

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA CARRERA DE INGENIERÍA ELÉCTRICA

LINEAMIENTOS PARA DEFINIR LA INTERCONEXIÓN DE CARGAS ESPECIALES CON LA RED ELÉCTRICA EN MEDIO VOLTAJE

Trabajo de titulación previo obtención del título de Ingeniero Eléctrico

AUTORES: ANDRES ADRIAN VERDUGO BERMEO

PEDRO ALCIBIADES JARA MALDONADO

TUTOR: ING. PABLO DANIEL ROBLES LOVATO, MsC.

Cuenca - Ecuador 2023

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓN

Nosotros, Andres Adrian Verdugo Bermeo con documento de identificación N° 0105875439 y Pedro Alcibiades Jara Maldonado con documento de identificación N° 0104719059; manifestamos que:

Somos los autores y responsables del presente trabajo; y, autorizamos a que sin fines de lucro la Universidad Politécnica Salesiana pueda usar, difundir, reproducir o publicar de manera total o parcial el presente trabajo de titulación.

Cuenca, 04 de agosto del 2023

Atentamente,

Andres Adrian Verdugo Bermeo

0105875439

file

Pedro Alcibiades Jara Maldonado

0104719059

CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA

Nosotros, Andres Adrian Verdugo Bermeo con documento de identificación N° 0105875439 y Pedro Alcibiades Jara Maldonado con documento de identificación N° 0104719059, expresamos nuestra voluntad y por medio del presente documento cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores del Proyecto técnico: "Lineamientos para definir la interconexión de cargas especiales con la red eléctrica en medio voltaje", el cual ha sido desarrollado para optar por el título de: Ingeniero Eléctrico, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En concordancia con lo manifestado, suscribimos este documento en el momento que hacemos la entrega del trabajo final en formato digital a la Biblioteca de la Universidad Politécnica Salesiana.

Cuenca, 04 de agosto del 2023

Atentamente,

Andres Adrian Verdugo Bermeo

0105875439

Pedro Alcibiades Jara Maldonado

0104719059

CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN

Yo, Pablo Daniel Robles Lovato con documento de identificación N° 0101663342, docente de la Universidad Politécnica Salesiana, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: LINEAMIENTOS PARA DEFINIR LA INTERCONEXIÓN DE CARGAS ESPECIALES CON LA RED ELÉCTRICA EN MEDIO VOLTAJE, realizado por Andres Adrian Verdugo Bermeo con documento de identificación N° 0105875439 y por Pedro Alcibiades Jara Maldonado con documento de identificación N° 0104719059, obteniendo como resultado final el trabajo de titulación bajo la opción Proyecto técnico que cumple con todos los requisitos determinados por la Universidad Politécnica Salesiana.

Cuenca, 04 de agosto del 2023

Atentamente,

15hog

Ing. Pablo Daniel Robles Lovato, MsC.

0101663342

DEDICATORIAS

Este presente trabajo de titulación se lo dedico a mis padres, Juan Verdugo y Sandra Bermeo que me han apoyado en todo momento en mis estudios profesionales, ya que siempre han estado presentes con sugerencias, consejos llenos de responsabilidad y mucha sabiduría para poder culminar con éxito mi tesis de grado; a mi hermano Dr. Alex Verdugo, a mi hermana menor Camila que siempre estuvieron presentes con todo su apoyo motivacional en el transcurso de mi etapa universitaria.

Andres Adrian Verdugo Bermeo

El presente trabajo de titulación se la dedico a mis padres Tarquino y Victoria, por su apoyo incondicional que me brindaron en todo el proceso, sus valores y enseñanzas que me ayudaron a fortalecer mi mente y mi espíritu para alcanzar esta meta en mi vida. A mis hermanos Graciela, Isabel, Ma Eugenia y Bolivar, por todo el apoyo que me brindaron y estar pendientes en todo momento. De manera especial a Estefania y nuestro bebe que está en camino, sin duda son mi inspiración y motivación para conseguir este objetivo.

Pedro Alcibiades Jara Maldonado

AGRADECIMIENTOS

Mi agradecimiento primordial es para Dios, que me dio mucha salud y sabiduría durante mi etapa universitaria para concluir con éxito mi trabajo de titulación. A mis padres por todo su esfuerzo y tiempo dedicado en apoyarme constantemente durante todos estos años para terminar con éxito mi carrera profesional. A la Universidad Politécnica Salesiana por aceptarme como estudiante salesiano para comenzar y finalizar mi formación profesional. Al Msc. Ing. Pablo Daniel Robles Lovato por ser el guía para el desarrollo de este trabajo de titulación. A mi compañero Pedro Jara por el tiempo dedicado para culminar este trabajo entre los dos.

Andres Adrian Verdugo Bermeo

Agradezco a Dios por las bendiciones que pone en mi camino para tener este éxito importante en mi vida. A mis padres y hermanos pilares fundamentales de apoyo incondicional que me brindaron para lograr este objetivo académico. A la Universidad Politécnica Salesiana por ser una institución que nos ha formado con todas las cualidades académicas, éticas y humanas. Al Ing. Pablo Robles por ser nuestro director y guía en este proceso de titulación. A mi compañero Andres Verdugo por la paciencia y el sacrificio en este trabajo de titulación.

Pedro Alcibiades Jara Maldonado

RESUMEN

Este proyecto de grado trata sobre los lineamientos, para definir la interconexión de cargas especiales con la red eléctrica de medio voltaje, por el cual se debe considerar que una carga especial en el sistema de distribución eléctrica está definida por su afección, su sensibilidad y su importancia en la red eléctrica. Permitiendo lograr un análisis óptimo del sistema de interconexión con el uso de los equipos de maniobra y protección eléctrica para este tipo de cargas.

Se diseña un anillo de cargas en el software QGISGNU 3.22 que rodean el aeropuerto Mariscal Lamar con el fin de garantizar el continuo servicio de energía eléctrica para esta carga sensible. Y analizar los escenarios para tomar en cuenta en caso de falla en alguna sección de los alimentadores.

Se realizan tres casos de estudios para analizar sus flujos de potencia y verificar sobrevoltajes o caídas de voltaje que pueden afectar a la carga especial o alguna parte de la red en general.

Se diseña los reconectadores que sirven para tener especial cuidado con la carga especial y el anillo de cargas en general, simulando las fallas en cada zona del circuito para evitar las sobrevoltajes y caídas de voltaje que podrían provocar daños en la red.

En este trabajo se realizó la coordinación de protecciones con los relés de sobrecorriente de tiempo inverso debido que son más rápidos para detectar las corrientes de disparo que trabajan en un periodo de tiempo más extenso.

ABSTRACT

This degree project deals with the guidelines to define the interconnection of special loads with the medium voltage electrical network, by which it must be considered that a special load in the electrical distribution system is defined by its affection, its sensitivity and its importance in the electrical network. This allows to achieve an optimal analysis of the interconnection system with the use of switching and electrical protection equipment for this type of loads.

A ring of loads is designed in the QGISGNU 3.22 software surrounding the Mariscal Lamar airport in order to guarantee the continuous electric power service for this sensitive load. And analyze the scenarios to take into account in case of failure in any section of the feeders.

Three case studies are carried out to analyze their power flows and verify voltage surges or voltage drops that may affect the special load or any part of the network in general.

The reclosers are designed to take special care with the special load and the ring of loads in general, simulating the faults in each zone of the circuit to avoid overvoltages and voltage drops that could cause damage to the network.

In this work, the coordination of protections with the inverse time overcurrent relays was carried out because they are faster to detect the trip currents that work in a longer period of time.

ÍNDICE GENERAL

DECLARATORIA DE RESPONSABILIDAD;Error! Marcador no d	lefinido.
CESIÓN DE DERECHOS DE AUTOR;Error! Marcador no d	lefinido.
CERTIFICACIÓN;Error! Marcador no d	lefinido.
DEDICATORIAS	V
AGRADECIMIENTOS	vi
RESUMEN	vii
ABSTRACT	viii
LISTA DE FIGURAS	xii
LISTA DE TABLAS	xix
CAPÍTULO 1	20
INTRODUCCIÓN	20
1.1 Antecedentes	20
1.2 Planteamiento del problema	21
1.3 Justificación	22
1.4 Objetivos	23
1.4.1 Objetivo general	23
1.4.2 Objetivos específicos	23
CAPÍTULO 2	24
MARCO TEÓRICO	24
MARCO TEÓRICO	24
 MARCO TEÓRICO. 2.1. Sistemas de transmisión	24 24 24
 MARCO TEÓRICO. 2.1. Sistemas de transmisión	24 24 24 25
 MARCO TEÓRICO. 2.1. Sistemas de transmisión	24 24 25 25
 MARCO TEÓRICO. 2.1. Sistemas de transmisión	24 24 25 25 25
 MARCO TEÓRICO. 2.1. Sistemas de transmisión	24 24 25 25 25 25
 MARCO TEÓRICO. 2.1. Sistemas de transmisión	24 24 25 25 25 25 25
 MARCO TEÓRICO. 2.1. Sistemas de transmisión	24 24 25 25 25 25 25 25 26
 MARCO TEÓRICO. 2.1. Sistemas de transmisión	24 24 25 25 25 25 25 25 26 27
 MARCO TEÓRICO. 2.1. Sistemas de transmisión 2.2. Sistemas de distribución 2.3. Fallas eléctricas. 2.4. Categorías de fallas eléctricas 2.4.1. Descargas atmosféricas. 2.4.2. Cortocircuitos 2.4.3. Sobrecargas. 2.5. Ecuaciones de Carson 2.5.1. Impedancia propia del conductor 2.5.2. Impedancia mutua entre los conductores i y j 	24 24 25 25 25 25 25 25 26 27 27
 MARCO TEÓRICO. 2.1. Sistemas de transmisión	24 24 25 25 25 25 25 25 26 27 27 29
 MARCO TEÓRICO. 2.1. Sistemas de transmisión	24 24 25 25 25 25 25 25 26 27 27 27 27 29 30
 MARCO TEÓRICO. 2.1. Sistemas de transmisión 2.2. Sistemas de distribución 2.3. Fallas eléctricas. 2.4. Categorías de fallas eléctricas 2.4.1. Descargas atmosféricas. 2.4.2. Cortocircuitos 2.4.3. Sobrecargas. 2.5. Ecuaciones de Carson 2.5.1. Impedancia propia del conductor 2.5.2. Impedancia mutua entre los conductores i y j 2.6. Flujos de Potencia. 2.7 Coordinación de protecciones 	24 24 25 25 25 25 25 25 25 26 27 27 27 27 27 27 23 23
 MARCO TEÓRICO	24 24 25 25 25 25 25 25 25 25 25 25 25 25 26 27 27 27 27 27 27
 MARCO TEÓRICO	24

