

Maestría en

Ingeniería Mecánica con mención en Diseño De Estructuras Metálicas En Obras Civiles E Industriales

RPC-SO-24-NO.540-2020

OPCIÓN DE TITULACIÓN:

PROYECTO DE TITULACIÓN CON COMPONENTES DE INVESTIGACIÓN APLICADA Y/O DE DESARROLLO

TEMA:

ANÁLISIS DE LOS MÉTODOS DE CÁLCULO ESTRUCTURAL EN LA CUBIERTA DEL TEATRO CARLOS CRESPI CONFORME A LA NORMATIVA ECUATORIANA

AUTOR:

ALEX PAUL GAVILANES ALVAREZ

DIRECTOR:

JONNATHAN DARÍO SANTOS BENÍTEZ

CUENCA – ECUADOR 2024

Autor:

Dirigido por:

30

Alex Paul Gavilanes Alvarez Ingeniero Mecánico. Candidato a Magíster en Ingeniería Mecánica con mención en Diseño De Estructuras Metálicas en Obras Civiles e Industriales por la Universidad Politécnica Salesiana – Sede Cuenca. agavilanesa1@est.ups.edu.ec

Jonnathan Darío Santos Benítez Ingeniero Mecánico. Máster Universitario en Mecánica De Materiales y Estructuras. jsantos@ups.edu.ec

Todos los derechos reservados.

Queda prohibida, salvo excepción prevista en la Ley, cualquier forma de reproducción, distribución, comunicación pública y transformación de esta obra para fines comerciales, sin contar con autorización de los titulares de propiedad intelectual. La infracción de los derechos mencionados puede ser constitutiva de delito contra la propiedad intelectual. Se permite la libre difusión de este texto con fines académicos investigativos por cualquier medio, con la debida notificación a los autores.

DERECHOS RESERVADOS

2024 © Universidad Politécnica Salesiana. CUENCA– ECUADOR – SUDAMÉRICA ALEX PAUL GAVILANES ALVAREZ

Análisis de los métodos de cálculo estructural en la cubierta del teatro Carlos Crespi conforme a la normativa ecuatoriana

Dedicatoria

Esta importante parte de mi vida está dirigida a mi motor, mi familia. Durante este periodo nunca deje de sentir en mi hombro la mano de mi madre, padre, hermano y hermana, pese a la distancia y a las circunstancias que ponga la vida, siempre serán mi motivo para seguir adelante y lo que haga o logre, será para ustedes.

Alex

Agradecimientos

Para mis padres, por inculcarme día tras día el valor del estudio, gracias a ellos aprendí que cada etapa culminada se desea menos el papel y, en realidad, se añora el comprobar paso a paso la fortaleza mental que tenemos y el aprendizaje, que es lo único que nos llevamos.

A mis hermanos, por nunca dudar de mis capacidades, acompañarme y escucharme, son el pilar más fuerte de mi vida, y la competencia sana que nunca quiero que me falte.

A mi familia en general, todos tenían presente la etapa que estoy cursando y siempre me motivaban.

A una persona especial que se mantuvo a mi lado desde mi etapa universitaria hasta la fecha.

Alex

Índice

Dedicatoria					
A	Agradecimientos				
R	esume	en		X	
Abstract					
1	Intr	oducció	n	1	
2	Dete	erminac	ción del Problema	1	
3	Mar	co teór	ico referencial	2	
	3.1	Diseño	estructural	2	
	3.2	Métod	los de diseño	3	
		3.2.1	Diseño por tensiones admisibles (Método ASD) $\ldots \ldots \ldots \ldots \ldots$	3	
		3.2.2	Diseño por Factores de Carga y Resistencia (Método LRFD)	4	
	3.3	Cargas	s y combinaciones de cargas	5	
		3.3.1	Cargas permanentes	5	
		3.3.2	Carga viva	5	
		3.3.3	Cargas ambientales	5	
		3.3.4	Combinación de carga diseño por Resistencia Permisible	6	
		3.3.5	Combinación de carga diseño por última resistencia	7	
	3.4	Estado	os límites aplicables	7	
		3.4.1	Resistencia en tracción	7	
		3.4.2	Resistencia a la compresión	9	
		3.4.3	Resistencia a la flexión	13	
		3.4.4	Resistencia a corte	15	
		3.4.5	Esfuerzos combinados y torsión	16	
	3.5	Resist	encia nominal	17	
	3.6	Resist	encia requerida	17	
		3.6.1	Diseño por análisis elástico	17	
		3.6.2	Diseño por análisis inelástico	18	
	3.7	Diseño	de las juntas	18	
		3.7.1	Código AWSD1.1	19	

		3.7.2 Tipos de juntas \ldots	19		
	3.8	Modelado	19		
		3.8.1 SAP2000	19		
		3.8.2 CYPE 3D	20		
4	Materiales y metodología				
	4.1	Descripción del proyecto	21		
	4.2	Descripción del sistema estructural	22		
	4.3	Recopilación de información	22		
	4.4	Códigos y reglamentos	23		
	4.5	5 Materiales $\ldots \ldots 2$			
		4.5.1 Definición de los Materiales Estructurales	25		
	4.6	Definición de secciones y perfilería	26		
	4.7	Cargas de aplicadas	31		
		4.7.1 Cargas	31		
		4.7.2 Carga Vertical (Gravitacionales)	31		
	4.8	Cargas y combinaciones	32		
	4.9	Modelado y análisis	32		
5	Res	Resultados v discusión			
	5.1	.1 Evaluación el modelo computacional mediante el método de diseño por tensiones			
		admisible y el método de diseño por factores de carga y resistencia			
		5.1.1 Desplazamientos	38		
		5.1.2 Deformación	40		
		5.1.3 Reacciones	41		
		5.1.4 Esfuerzos \ldots	43		
		5.1.5 Resistencia \ldots	55		
		5.1.6 Relación demanda capacidad	56		
		5.1.7 Comparación ASD/LRFD relación demanda capacidad $\ .\ .\ .\ .$	77		
		5.1.8 Resumen	79		
6	Con	clusiones	81		
7	Rec	omendaciones	82		
Re	Referencias bibliográficas 83				

ANEXOS

84

Lista de Tablas

1	Factor de corte diferido	9
2	Factores de ajuste por imperfecciones en ancho efectivo c_1 y c_2	12
3	Propiedades de los materiales	24
4	Propiedades mecánicas del Acero Estructural ASTM A-36	24
5	Compendio cargas muertas	25
6	Compendio cargas vivas	25
7	Compendio cargas ambientales	25
8	Valores de los materiales propuestos	26
9	Valores de carga aplicada para el cálculo	31
10	Cargas y solicitaciones aplicadas	32
11	Desplazamientos de la estructura método ASD	39
12	Desplazamientos de la estructura método LRFD	39
13	Reacciones de la estructura método ASD	42
14	Reacciones de la estructura método LRFD	42
15	Envolvente método ASD	44
16	Envolvente método LRFD	44
17	Flecha máxima método ASD	45
18	Flecha máxima método LRFD	45
19	Resistencia método ASD	55
20	Resistencia método LRFD	56
21	Relación demanda capacidad Cercha 1 A resultado método ASD $\ldots\ldots\ldots\ldots$	57
22	Relación demanda capacidad Cercha 1B resultado método ASD $\ .\ .\ .\ .$	58
23	Relación demanda capacidad Cercha 1C resultado método ASD	59
24	Relación demanda capacidad Cercha 1D resultado método ASD $\ \ldots\ \ldots\ \ldots$	60
25	Relación demanda capacidad Cercha 1E resultado método ASD	61
26	Relación demanda capacidad Cercha 2F resultado método ASD $\ \ldots\ \ldots\ \ldots$	62
27	Relación demanda capacidad Cercha 2G resultado método ASD	63
28	Relación demanda capacidad Correa 1 resultado método ASD	64
29	Relación demanda capacidad Correa 2 resultado método ASD	65
30	Relación demanda capacidad Correa 3 resultado método ASD	66
31	Relación demanda capacidad Cercha 1A resultado método LRFD	67
32	Relación demanda capacidad Cercha 1B resultado método LRFD	68
33	Relación demanda capacidad Cercha 1C resultado método LRFD $\ .\ .\ .\ .$	69

SALESIANA FCUADOR

34	Relación demanda capacidad Cercha 1D resultado método LRFD $\ .\ .\ .\ .$	70
35	Relación demanda capacidad Cercha 1 E resultado método LRFD $\ .$	71
36	Relación demanda capacidad Cercha 2F resultado método LRFD $\ .\ .\ .\ .$	72
37	Relación demanda capacidad Cercha 2G resultado método LRFD $\ .\ .\ .\ .$	73
38	Relación demanda capacidad Correa 1 resultado método LRFD $\ .\ .\ .\ .$	74
39	Relación demanda capacidad Correa 2 resultado método LRFD $\ .\ .\ .\ .$	75
40	Relación demanda capacidad Correa 3 resultado método LRFD $\ .\ .\ .\ .$	76
41	Compendio de resultados estructurales	77
42	Datos resumidos respecto a la relación demanda entre los métodos $\mathrm{ASD}/\mathrm{LRFD}$	78
43	Resumen de valores obtenidos	80

Lista de Figuras

1	Tipos de juntas.	19
2	Vista isométrica cubierta	21
3	Vista superior cubierta	22
4	Sección 2L 40X40X4	27
5	Sección 4L 40X40X4	27
6	Sección C200X100X6 \ldots	28
7	Sección C200X100X10 \ldots	28
8	Sección C200X100X12 \ldots	29
9	Sección L25X25X2 \ldots	29
10	Sección tubo 75X75X2 \ldots	30
11	Designación de material A36	30
12	Definición de patrones de carga	31
13	Vista isometrica con secciones visibles	33
14	Vista superior modelado teatro	34
15	Vista frontal modelado teatro	34
16	Configuración de preferencias para AISC 360-16 ASD en SAP2000	35
17	Configuración de preferencias para AISC 360-16 LRFD en SAP2000 \ldots	36
18	Configuración de preferencias para AISC 360-16 ASD Software Comercial	36
19	Configuración de preferencias para ANSI/AISC 360-22 LRFD software comercial	37
20	Combinación de carga SAP2000 método ASD	37
21	Combinación de carga SAP2000 método LRFD	38
22	Desplazamientos de la estructura método ASD	39
23	Desplazamientos de la estructura método LRFD	40
24	Deformación de la estructura método ASD	41
25	Deformación de la estructura método LRFD	41
26	Diagrama de momentos método ASD	46
27	Diagrama de corte correa 1 resultados metodo ASD $\ldots \ldots \ldots \ldots \ldots \ldots$	47
28	Diagrama de momento correa 1 resultados método ASD	47
29	Diagrama de corte correa 2 resultados metodo ASD $\ldots \ldots \ldots \ldots \ldots \ldots$	47
30	Diagrama de momento correa 2 resultados metodo ASD	48
31	Diagrama de corte correa 3 resultados metodo ASD $\ldots \ldots \ldots \ldots \ldots \ldots$	48
32	Diagrama de momento correa 3 resultados metodo ASD	48
33	Diagrama de corte cercha 1 resultados método ASD	49

34	Diagrama de momento cercha 1 resultados metodo ASD $\ \ldots \ \ldots \ \ldots \ \ldots$	49
35	Diagrama de corte cercha 2 resultados metodo ASD	50
36	Diagrama de momento cercha 2 resultados metodo ASD $\ \ldots \ \ldots \ \ldots \ \ldots$	50
37	Diagrama de momentos método LRFD	51
38	Diagrama de corte correa 1 resultados método LRFD	51
39	Diagrama de momento correa 1 resultados método LRFD	52
40	Diagrama de corte correa 3 resultados método LRFD	52
41	Diagrama de momento correa 3 resultados método LRFD	52
42	Diagrama de corte cercha 1 resultados método LRFD	53
43	Diagrama de momento cercha 1 resultados método LRFD	53
44	Diagrama de corte cercha 2 resultados método LRFD	54
45	Diagrama de momento cercha 2 resultados método LRFD	54

Resumen

El presente documento contiene la información correspondiente al trabajo de graduación "ANÁLISIS DE LOS MÉTODOS DE CÁLCULO ESTRUCTURAL EN LA CUBIERTA DEL TEATRO CARLOS CRESPI CONFORME A LA NORMATIVA ECUATORIANA."

En este documento se estudian los métodos de cálculo estructural, el método de Diseño en Base a Factores de Carqa y Resistencia LRFD por sus siglas en inglés (Load and Resistance Factor Design) y el método de Diseño en base a Resistencias ASD por sus siglas en inglés (Allowable Stress Design), métodos donde se consideran los diseños usando el principio de estado límite, que es la condición en la cual una estructura o uno de sus componentes deja de ser adecuada para cumplir su función en el caso de estado de servicio, o alcanza su capacidad última de carga en el caso de resistencia. En base a los métodos se aplican las respectivas combinaciones de carga especificadas en la Normativa Ecuatoriana de la Construcción para cargas no sísmicas y la norma de la American Society of Civil Engineers SEI 7-10, ahí se encuentran detalladas las combinaciones de cargas básicas para el caso de estudio. Para el análisis se recompiló información sobre la geometría, materiales y cargas de la cubierta del Teatro Carlos Crespí. El sistema estructural para la cubierta metálica consiste de pórticos de acero estructural, los cuales se diseñaran para resistir tanto las cargas verticales por el peso y uso de la estructura, así mismos serán consideradas cargas gravitacionales, si embargo, las cargas laterales debidas al viento y sismos, no serán aplicadas en este caso de estudio. Mediante el uso de software comercial de elementos finitos se modela la estructura, considerando las cargas y solicitaciones, utilizando ambos métodos de cálculo, analizando principalmente los estados límite como: la resistencia a compresión, resistencia a flexión, resistencia a tracción, resistencia a corte, solicitaciones combinadas y torsión, entre otros, estos son los estados límite que sufren los componentes del sistema estructural. Con una comparación final de demanda-capacidad y una tabla resumen entre los dos métodos de cálculo. De manera objetiva se puntualiza el caso de estudio para comparar los dos métodos y determinar cuál es más conservador, seguro o si son simplemente iguales. Esto para que el ingeniero calculista tenga un panorama más amplio para la selección del método adecuado para desarrollar este tipo de estructuras.

Palabras clave: Diseño por factores de Carga y Resistencia, Diseño por resistencia admisible

Х

Abstract

This document contains the information corresponding to "ANALYSIS OF THE STRUC-TURAL CALCULATION METHODS ON THE ROOF OF THE CARLOS CRESPI THEA-TER IN ACCORDANCE WITH ECUADORIAN REGULATIONS"

In this document, structural calculation methods are studied, the method Load and Resistance Factor Design (LRFD) and the Allowable Stress Design (ASD), methods where designs are considered using the principle of limit state, which is the condition in which a structure or one of its components are no longer adequate to fulfill their function in the case of service status, or reaches its ultimate load capacity in the case of resistance. Based on the methods The respective load combinations specified in the Ecuadorian Construction Regulations for non-seismic loads and the American Society of Civil Engineers SEI 7-10, there are detailed combinations of basic loads for the case of study. For the analysis information was compiled about the geometry, materials and loads of the roof of the Carlos Crespí Theater. The structural system for the metal roof consists of structural steel frames, which will be designed to resist both vertical loads due to the weight and use of the structure, gravitational loads will also be considered, however, lateral loads due to wind and seismic loads will not be applied in this case of study. Through the use of commercial finite element software, the structure is modeled, considering the loads and requests, using both calculation methods, analyzing mainly the limit states such as: compressive strength, tensile strength, shear resistance, combined stresses and torsion, among others, these are the limit states suffered by the components of the structural system. With a final demand-capacity comparison and a summary table between the two methods. Objectively, the case study is pointed out to compare the two methods and determine which is more conservative, safer or if they are simply the same. This so that the calculating engineer has a broader overview for selecting the appropriate method to develop this type of structures.

Keywords: Load and Resistance Factor Desig, Allowable Stress Design

1. Introducción

El proyecto tiene un alcance informativo amplio, busca evidenciar la efectividad del proceso de diseño de la cubierta respecto a la integridad de los usuarios mediante recolección de datos y posterior el uso de métodos analíticos que se caracterizan por considerar como un factor muy importante el coeficiente de seguridad, el hecho de comparar estos métodos en entornos reales brinda un espectro de confianza de resultados prometedor. De igual forma, la importancia de regirse a la normativa nacional, brinda conclusiones puntuales sobre la efectividad de procesos de diseño de edificaciones de este tipo en el país.

El presente documento describe los procedimientos y resultados del análisis de la cubierta del Teatro Carlos Crespi utilizando dos métodos de cálculo estructural: el método de diseño por tensiones admisibles (ASD) y el método de diseño por factores de carga y resistencia (LRFD). El objetivo del estudio es comparar los resultados de ambos métodos y determinar su viabilidad para el diseño de la estructura.

2. Determinación del Problema

Enfocado en el diseño de estructuras ajenas a las convencionales, los parámetros para considerar un correcto proceso de diseño y análisis de cubiertas tiene vacíos en el camino de estudiar la efectividad de los mismos, los análisis tienen que adaptarse a estudios de estructuras con características cercanas. El procedimiento de diseño que realizan edificaciones de este tipo considera normativa nacional e internacional, se asimila cargas, dimensiones, configuración de software, entre otros y se asume entre las normativas vigentes, que bien, aunque se encuentran orientadas con un mismo objetivo, llegan a tener ciertas diferencias que alteran y pueden alejar resultados.

La memoria técnica de Cálculo y Diseño Estructural desarrollada, con fecha mayo de 2021, posee demasiadas falencias de detalles en término de los planos estructurales. Por otro lado, el constructor adjudicado para la obra, Arq. José Criollo Abril, Gerente General de la empresa ARQUIMIA. Propuso al Comité Técnico de la UPS varias alternativas constructivas, que permiten utilizar toda la perfilaría propuesta por COANSO. El Comité Técnico integrado por Ing. Jonnathan Santos B., Ing, Antonio Pérez y Arq. Edgar Gordillo, conjunta con el personal de CITUPS, sugirieron la aprobación de los contratos complementarios que ascendieron alrededor del 22% del total del contrato adjudicado a ARQUIMIA con fecha 2 septiembre del 2021. Es importante destacar que el Ing. José David Andrade Sojos en la visita a la obra

en diciembre del 2021. Indico que su diseño estructural fue incorrecto y muy alejado de la realidad del proyecto. Por lo que, verbalmente sugirió todos los posibles cambios propuestos por parte del Constructor (ARQUIMIA), Fiscalizador (CITUPS) y Comité Técnico (UPS). En función a todo lo comentado en los anteriores párrafos, en relación con las facultades que dispone el fiscalizador en obras privadas, CITUPS procede a desarrollar la Memoria Técnica Estructural y los Planos de Construcción en Detalle, del proyecto REHABILITACIÓN DE LA CUBIERTA DEL TEATRO CARLOS CRESPI DE LA SEDE CUENCA, UNIVERSIDAD POLITÉCNICA SALESIANA.

3. Marco teórico referencial

3.1. Diseño estructural

Por diseño se entiende como "El proceso de establecer las propiedades físicas, entre otras, de una estructura con el propósito de alcanzar una deseada resistencia, condición de servicio, durabilidad, constructibilidad y así entre otras cosas" (AISC, 2016). La estructura es la incógnita y los datos son los requisitos estructurales, el tipo de edificio, las alturas, las restricciones a la ubicación de los elementos y al tamaño de las partes estructurales, el contexto, etc (Cárceles, 1990). El resultado es la determinación de distintos elementos de la estructura: materiales, elementos, secciones, armado, conexiones, etc. Para entender la esencia de este concepto es necesario tener presente tres aspectos: la estructuración, el análisis y el dimensionamiento.

En la *estructuración* o diseño de la estructura se definen los materiales con los que se fabricará la estructura, la forma general y la disposición de los elementos. La identificación de los componentes, sus dimensiones y características más importantes es parte fundamental del proceso. La estructura es el objetivo y los requisitos estructurales son los datos, como el tipo de edificio o en este caso para el tipo de cubierta, la ubicación, requisitos dimensionales, distribución de los elementos, etc.

En el *análisis* se utilizan cálculos para resolver funciones que relacionan valores de las variables y permitan encontrar una solución al valor de una variable del problema presentado, en función del valor de los otros parámetros. Se modela la estructura buscando plantear inicialmente el estado del sistema, esto implica la recolección de diversos datos y la suposición de otras características, como propiedades elásticas de los materiales, las propiedades

geométricas de las distintas secciones, etc. Se calculan armaduras, arriostramientos, secciones de los soportes, etc.; con los cálculos se define la geometría de los elementos de la estructura. Se determinan las fuerzas internas como son los momentos flexionantes y de torsión, fuerzas axiales y cortantes. El análisis válida o inválida las decisiones de diseño, cuando no se cuenta con procedimientos de cálculo capaces de definir la estructura (Cárceles, 1990).

