

UNIVERSIDAD POLITÉCNICA SALESIANA

SEDE QUITO

CARRERA DE INGENIERÍA CIVIL

ANÁLISIS Y DISEÑO SISMO RESISTENTE DE EDIFICIOS DE ACERO CON MARCOS A MOMENTO, CONSIDERANDO COLUMNAS CRUCIFORMES Y TUBULARES HUECAS

Trabajo de titulación previo a la obtención del título de Ingeniero e Ingeniara Civil

AUTORES: Carlos Miguel Aranda Salazar

Dayana Lizeth Jacho Moyón

TUTOR: Wilson Ramiro Torres Berni

Quito - Ecuador 2022

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓN

Nosotros, Carlos Miguel Aranda Salazar con documento de identificación N° 0550231641 y Dayana Lizeth Jacho Moyón con documento de identificación N° 1720664323; manifestamos que:

Somos los autores y responsables del presente trabajo; y, autorizamos a que sin fines de lucro la Universidad Politécnica Salesiana pueda usar, difundir, reproducir o publicar de manera total o parcial el presente trabajo de titulación.

Quito, 08 de marzo del 2022

Atentamente,

And

Carlos Miguel Aranda Salazar 0550231641

Roll.

Dayana Lizeth Jacho Moyón 1720664323

CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA

Nosotros, Carlos Miguel Aranda Salazar con documento de identificación N° 0550231641 y Dayana Lizeth Jacho Moyón con documento de identificación N° 1720664323; expresamos nuestra voluntad y por medio del presente documento cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores del Proyecto Técnico: "Análisis y diseño sismo resistente de edificios de acero con marcos a momento, considerando columnas cruciformes y tubulares huecas", el cual ha sido desarrollado para optar por el título de: Ingeniero e Ingeniera Civil, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En concordancia con lo manifestado, suscribimos este documento en el momento que hacemos la entrega del trabajo final en formato digital a la Biblioteca de la Universidad PolitécnicaSalesiana.

Quito, 08 de marzo del 2022

Atentamente,

Carlos Miguel Aranda Salazar 0550231641

Dayana Lizeth Jacho Moyón 1720664323

CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN

Yo, Wilson Ramiro Torres Berni con documento de identificación N° 1710259845, docente de la Universidad Politécnica Salesiana, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: ANÁLISIS Y DISEÑO SISMO RESISTENTE DE EDIFICIOS DE ACERO CON MARCOS A MOMENTO, CONSIDERANDO COLUMNAS CRUCIFORMES Y TUBULARES HUECAS, realizado por Carlos Miguel Aranda Salazar con documento de identificación N° 0550231641 y por Dayana Lizeth Jacho Moyón documento de identificación N° 1720664323, obteniendo como resultado final el trabajo de titulación bajo la opción de Proyecto Técnico que cumple con todos los requisitos determinados por la Universidad Politécnica Salesiana.

Quito, 08 de marzo del 2022

Atentamente,

Ing. Wilson Ramiro Torres Berni, PhD.

1710259845

AGRADECIMIENTO

Al finalizar este trabajo quiero utilizar este espacio para agradecer a Dios por todas sus bendiciones a lo largo de la carrera, a mis padres que han sabido darme su ejemplo de trabajo y honradez y a mis amigos de la facultad con los que luchamos cada dia para poder salir a delante pese a las adversidades que se presentaron en el camino.

Finalmente quiero agradecer a nuestro tutor Ing. Wilson Torres por su apoyo en la realización de proyecto y al Ing. Gabriel Sánchez por compartir con nosotros sus conocimientos que fueron de gran ayuda en nuestra investigación.

CARLOS MIGUEL ARANDA SALAZAR

AGRADECIMIENTO

Inicio agradeciendo a Dios por bendecirme en toda la carrera universitaria, por brindarme la oportunidad de cada día empezar de nuevo con fuerzas y salud, el cual concluye cumpliendo una de las metas más anheladas de mi vida.

A mi madre, por ser mi fortaleza e inspiración diaria que, con su presencia misma, así como su incondicional apoyo moral me ha dado valor para seguir adelante y lograr todo lo propuesto. A mi hermana, mi compañera de vida, por soportarme en los peores días, por recargar mis días de alegría y ser mi motivación para seguir adelante. A mi padre por ser un ejemplo de constancia y dedicación, por todo el sacrificio que ha realizado para que pueda alcanzar mi sueño. Infinitas gracias a ustedes por ser el motor de mi vida.

A mis tíos, gracias por su cariño, ayuda brindada en mi vida universitaria y ser la guía para adentrarme en el mundo de la construcción y seguir esta increíble carrera.

A todos mis amigos que me acompañaron a la largo de la carrera, por compartir enseñanzas, pasatiempos y estar juntos en las buenas y malas circunstancias. A mi compañero de tesis Carlos A., por su apoyo y dedicación a nuestro trabajo.

Al Ing. Wilson Torres, por su apoyo y conocimientos compartidos durante la realización de la presente tesis y al Ing. Gabriel Sánchez, por la orientación y consejos brindados.

Finalmente, gracias a todos por acompañarme en esta travesía que culmina llena de increíbles experiencias.

DAYANA LIZETH JACHO MOYÓN

ÍNDICE GENERAL DE CONTENIDOS

CERTIFI TITULAC	CADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE IIÓNII
CERTIFI	CADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE
TITULAC	CIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANAIII
CERTIFI	CADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN IV
AGRADE	CIMIENTOV
AGRADE	CIMIENTOVI
ÍNDICE (GENERAL DE CONTENIDOS VII
ÍNDICE E	DE TABLASXIII
ÍNDICE I	DE FIGURAS XVI
RESUME	NXXI
ABSTRA	CTXXII
CAPÍTUL	O I
ANTECE	DENTES Y GENERALIDADES1
1.1.	Antecedentes 1
1.2.	Justificación
1.3.	Objetivos
1.3.1	Objetivo General
1.3.2	Objetivos Específicos
CAPÍTUL	О II
FUNDAM	ENTACIÓN TEÓRICA 5
2.1.	Sistemas Resistentes NEC-2015
2.2.	Sistemas Estructurales a Momento en Acero según AISC 341-16 5
2.2.1	Pórticos resistentes a momento (PRM) 6
2.2.2	Pórticos especiales resistentes a momento, SMF 6
2.2.3	Pórticos Intermedios Resistentes a Momento, IMF7
2.2.4	Pórticos Ordinarios Resistentes a Momento, OMF 7
2.3.	Consideraciones para el diseño de elementos en acero
2.3.1	Columnas Tubulares
2.3.1.1.	Diseño a Compresión de columnas tubulares
2.3.1.2.	Diseño a Flexión de columnas tubulares
2.3.1.3.	Relación de Interacción de la Columna Tubular 15
2.3.2	Columnas Cruciformes 15

2.3.2.1.	Propiedades Geométricas de la Columna cruciforme	16
2.3.2.2.	Diseño a Compresión de columnas cruciformes	19
2.3.2.3.	Diseño a Flexión de columnas cruciformes	20
2.3.2.4.	Relación de Interacción para columnas cruciformes	23
2.3.3	Vigas y Viguetas armadas I	23
2.3.3.1.	Diseño a Flexión	23
2.3.3.2.	Resistencia a Corte Nominal	24
2.3.3.3.	Verificación de Serviciabilidad	24
2.4.	Rotulas plásticas	26
2.4.1	Rotulas en Vigas	26
2.4.2	Rotulas en Columnas	27
2.4.3	Momento Máximo Probable en la Rótula	28
2.4.4	Corte máximo en la Rotula Plástica	28
2.5.	Conexiones	29
2.5.1	Clasificación de conexiones	29
2.5.1.1.	Conexiones Simples	29
2.5.1.2.	Conexiones Semi rígidas	29
2.5.1.3.	Conexiones rígidas	29
2.5.2	Ángulo Deriva de Piso	30
2.5.3	Conexiones precalificadas según AISC 358-16	30
2.5.3.1.	Soldaduras precalificadas	31
2.5.3.2.	Pernos de alta resistencia	33
2.5.4	Conexión Precalificada en Edificios con Columnas Cruciformes	33
2.5.5	Conexión a momento de placa de extremo extendida atornillada	33
2.5.5.1.	Conexión a momento de placa de extremo extendida de cuatro pernos sin	
rigidizad	lores	34
2.5.6	Placas de continuidad.	42
2.5.6.1.	Consideraciones de diseño de la placa de continuidad	42
2.5.7	Criterio de Columna fuerte-Viga débil	45
2.5.7.1.	Resistencia a Cortante por Capacidad	45
2.5.7.2.	Relación que satisface el Criterio	46
2.5.8	Zona panel	46
2.5.9	Consideraciones de diseño para pórticos SMF y IMF	47
2.6.	Desempeño Sísmico	48

2.6.1	Diseño sísmico basado en el desempeño	48
2.6.2	Niveles de Desempeño Sísmico	49
2.6.2.1.	Niveles de Desempeño según el Comité Visión 2000	49
2.6.2.2.	Niveles de Desempeño según el ATC-40	50
2.6.3	Objetivos de Desempeño	52
2.6.3.1.	Objetivos de Desempeño según el Comité Visión 2000	52
2.6.3.2.	Objetivos de Desempeño según el ATC-40	53
2.7.	Demanda sísmica	53
2.7.1	Niveles de Amenazas Sísmicas	54
2.7.1.1.	Amenaza sísmica según ATC-40	54
2.7.1.2.	Amenaza sísmica según NEC-2015	54
2.7.2	Espectro de diseño según la NEC-2015	55
2.7.2.1.	Espectro de Diseño	55
2.8.	Capacidad de la Estructura	57
2.8.1	Edificios ante Cargas Laterales	57
2.8.1.1.	Cargas Laterales según NEC 2015	58
2.9.	Análisis Estático No Lineal "Pushover"	58
2.9.1	Limitaciones para ingresar en un Análisis Pushover	59
2.9.2	Evaluación y resultados del Análisis Pushover	60
2.9.3	Modelo Esfuerzo-Deformación del Acero	60
2.9.3.1.	Modelo Elastoplástico Perfecto	60
2.9.4	Modelo Inelástico de los Elementos	61
2.9.4.1.	Diagrama de Momento-Rotación	61
2.9.4.2.	Diagrama Momento-Rotación de Vigas	62
2.9.4.3.	Diagrama Momento-Rotación de Columnas	64
2.9.4.4.	Criterios de Aceptación no Lineales	65
2.9.5	Curva de capacidad	66
2.9.5.1.	Ductilidad	67
2.9.5.2.	Sobre resistencia	68
2.10.	Estimación del Punto de Desempeño	68
2.10.1	Método del Espectro de Capacidad	69
2.10.1.1	.Propuesta según el ATC-40	69
2.10.1.2	.Propuesta según el FEMA 440	72

	2.10.2	Método de Coeficientes	78
	2.10.2.1	.Propuesta del FEMA 356	78
	2.10.2.2	. Propuesta del FEMA 440 y el ASCE/SEI 41-13	80
	2.11.	Evaluación de Desempeño Sísmico	82
	2.11.1	Límites de Aceptabilidad Global	83
C	APÍTUL	ОШ	84
Μ	ETODO	DLOGÍA	84
	3.1.	Descripción General de los Edificios	84
	3.1.1	Propiedades de los Materiales	84
	3.2.	Bases de Diseño	85
	3.2.1	Normativa utilizada	85
	3.2.2	Análisis de Carga	85
	3.2.3	Predimensionamiento de Elementos	86
	3.2.3.1.	Vigas de Acero	86
	3.2.3.2.	Columnas de Acero	87
	3.2.4	Análisis Sísmico	89
	3.2.4.1.	Parámetros Sísmicos	89
	3.2.4.2.	Espectros de Diseño	90
	3.2.4.3.	Coeficiente Sísmico	92
	3.2.5	Secciones consideradas en el Diseño	93
	3.2.6	Determinación del Cortante Basal	93
С	APITUL	O IV	95
D	ISEÑO I	DE EDIFICIOS DE ACERO	95
	4.1.	Método de diseño	95
	4.2.	Combinaciones de cargas para diseño	95
	4.3.	Diseño de Edificios con columnas tubulares	95
	4.3.1	Edificio de tres pisos	96
	4.3.2	Edificio de seis pisos	99
	4.4.	Diseño de Edificios con columnas cruciformes 1	02
	4.4.1	Edificio de tres pisos 1	02
	4.4.2	Edificio de seis pisos 1	05
	4.5.	Diseño de Conexión Precalificada 1	08
	4.5.1 rigidizae	Diseño de la conexión placa extremo extendida de cuatro pernos dores (BUEEP 4E) 1	sin 08
	4.5.1.1.	Especificaciones del material 1	09

	4.5.1.2.	Propiedades de la viga y columna	109
	4.5.1.3.	Límites de precalificación	109
	4.5.1.4.	Diseño de la placa extremo y pernos	110
	4.5.1.5.	Diseño del lado de la Columna	116
	4.5.2	Diseño de la Placa de Continuidad	118
	4.6.	Revisión de Columna fuerte-Viga Débil	121
	4.6.1	Cortante por Capacidad en Elementos Diseñados	121
	4.6.2	Relación Columna-Viga	122
	4.7.	Modelado de las estructuras en SAP2000	123
C	APÍTUL	20 V	124
E (T	VALUA PUSHOV	CIÓN SÍSMICA Y PROCEDIMIENTO ESTÁTICO NO LINF (FR)	EAL 124
(-	5.1.	Evaluación Sísmica	124
	5.1.1	Edificios con Columnas Tubulares	124
	5.1.1.1.	Edificio de tres pisos	124
	5.1.1.2.	Edificio de seis pisos	126
	5.1.2	Edificios con columnas cruciformes	128
	5.1.2.1.	Edificio de tres pisos	128
	5.1.2.2.	Edificio de seis pisos	130
	5.2.	Análisis Estático No Lineal (Pushover)	133
	5.2.1	Modelos Inelásticos de los Materiales	133
	5.2.1.1.	Acero ASTM A36	133
	5.2.1.2.	Hormigón	134
	5.2.2	Rótulas plásticas en Elementos Estructurales	136
	5.2.2.1.	Rótulas en Edificios con Columnas Cruciformes	136
	5.2.2.2.	Rótulas en Edificios con Columnas Tubulares	139
	5.2.3	Patrón de Cargas Laterales	142
	5.2.3.1.	Comparación de Cargas Laterales	143
	5.2.3.2.	Colocación de Cargas Laterales en SAP2000	144
	5.2.4	Casos de Carga	144
	5.2.4.1.	Carga Gravitacional no Lineal	144
	5.2.4.2.	Carga Pushover	146
	5.2.5	Resultados del Análisis Pushover	147
	5.2.5.1.	Modelos con Columnas Cruciformes	148

5.2.5.2.	Modelos con Columnas Tubulares	152
5.2.6	Curvas de Capacidad	156
5.2.6.1.	Curvas de Capacidad	156
5.2.6.2.	Puntos de Interés de la Curva de Capacidad	158
5.3.	Análisis Dinámico No Lineal	158
5.3.1	Registro sísmico	159
5.3.2	Caso de carga	159
CAPÍTUI	LO VI	162
EVALUA	CIÓN DEL DESEMPEÑO E INTERPRETACION DE RESULT	ADOS
••••		162
6.1.	Objetivos de Desempeño	162
6.2.	Espectros de Demanda Sísmica	162
6.3.	Método Espectro de Capacidad por el FEMA 440	163
6.3.1	Proceso en Edificios con Columnas Cruciformes	165
6.3.2	Proceso en Edificios con Columnas Tubulares	167
6.3.3	Puntos de Desempeño	169
6.4.	Representación Bilineal según el FEMA 356	169
6.4.1	Edificios con Columnas Cruciformes	170
6.4.2	Edificios con Columnas Tubulares	172
6.5.	Método de Coeficientes según FEMA 440	174
6.5.1	Puntos de Desempeño	175
6.6.	Evaluación del Desempeño sísmico	175
6.6.1	Evaluación para el Método del Espectro de Capacidad	175
6.6.1.1.	Edificios con Columnas Cruciformes	176
6.6.1.2.	Edificios con Columnas Tubulares	178
6.6.2	Puntos de interés del análisis Tiempo – Historia	182
6.6.3	Rotulas Plásticas por el análisis Tiempo – Historia	180
CONCLU	SIONES	183
RECOM	ENDACIONES	185
REFERE	NCIAS	186
ANEXOS		192

ÍNDICE DE TABLAS

Tabla 1 Factores de Fluencia y Tensión Probable para Materiales de Acero	28
Tabla 2 Resistencia de Diseño a Cortante	43
Tabla 3 Requerimientos de Diseño entre los Sistemas SMF e IMF	47
Tabla 4 Niveles de Desempeño y Descripción de los Estados de Daño	49
Tabla 5 Niveles de Desempeño para las Estructuras	52
Tabla 6 Objetivos de Seguridad Básica para Estructuras Convencionales	53
Tabla 7 Niveles de Amenaza Sísmica según NEC-2015	54
Tabla 8 Valores del Factor Z en función de la zona Sísmica	55
Tabla 9 Parámetros para Procedimientos no lineales de una Viga	63
Tabla 10 Ejemplo de Momento-Rotación de una Viga	63
Tabla 11 Parámetros para Procedimientos no lineales de una Columna	64
Tabla 12 Ejemplo de aplicación de valores de Momento-Rotación de una Columna	65
Tabla 13 Valores para el Factor de Modificación C0	81
Tabla 14 Propiedades del Hormigón, Acero y Panel Metálico	84
Tabla 15 Cargas colocadas en las Estructuras modeladas	85
Tabla 16 Predimensionamiento de Vigas	87
Tabla 17 Predimensionamiento de Columnas	88
Tabla 18 Datos Empleados para el Espectro de Sismo Diseño de la NEC 2015	90
Tabla 19 Periodos usados el Espectro de Diseño de la NEC 2015	90
Tabla 20 Datos empleados para el Espectro Inelástico de Diseño de la NEC 2015	91
Tabla 21 Datos empleados para el Espectro Inelástico Diseño de la NEC 2015	92
Tabla 22 Coeficientes sísmicos de cada Estructura Analizada	93
Tabla 23 Secciones finales del Sistema Estructural con Columnas Cruciformes	93
Tabla 24 Secciones finales del Sistema Estructural con Columnas Tubulares	93
Tabla 25 Cortante Basal de Edificios con Columnas Cruciformes	94
Tabla 26 Cortante Basal de Edificios con Columnas Tubulares	94
Tabla 27 Diseño de Columnas Tubulares Armadas-Edificio 3 Pisos	96
Tabla 28 Diseño de Vigas I Armadas-Edificio 3 Pisos	97
Tabla 29 Diseño de Viguetas I Armadas-Edificio 3 Pisos	98
Tabla 30 Diseño de Columnas Tubulares Armadas-Edificio 6 Pisos	99
Tabla 31 Diseño de Vigas I Armadas-Edificio 6 Pisos	. 100
Tabla 32 Diseño de Viguetas I Armadas-Edificio 6 Pisos	. 101
Tabla 33 Diseño de Columnas Cruciformes Armadas-Edificio 3 Pisos	. 102

Tabla 34 Diseño de Vigas I Armadas-Edificio 3 Pisos	. 103
Tabla 35 Diseño de Viguetas I Armadas- Edificio 3 Pisos	. 104
Tabla 36 Diseño de Columnas Cruciformes Armadas- Edificio 6 Pisos	. 105
Tabla 37 Diseño de Vigas I Armadas- Edificio 6 Pisos	. 106
Tabla 38 Diseño de Viguetas I Armadas- Edificio 6 Pisos	. 107
Tabla 39 Propiedades de los Materiales usados en el diseño de la Conexión	. 109
Tabla 40 Propiedades de la Viga más critica	. 109
Tabla 41 Propiedades de la Columna más Critica	. 109
Tabla 42 Revisión Preliminar a las Vigas	. 110
Tabla 43 Revisión Preliminar a las Columnas	. 110
Tabla 44 Limites Paramétricos de Precalificación	. 112
Tabla 45 Geometría de Conexión Seleccionada	. 112
Tabla 46 Cortante por Capacidad de los Elementos Diseñados	. 122
Tabla 47 Criterios de Columna fuerte- Viga débil de los Elementos Diseñados	. 122
Tabla 48 Derivas para el Caso "Sismo Dinámico X-Y" - Edificio 3 pisos	. 124
Tabla 49 Cortantes Dinámicos y Estáticos de SAP2000 - Edificio 3 pisos	. 125
Tabla 50 Comprobación del Corte Dinámico vs Corte Estático	. 125
Tabla 51 Participación de la Masa modal - Edificio 3 pisos	. 126
Tabla 52 Modos de vibración - Edificio 3 pisos	. 126
Tabla 53 Derivas para el Caso "Sismo Dinámico X-Y" - Edificio 6 pisos	. 126
Tabla 54 Cortantes Dinámicos y Estáticos de SAP2000 - Edificio 6 pisos	. 127
Tabla 55 Comprobación del Corte Dinámico vs Corte Estático	. 128
Tabla 56 Participación de la Masa modal - Edificio 6 pisos	. 128
Tabla 57 Modos de vibración - Edificio 6 pisos	. 128
Tabla 58 Derivas para el Caso "Sismo Dinámico X-Y" en Edificio 3 pisos	. 129
Tabla 59 Cortantes Dinámicos y Estáticos de SAP2000 - Edificio 3 Pisos	. 129
Tabla 60 Comprobación del Corte Dinámico vs Corte Estático	. 130
Tabla 61 Participación de la Masa modal - Edificio 3 Pisos	. 130
Tabla 62 Modos de vibración - Edificio 3 Pisos	. 130
Tabla 63 Derivas para el Caso "Sismo Dinámico X-Y" en Edificio 6 pisos	. 131
Tabla 64 Cortantes Dinámicos y Estáticos de SAP2000	. 132
Tabla 65 Comprobación del Corte Dinámico vs Corte Estático en Edificio 6 pisos	. 132
Tabla 66 Participación de la Masa modal - Edificio 6 pisos	. 132
Tabla 67 Modos de vibración - Edificio 6 pisos	. 132
Tabla 68 Distancias relativas que se asignaran a las vigas en el programa SAP	. 137

Tabla 69 Distancias relativas que se asignaran a las columnas en el programa SAP 139
Tabla 70 Asignación de las Rotulas Plásticas en Vigas por Flexión en SAP140
Tabla 71 Fuerzas Laterales en la dirección "X" e "Y" del Edificio de 6 pisos con
Columnas Cruciformes
Tabla 72 Fuerzas Laterales en la dirección "X" e "Y" del Edificio de 3 pisos con
Columnas Cruciformes
Tabla 73 Fuerzas Laterales en la dirección "X" e "Y" del Edificio de 6 pisos con
Columnas Tubulares
Tabla 74 Fuerzas Laterales en la dirección "X" e "Y" del Edificio de 3 pisos con
Columnas Tubulares
Tabla 75 Fuerzas Manuales vs Fuerzas SAP2000 del Edificio de 6 pisos143
Tabla 76 Fuerzas Manuales vs Fuerzas SAP2000 del Edificio de 3 pisos143
Tabla 77 Puntos de Interés de los Edificios Modelados
Tabla 78 Ductilidad y Sobre resistencia de los Edificios Modelados
Tabla 79 PF1 y Øtecho del Edificio de 6 pisos con Columnas Cruciformes en la
dirección X e Y 165
Tabla 80 PF1 y Øtecho del Edificio de 3 pisos con Columnas Cruciformes en la
dirección X e Y 165
Tabla 81 PF1 y Øtecho del Edificio de 6 pisos con Columnas Tubulares en la dirección
X e Y
Tabla 82 PF1 y Øtecho del Edificio de 3 pisos con Columnas Tubulares en la dirección
X e Y
Tabla 83 Puntos de Desempeño de los Edificios con Columnas Cruciformes
Tabla 84 Puntos de Desempeño de los Edificios con Columnas Tubulares
Tabla 85 Puntos de Desempeño de los Edificio con Columnas Cruciformes
Tabla 86 Puntos de Desempeño de los Edificio con Columnas Tubulares 175
Tabla 87 Evaluación del Desempeño Sísmico para todos los Edificios
Tabla 88 Desplazamientos máximos por análisis TIEMPO - HISTORIA 182

ÍNDICE DE FIGURAS

Figura 1 Planta de Edificio de Acero Estructural Compuesto por Pórticos Resistentes a	
Momento y Gravitacionales	5
Figura 2 Pórtico Resistente a Momento	6
Figura 3 Desplazamiento de la estructura y Formación de rótulas plásticas en colu	ımnas
	7
Figura 4 Sección Tubular Cuadrada y Rectangular	8
Figura 5 Sección típica de una columna cruciforme	16
Figura 6 Dimensiones de una sección Cruciforme Simétrica y Asimétrica	16
Figura 7 Sección transversal de una sección cruciforme	18
Figura 8 Dimensiones de una sección I Armada Transversal	23
Figura 9 Rotulas plásticas en las vigas	27
Figura 10 Rotulas plásticas en las Columnas	27
Figura 11 Cortante máximo en la Rotula Plástica	28
Figura 12 Angulo de deriva de entrepiso	30
Figura 13 Diseños 3D de las conexiones precalificadas del AISC 358 -16	31
Figura 14 Tipos de soldadura del tipo Ranura	32
Figura 15 Tipos de soldadura del tipo Filete	32
Figura 16 Configuraciones de Placas Extremas Extendidas	34
Figura 17 Ubicación de la Rotula Plástica	35
Figura 18 Geometría de la placa de extremo	36
Figura 19 Placas de Continuidad	42
Figura 20 Momentos y Fuerzas actuantes en la Conexión	45
Figura 21 Panel Nodal	47
Figura 22 Objetivo de Desempeño sísmico recomendados para Edificios	53
Figura 23 Espectro Sísmico Elástico de Aceleraciones del Sismo de Diseño	55
Figura 24 Patrones de Distribución de las Cargas Laterales	57
Figura 25 Secuencia del proceso de Análisis Estático No Lineal (AENL)	59
Figura 26 Modelo Elastoplástico Perfecto	61
Figura 27 Relación fuerza-deformación generalizada para Elementos de Acero	62
Figura 28 Diagrama Momento-Rotación de una Viga	64
Figura 29 Diagrama Momento-Rotación de una Columna	65
Figura 30 Criterios de Aceptación No lineales	66
Figura 31 Curva de Capacidad	67

Figura 32 Comportamiento Dúctil y no Dúctil de una Estructura	67
Figura 33 Formato ADRS (Sa vs Sd)	70
Figura 34 Conversión de la Curva de Capacidad a formato ADRS	71
Figura 35 Representación Bilineal del Espectro de Capacidad	72
Figura 36 Espectro de Respuesta Modificado MADRS	75
Figura 37 Espectro de Demanda Inicial y Espectro de Capacidad	76
Figura 38 Representación Bilineal en Espectro de Demanda Inicial y Espectro) de
Capacidad	77
Figura 39 Determinación del Máximo Desplazamiento Esperado	77
Figura 40 Punto de Intersección del Espectro de Demanda y Capacidad	78
Figura 41 Representación Bilineal según el FEMA 356	80
Figura 42 Curva Idealizada Fuerza-Desplazamiento según FEMA 440	81
Figura 43 Sectorización por Niveles de Desempeño del Modelo Bilineal de la Curv	a de
Capacidad	83
Figura 44 Estructuración de Piso en el Sistema Estructural de Pórticos	89
Figura 45 Espectro Elástico e Inelástico de Diseño para un R de 8	91
Figura 46 Espectro Elástico e Inelástico de Diseño para un R de 4.5	92
Figura 47 Placas de Continuidad en Columna Cruciforme	118
Figura 48 Vista del Edificio de 6 pisos en planta y 3D - Sistema Estructural de Pórt	icos
	123
Figura 49 Vista del Edificio de 3 pisos en planta y 3D - Sistema Estructural de Pórt	icos
	123
Figura 50 Derivas en X-Y respecto a la Altura del Edificio 3 pisos	125
Figura 51 Derivas en X-Y respecto a la Altura del Edificio 6 pisos	127
Figura 52 Derivas en X-Y respecto a la Altura del Edificio 3 Pisos	129
Figura 53 Derivas en X-Y respecto a la Altura del Edificio en Edificio 6 pisos	131
Figura 54 Ingreso de los datos del Material de Acero	133
Figura 55 Ingreso de la no linealidad del Acero en SAP2000	134
Figura 56 Modelo Elastoplástico del Esfuerzo- Deformación del Acero A 36	134
Figura 57 Ingreso de los datos del Material de Hormigón en SAP2000	135
Figura 58 Ingreso de la no linealidad del Hormigón en SAP2000	135
Figura 59 Modelo Esfuerzo- Deformación del Hormigón	136
Figura 60 Definición de rótula plástica por Flexión en las Vigas para Edificios	con
Columnas Cruciformes	137
Figura 61 Asignación de las Rótulas Plásticas en Vigas por Flexión en SAP	138

Figura 62 Definición de rótulas plástica por Flexión y Fuerza Axial en la Columna para
Edificios con Columnas Cruciformes
Figura 63 Asignación de Rótulas Plástica en Columnas por Flexión y Fuerza Axial en
SAP
Figura 64 Definición de rótula plástica por Flexión en las Vigas para Edificio con
Columnas Tubulares
Figura 65 Definición de rótula plástica por Flexión y Fuerza Axial en la Columna para
Edificios con Columnas Tubulares
Figura 66 Definición del Caso de Carga e Ingreso de cargas laterales en el sentido X-X
Figura 67 Condición Inicial de Cargas de Gravedad no Lineal
Figura 68 Punto de Control del Estado de Carga Gravitacional No Lineal 145
Figura 69 Caso de Carga para el Análisis Pushover X-X 146
Figura 70 Control de desplazamientos para el Caso de Carga Push X-X 147
Figura 71 Máximo y mínimo número de pasos para el Caso de Carga Push X-X 147
Figura 72 Primera Rótula del Edificio de 3 pisos con Columnas Cruciformes en el sentido
X-X
Figura 73 Desplazamiento último antes del Colapso del Edificio de 3 pisos con Columnas
Cruciformes en el sentido X-X
Figura 74 Primera Rótula del Edificio de 3 pisos con Columnas Cruciformes en el sentido
Y-Y
Figura 75 Desplazamiento último antes del Colapso del Edificio de 3 pisos con Columnas
Cruciformes en el sentido Y-Y
Figura 76 Primera Rótula del Edificio de 6 pisos con Columnas Cruciformes en el sentido
X-X
Figura 77 Desplazamiento último antes del Colapso del Edificio de 6 pisos con Columnas
Cruciformes en el sentido X-X
Figura 78 Primera Rotula del Edificio de 6 pisos con Columnas Cruciformes en el sentido
Y-Y
Figura 79 Desplazamiento último antes del Colapso del Edificio de 6 pisos con Columnas
Cruciformes en el sentido Y-Y
Figura 80 Primera Rótula del Edificio de 3 pisos con Columnas Tubulares en Sentido X-
X
Figura 81 Desplazamiento último antes del Colapso del Edificio de 3 pisos con Columnas
Tubulares en el sentido X-X

Figura 82 Primera Rótula del Edificio de 3 pisos con Columnas Tubulares en el sentido
Y-Y
Figura 83 Desplazamiento último antes del Colapso del Edificio de 3 pisos con Columnas
Tubulares en el sentido Y-Y 153
Figura 84 Primer Rótula del Edificio de 6 pisos con Columnas Tubulares en el sentido
X-X
Figura 85 Desplazamiento último antes del Colapso del Edificio de 6 pisos con Columnas
Tubulares en el sentido X-X 154
Figura 86 Primero Rotula del Edificio de 6 pisos con Columnas Tubulares en el sentido Y-Y
Figura 87 Desplazamiento último antes del Colapso del Edificio de 6 pisos con Columnas
Tubulares en la dirección Y-Y
Figura 88 Curvas de Capacidad del Edificios de 6 pisos con Columnas Cruciformes en
la dirección X e Y
Figura 89 Curvas de Capacidad del Edificios de 3 pisos con Columnas Cruciformes en
la dirección X e Y
Figura 90 Curvas de Capacidad del Edificios de 6 pisos con Columnas Tubulares en la
dirección X e Y
Figura 91 Curvas de Capacidad del Edificios de 3 pisos con Columnas Tubulares en la
dirección X e Y
Figura 92 Acelerograma
Figura 93 Caso de carga Tiempo- Historia
Figura 94 Amortiguamiento de Rayleigh-SAP2000
Figura 95 Parámetros de integración - SAP2000 161
Figura 96 Objetivos Básicos de Desempeño para Edificaciones Normales 162
Figura 97 Espectro de Respuesta Elástico Sísmico de Diseño 163
Figura 98 Espectro de Respuesta Elástico Sísmico de Diseño en formato ADRS 163
Figura 99 Diagrama de Flujo – Método del Espectro de capacidad, FEMA 440 164
Figura 100 Espectros de Capacidad del Edificio de 6 pisos con Columnas Cruciformes
en la dirección X e Y 166
Figura 101 Espectros de Capacidad del Edificio de 3 pisos con Columnas Cruciformes
en la dirección X e Y 166
Figura 102 Espectros de Capacidad del Edificio de 6 pisos con Columnas Tubulares en
la dirección X e Y

Figura 103 Espectros de Capacidad del Edificio de 3 pisos con Columnas Tubulares en
la dirección X e Y
Figura 104 Representación Bilineal de la Curva de Capacidad del Edificio de 6 pisos con
Columnas Cruciformes en la dirección X-X 170
Figura 105 Representación Bilineal de la Curva de Capacidad del Edificio de 6 pisos con
Columnas Cruciformes en la dirección Y-Y 170
Figura 106 Representación Bilineal de la Curva de Capacidad del Edificio de 3 pisos con
Columnas Cruciformes en la dirección X-X 171
Figura 107 Representación Bilineal de la Curva de Capacidad del Edificio de 3 pisos con
Columnas Cruciformes en la dirección Y-Y 171
Figura 108 Representación Bilineal de la Curva de Capacidad del Edificio de 6 pisos con
Columnas Tubulares en la dirección X-X 172
Figura 109 Representación Bilineal de la Curva de Capacidad del Edificio de 6 pisos con
Columnas Tubulares en la dirección Y-Y 172
Figura 110 Representación Bilineal de la Curva de Capacidad del Edificio de 3 pisos con
Columnas Tubulares en la dirección X-X 173
Figura 111 Representación Bilineal de la Curva de Capacidad del Edificio de 3 pisos con
Columnas Tubulares en la dirección Y-Y 173
Figura 112 Diagrama de flujo – Método de los Coeficientes 174
Figura 113 Desempeño Sísmico en Edificio de 6 pisos en la dirección X-X 176
Figura 114 Desempeño Sísmico en Edificio de 6 pisos en la dirección Y-Y 176
Figura 115 Desempeño Sísmico en Edificio de 3 pisos en la dirección X-X 177
Figura 116 Desempeño Sísmico en Edificio de 3 pisos en la dirección Y-Y 177
Figura 117 Desempeño Sísmico en Edificio de 6 pisos en la dirección X-X 178
Figura 118 Desempeño Sísmico en Edificio de 6 pisos en la dirección Y-Y 178
Figura 119 Desempeño Sísmico en Edificio de 3 pisos en la dirección X-X 179
Figura 120 Desempeño Sísmico en Edificio de 3 pisos en la dirección Y-Y 179
Figura 121 Rotulas plásticas del Edificio de 3 pisos con secciones cruciformes 180
Figura 122 Rotulas plásticas del Edificio de 3 pisos con secciones tubulares
Figura 123 Rotulas plásticas del Edificios de 6 pisos con secciones cruciformes 181
Figura 124 Rotulas plásticas del Edificios 6 pisos con secciones tubulares 181

RESUMEN

El presente documento detalla el diseño y análisis basado en el desempeño sísmico, de cuatro estructuras en acero. Se plantean dos sistemas estructurales, cada uno con modelos de 3 y 6 pisos. Dos de ellos serán marcos especiales a momento (SMF) con columnas cruciformes y los dos restantes, marcos intermedios a momento (IMF) con columnas tubulares.

El estudio parte de un Análisis Sísmico Modal-Espectral en base a las disposiciones establecidas en las normas, NEC–SE–DS/AC/CG y AISC 360/341-16. Seguido de un Análisis Estático No Lineal "Pushover", haciendo uso de las recomendaciones dadas por el ASCE 41-13 y el FEMA 356. Con el fin de determinar el punto de desempeño de las estructuras, mediante la aplicación de dos métodos: el método del espectro de capacidad (ATC-40, FEMA 440); y el método de coeficientes (FEMA 440, ASCE 41-13).

A manera de comprobación, se realizó un análisis dinámico no lineal (Tiempo-Historia) con un registro sísmico sintético compatible con el Espectro de Demanda Sísmica, para asegurar que los puntos de desempeño obtenidos por las metodologías mencionadas en el análisis estático no lineal no difieran del dinámico no lineal.

En la investigación se hizo uso del software comercial SAP2000, para desarrollar los análisis mencionados. Además, se puede evidenciar los procedimientos a seguir en el programa, mediante capturas de pantalla.

Finalmente se presenta la evaluación del desempeño sísmico de las estructuras modeladas, según los objetivos de desempeño recomendados por el ATC40 y la NEC–SE–DS.

Palabras clave: marcos resistentes a momento, criterios de diseño, análisis estático no lineal, punto de desempeño, desempeño sísmico

ABSTRACT

This document details the design and analysis based on the seismic performance of four steel structures. Two structural systems are proposed, each with 3-story and 6story models. Two of them will be special moment frames (SMF) with cruciform columns and the other two will be intermediate moment frames (IMF) with tubular columns.

The study starts with a Modal-Spectral Seismic Analysis based on the provisions established in the NEC-SE-DS/AC/CG and AISC 360/341-16 standards. Followed by a Nonlinear Static Pushover Analysis, making use of the recommendations given by ASCE 41-13 and FEMA 356. In order to determine the performance point of the structures, through the application of two methods: the capacity spectrum method (ATC-40, FEMA 440); and the coefficient method (FEMA 440, ASCE 41-13).

As a check, a nonlinear dynamic analysis (Time-History) was performed with a synthetic seismic record compatible with the Seismic Demand Spectrum, to ensure that the performance points obtained by the nonlinear static analysis do not differ from each other.

The research made use of SAP2000 commercial software to develop the mentioned analysis methods. In addition, the procedures to be followed in the program can be evidenced by means of screenshots.

Finally, the evaluation of the seismic performance of the modeled structures is presented, according to the performance objectives recommended by the ATC40 and the NEC-SE-DS.

Keywords: moment resistant frames, design criteria, non-linear static analysis, performance point, seismic performance

CAPÍTULO I

ANTECEDENTES Y GENERALIDADES

1.1. Antecedentes

Ecuador se encuentra localizado en una zona de alta sismicidad debido a su ubicación en el cinturón de Fuego del Pacífico, teniendo como resultado uno de los terremotos más representativos del país, ocurrido el 16 de abril del 2016 en la provincia de Manabí, de magnitud 7.8 grados en la escala de Richter. Esta actividad sísmica fue intensa y generó solicitaciones dinámicas a las diversas estructuras construidas en Hormigón y Acero, en las cuales se supone que hubo controles técnicos y criterios de Diseño Sismorresistente. Sin embargo, el resultado fue centenas de muertos, construcciones colapsadas y un sin número de edificaciones por ser rehabilitadas (N. Rosillo, et al., 2016).

Gran parte de las estructuras afectadas presentaban patologías estructurales como poca capacidad para disipar energía, falta de redundancia estructural, efectos P- Δ , columnas esbeltas, formaciones de columna débil-viga fuerte, etc. Por lo que las investigaciones concluyeron que la mayoría de los edificios tenían defectos en sus componentes estructurales; generando interrogantes como: ¿Con la inclusión de verificaciones de análisis no lineales, se podría garantizar el buen comportamiento de los elementos?

Ante esto, surge la necesidad de realizar el diseño de edificaciones estudiando su desempeño sísmico con el fin de evaluar el comportamiento de los elementos más allá del rango elástico, más aún cuando el país ha venido incursionando en el uso del acero estructural, el cual cuenta con propiedades como ductilidad, resistencia, durabilidad y reciclabilidad luego de un ciclo de vida de las edificaciones.

Los diseñadores y constructores han optado por secciones tubulares para "Marcos a Momento", debido a que se forman uniones rígidas en las cuatro caras de la columna con cada viga conectada. Sin embargo, existe una mala práctica en sus conexiones, los constructores improvisan de manera arbitraria, debido a que la vigente norma ecuatoriana no detalla apropiadamente su diseño, fabricación y montaje. Además, cuenta con pocos controles de calidad (Barrios José, 2017).

Existen investigaciones referentes a conexiones para elementos tubulares, pero aún no se han incorporado a normativas, pues las propuestas no han cumplido los requerimientos como ensayos y requisitos sísmicos. Razón por la cual usar columnas tubulares huecas no es viable, ya que de acuerdo a las normas internacionales "AISC 358 y AISC 341", no existen conexiones precalificadas para sistemas de Marcos a Momento con este tipo de columnas. Por tanto, lo que se usa en la práctica local no está estandarizado y no existe un respaldo científico – académico.

Teniendo en cuenta las limitaciones mencionadas anteriormente la ingeniería disponible pueden dar soluciones para mejorar los sistemas constructivos como es el caso de la evaluación del desempeño estructural y de tal manera reducir la vulnerabilidad de las construcciones y el riesgo sísmico. Todo esto se traduce en evitar pérdidas potenciales no solo humanas y ambientales, sino también económicas (Cardoso & Quishpe, 2014).

1.2. Justificación

La filosofía de diseño sismorresistente menciona que las estructuras deben mantenerse dentro de los niveles de desempeño adecuados, para garantizar su funcionabilidad y así evitar la pérdida de vidas humanas, económicas y sociales. Sin embargo, los métodos tradicionales de diseño estructural son aproximados y no contemplan el efecto de las excitaciones en el tiempo y menos cuando las estructuras incursionan más allá del rango elástico (Tolentino, et al., 2011). Por esta razón se plantea el uso de metodologías como el diseño sísmico basado en el desempeño.

Este método permite realizar un Análisis No Lineal (Pushover), con el cual se construye curvas de capacidad, que es el resultado de la aplicación de una carga horizontal, paso a paso, hasta llegar al desplazamiento de control o el colapso de la estructura. En dicho análisis el comportamiento del material y cada uno de los elementos de la estructura, deben ser capaces de desarrollar un comportamiento dúctil. Sin embargo, en el caso de las estructuras metálicas con columnas tubulares no se puede garantizar dicho criterio, debido que el país ha optado por utilizar este tipo de secciones en pórticos a momento, pese a no tener conexiones precalificadas para las uniones viga – columna que garanticen el buen desempeño de la estructura frente acciones sísmicas.

Por esta razón, la necesidad de adoptar conexiones precalificadas en los sistemas constructivos de acero, ha sido una de las principales razones, por las que el presente proyecto plantea el empleo de columnas cruciformes para el diseño de edificios en acero, como una de las opciones más factibles para innovar las construcciones; a pesar de que los diseñadores y constructores del país no están al tanto del uso de estos elementos, los cuales cuentan con beneficios como rigidez lateral en ambas direcciones y la posible

aplicación de conexiones precalificas a momento, en los dos ejes ortogonales debido a su configuración.

Finalmente, el desarrollo del presente trabajo servirá como base para futuras investigaciones, con el fin de beneficiar a empresas constructoras, diseñadores, contratistas y al sector en general; con el fin de ampliar los sistemas constructivos en acero, generar un avance en el desarrollo ingenieril del país y a su vez, al sector dedicado a la investigación científico - académico. De manera indirecta también se benefician las industrias dedicadas a la elaboración de elementos metálicos, ya que podrán construir una nueva alternativa de secciones, las cuales estarán disponibles para su uso en las obras civiles.

1.3. Objetivos

1.3.1 Objetivo General

Diseñar edificios tridimensionales en acero con marcos resistentes a momento considerando columnas cruciformes y tubulares huecas, a través de la modelación computacional que simule el comportamiento sísmico de cada estructura con el fin de estimar el desempeño en cada sistema y en consecuencia satisfaga los requerimientos técnicos en beneficio al sector de la construcción.

1.3.2 Objetivos Específicos

- Establecer un procedimiento ordenado y claro para el diseño de columnas cruciformes, aplicando las normas constructivas FEMA 350, AISC 341-16, AISC 360-16 y NEC 2015 que permita adaptarse a la práctica nacional.
- Modelar dos edificios tridimensionales de acero con marcos especiales resistentes a momento (SMF), uno de 3 y 6 niveles, utilizando columnas cruciformes con perfiles armados, usando SAP 2000, para su respectivo análisis estructural.
- Modelar dos edificios tridimensionales de acero con marcos intermedios resistentes a momento (IMF), uno de 3 y 6 niveles, utilizando columnas tubulares huecas con perfiles armados, usando SAP 2000, para su respectivo análisis estructural.
- Analizar el comportamiento sísmico entre cada estructura, a través de un análisis no lineal estático (PUSHOVER) haciendo uso del SAP 2000, con el fin de comparar el desempeño entre cada estructura modelada.

 Analizar y seleccionar una conexión precalificada del AISC 358-16 para las uniones viga-columna de pórticos especiales a momento con secciones cruciformes, tal que a través de su estudio pueda proveer un comportamiento dúctil y pueda ser adoptado en la práctica local.

CAPÍTULO II

FUNDAMENTACIÓN TEÓRICA

2.1. Sistemas Resistentes NEC-2015

Según la NEC-SE-AC un edificio puede estar compuesto de dos clases de pórticos, los resistentes a momento y los gravitacionales, siendo los segundos excluidos del Sistemas Resistente a Cargas Sísmicas (SRCS) y limitados al interior de la edificación. En cambio, los que se localizan en el perímetro de las edificaciones son los que se encuentran a momento, tal como se observa en la Figura 1.

Figura 1

Planta de Edificio de Acero Estructural Compuesto por Pórticos Resistentes a Momento y Gravitacionales

Nota. La figura muestra la ubicación de los pórticos gravitacionales y resistentes a momento en los edificios de acero estructural. Fuente: NEC-SE-AC (2016).

2.2. Sistemas Estructurales a Momento en Acero según AISC 341-16

La normativa AISC 360-16 dispone criterios para el diseño, elaboración e instalación de construcciones de acero estructural y demás estructuras; el capítulo J de la normativa proporciona definiciones de los diversos tipos de conexiones.

2.2.1 Pórticos resistentes a momento (PRM)

Estos pórticos se conforman de columnas y vigas conectadas con conexiones restringidas parciales o totales, dando lugar a uniones que transfieren los momentos flectores de vigas y cargas axiales hacia las columnas, además de zonas de panel en los nudos (ver Figura 2).

Figura 2

Pórtico Resistente a Momento

En pórticos a momento las diferentes cargas gravitatorias y sísmicas, generan momentos flectores y cortantes, tanto en vigas como en columnas. Los máximos valores de estos esfuerzos se producen en las uniones de dichos elementos. De acuerdo a la filosofía sismorresistente, se desea que la disipación de esta energía se produzca por medio de la fluencia del acero, y que las rótulas plásticas se formen en las vigas, cercano a los apoyos; manteniéndose las columnas en el rango elástico. (Sanguil Pablo, 2017)

2.2.2 Pórticos especiales resistentes a momento, SMF

Los Pórticos Especiales a Momento (*Special Moment Frame*) según Hamburger et al. (2015):

Deberán desarrollar deformaciones inelásticas importantes por medio de rótulas plásticas en vigas y una pequeña cedencia de la zona panel. Las vigas deberán tener gran ductilidad que se verá controlada por el pandeo local en el alma y pandeo torsional en las alas de viga. (p.10).

Para garantizar este comportamiento, se debe partir del criterio de columna fuerte viga débil, en donde la capacidad de momentos desarrollados en columnas sea mayor que

en vigas. Si los valores sobrepasan este requerimiento, la disipación de energía se localizaría en columnas, lo cual llevaría a un colapso del piso o la estructura en general (ver Figura 3).

Figura 3

Desplazamiento de la estructura y Formación de rótulas plásticas en columnas

Nota. Se muestra el esquema de un pórtico resistente a momento frente a un desplazamiento lateral por acciones sísmicas. Elaborado por: Los autores

2.2.3 Pórticos Intermedios Resistentes a Momento, IMF

Los Pórticos Intermedios a Momento (*Intermediate Moment Frame*) de la misma manera que los SMF, disipan energía a través de la formación de rótulas plásticas en vigas. Pero su rotación inelástica es menor que los pórticos especiales. El criterio de columna fuerte viga débil se mantiene.

La filosofía para SMF e IMF es la misma, por lo tanto, se debilita la zona o elemento que se quiere que falle o a su vez se refuerza las zonas cercanas a los nodos, con este diseño las vigas podrán desarrollar rotaciones inelásticas que influye en el desempeño de la superestructura (Sanguil Pablo, 2017).

2.2.4 Pórticos Ordinarios Resistentes a Momento, OMF

El nivel de disipación de energía y formación de rótulas plásticas en el Pórtico Ordinario a Momento (*Ordinary Moment Frame*) es muy limitado. Toda la estructura deberá mantenerse en el rango lineal, con o sin cargas sísmicas. La normativa ecuatoriana cataloga en esta categoría a todas las estructuras que no sean edificaciones, siempre y cuando desarrollen resistencias ante diferentes cargas (NEC-SE-DS, 2016).

2.3. Consideraciones para el diseño de elementos en acero

El diseño de la mayoría de estructuras está regido por normas, provisiones y códigos de construcción que están bajo el control de una jurisdicción competente. Estos documentos son reglamentos que especifican tipos de construcción, calidad de material, diseños, entre otros factores y varían de país a país.

2.3.1 Columnas Tubulares

Hoy en día gracias a técnicas modernas como la soldadura, las secciones tubulares de acero cuadradas y rectangulares se usan cada vez más, ver Figura 4. Sin embargo, su fabricación con fines estructurales no es recomendada debido a la dificultad de efectuar conexiones seguras con pernos que garanticen la ductilidad (McCorman & Csernak, 2012). Este tipo de columnas han llegado a ser consideradas por razones como:

- Excelente resistencia a la torsión
- Las secciones del tipo cuadrado llegan a ser más eficientes ya que poseen el mismo radio de giro en ambos sentidos ortogonales principales.
- Tiene menos área superficial para proteger contra el fuego.

Figura 4

Sección Tubular Cuadrada y Rectangular

Elaborado por: Los autores

2.3.1.1. Diseño a Compresión de columnas tubulares

El capítulo E del AISC 360-16 establece los requisitos mínimos para el diseño de elementos a compresión de un sistema de pórticos estructurales. Cabe recalcar que este tipo de columnas se diseñaran para un sistema estructural IMF.

Relación Ancho- Espesor

El AISC 360-16 en la tabla B4. 1a (ver Anexo A.1) nos muestra las condiciones a las que están sometidas las columnas para identificar si su relación ancho- espesor están dentro de los límites de diseño. En este caso sus miembros deben ser no esbeltos. La base (lado corto) y altura (lado largo) de la sección tubular se verifica como elementos atiesados pertenecientes al Caso 6, el cual se describe en la ecuación 1.

$$\lambda sf = 1.4 \sqrt{\frac{E}{Fy}} \tag{1}$$

Donde:

E=módulo de elasticidad específico del material (Mpa).

 F_{y} =esfuerzo de fluencia mínimo especificado del material (Mpa).

El AISC 341-16 en la tabla D1.1 (ver Anexo A.2) nos muestra las condiciones a las que están sometidas las columnas para identificar si su relación ancho-espesor son moderadamente dúctiles, condición necesaria para elementos pertenecientes a sistemas estructurales IMF.

Para la base de la sección tubular (lado corto) se obtiene usando la ecuación 2.

$$\lambda sf = 1.18 \sqrt{\frac{E}{R_y F_y}} \tag{2}$$

Para la altura de la sección tubular (lado largo) se obtiene usando la ecuación 5 o 6 dependiendo de las condiciones.

$$P_y = R_y F_y A g_c \tag{3}$$

$$Ca = \frac{Pu}{\phi P_y} \tag{4}$$

 $Ca \leq 0.114$

$$\lambda sw = 3.96 \sqrt{\frac{E}{R_y F_y}} (1 - 3.04Ca)$$
 (5)

 $Ca \ge 0.114$

$$\lambda sw = max \left(1.29 \sqrt{\frac{E}{R_y F_y}} \left(2.12 - Ca \right), 1.57 \sqrt{\frac{E}{R_y F_y}} \right)$$
(6)

Donde:

 R_y =factor de esfuerzo de fluencia probable del material.

 Ag_c =área de la sección transversal de la columna (cm^2).

 P_u =carga ultima axial de la columna, obtenida a través de las combinaciones.

Ø=0.9 factor de resistencia a la compresión.

Longitud Efectiva, *L_c*.

La longitud efectiva L_c se define como la longitud libre entre los puntos de inflexión de una columna y se calcula al multiplicar la longitud real de la columna con un factor de longitud efectiva, *K* (McCorman & Csernak, 2012).

Este factor *K* depende de la restricción rotacional en los extremos de la columna y la resistencia al movimiento lateral. Según el AISC puede estimarse a partir de la Tabla C-A-7.1 (ver Anexo A.3) o puede calcularse con fórmulas definidas a continuación:

$$Lc = KL \tag{7}$$

$$K_{x \, o \, y} = \sqrt{\frac{1.6G_A G_B + 4(G_A + G_B) + 7.5}{G_A + G_B + 7.5}} \tag{8}$$

$$G_A = \frac{\sum (EI_{xx}/Lc)}{\sum (EIx/Lv)}$$
(9)

Donde:

 I_{xx} = inercia de la columna, las cuales se suman dependiendo de la posición en la que se evalúa la columna (cm^4).

Ix= inercias de las vigas que llegan a la columna (cm^4).

Lc, Lv= longitud real de la columna y la viga, respectivamente (cm).

 $G_B = 1$ cuando la columna está conectada rígidamente a la fundación.

Esfuerzo de pandeo elástico, F_e.

Leonhard Euler desarrolló una ecuación que describe el efecto de pandeo en las columnas y se toma en cuenta en la ecuación 10 (Ec. E3-4 del AISC 360-16). Sin embargo, para aplicar la ecuación correctamente se necesita conocer previamente la longitud efectiva.

$$Fe = \frac{\pi^2 E}{(e_d)^2} \tag{10}$$

$$e_d = \max\left(\frac{LK_x}{r_x}, \frac{LK_y}{r_y}\right) \tag{11}$$

Donde:

 e_d =esbeltez de diseño.

 r_x , r_y =radio de giro en el sentido X e Y, respectivamente (cm).

 LK_x , LK_y =longitud efectiva en el sentido X e Y, respectivamente (cm).

Esfuerzo Critico, F_{cr}.

Se verifica las siguientes condiciones para definir el esfuerzo crítico:

$$e_d \le 4.71 \sqrt{\frac{E}{F_y}} \quad o \quad \frac{F_y}{Fe} \le 2.25$$
 (12)

$$F_{cr} = \left(0.658 \frac{Fy}{Fe}\right) Fy \therefore pandeo \ inelastico \tag{13}$$

$$e_d > 4.71 \sqrt{\frac{E}{F_y}} \quad o \quad \frac{F_y}{Fe} > 2.25 \tag{14}$$

 $F_{cr} = 0.877 * Fe :: pandeo \ elástico \tag{15}$

Resistencia nominal y diseño

Se calcula con las ecuaciones 16 -17 (Ec E3-1 del AISC 360-16).

$$P_n = F_{cr} * Ag_c \tag{16}$$

(A -

(1 -

Donde:

 P_n =resistencia nominal a la compresión (tonf).

Efectos de longitud debido a columna inelástica

El esfuerzo critico F_{cr} permite determinar si la columna está controlada por efectos elásticos o inelásticos y el AISC 360-16, capitulo 2 literal 3.b considera el efecto de la columna en estado inelástico mediante un factor adicional de rigidez inelástica (τ_b), el cual contribuye a la estabilidad de los elementos. Si $\tau_b < 1$ (ver Ec. 19), es necesario volver a calcular el factor de longitud efectiva K, debido que τ_b se multiplica con G_A y G_B haciendo necesario calcular otra vez la resistencia de diseño de la columna.

$$\frac{\alpha P_r}{P_n} \le 0.5 \qquad \qquad \tau_b = 1 \tag{18}$$

$$\frac{\alpha P_r}{P_n} > 0.5 \qquad \qquad \tau_b = 4 \left(\frac{\alpha P_r}{P_n}\right) \left(1 - \frac{\alpha P_r}{P_n}\right) \tag{19}$$

Por lo tanto:

 $au_b < 1$; considera cambios en la longitud de columna por efectos inelasticos $au_b \geq 1$; no considera cambios en columna

Donde:

 P_r = carga ultima axial de la columna, obtenida a través de las combinaciones.

α=1.00

2.3.1.2. Diseño a Flexión de columnas tubulares

El capítulo F7 del AISC 360-16 establece los requisitos mínimos para el diseño de elementos a flexión de un sistema de pórticos estructurales. El capítulo aplica a perfiles tubulares cuadrados y rectangulares.

Relación Ancho- Espesor

El AISC 360-16 en la tabla B4.1b (ver Anexo A.1) nos muestra las condiciones a las que están sometidas las columnas para identificar si su relación ancho-espesor están dentro de los límites de diseño. En este caso sus elementos deben ser compactos.

La base (lado corto) de la sección tubular se verifica como elementos atiesados pertenecientes al Caso 18 y se describe en las ecuaciones 20-21.

$$\lambda pf = 1.12 \sqrt{\frac{E}{F_{\mathcal{Y}}}} \tag{20}$$

$$\lambda r f = 1.40 \sqrt{\frac{E}{F_y}} \tag{21}$$

La altura (lado largo) de la sección tubular se verifica como elementos atiesados pertenecientes al Caso 19 y se describe en las ecuaciones 22-23.

$$\lambda pw = 2.42 \sqrt{\frac{E}{F_y}}$$
(22)

$$\lambda r w = 5.7 \sqrt{\frac{E}{F_y}}$$
(23)

Diseño a Flexión del Eje Fuerte

Se definen a partir de los estados límites de fluencia (momento plástico) y pandeo lateral torsional.

✓ Momento plástico se lo obtiene mediante la ecuación 24.

$$M_{px} = F_y * Z_x \tag{24}$$

 $(\mathbf{0}, \mathbf{1})$

 Pandeo Lateral Torsional depende de las longitudes límites y el momento lateral torsional

Longitudes Limites

a. Longitud libre entre apoyos laterales, L_b .

$$L_b = \frac{Lc}{N_{apoyos} + 1} \tag{25}$$

b. Longitud no arriostrada lateralmente para el estado límite de fluencia, L_p .

$$L_p = 0.13 E r_x \frac{\sqrt{JAg_c}}{M_{px}} \tag{26}$$

$$J = \frac{2ta^2b^2}{a+b} \tag{27}$$

c. Longitud no arriostrada para el estado límite de torsión lateral inelástica, L_r .

$$L_r = 2Er_x \frac{\sqrt{JAg_c}}{0.7F_y S_x} \tag{28}$$

Donde:

J= constante torsional (cm^4).

t=espesor de la sección tubular (cm).

a=h-t, lado más largo de la sección tubular menos el espesor (cm).

b=b-t, lado más corto de la sección tubular menos el espesor (cm).

 S_x = módulo de la sección elástica (cm^3).

Momento Lateral Torsional

El momento lateral torsional depende de las condiciones dadas por el AISC 360-16 respecto a las longitudes límites.

 $L_b \leq L_p$; no aplica el estado de pandeo lateral torsional

$$M_{nc} = M_{px}$$

 $L_p < L_b \le L_r$ [/]

$$M_{nc} = min\left[C_b\left(M_{px} - \left(M_{px} - 0.7F_yS_x\right)\left(\frac{L_b - L_p}{L_r - L_p}\right)\right), M_{px}\right]$$
(29)
$$L_b > L_r$$

$$M_{nc} = min\left[2EC_b \frac{\sqrt{JA_g}}{L_b/r_x}, M_{px}\right]$$
(30)

Donde:

 C_b = factor modificador del pandeo lateral torsional (ver Anexo A.4)

✓ Pandeo local del lado corto de la sección tubular.

$$b_{1} = b - 2t$$

$$\lambda f \leq \lambda p f \qquad M_{np} = M_{px}$$

$$\lambda p f < \lambda f \leq \lambda r f$$

$$M_{np} = min \left[M_{px} - (M_{px} - F_{y}S_{x}) \left(3.57 \frac{b_{1}}{t} \sqrt{\frac{F_{y}}{E}} - 4 \right), M_{px} \right] \qquad (31)$$

 $\lambda f > \lambda r f$, elemento esbelto y no es aceptable

✓ Pandeo local del lado largo de la sección tubular.

.

$$b_{2} = h - 2t$$

$$\lambda f \leq \lambda p f \qquad \qquad M_{nw} = M_{px}$$

$$\lambda p f < \lambda f \leq \lambda r f$$

$$M_{nw} = min \left[M_{px} - (M_{px} - F_{y}S_{x}) \left(0.305 \frac{b_{2}}{t} \sqrt{\frac{F_{y}}{E}} - 0.738 \right), M_{px} \right] \qquad (32)$$

.

 $\lambda f > \lambda r f$, elemento esbelto y no es aceptable

✓ Momento nominal es el mínimo de todos los momentos evaluados anteriormente y el momento de diseño se lo obtiene al multiplicar por el factor de resistencia.

$$M_{nx} = \min(M_{px}, M_{nc}, M_{np}, M_{nw})$$
⁽³³⁾

$$\phi M_{nx} = \phi M_{nx} \tag{34}$$

Donde:

 M_{nx} =momento nominal a flexión, respecto al eje fuerte (tonf-m).

Diseño a Flexión del Eje Débil

✓ Momento plástico respecto al eje débil de lo obtiene mediante la ecuación 35.

$$M_{py} = F_y Z_y \tag{35}$$

· - - ·

✓ Pandeo local del lado corto de la sección tubular.

$$\lambda f \leq \lambda p f \qquad \qquad M_{np} = M_{py}$$

$$\lambda p f < \lambda f \leq \lambda r f$$

$$M_{np} = min \left[M_{py} - (M_{py} - F_y S_y) \left(3.57 \frac{b_1}{t} \sqrt{\frac{F_y}{E}} - 4 \right), M_{py} \right] \qquad (36)$$

$$\lambda f \geq \lambda r f \text{ elemento eshelto y no es acentable}$$

 $\lambda f > \lambda r f$, elemento esbelto y no es aceptable
✓ Pandeo local del lado largo de la sección tubular.

$$\lambda f \leq \lambda p f \qquad M_{nw} = M_{py}$$

$$\lambda p f < \lambda f \leq \lambda r f$$

$$M_{nw} = min \left[M_{py} - (M_{py} - F_y S_y) \left(0.305 \frac{b_2}{t} \sqrt{\frac{F_y}{E}} - 0.738 \right), M_{py} \right] \qquad (37)$$

 $\lambda f > \lambda r f$, elemento esbelto y no es aceptable

Momento nominal y diseño

$$M_{ny} = \min(M_{py}, M_{np}, M_{nw})$$
⁽³⁸⁾

$$\phi M_{ny} = \phi M_{ny} \tag{39}$$

 $\langle \mathbf{a} \mathbf{a} \rangle$

 $\langle \mathbf{a} \mathbf{a} \rangle$

Donde:

 M_{nx} =momento a flexión, respecto al eje débil (tonf-m).

2.3.1.3. Relación de Interacción de la Columna Tubular

El capítulo H del AISC 360-16 define el diseño de miembros para solicitaciones combinadas donde la interacción de flexión en torno a un eje (x o y) y compresión en miembros con simetría doble y simetría simple deben satisfacer las siguientes expresiones:

$$\frac{P_u}{\phi Pn} < 0.2 \qquad \qquad f = \frac{P_u}{2\phi Pn} + \frac{M_{rx}}{\phi M_{nx}} + \frac{M_{ry}}{\phi M_{ny}}$$
(40)

$$\frac{P_u}{\phi Pn} \ge 0.2 \qquad \qquad f = \frac{P_u}{\phi Pn} + \frac{8}{9} \left(\frac{M_{rx}}{\phi M_{nx}} + \frac{M_{ry}}{\phi M_{ny}} \right) \tag{41}$$

Donde:

 M_{rx} =resistencia de flexión requerida alrededor del eje x

 M_{ry} = resistencia de flexión requerida alrededor del eje y

 P_u =resistencia ultima determinada con las combinaciones de carga

2.3.2 Columnas Cruciformes

Estas secciones son armadas con dos perfiles "I" soldados, es decir con un perfil I cortado en dos, es soldado a ambos lados del alma de otro perfil "I" (ver Figura 5). Una ventaja de este tipo de sección es que cuentan con patines en sus cuatro caras, lo que facilita la tarea de conexión, teniendo un fácil acceso tanto para realizar las uniones y de ser necesario rigidizar de manera interior la columna.

