

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA CARRERA DE INGENIERÍA CIVIL

DISEÑO ESTRUCTURAL DE PUENTE VEHICULAR CON EJE CURVO UBICADO EN LA INTERSECCIÓN DE LA AV. HUAYNA CÁPAC Y AV. 12 DE ABRIL DE LA CIUDAD DE CUENCA

Trabajo de titulación previo a la obtención del título de Ingeniero Civil

AUTORES: DAVID ANTONIO ÁLVAREZ LÓPEZ

JUSTIN JAVIER MINCHALA MACANCELA

TUTOR: ING. MAURO ANDRÉS VALLEJO BOJORQUE, MSc.

Cuenca - Ecuador 2024

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓN

Nosotros, David Antonio Álvarez López con documento de identificación N° 0106698665 y Justin Javier Minchala Macancela con documento de identificación N° 0350092979; manifestamos que:

Somos los autores y responsables del presente trabajo; y, autorizamos a que sin fines de lucro la Universidad Politécnica Salesiana puede usar, difundir, reproducir o publicar de manera total o parcial el presente trabajo de titulación.

Cuenca, 12 de julio del 2024

Atentamente,

David Antonio Álvarez López

0106698665

Justin Javier Minchala Macancela

0350092979

CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA

Nosotros, David Antonio Álvarez López con documento de identificación N° 0106698665 y Justin Javier Minchala Macancela con documento de identificación N° 0350092979, expresamos nuestra voluntad y por medio del presente documento cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores del Proyecto técnico: "Diseño estructural de puente vehicular con eje curvo ubicado en la intersección de la Av. Huayna Cápac y Av. 12 de Abril de la ciudad de Cuenca", el cual ha sido desarrollado para optar por el título de: Ingeniero Civil, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En concordancia con lo manifestado, suscribimos este documento en el momento que hacemos la entrega del trabajo final en formato digital a Biblioteca de la Universidad Politécnica Salesiana.

Cuenca, 12 de julio del 2024

Atentamente,

David Antonio Álvarez López

0106698665

Justin Javier Minchala Macancela

0350092979

CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN

Yo, Mauro Andrés Vallejo Bojorque con documento de identificación N° 0105736490, docente de la Universidad Politécnica Salesiana, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: DISEÑO ESTRUCTURAL DE PUENTE VEHICULAR CON EJE CURVO UBICADO EN LA INTERSECCIÓN DE LA AV. HUAYNA CÁPAC Y AV. 12 DE ABRIL DE LA CIUDAD DE CUENCA, realizado por David Antonio Álvarez López con documento de identificación N° 0106698665 y por Justin Javier Minchala Macancela con documento de identificación N° 0350092979, obteniendo como resultado final el trabajo de titulación bajo la opción Proyecto técnico que cumple con todos los requisitos determinados por la Universidad Politécnica Salesiana.

Cuenca, 12 de julio del 2024

Atentamente,

Ing. Mauro Andrés Vallejo Bojorque, MSc.

0105736490

DEDICATORIA

Este trabajo de titulación está dedicado, en primer lugar, a mis padres René Minchala y Piedad Macancela, quienes me han apoyado incondicionalmente a lo largo de toda mi vida. Gracias a su respaldo constante, sus enseñanzas sobre dedicación, sacrificio y esfuerzo, he podido alcanzar cada una de las metas que me he propuesto.

Agradezco también a todas las amistades y docentes que han compartido su sabiduría y enseñanzas conmigo, permitiéndome llegar a este importante momento de mi vida.

Justin Minchala

A mis padres, Dario Antonio y María Teresa por su apoyo incondicional a lo largo de mi carrera universitaria y su tiempo que emplearon en ayudarme con mis responsabilidades universitarias, y a mis hermanas por su aliento diario hacia mi persona con el fin de motivarme a ser una mejor persona.

Agradezco de manera especial a todos los profesores con los que eh tenido el honor de recibir clases, ya que son los promotores del conocimiento que eh adquirido a través de estos 4 años de trayectoria universitaria.

David Álvarez

ÍNDICE DE CONTENIDO

1.	Coi	ntenido	O	. 1
	1.1	Resu	men	. 1
	1.2	Abst	ract	. 2
	1.3	Prob	lema	. 3
	1.3	.1	Introducción	. 3
	1.3	.2	Antecedentes	. 3
	1.3	.3	Descripción del Problema	. 6
	1.3	.4	Justificación	. 6
	1.3	.5	Alcance	. 7
	1.4	Obje	tivos	. 7
	1.4	.1	Objetivo General	. 8
	1.4	2	Objetivo Específico	. 8
2.	Ma	rco Co	nceptual	. 8
	2.1	Puer	ite	. 8
	2.1	1	Tipos de puente	. 8
	2	2.1.1.1	Puente elaborado de vigas.	. 8
	2	2.1.1.2	Puentes de arco	. 9
	2	2.1.1.3	Puente de Armadura	. 9
	2	2.1.1.4	Puente de Tirantes	. 9
	2	2.1.1.5	Puente Colgante.	10
	2.1	2	Puente de Eje Curvo	10
	2.2	Parte	es Estructurales de un Puente	10
	2.2	.1	Infraestructura	10
	2	2.2.1.1	Estribos	10
	2	2.2.1.2	Pilas	11
	2.2	2	Superestructura	11
	2	2.2.2.1	Tablero	11
	2	2.2.2.2	Hormigón Pre-Esforzado	11
	2	2.2.2.3	Diafragmas	12
	2	2.2.2.4	Losa	12
	2.3	Sínte	esis de los estudios	13

2.3.1	Estudio topográfico	14
2.3.1.	1 Estudio Topográfico RTK	14
2.3.2	Estudio Hidrológico	14
2.3.3	La intensidad media diaria (IMD).	15
2.3.4	Estudio de Cimentación y Geotécnico	15
2.3.5	Vía Arterial	16
2.4 Sol	icitaciones	16
2.4.1	Cargas	16
4.4.1.	1 Carga Horizontal y Gravitacional	17
2.4.2	Cargas Permanentes (DC y DW).	17
2.4.3	Cargas Vivas (LS y LL)	18
2.4.3.	1 HL – 93 Carga Vehicular	18
2.4.4	Empuje de Suelo	19
2.4.5	Cargas de viento (WS).	20
2.4.6	Fuerzas producidas por la variación de la temperatura (Tu)	21
2.4.7	Carga de fatiga	21
2.4.8	Fuerza debida al frenado	21
2.4.9	Fuerza Centrífuga	22
2.4.10	Combinación de carga	22
2.5 Dis	eño Estructural	23
2.6 No	rmativas	24
2.7 Pre	supuesto	24
2.8 Pla	nos	25
3. Metodo	logía	25
3.1 Sof	tware para análisis de datos	26
3.2 Mé	todos, técnicas e instrumentos para recolección de datos	26
4. Diseño S	Superestructura	27
4.1 Ge	neralidades	27
4.1.1	Diseño Protecciones Laterales	27
4.1.1.	1 Especificaciones AASHTO LRFD 2020 para protecciones laterales	28
4.1.1.	2 Diseño Elementos de Barandas	29
4.1.1.	3 Resistencia de los barandales	31
4.1.1.	4 Diseño del Sistema de Anclaje	33

4.2 Dise	ño del Tablero con las Protecciones Laterales	38
4.2.1	Geometría de la sección transversal	38
4.2.1.1	Espesor del Tablero	39
4.2.1.2	Estados de cargas	39
4.2.2	Momentos y Cortes Últimos	47
4.2.2.1	Estado Límite de Resistencia I	48
4.2.2.2	Estado Límite: Evento Extremo II	48
4.2.2.3	Estado Límite de Servicio I	49
4.2.3	Fuerza de Tensión Última	49
4.2.4	Corte Último	49
4.2.5	Armaduras	50
4.2.5.1	Armaduras por Tracción	50
4.2.5.2	Armaduras por Flexión	50
4.2.6	Verificación de Armaduras Colocadas	50
4.2.6.1	Distancia al eje neutro para secciones doblemente reforzadas	51
4.2.7	Límite para Armaduras	51
4.2.7.1	Armadura Máxima	51
4.2.8	Evaluación del Fisuramiento	52
4.2.8.1	Control del agrietamiento	53
4.2.9	Refuerzo por contracción y temperatura	
4.2.10	Refuerzo longitudinal de distribución	54
4.2.11	Procedimiento Abreviado para determinar β y θ - partes no pretensadas	55
4.2.12	Longitud desarrollo a tracción	55
4.2.13	Factor de modificación €d de reducción	56
4.3 Dise	ño de las vigas cajón	57
4.3.1	Pre-dimensionamiento de la sección de la viga cajón	57
4.3.2	Propiedades Geométricas de la viga cajón	59
4.3.3	Factores de distribución de carga viva	60
4.3.3.1	Incremento por carga dinámica IM	62
4.3.4	Cortes y momentos	63
4.3.4.1	Carga muerta	63
4.3.4.2		
4.4 Dise	ño vigas cajón de concreto presforzado	67

4.4.1	Con	nbinaciones de carga – Estados Límite	67
4.4.2	Pre	diseño de tendones	. 68
4.4.3	Tor	ones de baja relajación	69
4.4.4	Fue	rza de tensado inicial	. 70
4.4.5	Pre	-esfuerzo efectivo final	. 70
4.4.6	Con	figuración de los tendones	. 70
4.4.7	Cálo	culo de pérdidas de miembros postensados	. 71
4.4.8	Pér	didas Instantáneas	. 72
4.4.8.	1 P	érdidas por fricción	. 72
4.4.8.2	2 P	érdidas por acortamiento elástico	. 72
4.4.8.3	3 P	érdidas dependientes del tiempo	. 73
4.4.9	Pér	dida a largo plazo	. 75
4.4.9.	1 P	arámetros de contracción y flujo plástico	. 75
4.4.9.2	2 C	oeficientes de flujo plástico de la viga	. 76
4.4.10	Def	ormación unitaria de contracción	. 77
4.4.11	Pér	dida por contracción producida en el hormigón presente en la viga	. 78
4.4.12	Pér	dida por flujo plástico del hormigón de la viga	. 78
4.4.13	Pér	dida por relajación de torones en el presforzado	. 79
4.4.14	Cálo	culo de los esfuerzos en etapas	. 79
4.4.14	.1	Etapa inicial	. 79
4.4.14	.2	Etapa final	. 80
4.4.14	.3	Verificación de la resistencia nominal a flexión	. 81
4.4.15	Lím	ites de armaduras	. 82
4.4.15	.1	Armadura mínima	. 82
4.4.16	Ver	ificación de la resistencia a corte	. 83
4.4.16	5.1	Sección crítica	. 83
4.4.16	5.2	Resistencia al corte de postensado	. 84
4.4.16	5.3	Resistencia al corte del concreto	. 84
4.4.17	Ref	uerzo Transversal	. 85
4.4.17	'.1	Requerimiento de espaciamiento de armadura transversal	. 85
4.4.17	.2	Comprobación del refuerzo transversal mínimo	. 86
4.4.18	Ref	uerzo Longitudinal	. 86
4.4.19	Res	istencia nominal a torsión	. 87

4	.4.20	Contra flecha y deflexiones	. 87
	4.4.20	1 Contra flecha debido a la fuerza de presfuerzo	. 87
	4.4.20	2 Deflexión por cargas permanentes	. 88
	4.4.20	3 Deflexión debida a la carga viva	. 89
	4.4.20	4 Deflexión admisible	. 90
2	.4.21	Zonas de anclaje postensadas	. 90
	4.4.21	1 Placa de apoyo del anclaje	90
	4.4.21	2 Refuerzo en el anclaje	. 91
4.5	Dise	ño del tablero inferior	. 93
4	.5.1	Grosor del tablero inferior	93
۷	.5.2	Cortes y momentos últimos	. 93
4	1.5.3	Límite para armaduras	. 93
	4.5.3.1	Armadura máxima	. 93
	4.5.3.2	Armadura mínima	. 93
۷	1.5.4	Evaluación de fisuramiento	. 94
	4.5.4.1	Control de agrietamiento	. 94
2	1.5.5	Refuerzo por contracción y temperatura	. 94
4	1.5.6	Longitud de desarrollo traccionado	. 94
4.6	Dise	ño de los diafragmas	. 95
4	.6.1	Resolución Estructural	. 95
4	1.6.2	Diseño a flexión	. 96
	4.6.2.1	Combinaciones de carga	. 96
۷	1.6.3	Armadura	. 96
	4.6.3.1	Armadura mínima	. 96
4	1.6.4	Diseño a corte	. 97
	4.6.4.1	Estado límite de Resistencia I	. 97
4.7	Dise	ño de los dispositivos de apoyo	. 97
4	.7.1	Cargas actuantes	. 97
2	1.7.2	Deformación por corte	. 99
	4.7.2.1	Deformación por corte debido a la temperatura	. 99
	4.7.2.2	·	
	4.7.2.3	Combinación de corte, compresión y rotación	100
	4724	Análisis de la estabilidad	101

		4.7.2.5	Refuerzo de acero	101
		4.7.2.6	Deflexión debida a la compresión	102
	4.7	7.3	Anclaje	103
	4.7	7.4	Fuerzas que deforman el apoyo	103
5.	Di	seño In	fraestructura	104
	5.1	Gen	eralidades y Cálculo de solicitaciones a partir de la superestructura	104
	5.2	Fuer	za de frenado	105
	5.3	Carg	as provenientes de la infraestructura	107
	5.3	3.1	Presión de tierras	107
	5.3	3.2	Sobrecarga viva	108
	5.3	3.3	Sobrecarga vertical	109
	5.4	Sism	0	109
	5.4	4.1	Factor Z dependiente de la zona sísmica	109
	5.4	4.2	Fuerza lateral producida por la superestructura	110
	5.4	4.3	Fuerza lateral producida por el peso del estribo	111
	5.4	4.4	Presión ejercida en el estrato del suelo debido a la condición sísmica	111
	5.5	Fuer	zas por contracción y temperatura	113
	5.6	Fact	ores de carga	114
	5.7	Veri	ficación de la estabilidad presente en la cimentación	114
	5.7	7.1	Verificación de la capacidad portante Evento Extremo I	114
	5.7	7.2	Verificación de la capacidad de carga del estado límite de Evento Extremo I	115
	5.7	7.3	Verificación del vuelco y excentricidad máxima del estado límite de Evento Extremo I	117
	5.8	Dise	ño de la cimentación	118
	5.8	8.1	Diseño de la cimentación y solicitaciones para Evento Extremo I	118
		5.8.1.1	Diseño del dedo Evento Extremo I	118
		5.8.1.2	Diseño del tablón	120
	5.8	8.2	Estado límite de Servicio I	121
		5.8.2.1	Control de fisuramiento	121
		5.8.2.2	Dedo	121
		5.8.2.3	Talón	121
	5.9	Dise	ño del cuerpo	122
	5.9	9.1	Armadura a flexión	122
	5.9	9.2	Control de ductilidad en el cuerpo	122

	5.9.	3 Ar	rmadura por contracción y temperatura	122
	5.9.	4 Ar	rmadura para controlar la tensión de la cuña	122
	5.10	Diseño	de la pantalla superior	123
	5.10).1 Ar	nálisis de Sismo	123
	5	.10.1.1	Fuerza lateral transmitida por el peso de la pantalla superior	123
	5	.10.1.2	Fuerza sísmica debido al relleno del talón de la pantalla	123
	5.10).2 Sc	olicitaciones últimas	124
	5.10).3 Di	iseño	124
	5.11	Diseño	de la pantalla lateral	124
	5.11	L.1 Di	iseño	124
	5.12	Diseño	de la traba sismo resistente	125
	5.12	2.1 Ca	argas y solicitaciones	126
	5.12	2.2 Ar	nálisis por corte fricción	127
	5.12	2.3 Ar	nálisis por fuerza de tensión vertical	128
	5.12	2.4 Ar	nálisis a flexión	129
	5.12	2.5 Ar	rmaduras	129
	5	.12.5.1	Armadura principal	129
	5	.12.5.2	Armadura secundaria	130
6.	Pres	supuesto	o Referencial	131
7.	Resi	ultados .		132
	7.1	Mome	ntos plásticos de las protecciones laterales	132
	7.2	Mome	nto último para aceras y protecciones laterales	132
	7.3	Mome	ntos y acero calculado para tablero inferior	133
	7.4	Cargas	aplicadas en los apoyos del puente	133
	7.5	Dimens	siones del Neopreno	134
	7.6	Calculo	de pérdidas en miembros postensados	134
	7.7	Deflexi	ones debidas a la carga muerta en la viga cajón	135
	7.8	Deflexi	ones debidas a la carga viva en la viga cajón	135
	7.9	Trayect	toria cable resultante de postensado	136
	7.10	Carga r	muerta del estribo	137
	7.11	Presiór	n de tierras ejercida en los estribos	137
	7.12	Presiór	n de tierras ejercida en los estribos	137
	7.13	Armad	ura a flexión y a corte de la cimentación	138

	7.14	Diseño del talón	139
8.	Con	clusiones	140
9.	Reco	omendaciones	142
10). R	eferencias bibliográficas	143
11	1. A	NEXOS	147

ÍNDICE DE TABLAS

Tabla 1 - Alturas mínimas para los elementos de la superestructura	13
Tabla 2 - Combinación de carga y factores de carga	22
Tabla 3 - Factores de carga permanentes	23
Tabla 4 - Fuerza de diseño para barandillas de tráfico	28
Tabla 5 - Datos Dimensiones del Puente	38
Tabla 6 - Alturas mínimas para elementos de la superestructura	39
Tabla 7 - Incremento por carga dinámica IM	44
Tabla 8 - Factor de presencia múltiple de sobrecargas	45
Tabla 9 - Fajas Equivalentes	
Tabla 10 - Factores de carga para Resistencia I	48
Tabla 11 - Factores de carga para Evento Extremo II	48
Tabla 12 - Factores de carga para Servicio I	49
Tabla 13 - Geometría de la viga cajón	59
Tabla 14 - Superestructuras habituales cubiertas por los Artículos 4.6.2.2.2 y 4.6.2.2.3	61
Tabla 15 - Parte 2 Superestructuras habituales cubiertas por los Artículos 4.6.2.2.2 y 4.6.2.2.3	
Tabla 16 - Incremento por carga dinámica	
Tabla 17 - Curva de Tensión Deformación	102
Tabla 18 - Altura equivalente del suelo para la carga vehicular en estribos perpendiculares	109
Tabla 19 - Valores del factor Z en función de la zona sísmica adoptada	110
Tabla 20 - Presupuesto Referencial Proyecto	131
Tabla 21 - Momentos plásticos poste y rieles	132
Tabla 22 - Resultados Protecciones Laterales y Acera	132
Tabla 23 - Momentos tablero inferior	133
Tabla 24 - Resultados Apoyos del puente	
Tabla 25 - Dimensiones del Neopreno	134
Tabla 26 - Cálculo de pérdidas en miembros postensados	
Tabla 27 - Deflexiones producidas por carga muerta en la viga cajón	
Tabla 28 - Deflexiones producidas por la carga viva en la viga cajón	
Tabla 29 - Trayectoria cable resultante de la viga postensada	
Tabla 30 - Carga muerta del estribo	
Tabla 31 - Presión de tierras ejercida en los estribos	
Tabla 32 - Cargas y momentos por incidencia sísmica	
Tabla 33 - Armadura a flexión de la cimentación	
Tabla 34 - Armadura a corte para la cimentación	
Tabla 35 - Diseño del talón	139

ÍNDICE DE FIGURAS

Figura 1 - HL 93 Diseño Camión	18
Figura 2 - Diseño en Tándem HL-93	19
Figura 3 - Distribución de protecciones laterales	28
Figura 4 - Baranda TIPO P-3 para tráfico vehicular	29
Figura 5 - Potencial de impacto en de las ruedas	30
Figura 6 - Criterio para determinar el retiro de postes	30
Figura 7 - Modos de falla	32
Figura 8 - Pernos de anclaje	33
Figura 9 - Esfuerzos de tracción y compresión en placa base	34
Figura 10 - Cono de arrancamiento por tracción	35
Figura 11 - Placa en varilla	37
Figura 12 - Sección transversal de los postes	40
Figura 13 - Sección Transversal de los rieles	40
Figura 14 - Sección Transversal de la acera	41
Figura 15 - Sección Transversal del Voladizo en la sección A-A	41
Figura 16 - DC Corte	42
Figura 17 - DC Momento	42
Figura 18 - DW Corte	
Figura 19 - DW Momento	43
Figura 20 - Acción de Fuerzas Transversales	
Figura 21 - Acción de Fuerzas Verticales	47
Figura 22 - Viga rectangular doblemente reforzada	
Figura 23 - Armadura del Tablero	54
Figura 24 - Sección transversal Viga cajón	58
Figura 25 - Boceto de cálculo viga cajón	59
Figura 26 - Boceto para carga muerta total	
Figura 27 - Esquema Estructural del Camión de diseño Posición 1	
Figura 28 - Esquema Estructural del Camión de diseño Posición 2	
Figura 29 - Boceto del Tándem de diseño	65
Figura 30 - Esquema Estructural del Carga de carril para corte	
Figura 31 - Esquema Estructural de la Carga de carril para momento	
Figura 32 - Trayectoria del cable resultante	
Figura 33 - Componente de la fuerza de postensado efectiva	
Figura 34 - Procedimiento de cálculo para armadura mínima transversal	86
Figura 35 - Contra flecha por postensado	88
Figura 36 - Cálculo de momentos en sección longitudinal para el refuerzo de anclaje	92

Figura 37 - Dimensiones del diafragma de tramo Vista Frontal	95
Figura 38 - Vista Lateral Corte A-A Diafragma	95
Figura 39 - Representación fuerzas provenientes de la superestructura	105
Figura 40 - Solicitaciones debidas a la fuerza de frenado	106
Figura 41 - Fuerzas producidas por la presión de tierras	107
Figura 42 - Ecuador, zonas sísmicas para propósitos de diseño y valor del factor de zona Z	110
Figura 43 - Representación de las presiones actuantes en el relleno delantero	116
Figura 44 - Esfuerzos en la sección A-A el relleno delantero	119
Figura 45 - Esfuerzos producidos en el talón	120
Figura 46 - Representación esquemática de la traba sismo resistente	125
Figura 47 - Trayectoria Cable resultante viga postensada	136
Figura 48 - Modelado del puente	148
Figura 49 - Combinaciones de carga para la simulación de la estructura	149
Figura 50 - Simulado de la viga cajón en el programa de simulación	149
Figura 51 - Diagrama de Torsión producido en la estructura	150
Figura 52 - Diagrama de momento producido en la estructura	150
Figura 53 - Diagrama de cortante producido en la estructura	151

1. Contenido

1.1 Resumen

En el barrio El Vergel, en Cuenca, provincia del Azuay, existe un puente que conecta las Avenidas Huayna Cápac y Doce de Abril. Con los años el congestionamiento vehicular ha incrementado potencialmente en esta zona por el crecimiento de la población y la movilización ciudadana al trabajo, escuela, etc.

El presente trabajo se centra en el diseño netamente de la estructura de un puente curvo que se ubicará en el río Tomebamba, orientado en la mitigación del tráfico en una zona urbana congestionada como es el sector de El Vergel, proporcionando una solución viable y eficiente que mejore la fluidez vehicular y reduzca los tiempos de desplazamiento en la región de estudio.

En este proyecto, basado en estudios previos, se utilizan modelos matemáticos y simulaciones por computadora para evaluar la estabilidad y la resistencia del puente bajo diferentes condiciones de carga, momentos producidos por las mismas sobre el puente, y cargas torsionales en las vigas que se producirán por la curvatura del puente. Es por esto que se ha optado por trabajar con vigas de hormigón presforzado tipo cajón, con el fin de asegurar la durabilidad y seguridad de la estructura a largo plazo.

Las dimensiones del puente se determinaron en base al estudio geométrico previo, con una luz de 37 metros en el que se enfocará el diseño estructural, concretamente desde la abscisa 0+021 a la abscisa 0+038, con dos carriles de ida que incorporan a los vehículos que fluyen por la Av. Huayna Cápac hacia la Av. Doce de Abril, con una longitud transversal de calzada de 6 metros, y un ancho total de 8.50 metros considerando las veredas.

También se estima un presupuesto referencial en base a los materiales utilizados para el diseño con sus cantidades correspondientes, en el cual se menciona un presupuesto aproximado de \$198.319,49 (ciento noventa y ocho mil tres cientos diecinueve dólares americanos con cuarenta y un centavos), considerando los precios unitarios actualizados del 2024.

Palabras Clave

Puente, Vigas de Hormigón Pre-esforzado, Presupuesto Referencial, Cargas Torsionales

1.2 Abstract

In El Vergel site in Cuenca, Azuay, there is a bridge that connects Huayna Cápac Avenue and Doce de Abril Avenue. Over the years, vehicular congestion has significantly increased in this area due to population growth and the movement of residents to work, school, etc.

This work focuses on the structural design of a curved bridge over the Tomebamba River, aimed at mitigating traffic in a congested urban area like El Vergel. The objective is to provide a viable and efficient solution that improves vehicle flow and reduces travel times in the study region.

In this project, based on previous studies, mathematical models and computer simulations are used to evaluate the stability and strength of the bridge under different load conditions, moments produced by them on the bridge, and torsional loads on the beams that will be produced by the curvature of the bridge. That is why it has been chosen to work with box-type prereinforced concrete beams, in order to ensure the durability and safety of the structure in the long term.

The estimation of the dimensions of the bridge was developed based on the previous geometric study, with a span of 37 meters in which the structural design will be focused,

specifically from the abscissa 0+021 to the abscissa 0+038, with two one-way lanes that incorporate the vehicles that flow through Av. Huayna Cápac towards Av. Doce de Abril, with a roadway width of 6 meters, and a total width of 8.50 meters considering the sidewalks.

A reference budget is also estimated based on the materials used for the design with their corresponding quantities, which mentions an approximate budget of \$198,319.49 (one hundred and ninety-eight thousand three hundred and nineteen US dollars and forty-one cents), considering the updated unit prices of 2024.

1.3 Problema

1.3.1 Introducción

El crecimiento poblacional y la movilización urbanística han provocado un aumento significativo en la demanda de infraestructuras viables eficientes. El diseño junto con la construcción de puentes son tareas fundamentales y esenciales en el área de la ingeniería civil. El uso del concreto pre-esforzado permite la creación de estructuras robustas y duraderas, es por este motivo que se decidió implementar vigas de concreto pre-esforzado.

El presente proyecto se enfocará en el análisis estructural del puente, los momentos producidos por los apoyos, los detalles constructivos que se deberán implementar en el puente con su respectivo cálculo. A través de un análisis detallado del diseño y la construcción de este puente, se pretende impulsar el desarrollo regional, y al mismo tiempo, ofrecer nuevas perspectivas y conocimientos en el área de la ingeniería civil.

1.3.2 Antecedentes

En la ciudad de Cuenca, provincia Azuay, a lo largo de los últimos años ha incrementado la presencia de vehículos lo que ha provocado problemas de tránsito, según un reporte realizado

por el diario El Mercurio (2021) se expone que en el año de 2006 constaban 52.674 automotores y para el cierre del reportaje se estimaba una cantidad de 145.000 automotores, la tasa de incremento automovilístico en Cuenca es del 5% lo que es mayor al 2% que representa el crecimiento poblacional, creando así problemas de movilidad en las calles del cantón Cuenca.

La Municipalidad de Cuenca en el Plan de movilidad y espacios públicos (2015) investigó las modalidades de transporte presentes en la ciudad y su frecuencia, con los siguientes resultados: 24% caminando, 2% en bicicleta, 31% en auto particular, 39% en bus, 2% en taxi y un 2% en moto, con una frecuencia de todos o casi todos los días. Estos datos muestran que el 74% de la población prefiere movilizarse mediante vehículos automotores.

La movilidad de la población se da por la ubicación de los equipamientos y actividades económicas del cantón, en base a lo dicho en el PDOT del GAD Municipal de Cuenca (2022) los equipamientos son instalaciones diseñadas para producir bienes y servicios destinados principalmente a cubrir las necesidades de las personas. De acuerdo a un estudio realizado para el PMEP (2015) en la ciudad de Cuenca en un día laborable se generan 636.072 viajes entre las zonas externas e internas de la zona.

El Cantón Cuenca cuenta con una estructura vial, con diferentes características y capacidades para la conectividad intra cantonal e interprovincial. En el análisis realizado del tomo I del PMEP (2015) se jerarquiza a la red vial en: vías expresas, vías arteriales, vías colectoras y vías locales, siendo las vías expresas las de mayor tráfico y de grandes distancias mientras las vías locales son las rutas de acceso a los destinos.

En base a la nueva categorización de la jerarquía vial, proyectada en el tomo II del PMEP basada en la velocidad de circulación, se clasifica en dos tipos de redes y a su vez se subdividen

en: red básica que son las Vías 50 y Vías 40, y en la red barrial que son las vías 30, 20 y 10 (Municipio de Cuenca, 2015). Ubicando así a las vías de la zona de estudio en la red básica, vía 40.

Igualmente, el PEMP (2015) menciona los atributos de la oferta vial, indica que en el cantón Cuenca el 66% de las rutas están orientadas con doble sentido de circulación, el 62% del total de vías se encuentra en buen estado, el 8% en mal estado, 29% en regular y el 1% en regular/mal estado.

La cantidad de carriles en la ciudad está distribuida en un 60% para vías de dos carriles, 29% vías de un carril y el 11% para vías de tres carriles. La zona urbana presenta diferentes secciones de calzado, el 47% tiene una sección de 7,5-12 metros, el 28% una sección de 12-19 metros para la circulación de los vehículos. Con estas propiedades de infraestructura viaria obtuvieron las capacidades viales, obteniendo un 78% de las vías con una capacidad de 4.000 veh/h y un 22% de las vías supera los 5.000 veh/d.

Por las características geográficas del cantón Cuenca, atravesada por cuatro ríos prominentes: el rio Yanuncay, Tarqui, Machángara y el Tomebamba (zona de estudio), la municipalidad ha construido puentes para mejorar la conectividad y facilitar el flujo del tráfico vehicular. En un reporte de EL MERCURIO comenta que "La dirección de Obras Públicas del Municipio de Cuenca habrá firmado los contratos y entregado los anticipos para la construcción de tres nuevos puentes vehiculares y la adecuación de dos parques" (Campoverde, 2023).

Estos estarán ubicados en: Patamarca, Machángara y la avenida Diez de agosto, cada uno tendrá una duración alrededor de 8 meses de construcción. A principios del año 2024, la alcaldía de Cuenca anunció a través de su página web la asignación de más de 27 millones de dólares

americanos para proyectos públicos, incluyendo la construcción del puente en Patamarca, con una inversión específica de USD 1.155.051,80 (Alcaldía de Cuenca, 2024).

1.3.3 Descripción del Problema

Las áreas urbanas densamente pobladas enfrentan grandes retos vinculados con la congestión vehicular, lo que afecta negativamente el bienestar de los residentes y el progreso económico del área. En este contexto, el diseño y construcción de puentes desempeña un papel fundamental en la mejora de la movilidad urbana y la reducción de los tiempos de desplazamiento.

1.3.4 Justificación

En el sector de El Vergel ubicado en el cantón Cuenca, provincia Azuay, se presenta un problema en el control de tránsito vehicular debido al crecimiento de la población que se ha registrado en los últimos años, como evidencia de esta, el documento se rige en los datos recopilados en la plataforma virtual del INEC (2024) que nos muestra que en el año 2001 existía un total de 276.551 habitantes, en el 2010 fueron 329.737 y en el año 2022 un total de 361.524 habitantes.

Como consecuencia del crecimiento poblacional se ha obtenido el incremento de la cantidad de vehículos de la ciudad, y como un claro ejemplo el congestionamiento presente en las avenidas Huayna Cápac y Doce de Abril, ya que el tráfico alcanza aproximadamente los 40.000 vehículos por día (Municipalidad de Cuenca, 2015). Lo que ha llevado a una saturación vehícular en la zona, y en su capacidad de manejo, que se ha intentado controlar a través de semáforos. La intensidad media diaria calculada por el PMEP (2015) indica que la avenida Huayna Cápac tiene

un volumen sobre los 50.000 veh/día y la avenida Doce de abril cuenta con un volumen entre 20.000 a 50.000 veh/día.

Un causante del congestionamiento expuesto en el PMEP (2015) es la presencia de intersecciones y más de un semáforo por kilómetro, características presentes en la intersección que generan las avenidas Huayna Cápac y Doce de abril. La implementación de un puente alternativo que canalice el tráfico proveniente de la avenida Huayna Cápac hacia el oeste de la avenida Doce de Abril (aguas arriba del río Tomebamba) aliviana la congestión presente en la intersección, dejando esta intersección exclusivamente para Las Herrerías y Av. Doce de abril (aguas abajo del río Tomebamba). "Es importante conocer el parque automotor de la ciudad para mejorar las condiciones de seguridad vial de las intersecciones y zonas conflictivas" (Rodas, 2023).

Por tal razón que se ha decidido proponer un camino alternativo (puente), que facilite la circulación de los vehículos provenientes desde la Av. Huayna Cápac hasta la Av. Doce de Abril. En este contexto, la introducción de un puente alternativo entre estas Avenidas emerge como una estrategia para optimizar la distribución del tráfico y mitigar la congestión en una de las redes viales más transitadas de la ciudad.

1.3.5 Alcance

El presente estudio denotará únicamente el diseño estructural de un puente con eje curvo, que involucra el diseño con hormigón armado y pretensado, el diseño estructural contará con la superestructura, diseñada en un tablero de losa maciza apoyada sobre vigas pre-esforzadas, y también con la infraestructura que serán los cimientos, estribos y apoyos para la superestructura.

1.4 Objetivos

1.4.1 Objetivo General

Elaborar el proyecto estructural del puente con un eje curvo para la conexión y mitigación del tráfico entre la Avenida Huayna Cápac y la Avenida Doce de Abril, en el sector El Vergel en el cantón Cuenca.

1.4.2 Objetivo Específico

- Estimar los parámetros necesarios tales como; capacidad portante del suelo,
 topografía del terreno, tránsito vehicular del área de estudio, creciente del río y cargas
 aplicables para el diseño del sistema estructural del puente en el sector de El Vergel.
- Diseñar el sistema estructural acorde a la normativa nacional vigente y aplicar un software especializado en el análisis estructural.
- Elaborar el presupuesto, planos del puente vehicular.

2. Marco Conceptual

El entendimiento de una base conceptual sólida que aborde aspectos relevantes servirá como guía para explorar las diferentes variables e influencias que deben considerarse en el diseño estructural. A continuación, repasamos algunos conceptos generales a tratar en este diseño.

2.1 Puente

"Los puentes son estructuras que conectan dos puntos separados por un cuerpo de agua, un valle o una carretera. Han sido utilizados desde la antigüedad para facilitar el transporte y el comercio" (Pinto, n.d.)

2.1.1 Tipos de puente

2.1.1.1 Puente elaborado de vigas.

Los puentes de viga son aquellos cuya estructura es soportada a partir de vigas que se colocan paralelamente. La distancia entre las vigas del puente es asegurada por una serie de estribos o pilas que soportan el tablero. El material utilizado en el puente o en sus vigas varía según su función, ya sea para el tránsito de vehículos o trenes. (Almao, 2022)

2.1.1.2 Puentes de arco.

Los puentes de arco son resistentes y sólidos. Un arco es una forma curva que por naturaleza es resistente. Permite un tramo más largo que un puente de vigas sencillo. La fuerza hacia abajo en la calzada continúa a lo largo del arco. Cuando la fuerza llega a los soportes finales, o estribos, éstos la resisten. La forma de arco es sobre todo buena para cruzar ríos porque deja espacio para que los barcos pasen por debajo del puente. (Almao, 2022)

2.1.1.3 Puente de Armadura.

Los puentes de armadura son aquellos que se sostienen en la tensión conjunta de las diferentes piezas que componen el armazón. Los de armadura son un tipo de puentes que no suelen tener muchos apoyos por debajo de ellos, trasladando la importancia al armazón superior, que tiene la función de soportar las cargas. (Almao, 2022)

2.1.1.4 Puente de Tirantes.

Los puentes atirantados son aquellos cuyo tablero está suspendido por uno o varios pilones centrales que se enlazan con el tablero a través de tirantes. Son similares a los puentes colgantes, pero se diferencian de ellos en que tienen componentes que actúan tanto por tracción como por compresión. Además, los puentes colgantes tienden a necesitar más cables. (Almao, 2022)

2.1.1.5 Puente Colgante.

Este tipo de puentes cuentan con un arco invertido y un tablero ubicado sobre él, además está compuestos por varios cables de acero. Estos cables se sostienen a partir de dos vigas de acero u hormigón en los extremos del puente, y sujetan el tablero mediante tirantes verticales. (Almao, 2022)

2.1.2 Puente de Eje Curvo

Un puente curvo permite resolver las cada vez más estrictas y complejas restricciones geométricas que poseen las vías actuales. La naturaleza de estas restricciones es muy diversa, desde una mezcla entre obstáculos naturales y una mayor concienciación medioambiental, pasando por derechos de paso en zonas urbanas hasta el desarrollo de grandes cruces entre viales a diferentes alturas, con enlaces entre ellos. (Galante, 2017, p. 21)

2.2 Partes Estructurales de un Puente

2.2.1 Infraestructura

La infraestructura hace referencia a los componentes estructurales que se encuentran por debajo de la superficie de rodadura y que soportan la superestructura del puente, es decir, incluye a los componentes que estén en contacto con el sustrato del suelo y generan estabilidad y soporte al puente.

2.2.1.1 Estribos

El estribo es la parte de una infraestructura que se encuentra en sus extremos y cumple dos funciones, transferir las cargas de la superestructura y soportar la presión del terreno. Los

estribos son un aspecto específico a considerar, ya que en la mayoría de los puentes se presentan en forma de terraplén, excepto en algunos puentes elevados. (Cabrera Martínez, 2005)

2.2.1.2 Pilas

Las pilas de un puente son estructuras verticales pertenecientes a la infraestructura que sostienen las superestructura y transmiten cargas de esta al terreno. Funcionan como soportes intermedios entre los estribos, aportando estabilidad y resistencia frente a las fuerzas tanto verticales como horizontales. (Leonhardt, 1968)

2.2.2 Superestructura

La superestructura de un puente se refiere a los componentes estructurales que se encuentran por encima de la infraestructuras y que llevan el tráfico y otras cargas a través del vano del puente. La superestructura es responsable de soportar las cargas verticales y transferirlas a la infraestructura.

2.2.2.1 Tablero

La parte del puente diseñada para sostener el tráfico de vehículos y personas de manera directa es conocida como tablero. Esta estructura puede estar compuesta por una losa de hormigón reforzado, una superficie de madera o una placa de acero, y es responsable de distribuir la carga hacia el sistema de vigas y largueros del puente. (LANAMME, 1999)

2.2.2.2 Hormigón Pre-Esforzado

En el concreto presforzado existen dos categorías: pretensado y postensado. Los miembros del concreto pretensado presforzado se producen estirando o tensando los tendones entre anclajes externos antes de vaciar el concreto y al endurecerse el concreto fresco, se adhiere

al acero. Cuando el concreto alcanza la resistencia requerida, se retira la fuerza presforzante aplicada por gatos, y esa misma fuerza es transmitida por adherencia, del acero al concreto. (Sergio Navarro, 2009)

2.2.2.3 Diafragmas

Los diafragmas están constituidos por componentes estructurales colocados en las plataformas de puentes de estructura metálica y de estructura mixta, ya sea dentro de secciones en forma de cajón o transversalemnte entre las vigas. Estos elementos ofrecen refuerzo lateral a la estructura, permitiendo la transmisión de fuerzas producidas por sismos o por el viento hacia la infraestructura. Su función es mantener la configuración de las secciones sin cambios, asegurando que las deformaciones y tensiones causadas por la distorsión inevitable no comprometan la seguridad de la estructura. (Clayton, 2017)

2.2.2.4 Losa

Este elemento forma parte de los elementos principales de la superestructura, ya que es donde estará asentada la vía como tal, es decir, la capa de rodadura que es por donde los carros circularán y donde estarán montadas o instaladas las demás partes de la superestructura, como protecciones laterales, etc.

La losa de hormigón es la sección del puente que muestra mayores daños, ya que es la que directamente soporta el peso de las ruedas de los vehículos. Entre los daños observados en la losa de concreto se encuentran grietas, filtraciones de agua, desprendimiento del material y asentamiento del concreto. Estos daños ocurren debido a la carga repetitiva de las ruedas. Las grietas se extienden en una dirección formando una red, y eventualmente algunas partes del concreto se desprenden. (JICA, 2007)

- Peralte mínimo de Losas

En base a la AASHTO, los espesores mínimos para las plataformas de hormigón en voladizo son de 0.2 metros cuando sostienen una serie de postes instalados sobre el la plataforma o tablero, de 0.3 metros para los mencionados postes instalados lateralmente y 0.2 metros cuando sostienen barreras de hormigón. Los parámetros para calcular el grosor de la losa se los detalla mediante la siguiente tabla.

Tabla 1 - Alturas mínimas para los elementos de la superestructura

		Minimum Depth (Including Deck)	
Superstructure Material Type		When variable depth membe adjusted to account for chan positive and negative momen Simple Spans	ges in relative stiffness of
Material	Type Slabs with main reinforcement	1.2 (S+10)	•
Reinforced	parallel to traffic	30	$\frac{S+10}{30} \ge 0.54 \text{ ft.}$
Concrete	T-Beams	0.070L	0.065L
Concrete	Box Beams	0.060L	0.055L
	Pedestrian Structure	0.035L	0.033 <i>L</i>
	Beams		
	Slabs	$0.030L \ge 6.5$ in.	$0.027L \ge 6.5$ in.
Prestressed	CIP Box Beams	0.045L	0.040 <i>L</i>
Concrete	Precast I-Beams	0.045L	0.040 <i>L</i>
Concrete	Pedestrian Structure Beams	0.033 <i>L</i>	0.030L
	Adjacent Box Beams	0.030L	0.025L
	Overall Depth of Composite I-Beam	0.040L	0.032L
Charl	Depth of I-Beam Portion of	0.033L	0.027L
Steel	Composite I-Beam		
	Trusses	0.100 <i>L</i>	0.100 <i>L</i>

Nota: Fórmulas para determinar las alturas mínimas de los elementos de la superestructura según la AASHTO LRFD 2020.

L=Luz del puente (m)

S=Separación ente vigas (m)

2.3 Síntesis de los estudios

Para la elaboración del diseño estructural se presentaron las características de la zona y propiedades del suelo.

2.3.1 Estudio topográfico

Como lo menciona CIENTEC (n.d.), El levantamiento topográfico es la etapa inicial la evaluación técnica de un sitio. Este proceso emplea una variedad de métodos y técnicas para procesar los datos del área de estudio, lo que permite una representación precisa y detallada en un dibujo a escala reducida. Además, identifica puntos relevantes y alteraciones realizadas.

El levantamiento es un estudio descriptivo además de ser la primera etapa de estudio, donde se analizan las características del mismo: geográficas, físicas y geológicas. Además, se emplea una serie diversa de métodos para realizar las mediciones y procesamientos de los datos del terreno.

2.3.1.1 Estudio Topográfico RTK.

Esta tecnología ofrece algo por demás interesante: posicionamiento preciso en tiempo real, es decir, obtención de coordenadas en el momento de la medición; la posibilidad reside en la introducción de un enlace de comunicaciones entre los receptores GPS y a la incorporación de software de procesamiento en los mismos equipos. (Ferreccio, 2016, p. 12)

2.3.2 Estudio Hidrológico

El estudio hidrológico es una evaluación detallada de los recursos hídricos de una región específica. Este tipo de estudio analiza los patrones de precipitación, escorrentía, etc. El estudio hidrológico por realizar tendrá un enfoque hacia los niveles máximos al que llegará el cauce del río, para así proceder con el diseño de la infraestructura a realizarse.

Mediante un estudio hidrológico podemos conocer y evaluar sus características físicas y geomorfológicas de la cuenca, analizar y tratar la información hidrometeorológica

existente de la cuenca, analizar y valuar la escorrentía mediante registros históricos y obtener caudales sintéticos, encontrar el funcionamiento del hidrológico de la cuenca, hallar la demanda de agua para las áreas de riego, encontrar el balance hídrico de la cuenca, se complementa con el estudio logístico del SIG para la obtención de los planos georreferenciados de los resultados e información de campo. (INRENA, 2007,p. 2)

"Este análisis permite obtener datos cruciales sobre el régimen del agua, las características del cauce y las posibles situaciones de riesgo, como inundaciones" (Pachas, 2020).

2.3.3 La intensidad media diaria (IMD).

"Se define como el número total de vehículos que atraviesan una determina la sección durante un año, dividido por 365 días, expresado en unidades de vehículos equivalentes 5 en los cuales se utilizaron factores de corrección para vehículos livianos, pesados y motos, según la composición de tráfico de cada intersección en específico." (Martinez & Solano, 2014)

Los estudios sobre los volúmenes de tránsito se realizan para obtener información sobre el movimiento de vehículos y/o personas sobre puntos o secciones específicas en un sistema vial. Para un estudio de tráfico, la medición básica más importante es el conteo o aforo de los vehículos, que se realizan para obtener estimaciones de volúmenes. La unidad de medida en el tráfico de una carretera es el volumen del tráfico promedio diario anual cuya abreviación es el TPDA, que se analizará a partir de las observaciones puntuales del tráfico y de los factores de variación. Chiquito (2014)

2.3.4 Estudio de Cimentación y Geotécnico

Amorin (n.d.) plantea que este estudio se enfoca en la capacidad portante del suelo para determinar la estabilidad de las estructuras que se cimentarán en él, junto con los datos

geotécnicos del suelo, ya que se busca determinar la resistencia del suelo para evaluar la estabilidad de cimentaciones en la superficie que se realizan en el mismo conociendo su tipo.

El agrupar tipos de suelo por el parecido de propiedades ofrece la caracterización del suelo por la granulometría y la plasticidad. Sin embargo, el ingeniero debe ser precavido al utilizar esta ayuda valiosa, ya que las soluciones a problemas de flujos, asentamientos o estabilidad soportados sólo en la clasificación, puede llevar a resultados desastrosos. (Duque, 2003, p. 1)

El análisis y desarrollo de un procedimiento a modo de recomendación para el diseño de un puente es de suma importancia, ya que nos permite de manera adecuada brindar una perspectiva clara y ejemplificada con la cual se pueda contar como referencia a la hora de desarrollar este tipo de obras, además se analizan y toman en cuenta variables que no se conciben de forma clara a la hora de razonar el diseño de este tipo de estructura. (Bonilla Delgado, 2012, p. 5)

2.3.5 Vía Arterial.

Son la estructura principal del sistema vial urbano, diseñada para facilitar desplazamientos a escala urbana al conectar accesos externos con diferentes áreas de la ciudad. Este tipo de vías urbanas están destinadas principalmente al tráfico motorizado, típicamente tienen dos o más carriles por sentido y una velocidad de circulación limitada a 50 km/h.

2.4 Solicitaciones

Para diseñar la estructura del puente se analizó diferentes solicitaciones, en base a las normativas vigentes presentes en el Ecuador.

2.4.1 *Cargas*

Las cargas son los pesos o fuerzas que se ejercerán sobre el puente, considerando cargas de viento, también se consideran las fuerzas debidas a la carga a la que se someterá la estructura. Es importante realizar un análisis en casos donde exista una carga extrema, y factores de importancia operacional y de redundancia.

4.4.1.1 Carga Horizontal y Gravitacional

El diseño de puentes curvos para soportar cargas horizontales y gravitacionales difiere del de puentes rectos debido a las fuerzas de torsión debido a la curva generada por el eje longitudinal del puente. Si se sustituyen las fuerzas torsionales por fuerzas similares en vigas rectas, se puede obtener una aproximada solución. Estas fuerzas equivalentes, que se desarrollan a partir del equilibrio, dependen del radio del puente. (Requisitos de reglamento para concreto estructural y comentario de requisitos de reglamento, 2019)

2.4.2 Cargas Permanentes (DC y DW).

"Las cargas permanentes (o cargas muertas) están constituidas por los pesos de todos los elementos estructurales, tales como: muros, paredes, recubrimientos, instalaciones sanitarias, eléctricas, mecánicas, máquinas y todo artefacto integrado permanentemente a la estructura" (NEC-SE-CG, 2015, p. 18). Las cargas permanentes de un puente son aquellas fuerzas y pesos que actúan de manera continua sobre la estructura a lo largo de la vida de esta. Las cargas mencionadas son fundamentales al momento de diseñar la estructura, ya que deben ser consideradas para asegurar la estabilidad y seguridad de la construcción.

