIO:	522.00 MW	Q10: 1/6.00) MVar		
Cub_1(1/Shnt	AVR - Barra Ud	0.00	-28.90	1.00	0.05	110 75	_	10404 00 177	- 1 07 0	· · ·	144 0	
Cub_2 / Line	LT 08 - 09	660.76	-27.30	1.00	1.13	112.75	PV:	10424.05 KW	-T-d: 7.5	MVar L:	10.0	Z Km
Cub 4 /Lne	LT 07 - 08	-525 11	-69 24	-0.99	0.90	90.30	PV: Dvr	2321 68 kW	cLod: 7.5	Mvar L:	44 4	4 km
cub_4 / hite	11 05 00	525.11	00.24	0.00	0.50	50.30	= .	2321.00 KW	Chou. 14.4.	. Mvai D.		- 7.11
Barra 07												
345.00	0.99 340.48 -	-15.43										
Cub 1 /Lod	Carga 07	233.80	84.00	0.94	0.42		P10:	233.80 MW	Q10: 84.00) Mvar		
Cub_2 /Lne	LT 07 - 08	659.45	63.69	1.00	1.12	112.46	Pv:	1804.73 kW	cLod: 7.5	5 Mvar L:	18.2	5 km
Cub_3 /Lne	LT 06 - 07	-893.25	-147.69	-0.99	1.54	76.76	Pv:	2515.26 kW	cLod: 22.23	8 Mvar L:	36.5	0 km
Barra 05												
345 00	0 99 343 17 -	-13 79										
Cub 1 /Lne	TT 05 - 08	527.43	87.33	0.99	0.90	90.30	Pv:	2321.68 kW	cLod: 14.4	Mwar L:	44.4	4 km
Cub 2 /Ine	TT 05 - 06	-970.48	-87.28	-1.00	1.64	81.97	Pv:	958.88 kW	cLod: 8.6	Myar L:	10.3	2 km
Cub_3 /Lne	LT 04 - 05	443.06	-0.05	1.00	0.75	74.54	Pv:	1587.54 kW	cLod: 13.2	Mvar L:	50.7	8 km
Barra 04		4.7. 0.0										
345.00	0.99 342.21 -	-17.08	104 00	0.04	0.00		-10	500.00.100	alo 104 of			
Cup_1 /Lod	carga U4	500.00	184.00	0.94	0.90	47.00	PIO:	500.00 MW	Q10: 184.00) MVar	E 1 1	0.1-
Cub_2 /Lne	LT 04 - 14	-278.21	-20.76	-0.98	0.48	47.90	PV:	049.65 KW	сьод: 13./.	MVar L:	51.1	0 Km
Cub_3 /Lne	LT 03 = 04 LT 04 = 05	-441 47	12 21	-1 00	0.44	74 54	PV:	1587 54 1-10	cLod: 22.3	Muar L:	50.5	8 km
/ Ino	21 01 00	111.17	12.21	1.00	5.75	/ 1.04		1007104 AW	0100. 10.2	D.	50.1	- A.II

Grid: G	rid	Syst	em Stage: Grid		Stu	dy Case:	Power F	low		Annex:		/ 2
	rated Voltage [kV]	Bus-voltag	Active e Power [deg] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Da	ta	
Barra 06 Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Tr2 /Lne /Lne /Lne	1.00 343.91 Trf 06 - 31 LT 05 - 06 LT 06 - 07 LT 06 - 11	-13.06 -1654.12 971.44 895.77 -213.09	-186.11 91.14 164.03 -69.05	-0.99 1.00 0.98 -0.95	2.79 1.64 1.53 0.38	127.62 81.97 76.76 37.61	Tap: Pv: Pv: Pv:	2.00 958.88 kW 2515.26 kW 347.09 kW	Min: -2 cLod: 8.61 cLod: 22.23 cLod: 13.90	Max: Mvar L: Mvar L: Mvar L:	: 2 10.32 km 36.50 km 32.53 km
Barra 31 Cub_1 Cub_2 Cub_3	16.50 /Sym /Lod /Tr2	0.98 16.20 G 02 Carga 31 Trf 06 - 31	0.00 1663.32 9.20 1654.12	589.77 4.60 585.17	0.94 0.89 0.94	62.88 0.37 62.52	126.06 127.62	Typ: p10: Tap:	SL 9.20 MW 2.00	Q10: 4.60 Min: -2	Mvar Max:	: 2
Barra 11 Cub_1 Cub_2 Cub_3	345.00 /Tr2 /Lne /Lne	1.00 346.24 Trf 11 - 12 LT 06 - 11 LT 10 - 11	-12.09 13.36 213.44 -226.80	42.83 59.22 -102.05	0.30 0.96 -0.91	0.07 0.37 0.41	14.90 37.61 41.47	Tap: Pv: Pv:	1.00 347.09 kW 242.73 kW	Min: -1 cLod: 13.90 cLod: 7.38	Max: Mvar L: Mvar L:	: 1 32.53 km 17.06 km
Barra 12 Cub_1 Cub_2 Cub_3	138.00 /Lod /Tr2 /Tr2	0.99 136.72 Carga 12 Trf 11 - 12 Trf 13 - 12	-12.38 7.50 -13.33 5.83	88.00 -41.96 -46.04	0.08 -0.30 0.13	0.37 0.19 0.20	14.90 15.71	P10: Tap: Tap:	7.50 MW 1.00 1.00	Q10: 88.00 Min: -1 Min: -1	Mvar Max: Max:	1
Barra 10 Cub_1 Cub_3 Cub_4	345.00 /Tr2 /Lne /Lne	1.01 348.02 Trf 10 - 32 LT 10 - 13 LT 10 - 11	-11.56 -650.00 422.95 227.05	-144.36 47.08 97.28	-0.98 0.99 0.92	1.10 0.71 0.41	88.28 70.74 41.47	Tap: Pv: Pv:	2.00 713.34 kW 242.73 kW	Min: -2 cLod: 7.39 cLod: 7.38	Max: Mvar L: Mvar L:	: 2 17.06 km 17.06 km
Barra 32 Cub_1 Cub_2	16.50 /sym /Tr2	0.98 16.22 G 03 Trf 10 - 32	-3.49 650.00 650.00	244.12 244.12	0.94 0.94	24.71 24.71	86.79 88.28	Typ: Tap:	PV 2.00	Min: -2	Max:	: 2
Barra 13 Cub_1 Cub_3 Cub_4	345.00 /Tr2 /Lne /Lne	1.01 346.75 Trf 13 - 12 LT 13 - 14 LT 10 - 13	-12.57 -5.79 428.04 -422.24	47.00 -0.20 -46.80	-0.12 1.00 -0.99	0.08 0.71 0.71	15.71 71.27 70.74	Tap: Pv: Pv:	1.00 1633.00 kW 713.34 kW	Min: -1 cLod: 17.34 cLod: 7.39	Max: Mvar L: Mvar L:	: 1 40.07 km 17.06 km

Grid: G;	rid	Syste	em Stage: Grid		Stu	dy Case:	Power F	low		Annex:		/ 3
	rated Voltage [kV]	Bus-voltage	Active Power [deg] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Dat	a	
Barra 14 Cub_2 Cub_4 Cub_5	345.00 /Lne /Lne /Lne	1.00 345.45 LT 04 - 14 LT 14 - 15 LT 13 - 14	-15.03 278.86 147.54 -426.40	53.51 -54.69 1.19	0.98 0.94 -1.00	0.47 0.26 0.71	47.90 26.30 71.27	PV: PV: PV:	649.65 kW 414.52 kW 1633.00 kW	cLod: 13.73 cLod: 36.91 cLod: 17.34	Mvar L: Mvar L: Mvar L:	51.18 km 86.09 km 40.07 km
Barra 15 Cub_1 Cub_4 Cub_5	345.00 /Lod /Lne /Lne	1.01 347.43 Carga 15 LT 15 - 16 LT 14 - 15	-16.89 320.00 -172.88 -147.12	153.00 -175.78 22.78	0.90 -0.70 -0.99	0.59 0.41 0.25	40.97 26.30	P10: Pv: Pv:	320.00 MW 513.05 kW 414.52 kW	Q10: 153.00 cLod: 17.64 cLod: 36.91	Mvar Mvar L: Mvar L:	37.29 km 86.09 km
Barra 20 Cub_1 Cub_2 Cub_3	230.00 /Lod /Tr2 /Tr2	0.99 227.63 Carga 20 Trf 19 - 20 Trf 20 - 34	-11.87 628.00 -122.53 -505.47	103.00 20.46 -123.46	0.99 -0.99 -0.97	1.61 0.32 1.32	12.55 88.41	P10: Tap: Tap:	628.00 MW 2.00 1.00	Q10: 103.00 Min: -2 Min: -1	Mvar Max: Max:	2 1
Barra 19 Cub_1 Cub_2 Cub_3	345.00 /Tr2 /Tr2 /Lne	1.05 361.25 Trf 19 - 20 Trf 19 - 33 LT 16 - 19	-10.87 122.64 -629.07 506.43	-18.29 -68.57 86.86	0.99 -0.99 0.99	0.20 1.01 0.82	12.55 80.83 82.94	Tap: Tap: Pv:	2.00 2.00 3898.99 kW	Min: -2 Min: -2 cLod: 32.61	Max: Max: Mvar L:	2 2 77.37 km
Barra 34 Cub_1 Cub_2	16.50 /Sym /Tr2	1.01 16.70 G 05 Trf 20 - 34	-6.68 508.00 508.00	174.12 174.12	0.95 0.95	18.56 18.56	89.50 88.41	Typ: Tap:	PV 1.00	Min: -1	Max:	1
Barra 33 Cub_1 Cub_2	16.50 /sym /Tr2	1.00 16.45 G 04 Trf 19 - 33	-5.65 632.00 632.00	127.95 127.95	0.98 0.98	22.63 22.63	80.60 80.83	Typ: Tap:	PV 2.00	Min: -2	Max:	2
Barra 36 Cub_1 Cub_2	16.50 /Sym /Tr2	1.05 17.32 G 07 Trf 23 - 36	-1.30 560.00 560.00	77.80 77.80	0.99 0.99	18.84 18.84	80.77 76.92	Typ: Tap:	PV 0.00	Min: 0	Max:	0