Figura 5

Sección típica de una columna cruciforme

Fuente: Barrios José (2017)

Olvera y Mendoza (2012) nos plantean que este elemento ofrece tres aspectos propicios al emplearse como columnas:

- Su resistencia al pandeo es igual en ambos ejes principales ortogonales, siempre y cuando las secciones sean simétricas.
- La rigidez lateral esta balanceada en ambas direcciones
- Facilitan el uso de conexiones entre las vigas y columnas.
- Al ser secciones abiertas permiten colocar los diafragmas con relativa facilidad.

2.3.2.1. Propiedades Geométricas de la Columna cruciforme

Las propiedades geométricas de la sección armada cruciforme se pueden obtener con la superposición de dos perfiles armados I idénticos que se usan para su fabricación.

Figura 6

Dimensiones de una sección Cruciforme Simétrica y Asimétrica

Nota. Tenemos a) Columna asimétrica y b) Columna simétrica. Elaborado por: Los autores

Distancia de acceso libre, e

Una condición de los perfiles cruciformes, es que se debe tener un acceso libre mínimo de 14 cm entre patines como se muestra en la Figura 6, para que el soldador pueda realizar los trabajos de soldadura para la instalación de placas atiesadoras (IMCA, 2012).

La distancia de acceso libre se calcula con la Ec.42, sí la sección cruciforme es simétrica en ambos sentidos.

$$e = \sqrt{2} * \left(\frac{d - bcf}{2} - tcf\right) \tag{42}$$

En el caso de tener secciones asimétricas, se calcula con la Ec. 43 (ver Figura 6, b)

 $e = \sqrt{x1^2 + y1^2}$

$$x1 = (h2 - tcw2) * 0.5 - (bcf2 - tcw2) * 0.5$$

$$y1 = (h1 - tcw1) * 0.5 - (bcf1 - tcw1) * 0.5$$

$$x = \sqrt{w12 + w12}$$
(43)

tcw=espesor del alma (cm).

bcf=ancho del patín (cm).

tcf=espesor del patín (cm).

d=peralte de la sección (cm).

$$h1 = d1 - 2tcf1$$

$$h2 = d2 - 2tcf2$$

Área de la sección cruciforme, A.

Es igual a la suma de las áreas de los dos perfiles I armados menos el cuadrado del espesor del alma que se duplica en el centro. Por fines prácticos, el último término de segundo orden se puede despreciar.

$$A = \sum_{2} A_{i} = 2 * A_{I} - tcw^{2} = 2A_{I}$$
(44)

Momento de inercia, *I*.

Es la suma de las inercias en ambas direcciones de uno de los perfiles I (Perfil V., ver Figura 7) que conforma la sección cruciforme, siempre y cuando la sección sea simétrica. Debido a que sus centroides coinciden, es posible reducir el término $tw^4/12$, el cual es despreciable (Perea & Mendoza, 2012).

Figura 7

Sección transversal de una sección cruciforme

Elaborado por: Los autores

$$I = Ixx_I + Iyy_I \tag{45}$$

Donde:

 Ixx_I = inercia respecto al eje x (cm^4).

 Iyy_I = inercia respecto al eje y (cm^4).

Módulos de sección elástico, S y plástico, Z

$$S = Sx = Sy = Sx_I + Sy_I \tag{46}$$

(17)

$$Z = Zx = Zy = Zx_I + Zy_I \tag{47}$$

Radio de giro, r.

Describe la forma en la que el área transversal se distribuye alrededor de su eje centroidal.

$$r = r_x = r_y = \sqrt{\frac{I}{A}} \tag{48}$$

Constantes de torsión (J) y alabeo (C_w)

Las constantes de torsión de St. Venant (J) y de alabeo (Cw), se calculan como el doble del perfil I armados, utilizado para armar la sección IC.

$$J = \sum_{6 \ placas} \frac{bi * ti^3}{3} = 2J_{IR}$$
(49)

$$Cw = \sum_{2IR} \frac{Iyy * h^2}{4} = 2Cw_{IR}$$
(50)

2.3.2.2. Diseño a Compresión de columnas cruciformes

Esta sección evalúa la resistencia de columnas de sección cruciforme a compresión de acuerdo al capítulo E de la AISC 360-16.

Relación Ancho- Espesor

El AISC 360-16 en la tabla B4. 1a (ver Anexo A.1) nos muestra las condiciones a las que están sometidas las columnas para identificar si su relación ancho- espesor están dentro de los límites de diseño. En el caso de este proyecto sus miembros deben ser no esbeltos.

✓ Patines de la columna

Se verificarán como elementos no atiesados pertenecientes al Caso 2

$$\lambda rf = 0.64 \sqrt{\frac{kc * E}{Fy}}$$
(51)

$$kc = \frac{4}{\sqrt{h/tw}} \tag{52}$$

✓ Alma de la columna

Se verificarán como elementos atiesados pertenecientes al Caso 5

$$\lambda r w = 1.49 \sqrt{\frac{E}{Fy}}$$
(53)

El AISC 341-16 en la tabla D1.1(ver Anexo A.2) nos muestra las condiciones a las que están sometidas las columnas para identificar si su relación ancho-espesor están dentro de los limites como miembros altamente dúctiles, condición necesaria para elementos pertenecientes a sistemas estructurales SMF.

 \checkmark Patines de la columna

$$\lambda sf = 0.32 \sqrt{\frac{E}{RyFy}}$$
(54)

✓ Alma de la columna

$$Ca \le 0.114$$
 $\lambda sw = 2.57 \sqrt{\frac{E}{RyFy} (1 - 1.04Ca)}$ (55)

$$Ca \ge 0.114$$
 $\lambda sw = \max\left(0.88\sqrt{\frac{E}{RyFy}}(2.68 - Ca), 1.57\sqrt{\frac{E}{RyFy}}\right)$ (56)

Longitud Efectiva, L_c : Se calcula con las fórmulas ya mencionadas en el capítulo 2.3.1.1 de este trabajo.

Esfuerzo de pandeo elástico, F_e.

Determinado de acuerdo a la ecuación E4-2 del AISC 360-16, cuando el esfuerzo elástico de pandeo es gobernado por el estado límite de pandeo por torsión.

a) Para miembros doblemente simétricos que rotan alrededor del centro de corte.

$$Fe = \left(\frac{\pi^2 E C_w}{(K_z Lc)^2} + GJ\right) * \frac{1}{I_{xx} + I_{yy}}$$
(57)

Donde:

G = módulo de elasticidad cortante del acero (kg/cm^2).

 $K_z=1$, factor de longitud efectiva para pandeo por torsión alrededor del eje longitudinal.

 I_{xx} =inercia de la sección cruciforme, respecto al eje x (cm^4).

 I_{yy} =inercia de la sección cruciforme, respecto al eje y (cm^4).

Esfuerzo Critico, F_{cr} : Se verifica las condiciones mencionadas en el capítulo 2.3.1.1 de este trabajo.

Resistencia nominal y diseño: se calcula con la ecuación E3-1 de la AISC 360-16.

$$Pn = F_{cr} * Ag \tag{58}$$

$$\phi Pn = Pn * \phi c \tag{59}$$

Efecto de columna inelástica: Al igual que en el capítulo 2.3.1.1 de este trabajo, se debe verificar el efecto de columna inelástica.

2.3.2.3. Diseño a Flexión de columnas cruciformes

El capítulo F del AISC 360-16 establece los requisitos mínimos para el diseño de elementos a flexión de un sistema de pórticos estructurales. El capítulo aplica únicamente a miembros de doble simetría y canales alrededor de su eje principal.

Relación Ancho-Espesor

El AISC 360-16 en la tabla B4.1b (ver Anexo A.1) nos muestra las condiciones a las que están sometidas las columnas para identificar si su relación ancho- espesor están dentro de los límites de diseño. En el caso de este proyecto al ser un edificio con un sistema estructural SMF sus elementos deben ser compactos.

 \checkmark Patines de la viga

Se verificarán como elementos no atiesados pertenecientes al Caso 11.

$$\lambda pf = 0.38 \sqrt{\frac{E}{Fy}} \tag{60}$$

$$\lambda rf = 0.95 \sqrt{\frac{kc * E}{FL}}; \tag{61}$$

Donde:

$$FL = 0.7Fy \tag{62}$$

$$kc = \frac{4}{\sqrt{h/tw'}},\tag{63}$$

✓ Alma de la viga

Se verificarán como elementos atiesados pertenecientes al Caso 15.

$$\lambda pw = 3.76 \sqrt{\frac{E}{Fy}}; \tag{64}$$

$$\lambda r w = 5.7 \sqrt{\frac{E}{Fy}} \tag{65}$$

Diseño a Flexión en el Eje Fuerte

Se definen a partir de los estados límites de fluencia (momento plástico) y pandeo lateral torsional.

- ✓ Momento plástico $M_{px} = F_y * Z_x$
- ✓ Pandeo Lateral Torsional

Longitudes limite

a. Longitud libre entre apoyos laterales, L_b .

$$L_b = \frac{Lc}{N_{apoyos} + 1} \tag{66}$$

b. Longitud no arriostrada lateralmente para el estado límite de fluencia, L_p .

$$L_p = 1.76 r_y \sqrt{E/F_y} \tag{67}$$

c. Longitud no arriostrada para el estado límite de torsión lateral inelástica, $L_{r.}$

$$L_{r} = 1.95r_{ts} \frac{E}{0.7F_{y}} \sqrt{\frac{Jc}{S_{x}ho} + \sqrt{\left(\frac{Jc}{S_{x}ho}\right)^{2} + 6.76\left(\frac{0.7F_{y}}{E}\right)^{2}}}$$
(68)

$$ho = d - t_f \tag{69}$$

$$C_w = I_{yy} \frac{ho^2}{4}; \tag{70}$$

$$r_{ts} = \sqrt{\frac{\sqrt{I_{yy}C_w}}{S_x}} \tag{71}$$

$$J = \frac{2b_f t_f^{\ 3} + hot_w^{\ 3}}{3} \tag{72}$$

Donde:

c=1 para formas doblemente simétricas según el AISC

Momento Lateral Torsional

 $L_b \leq L_p$; no aplica el estado de pandeo lateral torsional

$$M_{nc} = M_{px}$$

 $L_p < L_b \le L_r$ $M_{nc} = C_b \left[M_p - \left(M_p - 0.7 F_y S_x \right) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p$ $L_b > L_r$ (73)

$$M_{nc} = F_{cr} S_x \le M_p \tag{74}$$

$$F_{cr} = \frac{C_b \pi^2 E}{(L_b / r_{ts})^2} \sqrt{1 + 0.078 \frac{Jc}{S_x ho} \left(\frac{L_b}{r_{ts}}\right)^2}$$
(75)

✓ Momento nominal y diseño

$$M_{nx} = min(M_{px}, M_{nc})$$

 $\emptyset M_{nx} = \emptyset M_{nx}$

Diseño a Flexión en el Eje Débil

✓ Momento plástico

$$F_y Z_y \le 1.6 F_y Z_y \qquad \qquad M_{py} = F_y Z_y \tag{76}$$

$$F_y Z_y > 1.6F_y Z_y$$
 $M_{py} = 1.6F_y Z_y$ (77)

✓ Pandeo Local Patín

 $\lambda f \leq \lambda p f$; no aplica el estado de pandeo lateral torsional

$$M_{nc} = M_{py}$$

 $\lambda pf < \lambda f \leq \lambda rf$

$$M_{nc} = C_b \left[M_{py} - \left(M_{py} - 0.7 F_y S_y \right) \left(\frac{\lambda f - \lambda p f}{\lambda r f - \lambda p f} \right) \right]$$
(78)

 $\lambda f > \lambda r f$

$$M_{nc} = \frac{0.69E}{\left(\frac{b_{cf}}{2t_{cf}}\right)^2} S_y \tag{79}$$

✓ Momento nominal y diseño

$$M_{ny} = min(M_{py}, M_{nc})$$

$$\emptyset M_{ny} = \emptyset M_{ny}$$
(80)

2.3.2.4. Relación de Interacción para columnas cruciformes

El capítulo H del AISC 360-16 define el diseño de miembros para solicitaciones combinadas y debe satisfacer las expresiones mencionadas en el capítulo 2.3.1.3.

2.3.3 Vigas y Viguetas armadas I

Las vigas del tipo "I" son secciones que contienen mayor porcentaje de acero concentrado en sus patines llegando a poseer mayores momentos de inercia y momentos resistentes. Sin embargo, tienen poca resistencia a fuerzas laterales por lo que requieren de soporte lateral (ver Figura 8).

Las viguetas serán secciones de alma abierta que se usan comúnmente para soportar losas de piso y techo, siendo muy económica para grandes luces.

Figura 8

Dimensiones de una sección I Armada Transversal

Elaborado por: Los autores

2.3.3.1. Diseño a Flexión

El diseño a flexión de las vigas y viguetas armadas "I" requiere de los mismos requisitos presentados en el capítulo 2.3.1.2, esto se debe a que la sección cruciforme está compuesta de secciones "I" armadas y su diseño aplica a todos los miembros doblemente

simétricos sujetos a flexión. Se debe tener en cuenta que estas secciones deben ser diseñadas para cada sistema estructural presente en este trabajo.

2.3.3.2. Resistencia a Corte Nominal

La resistencia a cortante se deberá verificar posteriormente con la resistencia a cortante por capacidad, cálculo realizado en el capítulo 2.5.7.1 (ver Ec. G2-1 del AISC 360-16).

$$V_n = 0.6F_y A_w C_v \tag{81}$$

$$V_u = \emptyset V_n \tag{82}$$

✓ Resistencia al Corte de Alma (C_v), se lo calcula con las ecuaciones 83 o 84, dependiendo de las condiciones (ver ecuaciones. G2.3 y G2.4 del AISC 360-16).

$$h/t_w \le 1.1 \sqrt{k_v E/F_y}$$
 $C_v = 1.0$ (83)

$$h/t_w > 1.1 \sqrt{k_v E/F_y}$$
 $C_v = \frac{1.1 \sqrt{k_v E/F_y}}{h/t_w}$ (84)

 ✓ Coeficiente de bloques por cortante de placa del alma (k_v), se define en la Ec.85 (ver Ec. G2.5 del AISC 360-16)

Para almas sin refuerzos transversales:

$$k_v = 5.34$$
 (85)

Para almas con refuerzos transversales:

$$k_v = 5.34$$
 cuando $a/h > 3.0$
 $k_v = 5 + \frac{5}{(a/h)^2}$

Donde:

h=distancia libre entre patines, al ser armada no se considera soldadura (cm).

a=distancia libre entre rigidizadores transversales(cm).

 $A_w = ht_w$ área del alma (cm^2).

2.3.3.3. Verificación de Serviciabilidad

Deflexiones

Las deflexiones ante las cargas existentes deben revisarse. En el caso de deflexiones excesivas puede ser algo inseguro, pues podría ocasionar fisuras que

visualmente no son aceptables y dan cierta inseguridad al usuario debido a las vibraciones de piso que se pueden presentar.

Las deflexiones en vigas ante cargas impuestas deben limitarse a ciertos valores; estas deben revisarse ante variedades de carga (CM, CV). El caso de deflexiones por carga viva muchas veces es crítico; la experiencia ha demostrado que no existen problemas si lo limitamos a L/360 de la luz.

La guía de diseño 3 del AISC "Servicebility Desing Considerations" trata el tema de deflexiones y presenta una Tabla que define los límites de deformación (ver Anexo A.5).

✓ Deformación admisible

$$\Delta_{adm} = \frac{L_v}{360} \ (Viva) \tag{86}$$

$$\Delta_{adm} = \frac{L_v}{240} \; (Servicio) \tag{87}$$

✓ Cargas Distribuidas

$$W_L = CV \ (kg/m) \tag{88}$$

$$W_{DL} = CM + CV \left(kg/m \right) \tag{89}$$

✓ Deformaciones

$$\Delta_{maxL} = \frac{W_L L_v^4}{384 E I_x} (Viva) \tag{90}$$

$$\Delta_{maxDL} = \frac{W_{DL}L_v^4}{384EI_x} (Servicio)$$
(91)

Vibración

La vibración no causa el colapso, pero este tipo de problema puede ser difícil de reparar cuando las estructuras se encuentran en uso. Para evitar y reducir problemas de vibración se recomienda mantener la separación de viguetas adecuadas.

La guía de diseño 11 del AISC "*Floor vibration due to human activity*" trata el problema de vibraciones aplicándolo a sistemas de entrepisos de acero. El Anexo A.6 muestra las aceleraciones recomendadas y son aceptables para:

- Vibraciones para actividades humanas 0.5% g (Residencias/oficinas)
- Vibraciones permitidas del 5%g
- Vibraciones admisibles de 1.5% g en sitios como salones de baile, gimnasios, etc.

Los valores mencionados oscilan entre 4Hz y 8 Hz, fuera de este rango se tiene altas aceleraciones por vibración.

✓ Frecuencia

$$f_{n1} = \frac{\pi}{2} \sqrt{\frac{EI_x g}{W_{DL} L_v^4}}$$

$$f_{n1} = 0.18 \sqrt{\frac{g}{\Delta_{maxDL}}}$$
(92)

✓ Vibración

$$ff = \frac{Po \ e^{(-0.35fn)}}{\beta W_f} \tag{93}$$

$$W_f = (W_{D+L}) * L B \tag{94}$$

Donde:

 f_n = frecuencia natural fundamental (1/s) Po= fuerza constante igual a 0.29kN β =amortiguamiento modal igual a 0.05 W_f =peso efectivo del piso (Tonf)

2.4. Rotulas plásticas

La rótula plástica es un dispositivo de disipación de energía que permite la deformación plástica de una sección. Además, la definición de las mismas es necesario en modelos que contemplen análisis no lineales.

2.4.1 Rotulas en Vigas

El comportamiento no lineal en las vigas se concentra en zonas adyacentes a los nudos a una longitud determinada y el daño no es uniforme (ver Figura 9). Las rotulas en las vigas se consideran en una zona de daño equivalente en la cual se concentra toda la deformación inelástica y le corresponde una longitud "Lp" (Choque & Luque, 2019). En la sección 2.5.5.1 se define que la ubicación de la rótula plástica en las vigas también puede depender de la conexión que se emplee.

Figura 9

Rotulas plásticas en las vigas

Fuente: Choque & Luque (2019).

Según Rus Guillermo (2008), una vez producidas las rótulas plásticas, la viga se comporta como un mecanismo de colapso y muestra dos principios básicos:

- La aparición de este mecanismo se produce con un número suficiente de rotulas plásticas que inducen el movimiento del mecanismo.
- La rotulas plásticas aparecen en secciones donde se produce una plastificación completa, en consecuencia, pueden presentar una rotación adicional sin alterar el momento flector Mp (Momento Plástico) que los solicita.

2.4.2 Rotulas en Columnas

En las columnas la ductilidad depende de la carga axial actuante, por lo tanto, se debe garantizar que esta carga no sea superior a la resistencia de la sección para que la falla sea dúctil y pueda generarse una rotula plástica (ver Figura 10), debido que las únicas rotulas admisibles en un mecanismo de colapso son las generadas en las bases de las columnas. (Choque & Luque, 2019).

Figura 10

Rotulas plásticas en las Columnas

Fuente: Choque & Luque (2019).

2.4.3 Momento Máximo Probable en la Rótula.

El momento máximo probable pretende ser una estimación del momento máximo que se desarrolle en la conexión durante una respuesta cíclica inelástica, así como una posible sobre - resistencia y endurecimiento por deformación del material.

$$M_{pr} = C_{pr} R_{\nu} F_{\nu} Z_{bx} \tag{95}$$

$$C_{pr} = \frac{F_y + F_u}{2F_y} \le 1.2$$
(96)

Tabla 1

Factores de Fluencia y Tensión Probable para Materiales de Acero

Especificación ASTM	Factor de fluencia probable (<i>R</i> _y)	Factor de tensión probable (R_t)
ASTM A36	1.5	1.2

Fuente: AISC 341-16

2.4.4 Corte máximo en la Rotula Plástica

El cortante en la rótula plástica puede determinarse con las cargas gravitacionales que actúan sobre la viga y usando el diagrama de cuerpo libre del tramo de viga entre rotulas (ver la Figura 11).

Figura 11

Cortante máximo en la Rotula Plástica

Fuente: Vega Alex (2021)

2.5. Conexiones

La conexión es la combinación de elementos estructurales y uniones que transfieren fuerzas entre dos o más elementos. Los edificios de acero utilizan varios elementos que deben ser unidos entre sí para que la estructura funcione adecuadamente.

2.5.1 Clasificación de conexiones

En estructuras de acero las conexiones se clasifican según su grado de rigidez.

2.5.1.1. Conexiones Simples

Este tipo de conexión presenta una rigidez y resistencia al momento bajo, por lo tanto, se ignora. Además, se define como una unión articulada ya que la conexión no restringe la rotación y se puede diseñar teniendo en cuenta los esfuerzos cortantes que provienen de las vigas. El corte se transfiere a las columnas utilizando placas soladas, ángulos de asiento o uniones empernadas en el alma de la viga.

2.5.1.2. Conexiones Semi rígidas

El AISC (Seismic Design Manual, 2011) autoriza el uso de este tipo de conexiones siempre y cuando se disponga de una adecuada documentación técnica o ensayos que demuestren que las conexiones proporcionan un porcentaje predecible de empotramiento y que mantenga suficiente ductilidad, rigidez y resistencia.

Las conexiones semi rígidas PR (*Parcial Restricted*) transmiten el momento aceptando una rotación relativa entre los elementos de conexión, es decir, la rotación no es insignificante ya que la flexibilidad influye en el comportamiento de la estructura.

2.5.1.3. Conexiones rígidas

Las conexiones a momento totalmente restringidas FR (*Full Restricted*) consideran que poseen la suficiente rigidez y resistencia para transferir momento con rotación insignificante, es decir, la rigidez rotacional es muy alta y la resistencia al momento de la conexión es al menos la de la viga manteniendo la continuidad de rotación con respecto a la columna (ITEA, 2010).

En la conexión se proporciona la suficiente rigidez mediante rigidizadores, placas de patín extendida, pernos o soldadura de los patines en varias disposiciones para resistir el efecto combinado de esfuerzos cortantes, momentos flectores, etc.

2.5.2 Ángulo Deriva de Piso.

En conexiones que han sido diseñadas para que formen parte del sistema resistente a carga lateral deberán ser capaces de resistir por lo menos un ángulo de deriva de 0.035 radianes y para conexiones que se encuentran en el perímetro del edificio deben ser capaces de resistir por lo menos un ángulo deriva 0.04 radianes, ver Figura 12 (NEC-SE-AC, 2015)

Figura 12

Angulo de deriva de entrepiso

Fuente: FEMA 350 (2000)

Las diferencias entre estos dos valores de deformación angular para cada tipo de conexión vienen dadas por las siguientes razones:

- La capacidad de redundancia que poseen las estructuras, donde todas las conexiones están diseñadas para resistir momentos que tienen como consecuencia un mejor desempeño estructural. Además de poseer elementos de menores dimensiones las cuales presentan un comportamiento más dúctil. (NEC-SE-AC, 2015)
- En edificaciones donde el sistema resistente a momento está constituido solo por las conexiones que se encuentran en su perímetro se pueden producir fenómenos de inestabilidad ante la falla de uno o varios de sus elementos. (NEC-SE-AC, 2015)

2.5.3 Conexiones precalificadas según AISC 358-16

Las conexiones precalificadas nacen de las experiencias ocurridas después del sismo de Northridge (1994) y Cobe (1995), donde se presenció gran cantidad de fallas en edificios construidos en acero. Las fallas más comunes fueron debido a las conexiones tan deficientes que se realizaban en esa época como fracturas en soldaduras y fracturas de placas. Tras lo ocurrido se profundizo más el estudio de conexiones metálicas.

Este tipo de conexiones se detallan en el AISC 358-2016 (*Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications*) donde se especifican limitaciones y características de su diseño tanto para sistemas SMF como IMF. Las conexiones que se muestra en la Figura 13, han llegado a ser las más usadas en las estructuras metálicas.

Figura 13

Diseños 3D de las conexiones precalificadas del AISC 358 -16

2.5.3.1. Soldaduras precalificadas

La soldadura es un proceso que une piezas de acero mediante el calentamiento de las superficies hasta que lleguen a un estado plástico, permitiendo que las partes fluyan y se unan sin la adición de otro material fluido.

El AWS (American Welding Society) acepta 4 procesos de soldadura:

- Soldadura de arco con electrodo metálico revestido, SMAW (Shielded Metal Arc Welding)
- Soldadura por acero sumergido, SAW (Shielded Arc Welding)
- Soldadura de arco metálico con gas, GMAW (Gas Metal Arc Welding)
- Soldadura de arco con núcleo fundente, FCAW (Flux Cored Arc Welding)

Existen dos tipos de soldadura principales que comúnmente se usan: una es la soldadura de ranura el cual este sujeto a tensión y compresión axial y la otra es la soldadura de filete, este tipo de soldadura es más resistente a la tensión y compresión que al corte, es por eso que el esfuerzo a determinarse es el corte (ver Figura 14 -15).

Figura 14

Tipos de soldadura del tipo Ranura

Fuente: McCorman & Csernak (2012).

Figura 15

Tipos de soldadura del tipo Filete

Fuente: McCorman & Csernak (2012).

2.5.3.2. Pernos de alta resistencia

Según el AISC 358-16, los pernos deben ser de alta resistencia de acuerdo con la especificación ASTM F3-125, grados A325, A325M, A490, A490M, F1852 o F2280, a menos que se permita otro tipo de conectores para alguna conexión en particular.

Según McCorman y Csernak (2012) entre las ventajas que presentan los pernos tenemos:

- En comparación a los remaches, requiere menor número de tornillos para proporcionar la resistencia
- Pruebas hechas entre juntas remachadas y atornillas a tensión bajo condiciones idénticas, muestran que las juntas atornilladas tienen un mejor comportamiento.
- En caso de que las estructuras se modifiquen o desarmen. Los cambios son más sencillos por la facilidad para quitar los tornillos.

2.5.4 Conexión Precalificada en Edificios con Columnas Cruciformes

Se espera que los pórticos especiales a momento experimenten deformaciones inelásticas a través de la fluencia por flexión de las vigas y fluencia limitada de la zona panel de la columna durante un evento sísmico. En consecuencia, se debe cumplir con un diseño de elementos que tengan una elevada capacidad de disipación de energía.

Según la filosofía de diseño, las deformaciones en los elementos ocurrirán más allá del rango elástico y cederán en las rótulas plásticas de las vigas y de forma controlada en la zona panel (nodo viga-columna). Razón por la cual el diseño de conexiones de vigas a columnas, así como la zona panel y las placas de continuidad son elementos claves que conducen a la estructura a un rendimiento adecuado.

Las conexiones deben ser capaces de soportar un ángulo de distorsión de al menos 0.04 radianes, es decir, la resistencia de la conexión determinada en la cara de la columna deberá ser al menos el 80% del momento nominal plástico de la viga conectada. Para lograr eso se puede emplear conexiones precalificadas (AISC 358-16) o emplear una conexión que se pruebe y califique ante cargas cíclicas de acuerdo a los requisitos del capítulo K.2 del AISC 341-16.

2.5.5 Conexión a momento de placa de extremo extendida atornillada

Las conexiones de placa de extremo se realizan soldando la placa a una viga y atornillando estos dos elementos al patín de una columna y son comúnmente usados en pórticos a momento de acero. En la figura 16 se puede observar que hay tres tipos de sub conexiones precalificadas de placas de extremo extendidas.

Figura 16

Configuraciones de Placas Extremas Extendidas

Nota. La configuración corresponde: a) Cuatro pernos sin rigidizar (4E), b) Cuatro pernos rigidizados (4ES) y c) 8 pernos rigidizados (8ES). Fuente: AISC 358-16

El comportamiento de este tipo de conexiones es controlado mediante una serie de estados límites, los cuales proporcionan suficiente resistencia a los elementos para asegurar que la deformación inelástica de la conexión se logre mediante la deformación de la viga.

2.5.5.1. Conexión a momento de placa de extremo extendida de cuatro pernos sin rigidizadores

El AISC 358-16 en la Tabla 6.1 nos indica parámetros que nos permite establecer el tipo de conexión que mejor se adapta a la necesidad estructural de este proyecto. Se describe en la Tabla A.1 del Anexo A

Más adelante en este trabajo se define que el tipo de conexión que mejor se adapta a los elementos estructurales (viga-columna) del edificio de 3 y 6 pisos con columnas cruciformes es la conexión a momento de placa extremo extendida con cuatro pernos sin rigidizar.

Rotula Plástica debido a la Conexión

Las rotulas plásticas en las vigas de acero han sido identificadas gracias al tipo de conexión. Se localizan a la mitad de la altura de la viga o tres veces el ancho del patín de la viga, medido desde la cara de la columna, tal como se muestra en la ecuación 96 (ver Figura 17).

$$Sh = \min\left(\frac{d}{2}; 3b_{bf}\right)$$
 (97)

Figura 17

Ubicación de la Rotula Plástica

Elaborado por: Los autores

Limitaciones de la Soldadura

Según el AISC 358-16 la soldadura debe cumplir con las siguientes limitaciones:

- a) No debe utilizar agujeros de acceso para soldadura.
- b) La unión entre el patín de la viga y la placa de extremo debe realizarse utilizando una soldadura acanalada CJP sin respaldo. La soldadura CJP debe realizarse de modo que la raíz de la soldadura esté en el lado del patín asociado con el alma de la viga. La cara interior del patín debe tener una soldadura de filete de 8 mm (5/16 in.). Estas soldaduras tendrán una demanda crítica.
- c) La unión entre el alma de la viga y la placa de extremo debe realizarse utilizando soldaduras de filete o soldaduras CJP. Cuando se utiliza soldaduras de filete, se debe dimensionar para desarrollar la resistencia del alma de la viga en tracción desde la cara interior del patín hasta 150 mm (6 in) más allá de la línea de pernos más alejada del patín de la viga.
- d) No es necesario quitar el metal de soldadura de la raíz en la zona del patín localizado directamente arriba y debajo del alma de la viga, sobre una longitud de 1.5k1. En esta zona se permite una soldadura acanalada PJP sobre la profundidad total.
- e) Todas las uniones entre las placas de extremos y los rigidizadores deben realizarse con soldaduras acanaladas CJP.

Procedimiento de diseño de conexión precalificada

El procedimiento de diseño se realiza de acuerdo al AISC 358-16, capítulo 6.

I. Diseño de la placa de extremo y pernos

Paso 1. Calcular el momento en la cara de la columna, una vez determinadas las dimensiones de los elementos a conectar (viga y columna), M_f .

$$M_f = M_{pr} + V_u * S_h \tag{98}$$

$$V_u = \frac{2M_{pr}}{L'} + V_{gravedad} \tag{99}$$

Donde:

L'=distancia entre las articulaciones plásticas (mm)

 M_{pr} =momento máximo probable en la articulación plástica (N-mm)

 S_h =distancia entre la cara de la columna y la articulación plástica (mm)

 $V_{gravedad}$ =fuerza cortante en la viga resultante de la combinación 1.2D + f_1L

 V_u =fuerza cortante en el extremo de la viga (N)

Paso 2. Establecer los valores preliminares para la geometría de la conexión (ver la Figura 18).

Figura 18

Geometría de la placa de extremo

Paso 3. Determinar el diámetro requerido para el perno, $d_{b,req}$.

$$d_{b,req} = \sqrt{\frac{2M_f}{\pi \emptyset_n F_{nt}(h_o + h_1)}}$$
(100)

$$h_o = d_b + p_{fo} - \frac{t_{bf}}{2}$$
; $h_1 = d_b - p_{fi} - \frac{3t_{bf}}{2}$ (101)

Donde:

 F_{nt} =resistencia nominal a la tracción del perno (Mpa).

 M_f =momento máximo probable en la cara de la columna (N-mm).

 h_1 =distancia entre la mitad del ancho del patín a compresión de la viga y la línea central de la i-enésima hilera de pernos a compresión (mm).

 p_{fo} , p_{fi} =distancia vertical entre el interior del patín a tensión de la viga y la fila exterior e interior de pernos más cercana (mm).

Paso 4. Seleccionar el diámetro de perno de prueba, $d_{bp} \rightarrow d_{bp} \ge d_{b,req}$

Paso 5. Determinar el espesor requerido para la placa extremo, $t_{p,req}$

$$t_{p,req} = \sqrt{\frac{1.11M_f}{\phi_d F_{yp} Y_p}}; \ \phi_d = 1.00$$
(102)

Donde:

 F_{yp} =esfuerzo de fluencia mínimo del material de la placa extremo (Mpa).

 Y_p =parámetro del mecanismo de línea de falla de la placa extremo ver Anexo A.8.

Paso 6. Seleccionar el espesor de placa extremo, $t_p \rightarrow t_p \ge t_{p,req}$

Paso 7. Calcular la fuerza mayorada en el ala de la viga, F_{fu}

$$F_{fu} = \frac{M_f}{d - t_{bf}} \tag{103}$$

Donde:

 M_f =momento máximo probable en la cara de la columna (N-mm).

d=peralte de la viga (mm).

 t_{bf} =espesor del patín de la viga (mm).

Paso 8. Verificar la fluencia a cortante de la porción extendida de la placa de extremo.

$$\frac{F_{fu}}{2} \le \phi_d R_n = \phi_d(0.6) F_{yp} b_p t_p \tag{104}$$

Donde:

 b_p =ancho de la placa extremo (mm).

 t_p =espesor de la placa extremo (mm).

Paso 9. Verificar la rotura por cortante de la porción extendida de la placa de extremo.

$$\frac{F_{fu}}{2} \le \phi_n(0.6)F_{up}A_n \tag{105}$$

$$A_n = \left[t_p (b_p - 2(d_{bp} + 0.3)) \right] (mm)$$
(106)

Donde:

 A_n =área neta de la palca de extremo (mm).

 F_{up} =resistencia a la tracción mínima de la placa extremo (Mpa).

 d_{bp} =diámetro del perno (mm).

 $\phi_n = 0.9$

Paso 10. Resistencia de la conexión por rotura del perno del lado del patín a compresión.

$$V_u \le \phi_n R_n = \phi_n(n_b) F_{n\nu} A_b \tag{107}$$

Donde:

 A_b =área bruta nominal del perno (mm^2)

 F_{nv} =resistencia nominal a cortante del perno (Mpa).

 n_b =numero de pernos en el patín a compresión (4).

Paso 11. Verificar la falla por aplastamiento y desgarramiento

$$V_u \le \phi_n(n_i)r_{ni} + \phi_n(n_o)r_{no}; \ n_i = 2, n_o = 2$$
(108)

(1.0.0)

$$r_{ni} = 1.2 * L_c t_p F_{up} < 2.4 * d_{bp} t_p F_{up}$$
(109)

$$r_{no} = 1.2 * L_c t_p F_{up} < 2.4 * d_{bp} t_p F_{up}$$
(110)

Donde:

 F_{up} =resitencia a la tracción mínima del material de la placa de extremo (Mpa).

 L_c =distancia libre, en dirección de la fuerza, entre el borde de una perforación y

el borde de un perforación adyacente o borde del material (mm).

 n_i , n_o =número de pernos interiores y exteriores respectivamente

 r_{ni} , r_{no} = para perno interior y exterior respectivamente

Paso 12. Diseñar la soldadura del alma de la viga a la placa extremo.

El AISC 360-16 no muestra en la Tabla J2.4 el tamaño mínimo de la soldadura, ver Anexo A.9 y de acuerdo en la sección J2-5

$$V_u = \phi F_{nw} * A_{we} = 0.75(0.6F_{EXX})(t_e l_{cw})$$
(111)

$$w = \frac{V_u}{2[0.75(0.6F_{EXX})(0.707l_{cw})]}$$
(112)

$$t_e = 0.707w$$
 (113)

.....

Donde:

 A_{we} =área efectiva de la soldadura (mm^2).

 F_{nw} =resistencia nominal del metal de soldadura (Mpa).

 F_{EXX} = resistencia del cordón de soldadura según el tipo de electrodo (kg/cm^2)

 t_e =ancho efectivo del plano de la garganta.

 l_{cw} =longitud de cordón de soladura(mm).

w=tamaño nominal de soldadura (mm).

II. Diseño del lado de la Columna

Paso 1. Verificar el patín de la columna para fluencia por Flexión.

$$t_{cf} = \sqrt{\frac{1.11M_f}{\emptyset_d F_y Y_c}} \tag{114}$$

Donde:

 F_y =esfuerzo de fluencia mínimo del material del patín de la columna (Mpa).

 Y_c =parámetro del mecanismo de línea de falla del patín de la columna no rigidizada según el Anexo A.10 (mm). Si se agregan placas de continuidad, se verifica la ecuación Y_c para un patín de columna rígida en la misma Figura.

Paso 2. Determinar la fuerza del rigidizador requerido

Si se requiere placas de continuidad debido a la fluencia a la flexión del patín de la columna. La fuerza requerida para el diseño de la placa de continuidad se determina de acuerdo al paso 6

La resistencia a la flexión de diseño del patín de la columna es:

$$\phi_d M_{cf} = \phi_d F_y Y_c t_{cf}^2 \tag{115}$$

La fuerza de diseño equivalente del patín de la columna es:

$$\phi_d R_n = \frac{\phi_d M_{cf}}{d - t_{bf}} \tag{116}$$

Paso 3. Verificar la resistencia a la fluencia local del alma de la columna.

Requisito de resistencia para el alma de la columna no rigidizada, en los patines de la viga:

$$F_{fu} \le \emptyset_d R_n$$

$$R_n = C_t (6k_c + t_{bf} + 2t_p) F_y t_{cw}$$
(117)

Donde:

 C_t =0.5 si la distancia desde la parte superior de la columna a la cara superior del patín de la viga es menor que el peralte de la columna y 1.0 para otros casos. k_c =distancia desde la cara exterior del patín de la columna hasta el borde del filete sobre el alma o la soldadura de filete sobre el alma (mm).

 t_{cw} =espero del alma de la columna (mm).

Si no cumple el requisito de resistencia, se necesita placas de continuidad para el alma de la columna

Paso 4. Verificar la resistencia de pandeo del alma de la columna

Requisito de resistencia para el alma de la columna no rigidizada, en el patín a compresión de la viga.

$$F_{fu} \leq \emptyset R_n; \emptyset = 0.75$$

✓ Cuando F_{fu} se aplica a una distancia $\ge d_c/2$ desde el extremo de la columna

$$R_n = \frac{24t_{cw}^3 \sqrt{EF_y}}{h} \tag{118}$$

✓ Cuando F_{fu} se aplica a una distancia < $d_c/2$ desde el extremo de la columna.

$$R_n = \frac{12t_{cw}{}^3\sqrt{EF_y}}{h} \tag{119}$$

Donde:

h=distancia libre entre los patines el filete o radio de esquina para perfiles laminados o distancia libre entre los patines para perfiles soldados (mm)

E=módulo de elasticidad del acero (Mpa)

Si no cumple el requisito de resistencia, se necesita placas de continuidad para el alma de la columna.

Paso 5. Verificar la resistencia de arrugamiento del alma de la columna

Requisito de resistencia para el alma de la columna no rigidizada, en el patín a compresión de la viga.

$$F_{fu} \leq \emptyset R_n; \emptyset = 0.75$$

✓ Cuando F_{fu} se aplica a una distancia ≥ $d_c/2$ desde el extremo de la columna.

$$R_n = 0.8t_{cw}^2 \left[1 + 3\left(\frac{N}{d_c}\right) \left(\frac{t_{cw}}{t_{cf}}\right)^{1.5} \right] \sqrt{\frac{EF_y t_{cf}}{t_{cw}}}$$
(120)

- ✓ Cuando F_{fu} se aplica a una distancia < $d_c/2$ desde el extremo de la columna
 - i. $N/d_c \ge 0.2$

$$R_n = 0.4 t_{cw}^2 \left[1 + 3 \left(\frac{N}{d_c} \right) \left(\frac{t_{cw}}{t_{cf}} \right)^{1.5} \right] \sqrt{\frac{EF_y t_{cf}}{t_{cw}}}$$
(121)
$$N/d_c > 0.2$$

$$R_n = 0.4t_{cw}^2 \left[1 + \left(\frac{4N}{d_c} - 0.2\right) \left(\frac{t_{cw}}{t_{cf}}\right)^{1.5} \right] \sqrt{\frac{EF_y t_{cf}}{t_{cw}}}$$
(122)

Donde:

ii.

 d_c =peralte de la columna (mm)

 $N = b_f + 2w + 2t_p \text{ (mm)}$

 t_{cf} =espesor del patín de la columna (mm)

Si no cumple el requisito de resistencia, se necesita placas de continuidad para el alma de la columna

Paso 6. Resistencia que requieren las placas de continuidad

Si se requiere placas de continuidad para cualquiera de los estados límite del lado de la columna, la resistencia es:

$$F_{su} \leq F_{fu} - min \ (\emptyset R_n)$$

Donde:

min ($\emptyset R_n$)=valor mínimo entre la resistencia de diseño de la sección 6.8.2 del AISC 358-16. Es decir, el mínimo entre el paso 2 (Flexión del patín de la columna), paso 3 (fluencia del alma de la columna), paso 4 (pandeo del alma de la columna) y paso 5 (arrugamiento del alma de la columna).

2.5.6 Placas de continuidad.

Las Placas de Continuidad o Placas Rigidizadoras se encuentran entre las alas de la columna, al nivel de las alas de la viga. Garantiza la transferencia adecuada de las cargas de tensión y compresión generadas en la columna, como se muestra en la Figura 19. Las placas de continuidad sirven como límites de la zona de panel (Crisafulli, 2018).

Figura 19

Placas de Continuidad

Fuente: Brito Bryan (2014)

2.5.6.1. Consideraciones de diseño de la placa de continuidad

I. Geometría de la placa

Ancho de la placa: Las placas de continuidad se colocan en un ancho que cubra la parte interna del patín (ambos ejes), además se resta un "recorte" para librar el radio de curvatura o la soldadura colocada entre patines y alma de la columna.

$$b_{pc} = \frac{b_{cf}}{2} - \frac{t_{cw}}{2} - r \tag{123}$$

Longitud de la placa: Las placas de continuidad se colocan a lo largo que cubra la parte interna del alma (ambos ejes), además se resta un "recorte".

$$L_{pc} = \frac{d_c}{2} - \frac{t_{cw}}{2} - 2r - t_{cf} \tag{124}$$

Espesor de la placa

✓ Espesor requerido según la guía de diseño 13 del AISC

$$t_{pc\,req} = 0.004 b_{cp} \sqrt{345} \tag{125}$$

✓ Espesor propuesto $t_{pc} \ge t_{pc req}$

Área total de la placa a compresión

$$A_{pc} = 2(b_{cp}t_{cp}) + ((12t_{cw})t_{cw})$$
(126)

Inercia y radio de giro de la placa

$$I_{pc} = \frac{25t_{cw}(t_{cw}^{3})}{12} + 2\left[\left(\frac{t_{pc}b_{pc}^{3}}{12}\right) + t_{pc}b_{pc}\left(\frac{b_{pc}}{2} + \frac{t_{cw}}{2}\right)^{2}\right]$$
(127)
$$r_{pc} = \sqrt{\frac{I_{pc}}{A_{pc}}}$$

II. Resistencia de diseño según el AISC

Resistencia a tensión: resistencia de las áreas de contacto de las placas de continuidad con los patines de la columna.

$$\phi R_{n1} = \phi F_y 2l_{cf} t_{pc} \tag{128}$$

Donde:

 l_{cf} =longitud de contacto de la placa y el patín de la columna (*cm*).

Resistencia a cortante: resistencia del área de contacto de la placa con el alma de la columna según el AISC 360.16 (J10-6)

Tabla 2

Resistencia de Diseño a Cortante

Caso	$\emptyset V_n; \emptyset = 1.00$		
$P_u \le 0.4 P_y$	$Ø0.6F_y l_{cw} t_{pc}$		
$P_u > 0.4 P_y$			
Fuente: AISC 360-16			

Donde:

 l_{cw} =longitud de contacto de la placa y el alma de la columna (*cm*).

$$V_u \le \emptyset R_n = \min(\emptyset R_n, \emptyset V_n)$$
 "OK"

Resistencia a compresión: las placas soldadas por completo en los patines y alma de la columna, se considera que actúa como una columna totalmente restringida en ambos extremos, entonces:

$$Si \ \frac{KL_{pc}}{r_{pc}} \le 2.5 \to Pn_{pc} = 2F_y A_{pc}$$

$$F_{su} \leq \emptyset Pn_{pc}; \emptyset = 0.9$$
 "OK"

Donde:

K=factor de longitud efectiva igual a 0.65, ver Anexo A.3

 Pn_{pc} =Resistencia a la compresión de la placa de continuidad (N - mm)

2=Se considera dos placas de continuidad por lado de la columna

III. Soldadura

Tamaño de la soldadura: de acuerdo al AISC 360-16 en la sección J2-5

$$V_u = \emptyset F_{nw} * A_{we} = 0.75(0.6F_{EXX})(t_e l_{cw})$$
(129)

$$w = \frac{V_u}{2[0.75(0.6F_{EXX})(0.707l_{cw})]}; t_e = 0.707w$$
(130)

Revisión de la soldadura: según el AISC 360-16 en el capítulo J2. sección 4 literal b se puede tomar en cuenta grupos de soldadura que están orientados tanto longitudinalmente como transversalmente

✓ Longitudinal

Esfuerzo nominal de la soldadura

$$Fn_{lw} = 0.6F_{EXX}(1 + 0.5sen(\theta_l)^{1.5}); \theta_l = 0^{\circ}$$
⁽¹³¹⁾

Longitud de la soldadura $l_{cw} = L_{pc}$

Área efectiva de la soldadura

$$A_{lw} = 0.7071 w l_{cw} \tag{132}$$

(101)

$$Rn_{lw} = Fn_{lw}A_{lw} \tag{133}$$

✓ Transversal

Esfuerzo nominal de la soldadura

$$Fn_{lp} = 0.6F_{EXX}(1 + 0.5sen(\theta_b)^{1.5}); \theta_b = 90^{\circ}$$
(134)

Longitud de la soldadura $l_{cf} = L_{pc} + b_{pc}$

Área efectiva de la soldadura

 $A_{lp} = 0.7071 w l_{cf}$ $Rn_{lp} = Fn_{lp}A_{lp}$

Se propone soldar alrededor del atiesador por ambos lados, obteniendo una resistencia de diseño de:

$$Rn = max \left(Rn_{lw} + Rn_{lp}, 0.85Rn_{lw} + 1.5Rn_{lp} \right)$$
(135)

$$\phi_w Rn = 2\phi_w Rn; \phi_w = 0.75$$
 (136)

Por lo tanto

$$\frac{F_{su}/2}{\phi_w Rn} < 1 \tag{137}$$

(105)

2.5.7 Criterio de Columna fuerte-Viga débil.

El objetivo de este criterio es evitar la inestabilidad que hay en los elementos estructurales. Se desea que exista rotación en las vigas y que las columnas sean más resistentes, evitando el colapso de piso (ver Figura 20). Por lo tanto, el daño se debe generar en la conexión mediante la plastificación en la viga.

Figura 20

Momentos y Fuerzas actuantes en la Conexión

Nota. Se muestra los esfuerzos que se presentan en el nudo viga-columna, como momentos y cargas axiales. Elaborado por: Los autores

2.5.7.1. Resistencia a Cortante por Capacidad

✓ Combinación de Carga

$$W_{\mu} = 1.2CM + CV$$
 (138)

✓ Momento Probable Máximo

$$M_{pr} = C_{pr} R_y F_y Z_{bx} \tag{139}$$

Resistencia a Cortante por capacidad

$$V_u = \frac{2M_{pr}}{L'} + \frac{W_u L'}{2}$$
(140)

$$V'_{u} = \frac{2M_{pr}}{L'} - \frac{W_{u}L'}{2} \tag{141}$$

$$L' = L_v - 2\frac{d_c}{2} - 2Sh$$
(142)

2.5.7.2. Relación que satisface el Criterio

La sección E3.4 a de la norma AISC 341-16, establece la relación que satisface el criterio de columna fuerte-viga débil con la Ec 143.

$$\frac{\sum Mpc}{\sum Mpv} \ge 1.0 \tag{143}$$

Donde:

 $\sum Mpc$ = sumatoria de los momentos plásticos en las columnas que están sobre el nodo y debajo de él. Se debe considerar la reducción por efectos de la carga axial $\sum Mpv$ = sumatoria de la resistencia a flexión esperada en vigas, que se proyectan en la cara de la columna en el lado izquierdo y derecho

La sumatoria de los momentos para columnas se calcula a continuación:

$$\sum M_{pc} = \sum Z_{cx} * \left(F_y - \frac{Pu_c}{Ag_c} \right)$$
(144)

Donde:

 $\sum M_{pc}$ = sumatoria de los momentos plásticos de las columnas (Tonf-m)

 Ag_c = área gruesa de la columna (mm^2).

 Pu_c = resistencia a la compresión usando las combinaciones de carga del LRFD.

Zc = modulo plástico de la sección transversal de la columna (mm^3).

La sumatoria de los momentos para vigas se calcula a continuación:

$$\sum M_{uv} = \sum V_u \left(Sh + \frac{d_c}{2}\right) \tag{145}$$

$$\sum M_{pb} = \sum M_{pr} + \sum M_{uv} \tag{146}$$

Donde:

 M_{pr} = momento máximo probable de la rótula plástica (Tonf-m).

Sh = distancia entre máximo probable en la rótula platica (mm).

 M_{uv} = momento debido al incremento del corte en la zona de articulación plástica medido en cara de la columna y la zona de articulación plástica. (Tonf-m).

 V_u =fuerza cortante en el extremo de la viga (Tonf).

2.5.8 Zona panel

La zona panel se caracteriza por su flexibilidad en los pórticos a momento y se encuentra delimitada por los patines de la columna y las placas de continuidad. Esta zona está sujeta a deformaciones considerables, que son causadas por cargas elevadas que generan daños graves si se diseñan incorrectamente (ver la Figura 21).

Figura 21

Panel Nodal

Fuente: Tae-Sung Eom (2012).

2.5.9 Consideraciones de diseño para pórticos SMF y IMF

La construcción en acero ha evolucionado como resultado de la experiencia obtenida en las últimas décadas y la existencia de varias investigaciones permitieron el desarrollo de la estructura metálica. El AISC 341-16 (*Seismic Provisions for Structural Steel Buildings*) acumula mucha de esta experiencia y redacta el documento que brinda los criterios generales sismorresistentes para las construcciones en acero (ver Tabla 3).

Tabla 3

Requerimientos de Diseño entre los Sistemas SMF e IMF

De un entre terrate e	Categoría		
Requerimientos	Especial (SMF)	Intermedio (IMF)	
Factor R	8	4.5	
Capacidad de Rotación Plásticas en Rótulas	0.03	0.01	
Distorsión de Piso en las conexiones	0.04	0.02	
Conexiones Viga – Columna	Precalificada	Precalificada/Buena	
Zonas Protegidas	Extremo de viga	Extremo de viga	
Verificación Panel Nodal	Si	No	
Relación Ancho – Espesor	λhd	λmd	
Relación entre la Resistencia	Si	No	
flexional de las Columnas y Vigas			
Restricción Lateral en Vigas	Si	Si	
<i>Nota.</i> Se presenta las diferencias entre	e Pórticos Resistent	es a Momento (SMF)	

Intermedios a Momento (IMF). Fuente: Crisafulli (2013).

2.6. Desempeño Sísmico

En los últimos años la ingeniería estructural ha empezado a promover el desarrollo y aplicación de conceptos de diseño sísmico basado en el desempeño, debido a la necesidad de tener estructuras capaces de resistir la acción sísmica sin colapsar o poner en peligro la vida de sus ocupantes (Choque & Luque.2019).

En un inicio los objetivos del desempeño fueron cualitativos y no estandarizados. Por lo tanto, fue necesario introducir el concepto de límite de capacidad en el diseño sismorresistente de tal manera que sea posible cuantificar el desempeño en términos de cantidad de daños que tiene una estructura debido a un movimiento sísmico y el impacto que tienen estos daños en las actividades posteriores al evento (Aguiar, 2003).

El desempeño sísmico de una estructura se basa en tres conceptos:

- Desempeño: es el comportamiento que tiene una estructura en función de su capacidad o demanda especifica, para evaluar el desempeño sísmico se debe tener en cuenta el estado límite de daño, la seguridad de vida y la funcionalidad del edificio luego del sismo (Choque & Luque.2019).
- Demanda: representa el movimiento del suelo durante el sismo en termino de desplazamiento. Para una estructura y sismo especifico, la demanda de desplazamiento es una estimación de la respuesta máxima esperada.
- **Capacidad:** es la resistencia final esperada de un elemento estructural. En consecuencia, la capacidad de una estructura depende de la capacidad y deformación de sus componentes.

2.6.1 Diseño sísmico basado en el desempeño

El PBSD (*Performance Based Seismic Design*) es una metodología que proporciona la posibilidad de diseñar edificios con un comportamiento predecible y confiable bajo la acción de un sismo. Permite hacer uso del presupuesto más eficientemente tanto en el diseño, construcción y gastos adicionales que logran un mejor desempeño que el proporcionado por las normas de diseño. Mantiene el nivel de seguridad básico, reduciendo considerablemente el riesgo de perdidas potenciales (Choque & Luque.2019).

Este tipo de metodología no está limitado a las nuevas construcciones, sino que puede aplicarse a estructuras existentes para que puedan ser evaluadas y adaptadas a los objetivos de desempeño actuales.

2.6.2 Niveles de Desempeño Sísmico

Estos niveles describen un estado limite o grado de daño. Representa una condición limite establecida en función de los posibles daños físicos de una estructura pueden ser descritos en términos de la seguridad ofrecida, costo y facilidad de reparación, economía, arquitectura e impacto histórico (Cárdenas & Talmatch, 2016).

Esta en función de aspectos importantes como:

- a. Daños físicos de los componentes estructurales y no estructurales dentro del edificio
- b. Amenaza a la seguridad de vida de los ocupantes del edificio debido al daño
- c. Funcionalidad del edificio después del sismo

Se establecen diferentes niveles de evaluación del desempeño sísmico tanto para elementos estructurales y no estructurales según los códigos, sin embargo, todos se basan en los mismos criterios.

2.6.2.1. Niveles de Desempeño según el Comité Visión 2000

El Comité Visión 2000 define cuatro niveles de desempeño, la Tabla 4 presenta las características asociadas a los niveles de desempeño y sus respectivos estados de daño estructural y no estructural.

Tabla 4

Nivel de Desempeño	Descripción de Daños	Estado de Daño
Totalmente operacional	Daño estructural y no estructural despreciable o nulo. Los sistemas de evacuación e instalaciones continúan con sus servicios normalmente	Despreciable
Operacional /Funcional	Agrietamiento en elementos estructurales. Daño entre leve y moderado en contenidos y elementos arquitectónicos. Los sistemas pueden usarse con normalidad luego de pequeños arreglos	Leve
Seguridad de Vida	Daños moderados en algunos elementos. Perdidas de resistencia del sistema resistente de cargas laterales, pero el sistema permanece funcional. Algunos elementos no estructurales pueden dañarse. Puede cerrarse el edificio temporalmente para reforzamientos y reparaciones.	Moderado
Prevención del colapso	Daños severos en elementos estructurales. Fallo de elementos secundarios y no estructurales. Puede llegar a ser necesario demoler el edificio	Severo

Niveles de Desempeño y Descripción de los Estados de Daño

Nota. Se presenta las principales características asociadas a los niveles de desempeño y daño estructural. Fuente: Vision 2000 Committe (1995

2.6.2.2. Niveles de Desempeño según el ATC-40

Los niveles de desempeño definidos por el ATC- 40 (1996) corresponden a niveles utilizados para elementos estructurales y no estructurales evaluados de forma independiente (ver Tabla 5).

Niveles para Elementos Estructurales

Evalúa tres estados de daño (ocupación inmediata, seguridad y estabilidad estructural) que pueden ser utilizados para definir criterios técnicos en los procesos de evaluación y rehabilitación de estructuras. Además, establece dos rangos intermedios (daño controlado y seguridad limitada) que permiten discriminar de manera adecuada y útil el nivel de desempeño de la estructura.

Los niveles son identificados por la abreviación SP-n (SP son siglas de "*Structural Performance*" y n de "*numero de desempeño estructural*").

- a. Ocupación Inmediata, SP-1: es un estado donde se ha producido un daño estructural muy limitado, el riesgo de una lesión que pone en peligro la vida por una falla es insignificante. Los sistemas resistentes de carga vertical y lateral permanecen prácticamente en las mismas características y capacidades antes del sismo
- b. Control de daños, SP-2: es un rango de daño post-sismo y no es un nivel, varía entre SP-1 y SP-3. Permite llevar el daño estructural más allá del nivel de seguridad de vida, sin que la ocupación presente algún problema.
- c. Seguridad de Vida, SP-3: es un estado de daño significativo, pero mantiene un margen adecuado contra el colapso. Los principales componentes no se han desprendido ni caído, reduciendo las lesiones mortales por daños estructurales. Es posible que sea necesario reparar la estructura antes de ocupar el edificio, sin embargo, el daño no siempre es económicamente reparable.
- d. Seguridad Limitada, SP-4: es un rango de daño post-sismico que varía de SP-3 y SP-5. Se presenta en situaciones donde se requiere reforzamiento en algunas partes de la estructura que no cumplen con todos los requisitos de nivel de seguridad de vida, también cuando el nivel de seguridad no es rentable y solo se mitigan las deficiencias estructurales críticas
- e. Estabilidad Estructural, SP-5: es un estado de daño estructural donde el edificio está a punto de sufrir un colapso parcial o total. Se producen daños sustanciales en la rigidez y resistencia del sistema, es probable que los daños en estructuras más antiguas sean técnica y económicamente irreparables además de tener un alto riesgo de colapso por posibles replicas.
- **f.** No Considerado, SP-6: no es un nivel de desempeño, pero es útil en situaciones donde se requiera evaluar los daños sísmicos no estructurales o reforzamientos.

Niveles para Elementos no Estructurales

Los niveles son identificados por la abreviación NP-n (NP son siglas de "Nonstructural Performance" y n de "letra de desempeño no estructural")

- a. Operacional, NP-A: es un estado de daño en el cual los elementos no estructurales, máquinas y sistemas del edificio continúan en su sitio funcionando con normalidad después del sismo.
- b. Ocupación Inmediata, NP-B: es un estado de daño en el cual los elementos no estructurales permanecen en su sitio y se presenta ciertas limitaciones en el funcionamiento de algunos servicios externos, equipos y maquinaras. Sin embargo, esto no compromete la ocupación del edificio.
- c. Seguridad de Vida, NP-C: este estado presenta un daño considerable en los sistemas y elementos no estructurales, pueden verse afectados y requerir un reemplazo o reparación. No hay colapso y las personas dentro o fuera del edificio no están en peligro.
- **d.** Peligro Reducido, NP-D: este estado presenta un daño severo en elementos no estructurales, pero no llega al colapso o caída de elementos grandes y pesados (parapetos, muros exteriores, etc.) que causen daños significativos a las personas.
- e. No Considerado, NP-E: este no es un nivel de desempeño, pero se usa para indicar que no se han evaluado los elementos no estructurales a menos que tenga un efecto directo sobre la respuesta estructural como los muros de mampostería de relleno o particiones.

Tabla 5

Niveles de	Niveles de Desempeño Estructural							
Desempeño No Estructural	SP-1 Ocupación Inmediata	SP-2 Control de Daño	SP-3 Seguridad de Vida	SP-4 Seguridad Limitada	SP-5 Estabilidad Estructural	SP-6 No Considerado		
NP-A Operacional	1-A Operacional	2-A	NR	NR	NR	NR		
NP-B Ocupación Inmediata	1-B Ocupación Inmediata	2-B	3.B	NR	NR	NR		
NP-C Seguridad de Vida	1-C	2-C	3-C Seguridad de Vida	4-C	5-C	6-C		
NP-D Peligro Reducido	NR	2-D	3-D	4-D	5-D	6-D		
NP-E No considerado	NR	NR	3-E	4-E	5-E Estabilidad Estructural	No Aplicable		
Leyenda:	Usados comú Otra posible o	Usados comúnmente para los niveles de desempeño de edificios (SP-NP) Otro posible combinación de SP NP						

Niveles de Desempeño para las Estructuras

Combinaciones no recomendadas de SP-NP Nota: Combinaciones asociadas a los niveles de desempeño. Fuente: ATC-40 (1996)

2.6.3 Objetivos de Desempeño

Estos objetivos están formados por un nivel de peligro sísmico seleccionado y un nivel de desempeño estructural y no estructural. Son el primer paso de la Ingeniería sísmica basada en el desempeño.

Para seleccionar estos objetivos, es necesario tener en cuenta factores tales como: la ocupación, la importancia de las funciones que ocurren dentro de la estructura, consideraciones económicas y consideraciones de importancia de estructura (Bonnet, 2003).

2.6.3.1. Objetivos de Desempeño según el Comité Visión 2000

Visión 2000 identifica un conjunto de objetivo mínimos y mejorados, ver Figura 22.

a. Objetivos mínimos: tenemos al objetivo básico que se define como el objetivo mínimo aceptable para edificios nuevos más comunes. Los edificios esenciales como hospitales que son definidos como objetivos esenciales y plantas nucleares que son definidos como objetivos de seguridad crítica. **b.** Objetivos mejorados: proveen mejor desempeño o menor riesgo que los objetivos mínimos que pueden ser seleccionados bajo la aprobación del cliente.

Figura 22

Fuente: SEAOC Vision 2000 Committe (1995)

2.6.3.2. Objetivos de Desempeño según el ATC-40

El ATC-40 considera que existe una gran variedad de objetivos de desempeño para una estructura y que se definen a partir de varias combinaciones de los niveles de desempeño estructural con los movimientos sísmicos de diseño. La Tabla 6 muestra los objetivos de seguridad básica para estructuras convencionales.

Tabla 6

Objetivos de Seguridad Básica para Estructuras Convencionales

Operacional	Ocupación Inmediata	Seguridad de Vida	Prevención al Colapso
		Х	
			X
	Operacional	Operacional Ocupación Inmediata	Operacional Ocupación Seguridad Inmediata de Vida X

Elaborado por: Los Autores Fuente: ATC-40 (1996)

2.7. Demanda sísmica

La demanda sísmica se representa a través de un espectro de diseño, el cual presenta la respuesta máxima de sistemas de 1GDL como una función de sus frecuencias o periodo. Según Chopra (2014): "La variación en el tiempo de la aceleración del terreno es la forma más útil de definir el movimiento del terreno durante un sismo", pg. 197.

2.7.1 Niveles de Amenazas Sísmicas

Las amenazas sísmicas incluyen efectos directos e indirectos que afectan el nivel de desempeño deseado de una estructura y el alcance que tienen estas amenazas dependen de la magnitud del sismo, la dirección de propagación de la ruptura de falla y las características geológicas del lugar donde se encuentra la estructura.

2.7.1.1. Amenaza sísmica según ATC-40

El ATC-40 define 3 niveles de amenaza sísmica para el diseño de estructuras. Las siglas S, D y M hacen referencia a servicio, diseño y máximo respectivamente, mientras que E significa "*Earthquake*".

- a. Sismo Frecuente o Servicio, SE: es un movimiento de tiene como probabilidad del 50% de ser excedido en un periodo de 50 años o un periodo de retorno de 72 años. Este sismo ocurre una vez durante la vida de la estructura.
- b. Sismo de Diseño, DE: es un movimiento poco frecuente de intensidad moderada y severa. Se define como el movimiento de terreno que tiene una probabilidad del 10% de ser excedida en 50 años o tiene un periodo de retorno de 475 años. Este sismo se establece en los códigos para el diseño de estructuras convencionales.
- c. Sismo Máximo, ME: es el máximo movimiento del terreno que se espera en el sitio donde se localiza la estructura, con una probabilidad del 5% de ser excedido en un periodo de 50 años o un periodo de retorno de aproximadamente 975 años. Este nivel por general varía entre 1.25 y 1.5 veces el valor del sismo de diseño y se utiliza en el diseño de estructuras esenciales.

2.7.1.2. Amenaza sísmica según NEC-2015

La NEC-SE-DS clasifica los sismos según un nivel sísmico y periodo de retorno.