Por *dimensionamiento* se plantea la estructura ya detallada, elaborando planos y especificaciones de construcción, de la mano de la normativa aplicable al caso. En el dimensionamiento se requiere de la consideración del tipo de solicitación, si bien puede ser carga axial, flexión, corte, torsión. Depende del comportamiento del elemento frente a tal solicitación, en lo que incide en el material a utilizar, y del nivel de seguridad que es razonable emplear (Hidalgo y Riddell, 1997). En síntesis se tiene presente aspectos como la resistencia, la serviciabilidad y la seguridad.

3.2. Métodos de diseño

Se consideran los diseños usando el principio de *estado límite*, al cual se entiende como la condición en la cual una estructura o uno de sus componentes deja de ser adecuada para cumplir su función en el caso de estado de servicio, o alcanza su capacidad última de carga en el caso de resistencia.

Estado límite de resistencia Se considera estado límite de resistencia a cualquier situación que corresponda al agotamiento de la capacidad de carga de la estructura o de cualquiera de sus componentes, incluyendo la cimentación, o al hecho de que ocurran daños irreversibles que afecten significativamente su resistencia ante nuevas aplicaciones de carga.

Estado límite de servicio : Se considerará como estado límite de servicio la ocurrencia de desplazamientos, agrietamientos, vibraciones o daños que afecten el correcto funcionamiento de la edificación, pero que no perjudiquen su capacidad para soportar cargas.

3.2.1. Diseño por tensiones admisibles (Método ASD)

Para (Crisafulli, 2018): el método ASD se basa en comprobar que los elementos estructurales no excedan una tensión admisible, esto se obtiene por el producto de dividir la resistencia del material, generalmente la tensión de fluencia por un factor de seguridad. Paralelamente, y rigiéndose al país donde se realiza el estudio, la (NEC, 2014) sobre el método ASD, por sus siglas en inglés (Allowable strength Design) lo describe como el "Método para dimensionar los componentes estructurales de manera que la resistencia admisible es igual o mayor que la resistencia requerida del componente bajo las combinaciones de carga.", por lo tanto, según este método se debe estimar las cargas que la estructura tiene que soportar, para luego diseñar los miembros estructurales con base en ciertos esfuerzos permisibles.

Las ecuaciones base de diseño de este método conforme la (AISC, 2016) son:

$$R_a = R_n / \Omega \tag{1}$$

Donde:

- R_a : Resistencia requerida de acuerdo con las combinaciones de cargas ASD.
- R_n : Resistencia nominal.
- Omega : Factor de seguridad.
- R_n/Ω : Resistencia admisible.

3.2.2. Diseño por Factores de Carga y Resistencia (Método LRFD)

Este método se basa en diseñar los elementos de una estructura para que resistan cargas mayores a las de servicio, de manera que se considera la resistencia o la condición de falla. Según la (NEC, 2014, p.7) el método DFCR (Diseño por factores de resistencia y carga) lo describe como "Método para dimensionar los componentes estructurales de manera que la resistencia de diseño es igual o mayor que la resistencia requerida del componente bajo las combinaciones de carga", por lo tanto, el objetivo principal del método LRFD es proporcionar una confiabilidad uniforme para estructuras de acero en diversas condiciones de carga. Las ecuaciones presentadas por la (AISC, 2016) usadas de base de diseño en este método son:

$$R_u \le \phi R_n \tag{2}$$

Donde:

- R_u : Resistencia requerida por combinaciones de cargas ASD.
- R_n : es la resistencia nominal de los materiales.
- ϕ : es el factor de resistencia dado por las especificaciones para cada estado límite.
- ϕR_n : Resistencia de diseño.

Página 4 de 83

3.3. Cargas y combinaciones de cargas

En las combinaciones de carga se aplican distintas situaciones en las cuales una o más cargas tienen un porcentaje alto de ocurrir al mismo tiempo. Entre esta combinación se ubican casos de cargas como permanentes, vivas o ambientales, que serán estudiadas en este apartado. El código aplicable en ecuador obedece a la Normativa Ecuatoriana de Construcción para cargas no sísmicas, donde se especifican en la sección 3.3.4 y la sección 3.3.5 las combinaciones de carga para los dos métodos de cálculo estructural aplicables. De igual forma en el país es aplicada la norma (ASCE/SEI7, 2013), en el capítulo 2 rigen las combinaciones de carga, básicamente la normativa ecuatoriana adopta de este código las combinaciones, ya que son las mismas.

3.3.1. Cargas permanentes

Las cargas permanentes están constituidas por los pesos de todos los elementos estructurales que actúan en permanencia sobre la estructura. Son elementos tales como: muros, paredes, recubrimientos, instalaciones sanitarias, eléctricas, mecánicas, máquinas y todo artefacto integrado permanentemente a la estructura (NEC-SEG, 2015).

3.3.2. Carga viva

La carga viva, también llamada sobrecargas de uso, que se utilizara en el cálculo, depende de la ocupación a la que está destinada la edificación y están conformadas por los pesos de personas, muebles, equipos y accesorios móviles o temporales, mercadería en transición, y otras (NEC-SEG, 2015).

3.3.3. Cargas ambientales

El granizo es una carga variable que puede cubrir todo un techo o solo parte de este. Las cargas que se aplican a una estructura dependen de muchos factores, incluyendo la ubicación geográfica, la inclinación del techo, el resguardo y la forma del techo. Como se indica en la norma NEC-DS, se considerará una acumulación del granizo en corto tiempo. Se debe tomar en cuenta para regiones del país con más de 1500 msnm, las cargas de granizo S, se determinará por la siguiente formulación:

$$S = \rho S \cdot HS \tag{3}$$

donde:

Página 5 de 83

- ρG Peso específico del granizo (en defecto: 1000 Kg/m3)
- HS Altura de acumulación (m)

3.3.4. Combinación de carga diseño por Resistencia Permisible

Las cargas combinadas que se usan en el método ASD, es en función de donde vaya a construirse una estructura y según las características de la misma. Las cargas, cargas nominales y combinaciones de cargas serán aquellas estipuladas por la normativa de edificación aplicable. Sé enfatiza que "En ausencia de una normativa de edificación, las cargas, cargas nominales y combinaciones de cargas, serán las estipuladas en el estándar *Minimum Design Loads and Associated Criteria for Buildings and Other Structures*" (AISC, 2016). Entonces, para el diseño de acuerdo al método ASD, se aplica las condiciones indicadas de la ASCE/SEI7 (2013).

- 1. D
- **2.** D + L
- $3.D + L + (Lr \circ S \circ R)$
- 4. $D + 0.75L + 0.75(Lr \circ S \circ R)$
- **5.** D + (0.6W or 0.7E)
- **6.** $D + 0.75L + 0.75(0.6W) + 0.75(Lr \circ S \circ R)$
- **7.** D + 0.75L + 0.75(0.7E) + 0.75S
- 8. 0.6D + 0.6W
- **9.** 0.6D + 0.7E

Donde:

- **D** : carga muerta de la estructura
- L : carga viva de piso
- **Lr** : carga viva de techo de la estructura
- S : carga de techo de nieve, granizo, ceniza
- **R** : carga de lluvia

Página 6 de 83

- W : cargas de viento
- E : carga sísmica
- T : cargas de restricción sobre la estructura

3.3.5. Combinación de carga diseño por última resistencia

De igual manera, como se indica en la sección 3.2.1 las cargas combinadas serán las estipuladas en el estándar *Minimum Design Loads and Associated Criteria for Buildings and Other Structures*"(AISC, 2016) se aplica las combinaciones propuesta de la norma (ASCE/SEI7, 2013):

- **1.** 1.4D
- **2.** 1.2D + 1.6L +0.5(Lr o S o R)
- **3.** $1.2D + 1.6(Lr \circ S \circ R) + (L \circ 0.5W)$
- 4. $1.2D + 1.0W + L + 0.5(Lr \circ S \circ R)$
- 5. 1.2D + 1.0E + L + 0.2S
- 6. 0.9D + 1.0W
- **7.** 0.9D + 1.0E

3.4. Estados límites aplicables

Se presentan los siguientes factores y las ecuaciones indicadas en la (AISC, 2016) (capítulo D a K), como son: la resistencia nominal, R_n , el factor de seguridad, Ω , el factor de resistencia, ϕ , dependiendo del estado límite requerido.

3.4.1. Resistencia en tracción

La resistencia en tracción debe ser el menor valor obtenido de acuerdo con los estados límites de fluencia en tracción calculada en la sección bruta y ruptura en tracción calculada en la sección neta. $\phi_t P_n =$ Resistencia de diseño en tracción $P_n/\Omega_t =$ Resistencia admisible en tracción

$$P_n = F_y A_g \tag{4}$$

Para fluencia en tracción en la sección bruta:

$$P_n = F_y A_g \tag{5}$$

$$\phi_t = 0,90(\text{LRFD})$$
 $\Omega_t = 1,67(\text{ASD})$

Para ruptura en tracción calculada en la sección neta:

$$P_n = F_u A_e \tag{6}$$

$$\phi_t = 0,75(\text{LRFD}) \quad \Omega_t = 2,00(\text{ASD})$$

Donde:

- $A_e =$ área neta efectiva, $[cm^2]$.
- $A_g =$ área bruta del miembro, $[cm^2]$.
- F_y = tensión de fluencia mínima especificada, [Mpa].
- F_u = tensión última mínima especificada, [Mpa].

Para determinar el área bruta, A_g y el área neta A_n , de los elementos traccionados deber sé dé acuerdo a la sección B4.3 de la (AISC, 2016).

$$A_e = A_n U \tag{7}$$

Donde:

- $A_e =$ Área neta efectiva, $[mm^2]$.
- U = factor de corte diferido determinado en la tabla 1.

TABLE D3.1 Shear Lag Factors for Connections						
to Tension Members						
Case	Descri	ption of Element	Shear Lag Factor, U	Example		
1	All tension members mitted directly to eac by fasteners or weld	where the tension load is trans- h of the cross-sectional elements s (except as in Cases 4, 5 and 6).	<i>U</i> = 1.0	-		
2	All tension members tension load is trans the cross-sectional longitudinal welds i welds. Alternatively, M, S and HP shape permitted to be use	s, except HSS, where the smitted to some but not all of elements by fasteners or by a combination with transverse Case 7 is permitted for W, s. (For angles, Case 8 is d.)	$U=1-\frac{\overline{x}}{l}$			
3	All tension members transmitted only by not all of the cross-s	s where the tension load is transverse welds to some but sectional elements.	U = 1.0 and $A_n = area of the directly connected elements$	-		
4 [3]	Plates, angles, char and W-shapes with the tension load is t welds only. See Car	nnels with welds at heels, tees, connected elements, where ransmitted by longitudinal se 2 for definition of \overline{x} .	$U = \frac{3l^2}{3l^2 + w^2} \left(1 - \frac{\overline{x}}{l}\right)$	W T Plate or connected element		
5	Round HSS with a s gusset plate through	single concentric n slots in the HSS.	$l \ge 1.3D, U = 1.0$ $D \le l < 1.3D, U = 1 - \frac{\overline{x}}{l}$ $\overline{x} = \frac{D}{\pi}$			
6	Rectangular HSS.	with a single concentric gusset plate	$l \ge H, U = 1 - \frac{\overline{x}}{l}$ $\overline{x} = \frac{B^2 + 2BH}{4(B+H)}$			
		with two side gusset plates	$l \ge H, U = 1 - \frac{\overline{x}}{l}$ $\overline{x} = \frac{B^2}{4(B+H)}$			
7	W-, M-, S- or HP- shapes, or tees cut from these shapes. (If U is calculated	with flange connected with three or more fasteners per line in the direction of loading	$b_{f} \ge \frac{2}{3}d, U = 0.90$ $b_{f} < \frac{2}{3}d, U = 0.85$	-		
	per Case 2, the larger value is per- mitted to be used.)	with web connected with four or more fasteners per line in the direction of loading	<i>U</i> = 0.70	-		

Tabla 1: Factor de corte diferido.

Fuente: (AISC, 2016).

En el diseño de miembros en tracción, no existe límite de esbeltez máxima, sin embargo, la razón de L/r, es preferible que no exceda de 300. Sugerencia que no es necesaria aplicar a barras en tracción.

3.4.2. Resistencia a la compresión

La resistencia de compresión nominal, P_n es el menor valor obtenido de acuerdo con los estados límites que aplican pandeo por flexión, pandeo torsional y pandeo flexo-torsional.

 $\phi_c P_n = \mbox{Resistencia}$ de diseño en compresión.

 $P_n/\Omega_c =$ Resistencia admisible en compresión.

 $\phi_c = 0,90(\text{LRFD})$ $\Omega_t = 1,67(\text{ASD})$

Como indica la norma, los miembros diseños en compresión deben cumplir con la razón de esbeltez igual a:

$$\lambda = L_c/r \le 200 \tag{8}$$

Donde:

- λ = Coeficiente de esbeltez.
- $L_c =$ Longitud efectiva del miembro, [mm].
- r = radio de giro, [mm].

Para determinar la longitud efectiva del miembro se realiza la siguiente operación:

$$L_c = KL \tag{9}$$

- K = Factor de longitud efectiva.
- L =Longitud no arriostrada lateralmente del miembro, [mm].

Pandeo por flexión de miembros sin elementos esbeltos La sección E3 de la (AISC, 2016) está destinada para los miembros solicitados en compresión que están compuestos por elementos no esbelto, es decir, es compresión uniforme.

Basándonos en el estado límite de pandeo por flexión se determina la siguiente fórmula:

$$P_n = F_{cr} A_g \tag{10}$$

Donde:

- P_n = Resistencia a la compresión nominal.
- F_{cr} = Tensión de pandeo por flexión.
- $A_g =$ Área bruta de la sección transversal de un miembro, $[mm^2]$.

Para determinar la tensión de pandeo por flexión se debe realizar mediante las dos condiciones:

1. Cuando $\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$ o $\frac{F_y}{F_e} \le 2.25$ entonces:

$$F_{cr} = \left(0.658 \frac{F_y}{F_e}\right) F_y \tag{11}$$

2. Cuando
$$\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$$
 o $\frac{F_y}{F_e} > 2.25$ entonces:

$$F_{cr} = 0.877 F_e \tag{12}$$

$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2} \tag{13}$$

Donde:

- $E = M \acute{o} dulo de elasticidad del acero = 200000 Mpa.$
- F_e = Tensión mínima de fluencia del tipo de acero empleado, $[Kgf/cm^2]$.
- $r = radio de giro, [mm^3].$

Miembros con elementos esbeltos La sección E7 de la (AISC, 2016) está destinada para los miembros solicitados en compresión que están compuestos por elementos esbeltos, con compresión uniforme.

Basándonos en el estado límite de pandeo por flexión se determina la siguiente fórmula:

$$P_n = F_{cr} A_e \tag{14}$$

Página 11 de 83

- P_n = Resistencia a la compresión nominal.
- F_{cr} = Tensión crítica determinada en la ec.11 o ec.12.
- $A_e =$ Suma de las áreas efectivas de la sección transversal, $[mm^2]$.

Miembros con elementos esbeltos, excluidas las secciones tubulares cilíndricas Para determinar el ancho efectivo para elementos esbeltos se debe realizar mediante las dos condiciones:

- 1. Cuando $\lambda \leq \lambda_r \sqrt{\frac{F_y}{F_{cr}}}$ entonces: $b_e = b$ (15)
- 2. Cuando $\lambda > \lambda_r \sqrt{\frac{F_y}{F_{cr}}}$ o entonces:

$$b_e = b \left(1 - c_1 \sqrt{\frac{F_{el}}{F_{cr}}} \right) \sqrt{\frac{F_{el}}{F_{cr}}}$$
(16)

Tabla 2: Factores de ajuste por imperfecciones en ancho efectivo $c_1 y c_2$.

Caso	Elemento esbelto	c_1	<i>C</i> 2
(a)	Elementos atiesado excepto paredes de secciones tubulares,	0.18	1.31
(a)	cuadradas y rectangulares	0.10	
(b)	Paredes de secciones tubulares, cuadradas y rectangulares	0.2	1.38
(c)	Todos los otros elementos	0.22	1.49

Factores de ajuste por imperfecciones en ancho efectivo c_1 y c_2

Fuente: (AISC, 2016).

Donde:

- b = Ancho del elemento, mm.
- $c_1 =$ Factor de ajuste por imperfecciones en ancho efectivo.

$$c_2 = \frac{1 - \sqrt{1 - 4c_1}}{2c_1} \tag{17}$$

Página 12 de 83

- $\lambda = \text{Razón ancho-espesor en elementos.}$
- $\lambda_r = \text{Límites en razón ancho-espesor.}$

$$F_{el} = \left(c_2 \frac{\lambda_r}{\lambda}\right)^2 F_y \tag{18}$$

= Tensión de pandeo local elástico, [MPa].

3.4.3. Resistencia a la flexión

La resistencia de flexión nominal, M_n debe ser determinada de acuerdo con las Secciones F2 a F13 de la AISC (2016).

 $\phi_b M_n = {\rm Resistencia}$ de diseño en flexión $M_n/\Omega_b = {\rm Resistencia}$ admisible en flexión

$$\phi_c = 0,90(\text{LRFD})$$
 $\Omega_t = 1,67(\text{ASD})$

Miembros compactos de sección HDE simetría doble y canales flectadas en torno a su eje mayor La sección F2 de la (AISC, 2016) está destinada para los miembros de sección H con simetría doble y canales flectados en torno a su eje mayor, teniendo almas y alas compactas. Para obtener la resistencia nominal en flexión, M_n , se aplica la ec. sabiendo que debe ser el menor valor de acuerdo con los estados límites de fluencia y pandeo lateral-torsional:

Fluencia

$$M_n = M_p = F_y Z_x \tag{19}$$

Donde:

- F_y = Tensión de fluencia mínima especificada del tipo de acero utilizado, [Mpa].
- $Z_x = M$ ódulo de sección plástico en torno al eje x, [mm].

Pandeo lateral - torsional

- 1. Cuando $L_b \leq L_p$, el estado limite de pandeo lateral torsional no aplica.
- 2. Cuando $L_o < L_b \leq L_r$

$$M_n = C_b \left[M_p - (M_p - 0, 7F_y S_x) \left(\frac{L_b - L_b}{L_r - L_r} \right) \right] \le M_p \tag{20}$$

3. Cuando

$$M_n = F_{cr} S_x \le M_p \tag{21}$$

$$F_{cr} = \frac{C_b \pi^2 E}{\left(\frac{L_b}{r_{ts}}\right)} \sqrt{1 + 0.078 \frac{Jc}{S_x h_0} \left(\frac{L_b}{r_{ts}}\right)^2} \tag{22}$$

Donde:

- $L_b =$ Longitud entre puntos que están o arriostrados contra desplazamientos laterales de ala comprimida o arriostrado contra giro de la sección transversal, [mm].
- F_{cr} = Tensión crítica, [MPa].
- E = Módulo de elasticidad del acero.
- J = Constante torsional.
- $S_x = M$ ódulo de sección elástica en torno al eje x, $[mm^3]$
- h_0 = Distancia entre los centroides de las alas.

$$L_p = 1.76 r_y \sqrt{\frac{E}{F_y}} \tag{23}$$

$$L_r = 1.95r_{ts}\frac{E}{0.7F_y}\sqrt{\frac{Jc}{S_xh_0} + \sqrt{\left(\frac{Jc}{S_xh_0}\right)^2 + 6.76\left(\frac{0.7F_y}{E}\right)^2}}$$
(24)

- L_p = Longitud no arriostrada para el estado limite de fluencia, [mm].
- $L_r =$ Longitud no arriostrada para el estado limite de pandeo lateral torsional inelástico, [mm].
- $r_y =$ Radio de giro sobre el eje y, [mm].

Página 14 de 83

$$R_{ts}^2 = \frac{\sqrt{I_y C_w}}{S_x} \tag{25}$$

Para determinar el coeficiente c se debe realizar respecto a las siguientes consideraciones:

• Para secciones I con simetria doble.

$$c = 1 \tag{26}$$

Para canales

$$c = \frac{h_o}{2} \sqrt{\frac{I_y}{C_w}} \tag{27}$$

3.4.4. Resistencia a corte

La resistencia de nominal de corte, V_n debe ser determinada de acuerdo con las Secciones G2 a G7 de la (AISC, 2016).

 $\phi_v V_n = \text{Resistencia de corte de diseño}$

 $V_n/\Omega_v =$ Resistencia de corte

 $\phi_c = 0,90(\text{LRFD})$ $\Omega_t = 1,67(\text{ASD})$

Tubos de sección rectangular y cajón Para determinar la resistencia nominar V_n , se usa la siguiente ecuación:

$$V_n = 0,6F_y A_w C_{v2} \tag{28}$$

Para secciones tubulares rectangulares y secciones cajón:

- $A_w = 2ht, [mm^2].$
- C_{v2} = Coeficiente de resistencia de corte del alma en pandeo.
- h = Distancia libre entre almas menos el radio de acuerdo a cada lado.
- t = Espesor de diseño de la pared, [mm].