Grid: G	rid	Syst	em Stage: Gr	id	Stu	dy Case:	Power F	low		Annex:		/ 4
	rated Voltage [kV]	Bus-voltag	Act e Pow [deg] [M	ive Reactiv er Power W] [Mvar]	e Power Factor [-]	Current [kA]	Loading [%]		24	Additional Da	ta	
Barra 23 Cub_5 Cub_1 Cub_3 Cub_4	345.00 /Lod /Tr2 /Lne /Lne	1.04 357.88 Carga 23 Trf 23 - 36 LT 22 - 23 LT 23 - 24	-9.32 247. -558. -42. 353.	50 84.60 55 1.06 38 -86.58 43 0.92	0.95 -1.00 -0.44 1.00	0.42 0.90 0.16 0.57	76.92 15.55 57.02	PlO: Tap: Pv: Pv:	247.50 MW 0.00 42.78 kW 2562.41 kW	Q10: 84.60 Min: 0 cLod: 20.00 cLod: 38.57	Mvar Max Mvar L: Mvar L:	<: 0 38.09 k 138.86 k
Barra 22 Cub_1 Cub_2 Cub_3	345.00 /Tr2 /Lne /Lne	1.04 360.41 Trf 22 - 35 LT 22 - 23 LT 21 - 22	-9.13 -650. 42. 607.	00 -186.33 43 67.26 57 119.07	-0.96 0.53 0.98	1.08 0.13 0.99	82.93 15.55 99.96	Tap: Pv: Pv:	1.00 42.78 kW 2835.85 kW	Min: -1 cLod: 20.00 cLod: 27.48	Max Mvar L: Mvar L:	4: 1 38.09 k 55.54 k
Barra 37 Cub_1 Cub_2	16.50 /Sym /Tr2	1.03 16.96 G 08 Trf 25 - 37	-11.20 540. 540.	00 -51.49 00 -51.49	1.00 1.00	18.47 18.47	77.49 75.40	Typ: Tap:	PV 0.00	Min: -1	Мах	:: 1
Cub_1 Cub_2	16.50 /Sym /Tr2	1.05 17.31 G 06 Trf 22 - 35	-4.15 650. 650.	00 249.28 00 249.28	0.93 0.93	23.21 23.21	87.02 82.93	Typ: Tap:	PV 1.00	Min: -1	Мах	: 1
Barra 24 Cub_1 Cub_4 Cub_5	345.00 /Lod /Lne /Lne	1.03 355.29 Carga 24 LT 16 - 24 LT 23 - 24	-15.95 308. 42. -350.	60 -92.20 27 90.92 87 1.28	0.96 0.42 -1.00	0.52 0.16 0.57	17.36 57.02	PlO: Pv: Pv:	308.60 MW 30.33 kW 2562.41 kW	Q10: -92.20 cLod: 7.17 cLod: 38.57	Mvar Mvar L: Mvar L:	23.41 k 138.86 k
Barra 21 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.03 353.74 Carga 21 LT 16 - 21 LT 21 - 22	-13.63 274. 330. -604.	00 115.00 74 -18.08 74 -96.92	0.92 1.00 -0.99	0.48 0.54 1.00	54.06 99.96	PlO: Pv: Pv:	274.00 MW 832.56 kW 2835.85 kW	Q10: 115.00 cLod: 26.76 cLod: 27.48	Mvar Mvar L: Mvar L:	53.56 k 55.54 k
Barra 16 Cub_1 Cub_4 Cub_5 Cub_6 Cub_6 Cub_7 Cub_8	345.00 /Lod /Lne /Lne /Lne /Lne /Lne	1.02 353.38 Carga 16 LT 16 - 19 LT 16 - 21 LT 16 - 24 LT 16 - 24 LT 16 - 17 LT 15 - 16	-16.07 329. -502. -329. -42. 372. 173.	00 32.30 53 -71.95 91 5.37 24 -97.50 29 -31.71 39 163.50	1.00 -0.99 -1.00 -0.40 1.00 0.73	0.54 0.83 0.54 0.17 0.61 0.39	82.94 54.06 17.36 61.04 40.97	P10: Pv: Pv: Pv: Pv: Pv:	329.00 MW 3898.99 kW 832.56 kW 30.33 kW 928.77 kW 513.05 kW	Q10: 32.30 cLod: 32.61 cLod: 26.76 cLod: 7.17 cLod: 14.08 cLod: 17.64	Mvar Mvar L: Mvar L: Mvar L: Mvar L: Mvar L:	77.37 k 53.56 k 23.41 k 35.31 k 37.29 k

Grid: Gr	rid	Syst	em Stage: Grid		Stu	dy Case:	Power F.	low		Annex:		/ 5
	rated Voltage [kV]	e Bus-voltag [p.u.] [kV]	Active Power [deg] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Dat	a	
Barra 17 Cub_1 Cub_4 Cub_5	345.00 /Lne /Lne /Lne	1.02 353.42 LT 17 - 18 LT 17 - 27 LT 16 - 17	-17.89 264.05 107.31 -371.36	22.76 -52.20 29.44	1.00 0.90 -1.00	0.43 0.19 0.61	43.52 19.49 61.04	Pv: Pv: Pv:	470.94 kW 158.11 kW 928.77 kW	cLod: 13.79 cLod: 33.91 cLod: 14.08	Mvar L: Mvar L: Mvar L:	32.53 km 68.64 km 35.31 km
Barra 27 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.03 355.07 Carga 27 LT 26 - 27 LT 17 - 27	-18.92 281.00 -173.85 -107.15	75.50 -95.89 20.39	0.97 -0.88 -0.98	0.47 0.32 0.18	32.28 19.49	P10: Pv: Pv:	281.00 MW 490.96 kW 158.11 kW	Q10: 75.50 cLod: 25.74 cLod: 33.91	Mvar Mvar L: Mvar L:	58.32 km 68.64 km
Barra 18 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.02 352.06 Carga 18 LT 17 - 18 LT 03 - 18	-19.06 158.00 -263.58 105.58	30.00 -31.03 1.03	0.98 -0.99 1.00	0.26 0.44 0.17	43.52 17.71	P10: Pv: Pv:	158.00 MW 470.94 kW 119.31 kW	Q10: 30.00 cLod: 13.79 cLod: 22.21	Mvar Mvar L: Mvar L:	32.53 km 52.77 km
Barra 03 Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Lod /Lne /Lne /Lne	1.02 351.15 Carga 03 LT 03 - 04 LT 02 - 03 LT 03 - 18	-19.83 322.00 -218.83 2.28 -105.46	2.40 131.12 -111.73 -21.79	1.00 -0.86 0.02 -0.98	0.53 0.42 0.18 0.18	43.90 18.37 17.71	P10: Pv: Pv: Pv:	322.00 MW 856.02 kW 121.58 kW 119.31 kW	Q10: 2.40 cLod: 22.36 cLod: 27.03 cLod: 22.21	Mvar Mvar L: Mvar L: Mvar L:	84.51 km 59.91 km 52.77 km
Barra 26 Cub_1 Cub_2 Cub_3 Cub_4 Cub_5	345.00 /Lod /Lne /Lne /Lne /Lne	1.04 360.08 Carga 26 LT 25 - 26 LT 26 - 27 LT 26 - 28 LT 26 - 29	-17.62 139.00 17.65 174.34 -140.91 -190.08	17.00 -28.82 75.31 -29.92 -33.57	0.99 0.52 0.92 -0.98 -0.98	0.22 0.05 0.30 0.23 0.31	5.42 32.28 23.87 32.05	Pl0: Pv: Pv: Pv: Pv:	139.00 MW 9.18 kW 490.96 kW 790.01 kW 1916.98 kW	Q10: 17.00 cLod: 55.87 cLod: 25.74 cLod: 85.16 cLod:112.44	Mvar Mvar L: Mvar L: Mvar L: Mvar L:	128.15 km 58.32 km 188.06 km 247.97 km
Barra 28 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.05 360.80 Carga 28 LT 26 - 28 LT 28 - 29	-14.08 206.00 141.70 -347.70	27.60 -46.53 18.93	0.99 0.95 -1.00	0.33 0.24 0.56	23.87 56.02	P10: Pv: Pv:	206.00 MW 790.01 kW 1561.11 kW	Q10: 27.60 cLod: 85.16 cLod: 27.26	Mvar Mvar L: Mvar L:	188.06 km 59.91 km

Grid: G	rid	Sys	tem Stage: G	rid	St	udy Case:	Power F	low		Annex:		/	6
	rated Voltage [kV]	= Bus-volta [p.u.] [kV]	Ac ge Po [deg] [1	tive Reacti wer Power MW] [Mvar	ive Power r Facto r] [-]	r Current [kA]	: Loading [%]		1	Additional Da	ta		
Barra 25 Cub_1 Cub_2 Cub_4 Cub_5	345.00 /Lod /Tr2 /Lne /Lne	1.04 359.99 Carga 25 Trf 25 - 37 LT 25 - 26 LT 02 - 25	-17.92 224 -538 -17 331	.00 47.2 .33 116.1 .64 -26.9 .97 -136.3	20 0.98 L1 -0.98 96 -0.55 36 0.93	0.37 0.88 0.05 0.58	75.40 5.42 57.56	P10: Tap: Pv: Pv:	224.00 MW 0.00 9.18 kW 8145.37 kW	Q10: 47.20 Min: -1 cLod: 55.87 cLod: 15.73	Mvar Ma Mvar L: Mvar L:	x: 128.1 34.1	1 5 km 2 km
Barra 29 Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Lod /Tr2 /Lne /Lne	1.05 361.20 Carga 29 Trf 29 - 38 LT 26 - 29 LT 28 - 29	-11.31 283 -824 192 349	.50 26.9 .76 60.3 .00 -57.8 .26 -29.3	90 1.00 31 -1.00 35 0.96 36 1.00	0.46 1.32 0.32 0.56	80.96 32.05 56.02	P10: Tap: Pv: Pv:	283.50 MW 1.00 1916.98 kW 1561.11 kW	Q10: 26.90 Min: -1 cLod:112.44 cLod: 27.26	Mvar Ma Mvar L: Mvar L:	x: 247.9 59.9	1 7 km 1 km
Barra 38 Cub_1 Cub_2	16.50 /sym /Tr2	1.03 16.94 G 09 Trf 29 - 38	-4.24 830 830	.00 41.9 .00 41.9	95 1.00 95 1.00	28.33 28.33	83.11 80.96	Typ: Tap:	PV 1.00	Min: -1	Ма	х:	1
Barra 30 Cub_1 Cub_2	16.50 /sym /Tr2	1.05 17.28 G 10 Trf 02 - 30	-17.46 250 250	.00 238.5 .00 238.5	54 0.72 54 0.72	11.54 11.54	34.55 32.99	Тур: Тар:	PV 1.00	Min: -1	Ма	x:	1
Barra 02 Cub_1 Cub_4 Cub_5 Cub_6	345.00 /Tr2 /Lne /Lne /Lne	1.03 356.17 Trf 02 - 30 LT 02 - 03 LT 01 - 02 LT 02 - 25	-19.92 -250 -2 575 -323	.00 -218.8 .16 86.1 .99 2.1 .83 130.6	34 -0.75 11 -0.03 10 1.00 54 -0.93	0.54 0.14 0.93 0.57	32.99 18.37 93.37 57.56	Tap: Pv: Pv: Pv:	1.00 121.58 kW 10945.28 kW 8145.37 kW	Min: -1 cLod: 27.03 cLod: 73.79 cLod: 15.73	Ma Mvar L: Mvar L: Mvar L:	x: 59.9 163.0 34.1	1 1 km 6 km 2 km
Barra 01 Cub_2 Cub_3	345.00 /Lne /Lne	1.02 352.91 LT 01 - 39 LT 01 - 02	-32.80 565 -565	.04 -52.6 .04 52.6	54 1.00 54 -1.00	0.93 0.93	92.84 93.37	Pv: Pv:	3052.90 kW 10945.28 kW	cLod: 79.02 cLod: 73.79	Mvar L: Mvar L:	99.1 163.0	9 km 6 km
Barra 39 Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Sym /Lod /Lne /Lne	1.03 355.35 G 01 Carga 39 LT 01 - 39 LT 09 - 39	-40.51 1000 2208 -561 -646	.00 438.8 .00 250.0 .99 49.9 .01 138.9	39 0.92 00 0.99 94 -1.00 95 -0.98	1.77 3.61 0.92 1.07	10.92 92.84 111.89	Typ: Pl0: Pv: Pv:	PV 2208.00 MW 3052.90 kW 4320.64 kW	Q10: 250.00 cLod: 79.02 cLod:123.63	Mvar Mvar L: Mvar L:	99.1 99.1	9 km 9 km