2.8.3 Fusible	
2.9 Transformadores de Potencial	
2.10 Transformadores de Corriente	
2.11 Protección de Sobrecorriente	33
2.12 Equipos de Protección	
2.13 Perturbaciones en la Red Eléctrica	
2.13.1 Perturbaciones aleatorias	
2.13.2 Perturbaciones estacionarias	
2.14 Algoritmo de Kruskal	
2.14.1 Ejemplo de Kruskal	35
2.14.2 Orden y dibujo del sistema final	42
2.15 Interconexión de sistemas de distribución	
CAPÍTULO 3	55
DISEÑO DEL SISTEMA NODAL PARA LA CARGA ESPECIAL	55
3.1 Introducción	55
3.2 Delimitación del sector	55
3.3 Creación de la capa shape Nodos	
3.4 Elaboración de las distancias de los nodos con la tabla de atributos	81
3.5 Desarrollo en CYME©	
3.5.1 Introducción	
3.5.2 Configuraciones y cálculos de los transformadores de dos devan	ados 101
3.5.3 Cálculos de los conductores utilizados en el diseño	108
3.5.4 Importación de la capa shape de QGISGNU 3.22 hacia la p CYME©	olataforma de 112
3.6 Cálculo de la corriente de los conductores	
3.6.1 Calculo de la corriente nominal	
3.6.2 Cálculo de conductores en ramales trifásicos para interconexió	on de equipos 117
3.7 Diseño de Reconectadores	127
CAPITULO 4	130
CASOS DE ESTUDIO Y COORDINACIÓN DE PROTECCIONES	130
4.1 Caso de estudio zona 1 y zona 2	132
4.2 Caso # 2 de estudio zona 3 y zona 4	135
La configuración de los reconectadores se muestra en la siguiente (Figur	a 166): 135
4.3 Caso #3 de estudio zona 5 y zona 6	137
La configuración de los reconectadores para este caso se ve en la (Figura	ı 171): 137
4.4 Relé 51 en el software CYME©	149
4.4.1 Cálculo del relé 51 en el ejemplo del tramo 16-15	153

4.5 Aplicación del Relé 51 en los Casos de Estudio15
- Primera coordinación de los relés aplicado en el Caso 2 del tramo 48-47 15
- Segunda coordinación de los relés aplicado en el Caso 3 del tramo 85-84 16
- Tercera coordinación de los relés aplicado en el Caso 3 del tramo 13-1216
CAPITULO 5
CONCLUSIONES Y RECOMENDACIONES
5.1 Conclusiones
5.2 Recomendaciones 17
BIBLIOGRAFÍA17
ANEXO A17
 A. Elementos propuestos para el diseño nodal del sistema en condiciones normale 178
A.1 Lista de transformadores propuestos en el diseño nodal 17
A.2 Balanceo de cargas y factor de potencia de cada carga concentrada 18
A.3 Detalle de los tramos monofásicos 18
A.4 Pesos de los nodos
A.5 Flujos de carga - Cargas 19
A.6 Flujos de carga en subestación 19
A.7 Flujos de líneas y cargas 19
A.8 Reporte sumario del diseño en condiciones normales
A.9 Reporte sumario de anomalías en el diseño en condiciones normales 21
ANEXO B
B. Diseño en Matlab
B.1 Código Matlab para encontrar el Minimun Spannig Tree 22
B.2 Código Matlab para encontrar la métrica de la Capacidad nominal del conducto de un caso individual
B.3 Código Matlab para encontrar las tres métricas de la Capacidad nominal de conductor en los tres casos de estudio
ANEXO C22
C. Diseño nodal propuesto en QGISGNU 3.22 22

LISTA DE FIGURAS

Figura 1. Conductores y sus respectivas imágenes	26
Figura 2. Circuito equivalente π de una línea para el cálculo de flujos de potencia	30
Figura 3. Diagrama de flujo del algoritmo de Kruskal	35
Figura 4. Sistema mallado de 14 nodos	36
Figura 5. Primera iteración utilizando la formula MIN	38
Figura 6. Primera iteración con el primer peso encontrado en 1-9	38
Figura 7. Segunda iteración con el segundo peso encontrado en 4-7	38
Figura 8. Sexta iteración con el sexto peso encontrado en 2-5	39
Figura 9. Cuarta iteración con el cuarto peso en 1-2	39
Figura 10. Radialidad entre la sexta iteración con la cuarta iteración	39
Figura 11. Novena iteración con el noveno peso encontrado en 6-8	40
Figura 12. Colocación del NO en la Tabla 2 de datos con la detección de un bucle	40
Figura 13. Dieciochoava iteración con el dieciochoavo peso encontrado en 2-10) que
representa el último arco	41
Figura 14. Representación de los trece arcos en la tabla de datos	42
Figura 15. Interpretación de los trece arcos en color azul y los bucles en color rojo	43
Figura 16. Representación de los trece arcos en color azul con su nueva tabla de	datos
iniciales	43
Figura 17. Suma que obtuvo el peso de 2-5 + 1-2	44
Figura 18. Suma que obtuvo el peso de 2-10 + 1-2	44
Figura 19. Pesos finales que obtuvo cada nodo	45
Figura 20. Colocación de los pesos en cada Fin de Línea	46
Figura 21. Ramales de cada peso final	46
Figura 22. Sistema Final (sistema mallado transformado a sistema radial)	47
Figura 23. Matriz de Incidencia del Sistema Final	48
Figura 24. Esquema general de los dos alimentadores	49
Figura 25. Matrices de incidencia y transpuesta de nodos de ambos alimentadores	50
Figura 26. Data inicial del alimentador 1	50
Figura 27. Flujo de potencias del alimentador 1	50
Figura 28. Data inicial del alimentador 2	51
Figura 29. Flujo de potencias del alimentador 2	51
Figura 30. Interconexión de sistemas siendo alimentador 1 receptor y alimentado	lor 2
transmisor	51
Figura 31. Matriz de incidencia y transpuesta del sistema interconectado	51
Figura 32. Interconexión de sistemas siendo alimentador 1 transmisor y alimentado	dor 2
receptor	52
Figura 33. Ubicación del sector	55
Figura 34. Coordenadas del sector	56
Figura 35. Capas OSM	56

Figura 36. Generación de la capa shape – puntos	. 57
Figura 37. Selección del formato como Archivo shape de ESRI - puntos	. 57
Figura 38. Selección en que carpeta se va a guardar el Nombre de archivo - puntos	. 58
Figura 39. EPSG de Ecuador	. 58
Figura 40. Selección del tipo de geometría - Punto	. 59
Figura 41. Activación de las casillas de incluir dimensión Z y forzar multi tipo	. 59
Figura 42. Capa shape de OSMlineas	. 60
Figura 43. Capa shape de OSMlineas2	. 60
Figura 44. Capa shape de OSMpoligonos	. 61
Figura 45. Opción de eliminación de las capas que se utilizan como borrador para	a la
creación de las capas shape	. 61
Figura 46. Eliminación de las capas que se utilizan como borrador para la creación de	las
capas shape	. 62
Figura 47. Capas Shape	. 62
Figura 48. Nueva capa de archivo shape – límite	. 63
Figura 49. Nombre de archivo de la nueva capa shape – límite	. 63
Figura 50. En la sección tipo de geometría se selecciona Polígono	. 64
Figura 51. Creación de la capa shape límite	. 64
Figura 52. Accionamiento del componente conmutar edición de capas shape	. 65
Figura 53. Utilización de la herramienta añadir polígono	. 65
Figura 54. Trazos del polígono para limitar la zona	. 66
Figura 55. Dirección id del límite que se acabó de trazar	. 66
Figura 56. Accionamiento del componente guardar capa en edición del límite que	e se
acabó de trazar	. 67
Figura 57. Accionamiento del componente cortar dentro de la sección Vectorial	. 67
Figura 58. Parámetros de la sección cortar con referente al límite con OSMlineas	. 68
Figura 59. Opciones avanzadas de la capa de entrada OSMlineas con la opción No Fil	trar
(mejor rendimiento)	. 68
Figura 60. Capa Cortado con referente a límite con OSMlineas	. 69
Figura 61. Eliminación de la capa shape OSMlineas	. 69
Figura 62. Nueva capa shape OSMlineas con referente a la capa de Cortado	. 70
Figura 63. Sobrescribiendo la nueva capa shape OSMlineas con referente a la capa	de de
Cortado	. 70
Figura 64. Nueva capa shape OSMlineas con el proceso de cortado	. 71
Figura 65. Eliminación de la capa Cortado con referente a la Nueva capa sha	ape
OSMlineas	. 71
Figura 66. Eliminación de la capa Cortado con referente a la Nueva capa sh	ape
OSMlineas2	. 72
Figura 67. Eliminación de la capa Cortado con referente a la Nueva capa sha	ape
OSMpoligonos	. 72
Figura 68. Opciones avanzadas de la capa de entrada OSMpuntos con la opción U	Jsar
predeterminado	. 73