Tabla 7

Nivel de sismo	Sismo	Probabilidad de Excedencia (50 años)	Periodo de Retorno T _r (años)	Tasa anual de Excedencia (1/T _r)
1	Frecuente (menor)	50%	72	0.01389
2	Ocasionado (moderado)	20%	225	0.00444
3	Raro (severo)	10%	475	0.00211
4	Muy raro (extremo)	2%	2500	0.00040

Niveles de Amenaza Sísmica según NEC-2015

Fuente: NEC-SE-DS (2015)

2.7.2 Espectro de diseño según la NEC-2015

2.7.2.1. Espectro de Diseño

Es un espectro que especifica el nivel de resistencia requerida para un diseño. A partir del conocimiento de las condiciones de sitio es posible establecer parámetros que ayudan a construir el espectro de demanda correspondiente a la zona en la que se va a realizar la evaluación estructural, ver Figura 23.

El espectro de demanda debe construirse sin ningún tipo de reducción considerando únicamente un amortiguamiento inherente del sistema en su fase elástica que usualmente es el 5% (NEC-SE-DS, 2015).

Figura 23

Espectro Sísmico Elástico de Aceleraciones del Sismo de Diseño

Fuente: NEC-SE-DS (2015)

La NEC-SE-DS define parámetros para representar el espectro de diseño, los cuales son:

a. Zonificación sísmica: proviene del resultado del estudio de peligro sísmico para un 10% de excedencia en 50 años (periodo de retorno 475 años), que incluye una saturación a 0.5g de los valores de aceleración sísmica en el litoral ecuatoriano.

Tabla 8

Zona sísmica	l	ll	111	IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.4	≥ 0.5
Caracterización del peligro sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy Alta

Fuente: NEC-SE-DS (2015)

Todo el territorio ecuatoriano está catalogado como amenaza sísmica alta, con excepción de:

- Nororiente que presenta una amenaza sísmica intermedia
- Litoral ecuatoriano que presenta una amenaza sísmica muy alta.

b. Tipos de perfiles de Suelo

La norma define seis tipos de suelo las cuales están detallados en el Anexo A.11. Los parámetros usados en la clasificación son los correspondientes a los 30m superiores del perfil, para los perfiles tipo A, B, C, D y E. Para los perfiles tipo F se aplican otros criterios y la respuesta no se limita a los 30 m superiores del perfil en los casos de perfiles con espesor de suelo significativo (NEC-SE-DS, 2015).

c. Coeficientes de perfil de suelo

• F_a : Coeficiente de amplificación de suelo en la zona de periodo corto

La Tabla (ver Anexo A.12) presenta valores que amplifican las ordenadas del espectro de respuesta elástico de aceleraciones para diseño en roca, tomando en cuenta los efectos de sitio

• F_d : Amplificación de las ordenadas del espectro elástico de respuesta de desplazamiento

La Tabla (ver Anexo A.13) presenta valores que amplifica las ordenadas del espectro elástico de respuesta de desplazamiento para diseño en roca, considerando los efectos de sitio

• *F_s*: Comportamiento no lineal de los suelos

La Tabla (ver Anexo A.14) considera el comportamiento no lineal de los suelos, la degradación del periodo del sitio que depende de la intensidad y contenido de frecuencia de la excitación sísmica y los desplazamientos relativos del suelo, para lo espectro de aceleraciones y desplazamientos.

- **d.** Razón entre la aceleración espectral y el PGA: se define como la relación de ampliación espectral $\eta(S_a/Z)$ y varia dependiendo de la región del país.
- η=1.8 provincias de la Costa (excepto Esmeraldas)
- η =2.48 provincias de la Sierra, Esmeralda y Galápagos
- η =2.6 provincias del Oriente
- e. Factor r: usado en el espectro de diseño elástico y sus valores dependen de la ubicación geográfica del proyecto
- r=1 para todos los suelos, con excepción del tipo de suelo E
- η =2.48 para el tipo de suelo E

f. Periodo de vibración, T: el valor T es una estimación inicial razonable del periodo estructural que permite el cálculo de las fuerzas sísmicas a aplicar sobre la estructura y realizar su dimensionamiento. El valor T permite determinar S_a -aceleración espectral (NEC-SE-DS, 2015).

$$T = C_t H_n^{\ \alpha} \tag{147}$$

Donde:

 C_t = coeficiente que depende del tipo de edificio (ver Anexo A.15) H = altura máxima del edificio de n pisos, medido desde la base (m).

2.8. Capacidad de la Estructura

La capacidad es característica propia de la estructura ya que depende de la resistencia y deformación de los materiales que lo conforman. Está representada por la curva de capacidad también llamada curva Pushover. Su trazo fuerza- desplazamiento se realiza mediante el seguimiento de la fuerza cortante basal y el desplazamiento de techo (Mora et al.,2006). Requiere de un análisis no lineal como el procedimiento Pushover ya que la construcción de la curva tiene como fin ir más allá de los limites elásticos (Delgadillo,2005).

2.8.1 Edificios ante Cargas Laterales

Las fuerzas sísmicas laterales son similares a las fuerzas sísmicas estáticas equivalentes, siempre que la estructura tenga un nivel adecuado de simetría en su estructuración, ya que se supone que obedecen el primer modo fundamental de vibracion o una distribucion más sencilla como la rectangular, parabolica y triangular invertida (ver Figura 24) (Moreno Rosangel, 2006).

Figura 24

Patrones de Distribución de las Cargas Laterales

Elaborado por: Los autores

La forma de distribución de las cargas laterales aplicadas a una estructura influye en la determinación de las curvas de capacidad. Sin embargo, no hay un patrón de fuerzas que sea universalmente aceptados (Moreno Rosangel, 2006).

2.8.1.1. Cargas Laterales según NEC 2015

La NEC-SE-DS (2015) indica que las fuerzas laterales se asemejan a una distribución triangular, el cual representa el primer modo fundamental de vibración. Las cargas laterales se distribuyen empleado las siguientes expresiones:

$$V = \sum_{i=1}^{n} F_i; V_x = \sum_{i=x}^{n} F_i$$
(148)

$$F_x = \frac{w_x h_x^{\ k}}{\sum_i^n w_i h_i^{\ k}} V \tag{149}$$

Donde:

V=cortante total en la base de la edificación V_x =cortante total en el piso x de la edificación F_i =fuerza aplicada en todo el piso i de la edificación F_x =fuerza lateral aplicada en el piso x de la edificación w_i, h_i =peso del piso i y altura del piso i, respectivamente k= coeficiente relacionado al periodo de la estructura, T

2.9. Análisis Estático No Lineal "Pushover"

El Análisis Estático No Lineal (Pushover) es una técnica simple y eficiente para estudiar la capacidad, resistencia-deformación, de una estructura bajo una distribución esperada de fuerzas inerciales.

El procedimiento para llevar a cabo el análisis estático no lineal es dar forma a la llamada curva de capacidad (desplazamiento de techo vs fuerza cortante basal) que basa su aplicación en un patrón de cargas que se van incrementando hasta alcanzar un estado límite (punto de desempeño) o una condición de falla (Choque y Luque,2019).

La estructura comienza con una respuesta elástica asociada a la rigidez inicial, luego con el incremento de fuerzas el edificio incursiona en el rango no lineal y los materiales toman un comportamiento más allá del rango elástico, se presentan rótulas plásticas y mecanismos de fallas en los elementos estructurales. Finalmente, la estructura empieza a perder rigidez y resistencia en proporción a su ductilidad (ver figura 25).

Figura 25

Secuencia del proceso de Análisis Estático No Lineal (AENL)

Nota. Se observa la aplicación del patrón de fuerzas y obtención de la curva de capacidad. Fuente: Sergio Arango et al., (2009)

2.9.1 Limitaciones para ingresar en un Análisis Pushover

El análisis Pushover permite identificar las deficiencias estructurales que se presentan y corregirlas si estas no llegan a satisfacer un criterio prestablecido, este criterio suele ser un desplazamiento. Al realizar un análisis por deformación controlada, el desplazamiento se puede controlar a través, de un punto de control localizado generalmente en el centro de rigidez de la losa del nivel más alto de la edificación (Talmatch & Cárdenas, 2016).

No obstante, tiene limitaciones fundamentales que se deben considerar en la aplicación e interpretación de los resultados obtenidos

- El procedimiento utilizado asume que el daño depende solo de la deformación lateral de la estructura, despreciando los efectos de duración y disipación de energía acumulada. Por lo tanto, aplicar esta medida de daño es simplista para estructuras no dúctiles.
- Los modos superiores de vibración no deben ser influyentes en la respuesta global, es decir el análisis modal debe tomar en cuenta los modos suficientes que sumen el 90% de la masa participativa y un segundo análisis modal considerando solo el primer modo de vibración. Si el cortante en cualquier nivel en el primer modo excede el 130% al cortante obtenido en el segundo análisis, se deben considerar significativos los modos superiores.
- Es un análisis al ser de dos dimensiones no considera los efectos de torsión producidos por las variaciones de resistencia y rigidez.

- El análisis se centra solo en la energía de deformación, llevando este procedimiento a despreciar la energía asociada a los componentes dinámicos de las fuerzas, es decir, energía cinética y amortiguamiento viscoso.
- El patrón de cargas solo considera fuerzas laterales e ignora la carga sísmica vertical.

2.9.2 Evaluación y resultados del Análisis Pushover

En un Análisis Estático No Lineal las estructuras son sometidas a cargas laterales incrementales y el método permite:

- Observar las secuencias de alteración de resistencia de elementos estructurales como la fluencia, formación de rótulas plásticas, fallas y colapso total.
- Determinar la capacidad lateral de la estructura.
- Verificar los niveles de desempeño requeridos para las estructuras.
- Identificar cuáles elementos serán más susceptibles a fallar primero.
- Determinar la ductilidad de la estructura.
- Verificar el concepto de vigas débiles y columnas fuertes.
- Identificar la discontinuidad de resistencia en planta o en elevación,

En otras palabras, la evaluación consiste en reconocer las condiciones de la estructura para cada nivel de desempeño, los cuales están en función de la intensidad del movimiento sísmico.

2.9.3 Modelo Esfuerzo-Deformación del Acero

El acero está presente en los elementos estructurales que dan forma a los edificios de este trabajo y puede ser caracterizado con un ensayo de tracción que termina en una curva de deformación unitaria vs esfuerzo.

El modelo muestra en un inicio una zona lineal elástica capaz de presentar deformaciones que regresan a su estado original sin que el material pierda sus propiedades mecánicas. Después el acero más allá del rango lineal es complejo, por lo tanto, se idealiza este comportamiento en un modelo simplificado (Park & Pauly, 1980).

2.9.3.1. Modelo Elastoplástico Perfecto

Es un modelo bilineal que ayuda al acero a llegar a estados mucho mayores que la fluencia de forma más sencilla. Sin embargo, ignora la resistencia superior de fluencia y el aumento en el esfuerzo debido al endurecimiento por deformación (Park y Pauly, 1980). Este modelo no es adecuado para la evaluación del desempeño sísmico ya que no estima adecuadamente los esfuerzos del acero más allá de la fluencia (ver Figura 26).

Figura 26

Modelo Elastoplástico Perfecto

Nota. Modelo esfuerzo-deformación que se usara en un análisis Pushover.

Fuente: Ottazzi Pasino (2011).

2.9.4 Modelo Inelástico de los Elementos

Las respuestas de los elementos de un edificio frente a un sismo definen el comportamiento general de una estructura. Por lo tanto, se necesita conocer esas respuestas con ayuda del diagrama momento-rotación $(M - \theta)$.

2.9.4.1. Diagrama de Momento-Rotación

El diagrama permite conocer la deformación de un elemento en su ángulo de giro por medio de una carga creciente, representa el daño estructural en los diferentes estados del elemento ya sea de acero o concreto (Ottazzi Pasino, 2011). Mientras más dúctiles sean sus miembros, mayor es la capacidad de disipación de energía.

El diagrama momento-rotación $(M - \theta)$ brinda una idea más clara de la máxima capacidad de deformación inelástica, las características de disipación de energía y el comportamiento no lineal de un elemento.

Diagrama de Momento-Rotación Simplificado

EL AISC 41-13, FEMA 440 y ATC-40 establecen un diagrama simplificado y normalizado, el cual se construye calculando algunos parámetros que dan como resultado la forma de un diagrama con tramos rectos entre los puntos más críticos.

Este diagrama se simplifica debido a la cantidad de elementos, así como la complejidad de construir una curva de momento-rotación para un elemento (Choque & Luque,2019).

Relación Fuerza- Deformación según ASCE 41-13

Es necesario conocer el comportamiento de los componentes más allá del rango lineal para después evaluar la respuesta no lineal de toda la estructura, ver Figura 27. La respuesta de los componentes debe representarse mediante una curva que describa dicho comportamiento. El ASCE 41-13 presenta estas curvas como relaciones generalizadas.

Figura 27

Relación fuerza-deformación generalizada para Elementos de Acero

Nota. Se presenta el diagrama que toma el elemento a diseñar. Fuente: ASCE 41-13

La relación generalizada mostrada en la Figura 26, se describe mediante una respuesta lineal que inicia desde un punto A hasta un punto B con una fluencia efectiva; luego tenemos el punto que va del B al C el cual es una reducción de rigidez y representa el endurecimiento por deformación del elemento, esta línea puede considerar del 0% al 10% de la pendiente elástica lineal; después se genera la degradación repentina de la resistencia dando lugar a la repuesta lineal que va del punto C hasta D; más allá del punto D responde con una resistencia muy reducida hasta llegar a E, para deformaciones más halla de este punto la resistencia es cero.

2.9.4.2. Diagrama Momento-Rotación de Vigas

El procedimiento para generar el diagrama de momento-rotación es necesario para entender el daño estructural en los diferentes estados del elemento.

Momento, M₃

Los parámetros de modelación a, b y c, así como los criterios de aceptación IO, CP y LS deben ser calculados según la Tabla 9 (ver Tabla 9-6 del ASCE 41-13). Además, se debe conocer los valores de momento de fluencia, M_v y momento último, M_U .

Tabla 9

Condición de la Geometría	a	b	c
a. $\frac{bf}{2tf} \le \frac{52}{\sqrt{Fye}} \text{ y } \frac{h}{tw} \le \frac{428}{\sqrt{Fye}}$	$9\theta_y$	$11\theta_y$	0.6
b. $\frac{bf}{2tf} \le \frac{65}{\sqrt{Fye}} \circ \frac{h}{tw} \le \frac{640}{\sqrt{Fye}}$	$4 heta_y$	$6\theta_y$	0.2
c. Otros	Inter	polación li	neal

Parámetros para Procedimientos no lineales de una Viga

Fuente: ASCE 41-13

Construcción del Diagrama Momento rotación de las vigas

Según Mora y Aguiar (2015) se puede contemplar tres zonas de trabajo, los cuales son:

 El punto B mostrado en el diagrama de la Figura 10 corresponde al momento de fluencia M_y, el cual representa el límite del rango elástico e inicio del inelástico. Está asociado a la rotación de fluencia, θ_y

$$M_y = M_{px}; \theta_y = \frac{M_{px}L}{6EI}$$
(150)

Cabe recalcar que el momento plástico se encuentra relacionado con el momento M_{γ} .

• El punto C es el momento ultimo M_U y se asocia con la rotación θ_u

$$M_U = M_{px} + \left(\frac{\theta_u - \theta_y}{\theta_y}\right) \alpha M_{px}; \theta_u = a, \alpha = 0.03$$
(151)

El momento M_U es trabajado dentro de un modelo elastoplástico perfecto.

• La recta del punto D al E corresponde al momento residual M_R

$$M_R = cM_{II}; \theta_r = b \tag{152}$$

Tabla 10

Ejemplo de Momento-Rotación de una Viga

Dimensiones de la viga evaluada						
Sección I armada	d(cm) = 36	$b_f(cm) = 22$	$t_f(cm) = 1.6$	$t_w(cm) = 0.8$		
	Estado de Fluencia (θ_{y}, M_{y})	Estado Ultimo (θ_u, M_u)	Estado Residual (θ_{u}, M_{P})	Estado de colapso (θ_r, M_R)		
Rotación θ (rad)	0.007	0.061	0.061	0.074		
Momento $M(tonf - m)$	36.09	44.76	26.85	26.85		

Elaborado por: Los autores

Figura 28

Diagrama Momento-Rotación de una Viga

Elaborado por: Los autores

2.9.4.3. Diagrama Momento-Rotación de Columnas

Axial y Momento, $P - M_3$

Los parámetros de modelación a, b y c, así como los criterios de aceptación IO, CP y LS deben ser calculados según la Tabla 11 (ver Tabla 9-6 del ASCE 41-13). Además, se debe conocer el momento de fluencia M_y , carga axial ultima y nominal P_u , P_n .

Tabla 11

Parámetros para Procedimientos no lineales de una Columna

Condición de la Geometría $P_u/P_n \le 0.2$	a	b	c	
a. $\frac{bf}{2tf} \le \frac{52}{\sqrt{Fye}} ext{ y} \frac{h}{tw} \le \frac{300}{\sqrt{Fye}}$	$9\theta_y$	$11\theta_y$	0.6	
b. $\frac{bf}{2tf} \le \frac{65}{\sqrt{Fye}} \circ \frac{h}{tw} \le \frac{460}{\sqrt{Fye}}$	$4\theta_y$	$6\theta_y$	0.2	
c. Otros	Inter	polación li	neal	
Condición de la Geometría $0.2 \le P_u/P_n \le 0.5$	a	b	c	
a. $\frac{bf}{2tf} \le \frac{52}{\sqrt{Fye}} \text{ y } \frac{h}{tw} \le \frac{260}{\sqrt{Fye}}$	^c	^d	0.2	
b. $\frac{bf}{2tf} \le \frac{65}{\sqrt{Fye}} \circ \frac{h}{tw} \le \frac{400}{\sqrt{Fye}}$	$1\theta_y$	$1.5\theta_y$	0.2	
c. Otros	Inter	polación li	neal	
Condición de la Coometría para Columnas Tubulares				

Condición de la Geometría para Columnas Tubulares

<i>bf</i> < ⁵² –	<u>b</u> <u>110</u>	. <i>bf</i> _ 65 _	$\frac{b}{190}$
$\frac{1}{2tf} \ge \frac{1}{\sqrt{Fye}}$	$\frac{1}{t} \ge \frac{1}{\sqrt{Fye}}$	$, \frac{1}{2tf} \geq \frac{1}{\sqrt{Fye}} =$	$-\frac{1}{t} \ge \frac{1}{\sqrt{Fye}}$

Fuente: ASCE 41-13

Construcción del Diagrama Momento rotación de columnas

El diagrama es construido de igual forma que el diagrama momento-rotación de la viga con la diferencia de que la rotación de fluencia para las columnas es:

$$\theta_{y} = \frac{M_{px}L}{6EI} \left(1 - \frac{P_{u}}{A_{g}F_{y}} \right) \tag{153}$$

Tabla 12

Ejemplo de aplicación de valores de Momento-Rotación de una Columna

Dimensiones de la columna evaluada						
Sección Vertical	d(cm) = 52	$b_f(cm) = 26$	$t_f(cm) = 1.8$	$t_w(cm) = 1.2$		
Sección Horizontal	d(cm) = 52	$b_f(cm) = 26$	$t_f(cm) = 1.8$	$t_w(cm) = 1.2$		
	Estado de	Estado Ultimo	Estado Residual	Estado de colapso		
	Estado de Fluencia (θ_y, M_y)	Estado Ultimo (θ_u, M_U)	Estado Residual (θ_u, M_R)	Estado de colapso (θ_r, M_R)		
Rotación θ (rad)	Estado de Fluencia (θ_y, M_y) 0.0024	Estado Ultimo (θ_u, M_U) 0.016	Estado Residual (θ_u, M_R) 0.016	Estado de colapso (θ_r, M_R) 0.025		

Elaborado por: Los autores

Figura 29

Diagrama Momento-Rotación de una Columna

Elaborado por: Los autores

2.9.4.4. Criterios de Aceptación no Lineales

Estos criterios de aceptación se definen dentro de los parámetros que dan forma a la relación de Fuerza – Deformación propuesta por el ASCE 41-13. Además, no tienen ningún efecto en el comportamiento de la estructura.

Los criterios de aceptación no lineales son grados de deformación que se dividen en IO (*Immediate Ocupancy*), LS (*Life Safety*) y CP (*Colapse Prevention*) y sirven para determinar en qué nivel de rendimiento se encuentra el elemento (ver Figura 30).

Figura 30

Criterios de Aceptación No lineales

Nota. Se presentan los grados de deformación que se espera que tengan los elementos en el rango no lineal y como lo representa el programa SAP2000.

Fuente: CSI (2013)

2.9.5 Curva de capacidad

La curva de capacidad es la relación que existen entre el cortante basal que se genera a nivel de la base de la estructura y el desplazamiento lateral del punto de control en el nivel superior de la estructura, ver Figura 31 (Duarte et al,2017).

La curva generalmente se construye para representar la respuesta del primero modo de vibración de la estructura, basándonos en la hipótesis que el modo fundamental de vibración es la respuesta predominante de la estructura. Esta suposición es válida para estructuras con periodos de vibración menores a 1 segundo, caso contrario para estructuras más flexibles, el análisis debe considerar la influencia de los modos de vibración superiores (Duarte et al,2017).

Figura 31

Curva de Capacidad

2.9.5.1. Ductilidad

La ductilidad es la relación entre la deformación última y la de fluencia de una estructura o elemento estructural, el cual depende de características propias del edificio como el sistema estructural, la irregularidad y el tipo de material.

La Figura 32, compara la respuesta estructural de los sistemas frágiles y dúctiles. Los sistemas frágiles fallan después de alcanzar el límite de resistencia a deformaciones inelásticas muy bajas y el colapso se produce repentinamente más allá de la resistencia máxima. Pero con los sistemas dúctiles tenemos grandes deformaciones inelásticas (Elnashai & Sarno, 2008).

Figura 32

Comportamiento Dúctil y no Dúctil de una Estructura

Fuente: Elnashai & Sarno (2008).

Se puede estimar la ductilidad disponible a partir de un nivel de sismo específico:

 Ductilidad del elemento: también llamado ductilidad de rotación y considera las propiedades del material.

$$\mu_{\theta} = \frac{\theta_u}{\theta_y} \tag{154}$$

• Ductilidad de la estructura: considera el comportamiento de toda la estructura.

$$\mu_{\delta} = \frac{\delta_u}{\delta_y} \tag{155}$$

2.9.5.2. Sobre resistencia

La sobre resistencia se define cómo el cociente entre la fuerza cortante de colapso y fluencia efectiva. Es el incremento en la capacidad más allá del límite elástico y sucede en la mayoría de estructuras y elementos estructurales.

Se puede calcular la sobre resistencia de demanda para un nivel de sismo específico.

$$SR_{u/y} = \frac{V_u}{V_y}$$
(156)

$$SR_{d/y} = \frac{V_d}{V_y} \tag{157}$$

2.10. Estimación del Punto de Desempeño

El punto de desempeño es una estimación del desplazamiento máximo esperado del último nivel de un edificio (techo) calculado para un sismo. En consecuencia, su resultado presenta el estado de daño asociado a la estructura que puede ser comparado con el objetivo de desempeño deseado (Choque y Luque, 2019).

Esta definición es útil para el diseño de nuevas estructuras, rehabilitación de estructuras existentes y análisis de vulnerabilidad y daño sísmico. Permite entender de mejor manera el comportamiento de una estructura sometida a movimientos sísmicos de diferente intensidad y es de gran ayuda para incrementar los niveles de seguridad a un bajo costo (Moreno Rosagnel, 2006).

Los procedimientos de análisis dinámico no lineal NDP (*Nonlinear Dynamic Procedure*) permiten estimar de manera exacta el comportamiento no lineal de los edificios, sin embargo, no resulta practico. Por lo tanto, se proponen métodos de análisis no lineal simplificados conocidos como análisis estático no lineal NSP (*Nonlinear Static Procedure*) como el análisis Pushover (Choque y Luque, 2019).

Existen varios métodos que permiten estimar el punto de desempeño a partir del análisis estático no lineal Pushover. En este trabajo se describen dos métodos de análisis no lineal simplificados utilizados para determinar este punto en una estructura

2.10.1 Método del Espectro de Capacidad

El método fue propuesto por Freeman (1975), como una forma rápida de evaluar el riesgo sísmico, después fue utilizado para correlacionar el sismo con observaciones del desempeño realizadas a las construcciones existentes. Hoy en día, el método es un procedimiento simple para determinar el punto de desempeño de una estructura cuando está sometida a movimientos sísmicos de diferentes intensidades (Moreno Rosagnel, 2006).

Este método se basa en la linealización equivalente del espectro de capacidad e intersección de este espectro con un espectro de respuesta reducido, para estimar el desplazamiento máximo. Su representación gráfica proporciona una idea más clara de cómo el edificio responde al movimiento del terreno debido a las fuerzas sísmicas.

2.10.1.1. Propuesta según el ATC-40

El método inicia con la generación de la curva de capacidad, luego los resultados son transformados a formato ADRS (*Acceleration Displacement Response Spectra*), también la demanda sísmica debe convertirse al mismo formato. El espectro de demanda inelástico se obtiene a partir del espectro elástico lineal por medio del amortiguamiento equivalente del sistema, que es proporcional al área contenida por el espectro de capacidad y el periodo equivalente, que es un periodo secante en el que la demanda sísmica reducida interseca con el espectro de capacidad.

Finalmente, Rosangel Moreno (2006) determina que en el punto de desempeño se superponen los espectros de demanda y capacidad sísmica. Por lo tanto, debe cumplir con:

- 1. Debe estar sobre el espectro de capacidad para representar a la estructura en un determinado desplazamiento
- Debe estar sobre el espectro de demanda (reducido a partir del espectro elástico) que representa la demanda no lineal en el mismo desplazamiento estructural.

Cabe recalcar que el amortiguamiento y periodo equivalente están en función del desplazamiento por lo tanto determinar el punto de desempeño es iterativo (Choque y Luque, 2019).

Conversión del Espectro de Respuesta a formato ADRS

El ATC-40 indica que para convertir un espectro de demanda de formato estándar S_a vs T a un formato ADRS, es necesario determinar el valor de S_{di} para cada punto de la curva S_{ai} , T_i , ver Figura 33.

$$S_a = \omega^2 S_d; \ \omega = \frac{2\pi}{T} \tag{158}$$

$$S_{d_i} = \frac{T_i^2}{4\pi^2} S_{a_i}$$
(159)

Donde:

Sa = Aceleración espectral $Sd_i =$ Desplazamiento espectral

Figura 33

Formato ADRS ($S_a vs S_d$)

Elaborado por: Autores

Conversión de la Curva de Capacidad a Espectro de Capacidad

Según el procedimiento del ATC-40 (1996) es necesario convertir la curva de capacidad en términos de espectro de capacidad que es la representación de la curva de capacidad en coordenadas espectrales conocidos como ADRS o curva AD (Aceleración-Desplazamiento), ver Figura 34.

Las ecuaciones necesarias para iniciar con la transformación (punto a punto) la curva de capacidad a coordenadas espectrales, propuestas por el ATC-40 son:

$$PF_{1} = \left[\frac{\sum_{i=1}^{N} (w_{i}\phi_{i1})/g}{\sum_{i=1}^{N} (w_{i}\phi_{i1}^{2})/g}\right]$$
(160)

$$\alpha_{1} = \frac{\left[\sum_{i=1}^{N} (w_{i}\phi_{i1})/g\right]^{2}}{\left[\sum_{i=1}^{N} w_{i}/g\right]\left[\sum_{i=1}^{N} (w_{i}\phi_{i1}^{2})/g\right]}$$
(161)

$$S_a = \frac{V/W}{\alpha_1} \tag{162}$$

$$S_d = \frac{D}{PF_1 * \emptyset} \tag{163}$$

Donde:

 PF_1 = Factor de participación modal para el primer modo natural α_1 = Coeficiente de masa efectiva para el primer modo natural

 w_i/g = Masa asignada al nivel i

 ϕ_{i1} = Amplitud del modo 1 en el nivel i

N= Nivel N (nivel más alto de la estructura)

 V_i = Corte basal

W = Peso muerto del edificio

D = Desplazamiento del techo (Asociado a la curva de capacidad)

Figura 34

Conversión de la Curva de Capacidad a formato ADRS

Nota. Las figuras son: a) Formato Estándar (V vs D) y b) Formato ADRS (S_a vs S_d). Fuente: Choque y Luque (2019)

Representación Bilineal del Espectro de Capacidad

Es necesario una representación bilineal del espectro de capacidad para estimar la amortiguación efectiva y la reducción apropiada de la demanda espectral. Por tal razón de define un punto a_{pi} , d_{pi} que es un punto de desempeño de prueba estimado para desarrollar un espectro de respuesta de demanda reducido.

Según el ATC-40 (1996) para obtener de la representación bilineal se debe seguir el siguiente procedimiento

- Dibujar una línea recta que parte del origen (Punto O) con una pendiente igual a la rigidez inicial K_i de la estructura en el rango elástico
- 2. Definir un punto de desempeño de prueba (a_{pi}, d_{pi}) para obtener el espectro de demanda reducido. Es el Punto B de la Figura 35
- 3. Trazar una línea desde el Punto B hasta cortar con la línea definida como el punto A de coordenadas (a_y, d_y) ,. La pendiente de esta línea debe dejar áreas A1 y A2 iguales por encima y debajo del espectro de capacidad respectivamente.
- Definir la representación bilineal del espectro de capacidad uniendo con una línea los puntos OAB como se muestra en la Figura 35

Figura 35

Representación Bilineal del Espectro de Capacidad

Fuente: Choque y Luque (2019)

2.10.1.2. Propuesta según el FEMA 440

El FEMA 440 propuso un procedimiento de Linealización Equivalente Mejorado (*Improved Equivalent Linearization Procedure*). Este método estima la respuesta máxima de desplazamiento de un sistema no lineal a partir de parámetros característicos de la curva de capacidad, periodo y amortiguamiento inicial del sistema, también la demanda de ductilidad (μ). Estos parámetros son un periodo efectivo T_{eff} y amortiguamiento efectivo β_{eff} (Choque y Luque, 2019).

El FEMA-440, en el capítulo 6 presenta 3 procedimientos (A, B y C) para determinar el punto de desempeño, a continuación, se detalla los parámetros para el procedimiento B:

Parámetros para la linealización equivalente mejorado

a) Amortiguamiento efectivo: este amortiguamiento está en función de la ductilidad global de la estructura μ, expresados como un porcentaje del amortiguamiento crítico. Independiente del modelo histérico y su valor se calcula con las siguientes expresiones:

Para $1.0 < \mu < 4.0$:

$$\beta_{eff} = A(\mu - 1)^2 + B(\mu - 1)^3 + \beta_0$$
(164)

Para $4.0 < \mu < 6.5$:

$$\beta_{eff} = C + D(\mu - 1) + \beta_0$$
 (165)

Para $\mu > 6.5$

$$\beta_{eff} = E\left(\frac{F(\mu-1)-1}{(F(\mu-1)-1)^2}\right) \left(\frac{T_{eff}}{T_o}\right)^2 + \beta_0$$
(166)

Los coeficientes A, B, C, D, E se muestran en la Tabla 6-1 del FEMA 440 y las ecuaciones pueden ser optimizadas a cualquier curva de capacidad independiente del modelo histérico.

Para $1.0 < \mu < 4.0$:

$$\beta_{eff} = 4.9(\mu - 1)^2 + 1.1(\mu - 1)^3 + \beta_0$$
(167)

Para 4.0 < μ < 6.5:

$$\beta_{eff} = 14 + 0.32(\mu - 1) + \beta_0 \tag{168}$$

Para $\mu > 6.5$

$$\beta_{eff} = 19 \left(\frac{0.64(\mu - 1) - 1}{(0.64(\mu - 1) - 1)^2} \right) \left(\frac{T_{eff}}{T_o} \right)^2 + \beta_0$$
(169)

b) Periodo efectivo: su valor es para todos los tipos de modelo histérico.

Para $1.0 < \mu < 4.0$:

$$T_{eff} = [G(\mu - 1)^2 + H(\mu - 1)^3 + 1]T_0$$
(170)

Para $4.0 < \mu < 6.5$:

$$T_{eff} = [I + J(\mu - 1) + 1]T_0$$
(171)

Para $\mu > 6.5$

$$T_{eff} = \left[K \left[\sqrt{\frac{(\mu - 1)}{1 + L(\mu - 2)}} - 1 \right] + 1 \right] T_0$$
(172)

Los coeficientes G, H, I, J, K, L se muestran en la Tabla 6-2 del FEMA 440 y las ecuaciones pueden ser optimizadas para su aplicación a cualquier espectro de capacidad independiente del tipo de modelo histérico. Cabe recalcar que las expresiones aplican para $T_o = 0.2 \ a \ 2 \ s$

Para $1.0 < \mu < 4.0$:

$$T_{eff} = [0.2(\mu - 1)^2 - 0.038(\mu - 1)^3 + 1]T_0$$
(173)

Para 4.0 < μ < 6.5:

$$T_{eff} = [0.28 + 0.13(\mu - 1) + 1]T_0$$
(174)

Para $\mu > 6.5$

$$T_{eff} = \left[0.89 \left[\sqrt{\frac{(\mu - 1)}{1 + 0.05(\mu - 2)}} - 1 \right] + 1 \right] T_0$$
(175)

c) Espectro de Respuesta Aceleración-Desplazamiento Reducido (ADRS(β_{eff}))

Según el FEMA-440 los procedimientos de linealización equivalente normalmente necesitan del uso de factores de reducción espectral para ajustar un espectro de respuesta inicial al nivel apropiado de amortiguamiento efectivo β_{eff} . Los valores están en función del amortiguamiento efectivo al cual llamamos coeficiente de amortiguamiento $\beta(\beta_{eff})$ y se utiliza para ajustar las coordenadas de aceleración espectral (Mamani Ruther, 2018).

$$(S_a)_\beta = \frac{(S_a)_0}{\beta(\beta_{eff})} \tag{176}$$

$$(S_d)_{\beta} = \frac{T^2}{4\pi^2} (S_a)_{\beta} \tag{177}$$

$$B = \frac{4}{5.6 + \ln(\beta_{eff})}; \ln(\beta_{eff}) (en \%)$$
(178)

d) Espectro de Respuesta Aceleración-Desplazamiento Modificado (MADRS)

Las ecuaciones de periodo y amortiguamiento efectivo permiten obtener un desplazamiento máximo que coincide con la intersección de la línea del periodo efectivo (línea radial) y el espectro de respuesta en formato ADRS (β_{eff}). Sin embargo, el periodo efectivo T_{eff} obtenido a partir del procedimiento mejorado es distinto al periodo secante

 T_{sec} definido en el punto de la curva de capacidad correspondiente al desplazamiento máximo d_{max} . Además, la aceleración a_{eff} no es significativa ya que la máxima aceleración real a_{max} debe estar sobre la curva de capacidad y coincidir con el d_{max} (Choque y Luque, 2019).

Entonces se necesita un espectro de respuesta ADRS modificado (MADRS) y lo obtenemos al multiplicar las ordenadas del espectro de respuesta reducido ADRS(β_{eff}) por un factor modificador M, ver Figura 36.

$$M = \frac{a_{max}}{a_{eff}} \tag{179}$$

$$M = \left(\frac{T_{eff}}{T_{sec}}\right)^2 = \left(\frac{T_{eff}}{T_0}\right)^2 \left(\frac{T_0}{T_{sec}}\right)^2 \tag{180}$$

$$\left(\frac{T_0}{T_{sec}}\right)^2 = \frac{1 + \alpha(\mu - 1)}{\mu}$$
 (181)

Figura 36

Espectro de Respuesta Modificado MADRS

Fuente: FEMA 440 (2005)

Método del espectro de capacidad: Procedimiento B (FEMA 440)

Debido a que el periodo efectivo, T_{eff} y el amortiguamiento efectivo β_{eff} , están en función de μ . El cálculo del máximo desplazamiento utilizando la linealización equivalente no es directo y requiere un procedimiento iterativo o gráfico. (Mamani Ruther, 2018).

Es importante mencionar que el procedimiento de este método es básicamente el mismo propuesto por el ATC-40 y se lo realiza hasta converger directamente en el punto de desempeño. Se sigue el siguiente procedimiento:

- 1. Seleccionar un espectro de demanda sísmica de interés con un amortiguamiento inicial $\beta_0 = 5\%$ (espectro de respuesta elástico).
- Convertir el espectro de demanda seleccionado a formato aceleracióndesplazamiento (ADRS) de acuerdo al ATC-40, este espectro responde a la curva de demanda ADRS inicial.
- Generar la curva de capacidad de la estructura dada en coordenadas Cortante vs Desplazamiento de techo y convertirla en formato ADRS según el ATC-40
- 4. Seleccionar un punto de desempeño inicial (aceleración máxima, a_{p_i} y desplazamiento máximo, d_{p_i}). Puede estimarse con la aproximación de desplazamiento iguales, ver Figura 37.

Figura 37

Espectro de Demanda Inicial y Espectro de Capacidad

5. Desarrollar la representación bilineal del espectro de capacidad según el ATC-40, procedimiento descrito en la sección 2.10.1.1. (ver Figura 34). Se define el periodo inicial T_0 , el desplazamiento y aceleración de fluencia d_y , a_y , ver Figura 38

Figura 38

Representación Bilineal en Espectro de Demanda Inicial y Espectro de Capacidad

Fuente: Mamani Ruther (2018)

- 6. Para la representación bilineal propuesta en el paso 5, calcular la rigidez postelastica α y ductilidad μ , con las siguientes formulas.
- 7. Usar los valores calculados en el paso 7 para determinar el amortiguamiento y periodo efectivo β_{eff} , T_{eff}
- 8. Calculado el β_{eff} , ajustar el espectro de demanda ADRS inicial para β_{eff} .
- 9. Multiplicar las ordenadas de aceleración (no desplazamiento) del ADRS (β_{eff}) por el factor M determinado en el capítulo 2.10.1.2 literal d de este trabajo.
- 10. Determinar la aceleración máxima a_i y el desplazamiento máximo esperado d_i , con la intersección del MADRS y el espectro de capacidad, ver Figura 39.

Figura 39

Determinación del Máximo Desplazamiento Esperado

Fuente: Mamani Ruther (2018)

11. Comparar el máximo desplazamiento d_i que se encuentra entre la intersección del espectro de demanda y capacidad, con el desplazamiento asumido inicialmente. Es decir, cuando el desplazamiento d_i está dentro del 5% (0.95d_{pi} ≤ d_i ≤ 1.05d_{pi}) del desplazamiento del punto de desempeño de prueba, d_i se convierte en el punto de desempeño, ver Figura 40.

Si la intersección del espectro de demanda y capacidad no se encuentran dentro de la tolerancia, se selecciona otro nuevo a_{p_i} , d_{p_i} y se repite este proceso.

Figura 40

Punto de Intersección del Espectro de Demanda y Capacidad

Fuente: Mamani Ruther (2018)

2.10.2 Método de Coeficientes

Este método toma en cuenta el periodo efectivo ya que representa la rigidez lineal del sistema de 1GDL equivalente. Es más, el periodo efectivo en el espectro de respuesta elástico S_a vs T identifica una respuesta de aceleración máxima.

2.10.2.1. Propuesta del FEMA 356

El FEMA 356 presenta un procedimiento estático no lineal el cual modifica la respuesta elástica lineal del sistema de 1GDL equivalente multiplicándolo por una serie de coeficientes para estimar el desplazamiento global máximo también llamado Desplazamiento Objetivo (FEMA 440, 2005).

Curva Idealizada Fuerza-Deformación (Representación Bilineal)

Para obtener la representación bilineal se usa un procedimiento grafico-iterativo que iguala áreas formadas por dos segmentos por encima y por debajo de la curva de capacidad, es decir, la energía disipada por el área debajo de la curva se iguala a la energía disipada por la curva idealizada mediante un sistema elastoplástico.

Presenta el siguiente procedimiento:

- 1. Definir el desplazamiento ultimo D_u y correspondiente cortante de base V_u que definen el punto B de la Figura 40. Estos valores muestran un punto al que la estructura puede llegar antes del colapso.
- 2. Calcular el área bajo de la curva de capacidad
- 3. Estimar el cortante basal de fluencia V_y^i (valor arbitrario) y se redefine mediante un proceso iterativo que iguala áreas bajo la curva real y la curva bilineal idealizada
- 4. Calcular la pendiente inicial K_e^{i} de la curva bilineal, el cual se obtiene al unir con una lineal el origen O y el punto sobre la curva de capacidad real con un cortante basal igual $0.6V_v^{i}$
 - A partir del análisis Pushover, se determina el desplazamiento $D_{0.6}{}^{i}$ correspondiente a un cortante basal de $0.6V_{v}{}^{i}$
 - La pendiente K_e^{i} corresponde a la rigidez lateral efectiva de la estructura

$$K_e^{\ i} = \frac{0.6V_y^{\ i}}{D_{0.6}^{\ i}} \tag{182}$$

5. Calcular el desplazamiento de fluencia D_{y}^{i}

$$D_y{}^i = \frac{V_y{}^i}{K_e{}^i} \tag{183}$$

El punto A se denomina punto de fluencia y corresponde a un cortante basal V_y^i y un desplazamiento D_y^i

- 6. Definir la curva bilineal, mediante las rectas OA Y AB. Ver Figura 40
- 7. Calcular el factor reductor α de la rigidez de la estructura después de la fluencia.

$$\alpha^{i} = \frac{(V_u/V_y^{i}) - 1}{(D_u/D_y^{i}) - 1}$$
(184)

- 8. Calcular el área bajo la curva bilineal OAB
- 9. Determinar el error ε en la representación bilineal. Si el error excede el nivel de tolerancia prestablecido, se repite el proceso, ver Figura 41.

Figura 41

Representación Bilineal según el FEMA 356

Fuente: FEMA 356 (2000)

2.10.2.2. Propuesta del FEMA 440 y el ASCE/SEI 41-13

El FEMA 440 realizó una evaluación del método del espectro de capacidad y en el capítulo 5 propuso un procedimiento Mejorado para la modificación del Desplazamiento (*Improved Procedures for Displacement Modification*). Este capítulo incluye recomendaciones y nuevas expresiones para los coeficientes basados en datos empíricos, así como la eliminación de coeficientes como el C_3 presentado en el procedimiento del FEMA 356, el cual es remplazado con un límite de resistencia mínima requerida $\mu_{strength}$ para evitar la inestabilidad dinámica.

Curva Idealizada Fuerza-Deformación

El procedimiento es igual al propuesto por el FEMA 356 con la diferencia de la inclusión de un tercer segmento en la curva debido a la degradación de la resistencia.

De forma resumida el primer segmento inicia en el origen y tiene una pendiente igual a la rigidez lateral efectiva K_e , que es la rigidez secante calculada para un cortante igual al 60% del cortante de fluencia de la estructura V_v .

El segundo segmento representa la pendiente positiva post - fluencia $\alpha_1 K_e$, determinada por la unión del punto (V_d, Δ_d) y la intersección con el primer segmento de manera de las áreas por encima y por debajo de la curva sean aproximadamente iguales y el tercer segmento representa la pendiente negativa post - fluencia $\alpha_2 K_e$, determinada por el punto (V_d, Δ_d) y el punto en que la fuerza cortante basal se degrada a un 60% de la resistencia de fluencia efectiva, ver Figura 42.

Figura 42

Curva Idealizada Fuerza-Desplazamiento según FEMA 440

Fuente: FEMA 440 (2005)

Desplazamiento Objetivo (ASCE/SEI 41-13)

El desplazamiento objetivo δ_t para edificios con diafragma rígido, se calculan como:

$$\delta_t = C_0 C_1 C_2 S_a \frac{T_e^2}{4\pi^2} g \tag{185}$$

Continuación se detalla el valor de los coeficientes necesarios para calcular δ_t

 C_0 : Factor de modificación que relaciona el desplazamiento espectral de un sistema equivalente de 1 GDL con el desplazamiento de techo del edificio de un sistema de varios GDL. Se calcula:

 El factor de participación del primer modo de vibración al nivel del nodo de control o un valor de la Tabla 13.

Tabla 13

Valores para el Factor de Modificación C₀

Numero de Niveles	<i>C</i> ₀
1	1.0
2	1.2
3	1.3
5	1.4
10+	1.5
	0000

Fuente: FEMA 356,2000

 C_1 : Factor de modificación que relaciona los desplazamientos inelásticos máximos esperados con los desplazamientos calculados para la respuesta elástica lineal

$$C_1 = 1 + \frac{\mu_{strength} - 1}{a{T_e}^2}$$
(186)

- El valor "a" corresponde a la clasificación del tipo de suelo en el sitio (ASCE 7-16, 2017)
 - a= 130 para clasificación de sitio A o B (roca)
 - a= 90 para clasificación de sitio C (suelo denso y roca suave)
 - a= 60 para clasificación de sitio D o F (suelos rígidos, arcillosos o sin clasificar)
- El μ_{strength} relaciona entre la demanda de resistencia elástica y el coeficiente de resistencia a la fluencia. Cabe recalcar que el Análisis Estático no lineal (NSP) no está permitido si μ_{strength} excede al valor μ_{max}.

$$\mu_{strength} = \frac{S_a}{V_y/W} C_m \tag{187}$$

Donde:

 T_e = Periodo fundamental efectivo del edificio en la dirección considerada, s

 V_y = Resistencia de fluencia del edificio en la dirección considerada, s

W= Peso sísmico efectivo

 C_m = Factor de masa efectiva (Tabla 7.4 ASCE 41-13), será 1.0 si T > 1.0sPara T < 0.2s, C_1 no necesita tomarse mayor al calculado para T = 0.2s y para T > 1.0s, $C_1 = 1.0$

 C_2 : Factor de modificación que representa el efecto de estrangulamiento de los ciclos histeréticos, la degradación de la rigidez cíclica y el deterioro de la resistencia sobre la respuesta de desplazamiento máxima.

 El FEMA 440 recomienda que el factor represente efectos de degradación de rigidez.

$$C_2 = 1 + \frac{1}{800} \left(\frac{\mu_{strength} - 1}{T_e} \right)^2 \tag{188}$$

• Los periodos mayores a 0.7s con $C_2 = 1.0$

2.11. Evaluación de Desempeño Sísmico

Previamente se usó el procedimiento del ATC-40 para determinar el punto de desempeño en un nivel de demanda sísmica de diseño, por lo tanto, se debe analizar el significado que tiene este punto en el comportamiento estructural del edificio.

2.11.1 Límites de Aceptabilidad Global

- La capacidad de la estructura frente a cargas de gravedad debe permanecer intacta para un desempeño aceptable en cualquier nivel.
- La resistencia de la estructura frente a cargas laterales, incluye la resistencia frente a cargas de gravedad que actúan a través de los desplazamientos laterales (efecto P-Δ).
- Los desplazamientos en el punto de desempeño se deben verificar con los limites establecido en los *Objetivos del Desempeño*

El ATC-40 delimita la representación bilineal de la curva de capacidad para calificar el nivel de desempeño, ver Figura 43.

Figura 43

Sectorización por Niveles de Desempeño del Modelo Bilineal de la Curva de Capacidad

Fuente: ATC-40 (1996)

CAPÍTULO III

METODOLOGÍA

3.1. Descripción General de los Edificios

El acero se caracteriza por ser un elemento capaz de disipar la energía sísmica, razón por la cual su uso en estructuras metálicas como alternativa de construcción ha crecido constantemente en los últimos años y es más notorio en las cuidades más grandes del país. Entonces gracias a las ventajas que presentan estas estructuras la normativa actual permite diseñar edificios de acero en base a diferentes sistemas estructurales.

La experiencia indica que los edificios estructurados con pórticos Intermedios a Momento (IMF) y pórticos Especiales a Momento (SMF) responden de buena manera frente a un evento sísmico. Por lo tanto, en la presente tesis se evaluará el desempeño sísmico de estos dos tipos de sistema estructurales; para dos edificios de 3 y 6 pisos con sistema estructural IMF (edificios con columnas tubulares) y dos de 3 y 6 pisos con sistema SMF (edificios con columnas cruciformes).

Los edificios de estudio cuentan con plantas típicas de 16.4 m por 15.6 m, ejes con separación de 5.6 m, 5.4 m y 5.0 m en la dirección X-X y 4.8 m, 5.3 m y 5.1 m en la dirección Y-Y, ver Figura 43. La altura de todos los entrepisos es de 3 m. Estará ubicado en Quito, sobre un suelo tipo D. El uso del edificio será residencial con terraza accesible.

3.1.1 Propiedades de los Materiales

Las propiedades del material tanto del hormigón y acero se muestran en la Tabla 14.

Tabla 14

Propiedades del Hormigón, Acero y Panel Metálico

Hormigón	Acero ASTM A36	Deck metálico ASTM A653
$f'_c = 240 \ kg/cm^2$	$F_y = 2531 kg/cm^2$	$e_{deck} = 0.76mm$
$E = 13500 \sqrt{f'_c}$	$E = 2038901.78 kg/cm^2$	$P_{deck} = 7.47 \ kg/cm^2$
$e_{losa} = 7cm$	$\gamma_a = 7.849 \ kg/cm^3$	
$\gamma_h = 2.4028 \ kg/cm^3$		

Elaborado por: Los Autores

3.2. **Bases de Diseño**

3.2.1 Normativa utilizada

- ANSI/AISC 360-16 "Specification for Structural Steel Buildings"
- ANSI/AISC 341-16 "Seismic Provisions for Structural Steel Buildings"
- ANSI/AISC 358-16 "Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications"
- ASCE 41-13, 2014 "Seismic Evaluation and Retrofit of Existing Buildings"
- ATC-40, 1996 "Seismic Evaluation and retrofit of Concrete Buildings"
- FEMA 356, 2000 "Prestandard and Commentary for the Seismic Rehabilitation of Buildings".
- FEMA 350. (2000) Recommended Seismic Design Criteria For Ivew Steel Moment-Frame Buildevgs.
- FEMA 440, 2005 "Improvement of Nonlinear Static Seismic Analysis Procedures"
- NEC-SE-DS,2015 Norma Ecuatoriana de la Construcción- "Peligro Sísmico, Diseño Sismo Resistente"
- NEC-SE-AC, 2015 Norma Ecuatoriana de la Construcción- "Estructuras de Acero"
- SEOC Vision 2000 Committe, 1995 "Análisis Sísmico de Edificios"

3.2.2 Análisis de Carga

Previo a obtener las combinaciones de carga, se debe establecer las solicitaciones que estarán actuando en los edificios como pesos unitarios, sobrecargas y cargas vivas. Estos valores se asignarán directamente en el programa SAP2000 (ver Tabla 15).

Tabla 15

Cargas colocadas en las Estructuras modeladas

	Cargas	Kgf/m2
Sobrecarga (Residencial)	Deck	7.47
	Instalaciones	80
	Mampostería	145
	Gypsum-techo	25
	Acabados	88
Sobrecarga (Techo)	Instalaciones techo	80
	Gypsum-techo	25
	Deck-techo	7.47
Carga Viva (Residencial)	Carga Viva (vivienda)	210
	Carga viva (techo)	70
Carga Externa	Granizo	50
Elaborado por: Los autores		

Elaborado por: Los autores.

3.2.3 Predimensionamiento de Elementos

Los sistemas estructurales se componen de vigas y columnas, elementos que dan forma al pórtico. Estos sistemas dan resistencia y rigidez frente a cargas verticales y laterales

3.2.3.1. Vigas de Acero

El predimensionamiento de las vigas considera la luz L_n más grande que forma parte de la distribución en planta de la estructura.

• El peralte y patín de la viga se pueden predimensionar con las siguientes expresiones:

$$d = \frac{L_n}{15} \tag{189}$$

$$b_f = \frac{d}{3} \tag{190}$$

• El espesor del patín se obtiene con la Ec. 191, donde se debe despejar t_f .

$$\frac{0.5b_f}{t_f} = \left(0.32\sqrt{\frac{E}{RyF_y}}\right) \tag{191}$$

• El espesor del alma se obtiene con la expresión de la relación ancho-espesor para miembros sísmicamente compactos. En La Ec. 192 se debe despejar t_w

$$\frac{d-2t_f}{t_w} = 2.57 \sqrt{\frac{E}{RyF_y}}$$
(192)

• Obtención del momento ultimo

La carga viva y la carga muerta que es igual a la suma todas las sobrecargas (residencial) que se menciona en el capítulo 3.2.2.

$$CM = 345.47 \, kgf/m^2$$
$$CV = 210 \, kgf/m^2$$

La carga última se calcula con la Ec. 193:

$$Wu = 1.2CM + 1.6CV$$

$$Wu = 1.2(345.47) + 16(210)$$

$$Wu = 5631.318 \ kgf/m$$
(193)
Por lo tanto, el momento último se obtiene con la Ec. 1924

$$Mu = \frac{Wu * {L_n}^2}{8}$$

$$Mu = 19.773 \ tonf - m$$
(194)

• Módulo de sección requerido se calcula con la Ec.195

$$Zreq = \frac{Mu}{0.9F_y}$$
(195)
$$Zreq = 868.01 \ cm^3$$

En la tabla 16 se puede observas las dimensiones de las vigas para un prediseño:

Tabla 16

	SENTIDO X-X	SENTIDO Y-Y
$L_n(m)$	5.6	5.3
d(cm)	38	36
$b_f(cm)$	18	18
$t_f(cm)$	1	1.2
$t_w(cm)$	0.8	0.8
$Z(cm^3)$	925.2	977.5
	F11	τ Α (

Predimensionamiento de Vigas

Elaborado por: Los Autores

3.2.3.2. Columnas de Acero

El prediseño de la columna debe ser tal que cumpla con el criterio de columna fuerte-viga débil

• El peralte de la columna tubular debe ser mayor o igual al peralte de la viga y se espera que los patines alcancen un ancho igual al peralte, esto permite que las inercias se igualen en ambos sentidos ortogonales llegando a tener mejor resistencia

$$d_c = d$$

Para el peralte de la columna cruciforme se debe tener en cuenta el espacio entre patines para que el soldador pueda soldar.

• El espesor de los patines se obtiene se obtiene con la expresión de la relación anchoespesor para miembros sísmicos y moderadamente compactos. (Ec. 196 -197)

$$\frac{0.5b_f}{t_f} = 0.32 \sqrt{\frac{E}{RyF_y}} \ (Cruciforme) \tag{196}$$

$$\frac{b}{t} = 1.18 \sqrt{\frac{E}{RyF_y}} (Tubular)$$
(197)

• El espesor del alma se obtiene se obtiene con la expresión de la relación ancho-espesor para miembros no esbeltos (Ec 198 -199).

$$\frac{0.5 (d - 2t_f)}{t_w} = 1.49 \sqrt{\frac{E}{F_y}} (Cruciforme)$$
(198)

$$\frac{b}{t} = 1.49 \sqrt{\frac{E}{F_y}} (Tubular)$$
(199)

• Prediseño basado en el radio de giro (Ec.200)

$$e_{adop} = 30 \ (esbeltez)$$

$$r_{min} = \frac{K_{adop} * Lc}{e_{adop}}$$

$$r_{min} = 12 \ cm$$
(200)

 $K_{adop} = 1.2$ "asumiendo pórtico no arriostrado con extremos empotrados ver

Anexo A.5".

En la tabla 17 se puede observas las dimensiones de las vigas para un prediseño:

Tabla 17

VALOR	CRUCI	FORME	VALOR	TUBULAR			
<i>dc</i> (<i>cm</i>)	48	48	b (cm)	38			
$b_{cf}(cm)$	18	18	h (cm)	38			
$t_{cf}(cm)$	1.2	1.2	<i>t</i> (<i>cm</i>)	1.3			
$t_{cw}(cm)$	0.6	0.6	$L\boldsymbol{c}(\boldsymbol{m})$	3			
Lc(m)		3	r(cm)	14.99 "OK"			
<i>r(cm)</i> 14.493 "OK"							
Elaborado por: Los Autores							

Predimensionamiento de Columnas

Con las dimensiones de prediseño tanto de vigas como de columnas, en la Figura 44 se puede observar cómo estarán distribuidas, debido que se muestra la planta tipo de los 4 edificios de estudio.

Figura 44

Nota. Esquema en planta de los edificios de 3 y 6 pisos. Elaborado por: Los autores

3.2.4 Análisis Sísmico

3.2.4.1. Parámetros Sísmicos

Se modelará dos edificios empleando un sistema estructural SMF y dos usando el sistema IMF, los cuales deberán cumplir con un análisis modal espectral estático. Al realizar el análisis se deberá cumplir los siguientes chequeos indistintamente del sistema a emplearse:

- Calibración del Período T \leq 1,3T.
- Los primeros modos de la estructura deben ser traslacionales.
- Tomar en cuenta los modos de vibración que cumplan el 90% de la participación de masa.
- Derivas estáticas < 2%
- Derivas dinámicas < 2%

La Tabla 18 muestra los datos que se usan para generar el espectro elástico de diseño de la NEC 2015 y la Tabla 19 el periodo de vibración y periodo límite, valores que definen la forma del espectro de diseño.

Tabla 18

Datos Empleados para el Espectro de Sismo Diseño de la NEC 2015

Parámetros	Valores		
Categoría Sísmica	Zona S. =	V	
Valor de factor Z	Z =	0.4	
Perfil del suelo	Tipo =	D	
Coef. Amplificación del suelo en la zona de periodo corto	Fa =	1.2	
Coef. Amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos en roca	Fd =	1.19	
Comportamiento no lineal de los suelos	Fs =	1.28	
Factor usado en el espectro de diseño elástico	r =	1	
Relación de amplificación espectral	$\eta =$	2.48	

Elaborado por: Los autores. Fuente: NEC-SE-DS (2015).

Tabla 19

Periodos usados el Espectro de Diseño de la NEC 2015

Espectro de Diseño Elástico							
Altura del Edificio (m)	18	9					
Periodo de vibración (s)	T = 0.727	T = 0.418					
Período límite de vibración (s)	$T_c = 0.698$	$T_c = 0.698$					

Elaborado por: Los autores. Fuente: NEC-SE-DS (2015).

3.2.4.2. Espectros de Diseño

En las Figuras 45 y 46 se puede observar los Espectro de Diseño de la NEC, que se han empleado en las estructuras modeladas en SAP2000, según el tipo de sistema que corresponda ya sea un Marco Especial a Momento (SMF) o un Marco Intermedio a Momento (IMF).

Espectro de Diseño de un Pórtico SMF

Los edificios de 3 y 6 pisos con columnas cruciformes han sido diseñados para un sistema estructural SMF el cual tiene un coeficiente de reducción sísmico de R = 8, para más detalles se puede mirar la tabla 20.

Espectro de Diseño Inelástico						
Altura del Edificio (m)	18	9				
Factor de importancia	I = 1	I = 1				
Irregularidad en planta	$\phi_P = 0.9$	$\phi_P = 0.9$				
Irregularidad en elevación	$\phi_e = 1$	$\phi_e=1$				
Coeficiente de Reducción sísmica	R = 8	R = 8				
Aceleración espectral	$S_a = 1.143$	$S_a = 1.19$				

Datos empleados para el Espectro Inelástico de Diseño de la NEC 2015

Elaborado por: Los autores. Fuente: NEC-SE-DS (2015).

Figura 45

Espectro Elástico e Inelástico de Diseño para un R de 8

Elaborado por: Los autores.

Espectro de Diseño de un Pórtico IMF

Los edificios de 3 y 6 pisos con columnas tubulares han sido diseñados para un sistema estructural IMF el cual tiene un coeficiente de reducción sísmico de R = 4.5, para más detalles se puede mirar la tabla 21.

Espectro de Diseño Inelástico								
Altura del Edificio (m)	Altura del Edificio (m) 18 9							
Factor de importancia	I = 1	I = 1						
Irregularidad en planta	$\phi_P = 0.9$	$\phi_P = 0.9$						
Irregularidad en elevación	$\phi_e = 1$	$\phi_e = 1$						
Coeficiente Reducción sísmica	R = 4.5	R = 4.5						
Aceleración espectral	$S_a = 1.143$	$S_a = 1.19$						
Elaborado por: Los autoros	Evente: NEC SE	DS (2015)						

Datos empleados para el Espectro Inelástico Diseño de la NEC 2015

Elaborado por: Los autores. Fuente: NEC-SE-DS (2015).

Figura 46

Espectro Elástico e Inelástico de Diseño para un R de 4.5

Elaborado por: Los autores.

3.2.4.3. **Coeficiente Sísmico**

El cálculo de los coeficientes sísmicos para las diferentes estructuras serán distintos, debido a que hay un coeficiente de reducción dependiendo del sistema estructural. Se lo puede determinar con la Ec. 201.

$$C = \frac{I Sa(Ta)}{R \ \emptyset p \ \emptyset e} \tag{201}$$

Los valores de cada coeficiente sísmico se pueden observar en la tabla 22.

Sistema Estructural	SMF	IMF
Coeficiente -Edificio 3 pisos	0.1653	0.2939
Coeficiente -Edificio 6 pisos	0.1588	0.2822
Elaborado por: Los autores		

Coeficientes sísmicos de cada Estructura Analizada

3.2.5 Secciones consideradas en el Diseño

Finalmente, después de colocar las secciones predimensionadas en SAP y realizar un análisis modal espectral, se corrigieron las secciones hasta cumplir con todos los requerimientos mínimos de diseño. En las tablas 23-24, se presenta las secciones finales usadas para en cada estructura modelada en este trabajo.

Tabla 23

Secciones finales del Sistema Estructural con Columnas Cruciformes

Secciones	Edificio 6 Pisos	Edificio 3 Pisos		
Columna IC	520x12x260x18/520x12x260x18	420x8x180x14/420x8x180x14		
Vigas de Piso	360x8x220x16	320x8x180x14		
Viguetas	200x8x120x10	240x6x120x10		
Vigas de Terraza	300x10x160x12	300x8x140x12		
Viguetas de Terraza	220x8x120x10	200x4x120x10		

Elaborado por: Los autores

Tabla 24

Secciones finales del Sistema Estructural con Columnas Tubulares

Secciones	Edificio 6 Pisos	Edificio 3 Pisos
Columnas Interior	400x400x14	350x350x12
Columna Exterior	400x400x14	300x300x12
Vigas de Piso	350x8x280x16	350x8x260x14
Viguetas	240x8x120x8	250x6x140x10
Vigas de Terraza	300x6x180x10	300x6x140x10
Viguetas Terraza	240x6x120x8	200x4x120x8
Viguetas Terraza	240x6x120x8	200x4x120x8

Elaborado por: Los autores

3.2.6 Determinación del Cortante Basal

El cálculo de los cortantes basales para las diferentes estructuras serán distintos, debido a su peso y coeficiente de reducción. Se lo obtiene con la Ec. 202, y los resultados obtenidos se encuentra en las tablas 25-26.

$$V = W * C \tag{202}$$

Nivol	Edi	Edificio 6 Pisos		Nival	Edif	icio 3 Pis	OS
INIVEI	W (tonf)	С	V(tonf)	INIVEL	W (tonf)	C	V(tonf)
1	150.156			1	141.695		
2	150.156			2	141.695	0.165	62.33
3	150.156	0 1500	134.559	3	93.620		
4	150.156	0.1388		Total	377.010		
5	150.156						
6	96.766						
Total	847.546			_			
Elaborado por: Los autores							

Cortante Basal de Edificios con Columnas Cruciformes

Tabla 26

Cortante Basal de Edificios con Columnas Tubulares

Nimel	Edificio 6 Pisos			Nivol	Edificio 3 Pisos			
INIVEL	W (tonf)	С	V(tonf)	INIVEL	W (tonf)	С	V(tonf)	
1	147.981			1	141.586			
2	147.981				2	141.586	0.294	110.198
3	147.981	0 2022	225 401	3	91.746			
4	147.981	0.2822	233.491	Total	374.918			
5	147.981							
6	94.446							
Total	834.349			_				

Elaborado por: Los autores

CAPITULO IV

DISEÑO DE EDIFICIOS DE ACERO

4.1. Método de diseño

El Método de Factores de Carga y Resistencia (LRFD), es el que se usará en el diseño de las estructuras de la presente investigación con el objetivo de mantener una baja probabilidad de alcanzar un estado límite preestablecido para un tipo de estructural dada.