Grid: G	Grid: Grid System Stage: Grid				Stu	dy Case:	Power F	low		Annex:		1	7	
	rated Voltage [kV]	Bus-volt [p.u.] [kV	age] [deg]	Active Power [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Dat	ta		
Barra 09 Cub_1 Cub_2	345.00 /Lne /Lne	1.00 344.9 LT 08 - 09 LT 09 - 39	3 -31.37	-650.33 650.33	154.56 -154.56	-0.97 0.97	1.12 1.12	112.75 111.89	Pv: Pv:	10424.83 kW 4320.64 kW	cLod: 37.34 cLod:123.63	Mvar L: Mvar L:	144.02 99.19	km km

						DIGSILENT	Project:		
						15.1.7	Date: 1/26/	2025	
						•			
Load Flow Calcul	ation			Cor	mplete System Report: Si	ubstations, Volt	age Profiles,	Grid Interch	ange
AC Load Flow	, balanced	, positi	ve sequence		Automatic Model Ad	daptation for Co	nvergence	No	
Consider Rea	p Adjust o ctive Powe	f Transfo r Limits	ormers	NO NO	Max. Acceptable Lo Nodes	oad Flow Error f	or	1.00	kVA
					Model Equation:	s		0.10	8
Grid: Grid		System :	Stage: Grid		Study Case: Power Flow		Annex:		/ 8
	rtd.V	Bus	- voltage			Voltage - De	viation [%]		
	[kV]	[p.u.]	[kV] [deg]		-10 -5	0	+5	+10	
Barra 08	245 0O	0.000	220 (2 17 01			_			
Barra 07	345.00	0.982	338.63 -17.21						
Barra 05	345.00	0.987	340.48 -15.43						
Barra 04	345.00	0.995	343.17 -13.79						
Barra 06	345.00	0.992	342.21 -17.08						
Barra 06	345.00	0.997	343.91 -13.06						
Barra 31	16.50	0.982	16.20 0.00						
Barra 11	345.00	1.004	346.24 -12.09						
Barra 12	138.00	0.991	136.72 -12.38						
Barra 10	345.00	1.009	348.02 -11.56			_			
Barra 32	16.50	0.983	16.22 -3.49						
Barra 13	245.00	1 005	246 75 -12 57						
Barra 14	345.00	1.005	346.75 -12.37						
Barra 15	345.00	1.001	343.45 -15.03			<u> </u>			
Barra 20	345.00	1.007	347.43 -16.89						
Barra 19	230.00	0.990	227.63 -11.87						
	345.00	1.047	361.25 -10.87						
Barra 34	16.50	1.012	16.70 -6.68						
Barra 33									

Grid: Grid		System :	Stage: Gr	id	Study C	ase: Pov	ver Flow			Annex:		/ 9
	rtd.V [kV]	Bus [p.u.]	- voltage [kV]	e [deg]	-	10	-5	Voltage 0	- Devi	iation [%] +5	+10	
Barra 36	16.50	0.997	16.45	-5.65				1				
Barra 23	16.50	1.050	17.32	-1.30								
Barra 22	345.00	1.037	357.88	-9.32								
Barra 27	345.00	1.045	360.41	-9.13								
Barra 25	16.50	1.028	16.96	-11.20								
Darra 33	16.50	1.049	17.31	-4.15								
Barra 21	345.00	1.030	355.29	-15.95						l		
Daila 21	345.00	1.025	353.74	-13.63								
Barra 16	345.00	1.024	353.38	-16.07								
Barra 17	345.00	1.024	353.42	-17.89								
Barra 27	345.00	1.029	355.07	-18.92								
Barra 18	345.00	1.020	352.06	-19.06								
Barra 03	345.00	1.018	351.15	-19.83								
Barra 26	345.00	1.044	360.08	-17.62								
Barra 28	345.00	1.046	360.80	-14.08								
Barra 25	345.00	1.043	359.99	-17.92								
Barra 29	345.00	1.047	361.20	-11.31								
Barra 38	16.50	1.026	16.94	-4.24								
Barra 30	16.50	1.048	17.28	-17.46								
Barra 02	345.00	1.032	356.17	-19.92								
Barra 01	345.00	1.023	352.91	-32.80								
Barra 39	345.00	1.030	355.35	-40.51								
Barra 09	345.00	1.000	344.93	-31.37								

9.4.	Anexo D: Flujo de carga con líneas fuera de servicio sin AVR.	
------	---	--

									DIGSILENT	Project:			
									15.1.7	Date: 2/4/	2025		
Load Flo	ow Calcul	ation			Comple	ete System	n Report:	: Sub	stations, Volt	age Profiles,	Grid In	ntercha	nge
AC 1	Load Flow	, balanced, posi	tive sequence			Automa	tic Model	l Ada	ptation for Co	nvergence		No	
Auto	omatic Ta	p Adjust of Tran	sformers	No		Max. A	cceptable	e Loa	d Flow Error f	or		1 00 1	
Cons	sider Kea	ctive Power Limi	ts	NO		Mode	es el Ecuati	ions				0.10 %	VA
L						1104	or Diquates	20110					
Grid: Gr	rid	Syste	m Stage: Grid		Stu	dy Case:	Power Fl	low		Annex:		/	1
	rated		Active	Peactive	Power								
	Voltage	Bus-voltage	Power	Power	Factor	Current	Loading		A	dditional Dat	a		
	[kV]	[p.u.] [kV]	[deg] [MW]	[Mvar]	[-]	[kA]	[%]						
Barra 08													
	345.00	0.94 325.99	-13.15										
Cub_1	/Lod	Carga 08	522.00	176.00	0.95	0.98		P10:	522.00 MW	Q10: 176.00	Mvar		
Cub_2	/Lne	LT 08 - 09	0.01	-34.08	0.00	0.06	6.04	Pv:	7.53 kW	cLod: 34.20	Mvar L:	144.0	2 km
Cub_3	/Lne	LT 07 = 08	-201.97	-00.04	-0.97	0.37	30.94	PV:	193.29 KW	CLOC: 6.99	Mvar L:	18.2	5 Km
Cub_4	/ Life	HT 05 - 08	-320.04	-05.54	-0.96	0.55	30.00	FV:	575.57 KW	C100: 15.57	MVAI 1:	44.4	4 840
Barra 07													
	345.00	0.95 327.12	-12.57										
Cub_1	/Lod	Carga 07	233.80	84.00	0.94	0.44		P10:	233.80 MW	Q10: 84.00	Mvar		
Cub_2	/Lne	LT 07 - 08	202.16	47.21	0.97	0.37	36.94	Pv:	193.29 kW	cLod: 6.99	Mvar L:	18.2	5 km
Cub_3	/Lne	LT 06 - 07	-435.96	-131.21	-0.96	0.80	80.36	Pv:	1374.64 kW	cLod: 10.33	Mvar L:	36.5	0 km
Barra 05													
	345.00	0.96 330.59	-10.92										
Cub 1	/Lne	LT 05 - 08	321.02	90.30	0.96	0.58	58.88	Pv:	979.97 kW	cLod: 13.37	Mvar L:	44.4	4 km
Cub_2	/Lne	LT 05 - 06	-523.22	-173.42	-0.95	0.96	96.27	Pv:	660.32 kW	cLod: 4.01	Mvar L:	10.3	2 km
Cub_3	/Lne	LT 04 - 05	202.21	83.12	0.92	0.38	39.02	Pv:	425.70 kW	cLod: 12.15	Mvar L:	50.7	8 km
Barra 04													
	345.00	0.94 326.01	-12.52										
Cub 1	/Lod	Carga 04	500.00	184.00	0.94	0.94		P10:	500.00 MW	Q10: 184.00	Mvar		
Cub_2	/Lne	LT Ö4 - 14	-298.22	-95.54	-0.95	0.55	55.46	Pv:	868.30 kW	cLod: 12.55	Mvar L:	51.1	8 km
Cub_3	/Lne	LT 03 - 04	0.00	0.00	1.00	0.00	0.00	Pv:	0.00 kW	cLod: -0.00	Mvar L:	84.5	1 km
Cub_4	/Lne	LT 04 - 05	-201.78	-88.46	-0.92	0.39	39.02	Pv:	425.70 kW	cLod: 12.15	Mvar L:	50.7	8 km
								1					