Figura 69. Capas shape recortadas dentro del límite72	3
Figura 70. Capa shape OSMpoligonos a una capa shape de líneas con el nombre de casa	S
	4
Figura 71. Opciones de la capa de entrada OSMpoligonos a una capa shape de líneas con	n
el nombre de Casas	4
Figura 72. Nueva capa shape de líneas con el nombre de Casas	5
Figura 73. Avenidas y calles de la capa shape Casas	5
Figura 74. Creación de la nueva capa shape Nodos	6
Figura 75. Accionamiento del componente conmutar edición de capas shape con referent	e
a los Nodos	7
Figura 76. Accionamiento del componente añadir punto de capas shape con referente	a
los Nodos	7
Figura 77. Creación del primer nodo en la capa shape Casas	8
Figura 78. Enumeración de los nodos en la capa shape Casas	8
Figura 79. Medida entre el nodo 59 – 60 en la capa shape Nodos	9
Figura 80. Medida entre el nodo 150 – 151 en la capa shape Nodos	9
Figura 81. Medida entre el nodo 299 – 300 en la capa shape Nodos	0
Figura 82. Sistema de 300 nodos en la capa shape Nodos con la carga especial Aeropuerte	0
Mariscal Lamar	0
Figura 83. Límite del Sistema de 300 nodos en la capa shape Nodos con la carga especia	ıl
Aeropuerto Mariscal Lamar	1
Figura 84. Elección del componente tabla de atributos	1
Figura 85. Tabla de atributos	2
Figura 86. Selección para abrir el componente calculadora de campos	2
Figura 87. Ventana de funciones de calculadora de campos	3
Figura 88. Ingreso de la función geométrica \$x	3
Figura 89. Ingreso de la función geométrica \$y	4
Figura 90. Tabla de atributos con las coordenadas georreferenciadas en (x,y)	5
Figura 91. Accionamiento del componente exportar en la capa shape Nodos	5
Figura 92. Ventana de opciones de capa vectorial del archivo shape Nodos	6
Figura 93. Selección del formato como valores separados por comas (CSV) - Nodos 8	6
Figura 94. En la sección SRC se ingresa el EPSG:32717	7
Figura 95. Capa exportada CSV Nodos que indica que se ha guardado correctamente. 8'	7
Figura 96. Obtención de datos del archivo de texto CSV - Nodos en Excel 2019	8
Figura 97. Apertura en Excel de archivo CSV - Nodos	8
Figura 98. Ventana del editor Power Query CSV - Nodos	9
Figura 99. Exportación de datos a la hoja Nodos en Excel	9
Figura 100. Coordenada de la Subestación (SE) promedio – nodo 301	0
Figura 101. Adicción de la capa shape SE con referente a la capa Nodos	0
Figura 102. Elección de la capa shape SE en el directorio para adjuntar al archivo que la	0
contiene	1
Figura 103. Coordenada SE - 301 dentro de la capa shape Nodos	1

Figura 104. Coordenada SE - 301 dentro de la capa shape Nodos sin activación de limite
Figura 105. Grafica en Matlab del grafo con respecto a 300 nodos
Figura 106. Peso del nodo SE – 301 con valor de 95,6643
Figura 107. Abertura del nodo 83 - 84 que realiza Matlab haciendo el Minimun Spannig
Tree
Figura 108. Aplicación del mínimo Minimun Spannig Tree con la abertura de nodo 83 -
84 correspondiente al peso 44,911
Figura 109. Creación de la base de datos en CYME©
Figura 110. Ubicación del archivo base de datos
Figura 111. Carpeta donde se crea la base de datos tipo Access
Figura 112. Ubicación de la base de datos en Microsoft Access
Figura 113. Nombre de la configuración de la base de datos – base2
Figura 114. Configuración de preferencias - sistema de coordenadas georreferenciadas
Figura 115. Mostrar el dialogo de propiedades de la vista al crear un nuevo estudio -
Editor
Figura 116. Parámetros del sistema – Nuevo estudio
Figura 117. Conexión exitosa a la base de datos Access – base2
Figura 118. Elección del factor de escala en la opción de Preferencias
Figura 119. Selección del campo Equipos – Fuente
Figura 120. Creación de una nueva fuente con el comando Agregar 100
Figura 121. Configuración de la Subestación (SE) con valores de voltaje, potencia y
conexión delta
Figura 122. Selección del campo Equipos - Transformador - Transformador con dos
devanados 101
Figura 123. Creación de un nuevo transformador con el comando Agregar 102
Figura 124. Configuración de los parámetros del transformador de 15KVA monofásico
Figura 125. Agregado exitosamente el transformador de 30 KVA 106
Figura 126. Selección del campo Equipos – Línea Aérea – Espaciamiento de la línea de
simple circuito 107
Figura 127. Configuración de los parámetros de la estructura semicentrada pasante 107
Figura 128. Configuración de los parámetros del conductor 3/0 AWG de aluminio
reforzado con acero 108
Figura 129. Tabla de conductores Centelsa ACSR 108
Figura 130. Selección del campo Equipos - Línea Aérea – Equilibrada 112
Figura 131. Capa shape importada de QGISGNU 3.22 - CYME $^{\odot}$ – Mapa de fondo. 113
Figura 132. Propiedades de la capa shape Nodos-SE en texto y puntos 113
Figura 133. Propiedades del nodo 301 - SE 114
Figura 134. Opciones de presentación visual del símbolo - tamaño 114
Figura 135. Adición del símbolo línea aérea equilibrada 115

Figura 136. Propiedades del tramo - Línea aérea equilibrada	115
Figura 137. Configuración de las propiedades del tramo 301-215	116
Figura 138. Selección del comando Agregar tramo	116
Figura 139. Creación del Equivalente de fuente - SE perteneciente al nodo 301	118
Figura 140. Propiedades de la red – Sección Fuente – Nombre dispositivo – SE	118
Figura 141. Comprobación de voltaje en el nodo 215 (22kV)	119
Figura 142. Comprobación de voltaje en el nodo 261 (22KV)	119
Figura 143. Creación de Transformador de dos devanados	120
Figura 144. Propiedades del Transformador de dos devanados pertenecientes al tramo 2	213
- 301	120
Figura 145. Opciones de presentación visual del símbolo con referencia al Transforma	dor
	121
Figura 146. Modificación de atributos como tamaño - color - ancho del símbolo	del
Transformador	121
Figura 147. Selección del elemento Carga concentrada	122
Figura 148. Configuración de parámetros de transformador de dos devanados - A -	que
se sitúa en el nodo 213	122
Figura 149. Ingreso de parámetros para el balance de cargas A-B-C en la carga A1	123
Figura 150. Ingreso de la carga B1 monofásica a la Fase A	123
Figura 151. Parámetros del transformador TR5 en el tramo P correspondiente al nodo) 46 124
Figura 152 Parámetros de la carga P1 en el tramo P con referencia a la Fase C	124
Figura 153. Parámetros de la carga T1 en el tramo T correspondiente al nodo 27	125
Figura 154. Parámetros de Fluio de carga	126
Figura 155. Fluio de carga con el método de Caída de voltaie – Equilibrada	127
Figura 156. Selección del campo Equipos – Reconectador	128
Figura 157. Flujos de cargas – Cargas en CYME©	129
Figura 158. Capacidad de corriente nominal del conductor con referente al tramo 83	-84
	129
Figura 159. Métrica de flujos de carga - Amperios vs distancia en condiciones norma	ales
	130
Figura 160. Perfil de voltaje en condiciones normales	131
Figura 161. Configuración de reconectadores del caso 1	132
Figura 162. Alimentadores de la zona 1 y zona 2 propuestas para el caso 1	133
Figura 163. Perfil de carga para caso 1	134
Figura 164. Perfil de voltaje para caso 1	135
Figura 165. Capacidad nominal del conductor en el caso 1	135
Figura 166. Configuración de reconectadores del caso 2	135
Figura 167. Alimentadores de la zona 3 y zona 4 propuestas para el caso 2	136
Figura 168. Perfil de carga para caso 2	136
Figura 169. Perfil de voltaje para caso 2	137
Figura 170. Capacidad nominal del conductor para caso 2	137

Figura 171. Configuración de reconectadores del caso 3	137
Figura 172. Alimentadores de la zona 5 y zona 6 propuestas para el caso 3	138
Figura 173. Perfil de carga para caso 3	138
Figura 174. Perfil de voltaje para caso 3	139
Figura 175. Capacidad nominal del conductor para Caso 3	139
Figura 176. Configuración de reconectadores del Caso 1	140
Figura 177. Flujos de Potencia del Caso 1	140
Figura 178. Exportación de datos del Flujo de Líneas - cables	141
Figura 179. Exportación de datos del Flujo de líneas - cables a Excel 2019	141
Figura 180. Capacidad nominal del conductor - Amperios vs Distancia del Caso) 1 en
Excel 2019	142
Figura 181. Capacidad nominal del conductor - Amperios vs Distancia del Caso) 1 en
MATLAB R2022b	142
Figura 182. Configuración de reconectadores del Caso 2	143
Figura 183. Flujos de Potencia del Caso 2	143
Figura 184. Exportación de datos del Flujo de Líneas – cables	144
Figura 185. Exportación de datos del Flujo de Líneas – cables a Excel 2019	144
Figura 186. Capacidad nominal del conductor - Amperios vs Distancia del Caso	2 en
Excel 2019	145
Figura 187. Capacidad nominal del conductor - Amperios vs Distancia del Caso) 2 en
MATLAB R2022b	145
Figura 188. Configuración de reconectadores del Caso 3	146
Figura 189. Flujos de Potencia del Caso 3	146
Figura 190. Flujos de Potencia del Caso 3	147
Figura 191. Exportación de datos del Flujo de Líneas – cables a Excel 2019	147
Figura 192. Capacidad nominal del conductor - Amperios vs Distancia del Caso	3 en
Excel 2019	148
Figura 193. Capacidad nominal del conductor - Amperios vs Distancia del Caso	3 en
MATLAB R2022b	148
Figura 194. Métrica de la Capacidad nominal del conductor en los tres Casos de es	studio
	149
Figura 195. Configuración de los reconectadores del ejemplo del relé 51	149
Figura 196. Cuadro de flujo de carga con el comando Control+V	150
Figura 197. Sección Análisis – Análisis de fallas – Cortocircuito	150
Figura 198. Cuadro de Análisis de fallas - Cortocircuito	151
Figura 199. Corriente de cortocircuito mínima en el tramo 16-15	151
Figura 200. Corriente de cortocircuito máxima en el tramo 16-15	152
	152
Figura 201. Cálculo de los parámetros del relé 51 del ejemplo – Excel 2019	152
Figura 201. Cálculo de los parámetros del relé 51 del ejemplo – Excel 2019 Figura 202. Ingreso de los valores de las corrientes de cortocircuito	152 155 156
Figura 201. Cálculo de los parámetros del relé 51 del ejemplo – Excel 2019 Figura 202. Ingreso de los valores de las corrientes de cortocircuito Figura 203. Ingreso de los valores en el Relé 1 siendo el principal	152 155 156 156
 Figura 201. Cálculo de los parámetros del relé 51 del ejemplo – Excel 2019 Figura 202. Ingreso de los valores de las corrientes de cortocircuito Figura 203. Ingreso de los valores en el Relé 1 siendo el principal Figura 204. Margen del dispositivo para trazar la línea de cruce entre las curvas o 	152 155 156 156 de los