La demanda de rigidez, resistencia, estabilidad, absorción y disipación de energía de la estructura no debe exceder la capacidad de diseño. En normas como el AISC 360 – 341 y la NEC 2015, se alcanzan estos objetivos, multiplicando las solicitaciones por factores de mayoración para cuantificar la demanda y multiplicando las resistencias teóricas por sus correspondientes factores de minoración para calcular la capacidad.

$$Ru \leq \emptyset Rn$$

Donde:

Ru=resistencia requerida

Rn=resistencia nominal

Ø=factor de reducción de resistencia

ØRn=resistencia de diseño

4.2. Combinaciones de cargas para diseño

La NEC-SE-CG (2015) establece combinaciones de diseño, como la resistencia mínima requerida, para cargas de gravedad y sismo. En este caso se mencionan las combinaciones más críticas y usadas en el diseño.

4.3. Diseño de Edificios con columnas tubulares

Esta sección presenta un resumen de las secciones diseñadas en los edificios de tres y seis pisos con columnas tubulares (ver tablas 27 a la 32). Las columnas, vigas y viguetas de ambos edificios se han diseñado bajos los criterios de las normas AISC 360-16, 341-16, y la norma local de construcción NEC 2015, Capitulo "Estructuras de Acero NEC-SE-AC".

En la sección 2.3.1. y 2.3.3. del presente documento se detalla las fórmulas y procedimientos para el respectivo diseño de cada sección.

4.3.1 Edificio de tres pisos

Tabla 27

Diseño de C	Columnas I	Tubulares	Armadas-E	dificio	3	Pisos
-------------	------------	-----------	-----------	---------	---	-------

	EDIFIC	CIO DE C	FRES P	ISOS C	ON SECCIO	NES TUB	ULARE	5	
Col	umna de Bo	orde y Es	quinera			Colum	na Centra	1	
Dimensione	es:	-			Dimensione	es:			
Base (cm)	30	Altura	1 (cm)	30	Base (cm)	35	Altu	ra (cn	n) 35
Espesor (cm)	1.2			Espesor (cn	n)	-	1.2	
Propiedade	s Geométr	icas:	-		Propiedade	s Geomét	ricas:		-
$Agc(cm^2)$	138.24	Sxc (c	m^3) 1	276.23	$Agc(cm^2)$	162.24	Sxc (c	m^3)	1767.46
$Ixx(cm^4)$	19143.48	Syc (c	m³) 1	276.23	$Ixx(cm^4)$	30930.52	Syc (c	(m^3)	1767.46
$Iyy (cm^4)$	19143.48	Zx (cr	n ⁶) 1	493.85	$Iyy (cm^4)$	30930.52	Zx (c)	n ⁶)	2057.26
rxc(cm)	11.76	Zy (cr	n ⁴) 1	493.85	rxc(cm)	13.81	Zy (ci	n ⁴)	2057.26
ryc (cm)	11.76	J (cm	(1^4) 23	8665.45	<i>ryc</i> (<i>cm</i>)	13.81	J (cn	ı ⁴)	46337.37
			Di	seño a C	Compresión				
Relación An	ncho-Espes	sor:	-		Relación An	ncho-Espe	sor:	-	
λf	λ	rf	λι	nd	λf		lrf		λmd
$\frac{27.6}{1.2} = 23.$	0 39	9.7	27	2.34	$\frac{32.6}{1.2} = 27.$	2 3	89.7		27.34
$\lambda f \leq$ Patín No	λrf Esbelto	$\lambda f \leq \lambda m d$ Moderadamente dúctil			$\lambda f \leq$ Patín No	λrf Esbelto	Moder	$\lambda f \leq r$	λ <i>md</i> ente dúctil
Factor de L	ongitud E	fectiva:			Factor de L	ongitud E	fectiva:		
GAr	G	Rv	ł	K _r	GAr				Kr
2.17		1	1	.49	3.51		1		1.61
GAN	G	Rv	l	X_{ν}	GAN				K _v
4.11		1	1	.65	6.64		1		1.79
Esbeltez de	diseño:	-			Esbeltez de	diseño:	-		1117
$e_x = L$	r_c/r_x	e	$v = L_C/$	r_{v}	$e_x = L$	r_c/r_x	e	v = L	r_{v}/r_{v}
37.9	96		42.18	5	34.9	99		38.9	96
Esfuerzo El	lástico de F	andeo:			Esfuerzo El	lástico de	Pandeo:		
	11312	$.22\frac{kgf}{cm^2}$				13250	$5.27 \frac{kgf}{cm^2}$		
$e_d \leq 4$	$1.71\sqrt{\frac{E}{Fy}};$	$e_d = \mathbf{m} \mathbf{a}$	ax (<i>e_x. e</i>	e _y)	$e_d \leq 4$	$4.71\sqrt{\frac{E}{Fy}};$	$e_d = \mathbf{m}$	ax (<i>e</i>	(x, e_y)
4	42.18 ≤ 13	3.681 "	OK"		3	$88.96 \le 13$	33.681 "	OK"	
∴ Contr	olado por	Pandeo	Inelás	tico	: Contr	olado por	r Pandec	Inel	ástico
Esfuerzo cr	itico:	$F_{cr}(k)$	gf/cm 2304.78	²) 3	Esfuerzo	critico:	$F_{cr}(k)$	gf/c 2336	2 m²) 5.65
Resistencia	Nominal:	$P_n(tor$	1f) 318.61		Resistencia	Nominal:	$P_n(ton$	n f) 379.	.10
Resistencia	Ultima:		o nf) 286.75		Resistencia	a Ultima:		o nf) 341.	.19
				Diseño a	a Flexión				
Relación A	ncho-Espes	sor:			Relación A	ncho-Espe	sor:	-	
λf	λ	pf	λ	rf	λf		l pf		λrf

23.0	31	.79	39.74	27.2	31	.79	39.74
λw	λμ)W	λrw	λw	λμ)W	λrw
23.0	68	.69	161.78	27.2	68	.69	161.78
$\lambda f \leq \lambda p$	f	λ	$w \leq \lambda w f$	$\lambda f \leq \lambda p$	f	λ	$w \leq \lambda w f$
Patín Comp	acto	Alm	na Compacta	Patín No Est	pelto	Alm	na Compacta
Momento Resi	stente:	•		Momento Resi	stente:		
<i>Lb</i> (<i>m</i>)	Lp	(m)	Lr(m)	<i>Lb</i> (<i>m</i>)	Lp	(m)	Lr(m)
3	16	.42	422.46	3	19	.27	492.99
Mpx(ton-m)	Mn (to	nf – m)	$\emptyset M_{nx}(tonf-m)$	Mpx(ton-m)	Mn (to	n f – m)	$\emptyset M_{nx}(tonf-m)$
37.81	37	.81	34.03	52.07	52.07		46.86
			Relación de	Interacción			
Pr (tonf)	Pu (a	tonf)	Mux (tonf) – m	Pr (tonf)	Pu (t	t onf)	Mux (tonf) – m
77.68	346	5.50	46.86	42.63	29	1.9	34.02
Muy (tonf) - m	Mrx (to	nf) - m	Mry(tonf) - m	Muy (tonf) - m	Mrx (to	nf) – m	Mry(tonf) - m
46.86	18	.85	18.60	34.02	12	2.7	18.7
Relación		0.9	947	Relación		0.	98

Nota. En esta tabla se presenta los resultados de las columnas diseñadas para el Edificio de 3 pisos. Elaborado por: Los Autores

Tabla 28

Diseño de Vigas I Armadas-Edificio 3 Pisos

		EDIFIC	IO DE '	FRES	PISOS CO	ON SEC	CIO	NES TUBU	JLARES	5	
		Viga P	'iso 1-2					Viga 7	Ferraza		
Dimens	siones	3:				Dimen	sione	s:			
d	tw	bf	tf	h	Lv	d	tw	bf	tf	h	Lv
(cm)	(cm)	(cm)	(cm)	(cm) (cm)	(cm)	(cm	n) (cm)	(cm)	(cm)) (cm)
35	0.8	16	1.40	32.2	0 5.60	30	0.6	5 14	1.0	27.60	0 5.60
Propie	dades	Geométri	cas:			Propie	dade	s Geométri	icas:		
Agc (c	$m^2)$	70.56	Sxc (c	$m^3)$	850.14	Agc (c	$m^2)$	44.80	Sxc (c	m ³)	465.80
Ixx (ci	m^4)	14877.42	Syc (c	m^3)	119.64	Ixx (c	m^4)	6986.93	Syc (c	m^3)	65.41
Iyy (ci	m^4)	957.10	Zx(cn)	n ⁶)	960.01	Iyy (c	m^4)	457.8	Zx(cr)	n ⁶)	523.6
rxc(c)	m)	14.52	Zy (cr	n ⁴)	184.35	rxc (c	m)	12.49	Zy (cr	n ⁴)	100.52
ryc (c	m)	3.68				ryc (c	m)	3.2			
					Diseño a	Flexión	1				
Relació	ón An	cho-Espes	or:			Relació	ón Ar	ncho-Espes	or:		
λf		λpf	λrf		λhd	λf		λpf	λrf	,	λhd
5.71		10.79	25.5	9	7.42	7		10.79	24.6	5	7.42
1	$\lambda f \leq \lambda$	pf		$\lambda f \leq \lambda$	λhd		$\lambda f \leq 1$	λpf		$\lambda f \leq \lambda$.hd
Patí	ín Con	npacto	Sísmica	amente	e compacto	Pati	ín Coi	mpacto	Sísmica	mente	compacto
λw		λрw	λru	,	λsw	λf		λpf	λrf	'	λsw
40.25	5	106.72	161.7	'8	59.55	46.67	7	106.72	161.7	8	59.55
λ	$w \leq \lambda$	pw		$\lambda w \leq \lambda$	λsw	λ	$w \leq 1$	λpw	1	$w \leq \lambda$	lsw
Patí	'n Con	npacto	Sísmica	amente	e compacto	Pat	ín Coi	mpacto	Sísmica	amente	compacto
Momen	nto Re	esistente:				Mome	nto R	lesistente:			
<i>Lb</i> (m)	<i>Lp</i> ((m)	L	Lr(m)	Lb	(m)	Lp	(m)	L	<i>r</i> (<i>m</i>)
1.4	0	1.8	34		6.01	1.4	40	1.	60		4.84
Long.	Limite	e C	b	Мрх	(ton - m)	Long.	Limi	te C	Cb	Мрх	(ton - m)

Plástico	1	.06	24.30	Plástico		1.06	13.25
Mnx (ton –)	m) Mny (to	nf - m) ($\delta M_{nx}(ton f - m)$	Mnx (ton –	m) Mny	(tonf - m)	$\emptyset M_{nx}(tonf-m)$
24.30	4	.67	21.87	13.25		2.29	11.93
			Diseño	a Corte			
Cv	Aw (cm ²)	Vn (tonf)	ØVn (tonf)	Cv	$\begin{array}{c} Aw \\ (cm^2) \end{array}$	Vn (tonj	ØVn f) (tonf)
1	25.75	39.12	35.21	1	16.80	25.5	1 22.96
		V	verificación de	Serviciabili	dad		
Deflexión:				Deflexión:			
$ \begin{array}{c} \Delta_{adm} - \mathcal{C} \mathcal{V} \\ (\mathcal{C} \mathcal{M}) \end{array} $	$\Delta_{real} - Cv$ (CM)	$ \begin{array}{c c} $	$\begin{array}{c c} & \Delta_{real} \\ cv + cm \\ (cm) \end{array}$	$\frac{\Delta_{adm} - Cv}{(Cm)}$	$\Delta_{real} - Cr$ (cm)	$\begin{array}{c c} & \Delta_{adm} \\ & \mathcal{C} \boldsymbol{v} + \mathcal{C} \\ & (\mathcal{C} \mathcal{M}) \end{array}$	$\begin{array}{c c} & \Delta_{real} \\ \hline m & \mathcal{C}v + \mathcal{C}m \\ 0 & (\mathcal{C}m) \end{array}$
1.56	0.09	2.33	0.34	1.56	0.07	2.33	0.36
Vibracion	es:			Vibracione	es:		
Frecuencia (Hz)	4.28	Aceleración máxima (% graveda	<i>i</i> 0.54	Frecuencia (Hz)	4.18	Aceleraci máxima (% grave	ión 1.13 (tad)

Nota. En esta tabla se presenta los resultados de las vigas diseñadas para el Edificio de 3

pisos. Elaborado por: Los Autores

Tabla 29

Diseño de Viguetas I Armadas-Edificio 3 Pisos

		EDIFIC	IO DE 1	FRES	S PISOS CO	ON SEC	CIO	NES TUB	ULARES	5	
		Vigueta	Piso 1-2					Vigueta	a Terraza		
Dimens	siones:	:				Dimen	sione	s:			
d	tw	bf	tf	h	Lv	d	tw	bf	tf	h	Lv
(cm)	(cm)	(cm)	(cm)	(cm	i) (cm)	(cm)	(cn	n) (cm)	(cm)	(cm) (cm)
25	0.6	14	1.0	22	5.30	20	0.4	4 12	0.8	18.8	0 5.30
Propie	dades	Geométri	cas:			Propie	dade	s Geométr	icas:		
Agc (c	m^2)	41.80	Sxc (cr	m^3)	371.41	Agc (c	$m^2)$	26.56	Sxc (c	m ³)	197.81
Ixx (ci	$m^4)$	464268	Syc (ci	m^3)	65.39	Ixx (ci	m^4)	1978.15	Syc (c	m^3)	38.42
Iyy (ci	$m^4)$	457.7	Zx (cn	n ⁶)	415.35	Iyy (ca	m^4)	230.5	Zx(cr)	n ⁶)	218.18
rxc(c)	m)	10.54	Zy (cn	n^4)	100.07	rxc (c	m)	8.63	Zy (cr	n ⁴)	58.34
ryc (c	m)	3.31				ryc (c	m)	2.95			
					Diseño a	Flexión	l				
Relació	ón Anc	ho-Espes	or:			Relació	ón Ai	ncho-Espe	sor:		
λf		λpf	λrf		λhd	λf		λpf	λrf		λhd
7		10.79	25.9		7.42	7.5		10.79	24.75	5	9.27
1	$\lambda f \leq \lambda p$	of		$\lambda f \leq \lambda$	λhd	j	$df \leq f$	λpf		$\lambda f \leq \lambda$	lhd
Patí	ín Com	pacto	Sísmica	mente	e compacto	Pati	ín Co	mpacto	Sísmica	amente	compacto
λw		λpw	λrw	,	λsw	λf		λpf	λrf		λsw
38.33	3	106.72	161.7	8	59.55	46		106.72	161.7	'8	59.55
λ	$w \leq \lambda p$	ow.	λ	$w \leq x$	λsw	λ	$w \leq w$	λpw	λ	$w \leq 1$	lsw
Patí	'n Com	pacto	Sísmica	mente	e compacto	Pati	ín Coi	mpacto	Sísmica	amente	compacto
Momen	nto Re	sistente:				Mome	nto R	lesistente:			
<i>Lb</i> (m)	<i>Lp</i> ((m)	I	Lr(m)	Lb ((m)	Lp	(m)	L	r(m)
1.3	32	1.6	55		5.33	1.3	32	1	.47		4.59
Long.	Limite	C	b	Мрх	t(ton-m)	Long.	Limi	te	Cb	Мрх	(ton - m)

Plástico	1.()6	10.51	Plástico		1.	06		13.25
Mnx (ton –)	m) Mny (ton	(f - m)	$M_{nx}(tonf-m)$	Mnx (ton -	m)	Mny (to	<i>nf</i> – <i>m</i>)	ØM _n	ux(tonf-m)
10.51	2.4	53	9.46	5.52		1.	33		4.97
			Diseño	a Corte					
Cv	Aw (<i>cm</i> ²)	Vn (tonf)	ØVn (tonf)	Cv	(c	Aw m ²)	Vn (tonf))	ØVn (tonf)
1	13.80	20.96	18.86	1	7	.36	11.18		10.06
		V	erificación de	Serviciabili	dad				
Deflexión:				Deflexión:					
$ \begin{array}{c} \Delta_{adm} - Cv \\ (Cm) \end{array} $	$\Delta_{real} - Cv$ (CM)	$\begin{array}{c c} & \Delta_{adm} \\ & \mathcal{C}\mathcal{V} + \mathcal{C}\mathcal{m} \\ & (\mathcal{C}\mathcal{M}) \end{array}$	$\begin{array}{c c} & \Delta_{real} \\ Cv + Cm \\ (cm) \end{array}$	$\begin{array}{c} \Delta_{adm} - Cv\\ (Cm) \end{array}$	Δ_{real}	– Cv Cm)	$egin{array}{c} \Delta_{adm} \ \mathcal{C} \mathcal{V} + \mathcal{C} \mathcal{V} \ (\mathcal{C} \mathcal{M}) \end{array}$	n	$egin{array}{c} \Delta_{real} \ \mathcal{C} \mathcal{V} + \mathcal{C} \mathcal{m} \ (\mathcal{C} \mathcal{m}) \end{array}$
1.47	0.06	2.21	0.24	1.47	0	.05	2.21		0.27
Vibracione	es:			Vibracione	es:				
Frecuencia (Hz)	5.15	Aceleración máxima (% gravedad	0.42	Frecuencia (Hz)	4	.79	Aceleració máxima (% gravedo	n nd)	0.97

Nota. En esta tabla se presenta los resultados de las viguetas diseñadas para el Edificio

de 3 pisos. Elaborado por: Los Autores.

4.3.2 Edificio de seis pisos

Tabla 30

Diseño de Columnas Tubulares Armadas-Edificio 6 Pisos

	EDIFIC	CIO DE SEIS	5 PIS	SOS CO	ON SECCIO	NES TUBU	JLARES	1	
Dimensione	s:								
Base (cm)	40	Altura (cm)	40					
Espesor (cm))	1.4							
Propiedade	s Geométri	cas:							
$Agc(cm^2)$	216.16	$Ixx(cm^4)$	53	3748.9	$Iyy (cm^4)$	53748.9	rxc (c	m)	15.77
<i>ryc</i> (<i>cm</i>)	15.77	$Sxc(cm^3)$	26	587.45	Syc (cm^3)	2687.45	Zx (cm	n ⁶)	3130.29
$Zy(cm^6)$	3130.29	J (cm ⁴)	80	517.44					
	Diseño a C	ompresión				Diseño	a Flexiór	1	
Relación Ai	icho-Espes	or:			Relación A	ncho-Espe	sor:		
λf	λι	rf	λm	ıd	λf	λ	pf		λrf
26.57	39	9.7	27.	34	26.57	31	l.79		39.74
$\lambda f \leq$	λrf	$\lambda f \leq$	λmd	!	λw	λ	pw		λrw
Patín No	Esbelto	Moderadam	ente	dúctil	26.57	68	8.69	1	61.78
Factor de L	ongitud Ef	ectiva:			$\lambda f \leq$ Patín Co	λpf mpacto	λ Alm	$w \le 7$ na Cor	ל <i>pw</i> npacta
G _{Ax}	G	Ву	K	x	Momento F	Resistente:			
3.7		1	1.6	52	<i>Lb</i> (<i>m</i>)	Lp	(m)	L	r(m)
G _{Ay}	G	By	K	y	3	22	2.01	5	63.40
3.50		1	1.6	51	Mpx(ton - t)	m) Mn (to	(mf - m)	ØM _{nx}	(ton f - m)
Esbeltez de	diseño:				79.23	79	9.23		71.30
$e_x = L$	Esbeltez de diseño: $e_x = L_C/r_x$ $e_y = L_C/r_y$				l	Relación de	e Interac	ción	
30.9	1	30.	62		Pr (tonf)	Pu ((tonf)	Mux	(tonf) – m

Esfuerzo Elástico de P	andeo:	169.51	468	3.25	71.30
21060.	$66 \ \frac{kgf}{cm^2}$	Muy (tonf) - m	Mrx (to	nf) – m	Mry(tonf) - m
	-max(a, a)	71.30	38	.10	37.87
$e_d \leq 4.71 \sqrt{Fy}; e_d$	$e_d = \max(e_x, e_y)$	Relaciór	ı		0.976
$30.91 \le 13$	3.681 "OK"				
: Controlado por	Pandeo Inelástico				
Esfuerzo critico:	F_{cr} (kgf/cm ²)				
	2406.69				
Resistencia Nominal:	$P_n(tonf)$				
	520.27				
Resistencia Ultima:	$\emptyset P_n(tonf)$				
	468.25	J			

Nota. En esta tabla se presenta los resultados de las columnas diseñadas para el Edificio

de 6 pisos. Elaborado por: Los Autores

Tabla 31

Diseño de Vigas I Armadas-Edificio 6 Pisos

		EDIFIC	CIO DE	SEIS	PIS	OS CC	DN SEC	CIO	NES	TUBU	LARES)	
		Viga P	Piso 1-2							Viga T	Terraza		
Dimen	siones	:					Dimen	sione	es:				
d	tw	bf	tf	h		Lv	d	tw	7	bf	tf	h	Lv
(cm)	(cm)	(cm)	(cm)	(cm	I)	(cm)	(cm)	(cn	1)	(cm)	(cm)	(cn	n) (cm)
35	0.8	28	1.60	31.8	30	5.60	30	0.6	5	18	1.0	26.4	40 5.60
Propie	dades	Geométri	icas:				Propie	dade	s Ge	ométri	cas:		
<i>Agc</i> (<i>c</i>	(m^2)	115.04	Sxc (c	m^3)	155	51.51	<i>Agc</i> (<i>c</i>	$m^2)$	5	2.8	Sxc (c	$m^{3})$	277.82
Ixx (c	m^4)	27151.49	Syc (c	m^3)	41	8.23	Ixx (c	m^4)	866	59.60	Syc (c	m^3)	38.56
Iyy (c	m^4)	5855.20	Zx (cr	n ⁶)	169	98.57	Iyy (c	m ⁴)	97	75.5	Zx (cr	n ⁶)	323.07
rxc (c	m)	15.36	Zy (cr	n^4)	63	2.29	rxc (c	m)	12	2.81	Zy (cr	n ⁴)	61.18
ryc (c	m)	7.13					ryc (c	m)	4	.29			
					D	iseño a	ı Flexiór	ı					
Relació	ón An	cho-Espes	or:				Relacio	ón Ai	ncho	-Espes	or:		
λf		λpf	λrf	•	λ	md	λf		λ	pf	λrf		λhd
8.75	í	10.79	25.6	7	9	.27	9		10).79	24.6	6	9.27
2	$lf \leq \lambda$	pf	λ	$f \leq \lambda$	λmd		1	$lf \leq$	λpf		λ	$f \leq $	λmd
Patí	n Con	npacto	Moder	adam	ente	dúctil	Patí	n Co	mpac	cto	Moder	adam	ente dúctil
λw		λрw	λru	,	λ	SW	λf		λ	pf	λrf		λsw
39.75	5	106.72	161.7	'8	59	9.55	46.6	7	10	6.72	161.7	'8	59.55
λ	$w < \lambda$	nw		w < 1	λsw		7	w < w	ληω			<i>lw</i> <	λsw
Pati	ín Com	ipacto	Sísmica	amente	e con	npacto	Pat	ín Co	mpac	to	Sísmica	ament	e compacto
Mome	nto Re	esistente:					Mome	nto R	Resist	tente:			
<i>Lb</i> ((m)	Lp ((m)	1	Lr (1	n)	Lb	(m)		Lp	(m)		Lr (m)
1.4	40	3.4	56		11.7	'4	1.	40		2.	14		6.32
Long.	Limite	e C	'b	Мрх	c (tor	1 – m)	Long.	Limi	te	С	'b	Мр	x(ton-m)
Plás	tico	1.0	06		42.9	9	Plás	stico		1.	06		16.19
Mnx (to	0 n – m)	Mny (ton	(f - m)	ØM _{nx}	(ton	(f - m)	Mpx (to	n - n	n)	Mny (to	nf – m)	ØM _n	$t_x(ton f - m)$

42.99	14	.4	38.69	16.19	3.	.75	14.57
			Diseño	a Corte			
Cv	$ \begin{array}{c} \mathbf{Aw} \\ (\mathbf{cm}^2) \end{array} $	Vn (tonf)	ØVn (tonf)	Cv	Aw (<i>cm</i> ²)	Vn (tonf)	ØVn (tonf)
1	25.44	38.63	34.77	1	16.80	25.51	22.96
		Ve	rificación de	Serviciabili	dad		
Deflexión:				Deflexión:			
$\frac{\Delta_{adm} - Cv}{(Cm)}$	$\Delta_{real} - Cv$ (CM)	$egin{array}{c} \Delta_{adm} \ \mathcal{C} m{v} + \mathcal{C} m{m} \ (\mathbf{cm}) \end{array}$	$\begin{array}{c} \Delta_{real} \\ \mathcal{C} \boldsymbol{v} + \mathcal{C} \boldsymbol{m} \\ (\boldsymbol{c} \boldsymbol{m}) \end{array}$	$\Delta_{adm} - Cv$ (CM)	$\Delta_{real} - Cv$ (CM)	$ \begin{array}{c c} \Delta_{adm} \\ Cv + Cm \\ (cm) \end{array} $	$\begin{array}{c} \Delta_{real} \\ \mathcal{C} \boldsymbol{v} + \mathcal{C} \boldsymbol{m} \\ (\boldsymbol{c} \boldsymbol{m}) \end{array}$
$\frac{\Delta_{adm} - Cv}{(Cm)}$ 1.56	$\frac{\Delta_{real} - Cv}{(Cm)}$	$ \begin{array}{c} \Delta_{adm} \\ \mathcal{C}\nu + \mathcal{C}m \\ (\mathcal{C}m) \\ 2.33 \end{array} $	$ \begin{array}{c} \Delta_{real} \\ \mathcal{C}v + \mathcal{C}m \\ (\mathcal{C}m) \\ 0.19 \end{array} $	$\frac{\Delta_{adm} - Cv}{(Cm)}$ 1.56	$\frac{\Delta_{real} - Cv}{(Cm)}$	$ \begin{array}{c} \Delta_{adm} \\ \mathcal{C}\nu + \mathcal{C}m \\ (\mathbf{cm}) \\ 2.33 \end{array} $	$ \begin{array}{c} \Delta_{real} \\ \textit{Cv} + \textit{Cm} \\ \hline (\textit{cm}) \\ 0.29 \end{array} $
$\Delta_{adm} - Cv$ (cm) 1.56 Vibracione	$\Delta_{real} - Cv$ (CM) 0.05	$ \begin{array}{c} \Delta_{adm} \\ \mathcal{C}v + \mathcal{C}m \\ (\mathcal{C}m) \\ 2.33 \end{array} $	$\begin{array}{c} \Delta_{real} \\ \boldsymbol{Cv} + \boldsymbol{Cm} \\ (\boldsymbol{cm}) \\ 0.19 \end{array}$	$\Delta_{adm} - Cv$ (cm) 1.56 Vibracione	$\Delta_{real} - Cv$ (cm) 0.05	$\begin{array}{c} \Delta_{adm} \\ \mathbf{C}\mathbf{v} + \mathbf{C}\mathbf{m} \\ (\mathbf{c}\mathbf{m}) \\ 2.33 \end{array}$	$ \begin{array}{c} \Delta_{real} \\ \mathcal{C}v + \mathcal{C}m \\ (\mathcal{C}m) \\ 0.29 \end{array} $

Nota. En esta tabla se presenta los resultados de las vigas diseñadas para el Edificio de 6

pisos. Elaborado por: Los Autores

Tabla 32

Diseño de Viguetas I Armadas-Edificio 6 Pisos

		EDIFIC	CIO DE	SEIS	5 PI	SOS CO	ON SEC	CIO	NES	S TUBU	LARES			
		Vigu	ieta 1							Vigu	eta 2			
Dimen	siones	•					Dimer	nsione	es:					
d	tw	bf	tf	h		Lv	d	tw	V	bf	tf	h		Lv
(cm)	(cm)	(cm)	(cm)	(cn	n)	(cm)	(cm)	(cn	n)	(cm)	(cm)	(cn	1)	(cm)
24	0.6	12	0.80	21.6	50	5.30	24	0.8	30	12	0.8	21.6	50	5.30
Propie	dades	Geométri	cas:				Propi	edade	s G	eométri	cas:	_		
Agc (c	(m^2)	32.64	Sxc (c	m ³)	2	62.21	Agc ($cm^2)$		37.12	Sxc (c	m^3)	27	77.82
Ixx (ci	$m^4)$	3146.55	Syc (c	m^3)		38.47	Ixx (a	(m^4)	- 33	333.87	Syc (c	$m^{3})$	3	8.56
Iyy (c	m^4)	230.8	Zx (cr	n ⁶)	2	97.98	Iyy (a	(m^4)		231.4	Zx (cr	n ⁶)	32	23.07
rxc (c	m)	9.82	Zy (cr	n ⁴)	4	59.62	rxc (cm)		9.48	Zy (cr	n ⁴)	6	1.18
ryc (c	m)	2.66					ryc (cm)		2.50				
]	Diseño a	ı Flexió	n						
Relació	ón Anc	cho-Espes	or:				Relaci	ión A	nch	o-Espes	or:			
λf		λpf	λrf			λmd	λf			λpf	λrf	•	λ	hd
7.50)	10.79	26.0	8		9.27	7.5	0	1	10.79	28.02	2	9	0.27
λ	$lf \leq \lambda$	pf	2	$f \leq f$	λm	d		$\lambda f \leq$	λpj	f	λ	$f \leq d$	λma	l
Patí	n Com	ipacto	Moder	adam	ente	e dúctil	Pat	ín Co	mpa	acto	Modera	adam	ente	dúctil
λw		λрw	λru	,	4	λsw	λf			λpf	λrf	•	λ	SW
37.33	3	106.72	161.7	/8	5	59.55	28		1	06.72	161.7	'8	59	9.55
λ	$w < \lambda i$	рw		łw <	λsu	V		λw <	λρν	v		łw <	λsw	
Pati	ín Com	pacto	Sísmica	ament	e co	mpacto	Pa	tín Co	mpa	acto	Sísmica	ament	e cor	npacto
Mome	nto Re	sistente:					Mome	ento R	Resi	stente:				
<i>Lb</i> ((m)	<i>Lp</i> ((m)		Lr ((m)	Lb	(m)		Lp	(m)		Lr (1	m)
1.4	40	3.5	56		11.	.74	1	.40		2.	14		6.3	2
Long.	Limite	C	b	Мр	x(ta)	(m - m)	Long.	Limi	te	C	b	Мр	(to)	(n-m)
Plás	tico	1.()6		42.	.99	Plá	stico		1.	06		16.1	19
Mnx (to	(m - m)	Mny (ton	(f - m)	ØM _n	x(to)	nf - m	Mnx (t	ton – n	n)	Mny (to	nf - m	ØM _n	x(tor)	nf - m

42.99	14	.4	38.69	16.19	3	.75	14.57
			Diseño	a Corte			
Cv	$\frac{Aw}{(cm^2)}$	Vn (tonf)	ØVn (tonf)	Cv	$\frac{Aw}{(cm^2)}$	Vn (tonf)	ØVn (tonf)
1	13.44	20.41	18.37	1	17.92	27.21	24.49
		Ver	rificación de	Serviciabili	dad		
Deflexión:				Deflexión:			
$\Delta_{adm} - Cv$ (CM)	$\Delta_{real} - Cv$ (CM)	$egin{array}{c} \Delta_{adm} \ \mathcal{C} \mathcal{v} + \mathcal{C} m \ (\mathcal{C} m) \end{array}$	$egin{array}{c} \Delta_{real} \ \mathcal{C} m{v} + \mathcal{C} m{m} \ (\mathbf{cm}) \end{array}$	$\Delta_{adm} - Cv$ (CM)	$\Delta_{real} - Cv$ (CM)	$ \begin{array}{c c} $	$n \begin{array}{c} \Delta_{real} \\ Cv + Cm \\ (Cm) \end{array}$
$\frac{\Delta_{adm} - Cv}{(Cm)}$ 1.47	$\frac{\Delta_{real} - Cv}{(Cm)}$	$ \begin{array}{c} \Delta_{adm} \\ \mathcal{C}\nu + \mathcal{C}m \\ (\mathbf{cm}) \\ 2.21 \end{array} $	$ \begin{array}{c} \Delta_{real} \\ \mathcal{C}\nu + \mathcal{C}m \\ (\mathcal{C}m) \\ 0.35 \end{array} $	$\frac{\Delta_{adm} - Cv}{(Cm)}$ 1.47	$\frac{\Delta_{real} - Cv}{(Cm)}$	$ \begin{array}{c} \Delta_{adm} \\ \mathcal{C}\nu + \mathcal{C}n \\ (\mathcal{C}m) \\ 2.21 \end{array} $	$\begin{array}{c c} & \Delta_{real} \\ \hline n & Cv + Cm \\ \hline (cm) \\ \hline 0.33 \end{array}$
$\frac{\Delta_{adm} - Cv}{(Cm)}$ 1.47 Vibracione	$\Delta_{real} - Cv$ (cm) 0.09	$\frac{\Delta_{adm}}{Cv + Cm}$ (cm) 2.21	$ \frac{\Delta_{real}}{Cv + Cm} $ (cm) $ 0.35 $	$\Delta_{adm} - Cv$ (cm) 1.47 Vibracione	$\Delta_{real} - Cv$ (cm) 0.09	$\begin{array}{c} \Delta_{adm} \\ \mathbf{C}\boldsymbol{v} + \mathbf{C}\boldsymbol{m} \\ (\mathbf{c}\boldsymbol{m}) \\ 2.21 \end{array}$	$n \frac{\Delta_{real}}{Cv + Cm}$ (Cm) 0.33

Nota. En esta tabla se presenta los resultados de las viguetas diseñadas para el Edificio

de 6 pisos. Elaborado por: Los Autores

4.4. Diseño de Edificios con columnas cruciformes

En esta sección se presenta un resumen de las secciones diseñadas los edificios de tres y seis pisos con columnas cruciformes simétricas (ver Tablas 33 a la 38). Las columnas, vigas y viguetas de ambos edificios se han diseñado bajos los criterios de las normas AISC 360-16, 341-16, y nuestra norma local la NEC 2015, Capitulo "Estructuras de Acero NEC-SE-AC".

En la sección 2.3.2. y 2.3.3. del presente documento se detalla las fórmulas y procedimientos para el respectivo diseño de cada sección.

4.4.1 Edificio de tres pisos

Tabla 33

Diseño de Columnas Cruciformes Armadas-Edificio 3 Pisos

	EI	DIFICI	O DE	TRES F	PISOS CO	N SECCIONES	CRUCIFORM	ES
Dimensi	ones:						bcf1	
<i>dc</i> (<i>cm</i>)	h ₁ (cn	t_{w1}	(cm)	$b_{f1}(cm)$	$t_{f1}(cm)$	+		
42.0	39.20	0 0.	80	18.0	1.40		v1 e	
Propieda	ades G	eométr	icas:					_
Agc (cm	²) 1	62.88	Sxc	(<i>cm</i> ³)	1245.51	dc		× bcf2
$Ixx(cm^4)$	b) 26	155.76	Syc	(<i>cm</i> ³)	1245.51			
Iyy (cm ⁴	4) 26	155.76	Zx	(<i>cm</i> ⁶)	1563.39			tcf2
rxc (cm) 1	2.67	Zy	(<i>cm</i> ⁴)	1563.39			
ryc (cm) 1	2.67	е	(<i>cm</i>)	15.0	-	dc	
	Dis	seño a (Comp	resión]	Diseño a Flexiór	1
Relación	Anch	o-Espes	sor:			Relación Anch	o-Espesor:	
λf	$f \qquad \lambda r f \qquad \lambda s f$					λf	λpf	λrf
6.43	3 15.84 7.42					6.43	10.79	24.36

$\lambda f \leq \lambda r$	f		$\lambda f \leq \lambda s f$	λw	λp	W	λrw
Patín No Esl	belto	Moder	adamente dúctil	24	106	5.72	161.78
λw	λpw	Ca	λsw	$\lambda f \leq \lambda p f$	c	Ĵ	$\lambda w \leq \lambda p w$
24.0	42.29	0.157	51.45	Patín Compa	acto	Alr	na Compacta
$\lambda w \leq \lambda w$	f	Ĵ	$\lambda w \leq \lambda s w$				
Alma No est	pelta	Sísmica	mente Compacto				
Factor de Lon	gitud Ef	ectiva:	1	Momento Resi	stente:		
G _{Ax}	G	Ву	K_x	<i>Lb</i> (<i>m</i>)	Lp(m)		Lr(m)
3.24	-	1	1.59	3	6.33		30.48
G _{Ay}	G _{Ay} G		Ky	Mpx(ton-m)	Mn (tor	nf - m	$\emptyset M_{nx}(ton f - m)$
3.24	3.24		1.59	39.57	39.57		35.61
Esbeltez de dis	seño:			Rela	ación de	Interac	ción
$e_x = L_C/n$	r _x	$e_y = L_C / r_y$		Pr (tonf)	Pu (tonf)		Mux (tonf) – m
37.61		37.61		75.20	344	4.4	35.61
Esfuerzo Elást	tico de P	andeo:		Muy(tonf) - m	Mrx (tor	(nf) - m	Mry(tonf) - m
	14223	$\frac{kgf}{dt}$		35.61	9.31		8.53
	11225.	⁰¹ cm ²		Relación		0.	59
$e_d \leq$	4.71 $\frac{E}{E_{N}}; \epsilon$	$e_d = \max(e_d)$	$e_x \cdot e_y)$				
37 ($\sqrt{1}^{1}$	3 6 9 1 "	OK"				
∴ Controld	10 <u>3</u> 15 10 15	Pandeo	Inelástico				
Esfuerzo critic	::	$F_{cm}(k)$	af/cm^2)				
Esiuerzo critico:		- (1 (2349.39				
Resistencia No	minal:	$P_n(tor$	nf)	1			
			382.67				
Resistencia Ultima:			onf)				
			344.4	J			

Nota. En esta tabla se presenta los resultados de las columnas diseñadas para el Edificio de 3 pisos. Elaborado por: Los Autores

Tabla 34

Diseño de Vigas I Armadas-Edificio 3 Pisos

	EDIFICIO DE TRES PISOS CON SECCIONES CRUCIFORMES													
		Viga P					Viga T	Terraza						
Dimen		Dimensiones:												
d	tw	bf	tf	h		Lv	d	tw	7	bf	tf	h		Lv
(cm)	(cm	i) (cm)	(cm)	(cm	I)	(cm)	(cm)	(cn	n)	(cm)	(cm)	(cm	l)	(cm)
32	0.8	18	1.40	32.8	30	5.60	30	0.8	8	14	1.2	27.6	0	5.60
Propie	dade	s Geométri	cas:				Propie	dade	s G	eométri	cas:			
Agc (c	m^2)	73.76	Sxc (cr	m^3)	8	341.64	$Agc (cm^2) = 55.68 \qquad Sxc$		Sxc (cr	m^3)	5	58.20		
Ixx (cr	n ⁴)	13466.17	Syc (cr	m^3)	1	51.34	Ixx (cr	n ⁴)	8.	372.97	Syc (cr	m^3)	7	8.57
Iyy (cr	n ⁴)	1362	Zx (cn	n ⁶)	9	41.65	Iyy (cr	n ⁴)		550	Zx(cn)	n ⁶)	6	36.19
rxc (c	m)	13.51	Zy (cn	n ⁴)	2	31.47	rxc (c	m)		12.26	Zy (cr	n ⁴)	1	22.02
ryc (c	m)	4.30					ryc (c	m)		3.14				
]	Diseño a	ı Flexión	l I						
Relacio	Relación Ancho-Espesor:Relación Ancho-Espesor:													
λf		λpf	λrf			λsf	λf			λpf	λrf			<i>hd</i>
6.4		10.79	26.22	2		7.42	5.80		1	0.79	26.6	0	7	7.42

$\lambda f \leq$	λpf		$\lambda f \leq$	λsf	$\lambda f \leq$	λpj	f	1	$lf \leq$	λmd
Patín Co	ompacto	Sísmica	ament	te Compacto	Patín Co	ompa	acto	Moder	adan	nente dúctil
λw	λрw	λru	V	λsw	λf		λpw	λrw	,	λsw
36.50	106.72	161.7	78	59.56	34.50	1	06.72	161.7	8	59.55
$\lambda w \leq Alma Contraction Contraction Contraction (Contraction Contraction)$	λ <i>pw</i> ompacta	Sísmic	<i>λw</i> ≤ amen	<i>λsw</i> te compacto	λw ≤ Alma Ce	λpv omp	w acta) Sísmica	lw ≤ ιmen	λsw te compacto
Momento	nto Resistente:				Momento I	Resi	stente:	1		
<i>Lb</i> (<i>m</i>)	$l) \qquad Lp(m)$		Lr(m)		<i>Lb</i> (<i>m</i>)		Lp	(m)		Lr(m)
1.40		.15		7.22	1.40	0 1		57		5.29
Long. Lim	ite	Cb	Мр	x(ton-m)	Long. Lim	ite	Cb		Мр	x(ton-m)
Plástico		.06		23.83	Plástico		1.	06		16.10
Mnx (ton – 1	m) Mny (t	(mf - m)	ØM,	nx(tonf-m)	Mnx (ton –)	m)	Mny (to	nf – m)	Ø M	nx(tonf-m)
23.83		.27		21.45	16.10		2.	78		14.49
				Diseño	a Corte					
Cy	Aw	Vn	L	ØVn	Cy		Aw	Vn		ØVn
CV	(cm^{2})	(ton	f)	(tonf)	CV	((cm^2)	(tonj	f)	(tonf)
1	23.36	35.4	8	31.93	1		21.76	33.0	5	29.74
			Ver	ificación de	Serviciabili	dad				
Deflexión:					Deflexión:					
$\Delta_{adm} - Cv$	$\Delta_{real} - Cv$	$\begin{array}{c} \Delta_{adm} \\ Cv + C \end{array}$	n C m	$\frac{\Delta_{real}}{Cv + Cm}$	$\Delta_{adm} - Cv$	Δ_{re}	_{al} – Cv (cm)	Δ_{adm} Cv + C	m	$\frac{\Delta_{real}}{Cv + Cm}$
(ent)	(em)	(<i>cm</i>	!)	(<i>cm</i>)	(em)	,		(<i>cm</i>)	(<i>cm</i>)
1.56	0.1	.1 2.33		0.38	1.56		0.06	2.33		0.31
Vibracione	es:			Vibracione	ès:					
Frecuencia (Hz)	4.07	Acelerad máxin (% grav	ción na edad)	0.58	Frecuencia (Hz)		4.54	Acelerac máxim (% gravec	ión a lad)	0.79

Nota. En esta tabla se presenta los resultados de las vigas diseñadas para el Edificio de 3

pisos. Elaborado por: Los Autores.

Tabla 35

Diseño de Viguetas I Armadas- Edificio 3 Pisos

	EDIFICIO DE TRES PISOS CON SECCIONES CRUCIFORMES											
		Vigueta	Piso 1-2	2				Vigueta	Terraza			
Dimen	siones	:				Dimensiones:						
d	tw	bf	tf	h	Lv	d	tw	bf	tf	h	Lv	
(cm)	(cm)	(cm)	(cm)	(cm)) (cm)	(cm)	(cm	n) (cm)	(cm)	(cm)	(cm)	
24	0.60	12.0	1.0	32.80	5.30	20	0.4	4 12.0	1.0	29.60	5.30	
Propiedades Geométricas: Propiedades Geométricas:												
Agc (c	m^2)	37.20	Sxc (cr	m^3)	309.03	Agc (c	m^2)	31.20	Sxc (cr	m^3)	236.24	
Ixx (cr	n ⁴)	3708.4	Syc (cr	m^3)	48.07	Ixx (cr	m^4)	2362.40	Syc (cr	m^3)	48.02	
Iyy (cr	n ⁴)	288.40	Zx(cn	n ⁶)	348.60	Iyy (ci	m^4)	288.10	Zx(cn)	n ⁶)	260.40	
rxc (c	m)	9.98	Zy (cn	n ⁴)	73.98	rxc (c	m)	8.70	Zy (cn	n ⁴)	72.72	
ryc (c	m)	2.78				ryc (c	m)	3.04				
					Diseño a	a Flexiór	1					
Relacio	ón Ano	cho-Espes	or:			Relacio	ón Ar	icho-Espes	or:			
λf		λpf	λrf		λsf	λf		λpf	λrf		λsf	
6		10.79	26.1	9	7.42	6		10.79	26.19	9	7.42	
7	$lf \leq \lambda$	pf		$\lambda f \leq \lambda$	lsf	1	$lf \leq 1$	λpf	λ	$f \leq \lambda n$	nd	

Patín Co	ompacto	Moder	adan	nente dúctil	Patín Co	omp	acto	Moder	adan	nente dúctil	
λw	λpw	λrw	,	λsw	λf	4	λpw	λ <i>rw</i>		λsw	
36.67	106.72	161.7	'8	59.55	45	1	06.72	161.7	8	59.55	
$\lambda w \leq$	λpw	Ĵ	łw ≤	Sλsw	$\lambda w \leq$	έ λρι	v	Ĵ	lw ≤	λsw	
Patín Co	ompacto	Sísmica	amen	te compacto	Patín Co	ompa	ncto	Sísmicamente compacto			
Momento 1	Resistente:				Momento 1	Resi	stente:				
<i>Lb</i> (<i>m</i>)	Lp	(m)		Lr(m)	<i>Lb</i> (<i>m</i>) <i>L</i>		Lp	(m)		Lr(m)	
1.32	1.39			4.65	1.32		1.	52		5.30	
Long. Lim	ite C	b	Мр	ox(ton-m)	Long. Lim	ite	0	C b	Мр	x(ton-m)	
Plástico	1.0	06		23.83	Plástico		1.	06		6.59	
Mnx (ton – 1	n) Mny (tor	(f - m)	ØM	mx(tonf-m)	Mnx (ton – :	m)	Mny (to	nf - m)	ØM	mx(tonf-m)	
23.83	5.1	27		21.45	6.59		1.	84		5.93	
				Diseño	a Corte						
Cv	Aw	Vn	ØVn		Cy		Aw	Vn		ØVn	
CV	(cm^{2})	(tonj	f)	(tonf)	CV.	(cm^2)	(ton)	f)	(tonf)	
1	13.20	20.0	5	18.04	1		7.2	10.93	3	9.84	
			Ver	ificación de	Serviciabilidad						
Deflexión:					Deflexión:						
$\Delta_{adm} - C v$	$\Delta_{real} - C v$	Δ_{adm} Cv + C	י m	$\frac{\Delta_{real}}{Cv + Cm}$	$\Delta_{adm} - C v$	Δ_{re}	$_{al}-Cv$	Δ_{adm} Cv + C	m	Δ_{real}	
(<i>cm</i>)	(cm)	(cm)	(<i>cm</i>)	(cm)	((cm)	(cm)	(<i>cm</i>)	
1.47	0.08 2.21			0.30	1.47		0.04	2.21		0.23	
Vibracione	/ibraciones:			·	Vibracione	es:					
Frecuencia (Hz)	4.6	Acelerac máxim (% gravea	ión a lad)	0.51	Frecuencia (Hz)		5.23	Acelerac máxim (% graved	ión a lad)	0.83	

Nota. En esta tabla se presenta los resultados de las viguetas diseñadas para el Edificio

de 3 pisos. Elaborado por: Los Autores

4.4.2 Edificio de seis pisos

Tabla 36

Diseño de Columnas Cruciformes Armadas- Edificio 6 Pisos

	E	DIFIC	IO DI	E SEIS P	ISOS CON	N SECCIONES	CRUCIFORME	S
Dimensi	ones:						bcf1	
<i>dc</i> (<i>cm</i>)	$h_1(cn)$	n) t_w	(<i>cm</i>)	$b_{f1}(cm)$	$t_{f1}(cm)$	+		
52.0	46.4	0 1		26.0	1.80		y1 e	
Propieda	ades G	eomét	ricas:					
Agc (cm	²) 3	01.92	Sxc	(cm^3)	2908.15	dc 🚽		× bcf2
<i>Ixx</i> (<i>cm</i> ⁴) 75611.8 <i>Syc</i> (<i>cm</i> ³) 2908							<u> </u>	
$Iyy(cm^4)$ 75611.8 $Zx(cm^6)$ 3677							-++-	tcf2
rxc (cm	$\frac{1}{rxc}(cm) = \frac{1}{15.83} \frac{2}{Zy}(cm^4)$							
ryc (cm	.) 1	15.83	е	(<i>cm</i>)	15.84	-	dc	
	Dis	seño a	Comp	resión]	Diseño a Flexiór	1
Relación	Anch	o-Espe	sor:			Relación Anch	o-Espesor:	
λf			lrf		λsf	λf	λpf	λrf
7.22 15.84 7.42					7.42	7.2	10.79	25.85
$\lambda f \leq \lambda r f \qquad \qquad \lambda f \leq \lambda s f$					λsf	λw	λрw	λrw
Patín No Esbelto Sísmicamente compacto					e compacto	19.67	106.72	161.78

λw	λρω	Ca	λsw	$\lambda f \leq \lambda p$	f	λ	$w \leq \lambda p w$		
19.67	42.29	0.164	51.76	Patín Compa	acto	Aln	na Compacta		
$\lambda w \leq \lambda w$	f	Ĩ	$\lambda w \leq \lambda s w$						
Alma No est	belta	Sísmica	mente Compacto						
Factor de Lon	gitud Ef	ectiva:		Momento Resi	stente:				
G _{Ax}	G_{Ax} G_{By} K_x			<i>Lb</i> (<i>m</i>)	Lp	(m)	Lr(m)		
5.43	5.43 1 1.73			3	7.	90	39.09		
G _{Ay}	G _{Ay} G _{By}			Mpx(ton-m)	Mn (to	n f – m)	$\emptyset M_{nx}(ton f - m)$		
5.43	5.43 1			93.08	.08	83.77			
Esbeltez de dis	Esbeltez de diseño:				Relación de Interacció				
$e_x = L_C/c$	r_x	$e_{y} = L_{C}/r_{y}$		Pr (tonf)	Pu (a	tonf)	Mux (tonf) – m		
32.88			32.88	171.73	649.7		83.77		
Esfuerzo Elást	ico de P	andeo:		Muy(tonf) - m	Mrx (tor	nf) – m	Mry(tonf) - m		
	18608.	92 <u>kgf</u>		83.77	25	.05	24.52		
	10000	<i>cm</i> ²		Relación:		0.	75		
$e_d \leq 4.$	$71\sqrt{\frac{E}{Fy}}; e$	$e_d = \max$	$(\boldsymbol{e}_{x}, \boldsymbol{e}_{y})$						
32.8	$38 \leq 13$	3.681 "	OK"						
∴ Controld	ido por	Pandeo	Inelástico	-					
Esfuerzo critic	Esfuerzo critico: $F_{cr} (kgf/cm^2)$ 2390.99								
Resistencia Nominal: $P_n(tonf)$ 721.89			f) 721.89						
Resistencia Ultima:			nf) 649.7						

Nota. En esta tabla se presenta los resultados de las columnas diseñadas para el Edificio

de 6 pisos. Elaborado por: Los Autores

Tabla 37

Diseño de Vigas I Armadas- Edificio 6 Pisos

	EDIFICIO DE SEIS PISOS CON SECCIONES CRUCIFORMES												
		Viga P	iso 1-2					V	/iga T	Terraza			
Dimen	siones	s:				Dime	Dimensiones:						
d	tw	bf	tf	h	Lv	d	tv	V	bf	tf	h		Lv
(cm)	(cm)) (cm)	(cm)	(cm) (cm)	(cm)	(cn	n) (e	cm)	(cm)	(cm	l)	(cm)
36	0.8	22	1.60	32.8	0 5.60	30	1	1	6.0	1.2	27.6	50	5.60
Propie	dades	s Geométri	cas:			Propi	iedade	es Geor	nétri	cas:			
Agc (c	m^2)	96.64	Sx (cn	n^3)	1288.59	Agc (cm^2)	66.0	00	Sx (cn	n^3)	647	7.95
Ixx (cr	n ⁴)	23194.66	Sy (cn	n^3)	258.26	Ixx (cm ⁴)	9719	.28	Sy (cn	n^3)	10)2.69
Iyy (cr	m^4)	2840.9	Zx(cn)	n ⁶)	1426.05	Iyy (cm ⁴)	821.	.50	Zx(cn)	n ⁶)	74	13.40
rxc (c	m)	15.49	Zy (cn	n ⁴)	392.45	rxc ((cm)	12.3	32	Zy (cn	n ⁴)	16	50.50
ryc (c	m)	5.42				ryc ((cm)	3.5	3				
					Diseño	a Flexic	ón						
Relacio	ón An	cho-Espes	or:			Relac	ción A	ncho-F	Espes	or:			
λf		λpf	λrf	•	λsf	λ	f	λp	f	λrf	•	λ	hd
6.9		10.79	25.4	7	7.42	6.6	57	10.7	79	28.10	0	7	.42
	$\lambda f \leq \lambda$	lpf		$\lambda f \leq I$	λsf		$\lambda f \leq$	λpf		1	$\int df \leq \lambda$	lmd	
Pat	ín Con	npacto	Sísmica	imente	Compact	D Pa	atín Co	mpacto		Moder	adame	ente	dúctil

λw	λpw	λrw	λsw	λf		λpw	λrw	,	λsw
41	106.72	161.78	59.56	27.60	10	06.72	161.7	8	59.55
λw ≤ Alma Co	λ <i>pw</i> ompacta	λu Sísmican	$v \leq \lambda s w$ nente compacto	λw ≤ Alma C	<i>λρν</i> ompa	v acta	۲ Sísmica	lw ≤ Imen	<i>λsw</i> te compacto
Momento	Resistente:			Momento	Resi	stente:	L		
<i>Lb</i> (<i>m</i>)	<i>Lp</i> ((m)	Lr(m)	<i>Lb</i> (<i>m</i>)		Lp	(m)		Lr(m)
1.40	2.71		8.95	1.40		1.76			6.23
Long. Lim	te Cb		Mpx(ton-m)	Long. Lim	ite	0	^T b	Мр	ox(ton-m)
Plástico	1.()6	36.09	Plástico		1.	06		18.82
Mnx (ton – 1	m) Mny (ton	(f-m)	$\partial M_{nx}(tonf-m)$	Mnx (ton –	m)	Mny (to	nf – m)	ØM	$n_{nx}(tonf-m)$
36.09	8.9	94	32.48	18.82		4.	06		16.93
		-	Diseño	a Corte					
Cv	Aw	Vn	ØVn	Cv		Aw	Vn		ØVn
C v	(<i>cm</i> ²)	(<i>tonf</i>)	(tonf)	CV	(cm^2)	(tonf	[•])	(tonf)
1	26.24	39.85	35.86	1	2	27.60	41.91	1	37.72
		V	/erificación de	Serviciabili	dad				
Deflexión:				Deflexión:					
$\Delta_{adm} - Cv$ (CM)	$\Delta_{real} - Cv$ (CM)	$egin{array}{c} \Delta_{adm} \ \mathcal{C} \mathcal{v} + \mathcal{C} \mathcal{m} \ (\mathcal{C} \mathcal{m}) \end{array}$	$n \begin{array}{c} \Delta_{real} \\ Cv + Cm \\ (Cm) \end{array}$	$\Delta_{adm} - Cv$ (CM)	Δ_{rec}	_{al} – Cv (cm)	$\begin{array}{c} \Delta_{adm}\\ \mathcal{C}\mathcal{v}+\mathcal{C}\\ (\mathcal{cm})\end{array}$	m)	$egin{array}{c} \Delta_{real} \ \mathcal{C} m{v} + \mathcal{C} m{m} \ (\mathbf{cm}) \end{array}$
1.56	0.06	2.33	0.22	1.56	(0.05	2.33		0.26
Vibracione	aciones:			Vibracione	es:				
Frecuencia (Hz)	5.35	Aceleració máxima (% graved	ón 0.37 ad)	Frecuencia (Hz)		4.93	Acelerac máxim (% graved	ión a lad)	0.87

Nota. En esta tabla se presenta los resultados de las vigas diseñadas para el Edificio de 6

pisos. Elaborado por: Los Autores

Tabla 38

Diseño de Viguetas I Armadas- Edificio 6 Pisos

		EDIFICI	O DE SI	EIS P	ISOS CON	SECC	IONI	ES CR	UCII	FORME	S	
		Vigu	ieta 1						Vigu	eta 2		
Dimen	siones	:				Dimen	sione	s:				
d	tw	bf	tf	h	Lv	d	tw	7	bf	tf	h	Lv
(cm)	(cm)	(cm)	(cm)	(cm) (cm)	(cm)	(cm	n) (cm)	(cm)	(cm) (cm)
20	0.80	12.0	1.0	18.0	5.30	22.0	0.8	0 1	2.0	1.0	20.0	5.30
Propie	dades	Geométri	icas:	: Propiedades Geométricas:								
Agc (cr	m^2)	38.4	Sxc (cr	n^3)	255.68	Agc (cr	m^2)	4(0	Sxc (cr	m^3)	289.21
Ixx (cr	n ⁴)	2556.8	Syc (cr	n^3)	48.13	Ixx (cr	n ⁴)	3181	1.33	Syc (cr	m^3)	48.14
Iyy (cr	n ⁴)	288.8	Zx (cn	n ⁶)	292.8	Iyy (cr	n ⁴)	288	3.9	Zx (cn	n ⁶)	332
rxc (c	m)	8.16	Zy (cn	n ⁴)	74.88	rxc (c	m)	8.9	92	Zy (cn	n ⁴)	75.2
ryc (c	m)	2.74				ryc (c	m)	2.6	59			
					Diseño a	Flexión	1					
Relació	ón An	cho-Espes	or:			Relació	ón Ar	ıcho-H	Espes	or:		
λf		λpf	λrf		λsf	λf		λp	f	λrf		λsf
6		10.79	26.1	9	7.42	6		10.7	79	28.82	2	7.42
,	$\lambda f \leq \lambda$	pf		$\lambda f \leq \lambda$	λsf	$\lambda f \le \lambda p f \qquad \lambda f \le \lambda m d$					lmd	
Pat	ín Com	pacto	Sísmica	amente	e compacto	cto Patín Compacto Moderadamente dúc					ente dúctil	
λw		λpw	λru	,	λsw	λf		λp	w	λrw	,	λsw

22.50	106.72	161.78	3 59.55	25	10	06.72	161.7	8	59.56
λw ≤ Patín Co	λ <i>pw</i> ompacto	λι Sísmicar	$w \leq \lambda s w$ mente compacto	λw ≤ Patín Ce	≤ λpw ompa	v icto	λ Sísmica	l <i>w</i> ≤ Imen	<i>λsw</i> te compacto
Momento	Resistente:			Momento	Resi	stente:	I		
<i>Lb</i> (<i>m</i>)	Lp	(m)	Lr(m)	<i>Lb</i> (<i>m</i>)		Lp	(m)		Lr(m)
1.32	1.37		5.48	1.32		1.	34		5.07
Long. Lim	te Cb		Mpx(ton-m)	Long. Limite		0	^C b	Мр	x(ton-m)
Plástico	1.	06	7.41	Plástico)	1.	06		6.59
Mnx (ton –)	m) Mny (tor	(nf - m)	$\emptyset M_{nx}(tonf-m)$	Mnx (ton –	m)	Mny (to	nf - m)	Ø M	nx(tonf-m)
7.41	1	.9	6.67	8.4		1.	71		7.56
			Diseño	a Corte					
Cv	Aw	Vn	ØVn	Cw		Aw	Vn		ØVn
CV	(<i>cm</i> ²)	(tonf)) (tonf)	CV	(<i>cm</i> ²)	(tonf	⁷)	(tonf)
1	14.4	21.87	19.68	1		16	24.3		21.87
		٦	Verificación de	Serviciabili	idad				
Deflexión:				Deflexión:					
$\Delta_{adm} - Cv$	$\Delta_{real} - Cv$	$\begin{array}{c} \Delta_{adm} \\ Cv + Cr \end{array}$	$m \qquad \begin{array}{c} \Delta_{real} \\ Cv + Cm \end{array}$	$\Delta_{adm} - Cv$	Δ_{red}	_{al} – Cv (cm)	$\frac{\Delta_{adm}}{C\nu+C}$	m	$\frac{\Delta_{real}}{Cv + Cm}$
(0110)	(<i>cm</i>) (<i>cm</i>)		(<i>cm</i>)	(ene)			(<i>cm</i>))	(<i>cm</i>)
1.47	0.12	2.21	0.43	1.47		0.03	2.21		0.17
Vibracione	ones:		1	Vibraciones:			n		1
Frecuencia (Hz)	3.82	3.82 Aceleración máxima (% gravedad)		Frecuencia (Hz)		6.07	Aceleraci máxim (% graved	ión a lad)	0.62

Nota. En esta tabla se presenta los resultados de las viguetas diseñadas para el Edificio

de 6 pisos. Elaborado por: Los Autores.

4.5. Diseño de Conexión Precalificada

Los modelos presentados en este proyecto, específicamente los edificios con columnas cruciformes además de ser diseñados con un sistema estructural SMF permite el uso de conexiones precalificadas de vigas a columnas ya sean total o parcialmente restringidas, su rendimiento, así como su uso está detallado en el capítulo 2.5 de este documento.

4.5.1 Diseño de la conexión placa extremo extendida de cuatro pernos sin rigidizadores (BUEEP 4E)

La conexión a momento de placa extremo extendida de cuatro pernos sin rigidizar conectara a las vigas I armadas con cada columna cruciforme armada, ambas de acero ASTM A36. El material de la placa de extremo será de acero ASTM A572 Gr.50 y los pernos serán A325-N de alta resistencia en agujeros estándar (ver Tabla 39)

4.5.1.1. Especificaciones del material

Tabla 39

Propiedades de los Materiales usados en el diseño de la Conexión

ASTM A 36	ASTM A572 Gr.50	A325-N				
$F_y = 2530 kg/cm^2$	$F_{yp} = 3515 kg/cm^2$	$F_{nt} = 6320 kg/cm^2$				
$F_u = 4077 kg/cm^2$	$F_{up} = 4570 kg/cm^2$	$F_{nv} = 3800 kg/cm^2$				
$R_y = 1.5 \qquad \qquad R_y = 1.1$						
Elaborado por Los Autoras						

Elaborado por: Los Autores

4.5.1.2. Propiedades de la viga y columna

Tabla 40

Propiedades de la Viga más critica

Propiedades	Valores
Peralte d (cm)	36.00
Altura del alma d_1 (<i>cm</i>)	32.80
Espesor del alma <i>t_{bw} (cm</i>)	0.80
Ancho del patín $b_{bf}(cm)$	22.00
Espesor del patín t_{bf} (cm)	1.60
Módulo de sección plástico Z_x (cm^3)	1426.05
Longitud L_b (<i>m</i>)	5.6

Elaborado por: Los Autores

Tabla 41

Propiedades de la Columna más Critica

Propiedades		Valores	
Perfil		Cruciforme armada	
Módulo de sección plástico Z_x	(<i>cm</i> ³)	3677.52	
Longitud L (m)		3.00	
Sección Vertical	Valor	Sección Horizontal	Valor
Peralte <i>dc</i> (<i>cm</i>)	52.00	Peralte <i>dc</i> (<i>cm</i>)	52.00
Altura del alma h_1 (<i>cm</i>)	48.40	Altura del alma h_2 (<i>cm</i>)	48.40
Espesor del alma t_{cw1} (cm)	1.20	Espesor del alma t_{cw2} (cm)	1.20
Ancho del patín b_{cf1} (cm)	26.00	Ancho del patín <i>b</i> _{cf2} (<i>cm</i>)	26.00
Espesor del patín t_{cf1} (cm)	1.80	Espesor del patín t_{cf2} (cm)	1.80

Elaborado por: Los Autores

4.5.1.3. Límites de precalificación

Las dimensiones de las vigas y las columnas deben cumplir con los límites de precalificación establecidos por el AISC 358-16 (ver Tablas 42-43).

Revisión Preliminar de la Vigas

Tabla 42

Revisión Preliminar a las Vigas

Máximo Peralte	Espesor del patín	Relación entre luz y peralte		
$d \le 140 cm \qquad \qquad t_{bf} \le 1.91 cm$		$L_b/d \ge 7(SMF)$		
$36cm \le 140cm$ "OK"	$36cm \le 140cm$ "OK" $1.6cm \le 1.91cm$ "OK"			
Relación Ancho Espesor (tabla D1.1 del AISC 341-16)				
Patín		Alma		
$\frac{0.5b_{bf}}{t_{bf}} \le 0.3$ $6.88 \le 7.42$	$32\sqrt{\frac{E}{R_y F_y}}$ 2. "OK"	$\frac{d_1}{t_{bw}} \le 2.57 \sqrt{\frac{E}{R_y F_y}}$ $41 \le 59.57 \text{``OK''}$		

Elaborado por: Los Autores

Revisión Preliminar de las Columnas

La columna al ser una sección cruciforme compuesta por dos tipos de secciones I armadas, recomendamos que para simplificar su cálculo sus elementos sean simétricos en ambos sentidos en el plano. Por lo tanto, con revisar la relación ancho-espesor de cada uno de sus elementos según los requerimientos de la tabla D1.1 del AISC 341-16 (ver Anexo A.1), es suficiente.