Grid: Gr	rid	System	m Stage	e: Grid		Stu	dy Case:	Power F	low		Anney	c:				/ 2
	rated Voltage [kV]	e Bus-voltage [p.u.] [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditior	nal Dat	a			
Barra 06																
	345.00	0.96 332.60	-10.10													.
Cub_1	/Tr2	Tri 06 - 31		-620.78	-237.08	-0.93	1.15	105.36	Tap:	2.00	Min:	-2		Max:	1.0	2
Cub_2 Cub_3	/Ine	LT 06 - 07		437.34	141.96	0.95	0.80	80.36	PV: PV:	1374.64 kW	chod:	10.33	Mvar	T.:	36.	50 km
Cub_4	/Lne	LT 06 - 11		-340.45	-82.87	-0.97	0.61	60.82	Pv:	916.93 kW	cLod:	13.04	Mvar	L:	32.	53 km
Barra 31																
	16.50	0.98 16.20	0.00													
Cub_1	/Sym	G 02		629.98	377.67	0.86	26.17	104.93	Typ:	SL						
Cub_2	/Lod	Carga 31		9.20	4.60	0.89	0.37		P10:	9.20 MW	Q10:	4.60	Mvar			
Cub_3	/Tr2	Tri 06 - 31		620.78	373.07	0.86	25.81	105.36	Tap:	2.00	Min:	-2		Max:		2
Barra 11																
	345.00	0.97 335.84	-8.43													
Cub_1	/Tr2	Trf 11 - 12		1.95	45.31	0.04	0.08	15.53	Tap:	1.00	Min:	-1		Max:		1
Cub_2	/Lne	LT 06 - 11		341.36	80.57	0.97	0.60	60.82	Pv:	916.93 kW	cLod:	13.04	Mvar	L:	32.	53 km
Cub_3	/Lne	LT 10 - 11		-343.31	-125.89	-0.94	0.63	62.86	Pv:	560.80 kW	cLod:	6.96	Mvar	ь:	17.	06 km
Barra 12																
	138.00	0.96 132.33	-8.44													
Cub_1	/Lod	Carga 12		7.50	88.00	0.08	0.39		P10:	7.50 MW	Q10:	88.00	Mvar			
Cub_2	/Tr2	Trf 11 - 12		-1.91	-44.37	-0.04	0.19	15.53	Tap:	1.00	Min:	-1		Max:		1
Cub_3	/Tr2	Trf 13 - 12		-5.59	-43.63	-0.13	0.19	15.38	Tap:	1.00	Min:	-1		Max:		1
Barra 10																
	345.00	0.98 338.23	-7.57													
Cub_1	/Tr2	Trf 10 - 32		-650.00	-259.15	-0.93	1.19	95.47	Tap:	2.00	Min:	-2		Max:		2
Cub_3	/Lne	LT 10 - 13		306.13	134.19	0.92	0.57	57.54	Pv:	468.91 kW	cLod:	6.96	Mvar	L:	17.	J6 km
Cub_4	/ Lne	LT 10 - 11		343.07	124.96	0.94	0.62	02.00	PV:	560.80 KW	CTOG:	0.90	Mvar	т:	1/.	Jo Km
Barra 32																
	16.50	0.98 16.22	0.72						_							
Cub_1	/sym	G 03		650.00	375.80	0.87	26.72	93.85	Typ:	PV						.
Cub_2	/Tr2	Tri 10 - 32		650.00	375.80	0.87	26.72	95.47	Tap:	2.00	Min:	-2		Max:		2
Barra 13																
	345.00	0.97 335.74	-8.33													
Cub_1	/Tr2	Trf 13 - 12		5.62	44.56	0.13	0.08	15.38	Tap:	1.00	Min:	-1		Max:		1
Cub_3	/Lne	LT 13 - 14		300.04	91.55	0.96	0.54	54.78	Pv:	949.96 kW	cLod:	16.11	Mvar	L:	40.	07 km
Cub_4	/Lne	LT 10 - 13		-305.66	-136.10	-0.91	0.58	57.54	PV:	468.91 kW	clod:	6.96	Mvar	т:	17.	16 km

Grid: G	rid	Syste	m Stage: Gri	1	Stu	dy Case:	Power F	low		Annex				/	3
	rated Voltage [kV]	Bus-voltage [p.u.] [kV]	Acti Powe [deg] [MW	ve Reactive r Power [Mvar]	Factor	Current [kA]	Loading [%]		A	dition	al Dat	ta			
Barra 14															
	345.00	0.96 331.38	-10.13												
Cub_2	/Lne	LT 04 - 14	299.0	96.99	0.95	0.55	55.46	Pv:	868.30 kW	cLod:	12.55	Mvar	L:	51.1	8 km
Cub_4	/Lne	LT 14 - 15	0.0	0.00	1.00	0.00	0.00	Pv:	0.00 kW	cLod:	-0.00	Mvar	г:	86.0	9 km
Cub_5	/Lne	LT 13 - 14	-299.0	9 -96.99	-0.95	0.55	54.78	Pv:	949.96 kW	cLod:	16.11	Mvar	L:	40.0	7 km
Barra 15															
	345.00	1.02 352.11	5.75												
Cub_1	/Lod	Carga 15	320.0	153.00	0.90	0.58		P10:	320.00 MW	Q10: 1	.53.00	Mvar			
Cub_4	/Lne	LT 15 - 16	-320.0	-153.00	-0.90	0.58	58.16	Pv:	1064.17 kW	cLod:	18.10	Mvar	L:	37.2	9 km
Cub_5	/Lne	LT 14 - 15	0.0	0.00	1.00	0.00	0.00	Pv:	0.00 kW	cLod:	-0.00	Mvar	L:	86.0	9 km
Barra 20															
	230.00	0.99 228.22	11.47												
Cub 1	/Lod	Carga 20	628.0	103.00	0.99	1.61		P10:	628.00 MW	Q10: 1	03.00	Mvar			
Cub 2	/Tr2	Trf 19 - 20	-122.4	9 7.02	-1.00	0.31	12.37	Tap:	2.00	Min:	-2		Max:		2
Cub_3	/Tr2	Trf 20 - 34	-505.5	1 -110.02	-0.98	1.31	87.68	Tap:	1.00	Min:	-1		Max:		1
Barra 19															
Darra 15	345.00	1 05 362 88	12.45												
Cub 1	/mr2	$\pi rf 19 = 20$	122.6	-4.91	1.00	0.20	12.37	Tan	2.00	Min·	-2		Max:		2
Cub 2	/ 1 2 2	$\pi r f 19 = 33$	-629.1	-38.72	-1.00	1.00	80.15	Tap	2.00	Mint	-2		Max		2
Cub_3	/Lne	LT 16 - 19	506.5	43.63	1.00	0.81	81.28	Pv:	3763.43 kW	cLod:	33.16	Mvar	L:	77.3	7 km
Barra 34	16 50	1 01 16 70	16 65												
Cub 1	/2.50	2.05	10.00	159.94	0.95	10 41	00 76		1017						
Cub_2	/ Trr2	mrf 20 - 34	508.0	159.84	0.95	18 41	87.68	Tap.	1 00	Min·	-1		Max		1
	/ 122	111 20 01	00010	100.01	0.00	10.11	07.00	rap.	1.00		-		nun.		-
Barra 33															
	16.50	1.00 16.45	17.67												
Cub_1	/Sym	G 04	632.0	97.10	0.99	22.44	79.93	Typ:	PV						-
Cub_2	/Tr2	Trf 19 - 33	632.0	97.10	0.99	22.44	80.15	Tap:	2.00	Min:	-2		Max:		2
Barra 36															
	16.50	1.06 17.55	21.77												
Cub 1	/Sym	G 07	560.0	93.03	0.99	18.68	81.10	Typ:	PV						
Cub 2	/Tr2	Trf 23 - 36	560.0	93.03	0.99	18.68	76.25	Tap:	0.00	Min:	0		Max:		0
								1							

Grid: G	rid	System	m Stage: Grid		Stu	dy Case:	Power F	low		Annex:				/	4
	rated Voltage [kV]	e Bus-voltage [p.u.] [kV]	Active Power [deg] [MW]	e Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		2	Additiona	al Dat	a			
Barra 23															
Cub_5 Cub_1 Cub_3 Cub_4	345.00 /Lod /Tr2 /Lne /Lne	1.05 361.17 Carga 23 Trf 23 - 36 LT 22 - 23 LT 23 - 24	13.93 247.50 -558.58 -42.76 353.83	84.60 -15.53 -61.20 -7.87	0.95 -1.00 -0.57 1.00	0.42 0.89 0.12 0.57	76.25 11.93 56.58	PlO: Tap: Pv: Pv:	247.50 MW 0.00 24.30 kW 2516.12 kW	Ql0: 8 Min: cLod: 2 cLod: 3	84.60 0 20.33 89.39	Mvar Mvar Mvar	Max: L: L:	0 38.09 138.86	km km
Barra 22															
Cub_1 Cub_2 Cub_3	345.00 /Tr2 /Lne /Lne	1.05 362.87 Trf 22 - 35 LT 22 - 23 LT 21 - 22	14.13 -650.00 42.78 607.22	-138.08 41.27 96.81	-0.98 0.72 0.99	1.06 0.09 0.98	80.95 11.93 98.47	Tap: Pv: Pv:	1.00 24.30 kW 2755.47 kW	Min: cLod: 2 cLod: 2	-1 20.33 27.94	Mvar Mvar	Max: L: L:	1 38.09 55.54	km km
Barra 37															
Cub_1 Cub_2	16.50 /sym /Tr2	1.03 16.96 G 08 Trf 25 - 37	15.56 540.00 540.00	-23.37 -23.37	1.00	18.40 18.40	77.22 75.13	Тур: Тар:	PV 1.00	Min:	-1		Max:	1	
Barra 35	16.50	1.05 17.31	19.08	100.05	0.00	00.00	04.04	_							
Cub_1 Cub_2	/Tr2	Trf 22 - 35	650.00	198.05	0.96	22.66	80.95	Tap:	1.00	Min:	-1		Max:	1	
Barra 24	345 00	1 04 359 54	7 43												
Cub_1	/Lod	Carga 24	308.60	-92.20	0.96	0.52		P10:	308.60 MW	Q10: -9	92.20	Mvar			
Cub_4 Cub_5	/Lne /Lne	LT 16 - 24 LT 23 - 24	42.72 -351.32	83.69 8.51	0.45	0.15	16.15 56.58	Pv: Pv:	26.13 kW 2516.12 kW	cLod: cLod: 3	7.35	Mvar Mvar	L: L:	23.41 138.86	km km
Barra 21															
Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.04 357.25 Carga 21 LT 16 - 21 LT 21 - 22	9.70 274.00 330.46 -604.46	115.00 -38.47 -76.53	0.92 0.99 -0.99	0.48 0.54 0.98	53.77 98.47	P10: Pv: Pv:	274.00 MW 819.38 kW 2755.47 kW	Q10: 11 cLod: 2 cLod: 2	15.00 27.36 27.94	Mvar Mvar Mvar	L: L:	53.56 55.54	km km
Barra 16															
Cub_1 Cub_4 Cub_5 Cub_6 Cub_7 Cub_8	345.00 /Lod /Lne /Lne /Lne /Lne	1.04 357.79 Carga 16 LT 16 - 19 LT 16 - 21 LT 16 - 24 LT 16 - 17 LT 15 - 16	7.31 329.00 -502.76 -329.64 -42.69 225.03 321.06	32.30 -30.92 24.93 -90.52 -81.80 146.01	1.00 -1.00 -0.43 0.94 0.91	0.53 0.81 0.53 0.16 0.39 0.57	81.28 53.77 16.15 38.64 58.16	P10: Pv: Pv: Pv: Pv: Pv:	329.00 MW 3763.43 kW 819.38 kW 26.13 kW 365.78 kW 1064.17 kW	Q10: 3 cLod: 3 cLod: 2 cLod: 1 cLod: 1 cLod: 1	82.30 83.16 27.36 7.35 14.50 18.10	Mvar Mvar Mvar Mvar Mvar Mvar	L: L: L: L:	77.37 53.56 23.41 35.31 37.29	kn kn kn kn