Figura 205. Parámetros del relé para poder ingresar los segundos en el dibujo	158
Figura 206. Tiempo del relé 1 y 2	158
Figura 207. Comparación de resultados en CYMTCC y Excel por el cual son semejar	ntes
	159
Figura 208. Configuración de reconectadores del Caso 2	159
Figura 209. Cuadro de flujo de carga con el comando Control+V	160
Figura 210. Corriente de cortocircuito mínima en el tramo 48-47	160
Figura 211. Corriente de cortocircuito máxima en el tramo 48-47	161
Figura 212. Cálculo de los parámetros del relé 51 del Caso 2 en el tramo 48-47	162
Figura 213. Ingreso de los valores de las corrientes de cortocircuito	162
Figura 214. Comparación de resultados en CYMTCC y Excel por el cual son semejar	ntes
	163
Figura 215. Configuración de reconectadores del Caso 3	163
Figura 216. Cuadro de flujo de carga con el comando Control+V	164
Figura 217. Corriente de cortocircuito mínima en el tramo 85-84	164
Figura 218. Corriente de cortocircuito máxima en el tramo 85-84	165
Figura 219. Cálculo de los parámetros del relé 51 del Caso 3 en el tramo 85-84	166
Figura 220. Ingreso de los valores de las corrientes de cortocircuito	166
Figura 221. Comparación de resultados en CYMTCC y Excel por el cual son semejar	ntes
	167
Figura 222. Configuración de reconectadores del Caso 3	167
Figura 223. Cuadro de flujo de carga con el comando Control+V	168
Figura 224. Corriente de cortocircuito mínima en el tramo 13-12	168
Figura 225. Corriente de cortocircuito máxima en el tramo 13-12	169
Figura 226. Cálculo de los parámetros del relé 51 del Caso 3 en el tramo 13-12	170
Figura 227. Ingreso de los valores de las corrientes de cortocircuito	170
Figura 228. Comparación de resultados en CYMTCC y Excel por el cual son semejar	ntes
- 	171
Figura C 1. Diseño nodal en capa shape	223

LISTA DE TABLAS

Tabla 1. Descripción de los términos de las impedancias propia y mutua 27
Tabla 2. Datos de los nodos de envío y recibo con sus respectivas distancias
Tabla 3. Enrutamiento del sistema radial 44
Tabla 4. Tabla de Datos de los nodos de envió y recibo del Sistema Final 47
Tabla 5. Flujos de potencia receptor – transmisor del sistema interconectado 52
Tabla 6. Flujos de potencia de la interconexión transmisor – receptor 53
Tabla 7. Transformadores monofásicos - Clase medio voltaje ≤ 25 KV [43] 101
Tabla 8. Transformadores trifásicos - Clase medio voltaje ≤ 25 KV [44] 103
Tabla 9. Constantes ∝ de materiales
Tabla 10. Conductores ASCR empleados en el diseño 112
Tabla 11. Listado de reconectadores empleados en el diseño 127
Tabla 12. Reporte de la carga de los alimentadores en CYME© - condiciones normales
Tabla 13. Nomenclatura general de transformadores usados en el diseño propuesto 132
Tabla 14. Características técnicas de las zonas que conforman el grafo 133
Tabla 15. Transformadores compartidos entre las zonas 134
Tabla A 1. Transformadores monofásicos y trifásicos empleados
Tabla A 2. Balance de cargas y factor de potencia de las cargas del diseño propuesto 182
Tabla A 3. Especificaciones de los tramos monofásicos del grafo 184
Tabla A 4. Detalle de pesos y distancias entre nodos
Tabla A 5. Detalle de caídas de voltaje 196
Tabla A 6. Detalle de carga en la subestación propuesta 197
Tabla A 7. Características técnicas de líneas y cables en condiciones normales 214
Tabla A 8. Reporte sumario del sistema en condiciones normales
Tabla A 9. Reporte sumario de anomalías en el diseño en condiciones normales 216
Tabla A 10. Costo anual de las pérdidas del sistema
Tabla A 11. Detalle de flujo de carga en los transformadores

CAPÍTULO 1

INTRODUCCIÓN

1.1 Antecedentes

Según S. Zimba, I. Nyamutswa, A.Chivoka (2017) en su trabajo "Sistemas de energía en isla para minimizar el impacto de las perturbaciones del sistema en el sur de África", revisa la aplicación de los regímenes especiales de protección, da ejemplos de perturbaciones típicas del sistema. El documento observa que es importante esforzarse por eliminar los eventos iniciadores de las perturbaciones del sistema en interconexión [1][2][3].

Debido a algunos eventos imprevistos, como conexiones débiles, fallas ocultas en los sistemas de protección o errores humanos, aún pueden ocurrir perturbaciones en el sistema. En una interconexión, las empresas de servicios públicos comercializan electricidad, al hacerlo optimizan los recursos energéticos para la sostenibilidad del sistema, la integración regional y el crecimiento socioeconómico [1][4][5][6][7].

Para J. Kabouris, M. Karystianos, B. Nomikos, G. Tsourakis, J. Mantzaris, E. Voumvoulakis en el trabajo "Estudios de seguridad estática y dinámica del sistema eléctrico para la primera fase de la interconexión de la isla de Creta", la interconexión es una de las opciones más rentables para una mayor explotación del importante potencial de energía con referente a las cargas especiales [8], por el cual se proponen dos métodos, el primero es usar mínimos cuadrados ponderados (WLS) para estimar las variables de voltaje de todos los nodos [9].

El segundo con los valores medidos del nodo final se analiza bajo un modelo de topología posible dado, y luego usar estimación de probabilidad bayesiana recursiva (RBP) para justificar qué topología posee en la red de distribución de medio voltaje con las cargas especiales [10].

Después por factibilidad se implementa en un lenguaje de programación orientado a objetos (Csharp) [11] la interconexión con cargas especiales. Ya que como resultado al optimizar el despliegue de la red eléctrica mediante el Algoritmo Dijkstra utilizando la función objetivo de costos de pérdidas, se puede evidenciar que se obtiene distintos

resultados a los esperados si se optimizara todos los demás nodos al grafo de la carga especial [11][12][3].

Por el cual la generación y la utilización de la energía eléctrica están distantes entre sí, la interconexión de la red eléctrica y el control del flujo de energía son necesarios para suministrar energía a los centros de carga con respecto a las cargas especiales [3][13][14]. Por último, como objetivo está la interconexión de los sistemas de energía eléctrica de varios países que tiene muchos beneficios (posponer o evitar por completo la construcción de nuevas centrales eléctricas).

Esto se puede lograr compartiendo la energía entre redes interconectadas sin afectar su seguridad y confiabilidad; reduciendo la necesidad de energía de reserva para satisfacer los cambios en la demanda. A su vez se implementa en la actualidad la utilización del programa Power System Simulation for Engineering (PSS/E) que sirve para investigar el rendimiento de la red de transmisión y generación de un sistema de potencia tanto en estado estable y condiciones dinámicas en cargas especiales [15].

1.2 Planteamiento del problema

Una carga especial en el sistema de distribución eléctrica se define por varios aspectos: por su afección, su sensibilidad y su importancia. En este tipo de cargas se encuentran centros médicos, industrias, aeropuertos, terminales. Para lograr los objetivos se analiza técnicamente el uso de los equipos de maniobra y protección eléctrica para este tipo de cargas [16].

Tomando en consideración sus funciones elementales de seccionamiento, mando y protección. Los dispositivos para este fin son las celdas, fusibles y reconectadores lo cual es necesario conocer varios aspectos técnicos de estos dispositivos [16].

Las cargas especiales son las cargas que se entienden en el ámbito eléctrico como cargas donde se necesita que la red de distribución y sus protecciones actúen de manera confiable y eficiente. La ciudad de Cuenca cuenta con magnos consumidores de energía eléctrica, entre los que se pueden mencionar ejemplos como: industrias ligeras, semi ligeras o pesadas, depende del volumen de materia prima que se maneje en las mismas; industria incipiente madura o de punta según el nivel de desarrollo; industrias según el sector económico; o las industrias locales, nacionales y/o transnacionales evidentemente de acuerdo a su territorio de actividad. Se definen los lineamientos que son necesarios para regular cargas especiales con la red eléctrica en medio voltaje el fin de garantizar la calidad y continuidad del servicio eléctrico.

Dentro de estas cargas especiales en la ciudad se pueden nombrar los siguientes: terminales aéreas, hospitales, centros comerciales, industrias, etc. Ya que son cargas sensibles ante una desconexión inoportuna o ante un daño proveniente de la red que suministra la energía. En el presente trabajo de investigación, cabe mencionar que las cargas especiales no tienen relación alguna con grandes consumidores de energía.

El proyecto técnico pretende elaborar para estas cargas especiales, los lineamientos de protección e interconexión con la red eléctrica en medio voltaje.

1.3 Justificación

La continuidad y calidad de servicio eléctrico son los dos pilares que se encuentran íntimamente relacionadas para el funcionamiento satisfactorio de las cargas especiales.

En cuanto a la calidad de servicio se entiende como la energía que debe ser suministrada en unas determinadas condiciones, con el fin de alcanzar que los diferentes equipos que se conecten a la red puedan operar en las condiciones por las que han sido proyectados y diseñados.

Por razones técnicas y también económicas, no es posible que se pueda evitar al 100% una falla en un sistema eléctrico, pero si se puede dotar de los medios adecuados para el tratamiento y prevención.

Un sistema de protección para una carga especial debe satisfacer las características funcionales de sensibilidad, selectividad y rapidez.

Para realizar la interconexión de las cargas especiales con la red eléctrica en medio voltaje se realizará la coordinación de protecciones, por lo tanto, se necesita entender que equipo va a utilizarse, así, como sus tiempos de operación, sus curvas características, que aprobarán o permitirán conseguir los valores adecuados para la coordinación. Ya que a su vez respalda una correcta protección de un sistema en medio voltaje.

También la coordinación de protecciones, permitirá analizar la ubicación relativamente correcta del equipo o dicha protección. Bajo estas condiciones se propone coordinar y verificar el comportamiento del equipo que permita la interrupción y

reconexión del suministro eléctrico en un lugar fundamental, por el cual una vez ubicado el equipo se procede a realizar las simulaciones del sistema con programas especializados.

1.4 Objetivos

1.4.1 Objetivo general

Definir las etapas para la interconexión de las cargas especiales con la red eléctrica en medio voltaje.

1.4.2 Objetivos específicos

- Identificar el impacto de las cargas especiales en los sistemas de distribución.
- Definir las normativas para poder elegir el equipo de interconexión.
- Realizar la coordinación de protecciones y ejecutar la metodología propuesta.