Se puede decir que la correcta consideración y análisis de estas cargas permanentes es importante para asegurar que el puente tenga capacidad de soportarlas sin problemas durante su

vida útil. Los ingenieros estructurales deben tener en cuenta todas las cargas que actúan durante el diseño junto con la construcción de la estructura.

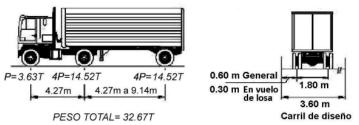
2.4.3 Cargas Vivas (LS y LL)

"Las sobrecargas que utilicen en el cálculo dependen de la ocupación a la que está destinada la edificación y están conformadas por los pesos de personas, muebles, equipos y accesorios móviles o temporales, mercadería en transacción y otras" (NEC-SE-CG, 2015, p. 18).

2.4.3.1 HL – 93 Carga Vehicular

El camión de diseño HL-93 hace referencia a un modelo de carga estándar utilizado en la ingeniería estructural, de manera particular en Estados Unidos, y está definido por la norma AASHTOO LRFD Bridge Design Specifications, donde está de manera detallada las especificaciones para diseñar un puente. El objetivo del camión de diseño HL-93 es proporcionar un estándar consistente y seguro para el diseño de puentes, garantizando que puedan soportar las cargas esperadas durante su vida útil.

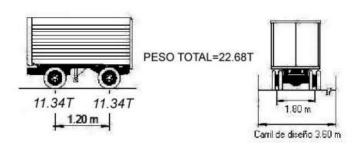
- Camión de Diseño


El camión de diseño consiste en un vehículo ficticio que representa una carga móvil que presenta cargas puntuales en sus ruedas o ejes:

Un eje delantero con una carga de aproximadamente 35.6 kN

Dos ejes traseros con una carga de aproximadamente 142.3 kN cada uno

La separación entre ejes se puede ajustar para simular diferentes condiciones de carga


Figura 1 - HL 93 Diseño Camión

Nota: La figura muestra el modelo del camión de diseño que se aplica para el cálculo la carga vehicular máxima del puente. Fuente: AASHTO LRFD

- Tándem de Diseño

Figura 2 - Diseño en Tándem HL-93

Nota: La figura muestra el modelo del tándem de diseño que se aplica para el cálculo la carga vehicular máxima del puente. Fuente: AASHTO LRFD

- Carril de Diseño

Para el diseño de carril se debe aplicar una carga unirforme de aproximadamente 9.3 kN/m a lo largo de la longitud del carril. Esta carga representa de manera continua la distribución vehicular y el tráfico a lo largo del puente.

2.4.4 Empuje de Suelo.

Los elementos que experimentarán empujes del suelo en la superestructura serán los estribos. Cuando estos ceden debido a la presión del suelo, esta disminuye hasta alcanzar un valor mínimo denominado presión activa. En contraste, si el estribo se presiona contra el relleno adyacente, la presión aumenta hasta un valor máximo conocido como presión pasiva. (Puentes, n.d.)

Para el cálculo del empuje activo mediante el método de Coulomb se fundamenta en el análisis del equilibrio límite global de un sistema compuesto por el muro y la cuña del terreno homogéneo detrás de la estructura en cuestión, asumiendo que la pared es rugosa. Para un terreno homogéneo y seco, el diagram de presiones se lo representa de manera lineal con una distribución uniforme.

$$P = Ka + \gamma + z$$

P=empuje del suelo

Ka=Coeficiente activo de empuje del suelo

γ=Peso especifico del terreno

z=altura de la pared

A través de la teoría de Coulomb podemos determinar el coeficiente estático de empuje de tierras:

$$Ka = \frac{\cos^{2}(\emptyset' - \theta)}{\cos^{2} \left[\frac{\sin(\delta'\emptyset') \sin(\emptyset' - \alpha)}{\cos(\delta' + \theta) \cos(\theta - \alpha)} \right]}$$

Ø ': ángulo de fricción interna

 θ : ángulo respecto a la vertical de relleno

 δ ': ángulo de fricción entre el muro y el relleno del material

α: ángulo respecto a la horizontal del relleno del material

2.4.5 Cargas de viento (WS).

La carga de viento son los esfuerzos o tensiones que el viento transmite a un componente o estructura. Hay tres tipos de cargas de viento que se aplican a una construcción: levantamiento, cortante y carga lateral del viento. Incluso los diseños de edificios estándar deben tener en cuenta las cargas de viento. (Cisnero, 2022)

2.4.6 Fuerzas producidas por la variación de la temperatura (Tu).

La variación de temperatura afectará a la estructura debido a la contracción y a la expansión del acero al incrementarse o disminuir la temperatura. Es por esto por lo que debe considerarse como una fuerza a la hora del respectivo dimensionamiento.

2.4.7 Carga de fatiga.

La fatiga puede causar daños acumulativos en los materiales del puente debido a las cargas repetitivas, lo que eventualmente puede llevar al colapso de la estructura. Por lo tanto, comprender y evaluar la carga de fatiga en el diseño y análisis de puentes permite identificar posibles puntos de falla y tomar medidas preventivas para mitigar el riesgo de fallo prematuro. (Nussbaumer, 2011)

2.4.8 Fuerza debida al frenado

Para determinar la fuerza de frenado según la norma AASHTO LRFD determina las cargas longitudinales en un puente debido a la desaceleración de vehículos. Considera la masa, velocidad de los vehículos, condiciones de frenado y el coeficiente de fricción, garantizando que el puente soporte estas cargas sin comprometer su integridad estructural y seguridad.

Se deberá considerar entre la mayor de las siguientes condiciones:

- 25% de las cargas por eje del camión o tándem

- 5% del camión de diseño más la carga del carril ó 5% del tándem de diseño

La fuerza debida al frenado es igual a:

$$b = \frac{v^2}{2ga}$$

a=Longitud de desaceleración uniforme (m)

v=velocidad del vehículo (m/s)

g=gravedad (m/s2)

2.4.9 Fuerza Centrífuga

Las fuerzas centrífugas se considerarán aplicadas a una altura de 1.8 m sobre la superficie de rodadura. En el cálculo de estas fuerzas, se debe incluir el factor de modificación, pero no se tendrá en cuenta los efectos dinámicos. En los puentes curvos, se deben considerar fuerzas radiales horizontales equivalentes al peso de cada eje del camión o del tándem de diseño, multiplicados por un factor determinado:

$$C = \frac{0.0105}{V^2 \cdot R}$$

V=velocidad de diseño (km/h)

R=radio de la curva (m)

2.4.10 Combinación de carga

La combinación de cargas utilizadas se basó en las especificaciones presentadas en la AASHTO LRFD 2014.

Tabla 2 - Combinación de carga y factores de carga

	DC									U	se One	of These	at a Tin	ne
	DD DW EH EV	LL												
	ES EL	IM CE												
Load	PS	BR												
Combination Limit State	CR SH	PL LS	WA.	WS	WI.	FR	TU	TG	SE	EQ	BL	IC	CT	CV
Strength I	γ _p	1.75	1.00	-	- WL	1.00	0.50/1.20	ΥτG	YSE			_	-	-
(unless noted)	-													
Strength II	Υp	1.35	1.00	_	_	1.00	0.50/1.20	ΥTG	YSE		_	_	_	
Strength III	γ_p	_	1.00	1.4 0	_	1.00	0.50/1.20	Υrg	YSE	_	_	_	_	_
Strength IV	Υp	_	1.00	_	_	1.00	0.50/1.20	_	_	_	_	_	_	_
Strength V	γ_p	1.35	1.00	0.4	1.0	1.00	0.50/1.20	Υrσ	YSE	_	_	_	_	_
Extreme Event I	γ,	γEQ	1.00	-	-	1.00	_	-	-	1.00	-	_	-	_
Extreme Event II	γ_p	0.50	1.00	_	_	1.00	_	_	_	_	1.00	1.00	1.00	1.00
Service I	1.00	1.00	1.00	0.3	1.0	1.00	1.00/1.20	Ϋ́τσ	YSE	_	_	_	_	_
Service II	1.00	1.30	1.00	_	_	1.00	1.00/1.20	_	_	_	_	_	_	_
Service III	1.00	0.80	1.00	_	_	1.00	1.00/1.20	γτG	YSE	_	_	_	_	_
Service IV	1.00	_	1.00	0.7	_	1.00	1.00/1.20	_	1.0	_	_	_	_	_
Fatigue I— LL, IM & CE only	_	1.50	_	_	_	_	_	_	_	_	_	_	_	_
Fatigue II— LL, IM & CE only	_	0.75	_	_	_	_	_	_	_	_	_	_	_	_

Nota: Tipo de combinaciones posibles considerando los diferentes tipos de carga con su respectivo factor, según la AASHTO LRFD 2020.

Tabla 3 - Factores de carga permanentes

	Type of Load, Foundation Type, and		
	Method Used to Calculate Downdrag		Minimum
DC: Component and Attachments		1.25	0.90
DC: Strength IV	DC: Strength IV only		0.90
DD: Downdrag	Piles, α Tomlinson Method	1.40	0.25
	Piles, λ Method	1.05	0.30
	Drilled shafts, O'Neill and Reese (2010) Method	1.25	0.35
	faces and Utilities	1.50	0.65
EH: Horizontal E	arth Pressure		
 Active 		1.50	0.90
 At-Rest 		1.35	0.90
 AEP for anch 	ored walls	1.35	N/A
EL: Locked-in Construction Stresses		1.00	1.00
EV: Vertical Earth Pressure			
 Overall and O 	Compound Stability	1.00	N/A
 Retaining 	g Walls and Abutments	1.35	1.00
 MSE wa 	ll internal stability soil reinforcement loads		
	s Method		
	nforcement and connection rupture	1.35	N/A
	l failure – geosynthetics (Service I)	1.20	N/A
	nt Gravity Method	1.35	N/A
 Rigid Buried 		1.30	0.90
 Rigid Frames 		1.35	0.90
 Flexible Buri 			
	lox Culverts, Structural Plate Culverts with Deep Corrugations, and		
	ass Culverts	1.50	0.90
	plastic Culverts	1.30	0.90
 All other 		1.95	0.90
	Compound Stability for Soil Failure in Soil Nail Walls	1.00	N/A
ES: Earth Surchar	ge	1.50	0.75

Nota: Tipo de combinaciones posibles considerando los diferentes tipos de carga con su respectivo factor, según la AASHTO LRFD 2020.

2.5 Diseño Estructural

Con el diseño estructural se busca lograr una estructura que no falle en ningún momento de su vida útil. Una estructura se reconoce como "fallida" en el momento que esta deja de cumplir sus funciones de la manera adecuada. De esto depende que una obra se mantenga útil en el tiempo, y se haya llevado a cabo de la manera óptima posible. (Quispe, 2018)

2.6 Normativas

El empleo de normativas, "pretende dar respuesta a la demanda de la sociedad en cuanto a la mejora de la calidad en la edificación, proteger al usuario y fomentar el desarrollo sostenible" MIDUVI (n.d.). Se emplearon las siguientes normativas para el diseño del puente:

- ESPECIFICACIONES GENERALES PARA CONSTRUCCIÓN DE CAMINOS Y
 PUENTES, Ministerio de Obras Públicas del Ecuador, MOP –001-F 2002
- Norma Ecuatoriana de la Construcción NEC.
- Norma Ecuatoriana Vial, NEVI-12-MTOP.
- AASHTO LRFD Bridge Design Specifications, Seventh Edition 2014, American Association of State Highway and Transportation Officials (AASHTO).
- Building Code Requirement for Structural Concrete and Commentary, ACI 318-14,
 American Concrete Institute (ACI).
- Building Code Requirement for Structural Concrete and Commentary, ACI 318-19,
 American Concrete Institute (ACI).
- Guide for Concrete Highway Bridge Deck Construction, ACI 345-11, American Concrete
 Institute (ACI)

2.7 Presupuesto

"Los presupuestos son un sistema de planeación que nos permite conocer en forma anticipada los resultados de las operaciones en un periodo determinado a fin de tomar decisiones precisas y oportunas" (Carlos y Romero, 2022).

2.8 Planos

Los planos permiten a los ingenieros y arquitectos realizar los bocetos del diseño y evaluar la factibilidad de las propuestas. Para los profesionales, el plano, refleja de forma precisa todos los elementos del proyecto, en lo que respecta a dimensiones, distribución espacial y demás características fundamentales. (UDV, 2022)

3. Metodología

Se iniciará el proceso con la ubicación de la zona de estudio, el análisis de antecedentes de trabajos similares y una revisión de la bibliografía relevante. Después, se recogerá varios parámetros de estudio, que incluirán aspectos topográficos, geotécnicos, información hidrológica y de tráfico, y cargas a considerar en el diseño. Seguidamente, se determinará el sistema estructural más adecuado para su diseño, empleando un software especializado. Una vez completado el diseño estructural, se avanzará hacia la elaboración de los planos, la cuantificación de los materiales necesarios para la construcción. A lo largo del proceso de investigación, se mantendrá un seguimiento continuo del avance del trabajo, con revisiones internas semanales y reuniones periódicas con el tutor para asegurar la coherencia y calidad del documento final.

El enfoque metodológico de este proyecto es predominantemente cuantitativo, centrándose en la medición y análisis de parámetros del suelo, información hidrológica, intensidad de tráfico, topográficos y solicitaciones a través de métodos numéricos. Además, se

adopta una metodología aplicada, buscando soluciones prácticas para los desafíos específicos del diseño estructural del puente, para mejorar la movilidad urbana y la seguridad vial en la zona.

3.1 Software para análisis de datos

Los datos recolectados se procesarán utilizando una variedad de programas informáticos. En el caso de la variable topográfica, los datos serán representados en el software Civil3D, y el complemento Vehicle Tracking será utilizado para el diseño de la curva necesaria para el puente. Por otro lado, los parámetros geotécnicos se determinarán en hojas de cálculo, como Excel. Respecto al conteo de vehículos, los datos obtenidos se procesarán también en una hoja de cálculo, mientras que Synchro servirá para el análisis de la intersección al incorporar el nuevo puente con la avenida Doce de abril. Por último, para el diseño, análisis y modelado estructural del puente, se utilizaron programas de simulación y hojas de cálculo.

3.2 Métodos, técnicas e instrumentos para recolección de datos

La recopilación de datos se realizará de acuerdo con las variables específicas del estudio. Para la variable topográfica, también se llevará a cabo un levantamiento del terreno usando equipo RTK. En cuanto a la variable geotécnica, se realizarán estudios del suelo para obtener sus propiedades mediante una calicata, obteniendo material para ensayos de granulometría, límites de Atterberg, densidad y corte directo en el laboratorio de la universidad. Los datos hidrológicos se recopilarán revisando información existente en proyectos de la zona de estudio. Para la variable de tránsito, se realizó un conteo de camiones, vehículos livianos y motos durante una semana, utilizando una cámara para recolectar los datos necesarios.

Una vez recopilados los datos, se procederá con el diseño de la estructura del puente, dividiéndolo en dos partes: la superestructura y la infraestructura. Para cada parte del diseño, se

definirán las propiedades de los materiales a utilizar, como la resistencia del hormigón y la resistencia de fluencia.

El diseño de los componentes se verificará mediante controles de resistencia a la flexión, corte y fisuración, asegurando su correcto funcionamiento conforme a las especificaciones de la AASHTO LRFD 2020. Además, se analizará el comportamiento del puente en programas de simulación, garantizando un diseño adecuado.

Finalizado el diseño de la estructura, se calculará el material empleado para el análisis de costos y se elaborarán los planos estructurales.

4. Diseño Superestructura

4.1 Generalidades

La primera etapa de la superestructura consistió en definir el tipo de puente a utilizar. Seleccionado el tipo de puente y su viga correspondiente, se diseñaron las diferentes estructuras que lo componen, incluyendo la protección lateral y acera, losa superior, viga de cajón postensado, losa inferior, diafragmas y apoyos de neopreno.

El diseño estructural cubrirá las abscisas 0+00 y 0+75 del diseño vial, está compuesta por: un tramo simplemente apoyado con una luz libre de 75 metros, y un radio de curvatura de 44.47 metros respecto al eje vial, dos vigas cajón curva de hormigón pretensado, y las protecciones laterales.

4.1.1 Diseño Protecciones Laterales

El objetivo de las barandas es contener el tráfico vehicular y orientar a los mismos en caso de que se desvíen al momento de circular a través del puente. Es necesario demostrar que todas

las barreras y barandas para el tráfico vehicular son resistentes al choque desde el punto de vista tanto geométrico como estructural.

4.1.1.1 Especificaciones AASHTO LRFD 2020 para protecciones laterales

Las protecciones laterales, al tener doble funcionalidad, es decir, para vehículos y peatones, deben cumplir con los establecido en el Art. 13.8.1 de la norma, que indica la altura mínima para las barandas de peatones debe ser 1.06 metros, medida desde la cara superior de la acera. Las barandas peatonales pueden constar de componentes verticales y horizontales.

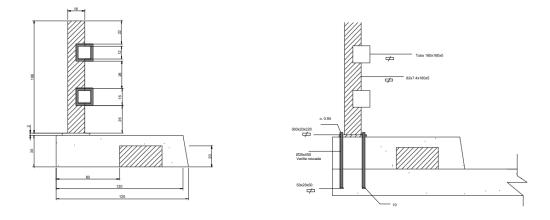
Figura 3 - Distribución de protecciones laterales

Nota: La figura muestra la geometría y distribución de las protecciones laterales.

Fuente: Autoría Propia

Además, debido a la ubicación de la zona donde se realizará el proyecto, se seleccionará un nivel de ensayo TL-2.

Tabla 4 - Fuerza de diseño para barandillas de tráfico

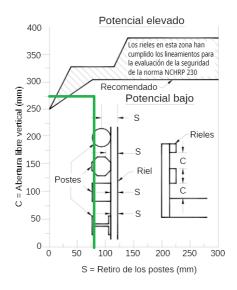

Railing Test Levels						
Design Forces and Designations	TL-1	TL-2	TL-3	TL-4	TL-5	TL-6
F _t Transverse (kips)	13.5	27.0	54.0	54.0	124.0	175.0
F _L Longitudinal (kips)	4.5	9.0	18.0	18.0	41.0	58.0
F_{ν} Vertical (kips) Down	4.5	4.5	4.5	18.0	80.0	80.0
L_t and L_L (ft)	4.0	4.0	4.0	3.5	8.0	8.0
L_{ν} (ft)	18.0	18.0	18.0	18.0	40.0	40.0
H_{ε} (min) (in.)	18.0	20.0	24.0	32.0	42.0	56.0
Minimum H Height of Rail (in.)	27.0	27.0	27.0	32.0	42.0	90.0

Nota: Tipo de cargas aplicables para el diseño de barandillas dependiendo de su topología, según la AASHTO LRFD 2020.

4.1.1.2 Diseño Elementos de Barandas

Para las barandas de tráfico vehicular, los criterios para determinar la máxima abertura libre debajo del riel interior (cb), la separación que presentan los postes (S) y también la máxima abertura entre rieles (c), y deben basarse en los anchos de contacto de los rieles de las barandas típicas que se especifican en la norma, en la Figura A13.1.1-1. En base a la figura se seleccionará la baranda TIPO P-3 para el tráfico vehicular.

Figura 4 - Baranda TIPO P-3 para tráfico vehicular



Nota: La figura muestra el tipo de baranda que se utilizará para el diseño. Fuente: Autoría Propia

Las alturas mencionadas deben cumplir ciertas condiciones:

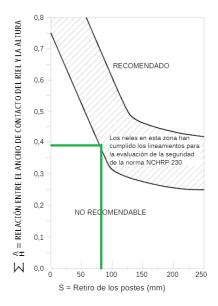

- La sumatoria de los anchos de riel deberá ser mayor al 25% de la altura total de la baranda.
- La intersección entre S y C, deberá estar dentro o estar debajo del área sombreada, como se indica en la Figura 5.
- Para las barandas de este caso, la intersección entre S y ΣA/H debe ubicarse dentro de la zona sombreada o sobre la misma, como se indica en la Figura 6.

Figura 5 - Potencial de impacto en de las ruedas

Nota: La figura muestra el potencial de impacto de las ruedas, paragolpes o capó contra los postes. Fuente: AASHTO LRFD 2020

Figura 6 - Criterio para determinar el retiro de postes

Nota: La figura muestra los criterios para determinar el retiro de los postes. Fuente:

AASHTO LRFD 2020

4.1.1.3 Resistencia de los barandales

- Interior del tramo de barandales

Según la norma AASHTO LRFD 2020, en el apéndice A13.3.2 para diseñar barandas formadas por postes y vigas bajo condiciones de falla se deberán utilizar anpalisis inelásticos. Si la falla no involucra el poste final de un segmento, la resistencia nominal crítica de los rieles, R, se deberá tomar como el menor valor entre los determinados mediante las ecuaciones 1 y 2 para diferentes números de tramos de baranda, N.

Modo de falla por un tramo:

$$R = \frac{16Mp}{2NL - Lt}$$

Modo de falla por dos tramos:

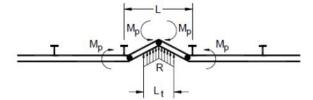
$$R = \frac{16Mp + N^2PpL}{2NL - Lt}$$

Modo de falla por tres tramos:

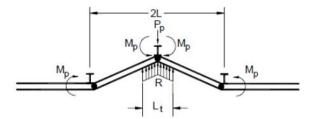
$$R = \frac{16Mp + (N-1)(N+1) \cdot Pp \cdot L}{2NL - Lt}$$

Donde:

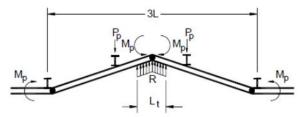
L=Separación de los postes o longitud de un tramo simple (mm)


Mp=Resistencia inelastica o para línea de fluencia de todos los rieles que contribuyeron a una rótula plástica (ton-m)

Pp=Resistencia última a la carga transversal de un único poste ubicado a una altura Y por encima del tablero (ton)


R=Resistencia última total de la baranda, es decir su resistencia nominal (ton)

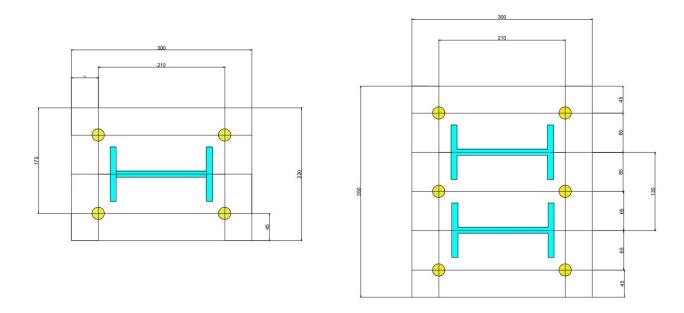
Lt, L_L = Longitud transversal de las cargas distribuidas debidas al impacto de vehículos, Ft F_L (mm)


Figura 7 - Modos de falla

Modo de falla para un solo tramo

Modo de falla para dos tramos

Modo de falla para tres tramos


Nota: La figura muestra los modos de falla para los uno, dos y tres tramos, al aplicar un análisis inelástico. Fuente: AASHTO LRFD 2020

4.1.1.4 Diseño del Sistema de Anclaje

- Tracción por flexión

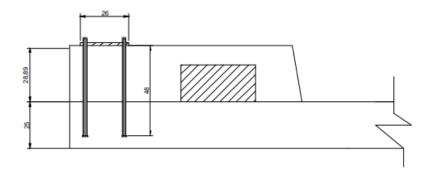

Placa Base de 26 cm

Figura 8 - Pernos de anclaje

Nota: La figura muestra la ubicación de los pernos que se utilizará para el diseño de la placa base. Fuente: Autoría Propia

Figura 9 - Esfuerzos de tracción y compresión en placa base

Nota: La figura muestra los esfuerzos de tracción y compresión en placa base. Fuente:

Autoría Propia

Para el diseño de anclajes, la norma AASHTO LRFD 2020 se refiere a la norma ACI 3 18 19, concretamente en el capítulo 17 donde se mencionan los requisitos de diseño para anclajes en

el concreto, utilizados para transferir cargas estructurales mediante tracción, cortante o la combinación de ambas, entre elementos estructurales conectados y de seguridad.

- Límites de diseño placa base según ACI 3 18-19

Para anclajes adheridos con profundidades de embebido $4d_a \le h_{ef} \le 20d_a$, los requisitos de resistencia de adherencia se pueden considerar satisfechos al usar el procedimiento de 17.6.5. (AASHTO LRFD, 2020)

Para anclajes de tornillo con profundidades de embebido $5d_a \le h_{ef} \le 10d_a$ y $h_{ef} \ge 40mm$ los requisitos para resistencia por arrancamiento del concreto se pueden considerar satisfechos por medio de los procedimientos de diseño de 17.6.2 y 17.7.2. (AASHTO LRFD, 2020)

Resistencia al arrancamiento del concreto por parte de un anclaje en tracción N_{cb}

La resistencia al arranque de un anclaje en tracción se determina considerando diversos factores como la geometría del anclaje, las propiedades del concreto y las condiciones de carga.

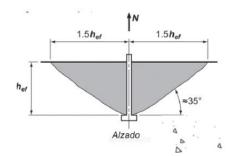


Figura 10 - Cono de arrancamiento por tracción

Nota: La figura muestra el cono de arrancamiento por tracción para el análisis de resistencia. Fuente: ACI 3 18-19

Para el diseño de la resistencia nominal al arrancamiento se considera la siguiente fórmula:

$$N_{cbg} = \frac{A_{Nc}}{A_{Nco}} \cdot \Psi_{ec,N} \cdot \Psi_{ed,N} \cdot \Psi_{c,N} \cdot N_b$$

Donde:

 $\Psi_{ec,N} = 1.00$

Factor de modificación para grupos de anclajes

 $\Psi_{ed,N} = 0.7 + 0.3 \cdot \left(\frac{c_{a,min}}{1.5 \cdot h_{ef}}\right)$ Factor de modificación de efectos de borde

 $\Psi_{c,N}=1.25$

Para anclajes preinstalados

 $\Psi_{cp,N} = 1.00$

Factor de modificación para anclajes pos instalados

Resistencia a la extracción por deslizamiento de un anclaje a tracción

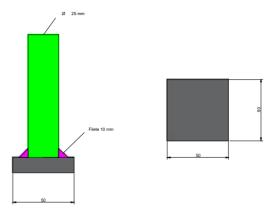
Según la ACI 3 18-19, la resistencia nominal a la extracción por deslizamiento en tracción de un anclaje ya sea preinstalado o postinstalado, de tipo expansivo o con sobre perforación en su base, N_{pn} no debe superar:

$$N_{pn} = \Psi_{c,P} N_p$$

Donde:

 $\Psi_{c,P=1.4}$

Sin fisuración


 $N_{p=8\cdot A_{brg}\cdot f'c}$

Np no debe exceder de 8*Abrg*f'c

Donde:

 $A_{brg}=$ Área neta de apoyo de la cabeza de un perno o tornillo de anclaje, o barra corrugada con cabeza

Figura 11 - Placa en varilla

Nota: La figura muestra las dimensiones del diseño de la placa en varilla a utilizar.

Fuente: Autoría Propia

- Anclaje en hormigón

MPa

Según el Art. 25.4.4.2 de la norma ACI 3 18-19 para el diseño de barras corrugadas con cabeza longitudinal de desarrollo a tracción l_{dt} , debe ser mayor que:

 $l_{dt} = \left(\frac{0.19\Psi_e f y}{\sqrt{f'c}}\right)$ Con un valor de Ψe especificado en la norma y siendo f'c no mayor a 40

$$\Psi_e = 1$$

$$l_{dt} = 374mm$$

$$l_{dt} \geq 8db \ y \ 150mm$$

Se ha definido un valor de 470mm de longitud de desarrollo de acuerdo con la ACI 3 18-19, considerando que debe atravesar la vereda y la losa.

4.2 Diseño del Tablero con las Protecciones Laterales

4.2.1 Geometría de la sección transversal

Para el diseño del tablero se considerará el tradicional basado en análisis de flexión, y se utilizará el método de análisis aproximado con fajas para determinar las solicitaciones en la losa por la sobrecarga determinada por la norma AASHTO LRFD 2020 en el Art. 4.6.1.1.

Tabla 5 - Datos Dimensiones del Puente

Longitud Total (Lt)	37	m
Ancho total del puente (At)	8.5	m
Ancho de calzada (Ac)	6	m
Ancho de la vereda (Av)	1.25	m
Luz de cálculo (Lc)	37	m
Longitud del volado (Lv)	1.25	m
Número de carriles	2	#
Número de vigas	3	#

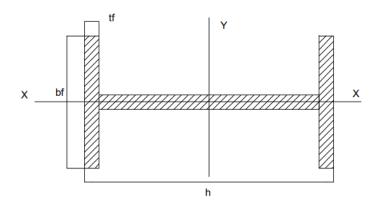
Nota: Datos obtenidos del diseño geométrico previamente realizado del puente.

4.2.1.1 Espesor del Tablero

Para determinar el espesor mínimo de la losa la normativa AASHTO LRFD 2020 nos presenta la siguiente tabla, de tal manera que se pueda establecer el espesor que debe ser mayor a 20 cm, caso contrario se escogerá este valor como el espesor del tablero tipo losa.

Tabla 6 - Alturas mínimas para elementos de la superestructura

		Minimum Depth (Including Deck)			
Material	Superstructure Type	When variable depth members are used, values may be adjusted to account for changes in relative stiffness of positive and negative moment sections Simple Spans Continuous Spans			
Reinforced	Slabs with main reinforcement parallel to traffic	$\frac{1.2(S+10)}{30}$	$\frac{S+10}{30} \ge 0.54 \text{ ft.}$		
Concrete	T-Beams	0.070 <i>L</i>	0.065L		
	Box Beams	0.060L	0.055L		
	Pedestrian Structure Beams	0.035L	0.033L		
	Slabs	$0.030L \ge 6.5 \text{ in.}$	$0.027L \ge 6.5$ in.		
Prestressed	CIP Box Beams	0.045L	0.040L		
Concrete	Precast I-Beams	0.045L	0.040L		
Concrete	Pedestrian Structure Beams	0.033L	0.030L		
	Adjacent Box Beams	0.030L	0.025L		
	Overall Depth of Composite I-Beam	0.040L	0.032L		
Steel	Depth of I-Beam Portion of Composite I-Beam	0.033 <i>L</i>	0.027L		
	Trusses	0.100 <i>L</i>	0.100L		


Nota: Peraltes mínimos utilizados comúnmente para superestructuras de peralte constante, según la AASHTO LRFD 2020.

4.2.1.2 Estados de cargas

- Protecciones Laterales

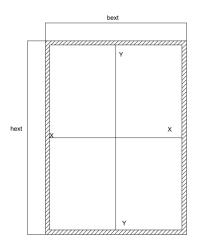
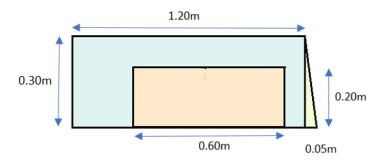

Para el cálculo del peso de las protecciones laterales se deberá sumar el valor de los postes y las rieles.

Figura 12 - Sección transversal de los postes

Nota: La figura muestra la sección transversal de los postes seleccionando una viga tipo IPE 160 presentada en el catálogo de DIPAC. Fuente: Autoría Propia

Figura 13 - Sección Transversal de los rieles

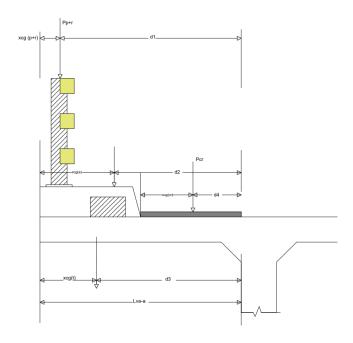


Nota: La figura muestra la sección transversal de los rieles. Fuente: Autoría Propia

- Acera

Para el cálculo del peso de la acera se asumirá un ancho de 1 m.

Figura 14 - Sección Transversal de la acera

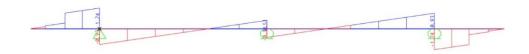


Nota: La figura muestra la sección transversal de la acera. Fuente: Autoría Propia

- Carga Muerta más Carpeta Asfáltica

a) Sección A-A: Voladizo

Figura 15 - Sección Transversal del Voladizo en la sección A-A


Nota: La figura muestra la sección transversal del voladizo al realizar un seccionamiento en el sentido A-A. Fuente: Autoría Propia

b) Apoyos y Tramos Interiores

Para determinar el vuelo en tableros, cuando corresponda, se puede aplicar los requisitos del Art. 3.6.1.3.4 en lugar del ancho de faja indicado en la Tabla 3.13 para vuelos de tableros. Las fajas equivalentes para tableros que se extienden principalmente en la dirección transversal no estarán limitadas cuando se trate de su ancho.

Para representar el diagrama de corte y momento de las cargas DC, se unificaron tos los elementos para así determinar un solo diagrama.

Figura 16 - DC Corte

Nota: La figura muestra el diagrama de corte de las cargas DC: compuestas por postes+rieles, acera y tablero. Fuente: Autoría Propia

Figura 17 - DC Momento

Nota: La figura muestra el diagrama de momento de las cargas DC: compuestas por postes+rieles, acera y tablero. Fuente: Autoría Propia

Figura 18 - DW Corte

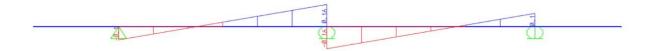


Figura 19 - DW Momento

Nota: La figura muestra el diagrama de corte debido a la capa de rodadura considerada como la carga muerta. Fuente: Autoría Propia

Nota: La figura muestra el diagrama de momento debido a la capa de rodadura considerada como la carga muerta. Fuente: Autoría Propia

- Carga Viva

a) Incremento por carga dinámica

El incremento por carga dinámica no será aplicable para las cargas peatonales ni a la carga del carril de diseño. (Luévanos Rojas et al., 2018). El factor para aplicar a la carga estática se tomará como:

$$\left(1+\frac{IM}{100}\right)$$

En donde se considerará un IM de 33% para considerar el impacto provocado por la carga de las ruedas de los vehículos que transitarán por el puente.

Tabla 7 - Incremento por carga dinámica IM

Component	IM
Deck Joints—All Limit States	75%
All Other Components:	
Fatigue and Fracture Limit State	15%
All Other Limit States	33%

Nota: Factor que se aplicará por incremento por carga dinámica según la norma AASHTO LRFD 2020.

b) Factor de presencia múltiple de sobrecargas

La solicitación extrema se determinará analizando cada uno de los carriles con su carga. Esto se hace multiplicando por un factor de presencia múltiple correspondiente, para tener en cuenta la probabilidad de que los carriles estén simultáneamente ocupados por la totalidad de la sobrecarga de diseño HL-93. (AASHTO LRFD, 2020)

Tabla 8 - Factor de presencia múltiple de sobrecargas

	Multiple Presence
Number of Loaded Lanes	Factors, m
1	1.20
2	1.00
3	0.85
>3	0.65

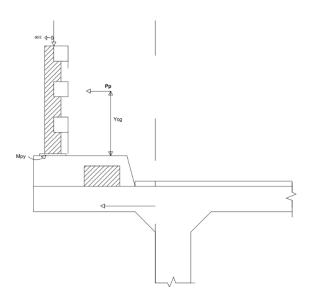
Nota: Factor de presencia múltiple de sobrecargas m, según la norma AASHTO LRFD 2020.

c) Análisis voladizo

La solicitación extrema debe calcularse como el valor de: carriles de diseño cada uno con un ancho cargado de 3.05 metros, y deben estar dispuestos de manera que generen las máximas solicitaciones demandadas. El camión o tándem se colocará de manera transversal, de tal manera que ninguno de los centros de las cargas producidas por las ruedas esté a menos de:

- 30 cm a partir de la baranda cuando se trata del diseño del tablero en voladizo.
- 60 cm a partir del borde del carril, cuando se trata del diseño de todos los demás componentes.

Se tomará la ubicación de carga en voladizo a 30cm, debido al diseño del vuelo del tablero. Los ejes del vehículo que no contribuyan a la solicitación extrema deben ser ignorados.


Tabla 9 - Fajas Equivalentes

Tipo Tablero	Dirección de la faja primaria en relación con el tráfico	Ancho de la faja primaria
Hormigón	Voladizo	1143+0.833x
- Colocado in situ	Paralelo o perpendicular	(-) M: 1220+0.25S
		(+) M: 660+0.55S

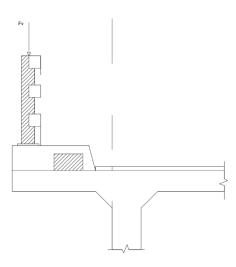
Nota: Fajas equivalentes transformadas a unidad internacionales. AASHTO LRFD 2020.

d) Solicitaciones fuerzas transversales y longitudinales

Figura 20 - Acción de Fuerzas Transversales

Nota: La figura muestra la acción de las fuerzas transversales que actúan sobre el tablero. Fuente:

Autoría Propia


Para el primer caso de diseño se puede tomar el momento y la tracción mediante las siguientes fórmulas propuestas por la AASHTO LRFD 2020, en el Art. A13.4.3.1

$$Md = \frac{M_{poste}}{Wb + db}$$

$$Td = \frac{P_p}{Wb + db}$$

También se calculará la Acción de Fuerzas Verticales en el tablero:

Figura 21 - Acción de Fuerzas Verticales

Nota: La figura muestra la acción de las fuerzas verticales que actúan sobre el tablero. Fuente:

Autoría Propia

$$b = 2x + wb \le L$$

$$Pv = Fv \cdot \frac{L}{Lv}$$
 Fuerza de Corte por Punzonamiento

e) Tramos y Apoyos Interiores

Para el ancho de faja primaria se utilizarán las expresiones de momento, especificado en la Tabla 10 "Fajas Equivalentes", considerando perpendicularmente al tráfico la dirección de la faja.

Para M (+):

$$E_{(+)} = 660 + 0.55 \cdot S$$

Para M (-):

$$E(-) = 1220 + 0.25 \cdot S$$

4.2.2 Momentos y Cortes Últimos

4.2.2.1 Estado Límite de Resistencia I

Combinación de carga:

$$U = \eta(\Upsilon_{DC}U_{DC} + \Upsilon_{DW}U_{DW} + \Upsilon_{LL}U_{LL+IM})$$

Tabla 10 - Factores de carga para Resistencia I

Símbolo	Descripción	Factor de carga		
		Yp máx.	Yp mín.	
DC	Carga muerta estructural y no estructural	1.25	0.9	
DW	Carga muerta por capa de rodadura y servicios públicos	1.5	0.65	
LL+IM	Carga viva vehicular	1.75	1.75	

Nota: Factores de carga para Resistencia I. AASHTO LRFD 2020.

4.2.2.2 Estado Límite: Evento Extremo II

Combinación de carga:

$$U = \eta(\Upsilon_{DC}U_{DC} + \Upsilon_{DW}U_{DW} + \Upsilon_{LL}U_{LL+IM} + \Upsilon_{CT}U_{CT})$$

Tabla 11 - Factores de carga para Evento Extremo II

Símbolo	Descripción	Factor de carga			
		Yp máx.	Υp mín.		
DC	Carga muerta estructural y no estructural	1.00	1.00		
DW	Carga muerta por capa de rodadura y servicios públicos	1.00	1.00		
LL+IM	Carga viva vehicular	0.5	0.5		

CT	Carga por la fuerza de colisión de un	1.00	1.00
<u> </u>	vehículo	1.00	1.00

Nota: Factores de carga para Evento Extremo II. AASHTO LRFD 2020.

4.2.2.3 Estado Límite de Servicio I

Combinación de carga:

$$U = \eta(\Upsilon_{DC}U_{DC} + \Upsilon_{DW}U_{DW} + \Upsilon_{LL}U_{LL+IM})$$

Tabla 12 - Factores de carga para Servicio I

Símbolo	Descripción	Factor de carga		
		Υp máx.	Yp mín.	
DC	Carga muerta estructural y no estructural	1.00	1.00	
DW	Carga muerta por capa de rodadura e instalaciones para servicios públicos	1.00	1.00	
LL+IM	Carga viva vehicular	1.00	1.00	

Nota: Factores de carga para Servicio I. AASHTO LRFD 2020.

4.2.3 Fuerza de Tensión Última

La fuerza por tensión última se verá influenciada por el factor de carga asociado a la fuerza de impacto vehicular, evidenciada por el estado de límite de Evento Extremo II.

$$\Upsilon_{CT} = 1.00$$

4.2.4 Corte Último

Se calcula mediante la siguiente fórmula:

$$U = \eta(\Upsilon_{DC}U_{DCdd} + U_{DWdd} + \Upsilon_{LL}U_{LLdd})$$

4.2.5 Armaduras

4.2.5.1 Armaduras por Tracción

Según el Art. 5.5.4.2 de la norma AASHTO LRFD 2020, la armadura se calcular a colisión, y se toma un factor de resistencia $\emptyset = 1.00$.

$$Ast = \frac{Tu}{\emptyset \cdot fy}$$

4.2.5.2 Armaduras por Flexión

Se utilizará las siguientes expresiones para determinar el acero de refuerzo:

$$W = \frac{1 - \sqrt{1 - \frac{2.36 \cdot Mu}{\phi \cdot bs \cdot d^2 \cdot f'c}}}{1.18}$$

Indice de refuerzo

$$\rho = \omega \cdot \frac{f'c}{fy}$$

Cuantía de refuerzo

$$As = \rho \cdot b \cdot d$$

Acero de refuerzo

4.2.6 Verificación de Armaduras Colocadas

Se procederá a determinar el valor de $\emptyset M$, el cual no deberá ser menor a la solicitación última, de tal manera que se verifique la resistencia a la flexión de las armaduras.

$$Mr = \emptyset \cdot Mn = \emptyset \cdot As \cdot Fy \cdot \left(ds - \frac{a}{2}\right)$$

4.2.6.1 Distancia al eje neutro para secciones doblemente reforzadas

Figura 22 - Viga rectangular doblemente reforzada

Nota: La figura muestra la geometría de una sección rectangular de concreto doblemente reforzada típica con un bloque rectangular de tensiones simplificado. Fuente: ACI

$$c = \frac{As \cdot Fy}{0.85 \cdot f'c \cdot \beta 1 \cdot b}$$

La distancia "c" será medida a partir de la máxima fibra de deformación producida por la compresión hasta el eje neutro. Además, se utilizará la distribución de tracción en vez de las distribuciones más precisas.

En la norma de la AAHSTO LRFD 2020, menciona que para f'c máximo de 280 kg/cm2, β1 se tomará como 0.85, y se reducirá a razón de 0.05 por cada 70 kg/cm2 de crecimiento sobre los 280 kg/cm2.

4.2.7 Límite para Armaduras

4.2.7.1 Armadura Máxima

Para diseñar la máxima armadura se realizará un control de ductilidad, que está basado en asegurar que el acero de refuerzo fluya antes de que el concreto se fracture, es decir, garantizar que la falla ocurra primero en la armadura y después en el hormigón. Este control verifica que el factor de resistencia para calcular la armadura sea correcto, donde los rangos están establecidos

en el Art. 5.5.4.2-Factores de Resistencia según la figura C5.5.4.2.1-1 de la norma AASHTO LRFD 2020.

La ductilidad se verifica en los siguientes casos:

-
$$\varepsilon t \ge 0.005$$
 y $\emptyset = 0.90$

-
$$0.002 \le \varepsilon t \le 0.005$$
 y $\emptyset = 0.75 + 0.15 \cdot \frac{\varepsilon t - \varepsilon cl}{\varepsilon t - \varepsilon tl}$

-
$$\varepsilon t \le 0.002$$
 y $\emptyset = 0.75$

Donde:

 εt = Deformación unitaria neta a tracción del acero de refuerzo

 εcl = Deformación a la compresión controlada

 $\varepsilon t l$ = Deformación en tensión controlada

4.2.8 Evaluación del Fisuramiento

Según el Art. 5.5.2 de la norma AASHTO LRFD 2020, se considerará el estado límite de Servicio I, debido a la fisuración, y se considerará también el Art. 5.6.7 que menciona la limitación la fisuración que se distribuirá en la armadura.

El espacio entre aceros de refuerzo a tracción deberá cumplir:

$$- S \le \frac{125000 \cdot \gamma e}{\beta s \cdot f s s} - 2 \cdot dc$$

$$-\beta s = 1 + \frac{dc}{0.7 \cdot (h - dc)}$$

Donde:

Ye = Condición de exposición.

Fss = Esfuerzo de tensión en el acero de refuerzo.

Bs = Relación tensión de flexión entre cara de tracción extrema y el centroide de la capa de refuerzo

4.2.8.1 Control del agrietamiento

Para calcular la sección transformada de un elemento, se reemplaza el área de acero por un área similar de concreto. Esta área se obtendrá multiplicando el área del acero por el cociente entre el módulo de elasticidad del acero y el del concreto, denominándolo como n.

$$It = n \cdot As \cdot (d - y)^2 + \frac{b \cdot y^3}{3}$$

Inercia sección transformada

$$fs = \frac{M \cdot c}{I} \cdot n$$

Esfuerzo de tensión en el acero de

refuerzo: estado límite de

Servicio

$$y = \frac{-n \cdot As + \sqrt{(n \cdot As)^2 + 2 \cdot b \cdot n \cdot As \cdot de}}{b}$$

Ubicación eje neutro

$$c = de - y$$

Distancia desde el eje neutro al cg

del acero de refuerzo

Donde:

dc = Recubrimiento del hormigón

h = Grosor del tablero

M = Momento afectado por factores de carga y factor modificador de cargas

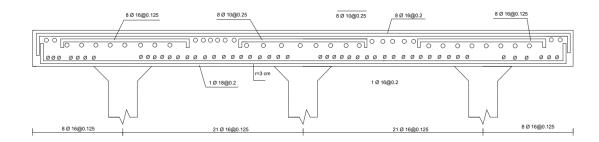
As = Acero refuerzo

de = Distancia desde la fibra extrema en compresión al centroide del acero

Itransf = Inercia sección transformada

Svar = Sep. entre varillas

Smáx. = Sep. máxima


4.2.9 Refuerzo por contracción y temperatura

Mediante el Art. 5.10.6 de la norma AASHTO LRFD 2020 se indica que el tipo de armadura que se utilizará se deberá colocarse cerca de superficies de concreto con exposición a variaciones de temperatura que afectan diariamente a la estructura.

El acero de refuerzo para barras en cm^2 por metro deberá satisfacer:

$$As = \frac{756 \cdot b \cdot h}{2 \cdot (b+h) \cdot Fy}$$

Figura 23 - Armadura del Tablero

Nota: La figura muestra la armadura del tablero. Fuente: Autoría Propia

4.2.10 Refuerzo longitudinal de distribución

En el Art. 9.7.3.2 de la norma AASHTO LRFD 2020 se indica que se deberá colocar un refuerzo de distribución de cargas. Además deberá estar ubicado en la dirección secundaria en la parte inferior de las losas, en un porcentaje del refuerzo primario para momentos positivos, y se deberá comprobar la cantidad del acero colocado.

- Para refuerzo primario perpendicular al tráfico:

$$%Asd = \frac{121.46}{\sqrt{S}} \le 67$$

4.2.11 Procedimiento Abreviado para determinar β y θ - partes no pretensadas

Mediante las ecuaciones 5.7.3.3-3 y 5.7.3.3-1 de la norma AASHTO LRFD 2020 se determinará la cortante:

$$Vc = 0.53 \cdot \sqrt{f'c} \cdot bv \cdot dv$$

$$Vs = \frac{Av \cdot fy \cdot dv}{S}$$

Donde:

Vs = Cortante nominal resistente del acero

Vc = Cortante nominal resistente del concreto

Con lo que se procederá a determinar la resistencia nominal al corte de un elemento de concreto armado con refuerzo transversal mínimo:

$$Vu = \emptyset \cdot 0.53 \cdot \sqrt{f'c} \cdot bv \cdot dv + \emptyset \cdot \frac{Av \cdot dv \cdot fy}{S}$$

4.2.12 Longitud desarrollo a tracción

La longitud traccionada del anclaje debe ser mayor igual al incrementar la longitud básica de anclaje en tensión, descritos en el Art. 5.10.8.1. de la norma AASHTO LRFD 2020.

$$\ell_d = \ell_{db} \cdot \left(\frac{\lambda_{rl} \cdot \lambda_{cf} \cdot \lambda_{rc} \cdot \lambda_{er}}{\lambda} \right)$$

$$\ell_{db} = 2.40 \cdot db \cdot \frac{fy}{\sqrt{f'c}}$$

Donde:

 ℓdb = Longitud de desarrollo

 λ_{rl} = Ubicación del reforzamiento

 λ_{cf} = Factor de revestimiento

λ₌ Ractor de modificación de densidad del concreto

 λ_{rc} = Factor de confinamiento del refuerzo

 λ_{er} = Factor de exceso de refuerzo

db = Diámetro nominal de la varilla de reforzamiento en pulgadas

4.2.13 Factor de modificación ld de reducción

Se deberá satisfacer con la siguiente expresión para aceros de refuerzo que se desarrollen en la longitud considerada λ_{rc} :

$$0.40 \le \lambda_{rc} \le 1.00$$

$$\lambda_{rc} = \frac{db}{cb + k_{tr}}$$

$$k_{tr} = \frac{40 \cdot A_{tr}}{s \cdot n}$$

Donde:

cb = Recubrimiento del hormigón

ktr = Indice de refuerzo transversal

Atr =Área total de todos los refuerzos transversales

s =Espaciamiento mínimo centro a centro del reforzamiento transversal

n = Número de barras desarrolladas

$$\lambda_{er} = \frac{As \ necesario}{As \ colocado}$$

Donde:

 λer = Exceso de refuerzo

4.3 Diseño de las vigas cajón

4.3.1 Pre-dimensionamiento de la sección de la viga cajón

Para el dimensionamiento de las vigas se optará por utilizar las fórmulas relacionadas a profundidades mínimas descritas por el Art. 2.5.2.6.3 de la norma AASHTO LRFD 2020.