Grid: G	rid	Syste	m Stage: G	rid	St	udy Case:	Power F	low		Annex:	/ 5
	rated Voltage [kV]	Bus-voltage [p.u.] [kV]	Ac Po [deg] []	ver Reacti Wer Power [M] [Mvar	ve Power Facto	r Current [kA]	Loading		A	dditional Data	
Barra 17											
Gub 1	345.00	1.04 359.54	6.22	F2 - 26 1	0 0 00	0.22	21 02	D	0.51 0.0 1-00	at add. 14, 24 Marca T	
Cub_1	/Lne	LT 17 - 18 LT 17 - 27	29	13 -35.6	5 0.63	0.32	7.39	PV: Pv:	14.12 kW	cLod: 14.34 Mvar L	68.64 km
Cub_5	/Lne	LT 16 - 17	-224	66 71.9	4 -0.95	0.38	38.64	Pv:	365.78 kW	cLod: 14.50 Mvar L	: 35.31 km
Barra 27											
	345.00	1.04 360.46	5.94								
Cub_1	/Lod	Carga 27	281	00 75.5	0.97	0.47		P10:	281.00 MW	Q10: 75.50 Mvar	
Cub_2	/Lne	LT 26 - 27	-251	.88 -76.3	12 -0.96	0.42	42.15	Pv:	864.94 kW	cLod: 26.48 Mvar L	: 58.32 km
Cub_3	/Lne	LT 17 - 27	-29	.12 0.8	1.00	0.05	7.39	P⊽:	14.12 KW	cLod: 35.02 Mvar L	: 68.64 Km
Barra 18											
	345.00	1.04 359.92	5.36								
Cub_1	/Lod	Carga 18	158	.00 30.0	0.98	0.26		P10:	158.00 MW	Q10: 30.00 Mvar	
Cub_2	/Lne	LT 17 - 18	-195	.28 24.9	1 -0.99	0.32	31.93	Pv:	251.89 kW	cLod: 14.34 Mvar L	: 32.53 km
Cub_3	/Lne	LT 03 - 18	37	.28 -54.9	0.56	0.11	10.65	Pv:	32.97 kW	cLod: 23.38 Mvar L	: 52.77 km
Barra 03											
	345.00	1.05 361.69	5.08								
Cub_1	/Lod	Carga 03	322	.00 2.4	1.00	0.51		P10:	322.00 MW	Q10: 2.40 Mvar	
Cub_2	/Lne	LT 03 - 04	0	.00 0.0	0 1.00	0.00	0.00	Pv:	0.00 kW	cLod: -0.00 Mvar L	: 84.51 km
Cub_3	/Lne	LT 02 - 03	-284	.75 -34.3	32 -0.99	0.46	45.78	Pv:	963.87 kW	cLod: 28.46 Mvar L	: 59.91 km
Cub_4	/Lne	LT 03 - 18	-37	.25 31.9	02 -0.76	0.08	10.65	Pv:	32.97 kW	cLod: 23.38 Mvar L	: 52.77 km
Barra 26											
	345.00	1.06 364.89	7.82								
Cub_1	/Lod	Carga 26	139	.00 17.0	0.99	0.22		P10:	139.00 MW	Q10: 17.00 Mvar	
Cub_2	/Lne	LT 25 - 26	-60	74 -39.8	5 -0.84	0.11	11.49	Pv:	109.10 kW	cLod: 57.68 Mvar L	: 128.15 km
Cub_3	/Lne	LT 26 - 27	252	.75 58.9	0.97	0.41	42.15	Pv:	864.94 kW	cLod: 26.48 Mvar L	: 58.32 km
Cub_4	/Lne	LT 26 - 28	-140	/6 -16.1	.3 -0.99	0.22	24.56	P⊽:	/90./3 kW	cLod: 86.89 Mvar L	: 188.06 km
Cub_5	/Lne	LT 26 - 29	-190	.24 -19.5	4 -0.99	0.30	32.73	P⊽:	1916.32 KW	cLod:114.48 Mvar L	: 247.97 Km
Barra 28											
	345.00	1.05 363.29	11.31								
Cub_1	/Lod	Carga 28	206	.00 27.0	0.99	0.33		P10:	206.00 MW	Q10: 27.60 Mvar	
Cub_2	/Lne	LT 26 - 28	141	.55 -62.0	0.92	0.25	24.56	Pv:	/90.73 kW	cLod: 86.89 Mvar L	: 188.06 km
Cub_3	/Lne	LT 28 - 29	-347	.55 34.4	4 -1.00	0.56	56.00	PV:	1554.52 kW	cLod: 27.58 Mvar L	: 59.91 km

Grid: Gr	rid	Syste	m Stage: Grid		Stu	dy Case:	Power F	low		Annex:		1	6
	rated Voltage [kV]	Bus-voltage [p.u.] [kV]	Active Power [deg] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Dat	ta		
Barra 25		4 94 944 75											
Cub_1 Cub_2 Cub_4 Cub_5	/Lod /Tr2 /Lne /Lne	1.06 366.75 Carga 25 Trf 25 - 37 LT 25 - 26 LT 02 - 25	224.00 -538.34 60.85 253.49	47.20 87.53 -16.73 -118.00	0.98 -0.99 0.96 0.91	0.36 0.86 0.10 0.44	75.13 11.49 44.02	Pl0: Tap: Pv: Pv:	224.00 MW 1.00 109.10 kW 4726.46 kW	Q10: 47.20 Min: -1 cLod: 57.68 cLod: 16.38	Mvar Ma: Mvar L: Mvar L:	K: 128.1 34.1	1 5 km 2 km
Barra 29													
Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Lod /Tr2 /Lne /Lne	1.05 362.91 Carga 29 Trf 29 - 38 LT 26 - 29 LT 28 - 29	14.06 283.50 -824.77 192.16 349.11	26.90 91.89 -73.54 -45.26	1.00 -0.99 0.93 0.99	0.45 1.32 0.33 0.56	80.86 32.73 56.00	P10: Tap: Pv: Pv:	283.50 MW 1.00 1916.32 kW 1554.52 kW	Q10: 26.90 Min: -1 cLod:114.48 cLod: 27.58	Mvar Ma: Mvar L: Mvar L:	x: 247.9 59.9	1 7 km 1 km
Barra 38													
Cub_1 Cub_2	16.50 /Sym /Tr2	1.03 16.94 G 09 Trf 29 - 38	21.12 830.00 830.00	10.11 10.11	1.00 1.00	28.29 28.29	83.01 80.86	Typ: Tap:	PV 1.00	Min: -1	Ma	к:	1
Barra 30	16.50	1.05 17.28	9.70										
Cub_1 Cub_2	/Sym /Tr2	G 10 Trf 02 - 30	250.00 250.00	107.34 107.34	0.92 0.92	9.09 9.09	27.21 25.97	Typ: Tap:	PV 1.00	Min: -1	Ma:	ĸ:	1
Barra 02													
Cub_1 Cub_4 Cub_5 Cub_6	345.00 /Tr2 /Lne /Lne /Lne	1.06 364.18 Trf 02 - 30 LT 02 - 03 LT 01 - 02 LT 02 - 25	7.29 -250.00 285.72 213.05 -248.77	-95.13 17.05 -29.35 107.43	-0.93 1.00 0.99 -0.92	0.42 0.45 0.34 0.43	25.97 45.78 34.15 44.02	Tap: Pv: Pv: Pv:	1.00 963.87 kW 1428.57 kW 4726.46 kW	Min: -1 cLod: 28.46 cLod: 77.30 cLod: 16.38	Ma: Mvar L: Mvar L: Mvar L:	K: 59.9 163.0 34.1	1 1 km 6 km 2 km
Barra 01													
Cub_2 Cub_3	345.00 /Lne /Lne	1.05 361.59 LT 01 - 39 LT 01 - 02	2.77 211.62 -211.62	31.17 -31.17	0.99 -0.99	0.34 0.34	38.01 34.15	Pv: Pv:	455.37 kW 1428.57 kW	cLod: 80.98 cLod: 77.30	Mvar L: Mvar L:	99.1 163.0	9 km 6 km
Barra 39													
Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Sym /Lod /Lne /Lne	1.03 355.35 G 01 Carga 39 LT 01 - 39 LT 09 - 39	0.00 892.83 1104.00 -211.17 0.00	149.23 250.00 -100.77 0.00	0.99 0.98 -0.90 1.00	1.47 1.84 0.38 0.00	9.05 38.01 0.00	Typ: P10: Pv: Pv:	PV 1104.00 MW 455.37 kW 0.00 kW	Q10: 250.00 cLod: 80.98 cLod: -0.00	Mvar Mvar L: Mvar L:	99.1 99.1	9 km 9 km

Grid: Gr	Grid: Grid System Stage: Grid						Stud	dy Case:	Power F	low		Annex:		/ 7
	rated Active Reactive Voltage Bus-voltage Power Power [kV] [p.u.] [kV] [deg] [MW] [Mvar]					Power Factor [-]	Current [kA]	Loading [%]		Ac	ditional Data	a		
Barra 09 Cub_1 Cub_2	345.00 /Lne /Lne	0.95 328 LT 08 - 0 LT 09 - 3	.26 -: 09 39	13.18	0.00	0.00	0.42	0.00	6.04 0.00	Pv: Pv:	7.53 kW 0.00 kW	cLod: 34.20 1 cLod: -0.00 1	Mvar L: Mvar L:	144.02 ku 99.19 ku

							DIGSILENT PowerFactory	Project:		
							15.1.7	Date: 2/4/	2025	
Load Flow Calcula	ation			C	omplete System Re	eport: Su	ubstations, Volta	age Profiles,	Grid Interchar	nge
AC Load Flow, Automatic Tap Consider Read	, balanced o Adjust o ctive Powe	, positiv f Transfo r Limits	ve sequence prmers	No No	Automatic Max. Accep Nodes Model 1	Model Ac ptable Lo Equations	daptation for Con oad Flow Error fo	nvergence or	No 1.00 kV 0.10 %	VA
Grid: Grid		System #	Stage: Grid		Study Case: Por	wer Flow		Annex:	/	8
	rtd.V [kV]	Bus [p.u.]	- voltage [kV] [deg]	-10	-5	Voltage - Dev 0	viation [%] +5	+10	
Barra 08	345 00	0 945	325 99 -13 1	5		_				
Barra 07	345.00	0.948	327.12 -12.5	7						
Barra 05	345.00	0.958	330.59 -10.9	2		_				
Barra 04	345.00	0.945	326.01 -12.5	2		_				
Barra 06	345 00	0 964	332 60 -10 1	0		_				
Barra 31	16.50	0.982	16.20 0.0	0						
Barra 11	345 00	0.973	335 84 -8 4	3						
Barra 12	138 00	0 959	132 33 -8 4	4						
Barra 10	345 00	0 980	338 23 -7 5	-						
Barra 32	16 50	0.900	16.22 0.7	, ,						
Barra 13	245.00	0.903	225 74 -0 2	- 2						
Barra 14	345.00	0.973	333.74 -0.3							
Barra 15	345.00	0.961	351.38 -10.1	- -						
Barra 20	345.00	1.021	352.11 5.7	2						
Barra 19	230.00	0.992	228.22 11.4	-			-			
Barra 34	345.00 16.50	1.052	362.88 12.4 16.70 16.6	5						