CAPÍTULO 2

MARCO TEÓRICO

2.1. Sistemas de transmisión

El sistema de transmisión es el equipamiento o la infraestructura [17] que consta de líneas, subestaciones, torres y demás. Este sistema está delegado de interconectar el sistema de generación eléctrica con el sistema de distribución, esto quiere decir que es el sector que lleva o transporta la energía generada a las empresas distribuidoras [18].

2.2. Sistemas de distribución

Este sistema facilita el acceso de servicio eléctrico al consumidor final basándose en estándares de calidad y confiabilidad. La planificación de sistemas de distribución realizan una ejecución o implementación de sistemas eléctricos eficientes, por el cual se encamina en abarcar ciertos parámetros de interés, como conseguir un coste mínimo [19], incrementar la cobertura, aminorar las pérdidas de energía, adquirir un equilibrio entre oferta y demanda.

Estos sistemas son de propiedad pública, privada y también cooperativa. Por el cual estos sistemas tienen las mismas obligaciones, posibilidades y desafíos. A su vez las asignaciones y labores se enfocan en proveer o proporcionar electricidad a los clientes, analizando requisitos técnicos como la calidad del suministro, la confiabilidad y la seguridad, mientras que los desafíos y posibilidades integran la planificación rentable y la construcción de redes de distribución examinando dispositivos avanzados en tecnologías de protección [20], control y comunicación que favorecen el funcionamiento de una red, incrementando la eficiencia y la seguridad.

Por último, es entregar a los clientes un rango o nivel aceptable de continuidad y calidad de suministro, este indicador básico de rendimiento puede estar expuesto a penalidades o sanciones [21] gubernamentales a través de índices.

2.3. Fallas eléctricas

Las fallas eléctricas son acontecimientos o sucesos aleatorios, por el cual afectan al adecuado funcionamiento de un sistema eléctrico de potencia [22]. La totalidad de sus equipos que lo constituyen en función de origen y frecuencia son los más frecuentes o generales de que se ocasionen en ellos cortocircuitos.

2.4. Categorías de fallas eléctricas

2.4.1. Descargas atmosféricas

Estas ocasionan sobrevoltajes en los sistemas eléctricos de potencia (SEP) y al mismo tiempo en el equipo de la subestación, ya que estas descargas son aptas o capaces de atravesar el aislamiento dando un desgaste del equipo de patio como también el de control y protección. Por otra parte, existen zonas de alto nivel isoceráunico donde se muestran con mayor frecuencia, por lo tanto, el nivel isoceráunico se relaciona con el nivel ceráunico que entrega el número promedio de días al año en los que hay tormentas [23] y por el que se incluyen las descargas atmosféricas.

2.4.2. Cortocircuitos

Estos originan elevadas corrientes que se descubren por el calentamiento enorme de los conductores que se amplían o se dilatan, de manera que pueden manifestarse aproximaciones con tierra y con las distintas fases. Los cortocircuitos pueden provocarse por fallas entre fases que son cortocircuitos originados por arcos provocados por ionización del aire, creados por aves y una incorrecta operación. También los cortocircuitos se originan por fallas a tierra que son generadas por separación del conductor a tierra o encima de la estructura, deterioro de aisladores, arcos, incorrecta operación, producidos por animales, excesiva vegetación [24].

2.4.3. Sobrecargas

Son generadas por elevadas transferencias de energía que entregan incrementos notables de corriente y que crean a su vez efectos mecánicos perjudiciales, como por ejemplo deterioro del aislamiento en el equipo incorporado de la subestación, acaloramiento de conductores. Por otra parte, para la protección contra cortocircuitos causados por fallas entre fasetierra [25] y fase-fase se utilizan en las líneas relevadores de distancia y relevadores de sobrecorriente (direccionales y no direccionales). Ahora con respecto a la protección contra sobrecargas permanentes, se emplean relevadores de sobrecorriente [26].

2.5. Ecuaciones de Carson

Estas ecuaciones se basan en calcular la impedancia de un circuito, analizando el efecto de retorno por tierra. De manera que hoy en día son muy usadas para el cálculo de variables o parámetros de líneas de transmisión aérea y subterránea. Se dice que Carson deduce que la tierra es una superficie plana, invariable, compacta e indefinida con una resistividad ininterrumpida o constante. Cualquier consecuencia o efecto en los extremos de la línea en los puntos de aterrizamiento son insignificantes para frecuencias de estado estacionario [27].

Como sabemos el prototipo o modelo del efecto de retorno por tierra es expuesto por John Carson en 1926, es un procedimiento como se muestra en la (Figura 1) que establece las impedancias propias y mutuas para un número parcial o arbitrario de conductores aéreos analizando el efecto de retorno por tierra, por lo cual estas ecuaciones también pueden ser aplicadas a cables subterráneos. Entonces este método de ninguna manera fue recibido correctamente por sus cálculos monótonos lo cual tendrían que desarrollarse en ese tiempo [27]; ahora en la actualidad con la ayuda de la computadora digital las ecuaciones de Carson se las vuelve a emplear considerablemente.

Figura 1. Conductores y sus respectivas imágenes

2.5.1. Impedancia propia del conductor

$$\widehat{\mathbf{Z}}_{ii} = r_i + 4\omega P_{ii}G + j\left(X_i + 2\omega G \cdot ln\frac{S_{ii}}{RD_i} + 4\omega Q_{ii}G\right)[\Omega/milla]$$
(2.1)

2.5.2. Impedancia mutua entre los conductores i y j

$$\widehat{\mathbf{Z}}_{ij} = 4\omega P_{ij}G + j\left(2\omega G \cdot ln\frac{s_{ij}}{D_{ij}} + 4\omega Q_{ij}G\right)[\Omega/milla]$$
(2.2)

En el cual se describe cada uno de los términos en la Tabla 1.

2 _{ii}	Impedancia propia del conductor i en Ω /milla
$\hat{\mathbf{Z}}_{ij}$	Impedancia mutua entre los conductores i y j en Ω /milla
ri	Resistencia del conductor i en Ω /milla
$\omega = 2\pi f$	Frecuencia angular del sistema en radianes por segundo
G	$0.1609347 \cdot 10^{-3} \Omega/milla$
RD _i	Radio del conductor i en pies
GMR _i	Radio medio geométrico del conductor i en pies
f	Frecuencia del sistema en Hertz
ρ	Resistividad de la tierra en Ω -metros
D _{ij}	Distancia entre los conductores i y j en pies
S _{ij}	Distancia entre el conductor i y la imagen del conductor j en pies
θ _{ij}	Ángulo entre un par de líneas dibujadas desde el conductor i
	hasta su propia imagen y a la imagen del conductor j
Xi	$2\omega C \ln \frac{RD_i}{M} O /millo$
	GMRi
P _{ij}	$\pi = 1$ $k_{ij}^2 \cos(20) = k_{ij}^2 \cos(20)$
	$\frac{1}{8} - \frac{1}{3\sqrt{2}} k_{ij} \cos(\theta_{ij}) + \frac{1}{16} \cos(2\theta_{ij}) \cdot \left(\frac{0.6}{28} + \ln \frac{1}{k_{ij}}\right)$
Q _{ii}	$0.020(+1.1)^2 + 1.1 + (0.)$
)	$-0.0386 + \frac{1}{2} \cdot \ln \frac{1}{k_{ii}} + \frac{1}{3\sqrt{2}} \kappa_{ij} \cos(\theta_{ij})$
k	ı, <i>c</i>
IJ	$8.565 \cdot 10^{-4} \cdot S_{\odot} \cdot \frac{1}{-4}$

Tabla 1. Descripción de los términos de las impedancias propia y mutua

Por el cual la matriz de impedancia primitiva para el análisis de una línea trifásica con m neutros quedaría de la siguiente manera como la (ecuación 2.3):

$$\left[\hat{\boldsymbol{Z}}_{primitiva} \right] = \begin{bmatrix} \hat{Z}aa & \hat{Z}ab & \hat{Z}ac & \vdots \hat{Z}an1 & \hat{Z}an2 & \hat{Z}anm \\ \hat{Z}ba & \hat{Z}bb & \hat{Z}bc & \vdots \hat{Z}bn1 & \hat{Z}bn2 & \hat{Z}bnm \\ \underline{\hat{Z}ca} & \hat{Z}cb & \hat{Z}cc & \vdots \hat{Z}cn1 & \hat{Z}cn2 & \hat{Z}cnm \\ \hat{Z}n1a & \hat{Z}n1b & \hat{Z}n1c & \vdots \hat{Z}n1n1 & \hat{Z}n1n2 & \hat{Z}n1nm \\ \hat{Z}n2a & \hat{Z}n2b & \hat{Z}n2c & \vdots \hat{Z}n2n1 & \hat{Z}n2n2 & \hat{Z}n2nm \\ \hat{Z}nma & \hat{Z}nmb & \hat{Z}nmc & \vdots \hat{Z}nmn1 & \hat{Z}nmn2 & \hat{Z}nmnm \end{bmatrix}$$

$$(2.3)$$

Ahora con respecto a la forma particionada se transforma en la (ecuación 2.4):

$$\begin{bmatrix} \widehat{\mathbf{Z}}_{primitiva} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \widehat{Z}_{ij} \end{bmatrix} & \begin{bmatrix} \widehat{Z}_{in} \end{bmatrix} \\ \begin{bmatrix} \widehat{Z}_{nj} \end{bmatrix} & \begin{bmatrix} \widehat{Z}_{nn} \end{bmatrix}$$
(2.4)

A su vez tenemos la forma final de la técnica de reducción de Kron que se transforma en la (ecuación 2.5):

$$[\mathbf{Z}_{abc}] = [\hat{Z}_{ij}] - [\hat{Z}_{in}] * [\hat{Z}_{nn}]^{-1} * [\hat{Z}_{nj}]$$
(2.5)

Quedando la matriz de fase de la siguiente manera en la (ecuación 2.6):

$$\begin{bmatrix} \mathbf{Z}_{abc} \end{bmatrix} = \begin{bmatrix} Z_{aa} & Z_{ab} & Z_{ac} \\ Z_{ba} & Z_{bb} & Z_{bc} \\ Z_{ca} & Z_{cb} & Z_{cc} \end{bmatrix} \Omega/milla$$
(2.6)

Se procede a incluir los componentes simétricos en la matriz de fase Zabc perteneciente a la (ecuación 2.6).

El método de las Componentes Simétricas se ha convertido en una herramienta fundamental en la solución de redes desbalanceadas. En su trabajo Charles Legeyt Fortescue demostró que un sistema de n fasores desbalanceado puede ser descompuesto en n sistemas de fasores balanceados llamados Componentes Simétricas de los Fasores Originales.