Para el caso de estudio actual se procederá a utilizar vigas de cajón correspondiente a hormigón presforzado como material para tramos simples, y considerando que la Luz del puente será de 37 metros.

$$H = 0.045 \cdot L$$

Para determinar la separación entre nervios de las vigas de cajón se empleará la siguiente expresión:

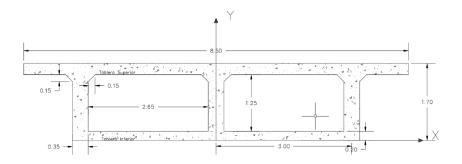
$$S_n = \frac{A_v}{N_c + 1}$$

Donde:

 A_v = Ancho de vía

 N_c = Número de celdas de la viga cajón

Para calcular el grosor del tablero inferior se deberá recurrir al Art. 5.12.3.5.1b donde se especifica el espesor del ala inferior y sus condiciones de no ser menor que diversas solicitaciones, se tendrá que satisfacer la siguiente expresión:

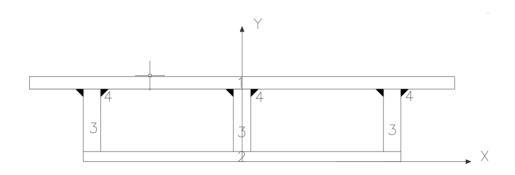

$$140.00mm \ge t_f \ge \frac{S'}{30}$$

Donde:

S' = Sn - bw

Separación entre caras de las almas o nervios

Figura 24 - Sección transversal Viga cajón



Nota: La figura muestra la sección transversal de la viga cajón con la separación entre nervios y el grosor del tablero inferior y superior. Fuente: Autoría Propia

4.3.2 Propiedades Geométricas de la viga cajón

Después del dimensionamiento de la sección transversal se determinará el centro de gravedad junto con las áreas, inercias y módulos de sección.

Figura 25 - Boceto de cálculo viga cajón

Nota: La figura muestra los elementos divididos en formas geométricas que actúan sobre la viga de cajón con sus dimensiones. Fuente: Autoría Propia

Tabla 13 - Geometría de la viga cajón

Propiedades geométricas de la viga cajón							
Fig	n	Área	у	y*A	y ² *A	lcg	
		cm ²	cm	cm ³	cm^4	cm^4	
1	1	21250	157.5	3346875	527132813	1106771	
2	1	12700	10	127000	1270000	400000	
3	3	13125	82.5	1082813	89332031	17089844	
4	6	675	140	94500	13230000	8438	
Σ		47750		4651187.5	630964844	18605052	

Nota: Valores de áreas e inercias de los elementos que conforman la viga de cajón. Fuente:

Autoría Propia

- Cálculo del módulo de sección

Para determinar el módulo de sección se considerarán las expresiones:

$$S_b = \frac{I_{CG}}{y1}$$

$$S_b = \frac{I_{CG}}{y2}$$

4.3.3 Factores de distribución de carga viva

En el Art. 4.6.2.2.1 la norma AASHTO LRFD 2020, determina que la aplicabilidad de estos factores en puentes de concreto tipo curvos y también de puentes de vigas de acero tipo curvos. Además, se podrá determinar la solicitación para diseñar cada viga resultante del tráfico mixto mediante el Art. 4.6.2.2.5 ya que se obtendrá una carga restringida mediante un vehículo especial de diseño.

Los puentes compuestos por vigas de cajón de hormigón colocado in situ, pueden ser diseñados como estructuras que ocupan todo el ancho del puente, y serán diseñadas mediante los Artículos 4.6.2.2.2 y 4.6.2.2.3 de la norma AASHTO LRFD 2020 para vigas interiores, multiplicando estos factores por la cantidad de vigas existentes.

Los parámetros de rigidez se deberán considerar mediante los Artículos 4.6.2.2.2 y 4.6.2.2.3, que serán los parámetros de la sección transversal en la que se ejecutará la carga de tránsito, y en el presente trabajo se utilizará la inercia de la sección transversal ya que no se diseñará como una sección compuesta. Debido a l no contar con una excentricidad entre el tablero y la viga se obtiene:

$$K_q = I$$

I = Momento de inercia de la viga

Se utilizará la tabla presentada por la norma AASHTO LRFD 2020 para determinar la distribución de sobrecargas por carril.

Tabla 14 - Superestructuras habituales cubiertas por los Artículos 4.6.2.2.2 y 4.6.2.2.3

Supporting Components	Type of Deck	Typical Cross-Section
Steel Beam	Cast-in-place concrete slab, precast concrete slab, steel grid, glued/spiked panels, stressed wood	I I (a) I I
Closed Steel or Precast Concrete Boxes	Cast-in-place concrete slab	(b)
Open Steel or Precast Concrete Boxes	Cast-in-place concrete slab, precast concrete deck slab	(c)
Cast-in-place Concrete Multicell Box	Monolithic concrete	(d)
Cast-in-place Concrete Tee Beam	Monolithic concrete	(e)
Precast Solid, Voided, or Cellular Concrete Boxes with Shear Keys	Cast-in-place concrete overlay	(f)
Precast Solid, Voided, or Cellular Concrete Box with Shear Keys and with or without Transverse Post- tensioning	Integral concrete	(g)
Precast Concrete Channel Sections with Shear Keys	Cast-in-place concrete overlay	(h)

Nota: Superestructuras habituales cubiertas por los Artículos 4.6.2.2.2 y 4.6.2.2.3. AASHTO LRFD 2020.

Tabla 15 - Parte 2 Superestructuras habituales cubiertas por los Artículos 4.6.2.2.2 y 4.6.2.2.3

Supporting Components	Type of Deck	Typical Cross-Section		
Precast Concrete Double Tee Section with Shear Keys and with or without Transverse Post- tensioning	Integral concrete	(i) P/T		
Precast Concrete Tee Section with Shear Keys and with or without Transverse Post-tensioning	Integral concrete	(j) P/T		
Precast Concrete I or Bulb-tee Sections	Cast-in-place concrete, precast concrete	[
Wood Beams	Cast-in-place concrete or plank, glued/spiked panels or stressed wood	(1)		

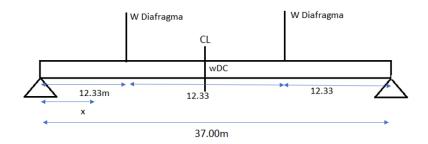
Nota: Superestructuras habituales cubiertas por los Artículos 4.6.2.2.2 y 4.6.2.2.3. AASHTO LRFD 2020.

4.3.3.1 Incremento por carga dinámica IM

Para análisis de la solicitación que implica la carga viva, se tiene que añadir el impacto principal entre los tres criterios de diseño, camión de diseño, tándem de diseño y el efecto del carril. Por ende, se deberá mayorar estas cargas aplicando los porcentajes indicados por la Tabla 3.6.2.1-1 de la norma AASHTO LRFD 2020.

Tabla 16 - Incremento por carga dinámica

Component	IM
Deck Joints—All Limit States	75%
All Other Components:	
• Fatigue and Fracture Limit State	15%
All Other Limit States	33%

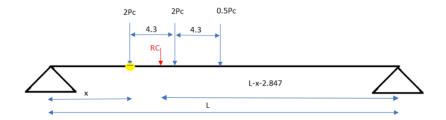

Nota: Porcentaje de mayoración incremento por carga dinámica. AASHTO LRFD 2020.

4.3.4 Cortes y momentos

4.3.4.1 Carga muerta

Se utilizarán las cargas muertas, considerando el aumento o incremento por efecto dinámico para determinar los cortes y los momentos últimos. La carga muerta incluirá el peso de las protecciones laterales, diafragmas, etc.

Figura 26 - Boceto para carga muerta total

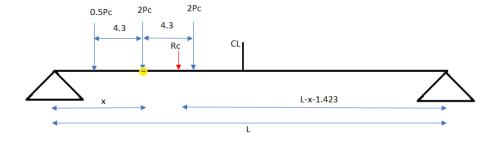

Nota: La figura muestra la carga de las ruedas de diseño para la determinación del cortante y momento último. Fuente: Autoría Propia

4.3.4.2 Carga Viva

- Posición del camión de diseño

Según la norma AASHTO LRFD 2020, en su Art. 3.6.1.2 el camión de diseño será el HL-93, y esta carga estará ubicada en donde la acción de sus cargas produzca un momento máximo, al ser motivo de análisis una viga simplemente apoyada se analizará el camión de diseño de acuerdo con la figura 27.

Figura 27 - Esquema Estructural del Camión de diseño Posición 1

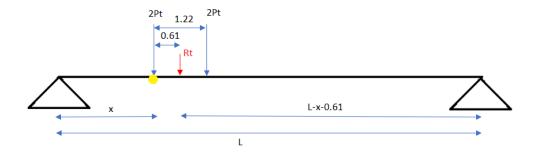


Nota: La figura muestra la posición del camión en el último eje. Fuente: Autoría Propia

 $Rc = 4.5 \cdot Pc = 32.715t$ Peso total del camión HL-93

$$R = \frac{4.5 \cdot Pc}{L} \cdot (L - x - 2.847)$$

Figura 28 - Esquema Estructural del Camión de diseño Posición 2


Nota: La figura muestra la posición del camión con su eje central sobre el punto investigado.

Fuente: Autoría Propia

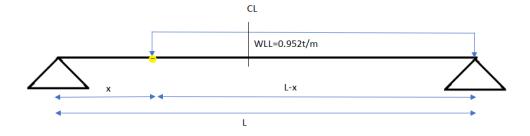
$$R = \frac{4.5 \cdot Pc}{L} \cdot (L - x - 1.423)$$

- Tándem

Figura 29 - Boceto del Tándem de diseño

Nota: La figura muestra la ubicación del tándem de diseño. Fuente: Autoría Propia

$$R = 4 \cdot Pt = 22.67t$$

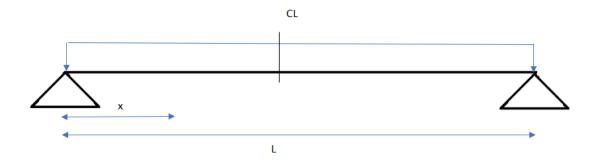

Peso tándem

$$R = \frac{4 \cdot Pt}{L} \cdot (L - x - 0.61)$$

- Carril de diseño

La carga distribuida en la viga apoyada viene normada con un valor de 0,952 t/m.

Figura 30 - Esquema Estructural del Carga de carril para corte



Nota: La figura muestra la ubicación del carril de diseño para corte. Fuente:

Autoría Propia

$$R = 0.5 \cdot WLL \cdot \frac{(L-x)^2}{L} = Vx$$

Figura 31 - Esquema Estructural de la Carga de carril para momento

Nota: La figura muestra la ubicación del carril de diseño para momento. Fuente: Autoría Propia

$$R = WLL \cdot \frac{L}{2} = 11.90t$$

$$Mx = Rx - WLL \cdot \frac{x^2}{2} = 0.5 \cdot WLLx(L - x)$$

Es necesario también calcular el incremento por carga dinámica señalado previamente, según los estados que son de Resistencia, Servicio I y Servicio III.

En el Art. 3.6.1.3 de la norma AASHTO LRFD 2020 consta que se deberá tomar el mayor valor de las siguientes consideraciones, para la solicitación extrema:

- Tándem más el carril de diseño
- Camión con la separación entre ruedas reflejado en el Art. 3.6.1.2.2, más el carril de diseño

Para determinar la Carga Viva + Efecto Dinámico se utilizarán las siguientes expresiones:

$$V_{LL+IM} = \left\{ (V_{camion} \ o \ V_{tamden}) \cdot \left(1 + \frac{IM}{100}\right) + V_{carril} \right\} \cdot gm$$

$$M_{LL+IM} = \left\{ \left(M_{camion} \; o \; M_{tamden} \right) \cdot \left(1 + \frac{IM}{100} \right) + M_{carril} \right\} \cdot gm$$

Los cortantes máximos junto con los momentos máximos, obtenidos entre el camión y el tándem, se ajustarán involucrando el factor de impacto vehicular (IM) y agregando la carga de carril. Los valores mencionados se multiplicarán por el factor de distribución para corte y momento. Al diseñar bajo la premisa de que la viga cajón se considera un único elemento para todo el ancho de la vía, los valores finales se multiplicarán por un factor de distribución igual a dos.

4.4 Diseño vigas cajón de concreto presforzado

4.4.1 Combinaciones de carga – Estados Límite

Resistencia I

$$U_u = \eta (1.25 \cdot U_{DC} + 1.50 \cdot U_{DW} + 1.75 \cdot (U_{LL+IM} + U_{PL}))$$

Servicio I

$$U_u = \eta (1.00 \cdot U_{DC} + 1.00 \cdot U_{DW} + 1.00 \cdot (U_{LL+IM} + U_{PL}))$$

Servicio III

$$U_u = \eta (1.00 \cdot U_{DC} + 1.00 \cdot U_{DW} + 0.80 \cdot (U_{LL+IM} + U_{PL}))$$

Donde:

U = Corte o momento

DC = Carga muerta de componentes estructurales

DW = Carga muerta de carpeta asfáltica y servicios públicos

LL + IM = Carga viva incluyendo impacto

PL = Carga peatonal

 $\eta = Modificador de carga$

$$\eta = \eta_D \cdot \eta_R \cdot \eta_I$$

Factores adoptados:

 $\eta_D = 1.00$ Factor de ductilidad

 $\eta_R = 1.00$ Factor de redundancia

 $\eta_{I} = 1.00$ Factor de importancia operativa

$$\eta = 1.00$$

4.4.2 Prediseño de tendones

El número de torones se determina mediante los esfuerzos extremos en tensión de la viga, dado por el estado límite de servicio III, para posteriormente calcular la fuerza del presfuerzo efectivo mediante la siguiente ecuación:

$$Pe = \frac{\frac{M_{ESTADO\ LIMITE\ DE\ SERVICIO\ III}}{S_b} - f_{adm.t}}{\frac{1}{A_g} + \frac{e_c}{S_b}}$$

Donde:

$$f_{adm.t} = 2.008 \cdot \lambda \cdot \sqrt{f'c}$$

4.4.3 Torones de baja relajación

Los torones de baja relajación son múltiples alambres de acero trenzados que se han tratado térmicamente para reducir la pérdida de tensión en el tiempo. Esta propiedad es crucial para mantener la fuerza de presión en el concreto, garantizando la estabilidad y durabilidad de la estructura. Estos torones presentan una menor pérdida de tensión debido a la relajación del acero.

$$f_{py} = 0.9 \cdot f_{pu}$$

Donde:

 f_{pu} = Resistencia a tensión del acero presforzado

$$f_{pj} = 0.9 \cdot f_{pv}$$

Donde:

 f_{pj} Torones de baja relajación

$$f_{pe} = 0.80 \cdot f_{py}$$

- Pérdida de presfuerzo

Se asumirá una pérdida mediante procesos iterativos

$$f_{pe} = \mathbf{y} \cdot f_{pj}$$

$$P_e' = f_{pe} \cdot A_{\emptyset t}$$

$$N_t = \frac{Pe}{Pe'}$$

Debido al análisis para el estado de resistencia I, se deberá multiplicar el número de torones por un factor: f=1.60

4.4.4 Fuerza de tensado inicial

$$P_i = A_{ps} \cdot f_{pi}$$

4.4.5 Pre-esfuerzo efectivo final

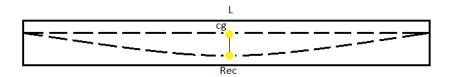
$$P_e = \mathbf{y} \cdot P_j$$

4.4.6 Configuración de los tendones

Para aumentar la resistencia a la tensión junto con el soporte de la estructura se colocarán cables pre-esforzados, que se describirán de acuerdo con la siguiente expresión:

$$y = k \cdot x'^2 + rec$$

Donde:


y = Distancia desde la fibra más baja de la viga hasta el centro de gravedad del cable

k = Constante

x' = Distancia desde el centro de la luz hasta el apoyo

rec = Distancia desde la fibra más baja de la viga hasta el centro de gravedad del grupo
 de cables

Figura 32 - Trayectoria del cable resultante

Nota: La figura muestra la trayectoria del cable resultante. Fuente: Autoría Propia

4.4.7 Cálculo de pérdidas de miembros postensados

Los procedimientos para calcular las pérdidas de miembros postensados solo serán aplicables bajo las siguientes consideraciones:

- Resistencia del hormigón de hasta 1050 kg/cm2
- Uso de hormigón de densidad normal es decir 2.4 gr/cm3

En el Art. 5.9.3.1 de la norma AASHTO LRFD 2020, se menciona la siguiente expresión para determinar el cálculo de las pérdidas:

$$\Delta_{fpT} = \Delta_{fpF} + \Delta_{fpA} + \Delta_{fpES} + \Delta_{fpLT}$$

Donde:

 Δ_{fpT} = Pérdida Total

 Δ_{fpF} = Pérdida debida a la fricción

 Δ_{fpA} = Pérdida debida al corrimiento

 Δ_{fpES} = Pérdida por acortamiento elástico

 $\Delta_{fpLT}=$ Pérdida a largo plazo debido a la contracción, relajación y flujo plástico

4.4.8 Pérdidas Instantáneas

4.4.8.1 Pérdidas por fricción

Estas pérdidas son las que dependen tanto del material que lo rodea y el grado de curvatura dada a los tendones, como también del rozamiento que se produce entre estos. Lo cual se lo puede calcular mediante la expresión Ec.5.9.3.2.2b-1 de la norma AASHTO LRFD 2020.

$$\Delta_{fpF} = f_{pj} \cdot \left(1 - e^{(Kx - \mu\alpha)}\right)$$

Donde:

 f_{pj} = Esfuerzo en el tensado debido al acero de presfuerzo

x =Longitud de torón

k =Coeficiente de fricción por desviación del ducto

 μ = Coeficiente de fricción

 α = Variación angular desde el extremo al punto de análisis

4.4.8.2 Pérdidas por acortamiento elástico

Esta pérdida se considera debido al pre-esfuerzo que se transporta al componente de concreto a causa de la compresión, y se calcula mediante la expresión Ec. 5.9.3.2.3b-1 de la norma AASHTO LRFD 2020.

$$\Delta_{fpES} = \frac{N-1}{2 \cdot N} \cdot \frac{E_p}{E_{ct}} \cdot f_{cgp}$$

Donde:

$$f_{cgp} = -\frac{P_j'}{Ag} - \frac{P_j' \cdot ec^2}{Ig} + \frac{M_{DCv} \cdot e_c}{I_g}$$

N = Número de tendones idénticos de presfuerzo

 E_p = Módulo de elasticidad del acero utilizado en el presfuerzo

 $E_{ct} = E_{ci}$ = Módulo de elasticidad del hormigón durante la transferencia

 $f_{cgp}={
m Esfuerzo}$ del hormigón ubicada en el mismo nivel del centro de gravedad del acero de presfuerzo

$$f'_{pj} = f_{pj} - \Delta f_{pA} - \Delta f_{pF}$$

$$P'_{j} = f'_{pj} \cdot A_{ps}$$

$$E_{ct} = E_{ci} = 12000 \sqrt{f'c \cdot ci}$$

Posteriormente se determinará el valor de presfuerzo después de la transferencia según el Art. 5.9.3.4.2c de la norma AASHTO LRFD 2020.

$$f_{pt} > f_{pe}$$

$$f_{pt} \ge 0.55 \cdot f_{py}$$

Donde:

$$f_{pt} = f'_{pj} - \Delta f_{pES}$$
 Esfuerzo en el tensado del acero de presfuerzo

4.4.8.3 Pérdidas dependientes del tiempo

Estas pérdidas se estiman en dos momentos: comprendida entre el momento de traslado y la construcción del tablero, y la otra entre el tablero hasta la vida útil de la estructura. Se determinarán mediante el Art. 5.9.3.4 de la norma AASHTO LRFD 2020.

$$\Delta f_{pLT} = \left(\Delta f_{pSR} + \Delta f_{pCR} + \Delta f_{pR1}\right)_{id} + \left(\Delta f_{pSD} + \Delta f_{pCD} + \Delta f_{pR2}\right)_{df}$$

Donde:

 Δf_{pLT} = Pérdida total de presfuerzo dependiente del tiempo

 $\Delta f_{pSR} = \text{Pérdida por contracción del hormigón de la viga entre la transferencia y la construcción del tablero$

 $\Delta f_{pCR} = \text{Pérdida por flujo plástico, entre la transferencia y la construcción del tablero}$

 $\Delta f_{pR1} =$ Pérdida por relajación de los torones de presfuerzo, entre la transferencia y la construcción del tablero

 $\Delta f_{pSD}=$ Pérdida por contracción del hormigón de la viga, entre la transferencia y la construcción del tablero

 Δf_{pCD} = Pérdida por flujo plástico, entre el tablero y la vida útil de la estructura

 $\Delta f_{pR2} = ext{P\'erdida}$ por relajación de los torones de presfuerzo, entre el tablero y la vida útil de la estructura

 $\Delta f_{pSS}=$ Pérdida por la contracción del hormigón de la viga, entre el tablero y la vida útil de la estructura

 $\left(\Delta f_{pSR} + \Delta f_{pCR} + \Delta f_{pR1}\right)_{id}$ = Pérdidas de presfuerzo que se presentan entre la transferencia y el inicio de la construcción tablero del puente

$$\left(\Delta f_{pSD} + \Delta f_{pCD} + \Delta f_{pR2} + \Delta f_{pSS}\right)_{df}$$
 = Pérdidas presentes después de la construcción del tablero del puente

4.4.9 Pérdida a largo plazo

Las pérdidas a largo plazo se presentarán desde la construcción de la estructura hasta el final de vida útil del puente.

4.4.9.1 Parámetros de contracción y flujo plástico

Estas pérdidas se determinarán mediante las expresiones expuestas en el Art. 5.4.2.3.2 y 5.4.2.3.3 de la norma AASHTO LRFD 2020.

- Contracción:

$$\xi_{sh} = k_s \cdot k_{hs} \cdot k_f \cdot k_{td} \cdot 0.48 \cdot 10^{-3}$$

Donde:

 $k_{hs} = (2.00 - 0.014 \cdot H)$ Factor de humedad para la contracción

- Flujo Plástico

$$\Psi(t_i, t) = 1.9 \cdot k_s \cdot k_{hc} \cdot k_f \cdot k_{td} \cdot t_i^{-0.118}$$

Donde:

$$k_s = 1.45 - 0.051 \cdot \left(\frac{V}{S}\right) \ge 1.0$$

$$k_{hc} = 1.56 - 0.008 \cdot H$$

$$k_f = \frac{350}{70 + f'c}$$

$$k_{td} = \frac{t}{61 - 0.057 \cdot f'ci + t}$$

Donde:

H = Humedad relativa

 k_{hs} = Factor de humedad para contracción

 k_s = Factor de humedad para contracción

 k_f = Factor efecto de resistencia concreto

 $k_{hc} = \text{Factor de humedad para el flujo plástico}$

 k_{td} = Factor desarrollo de tiempo

t = Desarrollo del hormigón para evaluar el flujo plástico

 t_i = Edad del hormigón al momento de aplicar las cargas de presfuerzo

 t_d = Edad del hormigón en la construcción de la viga cajón

 $\frac{v}{s}$ = Relación volumen y superficie

f'ci = Resistencia del hormigón en la transferencia

4.4.9.2 Coeficientes de flujo plástico de la viga

- Coeficiente de flujo plástico al momento de la construcción del tablero del puente en la transferencia

Se determinará el índice de crecimiento temporal aplicando la expresión Ec. 5.4.2.3.2-5, considerando t=td-ti, estableciendo un ti y td igual a 60 días, obteniendo un t igual a 0 días.

$$\Psi(td.ti) = 1.9 \cdot k_s \cdot k_{hc} \cdot k_f \cdot k_{td.di} \cdot t_i^{-0.118}$$

- Coeficiente de flujo plástico al final a causa de la carga aplicada en la construcción de la estructura

Se determinará el índice de crecimiento temporal aplicando la expresión Ec. 5.4.2.3.2-5, considerando t=tf-ti, obteniendo un valor de t igual a 23375 días, valor considerado según el Art. C3.6.1.1.2 ya que se menciona un período de 75 años.

$$\Psi(td. fd) = 1.9 \cdot k_s \cdot k_{hc} \cdot k_f \cdot k_{td.fd} \cdot t_d^{-0.118}$$

- Coeficiente de flujo plástico al final a causa de la carga de transferencia

Se determinará el índice de crecimiento temporal aplicando la expresión Ec. 5.4.2.3.2-5, considerando t=tf-ti, obteniendo un valor de t igual a 23375 días, valor considerado según el Art. C3.6.1.1.2 ya que se menciona un período de 75 años.

$$\Psi(td.\,ti) = 1.9 \cdot k_s \cdot k_{hc} \cdot k_f \cdot k_{td.fd} \cdot t_i^{-0.118}$$

4.4.10 Deformación unitaria de contracción

Para la deformación se aplicará la expresión Ec. 5.4.2.3.3-1 de la norma AASHTO LRFD 2020, considerando un factor de humedad $k_{hs} = 1.048$ utilizando la expresión Ec. 5.4.2.3.3-2

$$\mathcal{E}_{bdf} = k_s \cdot k_{hs} \cdot k_f \cdot k_{td.fd} \cdot 0.48 \cdot 10^{-3}$$

También se determinará la deformación unitaria debida a la contracción del concreto del tablero, producido desde el momento que se produjo la construcción de las losas de la estructura.

$$\mathcal{E}_{ddf} = k_{s.d} \cdot k_{hs} \cdot k_{f.d} \cdot k_{td.d.fd} \cdot 0.48 \cdot 10^{-3}$$

4.4.11 Pérdida por contracción producida en el hormigón presente en la viga

Esta pérdida aparecerá durante la pérdida de humedad del hormigón, y se determinará mediante las expresiones Ec. 5.9.3.4.3a-1 y Ec. 5.9.3.4.3a-2 de la norma AASHTO LRFD 2020.

$$\Delta f_{pSD} = \mathcal{E}_{bdf} \cdot E_p \cdot K_{df}$$

$$K_{df} = \frac{1}{1 + \frac{E_p \cdot A_{ps}}{E_{ci \cdot A_c}} \cdot \left(1 + \frac{A_c \cdot e_{pc}^2}{1c}\right) \cdot \left(1 + 0.7 \cdot \Psi_{b(tf.ti)}\right)}$$

Donde:

 \mathcal{E}_{bdf} = Deformación unitaria, desde que se construyó la estructura hasta el final de la vida útil del mismo

 $K_{df}=$ Coeficiente de la sección transformada entre el acero de presfuerzo y el hormigón

 $\Psi_{b(tf,ti)}$ = Coeficiente de flujo plástico del hormigón de la viga, debido a la carga de transferencia

 $e_{pc}={
m Distancia}$ desde el centro de gravedad de la sección hasta la fuerza de presfuerzo

 $A_q =$ Área viga cajón

 I_g = Momento de inercia viga cajón

4.4.12 Pérdida por flujo plástico del hormigón de la viga

Estas pérdidas se producen debido al presfuerzo y la carga muerta y se considerará la expresión, Ec. 5.9.3.4.3b-1

$$\Delta f_{pCD} = \frac{E_p}{E_{ci}} \cdot f_{cgp} \cdot \left(\Psi_b(t_f, t_i) - \Psi_b(t_d, t_i) \right) \cdot K_{df} + \frac{E_p}{E_c} \cdot \Delta f_{cd} \cdot \Psi_b(t_f, t_i) \cdot K_{df}$$

Donde:

$$\Delta f_{cd} = \left(\frac{M_c \cdot e_c}{I_g}\right)$$

$$\Psi_b(t_f, t_i) =$$
 Factor de fluencia de la viga

4.4.13 Pérdida por relajación de torones en el presforzado

Estas pérdidas ocurren debido a la deformación plástica de los mismos cuando se encuentran bajo un esfuerzo constante, y se lo determinará mediante la expresión Ec. 5.9.3.4.2c-1 de la norma AASHTO LRFD 2020.

$$\Delta f_{pR2} = \frac{f_{pt}}{K_L} \cdot \left(\frac{f_{pt}}{f_{py}} - 0.55\right)$$

Donde:

 $f_{pt}={
m Esfuerzo}$ del acero presforzado después de la transferencia, siendo mayor a $0.55*f_{py}$

4.4.14 Cálculo de los esfuerzos en etapas

4.4.14.1 Etapa inicial

Se deberá determinar previamente los esfuerzos admisibles a tensión y a compresión:

$$f_{adm.tension} = 2.008 \cdot \sqrt{f'ci}$$

$$f_{adm.compresion} = 20.6 \cdot f'ci$$

Posteriormente se deberá realizar la verificación del esfuerzo en la transferencia para el centro de luz, mediante las siguientes ecuaciones:

$$f_{ti} = \frac{P_t}{A_g} + \frac{P_t \cdot e_c}{S_t} - \frac{M_{DCv}}{S_t}$$
 Esfuerzo parte superior viga

$$f_{bi} = -\frac{P_t}{A_g} - \frac{P_t \cdot e_c}{S_b} - \frac{M_{DCv}}{S_b}$$
 Esfuerzo parte inferior viga

4.4.14.2 Etapa final

Según la norma AASHTO LRFD 2020, se menciona que para la etapa de final se verificará el esfuerzo de tensión y compresión a través de los estados límite de: Servicio I y Servicio III.

Servicio I

$$U = (1.00 \cdot U_{DC} + 1.00 \cdot U_{DW} + 1.00 \cdot (U_{LL+IM} + U_{PL}))$$

Servicio III

$$U = \left(1.00 \cdot U_{DC} + 1.00 \cdot U_{DW} + 0.80 \cdot (U_{LL+IM} + U_{PL})\right)$$

- Verificación de esfuerzos posteriormente ocurridas las pérdidas totales

Estado Límite de Servicio I

- Presforzado más cargas constantes, se calculará el esfuerzo en la parte de arriba de la viga cajón:

$$ft_{vig.cajon.a} = -\frac{P_e}{A_g} + \frac{P_e \cdot e_c}{S_t} - \frac{M_{DC} + M_{DW}}{S_t}$$

- Presforzado más cargas constantes más cargas transitorias

$$ft_{vig.cajon.b} = -\frac{P_e}{A_g} + \frac{P_e \cdot e_c}{S_t} - \frac{M_{DC} + M_{DW}}{S_t} - \frac{M_{LL+IM} + M_{PL}}{S_t}$$

Estado Límite de Servicio III

Se calculará es esfuerzo en la parte de abajo de la viga:

$$ft_{vig.cajon.b} = -\frac{P_e}{A_g} + \frac{P_e \cdot e_c}{S_t} + \frac{M_{DC} + M_{DW}}{S_t} + 0.8 \frac{M_{LL+IM} + M_{PL}}{S_t}$$

4.4.14.3 Verificación de la resistencia nominal a flexión

Se determinará el valor de la longitud desde el eje neutro a la fibra extrema sometida a compresión para verificar la resistencia a flexión.

$$c = \frac{A_{ps} \cdot f_{pu} + A_s \cdot f_s - A_s' \cdot f_s'}{0.85 \cdot f'c \cdot \beta \cdot 1 \cdot b + k \cdot A_{ps} \cdot \left(\frac{f_{pu}}{dp}\right)}$$

Donde:

$$k = 2 \cdot \left(1.04 - \frac{f_{py}}{f_{pu}}\right)$$
 Ec.5.6.3.1.1-2 AASHTO LRFD 2020

$$\beta 1 = \left(0.85 - 0.05 \cdot \frac{f'c - 280}{70}\right) \ge 0.65$$
 Valor de $\beta 1$ para hormigones con resistencias mayores a 28 MPa

Se calculará el esfuerzo promedio en el presfuerzo con la resistencia nominal a flexión de acuerdo con el Art. 5.7.3.1.1 de la norma AASHTO LRFD 2020.

$$f_{ps} = f_{pu} \cdot \left(1 - k \cdot \frac{c}{dp}\right)$$

El valor de la resistencia se determinará en base a la Ec. 5.6.3.2.2-1 para así poder determinar esta de tal manera que se encuentre factorada.

$$M_n = A_{ps} \cdot f_{ps} \cdot \left(dp - \frac{a}{2} \right) + A_s \cdot fy \cdot \left(ds - \frac{a}{2} \right) - A_s' \cdot f'c \cdot \left(d's - \frac{a}{2} \right)$$

$$M_r = \phi \cdot Mn$$

4.4.15 Límites de armaduras

4.4.15.1 Armadura mínima

En el cálculo del mínimo acero a tensión presforzado y de refuerzo debe ser la que se necesite para cumplir con lo demandado en el Art. 5.7.3.3.2 de la AASHTO LRFD 2020, en el que se menciona que Mr no debe ser menor al valor obtenido entre:

-
$$M_u \cdot 1.33$$

-
$$M_{cr} = \gamma 3 \cdot \left(\left(\gamma 1 \cdot fr + \gamma 2 \cdot f_{cpe} \right) \cdot S_c - M_{d.nc} \left(\frac{S_c}{S_{nc}} - 1 \right) \right)$$

Donde:

fr = Módulo de rotura del hormigón a tracción

 f_{cpe} = Esfuerzo de compresión en el concreto debido al presfuerzo

 $M_{d.nc}$ = Momento total por carga muerta

 $S_c = \text{M\'odulo de secci\'on para la fibra extrema de la secci\'on compuesta}$

 S_{nc} = Módulo de sección para la fibra extrema de una sección simple

y1 = Factor de variación de fisuración

y2 = Factor de variación de presfuerzo

γ3 = Relación de la resistencia a fluencia y la resistencia última a tracción del acero

4.4.16 Verificación de la resistencia a corte

De acuerdo con la AASHTO LRFD 2020, se tomará el mínimo resultado:

$$-V_n = V_c + V_s + V_p$$

$$-V_n = 0.25 \cdot f'c \cdot b_v \cdot d_v + V_s + V_p$$

Donde:

 V_c = Resistencia al corte nominal de la sección de hormigón

 V_s =Resistencia al corte de la sección de refuerzo de corte

 V_p = Resistencia al corte nominal del presforzado

 b_v = Ancho efectivo del alma

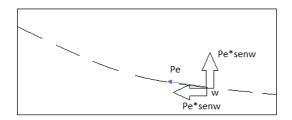
 d_v =Profundidad efectiva del cortante

4.4.16.1 Sección crítica

Se calculará la sección crítica dependiente de la profundidad efectiva mediante el Art.

5.7.2.9 de la norma AASHTO LRFD 2020, donde establece que:

$$dv = dp - \frac{a}{2}$$


Donde:

de = dp No se considerará el acero de refuerzo, debido al presfuerzo

4.4.16.2 Resistencia al corte de postensado

Esta resistencia se determinará mediante la componente vertical de la fuerza de postensado, como se menciona en la figura.

Figura 33 - Componente de la fuerza de postensado efectiva

Nota: La figura muestra la componente de la fuerza de postensado efectiva. Fuente: Autoría

Propia

La trayectoria del cable se determinará mediante la tangente de la parábola con el origen en el centro de la luz.

$$y = 0.0038 \cdot x'^2 + 0.2$$

4.4.16.3 Resistencia al corte del concreto

Esta resistencia se determinará mediante la expresión Ec. 5.7.3.3-3 de la norma AASHTO LRFD 2020.

$$V_c = 0.264 \cdot \beta \cdot \sqrt{f'c} \cdot b_v \cdot d_v$$

Donde el valor de β se determinará mediante la expresión c. 5.7.3.4.2-1.

$$\beta = \frac{4.8}{1 + 750 \cdot \xi s}$$

$$\xi s = \frac{\binom{Mu}{dv} + 0.5 \cdot Nu + |Vu - Vp| - A_{ps} \cdot f_{po}}{E_s \cdot A_s + E_p \cdot A_{ps}} \le 0.006 \quad \text{Deformación unitaria neta}$$

La norma AASHTO LRFD 2020, mediante el Art. 5.7.3.4.2 menciona que el momento mayorado se calculará mediante a la siguiente expresión.

$$Mu \ge (Vu - Vp) \cdot d_v$$

4.4.17 Refuerzo Transversal

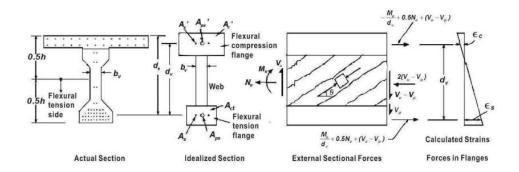
La norma AASHTO LRFD 2020, determina mediante su Art. 5.7.2.3-1 que en caso de que no se satisfaga con la siguiente expresión se requerirá acero de refuerzo transversal.

$$V_u < 0.5 \cdot \emptyset \cdot (V_c + V_p)$$

Donde:

 $\emptyset = 0.9$ Factor de resistencia para cortante

4.4.17.1 Requerimiento de espaciamiento de armadura transversal


La norma AASHTO LRFD 2020, establece que el espaciamiento de armadura transversal se determinará mediante la siguiente expresión.

$$s = \frac{A_v \cdot fy \cdot d_v \cdot (\cot \theta + \cot \alpha) \cdot sen\alpha}{V_s}$$

Donde:

$$\theta = 29 + 3500 \cdot \xi_{s(2)}$$

Figura 34 - Procedimiento de cálculo para armadura mínima transversal

Nota: La figura muestra el procedimiento de cálculo para armadura mínima transversal. Fuente:

AASHTO LRFD 2020.

4.4.17.2 Comprobación del refuerzo transversal mínimo

La norma AASHTO LRFD 2020, establece la expresión Ec. 5.7.2.5-1. Para determinar el refuerzo mínimo.

$$A_{vmin} = 0.264 \cdot \sqrt{f'c} \cdot \frac{b_v \cdot s}{fy}$$

4.4.18 Refuerzo Longitudinal

El lado que se encuentra sometido a tracción gracias a la flexión deberá contar con área de refuerzo longitudinal según la norma AASHTO LRFD 2020, y deberán cumplir con la expresión.

$$A_{ps} \cdot f_{ps} + A_s \cdot fy \ge T$$

Donde:

$$T = \left(\frac{Mu}{d_v \cdot \phi_f}\right) + 0.5 \cdot \frac{Nu}{\phi_c} + \left(\left|\frac{Vu}{\phi_v} - V_p\right| - 0.5 \cdot V_s\right) \cdot \cot\theta$$
 Fuerza en el refuerzo longitudinal

$$\theta =$$
 Ángulo de inclinación para esfuerzos longitudinales

$$\emptyset_f, \emptyset_v, \emptyset_c =$$
 Factores de resistencia para momento, cortante y axial

4.4.19 Resistencia nominal a torsión

Según la norma AASHTO LRFD 2020, en el Art. 5.7.3.6 la resistencia nominal a torsión se calculará mediante la siguiente expresión.

$$Tn = \frac{2 \cdot A_o \cdot A_t \cdot fy \cdot \cot \theta}{s}$$

Donde:

 $A_o =$ Área del corte

 $A_t =$ Área de la armadura transversal de torsión

 θ = Ángulo de fisuración

s = Espaciamiento del refuerzo transversal

Por ende, la resistencia a la torsión de la sección cajón se deberá satisfacer la expresión.

$$T_r = \emptyset T_n$$

Donde:

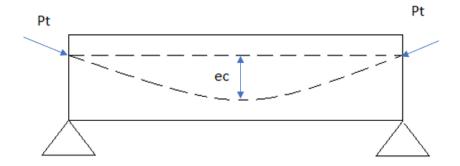
 T_r = Resistencia a torsión de la sección factorada

 \emptyset = Factor de Resistencia (0.90)

4.4.20 Contra flecha y deflexiones

4.4.20.1 Contra flecha debido a la fuerza de presfuerzo

$$\Delta_{pre} = \frac{5 \cdot P_t \cdot e_c \cdot L_c^2}{48 \cdot E_{ci} \cdot I_g}$$


Donde:

 P_t = Fuerza inicial de postensado

 e_c = Distancia de la viga al Aps, considerando sus centros de gravedad

 L_c = Longitud de cálculo de la viga

Figura 35 - Contra flecha por postensado

Nota: La figura muestra la contra flecha debida a la fuerza por postensado. Fuente: Autoría Propia.

4.4.20.2 Deflexión por cargas permanentes

$$\Delta_{DCv} = \frac{5 \cdot W_{DCv} \cdot L_c^4}{384 \cdot E_{ci} \cdot I_g}$$

Al disponer de dos fuerzas puntuales ubicadas simétricamente a un tercio de la luz cada una se utilizará la siguiente expresión, que refleja la deflexión ubicada en el centro de luz.

$$\Delta_d = \frac{23 \cdot P_d \cdot L_c^3}{648 \cdot E_{ci} \cdot I_g}$$

4.4.20.3 Deflexión debida a la carga viva

Según el Art. 3.6.1.3.2 de la norma AASHTO LRFD 2020, el análisis de deflexión se realizará a partir de dos apartados, tomando el valor mayor de entre los dos.

- Camión de diseño HL-93
- 25% del camión y carril de diseño

$$P1 = \frac{0.5 \cdot P_c \cdot N_{vias} \cdot IM}{N_b}$$

$$P2 = \frac{2 \cdot P_c \cdot N_{vias} \cdot IM}{N_b}$$

Donde:

 P_c = Carga de la rueda HL-93

 N_{vias} = Numero de vías

 N_b = Numero de vigas

IM = Incremento debido a carga dinámica

Se calculará la carga por impacto mas la deflexión debida a la carga viva.

$$\Delta_{LL+IM} = \frac{P \cdot b \cdot (3 \cdot a^2 + 6 \cdot a \cdot b - b2^{\square})}{48 \cdot Ec \cdot Ic}$$

Para el cálculo de la deflexión resultante del 25% de carga se considerará.

$$\frac{W_{LL}}{vig} = W_{LL} \cdot \frac{N_{vias}}{N_h}$$

Donde:

 W_{LL} = Carga de carril de diseño

 $\frac{W_{LL}}{vig}$ = Carga de carril de diseño por viga

4.4.20.4 Deflexión admisible

De acuerdo con el Art. 2.5.2.6.2 de la norma AASHTO LRFD 2020, para el presente caso del puente de análisis, se considerará una carga vehicular y peatonal, por ende, el cálculo respectivo de la deflexión admisible será el siguiente:

$$\Delta_{m\acute{a}x} = \frac{L}{1000}$$

Condición:

$$\Delta_{m\acute{a}x} \geq \Delta_{LL+IMm\acute{a}x}$$

4.4.21 Zonas de anclaje postensadas

4.4.21.1 Placa de apoyo del anclaje

La resistencia mayorada al desplazamiento se calculará mediante la norma AASHTO LRFD 2020, en su Art. 5.6.6.

$$P_r = \emptyset \cdot P_n$$

Donde:

 $P_n = 0.85 \cdot f'c \cdot A_1 \cdot m$ Resistencia nominal de aplastamiento

$$m = \sqrt{\frac{A_2}{A_1}}$$
 Factor de modificación

 $A_1 = \text{Área de placa}$

 A_2 = Área de apoyo de la placa

4.4.21.2 Refuerzo en el anclaje

Es necesario colocar una armadura adicional para el control de grietas en el hormigón, ya que con el tiempo se harán más grandes afectando potencialmente a la estructura. Es por este motivo que se ha decidido utilizar el método de Gergeley y Sozen.

Se analizará mediante los siguientes puntos.

 Para el momento producido por flexión dado entre el acero y la distancia donde está ubicada la primera carga en direccionada verticalmente

$$M_1 = P_e \left(2 \cdot \left(\frac{y}{h} \right)^3 - \left(3 + \frac{h}{2e} \right) \left(\frac{y}{h} \right)^2 \right)$$

Donde:

e = Excentricidad del grupo de cables

y = Distancia hasta el punto analizado

h = Altura de viga

Se calculará también la fuerza total de tracción, y el esfuerzo máximo admisible en los estribos.

$$F_t = \frac{M_{m \pm x}}{h - z}$$

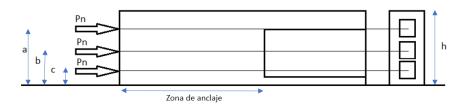
$$f_s = \left(\frac{2.7E_{s\sqrt{f'cw}}}{As}\right)^{0.5}$$

Donde:

 $M_{m\acute{a}x}$ = Momento máximo longitudinal

h = Alto viga

z = Distancia entre los extremos de la viga y el centroide de los estribos


Es = Módulo de elasticidad del acero

f'c = Resistencia a la compresión simple del concreto

w =Ancho de grieta

As =Área de refuerzo

Figura 36 - Cálculo de momentos en sección longitudinal para el refuerzo de anclaje

Nota: La figura muestra la distribución de cargas para el cálculo de momentos en una sección. Fuente: Autoría Propia.

Para una distancia 0.0 (cm) < y < c (cm)

$$M_1 = Pe\left(2\left(\frac{y}{h}\right)^3 - \left(3 + \frac{h}{2e}\right)\left(\frac{y}{h}\right)^2\right)$$

Para c (cm) \leq y \leq b (cm)

$$M_n = M_1 + P_n y + P_n e_n \left(1 - \frac{h}{2e_n} \right)$$

Para b (cm) \leq y \leq a (cm)

$$M_n = M_1 + P_n y + P_n e_n \left(1 - \frac{h}{2e_n} \right)$$

4.5 Diseño del tablero inferior

4.5.1 Grosor del tablero inferior

Para definir el grosor del tablero inferior se considerarán las consideraciones y especificaciones de la AASHTO LRFD 2020, donde el espesor adoptado será de 20 cm.

4.5.2 Cortes y momentos últimos

Se considerarán los estados límites mencionados en la norma AASHTO LRFD 2020, que son de: Evento Extremo, Resistencia I, y Servicio I.

4.5.3 Límite para armaduras

4.5.3.1 Armadura máxima

Para la verificación de la armadura máxima para el tablero inferior se deberá desarrollar lo especificado en el literal 4.2.7.1.

4.5.3.2 Armadura mínima

En el Art. 5.4.2.6 reflejado en la norma AASHTO LRFD 2020, se describe el procedimiento para determinar el esfuerzo máximo del hormigón a tracción, para un hormigón de peso normal.

$$f_r = 2 \cdot \sqrt{f'c}$$

También se determinará el momento mínimo escogido entre las siguientes condiciones de diseño:

-
$$M_1 min = 1.33 \cdot M_u max$$

-
$$M_2 min = \gamma 3 \cdot \left[\left(\gamma 1 \cdot fr + \gamma 2 \cdot f_{cpe} \right) \cdot Sc - M_{dnc} \left(\frac{S_c}{S_{nc}} - 1 \right) \right]$$

4.5.4 Evaluación de fisuramiento

Para la evaluación del fisuramiento para el tablero inferior se utilizará el procedimiento descrito en el literal 4.2.8.

4.5.4.1 Control de agrietamiento

Para el cálculo del control se utilizará el procedimiento descrito en el literal 4.2.8.1.

4.5.5 Refuerzo por contracción y temperatura

Para el cálculo del refuerzo por contracción y temperatura se determinará de acuerdo con el literal 4.2.7.

4.5.6 Longitud de desarrollo traccionado

Para el cálculo de la longitud de desarrollo se tomará en cuenta lo mencionado en el literal 4.3.12.