Grid: Grid		System S	tage: Gr	id	Study Case:	Power Flow		Annex:		/ 9
	rtd.V [kV]	Bus [p.u.]	- voltag [kV]	e [deg]	-10	-5	Voltage - De [,] O	viation [%] +5	+10	
Barra 33	16.50	0.997	16.45	17.67						
Barra 36	16 50	1 064	17 55	21 77						
Barra 23	245.00	1 047	261 17	12 62						
Barra 22	345.00	1.047	361.17	13.55						
Barra 37	345.00	1.052	362.87	14.13						
Barra 35	16.50	1.028	16.96	15.56						
Barra 24	16.50	1.049	17.31	19.08						
Barra 21	345.00	1.042	359.54	7.43						
Barra 16	345.00	1.035	357.25	9.70						
Barra 17	345.00	1.037	357.79	7.31						
Barra 27	345.00	1.042	359.54	6.22						
Barra 18	345.00	1.045	360.46	5.94						
Barra 03	345.00	1.043	359.92	5.36						
Barra 26	345.00	1.048	361.69	5.08						
Dalla 20	345.00	1.058	364.89	7.82						
Barra 28	345.00	1.053	363.29	11.31						
Barra 25	345.00	1.063	366.75	8.80						
Barra 29	345.00	1.052	362.91	14.06						
Barra 38	16.50	1.026	16.94	21.12						
Barra 30	16.50	1.048	17.28	9.70						
Barra 02	345.00	1.056	364.18	7.29						
Barra 01	345.00	1.048	361.59	2.77						
Barra 39	345.00	1.030	355.35	0.00						
Barra 09								-		

Grid: Grid	System Stage: Grid	Study Case: Powe	r Flow		Annex:		/ 10
rtd.V [kV]	Bus - voltage [p.u.] [kV] [deg]	-10	-5	Voltage - Der 0	riation [%] +5	+10	
345.00	0.951 328.26 -13.18						

9.5. Anexo E: Flujo de carga con líneas fuera de servicio con AVR.

									DIGSILENT	Project:			
									PowerFactory 15.1.7	Date: 2/4	/2025		
L													
Load Flow	Calcula	ation			Compl	ete Syster	m Report	: Sub	stations, Volta	age Profiles	, Grid In	ntercha	nge
AC Lo	ad Flow,	, balanced, posi	tive sequence			Automat	tic Model	l Ada	ptation for Com	nvergence		No	
Autom	atic Tap	Adjust of Tran	sformers	No		Max. A	cceptable	e Loa	d Flow Error fo	or			
Consi	der Read	ctive Power Limi	ts	No		Node	es el Rometi	ione				1.00 k	VA
						MOUR	er Equat.	LOIDS				0.10 8	
Grid: Gri	.d	System	m Stage: Grid		St	udy Case:	Power F	low		Annex:		/	1
	rated		Notiro	Depating	Dowow								
	Voltage	Bus-voltage	Power	Power	Facto	r Current	Loading		A	dditional Da	ta		
	[kV]	[p.u.] [kV]	[deg] [MW]	[Mvar]	[-]	[kA]	[%]						
Barra 08												-	
3	45.00	0.94 325.99	-13.15										
Cub_1	/Lod	Carga 08	522.00	176.00	0.95	0.98		P10:	522.00 MW	Q10: 176.00	Mvar		
Cub_2	/Lne	LT 08 - 09	0.01	-34.08	0.00	0.06	6.04	Pv:	7.53 kW	cLod: 34.20	Mvar L:	144.0	2 km
Cub_3	/Lne	LT 07 - 08	-201.97	-51.98	-0.97	0.37	36.94	PV:	193.29 kW	cLod: 6.99	Mvar L:	18.2	5 km
Cub_4	/ Lne	LT 05 - 08	-320.04	-05.54	-0.90	0.55	20.00	PV:	5/5.5/ KW	сцоа: 15.57	MVAI L:	44.4	4 K.m
Barra 07													
3	45.00	0.95 327.12	-12.57										
Cub_1	/Lod	Carga 07	233.80	84.00	0.94	0.44	26.04	P10:	233.80 MW	Q10: 84.00	Mvar	10.0	c 1
Cub_2	/Lne	LT 07 - 08	202.16	47.21	0.97	0.37	36.94	PV:	193.29 KW	CLOQ: 6.99	MVar L:	18.2	5 Km
Cub_s	/ Lne	PT 08 - 01	-455.50	-131.21	-0.90	0.00	00.30	PV:	15/4.04 KW	CLOQ: 10.55	MVar D:	30.3	0 Km
Barra 05													
3	45.00	0.96 330.59	-10.92										
Cub_1	/Lne	LT 05 - 08	321.02	90.30	0.96	0.58	58.88	Pv:	979.97 kW	cLod: 13.37	Mvar L:	44.4	4 km
Cub_2	/Lne	LT 05 - 06	-523.22	-173.42	-0.95	0.96	96.27	Pv:	660.32 kW	cLod: 4.01	Mvar L:	10.3	2 km
Cub_3	/Lne	LT 04 - 05	202.21	83.12	0.92	0.38	39.02	Pv:	425.70 kW	cLod: 12.15	Mvar L:	50.7	8 km
Barra 04													
3	45.00	0.94 326.01	-12.52										
Cub_1	/Lod	Carga 04	500.00	184.00	0.94	0.94		P10:	500.00 MW	Q10: 184.00	Mvar		
Cub_2	/Lne	LT Ö4 - 14	-298.22	-95.54	-0.95	0.55	55.46	Pv:	868.30 kW	cLod: 12.55	Mvar L:	51.1	8 km
Cub_3	/Lne	LT 03 - 04	0.00	0.00	1.00	0.00	0.00	Pv:	0.00 kW	cLod: -0.00	Mvar L:	84.5	1 km
Cub_4	/Lne	LT 04 - 05	-201.78	-88.46	-0.92	0.39	39.02	Pv:	425.70 kW	cLod: 12.15	Mvar L:	50.7	8 km

Grid: Gr	rid	System	m Stage	e: Grid		Stud	dy Case:	Power Fl	low		Annex:				/ 2	:
	rated Voltage [kV]	Bus-voltage [p.u.] [kV]	[deg]	Active Power [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		Ac	dditional	Data				
Barra 06																
'	345.00	0.96 332.60	-10.10													
Cub_1	/Tr2	Trf 06 - 31	-	-620.78	-237.08	-0.93	1.15	105.36	Tap:	2.00	Min:	-2	Max:		2	
Cub_2	/Lne	LT 05 - 06		523.88	177.99	0.95	0.96	96.27	Pv:	660.32 kW	cLod: 4.	01 Mvar	L:	10.	32	km
Cub_3	/Lne	LT 06 - 07		437.34	141.96	0.95	0.80	80.36	PV:	13/4.64 kW	сьод: 10.	33 Mvai	ц. Т.	36.	50	Km how
Cub_4	/Lne	PL 00 - 11		-340.45	-82.87	-0.97	0.61	60.82	FA:	516.93 KW	сьоа: 13.	04 MVai	н:	32.	33	кт
Barra 31																
'	16.50	0.98 16.20	0.00													
Cub_1	/Sym	G 02		629.98	377.67	0.86	26.17	104.93	Typ:	SL						
Cub_2	/Lod	Carga 31		9.20	4.60	0.89	0.37		P10:	9.20 MW	Q10: 4.	60 Mvar	:			
Cub_3	/Tr2	Trf 06 - 31		620.78	373.07	0.86	25.81	105.36	Tap:	2.00	Min:	-2	Max:		2	
Barna 11																
Darra II	345 00	0 97 335 84	-8 43													
Cub 1	/	Trf 11 - 12	0.40	1.95	45 31	0.04	0.08	15.53	Tap	1.00	Min:	-1	Max		1	ļ
Cub 2	/Lne	LT 06 - 11		341.36	80.57	0.97	0.60	60.82	PV:	916.93 kW	cLod: 13	04 Mvar	L:	32	53	km
Cub 3	/Lne	LT 10 - 11	-	-343.31	-125.89	-0.94	0.63	62.86	Pv:	560.80 kW	cLod: 6.	96 Mvar	L:	17.	06	km
		-		_		-	-	-						-		
Barra 12								I								
1	138.00	0.96 132.33	-8.44					1	1							ļ
Cub_1	/Lod	Carga 12		7.50	88.00	0.08	0.39		P10:	7.50 MW	Q10: 88.	00 Mvar	1			
Cub_2	/Tr2	Trf 11 - 12		-1.91	-44.37	-0.04	0.19	15.53	Tap:	1.00	Min:	-1	Max:		1	
Cub_3	/Tr2	Trf 13 - 12		-5.59	-43.63	-0.13	0.19	15.38	Tap:	1.00	Min:	-1	Max:		1	
Barra 10																
Darra 10	345.00	0.98 338.23	-7.57													
Cub 1	/Tr2	Trf 10 - 32		-650,00	-259.15	-0.93	1.19	95.47	Tap:	2.00	Min:	-2	Max		2	ļ
Cub 3	/Lne	LT 10 - 13		306.13	134.19	0.92	0.57	57.54	Pv:	468.91 kW	cLod: 6.	96 Mvar	L:	17.	06	km
Cub_4	/Lne	LT 10 - 11		343.87	124.96	0.94	0.62	62.86	Pv:	560.80 kW	cLod: 6.	96 Mvar	L:	17.	06	km
																ļ
Barra 32	10.00		0.54													
	16.50	0.98 16.22	0.72	CE0.00	275 00	0.07	00 70	02.05								ļ
Cub_1	/Sym	G U3 mu£ 10 - 00		650.00	375.80	0.87	26.72	93.85	Typ:	PV CC	Min .	~			~	ļ
Cub_2	/Tr2	TTT 10 - 32		650.00	375.80	0.87	26.72	95.47	Tap:	2.00	Min:	-2	Max:		2	ļ
Barra 13																
	345.00	0.97 335.74	-8.33													
Cub 1	/Tr2	Trf 13 - 12		5.62	44.56	0.13	0.08	15.38	Tap:	1.00	Min:	-1	Max:		1	
Cub 3	/Lne	LT 13 - 14		300.04	91.55	0.96	0.54	54.78	Pv:	949.96 kW	cLod: 16.	11 Mvar	- L:	40.	07	km
Cub 4	/Lne	LT 10 - 13	-	-305.66	-136.10	-0.91	0.58	57.54	Pv:	468.91 kW	cLod: 6.	96 Mvar	L:	17.	06	km
-																
L																