Los n fasores de cada grupo de componentes tienen el mismo módulo y están desfasados el mismo ángulo. El cual se va a realizar el siguiente cálculo que esta expresado en la (ecuación 2.7):

$$(\mathbf{S})(\mathbf{U}_{\mathbf{S}}) = (\mathbf{Z})(\mathbf{S})(\mathbf{I}_{\mathbf{fs}}) \tag{2.7}$$

En la (ecuación 2.7), la impedancia Z va a ser reemplazada por la matriz de fase Zabc. Quedando la nueva (ecuación 2.8) de la siguiente forma:

$$(\mathbf{S})(\mathbf{U}_{\mathbf{S}}) = (\mathbf{Z}_{abc})(\mathbf{S})(\mathbf{I}_{\mathrm{fs}})$$
(2.8)

Se multiplican ambos lados de la (ecuación 2.8) por $(S)^{-1}$ obteniendo como resultado la (ecuación 2.9):

$$(\mathbf{U}_{\mathbf{S}}) = (\mathbf{S})^{-1}(\mathbf{Z}_{abc})(\mathbf{S})(\mathbf{I}_{\mathrm{fs}})$$
(2.9)

La notación matricial de la matriz S es la (ecuación 2.10):

$$[\mathbf{S}] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix}$$
(2.10)

La inversa de la matriz S es la (ecuación 2.11):

$$[\mathbf{S}]^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix}$$
(2.11)

Donde la (ecuación 2.12) esta desfasada 120°:

$$a = 1 < 120^{\circ}$$
 (2.12)

A su vez la (ecuación 2.13) está desfasada 240°:

$$a^2 = 1 < 240^{\circ} \tag{2.13}$$

2.6. Flujos de Potencia

Los flujos de potencia se basan en calcular con exactitud los voltajes de estado estacionario en todas las barras de una red, de modo que a partir de ese cálculo se adquiere los flujos de potencia activa y reactiva en cada una de las líneas, transformadores en cualidades de generación y carga denominadas o conocidas. También los flujos de potencia componen o modelan controles como derivaciones móviles de transformadores y potencia de salida reactiva del generador [28]. Por último, los flujos de potencia son de mayor consideración con respecto, a la planeación y diseño de la ampliación o expansión futura de los sistemas de potencia, de la misma manera en la determinación de las óptimas condiciones de operación de los sistemas existentes.

2.6.1. Ecuaciones del flujo de potencias

Figura 2. Circuito equivalente π de una línea para el cálculo de flujos de potencia

Partiendo de la (Figura 2), se consigue describir el procedimiento como se ve en la (ecuación 2.14):

$$I_{pq} = (v_p - V_q)Y_{pq} + V_p(Y_{pq}/2)$$
(2.14)

Por el cual la potencia compleja que circula o fluye desde la barra p hacia la barra q se encuentra determinada por las (ecuaciones 2.15 y 2.16):

$$\boldsymbol{S_{pq}} = \boldsymbol{V_p} * \boldsymbol{I_{pq}} \tag{2.15}$$

$$S_{pq} = [Y_{pq} + (Y_{pq}/2)]V_p^2 - V_p V_q Y_{pq}$$
(2.16)

Por otra parte, la potencia compleja que circula o fluye desde la barra q hacia la barra p se encuentra definida por las (ecuaciones 2.17 y 2.18):

$$\boldsymbol{S_{qp}} = \boldsymbol{V_q} * \boldsymbol{I_{qp}} \tag{2.17}$$

$$S_{qp} = [Y_{qp} + (Y_{qp}/2)]V_q^2 - V_p V_q Y_{qp}$$
(2.18)

Entonces las (ecuaciones 2.19 y 2.20) cumplen sus igualdades:

$$\boldsymbol{Y_{pq}} = \boldsymbol{Y_{qp}} \tag{2.19}$$

$$\left(Y_{pq}/2\right) = \left(Y_{qp}/2\right) \tag{2.20}$$

2.7 Coordinación de protecciones

Una coordinación de protecciones dentro de un SEP se basa en el análisis o estudio de tiempo-corriente de todos los dispositivos a partir de los centros de generación hasta las subestaciones de distribución.

El propósito del estudio de coordinación permite establecer las características, ajustes y valores, de dispositivos de protección que incomuniquen, aíslen a una falla o sobrecarga causada en cualquier parte del sistema.

A su vez los dispositivos y ajustes escogidos o seleccionados deberán proporcionar apropiadamente la protección contra sobrecargas en los equipos e interrumpiendo cortocircuitos lo más rápido posible [29].

2.8 Sistemas de protección en sistemas de distribución

2.8.1 Reconectador

Son usados en líneas aéreas y subestaciones, los reconectadores son equipos de interrupción capaces de censar e interrumpir la falla, además de poder iniciar por sí mismos un ciclo de recierre basado en los ajustes y condiciones de bloqueo estipulados. En el caso de existir una falla temporal, el elemento puede abrir y volver un número determinado de veces, de este modo se evita los cortes de red prolongados, por otra parte, estos equipos son de aplicación en exteriores por lo que se instalan en postes o estructuras de una subestación [30].

2.8.2 Celda de medio voltaje

Es un conjunto o equipo que sirve para la protección en sistemas eléctricos, con una agrupación de componentes que ejecutan la función de disparo y aislamiento en protección contra sobrecorriente. Por otro lado, las celdas en un centro de transformación son un sistema de equipos modulares de reducidas dimensiones con aislamiento y corte en gas, en donde los barrajes se conectan utilizando elementos de unión logrando una conexión totalmente apantallada e insensible a las condiciones externas (contaminación, desbordamiento, salinidad) [31].

2.8.3 Fusible

Los fusibles son usados para la protección contra cortocircuitos y sobrecargas en sistemas de medio voltaje y bajo voltaje. Son el dispositivo de protección ideal para circuitos de distribución por su velocidad de operación y gran capacidad de limitación de corriente en caso de un cortocircuito, posee simplicidad en su operación por lo que despeja fallas.

Por otro lado, trabajan u operan con la interrupción automática del circuito que protege cuando se presentan circunstancias inapropiadas de funcionamiento del servicio correspondiendo esta generalmente la de sobrecorriente [32].

2.9 Transformadores de Potencial

Estos transformadores de potencial (TP) son usados para las mediciones, también para protecciones. Por el cual este transformador posee una función de cambiar el voltaje, a su vez permite reducir un voltaje que puede ser elevado a un valor empleado por los instrumentos de protección y medición [33]. Los transformadores TP poseen dos objetivos: transformar el voltaje, aislar los instrumentos de protección y medición conectados a los circuitos de alto voltaje, entonces el primario se conecta en paralelo con el circuito para realizar el control y el secundario se conecta en paralelo con las bobinas de voltaje de los diferentes aparatos de protección y medición que se pretenden energizar. Además, este tipo de transformadores se basa en normas de máxima carga, ya que es apto para trabajar sin exceder los límites de error de razón y de ángulo especificados [34].

2.10 Transformadores de Corriente

Los transformadores de corriente tienen como función principal transformar o cambiar un valor de corriente, por el cual este circuito permite la alimentación de instrumentos y que consta de cinco amperes según las normas estandarizadas, suministrando aislamiento necesario en el voltaje [35]. A su vez estos equipos sirven para hacer mediciones cuyos valores son altos y no pueden ser manejados directamente por los instrumentos de medición o protección.

Los transformadores de corriente TC deben tener las siguientes características:

- Proporcionan corrientes en valores pequeños no inferiores del 5%.
- Suministran valores de corrientes reducidas con una precisión no menor del 5%.
- Proveen valores de corrientes de modo que son distorsionadas por la componente de corriente continua contra la corriente de cortocircuito.

- Soportar de manera térmica y dinámica las elevadas corrientes de cortocircuito, sin recalentarse o teniendo daños mecánicos.

2.11 Protección de Sobrecorriente

Es un sistema de protección que generalmente maniobra las funciones de operación y actuación de los dispositivos de protección cada vez que ocurren niveles altos de sobrecorriente existentes en los sucesos de un Sistema Eléctrico de Potencia. La estructura de estos dispositivos obedece a la precisión y complejidad que se requiera en el caso de estudio considerado, segregando el acontecimiento de fallas. De hecho esta protección debe garantizar la operación contra los cortocircuitos en los equipos o en las líneas de las protecciones adyacentes en caso de fallo de sus protecciones [36].

2.12 Equipos de Protección

Los equipos de protección son todos los elementos que facilitan la detección, la inspección y la eliminación de la falla. Siendo un sistema de control ante medidas eléctricas como: potencia, intensidad, voltaje, resistencia que certifican una acción rápida de protección en el Sistema Eléctrico de Potencia. Por tanto, este sistema posibilita corregir la detección de fallas de los distintos elementos, equipos en condiciones deficientes de operación. A nivel de este sistema existen múltiples acciones de protección que impide tener pérdidas económicas en el Sistema Eléctrico de Potencia, siendo éstas las fallas en los equipos y desconexiones [37].

2.13 Perturbaciones en la Red Eléctrica

Las perturbaciones en la red eléctrica originan una menor calidad en el suministro de energía a los equipos. Hoy en día los consumidores industriales, comerciales y domésticos han comunicado un crecimiento de estas perturbaciones en la red eléctrica, las mismas que logran causar un inapropiado funcionamiento de un equipo eléctrico o electrónico. En momentos alcanzan deteriorar permanentemente los equipos acarreando pérdidas económicas relevantes [38]. Comúnmente los Sistemas Eléctricos de Potencia soportan perturbaciones que son estimuladas por fenómenos externos como los fuertes vientos, las tormentas eléctricas, así como también fenómenos internos: como los cortocircuitos o las maniobras de los equipos de la red.

2.13.1 Perturbaciones aleatorias

Son eventos que se manifiestan de forma inesperada y que nacen de elementos presentes en la red eléctrica, también en la instalación de cada consumidor de energía, originando una caída de voltaje transitorio o cortes extendidos en algún lugar de la red eléctrica. Siendo las razones más exclusivas de estas perturbaciones son provocadas por descargas atmosféricas como los rayos, cortocircuitos en la red, maniobras en alto voltaje [39].

2.13.2 Perturbaciones estacionarias

Son sucesos de forma invariable, a su vez se dispersan en periodos concretos, por lo que podemos analizarlos como fenómenos estables o permanentes. Las perturbaciones estacionarias tienen como principio la operatividad de algunos equipos ubicados regularmente en la instalación del usuario [40].