Para determinar el coeficiente de pandeo por corte del alma, C_{v2} se determina mediante:

1. Cuando
$$\frac{h}{t_w} \le 1.10\sqrt{K_v E/F_y}$$

 $C_{v2} = 1.0$ (29)

2. Cuando
$$1.10\sqrt{K_v E/F_y} \le \frac{h}{t_w} \le 1.37\sqrt{K_v E/F_y}$$

$$C_{v2} = \frac{1.10E/F_y}{h/t_w}$$
(30)

3.4.5. Esfuerzos combinados y torsión

Capítulo en el cual se analiza el diseño de miembros solicitados a carga axial y flexión al rededor de uno o dos ejes, con o sin torsión.

Secciones con simetría doble y simple sometidas a flexión y compresión Se deben cumplir una de las dos siguientes ecuaciones para la interacción de flexión y compresión en elementos con simetría doble, simple y que solo estén solicitados a flexión en torno a un eje.

- 1. Cuando $\frac{P_r}{P_c} \ge 0.2$ $\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0$ (31)
- 2. Cuando $\frac{P_r}{P_c} < 0.2$ $\frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0$ (32)

Donde:

- P_r = Resistencia axial requerida, según las combinaciones de la sección 3.3.4 para el método ASD o la sección 3.3.5 para el método LRFD.
- $P_c = \phi_c P_n$ (LRFD)= $P_n \Omega_c$ (ASD) = Resistencia axial disponible según la sección 3.4.2, [KN].
- M_r = Resistencia de flexión requerida, según las combinaciones de la sección 3.3.4 para el método ASD o la sección 3.3.5 para el método LRFD.
- $M_c = \phi_b M_n$ (LRFD)= $M_n \Omega_c$ (ASD)= resistencia de flexión de diseño y resistencia de flexión admisible, según la sección 3.4.3.
- ϕ_c = Factor de resistencia en compresión = 0,9.

- ϕ_b = Factor de resistencia en flexión = 0,90.
- Ω_c = Factor de seguridad em compresión = 1,67.
- Ω_b = Factor de seguridad en flexión = 1,67.

3.5. Resistencia nominal

La resistencia nominal de un miembro es su resistencia teórica calculada, sin la aplicación de factores de seguridad (Ω_s) o de resistencia (ϕ_s). En el método LRFD, se multiplica un factor de resistencia, generalmente menor que 1.0, por la resistencia nominal del miembro. En el método ASD, la resistencia nominal se divide entre un factor de seguridad, generalmente mayor que 1.0, esto con el objetivo de considerar las variaciones de la resistencia del material, las dimensiones del miembro, y la mano de obra, así como la manera y las consecuencias de la falla (McCormac, 2013).

3.6. Resistencia requerida

La resistencia requerida de los miembros estructurales y conexiones será determinada mediante análisis estructural para las combinaciones de carga que corresponda según se indicaron en la sección 3.3.4 y la sección 3.3.5.

Se puede realizar el diseño mediante el análisis elástico o inelástico, estipulados en el Capítulo C anexo 1 del código(AISC, 2016). El diseño de los métodos mencionados se deben realizar para el diseño por factores de carga y de resistencia.

3.6.1. Diseño por análisis elástico

En el diseño por análisis elástico como primer punto se debe cumplir con requisitos de estabilidad general, en la cual se solicita que todos los requisitos tienen que aplicarse, estos incluyen

- 1. Deformaciones por flexión, corte y esfuerzo axial, u otra deformación que provoque desplazamientos en el sistema estructural.
- 2. Effectos $P \Delta$ y $P \delta$
- 3. Imperfecciones geométricas
- 4. Reducciones de rigidez por comportamiento inelástico

Como segundo punto se deben determinar las resistencias requeridas considerando los requisitos generales indicados anteriormente, las imperfecciones iniciales del sistema y para finalizar, se debe usar rigideces reducidas para determinar las resistencias requeridas.

3.6.2. Diseño por análisis inelástico

En el diseño por análisis inelástico enfatiza en que la resistencia del sistema estructural debe ser igual o exceder la resistencia requerida, sabiendo que las disposiciones de este diseño no se aplican al diseño sísmico. El análisis inelástico debe tomar en cuenta:

- 1. Deformaciones por flexión, corte y esfuerzo axial, u otra deformación que provoque desplazamientos en el sistema estructural.
- 2. Effectos $P \Delta$, $P \delta$ y torsiones.
- 3. Imperfecciones geométricas
- 4. Reducciones de rigidez por comportamiento inelástico, incluyendo la fluencia parcial de la sección transversal
- 5. Incertezas en la resistencia y rigidez del sistema.

Como segundo punto se debe cumplir con los requisitos de ductibilidad, esto con el fin de que los miembros y conexiones con elementos sujetos a fluencia deben ser dimensionados para que la deformación inelástica sea menor o igual a la capacidad de deformación inelástica del mismo, para el análisis se deben revisar las propiedades de los materiales y criterio de fluencia, imperfecciones geométricas y como último punto las tensiones residuales y efectos por fluencia parcial, es importante mencionar que no es necesario cumplir con los dos últimos requisitos en el caso de vigas continuas no solicitadas a compresión axial.

3.7. Diseño de las juntas

Las juntas de la estructura se realizan por proceso de soldadura, el código (A3.0, 2010) lo define como un proceso de unión que produce coalescencia de materiales calentándolos a la temperatura de soldadura con o sin la aplicación de presión o por la aplicación de presión solo, y con o sin el uso de metal de aporte.

3.7.1. Código AWSD1.1

En el presente trabajo se aplicará la normativa del código (D1.1, 2010) que cubre los requisitos de soldadura para todo tipo de estructuras soldadas con aceros estructurales al carbono y de baja aleación de uso común, en las cláusulas de este código se presentan un conjunto de normas que regulan la soldadura en estructuras de acero, incluyen 8 normas y 11 anexos informativos.

3.7.2. Tipos de juntas

Existen cinco tipos de juntas básicas indicadas en la Figura 1 las cuales son: a tope (A), esquina (B), en T (C), traslape (D) y borde (E).

Figura 1: *Tipos de juntas.* . Fuente: (A3.0, 2010)[77].

3.8. Modelado

3.8.1. SAP2000

El programa SAP2000 es el que se aplicara para el diseño de la estructura y posterior análisis de simulación, es un software de elementos finitos de propósito general para análisis lineal y no lineal, estático, dinámico de estructuras. Este software de diseño desarrolla sus procesos a través de las especificaciones de la American Association of State Highway and Transportation Officials(AASHTO) y los códigos de diseño ACI y AISC.

3.8.2. CYPE 3D

El programa CYPE 3D calcula cualquier tipo de estructura formada por barras de hormigón, de acero, mixtas de hormigón y acero, de aluminio, de madera, o de cualquier material, incluido el dimensionamiento de uniones (soldadas y atornilladas de perfiles de acero laminado y armado en doble T y perfiles tubulares) y el de su cimentación con placas de anclaje, zapatas, encepados, correas de atado y vigas centradoras.

4. Materiales y metodología

4.1. Descripción del proyecto

El proyecto del análisis de la cubierta del teatro Carlos Crespi de la Universidad Politécnica Salesiana se encuentra ubicado en la ciudad de Cuenca, provincia del Azuay, en la avenida Elia Liut y calle vieja (sector aeropuerto).

De acuerdo con las necesidades de la universidad, se requiere analizar la cubierta, la misma se debe realizar mediante los dos métodos de cálculo estructural para comprobar los valores con los obtenidos anteriormente.

En la figura 2 se presenta la vista isométrica de planta, se observa la distribución de las cerchas y correas, es una cubierta básicamente simétrica.

Figura 2: Vista isométrica cubierta. Fuente: Planos arquitectónicos UPS.

Las dimensiones generales del proyecto se encuentran detalladas en la figura 3. La estructura contendrá 7 pórticos, los mismos fueron fabricados en alma llena, el ensamblado de la estructura se realizó mediante soldadura.

Figura 3: Vista superior cubierta.. Fuente: Planos arquitectónicos UPS.

4.2. Descripción del sistema estructural

El sistema estructural para la cubierta metálica consiste básicamente de pórticos de acero estructural, compuesto esencialmente por vigas y columnas, los cuales se diseñaran para resistir tanto las cargas verticales por el peso y uso de la estructura, así mismo se pueden considerando cargas gravitacionales, laterales debidas al viento y sismos, sin embargo, no serán aplicadas en este caso de estudio.

4.3. Recopilación de información

Para el análisis de la cubierta se agrupó información que sea trascendente para el correcto desarrollo del mismo. Se recopiló información sobre la geometría, materiales y cargas de la cubierta del Teatro Carlos Crespí, es importante tener en cuenta que la cubierta tiene dos

cerchas que no son uniformes en un plano vertical, ya que por cuestiones del espacio en el cual se ha emplazado se tuvo que modificar. Como antecedentes, la estructura no es simétrica y tiene incongruencias en los planos arquitectónicos, puntualmente en las correas. Se revisaron las normas ecuatorianas de construcción (NEC) para determinar los requisitos de diseño para estructuras de acero.

4.4. Códigos y reglamentos

Para el uso de normativa aplicable se revisó la información que se encuentran en los planos entregados por parte de la Universidad Politécnica Salesiana, comprenden la norma ANSI 360-16 como solicita el plano y perfileria ASTM A36, soldaduras de acero AWSD1.1 con electrodo 70-18.

- Normativa Ecuatoriana de Construcción NEC 2015, Estructuras de Acero, NEC-SE-AC
- NEC-SE-CG, Cargas no sísmicas
- NEC-SE-AC, Instituto Ecuatoriano de Normalización (INEN), 2015.
- NEC-SE-AC, Norma Ecuatoriana de la Construccion, estructuras de acero.
- ASTM A36 standard specification for carbon structural steel
- ANSI-AISC 360-10 Specification for Structural Steel Buildings
- ASCE 7-10 Cargas Mínimas De Diseño Para Edificios Y Otras Estructuras
4.5. Materiales

Materiales utilizados							
Mater	ial	Е		G	fy	$\mathbf{a} \cdot \mathbf{t}$	g
Tipo	Designación	$(\mathrm{KPa}/\mathrm{cm}^2)$		$(\mathrm{KPa}/\mathrm{cm}^2)$	$(\mathrm{KPa}/\mathrm{cm}^2)$	$(m/m^{\circ}C)$	(t/m^3)
Acero laminado	A36	2100000.0	0.300	807692.3	2548.4	0.000012	7.850

 Tabla 3: Propiedades de los materiales.

Notación:

E: Módulo de elasticidad

n: Módulo de poisson

G: Módulo de elasticidad transversal

fy: Límite elástico

a \cdot t: Coeficiente de dilatación

g: Peso específico

Fuente: Autor.

El proyecto posee dos tipos de materiales, el primero corresponde a la perfilería y el segundo obedece a los componentes construidos de hormigón estructural.

Tabla 4: Propiedades mecánicas del Acero Estructural ASTM A-36.

Peso específico	$[Kg/m^3]$	7850
Módulo de elasticidad	[GPa]	200
Coeficiente de Poisson	N/A	0,3
Límite de fluencia	[MPa]	250

Denominación	$[Kgf/m^2]$
Cielo raso de yeso y listones de madera	20
Ducto aire acondicionado	15
Instalación eléctrica	10
Plancha ondulada de acero galvanizado	10
TOTAL	55

Tabla 5: Compendio cargas muertas.

Fuente: Autor.

Tabla 6: Compendio cargas vivas.

Denominación	$[Kgf/m^2]$
Cubiertas planas, inclinadas y curas	70
TOTAL 70	70

Fuente: Autor.

 Tabla 7: Compendio cargas ambientales.

Denominación	$[Kgf/m^2]$
Granizo (NEC-SE-CG 3.2.5)	100
TOTAL 70	100

Fuente: Autor.

4.5.1. Definición de los Materiales Estructurales

Los modelos matemáticos poseen elementos de hormigón armado de calidad $f'c = 210kg/cm^2$, con barras de acero de refuerzo $Fy = 4200kg/cm^2$, ASTM A615 Gr 60. Para la evaluación de las cargas gravitacionales de la estructura el peso unitario considerado para el hormigón es de $2.40tn/m^3$. En la evaluación de la rigidez, el módulo de elasticidad considerado para el hormigón es de $Ec = 173896,520kg/cm^2$ y $215381,06kg/cm^2$ para el hormigón $f'c = 210kg/cm^2$ y $f'c = 240kg/cm^2$. Las propiedades de los materiales utilizados en el modelo estructural se indican en la Tabla y a continuación se muestra una imagen obtenida del modelo estructural.

Material	f'c= 240 Kg/cm ²	f'c= 210 Kg/cm ²	$Fy=4200 \ Kg/cm^2$
Masa $[Kgf - s^2/m4]$	244.73	244.73	800
Peso $[Kgf/m^3]$	2400	2400	2400
Módulo de elasticidad $[Kg/cm^2]$	215381,06	173896,520	2038901.92
Coeficiente de Poisson	0.20	0,20	-
Módulo de corte $[Kgf/cm^2]$	89742.11	72456.88	-
Resistencia f' $[Kg/cm^2]$	240	210	-
Tensión de ruptura $[Kg/cm^2]$	-	-	6327
Tensión de fluencia $[Kg/cm^2]$	-	-	4218

Tabla 8: Valores de los materiales propuestos.

Fuente: Autor.

4.6. Definición de secciones y perfilería

Las dimensiones geométricas de los elementos estructurales consideradas en el modelo, en principio, se obtuvieron de la información disponible en los planos arquitectónicos y fueron verificadas cada una de ellas en el diseño estructural, con lo que se obtienen las secciones finales propuestas en los planos de construcción. La formulación de los modelos estructurales se hizo sobre la base de las siguientes hipótesis:

- Las vigas se modelaron como elementos resistentes a flexión uniaxiales.
- Se usó el supuesto de uniones viga-columna infinitamente rígidas.
- El modelo matemático será por cálculo no lineal.

En ese apartado se presentan en el software de diseño SAP2000 las secciones aplicadas, la información se obtuvo de los planos de diseño.

Figura 4: Sección 2L 40X40X4.

Fuente: Autor.

41 40X40X4	SD Section Data
2L 40X40X4	
4L 40X40X4 C200X100X6 C200X100X10 C200X100X10 L25x25x2 Tubo75x75x2	Section Name 4L 40X40X4 Section Notes Modify/Show Notes
	Base Material + A36 ~
	Design Type
	O No Check/Design
O	K General Steel Section Concrete Column
	Concrete Column Check/Design
	Reinforcement to be Checked
	Reinforcement to be Designed
	Define/Edit/Show Section
	Section Designer
	Section Properties Property Modifiers
	Properties Set Modifiers
	Time Dependent Properties Display Color

Figura 5: Sección 4L 40X40X4. Fuente: Autor.

Properties	Click to:			
Find this property:	Impo	Import New Property		
C200X100X6 2L 40X40X4	Ad	Add New Property Add Copy of Property		
4L 40X40X4 C200X100X6 C200X100X10	Add			
C200X100X12 L25x25x2 Tubo75x75x2	Modi	fy/Show Property		
hannel Section				
Section Name	C200X100X6	Display Color		
Section Notes	Modify/Show Notes			
Dimensions		Section		
Outside depth (t3)	0,2	2		
Outside flange width (t2)	0,1			
Flance thickness (tf)	6,000E-03			
Web thickness (tw)	6.000E-03	3 < 1		
Fillet Radius	0,			
		Properties		
Material	Property Modifiers	Section Properties		
+ A36	✓ Set Modifiers	Time Dependent Properties		

Figura 6: Sección C200X100X6.

Fuente: Autor.

roperties	Click to.				
Find this property:	Import No	Import New Property Add New Property			
2L 40X40X4 4L 40X40X4	Add Ne				
C200X100X6 C200X100X10	Add Cop	Add Copy of Property			
C200X100X12 L25x25x2 Tubo75x75x2	Modify/St	Modify/Show Property			
hannel Section					
Section Name	C200X100X10	Display Color			
Section Notes	Modify/Show Notes				
Dimensions		Section			
Outside depth (t3)	0,2	2			
Outside flange width (12) Flange thickness (1f)	6,000E-03				
Web thickness (tw)	0,01	° < +			
Fillet Radius	0,				
		Properties			
faterial	Property Modifiers	Section Properties			
+ A36	✓ Set Modifiers	Time Dependent Properties			

Figura 7: Sección C200X100X10.

Find this property:	Imo	ort New Property		
C200X100X12		Add New Property Add Copy of Property		
2L 40X40X4 4L 40X40X4	A			
C200X100X6 C200X100X10	Add			
C200X100X12 L25x25x2 Tubo75x75x2	Mod	lify/Show Property		
hannel Section				
Section Name	C200X100X12	Display Color		
Section Notes	Modify/Show Notes.			
Dimensions		Section		
Outside depth (t3)	0,2	2		
Outside flange width (t2)	0,106			
Flange thickness (tf)	6,000E-03			
	0.012	3 <		
web thickness (tw)	0,012			
Fillet Radius	0,			
		Properties		
Material	Property Modifiers	Section Properties		
+ A36	✓ Set Modifiers	Time Dependent Properties		

Figura 8: Sección C200X100X12.

operties	CIICK to:				
ind this property:	Import Ne	Import New Property			
25X25X2	Add Net	Add New Property			
L 40X40X4	Add Ho				
200X100X6	Add Copy	of Property			
200X100X12					
25x25x2	Modity/Sh	iow Property			
gle Section					
Section Name	L25x25x2	Display Color			
Section Notes	Modify/Show Notes				
mensions		Section			
Outside vertical leg (t3)	0,025				
Outside besizestal las. (12.)	0.025				
Outside nonzontarieg (12)					
Horizontal leg thickness (tf)	2,000E-03	· · · · · · · · · · · · · · · · · · ·			
Vertical leg thickness (tw)	2,000E-03	3			
57.1 D. F.	0				
Filet Radius	۵,				
		Properties			
aterial	Property Modifiers	Section Properties			
+ A36	Set Modifiers	Time Dependent Properties			
	OK Cancel				

Figura 9: Sección L25X25X2.

Fuente: Autor.

Find this property:	Imp	ort New Property		
Tubo75x75x2		inport non reporty		
2L 40X40X4 4L 40X40X4	Ad	Id New Property		
C200X100X6 C200X100X10	Add	Add Copy of Property		
C200X100X12	Modi	fy/Show Property		
Tubo75x75x2		Dalata Branashi		
x/Tube Section				
Section Name	Tubo75x75x2	Display Color		
Section Notes	Modify/Show Notes			
imensions		Section		
Outside depth (t3)	0,075	b		
Outside width (t2)	0,075			
	2 000E-03			
Flange thickness (tf)	2,0002-00	3		
Web thickness (tw)	2,000E-03			
Corner Radius	0,			
		Properties		
laterial	Property Modifiers	Section Properties		
+ A36	✓ Set Modifiers	Time Dependent Properties		
+ A30	Set Modifiers	rine Dependent Properties		

Figura 10: Sección tubo 75X75X2.

Fuente: Autor.

4000Psi-1	General Data	A26
6061T6	Material Type	Steel
A416Gr270	Material Grade	Grade 36
A992Fy50	Material Notes	Modify/Show Notes
	Weight and Mass	Units
	Weight per Unit Volume 7697	2,86 N, m, C 🗸
	Mass per Unit Volume 7849	,0474
	Isotropic Property Data	
	Modulus Of Elasticity, E	1,999E+11
	Poisson, U	0,3
	Coefficient Of Thermal Expansion, A	1,170E-05
	Shear Modulus, G	7,690E+10
	Other Properties For Steel Materials	
	Minimum Yield Stress, Fy	2,482E+08
	Minimum Tensile Stress, Fu	3,999E+08
	Expected Yield Stress, Fye	3,723E+08
	Expected Tensile Stress, Fue	4.399E+08

Figura 11: Designación de material A36.

4.7. Cargas de aplicadas

4.7.1. Cargas

Para este caso estructural se consideraron las siguientes cargas que serán aplicadas en el software SAP2000 como se indica en la figura 12

- D = Carga Muerta
- D2 = Sobrecarga Muerta
- L = Carga viva
- S = Granizo

4.7.2. Carga Vertical (Gravitacionales)

A continuación, se presenta la tabla con las cargas verticales gravitacionales que soportara la estructura según NEC-SE-CG y NEC-SE-DS:

Nota: la Carga Muerta del peso propio, el programa lo calcula y lo considera automáticamente.

Descripción de Carga	Símbolo	Valor	Unidad	Plantas aplicas
Carga Muerta - Sobrecarga	D2	1,96	KN/m^2	Cubierta
Carga Viva	L	2,00	KN/m^2	Cubierta

 Tabla 9: Valores de carga aplicada para el cálculo.

4.8. Cargas y combinaciones

Las combinaciones de carga se determinaron conforme lo indica la normativa (ASCE/SEI7, 2013), mencionados en la sección 3.3.4 y la sección 3.3.5.

Tipo de Carga	Descripción	Valor (Kgf/m^2)	
	Cielo raso de yeso y listones de madera	20	
Carga Muorta	Ducto aire acondicionado	15	
Carga Muerta	Instalación eléctrica	10	
	Plancha ondulada de acero galvanizado	10	
TOTAL Carga Mu	TOTAL Carga Muerta		
Carga Viva	Carga Viva Cubiertas planas, inclinadas y curas		
TOTAL Carga Vi	70		
Carga Ambiental	Carga Ambiental Granizo (NEC-SE-CG 3.2.5)		
TOTAL Carga An	100		

 Tabla 10: Cargas y solicitaciones aplicadas.