Grid: Gr	rid	Syste	m Stage: Grid		Stu	dy Case:	Power F	low		Annex:		/ 3
	rated Voltage [kV]	Bus-voltage [p.u.] [kV]	Active Power [deg] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Da	ta	
Barra 14												
	345.00	0.96 331.38	-10.13									
Cub_2	/Lne	LT 04 - 14	299.09	96.99	0.95	0.55	55.46	Pv:	868.30 kW	cLod: 12.55	Mvar L:	51.18 km
Cub_4	/Lne	LT 14 - 15	0.00	0.00	1.00	0.00	0.00	Pv:	0.00 kW	cLod: -0.00	Mvar L:	86.09 km
Cub_5	/Lne	LT 13 - 14	-299.09	-96.99	-0.95	0.55	54.78	Pv:	949.96 kW	cLod: 16.11	Mvar L:	40.07 km
Barra 15												
	345.00	1.02 352.11	5.75									
Cub_1	/Lod	Carga 15	320.00	153.00	0.90	0.58		P10:	320.00 MW	Q10: 153.00	Mvar	
Cub_4	/Lne	LT 15 - 16	-320.00	-153.00	-0.90	0.58	58.16	Pv:	1064.17 kW	cLod: 18.10	Mvar L:	37.29 km
Cub_5	/Lne	LT 14 - 15	0.00	0.00	1.00	0.00	0.00	Pv:	0.00 kW	cLod: -0.00	Mvar L:	86.09 km
Barra 20												
Durra 20	230.00	0.99 228.22	11.47									
Cub 1	/Lod	Carga 20	628.00	103.00	0.99	1.61		P10:	628.00 MW	010: 103.00	Mvar	
Cub 2	/Tr2	Trf 19 - 20	-122.49	7.02	-1.00	0.31	12.37	Tap:	2.00	Min: -2	Max:	2
Cub 3	/Tr2	Trf 20 - 34	-505.51	-110.02	-0.98	1.31	87.68	Tap:	1.00	Min: -1	Max:	1
_								_				
Barra 19												
	345.00	1.05 362.88	12.45	4 . 64			4.0.07	_				
Cub_1	/ Tr2	Trf 19 - 20	122.60	-4.91	1.00	0.20	12.37	Tap:	2.00	Min: -2	Max:	2
Cub_2	/Tr2	Tri 19 - 33	-629.12	-38.72	-1.00	1.00	80.15	Tap:	2.00	Min: -2	Max:	2
Cub_3	/Lne	PL 10 - 19	506.52	43.63	1.00	0.81	81.28	PA:	3/63.43 KW	CL04: 33.16	MVar L:	//.3/ Km
Barra 34												
	16.50	1.01 16.70	16.65									
Cub_1	/Sym	G 05	508.00	159.84	0.95	18.41	88.76	Typ:	PV			
Cub_2	/Tr2	Trf 20 - 34	508.00	159.84	0.95	18.41	87.68	Tap:	1.00	Min: -1	Max:	1
B												
Darra 33	16 50	1 00 16 45	17 67									
Cub 1	/Sum	G 04	632 00	97 10	0 99	22 44	79 93	Turne	PV			
Cub 2	/Tr2	$\pi r f 19 - 33$	632.00	97.10	0.99	22.44	80.15	Tap:	2.00	Min: -2	Max:	2
	/											-
Barra 36												
	16.50	1.06 17.55	21.77									
Cub_1	/sym	G 07	560.00	93.03	0.99	18.68	81.10	Typ:	PV			
Cub_2	/Tr2	Trf 23 - 36	560.00	93.03	0.99	18.68	76.25	Tap:	0.00	Min: 0	Max:	0

Grid: Gr	rid	Syster	m Stage: Gri	d	Stu	dy Case:	Power F	low		Annez	<:			/	4
	rated Voltage [kV]	Bus-voltage [p.u.] [kV]	Acti Powe [deg] [MW	ve Reactive r Power] [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditior	nal Dat	a			
Barra 23 Cub_5 Cub_1 Cub_3 Cub_4	345.00 /Lod /Tr2 /Lne /Lne	1.05 361.17 Carga 23 Trf 23 - 36 LT 22 - 23 LT 23 - 24	13.93 247.5 -558.5 -42.7 353.8	0 84.60 8 -15.53 6 -61.20 3 -7.87	0.95 -1.00 -0.57 1.00	0.42 0.89 0.12 0.57	76.25 11.93 56.58	PlO: Tap: Pv: Pv:	247.50 MW 0.00 24.30 kW 2516.12 kW	Q10: Min: cLod: cLod:	84.60 0 20.33 39.39	Mvar 1 Mvar 1 Mvar 1	4ax: 5: 5 5: 15	0 38.09 38.86	km km
Barra 22 Cub_1 Cub_2 Cub_3	345.00 /Tr2 /Lne /Lne	1.05 362.87 Trf 22 - 35 LT 22 - 23 LT 21 - 22	14.13 -650.0 42.7 607.2	0 -138.08 8 41.27 2 96.81	-0.98 0.72 0.99	1.06 0.09 0.98	80.95 11.93 98.47	Tap: Pv: Pv:	1.00 24.30 kW 2755.47 kW	Min: cLod: cLod:	-1 20.33 27.94	l Mvar l Mvar l	4ax: 5: 5	1 38.09 55.54	km km
Barra 37 Cub_1 Cub_2	16.50 /sym /Tr2	1.03 16.96 G 08 Trf 25 - 37	15.56 540.0 540.0	0 -23.37 0 -23.37	1.00	18.40 18.40	77.22 75.13	Typ: Tap:	PV 1.00	Min:	-1	1	lax:	1	
Barra 35 Cub_1 Cub_2	16.50 /Sym /Tr2	1.05 17.31 G 06 Trf 22 - 35	19.08 650.0 650.0	0 198.05 0 198.05	0.96 0.96	22.66 22.66	84.94 80.95	Тур: Тар:	PV 1.00	Min:	-1	1	lax:	1	
Barra 24 Cub_1 Cub_4 Cub_5	345.00 /Lod /Lne /Lne	1.04 359.54 Carga 24 LT 16 - 24 LT 23 - 24	7.43 308.6 42.7 -351.3	0 -92.20 2 83.69 2 8.51	0.96 0.45 -1.00	0.52 0.15 0.56	16.15 56.58	P10: Pv: Pv:	308.60 MW 26.13 kW 2516.12 kW	Q10: - cLod: cLod:	-92.20 7.35 39.39	Mvar Mvar I Mvar I	5: 2 5: 13	23.41 38.86	km km
Barra 21 Cub_1 Cub_2 Cub_3	345.00 /Lod /Lne /Lne	1.04 357.25 Carga 21 LT 16 - 21 LT 21 - 22	9.70 274.0 330.4 -604.4	0 115.00 6 -38.47 6 -76.53	0.92 0.99 -0.99	0.48 0.54 0.98	53.77 98.47	PlO: Pv: Pv:	274.00 MW 819.38 kW 2755.47 kW	Q10: 1 cLod: cLod:	115.00 27.36 27.94	Mvar Mvar 1 Mvar 1	5: 5 5: 5	53.56 55.54	km km
Barra 16 Cub_1 Cub_4 Cub_5 Cub_6 Cub_6 Cub_8	345.00 /Lod /Lne /Lne /Lne /Lne /Lne	1.04 357.79 Carga 16 LT 16 - 19 LT 16 - 21 LT 16 - 24 LT 16 - 17 LT 15 - 16	7.31 329.0 -502.7 -329.6 -42.6 225.0 321.0	0 32.30 6 -30.92 4 24.93 9 -90.52 3 -81.80 6 146.01	1.00 -1.00 -0.43 0.94 0.91	0.53 0.81 0.53 0.16 0.39 0.57	81.28 53.77 16.15 38.64 58.16	P10: Pv: Pv: Pv: Pv: Pv:	329.00 MW 3763.43 kW 819.38 kW 26.13 kW 365.78 kW 1064.17 kW	Q10: cLod: cLod: cLod: cLod: cLod:	32.30 33.16 27.36 7.35 14.50 18.10	Mvar Mvar 1 Mvar 1 Mvar 1 Mvar 1 Mvar 1		77.37 53.56 23.41 35.31 37.29	km km km km