4.6 Diseño de los diafragmas

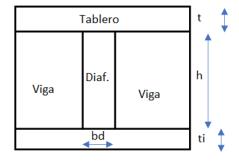

4.6.1 Resolución Estructural

Figura 37 - Dimensiones del diafragma de tramo Vista Frontal

Nota: La figura muestra las dimensiones del diafragma de tramo Vista Frontal. Fuente: Autoría Propia.

Figura 38 - Vista Lateral Corte A-A Diafragma

Nota: La figura muestra un boceto de la vista lateral del diafragma de diseño. Fuente:

Autoría Propia.

Para el cálculo del peso total se empleará la siguiente expresión.

$$W_{DC} = w_{ppd} + w_t$$

Donde:

 w_{ppd} = Peso propio del diafragma

 $w_t = \text{Peso del tablero}$

4.6.2 Diseño a flexión

4.6.2.1 Combinaciones de carga

Valor máximo y mínimo de Υi.

$$\eta_{m\acute{a}x} = 1.00$$

$$\eta_{min} = 1.00$$

Se procederá a determinar el estado límite de Resistencia I, enunciando anteriormente calculando así:

$$Mu = \eta(1.25M_{DC} + 1.50M_{DW} + 1.75_{MLL+IM})$$

4.6.3 Armadura

4.6.3.1 Armadura mínima

$$fr = 2 \cdot \sqrt{f'c}$$

Se determinará el valor mínimo entre las siguientes condiciones:

-
$$M_{1 \, min} = 1.33 \cdot M_{u \, max}$$

-
$$M_{2 min} = \gamma 3 \left[(\gamma 1 \cdot fr + \gamma 2 \cdot f_{cpe}) Sc - M_{dnc} \left(\frac{Sc}{Snc} - 1 \right) \right]$$

4.6.4 Diseño a corte

4.6.4.1 Estado límite de Resistencia I

$$Vu = \eta[1.25 \cdot V_{DC} + 1.50V_{DW} + 1.75V_{LL+IM}]$$

$$vu = \frac{Vu}{\emptyset \cdot bv \cdot dv}$$

Donde:

$$vu < 0.125 \cdot fc$$

Se calculará también la separación máxima 2, y se procederá a determinar el menor valor entre los dos.

$$S_{m\acute{a}x2} = \frac{Av \cdot fy}{0.26 \cdot \sqrt{f'c} \cdot b}$$

$$S_{cal} = \frac{Av \cdot fy}{(vu - vc) \cdot bw}$$

4.7 Diseño de los dispositivos de apoyo

4.7.1 Cargas actuantes

Se determinará el método de diseño para los apoyos elastoméricos o neoprenos, considerando las solicitaciones provenientes del cálculo de la superestructura.

- Cargas permanentes R_{DC}
- Cargas permanentes R_{DW}

- Carga viva R_{LL}

Según la norma AASHTO LRFD 2020, se considerará el Art. 3.6.1.3 se establecerá la reacción producto de la carga viva.

- Camión de Diseño sin IM + Carril de Diseño + Carga Peatonal

$$R_{LL} = \frac{4.50 \cdot P_c}{Lpuente} \cdot \left(L_{puente} - x - 2.847\right) + \frac{W_{LL} \cdot L_{puente}}{2} + \frac{W_{peatonal} \cdot L_{puente}}{2}$$

Donde:

 R_{LL} = Peso carga viga

 $N_{vias} = \text{Número de vías}$

m = 1 Factor de presencia múltiple

 R_{LL} = Reacción por carga viva en el estribo

Se considerará también un apoyo elastomérico de Dureza grado 60, según el Art.

14.7.6.3.2-8 de la norma AASHTO LRFD 2020, con un valor de 87.9 kg/cm2, y se considerará la dimensión del neopreno mediante la siguiente expresión.

$$L = \frac{R_T}{W \cdot \sigma_{adm}}$$

Donde:

W = Ancho del neopreno adoptado

L = Longitud de apoyo calculado

L = Longitud de apoyo tomado

A = Área del neopreno

Posterior al cálculo de las dimensiones se determinará los esfuerzos producidos en el material debido a las cargas que actúan de la superestructura.

$$\sigma_{\rm S} = \frac{R_T}{A}$$

$$\sigma_D = \frac{\Sigma R}{A}$$

$$\sigma_{\scriptscriptstyle S} = \frac{R_{LL}}{A}$$

Donde:

 $\sigma_{s}=$ Esfuerzo a compresión por carga total

 σ_D = Esfuerzo a compresión por carga permanente

 $\sigma_{LL}=$ Esfuerzo a compresión por carga viva

4.7.2 Deformación por corte

4.7.2.1 Deformación por corte debido a la temperatura

Se calculará la deformación por corte debido a la temperatura mediante el Art. 5.4.2.2 de la norma AASHTO LRFD 2020.

$$\delta_t = \alpha \cdot L_v \cdot \Delta_t$$

Donde:

 L_v = Largo total de la viga

 Δ_v = Variación por temperatura

 α = Coeficiente de dilatación por temperatura

4.7.2.2 Deformación por corte debido a la contracción de hormigón

La deformación por corte debido a la contracción de hormigón en su Art. 5.4.2.3 de la norma AASHTO LRFD 2020, menciona que el factor de contracción una vez transcurrido sus 28 días de fraguado será de 0.0002.

$$\delta_c = C_c \cdot L_v$$

Donde:

 C_c = Longitud de la viga

 $\delta_c = {
m Deformación\ debida\ a\ la\ contracción\ del\ concreto}$

Posteriormente se calculará la deformación total por lado mediante la siguiente expresión.

$$\delta = \delta_{t(+)} + \delta_{t(-)} + \delta_c$$

$$\Delta_{\frac{S}{LADO}} = \frac{\delta}{2} \cdot \Upsilon_{tu}$$

Donde:

 δ = Deformación de superestructura

 Υ_{TU} = Factor de carga producida por la temperatura

4.7.2.3 Combinación de corte, compresión y rotación

Según el Art. 14.7.5.3.3 de la norma AASHTO LRFD 2020, se comprobará las combinaciones de carga tanto de rotación, axial y de corte en Servicio a través de las expresiones:

$$\left[\gamma_{a,st} + \gamma_{r,st} + \gamma_{s,st}\right] + 1.75 \cdot \left[\gamma_{a,cy} + \gamma_{r,cy} + \gamma_{s,cy}\right] \le 5.00$$

Donde:

$$\gamma_{a,st} \leq 3.00$$

$$\gamma_a = \frac{Da \cdot \sigma}{G \cdot Si}$$

Modulo de Corte

$$\gamma_r = Dr \cdot \left(\frac{L}{h_{ri}}\right)^2 \cdot \frac{\theta s}{n_{int}}$$
 Deformación producida por la rotación

$$\gamma_S = \frac{\frac{\Delta s}{lado}}{h_{rt}}$$

Deformación producida por el desplazamiento

4.7.2.4 Análisis de la estabilidad

Según el Art. 14.7.5.3.4 de la norma AASHTO LRFD 2020, los apoyos demandarán satisfacer:

$$2A \leq B$$

Donde:

$$A = \frac{\left(1.92 \cdot \left(\frac{h_{rt}}{L}\right)\right)}{\sqrt{1 + \left(\frac{2L}{W}\right)}}$$

$$B = \frac{2.67}{\left(Si + 2\right)\left(1 + \frac{L}{4W}\right)}$$

4.7.2.5 Refuerzo de acero

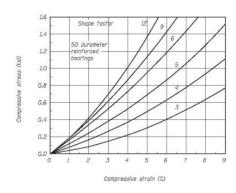
Según el Art. 14.7.5.3.5 de la norma AASHTO LRFD 2020, el grosor mínimo del acero de refuerzo será 0.159 cm, y el grosor deberá cumplir con las siguientes expresiones.

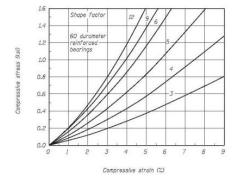
- Estado límite de servicio

$$h_{s1} \ge \frac{3 \cdot h_{ri} \cdot \sigma_s}{Fy}$$

- Estado límite de fatiga

$$h_{s2} \ge \frac{2 \cdot h_{ri} \cdot \sigma_L}{F_{TH}}$$


Donde:


 ΔF_{TH} = Constante de amplitud de fatiga crítica

4.7.2.6 Deflexión debida a la compresión

Se analizará mediante la tabla 17.

Tabla 17 - Curva de Tensión Deformación

Nota: Curva de tensión deformación. AASHTO LRFD 2020.

Una vez determinados los factores de corte se calculará las deformaciones para cargas, respectivamente sean muerta o viva.

$$\delta_{ti} = \Sigma \varepsilon_{Li} \cdot h_{ri}$$

$$\delta_d = \Sigma \varepsilon_{di} \cdot h_{ri}$$

$$\delta_{cr} = a_{cr} \cdot \delta_d$$

Donde:

 $\delta_{ti} = ext{Deformación producida por carga viva}$

 $\delta_d = {
m Deformación}$ producida por carga muerta

 $\delta_{cr}=$ Correlación de las propiedades del material

4.7.3 *Anclaje*

Según el Art. 14.7.5.4 de la norma AASHTO LRFD 2020, si se satisface la expresión el neopreno no requerirá un anclaje.

$$\frac{\theta s}{n} \ge \frac{3\varepsilon_{\alpha}}{Si}$$

Donde:

 θ = Rotación de incertidumbre según el Art. 14.4.2.1

4.7.4 Fuerzas que deforman el apoyo

Las fuerzas que deformarán el apoyo se calcularán mediate la expresión Ec. 14.6.3.1-2.

$$\Delta_{Umax} = \frac{h_{rt}}{2}$$

$$\Delta_{eq} = \Delta_{Umax} - \Delta_{temp} - \Delta_{cnt}$$

$$H_{eq} = \frac{G \cdot A \cdot \Delta_{eq}}{h_{rt}}$$

$$H_{eqt} = Na \cdot H_{eq}$$

Donde:

 H_{eqt} = Fuerza del estribo

G = Módulo de corte del apoyo elastomérico

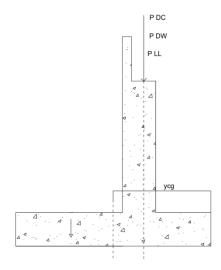
A =Área del neopreno

 Δ_{temp} = Deformación producida por la temperatura

 h_{rt} = Grosor total del apoyo

 h_{eq} = Fuerza sísmica absorbida por cada apoyo

Na = Número de vigas


5. Diseño Infraestructura

5.1 Generalidades y Cálculo de solicitaciones a partir de la superestructura

El cálculo de la segunda etapa se centró en el diseño de la infraestructura, compuesta por estribos laterales tipo U y sistemas de protección contra sismos.

Se deberá cumplir con los solicitado en el Art. 1.3.2.1 de la norma AASHTO LRFD 2020. Donde se especifica que para los estados límites los factores de resistencia se tomarán como 1. A partir de estas solicitaciones se procederá con el diseño de los estribos debido a las cargas de la superestructura, de manera concreta la carga constante y la carga viva.

Figura 39 - Representación fuerzas provenientes de la superestructura

Nota: La figura muestra una representación de las fuerzas provenientes de la superestructura junto con la ubicación del estribo. Fuente: Autoría Propia.

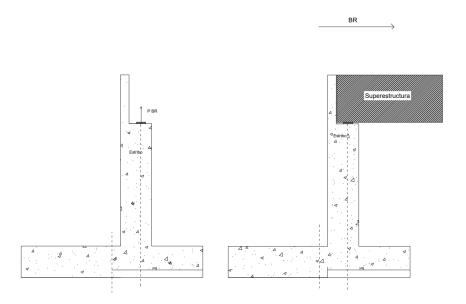
Donde:

 P_{DC} = Carga muerta, por el peso de la superestructura

 P_{DW} =Carga viva por capa de rodadura y servicios públicos

 P_{LL} = Carga viva Sobrecarga HL-93

5.2 Fuerza de frenado

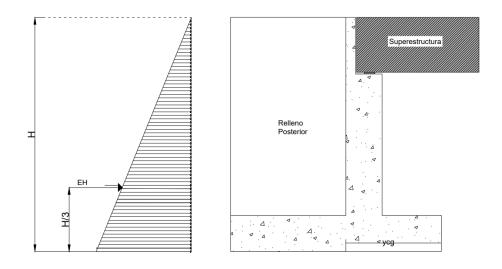

Según el Art. 3.6.4 de la norma AASHTO LRFD 2020, las fuerzas de frenado de los vehículos actúan a una distancia de 1.83 metros por encima de la calzada. Debido a esto se

procederá a diseñar el estribo considerando esta fuerza, y se tomará el mayor entre las condiciones siguientes.

- 5% de la carga del camión de diseño + la carga de carril
- 5% de la carga del tándem + la carga de carril
- 25% de la carga de camión o del tándem de diseño

La fuerza tomada se multiplicará por la cantidad de carriles en el puente y también por el factor de presencia múltiple. (B_{RP})

Figura 40 - Solicitaciones debidas a la fuerza de frenado


Nota: La figura muestra las solicitaciones debidas a la fuerza de frenado. Fuente: Autoría Propia.

5.3 Cargas provenientes de la infraestructura

5.3.1 Presión de tierras

Debido a las fuerzas proporcionadas por los vehículos en dirección a la vía el muro tratará de voltearse o deslizarse, por ende, se analizará este caso también.

Figura 41 - Fuerzas producidas por la presión de tierras

Nota: La figura muestra la representación de las fuerzas debido a la presión de tierras.

Fuente: Autoría Propia.

En base a los estudios realizados previamente referentes al suelo del sitio de estudio, se calculará el coeficiente de empuje mediante.

$$k_a = \frac{\sin^2(\beta + \Phi)}{\sin^2(\beta) \cdot \sin(\beta - \delta) \cdot \left[1 + \sqrt{\frac{\sin(\Phi + \delta) \cdot \sin(\Phi - \beta)}{\sin(\theta - \delta) \cdot \sin(\theta + \beta)}}\right]}$$

Donde:

 $\delta =$ Ángulo de fricción entre el relleno y la pared

 β = Ángulo de llenado con respecto a la horizontal

 θ = Ángulo de la parte posterior con respecto al muro

 Φ = Ángulo efectivo de fricción interna

Después se calculará la presión máxima del suelo sin sobrecargar, para una vez después calcular el empuje de tierra normal sin sobrecarga, según las siguientes expresiones

$$p_o = ka \cdot \Upsilon \cdot h$$

Donde:

h =Altura promedio presión generada por las tierras

 Υ = Peso específico del relleno posterior

 P_o = Presión máxima sin sobrecarga

$$E_H = \frac{1}{2} \cdot h \cdot Le \cdot P_o$$

Donde:

Le = Ancho de presión de tierras

 E_H = Empuje de tierras normal

5.3.2 Sobrecarga viva

Para el cálculo de la sobre carga viva se deberá considerar la altura equivalente para la sobrecarga soportada por el estrato de suelo para el diseño de estribos, establecido en la tabla 3.11.6.4-1 de la norma AASHTO LRFD 2020.

Tabla 18 - Altura equivalente del suelo para la carga vehicular en estribos perpendiculares

Abutment Height (ft)	h_{eq} (ft)
5.0	4.0
10.0	3.0
≥20.0	2.0

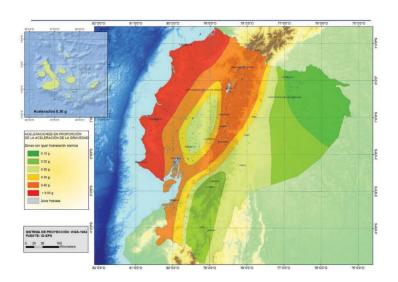
Nota: Altura equivalente del suelo para la carga vehicular en estribos perpendiculares.

AASHTO LRFD 2020.

5.3.3 Sobrecarga vertical

Se calculará el momento estabilizador a partir de la sobrecarga vertical, generando un momento estabilizador.

5.4 Sismo


5.4.1 Factor Z dependiente de la zona sísmica

Mediante el Art. 3.10 de la norma AASHTO LRFD 2020, se considerarán las fuerzas producidas por los sismos como fuerzas que presentes de manera horizontal, dependiendo del factor de respuesta elástica, y también del peso de la superestructura.

La zona sísmica y el valor del factor Z se tomará de acuerdo con la NEC-SE-DS, de acuerdo con la imagen.

Figura 42 - Ecuador, zonas sísmicas para propósitos de diseño y valor del factor de zona

Z

Nota: Ecuador, zonas sísmicas para propósitos de diseño y valor del factor de zona Z.

Fuente: NEC-SE-DS.

Tabla 19 - Valores del factor Z en función de la zona sísmica adoptada

Zona sísmica	I	II	III	IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.40	≥ 0.50
Caracterización del peligro sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy alta

Nota: Valores del factor Z en función de la zona sísmica adoptada. NEC-SE-DS

5.4.2 Fuerza lateral producida por la superestructura

Mediante el Art. 3.10.9.1 de la norma AASHTO LRFD 2020, para estructuras simples, es decir de un solo tramo, la fuerza mínima para el diseño no debe ser menor a la siguiente expresión.

$$EQ_{Smin} = As \cdot (R_{DC} + R_{DW})$$

Donde:

 R_{DC} = Reacción por carga muerta del estribo

 R_{DW} = Reacción por cargas posteriores del estribo

As =Coeficiente de aceleración

Como el caso de diseño se tratará de apoyos elastoméricos, la fuerza transmitida de la superestructura a la subestructura se tomará por la fricción determinada mediante la siguiente expresión.

$$H_{bu} = \mu \cdot Pu$$

Donde:

 H_{bu} = Fuerza sísmica lateral transmitida

 μ = Coeficiente defricción

Pu = Cargas calculadas con el estado límite en Evento Extremo

$$Pu = 1.00 \cdot R_{DC} + 1.00 \cdot R_{DW} + 0.5 \cdot R_{LL+IM}$$

5.4.3 Fuerza lateral producida por el peso del estribo

Para el diseño la fuerza lateral producida por el sismo se debe revisar el Art. 11.6.5.2.2 de la norma AASHTO LRFD 2020, donde se menciona que se empleará el coeficiente de aceleración sísmica lateral, para así utilizar el Método de Newmark determinando así el total de desplazamiento del suelo.

5.4.4 Presión ejercida en el estrato del suelo debido a la condición sísmica

- Fuerza horizontal producida por la fuerza sísmica del propio estribo

La fuerza total lateral se aplicará en la pared, es por esto por lo que se calculará la fuerza lateral producida por la carga de sismo del suelo y de la pared mediante la siguiente expresión.

$$P_{IR} = kh \cdot (W_W + W_S)$$

Donde:

 W_W = Peso del estribo

 W_S = Peso del relleno posterior

- Fuerza dinámica horizontal producida a la presión ejercida por las tierras

Los esfuerzos actuantes sobre el estribo se analizarán mediante un enfoque estático desarrollado según el Anexo 11.3.1 de la norma AASHTO LRFD 2020, donde se tomarán en cuenta las fuerzas de inercia tanto verticales como horizontales.

El método de considerará de acuerdo con las siguientes consideraciones.

- No debe estar saturado el relleno del talón del estribo
- Deberá haber requisitos de empujes activos
- El relleno del talón debe tener un ángulo de fricción y no debe ser cohesivo.

De acuerdo con el Art. 11.6.5.3-2 de la norma AASHTO LRFD 2020, se determinará la fuerza sísmica activa mediante la siguiente expresión.

$$P_{AE} = 0.50 \cdot \gamma_R \cdot h^2 \cdot K_{AE} \cdot L_{estribo}$$

Donde:

 γ_R = Peso específico del relleno del talón del estribo

h =Alto del muro promedio

 L_{est} = Longitud del estribo

Se calculará el coeficiente de presión sísmica mediante la siguiente expresión.

$$K_{AE} = \frac{sen^2(\phi R + \beta - \theta MO)}{\cos(\theta_{MO}) \cdot sen^2(\beta) \cdot sen(\beta - \theta_{MO} - \delta) \cdot \left[1 + \sqrt{\frac{sen(\phi R + \delta) \cdot sen(\phi R - \theta MO - t)}{sen(\beta - \delta - \theta MO) \cdot sen(\iota + \beta)}}\right]^2}$$

Donde:

$$\theta_{MO} = \text{Ángulo M-O}\left(\frac{kh}{1-kv}\right)$$

 ϕ_R = Ángulo de fricción interno de relleno

 δ = Ángulo de fricción entre el relleno y el estribo

 β = Ángulo entre la horizontal y el paramento vertical del muro

ι = Ángulo de inclinación del relleno

La fuerza PAE se refiere a la presión total equivalente producida por cargas estáticas y dinámicas, la cual se calculará de la siguiente manera.

$$\Delta P_{AE} = P_{AE} - E_H$$

Donde:

 ΔP_{AE} = Fuerza por acción sísmica.

5.5 Fuerzas por contracción y temperatura

Revisar el Art. 14.6.3.1-2 de la norma AASHTO LRFD 2020.

5.6 Factores de carga

Los factores de carga estarán normados de acuerdo con los estados límites de cada componente, mediante el Art. 3.4.1 de la norma AASHTO LRFD 2020. En el caso del estribo, las solicitaciones serán las siguientes:

Servicio I

Hace referencia a la hora de realizar el control del fisuramiento en el concreto armado.

- Resistencia I

Combinación en relación al flujo vehicular.

- Evento Extremo I

Hace referencia a la hora de obtener las mayores solicitaciones.

5.7 Verificación de la estabilidad presente en la cimentación

5.7.1 Verificación de la capacidad portante Evento Extremo I

Según el Art. 10.5.5.3 de la norma AASHTO LRFD 2020, se tomarán como 1.00 todos los factores de resistencia, y se considerará el comentario C11.5.6, ya que se considerará la carga viva vertical que es la que representa las mayores solicitaciones.

$$\sigma_v = \frac{Pu}{B} \cdot \left(1 \pm 6 \cdot \frac{e}{B}\right)$$

Donde:

 σ_v = Esfuerzo total por estribo, presión de tierras, etc.

Pu =Pesos afectados por los factores de resistencia

B = Base de la cimentación del estribo

e =Excentricidad causada por los momentos últimos y pesos

$$q_R = \emptyset \cdot q_n$$

Donde:

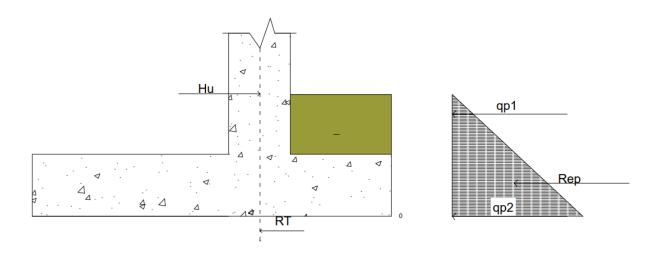
 q_n = Capacidad resistente factorada del suelo

5.7.2 Verificación de la capacidad de carga del estado límite de Evento Extremo I

Para el análisis de deslizamiento, se calculará el coeficiente de presión pasiva en evento extremo mediante la siguiente expresión.

$$k_p = \frac{sen^2(\beta - \phi 2)}{sen^2(\beta) \cdot sen(\beta + \delta 2) \cdot \left[1 - \sqrt{\frac{sen(\phi 2 + \delta 2) \cdot sen(\phi 2 + \iota)}{sen(\beta + \delta 2) \cdot sen(\iota + \beta)}}\right]}$$

Donde:


ι = Ángulo de inclinación del talud del relleno

 ϕ 2 = Ángulo de fricción interna del relleno delantero

 $\delta 2 = \text{ Ángulo de rozamiento entre el terreno y el muro}$

 β = Ángulo entre la horizontal y el parámetro del muro

Figura 43 - Representación de las presiones actuantes en el relleno delantero

Nota: La figura muestra la representación de las presiones actuantes en el relleno delantero.

Fuente: Autoría Propia.

Se procederá a calcular los esfuerzos que ayudarán al estribo, debido a las presiones pasivas que se generarán en el relleno delantero.

$$q_{pn} = \gamma_n \cdot h_{pn} \cdot k_p$$

Donde:

 q_{pn} = Esfuerzo de presión pasiva en cualquier punto

 h_{pn} = Altura en cualquier punto

La resistencia nominal se calculará para de esta manera relacionarla con la fuerza horizontal máxima, mediante la siguiente expresión.

$$R_R = \varphi \cdot R_n$$

$$R_R = \varphi_\tau \cdot R_\tau + \varphi_{ep} \cdot R_{ep}$$

Donde:

 R_R = Resistencia nominal al deslizamiento

 φ_{τ} =Factor de resistencia al cortante en relación a la cimentación y al suelo

 φ_{ep} =Factor de resistencia pasiva

 R_{τ} =Resistencia nominal al deslizamiento

 R_{ep} = Resistencia normal pasiva al suelo

$$R\tau = \Sigma P * Tan\delta + C$$

Donde:

 ΣP = Suma total de cargas verticales

 δ = Ángulo de fricción relacionado entre la cimentación y el estribo

C = Resistencia por cohesión del suelo

5.7.3 Verificación del vuelco y excentricidad máxima del estado límite de Evento Extremo I

Los momentos desestabilizantes producen un momento en volcamiento debido al empuje horizontal producido, y se lo analizará mediante la siguiente expresión.

$$M_{u\,vol} = \left[M_{EQ} \cdot \gamma_{EQ\,max} + M_{LS\,max} \cdot \gamma_{LS\,max} + M_{EH} \cdot \gamma_{EH\,max} \right]$$

Los momentos estabilizantes son generados por el peso de la estructura y se considerarán mediante la siguiente expresión.

$$M_{u \, est} = \left[M_{DC} \cdot \gamma_{DC \, min} + M_{DW} \cdot \gamma_{DW \, min} + M_{LL} \cdot \gamma_{LL \, min} + M_{EV} \cdot \gamma_{EV \, min} \right]$$

Los límites de excentricidad se los determinará mediante el Art. 11.6.5.1 donde se indica que la resultante se ubicará dentro del rango de ocho medios décimos de la base del estribo.

5.8 Diseño de la cimentación

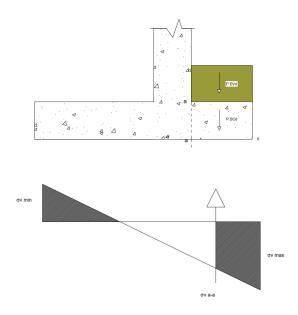
5.8.1 Diseño de la cimentación y solicitaciones para Evento Extremo I

Se procederá a calcular los esfuerzos máximos y mínimos para las solicitaciones del Evento Extremo I mediante la siguiente expresión.

$$\sigma_{(m \land x, m \land n)} = \frac{P}{A} \pm \frac{M \cdot c}{I}$$

Donde:

A =Área de la cimentación


I = Inercia de la zapata

c = Distancia desde el eje neutro a la fibra más lejana en tracción

5.8.1.1 Diseño del dedo Evento Extremo I

Para el diseño del dedo se requerirá un esfuerzo, debido a que el dedo estará afectado por el peso de la cimentación y del relleno delantero.

Figura 44 - Esfuerzos en la sección A-A el relleno delantero

Nota: La figura muestra el diagrama de esfuerzos en la sección A-A. Fuente: Autoría Propia.

- Armadura a flexión

El momento mínimo se calculará entre el valor de los dos valores obtenidos de las siguientes expresiones.

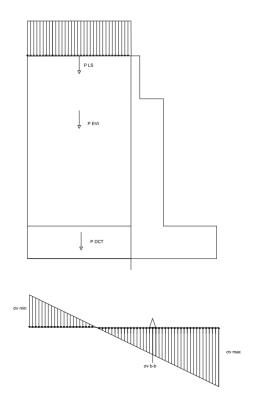
$$- M_{1\,min} = 1.33 \cdot M_{u\,m\acute{a}x}$$

$$- M_{2\,min} = \gamma 3 \left[\left(\gamma 1 \cdot fr + \gamma 2 \cdot f_{cpe} \right) \cdot Sc - M_{dnc} \left(\frac{Sc}{Snc} - 1 \right) \right]$$

- Control de ductilidad para el dedo

Para realizar el diseño del control de ductilidad nos referiremos al literal 4.2.7.1 del diseño de la superestructura.

- Armadura por contracción y temperatura


Revisar el literal 4.2.9 utilizado en el diseño de la superestructura.

5.8.1.2 Diseño del tablón

Según la norma AASHTO LRFD 2020, especifica que se deberán utilizar factores indicados para el diseño del talón. Mediante el gráfico donde se señala la sección B-B se diseñará la flexión del talón considerando el peso del relleno y del talón.

$$\sigma(m\acute{a}x,m\acute{n}n) = \frac{P}{A} \pm \frac{M \cdot c}{I}$$

Figura 45 - Esfuerzos producidos en el talón

Nota: La figura muestra un esquema de los esfuerzos producidos en el talón. Fuente:

Autoría Propia.

Se calculará el momento en la sección B-B de la zapata.

$$Mu_{b-b} = \frac{y}{3} \cdot Rt - P_{DCt} \cdot \gamma_{DCm\acute{a}x} \cdot \frac{Lt}{2} - P_{EVt} \cdot \gamma_{EV\,m\acute{a}x} \cdot \frac{Lt}{2} - P_{LSt} \cdot \gamma_{LS\,m\acute{a}x} \cdot \frac{Lt}{2}$$

5.8.2 Estado límite de Servicio I

Mediante el Art. 10.5.5.1 de la norma AASHTO LRFD, se tomarán todos los factores de resistencia con el valor de 1.00.

5.8.2.1 Control de fisuramiento

Para el cálculo del control de fisuramiento se tomará en cuenta el Art. 5.6.7 de la norma AASHTO LRFD 2020, donde se menciona que el refuerzo del concreto, establecidas en el Art. 9.7.2

5.8.2.2 Dedo

Se considerará: la armadura instalada, el momento producido por el estado límite de Servicio I, la distancia a la que está ubicada el eje neutro, y la inercia de la sección. Y se verificará que la separación máxima entre varillas sea mayor a la separación colocada de las varillas.

$$S_{m\acute{a}x} > S_{var}$$

Donde:

 S_{max} = Separación máxima entre varillas

 S_{var} = Separación colocada entre varillas

5.8.2.3 Talón

Se considerará de igual manera: la armadura instalada, el momento producido por el estado límite de Servicio I, la distancia a la que está ubicada el eje neutro, y la inercia de la sección. Y se verificará que la separación máxima entre varillas sea mayor a la separación colocada de las varillas.

5.9 Diseño del cuerpo

5.9.1 Armadura a flexión

Se calculará el módulo de rotura presente en el hormigón, la distancia medida desde el eje neutro a la fibra extrema, y la inercia presente en la sección, para así determinar el acero mínimo requerido para el momento de agrietamiento.

Se determinará el momento mínimo a partir del menor valor considerado entre las dos siguientes consideraciones.

$$- M_{1\,min} = 1.33 \cdot M_{u\,max}$$

-
$$M_{2\,min} = \gamma 3 \left[\left(\gamma 1 \cdot fr + \gamma 2 \cdot f_{cpe} \right) Sc - M_{dnc} \left(\frac{Sc}{Snc} - 1 \right) \right]$$

5.9.2 Control de ductilidad en el cuerpo

Para realizar el diseño del control de ductilidad nos referiremos al literal 4.2.7.1 del diseño de la superestructura.

5.9.3 Armadura por contracción y temperatura

Revisar el literal 4.2.9 utilizado en el diseño de la superestructura.

5.9.4 Armadura para controlar la tensión de la cuña

Esta carga se tomará como el 25% del total de la carga puntual, generada en la mitad del ancho presente en la sección del diseño,

5.10 Diseño de la pantalla superior

Se considerará el valor de 1.00 de ancho como se lo realizó previamente con la cimentación y el cuerpo.

Para el análisis de las cargas producidas por la superestructura se analizarán las siguientes cargas: fuerza de frenado, carga viva y muerta de la superestructura.

Para el análisis de las cargas provenientes de la infraestructura se considerará la presión de tierras y la sobrecarga viva debido a la presión horizontal.

5.10.1 Análisis de Sismo

5.10.1.1 Fuerza lateral transmitida por el peso de la pantalla superior

Para el análisis de la fuerza lateral, se aplicará la siguiente expresión.

$$kh = 0.5 \cdot kho$$

También se procederá a calcular peso propio de la pantalla, la fuerza y el momento generados por la carga lateral de la pantalla.

5.10.1.2 Fuerza sísmica debido al relleno del talón de la pantalla

El cálculo de la fuerza sísmica se calculará a partir del peso generado por el relleno presente en el talón de la pantalla, diseñada previamente en el literal 5.8.2.1, para una vez así determinar la fuerza producida por el sismo generada por el peso del talón, y a partir de encontrar

la ubicación de la fuerza, calcular el momento producido por esta, referente al centro de gravedad.

5.10.2 Solicitaciones últimas

Para las solicitaciones últimas se considerará el estado límite en Evento Extremo I y en Resistencia I.

5.10.3 Diseño

Para el diseño de la armadura a flexión se realizará el mismo procedimiento de literal 5.9.1 del diseño del cuerpo.

En el diseño de armadura por contracción y temperatura se determinará el procedimiento detallado en el literal 4.2.9, usado para el análisis de la superestructura.

Para el control de fisuramiento se desarrollará el procedimiento detallado en el literal 4.2.8, usado para el análisis de la superestructura.

5.11 Diseño de la pantalla lateral

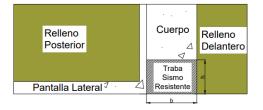
Se considerarán las cargas provenientes de la subestructura, es decir, la presión de tierras y la sobrecarga viva.

Se analizará también el estado límite de Resistencia I, descrito en el literal 4.2.2.1 del diseño de la superestructura.

5.11.1 Diseño

Para la armadura de diseño a flexión se realizará el mismo procedimiento de literal 5.9.1 del diseño del cuerpo.

En el diseño de armadura por contracción y temperatura se determinará el procedimiento detallado en el literal 4.2.9, usado para el análisis de la superestructura.


Para el control de fisuramiento se desarrollará el procedimiento detallado en el literal 4.2.8, usado para el análisis de la superestructura.

5.12 Diseño de la traba sismo resistente

Se deberán cumplir con algunas condiciones:

- Si av es mayor que la altura efectiva se diseñará como viga en voladizo.
- Si av es menor que la altura efectiva se diseñará como ménsula.

Figura 46 - Representación esquemática de la traba sismo resistente

Nota: La figura muestra una representación de la traba sismo resistente. Fuente: Autoría Propia.

Mediante el Art. 5.8.4.2.2 de la norma AASHTO LRFD 2020, se empleará la resistencia a tracción fraccionada NR, mediante la siguiente expresión.

$$N_R = \phi \cdot Fy \cdot As$$

Donde:

 N_R = Resistencia a la tracción factorizada

Fy =Esfuerzo de fluencia del acero

As =Área acero

5.12.1 Cargas y solicitaciones

Se procederá a diseñar con el estado límite en Evento Extremo I, debido a que se deben considerar todas las cargas que actúan sobre la superestructura, se la determinará la fuerza sísmica lateral mediante la siguiente expresión.

$$EQ = As \cdot (R_{DC} + R_{DW})$$

Donde:

As = Coeficiente de aceleración sísmica (0.40)

Se determinará también la fuerza de corte, tensión y el momento mayorado:

- Fuerza de corte mayorada

$$V_u = \eta_{im\acute{a}x} \cdot \gamma_{EO} \cdot EQ$$

Donde:

 V_u = Carga última sísmica

- Fuerza de tensión mayorada

Según el Art. 5.8.4.2.1 de la norma AASHTO LRFD 2020, la fuerza de tensión mayorada será el 20% de la fuerza cortante mayorada.

- Momento mayorado

Para determinar el momento mayorado se empleará la expresión Ec. 5.8.4.2.1-1 de la norma AASHTO LRFD 2020.

$$M_u = V_u \cdot a_v + N_{uc} \cdot (L_{traba} - d)$$

Donde:

 V_u = Fuerza de corte mayorada

 a_v = Distancia hasta donde se aplica la carga

Nuc = Fuerza de tracción última mayorada

 L_{traba} = Longitud de la traba sísmica

d = Altura efectiva de la traba sísmica

5.12.2 Análisis por corte fricción

Se determinará la fuerza cortante mediante la siguiente expresión.

$$V_n = c \cdot A_{cv} + \mu \cdot \left(A_{vf} \cdot FyPc \right)$$

Donde:

 A_{cv} = Área de hormigón considerada en la transferencia de cortante

c =Factor de cohesión

 A_{vf} = Área de refuerzo a cortante

Pc = Fuerza permanente a compresión

 μ = Factor de fricción

Además, la resistencia nominal no deberá ser mayor que las siguientes expresiones.

$$V_{ni} \le K1 \cdot f'c \cdot A_{cv}$$

$$V_{ni} \leq K2 \cdot A_{cv}$$

$$A_{cv} = b_{vi} \cdot L_{vi}$$

Donde:

 $b_{vi}=$ Ancho de interfaz que interviene en la transferencia del cortante

 L_{vi} = Longitud de interfaz que interviene en la transferencia de cortante

K1 = Fracción de resistencia del hormigón para resistir el cortante interfaz

K2 = Resistencia limitante a cortante de interfaz

 V_{ni} = Resistencia nominal a la fuerza cortante de interfaz

Se tomará el menor valor de las dos expresiones.

-
$$K1 \cdot f'c \cdot A_{cv}$$

-
$$K1 \cdot A_{cv}$$

5.12.3 Análisis por fuerza de tensión vertical

Se considerará la siguiente expresión.

$$An < \frac{Nuc}{\emptyset \cdot Fy}$$

Donde:

Nuc = Fuerza de tensión última mayorada

 \emptyset = Factor de resistencia a tracción

fy = Resistencia a la fluencia del acero

5.12.4 Análisis a flexión

Para determinar el análisis de refuerzo, se calculará mediante la expresión Ec. 6.3

$$Af = \frac{M_u}{\emptyset \cdot Fy \cdot jd}$$

Donde:

Mu = Momento mayorado

Ø = Factor de resistencia a la tracción

fy =Resistencia a la fluencia del acero

jd = 80% de la altura efectiva de la traba sísmica

5.12.5 Armaduras

5.12.5.1 Armadura principal

El refuerzo principal a tracción se determinará mediante el Art. 5.8.4.2.2 de la norma AASHTO LRFD 2020.

$$As > \frac{2 \cdot A_{vf}}{3} + An$$

Donde:

 A_{vf} = Área de acero para cortante por fricción

 $A_n =$ Área del refuerzo que resiste la fuerza de tracción de la ménsula

5.12.5.2 Armadura secundaria

Según el Art. 5.8.4.2.2 de la norma AASHTO LRFD 2020, se determinarán los estribos cerrados mediante la siguiente expresión.

$$A_h \ge 0.50 \cdot (A_s - A_n)$$

Donde:

An =Área del refuerzo que resiste la fuerza de tracción en la ménsula

As =Área de refuerzo principal de tracción

6. Presupuesto Referencial

Se obtuvo un presupuesto referencial de \$198.319,49 (ciento noventa y ocho mil tres cientos diecinueve dólares americanos con cuarenta y un centavos), en base a los precios unitarios actualizados en el año 2024.

Tabla 20 - Presupuesto Referencial Proyecto

ITEM	DESCRIPCIÓN	UNIDAD	CANTIDAD	VALOR UNITARIO	VALOR TOTAL
1	PRELIMINARES				
	Replanteo y nivelación	m2	115.00	2.21	254.15
	Desbroce y limpieza del terrreno	m3	120.00	1.02	122.40
2	INFRA-ESTRUCTURA				
	Excavación de cimientos	m3	684.00	6.05	4138.20
	Subrasante conformación y compactación con equipo pesado	m3	115.00	1.28	147.20
	Relleno compactado con material de mejoramiento	m3	158.15	26.52	4194.14
	Hormigón f'c=280kg/cm2	m3	216.00	141.91	30652.56
	Acero de refuerzo fy=4200 kg/cm2	kg	25131.36	2.25	56545.56
	Replantillo de H.S. f'c=140kg/cm2	m3	11.39	99.06	1128.29
3	SUPER-ESTRUCTURA				
	Capa de Rodadura de hormigón asfáltico e=5cm	m2	222.00	11.07	2457.54
	Barandas tubo galvanizado	m	74.00	129.13	9555.62
	Hormigón f'c=400kg/cm2	m3	51.45	202.73	10430.39
	Homirgón Acera f'c=280kg/cm2	m3	150.38	141.91	21339.72
	Acero de refuerzo fy=4200 kg/cm2	kg	3288.08	2.25	7398.17
	Acero de refuerzo en torón 6" de baja relajación (fpu=19000kg/cm2)	m	6993.00	5.65	39510.45
	Acero Vigas Preesfuerzo	kg			0.00
	Apoyo de Neopreno e=42cm	u	6.00	321.94	1931.64
	Acero para barandales PERFIL IPE 160	kg	306.00	2.50	765.00
	Placa acero galvanizado e=0.05m	m2	2.70	12.09	32.64
4	TRANSPORTE				
	Desalojo con volqueta	m3	820.80	8.35	6853.68
	Cargado de material con cargadora	m3	820.8	1.36	1116.29
				TOTAL	198319.49

Nota: Presupuesto referencial basado en precios unitarios actualizados 2024. Autoría Propia.

7. Resultados

El cálculo con el cual se determinaron los resultados se encuentra reflejados en los anexos del capítulo 10, mostrando en este capítulo solamente los resultados obtenidos con respecto a esos cálculos, para una mejor comprensión dirigirse al capítulo 10.

7.1 Momentos plásticos de las protecciones laterales

Tabla 21 - Momentos plásticos poste y rieles

	Momentos plásticos		
Poste			
Mp (poste)	6.21 Ton*m	Pp(poste)	10.02 Ton
Rieles			
Nr	2.00	Mp (rieles)	14.2254 Ton*m

Nota: Momentos plásticos poste y rieles. Autoría Propia.

7.2 Momento último para aceras y protecciones laterales

Tabla 22 - Resultados Protecciones Laterales y Acera

Resultado de momentos						
Voladizo						
Vehículo en posición natural / R1	Mu (-)aa	1.10	Ton*m			
Vehículo en posición accidental / R1	Mu (-)aa	7.46	Ton*m			
Colisión vehículo / EX II	Mu (-)aa	16.09	Ton*m			
Servicio I	Mu (-)aa	0.88	Ton*m			
Apoyos Interio	ores					
Resistencia I / Apoyo Interior	Mu (-) bb	6.18	Ton*m			
Event Extr II + Colisión	Mu (-) bb	10.47	Ton*m			
Servicio I / Apoyo Interior	Mu (-) bb	3.71	Ton*m			
Resistencia I / Apoyo Interior	Mu (-) cc	5.56	Ton*m			
Resistencia I / Apoyo Interior	Mu (-) dd	5.70	Ton*m			
Tramo						
	M DC (+) 1-2	0.119	Ton*m			
	M DW (+) 1-					
	2	0.053	Ton*m			
	M IM (+) 1-2	3.141	Ton*m			
Resistencia I	Mu (+) 1-2	5.724	Ton*m			
Servicio I	Mu (+) 1-2	3.313	Ton*m			

Nota: Resultados protecciones Laterales y Acera. Autoría Propia.

7.3 Momentos y acero calculado para tablero inferior

Tabla 23 - Momentos tablero inferior

Armadura por flexión					
Mu W ρ As					ls min
	Ton*m			c	:m²
Apoyo interior		0.319	0.004	0.0003	0.497
Tramo		0.239	0.003	0.0002	0.373

Nota: Momentos y acero armadura tablero inferior. Autoría Propia.

7.4 Cargas aplicadas en los apoyos del puente

Tabla 24 - Resultados Apoyos del puente

APOYOS		
Cargas Permanentes RDC	R DC	457.87 Ton
Cargas Permanentes RDW	R DW	35.52 Ton
Carga Permanente	ΣR	493.39 Ton
Carga viva por apoyo de neopreno	R LL	108.87 Ton
Peso total por apoyo de Neopreno	RT	602.26 Ton
Peso total por nervio	RT/N	200.75 Ton/nervio

Nota: Resultado de carga aplicada en los apoyos del puente. Autoría Propia.

7.5 Dimensiones del Neopreno

Tabla 25 - Dimensiones del Neopreno

Neoprenos				
Ancho del neopreno	W	32 cm		
Longitud de neopreno calculado	L	75 cm		
Espesor de las capas internas de elastómeros	hri	1 cm		
Número de capas del elastómero	n int	2 capas		
Espesor de las laminas de acero	hs	2 mm		
Espesor de las capas exteriores del elastómero	hre	0.8 cm		
Láminas de acero	ns	3		
Altura total	ht	4.20 cm		

Nota: Resultado medidas del neopreno a utilizar. Autoría Propia.

7.6 Calculo de pérdidas en miembros postensados

Tabla 26 - Cálculo de pérdidas en miembros postensados

Perdidas Instantáneas					
Asentamiento de los anclajes					
Asentamiento de los anclajes	ΔΑ	0.6 cm			
Longitud del tendon proyectado	Lc	37.02 m			
Módulo de elasticidad de APE	Ep	2004000 kg/cm ²			
Perdida por corrimiento de anclaje	ΔfpA	324.80 kg/cm ²			
Perdida por fricción					
Coef. Tipo de vaina - Polietileno	k	6.60E-07			
Coef. Tipo de vaina - Polietileno	μ	0.23			
Longitud de cálc	Lc	37 m			
Excentricidad adoptada	ec	0.524 m			
Radio	R	326.79 m			
Longitud hasta el centro de luz	X	18.5 m			
Variación Angular final	αf	0.113 rad			
Variación angular hasta el centro de la luz	αf/2	0.057 rad			
Base de log natural	e	2.7			
Esfrz max, en el tensado	fpj	15408 kg/cm ²			
Perdida por fricción	ΔfpF	199.61 kg/cm ²			
Perdida por acortamiento elástico					
Esfuerzo despues de las ∆fpAy ∆fpf	f'pj	14883.6 kg/cm ²			
Área del torón presforzado	Aps	264.6 cm ²			
Fuerza de presfuerzo despues de ΔfpA y Δ fpf	P'j	3938197.7 kg			
Área de la secc del cajon	Ag	47750.0 cm ²			
Excentricidad adoptada	ec	52.4 cm			
Inercia de la viga	lg	196511358.4 cm4			
Momento por peso propio en el CL	M DC (total)	2298.9 Ton*m			
# de cables	N	9.0			
Módulo de elasticidad de APE	Ep	2004000.0 kg/cm ²			
Mód de elasticidad del Ho durante la transf	Ect	240000.0 kg/cm ²			
Esfrz max, en el tensado	fpj	15408.0 kg/cm ²			
Esfuerzo Ho, en la fibra en el cg	fcgp	76.2 kg/cm ²			
Perdida por acortamiento elástico	ΔfpES	282.8 kg/cm ²			

Nota: Pérdidas por postensado. Autoría Propia.

7.7 Deflexiones debidas a la carga muerta en la viga cajón

Tabla 27 - Deflexiones producidas por carga muerta en la viga cajón

Debido a la fuerza de Presfuerzo			
Fuerza inicial de postensado	Pt	3589346	kg
Excentricidad adoptada	ec	52.41	cm
Luz del puente	L	3700	cm
	$\Delta pres$	5.69	cm
Deflexión debido a cargas permanentes			
	W DCv	13.20	Ton/m
	W DCv	132.00	kg/cm
	ΔDCv	6.83	cm
Deflexión por peso del diafragma			
Carga puntual del diafragma	Pd	3280	kg
	Δd	0.13	cm
Deflexión por cargas posteriores			
	W Dw	9.60	kg/cm
	Δср	0.50	cm
Deflexión Total 1	Δ	-1.76	cm

Nota: Deflexiones producidas por la carga muerta en la viga cajón. Autoría Propia.

7.8 Deflexiones debidas a la carga viva en la viga cajón

Tabla 28 - Deflexiones producidas por la carga viva en la viga cajón

Deflexiones debido	o a cargas viva	as	
Carga de Rueda - HL-93	Pc	7270	kg
# de vías	N vías	2	
# de vigas	Nb	3	
Incremento por carga dinámica	IM	1.33	
	P1	3223.03	kg
	P2	12892.13	kg
Módulo de elasticidad del Ho durante la transf	Ec	240000	kg/cm ²
Inercia secc transversal	lcg	196511358.4	cm ⁴
Deflexión de C. V	iva + Impacto		
Р	a	b	$\Delta LL+IM$ (1)
kg	cm	cm	cm
3223.03	1423	2277	0.07
12892.13	1850	1850	0.29
12892.13	2277	1423	0.27
		$\Sigma = \Delta L L + IM \ (1)$	0.62
Carga de carril de diseño + 2	5% de camió	n de diseño	
Carga de carril de diseño	W LL	9.52	kg/cm
Carga de carril de diseño por viga	W LL/viga	6.35	kg/cm/viga
	0,25*Pi	805.76	kg
	0,25*P2	3223.03	kg
Р	a	b	$\Delta LL+IM$ (2)
kg	cm	cm	cm
805.76	1423	2277	0.02
3223.03	1850	1850	0.07
3223.03	2277	1423	0.07
			0.33
		$\Sigma = \Delta L L + IM \ (2)$	0.48

Nota: Deflexiones producidas por la carga viva en la viga cajón. Autoría Propia.