2.14 Algoritmo de Kruskal

Un grafo no dispone de una dirección mientras que su relación existente es simétrica, por otro lado, el dígrafo posee una dirección, pero su relación existente ya no es simétrica, a su vez el dígrafo se lo representa con una flecha porque tiene dirección de tal forma que se conoce desde donde comienza hasta donde termina.

Este algoritmo de Kruskal busca un subconjunto es decir vuelve armar un grafo de un conjunto más grande de tal manera que se tenga un árbol, por el cual existe un diagrama de flujo del algoritmo de Kruskal que esta explicado en la (Figura 3). Por otra parte un árbol es un sistema radial que posee un punto de inicio y un punto final, también Kruskal es un algoritmo voraz debido a lo cual busca siempre el menor, el concepto de menor depende en gran medida del problema que se tenga al frente por ejemplo se quiere encontrar a distancia menor, entonces va a buscar un peso que en este caso es la longitud y por el cual va a buscar la longitud menor, en cambio se desea buscar el máximo Factor de Potencia (FP) por el cual el peso ya no es la longitud si no el peso es el FP [41].

De manera que el peso se cambia dependiendo de la necesidad que se requiera, pueden ser perdidas, corrientes, longitud, FP, demandas o una inequidad.

Figura 3. Diagrama de flujo del algoritmo de Kruskal

2.14.1 Ejemplo de Kruskal

Aquí se tiene un sistema mallado de 14 nodos como se observa en la (Figura 4), pero cuando se hace Kruskal se convierte en un sistema radial.

Figura 4. Sistema mallado de 14 nodos

Se conoce que con Kruskal se ve la radialidad y la topología cambiando el peso en el sistema, también cuando se está intercambiando el peso de menor a mayor se obtiene un grafo con diferentes características, de modo que si se abre un grafo significa que se está optimizando. Para saber cuántas iteraciones o arcos se deben realizar como mínimo, se observa el número mayor de nodos que dispone el sistema y se le resta menos uno, pero si se encuentra un bucle posiblemente tendrá que realizarse una iteración más.

Un grafo puede ser de 1-3 o de 3-1 es decir que la relación existente es simétrica, de manera que existe consideraciones en el algoritmo de Kruskal que son las siguientes:

- Buscar el menor peso, de manera que siempre se busca el menor siempre, pero nunca el mayor.
- Verificar que i no sea igual a j con ello se evita bucles, por ello Kruskal es adversario de los bucles, si hay un bucle no se puede usar Kruskal. También se debe tener en cuenta que un bucle empieza en un punto i y su retorno llega al mismo punto i.
- Un peso encontrado no se considera para la siguiente búsqueda, por el cual se hace más iteraciones, se ubica el peso menor y ese peso menor se lo separa del sistema para nuevamente volver analizar los otros pesos.
- Si el peso se repite coger el mismo peso de forma aleatoria, es decir cuando se dispone de pesos del mismo valor hay que utilizar el peso que pasa por el nodo de envió.
- Todo este proceso se repite hasta que no existan bucles.
Para poder desarrollar este ejemplo se utilizó el software Excel Office 2019, donde los datos iniciales se los ve expuestos en la (Tabla 2).

Datos iniciales

ni	nj	Lnij
1	2	23
1	3	31
1	4	54
1	9	18
2	5	26
2	4	37
3	4	28
3	6	22
4	7	18
4	8	25
4	6	32
5	7	34
6	8	28
7	8	42
2	10	42
1	12	47
10	13	44
10	12	46
3	11	48
9	11	32
9	12	39
11	14	38
12	13	27
12	14	34
13	14	48

Tabla 2. Datos de los nodos de envío y recibo con sus respectivas distancias

Figura 5. Primera iteración utilizando la formula MIN

En la primera iteración se encontró dos pesos con el mismo valor como se observa en la (Figura 5) empleando la fórmula del MIN de Excel Office 2019, pero la consideración dice que hay que escoger la que pasa por el nodo de envío y en este caso es la 1-9, entonces a la 1-9 se la pinta de color rojo en la tabla de posiciones de i envió y j recibo como se muestra en la (Figura 6).

Búsqueda																											
Primera Iteración																											
i j	•	1 2	1 3	1 4	1 9	1 12	2 5	2 4	2 10	3 5	3 4	3 6	3 11	4 7	4 8	4 6	5 7	6 8	7 8	9 11	9 12	10 13	10 12	11 14	1	2 12 3 14	2 13 4 14
Menor		18																									
	i j		1 9																								
		I	Figu	ra (5. F	Prime	era	iter	racio	ón con e	el pr	rim	er p	eso	enc	con	trac	lo d	en	1-	9						
Segunda iteración																											
i j	•	1 2	1 3	1 4	1 9	1 12	2 5	2 4	2 10	3 5	3 4	3 6	3 11	4 7	4 8	4 6	5 (7 8	5 7 8 8	, , 3 1	9 1 1	9	10 1 13 1	.0 :	11 14	12 13	12 14	13 14
Menor	or 18 Radialidad i=j											B i=	ucle i														
	i j		4			1r	a N	0				1	ra N	0													

Figura 7. Segunda iteración con el segundo peso encontrado en 4-7

j

En esta segunda iteración representada por la (Figura 7) se revisa si esta iteración posee radialidad entre i y j ósea si i=j con respecto a la anterior

iteración, hay que tener en cuenta que la radialidad se refiere que si el emisor es igual al receptor por el cual esta i es de la iteración actual y la j es de la iteración anterior.

 Se continua con el procedimiento y en la sexta iteración se encontró una radialidad como se ve en la (Figura 8) con la cuarta iteración que se observa en la (Figura 9) se explicara a continuación:

Sexta iteración																											
i j	:	1 2	1 3	1 4	1 9	1 12	2 5	2 4	2 10	3 5	3 4	3 6	3 11	4 7	4 8	4 6	5 7	6 8	7 8 1	9 1	9 12	10 13	10 12	11 14	12 1 13 1	12 1 14 1	13 14
Menor		26				Ra i=i	dialic	lad				[Bucle														
	i j		2 5			1ra 2da 3ra 4ta 5to	a Na a Na a Na a SI a SI	0 0 0		5-2-1			Lra N 2da N 3ra N 4ta N 5to N	00 NO NO NO													

Figura 8. Sexta iteración con el sexto peso encontrado en 2-5

 En la sexta iteración como la radialidad es i=j, se elige la i actual de esta iteración con respecto a las j de las anteriores iteraciones para poder compararlas, en este caso hubo radialidad con la cuarta iteración es decir 2=2 como se ve en la (Figura 10).

Figura 9. Cuarta iteración con el cuarto peso en 1-2

Figura 10. Radialidad entre la sexta iteración con la cuarta iteración

 Se sigue con el procedimiento y en la novena iteración que se muestra en la (Figura 11) se detectó un bucle que se explicara a continuación:

Novena iteración	•																								
i j		1 2	1 3	1 4	1 9	1 12	2 2 5 4	2 10	3 5	3 4	3 6 1	3 4 1 7	4 8	4 6	5 7	6 8	7 8	9 11	9 12	10 13	10 12	11 14	12 13	12 14	13 14
Menor	j	28	68			Radia i=j 1ra 2da 3ra 4ta 5to 6ta 7ma 8va	NO NO SI NO SI NO SI SI		3-4-8-6 8-6-4 8-4-3	5-3	Bucke i=i 1ra 2da 3ra 4ta 5to 6ta 7ma 8va	NO NO SI NO NO NO NO													

Figura 11. Novena iteración con el noveno peso encontrado en 6-8

En esta novena iteración hubo radialidad con la tercera iteración el cual se analizó si existía bucle, por el cual existió bucle es decir i=i, sale de i y recorre por las otras radialidades regresando al mismo i(3-4-8-6-3) como se ve en la (Figura 11), de manera que esta iteración ya no cuenta y se la descarta colocando un NO en los pesos como se observa en la (Figura 12), por el cual se tiene que hacer una iteración más.

Datos iniciales

Figura 12. Colocación del NO en la Tabla 2 de datos con la detección de un bucle

- Se continúa con el procedimiento y en la onceava iteración se encontró otro bucle que de la misma manera se lo descarta porque el algoritmo de Kruskal evita bucles.
- Nuevamente se retoma el procedimiento y en la treceava, en la quinceava, en la diecisieteava iteración se encuentra los últimos bucles.
- Por último, en la dieciochoava iteración que se ve en la (Figura 13) se encontró el treceavo arco que es último arco que se necesita para convertir este sistema mallado en un sistema radial.

```
Diez y ochoava iteración
                                                             2 2 2 3
5 4 10 5
                                                                                             3 3 3 4 4
4 6 11 7 8

      4
      5
      6
      7
      9
      9
      10
      10
      11
      12
      12
      13

      6
      7
      8
      8
      11
      12
      13
      12
      14
      13
      14
      14

                                       1 1 1 1
3 4 9 12
i
                                  1
2
                            .
i
Menor
                                42
                                    2
10
                                                                 Bucle
                             i.
                                                                                                 j
2
7
                                                          j i j i j
10 2 2 1
                                                                                                                                                                     jij
4<mark>0</mark>
                                                                                                          i ji
255
244
                                                                                                                                j
                                                                                                                                          j
                                                                                                                                                            jij
                                                                                                                               7
                                                                                                                                  7
                                                                                                                                       4
                                                                                                                                            4
                                                                                             1
                                                                                                                                                8
                                                                                                                                                                   4
                                                                                                                                           6
                                                                                                                                      6
                                                                                                                               8
                                                                                                                                   8
                                                                                                                                                                          NO
                                                                                                                1 1
                                                                                                                                                          6 6 4 4 NO
                                                                                              1
                                                                                                                               2
                                                                                                                                   2
                                                                                                                                           57744886644NO
                                                                                                                               2
                                                                                                                                   2
                                                                                                                                       5
                                                                                                                              9 9 11 11 14 14
                                                                                                                                                                          NO
                                                                                                            3 1 1
                                                                                                    3
                                                                                                                                                                          NO
                                                                                                                              9
                                                                                                                                  9 12 12 13 13
                                                                                                            3 4 4
                                                                                                    3
                                                                                                                              8 8
                                                                                                                                      6 6 4 4
                                                                                                                                                                          NO
```

Figura 13. Dieciochoava iteración con el dieciochoavo peso encontrado en 2-10 que representa el último arco

Datos iniciales

	ni	nj	Lnij
4to	1	2	23
9na	1	3	31
	1	4	54
1ro	1	9	18
6ta	2	5	26
NO	2	4	37
8vo	3	4	28
3ro	3	6	22
2do	4	7	18
5ta	4	8	25
NO	4	6	32
NO	5	7	34
NO	6	8	28
NO	7	8	42
13va	2	10	42
	1	12	47
NO	10	13	44
	10	12	46
	3	11	48
10ma	9	11	32
NO	9	12	39
12va	11	14	38
7mo	12	13	27
11va	12	14	34
	13	14	48

Figura 14. Representación de los trece arcos en la tabla de datos

2.14.2 Orden y dibujo del sistema final

 Para el ordenamiento de los trece arcos, se colorea los arcos de un solo color para poder observar mejor la radialidad que posee el sistema como se muestra en la (Figura 15).