Fuente: Autor.

4.9. Modelado y análisis

Se realizó un modelo de la cubierta en software comercial de elementos finitos, considerando las cargas y solicitaciones en la estructura utilizando ambos métodos de cálculo, analizando principalmente los estados límite como la resistencia a compresión, resistencia a flexión, resistencia a tracción, resistencia a corte, solicitaciones combinadas y torsión, entre otros, estos son estados límite que sufren los componentes del sistema estructural, comparando con la memoria de cálculo entregada como base de estudio del proyecto.

Figura 13: Vista isometrica con secciones visibles.

 ${\bf Figura \ 14:}\ Vista\ superior\ modelado\ teatro.$

Fuente: Autor.

Figura 15: Vista frontal modelado teatro. Fuente: Autor.

5. Resultados y discusión

5.1. Evaluación el modelo computacional mediante el método de diseño por tensiones admisible y el método de diseño por factores de carga y resistencia

Como parte del proceso de evaluación del modelo se configura el sistema estructural en SAP2000 la figura 16 indica la selección del método ASD y la 17 la selección del método LRFD, estos se configuran colocando el factor de seguridad Ω y el factor de resistencia ϕ solicitados en cada caso de estado límite, estos valores se especificaron en la sección 3.4 del documento. En la figura 18 y la figura 19 se configuran las preferencias del acero laminado, para el caso del método ASD el último código cargado en este software comercial data del año 89 y no ha existido actualización de este método de diseño, sin embargo, considera los mismos factores de seguridad para los análisis de cada estado límite a diferencia del método LRFD que utiliza la última actualización cargada en el año 2022. En la figura 20 y la figura 21 se plasman los cuadros de configuración para la carga de las combinaciones aplicables al método de diseño, mismas que son indicadas en la sección 3.3.4 y 3.3.5 conforme a la normativa ecuatoriana.

				Rein Description
	Item	Value	^	
1	Design Code	AISC 360-16	_	
2	Multi-Response Case Design	Step-by-Step - All	_	
3	Framing Type	OMF	_	
4	Seismic Design Category	D	_	
5	Importance Factor	1,	_	
6	Design System Rho	1,		
7	Design System Sds	0,5		
8	Design System R	8,		
9	Design System Omega0	3,		
10	Design System Cd	5,5		
11	Design Provision	ASD		
12	Analysis Method	Effective Length		
13	Second Order Method	General 2nd Order		
14	Stiffness Reduction Method	Tau-b Fixed		
15	Omega(Bending)	1,67		
16	Omega(Compression)	1,67		
17	Omega(Tension-Yielding)	1,67		
18	Omega(Tension-Fracture)	2,		
19	Omega(Shear)	1,67		
20	Omega(Shear-Short Webed Rolled I)	1,5		
21	Omega(Torsion)	1,67		Explanation of Color Coding for Values
22	Ignore Seismic Code?	No		Blue: Default Value
23	Ignore Special Seismic Load?	No	~	
				Black: Not a Default Value
t To	Default Values	Reset To Previous Values		Red: Value that has changed during the
	All Items Selected Items	All Items Selected Ite	ms	Current Bedaloit

Figura 16: Configuración de preferencias para AISC 360-16 ASD en SAP2000. Fuente: Autor.

Página 35 de 83

1 D					
	esign Code	AISC 360-16			
2 M	lulti-Response Case Design	Step-by-Step - All			
3 FI	raming Type	OMF			
4 S	eismic Design Category	D			
5 In	nportance Factor	1,			
6 D	esign System Rho	1,			
7 D	esign System Sds	0,5			
8 D	esign System R	8,			
9 D	esign System Omega0	3,			
10 D	esign System Cd	5,5			
11 D	esign Provision	LRFD			
12 A	nalysis Method	Effective Length			
13 S	econd Order Method	General 2nd Order			
14 S	tiffness Reduction Method	Tau-b Fixed			
15 PI	hi(Bending)	0,9			
16 PI	hi(Compression)	0,9			
17 PI	hi(Tension-Yielding)	0,9			
18 PI	hi(Tension-Fracture)	0,75			
19 PI	hi(Shear)	0,9			
20 PI	hi(Shear-Short Webed Rolled I)	1,			
21 P	hi(Torsion)	0,9		Explanation of Color Coding for Value	S
22 lg	nore Seismic Code?	No		Blue: Default Value	
23 lg	nore Special Seismic Load?	No	\sim		
				Black: Not a Default Value	
et To De	efault Values	Reset To Previous Values		Red: Value that has changed o	luring the
All	Items Selected Items	All Items Selected Items		Current Session	

Figura 17: Configuración de preferencias para AISC 360-16 LRFD en SAP2000.

Fuente: Autor.

Datos generale	S		Eurocódigos 3 y 4 (Italia) Eurocódigos 3 y 4 (Bulgaria)		
Normas:	ACI 318M-19,	AISI S100-2016 (LRF	Eurocódigos 3 y 4 (Polonia) Eurocódigos 3 y 4 (Reino Unido) Eurocódigos 3 y 4 (Malasia)	SE-M y Euro	código 9
Perfiles		fy	Eurocódigos 3 y 4 (Singapur) Eurocódigos 3 y 4 (Eslovenia)		
Acero laminado	A36	~	NTC: 14-01-2008 (Italia) BS 5950-1:2000 (Beino Unido)		f'c=250 ∨
Acero conformado	A36	~	DIN 18800:2008-11 (Aemania)		f'c=250 🗸
Madera	Aserrada, procedente	de coníferas o	ANSI/AISC 360-22 (LITID) (USA)		f'c=250 🗸
Aluminio	EN AW-5	083 - F	ANSI/AISC 360-10 (LRFD) (USA) ANSI/AISC 360-05 (LRFD) (USA)		Grade 60
Hormigón	f'c=250	Relección de no	AISC ASD 89 (USA) CAN/CSA S16-01 (Canadá)		15 mm, 30 mm
		Homigón Acero conformado	NTC-DCEA 2020 (México) NTCRC Estruct.Metal. (México) NBR8800 (Brasil) ABNT NBR 8800:2008 (Brasil) NCh427 (Chile)		Mermas de acero
Acciones Con sismo dinár	nico	Acero laminado Madera	IS 800:2007 (Índia) SANS 10162-1: 2011 (Sudáfrica) CTE DB SE-M (España)	• •	
	Resistencia al fuego	Aluminio	Eurocódigo 9	~	0.196 MPa
Est	ados límite (combinacior	Aceptar	Cano	elar	0.294 MPa
	Hipótesis adicionales	, sopra			
	Fundación				
	Proceso constructivo				
Opciones					
Columna	s F	undación			
Vigas		Uniones			

Figura 18: Configuración de preferencias para AISC 360-16 ASD Software Comercial. Fuente: Autor.

Página 36 de 83

🗿 Datos generale	:5		Eurocódigos 3 y 4 (Italia) Eurocódigos 3 y 4 (Bulgaria)
Normas:	ACI 318M-19,	AISI S100-2016 (LRI	Eurocódigos 3 y 4 (Folonia) IF Eurocódigos 3 y 4 (Reino Unido) Eurocódigos 2 y 4 (Nelosia)
Perfiles		fy	Eurocódigos 3 y 4 (Malasia) Eurocódigos 3 y 4 (Singapur) Eurocódigos 3 y 4 (Celovenia)
Acero laminado	A36	~	NTC: 14-01-2008 (Italia) PC 505 1-2000 (Italia) PC 505 1-2000 (Italia)
Acero conformado	A36	~	DIN 188002 2008-11 (Alemania) Children (Alemania) Children (Alemania)
Madera	Aserrada, procedente	de coníferas o	ANSI/AISC 360-22 (LRFD) (USA) ANSI/AISC 360-16 (LRFD) (USA) ANSI/AISC 360-10 (LRFD) (USA)
Aluminio	EN AW-50	083 - F	ANSI/AISC 360-05 (LRFD) (USA) Grade 60
Homigón	f'c=250	🕅 Selección de n	AISC ASD 89 (USA) 4ISC ASD 89 (USA) 4ISC ASD 89 (USA) 4ISC Market ASD 89 (USA) 4ISC A
		Hormigón Acero conformado	NTC-DCEA 2020 (México) NTCRC Estruct.Metal. (México) NBR8800 (Brasil) ABNT NBR 8800-2008 (Brasil)
Acciones	nico	Acero laminado Madera	NU-1427 (Cnile) IS 800:2007 (India) SANS 10162-1: 2011 (Sudáfrica) ✓ CTE DB SE-M (España) ✓
	Resistencia al fuego	Aluminio	Eurocódigo 9 V 0.196 MPa
Est	ados límite (combinacior	Aceptar	Cancelar 0.294 MPa
	Hipótesis adicionales	reoptar	
	Fundación		
	Proceso constructivo		
Onciones			
Columna	s F	undación	
Vigas		Uniones	
Columna Vigas	s F	Uniones	Aceptar

 $\label{eq:Figura 19: Configuración de preferencias para ANSI/AISC ~360-22 ~LRFD ~software ~comercial.$

Fuente: Autor.

elect Load Combinations		
List of Load Combinations		Design Load Combination
0.9D+1E 1.2D+1.6L+0.5S 1.2D+1L+0.2S 1.2D+1L+0.5S 1.2D+1L+0.5S 1.2D+1L+1.6S 1.4D	Add -> <- Remove Show	0,6D+0,6W 0.6D+0,7E D D+(0,6W or 0,7E) D+0,75L+0,75(0,6W)+0, D+0,75L+0,75(0,7E)+ 0, D+0,75L+0,75S D+L
		< >

Figura 20: Combinación de carga SAP2000 método ASD.

SALESIANA

oud combination type	ouchgur	·
elect Load Combinations		Design Load Combinations
D D+(0,6W or 0,7E) D+0,75L+0,75(0,6W)+0,75S D+0,75L+0,75(0,7E)+0,75S D+0,75L+0,75S D+L D+L+S <	Add -> <- Remove Show	0,6D+0,6W 0.6D+0,7E 0.9D+1E 1.2D+1.6L+0.5S 1.2D+1L+0.2S 1.2D+1L+0.5S 1.2D+1L+1.6S 1.2D+1L+1.6S 1.4D

Figura 21: Combinación de carga SAP2000 método LRFD. Fuente: Autor.

5.1.1. Desplazamientos

Para el análisis de los desplazamientos y giros en los nudos extremos de cada barra de la estructura, los valores indicados son referentes al eje global de la estructura, se toma como punto de análisis el nodo N1 obteniendo los valores máximos y mínimos de la envolvente de combinaciones de hipótesis, tabla 11 y tabla 12. Como una comparación para el análisis y considerando el valor máximo de la envolvente, el margen de error entre los dos métodos de diseño tiene como media un 3%, teniendo mayores desplazamientos en el método LRFD. Referencias:

Dx, Dy, Dz: Desplazamientos de los nudos en ejes globales.

Gx, Gy, Gz: Giros de los nudos en ejes globales.

Tabla 11: Desplazamientos de la estructura método ASD. Participation

Defenencia	Combinación		Desplazamientos en ejes globales					
Referencia	Tino	Doscrinción	Dx	Dy	Dz	Gx	Gy	Gz
	1100	Description	(mm)	(mm)	(mm)	(mRad)	(mRad)	(mRad)
N1	Desplazamientos	Valor mínimo de la envolvente	-0.305	0.339	-0.021	-2.432	0.030	-1.171
		Valor máximo de la envolvente	-0.041	1.225	-0.007	-0.675	0.139	-0.306

Envolvente de los desplazamientos en nudos

Fuente: Autor.

Tabla 12: Desplazamientos de la estructura método LRFD. Participation Paritipation Participation <t

	······································									
Deferencia	Combinación		Desplazamientos en ejes globales							
Referencia	Tine	Description	Dx	Dy	Dz	Gx	Gy	Gz		
	Tibo	Description		(mm)	(mm)	(mRad)	(mRad)	(\mathbf{mRad})		
N1	Desplazamientos	Valor mínimo de la envolvente	-0.314	0.349	-0.022	-2.505	0.031	-1.206		
		Valor máximo de la envolvente	-0.042	1.261	-0.007	-0.695	0.143	-0.315		

Envolvente de los desplazamientos en nudos

Figura 22: Desplazamientos de la estructura método ASD. Fuente: Software comercial.

Figura 23: Desplazamientos de la estructura método LRFD. Fuente: Software comercial.

5.1.2. Deformación

La combinación de carga máxima mediante un análisis no lineal en el método LRFD es de 17,85 mm y en el método ASD es de 15,69 mm, teniendo como una diferencia porcentual de error del 12%. La deformación de la estructura se enfoca en principalmente en la segunda cercha, en el método ASD se identifica una segunda deformación, sin embargo, son valores bajos y la estructura está en buenas condiciones.

Figura 24: Deformación de la estructura método ASD. Fuente: Software comercial.

Figura 25: Deformación de la estructura método LRFD. Fuente: Software comercial.

5.1.3. Reacciones

Como análisis de las fuerzas de reacción que los elementos de apoyo presentan frente al sistema estructural, de igual forma los valores indicados son referentes al eje global de la estructura, las envolventes de combinación de tensión sobre el terreno se indican en la tabla 13 y la tabla 14, para el análisis y considerando el valor máximo de la envolvente, no existe

variación de los resultados, ya que es indiferente las cargas aplicadas al sistema de los métodos de diseño.

Referencias:

Rx, Ry, Rz: Reacciones en nudos con desplazamientos coaccionados (fuerzas).

Mx, My, Mz: Reacciones en nudos con giros coaccionados (momentos).

Envolventes

Tabla 13: Reacciones de la estructura método ASD.

	Combinación			Reacciones en ejes globales					
Referencia	Tino	Deceminatión	Rx	Ry	Rz	Mx	My	Mz	
	1100	Descripcion	(t)	(t)	(t)	$(t \cdot m)$	$(t \cdot m)$	$(t \cdot m)$	
N90	Hormigón en cimentaciones	Valor mínimo de la envolvente	5.410	0.252	2.525	0.000	0.000	0.000	
		Valor máximo de la envolvente	18.313	1.023	8.488	0.000	0.000	0.000	
	Tensiones sobre el terreno	Valor mínimo de la envolvente	6.011	0.280	2.806	0.000	0.000	0.000	
		Valor máximo de la envolvente	17.805	1.010	8.247	0.000	0.000	0.000	

Envolventes de las reacciones en nudos

Fuente: Autor.

Tabla 14: Reacciones de la estructura método LRFD.

Envolventes	de	las	reacciones	\mathbf{en}	nudos

	Combinación	Reacciones en ejes globales							
Referencia	Tino	Descripción	Rx	Ry	Rz	Mx	My	Mz	
	1100	Descripcion	(t)	(t)	(t)	$(t \cdot m)$	$(t \cdot m)$	$(t \cdot m)$	
	Hormigán on simontosionos	Valor mínimo de la envolvente	5.410	0.252	2.525	0.000	0.000	0.000	
NOO	Hormgon en cimentaciones	Valor máximo de la envolvente	18.313	1.023	8.488	0.000	0.000	0.000	
1190	Tonsionos sobre el terrene	Valor mínimo de la envolvente	6.011	0.280	2.806	0.000	0.000	0.000	
	Tensiones sobre el terreno	Valor máximo de la envolvente	17.805	1.010	8.247	0.000	0.000	0.000	

5.1.4. Esfuerzos

En esta sección sé detallan las gráficas de esfuerzos, flecha, deformada y tensión, de los elementos del sistema estructural, mediante las hipótesis empleadas, se analizan las barras y los esfuerzos que están sometidos, en este caso N1/N2, el margen de error el margen de error porcentual entre los dos métodos de diseño es del 11%, pero con valores relativamente bajos,

Página 43 de 83

de igual forma en los esfuerzos cortantes se tiene un promedio del 10%, no existe momento torsor y momento flector la diferencia de resultados es mínima, una vez más el método LRFD tiene valores ligeramente más altos respecto al método ASD.

Referencias:

N: Esfuerzo axil (t)

Vy: Esfuerzo cortante según el eje local Y de la barra. (t)

Vz: Esfuerzo cortante según el eje local Z de la barra. (t)

Mt: Momento torsor $(t \cdot m)$

My: Momento flector en el plano 'XZ' (giro de la sección respecto al eje local 'Y' de la barra). $(t \cdot m)$

Mz: Momento flector en el plano 'XY' (giro de la sección respecto al eje local 'Z' de la barra). $(t \cdot m)$

Envolventes

Método ASD

Posiciones en la barra	N1/N2	Nmáx	Vymín	Vymáx	Vzmín	Vzmáx	Mtmín	Mtmáx	Mymín	Mymáx	Mzmín	Mzmáx
0.042 m	-0.157	-0.054	0.071	0.208	-0.028	-0.009	0	0	0	0.001	0.005	0.015
0.043 m	-0.157	-0.054	0.071	0.208	-0.028	-0.009	0	0	0	0.001	0.005	0.015
0.044 m	-0.157	-0.054	0.07	0.207	-0.028	-0.009	0	0	0	0.001	0.005	0.014
0.210 m	-0.156	-0.053	0.067	0.204	-0.028	-0.009	0	0	0.002	0.006	-0.02	-0.006
0.376 m	-0.155	-0.052	0.064	0.201	-0.028	-0.009	0	0	0.003	0.01	-0.053	-0.017
$0.377~\mathrm{m}$	-0.155	-0.052	0.064	0.201	-0.028	-0.009	0	0	0.003	0.01	-0.053	-0.017
0.378 m	-0.155	-0.052	0.064	0.2	-0.028	-0.009	0	0	0.003	0.01	-0.054	-0.018

Tabla 15: Envolvente método ASD.

Fuente: Autor.

Método LRFD

Tabla 16: Envolvente método LRFD.

Posiciones en la barra	N1/N2	Nmáx	Vymín	Vymáx	Vzmín	Vzmáx	Mtmín	Mtmáx	Mymín	Mymáx	Mzmín	Mzmáx
0.042 m	-0.161	-0.048	0.064	0.214	-0.028	-0.008	0	0	0	0.001	0.005	0.015
0.043 m	-0.161	-0.048	0.064	0.214	-0.028	-0.008	0	0	0	0.001	0.005	0.015
0.044 m	-0.161	-0.048	0.063	0.213	-0.028	-0.008	0	0	0	0.001	0.004	0.015
0.210 m	-0.161	-0.048	0.061	0.21	-0.028	-0.008	0	0	0.002	0.006	-0.02	-0.006
0.376 m	-0.16	-0.047	0.058	0.206	-0.028	-0.008	0	0	0.003	0.01	-0.055	-0.016
0.377 m	-0.16	-0.047	0.058	0.206	-0.028	-0.008	0	0	0.003	0.01	-0.055	-0.016
0.378 m	-0.16	-0.047	0.057	0.205	-0.028	-0.008	0	0	0.003	0.011	-0.055	-0.016

En la siguiente tabla se presentan valores respecto a las flechas que son los límites de flecha absoluta se introducen en las unidades de medida que han sido definidas en el modelo y los límites de flecha relativa son determinamos por la fracción de L/(>1000), en este caso el método LRFD tiene una ligera diferencia superior al método ASD, se debe indicar que la flecha máxima es el máximo valor de la flecha en el plano para todos los desplazamientos y la flecha activa es la diferencia entre la flecha máxima y mínima, se verificó los elementos con los valores de flecha límite indicados en el modelo y estos sí cumplen en los dos métodos.

Referencias:

Pos.: Valor de la coordenada sobre el eje 'X' local del grupo de flecha en el punto donde se produce el valor pésimo de la flecha.

L.: Distancia entre dos puntos de corte consecutivos de la deformada con la recta que une los nudos extremos del grupo de flecha.

Tabla 17: Flech	na máxima	$m\acute{e}todo$	ASD.
-----------------	-----------	------------------	------

	Flechas									
	Flecha	a máxima absoluta xy	Flecha	máxima absoluta xz	Flecha	activa absoluta xy	Flecha activa absoluta xz			
Grupo	Flecha	a máxima relativa xy	Flecha	a máxima relativa xz	áxima relativa xz 🛛 Flecha activa relativa xy		Flecha activa relativa xz			
	Pos.	Flecha	Pos.	Flecha	Pos. Flecha		Pos.	Flecha		
	(m)	(mm)	(m)	(mm)	(m)	(\mathbf{mm})	(m)	(mm)		
N1/N6	1 1 2 2	0.33	1.083	0.21	1.133	0.23	1.083	0.15		
111/110	1.100	L/(>1000)	1.083	L/(>1000)	1.133	L/(>1000)	1.083	L/(>1000)		

Fuente: Autor.