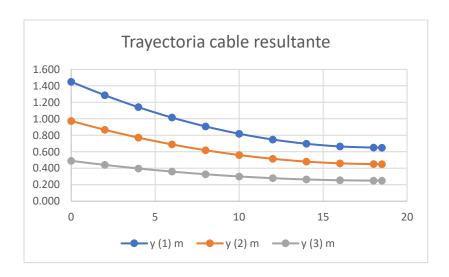

7.9 Trayectoria cable resultante de postensado

Tabla 29 - Trayectoria cable resultante de la viga postensada

Trayectoria del cable resultante de la viga postensada						
у	1.45	0.974	0.49			
x'	18.5	18.5	18.5			
Rec	0.65	0.45	0.25			
K	0.002	0.002	0.001			
х	y (1)	y (2)	y (3)			
m	m	m	m			
0	1.450	0.974	0.490			
2	1.286	0.867	0.441			
4	1.141	0.772	0.397			
6	1.015	0.689	0.360			
8	0.908	0.619	0.327			
10	0.819	0.561	0.301			
12	0.749	0.515	0.280			
14	0.697	0.481	0.264			
16	0.665	0.460	0.254			
18	0.651	0.450	0.250			
18.5	0.650	0.450	0.250			

Nota: Trayectoria cable resultante de la viga postensada. Autoría Propia.

Figura 47 - Trayectoria Cable resultante viga postensada

Nota: La figura muestra la Trayectoria cable resultante de la viga postensada. Fuente: Autoría Propia.

7.10 Carga muerta del estribo

Tabla 30 - Carga muerta del estribo

Resumen de Carga Muerta			
Peso propio del estribo	P DC	259.682	Ton
Ubicación de la carga por peso propio del estribo	у	3.05	m
Mn peso propio, eje 0-0	Mo	793.18	Ton*m

Nota: Resumen de carga muerta del estribo. Autoría Propia.

7.11 Presión de tierras ejercida en los estribos

Tabla 31 - Presión de tierras ejercida en los estribos

Presión de tierras					
Peso específico del relleno posterior	yr	1.9	Ton/m ³		
Ángulo de fricción	φr	40.60	۰		
Ángulo de inclinación de talud de relleno	ι	0	•		
Angulo de rozamiento entre el estribo y el terreno	δ	30	۰		
Ángulo entre la horizontal y el paramento	β	90	0		
Coef. De empuje activo	Ka	0.196			
Presión máx. sin sobrecarga	ро	2.235	Ton/m ²		
Empuje de tierras normales	EΗ	56.975	Ton		
Posición de empujes de las tierras	Z EH	1.999	m		
Mn por presión de tierras	M EH	113.894	Ton*m		

Nota: Presión de tierras ejercida en los estribos. Autoría Propia.

7.12 Presión de tierras ejercida en los estribos

Tabla 32 - Cargas y momentos por incidencia sísmica

Corre	Fuerza	Momento
Carga	Ton	Ton*m
Hbu	120.45	512.52
EQ Estribo	32.46	56.36
EQ Relleno	32.40	113.35
ΔΡΑΕ	19.11	68.61

Nota: Cargas y momentos por incidencia sísmica. Autoría Propia.

7.13 Armadura a flexión y a corte de la cimentación

Tabla 33 - Armadura a flexión de la cimentación

Resistencia a compresión	f'c	280 kg/cm²
Resistencia de fluencia del acero	fy	4200.00 kg/cm ²
Recubrimiento	r	10 cm
Peralte efectivo	de	88.75 cm
Factor	ф	0.9
Factor	β	0.85
Momento último	Mu	50.79 Ton*m

Nota: Armadura a flexión de la cimentación. Autoría Propia.

Tabla 34 - Armadura a corte para la cimentación

Factor al corte	Ø	0.9	
Altura de corte efectivo	dv	79.875	cm
Peso del dedo por ml	P DCd	4.8	Ton
Peso del relleno por ml	P Evd	3.7	Ton
Esfuerzo en la secc del corte	σν	28.91	Ton/m2
Esfuerzo producido en la sección del corte	Vud	24.29	Ton
Factores	β1	2	
Cortante resistido por hormigón	Vc	70.84	Ton
Cortante resistido por el acero a corte	Vs	0	Ton
Cortante resistido por el tablero	Vn	70.84	Ton
Resistencia Factorada	Vr	63.75	Ton
Condición	Vr > Vu	Cumple	

Nota: Armadura a corte de la cimentación. Autoría Propia.

7.14 Diseño del talón

Tabla 35 - Diseño del talón

Largo de la zapata	L	8.5	m
Área de la cimentación	Α	56.95	m ²
Excentricidad del estribo por solicitaciones min	е	0.943	cm
Ancho de la zapata	В	6.7	m
Esfuerzo máx. calculado	σνmáx	26.27	Ton/m ²
Esfuerzo min calculado	σνmín	2.22	Ton/m ²
		0	
Longitud del talón	Lt	3.5	m
Peso específico del hormigón	yh	2.4	Ton/m ³
Peso específico del relleno posterior	yr	1.9	Ton/m ³
Peso del talón por ml	P DCt	8.4	Ton
Peso del relleno por ml	P Evt	33.23	Ton
Presión vertical de la sobrecarga viva	ρν heq	1.159	Ton/m ²
Peso por sobrecarga viva en el talón	P LSt	4.06	Ton
	С	12.53	Ton/m ²
	У	2.95	m
	Rt	18.46	Ton
	γDC máx	1.25	
	γ <i>EV m</i> áx	1.35	
	γLS máx	0.5	
Mn último en la cara posterior de la pantalla	Mu pp	-82.31	Ton*m

Nota: Diseño del talón. Autoría Propia.

8. Conclusiones

El puente diseñado presenta la siguiente geometría: luz de cálculo de 37 metros, el tablero inferior con dimensiones de 37x6.35x0.20 metros, el tablero superior de 37x8.50x0.25 metros, tres vigas cajón presforzadas apoyadas sobre 6 apoyos elastoméricos o neoprenos con su dimensión de 0.75x0.32x0.42 metros.

Podemos asegurar también que mediante el cálculo de las deflexiones podemos afirmar que estas se encuentran dentro de lo aceptado, cumpliendo con todas las verificaciones propuestas en el diseño reflejadas en la parte de los Anexos.

Dado a que la localización del puente se encuentra sobre un río de por medio, y la diferencia de niveles varía considerablemente dando como resultado una pendiente de 1.14%, el puente se lo declinó con un ángulo de 0.65° de tal manera que se adapte en los apoyos elastoméricos diseñados en la sección de la infraestructura.

Mediante el análisis del suelo obtenido a través de la calicata realizada, se pudo determinar las propiedades del suelo y su clasificación al desarrollar sus respectivos ensayos. A través del ensayo de corte directo se determinó la cohesión del suelo de 0.297 kg/cm² con un ángulo de fricción interna de 40.6°.

En base a los estudios realizados, podemos decir que el utilizar vigas de sección cajón postensado se obtiene una mayor capacidad de inercia cuando se trata de torsión, sobre todo a la hora de utilizarlas en puentes con la geometría del puente realizado en el presente trabajo, unificando así estas inercias y volviendo a la estructura una estructura monolítica conformada por los tableros y la viga.

En cuanto al hormigón no se utilizó el mismo en todas las estructuras, debido a la demanda de resistencia en diferentes partes del puente, como en la superestructura, ya que en el diseño de las vigas de presfuerzo se utilizó un hormigón de 400 kg/cm2, garantizando así la seguridad de la misma, considerando que esta es la parte más importante de la superestructura, en cambio en la infraestructura se utilizó hormigón simple de 280 kg/cm2.

En secciones muy peraltadas donde no existía acero, se colocó el mínimo del acero de refuerzo para el armado del estribo, con el fin de incrementar la seguridad del mismo, garantizando así una estructura segura al momento en el que se apliquen todas las cargas descritas previamente.

9. Recomendaciones

Para obtener de una manera más precisa los estudios previos con respecto al tipo de suelo con su resistencia se recomienda realizar ensayos SPT, de tal manera que a la hora estimar la consistencia del suelo obtengamos valores óptimos para el diseño siendo así un factor importante a considerar a la hora de analizar el estrato de suelo de la zona a estudiarse.

El estudio topográfico se lo recomienda realizar mediante el ensayo RTK, ya que los puntos obtenidos mediante este levantamiento generan una mayor facilidad a la hora de ingresarlos a Civil CAD 3D, para así obtener una modelación precisa de las cotas del terreno donde se realizará el proyecto.

Si se desea realizar la ejecución del proyecto, el tensado de la viga se lo deberá realizar una vez hayan transcurrido los 28 días de fraguado, es decir, una vez habiendo obtenido la máxima resistencia del hormigón, Además, el encofrado debe ser apto para soportar todas las cargas provenientes de la superestructura, impidiendo también las deflexiones que puede presentar la misma.

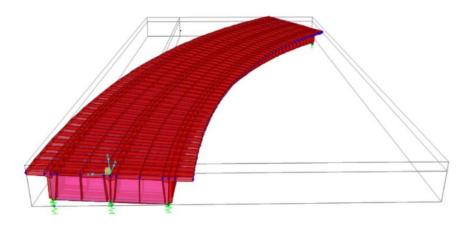
Para el material de relleno del tramo posterior del estribo se deberá usar un peso específico de 1.9 Ton/m3 y para el relleno del tramo delantero un peso de 1.85 T/m3 de tal manera que garantice la seguridad y estabilidad del estribo.

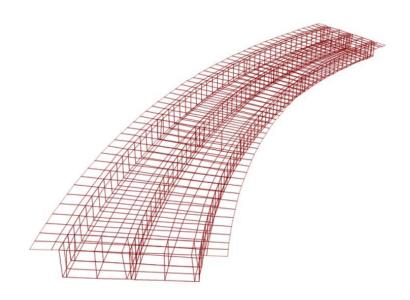
10. Referencias bibliográficas

- AASHTO LRFD. (2020). American Association of State Highway and Transportation Officials LRFD Bridge Design Specifications. In *Aashto*.
- Alcaldía de Cuenca. (2024, January 5). *Alcaldía de Cuenca destinará más de 27 millones de dólares para obras* | *GAD Municipal de Cuenca*.

 https://www.cuenca.gob.ec/content/alcaldia-de-cuenca-destinara-mas-de-27-millones-de-dolares-para-obras
- Almao, D. (2022, February 26). *Tipos de puentes según su arquitectura, materiales y uso*. https://www.cinconoticias.com/tipos-de-puentes/
- Amorin, V. (2011). ANÁLISIS DE LA CAPACIDAD PORTANTE DE SUELOS NO COHESIVOS EN CLIMAS TROPICALES PARA CIMENTACIONES SUPERFICIALES.
- Bonilla Delgado, H. (2012). *Análisis, diseño y proceso constructivo de un puente de hasta 15m*. [INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA EN CONSTRUCCIÓN]. https://repositoriotec.tec.ac.cr/bitstream/handle/2238/3204/analisis_diseño_proceso_constructivo_puente.pdf?sequence=1&isAllowed=y
- Cabrera Martínez, J. (2005). Estudio Aplicado de los costes de la prevención de Riesgos Laborales en la construcción de Puentes de Hormigón. 50–51. https://upcommons.upc.edu/bitstream/handle/2099.1/3284/53977-9.pdf?sequence=9&isAllowed=y Pilas – F Leonhardt 1982
- Cahuatijo Sojos, E. I., & Gavilanez Rivera, E. C. (2019). Diseño del puente vehicular con vigas cajón de hormigón presforzado, con normativa AASHTO LRFD 2017 y CSI BRIDGE, sobre la quebrada Guaraquí, provincia de Pichincha.
- Campoverde, F. (2023, August 17). *Cuenca tendrá tres puentes nuevos y dos parques* rehabilitados Diario El Mercurio. Noticia. https://elmercurio.com.ec/2023/08/17/cuencatendra-tres-puentes-nuevos-y-dos-parques-rehabilitados/
- Carlos, J., & Romero, H. (2022). UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE

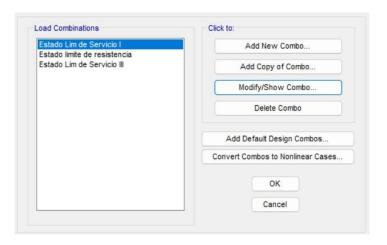
- HIDALGO FACULTAD DE CONTADURÍA Y CIENCIAS ADMINISTRATIVAS APUNTES DE LA MATERIA PRESUPUESTOS.
- Chiquito, P. (2014). Estudios De Factibilidad Y Diseños Definitivos De La Via Laurel-Junquillal. La Prefectura Del Guayas, I(Informe de Tráfico), 19. file:///C:/Users/USUARIO/Downloads/estudio trafico.pdf
- CIENTEC. (n.d.). ¿Qué es el levantamiento Topográfico? | Cientec. Retrieved April 4, 2024, from https://cientecinstrumentos.cl/que-es-un-levantamiento-topográfico/
- Cisnero, A. (2022, August 19). *Carga de viento: todo lo que necesitas saber*. https://www.easternengineeringgroup.com/es/carga-de-viento-todo-lo-que-necesitas-saber/
- Clayton, R. (2017). Diafragma En Puentes. *Universitas Nusantara PGRI Kediri*, 01, 1–7.
- Das, B. M. (2012). Cimentaciones superficiales: Capacidad de carga última. In *Fundamentos de ingeniería de cimentaciones*.
- Duque, G. (2003). Clasificación de suelos. *Geomecánica*, 78–88. http://bdigital.unal.edu.co/53252/97/clasificaciondesuelos.pdf
- El Mercurio. (2021, September 23). Cada vez circulan más vehículos en Cuenca Diario El Mercurio. Noticia. https://www.elmercurio.com.ec/2021/09/23/cada-vez-circulan-mas-vehículos-en-cuenca/
- Ferreccio, N. (2016). Análisis de la Tecnica RTK.
- GAD Municipal de Cuenca. (2022). Pdot Del Cantón Cuenca. *Plan de Desarrollo y Ordenamiento Territorial Del Cantón Cuenca. Actualización 2022*, 4–6.


 https://www.cuenca.gob.ec/sites/default/files/planificacion/dic2022/2_1_Diagnostico.pdf
- Galante, D. (2017). Puentes curvos atirantados. Universidad Politécnica De Madrid, 262.
- Ilustre Municipalidad de Cuenca. (2015). Plan de movilidad y Espacios de Cuenca 2015 2025. Ilustre Municipalidad de Cuenca, 118.
- INEC. (2024). Censo Ecuador. https://censoecuador.ecudatanalytics.com/
- INRENA. (2007). Evaluación de los Recursos Hídricos de da Cuenca del Rio Mala. 257.


- http://sigrid.cenepred.gob.pe/docs/PARA PUBLICAR/ANA/estudio hidrologico Mala.pdf
- JICA, G. de estudio. (2007). El estudio de desarrollo de capacidad en la rehabilitación, planificación, mantenimiento y administración de puentes basado en los 29 puentes de la red vial nacional en costa rica. 1–83.
- LANAMME, P. de I. S. (1999). Evaluación del Impacto Ingenieril de un Terremoto en la Península de Nicoya.
- Leonhardt, F. (1968). Aesthetics of Bridge Design. *PCI Journal*, *13*(1), 14–31. https://doi.org/10.15554/pcij.02011968.14.31
- Luévanos Rojas, A., López Chavarría, S., Medina Elizondo, M., Luévanos Rojas, A., López Chavarría, S., & Medina Elizondo, M. (2018). Optimization of Reinforced Concrete Beams for Rectangular Sections with Numerical Experiments. *Computación y Sistemas*, 22(2), 599–606. https://doi.org/10.13053/cys-22-2-2542
- Martinez, M., & Solano, N. (2014). Propuesta técnica de diseño de puente mixto de forma curva en planta en la provincia de Angaraes-Huancavelica. *Repositorio Institucional UNH*, 80. http://repositorio.unh.edu.pe/handle/UNH/2755
- MIDUVI. (n.d.). Presentación Norma Ecuatoriana de la Construcción MIDUVI Ministerio de Desarrollo Urbano y Vivienda. Retrieved April 4, 2024, from https://www.habitatyvivienda.gob.ec/presentacion-norma-ecuatoriana-de-la-construccion/
- Municipio de Cuenca. (2015). PMEPCUENCA2015_tomo_II. *Plan de Movilidad Estrategico de Cuenca*. https://www.cuenca.gob.ec/system/files/PMEPCUENCA2015_tomo_II.pdf
- Navarro, S. (2009). Concreto Prefoorzado. In https://sjnavarro.files.wordpress.com
- NEC-SE-CG. (2015). Cargas (No Sísmicas). In *Nec*. https://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2014/08/NEC-SE-CG.pdf
- Nussbaumer, A. (2011). Fatigue Design of Steel and Composite Structures. Eurocode 3 Part 1-9: Fatigue.
- Pachas, J. (2020, September). Estudio Hidrológico para Puentes: Una Guía Completa sobre la Importancia de la Hidrología en la Ingeniería de Puentes | Instituto del Agua.

- https://institutodelagua.es/hidrologia/estudio-hidrologico-para-puenteshidrologia/
- Pinto, A. (n.d.). *TIPOS DE PUENTES: CLASIFICACIÓN Y CARACTERÍSTICAS DE LAS DIFERENTES ESTRUCTURAS*. Retrieved April 4, 2024, from https://ingenieriareal.com/tipos-de-puentes/
- Puentes, E. E. N. (n.d.). *I empujes en puentes introduccion:* 1–6.
- Quispe, I. (2018). ¿Qué es el diseño estructural? Arcux. https://arcux.net/blog/que-es-el-diseno-estructural/
- Requisitos de reglamento para concreto estructural y comentario de requisitos de reglamento. (2019). Aci 318-19. In *American Concrete Institute* (pp. 1–688).
- Rodas, D. (2023). La DGM monitorea semanalmente el tráfico vehicular de Cuenca | GAD Municipal de Cuenca. Noticias. https://www.cuenca.gob.ec/content/la-dgm-monitorea-semanalmente-el-trafico-vehicular-de-cuenca
- UDV. (2022, May 19). 4 Funciones de los Planos de Construcción | Universidad Da Vinci de Guatemala | Educación que transforma. https://udv.edu.gt/4-funciones-de-los-planos-arquitectonicos/

11.ANEXOS


Figura 48 - Modelado del puente

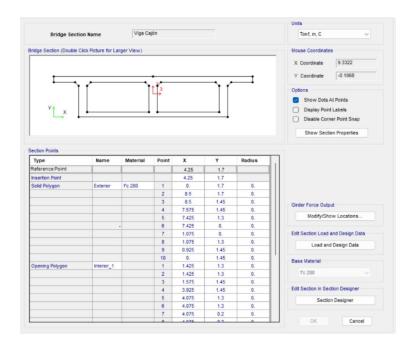

Nota: La figura muestra una representación de la traba sismo resistente. Fuente: Autoría Propia.

Figura 49 - Combinaciones de carga para la simulación de la estructura

Nota: La figura muestra las combinaciones de carga que se ingresaron al programa de simulación para el simulado. Fuente: Autoría Propia.

Figura 50 - Simulado de la viga cajón en el programa de simulación

Nota: La figura muestra las dimensiones de la viga cajón para el simulado del puente.

Fuente: Autoría Propia.

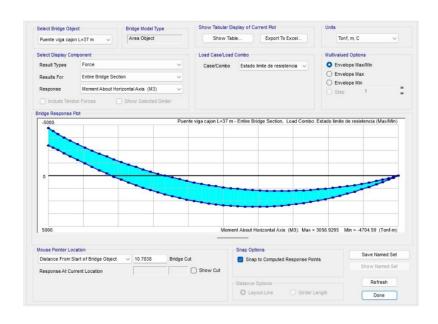

Show Tabular Display of Current Plot Select Bridge Object Bridge Model Type Show Table... Area Object Export To Excel... Result Types Force O Envelope Max/Min O Envelope Max Torsion (T) Torsion (T): Max = 6141.592 Min = 540.3526 (Tonf-m) Show Cut Response Before Current Location Show Cut Refresh Response After Current Location

Figura 51 - Diagrama de Torsión producido en la estructura

Nota: La figura muestra el diagrama de torsión analizado en el programa de simulación.

Fuente: Autoría Propia.

Figura 52 - Diagrama de momento producido en la estructura

Nota: La figura muestra el diagrama de momento analizado en el programa de simulación.

Fuente: Autoría Propia.

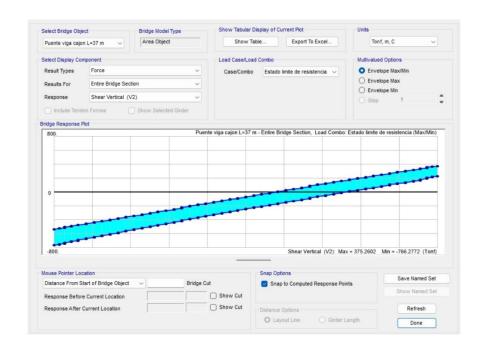
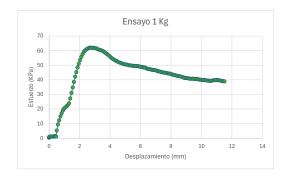
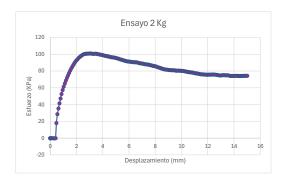
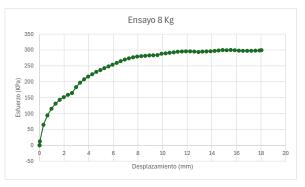


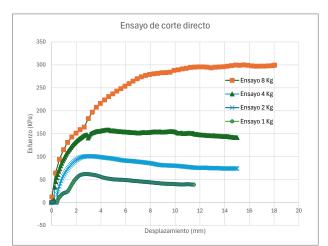
Figura 53 - Diagrama de cortante producido en la estructura

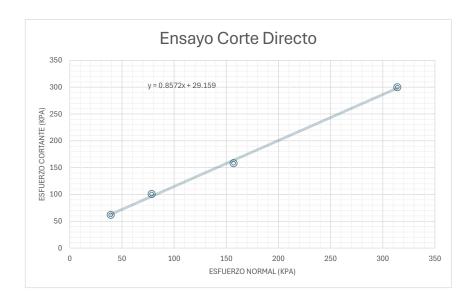

Nota: La figura muestra el diagrama de cortante analizado en el programa de simulación.


Fuente: Autoría Propia.

ENSAYO CORTE DIRECTO


	Ensayo 1 Kg			Ensayo 2 Kg			Ensayo 4 Kg			Ensayo 8 Kg	
Ensayo	1	Kg	Ensayo	2	Kg	Ensayo	4	Kg	Ensayo	8	Kg
	Desplazamiento			Desplazamie	Esfuerzo		Desplazamie	Esfuerzo		Desplazamie	Esfuerzo
	Horozontal	Esfuerzo	Carga (N)	nto (mm)	(Kpa)	Carga (N)	nto (mm)	(Kpa)	Carga (N)	nto (mm)	(Kpa)
Carga (N)	(mm)	(Kpa)		` '			` ,			` '	
0.86	0.002	0.344	-0.69	0	-0.276	3.65	0	1.46	-0.08	0.005	-0.032
1.05	0.003	0.42	-0.5	0	-0.2	3.73	0.048	1.492	-0.09	0.006	-0.036
1.13	0.003	0.452	-0.35	0	-0.14	3.71	0.129	1.484	30.61	0.034	12.244
2.15	0.007	0.86	-0.35	0	-0.14	14.84	0.205	5.936	161.08	0.324	64.432
2.75	0.062	1.1	-0.4	0.019	-0.16	83.02	0.263	33.208	234.8	0.641	93.92
2.81	0.138	1.124	-0.35	0.088	-0.14	113.7	0.337	45.48	287.35	0.971	114.94
2.8 2.79	0.224 0.307	1.12 1.116	-0.36 -0.36	0.17 0.251	-0.144 -0.144	134.6 152.47	0.418 0.497	53.84 60.988	327.6 357.53	1.302 1.642	131.04 143.012
2.75	0.347	1.110	-0.81	0.231	-0.144	170.15	0.578	68.06	378.27	1.976	151.308
2.95	0.351	1.18	-0.35	0.412	-0.14	183.69	0.656	73.476	397.11	2.312	158.844
3.34	0.357	1.336	44.73	0.469	17.892	199.7	0.736	79.88	411.47	2.643	164.588
3.78	0.377	1.512	71.21	0.544	28.484	213.75	0.816	85.5	457.29	2.973	182.916
3.31	0.427	1.324	88.15	0.625	35.26	226.67	0.897	90.668	492.25	3.296	196.9
2.82	0.457	1.128	103.47	0.703	41.388	236.89	0.979	94.756	519.2	3.628	207.68
13.23	0.503	5.292	117.93	0.785	47.172	247.09	1.061	98.836	540.09	3.952	216.036
23.56	0.579	9.424	131.28	0.863	52.512	258.15	1.146	103.26	559.17	4.287	223.668
30.53	0.661	12.212	143.16	0.945	57.264	267.97	1.228	107.188	577.39	4.616	230.956
37.39 42.89	0.743 0.823	14.956 17.156	153.24 162.68	1.025 1.107	61.296 65.072	276.67 284.64	1.311 1.392	110.668 113.856	592.12 607.17	4.951 5.275	236.848 242.868
42.89 47.47	0.823	17.156	162.68 171.23	1.107	65.072 68.492	284.64	1.392 1.474	113.856	620.57	5.275 5.608	242.868
50.71	0.985	20.284	179.56	1.27	71.824	299.44	1.553	119.776	634.18	5.933	253.672
52.68	1.066	21.072	186.81	1.352	74.724	307.26	1.637	122.904	648.1	6.27	259.24
54.8	1.145	21.92	194.07	1.437	77.628	313.94	1.719	125.576	661.85	6.595	264.74
56.6	1.228	22.64	201.22	1.52	80.488	319.89	1.802	127.956	674.84	6.935	269.936
59.92	1.308	23.968	207.75	1.604	83.1	325.79	1.884	130.316	684.66	7.266	273.864
68.03	1.389	27.212	213.26	1.687	85.304	331.23	1.968	132.492	692.31	7.605	276.924
77.65	1.469	31.06	218.71	1.769	87.484	336.7	2.049	134.68	698.11	7.933	279.244
87.02	1.55	34.808	224.02	1.851	89.608	341.57	2.133	136.628	701.65	8.265	280.66
96.4	1.628	38.56	228.91	1.933	91.564	345.94	2.214	138.376	703.8	8.591	281.52
105.36 113.28	1.709 1.786	42.144 45.312	232.54 235.88	2.017 2.099	93.016 94.352	349.65 353.78	2.296 2.377	139.86 141.512	707.35 708.25	8.923 9.25	282.94 283.3
121.23	1.868	48.492	239.77	2.099	95.908	357.68	2.377	143.072	710.24	9.25	284.096
127.67	1.948	51.068	242.55	2.163	97.02	362.07	2.542	144.828	720.22	9.914	288.088
133.96	2.03	53.584	244.98	2.349	97.992	365.64	2.628	146.256	723.51	10.247	289.404
139.3	2.111	55.72	247.49	2.432	98.996	366.84	2.713	146.736	728.13	10.574	291.252
143.97	2.196	57.588	249.29	2.513	99.716	368.62	2.796	147.448	731.64	10.908	292.656
147.76	2.278	59.104	250.55	2.597	100.22	368.83	2.879	147.532	736.08	11.236	294.432
150.37	2.359	60.148	251.09	2.679	100.436	351.3	2.963	140.52	737.91	11.572	295.164
152.23	2.44	60.892	251.53	2.762	100.612	361.41	3.047	144.564	739.19	11.903	295.676
153.47	2.524	61.388	251.68	2.843	100.672	372.31	3.129	148.924	739.11	12.243	295.644
154.66	2.605	61.864	251.81	2.924	100.724	377.76	3.214	151.104	737.25	12.572	294.9
155.14	2.688	62.056	251.96	3.005	100.784	379.79	3.298	151.916	734.27	12.911	293.708
154.83	2.771	61.932	252.09	3.091	100.836	381.95	3.384	152.78	737.49	13.236	294.996
154.94	2.857	61.976	251.72	3.175	100.688	383.91	3.471	153.564	738.92	13.57	295.568
154.81	2.94	61.924	251.07	3.259	100.428	385.75	3.558	154.3	740.16	13.897	296.064
154.36	3.026	61.744	251.21	3.341	100.484	387.3	3.642	154.92	742.82	14.229	297.128
153.93	3.108	61.572	251.55	3.428	100.62	388.65	3.727	155.46	746.11	14.554	298.444
152.62	3.192	61.048	251.33	3.517	100.532	387.89	3.811	155.156	749	14.885	299.6
151.71	3.274	60.684	250.42	3.605	100.168	389.09	3.895	155.636	747.94	15.21	299.176
151.01	3.358	60.404	249.89	3.689	99.956	390.75	3.978	156.3	749.74	15.541	299.896
150.37	3.44	60.148	249.05	3.774	99.62	392.18	4.064	156.872	747.92	15.868	299.168
149.41	3.524	59.764	248.36	3.858	99.344	393.01	4.147	157.204	744.59	16.204	297.836
148.08	3.606	59.232	247.73	3.944	99.092	393.74	4.232	157.496	743.03	16.535	297.212
146.39	3.69	58.556	246.99	4.029	98.796	394.86	4.318	157.944	743.46	16.871	297.384
144.71	3.774	57.884	245.87	4.114	98.348	395.43	4.404	158.172	743.12	17.206	297.248
143.12	3.864	57.248	245.24	4.196	98.096	395.98	4.486	158.392	744.59	17.545	297.836
143.12	3.951	56.448	244.45	4.190	97.78	395.54	4.480	158.216	744.39	17.875	297.830
138.89	4.037	55.556	243.95	4.263	97.58	395.42	4.654	158.168	748.85	18.035	299.54


Datos de Laboratorio							
Dimensión Lateral del Cuadrado	0.05 m						
Área	0.0025 m2						



	Ensayo 1 Kg	Ensayo 2 Kg	Ensayo 4 Kg	Ensayo 8 Kg
Carga (Kg)	1	2	4	8
Carga (N)	98.1	196.2	392.4	784.8
σn (Kpa)	39.24	78.48	156.96	313.92
τ_{max} (Kpa	62.056	100.836	158.392	299.896

		Ecuacion	de la re	ecta		
		y = m	1*x +b			
у	m		Х		b	
у		0.8572		0		29.159
y(0)		29.159				

	Ensayo 1 Kg	Ensayo 2 Kg	Ensayo 4 Kg	Ensayo 8 Kg
Carga (Kg)	1	2	4	8
Carga (N)	98.1	196.2	392.4	784.8
σn (Kpa)	39.24	78.48	156.96	313.92
$ au_{max}$ (Kpa)	62.056	100.836	158.392	299.896

Án	Ángulo		/o 1 Kg	1 Kg Ensayo 2 Kg		Ensa	yo 4 Kg	Ensa	yo 8 Kg
Grados	Radianes	E. normal	E. cortante	E. normal	E. cortante	E. normal	E. cortante	E. normal	E. cortante
0	0.00	-22.82	0.00	-22.36	0.00	-1.43	0.00	14.02	0.00
10	0.17	-21.87	10.78	-20.82	17.51	0.97	27.50	18.58	52.08
20	0.35	-19.07	21.22	-16.27	34.49	8.12	54.17	32.11	102.57
30	0.52	-14.50	31.03	-8.85	50.42	19.79	79.20	54.20	149.95
40	0.70	-8.30	39.89	1.24	64.82	35.62	101.81	84.19	192.77
50	0.87	-0.65	47.54	13.66	77.24	55.15	121.34	121.15	229.73
60	1.05	8.21	53.74	28.06	87.33	77.76	137.17	163.97	259.72
70	1.22	18.02	58.31	43.99	94.75	102.79	148.84	211.35	281.81
80	1.40	28.46	61.11	60.97	99.30	129.46	155.99	261.84	295.34
90	1.57	39.24	62.06	78.48	100.84	156.96	158.39	313.92	299.90
100	1.75	50.02	61.11	95.99	99.30	184.46	155.99	366.00	295.34
110	1.92	60.46	58.31	112.97	94.75	211.13	148.84	416.49	281.81
120	2.09	70.27	53.74	128.90	87.33	236.16	137.17	463.87	259.72
130	2.27	79.13	47.54	143.30	77.24	258.77	121.34	506.69	229.73
140	2.44	86.78	39.89	155.72	64.82	278.30	101.81	543.65	192.77
150	2.62	92.98	31.03	165.81	50.42	294.13	79.20	573.64	149.95
160	2.79	97.55	21.22	173.23	34.49	305.80	54.17	595.73	102.57
170	2.97	100.35	10.78	177.78	17.51	312.95	27.50	609.26	52.08
180	3.14	101.30	0.00	179.32	0.00	315.35	#N¡NUM!	613.82	0.00

ф	40.603	٥
C	29.159	Кра
C	0.297	kg/cm²

Diseño de protección Lateral

Diseño de Postes y Rieles

Nivel de ensayo de las barreras	TL-2
---------------------------------	------

Fuerzas de diseño y simbología				
Transversal	Ft [N]	120000		
Longitudinal	Fl [N]	40000		
Vertical descendente	Fv [N]	20000		
Lt y Ll	mm	1220		
Lv	mm	5500		
He [min.] [mm]		510		
Mínima altura de riel H	mm	685		

Consideraciones de diseño				
Resistencia del horimgón	f'c	280 kg/cm²		
Acero de fatiga de fluencia	fy	2520 kg/cm²		
Peso específico del hormigón	γс	2500 kg/m ³		
Peso específico del asfalto	γasf	2200 kg/m ³		

Baranda Tipo	P-3
--------------	-----

Geometría del Perfil				
Poste	IPE160	Rieles		
h	160 mm	h	220 mm	
bf	82 mm	bf	160 mm	
tf	7.4 mm	tf	5 mm	
D	145.2 mm			
tw	5 mm	tw	5 mm	
ly	68.3 cm4	ly	2621.1 cm4	
lx	869 cm4	lx	1603.1 cm4	
A	20.1 cm ²	Α	18.5 cm ²	
Peso	15.8 kg/mts	Peso	15.8 kg/mts	

	Cálculo de a					
Dirección	Υ	Χ	Dirección	Υ	Χ	
A1 [cm²]	6.068	3.63	A1 [cm²]	11	11	
A2 [cm²]	3.63	6.068	A2 [cm ²]	7.5	8	
As [cm ²]	9.698	9.698	As [cm ²]	18.5	18.5	
Y1 [cm]	7.63	0.125	Y1 [cm]	5.5	7.75	
Y2[cm]	3.63	2.05	Y2[cm]	10.75	4	
A1*Y1 [cm³]	46.30	0.45	A1*Y1 [cm ³]	60.50	81.38	
A2*Y2 [cm³]	13.18	12.44	A2*Y2 [cm ³]	80.63	32.00	
A*Y [cm³]	59.48	12.89	A*Y [cm ³]	141.13	113.38	
ay, ax [cm]	6.13	1.33	ay, ax [cm]	7.63	6.13	

Cálculo del Módulo de sección plástica					
dx	2.66 cm	dx	12.26 cm		
dy	12.27 cm	dy	15.26 cm		
Zx	53.44 cm ³	Zx	226.75 cm ³		
Zy	246.54 cm ³	Zy	282.25 cm ³		
	Cálculo del módulo plás	tico			
Мрх	1.35 Ton*m	Мрх	5.71 Ton*m		
Мру	6.21 Ton*m	Мру	7.11 Ton*m		

Poste

Mp (poste) 6.21 Ton*m Pp(poste) 10.02 Ton

Rieles

Nr 2.00 Mp (rieles) 14.2254 Ton*m

	Dimensionamiento del baranda	
Abertura entre rieles	С	0.26 m
Abertura, riel inferior	Cb	0.26 m
Alto de riele		0.22 m
Ancho de rieles	Α	0.16 m
Ancho de poste		0.16 m
Altura del poste	Н	1.06 m
Retiro del poste	S	0.08 m

Condiciones	ΣA ≥ 25%*H CUMPLE
ΣΑ	0.32 m
25%*H	0.02 m
ΣΑ / Η	0.30

Cargas para el diseño de rieles						
N Ton Kg						
Transversal	Ft		120000	12.23	12232	
Longitudinal	Fl		40000	4.08	4077	
Vertical descendente	Fv		20000	2.04	2039	
Long distribución transversal	Lt		1220 mm			
Long distribución longitudinal	Ll		1220 mm			

8154.94393

Brazos de la Resultante					
Resultante Ycg 0.62 m					
Altura efectiva He 0.51 m					
ComprobaciónYcg ≥ HeCUMPLE					

Per	rfil Longitud	inal		
Separación entre ejes de postes	L	2	m	
Separación entre postes		1.8	4 m	

Determinación de la resistencia a la falla				
Interior del tramo de la baranda Extremo del tramo de la baranda				
Modo de falla para un tramo	R	81.87 Tn	R	24.65 Tn
Modo de falla para dos tramos	R	45.39 Tn	R	16.02 Tn
Modo de falla para tres tramos	R	35.99 Tn	R	13.79 Tn
	Rmn	35.99 Tn	Rmn	13.79 Tn
Condición	R ≥ Ft	Cumple	R ≥ Ft	Cumple

Fuerza Longitudinal			
# de Postes	Np	4	
	Ррх	2.17 Ton	
Fuerza Resistencia longitudinal	Rl	8.69 Ton	
Condición	Rl > Fl	Cumple	

Diseño de Placa Base

Sistema de anclaje

Tracción por flexión

Dimnsionamiento de la placa base					
Ancho	N	300 mm			
Alto	В	220 mm			
Espesor	е	0.02 m			
Separación Vertical	Sv	130 mm			
Separación Horizontal	Sh	210 mm			
Espacio entre el borde y el perno rh, rv 45 mm					
Espacio entre placa base y tablero	rc, a, b	25 mm			

Brazo para el par de fuerzas	d	0.205 m
Fuerza en tres varillas	Nu	30.31 Ton
Centro de gravedad de la resultante	Ycg	0.62 m
Cortante	Vu	10.02 Ton
ø de pernos	db	28 mm
# de varillas	Nb	2
Esfuerzo de fluencia de la varilla	Fy	4200 kg/cm²
Área de varilla [1]	Α	6.16 cm ²
Factor de resistencia a tracción	Øt	1
# de anclajes	n	2
Resistencia a la fluencia del anclaje	Fya	3500 kg/cm²
Resistencia especificada a la tracción	Fsa	6650 kg/cm²
Resistencia nominal de un anclaje	Nsa	81895.04 kg

cambiar

Resistencia Nominal al Arrancamiento							
Altura de la vereda 0.3 m							
Espesor de la losa	*****	0.25 m					
Altura Total	ha	0.55 m					
Longitud efectiva de anclaje	hef	0.45 m					
Anclaje hasta el borde de concreto	Ca1	0.28 m					
Anclaje hasta el borde de concreto	Ca2	0.07 m					
Separacion H. entre pernos	Sh 1	0.21 m					
	Sv 2	0.13 m					
	hef2	0.07 m					
Con Condición	Anc	12893 cm²					
	Anco	18225 cm ²					
Factor de modificación							
Grupos de Anclaje	ψ ec,N	1					
Efecto de borde	ψe d,N	0.82					
Anclaje Preinstalado	ψ c,N	1.25					
Anclajes pos instalados	ψ cp,N	1					
	kc	10					
	λa	1					
Resistencia al arrancamiento [1]	Nb	50512.37 kg					
	Ncbg	36824.66 kg					
	Nu	30306.1248 kg					
$\emptyset Ncbg = Nn \ge Nu$		Cumple					

Resistencia a la extracción por deslizamiento de un anclaje a tracción						
Sin fisuración ψc ,P 1.4						
Apoyo de la cabeza del perno	Х	5 cm				
	5 cm					
	Abrg	25 cm ²				
	Np	56000 kg				
	Npm	78400 kg				

Soldadura anclaje a placa base					
Tamaño del filete		10	mm		
# de filetes		1			
Resistencia del filete					
Factor de resistencia al corte	Øe2	8.0			
Resistencia del electrodo	Fexx	4900	kg/cm ²		
	Rr	2352	kg/cm ²		
Resistencia para 1 mm del filete	qr	1663.1	kg/cm ²		
Resistencia para todo el filete	qr	1663.12	kg/cm		
Longitud de la soldadura	Lw	10.05	cm		
Carga resistente de la soldadura	Nuwb	16719.46	kg		
Chequeo a Tracción	Nuw	33.44	ton		
Condición	Nuw > Nu	Cumple			
Chequeo a corte	Vuw	66.88	ton		
Condición	Vuw > Vu	Cumple			

Anclaje de hormigon				
ø de pernos	db	25 mm		
Resistencia del horimgón	f'c	280 kg/cm ²		
Acero de fatiga de fluencia	fy	4200 kg/cm ²		
ldt	ψ e	1		
	ψ r	1		
	ψ o	1		
	ψ c	0.9		
	ldt 1	27.6 cm		
	ldt 1	37.3 cm		
	ldt 2	20 cm		
	ldt 3	15 cm		
	ldt	0.47 m		

27.46 Mpa 411.88

Diseño del tablero con la acera y protección laterales

Geometria de la sección				
Ancho total del puente	At	8.5 m		
Ancho de la calzado	Ac	6 m		
Ancho de la vereda	Av	1.25 m		
Longitud del volado	Lv	1.25 m		
# de vías	Nl	2		
# de vigas	Nb	3		
Ancho del alma de la viga de concreto	bw	0.35 m		
Separación entre vigas	Sv	3 m		
Recubrimiento superior	rs	3 cm		
Recubrimiento inferior	ri	3 cm		
Espesor de la capa de rodadura	ecr	5 cm		
Espacio entre placa base y tablero	rc	2.5 cm		

	Consideraciones de Ma	teriales
Resistencia del horimgón	f'c	280 kg/cm²
Acero de fatiga de fluencia	fy	4200 kg/cm²
Peso específico del hormigón	γс	2.4 Ton/m ³
Peso específico del acero	γа	7.85 Ton/m ³
Peso específico del asfalto	γcr	2.2 Ton/m³

Espesor del Tablero	min 0.178 m		
	a utilizar	0.25 m	
	Cumple		

Postes						
Ancho del patín	bf poste	82 mm				
Altura del poste en sección transversal	h poste	160 mm				
Espesor del patín	tf patin	7.4 mm				
Espesor del alma	tw alma	5 mm				
Altura del alma en planta	h alma	145.2 mm				
Altura total del poste en elevación	H poste	1.06 m				
Peso específico del Acero	yac	7.85 Ton/m³				
Área	A	20.1 cm ²				
Peso propio de los postes	Wp	0.02 Ton/m/Lado				
	Rieles					
Número de rieles	Nr	3				
Espesor del perfil tubular	E	5 mm				
Base del riel en planta	b riel	160 mm				
Altura del riel en planta	h riel	220 mm				
Área	Α	18.5 cm ²				
Peso propio de los rieles	Wrie	0.029 Ton/m/Lado				
ı	Postes más Rieles					
Centro de gravedad de los postes	Хр	80 mm				
Centro de gravedad de los rieles	Xr	160 mm				
Peso de los postes	Wp	0.016 Ton/m				
Peso de los rieles	Wrie	0.029 Ton/m				
Centro de gravedad del conjunto	xp+r	0.137 m				
Peso total	wp+r	0.0448 Ton/m/Lado				

Acera					
Fig	b	h	Α	Х	A*x
Fig	m	m	m²	m	m³
1	1.2	0.3	0.36	0.6	0.22
2	0.05	0.3	0.008	1.22	0.01
3	0.6	0.2	-0.12	0.6	-0.07
Σ		-	0.25	-	0.15

Centroide X	Xcg	0.62 m
Peso	Wa	0.594 Ton/m/Lado

	Carpeta asfáltica	
Ancho de la calzada	Ac	6 m
Espesor de la capa de rodadura	ecr	0.05 m
Peso	Wcr	0.660 Ton/m/Lado

Cargas por Servicio Público Wsp 0.3 Ton/m/Puente

	Cargas Posteriores por vi	ga
Muerta	W DCP	0.426 Ton/m/viga
Asfáltica + Servicio Públicos	W DWP	0.32 Ton/m/viga

	Centro de gravedad del vola	dizo	
Elemento			
Poste + Rieles	xcg(p+r)	0.277 m	
Acera	xcg(a)	0.631 m	
Tablero	xcg(t)	0.63 m	
Capa de Rodadura	xcg(cr)	0.00 m	

Momentos y cortantes en la sección P [Ton] M [Ton*m] Elemento Carga d [m] Postes + Rieles DC 0.045 0.973 0.044 Acera DC 0.594 0.619 0.368 Tablero DC 0.750 0.625 0.469 Capa de Rodadura DW 0.136 0.000 0.000

	Resultados
V DC a-a	1.389 Ton
C DW a-a	0.136 Ton
M DC a-a	0.880 Ton*m
M DW a-a	0.000 Ton*m

W DC 0.600 Ton*m W Dw 0.110 Ton*m

Та	blero por carga Muerta	DC			Tablero por ca	ırga Muerta DW	
M DC	1	-0.786	Ton*m	M DW	1	-1.62E-17	Ton*m
M DC	2	-0.147	Ton*m	M DW	2	-0.096	Ton*m
M DC	"1-2"	0.119	Ton*m	M DW	"1-2"	0.053	Ton*m
M DC	B-B	-0.644	Ton*m	M DW	B-B	0.013	Ton*m
M DC	C-C	-0.079	Ton*m	M DW	C-C	-0.071	Ton*m
V DC	1	-0.933	Ton	V DW	1	-0.096	Ton
V DC	2	0.507	Ton	V DW	2	0.159	Ton
V DC	3	0.933	Ton	V DW	3	0.096	Ton
V DC	D-D	-0.777	Ton	V DW	D-D	-0.068	Ton
V DC	C-C	0.423	Ton	V DW	C-C	0.145	Ton

	Carga Viva	
Incremento por carga dinámica	IM	1.33
Fact. Presencia multiple	2 vías	1
Aplicación de la carga al punto de apo	руо х	0.625 m
Faja equiv. Normal	E	1.14 m
Faja equiv. Accidental	E	1.66 m
Carga de Rueda - HL-93	Pr	7.27 Ton
Normal	M LL+IM	0 Ton*m
Accidental	M LL+IM	3.63 Ton*m
ACCIÓ	N DE FUERZAS TRANSVER	SAL
Momento plastico resistente	Mp (poste)	6.21 Ton*m
Resultante	Ycg	0.62 m
Fuerza transversal Poste	Pp	10.02 Ton
Base del poste	Db	0.16 m
Altura del poste en planta	Wb	0.082 m
	Χ	0.973 m
Ancho de faja primaria	E	1.954 m
Ancho de faja primaria	Md	25.673 Tonm/m
	Td	41.407 Tonm/m
Ancho de la faja primaria AASHTO	c4,6,2,1,3	1.97 m
	Mcraa	13.032 Tonm/m
	Ta-a	21.019 Tonm/m
ACC	IÓN DE FUERZAS verticale	es
Fuerza Vertical	Fv	2.04 Ton
Longitud Vertical	Lv	5.5 m
Separación de postes	L	2 m
	Χ	0.973 m
Usar L como b	b	2.028 m
	b	2 m
Fuerza de corte como punzamiento	Pv	0.741 Ton
Momento en el tablero	MCTaa	0.361 Ton*m

Ancho faja primaria M-	E	1.97 m	
	Mn max, AASHTO LRFD - Ta	abla A4	
[m] 2	Mn+	Mn -	
S [m]	MI +	0.15	0 225

3000 m

2.31 m

0.225

2.924

0.15

3.324

S

M LL+IM+ 3.141 Ton*m 3.058 Tonm/m M LL+IM - bb

3.00

Luz entre vigas Ancho faja primaria M+

Momento por colisión en la sección b-b		
Transversal	Ft	12.23 Ton
	X	1.323 m
	Ebb	1.954 m
	McTbb (h)	8.284 Tonm/m

3.14

	Corte en el tablero	
Carga de Rueda - HL-93	Pr	7.27 Ton
Reacción en el Apoyo	Rcv	10.44 m
Ancho faja primaria M+	Е	2.31 m
Incremento por carga dinámica	IM	1.33
Fact. Presencia multiple	2 vías	1
Corte en la sección d-d	V LLdd	6.01 Ton