Tabla 43

Revisión Preliminar a las Columnas

Máximo Dovolto	Relación Ancho Espesor			
	Patín	Alma		
dc ≤ 92.00cm 52cm ≤ 92.00cm "OK"	$\frac{0.5b_{bf1}}{t_{bf1}} \le 0.32 \sqrt{\frac{E}{R_y F_y}}$ 7.22 \le 7.42 "OK"	$\frac{h_1 - t_{bw2}}{2t_{bw1}} \le 2.57 \sqrt{\frac{E}{R_y F_y}} (1 - 1.04C_a)$ $19.67 \le 51.37 \text{ "OK"}$		

Elaborado por: Los Autores

4.5.1.4. Diseño de la placa extremo y pernos

Momento en la cara de la Columna

✓ Combinación de carga

$$W_u = 1.2D + f_1L$$

$$W_u = 1.2(3056.784) kgf/m + 1(1092) kgf/m$$

$$W_u = 4759.9896 kgf/m$$

✓ Ubicación de rotula plástica, *Sh*

$$Sh = min (d/2; 3b_{bf})$$

 $36cm/2 = 18cm ; 3(22) = 66cm$
 $Sh = 18 cm (menor)$

✓ Distancia entre rotulas plásticas, L'

$$L' = L_b - 2\frac{d_c}{2} - 2S_h$$
$$L' = 5.6 - 2 * \frac{0.52}{2} - 2 * 0.18 = 4.72m$$

✓ Momento máximo probable de la viga en la rótula plástica, M_{pr}

$$M_{pr} = C_{pr} R_y F_y Z_{bx}$$

$$C_{pr} = \frac{2530 + 4077}{2(2530)} = 1.31 \le 1.2; C_{pr} \approx 1.2$$

$$M_{pr} = 1.2 * 1.5 * 2530 * 1426.05$$

$$M_{pr} = 64942.317 \ kgf - m$$

✓ Fuerza cortante en la cara de la columna

$$V_{u} = \frac{2M_{pr}}{L'} + \frac{W_{u}L'}{2}$$

$$V_{u} = \frac{2(64942.317)}{4.72} + \frac{(4759.9896)(4.72)}{2}$$

$$V_{u} = 38751.506 \ kgf$$

$$V'_{u} = \frac{2M_{pr}}{L'} - \frac{W_{u}L'}{2}$$

$$V'_{u} = \frac{2(64942.317)}{4.72} - \frac{(4759.98969)(4.72)}{2}$$

$$V'_{u} = 16284.355 \ kgf$$

Por lo tanto, el momento en la columna

$$\begin{split} M_f &= M_{pr} + V_u * S_h \\ M_f &= 64942.317 + 38751.506 * 0.18 \\ M_f &= 71917.588 \, kgf - m \\ M'_f &= M_{pr} + V'_u * S_h \\ M'_f &= 64942.317 + 16284.355 * 0.18 \\ M'_f &= 67873.501 \, kgf - m \end{split}$$

Geometría de la conexión: la conexión debe cumplir con los limites geométricos establecidos en el Anexo A.3 de este documento que a la vez han sido tomados del AISC 358-16 (ver Tabla 45).

	Cuatro pernos sin rigidizadores (4E)		Cuatro pernos con rigidizadores (4ES)		Ocho pernos con rigidizadores (8ES)	
Parámetro	Máximo	Mínimo	Máximo	Mínimo	Máximo	Mínimo
1 arametro	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)	mm (in)
t_{bf}	$19\left(\frac{3}{4}\right)$	$10\left(\frac{3}{8}\right)$	$19\left(\frac{3}{4}\right)$	$10\left(\frac{3}{8}\right)$	25(1)	$14\left(\frac{9}{16}\right)$
b _{bf}	$235\left(9\frac{1}{4}\right)$	152(6)	229(9)	152(6)	$311\left(12\frac{1}{4}\right)$	$190\left(7\frac{1}{2}\right)$
d	1400(55)	$349\left(13\frac{3}{4}\right)$	610(24)	$349\left(13\frac{3}{4}\right)$	914(36)	457(18)
t_p	$57\left(2\frac{1}{4}\right)$	$13\left(\frac{1}{2}\right)$	$38\left(1\frac{1}{2}\right)$	$13\left(\frac{1}{2}\right)$	$64\left(2\frac{1}{2}\right)$	$19\left(\frac{3}{4}\right)$
b_p	$273\left(10\frac{3}{4}\right)$	178(7)	$273\left(10\frac{3}{4}\right)$	178(7)	381(15)	229(9)
g	152(6)	102(4)	152(6)	$83\left(3\frac{1}{4}\right)$	152(6)	127(5)
p_{fi}, p_{fo}	$114\left(4\frac{1}{2}\right)$	$38\left(1\frac{1}{2}\right)$	$140\left(5\frac{1}{2}\right)$	$44\left(1\frac{3}{4}\right)$	51(2)	$41\left(1\frac{5}{8}\right)$
b_p	-	-	-	-	$95\left(3\frac{3}{2}\right)$	$89\left(3\frac{1}{2}\right)$

Limites Paramétricos de Precalificación

Elaborado por: Los autores. Fuente: AISC 358-16

Tabla 45

Geometría de Conexión Seleccionada

Cuatro pernos sin rigidizadores (4E)							
Parámetro	Máximo mm	Mínimo mm	Valores mm	Cumple			
t_{bf}	19	10	16	OK			
b_{bf}	235	152	22	OK			
d	1400	349	360	OK			
$t_p *$	57	13	34.9	OK			
$b_p *$	273	178	220	OK			
g	152	102	110	OK			
p_{fi}, p_{fo}	114	38	70	OK			

Elaborado por: Los autores.

✓ Ancho b_p *, debe considerarse como un máximo igual al ancho del ala de la viga más 25 mm (1 in)

$$b_p = b_{bf} + 2.5cm$$

$$b_p = 22 + 2cm = 24cm$$

 Distancia vertical entre el interior del patín en tensión de la viga y la fila exterior e interior de los pernos más cercanos, respectivamente

$$p_{fi} = p_{fo} = 7cm$$

✓ Distancia desde el eje del patín en compresión hasta la última fila de pernos en tensión, h_o

$$h_o = d_b + p_{fo} - \frac{t_{bf}}{2}$$

$$h_o = 36 + 7 - \frac{1.6}{2} = 42.2cm$$

✓ Distancia desde el eje del patín a compresión de la viga a cada perno interior en tensión, h₁

$$h_1 = d_b - p_{fi} - \frac{3t_{bf}}{2}$$
$$h_1 = 36 - 7 - \frac{3 * 1.6}{2} = 26.6cm$$

✓ Distancia vertical entre pernos, c

$$c = p_{fi} + t_{bf} + p_{fo}$$

 $c = 7 + 1.6 + 7 = 15.6cm$

Diámetro requerido de perno, d_{b,req}

$$d_{b,req} = \sqrt{\frac{2(71917.588) * 100}{\pi(0.9)(6320)(42.2 + 26.6)}} = 3.42cm \approx 1\frac{3}{8}in$$

Diámetro de perno propuesto, d_{bp}

Propuesto
$$d_{bp} = 1\frac{3}{8}in = 3.49cm \rightarrow d_{bp} \ge d_{b,req}$$
 "OK"

Según el AISC 358-16 sección 6.7.2

 $p_{fi} y p_{fo} \ge d_{bp} + 1.9$ $7cm \ge 3.49 + 1.9$ "OK"

Espesor de la placa extremo, $t_{p,req}$

✓ Separación

$$s = \frac{1}{2}\sqrt{b_p g} = \frac{1}{2}\sqrt{(24*11)} = 8.124cm$$

$$\operatorname{Si} p_{fi} > s, p'_{fi} = s$$

$$7 \text{ cm} > 8.124 \text{ cm}$$
 "NO"
 $\therefore p'_{fi} = 7 \text{ cm}$

✓ Valor, Yp

$$Y_{p} = \frac{b_{p}}{2} \left[h_{1} \left(\frac{1}{p'_{fi}} + \frac{1}{s} \right) + h_{o} \left(\frac{1}{p_{fo}} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[h_{1} (p'_{fi} + s) \right]$$
$$Y_{p} = \frac{24}{2} \left[26.6 \left(\frac{1}{7} + \frac{1}{8.124} \right) + 42.2 \left(\frac{1}{7} \right) - \frac{1}{2} \right] + \frac{2}{11} \left[26.6(7 + 8.124) \right]$$
$$Y_{p} = 224.379 cm$$

Por lo tanto

$$t_{p,req} = \sqrt{\frac{1.11(71917.588) * 100}{1(3515)(224.379)}} = 3.181 cm \approx 1\frac{3}{8} in$$

Espesor de placa propuesto, $t_p *$

$$t_p *= 3.49 cm \ ; \ t_p \geq t_{p,req} \ \text{``OK''}$$

Fuerza Mayorada en el patín de la viga, F_{fu}

$$F_{fu} = \frac{M_f}{d_1 - t_{bf}} = \frac{71917.588 * 100}{36 - 1.6} = 209062.756 \, kgf$$

Fluencia a Cortante de Sección Extendida de la Placa Extremo

$$\frac{F_{fu}}{2} \le \phi_d(0.6)F_{yp}b_pt_p$$

$$\frac{209062.756}{2} \le 1(0.6)(3515)(24)(3.49)$$

$$104531.38 \, kgf \le 176649.84 \, kgf \quad \text{``OK''}$$

Rotura por cortante de la sección extendida de la placa extremo

$$\frac{F_{fu}}{2} \le \phi_n(0.6)F_{up}[t_p(b_p - 2(d_{bp} + 0.3)]$$

$$\frac{209062.756}{2} \le 0.9(0.6)(4570)[3.49(24 - 2(3.49 + 0.3))]$$

$$104531.38 \, kgf \le 141419.253 \, kgf \quad \text{``OK''}$$

Resistencia de la conexión por rotura del perno a cortante

La resistencia es proporcionada por los pernos en un patín (compresión)

$$V_u \le \phi_n(n_b) F_{nv} A_b$$
$$V_u \le 0.9(4)(3800) \left[\frac{\pi (3.49)^2}{4} \right]$$
$$38751.506 \ kgf \le 130866.00 \ kgf \quad "OK"$$

Falla por aplastamiento y desgarramiento

Verificación de la falla debido a las fuerzas de los pernos en la placa de extremo y el patín de la columna.

a) Placa

Perno interior

$$d_h = diametro \ de \ perforacion \ AISC \ 360 - TABLA \ J3.3$$

 $d_h = d_{bp} + 0.3$

✓ Distancia de desgarramiento

$$L_{ci} = c - (d_h)$$
$$L_{ci} = 15.6 - (3.49 + 0.3) = 11.81cm$$

✓ Resistencia de diseño por aplastamiento y desgarramiento

$$r_{ni1} = 1.2 * L_{ci}t_pF_{up}$$

$$r_{ni1} = 1.2 * 11.81 * 3.49 * 4570 = 226033.48 kgf$$

$$r_{ni2} = 2.4 * d_{bp}t_pF_{up}$$

$$r_{ni2} = 2.4 * 3.49 * 3.49 * 4570 = 133591.34 kgf$$

. .

Entonces: $r_{ni} = 133591.34 \ kgf \ (menor)$

Perno exterior: La distancia de borde vertical para orificios de pernos exteriores "de" debe cumplir el criterio de distancias mín. y máx. al borde de acuerdo a la sección J3.4 y J3.5 del AISC 360-16.

$$d_e = 1\frac{1}{4}d_{bp}$$

 $d_e = 4.76 cm (minimo) \approx 5 cm (adoptado)$

✓ Distancia de desgarramiento

$$L_{co} = d_e - (\frac{d_{bp} + 0.3}{2})$$
$$L_{co} = 5 - \left(\frac{3.49 + 0.3}{2}\right) = 3.105m$$

✓ Resistencia de diseño por aplastamiento y desgarramiento

$$r_{ni1} = 1.2 * L_{co}t_pF_{up}$$

$$r_{ni1} = 1.2 * 3.105 * 3.49 * 4570 = 59427.09 kgf$$

$$r_{ni2} = 2.4 * d_{bp}t_pF_{up}$$

$$r_{ni2} = 2.4 * 3.49 * 3.49 * 4570 = 133591.34 kgf$$

-

Entonces: $r_{ni} = 59427.09 \ kgf \ (menor)$

Por lo tanto

$$\begin{split} V_u &\leq \emptyset_n(n_i) r_{ni} + \emptyset_n(n_o) r_{no} \, ; \, n_i = 2, n_o = 2 \\ \\ 38751.506 \ kgf &\leq 0.9(2) 133591.34 + 0.9(2)59427.09 \\ \\ 38751.506 \ kgf &\leq 347433.17 \ kgf \end{split}$$

b) Patín de la columna

$$\begin{split} \phi_n R_n &= 347433.17 \, \left(\frac{1.8 * 3515}{3.49 * 2530}\right) = 248956.33 \, kgf \\ V_u &\leq \phi_n R_n \\ 38751.506 \ kgf &\leq 248956.33 \, kgf \end{split}$$

Diseño de soldadura

Soldadura del alma de la viga a la placa de extremo

- ✓ Resistencia de electrodo E70 $F_{EXX} = 4920 \, kgf/cm^2$
- ✓ Longitud de cordón de soldadura

$$l_{cw} = \frac{d_p}{2} - t_p = \frac{36}{2} - 3.49 = 14.51cm$$

✓ Tamaño nominal de soldadura

$$w = \frac{V_u}{2[0.75(0.6F_{EXX})(0.707l_{cw})]}$$
$$w = \frac{38751.506}{2[0.75(0.6*4920)(0.707*14.51)]} = 0.853 \text{ cm} \approx 8.50 \text{ mm}$$

4.5.1.5. Diseño del lado de la Columna

Fluencia por flexión del patín de la Columna

✓ Separación
$$s = \frac{1}{2}\sqrt{b_{cf1}g} = \frac{1}{2}\sqrt{(26 * 11)} = 8.46cm$$

✓ Valor, Yc

$$\begin{split} Y_c &= \frac{b_{cf1}}{2} \Big[h_1 \left(\frac{1}{s} \right) + h_o \left(\frac{1}{s} \right) \Big] + \frac{2}{g} \Big[h_1 \left(s + \frac{3c}{4} \right) + h_o \left(s + \frac{c}{4} \right) + \frac{c^2}{4} \Big] + \frac{g}{2} \\ Y_c &= \frac{26}{2} \Big[26.6 \left(\frac{1}{8.46} \right) + 42.2 \left(\frac{1}{8.46} \right) \Big] \\ &\quad + \frac{2}{11} \Big[26.6 \left(8.46 + \frac{3(15.6)}{4} \right) + 42.2 \left(8.46 + \frac{15.6}{4} \right) + \frac{15.6^2}{4} \Big] + \frac{11}{2} \\ Y_c &= 314.619 cm \end{split}$$

Por lo tanto

$$t_{cf1} = t_{cf2} \ge \sqrt{\frac{1.11(71917.588) * 100}{1(2530)(314.619)}}$$

$$1.8cm \ge 3.17 \ cm$$
 "NO"

: No es suficiente, agregar placas de continuidad

Resistencia a la flexión del patín de la columna

Si se requiere placas de continuidad debido a la fluencia a la flexión del patín de la columna, debemos determinar la fuerza del rigidizador requerido.

 $\checkmark \text{ Si } p_{si} > s, p_{si} = s$

7cm > 8.45cm "NO"
∴
$$p_{si} = p_{so} = 7cm$$

✓ Valor, Yc

$$Y_{c} = \frac{b_{cf1}}{2} \left[h_{1} \left(\frac{1}{s} + \frac{1}{p_{si}} \right) + h_{o} \left(\frac{1}{s} + \frac{1}{p_{so}} \right) \right] + \frac{2}{g} \left[h_{1} (s + p_{si}) + h_{o} (s + p_{so}) \right]$$
$$Y_{c} = \frac{26}{2} \left[26.6 \left(\frac{1}{8.46} + \frac{1}{7} \right) + 42.2 \left(\frac{1}{8.46} + \frac{1}{7} \right) \right] + \frac{2}{11} \left[26.6 (8.46 + 7) + 42.2 (8.46 + 7) \right]$$
$$Y_{c} = 426.883 cm$$

✓ Fuerza requerida (**R1**)

$$\phi_d R_n = \frac{\phi_d F_y Y_c t_{cf}^2}{(d - t_{bf})}$$

$$\phi_d R_n = \frac{1 * 2530 * 426.883 * 1.8^2}{36 - 1.6} = 101722.25 \, kgf$$

Resistencia a la fluencia local del alma de la columna

✓ Conexión no al borde del ancho del patín de la columna

$$C_t = 1$$

 $k_c = 0.5(dc - h_1)$; obedece el echo de que es una seccion armada

✓ Resistencia a la fluencia ($\mathbf{R2}$)

$$F_{fu} \le \emptyset_d C_t (6k_c + t_{bf} + 2t_p) F_y t_{cw}$$

- $209062.756 \le 1(6 * 1.8 + 1.6 + 2(3.49)) * 2530 * 1.2$ $209062.756 \ kgf \le 58837.68 \ kgf$ "NO"
- \therefore No es suficiente, agregar placas de continuidad

Resistencia al pandeo del alma de la columna

✓ Resistencia al pandeo (**R3**)

$$209062.756 \le \frac{0.75 * 24 * 1.2^3 * \sqrt{2.039x10^6 * 2530}}{48.4}$$
$$209062.756 \ kgf \le 46157.23 \ kgf \quad \text{``NO''}$$

 \div No es suficiente, agregar placas de continuidad

Resistencia por arrugamiento del alma de la columna

✓ Resistencia al arrugamiento (**R4**)

$$N = 26 + 2 * 3.49 = 32.98cm$$

$$F_{fu} \le 0.75 * 0.8 * 1.2^{2} \left(1 + 3 \left(\frac{32.98}{52} \right) \left(\frac{1.2}{1.8} \right)^{1.5} \right) \sqrt{\frac{2.039 \times 10^{6} * 2530 * 1.8}{1.2}}$$

$$209062.756 \ kgf \le 154718.00 \ kgf \quad \text{``OK''}$$

 \therefore Es suficiente, no agregar placas de continuidad

Resistencia de diseño

Cuando se requiere de placas de continuidad la resistencia de diseño será la menor entre la resistencia a fluencia del patín, pandeo del alma y arrugamiento del alma.

$$F_{su} = F_{fu} - \min(R1, R2, R3, R4)$$
$$F_{su} = 209062.756 - 46157.23 = 162905.524 \, kgf$$

4.5.2 Diseño de la Placa de Continuidad

Figura 47

Placas de Continuidad en Columna Cruciforme

Elaborado por: Los Autores

Ancho de la placa

 $r_{ecorte} = 2.5 cm; espacio entre placa y soldadura de columna$

✓ Lado corto $b_{cp} = \frac{b_{cf}}{2} - \frac{t_{cw}}{2} - r_{ecorte}$ $b_{cp} = \frac{26}{2} - \frac{1.2}{2} - 2.5 = 9.9 \ cm$ ✓ Lado largo $L_{cp} = \frac{d_c}{2} - 2r_{ecorte} - t_{cf} - \frac{t_{cw}}{2}$

$$L_{cp} = \frac{52}{2} - 2(2.5) - 1.8 - \frac{1.2}{2} = 18.6 \ cm$$

Espesor de la placa

✓ Espesor requerido según la guía de diseño 13 del AISC

$$t_{cp,req} = 0.004 b_{cp} \sqrt{345} = 0.74 cm$$

✓ Espesor propuesto

$$t_{cp,asum} = 2cm$$

$$t_{cp,req} < t_{cp,asum}$$
 "OK"

Área total de la placa a compresión

$$A_{pc} = 2(b_{cp}t_{cp}) + ((12t_{cw})t_{cw})$$
$$A_{pc} = 2(9.9 * 2) + ((12 * 1.2) * 1.2) = 56.88cm^{2}$$

Inercia y radio de giro de la placa

$$I_{pc} = 1547.532cm^4$$
 $r_{pc} = \sqrt{\frac{1547.532}{56.88}} = 5.216cm$

I. Resistencia de diseño según el AISC

Resistencia a tensión: resistencia de las áreas de contacto de las placas de continuidad con los patines de la columna.

$$\label{eq:relation} \begin{split} & \ensuremath{\emptyset} R_n = \ensuremath{\emptyset} F_y 2 b_{cp} t_{pc} \\ & \ensuremath{\emptyset} R_n = 0.9 * 2530 * 2 * 9.9 * 2 = 90169.2 kgf \end{split}$$

Resistencia a cortante: resistencia del área de contacto de la placa con el alma de la columna según el AISC 360.16 (J10-6)

$$P_u > 0.4P_y$$
 166316.322 kgf > 0.4(287812.8) kgf
166316.322 kgf > 115125.12 kgf "OK"

Entonces

 $V_u \leq \emptyset R_n = \min(\emptyset R_n, \emptyset V_n)$

Por lo tanto

 $38751.506 \, kgf \leq 46425.76 \, kgf$ "OK"

Resistencia a compresión: las placas soldadas por completo en los patines y alma de la columna, se considera que actúa como una columna totalmente restringida en ambos extremos, entonces:

$$\frac{KL_{pc}}{r_{pc}} = \frac{0.65 * 18.6}{5.216} = 2.31 \le 2.5$$

$$Pn_{pc} = 2F_yA_{pc}$$

$$Pn_{pc} = 2 * 2530 * 56.88 = 287812.8 \, kgf$$
Por lo tanto
$$F_{su} < \emptyset Pn_{pc}$$

$$162905.524 \, kgf \le 0.9 * 287812.8 \, kgf$$

$$162905.524 \, kgf \le 259031.52 kgf$$

$$\therefore OK \ placas \ de \ continuidad \ a \ compresion$$

II. Soldadura

Tamaño de la soldadura: de acuerdo al AISC 360-16 en la sección J2-5

√	Resistencia de electrodo E70	$F_{EXX} = 4920 kgf/cm^2$
√	Longitud de cordón de soldadura	$l_{cw} = L_{cp} = 18.6cm$

✓ Tamaño nominal de soldadura

$$w = \frac{\min(\emptyset R_n, \emptyset V_n)}{2[0.75(0.6F_{EXX})(0.707l_{cw})]}$$
$$w = \frac{46425.76}{2[0.75(0.6*4920)(0.707*18.6)]} = 0.797 \text{cm} \approx 8 \text{ mm}$$

Revisión de la soldadura: según el AISC 360-16 en el capítulo J2. en la sección 4 literal b se puede tomar en cuenta grupos de soldadura que están orientados tanto longitudinal como transversalmente

✓ Longitudinal

Esfuerzo nominal de la soldadura

$$Fn_{lw} = 0.6F_{EXX}(1 + 0.5sen(\theta_l)^{1.5})$$

$$Fn_{lw} = 0.6 * 4920(1 + 0.5sen(0^{\circ})^{1.5}) = 2952 \, kgf/cm^2$$

Área efectiva de la soldadura

$$A_{lw} = 0.7071 w l_{cw}$$
$$A_{lw} = 0.7071 * 0.8 * 18.6 = 10.522 cm^2$$

Por lo tanto

$$Rn_{lw} = Fn_{lw}A_{lw}$$
$$Rn_{lw} = 2952 * 10.522 = 31059.905 \ kgf$$

✓ Transversal

Esfuerzo nominal de la soldadura

$$Fn_{lp} = 0.6F_{EXX}(1 + 0.5sen(\theta_b)^{1.5})$$

$$Fn_{lw} = 0.6 * 4920(1 + 0.5sen(90^{\circ})^{1.5}) = 4428 \, kgf/cm^2$$

Área efectiva de la soldadura

$$A_{lp} = 0.7071 w l_{cf}$$

$$A_{lp} = 0.7071 * 0.8 * (9.9 + 18.6) = 16.122 cm^{2}$$

Por lo tanto

$$Rn_{lp} = Fn_{lp}A_{lp}$$

$$Rn_{lp} = 4428 * 16.122 = 71387.685 kgf$$

Se propone soldar alrededor del atiesador por ambos lados, obteniendo una resistencia de diseño de:

$$Rn1 = 31059.905 + 71387.685 = 102447.59 \, kgf$$
$$Rn2 = 0.85 * 31059.905 + 1.5 * 71387.685 = 133482.446 \, kgf$$
$$Rn = 133482.446 \, kgf$$

Por lo tanto

$$\phi_w Rn = 2\phi_w Rn$$

$$\phi_w Rn = 2 * 0.75 * 133482.446 = 200223.669 kgf$$

Entonces

$$\frac{0.5 * 162905.524 \, kgf}{200223.669 \, kgf} < 1$$
$$0.41 < 1 \text{``OK''}$$

: Es suficiente, pasa la revisión

4.6. Revisión de Columna fuerte-Viga Débil

Se espera que la relación entre el momento de la columna y la viga sea mayor a 1, para obtener estos momentos se necesita de parámetros que se mencionan en la sección 2.5.7 de este trabajo.

4.6.1 Cortante por Capacidad en Elementos Diseñados

Primero se encuentra la capacidad a corte de las vigas diseñadas, mencionadas en el capítulo 4 de este trabajo y en la tabla 46 se resumen el corte por capacidad.

Sección Viga	Carga W _u (tonf/m)	Ubicación Rotulas $S_h(m)$	Distancia entre Rotulas L'(m)	Momento Probable $M_{pr}(tonf - m)$	Capacidad Cortante V _u (tonf)		
	Edif	icio con Colu	umnas Crucifor	rmes			
360x8x220x16	4.76	0.18	4.72	64.94	38.75		
320x8x180x14	4.74	0.16	4.86	42.88	29.16		
Edificio con Columnas Tubulares							
350x8x280x16	4.77	0.20	4.80	69.45	40.39		
350x8x160x14	4.74	0.15	5.00	43.74	29.33		
350x8x160x14	4.74	0.175	4.9	43.74	29.45		
	L 1	1 1	T /				

Cortante por Capacidad de los Elementos Diseñados

Elaborado por: Los autores.

4.6.2 Relación Columna-Viga

Tabla 47

Criterios de Columna fuerte- Viga débil de los Elementos Diseñados

Edificio con Columnas Cruciformes						
6	Columna Cruciforme 520x12x260x18	$M_{pc}(tonf-m)$	145.57	Relación		
pisos	Viga	$M_{uv}(tonf-m)$	17.05	$\frac{M_{pc}}{M} = 1.78 > 1 "OK"$		
	360x8x220x16	$M_{pb} = M_{pr} + M_{uv}$	81.99	M _{pb}		
3	Columna Cruciforme 420x8x180x14	$M_{pc}(tonf-m)$	64.04	Relación		
pisos	Viga	$M_{uv}(tonf-m)$	10.79	$\frac{M_{pc}}{M} = 1.19 > 1 "OK"$		
	320x8x180x14	$M_{pb} = M_{pr} + M_{uv}$	53.67	M _{pb}		
	Edif	icio con Columnas Tu	ibulares	•		
6	Columna Tubular 400x400x14	$M_{pc}(tonf-m)$	110.29	Relación		
pisos	Viga	$M_{uv}(tonf-m)$	16.15	$\frac{M_{pc}}{M} = 1.29 > 1 "OK"$		
	350x8x280x16	$M_{pb} = M_{pr} + M_{uv}$	85.61	M _{pb}		
	Columna Tubular 300x300x12	$M_{pc}(tonf-m)$	58.66	Relación		
	Viga	$M_{uv}(tonf-m)$	8.80	$\frac{M_{pc}}{M} = 1.12 > 1 "OK"$		
3 pisos -	350x8x160x14	$M_{pb} = M_{pr} + M_{uv}$	52.54	^{IVI} pb		
	Columna Tubular 350x350x12	$M_{pc}(tonf-m)$	84.24	Relación		
	Viga	$M_{uv}(tonf-m)$	10.31	$\frac{M_{pc}}{M} = 1.56 > 1 "OK"$		
	350x8x160x14	$M_{pb} = M_{pr} + M_{uv}$	54.05	^{IvI} pb		

Elaborado por: Los autores.
4.7. Modelado de las estructuras en SAP2000

Los modelados de las 4 estructuras se lo realizaron en el programa SAP2000 versión 18, valores ingresados como materiales, secciones para vigas, columnas, losas, cargas, patrones, espectros de diseño etc. se pueden revisar en el Anexo B de este trabajo.

El software permite realizar análisis modales, no lineales, etc., con los cuales se pueda comprobar los criterios de diseño que se han establecido en los capítulos anteriores. En las figuras 48 y 49 se muestra de forma general los modelos ingresados en el programa SAP para las estructuras de 3 y 6 pisos.

Figura 48

Vista del Edificio de 6 pisos en planta y 3D - Sistema Estructural de Pórticos

Nota. Edificio de 6 pisos ingresado en el SAP2000. Elaborado por: Los autores.

Figura 49

Vista del Edificio de 3 pisos en planta y 3D - Sistema Estructural de Pórticos

Nota. Edificio de 3 pisos ingresado en el SAP2000.Elaborado por: Los autores.

CAPÍTULO V

EVALUACIÓN SÍSMICA Y PROCEDIMIENTO ESTÁTICO NO LINEAL (PUSHOVER)

5.1. Evaluación Sísmica

En la práctica se acepta un diseño que considera solicitaciones sísmicas sobre la estructura y se determinan por medio de un análisis elástico. Se contemplan dos caminos en los códigos de diseño, uno es el análisis estático y otro es el análisis dinámico (Choque y Luque, 2019).

El análisis estático lineal corresponde a una fuerza lateral equivalente distribuida en toda la altura del edificio, el cual tiene el objetivo de producir los mismos esfuerzos y deformaciones que puede generar un sismo real (Moreno Rosagnel, 2006).

El análisis modal espectral supone que la respuesta de un edificio, puede ser estimada a partir de la respuesta independiente de cada modo de vibración, usando el espectro de respuesta elástico lineal. Se considera los modos que contribuya de manera significativa la respuesta (90% de la masa efectiva) (Moreno Rosagnel, 2006).

5.1.1 Edificios con Columnas Tubulares

5.1.1.1. Edificio de tres pisos

Derivas: En la tabla 48 se presenta los valores de las derivas máximas para el edificio de 3 pisos con columnas tubulares. En la sección 3.2.4.1. se menciona que el valor máximo de deriva inelástica es 2%.

Tabla 48

Derivas para el Caso "Sismo Dinámico X-Y" - Edificio 3 pisos

			Derivas	en X		
Dias	Δ	△ Relativo	Deriva	Deriva	Der. Inelas.	Varifianaión
PISO	(m)	(m)	Elástica	Inelástica	(%)	verification
1	0.009478	0.9478	0.0032	0.0107	1.07	<2% OK
2	0.02215	1.2672	0.0042	0.0143	1.43	<2% OK
3	0.031674	0.9524	0.0032	0.0107	1.07	<2% OK
			Derivas	en Y		
Dias	Δ	△ Relativo	Deriva	Deriva	Der. Inelas.	Varifianaión
P180	(m)	(m)	Elástica	Inelástica	(%)	verification
1	0.009079	0.9079	0.0030	0.0102	1.02	<2% OK
2	0.021093	1.2014	0.0040	0.0135	1.35	<2% OK
3	0.030034	0.8941	0.0030	0.0101	1.01	< 2% OK

Elaborado por: Los autores

Derivas en X-Y respecto a la Altura del Edificio 3 pisos

Elaborado por: Los autores

Cortante Basal Estático y Dinámico: con ayuda del programa SAP2000, se puede obtener los valores para Corte Estático y Dinámico (ver Tabla 49).

Tabla 49

Cortantes Dinámicos y Estáticos de SAP2000 - Edificio 3 pisos

TABLE: Base	TABLE: Base Reactions											
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY	GlobalMZ				
Text	Text	Text	Tonf	Tonf	Tonf	Tonf-m	Tonf-m	Tonf-m				
SEX	LinStatic		-109.30	-1.865E-12	-8.349E-14	1.265E-11	-711.72518	852.290				
SEY	LinStatic		-7.075E-13	-109.30	5.329E-15	711.72518	-5.187E-12	-898.179				
SDX	LinRespSpec	Max	94.70	0.21	0.166	1.515	613.109	734.775				
SDY	LinRespSpec	Max	0.21	94.70	0.0428	616.133	1.257	760.469				

Fuente: Valores obtenidos del programa SAP2000

El corte dinámico en X e Y se debe comparar con el corte estático de la estructura, donde debe ser mayor o igual al 85% del V_e , debido que es una estructura irregular, como se menciona en la norma NEC-SE-DS en el capítulo 6.2.2. literal b. (ver Tabla 50).

Tabla 50

Comprobación del Corte Dinámico vs Corte Estático

Corte Estático VE (tonf)	Corte Dinámico X VD _x (tonf)	Corte Dinámico Y VD _y (tonf)	Corte Estático 85% VE _{85%} (tonf)					
109.30	94.7032	94.7034	92.905					
Elaborado por: Los autores								

Participación de masa modal: El porcentaje de masa modal acumulada debe ser al menos del 90% de todos los modos que involucran la estructura, en cada una de las direcciones horizontales principales consideradas (ver Tabla 51).

Tabla 51

Participación de la Masa modal - Edificio 3 pisos

TABLE: Mod	TABLE: Modal Participating Mass Ratios											
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ			
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless			
MODAL	Mode	1	0.5358	0.8327	0.0000	1.65E-09	0.8327	0.0000	1.65E-09			
MODAL	Mode	2	0.5278	3.40E-05	0.8341	4.01E-08	0.8327	0.8342	4.17E-08			
MODAL	Mode	3	0.4563	0.0003	0.0025	9.74E-09	0.8330	0.8366	5.15E-08			
MODAL	Mode	4	0.1734	0.1255	0.0001	3.04E-07	0.9584	0.8367	3.56E-07			
MODAL	Mode	5	0.1710	0.0001	0.1237	8.69E-07	0.9586	0.9604	1.23E-06			
MODAL	Mode	6	0.1489	0.0002	0.0009	6.40E-10	0.9588	0.9613	1.23E-06			
MODAL	Mode	7	0.1017	1.60E-06	7.79E-09	0.0007	0.9588	0.9613	6.76E-04			

Fuente: Valores obtenidos del programa SAP2000

Modos de vibración traslacionales: verificar los dos primeros modos de vibración, es importante para comprobar el comportamiento de la estructura. Estos dos deben ser traslacionales, y el tercero modo verificar que cumpla con rotación. (ver Tabla 52).

Tabla 52

Modos de vibración - Edificio 3 pisos

TABLE: Modal Participating Mass Ratios										
OutputCase StepType StepNum RX RY RZ										
Text	Text	Unitless	Unitless	Unitless	Unitless					
MODAL	Mode	1	0.000001781	0.03231	0.000325					
MODAL	Mode	2	0.034377	9.972E-07	0.002709					
MODAL	Mode	3	0.000134	0.000022	0.8366					

Fuente: Valores obtenidos del programa SAP200

5.1.1.2. Edificio de seis pisos

Derivas: En la tabla 53 se presenta los valores de las derivas máximas para el edificio.

Tabla 53

Derivas para el Caso "Sismo Dinámico X-Y" - Edificio 6 pisos

	Derivas en X										
Piso	Δ (m)	\triangle Relativo (m)	Deriva Elástica	Deriva Inelástica	Der. Inelas. $\binom{0}{0}$	Verificación					
1	0.010853	1.0853	0.0036	0.0122	1.22	<2% OK					
2	0.028547	1.7694	0.0059	0.01991	1.99	<2% OK					
3	0.045762	1.7215	0.0057	0.0194	1.94	<2% OK					
4	0.059943	1.4181	0.0047	0.0160	1.60	<2% OK					

5	0.070172	1.0229	0.0034	0.0115	1.15	<2% OK						
6	0.077449	0.7277	0.0024	0.0082	0.82	< 2% OK						
	Derivas en Y											
Dico	Δ	△ Relativo	Deriva	Deriva	Der. Inelas.	Vorificación						
F 150	(m)	(m)	Elástica	Inelástica	(%)	verificación						
1	0.010485	1.0485	0.0035	0.0118	1.18	<2% OK						
2	0.027473	1.6988	0.0057	0.01911	1.91	<2% OK						
3	0.043957	1.6484	0.0055	0.0185	1.85	<2% OK						
4	0.057528	1.3571	0.0045	0.0153	1.53	<2% OK						
5	0.067306	0.9778	0.0033	0.0110	1.10	<2% OK						
6	0.074234	0.6928	0.0023	0.0078	0.78	< 2% OK						

Elaborado por: Los autores

Figura 51

Elaborado por: Los autores

Cortante Basal Estático y Dinámico

Tabla 54

Cortantes Dinámicos y Estáticos de SAP2000 - Edificio 6 pisos

TABLE: Base	TABLE: Base Reactions											
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY	GlobalMZ				
Text	Text	Text	Tonf	Tonf	Tonf	Tonf-m	Tonf-m	Tonf-m				
Sx	LinStatic		-234.150	3.485E-11	-1.901E-13	-4.467E-10	-2938.94415	1826.758				
Sy	LinStatic		3.673E-11	-234.150	1.064E-13	2938.94415	4.654E-10	-1925.065				
Dx	LinRespSpec	Max	199.974	3.509	0.3856	43.11718	2422.8893	1596.429				
Dy	LinRespSpec	Max	3.455	199.974	0.3488	2429.89795	42.48055	1659.114				

Fuente: Valores obtenidos del programa SAP2000

El corte dinámico en X y Y se debe comparar con el corte estático de la estructura, donde debe ser mayor o igual al 85% del V_e , debido que es una estructura irregular (ver tabla 55).

Tabla 55

Comprobación del Corte Dinámico vs Corte Estático

Corte Estático VE (tonf)	Corte Dinámico X VD _x (tonf)	Corte Dinámico Y VD _y (tonf)	Corte Estático 85% VE _{85%} (tonf)					
234.15	199.97	199.97	199.02					
Elaborado por: Los autores								

Participación de masa modal

Tabla 56

Participación de la Masa modal - Edificio 6 pisos

TABLE: Mod	TABLE: Modal Participating Mass Ratios											
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ			
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless			
MODAL	Mode	1	0.843475	0.801	0.005041	3.785E-07	0.801	0.005041	3.785E-07			
MODAL	Mode	2	0.830211	0.005106	0.803	3.225E-07	0.806	0.808	0.00000701			
MODAL	Mode	3	0.695757	0.00006518	0.0001653	5.069E-10	0.806	0.808	7.015E-07			
MODAL	Mode	4	0.269612	0.105	0.0003153	0.000004625	0.911	0.808	0.00005327			
MODAL	Mode	5	0.265398	0.0002814	0.105	0.00002327	0.912	0.913	0.00007654			
MODAL	Mode	6	0.223109	0.000001338	0.00004781	1.386E-09	0.912	0.913	0.000007655			
MODAL	Mode	7	0.148813	0.045	5.156E-07	0.000001798	0.957	0.913	0.000009453			

Fuente: Valores obtenidos del programa SAP2000

Modos de vibración traslacionales

Tabla 57

Modos de vibración - Edificio 6 pisos

TABLE: Modal Participating Mass Ratios										
OutputCase	OutputCase StepType StepNum RX RY RZ									
Text	Text	Unitless	Unitless	Unitless	Unitless					
MODAL	Mode	1	0.0006555	0.1	0.00006657					
MODAL	Mode	2	0.102	0.0006248	0.0001788					
MODAL	Mode	3	0.00003407	0.00002987	0.809					

Fuente: Valores obtenidos del programa SAP2000

5.1.2 Edificios con columnas cruciformes

5.1.2.1. Edificio de tres pisos

Derivas: En la tabla 58 se presenta los valores de las derivas máximas para el edificio de 3 pisos con columnas cruciformes. En la sección 3.2.4.1. se menciona que el valor máximo de deriva inelástica es 2%.

Tabla 58

	Derivas en X										
Piso	Δ	△ Relativo	Deriva	Deriva	Der. Inelas.	Verificación					
1 150	(m)	(m)	Elástica	Inelástica	(%)	vermeación					
1	0.005214	0.5214	0.0017	0.0104	1.04	< 2% OK					
2	0.012449	0.7235	0.0024	0.0145	1.45	< 2% OK					
3	0.017764	0.5315	0.0018	0.0106	1.06	< 2% OK					
			Deriva	as en Y							
Dico	Δ	\triangle Relativo	Deriva	Deriva	Der. Inelas.	Varifiaaaián					
1 150	(m)	(m)	Elástica	Inelástica	(%)	v er meacion					
1	0.005017	0.5017	0.0017	0.0100	1.00	<2% OK					
2	0.011903	0.6886	0.0023	0.0138	1.38	<2% OK					
3	0.016904	0.5001	0.0017	0.0100	1.00	<2% OK					

Derivas para el Caso "Sismo Dinámico X-Y" en Edificio 3 pisos

Elaborado por: Los autores

Figura 52

Derivas en X-Y respecto a la Altura del Edificio 3 Pisos

Elaborado por: Los autores

Cortante Basal Estático y Dinámico

Tabla 59

Cortantes Dinámicos y Estáticos de SAP2000 - Edificio 3 Pisos

TABLE: Base	Reactions							
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY	GlobalMZ
Text	Text	Text	Tonf	Tonf	Tonf	Tonf-m	Tonf-m	Tonf-m
SEX	LinStatic		-61.7576	-9.367E-13	4.086E-14	7.077E-12	-402.52519	481.5841
SEY	LinStatic		-4.969E-13	-61.7576	-3.553E-15	402.52519	-3.368E-12	-507.48788
SDX	LinRespSpec	Max	53.5109	0.1858	0.0557	1.28107	346.69532	420.88361
SDY	LinRespSpec	Max	0.1851	53.5107	0.0215	348.70372	1.23604	436.50937

Fuente: Valores obtenidos del programa SAP2000

El corte dinámico en X e Y se debe comparar con el corte estático de la estructura, donde debe ser mayor o igual al 85% del V_e , debido que es una estructura irregular, como se menciona en la NEC-SE-DS en el capítulo 6.2.2 literal b. (ver Tabla 60).

Tabla 60

Comprobación del Corte Dinámico vs Corte Estático

Corte Estático VE (tonf)	Corte Dinámico X VD _x (tonf)	Corte Dinámico Y VD _y (tonf)	Corte Estático 85% VE _{85%} (tonf)
61.75	53.51	53.15	52.48
	Flaborado	nor: Los autores	

Elaborado por: Los autores

Participación de masa modal

Tabla 61

Participación de la Masa modal - Edificio 3 Pisos

TABLE: Mod	TABLE: Modal Participating Mass Ratios								
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	Mode	1	0.530469	0.829346	0.000203	1.565E-07	0.8293	0.0002	1.565E-07
MODAL	Mode	2	0.522032	0.000206	0.832559	2.833E-08	0.8296	0.8328	1.848E-07
MODAL	Mode	3	0.447728	0.000004714	0.000593	4.386E-10	0.8296	0.8334	1.853E-07
MODAL	Mode	4	0.165019	0.129007	1.032E-09	2.325E-09	0.9586	0.8334	1.876E-07
MODAL	Mode	5	0.162565	2.114E-07	0.127631	7.241E-07	0.9586	0.9610	9.117E-07
MODAL	Mode	6	0.138797	0.000035	0.000289	3.311E-08	0.9586	0.9613	9.448E-07
MODAL	Mode	7	0.103911	2.238E-08	3.065E-09	0.000301	0.9586	0.9613	0.000302

Fuente: Valores obtenidos del programa SAP2000

Traslación de los modos de vibración

Tabla 62

Modos de vibración - Edificio 3 Pisos

	TABL	E: Modal P	articipating M	ass Ratios	
OutputCase	StepType	StepNum	RX	RY	RZ
Text	Text	Unitless	Unitless	Unitless	Unitless
MODAL	Mode	1	0.000009248	0.03238	8.096E-07
MODAL	Mode	2	0.035094	0.000007489	0.000677
MODAL	Mode	3	0.000036	3.944E-07	0.829273

Fuente: Valores obtenidos del programa SAP2000

5.1.2.2. Edificio de seis pisos

Derivas: En la tabla 63 se presenta los valores de las derivas máximas para el edificio de 6 pisos con columnas tubulares.

Tabla 63

			Derivas	en X		
Piso	Δ (m)	\triangle Relativo (m)	Deriva Elástica.	Deriva Inelástica	Der. Inelas. (%)	Verificación
1	0.005603	0.5603	0.0019	0.0112	1.12	<2% OK
2	0.015406	0.9803	0.0033	0.0196	1.96	<2% OK
3	0.025332	0.9926	0.0033	0.0199	1.99	<2% OK
4	0.033728	0.8396	0.0028	0.0168	1.68	<2% OK
5	0.039975	0.6247	0.0021	0.0125	1.25	<2% OK
6	0.044496	0.4521	0.0015	0.0090	0.90	<2% OK
			Derivas	en Y		
D!	Δ	△ Relativo	Deriva	Deriva	Der. Inelas.	N /
P180	(m)	(m)	Elástica	Inelástica	(%)	verification
1	0.005401	0.5401	54.01	0.1800	1.08	<2% OK
2	0.014792	1.4792	93.91	0.3130	1.88	<2% OK
3	0.024269	2.4269	94.77	0.3159	1.90	<2% OK
4	0.032267	3.2267	79.98	0.2666	1.60	<2% OK
5	0.038197	3.8197	59.3	0.1977	1.19	<2% OK
6	0.042461	4.2461	42.64	0.1421	0.85	< 2% OK

Derivas para el Caso "Sismo Dinámico X-Y" en Edificio 6 pisos

Elaborado por: Los autores

Figura 53

Derivas en X-Y respecto a la Altura del Edificio en Edificio 6 pisos

Elaborado por: Los autores

Cortante Basal Estático y Dinámico

Tabla 64

Cortantes Dinámicos y Estáticos de SAP2000

TABLE: Base	TABLE: Base Reactions							
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY	GlobalMZ
Text	Text	Text	Tonf	Tonf	Tonf	Tonf-m	Tonf-m	Tonf-m
Sx	LinStatic		-133.696	1.914E-11	9.095E-14	-2.641E-10	-1681.9939	1043.232
Sy	LinStatic		1.938E-11	-133.696	1.346E-13	1681.9939	2.659E-10	-1099.646
Dx	LinRespSpec	Max	114.3347	1.4695	0.2102	18.20457	1390.83979	918.753
Dy	LinRespSpec	Max	1.4327	114.3345	0.1472	1395.6465	17.75494	953.259

Fuente: Valores obtenidos del programa SAP2000

El corte dinámico en X e Y se debe comparar con el corte estático de la estructura, donde debe ser mayor o igual al 85% del V_e . (ver Tabla 65).

Tabla 65

Comprobación del Corte Dinámico vs Corte Estático en Edificio 6 pisos

Corte Estático VE (tonf)	Corte Dinámico X VD _x (tonf)	Corte Dinámico Y VD _y (tonf)	Corte Estático 85% VE _{85%} (tonf)
133.69	114.33	114.33	113.64
	Elaborado r	or. Los autores	

Elaborado por: Los autores

Participación de masa modal

Tabla 66

Participación de la Masa modal - Edificio 6 pisos

TABLE: Mod	IABLE: Modal Participating Mass Ratios								
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	Mode	1	0.840171	0.792	0.002077	1.969E-07	0.792	0.002077	1.969E-07
MODAL	Mode	2	0.825284	0.002111	0.794	1.899E-07	0.794	0.796	3.868E-07
MODAL	Mode	3	0.710679	0.0001515	0.0001333	2.138E-10	0.794	0.796	3.87E-07
MODAL	Mode	4	0.261047	0.111	0.0001267	0.00002319	0.905	0.796	2.71E-06
MODAL	Mode	5	0.25657	0.0001129	0.11	0.000001295	0.905	0.907	4.00E-06
MODAL	Mode	6	0.221011	0.000001627	0.00006722	6.89E-10	0.905	0.907	4.00E-06
MODAL	Mode	7	0.137645	0.049	1.244E-07	0.000001051	0.954	0.907	5.05E-06

Fuente: Valores obtenidos del programa SAP2000

Modos de vibración traslacionales

Tabla 67

Modos de vibración - Edificio 6 pisos

TABLE: Mod	TABLE: Modal Participating Mass Ratios								
OutputCase	StepType	StepNum	RX	RY	RZ				
Text	Text	Unitless	Unitless	Unitless	Unitless				
MODAL	Mode	1	0.0002925	0.108	0.0001384				
MODAL	Mode	2	0.109	0.000281	0.0001495				
MODAL	Mode	3	0.00003183	0.00001086	0.795				

Fuente: Valores obtenidos del programa SAP2000

5.2. Análisis Estático No Lineal (Pushover)

El análisis no lineal "Pushover" comienza después de tener los modelos ajustados para que cumplan los requerimientos de un análisis modal espectral como lo establece la NEC 2015.

5.2.1 Modelos Inelásticos de los Materiales

Empezamos definiendo la no linealidad de los materiales en el programa SAP2000.

5.2.1.1. Acero ASTM A36

Este material fue adaptado a modelo elastoplástico perfecto con el fin de evaluar el comportamiento del acero más allá del rango de fluencia de forma más sencilla (ver Figura 54-55-56).

Figura 54

Ingreso de los datos del Material de Acero

Material Name	Material Type	Symmetry Type
A36	Steel	Isotropic
Modulus of Elasticity	Weight and Mass	Units
E 2038901.9	Weight per Unit Volume 7.849	9E-03 Kgf, cm, C 🗸
	Mass per Unit Volume 8.004	4E-06
	Other Properties for Steel Materials	
Poisson	Minimum Yield Stress, Fy	2531.0507
U 0.3	Minimum Tensile Stress, Fu	4077.8038
	Effective Yield Stress, Fye	3796.576
	Effective Tensile Stress, Fue	4485.5842
Coeff of Thermal Expansion		
A 1.170E-05		
Shear Modulus		
G 784193.	Advanced Material Property Data	
	Nonlinear Material Data	Material Damping Properties
	Time Dependent Properties	Thermal Properties

lateria	l Name		Material Type	
A36			Steel	
ystere	esis Type	Drucker-Prager Par	ameters	Units
Kinem	atic 🗸	Friction Angle		Kgf, cm, C 🗸
		Dilatational Angle		
		DiatationarAngie		
tress-	Strain Curve Defir	ition Options		
	rametric			Convert To User Defined
) Par) Us	rametric er Defined			Convert To User Defined
◯ Pai ● Us Iser St	rametric er Defined ress-Strain Curve	Data		Convert To User Defined
○ Par ● Us Iser St Numbe	rametric er Defined ress-Strain Curve er of Points in Stre	Data ss-Strain Curve	Deitel D	Convert To User Defined 7
 Pai Us Iser St Number 	rametric er Defined ress-Strain Curve er of Points in Stre Strain	Data ss-Strain Curve Stress	Point ID	Convert To User Defined 7 7
 Pai Us Iser St Number 1 	rametric er Defined ress-Strain Curve er of Points in Stre Strain -0.014	Data ss-Strain Curve Stress -2531.051	Point ID	Convert To User Defined 7
Par Us Us Iser St Numbe	rametric er Defined ress-Strain Curve er of Points in Stre Strain -0.014 -2.000E-03 4 2005 02	Data ss-Strain Curve Stress -2531.051 -2531.051 -2531.051	Point ID	Convert To User Defined 7
Pare Us Vumbe	rametric er Defined ress-Strain Curve er of Points in Stre Strain -0.014 -2.000E-03 -1.200E-03	Data ss-Strain Curve Stress -2531.051 -2531.051 -2531.051	Point ID	7
Pail Us Us Ser St Number 1 2 3 4 5	rametric er Defined ress-Strain Curve er of Points in Stre Strain -0.014 -2.000E-03 -1.200E-03 0. 1.200E.03	Data ss-Strain Curve Stress -2531.051 -2531.051 -2531.051 0.	Point ID	Convert To User Defined
 Pail Us Iser St Number 1 2 3 4 5 6 	rametric er Defined ress-Strain Curve er of Points in Stre Strain -0.014 -2.000E-03 -1.200E-03 0. 1.200E-03 2.000E.03	Data ss-Strain Curve Stress -2531.051 -2531.051 0. 2531.0507 2531.0507	Point ID A B	Convert To User Defined
 Par Us Us Iser St Number 1 2 3 4 5 6 7 	rametric er Defined ress-Strain Curve er of Points in Stre Strain -0.014 -2.000E-03 -1.200E-03 0. 1.200E-03 2.000E-03	Data ss-Strain Curve Stress -2531.051 -2531.051 0. 2531.0507 2531.0507 2531.0507	Point ID A B C	Convert To User Defined
 Pai Pai Us Us Iser St Number 1 2 3 4 5 6 7 	rametric er Defined ress-Strain Curve er of Points in Stre Strain -0.014 -2.000E-03 -1.200E-03 0. 1.200E-03 2.000E-03 0.014	Data ss-Strain Curve Stress -2531.051 -2531.051 -2531.051 0. 2531.0507 2531.0507 2531.0507	Point ID A B C D	Convert To User Defined

Ingreso de la no linealidad del Acero en SAP2000

Figura 56

Modelo Elastoplástico del Esfuerzo- Deformación del Acero A 36

Elaborado por: Los autores

5.2.1.2. Hormigón

El comportamiento no lineal del hormigón ha sido adaptado a un modelo simple el cual obedece a la histéresis Takeda (ver Figura 57-58-59).

Material Name	Material Type	Symmetry Ty	pe
fc240	Concrete	Isotropic	
Modulus of Elasticity	Weight and Mass		Units
E 233928.19	Weight per Unit Volume 2.403	3E-03	Kgf, cm, C \sim
	Mass per Unit Volume 2.450	DE-06	
	Other Properties for Concrete Materials		
Poisson	Specified Concrete Compressive Stren	ngth, fc	240.
U 0.2	Expected Concrete Compressive Stren	ngth	240.
	Lightweight Concrete		
	Shear Strength Reduction Factor		
Coeff of Thermal Expansion			
A 9.900E-06			
Shear Modulus			
G 97470.08	Advanced Material Property Data		
	Nonlinear Material Data	Material D	amping Properties
	Time Dependent Properties	Therr	nal Properties

Ingreso de los datos del Material de Hormigón en SAP2000

Figura 58

Ingreso de la no linealidad del Hormigón en SAP2000

		Material Type		
fc240		Concrete		
lysteresis Type	Drucker-Prager Para	meters		Units
Takeda 🗸 🗸	Friction Angle	0.		Kgf, cm, C \sim
	Dilatational Angle	0.		
Stress-Strain Curve Defin	nition Options			
Parametric	Simple	~	Convert [®]	To User Defined
User Defined				
Parametric Strain Data				
Parametric Strain Data Strain At Unconfined Co	mpressive Strength, fc			2.219E-03
Parametric Strain Data Strain At Unconfined Co Ultimate Unconfined Stra	mpressive Strength, fc ain Capacity			2.219E-03 5.000E-03
Parametric Strain Data Strain At Unconfined Co Ultimate Unconfined Stra Final Compression Slope	mpressive Strength, fc ain Capacity e (Multiplier on E)			2.219E-03 5.000E-03 -0.1

Modelo Esfuerzo- Deformación del Hormigón

Elaborado por: Los autores

5.2.2 Rótulas plásticas en Elementos Estructurales

La asignación de las rotulas plásticas en el programa SAP2000 se puede definir de manera manual o automática, en este trabajo se lo realizara de manera manual.

5.2.2.1. Rótulas en Edificios con Columnas Cruciformes

Rótulas plásticas en Vigas: para el caso de vigas se considera un daño a flexión (M3) y con ayuda de la Tabla 9-6 del ASCE 41-13 además de la sección 2.9.4.2 de este trabajo, se encontraron los parámetros de control al desplazamiento (momento-rotación) y los criterios de aceptación. En el Anexo C.1 y C.2 se presentan las rótulas de las vigas para los edificios de 3 y 6 pisos respectivamente.

Definición de rótula plástica por Flexión en las Vigas para Edificios con Columnas Cruciformes

Nota. Los parámetros ingresados en la figura pertenecen a la Viga 360x8x220x16 mm del edificio de 6 pisos con columnas cruciformes.

Asignación de las Rótulas Plásticas: La ubicación para la asignación de las rótulas plásticas en las vigas se menciona en la sección 2.5.5.1 "*Rótula plástico debido a la conexión*" y para colocarlas en el programa SAP2000 serán distancias relativas como se muestra en la Tabla 68.

Tabla 68

Distancias relativas que se asignaran a las vigas en el programa SAP

Edificio	Dirección	Distan	cias Relati	vas
		L(m)	100%	5.6
6 pisos	X-X	Rótula 1	3.5%	0.196
		Rótula 2	96.5%	0.804

Nota. Las distancias mostradas corresponden a la Viga 2AB del edificio de 6 pisos con columnas cruciformes. Elaborado por: Los autores

Asignación de las Rótulas Plásticas en Vigas por Flexión en SAP

Hinge Pror	hertv	Relative Distance	
VIG 1	v v	0.965	
/IG 1		0.035	
			Add Hinge
			Modify/Show Auto Hinge
			Delete Hinge

Rótulas plásticas en Columnas: Para el caso de columnas se considera un fallo a flexión y fuerza axial. Cabe recalcar que el programa SAP2000 considera como P-M3 a la rótula plástica en el sentido X-X y P-M2 en el sentido Y-Y, esto se debe al sistema de coordenadas local del elemento.

Con ayuda de la Tabla 9-6 del ASCE 41-13 además de la sección 2.9.4.3, se encontraron los parámetros de control al desplazamiento (momento-rotación) y los criterios de aceptación. En el Anexo C.1-C2 se presentan las rotulas de las columnas para los edificios de 3 y 6 pisos respectivamente.

Figura 62

Definición de rótulas plástica por Flexión y Fuerza Axial en la Columna para Edificios con Columnas Cruciformes

elect C	urve		Units
Axial F	orce 0.	✓ Angle 90.	✓ Curve #1 ▼ ▼ Tonf, m, C ✓
oment	Rotation Data for Select	ed Curve	
Point	Moment/Yield Mom	Rotation/SF	
Α	0.	0.	B
В	1.	0.	
С	1.176	6.88	
D	0.17	6.88	
E	0.17	10.633	
C	opy Curve Data	Paste Curve Data	A PR3 R3
C	opy Curve Data	Paste Curve Data	Current Curve - Curve #1 Force #1; Angle #1 3D View
C Acce	opy Curve Data ptance Criteria (Plastic D Immediate Occupancy	Paste Curve Data reformation / SF) 0.25	A -R3 Current Curve - Curve #1 Full Interaction Curve Force #1; Angle #1 Full Interaction Curve 3D View Axial Force = 0 Plan Axial Force
Acce	opy Curve Data ptance Criteria (Plastic D Immediate Occupancy Life Safety	Paste Curve Data eformation / SF) v 0.25 5.	A Current Curve - Curve #1 Full Interaction Curve Axial Force #1 Subject #1 Plan Axial Force Elevation Full Axial Force Full
Ci Acce	ppy Curve Data ptance Criteria (Plastic D Immediate Occupancy Life Safety	Paste Curve Data	A Current Curve - Curve #1 Full Interaction Curve Force #1; Angle #1 Full Interaction Curve Axial Force = 0 Device #1; Angle #1 Full Interaction Curve Axial Force = 0 Device #1; Angle #1 Full Interaction Curve Axial Force #1 Device #1; Angle #1 Full Interaction Curve Axial Force #1 Device #1; Angle #1 Full Interaction Curve Axial Force #1 Device #1 Devic
	opy Curve Data ptance Criteria (Plastic D Immediate Occupancy Life Safety Collapse Prevention	Paste Curve Data reformation / SF) 0.25 5. 6.	A -R3 R3 Current Curve - Curve #1 Force #1; Angle #1 Full Interaction Curve Axial Force = 0 3D View Image: Curve #1 Plan Full Interaction Curve Axial Force = 0 Elevation Image: Curve #1 Plan Hide Backbone Lines Aperture Image: Curve #1 Plan Show Acceptance Criteria Show Thickened Lines
	opy Curve Data ptance Criteria (Plastic D Immediate Occupancy Life Safety Collapse Prevention show Acceptance Points	Paste Curve Data	A -R3 Current Curve - Curve #1 Force #1; Angle #1 Full Interaction Curve Axial Force = 0 3D View - Plan - Axial Force - Elevation - Aperture - 3D RR MR2 Highlight Current Curve
Acce	ppy Curve Data ptance Criteria (Plastic D Immediate Occupancy Life Safety Collapse Prevention show Acceptance Points Rotation Information	Paste Curve Data	A -R3 R3 Current Curve - Curve #1 Force #1; Angle #1 Full Interaction Curve Axial Force = 0 3D View Axial Force 0 Plan Axial Force 0 Elevation 0 Hide Backbone Lines Aperture Show Acceptance Criteria 3D RR MR3 MR3 MR2 Highlight Current Curve
Co Acce Symme	opy Curve Data ptance Criteria (Plastic D Immediate Occupancy Life Safety Collapse Prevention show Acceptance Points Rotation Information try Condition	Paste Curve Data eformation / SF) (0.25) (5.) (6.) on Current Curve Symmetric	A -R3 R3 Current Curve - Curve #1 Full Interaction Curve Axial Force = 0 3D View - Axial Force Plan - Axial Force Image: Show Acceptance Criteria Show Acceptance Criteria 3D RR MR3 3D RR MR2 Angle is Moment About 0 degrees 0 degrees = About Positive M2 Axis
Co Accep Symmet Symme Numbe	opy Curve Data ptance Criteria (Plastic D Immediate Occupancy Life Safety Collapse Prevention thow Acceptance Points Rotation Information try Condition r of Axial Force Values	Paste Curve Data eformation / SF) y 0.25 5. 6. on Current Curve Symmetric 1	A -R3 R3 Current Curve - Curve #1 Force #1; Angle #1 Full Interaction Curve Axial Force = 0 3D View Image: Axial Force = 0 Plan Image: Axial Force = 0 Image: Blackbone Lines Show Acceptance Criteria Aperture Image: Show Acceptance Criteria 3D RR MR3 MR2 Mgle is Moment About Image: About Positive M3 Axis 0 degrees Angle is Moment About Image: About Positive M3 Axis

Nota. Los parámetros ingresados en la figura pertenecen a la columna (520x12x260x18 mm) del edificio de 6 pisos con columnas cruciformes.

Asignación de las Rótulas Plásticas: la ubicación para la asignación de las rótulas plásticas en las columnas se menciona en la sección 2.4.2 de este trabajo y para colocarlas en el programa SAP serán distancias relativas como se muestra en la Tabla 69.

Tabla 69

Distancias relativas que se asignaran a las columnas en el programa SAP

Edificio	Caracterís	Columnas	
	L(m)	100%	3
6 pisos	Rotula 1	5%	0.15
	Rotula 2	95%	0.85

Nota. Las distancias presentadas corresponden a la columna central B2 del edificio

de 6 pisos con columnas cruciformes. Elaborado por: Los autores

Figura 63

Asignación de Rótulas Plástica en Columnas por Flexión y Fuerza Axial en SAP

5.2.2.2. Rótulas en Edificios con Columnas Tubulares

Rótulas plásticas en Vigas: para el caso de vigas se considera un daño a flexión (M3) y con ayuda de la Tabla 9-6 del ASCE 41-13 además de la sección 2.9.4.2 de este trabajo, se encontraron los parámetros de control al desplazamiento (momento-rotación) y los criterios de aceptación. En el Anexo C.3 y C.4 se presentan las rótulas de las vigas para los edificios de 3 y 6 pisos respectivamente.