	Flechas										
	Flecha má	xima absoluta xy	Flecha má	xima absoluta xz	Flecha act	iva absoluta xy	Flecha activa absoluta xz				
Grupo	Flecha má	ixima relativa xy	Flecha má	Flecha máxima relativa xz Flecha activa relativa xy		Flecha activa relativa xz					
	Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)			
N1/N6	1.133	0.34	1.083	0.21	1.133	0.24	1.083	0.16			
11/110	1.133	L/(>1000)	1.083	L/(>1000)	1.133	L/(>1000)	1.083	L/(>1000)			

Diagrama de Cortantes y Momentos ASD En la figura 26, se presentan los diagramas de momento del sistema estructural, con los valores determinados en la tabla 15. Desde la figura 27 hasta la figura 45 se presentan las gráficas de corte y momento de las cerchas y correas mediantes los dos métodos estudiados, estas gráficas indican que el sistema estructural es capaz de soportar las cargas a las cual se encuentra sometido, más, sin embargo, al realizar un análisis de pandeo mediante el software comercial se identificó ciertos ángulos que están muy cerca de su capacidad admisible o están superando la relación demanda capacidad como es en la correa 3 mediante el método ASD el ángulo 7730 que falla a la resistencia a la compresión y torsión, esto debido a la falta de simetría que tienen los planos del mismo, cabe recalcar que esto no significa un peligro para el sistema.

Figura 26: Diagrama de momentos método ASD. Fuente: Software comercial.

- 1. Correa 1
 - a) Cortante método ASD

Figura 27: Diagrama de corte correa 1 resultados metodo ASD. Fuente: Autor.

Figura 28: Diagrama de momento correa 1 resultados método ASD. Fuente: Autor.

- $2. \ {\rm Correa} \ 2$
 - a) Cortante método ASD

Figura 29: Diagrama de corte correa 2 resultados metodo ASD. Fuente: Autor.

Página 47 de 83

Figura 30: Diagrama de momento correa 2 resultados metodo ASD. Fuente: Autor.

- 3. Correa 3
 - a) Cortante método ASD

 $\label{eq:Figura 31: Diagrama de corte correa 3 resultados metodo ASD.$

Fuente: Autor.

b) Momento método ASD

Figura 32: Diagrama de momento correa 3 resultados metodo ASD.

- 4. Cercha 1
 - a) Cortante método ASD

DALA

Figura 33: Diagrama de corte cercha 1 resultados método ASD. Fuente: Autor.

MAMALAIA MAA

Figura 34: Diagrama de momento cercha 1 resultados metodo ASD. Fuente: Autor.

- 5. Cercha2
 - a) Cortante método ASD

AAAAA

Figura 35: Diagrama de corte cercha 2 resultados metodo ASD. Fuente: Autor.

Figura 36: Diagrama de momento cercha 2 resultados metodo ASD. Fuente: Autor. **Diagrama de Cortantes y Momentos LRFD** En la figura 37, se presentan los diagramas de momento y corte en las barras N1 y N2, con los valores determinados en la tabla 16.

Figura 37: Diagrama de momentos método LRFD. Fuente: Software comercial.

- 1. Correa 1
 - a) Cortante método LRFD

Figura 38: Diagrama de corte correa 1 resultados método LRFD. Fuente: Autor.

b) Momento método LRFD

Figura 39: Diagrama de momento correa 1 resultados método LRFD. Fuente: Autor.

- 2. Correa 3
 - a) Cortante método LRFD

Figura 40: Diagrama de corte correa 3 resultados método LRFD.

Fuente: Autor.

b) Momento método LRFD

Figura 41: Diagrama de momento correa 3 resultados método LRFD.

- 3. Cercha 1
 - a) Cortante método LRFD

Figura 42: Diagrama de corte cercha 1 resultados método LRFD. Fuente: Autor.

b) Momento método LRFD

Figura 43: Diagrama de momento cercha 1 resultados método LRFD. Fuente: Autor.

- 4. Cercha $\mathbf{2}$
 - a) Cortante método LRFD

Figura 44: Diagrama de corte cercha 2 resultados método LRFD. Fuente: Autor.

b) Momento método LRFD

Figura 45: Diagrama de momento cercha 2 resultados método LRFD. Fuente: Autor.

5.1.5. Resistencia

Referencias:

N: Esfuerzo axil (t)

Vy: Esfuerzo cortante según el eje local Y de la barra. (t) Vz: Esfuerzo cortante según el eje local Z de la barra. (t) Mt: Momento torsor (t \cdot m)

My: Momento flector en el plano 'XZ' (giro de la sección respecto al eje local 'Y' de la barra). $(t \cdot m)$ Mz: Momento flector en el plano 'XY' (giro de la sección respecto al eje local 'Z' de la barra). $(t \cdot m)$

h: Aprovechamiento de la resistencia. La barra cumple con las condiciones de resistencia de la norma si se cumple que h £ 100 %.

Los esfuerzos indicados son los correspondientes a la combinación pésima, es decir, aquella que demanda la máxima resistencia de la sección.

Origen de los esfuerzos pésimos: G: Sólo gravitatorias

GV: Gravitatorias + viento GS: Gravitatorias + sismo

GVS: Gravitatorias + viento + sismo

Método ASD

Tabla 19: Resistencia método ASD.

Bonno	h	Posición (m)				Onigon	Fatado			
Darra	(%)	Fosicion (III)	Ν	Vy	Vz	Mt	My	Mz	Origen	Estado
			(t)	(t)	(t)	$(t \cdot m)$	$(t \cdot m)$	$(t \cdot m)$		
N1/N2	11.18	0.378	-0.155	0.200	-0.028	0.000	0.010	-0.054	G	Cumple
N2/N3	10.79	0.039	-0.682	-0.110	-0.153	0.000	0.079	-0.044	G	Cumple

Comprobación de resistencia

Metodo LRFD

Tabla 20: Resistencia método LRFD.

Defenencia	Com	Reacciones en ejes globales							
Referencia	Tino	Descripción	Rx	Ry	Rz	Mx	My	Mz	
	про	Descripcion	(t)	(t)	(t)	$(t \cdot m)$	$(t \cdot m)$	$(t \cdot m)$	
	Hormigán on simontacionas	Valor mínimo de la envolvente	5.410	0.252	2.525	0.000	0.000	0.000	
NOO	normgon en cimentaciones	Valor máximo de la envolvente	18.313	1.023	8.488	0.000	0.000	0.000	
1190	Tongionos sobre el terreno	Valor mínimo de la envolvente	6.011	0.280	2.806	0.000	0.000	0.000	
	Tensiones sobre er terreno	Valor máximo de la envolvente	17.805	1.010	8.247	0.000	0.000	0.000	

Envolventes de las reacciones en nudos

Fuente: Autor.

5.1.6. Relación demanda capacidad

Para estudiar la relación demanda capacidad se entiende que este valor viene de las solicitaciones que ejercen sobre los elementos del sistema estructural y por la capacidad a la resistencia relacionada con los límites de estado. En el software SAP2000 el valor determinado para dichos elementos indica que tan próximo esta elemento a exceder su capacidad, en este caso, los cálculos manifiestan que si el ratio D/C>1.00 significa que el elemento estará sometido a solicitaciones mayores a la que es capaz de soportar, dando a entender que la sección está mal dimensionada. En el caso del teatro se analizó las cerchas y correas, se seleccionaron mediante un filtro los valores que se considerarían altos, con un análisis pesimista se realizó una media entre los valores más mencionados para saber la exigencia del sistema en el caso de que esté ejerciendo mayores solicitaciones. En este apartado se presenta desde la tabla 21 hasta la tabla 40 el resumen de los elementos y su radio respecto a la relación demanda capacidad, de igual forma se brinda información sobre la localización, el tipo de sección y la combinación de carga aplicada.

Método de diseño por tensiones admisibles

TABLE: Stee	l Design 1 - Su	Immary Data	- AISC 360-16	CERC	CHA 1	
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
348	2L 40X 40X 4	Column	0,4377	PMM	D+L+S	0,7000
350	C200X100X10	Brace	0,8233	PMM	D+L+S	0,9360
351	2L 40X 40X 4	Column	0,0355	PMM	D+L+S	0,0000
352	2L 40X 40X 4	Brace	0,4103	PMM	D+L+S	0,4818
353	4L 40X 40X 4	Column	0,0019	PMM	D+L+S	0,0000
354	C200X100X10	Beam	0,0875	PMM	D+L+S	0,0000
355	2L 40X 40X 4	Column	0,0038	PMM	D	0,6656
356	2L 40X 40X 4	Column	0,0074	PMM	D+L+S	0,6504
357	C200X100X10	Brace	0,7823	PMM	D+L+S	8,5281
358	2L 40X 40X 4	Column	0,0060	PMM	D+L+S	0,6351
359	2L 40X 40X 4	Column	0,0045	PMM	D+L+S	0,6198
360	2L 40X 40X 4	Column	0,0054	PMM	D+L+S	0,6045
372	2L 40X 40X 4	Column	0,0008	PMM	D	0,0000
386	2L 40X 40X 4	Brace	0,0954	PMM	D+L+S	0,3914
387	2L 40X 40X 4	Brace	0,0671	PMM	D+L+S	0,2990
392	2L 40X 40X 4	Brace	0,0962	PMM	D+L+S	0,3528
393	2L 40X 40X 4	Brace	0,0653	PMM	D+L+S	0,2667
394	2L 40X 40X 4	Brace	0,0975	PMM	D+L+S	0,3404
404	C200X100X10	Brace	0,8939	PMM	D+L+S	0,9360
405	2L 40X 40X 4	Column	0,0391	PMM	D+L+S	0,0000
406	2L 40X 40X 4	Brace	0,4376	PMM	D+L+S	0,4818
407	2L 40X 40X 4	Column	0,0039	PMM	D	0,6656
408	2L 40X 40X 4	Column	0,0083	PMM	D+L+S	0,6504
409	C200X100X10	Brace	0,8395	PMM	D+L+S	8,5281
		PROMEDIO	0,4531			

Tabla 21: Relación demanda capacidad Cercha 1A resultado método ASD.

TABLE: Ste	el Design 1 - Su	ummary Data	- AISC 360-16	CERC	CHA 1	
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
482	2L 40X 40X4	Column	0, 8090	PMM	D+L+S	0,7000
483	C 200X 100X6	Brace	0, 2558	PMM	D+L+S	0,8004
484	C 200X 100X10	Brace	0, 8864	PMM	D+L+S	0,9360
485	2L 40X 40X4	Column	0,0316	PMM	D+L+S	0,000
486	2L 40X 40X4	Brace	0, 5301	PMM	D+L+S	0,481
487	4L 40X 40X4	Column	0,0014	PMM	D	0,000
488	C 200X 100X10	Beam	0, 1553	PMM	D+L+S	0,000
489	2L 40X 40X4	Column	0,0064	PMM	D+L+S	0,000
490	2L 40X 40X4	Column	0,0067	PMM	D+L+S	0,650
491	C 200X 100X10	Brace	0,9204	PMM	D+L+S	8,528
492	2L 40X 40X4	Column	0,0079	PMM	D+L+S	0,635
493	2L 40X 40X4	Column	0,0044	PMM	D+L+S	0,619
494	2L 40X 40X4	Column	0,0072	PMM	D+L+S	0,604
495	2L 40X 40X4	Column	0,0045	PMM	D+L+S	0,5893
496	2L 40X 40X4	Column	0,0073	PMM	D+L+S	0,5740
497	2L 40X 40X4	Column	0,0045	PMM	D+L+S	0,558
498	2L 40X 40X4	Column	0,0073	PMM	D+L+S	0,5434
502	2L 40X 40X4	Column	0,0074	PMM	D+L+S	0,482
503	2L 40X 40X4	Column	0,0046	PMM	D+L+S	0,4670
537	2L 40X 40X4	Column	0,8256	PMM	D+L+S	0,700
538	C 200X 100X10	Brace	0,9125	PMM	D+L+S	0,9360
539	2L 40X 40X4	Column	0,0369	PMM	D+L+S	0,000
540	2L 40X 40X4	Brace	0,4874	PMM	D+L+S	0,481
541	2L 40X 40X4	Column	0,0031	PMM	D	0,6656
543	C 200X 100X10	Brace	0,8750	PMM	D+L+S	8,528
		PROMEDIO	0, 1386			

Tabla 22: Relación demanda capacidad Cercha 1B resultado método ASD.

TABLE: Steel Design 1 - Summary Data - AISC 360-16 CERCHA 1						
Frame	De sign Sect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
2314	2L 40X40X4	Column	0,8286	PMM	D+L+S	0,7000
2315	C200X100X10	Brace	0,8618	PMM	D+L+S	0,9360
2316	2L 40X40X4	Column	0,0337	PMM	D+L+S	0,0000
2317	2L 40X40X4	Brace	0,4770	PMM	D+L+S	0,4818
2318	4L 40X40X4	Column	0,0014	PMM	D	0,0000
2319	C200X100X10	Beam	0,1045	PMM	D+L+S	0,0000
2320	2L 40X40X4	Column	0,0032	PMM	D	0,6656
2321	2L 40X40X4	Column	0,0092	PMM	D+L+S	0,6504
2322	C200X100X10	Brace	0,8427	PMM	D+L+S	8,5281
2323	2L 40X40X4	Column	0,0087	PMM	D+L+S	0,6351
2324	2L 40X40X4	Column	0,0055	PMM	D+L+S	0,6198
2325	2L 40X40X4	Column	0,0073	PMM	D+L+S	0,6045
2326	2L 40X40X4	Column	0,0045	PMM	D+L+S	0,5893
2327	2L 40X40X4	Column	0,0059	PMM	D+L+S	0,5740
2328	2L 40X40X4	Column	0,0035	PMM	D+L+S	0,5587
2329	2L 40X40X4	Column	0,0046	PMM	D+L+S	0,5434
2330	2L 40X40X4	Column	0,0024	PMM	D+L+S	0,5282
2331	2L 40X40X4	Column	0,0034	PMM	D+L+S	0,5129
2332	2L 40X40X4	Column	0,0014	PMM	D+L+S	0,4976
2333	2L40X40X4	Column	0,0022	PMM	D+L+S	0,4823
2368	2L40X40X4	Column	0,8293	PMM	D+L+S	0,7000
2369	C200X100X10	Brace	0,9382	PMM	D+L+S	0,9360
2370	2L 40X40X4	Column	0,0378	PMM	D+L+S	0,0000
2371	2L 40X40X4	Brace	0,5035	PMM	D+L+S	0,4818
2372	2L 40X40X4	Column	0,0033	PMM	D	0,6656
		PROMEDIO	0,1385			

The second secon

Tabla 23: Relación demanda capacidad Cercha 1C resultado método ASD.
TABLE: Stee	el Design 1 - Su	immary Data	- AISC 360-16	CERC	HA1	
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
2446	2L 40X 40X4	Column	0,8113	PMM	D+L+S	0,7000
2447	C200X100X6	Brace	0,2606	PMM	D+L+S	0,8004
2448	C200X100X10	Brace	0,9090	PMM	D+L+S	0,9360
2449	2L 40X 40X4	Column	0,0321	PMM	D+L+S	0,0000
2450	2L 40X 40X4	Brace	0,5494	PMM	D+L+S	0,4818
2451	4L 40X 40X4	Column	0,0014	PMM	D	0,0000
2452	C200X100X10	Beam	0,1638	PMM	D+L+S	0,0000
2453	2L 40X 40X4	Column	0,0057	PMM	D+L+S	0,0000
2454	2L 40X 40X4	Column	0,0072	PMM	D+L+S	0,6504
2455	C200X100X10	Brace	0,9453	PMM	D+L+S	8,5281
2456	2L 40X 40X4	Column	0,0086	PMM	D+L+S	0,6351
2457	2L 40X 40X4	Column	0,0047	PMM	D+L+S	0,6198
2458	2L 40X 40X4	Column	0,0078	PMM	D+L+S	0,6045
2459	2L 40X 40X4	Column	0,0047	PMM	D+L+S	0,5893
2460	2L 40X 40X4	Column	0,0077	PMM	D+L+S	0,5740
2461	2L 40X 40X4	Column	0,0046	PMM	D+L+S	0,5587
2462	2L 40X 40X4	Column	0,0076	PMM	D+L+S	0,5434
2463	2L 40X 40X4	Column	0,0046	PMM	D+L+S	0,5282
2464	2L 40X 40X4	Column	0,0075	PMM	D+L+S	0,5129
2465	2L 40X 40X4	Column	0,0045	PMM	D+L+S	0,4976
2466	2L 40X 40X4	Column	0,0075	PMM	D+L+S	0,4823
2467	2L 40X 40X4	Column	0,0045	PMM	D+L+S	0,4670
2468	2L 40X 40X4	Column	0,0075	PMM	D+L+S	0,4518
2469	2L 40X 40X4	Column	0,0046	PMM	D+L+S	0,4365
2470	2L 40X 40X4	Column	0,0076	PMM	D+L+S	0,4212
		PROMEDIO	0,1428			

COMPANY OF A COMPA

 $\textbf{Tabla 24:} Relación \ demanda \ capacidad \ Cercha \ 1D \ resultado \ método \ ASD.$

TABLE: Steel Design 1 - Summary Data			- AISC 360-16	i	CERCHA 1	
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
4980	2L 40X 40X4	Column	0,683017	PMM	D+L+S	0,7000
4981	C200X100X6	Brace	0,2589	PMM	D+L+S	0,8004
4982	C200X100X10	Brace	0,9059	PMM	D+L+S	0,9360
4983	2L 40X 40X4	Column	0,0333	PMM	D+L+S	0,0000
4984	2L 40X 40X4	Brace	0,5320	PMM	D+L+S	0,4818
4985	4L 40X 40X4	Column	0,0014	PMM	D	0,0000
4986	C200X100X10	Beam	0,1581	PMM	D+L+S	0,0000
4987	2L 40X 40X4	Column	0,0033	PMM	D+L+S	0,0000
4988	2L 40X 40X4	Column	0,0070	PMM	D+L+S	0,6504
4989	C200X100X10	Brace	0,9329	PMM	D+L+S	8,5281
4990	2L 40X 40X4	Column	0,0081	PMM	D+L+S	0,6351
4991	2L 40X 40X4	Column	0,0046	PMM	D+L+S	0,6198
4992	2L 40X 40X4	Column	0,0076	PMM	D+L+S	0,6045
4993	2L 40X 40X4	Column	0,0047	PMM	D+L+S	0,5893
4994	2L 40X 40X 4	Column	0,0075	PMM	D+L+S	0,5740
4995	2L 40X 40X 4	Column	0,0046	PMM	D+L+S	0,5587
5036	C200X100X10	Brace	0,9288	PMM	D+L+S	0,9360
5037	2L 40X 40X4	Column	0,0382	PMM	D+L+S	0,0000
5038	2L 40X 40X4	Brace	0,4902	PMM	D+L+S	0,4818
5039	2L 40X 40X 4	Column	0,0040	PMM	D	0,6656
5040	2L 40X 40X4	Column	0,0100	PMM	D+L+S	0,6504
5041	C200X100X10	Brace	0,8860	PMM	D+L+S	8,5281
5042	2L 40X 40X4	Column	0,0088	PMM	D+L+S	0,6351
5043	2L 40X 40X4	Column	0,0064	PMM	D+L+S	0,6198
5044	2L 40X 40X4	Column	0,0077	PMM	D+L+S	0,6045
		PROMEDIO	0,1387			

Tabla 25: Relación demanda capacidad Cercha 1E resultado método ASD.

TABLE: Stee	l Design 1 - Su	ummary Data	- ALSC 360-16	CERC	:HA 2		
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location	
Text	Text	Text	Unitless	Text	Text	m	
6083	2L 40X 40X 4	Column	0,8396	PMM	D+L+S	0,7000	
6084	C200X100X12	Brace	0,8448	PMM	D+L+S	0,9360	
6085	2L 40X 40X 4	Column	0,0332	PMM	D+L+S	0,0000	
6086	2L 40X 40X 4	Brace	0,4776	PMM	D+L+S	0,4818	
6087	4L 40X 40X 4	Column	0,0013	PMM	D	0,0000	
6088	C200X100X12	Beam	0,0987	PMM	D+L+S	0,6000	
6089	2L 40X 40X 4	Column	0,0033	PMM	D	0,6656	
6090	2L 40X 40X 4	Column	0,0102	PMM	D+L+S	0,6504	
6091	C200X100X12	Brace	0,8365	PMM	D+L+S	8,5281	
6092	2L 40X 40X 4	Column	0,0089	PMM	D+L+S	0,6351	
6093	2L 40X 40X 4	Column	0,0064	PMM	D+L+S	0,6198	
6094	2L 40X 40X 4	Column	0,0076	PMM	D+L+S	0,6045	
6095	2L 40X 40X 4	Column	0,0055	PMM	D+L+S	0,5893	
6096	2L 40X 40X 4	Column	0,0064	PMM	D+L+S	0,5740	
6101	2L 40X 40X 4	Column	0,0022	PMM	D+L+S	0,4976	
6102	2L 40X 40X 4	Column	0,0029	PMM	D+L+S	0,4823	
6103	2L 40X 40X4	Column	0,0010	PMM	D+L+S	0,4670	
6136	2L 40X 40X 4	Brace	0,0721	PMM	D+L+S	0,3606	
6137	2L 40X 40X 4	Column	0,8401	PMM	D+L+S	0,7000	
6138	C 200X 100X 12	Brace	0,9119	PMM	D+L+S	0,9360	
6140	2L 40X 40X 4	Brace	0,5011	PMM	D+L+S	0,4818	
6141	2L 40X 40X 4	Column	0,0034	PMM	D	0,6656	
6142	2L 40X 40X 4	Column	0,0111	PMM	D+L+S	0,6504	
6143	C200X100X12	Brace	0,8885	PMM	D+L+S	8,5281	
6144	2L 40X 40X 4	Column	0,0091	PMM	D+L+S	0,6351	
		PROMEDIO	0.1421				

Tabla 26: Relación demanda capacidad Cercha 2F resultado método ASD.Fuente: Autor.