Factor Modificador de Cargas	
Factor de Ductilidad	1
Factor de Redundancia	1.00
Fact. De importancia operativa	1
n	1.00

Factores a usar				
Resistencia I	Yp máx.	Yp mín.	Yp A USAR	
DC		1.25	0.9	1.25
DW		1.5	0.65	1.5
LL + IM		1.75	1.75	1.75
Event Extre II	Yp máx.	Yp mín.	Yp A USAR	
DC		1	1	1
DW		1	1	1
LL + IM		0.5	0.5	0.5
СТ		1	1	1
Servicio I	Yp máx.	Yp mín.	Yp A USAR	
DC		1	1	1
DW		1	1	1
LL + IM		1	1	1

Re	sultado de momentos	
	Voladizo	
Vehículo en posición natural / R1	Mu (-)aa	1.10 Ton*m
Vehículo en posición accidental / R1	Mu (-)aa	7.46 Ton*m
Colisión vehículo / EX II	Mu (-)aa	16.09 Ton*m
Servicio I	Mu (-)aa	0.88 Ton*m
	Apoyos Interiores	
Resistencia I / Apoyo Interior	Mu (-)bb	6.18 Ton*m
Event Extr II + Colisión	Mu (-)bb	10.47 Ton*m
Servicio I / Apoyo Interior	Mu (-)bb	3.71 Ton*m
Resistencia I / Apoyo Interior	Mu (-)cc	5.56 Ton*m
Resistencia I / Apoyo Interior	Mu (-)dd	5.70 Ton*m
	Tramo	
	M DC(+) 1-2	0.119 Ton*m
	M DW(+) 1-2	0.053 Ton*m
	M IM(+) 1-2	3.141 Ton*m
Resistencia I	Mu (+) 1-2	5.724 Ton*m
Servicio I	Mu (+) 1-2	3.313 Ton*m
	Corte Último	
Fuerza de tracción última	T CT	21.019 Ton
Resistencia I	Vu d-d	11.597 Ton

	ARMADURA		
ARM	ADURA POR TRACC	IÓN	
Fuerza de tensión	Ta-a	21.019	Tonm/m
Factor de resistencia	Ø	1.000	
	Ast	5.00	cm ²
ARI	MADURA POR FLEXI	ÓN	
Resistencia del horimgón	f'c	280	kg/cm²
Acero de fatiga de fluencia	fy	4200	kg/cm²
	β1	0.85	
Ancho	В	100	cm
Espesor de losa	Н	25	cm
Recubrimiento Art. 5.10.1	ri	3	cm
	rs	3	cm
Altura efectiva	d	22	cm
Factor de resistencia	Φ	0.9	ı

Acero de refuerzo para el tablero						
Elemento	Voladizo	Δ	Apoyo Inferior 1	Apoyo Inferior 2	Apoyo Inferior 3	Tramo 1-2
	a-a	b)-b	C-C	d-d	Tramo1
Mu máx [Ton*m]		16.09	10.47	5.56	5.70	5.72
W		0.1442	0.0907	0.0469	0.0481	0.0483
p cal		0.0096	0.0060	0.0031	0.0032	0.0032
As cal [cm²]		21.145	13.302	6.871	7.056	7.086

	Armadur	a superior sobre vola	dizo		
Acero propuesto	#	φ [mm]	"+"	#	φ[mm]
Superior sobre Voladizo	5	16		8	16
Área [cm²/m]	(10.05		0.125	16.085
Área Total [cm²/m]		26.14			
As Flexión [cm²/m]		23.64	Condición	As Flex > As Vol	Cumple
	Armadura s	uperior sobre apoyo i	nterior		
Acero propuesto	#	φ[mm]	"+"	#	φ[mm]
Superior sobre Voladizo	4	16		4	10
Área [cm²/m]	0.	25 8.04		0.25	3.142
Área Total [cm²/m]		11.18			
As Flexión [cm²/m]		8.68	Condición	As Flex > As Vol	Cumple
	Arm	adura interior tramo			
Acero propuesto	#	φ[mm]			
Superior sobre Voladizo	5	18			
Área [cm²/m]	(12.72			
Área Total [cm²/m]		12.72			
As Flexión [cm²/m]		7.72	Condición	As Flex > As Vol	Cumple

Resumen de Armado					
	Voladizo	Corto	1 φ 16 @ 0.125		
Superior	Todo	Largo	1 φ 16 @ 0.2		
	Centro	Corto	1 φ 10 @ 0.25		
Inferior	Todo	Largo	1 φ 18 @ 0.2		

Verificación del armado					
	Apoyo Interior	Apoyo Exterior	Tramo		
	Mn (-) / R1	Voldz / Mn (-) /R1	Mn (+) / R1		
β1 =	0.85	0.85	0.85		
As [cm²]	12.72	26.14	11.18		
C [cm]	2.64	5.43	2.32		
a [cm]	2.25	4.61	1.97		
d [cm]	22	22	22		
Mu [Ton*m]	6.18	7.46	5.72		
Factor de Resistencia, Φ	0.9	0.9	0.9		
Φ Mn [Ton*m]	10.04	19.46	8.88		
Φ Mn > Mu	Cumple	Cumple	Cumple		

Límite para las armaduras					
Armadura máxima					
Elemento	Momento	d [cm]	c [cm]	εt cal	Caso 1
Apoyo Exterior Voladizo	Negativo		22	5.43	0.009 > 0,005
Apoyo Interior	Negativo		22	2.64	0.022 > 0,005
Tramo	Positivo		22	2.32	0.025 > 0,005

Evaluación del Fisuramiento						
Condición de exposición	Ye =	0.75				
Módulo de elasticidad Hormigón	Ec	250998 kg/cm ²				
Módulo de elasticidad Acero	Es	2030000 kg/cm ²				
Relación Ec y Es	n	10				
Ancho	В	100 cm				
Espesor de losa	Н	25 cm				

	Control de agrietamiento				
Momento	Negativo	Negativo	Positivo		
	Apoyo Interior	Apoyo Exterior	Tramo		
dc [cm]	;	3	3		
h [cm]	2	5 25	25		
βs	1.19	1.19	1.19		
M [Ton*m]	3.7	0.88	3.31		
As [cm²]	12.72	26.14	11.18		
de [cm]	2:	2 22	22		
y [cm]	6.31	8.424	5.985		
I trans [cm^4]	3969	68101	35831		
fs [kg/cm²]	146	175	1481		
S máx [cm]	47.4	7 441.35	46.99		
S var [cm]	2	12.5	20		
Condición	Cumple	Cumple	Cumple		

Refuerzo longitudinal de distribución					
Separación	S	2.0	65 m		
Refuerzo perpendicular al tráfico	%Asd	74.6	61 %		
Condición	%Asd≤ 67	(67		
Armadura de distribución	Asd	8.9	52 cm²		
Acero propuesto	#	φ [mm]	Área [cm²/m]		
Superior sobre Voladizo	5	16	10.05		
Condición	Asd col > Asd	Cumple	1 φ 16 @ 0.2		

Refuerzo por concentración y temperatura					
Área Requerida	Ast	1.8	0 cm ²		
Condición		2.33 < <i>Ast</i> < 12.7	0 cm ² /m		
	Ast	2.3	3 cm²		
Acero propuesto	#	φ [mm]	Área [cm²/m]		
Superior sobre Voladizo	4	10	3.14		
Condición	Asd col > Asd	Cumple	1 φ 10 @ 0.25		

Chequeo de corte en el tablero					
Factor al corte	Ø	0.9			
Altura de corte efectivo	dv	19.8 cm			
ancho unitario	b	100 cm			
Resistencia del horimgón	f'c	280 kg/cm²			
Factores	β1	2			
Factores	θ	45 °			
Cortante resistido por hormigón	Vc	17.56 Ton			
Cortante resistido por el acero	Vs	0 Ton			
Cortante resistido por el tablero	Vn	17.56 Ton			
Resistencia Factorada	Vr	15.80 Ton			
Condición	Vr > Vu	Cumple			

Longitud de desarrollo en tracción			
Factor de ubicación del reforzamiento	λrl	1.3	
Factor de revestimiento	λcf	1.2	
Factor de confinamiento de refuerzo	λrc	0.42	
Factor de exceso de refuerzo	λer	0.76	
Factor para concreto de densidad norm	alλ	1	
Acero de refuerzo necesario	Anec	2.49 in ²	
Acero de refuerzo colocado	Acol	3.28 in ²	
recubrimiento de hormigón	Cbr	1.18 in	
Área de acero transversal	Atr	0.319 in ²	
Separación entre los aceros	S	4.921 in	
# de barras colocadas	N	8.000	
Indice de refuerzo transversal	Ktr	0.32	
Diametro [mm/in]	db	16	0.64
Fluencia [ksi]	fy	59.74 ksi	
Resistencia del hormigón	f'c	3.98 ksi	
Longitud de varilla	Ldb	45.81 in	
Longitud de desarrollo	Ld	23.04 in	
	Ld	58.52 cm	

Diseño de los Diafragmas

DISEÑO DE LOS DIAFRAGMAS			
Altura	h	1.25 m	
Espesor del tablero	t	0.25 m	
Altura del diafragma	hd	1.25 m	
Ancho del diafragma	bd	0.25 m	
Longitud del diafragma	S	2.65 m	
Número de diafragmas por tramo	Nd	2	
Número de vigas	Nv	3	
Resistencia del hormigón	f'c	280 kg/cm²	
Fluencia del acero	fy	4200 kg/cm²	
Peso específico del hormigón	Yh	2.4 Ton/m³	
Área del diafragma	Ad	0.31 m ²	
Peso porpio del diafragma	Wppd	0.75 Ton/m	
Área del tablero	At	0.06 m ²	
Peso propio del tablero	Wt	0.15 Ton/m	
Peso total	W Dc	0.9 Ton/m	
Cortante por Dc	V Dc	1.1925 Ton	
Mn por Dc	M Dc (+)	0.527 Ton*m	
	M Dc (-)	0.263 Ton*m	
Peso específico del asfalto	γcr	2.2 Ton/m ³	
Area de la carpeta asfáltica	A ca	0.0125 m ²	
Peso de la carpeta asfáltica	W Dw	0.0275 Ton/m	
Cortante por Dw	V Dw	0.036 Ton	
Mn por Dw	M Dw (-)	0.016 Ton*m	
	M Dw (+)	0.008 Ton*m	
Carga viva			
Carga de la rueda	Pr	7.27 Ton	
Factor de presencia múltiple	m	1.2	
Incremento dinámico	IM	33 %	
Para una carga Concentrada	M (+-)	2.408 Ton*m	
	M LL+IM (+)	3.843 Ton*m	
	M LL+IM (-)	3.843 Ton*m	
Para dos cargas concentradas	a	0.41 m	
	M (+)	0.461 Ton*m	
	M (-)	2.520 Ton*m	
	M LL+IM (+)	0.736 Ton*m	
	M LL+IM (-)	4.021 Ton*m	

DISEÑO A FLEXION			
Combinación de cargas			
Carga donde es apropiado el valor max	ηi max	1	
Resistencia I	M (+)	7.40	Ton*m
	M (-)	7.39	Ton*m
Armadura			
Diametro del acero longitudinal	φlong	16	mm
Área del acero, Para Mu (-)	Α	2.01	cm ²
# de varillas	n	2	
Área total	Αt	4.02	cm ²
Diametro del acero de estribo	фе	14	mm
Área del acero del estribo	Аe	1.54	cm ²
Diametro del acero de losa	φlosa	14	mm
Área del acero de losa	A losa	1.54	cm ²
Recubrimiento	r	3	cm
	Z	7.08	cm
	d	117.92	cm
	а	2.84	cm
Mu (-) por el acero colocado	Mu (-)	19.68	Ton*m
Mu (-) acero > Mu (-)	Condición	CUMPLE	
Mu (+) por el acero colocado	Mu (+)	19.68	Ton*m
Mu (+) acero > Mu (+)	Condición	CUMPLE	
As max			
	С	3.3394369	cm
	dc	117.92	cm
c/dc < 0.42	c/dc	CUMPLE	
As min			
Mn (-)	a (Ton*m)	26.28	Ton*m
	b (Ton*m)	9.83	Ton*m
	menor	9.83	Ton*m
Mn (-) acero > Menor	Condición	CUMPLE	
Mn (+)	a (Ton*m)	26.28	cm
	b (Ton*m)	9.84	cm
	menor	9.84	cm
Mn (+) acero > Menor	Condición	CUMPLE	
Resumen			
Para Mn (-)	2 φ 16 mm		
Para Mn (+)	2 φ 16 mm		

DISEÑO A FLEXION			
Combinación de cargas			
Carga donde es apropiado el valor max	ηi max	1	
Resistencia I	M (+)	7.40	Ton*m
	M (-)	7.39	Ton*m
Armadura			
Diametro del acero longitudinal	φlong	16	mm
Área del acero, Para Mu (-)	Α	2.01	cm ²
# de varillas	n	2	
Área total	Αt	4.02	cm ²
Diametro del acero de estribo	фе	14	mm
Área del acero del estribo	Аe	1.54	cm ²
Diametro del acero de losa	φlosa	14	mm
Área del acero de losa	A losa	1.54	cm ²
Recubrimiento	r	3	cm
	Z	7.08	cm
	d	117.92	cm
	а	2.84	cm
Mu (-) por el acero colocado	Mu (-)	19.68	Ton*m
Mu (-) acero > Mu (-)	Condición	CUMPLE	
Mu (+) por el acero colocado	Mu (+)	19.68	Ton*m
Mu (+) acero > Mu (+)	Condición	CUMPLE	
As max			
	С	3.3394369	cm
	dc	117.92	cm
c/dc < 0.42	c/dc	CUMPLE	
As min			
Mn (-)	a (Ton*m)	26.28	Ton*m
	b (Ton*m)	9.83	Ton*m
	menor	9.83	Ton*m
Mn (-) acero > Menor	Condición	CUMPLE	
Mn (+)	a (Ton*m)	26.28	cm
	b (Ton*m)	9.84	cm
	menor	9.84	cm
Mn (+) acero > Menor	Condición	CUMPLE	
Resumen			
Para Mn (-)	2 φ 16 mm		
Para Mn (+)	2 φ 16 mm		

Diseño de dispositivos de Apoyo

CARGAS ACTUANTES				
CARGAS PERMANENTES RDC				
Peso específico del hormigón	үс	2.4 Ton/m³		
Peso específico del acero	γа	7.85 Ton/m ³		
Longitud del Puente	Ĺ	37 m		
Tablero superior	DC1	188.70 Ton		
Almas de la viga cajon	DC2	116.55 Ton		
Cartela	DC3	2.00 Ton		
Diafragma en el apoyo y en el tramo	DC4	13.12 Ton		
Acera	DC5	21.98 Ton		
Postes	DC6	0.60 Ton		
Rieles	DC7	2.15 Ton		
Tablero Inferior	DC8	112.78 Ton		
TOTAL	R DC	457.87 Ton		
Cargas Permanentes RDW				
Peso específico del asfalto	γcr	2.2 Ton/m ³		
Capa de rodadura	DW1	24.42 Ton		
Servicios Públicos	DW2	11.1 Ton		
TOTAL	R DW	35.52 Ton		
Cargas Viva RLL				
Carga de camion de diseño	Pc	7.27 Ton		
Carga de carril/vía	W LL	0.95 Ton/m		
Carga peatonal /lado	W LP	0.36 Ton/m		
Número de vías cargadas	N vías	2		
Fact. Presencia múltiple (2 vias carg)	m	1		
Peso de carga viva	RLL	54.43 Ton/vías		
Reacción por carga viva en dos carriles	RLL	108.87 Ton		
Resumen				
Cargas Permanentes RDC	R DC	457.87 Ton		
Cargas Permanentes RDW	R DW	35.52 Ton		
Carga Permanente	ΣR	493.39 Ton		
Carga viva por apoyo de neopreno	RLL	108.87 Ton		
Peso total por apoyo de Neopreno	RT	602.26 Ton		
Peso total por nervio	RT/N	200.75 Ton/nervio		

Neopreno			Grado 60
Esfuerzo admisible a compresión	σs	87.9	kg/cm ²
Ancho de la viga	bw	35	cm
Ancho del neopreno	W	32	cm
Longitud de neopreno calculado	L	71.37	cm
	L adoptada	75	cm
Área de Neopreno	Α	2400	cm ²
Esfuerzo a compresión por carga total	σs	83.65	kg/cm²
Esfuerzo a compresión por carga permanente	σD	68.53	kg/cm²
Esfuerzo a compresión por Carga viva	σLL	15.12	kg/cm²
Espesor de las capas internas de elastómeros	hri	1	cm
Factor de forma rectangular	Si	11.21	
Deformación por corte → Temperatura			
Variación por temperatura	Δt	20.00	°C
Coef. De dilatación por temperatura	∝	1.08E-05	/°C
Deformación por Temperatura	δt(+)	0.80	cm
Deformación por corte → Contraccion del Ho			
Coef. De contracción (28 días)	Cc	2.00E-04	
Deformación por contracción	δc	0.74	cm
Def. total de la superestructura	δ	2.338	cm
Factor de carga por temperatura	YTU	1.2	
	$\Delta s/lado$	1.40	cm
	2*∆ <i>s</i>	2.81	cm
Espesor de las capas internas de elastómeros	hri	1	cm
Número de capas del elastómero	n int	2	capas
Espesor de las capas exteriores del elastómero	hre	0.8	cm
Altura total de las capas de neopreno	hrt	3.6	cm
$hrt > 2\Delta s$	Condición	CUMPLE	

Combinación de compresión, rotación y corte			
Módulo de elasticidad ($0.08 \le G \le 0.175$)ksi	G	10 kg/cm²	
CUMPLE	G	0.142 ksi	
Apoyo rectangulor	Da	1.4	
Apoyo rectangulor	Dr	0.5	
Giro por carga permanente (C. Estática)			
Carga distribuida permanente	W(Dc+Dw)	133.349 kg/cm	
Carga Puntual del diafragma	Pd	3280 kg	
Fuerza de compresión del hormigón	f'c	280 kg/cm²	
Módulo de elasticidad del hormigón	Ec	200798 kg/cm ²	
Inercia efectiva por cargas permanentes	lg	196511358 cm^4	
Ángulo de rotación	hetas	0.007 rad	
Giro po carga viva (cíclica)			
Carga eje transversal	Pe	14540 kg	
Carga de carril de diseño/vía	WLL	9.5 kg/cm	
Factor de distribución para Momento	gm	2	
Módulo de elasticidad del hormigón	Ec	200798 kg/cm ²	
Inercia efectiva por cargas permanentes	lg	196511358 cm^4	
	Pe'	29080 kg	
	Pe'/4	7270 kg	
	W LL'	19 kg/cm	
	a1	427 cm	
	b1	3273 cm	
	a2	854 cm	
	b2	2846 cm	
Ángulo de rotacióon	heta S LL	0.0008 rad	
Esfuerzo a compresión por carga total	σs	83.65 kg/cm ²	
Def. por esfrz cortante por la carga axial	Ya,st	1.044	
	Ya,cy	0.189	
Def. por esfrz cortante por la rotación	Yr,st	2.185	
	Yr,cy	0.189	
Def. por esfrz cortante por el desplazamiento	Ys,st	0.390	
	Ys,cy	0.000	
$[\gamma a, st + \gamma r, st + \gamma s, st] + 1.75 * [\gamma a, cy + \gamma r, cy + \gamma s, cy] \le 5.00$	Condicion 1	4.167 CUMPLE	
Y <i>a,st</i> ≤ 3.00	Condicion 2	1.044 CUMPLE	

Analisi de estabilidad				
Coeficientes	Α	0.159		
Coeficientes	В	0.183		
Condición	2 <i>A</i> ≤ <i>B</i>	REDISEÑO		
Comprobación de esfuerzo				
CONDICIÓN	σs ≤	832.23 CUMPLE		
CONDICIÓN	a-b ≤ 0	-0.024 CUMPLE		

Refuerzo de acero			
Esfuerzo de fluencia del acero (36 Ksi)	Fy	2520 kg/cm ²	
Constante de amplitud de fatiga crítica (24 Ksi)	arDelta F TH	1680 kg/cm²	
Estado lim de servicio	hs1	0.996 mm	
Estado lim de fatiga	hs2	0.180 mm	
Valor minimo	hs min	1.588 mm	
A seleccionar el may y redondear	hs	2 mm	
Láminas de acero	ns	3	
Deflexión por carga viva			
Esfuerzo a compresión por Carga viva	σLL	0.215 Ksi	
Deformación por compresión	εti	1.10%	
	δ ti	0.396 mm	
Deflexión por carga muerta			
Esfuerzo a compresión por carga total	σs	1.19 Ksi	
Deformación por compresión	εti	4.10%	
	δd	1.476 mm	
Deformación por efecto de creep			
Creep deflection	acr	0.35	
	δcr	0.5166 mm	
δ ti < δ adm	Condición	CUMPLE	

Anclaje			
Rotación Total	hetas	0.0085 rad	
Número de capas del elastómero	n int	2 capas	
	θs/n	0.004269584	
	εа	0.083	
$\theta s = 3\varepsilon_a$	3 ɛa/Si	0.002213563	
$n \leq Si$	Condición	CUMPLE → No requiere anclaje	

Fuerza que provoca la deformación del apoyo				
Módulo de elasticidad ($0.08 \le G \le 0.175$)ksi	G	10 kg/cm²		
		0.98 Mpa		
Área de apoyo elastométrico	Α	240000 mm ²		
Variación por temperatura	∆ temp	7.99 mm		
	∆ contr	7.4 mm		
	∆ max	23 mm		
	Δeq	7.61 mm		
Altura total de las capas de neopreno	hrt	36 mm		
Número de vigas	Na	3		
Fuerza sísmica que absorve cada neopreno	Heq	49739 N		
		5070 kg		
Fuerza total del estribo	Heq t	15.21 Ton		

Resumen			
Ancho del neopreno	W	32 cm	
Longitud de neopreno calculado	L	75 cm	
Espesor de las capas internas de elastómeros	hri	1 cm	
Número de capas del elastómero	n int	2 capas	
Espesor de las laminas de acero	hs	2 mm	
Espesor de las capas exteriores del elastómero	hre	0.8 cm	
Láminas de acero	ns	3	
Altura total	ht	4.20 cm	

Diseño de Vigas de Cajon

C	onsideraciones		
Luz del puente	L	37 m	
Profundidad minima utilizada	Н	1.665 m	166.5
Se utilizara	Н	1.7 m	170
Espesor del alma	bw	0.35 m	35
Número de carriles	Nc	2	
Ancho total del puente	At	8.5 m	850
Ancho de la calzado	Ac	6 m	600
Ancho de la vereda	Aver	1.25 m	125
Separación entre nervios	Sn	2 m	200
Se utilizara	Sn	3 m	300
Separación entre caras de nervios	S'	2.65 m	265
Longitud de voladizo	Lv	1.25 m	125
Espesor de la losa	ts	0.25 m	25
Espesor del tablero inferior	tf	0.2 m	20
# de almas		3	
Cartela		0.15 m	15

Propiedades geométricas de la viga cajon						
Fig	n	Área	у	y*A	y ² *A	lcg
		cm²	cm	cm ³	cm^4	cm^4
1	1	21250	157.5	3346875	527132812.5	1106771
2	1	12700	10	127000	1270000	400000
3	3	13125	82.5	1082813	89332031	17089844
4	6	675	140	94500	13230000	8438
Σ		47750		4651187.5	630964844	18605052

P	ropiedades	
	<u>y1</u>	97.41 cm
	y2	72.59 cm
Inercia	li	649569896 cm ⁴
Inercia secc transversal	Icg	196511358 cm ⁴
Módulo de sección inferior de la viga	Sb	2017424 cm ³
Módulo de sección superior de la viga	Ss	2707032 cm ³

175447.676

Factores de	distribución de mome	entos
Separación entre nervios	S	3000 mm
Luz de cálculo	L	37000 mm
Espesor de la losa	T	250 mm
Filo de vereda al centro del alma	De	0 mm
Modulo E viga = Modulo E tablero	n	1
Excentrecidad viga tablero	е	0 mm
	Kg	1.97E+12 mm^4

Factor de distribución adoptado			
# de carriles	Nc	2	
Factor de distribución adoptado	g	2	
Incremento por carga dinámica		1.33	
	dv	1.82	
Ubicación del diafragma	L/3	12.3	
Centro de luz	L/2	18.5	

Cortes y Momentos				
	Carga Muerta			
Carga Muerta total	wDc	13.1996 Ton/m		
Carga por carpea asfaltica y SP	wDw	0.96 Ton/m		
Peso del diafragma	P Diafragma	3.28 Ton		

1.277647	0.42588233	3
0.162	0.162	1
0.3	0.3	1
11.46	2.4	4.775

		Carga N	1uerta	Carga P	osterior	
х	V DC		M DC	V DW	M DW	
m	Ton		Ton*m	Ton	Ton*m	
0		247.47	0	17.76	0	
1.224		231.32	291.70	16.58	21.02	
1.82		223.42	428.21	16.01	30.77	dv
2		221.07	468.47	15.84	33.60	
4		194.67	884.16	13.92	63.36	
6		168.28	1247.05	12.00	89.28	
8		141.88	1557.16	10.08	111.36	
10		115.48	1814.47	8.16	129.60	
12		89.08	2019.00	6.24	144.00	
12.3		81.40	2045.38	5.92	146.03	Diafragma
14		59.40	2165.26	4.32	154.56	
16		33.00	2257.65	2.40	161.28	
18		6.60	2297.24	0.48	164.16	
18.5		0.00	2298.89	0.00	164.28	Mitad

	Carga Viva		
Camion	Pc		7.27 Ton
Tandem	Pt		5.669 Ton
Carga de carril de diseño	WLL		0.952 Ton/m
Carga peatonal	Pa		0.9 Ton/m
Posición del camion de diseño		1	
Peso total del camion	Rc		32.715 Ton
Posición del camion de diseño		2	
Peso total del camion	Rc		32.715 Ton

		T'ANDEM			CAMI	ON		CARGA DE	CADDII
				POSIC	IÓN 1	POSICI	ÓN 2	CANGA DE	CANNIL
х	L-x	VLL	MLL	VLL	MLL	VLL	MLL	VLL	MLL
m	m	Ton	Ton*m	Ton	Ton*m	Ton	Ton*m	Ton	Ton*m
0	37	22.30	0.00	30.20	0.00	31.46	0.00	17.61	0
1.224	35.78	21.55	26.38	29.12	35.64	30.37	21.66	16.47	20.84
1.82	35.18	21.19	38.61	28.59	52.09	29.85	38.87	15.92	30.51
2	35	21.08	42.15	28.43	56.86	29.69	43.86	15.76	33.32
4	33	19.85	79.40	26.66	106.64	27.92	96.16	14.01	62.83
6	31	18.62	111.75	24.89	149.36	26.15	141.39	12.36	88.54
8	29	17.40	139.19	23.12	184.99	24.38	179.54	10.82	110.43
10	27	16.17	161.74	21.36	213.56	22.61	210.63	9.38	128.52
12	25	14.95	179.37	19.59	235.05	20.85	234.64	8.04	142.80
12.3	24.67	14.74	181.84	19.29	237.94	20.55	237.95	7.83	144.81
14	23	13.72	192.11	17.82	249.47	19.08	251.57	6.81	153.27
16	21	12.50	199.94	16.05	256.81	17.31	261.43	5.67	159.94
18	19	11.27	202.87	14.28	257.08	15.54	264.22	4.64	162.79
18.5	18.5	10.96	202.84	13.84	256.04	15.10	263.82	4.40	162.91

	_	Carga viva + efect Dinam (LL+IM)			eatonal (PL)
х	VLL + IM	MLL + IM	VLP		MLP
m	Ton	Ton*m	Ton		Ton*m
0	118	3.90	0.00	16.65	0.00
1.224	113	3.73 13	86.48	15.55	19.71
1.82	11:	1.23 19	9.59	15.01	28.85
2	110	0.49 21	7.88	14.85	31.50
4	102	2.29 40	9.34	13.05	59.40
6	94	4.29 57	4.36	11.25	83.70
8	86	6.50 71	2.95	9.45	104.40
10	78	8.91 82	25.10	7.65	121.50
12	7:	1.53 91	.0.83	5.85	135.00
12.3	70	0.32 92	2.57	5.55	136.90
14	64	4.36 97	5.73	4.05	144.90
16	57	7.39 101	5.29	2.25	151.20
18	50	0.63 102	28.42	0.45	153.90
18.5	48	8.97 102	27.57	0.00	154.01

7.70	102.01
31.46	0.00
27.92	106.64
	149.36
24.38	184.99
22.61	213.56
	235.05
20.55 19.08	237.95 251.57
17.31	261.43
15.54	264.22
15.10	

DISEÑO DE VIGA FE CAJON ARMADO

COMBINACIÓN DE CARGAS

Factor Modificador de Cargas					
Factor de Ductilidad	1				
Factor de Redundancia	1				
Fact. De importancia operativa	1				
n	1.00				

Factores a usar	
Resistencia I	Yp A USAR
DC	1.25
DW	1.5
LL + IM + PL	1.75
Servicio I	Yp A USAR
DC	1
DW	1
LL + IM + PL	1
Servicio III	Yp A USAR
DC	1
DW	1
LL + IM + PL	0.8

	Resisten	cia I	Servio	io I	Servicio	o III	
х	Vu	Mu	V	М	V	М	
m	Ton	Ton*m	Ton	Ton*m	Ton	Ton*m	
0	573	0	400.78	0.00	373.67	0.00	
1.224	540	669	377.18	468.91	351.32	437.67	
1.82	524	981	365.67	687.41	340.42	641.73	dv
2.00	519	1072	362.25	751.45	337.19	701.58	
4.00	466	2021	323.93	1416.26	300.86	1322.51	
6.00	413	2844	285.82	1994.39	264.71	1862.78	
8.00	360	3544	247.90	2485.87	228.71	2322.40	
10.00	308	4119	210.20	2890.67	192.89	2701.35	
12.00	256	4570	172.70	3208.83	157.22	2999.66	
12.33	243	4630	163.19	3250.88	148.02	3038.98	Diafragma
14.00	200	4900	132.13	3440.45	118.45	3216.32	-
16.00	149	5105	95.04	3585.42	83.11	3352.12	
18.00	98	5187	58.16	3643.72	47.94	3407.26	
18.50	86	5188	48.97	3644.75	39.18	3408.44	Mitad

Prediseño de tendones						
Resistencia del hormigón	f'c	400 kg/cm²				
	λ	1				
Estado admisible de tracción	fadm.t	40.16 kg/cm ²				
Módulo de sección inferior	Sb	2017424 cm ³				
Área de la sección viga cajon	Ag	47750 cm ²				
Distancia de la fibra inferior al cg	rec	20 cm				
Distancia del cg a la fibra inferior de CL	cb	97.41 cm				
Excentricidad adoptada	ec	77.41 cm				
Mn estado lim de servicio	M servIII	3408.4 Ton*m				
Fuerza efectiva requerida	Pe	2171410.2 kg				

Número de Torones -Acero Pre esforzado						
Resist la tracción	fpu	19000 kg/cm²				
Esfuerzo de fluencia	fpy	17120 kg/cm²				
Esfrz max, en el tensado	fpj	15408 kg/cm²				
Esfrz max, después de las perdidas totales	fpe	13696 kg/cm²				
Diámetro de torón (7 alambres/Grd270)	φt	15.24 mm				
Área del torón presforzado	Афt	1.4 cm ²				

Pérdida de	e esfuerzo	
Asumido → se comprueba al final de este analis	Р	11.96
	γ	88.04
Esfuerzo efectivo del acero Ac. PE calculado	fpe	13565 kg/cm ²
Esfuerzo efectivo de postensado / 1 torón	Pe'	18991 kg
Número de torones	Nt	114.34 torones
factor de mayoración	f	1.6
	Nt (final)	183 torones
	Nt (utilizados)	189 torones
Propuesta de torones		↓ ↑
1 cable con		21 torones
# de cables	CUMPLE	9 u
Diámetro de torón (7 alambres/Grd270)	φt	15.24 mm
Área del torón presforzado	Aps	264.6 cm ²

Configuración de los tendones						
Centro de gravedad	у	0.974 m				
Centro de luz	X'	18.5 m				
Distancia de la fibra inferior al cg	Rec	0.45 m				

Pj Pe 4076957 kg

3589346 kg

0.001531251

Fuerza de tensado inicial

Presfuerzo efectivo final

Constante

Trayectoria del cable resultante de la viga postensada						
Х	X'	у	е			
m	m	m	m			
0	18.5	0.974	0.000			
2	16.5	0.867	0.107			
4	14.5	0.772	0.202			
6	12.5	0.689	0.285			
8	10.5	0.619	0.355			
10	8.5	0.561	0.413			
12	6.5	0.515	0.459			
14	4.5	0.481	0.493			
16	2.5	0.460	0.515			
18	0.5	0.450	0.524			
18.5	0	0.450	0.524			

Diámetro	del Torón	Peso po	r metro	Resistenci	a mínima	Metros	por rollo	Área	nominal
mm	inch	kg/1000m	lb/1,000 ft	kn	lb	m	ft/coil	mm ²	inch
9,53	3/8	432	290	102,3	23,00	6706	22,000	54,84	,085
11,11	7/16	581	390	137,9	31,000	4877	16,000	74,19	,085
11,91	15/38	688	462	160,1	36,000	3962	13,000	85,81	,133
12,70	1/2	775	520	183,7	41,300	3658	12,000	98,71	,153
12,70	1/2	820	550	200,1	45,000	3658	12,000	107,74	,167
14,29	9/16	970	651	230,0	51,700	2835	9,300	123,87	,192
14,29	9/16	983	660	240,2	54,000	2835	9,300	129,03	,200
15,24	0,600	1103	740	260,6	58,600	2661	8,600	140,00	,217

Sistema	Sistema ingles			Equivale	ncia a Siste	ma mks	
Grado	Diametros	Area	Peso	Grado	Diámetro	Area	Masa
f _{pu} ksi	pulg	Pulg ²	Lb/pie	f _{pu}	mm	cm ²	kg/m
				Kg/cm ²			
250	1/4	0.036	0.12	17600	6.35	0.232	0.179
250	3/8	0.08	0.27	17600	9.53	0.516	0.403
250	1/2	0.144	0.49	17600	12.70	0.929	0.731
250	0.6	0.216	0.74	17600	15.24	1.394	1.104
270	3/8	0.085	0.29	19000	9.53	0.548	0.432
270	1/2	0.153	0.53	19000	12.70	0.987	0.790
270	0.6	0.215	0.74	19000	15.24	1.387	1.104

182.939865

2.00287023 2.00225202 2.00170858 2.00123998 2.00084627 2.00052749 2.00028369 2.000011489 2.0000211 0.50000015

18.5098644

Cálculo de pérdidas e	n miembros poster	nsados					
Perdidas Instantáneas							
Asentamiento de los anclajes							
Asentamiento de los anclajes	ΔΑ	0.6 cm					
Longitud del tendon proyectado	Lc	37.02 m					
Módulo de elasticidad de A PE	Ep	2004000 kg/cm ²					
Perdida por corrimiento de anclaje	Δ fpA	324.80 kg/cm ²					
Perdida por fricción							
Coef. Tipo de vaina - Polietileno	k	6.60E-07					
Coef. Tipo de vaina - Polietileno	μ	0.23					
Longitud de cálc	Lc	37 m					
Excentricidad adoptada	ec	0.524 m					
Radio	R	326.79 m					
Longitud hasta el centro de luz	х	18.5 m					
Variación Angular final	lphaf	0.113 rad					
Variación angular hasta el centro de la luz	α f/2	0.057 rad					
Base de log natural	е	2.7					
Esfrz max, en el tensado	fpj	15408 kg/cm ²					
Perdida por fricción	ΔfpF	199.61 kg/cm²					
Perdida por acortamiento elástico							
Esfuerzo despues de las ∆ fpA y ∆ fpf	f'pj	14883.6 kg/cm²					
Área del torón presforzado	Aps	264.6 cm ²					
Fuerza de presfuerzo despues de ΔfpA y Δ fpf	P'j	3938197.7 kg					
Área de la secc del cajon	Ag	47750.0 cm ²					
Excentricidad adoptada	ec	52.4 cm					
Inercia de la viga	lg	196511358.4 cm4					
Momento por peso propio en el CL	M DC (total)	2298.9 Ton*m					
# de cables	N	9.0					
Módulo de elasticidad de A PE	Ep	2004000.0 kg/cm ²					
Mód de elasticidad del Ho durante la transf	Ect	240000.0 kg/cm ²					
Esfrz max, en el tensado	fpj	15408.0 kg/cm ²					
Esfuerzo Ho, en la fibra en el cg	fcgp	76.2 kg/cm ²					
Perdida por acortamiento elástico	Δ fpES	282.8 kg/cm ²					

Presfuerzo de la transferencia						
Esfuerzo en el A PE en el tensado	fpt	14601 kg/cm²				
Esfrz max, después de las perdidas totales	fpe	13696 kg/cm ²				
	0,55*fpy	9416 kg/cm²				
Condición						
<i>fpt > fp</i> e	CUMPLE					
fpt > 0,55*fpy	CUMPLE					

Perdidas dependientes del tiempo Δfp Ltid) kg/cm²

Perdidas durante la construcción de la viga cajon y extiende a través de la vida útil			
Parámetro de contra	Parámetro de contraccoión y flujo plástico		
Coef de flujo plástico de la viga	_		
Resistencia del Ho inicial	f'civ	400 kg/cm ²	
Porcentaje de humedad	H(%)	71 %	
	ti	60 días	
	td	60 días	
	t	0 días	
años		75 años	
	tf	27375 días	
Área de la sección viga cajon	Ag	47750 cm ²	
Perimetro de la viga	Per	4024 cm	
Volumen de la viga	V	4.78 m ³	
superficie de la viga	S	40.24 m ³	
Relación vol/superficie	V/S	11.87 cm	
Factor por efecto relación vol/supf	ks	0.843	
	ks	1	
Factor de humedad por el flujo plástico	k hc	0.992	
Factor para el efecto de la resistencia del Ho	kf	0.745	
Coef. Flujo plastico / de la viga al momento de			
construcción			
Factor del desarrollo de tiempo	ktd.di	0	
Factor del flujo plastico	$\psi(td.ti)$	0	
Coef. Flujo plastico / cargapor construcción	t	27315	
	ktd.fd	0.999	
	$\psi(td.fd)$	0.420	
Coef. Flujo plastico / cargapor transferencia	t	27315	
	ktd.fi	0.999	
	ψ (tf.ti)	0.420	
Deformación unitaria de contracción	Eddf	0.0004 cm/cm	

Pérdida por contracción del hormigón de la viga		
Coef. Flujo plastico / cargapor transferencia	ψ (tf.ti)	0.42
Deformación unitaria de contracción	Eddf	0.00 cm/cm
Área del torón presforzado	Aps	264.60 cm ²
Área de la secc del cajon	Ag	47750 cm ²
Inercia de la viga	Ig	196511358 cm4
Módulo de elasticidad de A PE	Ep	2004000 kg/cm ²
Mód de elasticidad del Ho durante la transf	Ect	240000 kg/cm ²
Distancia medida desde el CG	ерс	52.41 cm
Coef de la secc transformada	kdf	0.91
Coef. Secc transformada	$\Delta f p S D$	645.24 kg/cm ²

Pérdida por flujo plástico del hórmigon de la viga		
Coef. Flujo plastico / cargapor transferencia	ψ (tf.ti)	0.42
Factor del flujo plastico viga	$\psi(td.ti)$	0
Factor del flujo plastico ho de la viga	$\psi(t$ f,td)	0
Distancia medida desde el CG	ec	52.41 cm
Inercia de la viga	Ig	196511358.4 cm4
Mód de elasticidad del Ho durante la transf	Eciv	240000.0 kg/cm ²
Mn en el CL	Mc	2463.2 Ton*m
	Δfcd	65.690 kg/cm ²
Esfuerzo Ho, en la fibra en el cg	fcgp	76.2 kg/cm ²
	$\Delta f p CD$	243.0 kg/cm ²

Perdida por relajación de los torones de presforzado		
Esfuerzo en el A PE en el tensado	fpt	14600.8 kg/cm ²
Coef - Torones de baja relación	KL	30
Esfuerzo de fluencia	fpy	17120 kg/cm ²
	$\Delta f p$ R2	147.39 kg/cm ²

Pérdidas totales dependiendo del tiempo	$\Delta f p$ LT	1035.59 kg/cm ²
Pérdidas totales de presforzado	$\Delta f p T$	1842.82 kg/cm ²
P'erdidas Totales de Preesforzado %	%∆ <i>f p</i> T	11.96 %

Cálculo de los esfuerzos en etapas			
Resistencia del Ho	f'ci	400 kg/cm ²	
Esfuerzo en el A PE en el tensado	fpt	14600.77 kg/cm ²	
Área del torón presforzado	Aps	264.60 cm ²	
Fuerza de presfuerzo en la transferencia	Pt	3863364.20 kg	
Excentrecidad de la fuerza de presfuerzo en CL	ec	52.41 cm	
Área de la secc del cajon	Ag	47750.00 cm ²	
Módulo de sección inferior de la viga	Sb	2017424.02 cm ³	
Módulo de sección superior de la viga	St	2707031.57 cm ³	
Mn por el peso propio de la viga	M DCV	2298.89 Ton*m	
Esfuerzo	Admisible		
Compresión	(-)		
Esfuerzo admisible en compresión de la viga	f adm.c	-240 kg/cm ²	
Tracción	(+)		
Esfuerzo admisible en tracción de la viga	f adm.t	40.16 kg/cm ²	
Chequeo de esfuerzo en la transferencia para el CL			
Esfuerzo en la parte superior de la viga	fti	-91.04 kg/cm²	
Compresión (-) < f adm.c		CUMPLE	
Esfuerzo en la parte inferior de la viga	fti	-67.32 kg/cm ²	
Tracción (+) < f adm.t		CUMPLE	

Etapa Final o de servicio		
Inercia de la sección transversal	lcg	196511358.4 cm4
Fuerza efectiva de postensado	Pe	3589345.9 kg
Mome	ento en el CL	
Mn por peso propio	M DC	2298.89 Ton*m
Mn por carga posterior	M DW	164.28 Ton*m
Mn por carga viva incluido impacto	M LL+IM	1027.57 Ton*m
Mn por carga peatonal	M PL	154.01 Ton*m
Esfuerzo admisible después	s de ocurridas las perd	idas totales
Concreto	Compresión	
presforzada efectiva + carga permanente	fadm.viga.cajon	-180 kg/cm ²
presfzd + C permanent + C transitorias	fadm.viga.cajon	-240 kg/cm ²
Concreto	Tracción	
Esfuerzo adm de tracción en la viga	fadm.viga.cajon	31.80 kg/cm ²
C	Chequeo	
Estado lim de servicio I		
presforzada efectiva + carga permanente	ftviga	-96.67 kg/cm ²
ftviga < fadm.viga.cajon		CUMPLE
presfzd + C permanent + C transitorias	ftviga	-140.32 kg/cm ²
ftviga < fadm.viga.cajon		CUMPLE
Estado lim de servicio III	fbviga	0.54 kg/cm ²
fbviga < fadm.viga.cajon		CUMPLE

Verificación de la resistencia nominal a flexión		
Área de acero de presfuerzo /viga total	Aps	264.6 cm²
Área de acero de refuerzo a tracción	As	0 cm²
Área del acero de refuerzo a compresión	A's	0 cm ²
Esfuerzo a tracción en varillas	fs = fy	4200 kg/cm ²
Resistencia del Ho	f'ci	400 kg/cm²
Resist de rotura especificada	fpu	19000 kg/cm²
Resistencia de fluencia especificada	fpy	17120 kg/cm²
Ancho efect del ala a compresión del tablero	b	850 cm
Ancho del alma	bw	35 cm
Altura del ala comprimida	hf	25 cm
coeficiente por el tipo de torón	k	0.28 →
Factor del bloque de fuerza	eta1	0.764285714
dist = fibra a compresión a cg, en el CL	dp	150 cm
dist = eje neutro y la cara comprimida	С	21.83 cm
Profundidad del bloque de compresión	а	16.69 cm
	а	16.69 cm
Mn ultimo (Resistencia I)	Mu	5188 Ton*m
esfuerzo en el acero de preesfuerzo	fps	18225.65 kg/cm ²
Dist = fibra extrema a comprsion al cg de As	ds	0 cm
Dist = fibra extrema a comprsion al cg de A	d´s	0 cm
Resistencia nominal	Mn	6831.40 Ton*m
Para elemento presforzado	Ø	1
Resistencia a la flexión factorada	Mr	6831.40 Ton*m
Condición	<i>Mr</i> ≥ <i>M</i> u	CUMPLE

Limites de armadura		
Armadura mín		
Factor de variación de la fisuración	y1	1.6
Factor de variación del presfuerzo	y2	1.1
Relación = Resist Fluencia / Resist dl acero	у3	1
Módulo de rotura del Ho a tracción	fr	40.16 kg/cm ²
Módulo de secc para la fibra extrema	Sc = Sb	2017424 cm ³
Mn total por CD no mayorada	Md.nc	2298.9 Ton*m
Esfurz de compresión, x fuerzas efectivas	fcpe	90.59 kg/cm ²
Resistencia factorada a flexión	Mcr	4818.26 Ton*m
	1,33*Mu	6899.8 Ton*m
	Snc	5890575.91 cm ³
Seleccionar el menor	Mu min	4818.3 Ton*m
	Ø	0.9
	ØMn	6148.25658
Condición	Ø <i>Mn ≥ Mumi</i> n	CUMPLE

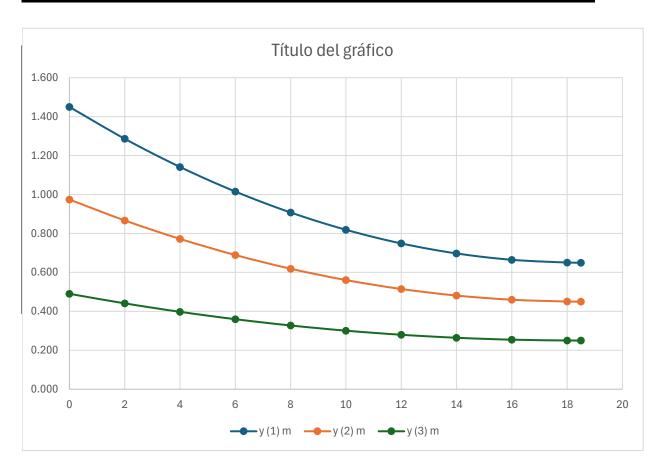
Chequeo de la re	evisión de corte)
Cálculo de la sección crítica		
Dist = fibra extrm a compresión y el cg del acero	dp	72.59 cm
Altura de la viga cajon	h	170 cm
Profundidad del bloque equivalente	a	16.68687172 cm
profundidad efectiva		80.94 cm
		65.33 cm
		122.4 cm
Valor max	dv	122.4 cm
ubicación de la sección crítica preliminar	x(dv)	1.224 m
Fuerza cortante factorada en dv	Vu	540.258 Ton
Mn factorado en dv	Mu	669.484 Ton*m
Resistencia a corte de postensado		
Ubicación de la sección crítica desde el CL	x'	17.276 m
Pendiente de la recta tangente a la parábola	у'	0.0529 m
Ángulo de inclinación	W	0.0529 rad
Fuerza de postensada efectiva	Pe	3589346 kg
Resistencia al corte nominal presforzado	Vp	189.64 Ton
Resistencia al corte del hormigón		
$Mu \ge (Vu - Vp) * dv$	Condición	CUMPLE
Mn factorado en dv	Mu	669.48 Ton*m
Profundidad efectiva al corte	dv	1.224 m
Fuerza axial factorada	Nu	0 Ton
Área de acero de presfuerzo /viga total	Aps	264.6 cm ²
	fpo	13300 kg/cm²
Módulo de elasticidad de A PE	Ep	2004000 kg/cm ²
Deformación unitaria neta longitudinal de tracc	ξs	-0.005 cm/cm
Recalcular	ξ s2	0.000 cm/cm
Mód de elasticidad del Ho durante la transf	Ect	240000 kg/cm ²
Área de Ho a tracción	Ac	19525 cm ²
Resistencia del Ho	f'c	400 kg/cm ²
	β	4.80
Espesor del alma	bv	35 cm
Resistencia a cortante del hormigón	Vc	108.57 Ton
Resistencia transversal	Ø	0.9
$Vu < 0.5 * \emptyset * (Vc + Vp)$	Condición	Se requiere refuerzo
		transversal