Definición de rótula plástica por Flexión en las Vigas para Edificio con Columnas Tubulares

Point Moment/SF Rotation/SF Moment/SF Rotation/SF B -0.585 -8.8084 Image: Constraint of the state of the st	Point M F	oment/SF -0.585 -0.585 -1.234 -1 0 1.	Rotation/SF -10.8084 -8.8084 -8.8084 0 0 0		•		 Moment - Rotati Moment - Curva Hinge Length Relative 	ion ature	
E -0.585 -10.8084 D -0.585 -8.8084 C -1.234 -8.8084 B -1 0 A 0 0 B 1. 0. C 1.234 8.8084 D 0.585 10.8084 D D.585 10.8084 D D.585 10.8084 D D.585 10.8084 D Drops To Zero Statrapolated Saing for Moment and Rotation Positive Negative Use Yield Moment Moment SF 42.9916 Use Yield Rotation Rotation SF 7.000E-03 (Strail Objecte Date) 0 0	E- D- C- B- A A E	-0.585 -0.585 -1.234 -1 0 1.	-10.8084 -8.8084 -8.8084 0 0	<u></u>	••		Moment - Curva Hinge Length		
D - 0.585 - 8.8084 C - 1.234 - 8.8084 B - 1 0 A 0 0 C 1.234 8.8084 D 0.585 8.8084 C - 1.234 8.8	D- C- B- A B C	-0.585 -1.234 -1 0 1.	-8.8084 -8.8084 0 0		••		Hinge Length	1	
C- -1.234 -8.8084 B -1 0 A 0 0 B 1. 0. C 1.234 8.8084 D 0.585 8.8084 E 0.585 10.8084 D Dorops To Zero 0 Is Extrapolated Positive Negative Use Yield Moment Moment SF 42.9916 Use Yield Rotation Rotation SF 7.000E-03 (Strail Objects Doki) (Strail Objects Doki)	C- B- A B C	-1.234 -1 0 1.	-8.8084 0 0		••		Relative		
B -1 0 A 0 0 B 1. 0. C 1.234 8.8084 D 0.585 8.8084 I 0.585 10.8084 I 0.5854 10.8	B- A B C	-1 0 1.	0		••		Relative		
A 0 0 B 1. 0. C 1.234 8.8084 D 0.585 8.8084 C 1.234 8.8084 D 0.585 8.8084 C 1.0 8084 Symmetric No Parameters Are Required For This Hysteresis Type Isotropic No Parameters Are Required For This Hysteresis Type Isotropic Statrapolated Use Yield Moment Moment SF Use Yield Rotation Rotation SF (Streid Objecte Date) (Streid Objecte Date)	A D	0 1.	0					Length	
B 1. 0. C 1.234 8.8084 D 0.585 8.8084 Image: Symmetric Symmetric Washing Capacity Beyond Point E No Parameters Are Required For This Hysteresis Type Image: Symmetric No Parameters Are Required For This Hysteresis Type Image: Symmetric No Parameters Are Required For This Hysteresis Type Image: Symmetric No Parameters Are Required For This Hysteresis Type Image: Symmetric No Parameters Are Required For This Hysteresis Type Image: Symmetric No Parameters Are Required For This Hysteresis Type Image: Symmetric No Parameters Are Required For This Hysteresis Type Image: Symmetric No Parameters Are Required For This Hysteresis Type Image: Symmetric No Parameters Are Required For This Hysteresis Type Image: Symmetric No Parameters Are Required For This Hysteresis Type Image: Symmetric Positive Image: Symmetric No Parameters Are Required For This Hysteresis Type Image: Symmetric Positive Image: Symmetric No Parameters Are Required For This Hysteresis Type Image: Symmetric Positive Image: Symmetric No Parameters Are Re	B C	1.	0.			н	steresis Type And	Parameters	
C 1.234 8.8084 Symmetric Hysteresis Type Isotropic D 0.585 8.8084 Symmetric No Parameters Are Required For This Hysteresis Type ad Carrying Capacity Beyond Point E Isotropic No Parameters Are Required For This Hysteresis Type Io Drops To Zero Is Extrapolated Is Extrapolated Positive Negative Use Yield Moment Moment SF 42.9916 Use Yield Rotation Rotation SF 7.000E-03	С						otoroolo type And		
D 0.585 8.8084 P 0.585 8.8084 P 0.585 8.8084 P 0.585 10.8084 We have a constrained of the second of th		1.234	8.8084			H	ysteresis Type	Isotropic	~
Image: Provide and Carrying Capacity Beyond Point E Image:	D	0.585	8.8084		Symmetric		No Parameter	rs Are Required Fo	r This
ad Carrying Capacity Beyond Point E Drops To Zero Is Extrapolated saling for Moment and Rotation Positive Negative Use Yield Moment Moment SF 42.9916 Use Yield Rotation Rotation SF 7.000E-03 (Streel Objects Och)	E C	0.585	10.8084	×			Hysteresis Ty	ype .	
Positive Negative Use Yield Moment Moment SF 42.9916 Use Yield Rotation Rotation SF 7.000E-03) is Extrap	olated							
Use Yield Moment SF 42.9916 Use Yield Rotation Rotation SF 7.000E-03	caling for Mo	ment and Rota	ation	Positi	ve Nega	tive			
Use Yield Rotation Rotation SF 7.000E-03	Use Yiek	d Moment	Moment SE	42,9916					
Use Yield Rotation Rotation SF 7.000E-03			another of						
(Steel Objects Oph)	Use Yiek	d Rotation	Rotation SF	7.000E-03	3				
(Steel Objects Only)		bjects Only)							
	(Steel Of								
cceptance Criteria (Plastic Rotation/SF)	(Steel Of	riteria (Plastic	Rotation/SF)						
cceptance Criteria (Plastic Rotation/SF) Positive Negative	(Steel Ol cceptance Cl	riteria (Plastic	Rotation/SF)	Positi	ve Nega	itive			
L'AREAL MUEL IN LIMMU	Use Yiek	d Moment d Rotation biects Only)	Moment SF Rotation SF	42.9916 7.000E-03					

Nota. Los parámetros ingresados en la figura pertenecen a la Viga (350x8x280x16 mm) del edificio de 6 pisos con columnas tubulares. Elaborado por: Los autores

Asignación de las Rótulas Plásticas: la ubicación para la asignación de las rótulas plásticas en las columnas se menciona en la sección 2.5.5.1 "*Rótula plástica debido a la conexión*". Se colocará en el programa SAP2000 como se muestra en la Figura 60 con las distancias relativas presentadas en la Tabla 70.

Tabla 70

Asignación de las Rotulas Plásticas en Vigas por Flexión en SAP

Edificio	Dirección	Caracter	Vigas	
		L(m)	100%	5.6
6 pisos	X-X	Rotula 1	3.2%	0.179
	_	Rotula 2	96.8%	0.82

Nota. Las distancias presentadas corresponden a la Viga 2AB interna horizontal del edificio de 6 pisos con columnas tubulares. Elaborado por: Los autores

Rótulas plásticas en Columnas: para el caso de columnas se considera un fallo a flexión y fuerza axial. Con ayuda de la Tabla 9-6 del ASCE 41-13 además de la sección 2.9.4.3, se encontraron los parámetros de control al desplazamiento (momento-rotación) y los criterios de aceptación. En el Anexo C.3 y C.4 se presentan las rotulas de las columnas para los edificios de 3 y 6 pisos respectivamente.

Figura 65

Definición de rótula plástica por Flexión y Fuerza Axial en la Columna para Edificios con Columnas Tubulares

Nota. Los parámetros ingresados en la figura pertenecen a la columna (400*400*1.4 mm) central del edificio de 6 pisos con columnas tubulares.

Asignación de las Rótulas Plásticas: la ubicación para la asignación de las rótulas plásticas en las columnas se menciona en la sección 2.4.2 de este trabajo. Se colocará en el programa SAP2000 como se muestra en la Figura 62 y las distancias relativas como se muestra en la Tabla 69.

5.2.3 Patrón de Cargas Laterales

El patrón de carga lateral está en función de la forma modal de los modos fundamentales correspondientes a las direcciones X e Y (ver Tablas 71 a la 74). El cálculo de las cargas laterales se menciona en la sección 2.8.1.1 de este trabajo.

Tabla 71

Fuerzas Laterales en la dirección "X" e "Y" del Edificio de 6 pisos con Columnas Cruciformes

Nivel	w _i (tonf)	$h_i(m)$	h_i^k	$w_i h_i^{k}$	$F_{ix}(tonf)$	$F_{iy}(tonf)$
1	150.156	3	3.398	510.30	6.12	6.12
2	150.156	6	7.353	1104.14	13.24	13.24
3	150.156	9	11.549	1734.22	20.80	20.80
4	150.156	12	15.910	2389.05	28.65	28.65
5	150.156	15	20.398	3062.92	36.74	36.74
6	96.766	18	24.990	2418.17	29.00	29.00
Total	847.546			11218.80		

Elaborado por: Los Autores

Tabla 72

Fuerzas Laterales en la dirección "X" e "Y" del Edificio de 3 pisos con Columnas Cruciformes

	Nivel	w _i (tonf)	$h_i(m)$	h_i^k	$w_i h_i^{k}$	$F_{ix}(tonf)$	$F_{iy}(tonf)$
	1	141.695	3	3.000	425.08	12.51	12.51
	2	141.695	6	6.000	850.17	25.02	25.02
	3	93.620	9	9.000	842.58	24.80	24.80
_	Total	377.010			2117.83		
		-	1 1 1	т	A <i>i</i>		

Elaborado por: Los Autores

Tabla 73

Fuerzas Laterales en la dirección "X" e "Y" del Edificio de 6 pisos con Columnas Tubulares

Nivel	w _i (tonf)	$h_i(m)$	h_i^{k}	$w_i h_i^{k}$	$F_{ix}(tonf)$	$F_{iy}(tonf)$
1	147.981	3	3.398	502.90	10.73	10.73
2	147.981	6	7.353	1088.14	23.22	23.22
3	147.981	9	11.549	1709.10	36.48	36.48
4	147.981	12	15.910	2354.44	50.25	50.25
5	147.981	15	20.398	3018.55	64.43	64.43
6	94.446	18	24.990	2360.20	50.38	50.38
Total	834.349			11033.33		

Elaborado por: Los Autores

Tabla 74

Fuerzas Laterales en la dirección	"Х"	' e	"Y"	del Edificio	de 3	pisos d	con	Columnas
Tubulares								

Nivel	w _i (tonf)	$h_i(m)$	h_i^{k}	$w_i h_i^{k}$	$F_{ix}(tonf)$	$F_{iy}(tonf)$
1	141.586	3	3.000	424.76	22.27	22.27
2	141.586	6	6.000	849.52	44.55	44.55
3	92.192	9	9.000	825.72	43.51	43.51
Total	375.364			2099.99		

Elaborado por: Los Autores

5.2.3.1. Comparación de Cargas Laterales

Se compara las cargas laterales calculadas manualmente con las obtenidas directamente del programa SAP2000 (ver Tablas 75-76)

Tabla 75

Fuerzas Manuales vs Fuerzas SAP2000 del Edificio de 6 pisos

Colum	nas Cruciform	es	Columnas Tubulares				
$F_{Manual}(tonf)$ $F_{SAPP}(tonf)$ $E_{rror}(\%)$		E _{rror} (%)	$F_{Manual}(tonf)$	$F_{SAPP}(tonf)$	E _{rror} (%)		
6.12	6.16	0.64	10.73	10.84	0.98		
13.24	13.33	0.65	23.22	23.46	1.00		
20.80	20.93	0.62	36.48	36.85	1.01		
28.65	28.83	0.61	50.25	50.77	1.02		
36.74	36.96	0.60	64.43	65.09	1.02		
28.00	27.47	1.89	48.38	47.14	2.56		

Elaborado por: Los Autores

Tabla 76

Fuerzas Manuales vs Fuerzas SAP2000 del Edificio de 3 pisos

Colum	nas Cruciform	ies	Columnas Tubulares			
F _{Manual} (tonf)	$F_{SAPP}(tonf) E_{rror}$ (%)		$F_{Manual}(tonf)$	$F_{SAPP}(tonf)$	Error(%)	
12.51	12.77	2.03	22.27	22.66	1.71	
25.02	25.55	2.07	44.55	45.33	1.73	
23.9 23.43 1.97		42.51	41.31	2.82		
	E1	. 1	T A			

Elaborado por: Los Autores

El margen de error entre las cargas laterales calculadas y las cargas que genera el SAP2000 no es significativo, por esta razón se decidió tomar en cuenta las fuerzas que usa el programa.

5.2.3.2. Colocación de Cargas Laterales en SAP2000

En el programa SAP se crea un estado de carga en el *Load Patterns* del tipo *Quake* el cual permite definir automáticamente con el *User Loads* las cargas laterales para cada diafragma del sistema estructural en la dirección correspondiente (ver Figura 66).

Figura 66

Definición del Caso de Carga e Ingreso de cargas laterales en el sentido X-X

d Patterns							Click To:	
Load	Pattern Name	Tvr		Self Weight	Auto Lateral		Add N	lew Load Pattern
ad X-X		Quake	~	0	User Loads	\sim	Mod	ify Load Pattern
AD		Dead		1]			
rmanente		Super Dead		0			Modify L	ateral Load Patterr
va		Snow		0			Dele	te Load Pattern
r		Roof Live		0	User Coefficient			
		Quake		0	User Coefficient		Show L	oad Pattern Notes.
		Quake		0	None			
ad X-X		Quake		0	User Loads			ОК
								Cancel
Edit								
	Jser Seismic Loa	ds on Diaphragm	s					
	Diaphragm	Diaphragm Z	FX	FY	MZ	х	Y	^
	DIAPH6	18.	27485.99	0.	0.			
	DIAPH5	15.	36964.56	0.	0.			
	DIAPH4	12.	28832.09	0.	0.			_
	DIAPH3	9.	20929.41	0.	0.			- 11
	DIAPH2	6.	13325.37	0.	0.			_
	DIAPH1	3.	6158.61	0.	0.			- 11
								-
	0			1				
	User Spe	cified Application	Point					
	Apply at C	Center of Mass	,	Additional Ecc. F	Ratio (all Diaph.)	0.05		

Nota. Las cargas que se ingresan dependen de la dirección en el que se va realizar el análisis Pushover.

5.2.4 Casos de Carga

Para realizar un análisis estático no lineal se debe definir casos de carga no lineales

5.2.4.1. Carga Gravitacional no Lineal

En SAP se define una condición inicial de carga de gravedad no lineal (CGNL) que según el ASCE 41-13 es el 100% de la carga muerta más el 25% de la carga viva, el análisis Pushover comenzara a partir de esta condición inicial (ver Figura 67).

Condición Inicial de Cargas de Gravedad no Lineal

oad Case Name			No	tes		Load Case Type		
CGNL		Set Def Na	me	Modify/Show.		Static	✓ Design	
itial Conditions						Analysis Type		
Zero Initial Condition	ons - Start from Ur	stressed State				O Linear		
O Continue from State	e at End of Nonline	ear Case				Nonlinear		
Important Note:	Loads from this p	revious case ar	e included in th	e current case		O Nonlinear Staged (Construction	
lodal Load Case						Geometric Nonlinearity I	Parameters	
All Modal Loads Appli	ed Use Modes fro	m Case	MO	DAL	\sim	None		
						P-Delta		
oads Applied						O P-Delta plus Large	Displacements	
Load Type	Load	Vame	Scale Factor					
Load Pattern ~	DEAD	~	1.			Mass Source		
Load Pattern	DEAD		1.	Add		MASA REACTIVA	``````````````````````````````````````	
Load Pattern	Permanente		1.					
Load Pattern	Viva		0.25	Modify				
Load Pattern	Cvr		0.25	mouny				
				Delete				
				Delete				
ther Parameters								
Load Application	F	ull Load		Modify/Show			ок	
		Otate Oak	_					
Results Saved	Fina	I State Unly		Modify/Show		Ci Ci	ancel	

Nota. Esta condición de carga se debe colocar en todos los edificios modelados.

Se selecciona un tipo de análisis no lineal y condiciones iniciales cero, sin ningún parámetro geométrico. En la opción *Load Application*, definimos el nodo de control de desplazamiento este valor es un punto crítico del último piso del sistema estructural (techo). Es importante considerar que las cargas de gravedad son aplicadas en la dirección U3 es decir en el eje z tal como se muestra en la Figura 68.

Figura 68

Punto de Control del Estado de Carga Gravitacional No Lineal

\sim	a Application Control
0	Full Load
0	Displacement Control
Cor	ntrol Displacement
۲	Use Conjugate Displacement
	Use Monitored Displacement
Lo	ad to a Monitored Displacement Magnitude of
	nitored Displacement
MOI	
•	DOF U3 v at Joint 261
•	DOF U3 at Joint 261 Generalized Displacement

Nota. El nodo de control mencionado en a la figura corresponde al edificio de 6 pisos con columnas cruciformes.

5.2.4.2. Carga Pushover

Este caso de carga corresponde a la aplicación de las fuerzas laterales hasta que la estructura llegue al colapso o desplazamiento de control esperado. La figura 69 muestra la definición de caso de carga para la dirección X, contendrá como condiciones iniciales el estado de carga de gravedad no lineal (CGNL) creada previamente y toma en consideración el patrón de carga lateral definida en la Figura 66.

Figura 69

Caso de Carga para el Análisis Pushover X-X

Nota. Este tipo de carga debe crearse tanto para el sentido X como el Y en todas las estructuras modeladas.

En la opción *Load Application* modificamos el control de carga a *Displacement Control* y definimos una magnitud por desplazamiento. Este desplazamiento de control se lo puede determinar en función de la altura de la estructura. Según el FEMA 273 tabla 2-4, las estructuras en acero se pueden deformar hasta un 5% de la altura total de la estructura. Por lo tanto, se empleará

$Desplazamiento\ Controlado = 5\% * H_{edificio}$

Luego colocamos un nodo de control de desplazamiento de techo, el cual registra el desplazamiento y cortante basal (ver Figura 70). Es importante mencionar que este caso de carga considera la dirección en el que se aplica la fuerza, para X la dirección es U1 y para Y la dirección es U2.

Control de desplazamientos para el Caso de Carga Push X-X

Loa	d Application Control
0	Full Load
0	Displacement Control
Con	trol Displacement
0	Use Conjugate Displacement
e	Use Monitored Displacement
Lo	Use Monitored Displacement ad to a Monitored Displacement Magnitude of 0.85
Lo Mor	Use Monitored Displacement ad to a Monitored Displacement Magnitude of 0.85 itored Displacement DOF U1
Lo Mor	Use Monitored Displacement ad to a Monitored Displacement Magnitude of 0.85 intored Displacement DOF U1 ~ at Joint 261 Generalized Displacement ~

Finalmente, en la opción de *Results Saved* modificamos de *Final State Only* a *Multiple States* y definimos un intervalo de pasos mínimos y máximos, el cual es importante ya que mientras más pasos tenga mejor serán los resultados que dan forma a la curva de capacidad (ver Figura 71).

Figura 71

Máximo y mínimo número de pasos para el Caso de Carga Push X-X

💢 Results Saved for Nonlinear Static Load Cases	×
Results Saved Final State Only Multiple States	
For Each Stage Minimum Number of Saved States Maximum Number of Saved States 100	
Save positive Displacement Increments Only OK Cancel	

5.2.5 Resultados del Análisis Pushover

El programa SAP2000 permite visualizar el mecanismo de formación de rótulas plásticas y así evaluar la respuesta y comportamiento de cada elemento.

5.2.5.1. Modelos con Columnas Cruciformes

Edificio de Tres Pisos

• Dirección X-X

La primera rótula se da con un desplazamiento de 0.0783 m., aparece en la viga C-D en el primer piso del pórtico 2 y se encuentra en un nivel de desempeño TO (Totalmente Operacional) (ver Figura 72).

Figura 72

El desplazamiento último antes de la primera rótula de colapso es de 0.3542 m. Las rótulas en las vigas se mantienen en un nivel de desempeño IO (Ocupación Inmediata) y las rótulas en las columnas generadas en la base se encuentran en CP (Prevención al Colapso) (ver Figura 73).

Figura 73

Desplazamiento último antes del Colapso del Edificio de 3 pisos con Columnas Cruciformes en el sentido X-X

• Dirección Y-Y

La primera rótula se da con un desplazamiento de 0.0668 m, aparece en la viga 2-4 en el primer piso del pórtico C y se encuentra en un nivel de desempeño TO (Totalmente Operacional) (ver Figura 74).

Figura 74

Primera Rótula del Edificio de 3 pisos con Columnas Cruciformes en el sentido Y-Y

El desplazamiento último antes de la primera rótula del colapso es de 0.3036 m. Las rótulas en las vigas se mantienen en un nivel de desempeño IO (Ocupación Inmediata) y las rótulas en las columnas generadas en la base se encuentran en LS (Seguridad de Vida). (ver Figura 75).

Figura 75

Desplazamiento último antes del Colapso del Edificio de 3 pisos con Columnas Cruciformes en el sentido Y-Y

Edificio de Seis Pisos

• Dirección X-X

La primera rótula se da a un desplazamiento de 0.1293 m. Existe una rótula en la viga B-C del segundo piso del pórtico 4 y otra en la viga C-D del segundo piso del pórtico 3, estas rótulas se encuentran en un nivel de desempeño TO (Totalmente Operacional). (ver Figura 76).

Figura 76

Primera Rótula del Edificio de 6 pisos con Columnas Cruciformes en el sentido X-X

El desplazamiento último antes de la primera rótula del colapso es de 0.7382 m. La mayoría de rótulas en vigas se mantienen en un nivel de desempeño IO (Ocupación Inmediata) y las rotulas en las columnas generadas en la base se encuentran en CP (Prevención al Colapso) (ver Figura 77).

Figura 77

Desplazamiento último antes del Colapso del Edificio de 6 pisos con Columnas Cruciformes en el sentido X-X

• Dirección Y-Y

La primera rótula se da a un desplazamiento de 0.1025 m. Aparece en la viga 3-4 del segundo piso del pórtico C y se encuentra en un nivel de desempeño TO (Totalmente Operacional) (ver Figura 78).

Figura 78

Primera Rotula del Edificio de 6 pisos con Columnas Cruciformes en el sentido Y-Y

El desplazamiento último antes de la primera rótula de colapso es de 0.6821 m. La mayoría de rótulas en vigas se mantienen en un nivel de desempeño IO (Ocupación Inmediata) y las rotulas en las columnas generadas en la base se encuentran en CP (Prevención al Colapso) (ver Figura 79).

Figura 79

Desplazamiento último antes del Colapso del Edificio de 6 pisos con Columnas Cruciformes en el sentido Y-Y

5.2.5.2. Modelos con Columnas Tubulares

Edificio de Tres Pisos

• Dirección X-X

La primera rótula se da a un desplazamiento de 0.0779 m. Aparece en la viga A-B del primer piso del pórtico 3 y se encuentra en un nivel de desempeño TO (Totalmente Operacional) (ver Figura 80).

Figura 80

El desplazamiento último antes de la primera rótula de colapso es de 0.2503 m. La mayoría de rótulas en vigas se mantienen en un nivel de desempeño IO (Ocupación Inmediata) y las rótulas en las columnas generadas en la base se encuentran en LS (Seguridad de Vida) (ver Figura 81).

Figura 81

Desplazamiento último antes del Colapso del Edificio de 3 pisos con Columnas Tubulares en el sentido X-X

• Dirección Y-Y

La primera rótula se da a un desplazamiento de 0.0675 m. Aparece en la viga 3-4 del segundo piso del pórtico C y se encuentra en un nivel de desempeño TO (Totalmente Operacional) (ver Figura 82).

Figura 82

Primera Rótula del Edificio de 3 pisos con Columnas Tubulares en el sentido Y-Y

El desplazamiento último antes de la primera rótula de colapso es de 0.1835 m. La mayoría de rotulas en vigas se mantienen en un nivel de desempeño IO (Ocupación Inmediata) y las rotulas en las columnas generadas en la base se encuentran en LS (Seguridad de Vida) (ver Figura 83).

Figura 83

Desplazamiento último antes del Colapso del Edificio de 3 pisos con Columnas Tubulares en el sentido Y-Y

Edificio de Seis Pisos

• Dirección X-X

La primera rótula se da a un desplazamiento de 0.1368 m. Existe una rótula en la viga B-C del segundo piso del pórtico 4 y otra en la viga C-D del segundo piso del pórtico 3. Estas rótulas se encuentran en un nivel de desempeño TO (Totalmente Operacional). (ver Figura 84).

Figura 84

El desplazamiento último antes de la primera rótula de colapso es de 0.4569 m. La mayoría de rótulas en vigas se mantienen en un nivel de desempeño IO (Ocupación Inmediata) y las rótulas en las columnas generadas en la base se encuentran en LS (Seguridad de Vida) (ver Figura 85).

Figura 85

Desplazamiento último antes del Colapso del Edificio de 6 pisos con Columnas Tubulares en el sentido X-X

• Dirección Y-Y

La primera rótula se da a un desplazamiento de 0.1106 m. Aparece en la viga 3-4 del segundo piso del pórtico C y se encuentra en un nivel de desempeño TO (Totalmente Operacional) (ver Figura 86).

Figura 86

Primero Rotula del Edificio de 6 pisos con Columnas Tubulares en el sentido Y-Y

El desplazamiento último antes de la primera rótula de colapso es de 0.3274 m. La mayoría de rótulas en vigas se mantienen en un nivel de desempeño IO (Ocupación Inmediata) y las rotulas en las columnas generadas en la base se encuentran en IO (Ocupación Inmediata) (ver Figura 87).

Figura 87

Desplazamiento último antes del Colapso del Edificio de 6 pisos con Columnas Tubulares en la dirección Y-Y

5.2.6 Curvas de Capacidad

Una vez ingresados todos los parámetros en el programa SAP2000 tal como se mencionan en las secciones 5.2.1, 5.2.2 y 5.2.4, se obtiene la Curva de Capacidad en las direcciones X e Y (ver Figuras 88 a la 91).

5.2.6.1. Curvas de Capacidad

Figura 88

Curvas de Capacidad del Edificios de 6 pisos con Columnas Cruciformes en la dirección X e Y

Elaborado por: Los Autores

Figura 89

Curvas de Capacidad del Edificios de 3 pisos con Columnas Cruciformes en la dirección X e Y

Elaborado por: Los Autores

Curvas de Capacidad del Edificios de 6 pisos con Columnas Tubulares en la dirección X e Y

Elaborado por: Los Autores

Figura 91

Curvas de Capacidad del Edificios de 3 pisos con Columnas Tubulares en la dirección X e Y

Elaborado por: Los Autores

5.2.6.2. Puntos de Interés de la Curva de Capacidad

Tabla 77

Estructuras con Columnas Cruciformes								
Dinagaián	Dunto	Edifici	io 6 Pisos	Edifici	o 3 Pisos			
Direction	Funto	D (m)	V(tonf)	D (m)	V(tonf)			
VV	1era Rotula	0.1293	327.5209	0.0783	238.0532			
Λ-Λ	Colapso	0.7382	642.1223	0.3542	431.7534			
VV	1era Rotula	0.1025	327.8058	0.0668	253.7168			
1-1	Colapso	0.6821	635.0888	0.3036	430.0766			
Estructuras con Columnas Tubulares								
	LSuuciu		olullinas I ul	Julai CS				
Dinggaián	Dunto	Edifici	io 6 Pisos	Edifici	o 3 Pisos			
Dirección	Punto	Edifici D (m)	io 6 Pisos V(tonf)	Edificion D (m)	o 3 Pisos V(tonf)			
Dirección	Punto 1era Rotula	Edifici D (m) 0.1368	io 6 Pisos V(tonf) 345.3962	Edificio D (m) 0.0779	o 3 Pisos V(tonf) 232.0519			
Dirección X-X	Punto lera Rotula Colapso	Edifici D (m) 0.1368 0.4569	io 6 Pisos V(tonf) 345.3962 599.3852	Edificio D (m) 0.0779 0.2503	o 3 Pisos V(tonf) 232.0519 413.2514			
Dirección X-X	Punto lera Rotula Colapso lera Rotula	Edifici D (m) 0.1368 0.4569 0.1106	io 6 Pisos V(tonf) 345.3962 599.3852 346.5115	Edificio D (m) 0.0779 0.2503 0.0675	v(tonf) 232.0519 413.2514 248.4111			
Dirección X-X Y-Y	Punto lera Rotula Colapso lera Rotula Colapso	Edifici D (m) 0.1368 0.4569 0.1106 0.3274	io 6 Pisos V(tonf) 345.3962 599.3852 346.5115 571.1793	Edificio D (m) 0.0779 0.2503 0.0675 0.1835	v(tonf) 232.0519 413.2514 248.4111 407.1781			

Puntos de Interés de los Edificios Modelados

Con los datos de la Tabla 77 podemos calcular la ductilidad y sobrerresistencia con respecto a la primera rotula (ver Tabla 78).

$$\mu = \frac{D_{colapso}}{D_{1era\ rotula}} \quad ; \quad SR = \frac{V_{colapso}}{V_{1era\ rotula}}$$

Tabla 78

Ductilidad y Sobre resistencia de los Edificios Modelados

	Estructuras con Columnas Cruciformes									
	Edific	io 6 Pisos		Edificio 3 Pisos						
Ductilidad Sobre resistencia			Ducti	lidad	Sobrerre	sistencia				
μ_{X-X}	5.71	SR_{X-X}	1.96	μ_{X-X}	4.52	SR_{X-X}	1.81			
μ_{Y-Y}	6.65	SR_{Y-Y}	1.94	μ_{Y-Y}	4.54	SR_{Y-Y}	1.70			
		Estructura	as con Co	lumnas	Tubula	res				
	Edificio 6 Pisos Edificio 3 Pisos									
Ductilidad		Sobrerresistencia		Ducti	lidad	Sobrerre	sistencia			
μ_{X-X}	3.34	SR_{X-X}	1.74	μ_{X-X}	3.21	SR_{X-X}	1.78			
μ_{Y-Y}	2.96	SR_{Y-Y}	1.65	μ_{Y-Y}	2.72	SR_{Y-Y}	1.64			

Elaborado por: Los Autores

5.3. Análisis Dinámico No Lineal

En el análisis dinámico a diferencia del análisis estático, las fuerzas horizontales serán reemplazadas por la aplicación de aceleraciones correspondiente a un evento sísmico, en la base de cada estructura analizada.
La ejecución del análisis se lo realizara mediante un TIEMPO – HISTORIA en el programa computacional SAP2000. Es importante recalcar que los registros se aplicarán en dirección X y Y, por lo cual se realizará en total 8 análisis de las 4 estructuras. En el Anexo D, se puede revisar las gráficas de Desplazamiento vs Tiempo.

5.3.1 Registro sísmico

A través del menú Define-Funtions-Time history en SAP2000, se carga el registro sísmico y se debe de establecer el intervalo de tiempo (ver Figura 92).

En cada estructura se ingresó un registro sintético compatible con el espectro del sismo de diseño de la NEC 2015, el cual se generó mediante la metodología propuesto por Cloug y Penzien (1995).

Figura 92

Acelerograma

Inction File File Name File File Name File File Name File Values are: Time and Function Values Values at Equal Intervals of 5.000E-03 Format Type File File File File File File File Fil	Function	Name		RG. SD	
File Name Browse ctusers/compu/downloads/registros_nec_sd.btt Header Lines to Skip 0 Prefix Characters per Line to Skip 1 Convert to User Defined View File	ction File		Values	are:	
c:tuserstcomputdownloadsvegistros_nec_sd.txt Header Lines to Skip Prefix Characters per Line to Skip Convert to User Defined View File Convert to User Defined View File	File Name	Browse		Time and Function Values	
Header Lines to Skip Prefix Characters per Line to Skip Number of Points per Line Convert to User Defined View File User File U	c:\users\compu\downloads\registro	os_nec_sd.txt	۲	Values at Equal Intervals of	5.000E-03
Header Lines to Skip 0 Prefix Characters per Line to Skip 0 Prefix Characters per Line to Skip 0 Characters per Line 1 Convert to User Defined View File Convert to User Defined View File			Forma	t Type	
Prefix Characters per Line to Skip 0 C Fixed Format Characters per line 1 Characters per	leader Lines to Skip	0		Free Format	
Number of Points per Line 1 Convert to User Defined View File Characters per Rem Characters per Rem Characters per Rem	Prefix Characters per Line to Skip	0		Fixed Format	
Convert to User Defined View File		4		Characters per Item	
Convert to User Defined View File					
	Convert to User Defined	View File			
		i e si mitrip Nu di unitrip		ini (ⁿⁱ da, Majara	

Nota. Importación de registro sísmico.

5.3.2 Caso de carga

Se definen dos casos de carga, el primero el caso de carga gravitacional que fue definido en el Análisis Estático No Lineal y el segundo llamado Tiempo Historia.

En la ventana donde se configura los parámetros del caso de carga tiempo historia se selecciona la opción que continúe desde el caso de carga gravitacional no lineal, se escoge como tipo de solución el método de integración directa. El parámetro "Scale Factor" se refiere al factor de escala, el valor es de 9.81 m/s^2 debido a que los datos del registro sísmico se encuentran en función de la gravedad (ver Figura 93).

Figura 93

Caso de carga Tiempo- Historia

Load Case Name		Notes	Load Case Type	
TIEMPO_H_SD_X	Set Def Name	Modify/Show	Time History	✓ Design
Initial Conditions			Analysis Type	Solution Type
Zero Initial Conditions - Sta	rt from Unstressed State		O Linear	Modal
O Continue from State at End	of Nonlinear Case	\sim	Nonlinear	Direct Integration
Important Note: Loads fr	rom this previous case are inclu	ded in the current case	Geometric Nonlinear	ity Parameters
			None	
Modal Load Case		MODAL	O P-Delta	
Use Modes from Case		MODAL	P-Delta plus Lar	ge Displacements
Loads Applied			History Type	
Load Type Load Nam	e Function Scale F	actor	Transient	
Accel V U1	✓ RG. SD ✓ 9.81		Periodic	
Accel U1	RG. SD 9.81	Add	Mass Source	
		11.000	MASA REACTIVA	~
		mouny		
		✓ Delete		
Show Advanced Load Pa	rameters			
Time Step Data				
Time Step Data		0500		
Number of Output Time St	teps	9500		
Output Time Step Size Other Parameters		5.000E-03		
Damping	Proportional Damping	Modify/Show	_	
	Newmark	Modify/Show		OK
Time Integration	THE WITHIN K	mouny/show		

Nota. Casos de cargas análisis no lineal.

En la opción "Damping" se asigna el amortiguamiento de la estructura, el amortiguamiento es de 5%. Se emplea el amortiguamiento de Rayleigh donde los valores de alfa y beta será calculados automáticamente por el programa SAP2000; se escoge la opción Specify damping by Period en la cual se deben ingresar los valores del periodo en el modo 1, modo 2 y el amortiguamiento (ver Figura 94).

Figura 94

Amortiguamiento de Rayleigh-SAP2000

amping Coe	micients		Mass Proportional Coefficient	Stiffness Proportional Coefficient
O Direct S	Specification			
Specify	Damping by Peric	bd	0.3774	6.624E-03
O Specify	Damping by Freq	uency		
	Period	Frequency	Damping	
First	0.84		0.05	Recalculate
Second	0.825		0.05	Coefficients

Nota. Aplicación de amortiguamiento.

En la opción "time integration" se selecciona el método de integración, escogemos el método de aceleración lineal de Newmark en la que el valor de gama es 0.5 y beta es 0.25 (ver Figura 95).

Figura 95

Parámetros de integración - SAP2000

letho	d		
۲	Newmark	Gamma	0.5
		Beta	0.25
$^{\circ}$	Wilson	Theta	
\bigcirc	Collocation	Gamma	
		Beta	
		Theta	
0	Hilber - Hughes - Taylor	Gamma	
		Beta	
		Alpha	
0	Chung and Hulbert	Gamma	
		Beta	
		Alpha	
		Alpha-m	
		Alpha-m	

Nota. Método de integración.

CAPÍTULO VI

EVALUACIÓN DEL DESEMPEÑO E INTERPRETACION DE RESULTADOS

6.1. Objetivos de Desempeño

La NEC-SE-DS (2015) en la sección 4.2.2 establece que para estructuras de ocupación normal el objetivo es:

- Prevenir daños en los elementos no estructurales y estructurales, ante terremotos pequeños y frecuentes, para periodo de retorno de 72 años
- Prevenir daños estructurales graves y controlar daños no estructurales, ante terremotos moderados y poco frecuentes, para periodo de retorno de 225 años
- Evitar el colapso ante terremotos severos que pueden ocurrir rara vez durante la vida útil de la estructura, para un periodo de retorno de 475 años

Entonces con los requisitos mencionados en la NEC-2015, Vision 2000 y ATC-40 concluimos que las estructuras de uso normal deben llegar al objetivo que se muestra en la Figura 96.

Figura 96

Objetivos Básicos de Desempeño para Edificaciones Normales

Niveles de Desempeño Sísmico

Elaborado por: Los Autores.

6.2. Espectros de Demanda Sísmica

De acuerdo a la sección 2.7.2.1 de este trabajo la norma NEC-SE-DS (2015) usa un espectro elástico de diseño y en la sección 2.10.1.1 se explica cómo se realiza la conversión de dicho espectro a formato ADRS. (ver Figura 97- 98).

Espectro de Respuesta Elástico Sísmico de Diseño

Elaborado por: Los Autores

Espectro de Respuesta Elástico Sísmico de Diseño en formato ADRS

6.3. Método Espectro de Capacidad por el FEMA 440

En la figura 99 se puede observar el Diagrama de flujo que guía el proceso del método del espectro de capacidad propuesto por el FEMA 440, para hallar los puntos de desempeño de las estructuras.

Diagrama de Flujo – Método del Espectro de capacidad, FEMA 440

Empezamos con la conversión de las curvas de capacidad a espectros de capacidad (formato ADRS) como se explicó en la sección 2.10.1.1. A continuación, se presenta el

factor de participación modal y el coeficiente de masa modal para el modo 1 en el sentido "X" y el modo 2 en el sentido "Y" (ver Tabla 79-80).

6.3.1 Proceso en Edificios con Columnas Cruciformes

Tabla 79

 PF_1 y ϕ_{techo} del Edificio de 6 pisos con Columnas Cruciformes en la dirección X e Y

Edificio de 6 Pisos con Columnas Cruciformes dirección X-X									
Nivel	$m_i(kg)$	α1	$m_i \alpha_1$	$m_i \alpha_1^2$	$(m_i \alpha_1)^2$	PF ₁	Ø _{techo}		
6	96766.33	0.005246	507.636	2.663					
5	150155.85	0.004716	708.135	3.340					
4	150155.85	0.003975	596.870	2.373	(002150 70	256 21	0 704		
3	150155.85	0.002976	446.864	1.330	0903158.78	230.21	0.794		
2	150155.85	0.0018	270.281	0.487					
1	150155.85	0.00065	97.601	0.063					
Total	847545.580		2627.386	10.255					
	Edificio d	le 6 Pisos co	on Columna	s Crucifo	rmes dirección	Y-Y			
Nivel	$m_i(kg)$	α1	$m_i \alpha_1$	$m_i \alpha_1^2$	$(m_i \alpha_1)^2$	PF ₁	Ø _{techo}		
6	96766.33	0.005067	490.315	2.484					
5	150155.85	0.004561	684.861	3.124					
4	150155.85	0.00385	578.100	2.226	(17(50)))	264.06	0.706		
3	150155.85	0.002886	433.350	1.251	0470503.23	204.90	0.790		
2	150155.85	0.00175	262.773	0.460					
1	150155.85	0.000636	95.499	0.061					
Total	847545.580		2544.897	9.605					

Elaborado por: Los Autores

Tabla 80

 PF_1 y ϕ_{techo} del Edificio de 3 pisos con Columnas Cruciformes en la dirección X e Y

	Edifici	o de 3 Piso	s con Colum	nas Crucifo	rmes dirección X	-X	
Nivel	$m_i(kg)$	α ₁	$m_i \alpha_1$	$m_i \alpha_1^2$	$(m_i \alpha_1)^2$	PF ₁	Ø _{techo}
3	93619.97	0.240573	22522.438	5418.290			
2	141694.97	0.168507	23876.594	4023.373	2175226012 20	E E E 7	0.021
1	141694.97	0.070229	9951.096	698.856	5175550912.50	5.557	0.831
Total	377009.91		56350.128	10140.519			
	Edifici	o de 3 Piso	s con Colum	nas Crucifo	rmes dirección Y	-Y	
Nivel	$m_i(kg)$	α1	$m_i \alpha_1$	$m_i \alpha_1^2$	$(m_i \alpha_1)^2$	PF ₁	Ø _{techo}
3	93619.97	0.231019	21627.992	4996.477			
2	141694.97	0.162654	23047.254	3748.728	2953572260.96	5.778	0.833
1	141694.97	0.068256	9671.532	660.140			
Total	377009.91		54346.778	9405.345			

Elaborado por: Los Autores

Calculados estos valores se procede a hacer la conversión de curva de capacidad a espectro de capacidad haciendo uso de las ecuaciones 162 y 163 (ver Figura 100-101).

Figura 100

Espectros de Capacidad del Edificio de 6 pisos con Columnas Cruciformes en la dirección X e Y

Elaborado por: Los Autores

Espectros de Capacidad del Edificio de 3 pisos con Columnas Cruciformes en la dirección X e Y

Elaborado por: Los Autores

6.3.2 Proceso en Edificios con Columnas Tubulares

Tabla 81

 PF_1 y \emptyset_{techo} del Edificio de 6 pisos con Columnas Tubulares en la dirección X e Y

	Edificio	de 6 Pisos o	con Column	as Tubula	ares dirección	X-X	
Nivel	$m_i(kg)$	α1	$m_i \alpha_1$	$m_i \alpha_1^2$	$(m_i \alpha_1)^2$	PF ₁	Ø _{techo}
6	94446.406	0.005172	488.477	2.526			
5	147980.615	0.004688	693.733	3.252			
4	147980.615	0.004001	592.070	2.369	(012262 12	257 Q25	0.007
3	147980.615	0.003045	450.601	1.372	0813203.43	257.835	0.807
2	147980.615	0.00189	279.683	0.529			
1	147980.615	0.000714	105.658	0.075			
Total	834349.481		2610.223	10.124			
	Edificio	de 6 Pisos o	con Column	as Tubula	ares dirección	Y-Y	
Nivel	$m_i(kg)$	α1	$m_i \alpha_1$	$m_i \alpha_1^2$	$(m_i \alpha_1)^2$	PF ₁	Ø _{techo}
6	94446.406	0.005065	478.371	2.423			
5	147980.615	0.004597	680.267	3.127			
4	147980.615	0.003927	581.120	2.282		262.004	0 000
3	147980.615	0.002994	443.054	1.327	05/18/0.08	263.004	0.808
2	147980.615	0.001864	275.836	0.514			
1	147980.615	0.000709	104.918	0.074			
Total	834349.481		2563.566	9.747			

Elaborado por: Los Autores

Tabla 82

 PF_1 y \emptyset_{techo} del Edificio de 3 pisos con Columnas Tubulares en la dirección X e Y

	Edificio de 3 Pisos con Columnas Tubulares dirección X-X									
Nivel	$m_i(kg)$	α1	$m_i \alpha_1$	$m_i \alpha_1^2$	$(m_i \alpha_1)^2$	PF ₁	Ø _{techo}			
3	92192.133	0.235498	21711.063	5112.912						
2	141585.838	0.164374	23273.031	3825.481	3011187595.84	5.699	0.833			
1	141585.838	0.069853	9890.196	690.860						
Total	375363.809		54874.289	9629.253						
	Edific	cio de 3 Piso	s con Colum	nas Tubula	res dirección Y-Y	Y				
Nivel	$m_i(kg)$	α1	$m_i \alpha_1$	$m_i \alpha_1^2$	$(m_i \alpha_1)^2$	PF ₁	Ø _{techo}			
3	92192.133	0.223138	20571.568	4590.299						
2	141585.838	0.156412	22145.724	3463.857	2723229441.09	6.007	0.835			
1	141585.838	0.066866	9467.279	633.039						
Total	375363.809		52184.571	8687.195						

Elaborado por: Los Autores

Elaborado por: Los Autores

Espectros de Capacidad del Edificio de 3 pisos con Columnas Tubulares en la dirección X e Y

Elaborado por: Los Autores

6.3.3 Puntos de Desempeño

El proceso para la obtención del punto de desempeño para cada estructura modelada se muestra en el Anexo E.1. Los resultados se pueden ver en las tablas 83-84.

Tabla 83

Puntos de Desempeño de los Edificios con Columnas Cruciformes

Edificio 6 Pisos con Columnas Cruciformes								
Dirección	Ciamo	Espectro de Capacidad		Curva de Capacidad				
	Sismo	$Sd_p(m)$	$Sa_p(g)$	$D_p(m)$	V(Tonf)			
X-X	Diseño	0.186	0.721	0.249	485.342			
Y-Y	Diseño	0.166	0.736	0.223	496.274			
Edificio 3 Pisos con Columnas Cruciformes								
Dimogaión	Ciama	Espectro de	Capacidad	Curva de	Capacidad			
Direccion	SISMO	$Sd_p(m)$	$Sa_p(g)$	$D_p(m)$	V(Tonf)			
X-X	Diseño	0.092	1.05	0.122	328.759			
Y-Y	Diseño	0.074	1.071	0.099	336.327			

Elaborado por: Los Autores

Tabla 84

Puntos de Desempeño de los Edificios con Columnas Tubulares

Edificio 6 Pisos con Columnas Tubulares									
Diwaadiiw	Ciamo	Espectro de Capacidad		Curva de Capacidad					
Direccion	5151110	$Sd_p(m)$	$Sa_p(g)$	$D_p(m)$	V(Tonf)				
X-X	Diseño	0.186	0.735	0.248	494.660				
Y-Y	Diseño	0.166	0.747	0.221	503.312				
Edificio 3 Pisos con Columnas Tubulares									
Dimograión	Ciama	Espectro de	Capacidad	Curva de	Capacidad				
Direccion	5151110	$Sd_p(m)$	$Sa_p(g)$	$D_p(m)$	V(Tonf)				
X-X	Diseño	0.095	1.070	0.127	334.602				
Y-Y	Diseño	0.077	1.062	0.103	332.912				

Elaborado por: Los Autores

6.4. Representación Bilineal según el FEMA 356

Se genera la representación bilineal con el método propuesto por el FEMA 356, método detallado en la sección 2.10.2.1. Los puntos de Fluencia (D_y, V_y) corresponden al primer tramo de la representación bilineal y los puntos del desplazamiento ultimo (D_u, V_u) representan el segundo tramo (ver Figuras 104 a la 111).

6.4.1 Edificios con Columnas Cruciformes

Figura 104

Representación Bilineal de la Curva de Capacidad del Edificio de 6 pisos con Columnas Cruciformes en la dirección X-X

Elaborado por: Los Autores

Representación Bilineal de la Curva de Capacidad del Edificio de 6 pisos con Columnas Cruciformes en la dirección Y-Y

Elaborado por: Los Autores

Representación Bilineal de la Curva de Capacidad del Edificio de 3 pisos con Columnas Cruciformes en la dirección X-X

Elaborado por: Los Autores

Representación Bilineal de la Curva de Capacidad del Edificio de 3 pisos con Columnas Cruciformes en la dirección Y-Y

Elaborado por: Los Autores

6.4.2 Edificios con Columnas Tubulares

Figura 108

Representación Bilineal de la Curva de Capacidad del Edificio de 6 pisos con Columnas Tubulares en la dirección X-X

Elaborado por: Los Autores

Representación Bilineal de la Curva de Capacidad del Edificio de 6 pisos con Columnas Tubulares en la dirección Y-Y

Elaborado por: Los Autores

Representación Bilineal de la Curva de Capacidad del Edificio de 3 pisos con Columnas Tubulares en la dirección X-X

Elaborado por: Los Autores

Representación Bilineal de la Curva de Capacidad del Edificio de 3 pisos con Columnas Tubulares en la dirección Y-Y

Elaborado por: Los Autores

6.5. Método de Coeficientes según FEMA 440

En la figura 112 se puede observar el Diagrama de flujo que guía el proceso del método de los coeficientes propuesto por el FEMA 440, para hallar los puntos de desempeño de las estructuras.

Figura 112

Diagrama de flujo – Método de los Coeficientes

Elaborado por: Los Autores

6.5.1 Puntos de Desempeño

El proceso para la obtención del punto de desempeño según el FEMA 440 para cada estructura modelada se muestra en el Anexo E.2 Los resultados se puede observar en la tabla 85-86

Tabla 85

Puntos de Desempeño de los Edificio con Columnas Cruciformes

Edificio 6 Pisos con Columnas Cruciformes									
Dirección	Sismo	$D_p(m)$	V(Tonf)						
X-X	Diseño	0.252	485.787						
Y-Y	Diseño	0.226	496.377						
Edificio	Edificio 3 Pisos con Columnas Cruciformes								
Dirección	Sismo	$D_p(m)$	V(Tonf)						
X-X	Diseño	0.127	330.108						
Y-Y	Diseño	0.102	336.762						

Elaborado por: Los Autores

Tabla 86

Puntos de Desempeño de los Edificio con Columnas Tubulares

Edificio 6 Pisos con Columnas Tubulares								
Dirección	Sismo	$D_p(m)$	V(Tonf)					
X-X	Diseño	0.251	494.985					
Y-Y	Diseño	0.227	502.878					
Edificio 3 Pisos con Columnas Tubulares								
Dirección	Sismo	$D_p(m)$	V(Tonf)					
X-X	Diseño	0.129	335.018					
Y-Y	Diseño	0.105	333.108					

Elaborado por: Los Autores

6.6. Evaluación del Desempeño sísmico

El Desempeño Sísmico será evaluado para los resultados obtenidos por método del espectro de capacidad (ATC-40), debido a que los resultados entre este método y el de coeficientes son similares, dejando ver que no es necesario evaluar el desempeño por cada método realizado ya que se obtendría objetivos de desempeño parecidos.

6.6.1 Evaluación para el Método del Espectro de Capacidad

Se evalúa el desempeño sísmico a partir de la Sectorización de la Curva de Capacidad propuesto por el ATC 40. Revisar la sección 2.11 (ver Figura 42).

6.6.1.1. **Edificios con Columnas Cruciformes**

Figura 113

Desempeño Sísmico en Edificio de 6 pisos en la dirección X-X

Edificio de 6 Pisos con Columnas Cruciformes

Figura 114

Desempeño Sísmico en Edificio de 6 pisos en la dirección Y-Y

Edificio de 6 Pisos con Columnas Cruciformes

Elaborado por: Los Autores

En la dirección X-X se presenta un poco más de desplazamiento que la dirección Y-Y, esto ocurre porque la rigidez lateral de la estructura en el sentido X es menor, mientras que en el sentido Y es más rígida. Sin embargo, debido a la configuración estructural no hay gran diferencia entre los desplazamientos de cada dirección.

Figura 115

Desempeño Sísmico en Edificio de 3 pisos en la dirección X-X

Elaborado por: Los Autores

Figura 116

Desempeño Sísmico en Edificio de 3 pisos en la dirección Y-Y

Elaborado por: Los Autores

6.6.1.2. **Edificios con Columnas Tubulares**

Figura 117

Desempeño Sísmico en Edificio de 6 pisos en la dirección X-X

Edificio de 6 Pisos con Columnas Tubulares

Elaborado por: Los Autores

Figura 118

Desempeño Sísmico en Edificio de 6 pisos en la dirección Y-Y

Edificio de 6 Pisos con Columnas Tubulares

Elaborado por: Los Autores

Desempeño Sísmico en Edificio de 3 pisos en la dirección X-X

Edificio de 3 Pisos con Columnas Tubulares

Elaborado por: Los Autores

Figura 120

Desempeño Sísmico en Edificio de 3 pisos en la dirección Y-Y

Edificio de 3 Pisos con Columnas Tubulares

Elaborado por: Los Autores

Finalmente, en la tabla 87 se presenta la Evaluación del desempeño de los edificios modelados para el nivel de amenaza sísmica de diseño, estos resultados son en base las Figuras 113 a la 120.

Tabla 87

		Totalmente	Ocupación	Seguridad	Prevención	¿Cumple con		
Dirección	Sismo	Operacional	Inmediata	de Vida	de Colapso	el Objetivo de		
		(TO)	(IO)	(LS)	(CP)	Desempeño?		
	Edificio 6 Pisos Columnas Cruciformes							
X-X	Diseño					SI		
Y-Y	Diseño					SI		
Edificio 3 Pisos Columnas Cruciformes								
X-X	Diseño					SI		
Y-Y	Diseño					SI		
Edificio 6 Pisos Columnas Tubulares								
X-X	Diseño					SI		
Y-Y	Diseño					SI		
Edificio 6 Pisos Columnas Tubulares								
X-X	Diseño					SI		
Y-Y	Diseño					SI		

Evaluación del Desempeño Sísmico para todos los Edificios

Elaborado por: Los Autores

6.6.2 Rotulas Plásticas por el análisis Tiempo – Historia

En las siguientes figuras se puede observar las rotulas plásticas generadas por el registro ingresado en SAP2000. El nivel de desempeño es similar en ambas direcciones, por lo que se detalla solo en X.

Figura 121

Rotulas plásticas del Edificio de 3 pisos con secciones cruciformes

Rotulas plásticas del Edificio de 3 pisos con secciones tubulares

Rotulas plásticas del Edificios de 6 pisos con secciones cruciformes

Figura 124

Rotulas plásticas del Edificios 6 pisos con secciones tubulares

6.6.3 Puntos de interés del análisis Tiempo – Historia

En la tabla 88 se resume los valores de los desplazamientos máximos obtenidos de cada estructura en dirección X e Y.

Tabla 88

Desplazamientos máximos por análisis TIEMPO - HISTORIA

Desplazamientos Máximos (cm)							
Dirección Sismo		Edificios	Tubulares	Edificios Cruciformes			
		3 pisos	6 pisos	3 pisos	6 pisos		
X-X	Diseño	11.59	19.50	9.46	19.73		
Y-Y	Diseño	11.47	20.10	9.46	20.16		

Elaborado por: Los autores

CONCLUSIONES

El procedimiento de diseño para las columnas cruciformes se hizo en base a investigaciones y normativas como AISC 360-16 y AISC 341-13, teniendo como resultado el proceso a seguir en el presente trabajo.

El análisis estático no lineal "Pushover" realizado en la presente tesis permitió identificar el comportamiento de cada estructura modelada ante un evento sísmico severo de 475 años de recurrencia. Este método es una estimación adecuada del nivel de desempeño en términos de rigidez estructural, resistencia, ductilidad y disipación de energía.

El mecanismo de colapso de los cuatro edificios modelados, fue de falla dúctil donde se formó rótulas plásticas en las vigas y en el caso de las columnas se desarrollaron únicamente en la base de las estructuras.

El EuroCode (EC8-05) sugiere que la ductilidad global para marcos resistentes a momento debe ser mayor a 4. Por lo tanto, los edificios con columnas cruciformes de 3 y 6 pisos, incursionaron el rango inelástico alcanzando ductilidades entre 4.5 - 6.5. Sin embargo, las ductilidades obtenidas en los edificios con columnas tubulares de 3 y 6 pisos presentan valores entre 2.7 - 3.4, en consecuencia, no cumplen con lo sugerido por el código.

El nivel de desempeño de los edificios de 3 y 6 pisos con columnas cruciformes obtenido a partir de los métodos, como el espectro de capacidad y el de los coeficientes propuestos por el FEMA 440 dio como resultado para el sismo de diseño un nivel de desempeño de Operación Inmediata (IO), lo que significa que cumplen con los objetivos básicos de desempeño propuestos en este trabajo.

El nivel de desempeño del edificio de 3 pisos con columnas tubulares para el sismo de diseño fue de Operación Inmediata (IO). En cuanto al edificio de 6 pisos con columnas tubulares presenta un nivel de desempeño de Seguridad de Vida (LS), por lo que sigue cumpliendo con el objetivo de desempeño.

El análisis estático no lineal permitió determinar puntos de desempeño a partir de un espectro de diseño definido, por lo tanto, para corroborar dichos resultados se realizó un análisis dinámico no lineal (Tiempo-Historia), donde los valores obtenidos representan con suficiente aproximación la respuesta no lineal, verificando que los edificios de 3 y 6 pisos con columnas cruciformes se mantienen en el nivel de desempeño de Operación Inmediata (IO).

Con el análisis dinámico no lineal (Tiempo-Historia) se verificó que el edificio de 3 pisos con columnas tubulares tiene un nivel de desempeño de Operación Inmediata (IO). En cuanto al edificio de 6 pisos con columnas tubulares el nivel de desempeño es de Seguridad de Vida (LS), concluyendo que los niveles de desempeño son iguales a los determinados en el análisis estático no lineal.

La conexión precalificada usada en este trabajo para los edificios con columnas cruciformes fue la placa extremo extendida empernada, el cual presenta 3 alternativas que permiten unir la viga con la columna a partir de su geometría. En el presente trabajo se adoptó la conexión de placa extremo extendida de 4 pernos sin rigidizar ya que en la práctica local es fácil de lograr gracias a su simplicidad.

Finalmente, las estructuras de acero con columnas cruciformes, aportan un nivel de seguridad sísmica más real y garantizarán el comportamiento dúctil de los elementos, dado que es posible trabajar con el sistema estructural SMF, el cual usa conexiones precalificadas, mientras que las edificaciones con columnas tubulares se diseñan bajo los criterios de un sistema estructural IMF, ya que se tiene la incertidumbre del buen desempeño de los elementos estructurales, por la inexistencia de una conexión que cumpla los parámetros de calificación propuestos por el AISC.

RECOMENDACIONES

Recomendamos realizar el diseño basado en el desempeño sísmico en edificios nuevos o incluso en edificios existentes, ya que esta metodología permite verificar si las estructuras cumplen con la filosofía de diseño y los objetivos de desempeño establecidos según la importancia de la edificación a evaluar.

Cabe recalcar que el análisis no lineal "Pushover" se limita a estructuras cuyos principales modos de vibración son traslacionales, por lo tanto, se deberá verificar que la influencia de los modos superiores no sea significativa, caso contrario se debe realizar procedimientos de análisis dinámicos no lineales.

En el caso de realizar un análisis dinámico no lineal, se puede realizar evaluaciones con registros sísmicos sintéticos, los cuales sean compatibles con el Espectro de demanda sísmica.

La innovación de los sistemas estructurales en acero en el país ha sido deficiente, debido a la falta de investigación, por lo cual la propuesta de incluir en el diseño, secciones cruciformes, podría fomentar el desarrollo estructural dentro del campo de la Ingeniería Civil.

REFERENCIAS

AISC. (2011). Seismic Design Manual. Chicago, Illinois.

https://www.aisc.org/publications/Seismic-design-manual/

AISC 341. (2016). Seismic Provisions for Structural Steel Buildings. Chicago, Illinois: s.n., 2010. 60601-1802.

https://n9.cl/ydrmo

AISC 358. (2016). Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, de American Institute of Steel Construction, Chicago.

https://www.udocz.com/read/79452/norma-aisc-358-16

AISC 360. (2016). *Specification for Structural Steel Buildings*, de American Institute of Steel Construction, Chicago.

https://www.aisc.org/globalassets/aisc/publications/standards/a360-16w-revjune-2019.pdf

Aguiar Roberto, (2003), Análisis sísmico por desempeño, Centro de Investigaciones Científicas. Escuela Politécnica del Ejército, 342 p., Quito.

https://www.researchgate.net/publication/280627456_Analisis_Sismico_por_De sempeno

Aguiar, R. y Mora, P. (2015). Sobre resistencia global en funcion de la demanda de

Ductilidad.

https://n9.cl/uzfwq

ASCE/SEI 7-13 (2013). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, Virginia: American Society of Civil Engineers.

https://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/c alifornia_waterfix/exhibits/docs/dd_jardins/DDJ-148%20ASCE%207-10.pdf Arango, S., Paz, A., & Duque, M. (2009). Propuesta Metodológica para la Evaluación del Desempeño Estructural de una Estantería Metálica. Medellín.

http://www.scielo.org.co/pdf/eia/n12/n12a11.pdf

ATC-40. (1996). Seismic Evaluation and Retrofit of Concrete Buildings, ATC-40 Report,Volumes 1 and 2. California: Applied Technology Council.

http://www.dinochen.com/attachments/month_0901/atc-402.pdf

Barrios, J. (2017). Evaluación de conexiones a momento comunes en la práctica localpara su uso en marcos dúctiles de acero [Tesis de maestría, UniversidadAutónoma Metropolitana, Ciudad de México].

http://hdl.handle.net/11191/6266

Bonett, R. (2003). Vulnerabilidad y riesgo sísmico de edificios. Aplicación a entornos urbanos en zonas de amenaza alta y moderada [Tesis doctoral, Universidad Politécnica De Cataluña, Barcelona].

https://www.tdx.cat/handle/10803/6230;jsessionid=82674A5A90E5333BB36DF F8DF459A8FC

Cárdenas, P. y Talmatch, V. (2016). Comparación técnica de estructuras metálicas, analizadas mediante el método lineal de segundo orden y análisis estático no lineal (Pushover) [Tesis de Pregrado, Pontificia Universidad Católica Del Ecuador, Quito].

http://repositorio.puce.edu.ec/handle/22000/12309

Cardoso, L. y Quishpe, L. (2014). *Diseño de conexiones precalificadas bajo AISC para pórticos resistentes a momento* [Tesis de Pregrado, Escuela Superior Politécnica de Chimborazo, Riobamba].

http://dspace.espoch.edu.ec/bitstream/123456789/3531/1/15T00574.pdf

Chopra, A. K. (2014). Dinámica de Estructuras (Cuarta ed.). México, D.F.: Pearson Educación

https://www.academia.edu/36451323/Dinamica_de_Estructuras_4Ed_Anil_K_C hopra Choque J. Luque E. (2019). Análisis estático no lineal y evaluación del desempeño sísmico de un edifico de 8 niveles, diseñado con la norma E.030. [Tesis de Pregrado, Universidad Nacional de San Agustín de Arequipa, Perú].

http://repositorio.unsa.edu.pe/handle/UNSA/8866

Clough, R, Penzien, J. (1995). Dynamics of Structures. Third Edition. Berkley, CA 94704 USA.

https://www.chaocompute.com/wp-content/uploads/2020/07/Dynamics-of-Structures-Clough-Penzien.pdf

Crisafulli, F. (2013). Diseño sismorresistente de construcciones de Acero. Santiago de Chile. *Asociación Latinoamericana del Acero - Alacero*. ISBN: 978-956-8181-15-4.

https://www.alacero.org/es/page/publicaciones/diseno-sismorresistente-deconstrucciones-de-acero

CSi. (2013) Analysis Reference Manual For SAP2000, ETABS, SAFE and CSiBridge. ISO# GEN062708M1 Rev.10. Berkeley, California, USA.

https://ottegroup.com/wp-content/uploads/2021/02/ETABS2016-Analysis-Reference.pdf

Delgadillo, J. (2005). Análisis no linel estatico de estructuras y la Norma E-030 [Tesis de

Posgrado, Universidad Nacional de Ingenieria, Lima].

https://1library.co/document/qmw2v9wz-analisis-lineal-estatico-estructurasnorma.html

Duarte, C., Martínez, M., Santamaria J., (2017). Análisis Estático No Lineal (Pushover) del Cuerpo Central del Edificio de la Facultad de Medicina de la Universidad de El Salvador.

http://ri.ues.edu.sv/id/eprint/13405/1/Análisis%20estático%20no%20lineal%20(Pushover)%20del%20cuerpo%20central%20del%20edificio%20de%20la%20Fa cultad%20de%20Medicina%20de%20la%20Universidad%20de%20El%20Salva dor.pdf Elnashai, A. & Sarno, L. (2008). Fundamentals of earthquake engineering. Inglaterra:

WILEY.

https://www.wiley.com/enie/Fundamentals+of+Earthquake+Engineering:+From +Source+to+Fragility,+2nd+Edition-p-9781118678923

FEMA 273 (1997). NEHRP guidelines for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington DC, USA

https://www.scinc.co.jp/nanken/pdf/fema273.pdf

FEMA - 350. (2000) Recommended Seismic Design Criteria For Ivew Steel Moment-Frame Buildevgs.

https://nehrpsearch.nist.gov/static/files/FEMA/PB2007111285.pdf

FEMA 356. (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Washington, D.C.: American Society of Civil Engineers for the Federal Emergency Management Agency.

https://www.nehrp.gov/pdf/fema356.pdf

FEMA 440. (2005). Improvement of Nonlinear Static Seismic Analysis Procedures. Washington, D.C.: Applied Technology Council (ATC-55 Project) for the Federal Emergency Management Agency.

https://nehrpsearch.nist.gov/static/files/FEMA/PB2008108249.pdf

G. Rus Carlborg, (2008). Cálculo plástico de estructuras de barras: teoría, Granada: Departamento de Mecánica de Estructuras. ISBN: 84-96856-48-8

https://www.ugr.es/~grus/docencia/ae/download/libro_plasticidad.pdf

IMCA (2012). "Código de Prácticas Generales del IMCA". Instituto Mexicano de la Construcción en Acero, A.C. Actualización en proceso.

https://www.researchgate.net/publication/261180251 Evaluacion de columnas de seccion cruciforme armadas de dos perfiles de acero IR ITEA. (2010) Diseño de uniones en acero. Instituto Técnico de la Estructura en Acero. España. vol. 13.

http://www.webaero.net/ingenieria/estructuras/metalica/bibliografia_documentac ion/itea/TOMO2.pdf

Mamani Ruther (2018). Determinación del nivel del desempeño sísmico de un edificio de 8 niveles en la ciudad de Juliaca. [Tesis de Pregrado, Universidad Nacional del Altiplano, Perú].

http://repositorio.unap.edu.pe/bitstream/handle/UNAP/10686/Mamani_Roque_E dwin_Ruther.pdf?sequence=1&isAllowed=y

McCormac, J. C. (2012). *Diseño de estructuras de acero (5a. ed.)*. D.F., México: Alfaomega Grupo Editor.

https://www.academia.edu/28111116/Diseño_de_Estructuras_De_Acero_McCor mac_5ta_Ed_pdf

Mora, M., Villalba, J. y Maldonado, E. (2006). Deficiencias, limitaciones, ventajas y desventajas de las metodologías de análisis sísmico no lineal. Revista Ingenierías Universidad de Medellín, 5(9), 59-79.

https://revistas.udem.edu.co/index.php/ingenierias/article/view/234

 Moreno, R. (2006). Evaluación del riesgo sísmico en edificios mediante análisis estático no lineal: Aplicación a diversos escenarios sísmicos de Barcelona (tesis doctoral).
 Universidad Politécnica de Cataluña, Barcelona.

https://upcommons.upc.edu/handle/2117/93559?locale-attribute=en

NEC-SE-AC. (2016). *Estructuras de Acero, de Norma Ecuatoriana de la Construcción*. Quito, Dirección de Comunicación Social, MIDUVI.

https://www.habitatyvivienda.gob.ec/documentos-normativos-nec-norma-ecuatorianade-la-construccion/ Norma Ecuatoria de la Construcción. (2016). Factor de reducción de respuesta para estructuras diferentes a las de edificación Peligro Sísmico- Diseño Sismo Resistente, Quito Ecuador.

https://www.habitatyvivienda.gob.ec/documentos-normativos-nec-normaecuatoriana-de-la-construccion/

Olvera, T., y Mendoza, A. (2012). Evaluación de columnas de sección cruciforme armadas de dos perfiles de acero IR. Sociedad Mexicana de Ingeniería Estructural.

https://n9.cl/wz3r0

Ottazzi. (2011). Concreto Armado I [Tesis de Posgrado, Pontificia Universidad Catolica del Peru, Lima].

https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/1055

SEAOC Vision 2000 Committe. (1995). Performance Based Seismic Engineering of Buildings. California: Structural Engineers Association of California.

https://n9.cl/vqint

Park, R., T. Paulay, (1986). Estructuras de concreto reforzado. Departamento de Ingeniería Civil, Universidad Canterbury, Christchurch, Nueva Zelandia. Editorial Limusa, S.A. de C.V. México, D.F.

https://es.scribd.com/document/364413331/32936633-Estructuras-de-Concreto-Reforzado-Park-and-Paulay-pdf

E. Tae-Sung, P. Hong-Gun y L. Cheol-Ho, «Simplified method for estimation of beam plastic rotation demand in special moment-resisting steel-frame structures,» Journal of Structural Engineering, vol. 139, nº 11, 2012.

https://www.researchgate.net/publication/263402970_Estimation_of_Beam_Plas tic_Rotation_Demands_for_Special_Moment-Resisting_Steel_Frames

Vega Alex (2021). Desarrollo de un software para el diseño de conexiones precalificadas conforme a la normativa ansi/aisc 358-16. [Tesis de Pregrado, Universidad Tecnica de Ambato, Ambato].

https://repositorio.uta.edu.ec/handle/123456789/32382

ANEXOS

ANEXO A.