TABLE: Steel	Design 1 - Su	sign 1 - Summary Data - AISC 360-16 CERCHA 2				
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
126	C200X100X12	Brace	0,8269	PMM	D+L+S	0,9360
128	2L 40X40X4	Column	0,0347	PMM	D+L+S	0,0000
130	2L 40X40X4	Brace	0,4388	PMM	D+L+S	0,4818
152	4L 40X40X4	Column	0,0012	PMM	D	0,0000
153	C200X100X12	Beam	0,0918	PMM	D+L+S	0,6000
157	2L 40X40X4	Column	0,0036	PMM	D	0,6656
160	2L 40X40X4	Column	0,0094	PMM	D+L+S	0,6504
186	C200X100X12	Brace	0,8011	PMM	D+L+S	8,5281
209	2L 40X40X4	Column	0,0075	PMM	D+L+S	0,6351
212	2L 40X40X4	Column	0,0060	PMM	D+L+S	0,6198
215	2L 40X40X4	Column	0,0067	PMM	D+L+S	0,6045
218	2L 40X40X4	Column	0,0053	PMM	D+L+S	0,5893
221	2L 40X40X4	Column	0,0058	PMM	D+L+S	0,5740
224	2L 40X40X4	Column	0,0045	PMM	D+L+S	0,5587
227	2L 40X40X4	Column	0,0050	PMM	D+L+S	0,5434
230	2L 40X40X4	Column	0,0036	PMM	D+L+S	0,5282
233	2L 40X40X4	Column	0,0041	PMM	D+L+S	0,5129
1113	C200X100X12	Brace	0,8851	PMM	D+L+S	0,9360
1114	2L 40X40X4	Column	0,0376	PMM	D+L+S	0,0000
1115	2L 40X40X4	Brace	0,4649	PMM	D+L+S	0,4818
1120	2L 40X40X4	Column	0,0039	PMM	D	0,6656
1121	2L 40X40X4	Column	0,0101	PMM	D+L+S	0,6504
1146	C200X100X12	Brace	0,8487	PMM	D+L+S	8,5281
1168	2L 40X40X4	Column	0,0079	PMM	D+L+S	0,6351
1169	2L 40X40X4	Column	0,0066	PMM	D+L+S	0,6198
1170	2L 40X40X4	Column	0,0072	PMM	D+L+S	0,6045
		PROMEDIO	0,1242			

Tabla 27: Relación demanda capacidad Cercha 2G resultado método ASD.

TABLE: Stee	TABLE: Steel Design 1 - Summary Data - AISC 360-16				CORREA 1	
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
1848	Tubo75x75x2	Beam	0,0185	PMM	D+L+S	0,4125
1849	Tubo75x75x2	Beam	0,0202	PMM	D+L+S	0,4125
1850	Tubo75x75x2	Beam	0,0158	PMM	D+L+S	0,0000
1851	Tubo75x75x2	Beam	0,0140	PMM	D+L+S	0,0000
1852	Tubo75x75x2	Beam	0,0160	PMM	D+L+S	0,0000
1853	Tubo75x75x2	Beam	0,0143	PMM	D+L+S	0,0000
1854	Tubo75x75x2	Beam	0,0155	PMM	D+L+S	0,0000
1855	Tubo75x75x2	Beam	0,0138	PMM	D+L+S	0,0000
1856	Tubo75x75x2	Beam	0,0180	PMM	D+L+S	0,0000
1857	Tubo75x75x2	Beam	0,0163	PMM	D+L+S	0,0000
1858	Tubo75x75x2	Beam	0,0793	PMM	D+L+S	0,0000
1859	Tubo75x75x2	Beam	0,0776	PMM	D+L+S	0,0000
1860	Tubo75x75x2	Beam	0,1766	PMM	D+L+S	0,0000
1861	Tubo75x75x2	Beam	0,0299	PMM	D+L+S	0,0000
1862	Tubo75x75x2	Beam	0,0281	PMM	D+L+S	0,0000
1863	Tubo75x75x2	Beam	0,0179	PMM	D+L+S	0,0000
1864	Tubo75x75x2	Beam	0,0162	PMM	D+L+S	0,0000
1865	Tubo75x75x2	Beam	0,0136	PMM	D+L+S	0,0000
1866	Tubo75x75x2	Beam	0,0119	PMM	D+L+S	0,0000
1867	Tubo75x75x2	Beam	0,0120	PMM	D+L+S	0,0000
1868	Tubo75x75x2	Beam	0,0103	PMM	D+L+S	0,0000
1881	L25x25x2	Brace	0,9138	PMM	D+L+S	0,0000
2018	L25x25x2	Brace	0,3096	PMM	D+L+S	0,0000
2019	L25x25x2	Brace	0,1280	PMM	D+L+S	0,8125
		PROMEDIO	0,1117			

Tabla 28: Relación demanda capacidad Correa 1 resultado método ASD.

TABLE: Stee	l Design 1 - Su	ummary Data	- AISC 360-16	i i	CORREA 2	
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
7695	Tu bo75x75x2	Beam	0,0962	PMM	D+L+S	0,3000
7696	Tu bo75x75x2	Beam	0,0971	PMM	D+L+S	0,3000
7697	Tu bo75x75x2	Beam	0,0078	PMM	D+L+S	0,3000
7698	Tubo75x75x2	Beam	0,0087	PMM	D+L+S	0,3000
7699	Tubo75x75x2	Beam	0,0125	PMM	D+L+S	0,0000
7700	Tubo75x75x2	Beam	0,0116	PMM	D+L+S	0,0000
7701	Tubo75x75x2	Beam	0,0113	PMM	D+L+S	0,0000
7702	Tubo75x75x2	Beam	0,0104	PMM	D+L+S	0,0000
7703	Tubo75x75x2	Beam	0,0187	PMM	D+L+S	0,0000
7704	Tubo75x75x2	Beam	0,0178	PMM	D+L+S	0,0000
7705	Tubo75x75x2	Beam	0,1210	PMM	D+L+S	0,0000
7706	Tubo75x75x2	Beam	0,1201	PMM	D+L+S	0,0000
7717	Tu bo75x 75x 2	Beam	0,0379	PMM	D+L+S	0,3000
7718	Tu bo75x75x2	Beam	0,3756	PMM	D+L+S	0,3000
7719	L25x 25x 2	Brace	0,9555	PMM	D+L+S	0,7616
7720	L25x 25x 2	Brace	0,4465	PMM	D+L+S	0,0000
7721	L25x 25x 2	Brace	0,1885	PMM	D+L+S	0,7616
7722	L25x 25x 2	Brace	0,1778	PMM	D+L+S	0,0000
7723	L25x 25x 2	Brace	0,1198	PMM	D+L+S	0,7616
7724	L25x 25x 2	Brace	0,1361	PMM	D+L+S	0,0000
7725	L25x 25x 2	Brace	0,1171	PMM	D+L+S	0,7616
7726	L25x25x2	Brace	0,1378	PMM	D+L+S	0,0000
7727	L25x25x2	Brace	0,1434	PMM	D+L+S	0,7616
7728	L25x25x2	Brace	0,2360	PMM	D+L+S	0,0000
7729	L25x 25x 2	Brace	0,4562	PMM	D+L+S	0,7616
7730	L25x 25x 2	Brace	1,1499	PMM	D+L+S	0,0000
		PROMEDIO	0,1585			

Tabla 29: Relación demanda capacidad Correa 2 resultado método ASD.

TABLE: Stee	l Design 1 - Su	ım mary Data	- AISC 360-16	5	CORREA 3	
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
6721	Tubo75x75x2	Beam	0,0369	PMM	D+L+S	0,5500
6722	Tubo75x75x2	Beam	0,0399	PMM	D+L+S	0,5500
6723	Tubo75x75x2	Beam	0,0068	PMM	D	0,0000
6724	Tubo75x75x2	Beam	0,0077	PMM	D+L+S	0,5500
6725	Tubo75x75x2	Beam	0,0054	PMM	D+L+S	0,5500
6726	Tubo75x75x2	Beam	0,0084	PMM	D+L+S	0,5500
6727	Tubo75x75x2	Beam	0,0071	PMM	D+L+S	0,5500
6728	Tubo75x75x2	Beam	0,0102	PMM	D+L+S	0,5500
6729	Tubo75x75x2	Beam	0,0094	PMM	D+L+S	0,5500
6730	Tubo75x75x2	Beam	0,0125	PMM	D+L+S	0,5500
6731	Tubo75x75x2	Beam	0,0156	PMM	D+L+S	0,0000
6732	Tubo75x75x2	Beam	0,0125	PMM	D+L+S	0,0000
6733	Tubo75x75x2	Beam	0,2174	PMM	D+L+S	0,0000
6734	Tubo75x75x2	Beam	0,0126	PMM	D+L+S	0,0000
6735	Tubo75x75x2	Beam	0,0096	PMM	D+L+S	0,0000
6744	Tubo75x75x2	Beam	0,1675	PMM	D+L+S	0,5500
6745	L25x25x2	Brace	0,6749	PMM	D+L+S	0,8902
6746	L25x25x2	Brace	0,2240	PMM	D+L+S	0,0000
6747	L25x25x2	Brace	0,1020	PMM	D+L+S	0,8902
6748	L25x25x2	Brace	0,0886	PMM	D+L+S	0,0000
6749	L25x25x2	Brace	0,0978	PMM	D+L+S	0,8902
6750	L25x25x2	Brace	0,0837	PMM	D+L+S	0,0000
6751	L25x25x2	Brace	0,1209	PMM	D+L+S	0,8902
6755	L25x25x2	Brace	0,2746	PMM	D+L+S	0,8902
6756	L25x25x2	Brace	0,4324	PMM	D+L+S	0,0000
		PROMEDIO	0,0866			

 Tabla 30: Relación demanda capacidad Correa 3 resultado método ASD.

Método de diseño por factores de carga y resistencia:

TABLE: Stee	el Design 1-Su	Immary Data	AISC 360-16		CERC	HA 1
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
348	2L 40X40X4	Column	0, 3764	PMM	1.2D+1L+1.65	0,7000
350	C200X100X10	Brace	0, 7092	PMM	1.2D+1L+1.65	0, 9360
351	2L 40X40X4	Column	0,0309	PMM	1.2D+1L+1.65	0,0000
352	2L 40X40X4	Brace	0, 3475	PMM	1.2D+1L+1.65	0, 4818
353	4L 40X40X4	Column	0,0015	PMM	1.2D+1L+1.65	0,0000
354	C200X100X10	Beam	0,0794	PMM	1.2D+1L+1.65	0,0000
355	2L 40X40X4	Column	0,0035	PMM	1.4D	0,6656
356	2L 40X40X4	Column	0,0062	PMM	1.2D+1L+1.65	0,6504
357	C200X100X10	Brace	0,6693	PMM	1.2D+1L+1.65	8, 5281
358	2L 40X40X4	Column	0,0049	PMM	1.2D+1L+1.65	0, 6351
359	2L 40X40X4	Column	0,0037	PMM	1.2D+1L+1.65	0,6198
360	2L 40X40X4	Column	0,0044	PMM	1.2D+1L+1.65	0, 6049
361	2L 40X40X4	Column	0,0033	PMM	1.2D+1L+1.65	0, 5893
364	2L 40X40X4	Column	0,0033	PMM	1.2D+1L+1.69	0, 5434
365	2L 40X40X4	Column	0,0022	PMM	1.2D+1L+1.69	0, 5282
366	2L 40X40X4	Column	0,0028	PMM	1.2D+1L+1.69	0, 5129
369	2L 40X40X4	Column	0,0010	PMM	1.2D+1L+1.65	0,4670
404	C200X100X10	Brace	0, 7694	PMM	1.2D+1L+1.69	0, 9360
405	2L 40X40X4	Column	0,0340	PMM	1.2D+1L+1.69	0,0000
406	2L 40X40X4	Brace	0, 3709	PMM	1.2D+1L+1.65	0, 4818
407	2L 40X40X4	Column	0,0037	PMM	1.4D	0, 6656
408	2L 40X40X4	Column	0,0069	PMM	1.2D+1L+1.65	0,6504
409	C200X100X10	Brace	0, 7182	PMM	1.2D+1L+1.65	8, 5281
410	2L 40X40X4	Column	0,0051	PMM	1.2D+1L+1.65	0,6351
411	2L 40X40X4	Column	0,0044	PMM	1.2D+1L+1.65	0,6198
		PROMEDIO	0.0905			

Tabla 31: Relación demanda capacidad Cercha 1A resultado método LRFD.

CERCHA1 TABLE: Steel Design 1-Sum mary Data -AISC 360-10 Frame DesignSect DesignType Ratio RatioType Combo Location Text Text Text Unitless Text Text m 482 2L 40X 40X 4 Column 0,6956 PMM 1.2D+1L+1.65 0,7000 483 C200X100X6 Brace 0,1857 PMM 1.2D+1L+1.65 9,8897 0,9360 484 C200X100X10 Brace 0,7635 PMM 1.2D+1L+1.65 485 2L 40X 40X 4 Column 0,0276 PMM 1.2D+1L+1.65 0,0000 486 2L 40X40X4 Brace 0,4489 PMM 1.2D+1L+1.6S 0,4818 487 4L 40X40X4 Column 0,0013 PMM 1.4D 0,0000 488 C200X100X10Beam 1.2D+1L+1.65 0,0000 0,1383 PMM 489 0,0000 2L 40X40X4 Column 0,0058 PMM 1.2D+1L+1.65 490 2L 40X40X4 Column 0,0055 PMM 1.2D+1L+1.6S 0,6504 491 C200X100X10 Brace 0,7875 PMM 1.2D+1L+1.65 8,5281 492 1.4D 2L40X40X4 Column 0,0066 PMM 0,6351 493 0,0036 PMM 1.2D+1L+1.65 2L 40X40X4 Column 0,6198 494 0,0059 PMM 1.4D 0,6045 2L 40X40X4 Column 495 0,0037 PMM 1.2D+1L+1.65 0,5893 2L 40X40X4 Column 496 2L 40X40X4 0,0059 PMM 1.2D+1L+1.65 0,5740 Column 537 2L 40X40X4 Column 0,7099 PMM 1.2D+1L+1.65 0,7000 538 C200X100X10Brace 0,7854 PMM 1.2D+1L+1.65 0,9360 539 2L 40X40X4 Column 0,0322 PMM 1.2D+1L+1.65 0,0000 540 2L 40X40X4 Brace 0,4130 PMM 1.2D+1L+1.65 0,4818 541 2L 40X40X4 Column 0,0029 PMM 1.4D 0,6656 542 2L 40X 40X 4 Column 0,0082 PMM 1.2D+1L+1.65 0,6504 543 C200X100X10Brace 0,7484 PMM 1.2D+1L+1.65 8,5281 544 0,0070 PMM 2L 40X40X4 Column 1.2D+1L+1.65 0,6351 545 21 40X40X4 0,0052 PMM 0,6198 1.2D+1L+1.65 Column 546 2L 40X40X4 Column 0,0061 PMM 1.2D+1L+1.65 0,6045 0,1082 PROMEDIO

Tabla 32: Relación demanda capacidad Cercha 1B resultado método LRFD.

CERCHA 1 ABLE: Steel Design 1 - Summary Data - AISC 360-16 RatioType Frame DesignSect DesignType Ratio Combo Location Text Unitless Text Text Text Text m 2314 2L40X40X4 PMM 1.2D+1L+1.6S 0,7000 Column 0,7126 2315 C200X100X10Brace 0,7425 PMM 1.2D+1L+1.6S 0,9360 2316 2L40X40X4 Column 0,0295 PMM 1.2D+1L+1.6S 0,0000 2317 2L40X40X4 Brace 0,4040 PMM 1.2D+1L+1.6S 0,4818 2318 4L40X40X4 0,0013 PMM 0,0000 Column 1.4D 2319 C200X100X10Beam 0,0944 PMM 1.2D+1L+1.6S 0,0000 2320 2L40X40X4 Column 0,0030 PMM 1.4D 0,6656 0,0077 PMM 2321 2L40X40X4 Column 1.2D+1L+1.6S 0,6504 2322 0,7209 PMM C200X100X10Brace 1.2D+1L+1.6S 8,5281 2323 0,0072 PMM 2L40X40X4 Column 1.2D+1L+1.6S 0,6351 2324 0,0045 PMM 2L40X40X4 Column 1.2D+1L+1.6S 0,6198 2325 0,0060 PMM 2L40X40X4 0,6045 Column 1.2D+1L+1.6S 2368 0,7000 2L40X40X4 Column 0,7131 PMM 1.2D+1L+1.6S 2369 C200X100X10Brace 0,8075 PMM 1.2D+1L+1.6S 0,9360 2370 2L40X40X4 Column 0,0329 PMM 1.2D+1L+1.6S 0,0000 2371 2L40X40X4 Brace 0,4267 PMM 1.2D+1L+1.6S 0,4818 2372 2L40X40X4 Column 0,0031 PMM 1.4D 0,6656 2373 2L40X40X4 Column 0,0085 PMM 1.2D+1L+1.6S 0,6504 2374 C200X100X10Brace 0,7727 PMM 1.2D+1L+1.6S 8,5281 2375 2L40X40X4 Column 0,0074 PMM 1.2D+1L+1.6S 0,6351 2376 0,0053 PMM 2L40X40X4 Column 1.2D+1L+1.6S 0,6198 2377 0,0064 PMM 2L40X40X4 Column 1.2D+1L+1.6S 0,6045 PROMEDIO 0,1050

Tabla 33: Relación demanda capacidad Cercha 1C resultado método LRFD.

TABLE: Steel	l Design 1 - Su					
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
2446	2L 40X40X4	Column	0,69767	PMM	1.2D+1L+1.65	0,7
2447	C200X100X6	Brace	0,187901	PMM	1.2D+1L+1.65	9,88972
2448	C200X100X10	Brace	0,783049	PMM	1.2D+1L+1.65	0,93601
2449	2L 40X40X4	Column	0,028124	PMM	1.2D+1L+1.65	0
2450	2L 40X40X4	Brace	0,465284	PMM	1.2D+1L+1.65	0,48182
2451	4L 40 X 40 X 4	Column	0,00127	PMM	1.4D	0
2452	C200X100X10	Beam	0,145789	PMM	1.2D+1L+1.65	0
2453	2L 40X40X4	Column	0,005257	PMM	1.2D+1L+1.65	0
2454	2L 40X40X4	Column	0,005912	PMM	1.2D+1L+1.65	0,65035
2455	C200X100X10	Brace	0,808841	PMM	1.2D+1L+1.65	8,52813
2456	2L 40X40X4	Column	0,007012	PMM	1.2D+1L+1.65	0,63508
2457	2L 40X40X4	Column	0,003841	PMM	1.2D+1L+1.65	0,6198
2458	2L 40X40X4	Column	0,006362	PMM	1.2D+1L+1.65	0,60453
2470	2L 40X40X4	Column	0,006693	PMM	1.2D+1L+1.65	0,42122
2471	2L 40X40X4	Column	0,004258	PMM	1.2D+1L+1.65	0,40594
2486	2L 40X40X4	Brace	0,213698	PMM	1.2D+1L+1.65	0,37839
2501	2L 40X40X4	Column	0,712141	PMM	1.2D+1L+1.65	0,7
2502	C200X100X10	Brace	0,80687	PMM	1.2D+1L+1.65	0,93601
2503	2L 40X40X4	Column	0,032905	PMM	1.2D+1L+1.65	0
2504	2L 40X40X4	Brace	0,426803	PMM	1.2D+1L+1.65	0,48182
2505	2L 40X40X4	Column	0,003154	PMM	1.4D	0,66563
2506	2L 40X40X4	Column	0,008675	PMM	1.2D+1L+1.65	0,65035
2507	C200X100X10	Brace	0,769442	PMM	1.2D+1L+1.65	8,52813
2508	2L 40X40X4	Column	0,007519	PMM	1.2D+1L+1.65	0,63508
2509	2L 40X40X4	Column	0,005502	PMM	1.2D+1L+1.65	0,6198
2510	2L 40X40X4	Column	0,0066	PMM	1.2D+1L+1.65	0,60453
		PROMEDIO	0,11399178			

 Tabla 34: Relación demanda capacidad Cercha 1D resultado método LRFD.