Espaciamiento de armadura transversal requerido		
Número de ramas por alma	No	2
Diametro de varillas	db	18 mm
Área de ramales por alma	Av	5.089 cm ²
Esfuerzo de fluencia del acero	fy	4200 kg/cm²
Resist al corte de la secc de refuerzo de corte	Vs	100.69 Ton
	θ	29.00 °
Angulo entre el acero transversal y el eje long	α	90 °
Separación requerida	Sreq	22.73 cm
	Vu	95.86 kg/cm²
Si <i>vu</i> < 0.125 * <i>f´c</i>	Smax	0.9792 m
Si $vu \ge 0.125 * f'c$	Smax	0.4896 m
	50 Smax	60 cm
Espaciamiento seleccionado	S	15 cm

Verificación del refuerzo transvers	al min	
Área min	Avmin	0.66 cm ²
Avmin < Avcolocado	Comprobación	CUMPLE
Comprobación de la resistencia no	minal a corte	
Resist a corte	Vs	314.67 Ton
	Vn	612.88 Ton
	Vn	618.04 Ton
Resist nom a corte	Vn	612.88 Ton
Ø * <i>Vn</i> ≥ <i>V</i> u	Condición	CUMPLE

Estribos	1 Ø 18 mm @ 15 cm
----------	-------------------

Refuerzo Longitudinal				
esfuerzo en el acero de preesfuerzo	fps	18225.65 kg/cm²		
Área de acero de presfuerzo /viga total	Aps	264.6 cm ²		
Mn en el centro de la Luz	Mu	5188 Ton*m		
V en el centro de la luz	Vu	85.698 Ton		
Resistencia al corte nominal presforzado	Vp	189.64 Ton		
Profundidad efectiva al corte	dv	122.4 cm		
	θ	29.00 °		
	Øf	1		
	Øv	0.9		
	Vu/Øv	95.22		
Resist a corte	Vs	314.67 Ton		
	Aps*fps	4822.51 Ton		
Fuerza en el refuerzo longitudinal	T	4124.90 Ton		
$Aps * fps \ge T$	CUMPLE → NO R	CUMPLE → NO REQUIERE REFUERZO		


Resistencia nominal a torsión				
Área encerrada	Ao	128550 cm²		
Área de la armadura transversal	At	10.179 cm ²		
Esfuerzo de fluencia del acero	fy	4200 kg/cm²		
	θ	29.00 °		
Espaciamiento seleccionado	S	15 cm		
Resistencia nominal a torsión	Tn	13219 Ton*m		
	Ø	0.9		
Resist Torsión Factorada	Tr	11897 Ton*m		
CSI BRIDGE	Tu	6141.592 Ton*m		
	$Tu \leq \emptyset Tn$	CUMPLE		

DEFLEXIONES Y CONTRA FLECHA (CAMBER)			
Debido a la fuerza de Presfuerzo			
Fuerza inicial de postesado	Pt	3589346 kg	
Excentricidad adoptada	ec	52.41 cm	
Luz del puente	L	3700 cm	
	Δpre s	5.69 cm	
Deflexión debido a cargas permanentes			
	W DCv	13.20 Ton/m	
	W DCv	132.00 kg/cm	
	ΔDCv	6.83 cm	
Deflexión por peso del diafragma			
Carga puntual del diafragma	Pd	3280 kg	
	Δd	0.13 cm	
Deflexión por vargas posteriores			
	W Dw	9.60 kg/cm	
	Δср	0.50 cm	
Deflexión Total 1	Δ	-1.76 cm	

Deflexiones debido a cargas vivas				
Carga de Rueda - HL-93	Pc	7270	kg	
# de vías	Nvias	2		
# de vigas	Nb	3		
Incremento por carga dinámica	IM	1.33		
	P1	3223.03	kg	
	P2	12892.13	kg	
Mód de elasticidad del Ho durante la transf	Ec	240000	kg/cm²	
Inercia secc transversal	lcg	196511358.4	cm^4	
Deflexión de C	C. Viva + Impacto			
Р	а	b	$\Delta LL+IM(1)$	
kg	cm	cm	cm	
3223.03	1423	23 2277 0.0		
12892.13	1850	1850 0.29		
12892.13	2277	1423	0.27	
		$\Sigma = \Delta L L + IM(1)$	0.62	
Carga de carril de diseño	+ 25% de camion	de diseño		
Carga de carril de diseño	W LL 9.52 kg/cm			
Carga de carril de diseño por viga	W LL/viga	6.35 kg/cm/viga		
	0,25*Pi	805.76	kg	
	0,25*P2	3223.03	kg	
Р	а	b	$\Delta LL+IM(2)$	
kg	cm	cm	cm	
805.76	1423	2277 0.02		
3223.03	1850	1850 0.07		
3223.03	2277	1423 0.07		
			0.33	
		$\Sigma = \Delta L L + IM(2)$	0.48	
Deflexiones Admisibles				
Carga vehicular y peatonal	∆máx	3.7	cm	
Δmáx≥ ΔLL+IMmáx	Condición	lición CUMPLE		

Zona de anclaje postensado			
Placa de apoyo			
Esfuerzo del acero A36 de la placa	fy	2520 kg/cm³	
Fuerza inicial de postesado	Pt	3589346 kg	
Fuerza inicial de postesado / cable	Pt/cable	398816 kg	
Pt por alma	Pt/alma	1196449 kg	
N (cables/almas)		3	
Nt (torones/cable)		21	
Zonas de anclaje sometida a compresión	Ø	0.8	
Área requerida de la placa de anclaje	A1	1436 cm ²	
Propuesta de placa			
Base de la placa	В	32 cm	
Altura de la placa	Н	45 cm	
Área de la placa propuesta	Aplaca	1440 cm ²	
		CUMPLE	
Área del cable de presfuerzo	Acable	45.60 cm ²	
	Ø cable	7.62 cm	
Cumple el Ø interior	Ø interior	9 cm	
	Ø exterior	10 cm	
	Área de orificio	78.54 cm ²	
área real de la placa de apoyo	Areal	1361.46 cm ²	
Sección critica	H – Ø i d	36 cm	
Espesor de la placa de apoyo	t	4.40 cm	
	t	5 cm	

Trayectoria del cable resultante de la viga postensada			
у	1.45	0.974	0.49
x'	18.5	18.5	18.5
Rec	0.65	0.45	0.25
К	0.002	0.002	0.001
Х	y (1)	y (2)	y (3)
m	m	m	m
0	1.450	0.974	0.490
2	1.286	0.867	0.441
4	1.141	0.772	0.397
6	1.015	0.689	0.360
8	0.908	0.619	0.327
10	0.819	0.561	0.301
12	0.749	0.515	0.280
14	0.697	0.481	0.264
16	0.665	0.460	0.254
18	0.651	0.450	0.250
18.5	0.650	0.450	0.250

Diseño de Tablero Inferior

Espesor del tablero inferior				
Espesor adoptado	ti	0.2 m		
Peso de la losa inferior	WDc	0.48 Ton/m ³		
Momentos y c	ortes obtenidos			
M Dc(-) 1	-0.36 Ton*m	1		
M Dc (-) 2	-0.36 Ton*m	1		
M Dc (+) 1-2	0.178 Ton*m	1		
M Dc (+) 2-3	0.178 Ton*m	1		
M Dc (-) a-a	-0.255 Ton*m	1		
M Dc (-) b-b	-0.255 Ton*m	1		
V Dc1	-0.72 Ton			
V Dc2	0.72 Ton			
V Dc a-a	-0.636 Ton			
V Dc b-b	0.636 Ton			
Resultados	s Factorados			
Apoyo Interior				
Resistencia I - Apoyo Interior	Mu (-)aa	0.319 Ton*m		
Event Extremo II - Incluye colisión vehicular	Mu (-)aa	0.268 Ton*m		
Servicio I - Apoyo Interior	Mu (-)aa	0.255 Ton*m		
Resistencia I - Apoyo Interior	Mu (-)bb	0.319 Ton*m		
Tramo				
Resistencia I	Mu (+) 1-2	0.239 Ton*m		
Servicio I	Mu (+) 1-2	0.187 Ton*m		
Cortante ultimo				
Resistencia I	Vu a-a	0.827 Ton		

Armadura				
Armadura por flexión				
Fuerza de compresión del hormigón	f'c	280 kg/cm²		
Esfuerzo de fluencia del acero	f'y	4200 kg/cm ²		
Base unitario	b	100 cm		
Espesor adoptado	h	20 cm		
Recubrimiento inferior y superior	r	3 cm		
Altura efectiva	d	17 cm		
Factor de Resistencia	ф	0.9		

	Mu Ton*m	W	ρ	As min cm²	
Apoyo interior	0.31	9	0.004	0.0003	0.497
Tramo	0.23	9	0.003	0.0002	0.373

Armadura superior sobre apoyo interior		
Acero propuesto	#	φ [mm]
Superior sobre Voladizo	4	12
Área [cm²/m]	0.25	4.52
As Flex > As Vol	Condición	Cumple
Armadura interior tramo		
Acero propuesto	#	φ [mm]
Superior sobre Voladizo	4	12
Área [cm²/m]	0.25	4.52
As Flex > As Vol	Condición	Cumple

Resumen de Armado				
Superior	1 φ 12 @ 0.25			
Inferior	1 φ 12 @ 0.25			

Verificación de la almadura colocada						
Apoyo inferior Mn (-) - Resis	tencia I					
		Superior	Inferior			
As	cm²	4.52	4.52			
С	cm	0.94	0.94			
a	cm	0.80	0.80			
de	cm	17	17			
Mu (-)	Ton*m	0.319	0.319			
ф		0.9	0.90			
φ Mu (-)	Ton*m	2.84	2.84			
Condición		CUMPLE	CUMPLE			

Control de Agrietamiento							
Evaluación del Fisuramiento							
Condición de exposición Ye = 0.75							
Módulo de elasticidad Hormigón	Ec	250998 kg/cm ²					
Módulo de elasticidad Acero	Es	2030000 kg/cm ²					
Relación Ec y Es	n	10					
Ancho	В	100 cm					
Espesor de losa	Н	20 cm					

Control de agrietamiento				
Momento	Negativo Positivo			
	Apoyo Interior Tramo			
dc [cm]	3 3			
h [cm]	20 20			
βs	1.25 1.25			
M [Ton*m]	0.32 0.24			
As [cm ²]	4.52 4.52			
de [cm]	17 17			
y [cm]	3.496 3.496			
l trans [cm^4]	9674 9674			
fs [kg/cm²]	445 334			
S máx [cm]	162.27 218.03			
S var [cm]	0.25 0.25			
Condición	Cumple Cumple			

Refuerzo por concentración y temperatura						
Área Requerida	Ast	1.50) cm²			
2.33 < <i>Ast</i> < 12.70	Condición 2.33 cm²/m					
Ast a usar 2.33 cm ²						
Acero propuesto	#	φ [mm]	Área [cm²/m]			
Superior sobre Voladizo	4	10	3.14			
Condición	Asd col > Asd	Cumple	1 ф 10 @ 0.25			

Diseño de Estribos

	Geometrìa → (m)								
Vista Frontal	Vista Frontal Vista lateral		Pla	inta					
F1	5.742	L1	5.997	P1	0.35				
F2	1.742	L2	4.997	P2	6.7				
F3	3	L3	1	Р3	1.05				
F4	1	L4	3.5	P4	6.4				
F5	8.5	L5	1.2	P5	1.05				
F6	1	L6	2	P6	8.5				
F7	3.51	L7	6.7	P7	2				
F8	1.742	L8	1	P8	0.85				
F9	6.252	L9	1	P9	0.35				
F10	1.05	L10	2.26	P10	3.5				
		L11	1.742	P11	0.35				
		L12	3.26	P12	7.8				
		L13	0.35						
		L14	0.35						

Datos Iniciales					
Altura de la Superestructura	hs	1.742 m			
Pendiente Transversal	Pt	6 %			
Pendiente longitudinal	Pl	1.14 %			
Número de vigas	Nv	3			
Número de vías	NL	2			
Ancho del alma de la viga	bw	0.35 m			
Separación entre vigas	Sv	3 m			
Longitud total del puente	Lt	37 m			
Ancho del puente	Ae	8.5 m			
Esfuerzo nominal del suelo	qr	Ton/m ²			
Resistencia a la compresión del Ho	f'c	280 kg/cm²			
Límite de fluencia del acero	f'y	4200 kg/cm ²			
Peso específico del hormigón	yh	2.4 Ton/m³			
Peso específico del Acero	γа	7.85 Ton/m³			
Peso específico del asfalto	γcr	2.2 Ton/m ³			
Peso específico del relleno posterior	yr	1.9 Ton/m³			
Peso específico del relleno delantero	y2	1.85 Ton/m³			
Ángulo de fricción	φr	40.60 °			
Ángulo de inclinación de talud de relleno	ι	0 °			
Angulo de rosamiento entre el estribo y el terreno	δ	30 °			
Ángulo entre la horizontal y el paramento	β	90 °			
Cohesión del suelo natural asumido	С	0.297 kg/cm ²			

Reacciones provenientes de la superestructura							
Carga		Reacción	у	е	М		Мо
		Ton	m	m	Tor	n*m	Ton*m
Muerta	Dc	228.9)4	2.400	0.95	217.49	549.45
Dw		17.7	'6	2.400	0.95	16.87	42.62
Viva	LL	108.8	37	2.400	0.95	103.42	261.28

Fuerza de frenado (BR)						
Carga de camion de diseño HL-93	Pc	7.27 Ton				
Carga del tándem de diseño Hl-93	Pt	5.669 Ton				
Carga de carril	W LL	0.952 Ton/m				
25% del camion de diseño	BR1	8.179 Ton				
5% camion + carga del carril tramo 1	BR2	3.397 Ton				
5% del tandem + carga del carril tramo 1	BR3	2.895 Ton				
Mayor valor entre los anteriores	BR	8.179 Ton/via				
Número de vías	NL	2				
Factor de presencia múltiple	В	1				
Fuerza de frenado/puente	B RP	16.358 Ton				
Ubicación de la fuerza de frenado	Zr	1.83 m				
Momento de frenado en el apoyo	M BR1	58.429 Ton*m				
Carga axial vertical por el Mn frenado	P Br	-1.58 Ton				
Altura de frenado desde la zapata	ZZ	4.26 m				
Mn de frenado en la base de la zapata	M BRZ	69.60 Ton*m				
Ubicación Reacción Vert (eje 0-0)	y BR1	2.4 m				
Excentricidad de la reacción vert con respecto a ycg	e BR1	0.95 m				
Mn de la reacción vertical frenado con respecto a ycg	M BR1	-1.50 Ton*m				
Mn por BR en el ycg de la zapata (V+H)	M BR	68.10 Ton*m				
Mn por BR respecto al eje 0-0 (V+H)	M BR0	73.39 Ton*m				

Carga Muerta del estribo							
Fix	Peso	у	Мо		Opera	ciones	
Fig	Ton	m	Ton*m	a	b	С	No.
1	12.438	3.025	37.62	0.35	1.742	8.5	1
2	1.499	2.425	3.64	0.85	0.35	1.05	2
3	79.682	2.6	207.17	1.2	3.26	8.5	1
4	29.382	4.95	145.44	3.5	4.997	0.35	2
5	136.680	3.35	457.88	6.7	1	8.5	1
Σ	259.682		851.756				

Resumen de Carga Muerta						
Pesoo propio del estribo	P DC	259.682 Ton				
Ubicación de la carga por peso propio del estribo	У	3.05 m				
Mn peso propio, eje 0-0 Mo 793.18 Ton*m						

Carga de Relleno							
Fig	Peso	У	Мо		Operad	ciones	
Fig	Ton	m	Ton*m	a	b	С	No.
6	259.194	4.95	1283.01	3.5	4.997	7.8	1
7	31.450	1	31.45	2	1	8.5	1
Σ	290.644		1314.462				

0.709

0.524

Resumen de Carga de Relleno						
Peso propio de relleno	P EV	290.6 Ton				
Ubicación de la carga por peso propio del estribo	У	4.5 m				
Mn peso propio, eje 0-0	Mo	1320.9 Ton*m				
Excentriidad para el PP con respecto ycg	е	-1.2 m				
Mn de relleno, con respecto al ycg	М	-347 Ton*m				

Presión de tierras					
Peso específico del relleno posterior	yr	1.9 Ton/m³			
Ángulo de fricción	фr	40.60 °			
Ángulo de inclinación de talud de relleno	ι	0 °			
Angulo de rosamiento entre el estribo y el terreno	δ	30 °			
Ángulo entre la horizontal y el paramento	β	90 °			
Coef. De empuje activ o	Ka	0.196			
Presión max sin sobrecarga	ро	2.235 Ton/m ²			
Empuje de tierras normales	ΕH	56.975 Ton			
Posición de empujes de las tierras	Z EH	1.999 m			
Mn por presión de tierras	M EH	113.894 Ton*m			

Sobrecarga viva (LS)					
Altura del estribo	h estribo	5.997 m			
Altura de sobrecarga	h eq	0.61 m			
Sobrecarga viva vertical					
Presión vertical de tierras	ρν heq	1.159 Ton/m ²			
Ancho de acción de la sobrecarga viva sobre el estribo	LS	3.5 m			
Peso por SV vertical	PLS	31.64 Ton			
Ubicación de SV, vertical	y LS	4.95 m			
Mn por SV, eje 0-0	M Lso	156.62 Ton*m			
Al no estar siempre presente	M Lso	0 Ton*m			
Excentricidad SC, con respecto al ycg	e LS	-1.60 m			
Mn por SV, eje ycg	M LsV	-50.63 Ton*m			
Sobrecarga viva horizontal					
Sobrecarga viva presión Horizontal					
Coef. De empuje activ o	Ka	0.196			
Presión max horizontal	ρh heq	0.227 Ton/m ²			
Empuje de tierras	E Ls	11.59 Ton			
Ubicación de la resultante del empuje	Z Ls	3.00 m			
Mn del empuje de tierra, con respecto a 0 y ycg	M LsH	34.75 Ton*m			
Mn resultante del empuje de tierras	M Ls	-15.87 Ton*m			

SISMO (EQ)				
Coeficiente de aceleración horizontal	PGA	0.25		
Zona sísmica		П		
Longitud total del puente	Lt	121.4	ft	
Altura del estribo	Н	16.4		
Angulo de esviajamiento	S	0		
Ancho minimo	N mín	11.74		
Ancho minimo	N mín	0.30		
Ancho real	N real	0.85	Ш	
N real > N mín	Condición	CUMPLE	0.4	
Zonas para el porcentaje N por zona sismica	%N	150		
N factorado por zona sísmica	N mín	0.44727	m	
N real > N mín	Condición	CUMPLE		
Coef. De aceleración pico del suelo	Fpga	1		
Coeficiente de aceleracion	As	0.25		
Reacción por carga muerta por estribo	R DC	228.94	Ton	
Reacción por carga posteriores por estribo	R DW	17.76	Ton	
Fuerza min de conexión, dirección restringida	Hbu mín	61.67	Ton	
Coeficiente de fricción	μ	0.4	Art. 14.7	'.7.2
Reacción de carga muerta por estribo	R DC	228.94	Ton	
Reacción de carga asfáltica y servicios públicos	R DW	17.76	Ton	
Reacción de carga viva por estribo	RLL	108.87	Ton	
Fuerza de compresión, por la combinación de cargas	Pu	301.13	Ton	
Fuerza horizontal transmitida	Hbu	120.45	Ton	
Hbu mín < Hbu	Condición	CUMPLE		
Ubicación de la fuerza horizontal, respecto a 0 y ycg	Z Hbu	4.26	m	
Mn de la fuerza horizontal transmitida	M EQ-S	512.52		
Fuerza lateral generada por el	•			
·				
	kho	0.25		
Coef. Aceleración sismica horizonta	kho kh	0.25 0.125		
	kh	0.125	Mn resct	ta O
Coef. Aceleración sismica horizonta Figura			Mn resct	t a 0
Figura	kh Peso Ton	0.125 Zrespct a 0 m		
Figura 1	kh Peso Ton 12.44	0.125 Zrespct a 0 m 5.13	Ton*m	63.76
Figura 1 2	Peso Ton 12.44 1.50	0.125 Zrespct a 0 m 5.13 4.43	Ton*m	63.76 6.64
Figura 1 2 3	Peso Ton 12.44 1.50 79.68	0.125 Zrespct a 0 m 5.13 4.43 2.63	Ton*m	63.76 6.64 209.37
Figura 1 2 3 4	Peso Ton 12.44 1.50 79.68 29.38	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50	Ton*m	63.76 6.64 209.37 102.79
Figura 1 2 3 4 5	Peso Ton 12.44 1.50 79.68 29.38 136.68	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50	Ton*m	63.76 6.64 209.37 102.79 68.34
Figura 1 2 3 4 5	kh Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50	Ton*m	63.76 6.64 209.37 102.79
Figura 1 2 3 4 5 Σ Peso propio del estribo	Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50	Ton*m Ton	63.76 6.64 209.37 102.79 68.34
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP	Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46	Ton*m Ton Ton	63.76 6.64 209.37 102.79 68.34
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP	Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736	Ton*m Ton m	63.76 6.64 209.37 102.79 68.34
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral	Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36	Ton*m Ton Ton	63.76 6.64 209.37 102.79 68.34
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral Fuerza sísmica generada por el re	Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 n del estribo	Ton*m Ton Ton Ton m Ton*m	63.76 6.64 209.37 102.79 68.34 450.90
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral	Rh Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest M Eqest	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 n del estribo Zrespct a 0	Ton*m Ton Ton m Ton*m	63.76 6.64 209.37 102.79 68.34 450.90
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral Fuerza sísmica generada por el re Figura	kh Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest M Eqest Illeno en el talo Peso Ton	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 n del estribo Zrespct a 0 m	Ton*m Ton Ton Ton m Ton*m	63.76 6.64 209.37 102.79 68.34 450.90
Figura 1 2 3 4 5 Express propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral Fuerza sísmica generada por el re Figura 6	Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest Heno en el talo Peso Ton 259.19	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 n del estribo Zrespct a 0 m 3.50	Ton*m Ton Ton m Ton*m	63.76 6.64 209.37 102.79 68.34 450.90
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral Fuerza sísmica generada por el re Figura 6 Σ	Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest Illeno en el talo Peso Ton 259.19	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 n del estribo Zrespct a 0 m 3.50	Ton*m Ton Ton Ton M Ton*m Mn resct	63.76 6.64 209.37 102.79 68.34 450.90
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral Fuerza sísmica generada por el re Figura 6 Σ Peso del relleno posterior	Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest Illeno en el talo Peso Ton 259.19 259.19 Prell	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 r del estribo Zrespct a 0 m 3.50 259.19	Ton*m Ton Ton m Ton*m Mn resct Ton*m	63.76 6.64 209.37 102.79 68.34 450.90
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral Fuerza sísmica generada por el re Figura 6 Σ Peso del relleno posterior Fuerza sísmica generada por el peso de relleno	Rh Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest Uleno en el talo Peso Ton 259.19 Prell Eqerell	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 n del estribo Zrespct a 0 m 3.50 259.19 32.40	Ton*m Ton m Ton*m Mn resct Ton*m Ton	63.76 6.64 209.37 102.79 68.34 450.90
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral Fuerza sísmica generada por el re Figura 6 Σ Peso del relleno posterior Fuerza sísmica generada por el relleno Ubicación de la fuerza sísmica por el relleno	kh Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest Uleno en el talo Peso Ton 259.19 Prell Eqerell Z Eqrell	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 n del estribo Zrespct a 0 m 3.50 259.19 32.40 3.50	Ton*m Ton m Ton*m Mn resct Ton*m Ton m Ton m	63.76 6.64 209.37 102.79 68.34 450.90
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral Fuerza sísmica generada por el re Figura 6 Σ Peso del relleno posterior Fuerza sísmica generada por el relleno Ubicación de la fuerza sísmica por el relleno Mn por la fuerza sismica por el relleno	kh Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest Illeno en el talo Peso Ton 259.19 Prell Eqerell Z Eqrell M Eqrell	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 n del estribo Zrespct a 0 m 3.50 259.19 32.40 3.50 113.35	Ton*m Ton m Ton*m Mn resct Ton*m Ton m Ton m	63.76 6.64 209.37 102.79 68.34 450.90
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral Fuerza sísmica generada por el re Figura 6 Σ Peso del relleno posterior Fuerza sísmica generada por el relleno Ubicación de la fuerza sísmica por el relleno Mn por la fuerza sísmica por el relleno Mn por la fuerza sísmica por el relleno Presión del suelo en con	Rh Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest Ileno en el talo Peso Ton 259.19 259.19 Prell Eqerell Z Eqrell M Eqrell diciones sismi	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 n del estribo Zrespct a 0 m 3.50 259.19 32.40 3.50 113.35 cas	Ton*m Ton m Ton*m Mn resct Ton*m Ton m Ton m	63.76 6.64 209.37 102.79 68.34 450.90
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral Fuerza sísmica generada por el re Figura 6 Σ Peso del relleno posterior Fuerza sísmica generada por el relleno Ubicación de la fuerza sísmica por el relleno Mn por la fuerza sismica por el relleno Mn por la fuerza sismica por el relleno Presión del suelo en con Coef. Aceleración sismica horizonta	kh Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest Illeno en el talo Peso Ton 259.19 259.19 Prell Eqerell Z Eqrell M Eqrell diciones sismi	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 r del estribo Zrespct a 0 m 3.50 259.19 32.40 3.50 113.35 cas	Ton*m Ton m Ton*m Mn resct Ton*m Ton Ton Ton Ton Ton Ton Ton	63.76 6.64 209.37 102.79 68.34 450.90
Figura 1 2 3 4 5 Events propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral Fuerza sísmica generada por el re Figura 6 Σ Peso del relleno posterior Fuerza sísmica generada por el relleno Ubicación de la fuerza sísmica por el relleno Ubicación de la fuerza sísmica por el relleno Mn por la fuerza sismica por el relleno Presión del suelo en con Coef. Aceleración sismica horizonta Peso propio del estribo	kh Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest Illeno en el talo Peso Ton 259.19 Prell Eqerell Z Eqrell M Eqrell diciones sismi kh Ww	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 n del estribo Zrespct a 0 m 3.50 259.19 32.40 3.50 113.35 cas 0.125 259.68	Ton*m Ton m Ton*m Ton*m Ton*m Ton Ton Ton Ton Ton Ton Ton To	63.76 6.64 209.37 102.79 68.34 450.90
Figura 1 2 3 4 5 Σ Peso propio del estribo Fuerza lateral generada por el PP Ubicación de la fuerza lateral generada por el PP Mn por la fuerza lateral Fuerza sísmica generada por el re Figura 6 Σ Peso del relleno posterior Fuerza sísmica generada por el relleno Ubicación de la fuerza sísmica por el relleno Mn por la fuerza sismica por el relleno Mn por la fuerza sismica por el relleno Presión del suelo en con Coef. Aceleración sismica horizonta	kh Peso Ton 12.44 1.50 79.68 29.38 136.68 259.68 Pest EQest Z Eqest M Eqest Illeno en el talo Peso Ton 259.19 259.19 Prell Eqerell Z Eqrell M Eqrell diciones sismi	0.125 Zrespct a 0 m 5.13 4.43 2.63 3.50 0.50 259.68 32.46 1.736 56.36 r del estribo Zrespct a 0 m 3.50 259.19 32.40 3.50 113.35 cas	Ton*m Ton m Ton*m Ton*m Ton Ton Ton Ton Ton Ton Ton Ton Ton To	63.76 6.64 209.37 102.79 68.34 450.90

Fuerza dinámica lateral del	oida a la presiór	ı de tierras	
Ángulo de inclinación de talud de relleno	ι	0 °	
Ángulo θMO	θ Мо	7.13 °	0.12435499
Ángulo de inclinación del talud de relleno	ι+ θ Mo	7.13 °	
Ángulo de fricción	фr	40.60 °	
φr > ι + θ Mo	Condición	CUMPLE	
Peso específico del relleno delantero	у2	1.85 Ton/m ³	
Altura total promedio del muro	h	5.997 m	
Largo del estribo	Lest	8.5 m	
Ángulo de fricción	фr	40.60 °	0.70865921
Ángulo de inclinación de talud de relleno	ι	0 °	0
Angulo de rosamiento entre el estribo y el terreno	δ	30 °	0.52359878
Ángulo entre la horizontal y el paramento	β	90 °	1.57079633
Coef Sism de presión activa	Kae	0.269	
Fuerza de presión activa	PAE	76.08 Ton	
Fuerza por la acción sismica	ΔΡΑΕ	19.11 Ton	
	Z	0.60	
Ubicación de la presión activs	ZΔ	3.59 m	
Mn producido por la condición sism	ME AE	68.61 Ton*m	

Resumen de cargas y momentos por incidencia sismica					
Carga	Fuerza Ton	Momento Ton*m			
Hbu	120.45	512.52			
EQ Estribo	32.46	56.36			
EQ Relleno	32.40	113.35			
ΔΡΑΕ	19.11	68.61			

Solicitaciones calculados por efectos sísmicos					
Charusa	Capacidad		Estabilidad		
Chequeo	portante	Caso 1	Caso 2	A tomar	
EQ [Ton]	204.42	111.76	194.86	194.86	
M EQ [Ton*m]	750.84	409.73	716.54	716.54	

Fuerza por contracción y temperatura					
Módulo de elasticidad ($0.08 \le G \le 0.175$)ksi	G	10 kg/cm²			
Área de apoyo elastométrico	Α	2400 cm ²			
Altura total	hrt	4.2 cm			
Número de vigas	Nv	3			
Fuerzas por contracción					
Deformación por contracción	ΔSH	0.74 cm			
Fuerza total en el estribo por contracción	HuSH	12.69 Ton			
Ubi de la fuerza total en el estribo por contracción	ZHuSH	4.26 m			
Mn por la fuerza total	MHuSH	16.94 Ton*m			
Cargas por temperatura					
Def por temperatura	ΔTU	0.80 cm			
Fuerza total en el estribo por temperatura	HuTU	13.70 Ton			
Ubicación de la fuerza por temperatura	ZHuTU	4.26 m			
Mn por la fuerza total	MHuTU	58.30 Ton*m			

Factor de carga							
Cordon	Servicio I		Resiste	Resistencia I		Evento Extremo I	
Cargas	Y máx	Y mín	Y máx	Y mín	Y máx	Y mín	
DC	1	1	1.25	0.9	1	1	
DW	1	1	1.5	0.65	1	1	
LL	1	1	1.75	1.75	0.5	0.5	
BR	1	1	1.75	1.75	0.5	0.5	
EH	1	1	1.5	0.9	1	1	
EV	1	1	1.35	1	1	1	
LS	1	1	1.75	1.75	0.5	0.5	
TU	1	1	0.5	0.5	0	0	
SH	1	1	0.5	0.5	1	1	
EQ	0	0	0	0	1	1	

Factor de seguridad asumida	Fs	3	
Resistencia nominal del suelo	$qn = \sigma R$	963.39	Ton/m ²

VERIFICACIÓN DE LA CAPACIDAD PORTANTE - EVENTO EXTREMO I

Evento Extremo I							
Tino	Р	Н	М	P máx	H máx	M máx	Υ
Tipo	Ton	Ton	Ton*m	Ton	Ton	Ton*m	máx
DC	488.62	0.00	217.49	488.62	0.00	217.49	1
DW	17.76	0.00	16.87	17.76	0.00	16.87	1
LL	108.87	0.00	103.42	54.43	0.00	51.71	0.5
BR	-1.58	16.36	68.10	-0.79	8.18	34.05	0.5
EH	0.00	56.98	113.89	0.00	56.98	113.89	1
EV	290.64	0.00	-347.22	290.64	0.00	-347.22	1
LS	31.64	11.59	-15.87	15.82	5.80	-7.94	0.5
TU	0.00	13.70	58.30	0.00	0.00	0.00	0
SH	0.00	12.69	16.94	0.00	12.69	16.94	1
EQ	0.00	204.42	750.84	0.00	204.42	750.84	1
Σ	935.95	315.73	982.77	866.49	288.05	846.65	

Excentricidad del estribo	е	0.98 m
Ancho de la zapata	В	6.7 m
Longiitud de la zapata	L	8.5 m
Área de la cimentación	Α	56.95 m ²

Esfuerzo provocado por el peso propio del estribo, rellenos, tierra, sismo y sobrecarga				
SI estuviera sobre el suelo	σν	21.48 Ton/m ²		
σv < σR	Condición	CUMPLE		
Si estuviera sobre roca	σv máx	28.53 Ton/m ²		
	σv mín	1.90 Ton/m ²		
σv máx < σR	Condición	CUMPLE		
Si esta fuera del tercio central	σv máx	14.32 Ton/m ²		
	σv mín	0 Ton/m ²		
σv máx < σR	Condición	CUMPLE		
σv mín < σR	Condición	CUMPLE		

VERIFICACIÓN AL DESLIZAMIENTO - EVENTO EXTREMO I

Evento Extremo I							
Tipo	Р	Н	М	P máx	H máx	M máx	Υ
Προ	Ton	Ton	Ton*m	Ton	Ton	Ton*m	máx
DC	488.62	0.00	217.49	488.62	0.00	217.49	1.00
DW	17.76	0.00	16.87	17.76	0.00	16.87	1.00
LL	108.87	0.00	103.42	54.43	0.00	51.71	0.50
BR	-1.58	16.36	68.10	-0.79	8.18	34.05	0.50
EH	0.00	56.98	113.89	0.00	56.98	113.89	1.00
EV	290.64	0.00	-347.22	290.64	0.00	-347.22	1.00
LS	0.00	11.59	34.75	0.00	5.80	17.38	0.50
TU	0.00	13.70	58.30	0.00	0.00	0.00	0.00
SH	0.00	12.69	16.94	0.00	12.69	16.94	1.00
EQ	0.00	194.86	716.54	0.00	194.86	716.54	1.00
Σ				850.67	278.50	837.65	

Peso específico del relleno delantero	y2	1.85 Ton/m ³	
Ángulo de inclinación de talud de relleno	ι	0 °	0
Ángulo de fricción	φr	40.60 °	0.70865921
Ángulo entre la horizontal y el paramento	β	90 °	1.57079633
Angulo de rosamiento entre el estribo y el terreno	δ	30 °	0.52359878
Ángulo de rozamiento (terreno y muro) ≤ Φ2/2	δ2	20.30 °	0.35432961
Ángulo de rozamiento (terreno y muro) ≤ 2*Φ2/3	δ2	27.07 °	0.47243947
Coef de presión pasiva	kp	20.49	

H, Relleno inferior	hp1	1 m
H, h zapata + Relleno inferior	hp2	2 m
Esfuerzo de preión pasiva	qp1	37.90 Ton/m ²
	qp2	75.80 Ton/m ²
Resistencia Nominal pasiva	Rep	644.30 Ton
Fuerza horizontal ultima exterior	Hu máx	278.50 Ton

Resistencia por cohesión	С	169.34 Ton
Suma de cargas verticales últimas	ΣΡ	850.67 Ton
Resist nominal al deslizamiento	Rt	660.47 Ton
Factores de resistencia	φτ	1
Factores de resistencia	φΕΡ	1
Resistencia nominal al deslizamiento	φRn	1304.77 Ton
φRn > Hu máx	Condición	CUMPLE

Verificación al volteo y excentricidad máxima Evento Extremo I

Mn desestabilizadores		
Carga	Mo Ton*m	Muo máx Ton*m
BR	73.39	36.70
EH	113.89	170.84
ELS	-15.87	-7.94
EQ	716.54	716.54
Σ	887.95	916.14

Mn estabilizadores					
Ocurs	Mo	Muo máx			
Carga	Ton*m	Ton*m			
DC superior	549.45	494.50			
DC inferior	851.76	766.58			
DW	42.62	27.71			
LL	261.28	130.64			
EV	1314.46	1314.46			
PLs	31.64	15.82			
Σ	3051.20	2749.71			

Mn estabilizador	Mu estabil	2749.71
Mn volcador	Mu volt	916.14
M est ≥ M volca	Condición	CUMPLE

Excentricidad					
Centro de gravedad de la zapata	ycg	3.35 m			
Ubicación de la fuerza resultante	X	2.37 m			
Excentricidad	е	0.98 m			
Excentricidad máxima	e max	2.68 m			
e < <i>emáx</i>	Condición	CUMPLE			

Diseño de cimentación

Solicitaciones y diseño de la cimentación por Evento Extremo

Evento Extremo I							
Tino	Р	Н	М	P máx	H máx	M máx	Υ
Tipo	Ton	Ton	Ton*m	Ton	Ton	Ton*m	máx
DC	488.62	0.00	217.49	610.77	0.00	271.86	1.25
DW	17.76	0.00	16.87	26.64	0.00	25.31	1.5
LL	108.87	0.00	103.42	54.43	0.00	51.71	0.5
BR	-1.58	16.36	68.10	-0.79	8.18	34.05	0.5
EH	0.00	56.98	113.89	0.00	85.46	170.84	1.5
EV	290.64	0.00	-347.22	392.37	0.00	-468.75	1.35
LS	31.64	11.59	-15.87	15.82	5.80	-7.94	0.5
TU	0.00	13.70	58.30	0.00	0.00	0.00	0
SH	0.00	12.69	16.94	0.00	6.34	8.47	0.5
EQ	0.00	204.42	716.54	0.00	204.42	716.54	1
Σ				1099.25	310.20	802.10	

Evento Extremo I							
Tipo	Р	Н	М	P mín	H mín	M mín	Υ
Про	Ton	Ton	Ton*m	Ton	Ton	Ton*m	mín
DC	488.62	0.00	217.49	439.76	0.00	195.74	0.9
DW	17.76	0.00	16.87	11.54	0.00	10.97	0.65
LL	108.87	0.00	103.42	54.43	0.00	51.71	0.5
BR	-1.58	16.36	68.10	-0.79	8.18	34.05	0.5
EH	0.00	56.98	113.89	0.00	51.28	102.50	0.9
EV	290.64	0.00	-347.22	290.64	0.00	-347.22	1
LS	31.64	11.59	-15.87	15.82	5.80	-7.94	0.5
TU	0.00	13.70	58.30	0.00	0.00	0.00	0
SH	0.00	12.69	16.94	0.00	6.34	8.47	0.5
EQ	0.00	204.42	716.54	0.00	204.42	716.54	1
Σ				811.41	276.01	764.83	

Ancho de la zapata	В	6.7 m
Longiitud de la zapata	L	8.5 m
Área de la cimentación	Α	56.95 m ²
Distancia de la fibra más lejano con rspct a ycg	С	3.35 m
Esfuerzo máx calculado	σνmáx	31.91 Ton/m ²
Esfuerzo min calculado	σνmín	6.69 Ton/m ²

Diseño del dedo Evento Extremo I				
Longitud del dedo	Ld	2 m		
Altura de zapata	hz	1 m		
Altura de relleno sobre dedo	hr	1 m		
Ancho de la zapata	az	6.7 m		
Peso específico del hormigón	yh	2.4 Ton/m ³		
Peso específico del relleno delantero	yr	1.85 Ton/m ³		
Peso del dedo por m lineal	P DCd	4.80 Ton		
Peso del relleno sobre dedo por m lineal	P Evd	3.70 Ton		
Esfuerzo calculado por las solicitaciones máx	σνmáx	31.91 Ton/m ²		
Esfuerzo último en la secc del dedo	σ dedo	24.38 Ton/m ²		
Mn en la secc del dedo	M dedo	50.79 Ton*m		

Arı	madura a Flexión	
Resistencia a compresión	f'c	280 kg/cm²
Resistencia de fluencia del acero	fy	4200.00 kg/cm ²
Recubrimiento	r	10 cm
Peralte efectivo	de	88.75 cm
Factor	ф	0.9
Factor	β	0.85
Momento último	Mu	50.79 Ton*m

Acero de refuerzo en el pie de la zapata					
Diametro de la varilla empleada	ØAs	25	mm		
Peralte efectivo	de	88.75 cm			
base unitario	b	100	cm		
As acero principal	As	15.37 cm ²			
Momento mínimo 1	Mn mín 1	67.55	Ton*m		
	W	0.0347			
	ρ	0.0023			
	As min 20.56				
Acero propuesto	#	φ [mm]	Área [cm²/m]		
Superior sobre Voladizo	5	25	24.54		
Condición	Asd col > As	Cumple	1 φ 25mm @ 20		

Control	de ductilidad	
As	cm²	24.54
С	cm	5.10
a	cm	4.33
εt		0.049
Condición ɛt>0.005		CUMPLE

Acero de refuerzo en el pie de la zapata				
Diametro de la varilla empleada	ØAs	16	6 mm	
Peralte efectivo	de	88.75	5 cm	
base unitario	b	100 mm		
As acero principal	Ast	Ast 13.31 cm ²		
Acero propuesto	#	φ [mm]	Área [cm²/m]	
Superior sobre Voladizo	5	20	15.71	
Condición	Asd col > As	Cumple	1 φ 20mm @ 20	

Armadura a Corte

Chequeo de corte en el tablero - Pie				
Factor al corte	Ø	0.9		
Altura de corte efectivo	dv	79.875 cm		
Peso del dedo por ml	P DCd	4.8 Ton		
Peso del relleno por ml	P Evd	3.7 Ton		
Esfuerzo en la secc del corte	σν	28.91 Ton/m2		
Esfuerzo producido en la sección del corte	Vud	24.29 Ton		
Factores	β1	2		
Cortante resistido por hormigón	Vc	70.84 Ton		
Cortante resistido por el acero a corte	Vs	0 Ton		
Cortante resistido por el tablero	Vn	70.84 Ton		
Resistencia Factorada	Vr	63.75 Ton		
Condición	Vr > Vu	Cumple		

Diseño del talón				
Largo de la zapata	L	8.5 m		
Área de la cimentación	Α	56.95 m ²		
Excentricidad del estribo por solicitaciones min	е	0.943 cm		
Ancho de la zapata	В	6.7 m		
Esfuerzo máx calculado	σνmáx	26.27 Ton/m ²		
Esfuerzo min calculado	σνmín	2.22 Ton/m ²		
		0		
Longitud del talón	Lt	3.5 m		
Peso específico del hormigón	yh	2.4 Ton/m ³		
Peso específico del relleno posterior	yr	1.9 Ton/m³		
Peso del talón por ml	P DCt	8.4 Ton		
Peso del relleno por ml	P Evt	33.23 Ton		
Presión vertical de la sobrecarga viva	ρν heq	1.159 Ton/m ²		
Peso por sobrecarga viva en el talón	P LSt	4.06 Ton		
	С	12.53 Ton/m ²		
	у	2.95 m		
	Rt	18.46 Ton		
	γDC máx	1.25		
	γEV máx	1.35		
	γLS máx	0.5		
Mn ultimo en la cara posterior de la pantalla	Mu pp	-82.31 Ton*m		

Armadura a flexión					
Resistencia a compresión	f'c	280	kg/cm²		
Resistencia de fluencia del acero	fy	4200 kg/cm²			
Recubrimiento	ŗ	10	cm		
Peralte efectivo	de	90	cm		
As calculador	As cal	28.13	cm ²		
Factor	ф	0.9			
Factor	β	0.85			
Momento mínimo 1	Mn mín 1	109.47 kg/cm²			
	W	0.0711			
	ρ 0.0047				
	As min	in 37.84			
Acero propuesto	#	φ[mm]	Área [cm²/m]		
Superior sobre Voladizo	10	25	49.09		
Condición	Asd col > As	Cumple	1 φ 25mm @ 10		

Control de ductilidad				
As	cm ²	49.09		
С	cm	10.19		
a	cm	8.66		
εt		0.021		
Condición ɛt>0.005		CUMPLE		

Acero de refuerzo en el pie de la zapata					
Diametro de la varilla empleada	etro de la varilla empleada ØAs 16 mm				
Peralte efectivo	de	79.87	5 cm		
base unitario	b	100 mm			
As acero principal	Ast	11.98 cm ²			
Acero propuesto	#	φ[mm]	Área [cm²/m]		
Superior sobre Voladizo	5	18	12.72		
Condición	Asd col > As	Cumple	1 φ 18mm @ 20		

20.0

Armadura a Corte - Talon

Chequeo de corte en el tablero				
Factor al corte	Ø	0.9		
Altura de corte efectivo	dv	79.9 cm		
Distancia escogida para el analisis	dv	2.70 m		
Peso del dedo por ml	P DCt	6.48 Ton		
Peso del relleno por ml	P Evt	25.65 Ton		
Peso sobrecargado viva el talón por ml	PL SV	3.13 Ton		
Esfuerzo en la secc del corte	σν	21.74 Ton/m2		
Esfuerzo producido en la sección del corte	Vud	38.40 Ton		
Factores	β1	2		
Cortante resistido por hormigón	Vc	70.84 Ton		
Cortante resistido por el acero a corte	Vs	0 Ton		
Cortante resistido por el tablero	Vn	70.84 Ton		
Resistencia Factorada	Vr	63.75 Ton		
Condición	Vr > Vu	Cumple		

Estado lim de servicio I

	Servicio I - para evaluación de excentricidad y estabilidad						
Tine	Р	Н	М	P máx	H máx	M máx	Υ
Tipo	Ton	Ton	Ton*m	Ton	Ton	Ton*m	mín
DC	488.62	0.00	217.49	488.62	0.00	217.49	1
DW	17.76	0.00	16.87	17.76	0.00	16.87	1
LL	108.87	0.00	103.42	108.87	0.00	103.42	1
BR	-1.58	16.36	68.10	-1.58	16.36	68.10	1
EH	0.00	56.98	113.89	0.00	56.98	113.89	1
EV	290.64	0.00	-347.22	290.64	0.00	-347.22	1
LS	31.64	11.59	-15.87	31.64	11.59	-15.87	1
TU	0.00	13.70	58.30	0.00	13.70	58.30	1
SH	0.00	12.69	16.94	0.00	12.69	16.94	1
EQ	0.00	204.42	716.54	0.00	0.00	0.00	0
Σ			-	935.95	111.31	231.92	

Ancho de la zapata	В	6.7 m
Excentricidad	е	0.248 m
Longiitud de la zapata	L	8.5 m
Área de la cimentación	Α	56.95 m ²
Distancia de la fibra más lejano con rspct a ycg	С	3.35 m
Esfuerzo máx calculado	σνmáx	20.08 Ton/m ²
Esfuerzo min calculado	σνmín	12.79 Ton/m ²

Control de fisuramiento					
Peso de la cimentación del dedo, ml	P DCd	4.80 Ton			
Peso del relleno delantero, ml	P EVd	3.70 Ton			
Peso del talón, ml	PDCt	8.4 Ton			
Peso der relleno posterior, ml	P EVt	33.23 Ton			
Peso sobrecarga viva, talón, ml	PLS	4.06 Ton			

Esfrz máx	σνmáx	20.08 Ton/m ²
Esfrz máx, en el dedo	σV dedo	17.90 Ton/m ²
Esfrz máx, en el talón	σV talon	16.60 Ton/m ²
Mn en la sección del dedo	Mn dedo	35.01 Ton*m
Mn en la sección del talón	Mn Talón	-34.81 Ton*m
	С	18.68 Ton/m ²
	У	3.81 m
	Rt	35.56 Ton

Módulo de elasticidad del acero	Es	2030000 kg/cm²
Módulo de elasticidad del ho	Ec	200798 kg/cm ²
Relación de módulos	n	10
Ancho de la faja de diseño	bv	100 cm
Condición de exposición (Contacto con el agua)	Ye	0.75

Control de agrietamiento				
Momento	Dedo Talón			
hz [cm]	100	100		
r [cm]	10	10		
de [cm]	90	90		
βs	1.16	1.16		
M [Ton*m]	35.01	34.81		
As colocada [cm²]	49.09	49.09		
y [cm]	25.22	25.22		
I trans [cm^4]	2594631	2594631		
c (cm)	64.78	64.78		
fs [kg/cm²]	874	869		
S máx [cm]	72.56	73.08		
S var [cm]	10	10		
Condición	Cumple	Cumple		

Diseño del cuerpo

Cargas a soportar						
	Muerta Carpeta Asfáltica y SP		Viva			
	DC	DW	LL			
Reacción por estribo [Ton], R	26.934	2.089	12.808			
Ubicación de la carga [m], y	0.400	0.400	0.400			
Excentricidad [m], e	0.375	0.375	0.375			
Momento [Ton*m], M	10.100	0.784	4.803			