CRITERIOS ADICIONALES DEL MARCO TEORICO

Anexo A.1. *Máximas relaciones Ancho-Espesor para elementos sujetos a compresión y flexión*

	TABLA B4.1b Razones Ancho-Espesor: Elementos en Compresión. Miembros sometidos a Flexión						
	δ Descripción Razón Bazón Ancho- Espesor Limite δ del Elemento λ compacta / no compact (esbelto / no esbelto)				Ejemplo		
Elementos No-Atlesados	1	Alas de perfiles laminados, planchas conectadas a perfiles laminados, alas de pares de ángulos conectados continuamente, alas de canales y alas de secciones T.	<i>b/</i> 1	$0.56\sqrt{\frac{E}{F_{\gamma}}}$	$ \begin{array}{c} \begin{array}{c} & & \\ & & \\ \end{array} \\ & & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ & \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $		
	2	Alas de perfiles I soldados y planchas o ángulos conec- tados a secciones soldadas.	b/t	$0.64 \sqrt{\frac{k_c E}{F_y}}$			
	3	Alas de perfiles án- gulo laminados; alas de pares de ángulos con separadores y todo tipo de elemen- tos no atiesados.	b/t	$0.45\sqrt{\frac{E}{F_{\gamma}}}$			
	4	Alma de Secciones T.	d/t	$0.75\sqrt{\frac{E}{F_y}}$			
Elementos Atiesados	5	Almas de secciones I con doble simetría y secciones canal.	h/t _w	$1.49\sqrt{\frac{E}{F_y}}$	$-t_w$ h $-t_w$ h $-t_w$ h		
	6	Paredes de seccio- nes HSS rectangu- lares y cajones de espesor uniforme	b/t	$1.40\sqrt{\frac{E}{F_y}}$			
	7	Alas de sobre planchas y planchas diafragma entre líneas de conectores o soldadura	b/t	$1.40\sqrt{\frac{E}{F_y}}$			
	8	Todo elemento atiesador.	b/t	$1.49\sqrt{\frac{E}{F_y}}$			
	9	Tubos circulares.	D/t	0.11 <u></u> <i>E</i> _y			

[#] $k_c = 4/\sqrt{\hbar/t_w}$, no menor que 0,35, ni mayor que 0,76 para propósitos de cálculo.

TABLA B4.1b Razones Ancho-Espesor: Elementos en Compresión. Miembros sometidos a Flexión							
Γ	1908	Descripción	Razón Ancho	Razón Ancho - Espesor Límite			
	Ö	del Elemento	Espesor	(compacta / no compacta	(esbelto / no esbelto)	Ejemplo	
Elementos No-Atiesados	10	Flexión en alas de perfiles I lami- nados, canales y tes.	b/t	$0.38\sqrt{\frac{E}{F_y}}$	$1.0\sqrt{\frac{E}{F_y}}$		
	11	Alas de seccio- nes I soldadas con doble y simple simetría.	b/t	$0.38\sqrt{\frac{E}{F_y}}$	$(a) = 0.95 \sqrt{\frac{k_c E}{F_L}}$	$\frac{ b }{ h } = \frac{ b }{ t } = $	
	12	Alas de ángulos simples.	b/t	$0.54\sqrt{\frac{E}{F_y}}$	$0.91\sqrt{\frac{E}{F_{\gamma}}}$		
	13	Alas de toda doble t y canal en torno a su eje más débil.	b/t	$0.38\sqrt{\frac{E}{F_y}}$	$1.0\sqrt{\frac{E}{F_y}}$		
	14	Almas de tes.	d/t	$0.84\sqrt{\frac{E}{F_y}}$	$1.52\sqrt{\frac{E}{F_{\gamma}}}$		

Fuente: AISC 341-16

Anexo A.2. *Máximas relaciones Ancho-Espesor para elementos sujetos a compresión y flexión*

_								
	TABLE D1.1							
	Limiting Width-to-Thickness Ratios for							
	Compression Elements for Moderately Ductile							
\vdash	i	and Hig	Inly Ductil	e Members	5			
			Width-to-Th					
	Description of Element	Width-to- Thickness Ratio	λ _{hd} λ _{md} Highly Ductile Moderately Members Ductile Members		Example			
Unstiffened Elements	Flanges of rolled or built-up I-shaped sections, channels and tees; legs of single angles or double-angle members with separators; outstanding legs of pairs of angles in continuous contact	bjt	$0.32\sqrt{\frac{E}{R_yF_y}}$	$0.40\sqrt{\frac{E}{R_yF_y}}$				
	Flanges of H-pile sections per Section D4	bįt	not applicable	$0.48\sqrt{\frac{E}{R_yF_y}}$				
	Stems of tees	d/t	$0.32\sqrt{\frac{E}{R_yF_y}}^{[a]}$	$0.40\sqrt{\frac{E}{R_yF_y}}$	d			
	Walls of rectangular HSS used as diagonal braces	b/t						
Stiff ened Elements	Flanges of boxed I-shaped sections	b/t	$0.65\sqrt{\frac{E}{R_yF_y}}$					
	Side plates of boxed I-shaped sections and walls of built-up box shapes used as diagonal braces	h/t		$0.76\sqrt{\frac{E}{R_yF_y}}$				
	Flanges of built-up box shapes used as link beams	b/t						

	TABLE D1.1 (continued) Limiting Width-to-Thickness Ratios for Compression Elements for Moderately Ductile and Highly Ductile Members							
Width-to- Description of Thickness			Lim Width-to-Thi λ _{hd} Highly Ductile	Limiting Width-to-Thickness Ratio λ_{hd} λ_{md} Highly Ductile Moderately				
	Element	Ratio	Members	Ductile Members	Example			
Stiffened Elements	Webs of rolled or built-up I shaped sections and channels used as diagonal braces	h/t _w	$1.57\sqrt{\frac{E}{R_yF_y}}$	1.57 $\sqrt{\frac{E}{R_yF_y}}$	$-\frac{l_{W}}{l_{W}} h - \frac{l_{W}}{l_{W}} h$			
	Where used in beams or columns as flanges in uniform compression due to axial, flexure, or combined axial and flexure: 1) Walls of rectangular HSS 2) Flanges and side plates of boxed I-shaped sections, webs and flanges of built-up box shapes	b t h t	$0.65\sqrt{\frac{E}{R_yF_y}}$	$1.18\sqrt{\frac{E}{R_yF_y}}$				
	Where used in beams, columns, or links, as webs in flexure, or combined axial and flexure: 1) Webs of rolled or built-up I-shaped sections or channels ^[b] 2) Side plates of boxed I-shaped sections 3) Webs of built-up	h/tw h/t h/t	For $C_a \le 0.114$ 2.57 $\sqrt{\frac{E}{R_F F_r}}$ (1-1.04 C_a) For $C_a > 0.114$ 0.88 $\sqrt{\frac{E}{R_F F_r}}$ (2.68 - C_a) $\ge 1.57 \sqrt{\frac{E}{R_F F_r}}$ where $C_a = \frac{P_a}{\Phi_c P_a}$ (LRFD) $C_a = \frac{\Omega_c P_a}{P_r}$ (ASD)	For $C_a \le 0.114$ $3.96 \sqrt{\frac{E}{R_f F_f}} (1-3.04C_s)$ For $C_a > 0.114$ $1.29 \sqrt{\frac{E}{R_f F_f}} (2.12-C_s)$ $\ge 1.57 \sqrt{\frac{E}{R_f F_f}}$ where $C_s = \frac{P_s}{\Phi_s F_s} (LRFD)$ $G_s = \frac{\Omega_c P_s}{P_s} (ASD)$				
	box sections	nµ.	$P_y = R_y F_y A_g$	$P_{\rm y} = R_{\rm y} F_{\rm y} A_{\rm g}$				

Fuente: AISC 341-16

Anexo A.3. Valores Aproximados de Longitud Efectiva del AISC 360-16

Fuente: AISC 360-16
Values of C_b for	Table 3-1 or Simply Sup	ported Beams		
Load	Lateral Bracing Along Span	C _b		
P	None Load at midpoint	1.32	None	1.14
ŧ t	At load point	1.67 1.57	At midpo	nt
PP	None Loads at third points	1.14	At third po	ints
	At load points Loads symmetrically placed	1.67 1.00 1.67	At quarte	er 1.52 1.06 1.06
PPP	None Loads at quarter points	1.14	At fifth poi	nts
	At load points Loads at quarter points	1.67 1.11 1.11 1.67	Note: Lateral bracing must always be provided at points of support per A	ISC Specification Chapter F.

Anexo A.4. Valores Aproximados del Gradiente de Momento C_b

Anexo A.5.Límites de Deflexión

CONSTRUCTION	LIVE	SNOW OR WIND	DEAD + LIVE
Roof members:			
Supporting plaster ceiling	1/360	1 / 360	1/240
Supporting nonplaster ceiling	1 / 240	1 / 240	/ / 180
Not supporting ceiling	/ / 180	<i>l</i> / 180	// 120
Roof members supporting metal			
roofing:	<i>l</i> / 150	-	1/60
Floor Members	// 360	-	/ / 240
Exterior walls and interior			
partitions:			
With brittle finishes	_	1/240	-
With flexible finishes	_	1 / 120	-
Secondary wall members			
supporting metal siding	-	<i>l</i> / 90	-

Table 1. Deflection Limits, adapted from IBC Table 1604.4

Anexo A.6. Aceleración máxima recomendada para comodidad humana para

vibraciones debidas a actividades humana

	Cuatro p	ernos sin	Cuatro po	ernos con	Ocho per	nos con
Darámatro	Máximo	Mínimo	Máximo	Mínimo	Máximo	Mínimo
Farametro	mm (in)	mm (in)				
t_{bf}	$19\left(\frac{3}{4}\right)$	$10\left(\frac{3}{8}\right)$	$19\left(\frac{3}{4}\right)$	$10\left(\frac{3}{8}\right)$	25(1)	$14\left(\frac{9}{16}\right)$
b _{bf}	$235\left(9\frac{1}{4}\right)$	152(6)	229(9)	152(6)	$311\left(12\frac{1}{4}\right)$	$190\left(7\frac{1}{2}\right)$
d	1400(55)	$349\left(13\frac{3}{4}\right)$	610(24)	$349\left(13\frac{3}{4}\right)$	914(36)	457(18)
t_p	$57\left(2\frac{1}{4}\right)$	$13\left(\frac{1}{2}\right)$	$38\left(1\frac{1}{2}\right)$	$13\left(\frac{1}{2}\right)$	$64\left(2\frac{1}{2}\right)$	$19\left(\frac{3}{4}\right)$
b_p	$273\left(10\frac{3}{4}\right)$	178(7)	$273\left(10\frac{3}{4}\right)$	178(7)	381(15)	229(9)
g	152(6)	102(4)	152(6)	$83\left(3\frac{1}{4}\right)$	152(6)	127(5)
p_{fi}, p_{fo}	$114\left(4\frac{1}{2}\right)$	$38\left(1\frac{1}{2}\right)$	$140\left(5\frac{1}{2}\right)$	$44\left(1\frac{3}{4}\right)$	51(2)	$41\left(1\frac{5}{8}\right)$
b_p	-	-	-	-	$95\left(3\frac{3}{2}\right)$	$89\left(3\frac{1}{2}\right)$

Anexo A.7. Limites paramétricos de precalificación

Elaborado por: Los autores. Fuente: AISC 358-16

Anexo A.8. Parámetro del mecanismo de línea de falla de la placa extremo

Anexo A.9. Tamaño mínimo de soldadura de filete

TABLA J2.4 Tamaño Mínimo de Soldadura de Filete				
Espesor de parte unida más delga- da, mm	Tamaño mínimo de soldadura de filete[a], mm			
Hasta 6 inclusive	3			
Entre 6 y 13	5			
Entre 13 y 19	6			
Mayor que 19	8			

Fuente: AISC 360-16

Anexo A.10. Parámetro del mecanismo de línea de falla del patín de la columna no rigidizada y rigidizada

Anexo A.11. Clasificación de los perfiles de suelo

Tipo de perfil	Descripción	Definición
A	Perfil de roca competente	V _s ≥ 1500 m/s
В	Perfil de roca de rigidez media	1500 m/s >V₅ ≥ 760 m/s
С	Perfiles de suelos muy densos o roca blanda, que cumplan con el criterio de velocidad de la onda de cortante, o	760 m/s > V _s ≥ 360 m/s

	Perfiles de suelos muy densos o roca blanda, que cumplan con cualquiera de los dos criterios	N ≥ 50.0 S _u ≥ 100 KPa
	Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o	360 m/s > V₅ ≥ 180 m/s
	Perfiles de suelos rígidos que cumplan cualquiera de las dos condiciones	50 > N ≥ 15.0 100 kPa > S _u ≥ 50 kPa
	Perfil que cumpla el criterio de velocidad de la onda de cortante, o	Vs < 180 m/s
F		IP > 20
	Perfil que contiene un espesor total H mayor de 3 m de arcillas blandas	w ≥ 40%
		S _u < 50 kPa
	Los perfiles de suelo tipo F requieren una evaluación realizada exp ingeniero geotecnista. Se contemplan las siguientes subclases:	lícitamente en el sitio por un
	F1—Suelos susceptibles a la falla o colapso causado por la excitació licuables, arcillas sensitivas, suelos dispersivos o débilmente cementa	n sísmica, tales como; suelos idos, etc.
	F2—Turba y arcillas orgánicas y muy orgánicas (H > 3m para turb orgánicas).	a o arcillas orgánicas y muy
F	F3—Arcillas de muy alta plasticidad (H > 7.5 m con índice de Plasticio	lad IP > 75)
	F4—Perfiles de gran espesor de arcillas de rigidez mediana a blanda	(H > 30m)
	F5—Suelos con contrastes de impedancia α ocurriendo dentro de la del perfil de subsuelo, incluyendo contactos entre suelos blandos y r de velocidades de ondas de corte.	os primeros 30 m superiores oca, con variaciones bruscas
	F6—Rellenos colocados sin control ingenieril.	

Anexo A.12. Coeficiente de amplificación de suelo en la zona de período corto

	Zona sísmica y factor Z						
Tipo de perfil del subsuelo	I	Ш	ш	IV	V	VI	
	0.15	0.25	0.30	0.35	0.40	≥0.5	
A	0.9	0.9	0.9	0.9	0.9	0.9	
В	1	1	1	1	1	1	
С	1.4	1.3	1.25	1.23	1.2	1.18	
D	1.6	1.4	1.3	1.25	1.2	1.12	
E	1.8	1.4	1.25	1.1	1.0	0.85	
F	Véase <u>Ta</u>	bla 2 : Clas	ificación de <u>10.</u>	los perfiles .5.4	de suelo y	la sección	

Anexo A.13. Amplificación de las ordenadas del espectro elástico de respuesta de

desplazamientos para diseño en roca

	Zona sísmica y factor Z					
Tipo de perfil del subsuelo	I	П	ш	IV	v	VI
	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
С	1.36	1.28	1.19	1.15	1.11	1.06
D	1.62	1.45	1.36	1.28	1.19	1.11
E	2.1	1.75	1.7	1.65	1.6	1.5
F	Véase <u>T</u>	abla 2 : Cla	asificación o	le los perfil	es de suelo	y 10.6.4

Anexo A.14. Comportamiento no lineal de los suelos

The state of the state	Zona sísmica y factor Z						
subsuelo	I	II	Ш	IV	V	VI	
	0.15	0.25	0.30	0.35	0.40	≥0.5	
A	0.75	0.75	0.75	0.75	0.75	0.75	
В	0.75	0.75	0.75	0.75	0.75	0.75	
С	0.85	0.94	1.02	1.06	1.11	1.23	
D	1.02	1.06	1.11	1.19	1.28	1.40	
E	1.5	1.6	1.7	1.8	1.9	2	
F	Véase <u>T</u>	abla 2 : Cla	asificación o	de los perfil	es de suelo	y 10.6.4	

Anexo A.15. Coeficiente del tipo de Estructura

Tipo de estructura	Ct	α
Estructuras de acero		
Sin arriostramientos	0.072	0.8
Con arriostramientos	0.073	0.75
Pórticos especiales de hormigón armado		
Sin muros estructurales ni diagonales rigidizadoras	0.055	0.9
Con muros estructurales o diagonales rigidizadoras y para otras estructuras basadas en muros estructurales y mampostería estructural	0.055	0.75

ANEXO B.

DATOS PARA MODELOS EN SAP2000

Anexo B.1. Materiales para SAP2000

Mada da la	01-1-1-1
Materials	Click to:
A36	Add New Material
	Add Copy of Material
	Modify/Show Material
	Delete Material
	Show Advanced Properties
	ОК
	Cancel

Anexo B1.1. Valores para el Acero A36

Material Name and Display Color	A36
Material Type	Steel ~
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 7.849	Tonf, m, C 🛛 🗸
Mass per Unit Volume 0.800	4
Isotropic Property Data	
Modulus of Elasticity, E	20389019.
Poisson, U	0.3
Coefficient of Thermal Expansion, A	1.170E-05
Shear Modulus, G	7841930.
Other Properties for Steel Materials	
Minimum Yield Stress, Fy	25310.507
Minimum Tensile Stress, Fu	40778.04
Effective Yield Stress, Fye	37965.76
Effective Tensile Stress, Fue	44855.84
-	

Anexo B1.2. Valores para el Hormigón $f'c = 242 \frac{kgf}{cm^2}$

Seneral Data	
Material Name and Display Color	F'C 240
Material Type	Concrete \lor
Material Notes	Modify/Show Notes
Veight and Mass	Units
Weight per Unit Volume 2.40	28 Tonf, m, C 🗸
Mass per Unit Volume 0.24	5
sotropic Property Data	
Modulus of Elasticity, E	2339281.9
Poisson, U	0.2
Coefficient of Thermal Expansion, A	9.900E-06
Shear Modulus, G	974700.8
Other Properties for Concrete Materials	
Specified Concrete Compressive Stre	ngth, fc 2400.
Expected Concrete Compressive Strength 2400.	
Lightweight Concrete	
Shear Strength Reduction Factor	
Switch To Advanced Branathy Diaple	<i>v</i>

Anexo B2. Secciones en SAP2000

Anexo B2.1. Secciones del Edificio de 3 pisos con columnas cruciformes

Find this property:	Import New Property
COL IC 42*0.8*18*14 COL IC 42*0.8*18*14	Add New Property
VIGA PISO 320*8*180*14 VIGA TERRAZ. 300*8*140*12 VIGUETA 240*6*120*10 VIGUETA TERRAZ. 200*4*120*10	Add Copy of Property
	Modify/Show Property
	Delete Property

Section Name	VIGA TERRAZ. 300*8*140*12	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside height (t3)	0.3	2
Top flange width (t2)	0.14	
Top flange thickness (tf)	0.012	3
Web thickness (tw)	8.000E-03	
Bottom flange width (t2b)	0.14	
Bottom flange thickness (tfb)	0.012	
		Properties
Material	Property Modifiers	Section Properties
+ A36 ~	Set Modifiers	Time Dependent Properties

Section Name	VIGUETA 240*6*120*10	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside height (t3)	0.24	2
Top flange width (t2)	0.12	
Top flange thickness (tf)	0.01	3
Web thickness (tw)	6.000E-03	
Bottom flange width (t2b)	0.12	
Bottom flange thickness (tfb)	0.01	
		Properties
Material	Property Modifiers	Section Properties
+ A36	✓ Set Modifiers	Time Dependent Properties

Section Name	VIGUETA TERRAZ. 200*4*120*10	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside height (t3)	0.2	2
Top flange width (t2)	0.12	
Top flange thickness (tf)	0.01	3
Web thickness (tw)	4.000E-03	
Bottom flange width (t2b)	0.12	
Bottom flance thickness (tfb)	0.01	
		Properties
Naterial	Property Modifiers	Section Properties
+ A36 v	Set Modifiers	Time Dependent Properties

Anexo B2.2. Secciones del Edificio de 3 pisos con columnas tubulares

.

Find this property: Import New Property COL EXT: 300*300*12 Add New Property COL EXT: 300*300*12 Add New Property VGA TERAZ: 300*0*160*14 VGA TERAZ: 300*0*160*14 VGA TERAZ: 300*0*160*14 Modify/Show Property Vigueta Zervaz: 300*0*160*10 Modify/Show Property Vigueta Zervaz: 200*4*120*8 Modify/Show Property Delete Property Delete Property Section Modify/Show Notes ensions 012 Display Color OK Cancel Section Name COL EXT: 300*300*12 Display Color Dubide depth (13) 0.3 3 Outside depth (13) 0.3 3 OK Cancel Properties Section Section Section Properties The Dependent Properties Section Properties The Dependent Properties Section Name COL INT 350*950*12 Display Color Section Section Notes Modify/Show Notes The Dependent Properties The Dependent Properties Section Notes Modify/Show Notes Section Properties Section Properties	Properties	Click to:	
Import New Property COL EXT. 3007300122 COL EXT. 300730012 COL INT. 35073012 VIGA PERAZ. 3007412 VIGA TERAZ. 30074100 Vigueta Server 14010 Vigueta Server 14010 Vigueta Server 14010 Vigueta Terraza 20074112018 DK Cancel Section Section OK Section OK Section OK Section OK Section Section OK Cancel Col Ext. 300:50:12 Outable width (12)	Find this property:		
COLLENT: 300/300/12 COLLINT: 300/300/12 Add New Property Add Copy of Property Add Copy of Property Vigate 250/4140/10 Vigate 250/4140/10 Vigate 250/4140/10 Vigate 250/4140/10 Vigate 250/4140/10 Vigate 250/4120/10 Vigate 250/4120/10 <tr< td=""><td>COL EXT. 300*300*12</td><td></td><td>Import New Property</td></tr<>	COL EXT. 300*300*12		Import New Property
COLUNT 300/20012 Add Copy of Property VIGA TERAZ 300°416010 Add Copy of Property Vigueta 250°0°140°10 Modify/Show Property Vigueta Terraza 200°4°120°0 Modify/Show Property Disket Property Disket Property Cott Cancel Section Modify/Show Notes ensions 0012 Dusket of Properties The Dependent Properties Properties Section Section Name COL EXT. 300°300°12 Dusket of (13) 0.3 Dusket of (13) 0.12 Dusket of (12) 0.012 Properties Section Properties The Dependent Properties The Dependent Properties OK Cancel	COL EXT. 300 300 12		Add New Preperty
VIGA PERA 2300%*140*10 Vigueta 250%*140*10 Vigueta 250%*140*10 Vigueta Z50%*140*10 Vigueta Terraza 200*14*120*8 COL EXT. 500*500*12 Debte Property Exclon Name COL EXT. 500*500*12 Display Color Exclon Notes Modify/Show Notes Ensions Dutside depth (13) Dutside depth (13) Dutside depth (13) Dutside depth (13) Dutside width (12) Properties Exclon Section Properties Exclon Section Notes Modify/Show Notes Exclon Dutside depth (13) Dutside depth (13) Dutsid	COL EXT: 300-300-12 COL INT: 350*350*12		Add New Property
VIGA TERAZ. 300*6*140*10 Vigueta 250*6*140*10 Vigueta Terraza 200*4*120*8 OK Cancel Section Section Section Section Section Notes Modify/Show Notes ensions Outside width (12) Dutside width (12) Display Color Section Se	VIGA PISO. 350*8*160*1	4	Add Conv of Property
Vigueta Zeore/140*10 Vigueta Terraza 200*4*120*3 Deter Property Deter Property Section Properties Tree Dependent Properties Tree Dependent Properties Duisde odpth (13) Deter Property Deter Property Tre Dependent Properties Tre Dependent Properties Tre Dependent Properties Tre Dependent Properties Tre Dependent Properties	VIGA TERAZ. 300*6*140	*10	Add copy of Hoperty
OK Cancel Delete Property Delete Properties Time Dependent Properties Time Dependent Properties Delete Properties Section Delete Properties Delete Properties<	Vigueta 250*6*140*10	20*8	Modify/Show Property
Delete Property OK Cancel Section OK section Name COL EXT. 300'300'12 Duskide depth (13) 0.3 Duskide depth (13) 0.3 Duskide depth (12) 0.012 Fange thickness (1tr) 0.012 Web thickness (1tr) 0.012 Property Modifiers Section Properties Time Dependent Property Time Dependent Properties Section Name COL NT. 350'350'12 Display Color se	vigueta terraza 200 4 1	200	
OK Cancel Section OK extion Name COL EXT. 300'300'12 Display Color ensions Modify/Show Notes ensions 03 03 Outside depth (15) 0.3 0.012 Dutside depth (15) 0.012 Properties Section 0.012 Properties Properties Section Properties Time Dependent Properties Section OK Cancel Section OK Cancel Section OK Cancel Section OK Cancel			Delete Property
OK Cancel Section OK Section Name COL EXT. 300°300°12 Display Color ensions Modify/Show Notes ensions 0.3 0.3 Outside expth (13) 0.3 0.12 Dutside width (12) 0.012 Properties ensions 0.012 Properties enal Property Modifiers Section Properties Time Dependent Properties Time Dependent Properties Section Name COL NT: 350°350°12 Display Color ensions OX Cancel Section Name COL NT: 350°350°12 Display Color ensions 0.35 Display Color Dutside expth (13) 0.35 Display Color Section Notes Modify/Show Notes Enclon Notes ensions 0.35 Display Color page thickness (tf) 0.012 Display Color Property Modifiers Section Section Properties Section Section Properties Section Section Sob O12 Display			
OK Cancel Section COL EXT: 300°300°12 Display Color ensions 0.3 0.3 Outside depth (13) 0.3 0.3 Outside width (12) 0.012 Properties Property Modifiers Section Properties Time Dependent Properties Section Name COL INT: 350°360°12 Display Color Section Modify/Show Notes Time Dependent Properties Section Name COL INT: 350°360°12 Display Color Section Modify/Show Notes Time Dependent Properties Section Name COL INT: 350°360°12 Display Color Properties Intervector Intervector Section Name Col INT: 350°360°12 Display Color Properties Intervector Intervector Section Name Col INT: 350°360°12 Display Color Sect			
OK Cancel Section Col EXT. 300*300*12 Display Color ensions Modify/Show Notes ensions Outside depth (13) 0.3 0.3 Outside width (12) 0.012 Properties Section Properties erial Property Modifiers The Dependent Properties Notes Modify/Show Notes Display Color Section OK Cancel			
OK Cancel Section Col EXT: 300*300*12 Display Color Image: Col EXT: 300*300*12 Display Color Image: Col EXT: 300*300*12 encloses Modify/Show Notes Image: Col EXT: 300*300*12 Display Color Image: Col EXT: 300*300*12 encloses Modify/Show Notes Image: Col EXT: 300*300*12 Image: Col EXT: 350*350*12 Image: Col EXT: 350*3			
OK Cancel Section Coll EXT. 300*300*12 Display Color ensions 0.3 0.3 Outside depth (13) 0.3 0.3 Dutside depth (12) 0.012 0.012 Flange thickness (tfr) 0.012 Property Modifiers erail Property Modifiers Time Dependent Properties Section OK Cancel			
Section ection Name COL EXT: 300*300*12 Display Color ection Notes Modify/Show Notes ensions Outside depth (13) 0.012 Fange thickness (1f) OK Cancel Section Section Section COL INT: 350*350*12 Display Color Section Section Section Notes Modify/Show Notes Ensions Dutside depth (13) 0.35 0.35 0.35 0.35 0.12 Fange thickness (1f) 0.012 Properties Ensions Dutside depth (13) 0.35 0.35 0.35 0.12 Fange thickness (1f) 0.012 Fange thickness (1f) Coll Properties Fange th		OK Cance	el
Section Section Name COL EXT: 300°300°12 Display Color Section Notes Modify/Show Notes Section Section Properties (1) 0.012 Properties Section Properties Section COL INT: 350°350°12 Display Color Section			
Section ection Name COL EXT: 300°300°12 Display Color ensions Outside depth (13) 0.3 0.3 0.3 0.3 0.3 0.5 Section Section Properties Section Property Modifiers Section Section Section COL INT: 350°350°12 Display Color Section Section Section Section Section Section Section Section Section Section			
ection Name COLEXT: 300*300*12 Display Color ection Notes Modify/Show Notes ensions 0.3 Outside depth (13) 0.3 Outside width (12) 0.3 Plange thickness (1f) 0.012 Web thickness (1w) 0.012 Properties erial Property Modifiers OK Cancel Section Notes Section Notes Modify/Show Notes Time Dependent Properties Section Notes Section Notes Modify/Show Notes Section Section Notes Section Notes Modify/Show Notes Section Notes Modify/Show Notes Section Notes Properties Section Notes Modify/Show Notes Properties Section Properties Section Notes Modify/Show Notes Properties Section Properties Section Notes Modify/Show Notes Properties Section Properties Time Dependent Properties Time Dependent Properties Time Dependent Properties Time Dependent Properties	e Section		
extion Name COL EXT. 300°300°12 Display Color extion Notes Modify/Show Notes ensions 0.3 0.3 Outside depth (13) 0.3 0.12 Section Properties 0.12 0.12 Web thickness (try) 0.012 Properties erial Property Modifiers Section Properties A36 OK Cancel			
ection Name COL EXT. 300*300*12 Display Color ection Notes Modify/Show Notes ensions 0.3 Outside depth (13) 0.3 Outside width (12) 0.3 Flange thickness (tr) 0.012 Web thickness (tw) 0.012 Properties Section Properties Time Dependent Properties Time Dependent Properties A36 OK Cancel Section Section Notes Modify/Show Notes OK Cancel			
ection Notes Modify/Show Notes ensions Outside depth (13) Outside width (12) Property Modifiers erial Property Modifiers Section COL INT. 350°350°12 Display Color ensions Outside depth (13) Outside width (12) OK Cancel Section	ection Name	COL EXT. 300*300*12	Display Color
Modify/Show Notes ensions Outside depth (13) Outside width (12) Flange thickness (tf) Web thickness (tw) 0.12 erial Property Modify/Show Notes OK Cancel Section Section OK Cancel Section Notes Modify/Show Notes Time Dependent Properties Section Notes Modify/Show Notes Section Notes Modify/Show Notes Section Section OK COL INT. 350°350°12 Display Color Display Color Section Notes Modify/Show Notes Properties Section Section Property Modifiers			
ensions Outside depth (t3) Outside width (t2) Flange thickness (tf) Web thickness (tw) 0.012 Properties erial Property Modifiers A36 OK Cancel Section Section Section Name COL INT: 350*350*12 Display Color Section OK Cancel Section Section Name COL INT: 350*350*12 Display Color Section	ection Notes	Modify/Snow Notes	
Outside depth (13) 0.3 Outside width (12) 0.3 Flange thickness (1f) 0.012 Web thickness (1w) 0.012 Properties Section Properties Time Dependent Properties Time Dependent Properties Section Modify/Show Notes Section Name COL INT. 350°350°12 Display Color Section Notes Modify/Show Notes ensions 0.35 Outside depth (13) Outside depth (12) 0.35 Plange thickness (1f) 0.012 Web thickness (1f) 0.012 Properties Section Properties Properties Section Properties	nensions		Section
Collected optim (12) Outside width (12) Flange thickness (tf) Web thickness (tw) 0.012 Web thickness (tw) 0.012 Properties serial Property Modifiers 36 OK Cancel Section Section Section Notes Modify/Show Notes ensions Outside endeth (13) Outside endeth (13) Outside endeth (12) Flange thickness (tf) Neb thickness (tf) 0.012 Properties enaions Outside width (12) Flange thickness (tf) 0.012 Properties enaions Outside width (12) Flange thickness (tf) Neb thickness (tf) 0.012 Properties enaion Outside width (12) Flange thickness (tf) 0.012 Properties enaion Outside mickness (tf) 0.012	Outside depth (13)	0.3	
Outside width (12) 0.3 Flange thickness (tf) 0.012 Web thickness (tw) 0.012 Properties Section Properties Time Dependent Properties Section Name COL INT. 350°350°12 Section Name COL INT. 350°350°12 Section Name COL INT. 350°350°12 Display Color Image thickness Section Name COL INT. 350°350°12 Dutside width (12) 0.35 Outside width (12) 0.35 Properties Section Set Modifiers Properties Properties Section A36 Set Modifiers			
Flange thickness (tf) 0.012 Web thickness (tw) 0.012 Web thickness (tw) 0.012 Properties Section Properties Time Dependent Properties Time Dependent Properties Section Name COL INT. 350°350°12 Displey Color Section Name COL INT. 350°350°12 Displey Color Section Name COL INT. 350°350°12 Displey Color Section Name 0.35 Outside depth (t3) 0.35 Outside depth (t3) 0.35 Outside width (t2) 0.35 Flange thickness (tf) 0.012 Properties Web thickness (tw) 0.012 Properties erial Property Modifiers Section Properties A36 Set Modifiers Time Dependent Properties	Outside width (t2)	0.3	
Web thickness (tw) 0.012 Properties Properties A36 Property Modifiers A36 OK Cancel Section Section Name COL INT. 350°350°12 Display Color Section Name COL INT. 350°350°12 Dutside depth (13) 0.35 Outside width (12) 0.35 Plange thickness (tf) 0.012 Web thickness (tw) 0.012 Properties Section Properties	Flange thickness (tf)	0.012	3
Web thickness (tw) UU12 Properties Section Properties A36 OK Cancel Section Name COL INT. 350*350*12 Display Color Section Name COL INT. 350*350*12 Display Color Section Notes Section Notes Section Notes Section Outside depth (13) Outside width (12) Oitside width (1		0.012	
terial Property Modifiers A 36 Set Modifiers OK Cancel Section Name COL INT. 350*350*12 Display Color Section Notes Modify/Show Notes Section Outside depth (13) Outside depth (13) Outside width (12) Flange thickness (tf) Outside width (12) Concel Outside width (12) Concel Outside width (12) Concel Outside Width (12) Concel Outside Ou	Web thickness (tw)	0.012	
terial Property Modifiers A36 Set Modifiers OK Cancel Section OK Section Name COL INT. 350*350*12 action Name COL INT. 350*350*12 Display Color Image: Color in the section Notes Modify/Show Notes Image: Color in the section Notes Cutside depth (13) 0.35 Outside width (12) 0.35 Flange thickness (tf) 0.012 Web thickness (tw) 0.012 Properties Section Properties erial Property Modifiers A36 Set Modifiers			
terial Property Modifiers A36 Set Modifiers OK Cancel Section OK Cancel Section Name COL INT. 350*350*12 Display Color Section Notes Modify/Show Notes ensions Outside depth (13) Outside width (12) Control Outside width (12) Control Outside width (12) Outside width			
terial Property Modifiers Section Properties A36 OK Cancel OK Cancel Section OK Cancel Section Name COL INT. 350"350"12 Display Color extion Notes Modify/Show Notes Image: Section Notes Outside depth (13) 0.35 Outside width (12) Outside width (12) 0.012 Image: Section Properties Flange thickness (tf) 0.012 Image: Section Properties Web thickness (tw) 0.012 Image: Section Properties A36 Set Modifiers Time Dependent Properties			Properties
terial Property Modifiers Section Properties A36 OK Cancel OK Cancel Section OK Cancel Section Name COL INT. 350*350*12 Display Color extion Notes Modify/Show Notes Display Color ensions 0.35 Outside depth (13) 0.35 Outside width (12) 0.35 Olicial Section Flange thickness (tf) 0.012 Properties Section Properties erial Property Modifiers Section Properties Time Dependent Properties A36 Set Modifiers Time Dependent Properties			
A36 Set Modifiers Time Dependent Properties OK Cancel Section OK Cancel Section Name COL INT. 350"350"12 Display Color ection Notes Modify/Show Notes Image: Section Properties and the section Notes Outside depth (13) 0.35 O.12 Outside width (12) 0.012 Image: Properties and the section Properties Image: Properties and the section Properties and the secti	aterial	Property Modifiers	Section Properties
OK Cancel Section Section Name COL INT. 350*350*12 Display Color ection Notes Modify/Show Notes Display Color ensions 0.35 Outside depth (13) 0.35 Outside width (12) 0.35 Outside width (12) 0.35 Flange thickness (tf) 0.012 Properties erial Property Modifiers Section Properties A36 Set Modifiers Time Dependent Properties	+ A36	✓ Set Modifiers	Time Dependent Properties
OK Cancel Section Section Name COL INT. 350°350°12 Display Color ection Notes Modify/Show Notes Display Color ensions 0.35 Outside depth (13) 0.35 Outside width (12) 0.35 Outside width (12) Display Color Flange thickness (tf) 0.012 Properties web thickness (tw) 0.012 Properties erial Property Modifiers Section Properties A36 Set Modifiers Time Dependent Properties			
OK Cancel Section Section Name COL INT. 350*350*12 Display Color ection Notes Modify/Show Notes Display Color ensions 0.35 Outside depth (13) 0.35 Outside width (12) 0.35 Outside width (12) Display Color Flange thickness (tf) 0.012 Properties web thickness (tw) 0.012 Properties erial Property Modifiers Section Properties A36 Set Modifiers Time Dependent Properties			_
Section Section Name COL INT. 350*350*12 Display Color ection Notes Modify/Show Notes ensions 0.35 Outside depth (13) 0.35 Outside width (12) 0.35 Flange thickness (tf) 0.012 Web thickness (tw) 0.012 Properties Section Properties erial Property Modifiers A36 Set Modifiers		OK Cancel	
Section Section COL INT. 350*350*12 Display Color ection Notes Modify/Show Notes ensions 0.35 Outside depth (13) 0.35 Outside width (12) 0.35 Flange thickness (tf) 0.012 Web thickness (tw) 0.012 Property Modifiers Section Properties A36 Set Modifiers			
Section COL INT. 350*350*12 Display Color ection Notes Modify/Show Notes ensions 0.35 Outside depth (13) 0.35 Outside width (12) 0.35 Flange thickness (tf) 0.012 Web thickness (tw) 0.012 Property Modifiers Section Properties A36 Set Modifiers			
ection Name COL INT. 350*350*12 Display Color ection Notes Modify/Show Notes ensions 0.35 Outside depth (13) 0.35 Outside width (12) 0.35 Flange thickness (tf) 0.012 Web thickness (tw) 0.012 Properties erial Property Modifiers A36 Set Modifiers	0.10		
ection Name COL INT. 350*350*12 Display Color ection Notes Modify/Show Notes ensions 0.35 Outside depth (t3) 0.35 Outside width (t2) 0.35 Flange thickness (tf) 0.012 Web thickness (tw) 0.012 Property Modifiers Section Properties A36 Set Modifiers	Section		
Cold INI: 350°350°12 Display Color Descion Notes Modify/Show Notes ensions Outside depth (13) 0.35 Outside width (12) 0.35 Dutside width (12) 0.35 Plange thickness (tf) 0.012 Web thickness (tw) 0.012 Properties erial Property Modifiers A36 Set Modifiers	Section		
A36 Modify/Show Notes	Section		
ensions 0.35 Outside depth (13) 0.35 Outside width (12) 0.35 Flange thickness (tf) 0.012 Web thickness (tw) 0.012 Properties Section Properties Frial Property Modifiers A36 Set Modifiers	Section	COL INT. 350*350*12	Display Color
ensions 0.35 Section Outside depth (13) 0.35 Image: section s	ection Name ection Notes	COL INT. 350*350*12 Modify/Show Notes	Display Color
Outside depth (13) 0.35 Outside width (12) 0.35 Flange thickness (tf) 0.012 Web thickness (tw) 0.012 Properties erial Property Modifiers A36 Set Modifiers	ection Name ection Notes	COL INT. 350*350*12 Modify/Show Notes	Display Color
Outside width (12) 0.35 Flange thickness (tf) 0.012 Web thickness (tw) 0.012 Properties erial Property Modifiers A36 Set Modifiers	ection Name ection Notes nensions	COL INT. 350*350*12 Modify/Show Notes	Display Color
Flange thickness (tf) 0.012 Web thickness (tw) 0.012 erial Property Modifiers A36 Set Modifiers	ection Name ection Notes mensions Outside depth (13)	COL INT. 350*350*12 Modify/Show Notes 0.35	Display Color
Flange thickness (tf) 0.012 Web thickness (tw) 0.012 Property 0.012 Properties erial Property Modifiers A36 Set Modifiers	ection Name ection Notes nensions Outside depth (13) Outside width (12)	COL INT. 350*350*12 Modify/Show Notes 0.35 0.35	Display Color
Web thickness (tw) 0.012 Properties erial Property Modifiers A36 Set Modifiers	ection Name ection Notes mensions Outside depth (13) Outside width (12)	COL INT. 350*350*12 Modify/Show Notes 0.35 0.35	Display Color
Properties Property Modifiers A36 Set Modifiers Time Dependent Properties	ection Name ection Notes mensions Outside depth (13) Outside width (12) Flange thickness (1f)	COL INT. 350*350*12 Modify/Show Notes 0.35 0.35 0.012	Display Color
Image: serial section Property Modifiers Properties A36 Set Modifiers	ection Name ection Notes mensions Outside depth (t3) Outside width (t2) Flange thickness (tf) Web thickness (tw)	COL INT. 350*350*12 Modify/Show Notes 0.35 0.35 0.012 0.012	Display Color
Image: serial Property Modifiers A36 Set Modifiers	ection Name ection Notes nensions Outside depth (13) Outside width (12) Flange thickness (1f) Web thickness (1w)	COL INT. 350*350*12 Modify/Show Notes 0.35 0.35 0.012 0.012	Display Color
erial Properties A36 Set Modifiers	ection Name ection Notes nensions Outside depth (13) Outside width (12) Flange thickness (1f) Web thickness (1w)	COL INT. 350*350*12 Modify/Show Notes 0.35 0.35 0.012 0.012	Display Color
A36 Set Modifiers	ection Name ection Notes mensions Outside depth (13) Outside width (12) Flange thickness (1f) Web thickness (1w)	COL INT. 350*350*12 Modify/Show Notes 0.35 0.35 0.012	Display Color
A36 Set Modifiers Time Dependent Properties	ection Name lection Notes mensions Outside depth (13) Outside width (12) Flange thickness (1f) Web thickness (1w)	COL INT. 350*350*12 Modify/Show Notes 0.35 0.35 0.012	Display Color
A36 V Set Modifiers Time Dependent Properties	ection Name lection Notes mensions Outside depth (13) Outside width (12) Flange thickness (1f) Web thickness (1w)	COL INT. 350*350*12 Modify/Show Notes 0.35 0.35 0.012 0.012	Display Color
	ection Name ection Notes mensions Outside depth (13) Outside width (12) Flange thickness (1f) Web thickness (1w)	COL INT. 350*350*12 Modify/Show Notes 0.35 0.35 0.012 0.012	Display Color
	Section Name ection Notes tensions Outside depth (t3) Outside width (t2) Flange thickness (tf) Web thickness (tw)	COL INT. 350*350*12 Modify/Show Notes 0.35 0.35 0.012 0.012	Display Color

Section Name	VIGA PISO. 350*8*160*14	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside height (t3)	0.35	2
Top flange width (t2)	0.16	
Top flange thickness (tf)	0.014	3
Web thickness (tw)	8.000E-03	
Bottom flange width (t2b)	0.16	
Bottom flange thickness (tfb)	0.014	
South Hange thousands ((15)		Properties
Material	Property Modifiers	Section Properties
+ A36	 Set Modifiers 	Time Dependent Properties

Section Name	Vigueta 250*6*140*10	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside height (t3)	0.25	2
Top flange width (t2)	0.14	
Top flange thickness (tf)	0.01	3
Web thickness (tw)	6.000E-03	
Bottom flange width (t2b)	0.14	
Bottom flange thickness (tfb)	0.01	
, , , , , , , , , , , , , , , , , , ,		Properties
Aaterial	Property Modifiers	Section Properties
+ A36	 Set Modifiers 	Time Dependent Properties

Section Name	Vigueta Terraza 200*4*120*8	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside height (t3)	0.2	<u> </u>
Top flange width (t2)	0.12	
Top flange thickness (tf)	8.000E-03	3
Web thickness (tw)	4.000E-03	
Bottom flange width (t2b)	0.12	
Bottom flange thickness (tfb)	8.000E-03	
		Properties
Material	Property Modifiers	Section Properties
+ A36	✓ Set Modifiers	Time Dependent Properties
	OK Cancel	
ell Section Data		
Section Name LOS/ Section Notes	A 9.75 cm Modify/Show	Display Color
Section Name LOS/ Section Notes	A 9.75 cm Modify/Show	Display Color
Section Name LOS/ Section Notes Type O Shell - Thin	A 9.75 cm Modify/Show Thickness Membrane	Display Color
Section Data Section Name LOSJ Section Notes Type O Shell - Thin O Shell - Thick	A 9.75 cm Modify/Show Thickness Membrane Bending	Display Color
Section Data Section Name LOS Section Notes Type O Shell - Thin O Shell - Thick O Plate - Thin	A 9.75 cm Modify/Show Thickness Membrane Bending Material	Display Color 0.0975 0.0975

Time Dependent Properties

Stiffness Modifiers

Set Modifiers...

Set Time Dependent Properties...

Temp Dependent Properties

Thermal Properties..

Anexo B2.3. Secciones del Edificio de 6 pisos con columnas cruciformes

O Shell - Layered/Nonlinear

Concrete Shell Section Design Parameters

Modify/Show Shell Design Parameters.

	Import New Property
COL IC 52X26/52X26	Add New Property
V.PISO 360x8x220x16 V.TERRAZ 300x10x160x12 Vigueta1 200x8x120x10 Vigueta2 220x8x120x10	Add Copy of Property
	Modify/Show Property
	Delete Property

Section Name	V.TERRAZ 300x10x160x12	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside height (t3)	0.3	2
Top flange width (t2)	0.16	
Top flange thickness (tf)	0.012	3
Web thickness (tw)	0.01	
Bottom flange width (t2b)	0.16	
Bottom flange thickness (tfb)	0.012	
		Properties
Material	Property Modifiers	Section Properties
+ A36	✓ Set Modifiers	Time Dependent Properties

Section Name	Vigueta1 200x8x120x10	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside height (t3)	0.2	
Top flange width (t2)	0.12	
Top flange thickness (tf)	0.01	3
Web thickness (tw)	8.000E-03	
Bottom flange width (t2b)	0.12	
Bottom flange thickness (tfb)	0.01	
		Properties
Naterial	Property Modifiers	Section Properties
+ A36 ~	Set Modifiers	Time Dependent Properties

Section Name	LOSA 9.75 cm		Display Color
Section Notes	Modify	/Show	
īype		Thickness	
🔘 Shell - Thin		Membrane	0.0975
O Shell - Thick		Bending	0.0975
O Plate - Thin		Material	
O Plate Thick		Material Name	+ F'C 240
Membrane		Material Angle	0.
O Shell - Layered/Nonline	ear	Time Dependent Propertie	25
Modify/Show	Layer Definition	Set Time De	ependent Properties

Anexo B2.4. Secciones del Edificio de 6 pisos con columnas tubulares

Properties	Click to:	
Find this property:		Import New Property
COL. 400X400X14		import new Property
COL. 400X400X14 V. PISO 350x8x280x16		Add New Property
V.TERRAZA 300x6x180x10 VIGUETA1 240x6x120x8		Add Copy of Property
VIGUE1A2 240x8x120x8		Modify/Show Property
		Delete Property
e Section		
Section Name	COL. 400X400X14	Display Color
Section Notes	Modify/Show Notes	
imensions		Section
Outside depth (t3)	0.4	2
Outside width (t2)	0.4	
Flange thickness (tf)	0.014	3
Web thickness (tw)	0.014	
		Properties
aterial	Property Modifiers	Section Properties
+ A36 \	Set Modifiers	Time Dependent Properties
	OK Cancel	
de Flange Section		
ection Name	V. PISO 350x8x280x16	Display Color
ection Name	V. PISO 350x8x280x16 Modify/Show Notes	Display Color
ection Name ection Notes nensions	V. PISO 350x8x280x16 Modify/Show Notes	Display Color
ection Name ection Notes nensions Outside height (13)	V. PISO 350x8x280x16 Modify/Show Notes 0.35	Section
ection Name ection Notes nensions Outside height (13) Too flance width (12)	V. PISO 350x8x280x16 Modify/Show Notes 0.35 0.28	Display Color
ection Name ection Notes mensions Outside height (t3) Top flange width (t2)	V. PISO 350x8x280x16 Modify/Show Notes 0.35 0.28 0.016	Display Color
ection Name ection Notes nensions Outside height (t3) Top flange width (t2) Top flange thickness (tf)	V. PISO 350x8x280x16 Modify/Show Notes 0.35 0.28 0.016 8.0005.02	Display Color
ection Name ection Notes nensions Outside height (13) Top flange width (12) Top flange thickness (tf) Web thickness (tw)	V. PISO 350x8x280x16 Modify/Show Notes 0.35 0.28 0.016 8.000E-03 0.22	Display Color
ection Name ection Notes nensions Outside height (t3) Top flange width (t2) Top flange thickness (tf) Web thickness (tw) Bottom flange width (t2b)	V. PISO 350x8x280x16 Modify/Show Notes 0.35 0.28 0.016 8.000E-03 0.28	Display Color
ection Name ection Notes nensions Outside height (13) Top flange width (12) Top flange thickness (tf) Web thickness (tw) Bottom flange width (12b) Bottom flange thickness (tfb)	V. PISO 350x8x280x16 Modify/Show Notes 0.35 0.28 0.016 8.000E-03 0.28 0.28 0.016	Display Color
ection Name ection Notes nensions Outside height (t3) Top flange width (t2) Top flange thickness (tf) Web thickness (tw) Bottom flange width (t2b) Bottom flange thickness (tfb)	V. PISO 350x8x280x16 Modify/Show Notes 0.35 0.28 0.016 8.000E-03 0.28 0.016 0.016 Property Modifiers	Display Color

Section Name	V.TERRAZA 300x6x180x10	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside height (t3)	0.3	2
Top flange width (t2)	0.18	
Top flange thickness (tf)	0.01	3 _
Web thickness (tw)	6.000E-03	
Bottom flange width (t2b)	0.18	
Bottom flange thickness (tfb)	0.01	
		Properties
Material	Property Modifiers	Section Properties
+ A36 ~	Set Modifiers	Time Dependent Properties

Section Name	/IGUETA1 240x6x120x8	Display Color
Section Notes	Modify/Show Notes	
)imensions		Section
Outside height (t3)	0.24	2
Top flange width (t2)	0.12	
Top flange thickness (tf)	8.000E-03	3
Web thickness (tw)	6.000E-03	
Bottom flange width (t2b)	0.12	
Bottom flange thickness (tfb)	8.000E-03	
,		Properties
laterial	Property Modifiers	Section Properties
+ A36 ~	Set Modifiers	Time Dependent Properties

Section Name	VIGUETA2 240x8x120x8	Display Color
Section Notes	Modify/Show Notes	
Dimensions		Section
Outside height (t3)	0.24	2
Top flange width (t2)	0.12	
Top flange thickness (tf)	8.000E-03	3
Web thickness (tw)	8.000E-03	
Bottom flange width (t2b)	0.12	
Bottom flange thickness (tfb)	8.000E-03	
		Properties
Material	Property Modifiers	Section Properties
+ A36	Set Modifiers	Time Dependent Properties

au ratterna					Click To:
Load Pattern Name	Туре	Self Weight Multiplier	Auto Lateral Load Pattern		Add New Load Pattern
DEAD	Dead	 ✓ 1 		\sim	Modify Load Pattern
DEAD	Dead	1			Madifiel stars I and Dattars
Peso permanente	Dead	0			Modify Lateral Load Pattern
Carga Viva	Live	0			Datata Land Dattana
Carga Viva de techo	Roof Live	0			Delete Load Pattern
SEX	Quake	0	User Coefficient		
SEY	Quake	0	User Coefficient	+	Show Load Dattern Notes
GRANIZO	Snow	0			Show Eodd Fattern Notes
NISH X	Quake	0	User Loads		

Anexo B3. Patrones de Carga en SAP2000

oad Cases			Click to:
Load Case Name	Load Case Type		Add New Load Case
DEAD	Linear Static		
MODAL	Modal		Add Copy of Load Case
Peso permanente	Linear Static		
Carga Viva	Linear Static		Modify/Show Load Case
Carga Viva de techo	Linear Static		
SEX	Linear Static	•	Delete Load Case
SEY	Linear Static		
GRANIZO	Linear Static		
SDX	Response Spectrum		Display Load Cases
SDY	Response Spectrum		
PUSH X	Nonlinear Static		Show Load Case Tree
CGNL	Nonlinear Static		

Anexo B4.1. *Caso de carga "SISMO DINAMICO X", Edificio de 3 pisos con columnas cruciformes*

			Notes	Load Case Type	
SDX		Set Def Name	Modify/Show	Response Spectrum	✓ Design
Indeal Combination Cac SRSS Absolute GMC NRC 10 Per Double Surr Modal Load Case Use Modes from Standard - Advanced	cent n m this Modal Load Acceleration Load	(Periodic + Rig Case ing ting Loading	MC f1 1. SMC f2 0. id Type SRSS ~	Directional Combination SRSS CQC3 Absolute Scale Factor Mass Source Previous (MSSSRC1) Diaphragm Eccentricity Eccentricity Ratio Override Eccentricities	0.05 Override
oads Applied		Sector Date			
Load Type Accel Accel Show Adv	Load Name U1 V U1	runction Scale / Espectro V 11.2343 Espectro 11.2343 Hard Scale reters	Add Modify Delete		

Anexo B4.2. *Caso de carga "SISMO DINAMICO Y", Edificio de 3 pisos con columnas cruciformes*

Load Case Name	I	Notes	Load Case Type	
SDY	Set Def Name	Modify/Show	Response Spectrum	✓ Design
Modal Combination			Directional Combination	
● cac	GMC f1	1.	SRSS	
○ SRSS	CHC F		O CQC3	
Absolute	GMC 12		Absolute	
◯ GMC	Periodic + Rigid Type	srss v	Scale Factor	
O NRC 10 Percent			Mass Source	
O Double Sum			Previous (MSSSRC1)	
Iodal Load Case			Diaphragm Eccentricity	
Use Modes from this Modal Load Case	M	IODAL V	Eccentricity Ratio	0.05
Use Modes from this Modal Load Case Standard - Acceleration Loading	м	IODAL ~	Eccentricity Ratio	0.05
Use Modes from this Modal Load Case Standard - Acceleration Loading Advanced - Displacement Inertia Lo	e M	IODAL V	Eccentricity Ratio Override Eccentricities	0.05 Override
Use Modes from this Modal Load Case Standard - Acceleration Loading Advanced - Displacement Inertia Lo oads Applied	Mading	IODAL ~	Eccentricity Ratio Override Eccentricities	0.05 Override
Use Modes from this Modal Load Case Standard - Acceleration Loading Advanced - Displacement Inertia Lo coads Applied Load Type Load Name	yading Function Scale Factor	IODAL V	Eccentricity Ratio Override Eccentricities	0.05 Override
Use Modes from this Modal Load Case Standard - Acceleration Loading Advanced - Displacement Inertia Lo coads Applied Load Type Accel U2 V Esp	ading Function Scale Factor pectro ∨ 11.1924		Eccentricity Ratio Override Eccentricities	0.05 Override
Use Modes from this Modal Load Case Standard - Acceleration Loading Advanced - Displacement Inertia Lo coads Applied Load Type Load Name Accel U2 Esg Accel U2 Esg	Function Scale Factor rectro V 11.1924	Add	Eccentricity Ratio	0.05 Override
Use Modes from this Modal Load Case Standard - Acceleration Loading Advanced - Displacement Inertia Lo Load SApplied Load Type Load Name Accel U2 Esg Accel U2 Esg	Function Scale Factor reectro V 11.1924	ODAL ~	Eccentricity Ratio	0.05 Override
Use Modes from this Modal Load Case Standard - Acceleration Loading Advanced - Displacement Inertia Lo coads Applied Load Type Load Name Accel U2 Esp Accel U2 Esp Accel Esp	Function Scale Factor bectro 11.1924 11.1924	ODAL ~	Eccentricity Ratio Override Eccentricities	0.05 Override
Use Modes from this Modal Load Case Standard - Acceleration Loading Advanced - Displacement Inertia Lo Load Applied Load Type Load Name Accel U2 Esp Accel U2 Esp	Function Scale Factor bectro V 11.1924 rectro 11.1924	Add Modify Delete	Eccentricity Ratio Override Eccentricities	0.05 Override
Use Modes from this Modal Load Case Standard - Acceleration Loading Advanced - Displacement Inertia Lo Load Applied Load Type Load Name Accel U2 Esp Accel U2 Esp Code Standard Load Reserverse	Function Scale Factor bectro V 11.1924 rectro 11.1924	Add Modify Delete	Eccentricity Ratio Override Eccentricities	0.05 Override
Use Modes from this Modal Load Case Standard - Acceleration Loading Advanced - Displacement Inertia Lo Load Applied Load Type Load Name Accel U2 Esg Cacel U2 Esg Show Advanced Load Parameters	Function Scale Factor reactro 11.1924 reactro 11.1924	Add Modify Delete	Eccentricity Ratio Override Eccentricities	0.05 Override

Anexo B4.3. *Caso de carga "SISMO DINAMICO X", Edificio de 3 pisos con columnas tubulares*

oud cuse num	•		N	otes	Load Case Type	
SDX		Set Def Name		Modify/Show	Response Spectrum	✓ Design
odal Combinati	on		CHC #	1	Directional Combination SRSS 	
 SRSS Absolute GMC NRC 10 Pe Double Sur lodal Load Case 	rcent n e	Periodic + I	GMC f2 Rigid Type	0. SRSS V	CQC3 Absolute Scale Factor Mass Source Previous (MSSSRC1) Diaphragm Eccentricity	
 Standard - Advanced oads Applied Load Type 	- Displacement Ir	ading nertia Loading Function Scal	e Factor		Eccentricity Ratio	0.05 Override
Accel Accel Show Adv	U1 U1 V1	Espectro V 11.20 Espectro 11.20 ameters	3	Add Modify Delete		
	-					

Anexo B4.4. *Caso de carga "SISMO DINAMICO Y", Edificio de 3 pisos con columnas tubulares*

oad Case Name	Notes	Load Case Type
SDY Set Def Na	ame Modify/Show	Response Spectrum V Design
Image: Second	GMC f1 1. GMC f2 0. c + Rigid Type SRSS ~	Directional Combination SRSS CCCC3 Absolute Scale Factor
O GMC O NRC 10 Percent O Double Sum		Mass Source Previous (MSSSRC1)
Use Modes from this Modal Load Case Standard - Acceleration Loading Advanced - Displacement Inertia Loading	MODAL ~	Eccentricity Ratio 0.05 Override Eccentricities Override
Load Type Load Name Function S Accel U2 Espectro 11 Accel U2 Espectro 11 Accel U2 Espectro 11 Show Advanced Load Parameters State State	Scale Factor 1777 Add Modify Delete	

Anexo B4.5. *Caso de carga "SISMO DINAMICO X", Edificio de 6 pisos con columnas cruciformes*

Load Case Name			Notes	Load Case Type	
Dx		Set Def Name	Modify/Show	Response Spectrum	✓ Design
Iodal Combinatio	on			Directional Combination	
● cac		GMC f1	1.	SRSS	
⊖ srss		CHC F		O CQC3	
O Absolute		GMC 12		Absolute	
O GMC		Periodic + Rigid Type	SRSS V	Scale Factor	
O NRC 10 Per	rcent			Mass Source	
O Double Sum	n			Previous (MASA REACTIV	A)
Iodal Load Case	•			Diaphragm Eccentricity	
Use Modes fro	om this Modal Load Case	e M	ODAL ~	Eccentricity Ratio	0.05
Standard	Acceleration Londing				
O Advanced -	- Displacement Inertia L	oading		Override Eccentricities	Override
 Advanced - .oads Applied Load Type 	- Displacement Inertia L	Function Scale Factor		Override Eccentricities	Override
Advanced - O Advanced - Loads Applied Load Type Accel	Load Name	Function Scale Factor PECTRO (V 14.4645]	Override Eccentricities	Override
Advanced - Advanced - Load Type Accel	Load Name	Function Scale Factor PECTRO (> 14.4645 PECTRO QUIT 14.4645	Add	Override Eccentricities	Override
Advanced Advanced Load Type Accel Accel	Load Name	Function Scale Factor PECTRO (> 14.4645 PECTRO QUIT 14.4645	Add	Override Eccentricities	Override
Advanced - Advanced - Loads Applied Load Type Accel Accel	Load Name	Function Scale Factor PECTRO (> 14.4645 PECTRO QUIT 14.4645	Add Modify	Override Eccentricities	Override
Advanced - .oads Applied Load Type Accel	Load Name U1 VES U1 ES	Function Scale Factor PECTRO (> 14.4645 PECTRO QUIT 14.4645	Add Modify Delete	Override Eccentricities	Override
Advanced - oads Applied Load Type Accel Accel	Load Name U1 V ES U1 ES anced Load Parameters	Function Scale Factor PECTRO (> 14.4645 PECTRO QUIT 14.4645 S	Add Modify Delete	Override Eccentricities	Override
Advanced - Advanced - Advanced - Load Type Accel Accel Show Adv	Load Name U1 VES U1 ES anced Load Parameters	Function Scale Factor PECTRO (~ 14.4645 PECTRO QUIT 14.4645	Add Modify Delete	Override Eccentricities	Override
Advanced - Advanced - Load Type Accel Accel Show Adv. ther Parameters Modal Dam	Load Name U1 V ES U1 ES anced Load Parameters s nping C	Function Scale Factor PECTRO (> 14.4645 PECTRO QUIT 14.4845 s s	Add Modify Delete Modify/Show	Override Eccentricities	Override

Anexo B4.6. Caso de carga "SISMO DINAMICO Y", Edificio de 6 pisos con columnas

cruciformes

			Notes		Load Case Type	
Dy		Set Def Name	Modify/Sho	w	Response Spectrum	✓ Design
CQC CQC SRSS Absolute GMC NRC 10 Per Double Sum	n cent	GMC GMC Periodic + Rigid T	C f1 1. C f2 0. Type SRSS	~	Directional Combination SRSS CQC3 Absolute Scale Factor Mass Source Previous (MASA REACTIVA)	
 Standard - / Advanced - oads Applied - Load Type 	Cceleration Loadin Displacement Inert	ig ia Loading Function Scale Fac	tor		Eccentricity Ratio	0.05 Override
Accel	U2 ~	ESPECTRO (~ 14.102 ESPECTRO QUII 14.102	Add			
Show Adv	anced Load Parame	ters	Delete			

Anexo B4.7. *Caso de carga "SISMO DINAMICO X", Edificio de 6 pisos con columnas tubulares*

oad Case Name	Notes	Load Case Type
Dx	Set Def Name Modify/Show.	Response Spectrum V Design
lodal Combination		Directional Combination
● cac	GMC f1 1.	SRSS
○ SRSS		O CQC3
Absolute	GMC 12 U.	O Absolute
O GMC	Periodic + Rigid Type SRSS	✓ Scale Factor
O NRC 10 Percent		Mass Source
O Double Sum		Previous (MASA REACTIVA)
lodal Load Case		Diaphragm Eccentricity
Use Modes from this Modal Load	Case MODAL	 Eccentricity Patio 0.05
Standard - Acceleration Load	ina	
 Advanced - Displacement Iner 	rtia Loading	Override Eccentricities Override
oads Applied		
Load Type Load Name	Function Scale Factor	
Accel U1 V	ESPECTRO (~ 13.1233	
Accel U1	ESPECTRO QUIT 13.1233 Add	
	Modify	
	Delete	
	Delete	
Show Advanced Load Param	neters	
ther Parameters		
Modal Damping	Constant at 0.05 Modify/Show	ОК
	-	

Anexo B4.8. *Caso de carga "SISMO DINAMICO Y", Edificio de 6 pisos con columnas tubulares*

oud ouse mane	Notes		Load Case Type	
Dy	Set Def Name	lodify/Show	Response Spectrum	✓ Design
Iodal Combination			Directional Combination	
● cac	GMC f1 1.		SRSS	
⊖ srss	0110 60 0		O CQC3	
O Absolute	GMC 12 U.		Absolute	
⊖ gmc	Periodic + Rigid Type SRS	s v	Scale Factor	
O NRC 10 Percent			Mass Source	
O Double Sum			Previous (MASA REACTIVA)
Iodal Load Case			Diaphragm Eccentricity	
Use Modes from this Modal Load Case	MODAL	\sim	Eccentricity Ratio	0.05
Standard - Acceleration Loading			Locontricky reado	0.00
Advanced - Displacement Inertia Loading			Override Eccentricities	Override
oada Applied				
Load Type Load Name Func	tion Scale Factor			
Accel U2 VESPECT	30 (> 12.9223			
Accel U2 ESPECT	RO QUIT 12.9223			
		Add		
		Modify		
		Modify		
		Delete		
Show Advanced Load Parameters		Delete		
Show Advanced Load Parameters Other Parameters		Delete		
Show Advanced Load Parameters Dther Parameters Modal Damping Consta	nt at 0.05 Modify/	Delete Show	ОК	

Anexo B5. Masa Modal

Mass Source Name	MS	SSRC1	
Mass Source			
Element Self Mass	and Addition	al Mass	
Specified Load Pa	tterns		
Manage Marking Constant			
mass multipliers for Loa	d Patterns –		
Mass Multipliers for Loa	d Patterns	Multiplier	
Load Pattern		Multiplier	7
Load Pattern	 ✓ 1. 	Multiplier	
Load Pattern DEAD DEAD Peso permanente	 ✓ 1. 1. 1. 	Multiplier	Add
Load Pattern DEAD DEAD Peso permanente	 1. 1. 1. 	Multiplier	Add
Load Pattern DEAD DEAD Peso permanente	 1. 1. 1. 	Multiplier	Add Modify
Load Pattern DEAD DEAD Peso permanente	 1. 1. 	Multiplier	Add Modify Delete

Anexo B6. Espectros de Diseño NEC 2015

Anexo B6.1. Espectro de Diseño para un SMF

	E				Function Damping Ratio
Function Name	Espectro				0.05
Parameters Zone Coefficient, Z	0.4	Define Function Period	Acceleratio	n	
n Coefficient Site Factor, Fa Site Factor, Fd Soil Type Inelastic Behavior Fctor of Subsurface, Fs Importance Factor, I Response Modification Factor, R	2.48 1.2 1.19 D ~ 1.28 1. 8.	0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 1.2 1.5 1.7	0.1488 0.1488 0.1488 0.1488 0.1488 0.1488 0.1488 0.1488 0.1482 0.1213 0.1017 0.0868 0.066 0.0472 0.0392	~	Add Modify Delete
Convert to User Defined					
,	Display Graph				

Anexo B6.2. Espectro de Diseño para un IMF

ANEXO C.