TABLE: Steel Design 1 - Summary Data - AISC 360-16 CERCHA 1 Combo Frame DesignSect DesignType Ratio RatioType Location Text Text Text Unitless Text Text m 0,5873 PMM 4980 2L40X40X4 Column .2D+1L+1.65 0,7000 4981 0,1702 PMM 9,8897 C200X100X6 Brace 1.2D+1L+1.65 4982 C200X100X10Brace 0,7804 PMM 1.2D+1L+1.65 0,9360 4983 2L40X40X4 Column 0,0291 PMM 1.2D+1L+1.65 0,0000 4984 2L40X40X4 Brace 0,4505 PMM 1.2D+1L+1.65 0,4818 4985 0,0013 PMM 0,0000 4L40X40X4 Column 1.4D 4986 C200X100X10Beam 0,1408 PMM .2D+1L+1.65 0,0000 4987 2L40X40X4 0,0032 PMM .2D+1L+1.63 0,0000 Column 4988 0,6504 2L40X40X4 0,0058 PMM .2D+1L+1.63 Column 4989 0,7982 PMM C200X100X10Brace 1.2D+1L+1.65 8,5281 4990 2L40X40X4 Column 0,0067 PMM 1.4D 0,6351 4991 0,0037 PMM 1.2D+1L+1.69 0,6198 2L40X40X4 Column 4992 0,0061 PMM 2L40X40X4 Column 1.2D+1L+1.65 0,6045 4993 0,0038 PMM 1.2D+1L+1.69 2L40X40X4 Column 0,5893 4994 0,0062 PMM 1.2D+1L+1.65 0,5740 2L40X40X4 Column 5036 0,7994 PMM 1.2D+1L+1.6 C200X100X10Brace 0,9360 5037 0,0333 PMM 1.2D+1L+1.65 0,0000 2L40X40X4 Column 5038 0,4154 PMM .2D+1L+1.65 0,4818 2L40X40X4 Brace 5039 2L40X40X4 0,0037 PMM 1.4D 0,6656 Column 5040 0,0084 PMM 1.2D+1L+1.69 0,6504 2L40X40X4 Column 5041 0,7578 PMM 1.2D+1L+1.65 8,5281 C200X100X10Brace 5042 0,0072 PMM 2L40X40X4 Column 1.2D+1L+1.65 0,6351 5043 0,0053 PMM 0,6198 2L40X40X4 1.2D+1L+1.65 Column 5044 2L40X40X4 Column 0,0064 PMM .2D+1L+1.65 0,6045 5045 0.0048 PMM .2D+1L+1.69 0.5893 2L40X40X4 Column PROMEDIO 0,1082

Tabla 35: Relación demanda capacidad Cercha 1E resultado método LRFD.

CERCHA 2 ABLE: Steel Design 1 - Summary Data - AISC 360-16 RatioType Frame DesignSect DesignType Ratio Combo Location Text Text Text Text Unitless Text m 0,7000 6083 2L 40X40X4 PMM 1.2D+1L+1.65 Column 0,7220 6084 C200X100X12Brace 0,7282 PMM 1.2D+1L+1.65 0,9360 6085 0,0290 PMM 2L 40X40X4 Column 1.2D+1L+1.65 0,0000 0,4044 PMM 6086 1.2D+1L+1.65 0,4818 2L 40X40X4 Brace 6087 0,0012 PMM 1.4D 4L 40X40X4 Column 0,0000 6088 C200X100X12Beam 0,0862 PMM 1.2D+1L+1.65 0,6000 1.4D 6089 2L 40X 40X 4 Column 0,0031 PMM 0,6656 6090 2L 40X40X4 Column 0.0085 PMM 1.2D+1L+1.65 0,6504 6091 C200X100X12Brace 0.7157 PMM 1.2D+1L+1.65 8.5281 6092 2L 40X 40X 4 Column 0,0074 PMM 1.2D+1L+1.65 0,6351 6093 0,0053 PMM 2L 40X 40X 4 Column 1.2D+1L+1.65 0,6198 6094 2L 40X40X4 Column 0,0063 PMM 1.2D+1L+1.65 0,6045 6095 2L 40X 40X 4 Column 0,0046 PMM 1.2D+1L+1.65 0,5893 6096 2L 40X 40X 4 Column 0,0053 PMM 1.2D+1L+1.65 0,5740 2L 40X40X4 Column 6137 0,7224 PMM 1.2D+1L+1.65 0,7000 0,7854 PMM 6138 C200X100X12Brace 1.2D+1L+1.65 0,9360 6139 2L 40X40X4 Column 0,0321 PMM 1.2D+1L+1.65 0,0000 6140 2L 40X40X4 0,4246 PMM 1.2D+1L+1.65 0,4818 Brace 6141 0,0032 PMM 0,6656 2L 40X40X4 Column 1.4D 6142 2L 40X40X4 0,0093 PMM 1.2D+1L+1.65 0,6504 Column 6143 C200X100X12 0,7601 PMM 1.2D+1L+1.65 8,5281 Brace 6144 2L 40X40X4 Column 0,0075 PMM 1.2D+1L+1.6S 0,6351 0,0060 PMM 6145 2L 40X40X4 Column 1.2D+1L+1.65 0,6198 PROMEDIO 0,1087

The second secon

 Tabla 36: Relación demanda capacidad Cercha 2F resultado método LRFD.

TABLE: Steel	Design 1 - Sum	mary Data - AISC 3	60-16		CERCH	CERCHA 2		
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location		
Text	Text	Text	Unitless	Text	Text	m		
119	2L40X40X4	Column	0,5098	PMM	1.2D+1L+1.65	0,7000		
126	C200X100X12	Brace	0,7127	PMM	1.2D+1L+1.65	0,9360		
128	2L40X40X4	Column	0,0303	PMM	1.2D+1L+1.65	0,0000		
130	2L40X40X4	Brace	0,3718	PMM	1.2D+1L+1.65	0,4818		
152	4L40X40X4	Column	0,0012	PMM	1.4D	0,0000		
153	C200X100X12	Beam	0,0801	PMM	1.2D+1L+1.65	0,6000		
157	2L40X40X4	Column	0,0034	PMM	1.4D	0,6656		
160	2L40X40X4	Column	0,0078	PMM	1.2D+1L+1.65	0,6504		
186	C200X100X12	Brace	0,6854	PMM	1.2D+1L+1.65	8,5281		
209	2L40X40X4	Column	0,0061	PMM	1.2D+1L+1.65	0,6351		
212	2L40X40X4	Column	0,0050	PMM	1.2D+1L+1.65	0,6198		
215	2L40X40X4	Column	0,0055	PMM	1.2D+1L+1.65	0,6045		
1113	C200X100X12	Brace	0,7623	PMM	1.2D+1L+1.65	0,9360		
1114	2L40X40X4	Column	0,0327	PMM	1.2D+1L+1.65	0,0000		
1115	2L40X40X4	Brace	0,3942	PMM	1.2D+1L+1.65	0,4818		
1120	2L40X40X4	Column	0,0036	PMM	1.4D	0,6656		
1121	2L40X40X4	Column	0,0085	PMM	1.2D+1L+1.65	0,6504		
1146	C200X100X12	Brace	0,7261	PMM	1.2D+1L+1.65	8,5281		
1168	2L40X40X4	Column	0,0065	PMM	1.2D+1L+1.65	0,6351		
1169	2L40X40X4	Column	0,0055	PMM	1.2D+1L+1.65	0,6198		
1170	2L40X40X4	Column	0,0059	PMM	1.2D+1L+1.65	0,6045		
		PROMEDIO	0,0986					

Tabla 37: Relación demanda capacidad Cercha 2G resultado método LRFD.

TABLE: Stee	TABLE: Steel Design 1 - Summary Data - AISC 360-16					CORREA 1	
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location	
Text	Text	Text	Unitless	Text	Text	m	
2579	Tubo75x75x2	Beam	0,0550	PMM	1.2D+1L+1.6S	0,4125	
2580	Tubo75x75x2	Beam	0,0564	PMM	1.2D+1L+1.6S	0,4125	
2581	Tubo75x75x2	Beam	0,0042	PMM	1.4D	0,0000	
2582	Tubo75x75x2	Beam	0,0037	PMM	1.2D+1L+1.6S	0,4125	
2583	Tubo75x75x2	Beam	0,0025	PMM	1.4D	0,0000	
2584	Tubo75x75x2	Beam	0,0015	PMM	1.2D+1L+1.6S	0,4125	
2585	Tubo75x75x2	Beam	0,0011	PMM	1.2D+1L+1.6S	0,4125	
2586	Tubo75x75x2	Beam	0,0025	PMM	1.2D+1L+1.6S	0,4125	
2603	L25x25x2	Brace	0,7306	PMM	1.2D+1L+1.6S	0,8125	
2604	L25x25x2	Brace	0,1024	PMM	1.2D+1L+1.6S	0,0000	
2605	L25x25x2	Brace	0,0762	PMM	1.2D+1L+1.6S	0,8125	
2606	L25x25x2	Brace	0,0770	PMM	1.2D+1L+1.6S	0,0000	
2607	L25x25x2	Brace	0,0811	PMM	1.2D+1L+1.6S	0,8125	
2608	L25x25x2	Brace	0,0777	PMM	1.2D+1L+1.6S	0,0000	
2609	L25x25x2	Brace	0,1067	PMM	1.2D+1L+1.6S	0,8125	
2610	L25x25x2	Brace	0,1050	PMM	1.2D+1L+1.6S	0,0000	
2611	L25x25x2	Brace	0,2730	PMM	1.2D+1L+1.6S	0,8125	
2612	L25x25x2	Brace	0,7144	PMM	1.2D+1L+1.6S	0,0000	
2749	L25x25x2	Brace	0,2711	PMM	1.2D+1L+1.6S	0,0000	
2750	L25x25x2	Brace	0,1091	PMM	1.2D+1L+1.6S	0,8125	
		PROMEDIO	0,0990				

 Tabla 38: Relación demanda capacidad Correa 1 resultado método LRFD.

TABLE: Stee	l Design 1 - Su	immary Data	16	CORREA 2		
Frame	DesignSect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
7227	Tubo 75x 75x2	Beam	0,0779	PMM	1.2D+1L+1.6S	0,3000
7228	Tubo 75x 75x2	Beam	0,0787	PMM	1.2D+1L+1.6S	0,3000
7229	Tubo 75x 75x2	Beam	0,0039	PMM	1.2D+1L+1.6S	0,0000
7230	Tubo 75x 75x2	Beam	0,0044	PMM	1.2D+1L+1.6S	0,3000
7231	Tubo 75x 75x2	Beam	0,0088	PMM	1.2D+1L+1.6S	0,0000
7232	Tubo 75x 75x2	Beam	0,0081	PMM	1.2D+1L+1.6S	0,0000
7233	Tubo 75x 75x2	Beam	0,0080	PMM	1.2D+1L+1.6S	0,0000
7234	Tubo 75x 75x2	Beam	0,0073	PMM	1.2D+1L+1.6S	0,0000
7235	Tubo 75x 75x2	Beam	0,0148	PMM	1.2D+1L+1.6S	0,0000
7236	Tubo 75x 75x2	Beam	0,0141	PMM	1.2D+1L+1.6S	0,0000
7250	Tubo 75x 75x2	Beam	0,3210	PMM	1.2D+1L+1.6S	0,3000
7251	L25x25x2	Brace	0,7875	PMM	1.2D+1L+1.6S	0,7616
7252	L25x25x2	Brace	0,3674	PMM	1.2D+1L+1.6S	0,0000
7253	L25x25x2	Brace	0,1511	PMM	1.2D+1L+1.6S	0,7616
7254	L25x25x2	Brace	0,1455	PMM	1.2D+1L+1.6S	0,0000
7255	L25x25x2	Brace	0,0953	PMM	1.2D+1L+1.6S	0,7616
7256	L25x25x2	Brace	0,1117	PMM	1.2D+1L+1.6S	0,0000
7257	L25x25x2	Brace	0,0934	PMM	1.2D+1L+1.6S	0,7616
7258	L25x25x2	Brace	0,1135	PMM	1.2D+1L+1.6S	0,0000
7259	L25x25x2	Brace	0,1139	PMM	1.2D+1L+1.6S	0,7616
7260	L25x25x2	Brace	0,1961	PMM	1.2D+1L+1.6S	0,0000
7261	L25x25x2	Brace	0,3773	PMM	1.2D+1L+1.6S	0,7616
7262	L25x25x2	Brace	0,9696	PMM	1.2D+1L+1.6S	0,0000
		PROMEDIO	0,1314			

Tabla 39: Relación demanda capacidad Correa 2 resultado método LRFD.

TABLE: Steel Design 1 - Summary Data - AISC 360-16				CORREA 3		
Frame	Design Sect	DesignType	Ratio	RatioType	Combo	Location
Text	Text	Text	Unitless	Text	Text	m
6217	Tubo75x75x2	Beam	0,0309	PMM	1.2D+1L+1.65	0, 5500
6218	Tubo75x75x2	Beam	0,0334	PMM	1.2D+1L+1.65	0, 5500
6219	Tubo75x75x2	Beam	0,0058	PMM	1.4D	0,0000
6220	Tubo75x75x2	Beam	0,0057	PMM	1.2D+1L+1.65	0, 5500
6221	Tubo75x75x2	Beam	0,0039	PMM	1.2D+1L+1.65	0, 5500
6222	Tubo75x75x2	Beam	0,0064	PMM	1.2D+1L+1.65	0, 5500
6223	Tubo75x75x2	Beam	0,0054	PMM	1.2D+1L+1.65	0, 5500
6224	Tubo75x75x2	Beam	0,0078	PMM	1.2D+1L+1.65	0, 5500
6240	Tubo75x75x2	Beam	0,1424	PMM	1.2D+1L+1.65	0, 5500
6241	L25x25x2	Brace	0,5713	PMM	1.2D+1L+1.65	0, 8902
6242	L25x25x2	Brace	0,1838	PMM	1.2D+1L+1.65	0,0000
6243	L25x25x2	Brace	0,0872	PMM	1.2D+1L+1.65	0, 8902
6244	L25x25x2	Brace	0,0723	PMM	1.2D+1L+1.65	0,0000
6245	L25x25x2	Brace	0,0831	PMM	1.2D+1L+1.65	0, 8902
6246	L25x25x2	Brace	0,0691	PMM	1.2D+1L+1.65	0,0000
6247	L25x25x2	Brace	0,1015	PMM	1.2D+1L+1.65	0, 8902
6248	L25x25x2	Brace	0,0748	PMM	1.2D+1L+1.65	0,0000
6249	L25x25x2	Brace	0,1315	PMM	1.2D+1L+1.65	0, 8902
6250	L25x25x2	Brace	0,0882	PMM	1.2D+1L+1.65	0,0000
6251	L25x25x2	Brace	0,2276	PMM	1.2D+1L+1.65	0, 8902
6252	L25x25x2	Brace	0,3675	PMM	1.2D+1L+1.65	0,0000
		PROMEDIO	0,0727			

 Tabla 40: Relación demanda capacidad Correa 3 resultado método LRFD.

5.1.7. Comparación ASD/LRFD relación demanda capacidad

En las siguientes tablas se presentan los valores promedio de la relación demanda capacidad entre los dos métodos de cálculo estructural. Como caso de estudio se presenta la tabla 41 del compendio de resultados estructurales realizado por el Ing. Vinicio Astudillo, misma que consta en la *memoria técnica de cálculo de la rehabilitación de la cubierta del teatro Carlos Crespí* (2021), en esta tabla se observan valores parecidos a la tabla 42 específicamente con el método ASD, estos dos resultados tienen valores por encima de radio=0,8; no existe similitud con los valores obtenidos en este documento, ya que por diferentes factores de aplicación los resultados cambian, como la distribución de los ángulos en las correas debido a que por la información dada en los planos, el ingeniero calculista tenía que realizar modificaciones al momento de modelar.

El método LRFD muestra un grado de seguridad de la estructura notable, manteniéndose por debajo de radio=0,8; pese a que se seleccionaron los elementos que están sometidos a mayores solicitaciones.

Iteration I	Cupucidud			
Cerchas (A-G)				
Cercha A	().85		
Cercha B	().89		
Cercha C	().90		
Cercha D	().88		
Cercha E	().84		
Cercha F	().91		

 Tabla 41: Compendio de resultados estructurales.

Relación Demanda – Canacidad

Fuente: Ing. Vinicio Astudillo. (Memoria técnica de cálculo de la rehabilitación de la cubierta del teatro Carlos Crespi)

Cercha	Ν	Sección	T 1 []	Demanda – Capacidad		
			Localization [m]	Metodo LRFD	Metodo ASD	
Cercha 1	350	C200X100X6+Pl4	0,936	0,709	0,823	
	357	C200X100X6+Pl4	8,528	0,669	0,782	
	404	C200X100X6+Pl4	0,936	0,769	0,894	
	409	C200X100X6+Pl4	8,528	0,718	0,839	
			Promedio	0,72	0,83	
	482	2L 40X40X4	0,7	0,696	0,809	
	484	C200X100X6+Pl4	0,93601	0,763	0,886	
	491	C200X100X6+Pl4	8,52813	0,787	0,920	
Cercha 2	537	2L 40X40X4	0,7	0,709	0,825	
	538	C200X100X6+Pl4	0,93601	0,785	0,912	
	543	C200X100X6+Pl4	8,52813	0,748	0,875	
			Promedio	0,75	0,87	
Cercha 3	2314	2L 40X40X4	0,7	0,712587	0,828641	
	2315	C200X100X10	0,93601	0,742471	0,861772	
	2322	C200X100X10	8,52813	0,720948	0,842695	
	2368	2L 40X40X4	0,7	0,713124	0,829267	
	2369	C200X100X10	0,93601	0,807529	0,938153	
	2374	C200X100X10	8,52813	0,772664	0,903226	
	Promedio			0,75	0,87	
Cercha 4	2446	2L 40X40X4	0,7	$0,\!69767$	0,81134	
	2448	C200X100X10	0,93601	0,783049	0,909024	
	2455	C200X100X10	8,52813	0,808841	0,945291	
	2501	2L 40X40X4	0,7	0,712141	0,828124	
	2502	C200X100X10	0,93601	0,80687	0,937423	
	2507	C200X100X10	8,52813	0,769442	0,899567	
			Promedio	0,76	0,89	

Tabla 42: Datos resumidos respecto a la relación demanda entre los métodos ASD/LRFD.

Información relación demanda capacidad AISC 360-16

Cercha	Ν	Sección	Localización	Demanda – Capacidad		
				Metodo LRFD	Metodo ASD	
Cercha 5	4980	2L 40X40X4	0,7	0,587316	0,683017	
	4982	C200X100X10	0,93601	0,780361	0,90592	
	4989	C200X100X10	8,52813	0,798215	0,932882	
	5035	2L 40X40X4	0,7	0,599349	0,696968	
	5036	C200X100X10	0,93601	0,799427	0,92875	
	5041	C200X100X10	8,52813	0,757811	0,88597	
			Promedio	0,72	0,84	
Cercha 6	6083	2L 40X40X4	0,7	0,722026	0,839627	
	6084	C200X100X12	0,93601	0,728221	0,844777	
	6091	C200X100X12	8,52813	0,715681	0,836471	
	6137	2L 40X40X4	0,7	0,722432	0,8401	
	6138	C200X100X12	0,93601	0,785383	0,911927	
	6143	C200X100X12	8,52813	0,760075	0,888455	
	Promedio			0,74	0,86	
Cercha 7	126	C200X100X12	0,93601	0,712726	0,826916	
	186	C200X100X12	8,52813	0,685433	0,801054	
	1113	C200X100X12	0,93601	0,762288	0,885132	
	1146	C200X100X12	8,52813	0,726103	0,848652	
			Promedio	0,72	0,84	

Información relación demanda capacidad AISC 360-16

Fuente: Autor.

5.1.8. Resumen

Se compararon los resultados de los análisis de ASD y LRFD en términos de Esfuerzos y momentos en los elementos estructurales, desplazamientos de la estructura y la capacidad de carga de la estructura. Entre los dos métodos de diseño el sistema cumplió todos los estados límite, en desplazamientos se mantuvo un margen de diferencia bajo, cercano al 3%. La flecha instantánea obtenida al aplicar la totalidad de las cargas en los dos métodos dio valores límite de los desplazamientos relacionados con las longitudes de los componentes estructurales los cuales cumplen según las comprobaciones del software comercial, en este caso el método LRFD tenía una ligera diferencia superior al método ASD. Fue en detalles de diseño en donde se encontraron observaciones, existían elementos que excedía la relación demanda capacidad, como el ángulo 7730; en el Anexo 1 de este documento se encuentra el cálculo de un elemento

que no cumple con la resistencia a compresión y esfuerzos combinados y torsión, estos son casos puntuales y reducidos. La estructura con los dos métodos aplicados satisfacen con todas las solicitaciones, sabiendo que el método LRFD por el último análisis brinda más confianza y es más seguro, debido a que este diseña los elementos de una estructura para que resistan cargas mayores a las de servicio.