Fuerzas de frenado					
Fuerzas de frenado	B RP	8.179 Ton/vía			
Carga axial	P BR	-0.19 Ton			
Altura para fuerza frenado	ZC	4.255 m			
Mn por fuerza horizontal	M BRz	8.1884 Ton*m			
Ubicación de carga vertical	y BR1	0.400 m			
Excentricidad BR	e BR1	0.375 m			
Mn producido por el BR (Vertical)	M BR1	-0.0697 Ton*m			
Mn producido por el BR (V+H)	M BR	8.1187 Ton*m			

Carga Muerta del estribo							
Fig	Peso	У	Mo		Operac	iones	
Fig	Ton	m	Ton*m	a	b	С	No.
1	1.46	1.025	1.50	0.35	1.742	1	1
2	9.37	0.6	5.62	1.2	3.26	1	1
3	1.43	0.425	0.61	0.85	0.35	1	2
Σ	12.266		7.731				

9.30 Ton*m

Peso propio de la pantalla	P DC	12.266 Ton	0.6097	0.6249425	
Ubivación de la carga	y DC	0.63 m	3.906	2.3436	
Excentricidad para carga por pp	e DC	0.17 m	0.595	0.252875	
Mn por la carga por pp	M DC	2.08 Ton*m	5.1107	3.2214175	0.63032804

resión de tierras	
yr	1.9 Ton/m ³
Ka	0.196
h	4.997 m
Po	2.235 Ton/m ²
EH	5.585 Ton
Z EH	1.67 m
	Ka h Po EH

M EH

Sobrecarga presión horizontal					
Altura de sobrecarga	h eq	0.61 m			
Coef. De empuje activ o	Ka	0.196			
Presión max horizontal	P1	0.227 Ton			
Empuje de tierra normal	ELS	1.136 Ton			
Ubicación de la resultante	ZLS	2.4985 m			
Mn por LS horizontal	M LSh	2.839 Ton*m			

Sismo				
Propiedades de la zona				
Coeficiente de aceleracion	As	0.25		
Coeficiente de aceleración horizontal	PGA	0.25		
Zona sísmica		II		
Coef. De aceleración pico del suelo	Fpga	1		

Mn ejercido

Fuerza lateral transmitida por la superestructura				
Fuerza min de conexión, dirección restringida	Hbu mín	61.67 Ton		
Coeficiente de fricción	μ	0.4		
Reacción de carga muerta por estribo	R DC	26.93 Ton		
Reacción de carga asfáltica y servicios públicos	R DW	2.09 Ton		
Reacción de carga viva por estribo	RLL	12.81 Ton		
Fuerza de compresión, por la combinación de cargas	Pu	35.43 Ton		
Fuerza horizontal transmitida	Hbu	14.17 Ton		
Hbu mín < Hbu	Condición	REDISEÑO		
	Hbu	61.67 Ton		
	Condición	CUMPLE		
Ubicación de la fuerza horizontal, respecto a 0 y ycg	Z Hbu	3.26 m		
Mn de la fuerza horizontal transmitida	M EQ-S	200.75 Ton*m		

Fuerza lateral transmitida por el pp							
Figura	Peso	Z resp ao	M resp a)			
	Ton	m	Ton*m				
1	1	.46	4.13	6.037			
2	9.	.37	1.63	15.257			
3	1.	.43	3.43	4.898			
Σ	12.265	68		26.192			

Coef. Aceleración sismica horizonta	kh	0.125
Peso propio del cueropo	P curp	12.27 Ton
Fuerz lateral	EQ cuerpo	1.53 Ton
Ubicación de la fuerza lateral	Z EQ curp	2.14 m
Mn por la fuerza lateral	M EQ curp	3.27 Ton*m

Fuerza sísmica generada por el relleno en el talón						
Figura	Peso Z resp ao M resp ao					
	Ton	m	Ton*m			
6	30.49	2.5	76.188			
Σ	30.49		76.188			

Peso del relleno	P rell	30.49 Ton
Fuerz lateral	EQ rell	3.81 Ton
Ubicación de la fuerza por el relleno	Z EQ rell	2.50 m
Mn por la fuerza del relleno	M EQ rell	9.52 Ton*m

Presión del suelo en condiciones sismicas					
Coef. Aceleración sismica horizonta	kh	0.125			
Peso propio del cueropo	Ww	12.27 Ton			
Peso del relleno	Ws	30.49 Ton			
Fuerza horizontal	Pir	5.34 Ton			

Fuerza dinamica lateral debido a la presión de tierra					
Peso específico del relleno posterior yr 1.9 Ton/m ³					
Altura prom de relleno	h	5.997 m			
Largo del estribo	Lest	8.5 m			
Coef Sism de presión activa	Kae	0.27			
Fuerza de Presión Activa	P AE	9.19 Ton			
Fuerza por la acción sísmica	ΔΡΑΕ	3.61 Ton			
	Z	0.598793235			
Ubicación de la fuerza	ZA	6.06 m			
Mn producido por la condición sísmica	ME AE	21.85 Ton*m			

Resumen de cargas y momentos por incidencia sismica						
Carga	Fuerza Ton	Momento Ton*m				
Hbu	14.17	200.75				
EQ Cuerpo	1.53	3.27				
EQ Rell	3.81	9.52				
P AE	9.19	21.85				

Efectos sísmicos totales							
Chequeo	Capacidad		Estabilidad				
	portante	Caso 1	Caso 2	Selección			
EQ [Ton]	28.71	18.95	24.11	24.11			
M EQ [Ton*m]	235.39	128.62	224.47	224.47			

Fuerza por contracción y temperatura						
Módulo de elasticidad ($0.08 \le G \le 0.175$)ksi	G	10 kg/cm²				
Área de apoyo elastométrico	Α	2400 cm ²				
Altura total	hrt	4.2 cm				
Número de vigas	Nv	3				
Fuerzas por contracción						
Deformación por contracción	ΔSH	0.74 cm				
Fuerza total en el estribo por contracción	HuSH	1.49 Ton				
Ubi de la fuerza total en el estribo por contracción	ZHuSH	3.26 m				
Mn por la fuerza total	MHuSH	4.75 Ton*m				
Cargas por temperatura						
Def por temperatura	ΔΤU	0.80 cm				
Fuerza total en el estribo por temperatura	HuTU	1.61 Ton				
Ubicación de la fuerza por temperatura	ZHuTU	3.26 m				
Mn por la fuerza total	MHuTU	5.25 Ton*m				

	Ev	vento Extremo	I				
Tipo	Р	Н	М	P máx	H máx	M máx	Υ
Προ	Ton	Ton	Ton*m	Ton	Ton	Ton*m	máx
DC	26.93	0.00	10.10	26.93	0.00	10.10	1
DW	2.09	0.00	0.78	2.09	0.00	0.78	1
LL	12.81	0.00	4.80	6.40	0.00	2.40	0.5
BR	-0.19	1.92	8.12	-0.09	0.96	4.06	0.5
EH	0.00	5.59	9.30	0.00	5.59	9.30	1
EV	0.00	0.00	0.00	0.00	0.00	0.00	1
LS	0.00	1.14	2.84	0.00	0.57	1.42	0.5
TU	0.00	1.61	5.25	0.00	0.00	0.00	0
SH	0.00	1.49	4.75	0.00	1.49	4.75	1
EQ	0.00	24.11	224.47	0.00	24.11	224.47	1
Σ				35.33	32.72	257.28	

	Εν	vento Extremo	I				
Tino	Р	Н	М	P mín	H mín	M mín	Υ
Tipo	Ton	Ton	Ton*m	Ton	Ton	Ton*m	mín
DC	26.93	0.00	10.10	26.93	0.00	10.10	1
DW	2.09	0.00	0.78	2.09	0.00	0.78	1
LL	12.81	0.00	4.80	6.40	0.00	2.40	0.5
BR	-0.19	1.92	8.12	-0.09	0.96	4.06	0.5
EH	0.00	5.59	9.30	0.00	5.59	9.30	1
EV	0.00	0.00	0.00	0.00	0.00	0.00	1
LS	0.00	1.14	2.84	0.00	0.57	1.42	0.5
TU	0.00	1.61	5.25	0.00	0.00	0.00	0
SH	0.00	1.49	4.75	0.00	1.49	4.75	1
EQ	0.00	24.11	224.47	0.00	24.11	224.47	1
Σ				35.33	32.72	257.28	

Efectos sísmicos totales					
Chaguas	Capacidad	Estabilidad			
Chequeo	portante	Caso 1	Caso 2	Selección	
EQ [Ton]	28.71	18.95	24.11	24.11	
M EQ [Ton*m]	235.39	128.62	224.47	224.47	

Fuerza por contracción y temperatura				
Módulo de elasticidad ($0.08 \le G \le 0.175$)ksi	G	10 kg/cm²		
Área de apoyo elastométrico	Α	2400 cm ²		
Altura total	hrt	4.2 cm		
Número de vigas	Nv	3		
Fuerzas por contracción				
Deformación por contracción	ΔSH	0.74 cm		
Fuerza total en el estribo por contracción	HuSH	1.49 Ton		
Ubi de la fuerza total en el estribo por contracción	ZHuSH	3.26 m		
Mn por la fuerza total	MHuSH	4.75 Ton*m		
Cargas por temperatura				
Def por temperatura	ΔΤU	0.80 cm		
Fuerza total en el estribo por temperatura	HuTU	1.61 Ton		
Ubicación de la fuerza por temperatura	ZHuTU	3.26 m		
Mn por la fuerza total	MHuTU	5.25 Ton*m		

Evento Extremo I							
Tipo	Р	Н	М	P máx	H máx	M máx	Υ
Προ	Ton	Ton	Ton*m	Ton	Ton	Ton*m	máx
DC	26.93	0.00	10.10	26.93	0.00	10.10	1
DW	2.09	0.00	0.78	2.09	0.00	0.78	1
LL	12.81	0.00	4.80	6.40	0.00	2.40	0.5
BR	-0.19	1.92	8.12	-0.09	0.96	4.06	0.5
EH	0.00	5.59	9.30	0.00	5.59	9.30	1
EV	0.00	0.00	0.00	0.00	0.00	0.00	1
LS	0.00	1.14	2.84	0.00	0.57	1.42	0.5
TU	0.00	1.61	5.25	0.00	0.00	0.00	0
SH	0.00	1.49	4.75	0.00	1.49	4.75	1
EQ	0.00	24.11	224.47	0.00	24.11	224.47	1
Σ				35.33	32.72	257.28	

Evento Extremo I							
Tino	Р	Н	М	P mín	H mín	M mín	Υ
Tipo	Ton	Ton	Ton*m	Ton	Ton	Ton*m	mín
DC	26.93	0.00	10.10	26.93	0.00	10.10	1
DW	2.09	0.00	0.78	2.09	0.00	0.78	1
LL	12.81	0.00	4.80	6.40	0.00	2.40	0.5
BR	-0.19	1.92	8.12	-0.09	0.96	4.06	0.5
EH	0.00	5.59	9.30	0.00	5.59	9.30	1
EV	0.00	0.00	0.00	0.00	0.00	0.00	1
LS	0.00	1.14	2.84	0.00	0.57	1.42	0.5
TU	0.00	1.61	5.25	0.00	0.00	0.00	0
SH	0.00	1.49	4.75	0.00	1.49	4.75	1
EQ	0.00	24.11	224.47	0.00	24.11	224.47	1
Σ				35.33	32.72	257.28	

DISEÑO DE ARMADURA

Armadura a Flexión					
Resistencia a compresión	f'c	280 kg/cm²			
Resistencia de fluencia del acero	fy	4200 kg/cm ²			
Recubrimiento	r	5 cm			
Peralte efectivo	de	115 cm			
Factor	ф	0.9			
Factor	β	0.85			
Momento último	Mu	257.28 Ton*m			

Acero de refuerzo de la pantalla					
Diametro de la varilla empleada	ØAs	ØAs 25 mm			
Peralte efectivo	de	115	cm		
base unitario	b	100	cm		
As acero principal	As	62.15	cm ²		
Momento mínimo 1 Mn mín 1 342.19 Ton*m		Ton*m			
	W				
	ρ		0.0073		
	As min	84.17			
Acero propuesto	#	φ [mm]	Área [cm²/m]		
Primera Capa	10	28	61.58		
Segunda Capa	10	28	61.58		
		Σ	123.15		
Condición	Asd col > As	Cumple	1 ф 28mm @ 10		
Collucion	ASU COL > AS	Cumple	1 ф 28mm @ 10		

Control de ductilidad					
As	cm ²	123.15			
С	cm	25.57			
a	cm	21.73			
εt		0.010			
Condición ɛt>0.005		CUMPLE			

Acero de refuerzo por contracción y temperatura				
Diametro de la varilla empleada	ØAs	16 mm		
Peralte efectivo	de	11	5 cm	
base unitario	b	10	0 cm	
As acero principal	Ast	23.0	0 cm²	
Acero propuesto	#	φ [mm]	Área [cm²/m]	
Cara Interior			7.666666667	
	5	16	10.05	
Cara Posterior			15.33	
	5	20	15.71	
			25.76	
Condición	Asd col > As	Cumple	1 φ 16mm @ 20	
Condicion	ASU COL > AS	Cumple	1 ф 20mm @ 20	
Cara exterior - Vertical				
área necesaria	As	As 17.25 cm ²		
Acero propuesto	#	φ [mm]	Área [cm²/m]	
Cara Interior	10	15	17.67	
Condición	Asd col > As	Cumple	1 φ 15mm @ 10	

Armadura para controlar la tensión de la cuña					
Reacción de carga muerta por estribo	R DC	26.93	Ton		
Reacción de carga asfáltica y servicios públicos	R DW	2.09	Ton		
Reacción de carga viva por estribo	RLL	12.81	Ton		
Tensión de la cuña por ml	Tcuña	10.46	Ton		
Área necesaria	As cal	2.64	cm ²		
Acero propuesto	#	φ [mm]	Área [cm²/m]		
Cara Interior	5	10	3.93		
Condición	Asd col > As	Cumple	1 ф 10mm @ 20		

Chequeo de corte en la pantalla					
Factor al corte	Ø	0.9			
Altura de corte efectivo	dv	103.5 cm			
Distancia escogida para el analisis	dv	103.5 m			
Cortante último max	Vu	32.72 Ton			
Factores	β1	2			
Cortante resistido por hormigón	Vc	101.60 Ton			
Cortante resistido por el acero a corte	Vs	0 Ton			
Cortante resistido por el tablero	Vn	101.60 Ton			
Resistencia Factorada	Vr	91.44 Ton			
Condición	Vr > Vu	Cumple			

Control de fisuramiento

Solicitaciones para el chequeo del agrietamiento				
Tipo	М	M máx		
0	Ton*m	Ton*m		
DC	10.10	10.10		
DW	0.78	0.78		
LL	4.80	2.40		
EH	9.30	9.30		
LS	2.84	1.42		
TU	5.25	0.00		
SH	4.75	4.75		
Σ	0.00	28.76		

Control de agrietamiento			
Momento	Pantalla		
hz [cm]	120		
r [cm]	5		
de [cm]	115		
βs	1.06		
M [Ton*m]	28.76		
As colocada [cm²]	123.15		
de [cm]	115		
y [cm]	42.31		
l trans [cm^4]	9031756		
c (cm)	72.69		
fs [kg/cm²]	231		
S máx [cm]	371.41		
S var [cm]	10		
Condición	Cumple		

Diseño de Pantalla Superior

Cargas a soportar	Muerta	Viva
	DC	LL
Reacción por estribo [Ton], R	1.4	16 3.71
Ubicación de la carga [m], y	0.17	75 0.175
Excentricidad [m], e		0 0.175
Momento [Ton*m], M		0 0.65

Fuerza de frenadoBr0.93 TonAltura de aplicaciónh Br3.572 mMn por fuerza de frenadoM Br3.31 Ton*m

Empuje de Tierras				
Peso específico del relleno posterior	yr	1.9 Ton/m³		
Angulo de rosamiento entre el estribo y el terreno	δ	30 °		
Coef. De empuje activ o	Ka	0.196		
Altura de relleno	h	1.742 m		
Presión máx	Po	0.649 Ton/m ²		
Ancho de diseño	Le	1 m		
Empuje lateral	EH	0.566 Ton		
Altura de la fuerza	ZEH	0.581 m		
Mn por empuje de relleno	M EH	0.328 Ton*m		

Sobrecarga presión horizontal				
Altura de sobrecarga	h eq	0.9144 m		
Coef. De empuje activ o	Ka	0.196		
Presión max horizontal	P1	0.341 Ton		
Empuje de tierra normal	ELS	0.594 Ton		
Ubicación de la resultante	ZLS	0.871 m		
Mn por LS horizontal	M LSh	0.517 Ton*m		

Sismo

Propiedades de la zona				
Coeficiente de aceleracion	As		0.25	
Coeficiente de aceleración horizontal	PGA		0.25	
Zona sísmica		П		
Coef. De aceleración pico del suelo	Fpga		1	

Fuerza lateral transmitida por el pp				
Figura	Peso	Z resp ao	M resp ao	
	Ton	m	Ton*m	
1	1.46	6	0.87	1.27
Σ	1.46	6		1.27

Coef. Aceleración sismica horizonta	kh	0.125
Peso propio de la pantalla	P pant	1.46 Ton
Fuerz lateral	EQ pant	0.18 Ton
Ubicación de la fuerza lateral	Z EQ pant	0.87 m
Mn por la fuerza lateral	M EQ pant	0.16 Ton*m

Fuerza por el relleno del talón				
Figura	Peso	Z resp ao	M resp ao	
	Ton	m	Ton*m	
6	11.58	0.8	7 1	10.09
Σ	11.58	}	1	10.09

Coef. Aceleración sismica horizonta	kh	0.125
Peso del relleno	P rell	11.58 Ton
Fuerz lateral	EQ rell	1.45 Ton
Ubicación de la fuerza lateral	Z EQ rell	0.87 m
Mn por la fuerza lateral	M EQ rell	1.26 Ton*m

Presión del suelo en condiciones sismicas				
Coef. Aceleración sismica horizonta	kh	0.125		
Peso propio de la pantalla	Ww	1.46 Ton		
Peso del relleno	Ws	11.58 Ton		
Fuerza horizontal	Pir	1.63 Ton		

Fuerza dinamica lateral debido a la presión de tierra				
Peso específico del relleno posterior	yr	1.9 Ton/m³		
Altura prom de relleno	h	1.742 m		
Largo del estribo	Lest	8.5	0	
Coef Sism de presión activa	Kae	0.269		
Fuerza de Presión Activa	P AE	0.78 Ton		
Fuerza por la acción sísmica	ΔΡΑΕ	0.21 Ton		
	f	0.599		
Ubicación de la presión activs	ΖΔ	2.29 m		
Mn producido por la condición sísmica	ME AE	0.48 Ton*m		

Resumen de cargas y momento	s por incidencia sismica	a
Carga	Fuerza Ton	Momento Ton*m
EQ Pantalla	0.18	0.16
EQ Relleno	1.45	1.26
P AE	0.78	0.48

Efectos sísmicos totales					
Chaguas	Capacidad		Estabilid	ad	
Chequeo	portante	Caso 1	Caso 2		Selección
EQ [Ton]	2.41	1	.59	2.02	2.02
M EQ [Ton*m]	1.90	1	.19	1.66	1.66

	Evento Extremo I						
Tino	Р	Н	М	P máx	H máx	M máx	Υ
Tipo	Ton	Ton	Ton*m	Ton	Ton	Ton*m	máx
DC	1.46	0.00	0.00	1.46	0.00	0.00	1
DW	0.00	0.00	0.00	0.00	0.00	0.00	1
LL	3.71	0.00	0.65	1.86	0.00	0.32	0.5
BR	0.00	0.93	3.31	0.00	0.46	1.66	0.5
EH	0.00	0.57	0.33	0.00	0.57	0.33	1
EV	0.00	0.00	0.00	0.00	0.00	0.00	1
LS	0.00	0.59	0.52	0.00	0.30	0.26	0.5
TU	0.00	0.00	0.00	0.00	0.00	0.00	0
SH	0.00	0.00	0.00	0.00	0.00	0.00	1
EQ	0.00	2.41	1.90	0.00	2.41	1.90	1
Σ				3.32	3.73	4.47	

	Evento Extremo I						
Tipo	Р	Н	М	P mín	H mín	M mín	Υ
Προ	Ton	Ton	Ton*m	Ton	Ton	Ton*m	mín
DC	1.46	0.00	0.00	1.46	0.00	0.00	1
DW	0.00	0.00	0.00	0.00	0.00	0.00	1
LL	3.71	0.00	0.65	1.86	0.00	0.32	0.5
BR	0.00	0.93	3.31	0.00	0.46	1.66	0.5
EH	0.00	0.57	0.33	0.00	0.57	0.33	1
EV	0.00	0.00	0.00	0.00	0.00	0.00	1
LS	0.00	0.59	0.52	0.00	0.30	0.26	0.5
TU	0.00	0.00	0.00	0.00	0.00	0.00	0
SH	0.00	0.00	0.00	0.00	0.00	0.00	1
EQ	0.00	2.41	1.90	0.00	2.41	1.90	1
Σ		-		3.32	3.73	4.47	

	Resistencia I						
Tipo	Р	Н	М	P máx	H máx	M máx	Υ
Про	Ton	Ton	Ton*m	Ton	Ton	Ton*m	máx
DC	1.46	0.00	0.00	1.83	0.00	0.00	1.25
DW	0.00	0.00	0.00	0.00	0.00	0.00	1.5
LL	3.71	0.00	0.65	6.49	0.00	1.14	1.75
BR	0.00	0.93	3.31	0.00	1.62	5.80	1.75
EH	0.00	0.57	0.33	0.00	0.85	0.49	1.5
EV	0.00	0.00	0.00	0.00	0.00	0.00	1.35
LS	0.00	0.59	0.52	0.00	1.04	0.91	1.75
TU	0.00	0.00	0.00	0.00	0.00	0.00	0.5
SH	0.00	0.00	0.00	0.00	0.00	0.00	0.5
EQ	0.00	2.41	1.90	0.00	0.00	0.00	0
Σ				8.32	3.51	8.33	

	Resistencia I						
Tipo	Р	Н	М	P mín	H mín	M mín	Υ
про	Ton	Ton	Ton*m	Ton	Ton	Ton*m	mín
DC	1.46	0.00	0.00	1.32	0.00	0.00	0.9
DW	0.00	0.00	0.00	0.00	0.00	0.00	0.65
LL	3.71	0.00	0.65	6.49	0.00	1.14	1.75
BR	0.00	0.93	3.31	0.00	1.62	5.80	1.75
EH	0.00	0.57	0.33	0.00	0.51	0.30	0.9
EV	0.00	0.00	0.00	0.00	0.00	0.00	1
LS	0.00	0.59	0.52	0.00	1.04	0.91	1.75
TU	0.00	0.00	0.00	0.00	0.00	0.00	0.5
SH	0.00	0.00	0.00	0.00	0.00	0.00	0.5
EQ	0.00	2.41	1.90	0.00	0.00	0.00	0
Σ				7.81	3.17	8.14	

DISEÑO DE ARMADURA

Arı	madura a Flexión	
Resistencia a compresión	f'c	280 kg/cm²
Resistencia de fluencia del acero	fy	4200 kg/cm ²
Recubrimiento	r	5 cm
Peralte efectivo	de	30 cm
Factor	ф	0.9
Factor	β	0.85
Momento último	Mu	8.33 Ton*m

Acero de refuerzo de la pantalla				
Diametro de la varilla empleada	ØAs	25	mm	
Peralte efectivo	de	30	cm	
base unitario	b	100	cm	
As acero principal	As	7.51	cm ²	
Momento mínimo 1	Mn mín 1	11.08	Ton*m	
	W	0.0504		
	ρ	ρ 0.0034		
	As min	10.07		
Acero propuesto	#	φ [mm]	Área [cm²/m]	
Primera Capa	5	18	12.72	
		Σ	12.72	
Condición	Asd col > As	Cumple	1 ф 18mm @ 20	

Control d	e ductilidad	
As	cm²	12.72
С	cm	2.64
a	cm	2.25
εt		0.031
Condición ɛt>0.005		CUMPLE

Acero de refuerzo por contracción y temperatura				
Diametro de la varilla empleada	ØAs	16 mm		
Peralte efectivo	de	30	cm cm	
base unitario	b	100	cm cm	
As acero principal	Ast	6.00	cm²	
Acero propuesto	#	φ [mm]	Área [cm²/m]	
Cara Interior			6.00	
	5	12	5.65	
Cara Posterior			6.00	
	5	12	5.65	
			11.31	
Condición	Asd col > As	Cumple	1 φ 12mm @ 20	
Condicion	ASU COL > AS	Cumple	1 ф 12mm @ 20	
Cara exterior - Vertical				
área necesaria	As	4.5 cm ²		
Acero propuesto	#	φ [mm]	Área [cm²/m]	
Cara Interior	5	12	5.65	
Condición	Asd col > As	Cumple	1 φ 12mm @ 20	

Control de fisuramiento

Solicitaciones para el chequeo del agrietamiento				
Tipo	М	M máx		
	Ton*m	Ton*m		
LL	0.65	1.14		
BR	3.31	5.80		
EH	0.33	0.49		
LS	0.52	0.91		
Σ	4.81	8.33		

Control de agrietamiento			
Momento	Pantalla alta		
hz [cm]	35		
r [cm]	5		
de [cm]	30		
βs	1.24		
M [Ton*m]	8.33		
As colocada [cm²]	12.72		
de [cm]	30		
y [cm]	7.56		
I trans [cm^4]	78472		
c (cm)	22.44		
fs [kg/cm²]	2383		
S máx [cm]	21.77		
S var [cm]	20		
Condición	Cumple		

Chequeo de corte en la pantalla					
Factor al corte	Ø	0.9			
Altura de corte efectivo	dv	27.0 cm			
Distancia escogida para el analisis	dv	27.0 cm			
Cortante último max	Vu	3.73 Ton			
Factores	β1	2			
Cortante resistido por hormigón	Vc	23.85 Ton			
Cortante resistido por el acero a corte	Vs	0 Ton			
Cortante resistido por el tablero	Vn	23.85 Ton			
Resistencia Factorada	Vr	21.47 Ton			
Condición	Vr > Vu	Cumple			

Diseño de la pantalla lateral

Carga - Presión de Tierra					
Longitud voladizo pantalla	Lvp	3.5 m			
Peso específico del relleno posterior	yr	1.9 Ton/m³			
Coef. De empuje activ o	Ka	0.196			
Altura prom	h	4.997 m			
Presión máx sin SC	Po	1.863 Ton/m ²			
Empuje de tierras	EH	4.654 Ton			
Posición del empuje	Z EH	1.75 m			
Mn por presión de tierras	M EH	8.144 Ton*m			

Sobrecarga viva				
Altura de sobrecarga	h eq	0.61 m		
Presión Horizontal	P1	0.227 Ton		
Empuje de tierras	ELS	1.136 Ton		
Ubicación de empuje	ZLS	1.750 m		
Mn por LS	M LSh	1.988 Ton*m		

Resistencia I

Tipo	Р	Н	М	P máx	H máx	M máx	Υ
	Ton	Ton	Ton*m	Ton	Ton	Ton*m	máx
EH		0	4.654	8.144	0	6.981 12.217	1.5
LS		0	1.136	1.988	0	1.988 3.480	1.75
Σ					0	8.969 15.696	

10

DISEÑO DE ARMADURA

Armadura a Flexión				
Resistencia a compresión	f'c	280 kg/cm²		
Resistencia de fluencia del acero	fy	4200 kg/cm ²		
Recubrimiento	r	5 cm		
Peralte efectivo	de	30 cm		
Factor	ф	0.9		
Factor	β	0.85		
Momento último	Mu	15.70 Ton*m		

Acero de refuerzo de la pantalla				
Diametro de la varilla empleada	ØAs	2	5 mm	
Peralte efectivo	de	30 cm		
base unitario	b	100 cm		
As acero principal	As	14.4	6 cm²	
Momento mínimo 1	Mn mín 1	20.88 Ton*m		
	W	0.097	7	
	ρ	0.0065		
	As min	19.5	3	
Acero propuesto	#	φ[mm]	Área [cm²/m]	
Primera Capa	10	20	31.42	
		Σ	31.42	
Condición	Asd col > As	Cumple	1 φ 20mm @ 10	

Control de ductilidad				
As	cm²	31.42		
С	cm	6.52		
a	cm	5.54		
εt		0.011		
Condición ɛt>0.005		CUMPLE		

Acero de refuerzo por contracción y temperatura			
Diametro de la varilla empleada	ØAs	1	6 mm
Peralte efectivo	de	3	0 cm
se unitario	b	10	0 cm
As acero principal	Ast	6.0	0 cm²
Acero propuesto	#	φ[mm]	Área [cm²/m]
Cara Interior			6.00
	5	16	10.05
Cara Posterior			6.00
	5	16	10.05
		Σ	20.11
Condición	Asd col > As	Cumple	1 ф 16mm @ 20
Condicion	ASU COL > AS	Cumple	1 ф 16mm @ 20

Control de fisuramiento

Carga		
Tipo	М	M máx
	Ton*m	Ton*m
EH	8.14	12.22
LS	1.99	3.48
Σ	10.13	15.70

Control de agrietamiento		
Momento	Pantalla alta	
hz [cm]	35	
r [cm]	5	
de [cm]	30	
βs	1.24	
M [Ton*m]	15.70	
As colocada [cm²]	20.11	
de [cm]	30	
y [cm]	9.16	
I trans [cm^4]	112941	
c (cm)	20.84	
fs [kg/cm²]	2897	
S máx [cm]	16.14	
S var [cm]	10.0	
Condición	Cumple	

Chequeo de corte en la pantalla					
Factor al corte	Ø	0.9			
Altura de corte efectivo	dv	27.0 cm			
Distancia escogida para el analisis	dv	27.0 cm			
Cortante último max	Vu	8.97 Ton			
Factores	β1	2			
Cortante resistido por hormigón	Vc	23.85 Ton			
Cortante resistido por el acero a corte	Vs	0 Ton			
Cortante resistido por el tablero	Vn	23.85 Ton			
Resistencia Factorada	Vr	21.47 Ton			
Condición	Vr > Vu	Cumple			

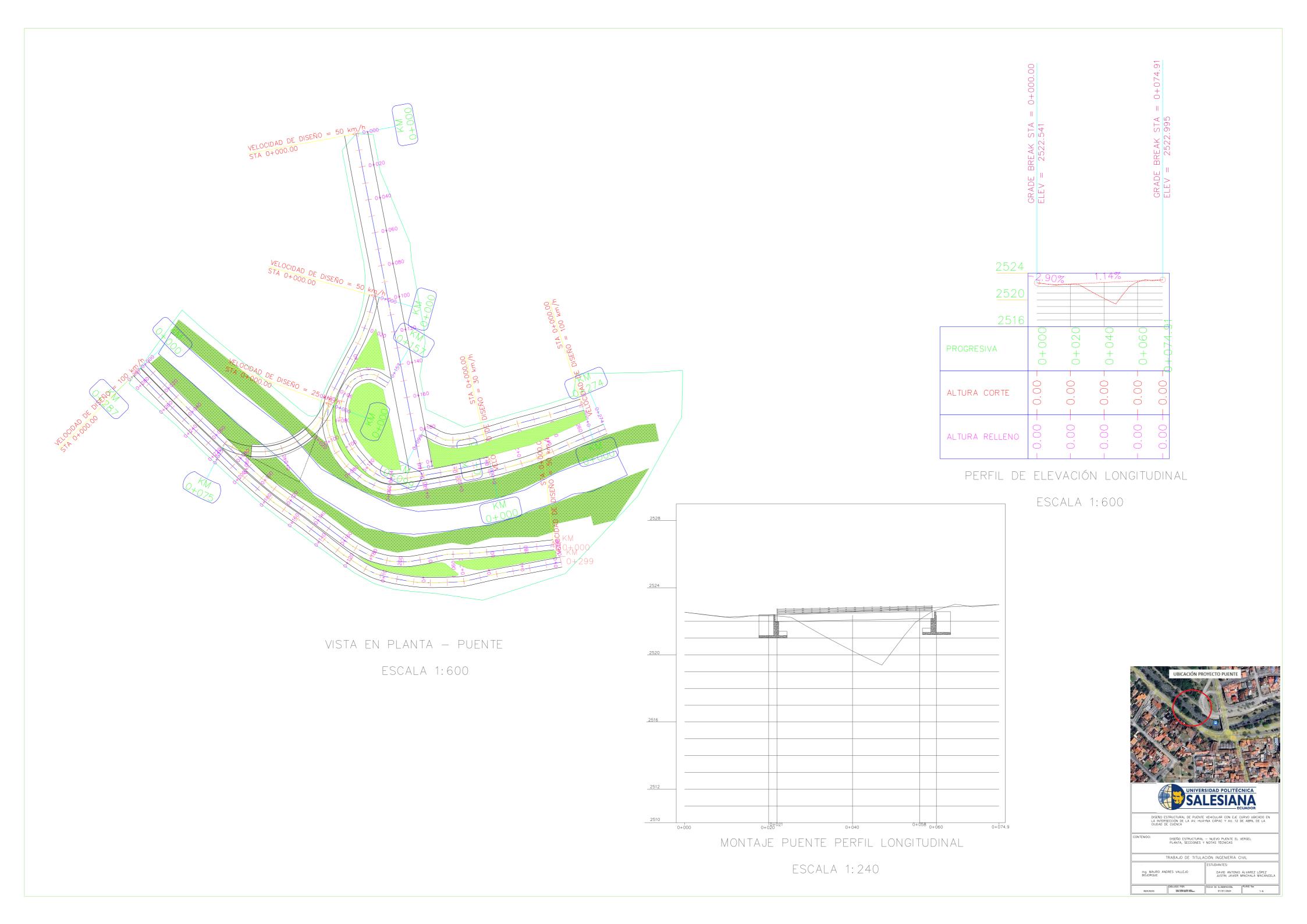
Diseño de traba sismoresistente				
Resistencia a compresión	f'c	280	kg/cm ²	
Resistencia de fluencia del acero	fy	4200	kg/cm ²	
Altura de la traba	h	35	cm	
Ancho de la Traba	b	85	cm	
Longitud de la traba	L	105	cm	
Recubrimiento	r	5	cm	
Altura efectiva	d	100	cm	
Ubicación de la carga en altura	av	30	cm	
Área de concreto	Acv	8500	cm ²	
Se debe diseñar como av/d	Ménsula			

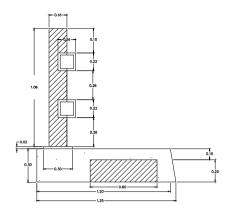
Cárgas y solicitaciones					
Peso propio de la superestructura	P DC	228.94 Ton			
Peso por carpeta asfáltica y servicios públicos	P DW	17.76 Ton			
Reación por carga muerta en el estribo	R DC+DW	246.70 Ton			
Coeficiente de aceleracion	As	0.25			
Fuerza sísmica lateral	EQ	61.67 Ton			
Factor de mayoración por EQ	YEQ	1			
Modificador de carga	ni máx	1			
Fuerza de corte mayorada	Vu	61.67 Ton			
Fuerza de tracción mayorada	Nuc mín	12.33 Ton			
Mn mayorado	Mu	19.12 Ton*m			
Área de hormigón que se considera en la transferencia	Acv	8925 cm²			
Fuerza permanente neta a compresión perpendicular	Pc	0 kg/cm²			
Factor de cohesión	С	0			
Factor de fricción	μ	1			
Fracción de la resistencia del Ho	k1	0.3			
Resistencia limitante a cortante de interfaz	k2	364			
Resistencia a cortante	Vnr	680 Ton			
Resist nominal a la fuerza	Vn	61.7 Ton			
Análisis a corte - fricción					
Área de refuerzo a cortante dentro de Acv	Avf	14.68 cm ²			
Condición	Vnr≥Vn	CUMPLE			
Comprobación					
Comprobación 1	Vn max	749.7 Ton			
Comprobación 2	Vn max	3248.7 Ton			
	Vn max	749.7 Ton			
Vni < Vn max	Comprobaci	óı CUMPLE			

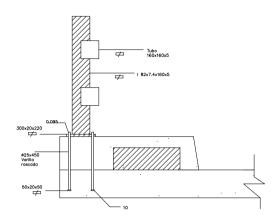
Análisis por fuerza de tracción vertical		
Factor de resistencia a la tracción	ф	0.9
Refuerzo para la tracción	An	3.26 cm ²
Análisis a flexión		
80% de la altura efectiva de la traba sísmica	jd	80 cm
Acero de refuerzo a flexión	Af	6.32 cm ²

Armadura			
Armadura Principal			
Área de refuerzo principal de tracción	As	13.0	5 cm²
Acero propuesto	#	φ [mm]	Área [cm²/m]
Primera Capa	5	22	19.01
		Σ	19.01
Condición	Asd col > As	Cumple	1 φ 22mm @ 20

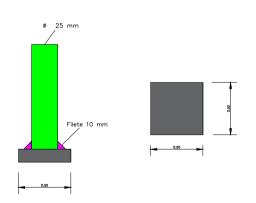
Armadura Secundaria			
Área de refuerzo principal de tracción	Ah	4.89 cm ²	
Acero propuesto	#	φ [mm]	Área [cm²/m]
Primera Capa	5	14	7.70
		Σ	7.70
Condición	Asd col > As	Cumple	1 φ 14mm @ 20

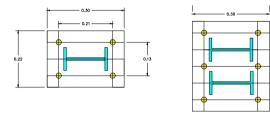

Resistencia Nominal del Suelo

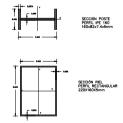

	Datos de cimentación	
Ancho de la zapata	В	6.7 m
Longiitud de la zapata	L	8.5 m
Ángulo de fricción	фr	40.6 °

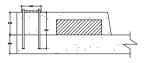

Factor de capacidad portante		
Bearing Capacity Factors	Nc	79.6
Bearing Capacity Factors	Nq	69.05
Bearing Capacity Factors	Ny	119.8
Factor de inclinación de carga		
Dirección proyectada de la carga	θ	90 °
Cohesión del suelo natural asumido	С	2.973 Ton/m ²
	n	1.56
Fuerza Horizontal no Factorizada	Н	315.73 Ton
Fuerza Vertical No Factorizada	V	935.95 Ton
load inclination factors	iq	0.601
load inclination factors	ic	0.595
load inclination factors	iy	0.434
Factor Ncm		
Bearing Capacity Factors	Nc	79.6
Shape factor	Sc	1.68
load inclination factors	ic	0.60
	Ncm	79.77
Factor Ngm		
Bearing Capacity Factors	Nq	69.05
Shape factor	Sq	1.676
Depth correction factor	dq	1.14811257
Profundidad de empotramiento de la zapata	Df	5.742 m
load inclination factors	iq	0.601
	Nqm	79.847
Factor Nym		
Bearing Capacity Factors	Ny	119.8
Shape factor	Sy	0.68
load inclination factors	iy	0.43
	Nym	35.57
	Dw	2.5 m
Coeficiente	Cwq	0.75
Coeficiente	Cwy	0.5
Peso específico húmedo sobre el N.D.C	yq	1.8 Ton/m ³
Peso específico húmedo bajo el N.D.C	yf	1.8 Ton/m ³
. 222 25posmoo namedo bajo et 11.b.10	,,	2.0 1017111

Resistencia Nominal del Suelo	qn	963.39 Ton/m²


Fact de resistencia en estado lim	фb	1
Capacidad resistente factorada del suelo	qR	963.39 Ton/m ²




GEOMETRÍA PROTECCIONES LATERALES
ESCALA 1:50



PLACA BASE PARA POSTE DOBLE Y SIMPLE ESCALA 1:30

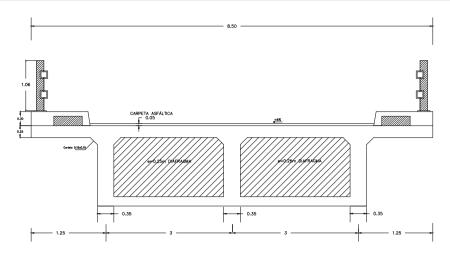
PERFILES DE ACERO PARA PROTECCIONES LATERALES

ESCALA 1:30

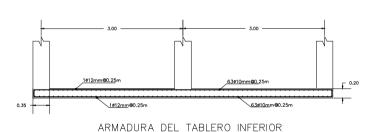
VARILLAS DE ANCLAJE ESCALA 1:50

PROYECTO: DISEÑO ESTRUCTURAL DE PUENTE VEHICULAR CON EJE CURVO UBICADO EN LA INTERSECCIÓN DE LA AV. HUAYNA CAPAC Y AV. 12 DE ABRIL DE LA CUDAD DE CUENCA

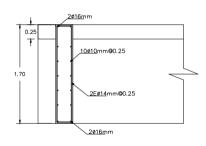
CONTENIDO:


DISEÑO ESTRUCTURAL — NUEVO PUENTE EL VERGEL PLANTA, SECCIONES Y NOTAS TÉCNICAS

TRABAJO DE TITULACIÓN INGENIERÍA CIVIL

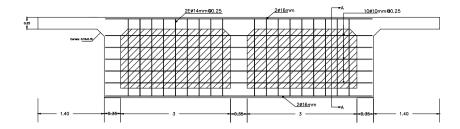

UTOR: ESTUDIANTES:

Ing. MAURO ANDRÉS VALLEJO DAVID ANTONIO ÁLVAREZ LÓPEZ BOJORQUE JUSTIN JAVIER MINCHALA MACANCELA


A: DIBUJADO POR: FECHA DE ELABORACIÓN: PLANO No: 07/07/2024

SECCIÓN TRANSVERSAL ESCALA 1:80

ESCALA 1:80



CORTE A-A DIAFRAGMA

ESCALA 1:65

ESCALA 1:80

REFUERZO VIGAS DIAFRAGMA

ESCALA 1:80

PROYECTO: DISEÑO ESTRUCTURAL DE PUENTE VEHICULAR CON EJE CURVO UBICADO EN LA INTERSECCIÓN DE LA AV. HUAYNA CÁPAC Y AV. 12 DE ABRIL DE LA CIUDAD DE CUENCA

CONTENIDO:

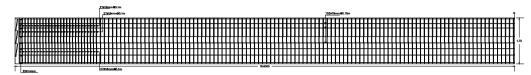
DISEÑO ESTRUCTURAL — NUEVO PUENTE EL VERGEL PLANTA, SECCIONES Y NOTAS TÉCNICAS

TRABAJO DE TITULACIÓN INGENIERÍA CIVIL

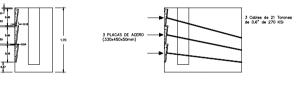
ESTUDIANTES:

DAVID ANTONIO ÁLVAREZ LÓPEZ JUSTIN JAVIER MINCHALA MACANCELA

DIBUJADO POR: FECHA DE ELABORACIÓN: INDICADAS

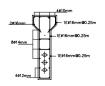

Ing. MAURO ANDRÉS VALLEJO BOJORQUE

DAND ANTONO ALVANEZ LOPEZ JUSTIN JAMER WINDHALA WACANCELA


07/07/2024

DETALLES DE CABLES DE PRESFUERZO VIGA CAJÓN ESCALA 1:140

ARMADO LONGITUDINAL DE CADA NERVIO DE LA VIGA CAJÓN ESCALA 1:140

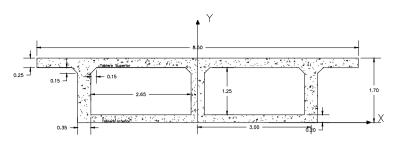


DETALLE UBICACION PLACAS DE ANCLAJE ESCALA 1:100

ARMADO EN EL APOYO (NERVIO VIGA CAJÓN)

ESCALA 1:100

ARMADO EN EL CENTRO (NERVIO VIGA CAJÓN)
ESCALA 1:100


PLACA DE ANCLAJE Y CORTE ESCALA 1:70

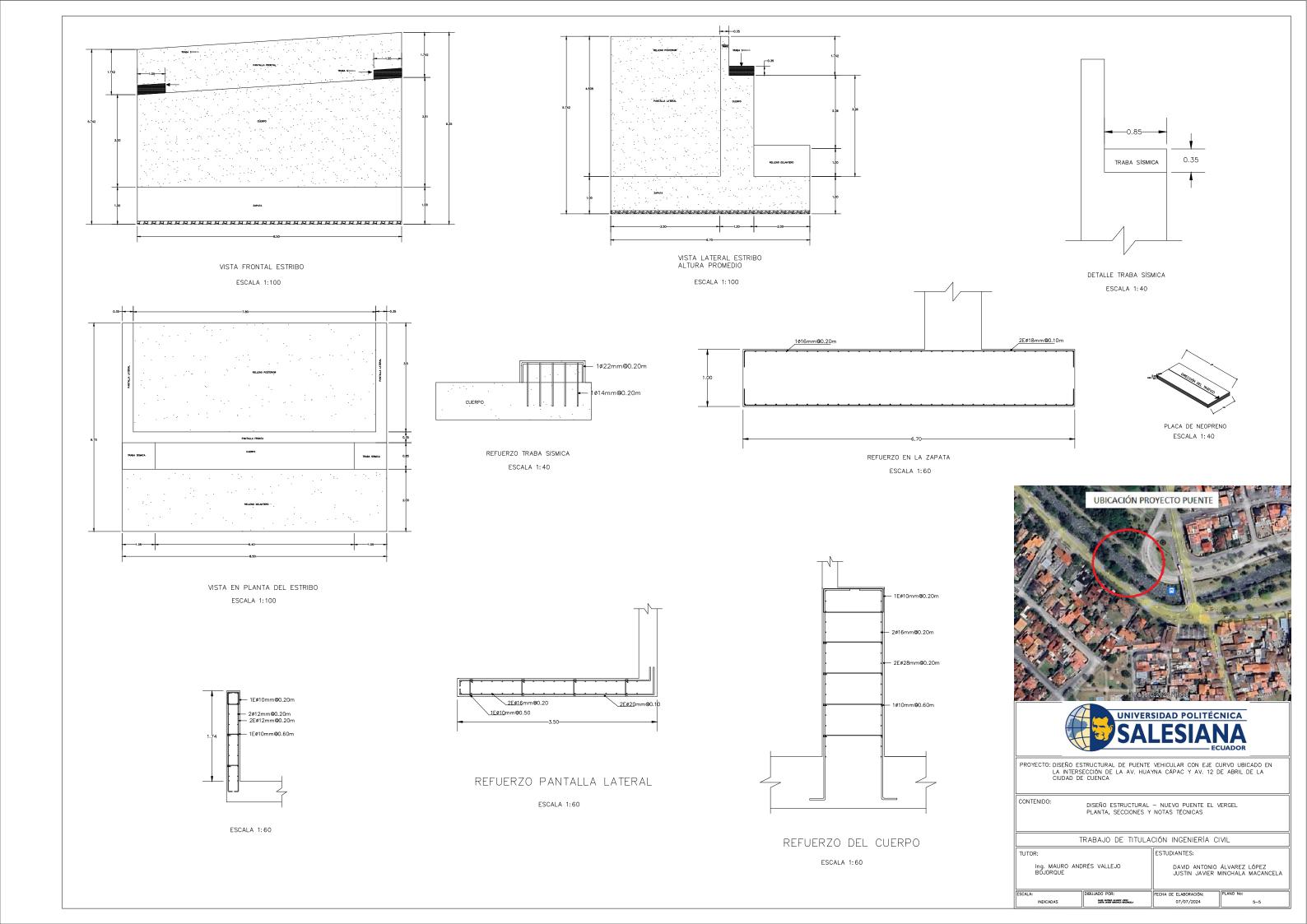
CORTE EN EL CENTRO (NERVIO VIGA CAJÓN)

ESCALA 1:100

CORTE EN EL APOYO (NERVIO VIGA CAJÓN)

ESCALA 1:100

SECCIÓN TRANSVERSAL VIGA CAJÓN
ESCALA 1:100



PROYECTO: DISEÑO ESTRUCTURAL DE PUENTE VEHICULAR CON EJE CURVO UBICADO EN LA INTERSECCIÓN DE LA AV. HUAYNA CAPAC Y AV. 12 DE ABRIL DE LA CIUDAD DE CUENCA

CONTENIDO:

DISEÑO ESTRUCTURAL — NUEVO PUENTE EL VERGEL PLANTA, SECCIONES Y NOTAS TÉCNICAS

TRABAJO DE TITULACIÓN INGENIERÍA CIVIL				
TUTOR:		ESTUDIANTES:		
Ing. MAURO ANDRÉS VALLEJO BOJORQUE		DAVID ANTONIO ÁLVAREZ LÓPEZ JUSTIN JAVIER MINCHALA MACANCELA		
SCALA:	DIBUJADO POR:	FECHA DE ELABORACIÓN:	PLANO No:	
INDICADAS	DAND WILLIAM BROWN'S RUCKETY	07/07/2024	4-5	