PARAMETROS CONSIDERADOS EN LAS ROTULAS PLASTICAS

Anexo C1. Valores de Ingreso para las rotulas plásticas en SAP2000, EDF. 3 pisos con secciones cruciformes.

Saasián	Dimensiones	Longitud	Rotación	Momento		Criterio	s de A	cepta	ación	
Seccion	(cm)	(m)		(tonf-m)	a	b	c	Ю	LS	СР
	32*0.8*18*1.4	4.8	0.00694	23.834	9	11	0.6	1	6	8
	32*0.8*18*1.4	5	0.00723	23.834	9	11	0.6	1	6	8
Viga	32*0.8*18*1.4	5.1	0.00738	23.834	9	11	0.6	1	6	8
Piso 1-2	32*0.8*18*1.4	5.3	0.00767	23.834	9	11	0.6	1	6	8
	32*0.8*18*1.4	5.4	0.00781	23.834	9	11	0.6	1	6	8
	32*0.8*18*1.4	5.6	0.0081	23.834	9	11	0.6	1	6	8
	30*0.8*14*1.2	4.8	0.00755	16.1	9	11	0.6	1	6	8
	30*0.8*14*1.2	5	0.00786	16.1	9	11	0.6	1	6	8
Viga	30*0.8*14*1.2	5.1	0.00802	16.1	9	11	0.6	1	6	8
Terraza	30*0.8*14*1.2	5.3	0.00833	16.1	9	11	0.6	1	6	8
	30*0.8*14*1.2	5.4	0.00849	16.1	9	11	0.6	1	6	8
	30*0.8*14*1.2	5.6	0.0088	16.1	9	11	0.6	1	6	8
Columna	42*0.8*18*1.4	3	0.00274	39.57	7.09	8.621	0.2	1	5	6

Anexo C2. Valores de Ingreso para las rotulas plásticas en SAP2000, EDF. 6 pisos con secciones cruciformes.

G	Dimensiones	Longitud	Rotación	Momento		Criteri	os de A	cepta	ción	
Seccion	(cm)	(m)		(tonf-m)	a	b	c	Ю	LS	СР
	36*0.8*22*1.6	4.8	0.00611	36.094	9	11	0.6	1	6	8
	36*0.8*22*1.6	5	0.00636	36.094	9	11	0.6	1	6	8
Viga	36*0.8*22*1.6	5.1	0.00649	36.094	9	11	0.6	1	6	8
Piso 1-2	36*0.8*22*1.6	5.3	0.00674	36.094	9	11	0.6	1	6	8
	36*0.8*22*1.6	5.4	0.00687	36.094	9	11	0.6	1	6	8
	36*0.8*22*1.6	5.6	0.00712	36.094	9	11	0.6	1	6	8
	30*1*16*1.2	4.8	0.0076	18.816	9	11	0.6	1	6	8
	30*1*16*1.2	5	0.00791	18.816	9	11	0.6	1	6	8
Viga	30*1*16*1.2	5.1	0.00807	18.816	9	11	0.6	1	6	8
Terraza	30*1*16*1.2	5.3	0.00839	18.816	9	11	0.6	1	6	8
	30*1*16*1.2	5.4	0.00855	18.816	9	11	0.6	1	6	8
	30*1*16*1.2	5.6	0.00886	18.816	9	11	0.6	1	6	8
Columna	52*1.2*26*1.8	3	0.00245	89.25	6.88	10.63	0.17	0.25	5	6

S	Dimensiones	Longitud	Rotación	Momento	(Criteri	os de .	Acept	ación	
Seccion	(cm)	(m)		(tonf-m)	а	b	c	IO	LS	СР
	35*0.8*16*1.4	4.8	0.00641	24.298	9	11	0.6	1	6	8
	35*0.8*16*1.4	5	0.00668	24.298	9	11	0.6	1	6	8
Viga	35*0.8*16*1.4	5.1	0.00681	24.298	9	11	0.6	1	6	8
Piso 1-2	35*0.8*16*1.4	5.3	0.00708	24.298	9	11	0.6	1	6	8
	35*0.8*16*1.4	5.4	0.00721	24.298	9	11	0.6	1	6	8
	35*0.8*16*1.4	5.6	0.00748	24.298	9	11	0.6	1	6	8
	30*0.6*14*1	4.8	0.00744	13.25	9	11	0.6	1	6	8
	30*0.6*14*1	5	0.00775	13.25	9	11	0.6	1	6	8
Vigo Torrozo	30*0.6*14*1	5.1	0.00791	13.25	9	11	0.6	1	6	8
viga Terraza	30*0.6*14*1	5.3	0.00822	13.25	9	11	0.6	1	6	8
	30*0.6*14*1	5.4	0.00837	13.25	9	11	0.6	1	6	8
	30*0.6*14*1	5.6	0.00868	13.25	9	11	0.6	1	6	8
Columna Esq.y Borde	30*30*1.2	3	0.00334	52.07	2.92	4.49	0.2	0.5	1.5	2.5
Columna Central	35*35*1.2	3	0.00376	37.81	4.23	6.51	0.2	1	3	4

Anexo C3. Valores de Ingreso para las rotulas plásticas en SAP2000, EDF. 3 pisos con secciones tubulares.

Anexo C	2 4. V	/alores	de Ingre	so par	a las	rotulas	plásticas	en SA	P2000,	EDF. (6 pisos	con

•	. 1 1
secciones	tubulares.

Sección	Dimensiones	Longitud	Rotación	Momento		Criterios de Aceptación				
	(cm)	(m)		(tonf-m)	a	b	c	Ю	LS	СР
Viga	35*0.8*28*1.60	4.8	0.00621	42.992	8.8	10.8	0.585	0.97	6	8
Piso 1-2	35*0.8*28*1.61	5	0.00647	42.992	8.8	10.8	0.585	0.97	6	8
	35*0.8*28*1.62	5.1	0.0066	42.992	8.8	10.8	0.585	0.97	6	8
	35*0.8*28*1.63	5.3	0.00686	42.992	8.8	10.8	0.585	0.97	6	8
	35*0.8*28*1.64	5.4	0.00699	42.992	8.8	10.8	0.585	0.97	6	8
	35*0.8*28*1.65	5.6	0.00725	42.992	8.8	10.8	0.585	0.97	6	8
Viga	30*0.60*18*1.0	4.8	0.00733	16.189	8.23	10.23	0.539	0.88	6	7.5
Terraza	30*0.60*18*1.0	5	0.00763	16.189	8.23	10.23	0.539	0.88	6	7.5
	30*0.60*18*1.0	5.1	0.00778	16.189	8.23	10.23	0.539	0.88	6	7.5
	30*0.60*18*1.0	5.3	0.00809	16.189	8.23	10.23	0.539	0.88	6	7.5
	30*0.60*18*1.0	5.4	0.00824	16.189	8.23	10.23	0.539	0.88	6	7.5
	30*0.60*18*1.0	5.6	0.00855	16.189	8.23	10.23	0.539	0.88	6	7.5
Columna	40*40*1.4	3	0.00252	79.23	2.59	3.99	0.2	0.25	1.5	2.2

ANEXO D.

RESULTADOS DEL ANÁLISIS TIEMPO HISTORIA EN SAP2000

Anexo D.1. *Tiempo Historia, EDF 3 pisos con columnas tubulares, sentido X- Sismo de diseño.*

Anexo D.2. *Tiempo Historia, EDF 3 pisos con columnas tubulares, sentido Y- Sismo de diseño.*

Anexo D.3. Tiempo Historia, EDF 3 pisos con columnas cruciformes, X- Sismo de diseño.

Anexo D.4. Tiempo Historia, EDF 3 pisos con columnas cruciformes, Y-Sismo de diseño.

Anexo D.5. Tiempo Historia, EDF 6 pisos con columnas tubulares, Y- Sismo de diseño.

Anexo D.6. Tiempo Historia, EDF 6 pisos con columnas tubulares, Y- Sismo de diseño.

Anexo D.7. Tiempo Historia, EDF 6 pisos con columnas cruciformes, X- Sismo de diseño.

Anexo D.8. Tiempo Historia, EDF 6 pisos con columnas cruciformes, X- Sismo de diseño.

ANEXO E.1. MÉTODO DEL ESPECTRO DE CAPACIDAD

EDIFICIO 3 PISOS CON COLUMNAS CRUCIFORMES DIRECCIÓN X-X

1. Conversión de la Curva de Capacidad en Espectro de Capacidad

1.1. Curva de Capacidad

Curva de Capacidad -Direccion X-X

1.2. Curva de Capacidad en formato ADRS

PF1 = 5.557	Factor de participación modal para el modo predominante
$\alpha 1 = 0.831$	Coeficiente de masa modal para el modo predominante
$\phi = 0.24057$	Amplitud del modo predominante en el nivel del techo
$W = 377.01 \ tonnef$	Peso

$$S_a \coloneqq \frac{V}{W \cdot \alpha 1} \cdot g$$
 $S_d \coloneqq \frac{D}{PF1 \cdot \phi}$

Espectro de Capacidad -Direccion X-X

2. Sismo de Diseño

2.1 Espectro de respuesta en formato ADRS

Espectro de Respuesta Elástico Sismo de Diseño -Direccion X-X

Espectro de Respuesta Elástico Sismo de Diseño ADRS(inicial)-Direccion X-X

2.1 Representación Bilineal del Espectro de Capacidad

Verificacion de areas iguales n = 7

$$\begin{split} A_{CB} &\coloneqq \int_{0}^{d_{pi}} CB\left(x\right) \, \mathrm{d}x = 0.0524 \ g \cdot m \\ A_{Esp} &\coloneqq \sum_{i=1}^{n-1} \frac{\left(S_{a_{i+1}} + S_{a_{i}}\right)}{2} \cdot \left(S_{d_{i+1}} - S_{d_{i}}\right) + \frac{\left(a_{pi} + S_{a_{n}}\right)}{2} \cdot \left(d_{pi} - S_{d_{n}}\right) = 0.0524 \ g \cdot m \\ Error &\coloneqq \frac{A_{CB} - A_{Esp}}{A_{Esp}} \cdot 100 = 0.008 \end{split}$$

2.2. Reducción de la demanda por efectos no lineales

$$\begin{array}{ll} \mbox{Rigidez post elástica} & \alpha \coloneqq \frac{\left(\frac{a_{pi} - a_{y}}{d_{pi} - d_{y}}\right)}{\left(\frac{a_{y}}{d_{y}}\right)} = 0.639 & \mbox{Ductilidad} & \mu \coloneqq \frac{d_{pi}}{d_{y}} = 1.482 \\ \mbox{Periodo efectivo} & T_{o} \coloneqq 2 \cdot \pi \cdot \sqrt{\frac{d_{y}}{a_{y}}} = 0.557 \ s \\ & T_{eff} \coloneqq \left\| \begin{array}{c} \mbox{if } 1 < \mu < 4 \\ \left\| T_{eff} \leftarrow \left(0.2 \cdot \left(\mu - 1\right)^{2} - 0.038 \cdot \left(\mu - 1\right)^{2} + 1\right) \cdot T_{o} \right\| \\ \mbox{if } 4 < \mu < 6.5 \\ \left\| T_{eff} \leftarrow \left(0.28 + 0.13 \cdot \left(\mu - 1\right) + 1\right) \cdot T_{o} \right\| \\ \mbox{if } \mu > 6.5 \\ \left\| T_{eff} \leftarrow \left(0.89 \cdot \left(\sqrt{\frac{(\mu - 1)}{1 + 0.05 \cdot (\mu - 2)}} - 1\right) + 1\right) \cdot T_{o} \right\| \\ & T_{eff} = 0.578 \ s \end{array} \right\| \end{array}$$

Amortiguamiento efectivo $\beta_o = 5$

$$\begin{split} \beta_{eff} \coloneqq \left| \begin{array}{c} & \text{if } 1 < \mu < 4 \\ & \left\| \beta_{eff} \leftarrow 4.9 \cdot \left(\mu - 1\right)^2 - 1.1 \cdot \left(\mu - 1\right)^3 + \beta_o \right| \\ & \text{if } 4 < \mu < 6.5 \\ & \left\| \beta_{eff} \leftarrow 14 + 0.32 \cdot \left(\mu - 1\right) + \beta_o \right| \\ & \text{if } \mu > 6.5 \\ & \left\| \beta_{eff} \leftarrow 19 \cdot \left(\frac{0.64 \cdot \left(\mu - 1\right) - 1}{0.64 \cdot \left(\mu - 1\right)^2} \right) \cdot \left(\frac{T_{eff}}{T_o} \right)^2 + \beta_o \right| \\ & \beta_{eff} \end{split} \right|$$

Factor de Reducción Espectral $B \coloneqq \frac{4}{5.6 - \ln \left(\beta_{eff}\right)} = 1.051$

Coefficiente M $M \coloneqq \left(\frac{T_{eff}}{T_o}\right)^2 \cdot \left(\frac{1 + \alpha \cdot (\mu - 1)}{\mu}\right) = 0.95$

2.3. Espectro de demanda reducido por efectos no lineales

$$\begin{split} T \coloneqq \left\| \begin{array}{c} \text{for } i \in 1 \dots 210 \\ \left\| \begin{array}{c} T_i \leftarrow (i \cdot 0.01 - 0.01) \, s \\ T \end{array} \right\| \\ S_{Dd} \coloneqq \left\| \begin{array}{c} \text{for } i \in 1 \dots 210 \\ \left\| \begin{array}{c} \text{s}_{Ad} \coloneqq \left\| \begin{array}{c} \text{for } i \in 1 \dots 210 \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{A$$

Espectro de Respuesta Elástico Sismo de Diseño (ADRS (β_{eff})) -Direccion X-X

2.4. Espectro de demanda modificado a partir de espectro reducido por efectos no lineales

Espectro de Respuesta Elástico Sismo de Diseño (MADRS) -Direccion X-X

3. Punto de Desempeño

Punto de desempeño para el nivel de demanda sísmica de diseño en la dirección X-X

El punto de desempeño de prueba a_{pi}, d_{pi} es aceptable si: 0.95 $d_{pi} \le d_i \le 1.05 \ d_{pi}$

 $d_{pi} = 0.092 \ m$ $a_{pi} = 1.05 \ g$ $d_i := 0.096 \ m$

Error = "OK"

 $Error \coloneqq \mathrm{if} \left(0.95 \ d_{pi} \le d_i \le 1.05 \ d_{pi}, \text{``OK''}, \text{``Nuevo punto de prueba''} \right)$

4. Resultados

$T_o = 0.557 \ s$	$\alpha = 0.639$	$a_p := a_{pi} = 1.05$	g
$\begin{array}{c} T_{ef\!f}\!=\!0.578~s\\ \beta_{ef\!f}\!=\!6.016 \end{array}$	$\mu\!=\!1.482$	$d_p := d_{pi} = 0.092 \ m$	
Punto de desempeño $\Delta_d = d_p \cdot P$		$PF1 \cdot \phi = 0.122 \ m$	$V_d \coloneqq a_{pi} \cdot \alpha 1 \cdot \frac{W}{\alpha} = 328.759 \ tonnef$

5. En la dirección Y-Y se hizo el mismo procedimiento

EDIFICIO 6 PISOS CON COLUMNAS CRUCIFORMES DIRECCIÓN X-X

1. Conversión de la Curva de Capacidad en Espectro de Capacidad

1.1. Curva de Capacidad 0.000163 0 107.5489 0.0423370.084837 215.0978 0.127337322.6468 0.129263327.5209 0.176492 415.9752 0.221685464.2878 0.27315504.3848 0.31616 532.6579 0.36671561.6547 D :=0.412783V :=582.598tonnef m 0.455978594.5761 0.503736 604.2261 0.568249614.8826 0.610749621.6925 0.00525 0.653249 628.50250.004720.695749 635.3124 0.003980.738249Amplitud =642.12230.00298 0.790913650.5056 0.0018 0.83331655.409 0.00065 0.849837 656.39 715 650 585 520 455 390-325V (tonnef) 260 195 130 65 0.34 0.425 0.51 0.595 0.68 0.765 0.85 0.17 0.255 0.085

D (m) Curva de Capacidad -Direccion X-X

1.2. Curva de Capacidad en formato ADRS

PF1 = 256.206	Factor de participación modal para el modo predominante	
$\alpha 1 = 0.794$	Coeficiente de masa modal para el modo predominante	
$\phi = 0.00525$	Amplitud del modo predominante en el nivel del techo	
$W = 847.546 \ tonnef$	Peso	

$$S_a \coloneqq \frac{V}{W \cdot \alpha 1} \cdot g$$
 $S_d \coloneqq \frac{D}{PF1 \cdot \phi}$

Espectro de Capacidad -Direccion X-X

2. Sismo de Diseño

2.1 Espectro de respuesta en formato ADRS

Espectro de Respuesta Elástico Sismo de Diseño -Direccion X-X

Espectro de Respuesta Elástico Sismo de Diseño ADRS(inicial)-Direccion X-X

2.1 Representación Bilineal del Espectro de Capacidad

Verificacion de areas iguales n := 11

$$\begin{split} A_{CB} &\coloneqq \int_{0}^{d_{pi}} CB\left(x\right) \, \mathrm{d}x = 0.079 \, g \cdot m \\ A_{Esp} &\coloneqq \sum_{i=1}^{n-1} \frac{\left(S_{a_{i+1}} + S_{a_{i}}\right)}{2} \cdot \left(S_{d_{i+1}} - S_{d_{i}}\right) + \frac{\left(a_{pi} + S_{a_{n}}\right)}{2} \cdot \left(d_{pi} - S_{d_{n}}\right) = 0.079 \, g \cdot m \\ Error &\coloneqq \frac{A_{CB} - A_{Esp}}{A_{Esp}} \cdot 100 = 0.026 \end{split}$$

2.2. Reducción de la demanda por efectos no lineales

$$\begin{array}{ll} \text{Rigidez post elástica} & \alpha \coloneqq \frac{\left(\frac{a_{pi} - a_{y}}{d_{pi} - d_{y}}\right)}{\left(\frac{a_{y}}{d_{y}}\right)} = 0.418 & \text{Ductilidad} & \mu \coloneqq \frac{d_{pi}}{d_{y}} = 1.656 \\ \end{array}$$

$$\begin{array}{ll} \text{Periodo efectivo} & T_{o} \coloneqq 2 \cdot \pi \cdot \sqrt{\frac{d_{y}}{a_{y}}} = 0.893 \ s \\ \end{array}$$

$$\begin{array}{ll} T_{eff} \coloneqq \left\| \begin{array}{c} \text{if } 1 < \mu < 4 \\ \left\| T_{eff} \leftarrow \left(0.2 \cdot \left(\mu - 1\right)^{2} - 0.038 \cdot \left(\mu - 1\right)^{2} + 1\right) \cdot T_{o} \right\| \\ \text{if } 4 < \mu < 6.5 \\ \left\| T_{eff} \leftarrow \left(0.28 + 0.13 \cdot \left(\mu - 1\right) + 1\right) \cdot T_{o} \right\| \\ \text{if } \mu > 6.5 \\ \left\| T_{eff} \leftarrow \left(0.89 \cdot \left(\sqrt{\frac{(\mu - 1)}{1 + 0.05 \cdot \left(\mu - 2\right)}} - 1\right) + 1\right) \cdot T_{o} \right\| \\ T_{eff} = 0.955 \ s \end{array}$$

Amortiguamiento efectivo $\beta_o = 5$

$$\begin{split} \beta_{eff} \coloneqq & \text{ if } 1 < \mu < 4 \\ & \left\| \beta_{eff} \leftarrow 4.9 \cdot (\mu - 1)^2 - 1.1 \cdot (\mu - 1)^3 + \beta_o \right\| \\ & \text{ if } 4 < \mu < 6.5 \\ & \left\| \beta_{eff} \leftarrow 14 + 0.32 \cdot (\mu - 1) + \beta_o \right\| \\ & \text{ if } \mu > 6.5 \\ & \left\| \beta_{eff} \leftarrow 19 \cdot \left(\frac{0.64 \cdot (\mu - 1) - 1}{0.64 \cdot (\mu - 1)^2} \right) \cdot \left(\frac{T_{eff}}{T_o} \right)^2 + \beta_o \right\| \\ & \beta_{eff} \end{split}$$

Factor de Reducción Espectral $B \coloneqq \frac{4}{5.6 - \ln \left(\beta_{eff}\right)} = 1.086021$

Coefficiente M
$$M \coloneqq \left(\frac{T_{eff}}{T_o}\right)^2 \cdot \left(\frac{1 + \alpha \cdot (\mu - 1)}{\mu}\right) = 0.880337$$

2.3. Espectro de demanda reducido por efectos no lineales

$$\begin{split} T &\coloneqq \left\| \begin{array}{c} \text{for } i \in 1 \dots 210 \\ \left\| \begin{array}{c} T_i \leftarrow (i \cdot 0.01 - 0.01) \, s \\ T \end{array} \right\| \\ S_{Dd} &\coloneqq \left\| \begin{array}{c} \text{for } i \in 1 \dots 210 \\ \left\| \begin{array}{c} S_{Ad} \coloneqq \left\| \begin{array}{c} \text{for } i \in 1 \dots 210 \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} \text{if } T_i > Tc \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \left\| \begin{array}{c} S_{Ad} \leftarrow \frac{\tau \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T_i}\right)^r}{B} \\ \left\| \left\| \left\| \left\|$$

232

Espectro de Respuesta Elástico Sismo de Diseño (ADRS $\langle \beta_{eff} \rangle$) -Direccion X-X 2.4. Espectro de demanda modificado a partir de espectro reducido por efectos no lineales

Espectro de Respuesta Elástico Sismo de Diseño (MADRS) -Direccion X-X

3. Punto de Desempeño

Punto de desempeño para el nivel de demanda sísmica de diseño en la dirección X-X

El punto de desempeño de prueba a_{pi}, d_{pi} es aceptable si: 0.95 $d_{pi} \le d_i \le 1.05 \ d_{pi}$

 $d_{pi} = 0.186 \ m$ $a_{pi} = 0.721 \ g$ $d_i := 0.193 \ m$

 $Error \coloneqq \text{if} (0.95 \ d_{pi} \le d_i \le 1.05 \ d_{pi}, \text{``OK''}, \text{``Nuevo punto de prueba''})$

Error = "OK"

4. Resultados

$T_o = 0.893 \ s$	$\alpha = 0.418$	$a_p = a_{pi} = 0.72$	21 g
$T_{eff} = 0.955 \ s$ $\beta_{eff} = 6.799$	$\mu\!=\!1.656$	$d_p \! \coloneqq \! d_{pi} \! = \! 0.18$	86 m
Punto de desempeño	$\varDelta_{\!d}\!\coloneqq\!d_p\!\cdot\!I$	$PF1 \cdot \phi = 0.249 \ m$	$V_d \coloneqq a_{pi} \cdot \alpha 1 \cdot \frac{W}{g} = 485.342 \ tonnef$

5. En la dirección Y-Y se hizo el mismo procedimiento

EDIFICIO 3 PISOS CON COLUMNAS TUBULARES DIRECCIÓN X-X

1. Conversión de la Curva de Capacidad en Espectro de Capacidad

1.1. Curva de Capacidad

1.2. Curva de Capacidad en formato ADRS

PF1 = 5.699	Factor de participación modal para el modo predominante
$\alpha 1 = 0.833$	Coeficiente de masa modal para el modo predominante
$\phi = 0.2355$	Amplitud del modo predominante en el nivel del techo
$W = 375.364 \ tonnef$	Peso

$$S_a \coloneqq \frac{V}{W \cdot \alpha 1} \cdot g$$
 $S_d \coloneqq \frac{D}{PF1 \cdot \phi}$

2. Sismo de Diseño

2.1 Espectro de respuesta en formato ADRS

Espectro de Respuesta Elástico Sismo de Diseño -Direccion X-X

Espectro de Respuesta Elástico Sismo de Diseño ADRS(inicial)-Direccion X-X 2.1 Representación Bilineal del Espectro de Capacidad

Verificacion de areas iguales $n \coloneqq 7$

$$\begin{split} A_{CB} &\coloneqq \int_{0}^{d_{pi}} CB\left(x\right) \, \mathrm{d}x = 0.0552 \; g \cdot m \\ A_{Esp} &\coloneqq \sum_{i=1}^{n-1} \frac{\left(S_{a_{i+1}} + S_{a_{i}}\right)}{2} \cdot \left(S_{d_{i+1}} - S_{d_{i}}\right) + \frac{\left(a_{pi} + S_{a_{n}}\right)}{2} \cdot \left(d_{pi} - S_{d_{n}}\right) = 0.0552 \; g \cdot m \\ Error &\coloneqq \frac{A_{CB} - A_{Esp}}{A_{Esp}} \cdot 100 = 0.023 \end{split}$$

2.2. Reducción de la demanda por efectos no lineales

$$\begin{array}{ll} \mbox{Rigidez post elástica} & \alpha \coloneqq \displaystyle \frac{\left(\displaystyle \frac{a_{pi} - a_y}{d_{pi} - d_y} \right)}{\left(\displaystyle \frac{a_y}{d_y} \right)} = 0.659 & \mbox{Ductilidad} & \mu \coloneqq \displaystyle \frac{d_{pi}}{d_y} = 1.528 \\ \mbox{Periodo efectivo} & T_o \coloneqq 2 \cdot \pi \cdot \sqrt{\displaystyle \frac{d_y}{a_y}} = 0.561 \ s \\ & T_{eff} \coloneqq \left\| \begin{array}{l} \mbox{if } 1 < \mu < 4 \\ \left\| \left\| T_{eff} \leftarrow \left(0.2 \cdot \left(\mu - 1 \right)^2 - 0.038 \cdot \left(\mu - 1 \right)^2 + 1 \right) \cdot T_o \right\| \\ \mbox{if } 4 < \mu < 6.5 \\ \left\| \left\| T_{eff} \leftarrow \left(0.28 + 0.13 \cdot \left(\mu - 1 \right) + 1 \right) \cdot T_o \right\| \\ \mbox{if } \mu > 6.5 \\ \left\| \left\| T_{eff} \leftarrow \left(0.89 \cdot \left(\sqrt{\displaystyle \frac{\left(\mu - 1 \right)}{1 + 0.05 \cdot \left(\mu - 2 \right)}} - 1 \right) + 1 \right) \cdot T_o \right\| \\ & T_{eff} \end{array} \right\| \\ \end{array} \right\|$$

Amortiguamiento efectivo $\beta_o = 5$

$$\begin{split} \beta_{eff} \coloneqq & \left| \begin{array}{c} \text{if } 1 < \mu < 4 \\ & \left\| \beta_{eff} \leftarrow 4.9 \cdot \left(\mu - 1\right)^2 - 1.1 \cdot \left(\mu - 1\right)^3 + \beta_o \right| \\ & \text{if } 4 < \mu < 6.5 \\ & \left\| \beta_{eff} \leftarrow 14 + 0.32 \cdot \left(\mu - 1\right) + \beta_o \right| \\ & \text{if } \mu > 6.5 \\ & \left\| \beta_{eff} \leftarrow 19 \cdot \left(\frac{0.64 \cdot \left(\mu - 1\right) - 1}{0.64 \cdot \left(\mu - 1\right)^2} \right) \cdot \left(\frac{T_{eff}}{T_o} \right)^2 + \beta_o \right| \\ & \beta_{eff} \end{split} \right|$$

Factor de Reducción Espectral $B \coloneqq \frac{4}{5.6 - \ln \left(\beta_{eff}\right)} = 1.06$

Coefficiente M
$$M \coloneqq \left(\frac{T_{eff}}{T_o}\right)^2 \cdot \left(\frac{1 + \alpha \cdot (\mu - 1)}{\mu}\right) = 0.964$$

2.3. Espectro de demanda reducido por efectos no lineales

$$\begin{split} T \coloneqq \left\| \begin{array}{c} \text{for } i \in 1 \dots 210 \\ \left\| \begin{array}{c} T_i \leftarrow (i \cdot 0.01 - 0.01) \, s \\ T \end{array} \right\| \\ S_{Dd} \coloneqq \left\| \begin{array}{c} \text{for } i \in 1 \dots 210 \\ \left\| \begin{array}{c} S_{Ad} \coloneqq \left\| \begin{array}{c} \text{for } i \in 1 \dots 210 \\ \left\| \begin{array}{c} S_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad$$

Espectro de Respuesta Elástico Sismo de Diseño (ADRS (β_{eff})) -Direccion X-X

2.4. Espectro de demanda modificado a partir del espectro reducido por efectos no lineales

Espectro de Respuesta Elástico Sismo de Diseño (MADRS) -Direccion X-X

3. Punto de Desempeño

Punto de desempeño para el nivel de demanda sísmica de diseño en la dirección X-X

 $d_i := 0.097 \ m$

Error = "OK"

El punto de desempeño de prueba a_{pi}, d_{pi} es aceptable si: 0.95 $d_{pi} \le d_i \le 1.05 d_{pi}$

 $d_{pi}\!=\!0.095~m \qquad \qquad a_{pi}\!=\!1.07~g$

 $Error \coloneqq \text{if} \left(0.95 \ d_{pi} \le d_i \le 1.05 \ d_{pi} \,, \text{``OK''} \,, \text{``Nuevo punto de prueba''} \right)$

4. Resultados

$T_o = 0.561 \ s$	$\alpha = 0.659$	$a_p := a_{pi} = 1.07$	7 g
$T_{e\!f\!f}\!=\!0.587\;s$	$\mu\!=\!1.528$	$d_p := d_{pi} = 0.09$	95 m
$\beta_{eff}\!=\!6.205$			
Punto de desempeño	$\varDelta_d \coloneqq d_p \cdot I$	$PF1 \cdot \phi = 0.127 \ m$	$V_d \coloneqq a_{pi} \cdot \alpha 1 \cdot \frac{W}{g} = 334.602 \ tonnef$

5. En la dirección Y-Y se hizo el mismo procedimiento

EDIFICIO 6 PISOS CON COLUMNAS TUBULARES DIRECCIÓN X-X

1. Conversión de la Curva de Capacidad en Espectro de Capacidad

1.1. Curva de Capacidad

Curva de Capacidad -Direccion X-X

1.2. Curva de Capacidad en formato ADRS

PF1 = 257.835Factor de participación modal para el modo predominante $\alpha 1 = 0.807$ Coeficiente de masa modal para el modo predominante $\phi = 0.00517$ Amplitud del modo predominante en el nivel del techo $W = 834.349 \ tonnef$ Peso

$$S_a \coloneqq \frac{V}{W \cdot \alpha 1} \cdot g$$
 $S_d \coloneqq \frac{D}{PF1 \cdot \phi}$

Espectro de Capacidad -Direccion X-X

2. Sismo de Diseño

2.1 Espectro de respuesta en formato ADRS

Espectro de Respuesta Elástico Sismo de Diseño -Direccion X-X

Espectro de Respuesta Elástico Sismo de Diseño ADRS(inicial)-Direccion X-X

2.1 Representación Bilineal del Espectro de Capacidad

Verificacion de areas iguales n = 10

$$\begin{split} A_{CB} &\coloneqq \int_{0}^{d_{pi}} CB\left(x\right) \, \mathrm{d}x = 0.0796 \, g \cdot m \\ A_{Esp} &\coloneqq \sum_{i=1}^{n-1} \frac{\left(S_{a_{i+1}} + S_{a_{i}}\right)}{2} \cdot \left(S_{d_{i+1}} - S_{d_{i}}\right) + \frac{\left(a_{pi} + S_{a_{n}}\right)}{2} \cdot \left(d_{pi} - S_{d_{n}}\right) = 0.0795 \, g \cdot m \\ Error &\coloneqq \frac{A_{CB} - A_{Esp}}{A_{Esp}} \cdot 100 = 0.188 \end{split}$$

2.2. Reducción de la demanda por efectos no lineales

$$\begin{array}{ll} \text{Rigidez post elástica} & \alpha \coloneqq \frac{\left(\frac{a_{pi} - a_{y}}{d_{pi} - d_{y}}\right)}{\left(\frac{a_{y}}{d_{y}}\right)} = 0.441 & \text{Ductilidad} & \mu \coloneqq \frac{d_{pi}}{d_{y}} = 1.597 \\ \text{Periodo efectivo} & T_{o} \coloneqq 2 \cdot \pi \cdot \sqrt{\frac{d_{y}}{a_{y}}} = 0.898 \ s \\ \hline T_{eff} \coloneqq \left\| \begin{array}{c} \text{if } 1 < \mu < 4 \\ \left\| T_{eff} \leftarrow \left(0.2 \cdot \left(\mu - 1\right)^{2} - 0.038 \cdot \left(\mu - 1\right)^{2} + 1\right) \cdot T_{o} \right\| \\ \text{if } 4 < \mu < 6.5 \\ \left\| T_{eff} \leftarrow \left(0.28 + 0.13 \cdot \left(\mu - 1\right) + 1\right) \cdot T_{o} \right\| \\ \text{if } \mu > 6.5 \\ \left\| T_{eff} \leftarrow \left(0.89 \cdot \left(\sqrt{\frac{(\mu - 1)}{1 + 0.05 \cdot (\mu - 2)}} - 1\right) + 1\right) \cdot T_{o} \right\| \\ T_{eff} = 0.95 \ s \end{array} \right\| \\ \text{Amortiguamiento efectivo} \quad (\beta := 5) \end{array}$$

Amortiguamiento efectivo $\beta_o = 5$

$$\begin{split} \beta_{eff} &\coloneqq \left\| \begin{array}{l} & \text{if } 1 < \mu < 4 \\ & \left\| \beta_{eff} \leftarrow 4.9 \cdot \left(\mu - 1\right)^2 - 1.1 \cdot \left(\mu - 1\right)^3 + \beta_o \right| \\ & \text{if } 4 < \mu < 6.5 \\ & \left\| \beta_{eff} \leftarrow 14 + 0.32 \cdot \left(\mu - 1\right) + \beta_o \right| \\ & \text{if } \mu > 6.5 \\ & \left\| \beta_{eff} \leftarrow 19 \cdot \left(\frac{0.64 \cdot \left(\mu - 1\right) - 1}{0.64 \cdot \left(\mu - 1\right)^2} \right) \cdot \left(\frac{T_{eff}}{T_o} \right)^2 + \beta_o \right| \\ & \beta_{eff} \end{split} \right\|$$

Factor de Reducción Espectral B

$$B := \frac{4}{5.6 - \ln (\beta_{eff})} = 1.073$$

Coeficiente de Modificación M

$$M \! \coloneqq \! \left(\frac{T_{eff}}{T_o} \right)^2 \cdot \! \left(\frac{1 + \alpha \cdot \left(\mu - 1 \right)}{\mu} \right) \! = \! 0.885$$

2.3. Espectro de demanda reducido por efectos no lineales

$$\begin{split} T \coloneqq \left\| \begin{array}{c} \text{for } i \in 1 \dots 210 \\ \left\| \begin{array}{c} T_i \leftarrow (i \cdot 0.01 - 0.01) \, s \\ T \end{array} \right\| \\ S_{Dd} \coloneqq \left\| \begin{array}{c} \text{for } i \in 1 \dots 210 \\ \left\| \begin{array}{c} S_{Ad} \coloneqq \left\| \begin{array}{c} \text{for } i \in 1 \dots 210 \\ \left\| \begin{array}{c} S_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} S_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad_i} \leftarrow \frac{\eta \cdot Z \cdot Fa}{B} \\ \left\| \begin{array}{c} s_{Ad$$

Espectro de Respuesta Elástico Sismo de Diseño (ADRS $\langle \beta_{eff} \rangle$) -Direccion X-X

2.4. Espectro de demanda modificado a partir del espectro reducido por efectos no lineales

Espectro de Respuesta Elástico Sismo de Diseño (MADRS) -Direccion X-X

3. Punto de Desempeño

Punto de desempeño para el nivel de demanda sísmica de diseño en la dirección X-X

El punto de desempeño de prueba a_{pi}, d_{pi} es aceptable si: 0.95 $d_{pi} \le d_i \le 1.05 d_{pi}$

 $d_{pi} = 0.186 \ m$ $a_{pi} = 0.735 \ g$ $d_i := 0.185 \ m$

Error = "OK"

 $Error \coloneqq \text{if} \left(0.95 \ d_{pi} \le d_i \le 1.05 \ d_{pi}, \text{``OK''}, \text{``Nuevo punto de prueba''} \right)$

4. Resultados

$T_o = 0.898 \ s$	$\alpha = 0.441$	$a_p := a_{pi} = 0.73$	35 g
$T_{eff} = 0.95 \ s$ $\beta_{eff} = 6.51$	$\mu\!=\!1.597$	$d_p := d_{pi} = 0.18$	36 m
Punto de desempeño	$\varDelta_d\!\coloneqq\! d_p\!\cdot\! I$	$PF1 \cdot \phi = 0.248 \ m$	$V_d \coloneqq a_{pi} \cdot \alpha 1 \cdot \frac{W}{g} = 494.66 \ tonnes$

5. En la dirección Y-Y se hizo el mismo procedimiento

ANEX0 E.2. MÉTODO DE LOS COEFICIENTES EDIFICIO 3 PISOS CON COLUMNAS CRUCIFORMES DIRECCIÓN X-X

1. Sismo de Diseño

1.1 Espectro de respuesta elástico Z = 0.4 g $Tc = 0.698 \ s$ $To = 0.127 \ s$ $S_A(T) := if\left(T < Tc, \eta \cdot Z \cdot Fa, \eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T}\right)^r\right)$ 1.2 Representacion Bilineal de la Curva de Capacidad $K_i := \frac{V_2 - V_1}{\Delta - \Delta} = 3041.898 \frac{tonnef}{m}$ Rigidez inicial $\Delta_p := 0.124 \ m$ $V_p := 330.108 \ tonnef$ Desplazamiento objetivo Cortante basal fluencia V_v = 250.110 tonnef Rigidez efectiva $0.6 \cdot V_v = 150.066 \ tonnef$ $\Delta_{0.6Vy} \coloneqq \frac{\Delta_2 - \Delta_1}{V_2 - V_1} \cdot \left(0.6 \cdot V_y - V_1\right) + \Delta_1 = 0.049 \ m \quad K_c \coloneqq \frac{0.6 \cdot V_y}{\Delta_{0.6Vy}} = 3038.763 \ \frac{tonnef}{m}$ $\Delta_y := \frac{V_y}{K} = 0.082 \ m$ $V_y = 250.11 \ tonnef$ Punto de fluencia $x \coloneqq 0 \ m, 0.001 \ m \dots \Delta_p \qquad CB1(x) \coloneqq \left\| if\left(x \le \Delta_y, K_e \cdot x, \left(\frac{V_p - V_y}{\Delta_p - \Delta_y} \right) \cdot (x - \Delta_y) + V_y \right) \right\|$ Curva Bilineal 450 405 360 315 270 V (tonnef 180 CB1(x) (tonnef) 135 90 45 13.5 22.5 40.5 49.5 4.5 31.5 45

 Δ (cm) x (cm)

Verificación de areas iguales n = 7

$$\begin{split} A_{CB} &\coloneqq \int_{0}^{2^{p}} CB1\left(x\right) \, \mathrm{d}x = 22.3885 \ tonnef \cdot m \\ A_{Esp} &\coloneqq \sum_{i=1}^{n-1} \frac{\left(V_{i+1} + V_{i}\right)}{2} \cdot \left(\Delta_{i+1} - \Delta_{i}\right) + \frac{\left(V_{p} + V_{n}\right)}{2} \cdot \left(\Delta_{p} - \Delta_{n}\right) = 22.3867 \ tonnef \cdot m \end{split}$$

$$Error \coloneqq \frac{A_{CB} - A_{Esp}}{A_{Esp}} \cdot 100 = 0.008$$

1.3 Desplazamiento objetivo

Rigidez lateral elástica inicial	K = 3041 898 tonnef
regidez lateral elastica micial	m m
Rigidez lateral efectiva	$K_e\!=\!3038.763\frac{tonnef}{m}$
Periodo elastico fundamental	$T_i\!\coloneqq\!T_o\!=\!0.557\;s$
Periodo fundamental efectivo	$T_e \coloneqq T_i \cdot \sqrt{\frac{K_i}{K_e}} = 0.557 \ s$
Aceleracion espectral	$S_A := S_A \left(T_e \right) = 1.19 \ g$

Co: factor de modificación que relaciona el desplazamiento de SDOP a un MDOF

PF1 = 5.557 $\phi = 0.241$ $C_o := PF1 \cdot \phi = 1.337$

C1: factor de modificación que relaciona el desplazamiento máximo inelástico con el elástico

Facto	r de sitio	a := 60 Tab	Facto le 7-4. Values for	r de masa e Effective Mass Fi	fectiva $C_m \coloneqq$	0.9	
No. of Stories	Concrete Moment Frame	Concrete Shear Wall	Concrete Pier-Spandrel	Steel Moment Frame	Steel Concentrically Braced Frame	Steel Eccentrically Braced Frame	Other
1-2	1.0	1.0	1.0	1.0	1.0	1.0	1.0
3 or more	0.9	0.8	0.8	0.9	0.9	0.9	1.0

NOTE: Ca shall be taken as 1.0 if the fundamental period, T, in the direction of response under consideration is greater than 1.0 s.

$$\mu_{strength} \coloneqq \frac{S_A}{\frac{V_g}{W}} \cdot C_m \cdot g^{-1} = 1.615 \qquad \qquad C_1 \coloneqq 1 + \frac{\mu_{strength} - 1}{a \cdot T_e^{-2} \cdot s^{-2}} = 1.033$$

C2: factor modificación que representa la degradación de rigidez y deterioro de resistencia

$$\begin{array}{c} C_2 \coloneqq & \text{if } T_e \! > \! 0.7 \; s \\ & \parallel C_2 \leftarrow 1 \\ & \text{else} \\ & \parallel \\ C_2 \leftarrow 1 + \frac{1}{800} \cdot \frac{\left(\frac{\mu_{strength} - 1}{T_e} \right)^2}{s^{-2}} \end{array} \end{vmatrix} = 1.002$$

2. Desplazamiento objetivo $\delta_t = C_o \cdot C_1 \cdot C_2 \cdot S_A \cdot \frac{T_e^2}{4 \cdot \pi^2} = 0.127 m$

 $Error \coloneqq \mathrm{if} \left(\delta_t > 0.95 \boldsymbol{\cdot} \varDelta_p \wedge \delta_t < 1.05 \boldsymbol{\cdot} \varDelta_p \,, \, \mathrm{``OK''} \,, \, \mathrm{``Nuevo} \, \Delta p \; \mathrm{''} \right) = \mathrm{``OK''}$

3. Resultados $\delta_t = 0.127 \ m$ $V_p = 330.108 \ tonnef$

En la dirección Y-Y se realizo el mismo procedimiento

EDIFICIO 6 PISOS CON COLUMNAS CRUCIFORMES DIRECCIÓN X-X

1. Sismo de Diseño

1.1 Espectro de respuesta elástico Z=0.4 g

 $Tc = 0.698 \ s$

 $To = 0.127 \ s$

$$S_A(T) \coloneqq \inf \left(T < Tc, \eta \cdot Z \cdot Fa, \eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T} \right)^r \right)$$

1.2 Representacion Bilineal de la Curva de Capacidad

 $K_i := \frac{V_2 - V_1}{\Delta_1 - \Delta_2} = 2530.562 \frac{tonnef}{m}$ Rigidez inicial $\Delta_p := 0.251 \ m$ $V_p := 485.787 \ tonnef$ Desplazamiento objetivo Cortante basal de fluencia V_u = 381.888 tonnef Rigidez efectiva $0.6 \cdot V_u = 229.133$ tonnef $\Delta_{0.6Vy} \coloneqq \frac{\Delta_{2} - \Delta_{1}}{V_{1} - V_{1}} \cdot \left(0.6 \cdot V_{y} - V_{1}\right) + \Delta_{1} = 0.09 \ m \qquad K_{e} \coloneqq \frac{0.6 \cdot V_{y}}{\Delta_{0.6Vy}} = 2535.126 \ \frac{tonnef}{m}$ $\Delta_y \coloneqq \frac{V_y}{K_z} = 0.151 \ m$ $V_y = 381.888 \ tonnef$ Punto de fluencia $x \coloneqq 0 \quad m, 0.001 \quad m \dots \Delta_p \qquad CB1(x) \coloneqq \left\| if\left(x \le \Delta_y, K_c \cdot x, \left(\frac{V_y - V_y}{\Delta_p - \Delta_y} \right) \cdot (x - \Delta_y) + V_y \right) \right\|$ Curva Bilineal 715 654 585 529 455 390 V (tonnef)325 CB1 (x) (tonnef) 260 195 130 63 59.5 68 76.5 25.5 34 42.5 51 185 8.5 17 Δ (cm) x (cm)

A

$$\begin{split} A_{CB} &\coloneqq \int_{0}^{r} CB1\left(x\right) \, \mathrm{d}x = 72.3039 \ tonnef \cdot m \\ A_{Esp} &\coloneqq \sum_{i=1}^{n-1} \frac{\left(V_{i+1} + V_{i}\right)}{2} \cdot \left(\Delta_{i+1} - \Delta_{i}\right) + \frac{\left(V_{p} + V_{n}\right)}{2} \cdot \left(\Delta_{p} - \Delta_{n}\right) = 72.3026 \ tonnef \cdot m \end{split}$$

11

$$Error \coloneqq \frac{A_{CB} - A_{Esp}}{A_{Esp}} \cdot 100 = 0.002$$

1.3 Desplazamiento objetivo

Rigidez lateral elástica inicial	$K = 2530 562 \frac{tonnef}{c}$
regidez interni clustica interni	n;=2000.002 m
Rigidez lateral efectiva	$K_e \!=\! 2535.126 \frac{tonnef}{m}$
Periodo elástico fundamental	$T_i\!\coloneqq\!T_o\!=\!0.893\;s$
Periodo fundamental efectivo	$T_e \coloneqq T_i \star \sqrt{\frac{K_i}{K_e}} = 0.892 \ s$
Aceleracion espectral	$S_{A} \coloneqq S_{A} \left(T_{e}\right) = 0.932 \ g$

Co: factor de modificación que relaciona el desplazamiento de SDOP a un MDOF

PF1 = 256.206 $\phi = 0.005$ $C_o := PF1 \cdot \phi = 1.344$

C1: factor modificación que relaciona el desplazamiento máximo inelástico con el elástico

Factor de sitio	a = 60	Fa	actor de masa	a efectiva	$C_{m} = 0.9$
		Table 7-4. Valu	es for Effective Man	is Factor C.	

No. of Stories	Concrete Moment Frame	Concrete Shear Wall	Concrete Pier-Spandrel	Steel Moment Frame	Steel Concentrically Braced Frame	Steel Eccentrically Braced Frame	Other
1-2	1.0	1.0	1.0	1.0	1.0	1.0	1.0
3 or more	0.9	0.8	0.8	0.9	0.9	0.9	1.0

KOTE: Cn shall be taken as 1.0 if the fundamental period, T, in the direction of response under consideration is greater than 1.0 s.

$$\mu_{strength} \coloneqq \frac{S_A}{\frac{V_y}{W}} \cdot C_m \cdot g^{-1} = 1.861 \qquad \qquad C_1 \coloneqq 1 + \frac{\mu_{strength} - 1}{a \cdot T_e^{-2} \cdot s^{-2}} = 1.018$$

= 1

C2: factor modificación que representa la degradacion de rigidez y deterioro de resistencia

$$\begin{split} C_2 \coloneqq & \text{if } T_e > 0.7 \ s \\ & \| C_2 \leftarrow 1 \\ \text{else} \\ & \| C_2 \leftarrow 1 + \frac{1}{800} \cdot \frac{\left(\frac{\mu_{strength} - 1}{T_e} \right)^2}{s^{-2}} \end{split}$$

2. Desplazamiento objetivo $\delta_t \coloneqq C_o \cdot C_1 \cdot C_2 \cdot S_A \cdot \frac{T_e^2}{4 \cdot \pi^2} = 0.252 \ m$

 $Error \coloneqq \text{if} \left(\delta_t > 0.95 \cdot \Delta_p \land \delta_t < 1.05 \cdot \Delta_p, \text{``OK''}, \text{``Nuevo} \Delta p \ '' \right) = \text{``OK''}$

3. Resultados $\delta_t = 0.252 m$ $V_p = 485.787 tonnef$

En la dirección Y-Y se realizo el mismo procedimiento

EDIFICIO 3 PISOS CON COLUMNAS **TUBULARES DIRECCIÓN X-X**

1. Sismo de Diseño

1.1 Espectro de respuesta elástico Z = 0.4 g

$$S_A(T) \coloneqq \operatorname{if}\left(T < Tc, \eta \cdot Z \cdot Fa, \eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{T}\right)^r\right)$$

1.2 Representacion Bilineal de la Curva de Capacidad

- $K_{i} \coloneqq \frac{V_{2} V_{1}}{\Delta_{2} \Delta_{1}} = 2978.764 \ \frac{tonnef}{m}$ Rigidez inicial Desplazamiento objetivo $\Delta_p \coloneqq 0.128 \ m$ $V_p \coloneqq 335.018 \ tonnef$
- $V_y := 249.103 \ tonnef$ Cortante basal fluencia

Rigidez efectiva $0.6 \cdot V_y = 149.462 \text{ tonnef}$

$$\begin{split} \Delta_{0.6Vy} &\coloneqq \frac{\Delta_2 - \Delta_1}{V_2 - V_1} \cdot \left(0.6 \cdot V_y - V_1\right) + \Delta_1 = 0.05 \ m \qquad K_e \coloneqq \frac{0.6 \cdot V_y}{\Delta_{0.6Vy}} = 2978.828 \ \frac{tonnef}{m} \\ \Delta_y &\coloneqq \frac{V_y}{K_e} = 0.084 \ m \qquad V_y = 249.103 \ tonnef \end{split}$$

 $Tc = 0.698 \ s$

 $To = 0.127 \ s$

Punto de fluencia

 $x \coloneqq 0 \ m, 0.001 \ m..\Delta_p$ $CB1(x) \coloneqq \left\| if\left(x \le \Delta_y, K_x \cdot x, \left(\frac{V_p - V_y}{\Delta_p - \Delta_y}\right) \cdot (x - \Delta_y) + V_y\right) \right\|$ Curva Bilineal

Verificacion de areas iguales n := 7

$$A_{CB} \coloneqq \int_{0}^{\Delta_{p}} CB1(x) \, \mathrm{d}x = 23.3757 \, tonnef \cdot m$$
$$A_{Esp} \coloneqq \sum_{i=1}^{n-1} \frac{\left(V_{i+1} + V_{i}\right)}{2} \cdot \left(\Delta_{i+1} - \Delta_{i}\right) + \frac{\left(V_{p} + V_{n}\right)}{2} \cdot \left(\Delta_{p} - \Delta_{n}\right) = 23.3706 \, tonnef \cdot m$$

$$Error \coloneqq \frac{A_{CB} - A_{Esp}}{A_{Esp}} \cdot 100 = 0.022$$

1.3 Desplazamiento objetivo

K - 2978 764 tonnef
m m
$K = 2978.828 \frac{tonnef}{c}$
m
$T_i\!\coloneqq\! T_o\!=\!0.561~s$
$T_e\!\coloneqq\!T_i\!\cdot\!\sqrt{\frac{K_i}{K_e}}\!=\!0.561~s$
$S_{A} := S_{A} \left(T_{e} \right) = 1.19 \ g$

Co: factor de modificación que relaciona el desplazamiento de SDOP a un MDOF

 $PF1 = 5.699 \qquad \phi = 0.235 \qquad C_o \coloneqq PF1 \star \phi = 1.342$

C1: factor modificación que relaciona el desplazamiento maximo inelástico con el elástico

Factor de sitio a = 60 Factor de masa efectiva $C_m = 0.9$ Table 7-4. Values for Effective Mass Factor C_n

No. of Stories	Concrete Moment Frame	Concrete Shear Wall	Concrete Pier-Spandrel	Steel Moment Frame	Steel Concentrically Braced Frame	Steel Eccentrically Braced Frame	Other
1-2	1.0	1.0	1.0	1.0	1.0	1.0	1.0
3 or more	0.9	0.8	0.8	0.9	0.9	0.9	1.0

NOTE: Ca shall be taken as 1.0 if the fundamental period, T, in the direction of response under consideration is greater than 1.0 s.

= 1.001

$$\mu_{strength} \coloneqq \frac{S_A}{\frac{V_y}{W}} \cdot C_m \cdot g^{-1} = 1.614 \qquad C_1 \coloneqq 1 + \frac{\mu_{strength} - 1}{a \cdot T_e^{-2} \cdot s^{-2}} = 1.033$$

C2: factor modificación que representa la degradación de rigidez y deterioro de resistencia

2. Desplazamiento objetivo $\delta_t = C_o \cdot C_1 \cdot C_2 \cdot S_A \cdot \frac{T_e^2}{4 \cdot \pi^2} = 0.129 m$

 $Error \coloneqq \mathrm{if} \left(\delta_t > 0.95 \boldsymbol{\cdot} \varDelta_p \wedge \delta_t < 1.05 \boldsymbol{\cdot} \varDelta_p \,, \text{``OK''} \,, \text{``Nuevo} \, \Delta \mathrm{p} \; \text{''} \right) = \text{``OK''}$

3. Resultados $\delta_t = 0.129 \ m$ $V_p = 335.018 \ tonnef$

En la dirección Y-Y se realizo el mismo procedimiento

EDIFICIO 6 PISOS CON COLUMNAS TUBULARES DIRECCIÓN X-X

1. Sismo de Diseño

1.1 Espectro de respuesta elástico Z=0.4 g

$$S_A(T) \coloneqq \inf \left(T < Tc, \eta \cdot Z \cdot Fa, \eta \cdot Z \cdot Fa \cdot \left(\frac{Tc}{Tc}\right)^r \right)$$

 $Tc = 0.698 \ s$

 $To = 0.127 \ s$

- 1.2 Representacion Bilineal de la Curva de Capacidad
 - Rigidez inicial $K_i \coloneqq \frac{V_2 V_1}{\Delta_2 \Delta_1} = 2520.391 \frac{tonnef}{m}$ Desplazamiento objetivo $\Delta_p \coloneqq 0.251 \ m$ $V_p \coloneqq 494.985 \ tonnef$

Cortante basal de fluencia V_n = 397.088 tonnef

Rigidez efectiva

 $0.6 \cdot V_y = 238.253 \ tonnef$

$$\begin{split} & \Delta_{0.6Vy} \coloneqq \frac{\Delta_2 - \Delta_1}{V_2 - V_1} \cdot \left(0.6 \cdot V_y - V_1 \right) + \Delta_1 = 0.094 \ m \quad K_e \coloneqq \frac{0.6 \cdot V_y}{\Delta_{0.6Vy}} = 2526.377 \ \frac{tonnef}{m} \\ & \Delta_y \coloneqq \frac{V_y}{K_e} = 0.157 \ m \qquad V_y = 397.088 \ tonnef \\ & x \coloneqq 0 \ m, 0.001 \ m \dots \Delta_p \quad CB1 \ (x) \coloneqq \left\| \inf \left(x \le \Delta_y, K_e \cdot x, \left(\frac{V_p - V_y}{\Delta_p - \Delta_y} \right) \cdot \left(x - \Delta_y \right) + V_y \right) \right\| \end{split}$$

Punto de fluencia

Curva Bilineal

Verificacion de areas iguales n = 10

$$\begin{split} A_{CB} &\coloneqq \int_{0}^{\Delta_{p}} CB1\left(x\right) \,\mathrm{d}x = 73.0551 \, tonnef \cdot m \\ A_{Esp} &\coloneqq \sum_{i=1}^{n-1} \frac{\left(V_{i+1} + V_{i}\right)}{2} \cdot \left(\Delta_{i+1} - \Delta_{i}\right) + \frac{\left(V_{p} + V_{n}\right)}{2} \cdot \left(\Delta_{p} - \Delta_{n}\right) = 72.9369 \ tonnef \cdot m \end{split}$$

$$Error \coloneqq \frac{A_{CB} - A_{Esp}}{A_{Esp}} \cdot 100 = 0.162$$

1.3 Desplazamiento objetivo

Rigidez lateral elástica inicial	K = 2520 391 tonnef
regidez intern clustica intern	m m
Rigidez lateral efectiva	$K = 2526.377 \frac{tonnef}{c}$
	m
Periodo elastico fundamental	$T_i\!\coloneqq\!T_o\!=\!0.898\;s$
Periodo fundamental efectivo	$T_e\!\coloneqq\!T_i\!\cdot\!\sqrt{\frac{K_i}{K_e}}\!=\!0.897\;s$
Aceleracion espectral	$S_{\!A}\!\coloneqq\!S_{\!A}\left(T_{e}\right)\!=\!0.927~g$

Co: factor de modificación que relaciona el desplazamiento de SDOP a un MDOF

PF1 = 257.835 $\phi = 0.005$ $C_o := PF1 \cdot \phi = 1.334$

C1: factor modificación que relaciona el desplazamiento maximo inelástico con el elástico

Factor de sitio	a := 60	Factor de masa efectiva	$C_{-} := 0.9$
	Table 7-4.	Values for Effective Mass Factor Cm	

No. of Stories	Concrete Moment Frame	Concrete Shear Wall	Concrete Pier-Spandrel	Steel Moment Frame	Steel Concentrically Braced Frame	Steel Eccentrically Braced Frame	Other
1-2	1.0	1.0	1.0	1.0	1.0	1.0	1.0
3 or more	0.9	0.8	0.8	0.9	0.9	0.9	1.0

NOTE: C_n shall be taken as 1.0 if the fundamental period, T, in the direction of response under consideration is greater than 1.0 s.

= 1

$$\mu_{strength} \coloneqq \frac{S_A}{\frac{V_y}{W}} \cdot C_m \cdot g^{-1} = 1.752 \qquad \qquad C_1 \coloneqq 1 + \frac{\mu_{strength} - 1}{a \cdot T_e^{-2} \cdot s^{-2}} = 1.016$$

C2: factor modificación que representa la degradacion de rigidez y deterioro de resistencia

$$\begin{array}{c} C_2 \coloneqq & \text{ if } T_e > 0.7 \ s \\ & \| \ C_2 \leftarrow 1 \\ \text{ else } \\ & \| \ C_2 \leftarrow 1 + \frac{1}{800} \cdot \frac{\left(\frac{\mu_{strength} - 1}{T_e} \right)^2}{s^{-2}} \end{array}$$

2. Desplazamiento objetivo $\delta_t = C_o \cdot C_1 \cdot C_2 \cdot S_A \cdot \frac{T_e^2}{4 \cdot \pi^2} = 0.251 m$

 $Error \coloneqq \mathrm{if}\left(\delta_t > 0.95 \boldsymbol{\cdot} \boldsymbol{\Delta}_p \wedge \delta_t < 1.05 \boldsymbol{\cdot} \boldsymbol{\Delta}_p, \text{``OK''}, \text{``Nuevo} \, \boldsymbol{\Delta}\mathrm{p} \; \text{''}\right) = \text{``OK''}$

3. Resultados 8

 $\delta_t\!=\!0.251\;m \qquad V_p\!=\!494.985\;tonnef$

En la dirección Y-Y se realizo el mismo procedimiento