Grid: G	rid	Sys	stem Stage	: Grid		Stu	dy Case:	Power F	low		Annex:		/ :	5
	rated Voltage [kV]	Bus-volta [p.u.] [kV]	ige [deg]	Active Power [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		А	dditional Dat	a		
Barra 17	345.00	1.04 359.54	6.22											
Cub_1 Cub_4 Cub_5	/Lne /Lne /Lne	LT 17 - 18 LT 17 - 27 LT 16 - 17	-	195.53 29.13 224.66	-36.30 -35.65 71.94	0.98 0.63 -0.95	0.32 0.07 0.38	31.93 7.39 38.64	Pv: Pv: Pv:	251.89 kW 14.12 kW 365.78 kW	cLod: 14.34 cLod: 35.02 cLod: 14.50	Mvar L: Mvar L: Mvar L:	32.53 68.64 35.31	km km km
Barra 27	345.00	1.04 360.40	5 5.94											
Cub_1 Cub_2 Cub_3	/Lod /Lne /Lne	Carga 27 LT 26 - 27 LT 17 - 27	-	281.00 251.88 -29.12	75.50 -76.32 0.82	0.97 -0.96 -1.00	0.47 0.42 0.05	42.15 7.39	P10: Pv: Pv:	281.00 MW 864.94 kW 14.12 kW	Q10: 75.50 cLod: 26.48 cLod: 35.02	Mvar Mvar L: Mvar L:	58.32 68.64	km km
Barra 18	345.00	1.04 359.92	2 5.36											
Cub_1 Cub_2 Cub_3	/Lod /Lne /Lne	Carga 18 LT 17 - 18 LT 03 - 18	-	158.00 195.28 37.28	24.91 -54.91	-0.99 0.56	0.26 0.32 0.11	31.93 10.65	PT0: PV: PV:	158.00 MW 251.89 kW 32.97 kW	Q10: 30.00 cLod: 14.34 cLod: 23.38	Mvar Mvar L: Mvar L:	32.53 52.77	km km
Barra 03	345.00	1.05 361.69	5.08											
Cub_1 Cub_2 Cub_3 Cub_4	/Lod /Lne /Lne /Lne	Carga 03 LT 03 - 04 LT 02 - 03 LT 03 - 18	-	322.00 0.00 284.75 -37.25	2.40 0.00 -34.32 31.92	1.00 1.00 -0.99 -0.76	0.51 0.00 0.46 0.08	0.00 45.78 10.65	P10: Pv: Pv: Pv:	322.00 MW 0.00 kW 963.87 kW 32.97 kW	Q10: 2.40 cLod: -0.00 cLod: 28.46 cLod: 23.38	Mvar L: Mvar L: Mvar L: Mvar L:	84.51 59.91 52.77	km km km
Barra 26	345.00	1.06 364.89	7.82											
Cub_1 Cub_2 Cub_3 Cub_4 Cub_5	/Lod /Lne /Lne /Lne /Lne	Carga 26 LT 25 - 26 LT 26 - 27 LT 26 - 28 LT 26 - 29	-	139.00 -60.74 252.75 140.76 190.24	17.00 -39.85 58.92 -16.13 -19.94	0.99 -0.84 0.97 -0.99 -0.99	0.22 0.11 0.41 0.22 0.30	11.49 42.15 24.56 32.73	P10: Pv: Pv: Pv: Pv:	139.00 MW 109.10 kW 864.94 kW 790.73 kW 1916.32 kW	Q10: 17.00 cLod: 57.68 cLod: 26.48 cLod: 86.89 cLod:114.48	Mvar Mvar L: Mvar L: Mvar L: Mvar L:	128.15 58.32 188.06 247.97	km km km km
Barra 28	345.00	1.05 363.29) 11.31											
Cub_1 Cub_2 Cub_3	/Lod /Lne /Lne	Carga 28 LT 26 - 28 LT 28 - 29	-	206.00 141.55 347.55	27.60 -62.04 34.44	0.99 0.92 -1.00	0.33 0.25 0.56	24.56 56.00	P10: Pv: Pv:	206.00 MW 790.73 kW 1554.52 kW	Q10: 27.60 cLod: 86.89 cLod: 27.58	Mvar Mvar L: Mvar L:	188.06 59.91	km km

Grid: Gr	rid	Syste	m Stage: Grid		Stu	dy Case:	Power F	low		Annex:		1	6
	rated Voltage [kV]	Bus-voltage [p.u.] [kV]	Active Power [deg] [MW]	Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Data			
Barra 25		1 06 066 75											
Cub_1 Cub_2 Cub_4 Cub_5	345.00 /Lod /Tr2 /Lne /Lne	1.06 366.75 Carga 25 Trf 25 - 37 LT 25 - 26 LT 02 - 25	224.00 -538.34 60.85 253.49	47.20 87.53 -16.73 -118.00	0.98 -0.99 0.96 0.91	0.36 0.86 0.10 0.44	75.13 11.49 44.02	PlO: Tap: Pv: Pv:	224.00 MW 1.00 109.10 kW 4726.46 kW	Q10: 47.20 Mv Min: -1 cLod: 57.68 Mv cLod: 16.38 Mv	ar Max: ar L: 12 ar L: 3	1 28.15 34.12	km km
Barra 29													
Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Lod /Tr2 /Lne /Lne	1.05 362.91 Carga 29 Trf 29 - 38 LT 26 - 29 LT 28 - 29	283.50 -824.77 192.16 349.11	26.90 91.89 -73.54 -45.26	1.00 -0.99 0.93 0.99	0.45 1.32 0.33 0.56	80.86 32.73 56.00	PlO: Tap: Pv: Pv:	283.50 MW 1.00 1916.32 kW 1554.52 kW	Q10: 26.90 Mv Min: -1 cLod:114.48 Mv cLod: 27.58 Mv	ar Max: ar L: 2 ar L: 3	1 17.97 59.91	km km
Barra 38													
Cub_1 Cub_2	16.50 /sym /Tr2	1.03 16.94 G 09 Trf 29 - 38	21.12 830.00 830.00	10.11 10.11	1.00	28.29 28.29	83.01 80.86	Typ: Tap:	PV 1.00	Min: -1	Max:	1	
Barra 30 Cub_1	16.50 /Sym	1.05 17.28 G 10	9.70	107.34	0.92	9.09	27.21	Typ:	PV	Mi1	Mana	1	
Cub_2	/112	111 02 50	230.00	107.54	0.92	5.05	23.57	Tap.	1.00	M111. 1	Max.	-	
Cub_1 Cub_4 Cub_5 Cub_6	345.00 /Tr2 /Lne /Lne /Lne	1.06 364.18 Trf 02 - 30 LT 02 - 03 LT 01 - 02 LT 02 - 25	7.29 -250.00 285.72 213.05 -248.77	-95.13 17.05 -29.35 107.43	-0.93 1.00 0.99 -0.92	0.42 0.45 0.34 0.43	25.97 45.78 34.15 44.02	Tap: Pv: Pv: Pv:	1.00 963.87 kW 1428.57 kW 4726.46 kW	Min: -1 cLod: 28.46 Mv cLod: 77.30 Mv cLod: 16.38 Mv	Max: ar L: ar L: 1 ar L: 1	1 59.91 53.06 34.12	km km km
Barra 01	245 00	1 05 261 59	2 77										
Cub_2 Cub_3	/Lne /Lne	LT 01 - 39 LT 01 - 02	211.62 -211.62	31.17 -31.17	0.99	0.34 0.34	38.01 34.15	Pv: Pv:	455.37 kW 1428.57 kW	cLod: 80.98 Mv cLod: 77.30 Mv	ar L: ar L: 1	99.19 53.06	km km
Barra 39	245 00	1 00 055 05											
Cub_1 Cub_2 Cub_3 Cub_4	345.00 /Sym /Lod /Lne /Lne	1.03 355.35 G 01 Carga 39 LT 01 - 39 LT 09 - 39	0.00 892.83 1104.00 -211.17 0.00	149.23 250.00 -100.77 0.00	0.99 0.98 -0.90 1.00	1.47 1.84 0.38 0.00	9.05 38.01 0.00	Typ: PlO: Pv: Pv:	EV 1104.00 MW 455.37 kW 0.00 kW	Q10: 250.00 Mv cLod: 80.98 Mv cLod: -0.00 Mv	ar ar L: ar L:	99.19 99.19	km km

Grid:	Grid: Grid System Stage: Grid							dy Case:	Power F	low		Annex:		/	7
rated Active Reacti Voltage Bus-voltage Power Power [kV] [p.u.] [kV] [deg] [MW] [Mvar						Reactive Power [Mvar]	Power Factor [-]	Current [kA]	Loading [%]		A	dditional Da	ta		
Barra 0 Cub_ Cub_	9 345.00 1 /Lne 2 /Lne	0.95 3 LT 08 LT 09	28.26 - 09 - 39	-13.18	0.00 0.00	0.00 0.00	0.42	0.00 0.00	6.04 0.00	Pv: Pv:	7.53 kW 0.00 kW	cLod: 34.20 cLod: -0.00	Mvar L: Mvar L:	144.02 99.19	2 km 9 km

							1	
						DIGSILENT	Project:	
						15.1.7	Date: 2/4/	2025
						•	•	
Load Flow Calcula	ation			Con	nplete System Report:	Substations, Volt	age Profiles,	Grid Interchange
AC Load Flow,	balanced	, positi	ve sequence		Automatic Model	Adaptation for Co	nvergence	No
Automatic Tap Consider Read	o Adjust o stive Powe	f Transfo r Limits	ormers	No No	Max. Acceptable Nodes	Load Flow Error f	or	1.00 kVA
					Model Equatio	ns		0.10 %
Grid: Grid		System #	Stage: Grid		Study Case: Power Flo	w	Annex:	/ 8
	rtd.V [kV]	Bus [p.u.]	- voltage [kV] [deg]		-10 -5	Voltage - De O	viation [%] +5	+10
Barra 08					_			
Barra 07	345.00	0.945	325.99 -13.15		_			
Barra 05	345.00	0.948	327.12 -12.57					
	345.00	0.958	330.59 -10.92					
Datta V4	345.00	0.945	326.01 -12.52					
Barra 06	345.00	0.964	332.60 -10.10					
Barra 31	16.50	0.982	16.20 0.00					
Barra 11	345 00	0 973	335 84 -8 43					
Barra 12		0.073						
Barra 10	138.00	0.959	132.33 -8.44					
Barra 32	345.00	0.980	338.23 -7.57					
Barra 12	16.50	0.983	16.22 0.72					
Datta 12	345.00	0.973	335.74 -8.33					
Barra 14	345.00	0.961	331.38 -10.13					
Barra 15	345.00	1.021	352.11 5.75					
Barra 20	230.00	0 992	228 22 11 47			_		
Barra 19	230.00	0.002	220.22 11.4/			-		
Barra 34	345.00	1.052	362.88 12.45					
	16.50	1.012	16.70 16.65					

Grid: Grid		System &	Stage: Gr	id	Study 0	Case: Po	wer Flow		Annex:		/ 9
	rtd.V [kV]	Bus [p.u.]	- voltag [kV]	e [deg]	-	-10	-5	Voltage - Dev 0	viation [%] +5	+10	
Barra 33	16 50	0 997	16 45	17 67							
Barra 36	10.50	1.004	17 55	01 77				· ·			
Barra 23	245.00	1.004	261 17	12.02							
Barra 22	345.00	1.047	361.17	13.55							
Barra 37	345.00	1.052	362.87	14.13							
Barra 35	16.50	1.020	10.50	10.00							
Barra 24	16.50	1.049	17.31	19.08							
Barra 21	345.00	1.042	359.54	7.43							
Barra 16	345.00	1.035	357.25	9.70							
Barra 17	345.00	1.037	357.79	7.31							
Barra 27	345.00	1.042	359.54	6.22							
Barra 18	345.00	1.045	360.46	5.94							
Barra 03	345.00	1.043	359.92	5.36							
Barra 26	345.00	1.048	361.69	5.08							
Barra 28	345.00	1.058	364.89	7.82							
Barra 25	345.00	1.053	363.29	11.31							
Barra 29	345.00	1.063	366.75	8.80							
Barra 38	345.00	1.052	362.91	14.06							
Barra 30	16.50	1.026	16.94	21.12							
Barra 02	16.50	1.048	17.28	9.70							
Barra 01	345.00	1.056	364.18	7.29							
Barra 39	345.00	1.048	361.59	2.77							
Barra 09	345.00	1.030	355.35	0.00							

Grid: Grid		System S	tage: Grid	Study Ca	use: Power	Flow		Annex:		/ 10
	rtd.V Bus - voltage [kV] [p.u.] [kV] [deg]				.0	-5	Voltage - De [.] O	viation [%] +5	+10	
	345.00	0.951	328.26 -13.18							