Método ASD	Método LRFD
Desplazamientos	Desplazamientos
Nudos - N1	Nudos - N1
Dx (mm): -0.305 (mín) / -0.041 (máx)	Dx (mm): -0.314 (mín) / -0.042 (máx)
Dy (mm): 0.339 (mín) / 1.225 (máx)	Dy (mm): 0.349 (mín) / 1.261 (máx)
Dz (mm): -0.021 (mín) / -0.007 (máx)	Dz (mm): -0.007 (mín) / -0.007 (máx)
Gx (mRad): -2.432 (mín) / -0.675 (máx)	Gx (mRad): -2.505 (mín) / -0.695 (máx)
Gy (mRad): 0.030 (mín) / 0.139 (máx)	Gy (mRad): 0.031 (mín) / 0.143 (máx)
Gz (mRad): -1.171 (mín) / -0.306 (máx)	Gz (mRad): -1.206 (mín) / -0.306 (máx)
Reacciones	Reacciones
Nudos - N90	Nudos - N90
Rx (t): 5.410 (mín) / 18.313 (máx)	Rx (t): 5.410 (mín) / 18.313 (máx)
Ry (t): 0.252 (mín) / 1.023 (máx)	Ry (t): 0.252 (mín) / 1.023 (máx)
Rz (t): 2.525 (mín) / 8.488 (máx)	Rz (t): 2.525 (mín) / 8.488 (máx)
Flechas	Flechas
Grupo - N1/N6	Grupo - N1/N6
Flecha máxima absoluta xy: 1.133	Flecha máxima absoluta xy: 1.133
Flecha máxima relativa xy: 0.33	Flecha máxima relativa xy: 0.34
Flecha máxima absoluta xz: 1.133	Flecha máxima absoluta xz: 1.133
Flecha máxima relativa xz: 0.23	Flecha máxima relativa xz: 0.24
Resistencia	Resistencia
Barra - N1/N2h (%)	Barra - N1/N2h (%)
h: 11.18	h: 7.64
Esfuerzos	Esfuerzos
Posiciones en la barra - $N1/N2$	Posiciones en la barra - N1/N2
Nmáx: -0.157	Nmáx: -0.161
-0.161	-0.161
Vymín: -0.054	Vymín: -0.048
-0.048	-0.048
Vymáx: 0.071	Vymáx: 0.064
0.064	0.064
Vzmín: 0.208	Vzmín: 0.214
0.214	0.214
Vzmáx: -0.028	Vzmáx: -0.028
-0.028	-0.028
Mtmín: -0.009	Mtmín: -0.008
-0.008	0

Tabla 43: Resumen de valores obtenidos.Fuente: Autor.

6. Conclusiones

Los resultados del análisis ASD indicaron que la estructura cumple con los requisitos de resistencia de la NEC, sin embargo, se observaron algunos elementos con esfuerzos cercanos a la capacidad admisible, puntualmente en el análisis de pandeo, las vigas principales no fallan, solo son ciertos ángulos en las correas, lo que podría requerir un refuerzo para mejorar la seguridad de la estructura. Como un análisis al método específicamente, se observa que en la normativa se utilizan más combinaciones de carga a diferencia del método LRFD, sin tener una constante de reducción en las 3 primeras combinaciones, esto debido a que las cargas se comportan como una constante, ya que presentan una pequeña variación de su magnitud respecto a sucesos, como a diferencia de las otras combinaciones en las cuales existen constantes por sismos, granizo o viento.

Los resultados del análisis LRFD indicaron que la estructura también cumple con los requisitos de resistencia de la NEC. Estos fueron ligeramente más conservadores que los del método ASD, lo que se traduce en una mayor seguridad estructural, es importante mencionar que se utilizó la normativa ANSI-AISC 360-16 LRFD del año 2022. Gracias a la investigación bibliográfica se comprendió que el método LRFD fue determinado por medio de análisis basado en la frecuencia de los sucesos, de la acción combinada de las cargas, estos factores que toman en cuenta la incertidumbre de los materiales en el diseño y la supervisión de la construcción.

Se realizó dos modelaciones, entre esos diseño también se realizó la variación de diseño mencionada en la sección 4.3 en el cual se indicaba que en las cerchas 1 y 7 no eran uniformes en el plano superior o YX. Pese a estas variaciones el sistema estructural cumplía con las condiciones de diseño, mediante un cálculo no lineal y usando acero laminado cumpliendo con los requerimientos de la normativa AISI-ANSI 360-16 el teatro presentó resultados similares en términos de la capacidad de carga de la estructura. El método LRFD fue ligeramente más conservador que el ASD, lo que puede ser una ventaja en términos de seguridad. El método ASD puede ser más adecuado para estructuras con geometrías simples, mientras que el LRFD es más adecuado para estructuras complejas. El factor de seguridad usando en el método ASD es el mismo aplicado para las cargas vivas y muertas, a diferencia del método LRFD que para las cargas muertas utiliza factores de carga y seguridad más bajos, este método implica una ventaja respecto a costos y principalmente brinda más seguridad para los objetivos de diseño y construcción de proyectos. No se realizó un estudio sísmico debido a la falta de información de columnas y cimentación, esto sería una limitante para el desarrollo de la misma, solo se aplicaron cargas gravitacionales.

- Ambos métodos de cálculo son viables para el diseño de la cubierta del Teatro Carlos Crespí.
- La elección del método dependerá de varios factores, como la complejidad de la estructura, los requisitos de seguridad y la experiencia del ingeniero.
- Se recomienda realizar un análisis con ambos métodos para comparar resultados y tomar la mejor decisión para el diseño de la estructura.
- Es imprescindible realizar un mapeo de la estructura para obtener los planos del teatro, en el cual debe constar datos sobre las columnas y cuál fue el proceso y tipo de cimentación, esta información a más de ser un archivo básico, podría brindar datos importantes para labores de mantenimiento o futuras modificaciones.

7. Recomendaciones

Para un diseño sismo - resistente de los pórticos se recomendaría el método de la resistencia unitaria última, siguiendo hipótesis como: Para las cargas verticales usar la normativa ecuatoriana de la construcción, en las relaciones de rigideces considerar la naturaleza plástica de los elementos estructurales, para hallar los esfuerzos debido a cargas verticales, considerar la rigidez plástica. Con respecto a las cargas horizontales o sísmicas, lo indicado por la norma NEC-SE-DS, para la aplicación de las cargas estáticas y dinámicas. Los esfuerzos de diseño de las secciones se solucionarían bajo la simple combinación de los esfuerzos debidos a cargas permanentes y los esfuerzos debidos al sismo.

Referencias

- A3.0, A. (2010). Standard welding terms and definitions, aws a3. 0m/a3. 0-. 2010. American Welding Society United State of America.
- AISC. (2016). Especificación para construcciones de acero (A. L. D. ACERO, Ed.). AISC: American Institute of Steel Construction.
- ASCE/SEI7. (2013). Minimum design loads for buildings and other structures.
- Cárceles, J. A. G. (1990). Análisis del proceso de diseño de estructuras porticadas (Tesis Doctoral no publicada). Universidad Politécnica de Madrid.
- Crisafulli, F. (2018). Diseño sismorresistente de construcciones de acero. Santiago de Chile: Asociación Latinoamericana del Acero-Alacero.
- D1.1, A. (2010). Aws d1. 1/d1. 1m. American Welding Society2010.
- Hidalgo, P., y Riddell, R. (1997). Diseño estructural. Ediciones UC.
- McCormac, J. (2013). Diseño de estructuras de acero. Alfaomega grupo editor.
- NEC. (2014). Estructuras de acero.
- NEC-SEG. (2015). Cargas (no sísmicas). Código: NEC-SECG. Quito, Ecuador.

ANEXOS

ANEXO 1

COMPROBACIONES DEL PERFIL N2544 ACERO A36 L25X25X2

Limitación de esbeltez para compresión

Capítulo E

La esbeltez máxima admisible en una barra sometida a compresión es:

 $\lambda \leq 200$

Donde:

• λ : Coeficiente de esbeltez

$$\lambda = \frac{L_c}{r}$$

Siendo: L_c : Longitud efectiva

$$L_c = KL$$

Donde:

- L: Longitud de la barra.
- K: Factor de longitud efectiva.
- r_x : Radio de giro eje z.

$$r_z = \sqrt{\frac{I_z}{A}}$$

Donde:

- I_z : Momento de inercia respecto al eje z.
- A: Área total de la sección transversal de la barra.

Datos y resultados

- A= 0.96 cm^2
- $I_z = 0.23 \ cm^4$
- r_z=0.49 cm

- *K* = 1
- *L*= 565 *mm*
- $\lambda = 114.3$ CUMPLE

Resistencia a compresión

Capítulo E

Se debe cumplir:

$$\eta_t : \frac{P_r}{P_c} \le 1$$

El axil de compresión solicitante de cálculo pésimo se produce para la combinación de hipótesis 1.2PP+1.2CM 1+0.5Q 1+1.6N 1+1.6N 1. Donde:

- *P_r*: Resistencia a compresión requerida para las combinaciones de carga del método de diseño.
- P_c : Resistencia de diseño a compresión.

$$P_c = \phi_n P_n$$

La resistencia de diseño a compresión en secciones comprimidas es el menor valor de los obtenidos según los estados límite del Capítulo E. Donde:

• ϕ_n Factor de resistencia a compresión.

• P_n : Resistencia nominal a compresión, calculada según el apartado E3-A

$$P_n = F_{cr}A$$

para el pandeo por flexión de secciones con elementos compactos y no compactos (ANSI/AISC 360), Capítulo E3-A).

Donde:

- A: Área bruta de la sección de la barra.
- F_{cr} : Tensión de pandeo por flexión

Cuando:

$$\frac{F_y}{F_e} \le 2.25$$

Entonces:

$$F_{cr} = \left(0.658 \frac{F_y}{F_e}\right) F_y$$

Donde:

- F_y : Límite elástico mínimo especificado del acero de las barras
- F_e : Tensión crítica elástica de pandeo, tomada como la menor de la condición:

$$F_e = \frac{\pi^2 E}{\left(\frac{L_c}{r}\right)^2}$$

Donde:

- L_c : Longitud efectiva
- E: Módulo de elasticidad del acero
- K: Factor de longitud efectiva.
- L: Longitud de la barra
- r: Radio de giro dominante

$$r = \sqrt{\frac{I}{A}}$$

Donde:

- I: Momento de inercia.
- A: Área total de la sección transversal de la barra.

Datos y resultados:

- *A* : 0.96
- *I_z* : 0.23
- *I_w* : 0.92
- r_z : 0.49
- r_w : 0.98
- *L*: 565
- K_z : 1.00

- *K_w*: 1.00
- E: 200000.00
- *F_{ez}*: 151.06
- F_{ew} : : 594.95
- *F_e*: 151.06
- F_y : 250.00
- *F_{cr}*: 125.05
- *A* : 0.96
- *P_n* : 12.01
- $\phi_p: 0.90$
- *P_c*: 10.80
- *P_r*: 13.84
- η_t: 1.281 **NO CUMPLE**

Resistencia a flexión eje X

Capítulo F

Se debe satisfacer el siguiente criterio:

$$\eta_M = \frac{M_r}{M_c} \le 1$$

El momento flector solicitante de cálculo pésimo, Mr, se produce en el nudo N2544, para la combinación de acciones $1.2 \cdot PP+1.2 \cdot CM \ 1+0.5 \cdot Q \ 1+1.6 \cdot N \ 1$. Donde:

• M_r : Resistencia a flexión requerida para las combinaciones de carga LRFD M_c : Resistencia de diseño a flexión

$$M_c = \phi_b M_n$$

La resistencia de diseño a flexión para secciones sometidas a momento flector es el menor valor de los obtenidos según los estados límite descritos en el Capítulo F.

Donde:

- jb: Factor de resistencia a flexión
- Mn: La resistencia nominal a flexión calculada según Artículo 10, Sección 1
- 1. 1. Fluencia

$$M_n = 1.5M_y$$
$$M_y = F_y S_x$$

Donde:

- F_y : Límite elástico mínimo especificado.
- S_x : Módulo resistente elástico respecto al eje X.

$$S_x = \frac{I_x I_y - I_{xy}^2}{I_y Y - I_{xy} X}$$

0

Donde:

- Ix: Momento de inercia respecto al eje X
- Momento de inercia respecto al eje Y

- Ixy: Producto de inercia de la sección transversal
- x: Distancia a la fibra extrema en flexión desde el baricentro
- y: Distancia a la fibra extrema en flexión desde el baricentro
- 2. Pandeo lateral-torsional Si la viga está arriostrada en toda su longitud, la Sección 2 no es de aplicación.
- 3. Pandeo local en los lados a) para secciones compactas, el estado límite de pandeo local en los lados no es de aplicación.

Datos y resultados:

- *y* : 18.01 *mm*
- x: 6.99 mm
- $I_{xy}: 0.34 \ cm^4$
- $I_y: 0.58 \ cm4$
- $I_x: 0.58 \ cm^4$
- $S_x: 0.27 \ cm^3$
- $F_y: 250.00 MPa$
- $M_y: 0.07 \ kN \cdot m$
- $M_n: 0.10 \ kN \cdot m$
- $\phi_b: 0.90$
- $M_c: 0.09 \ kN \cdot m$
- $M_r: 0.01 \ kN \cdot m$
- η: 0.125 CUMPLE

Resistencia a corte X

Capítulo G

Se debe satisfacer el siguiente criterio:

$$\eta_v = \frac{V_r}{V_c} \le$$

El esfuerzo cortante solicitante de cálculo pésimo Vr se produce para la combinación de hipótesis $1.2 \cdot PP+1.2 \cdot CM \ 1+0.5 \cdot Q \ 1+1.6 \cdot N \ 1$. Donde:

- V_r : Resistencia a cortante requerida para las combinaciones de carga LRFD Vr : 0.04 kN
- V_c : Resistencia de diseño a cortante

$$V_c = \phi_v V_n$$

Donde:

- ϕ_v : Factor de resistencia a cortante.
- V_n : se define según lo detallado en el Capítulo G.

$$V_n = 0.6F_y A_w C_v$$

Donde:

• F_y : Límite elástico mínimo especificado

 $A_w = bt$

- b: Ancho de la sección .
- t: Espesor del lado del angular.

Cuando:

$$\frac{b}{t} \le 1.10 \sqrt{K_v \frac{E}{F_y}}$$

Entonces:

 $C_v = 1$

Donde:

- b: Ancho de la sección
- t: Espesor del ala del angular
- E: Módulo de elasticidad del acero
- K_v : Coeficiente de abolladura del alma

Datos y resultados:

- *K_v*: 1.20
- E: 200000.00 MPa
- t: 2.00mm
- **b**: 25.00 mm
- C_v: 1.00
- t: 2.00 mm
- b: 25.00 mm
- $A_w: 0.50 \ cm^2$
- Fy: 250.00MPa
- V_n: 7.50kN
- ϕ_v : 0.90
- V_c: 6.75kN
- V_r: 0.04 kN
- η_V : 0.005 SI CUMPLE

Esfuerzos combinados y torsión

Capítulo H

Se debe cumplir el siguiente criterio:

$\eta \leq 1$

Los esfuerzos solicitantes de cálculo pésimos se producen en el nudo N2544, para la combinación de acciones $1.2 \cdot PP+1.2 \cdot CM \ 1+0.5 \cdot Q \ 1+1.6 \cdot N \ 1$.

Según el capítulo H3.3, las secciones abiertas sometidas a torsión junto con tensiones combinadas, deben cumplir con:

$$\eta = \frac{T_r}{T_c} \le 1$$

se considera que este elemento debe cumplir, además, los siguientes criterios para la tensión de Von Mises:

$$\eta_1 = \frac{J_a}{F_a} + \frac{J_{bw}}{F_{bw}} + \frac{J_{bz}}{F_{bz}} \le 1$$
$$\eta_2 = \frac{f_{vw}}{F_{vw}} + \frac{f_{vz}}{F_{vz}} + \frac{f_T}{F_t} \le 1$$
$$\eta_3 = \left(\frac{f_a}{F_a} + \frac{f_{bw}}{F_{bw}} + \frac{f_{bz}}{F_{bz}}\right) + \left(\frac{f_{vw}}{F_{vw}} + \frac{f_{vz}}{F_{vz}} + \frac{f_T}{F_t}\right)$$

 T_r : Resistencia a torsión requerida

$$T_c = \phi T_n$$

Donde:

- ϕ_T :Factor de resistencia para torsión
- T_n : Resistencia nominal a torsión
- fa: Tensión normal debida al esfuerzo axil (tracción o compresión) calculada para la sección bruta.
- fbw: Tensión normal debida a flexión alrededor del eje w.
- fbz: Tensión normal debida a flexión alrededor del eje z.
- fVw: Tensión tangencial debida a cortante en la dirección w.

- fVz: Tensión tangencial debida a cortante en la dirección z.
- fT: Tensión tangencial debida a torsión.
- Tr: Resistencia requerida a torsión (para las combinaciones de carga LRFD).
- Fa: Resistencia a compresión de la sección.
- Fbw, Fbz: Resistencia de la sección a flexión alrededor de los ejes w y z, respectivamente.
- FVw, FVz: Resistencia de la sección a cortante en las direcciones w y z, respectivamente.
- FT: Resistencia a torsión de la sección.

Datos y resultados

- *Fy* : 250.00 MPa
- *FVw*: 129.90 MPa
- F_{Vz} : 129.90*MPa*
- F_{bz} : 225.00*MPa*
- F_{bw} : 225.00*MPa*
- *F_a* : 112.55 *MPa*
- f_T : -0.01*MPa*
- $f_{Vz}: 0.00MPa$
- f_{Vw} : 0.00 *MPa*
- *f*_{bz}: 58.24 *MPa*
- *f_{bw}*: 2.19*MPa*
- $f_a: 144.18MPa$
- $T_r: 0.00 \ kN$ ům
- η₃: 2.401NO CUMPLE
- $\eta_2 < 0.001$
- η₁: 1.550 NO CUMPLE
Resistencia a la tracción

No existe axil de tracción, no se realiza la comprobación.

00130861

1/1

Sede: MATRIZ CUENCA	Campus: EL VECINO	Fecha: <u>15/02/2024</u>
Posgrado: MAESTRÍA EN INGENIERÍ	A MECÁNICA Asunto: Acc	eso teatro Carlos Crespi
Nombre: GAVILANES ALVAREZ ALE	X PAUL	CI:_0107279846
Destinatario: VICTOR FERNANDO M	OSCOSO MERCHAN	

Un saludo estimado Vicerrector Víctor Moscoso, me encuentro realizando el proyecto de titulación de maestría en Ingeniería Mecánica con el tema "ANALISIS DE LOS METODOS DE CALCULO ESTRUCTURAL EN LA CUBIERTA DEL TEATRO CARLOS CRESPI CONFORME A LA NORMATIVA ECUATORIANA" el motivo de este apartado es para solicitar el acceso al teatro mencionado para visitar y conocer la situación del mismo, es con el fin de analizar la estructura y el acceso a la parte superior.

De igual modo estaría muy agradecido si puedo acceder a los planos y documentos que indiquen datos de: altura de columnas, estudio de suelo, columnas, entre otros ya que no consigo que me brinden esta información y es necesaria para los cálculos pertinentes.

De antemano muy agradecido ante la pronta y positiva respuesta, adjunto el anteproyecto de titulación para que confirme la informacion mencionada.

UNIVERSIDAD POLITECNICA SALESIANA DETALLE DE SOLICITUD

SOLICITANTE:	GAVILANES ALVAREZ ALEX PAUL
NÚMERO DE IDENTIFICACIÓN:	0107279846
CORREO INSTITUCIONAL:	agavilanesa1@est.ups.edu.ec
FECHA DE REGISTRO:	15/02/2024 16:16
CARRERA - POSGRADO:	MAESTRÍA EN INGENIERÍA MECÁNICA
DESTINATARIO INICIAL:	MOSCOSO MERCHAN VICTOR FERNANDO
TIPO DE SOLICITUD / ASUNTO:	Acceso teatro Carlos Crespi
TIENE ADJUNTOS:	SI

NRO. SOLICITUD 001308612

FECHA	ASIGNADO	ESTADO	OBSERVACIONES
23/04/2024 11:22	MOSCOSO MERCHAN VICTOR FERNANDO	Aprobado	Considerando el informe emitido se autoriza el acceso solicitado siempre y cuando se cumpla con la especificaciones solicitadas por la coordinación Administrativa. En cuanto a los planos no es factible su entrega según el informe emitido
23/04/2024 09:20	MOSCOSO MERCHAN VICTOR FERNANDO	Reasignado	Estimado Dr. Fernando, buenos dias. Se puede permitir el acceso para acceder a la parte superior previa verificación del cumplimiento de la normativa y uso de seguridad. En lo que se refiere a planos no disponemos de los mismos.
15/02/2024 16:15	SANTOS SAGBAY SONIA PATRICIA	Reasignado	Estimada Patricia, Por favor su informe.
15/02/2024 16:16	MOSCOSO MERCHAN VICTOR FERNANDO	En Trámite	Inicio de solicitud

/	4		SCLUSING	
		MO USO	3J	
	OREORIU			
OCUMIENT				