Figura 15. Interpretación de los trece arcos en color azul y los bucles en color rojo

 Para ordenar y dibujar, se dibujan los arcos sin los bucles para obtener los 13 arcos finales como se ve en la (Figura 16).

Figura 16. Representación de los trece arcos en color azul con su nueva tabla de datos iniciales

 Para la ejecución del enrutamiento se coloca los nodos de envió y recibo en columnas - filas para poder ubicar los pesos en sus respectivas posiciones que da la nueva tabla de datos iniciales como se muestra en la (Tabla 3).

Enrutamiento														
nij	1	2	3	4	5	6	7	8	9	10	11	12	13	14
:	L	23	31						18					
1	2				26					42				
	3			28		22								
4	L .						18	25						
5	5													
	5													
-	7													
٤	3													
9)										32			
10)													
1:														38
12	2												27	
13	3													
14	Ļ											34		

Tabla 3. Enrutamiento del sistema radial

 Después se va a ordenar los pesos de cada uno, hay que tener en cuenta que cada peso se lo debe sumar con el peso anterior o donde este situado como se muestra en la (Figura 17 y 18).

- -	· c ³ · •							Libr	o1 - Excel	I						Inic. ses.	œ	- o	×
Archivo	Inicio Insertar Diseño de página Fórmulas	Datos I	Reviser Vis	sta Ayud	te Q	Qué desea h	acer?											Я , с о	mpartir
Pegar &	Cortar Copiar * Copiar formato papeles r_{5} $\begin{bmatrix} Calibri & 11 & A^{*} & A^{*} \\ K & S & \Box & & A^{*} & A^{*} \end{bmatrix} = 2$ $\begin{bmatrix} Calibri & 11 & A^{*} & A^{*} \\ B & A^{*} & B^{*} & B^{*} \end{bmatrix}$	= _ ≫ · = = ● · = = = Alm	환 Ajustar tex 팀 Combinar sación	to y centrar + rs	General \$ - %	- 000 0.0 000 100 0.00 100 0.00	Formato condicional	Dar forma • como tabl	Norn Cálcu a *	nal Ilo	Bueno Celda de co Estilos	Incorrecto Celda vincul	Neutral	↑ €I	ertar Eliminar Format	∑ Autosuma	• A Z T Ordenary filtrar • Edición	Buscar y seleccionar	•
SUMA	- : × ✓ fx =Y44+AL39																		~
	Т	U	V	W	Х	Y	Ζ	AA	AB	AC	AD	AE	AF AG	6 AH	AI	AJ AK	AL	AM	AN
37																			
38 39 40 41 42	:	1 I	2 23	3 31	4	5	6	7	8	9 18	10	11	12 13	3 14		i j 1 2 1 3 1 9	Lnij 23 31 18		
43 44 45	:	1	2	3	4	5 26	6	7	8	9	10 42	11	12 13	3 14		i j 2 5 2 10	Lnij =Y44 65	+AL39)

Figura 17. Suma que obtuvo el peso de 2-5 + 1-2

 Se realiza esta suma de pesos hasta encontrar todos los pesos finales como se observa en la (Figura 19).

				Figur	ra 19	. Pe	esos	find	ales que	obtu	ivo cada	nodo		
1	2	3	4	5	6	7	8	9	10	11	12 13 34	14	i j 14 12	Lnij 122
1	2	3	4	5	6	7	8	9	10	11	12 13	14	i j 13	Lnij 149 FIN
1	2	3	4	5	6	7	8	9	10	11	12 13 27	14	i j 12 13	Lnij 149
1	2	3	4	5	6	7	8	9	10	11	12 13	14 38	i j 11 14	Lnij 88
1	2	3	4	5	6	7	8	9	10	11	12 13	14	i j 10	Lnij 65 FIN
1	2	3	4	5	6	7	8	9	10	11 32	12 13	14	i j 911	Lnij 50
1	2	3	4	5	6	7	8	9	10	11	12 13	14	i j 8	Lnij 84 FIN
1	2	3	4	5	6	7	8	9	10	11	12 13	14	i j 7	Lnij 77 FIN
1	2	3	4	5	6	7	8	9	10	11	12 13	14	i j 6	Lnij 53 FIN
1	2	3	4	5	6	7	8	9	10	11	12 13	14	i j 5	Lnij 49 FIN
1	2	3	4	5	6	7 18	8 25	9	10	11	12 13	14	i j 4 7 4 8	Lnij 77 84
1	2	3	4 28	5	6 22	7	8	9	10	11	12 13	14	i j 34 36	Lnij 59 53
1	2	3	4	5 26	6	7	8	9	10 42	11	12 13	14	i j 2 5 2 10	Lnij 49 65
1	2 23	3 31	4	5	6	7	8	9 18	10	11	12 13	14	i j 1 2 1 3 1 9	Lnij 23 31 18
	1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4	1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 <td>1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5</td> <td>1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 <</td> <td>1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 <td< td=""><td>1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8<!--</td--><td>1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7</td><td>1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 23 31 1 18 10 11 12 13 14 i j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 3 4 3 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j j j j j j j j j j j j j j j j j <td< td=""></td<></td></td></td<></td>	1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5	1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 <	1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 <td< td=""><td>1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8<!--</td--><td>1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7</td><td>1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 23 31 1 18 10 11 12 13 14 i j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 3 4 3 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j j j j j j j j j j j j j j j j j <td< td=""></td<></td></td></td<>	1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 </td <td>1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7</td> <td>1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9</td> <td>1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4</td> <td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11</td> <td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 23 31 1 18 10 11 12 13 14 i j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 3 4 3 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j j j j j j j j j j j j j j j j j <td< td=""></td<></td>	1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7	1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4	1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11	1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 23 31 1 18 10 11 12 13 14 i j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 3 4 3 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i j j j j j j j j j j j j j j j j j <td< td=""></td<>

 Se escribe los pesos finales en cada fin de línea del sistema como se observa en la (Figura 20).

Figura 20. Colocación de los pesos en cada Fin de Línea

 Con los pesos finales se busca los ramales que se relacionan con los mismos y así poder dibujar el sistema final como se muestra en la (Figura 21).

Ahora :	se busca ca	da ram	al con	n los fi	nales				
		1	9	11	14	12	13		
		0	1	2	3	4	5		
			-	-	-				
				1	3	4	8		
				1	6	7	0		
					0		0		
					-		_		
				1	3	4	/		
							9		
					1	2	10		
						10	11		
					1	3	6		
							12		
					1	2	5		
					1	2	12		
				-			12		

Figura 21. Ramales de cada peso final

Como se obtuvo cada ramal en la (Figura 20), ahora se dibuja con la siguiente lógica observando la (Figura 20), el 1 que sería el nodo de envío salen cinco nodos más a su lado izquierdo, se implementa la numeración que empieza desde el 0 y el 0 es donde está el transformador, además en el 1 a su lado derecho se dibujan tres nodos más, por otro lado, se refleja que en el nodo 7 en la parte superior nace otro nodo más, después del nodo 1 que sería el 0 salen dos ramales más para abajo.

 Se sigue con la lógica, en el nodo 6 nace otro nodo en la parte superior y el ultimo nodo sale del 5 pero el 5 se relaciona con el 2 y el 2 con el 10, por el cual nace un nodo más después del 10 como se muestra en la (Figura 22).

Figura 22. Sistema Final (sistema mallado transformado a sistema radial)

 Se analiza el sistema final y se coloca una tabla de datos de los nodos de envió y recibo con sus respectivas distancias, tomando en cuenta la (Figura 20) y la (Tabla 2), obteniendo un resultado final que se muestra en la (Tabla 4).

Sistema Final		
Datos		
ni	nj	Lnij
0	1	18
1	2	32
2	3	38
3	4	34
4	5	27
0	6	31
6	7	28
7	8	25
7	9	18
0	10	23
10		42
	11	
6	12	22
10	13	26

Tabla 4. Tabla de Datos de los nodos de envió y recibo del Sistema Final

 Para terminar, se elabora la matriz de incidencia del sistema final que se ve en la (Figura 23).

141	atiliz de incluenc	ia												
ni	j	1	2	3	4	5	6	7	8	9	10	11	12	13
	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	2	0	1	1	1	1	0	0	0	0	0	0	0	0
	3	0	0	1	1	1	0	0	0	0	0	0	0	0
	4	0	0	0	1	1	0	0	0	0	0	0	0	0
	5	0	0	0	0	1	0	0	0	0	0	0	0	0
	6	0	0	0	0	0	1	1	1	1	0	0	1	0
	7	0	0	0	0	0	0	1	1	1	0	0	0	0
	8	0	0	0	0	0	0	0	1	0	0	0	0	0
	9	0	0	0	0	0	0	0	0	1	0	0	0	0
	10	0	0	0	0	0	0	0	0	0	1	1	0	1
	11	0	0	0	0	0	0	0	0	0	0	1	0	0
	12	0	0	0	0	0	0	0	0	0	0	0	1	0
	13	0	0	0	0	0	0	0	0	0	0	0	0	1

Figura 23. Matriz de Incidencia del Sistema Final

2.15 Interconexión de sistemas de distribución

Matriz de Incidencia

La interconexión surge de retornar al sistema de distribución más confiable, donde la idea principal que se proyecta es el enlace eléctrico de dos sistemas independientes. Para este fin se debe considerar los parámetros necesarios como son: números de nodos, voltaje de operación, distancias, frecuencia, demanda máxima entre otros.

Con la interconexión, el mercado eléctrico nacional, así como su economía se fortalece por ejemplo entre dos países. La interconexión de redes en medio voltaje es una solución que intenta mejorar el suministro eléctrico cuando un alimentador de distribución falla, lo que se intenta hacer es la transferencia de carga a otro alimentador cercano, la idea es que ante una falla en el alimentador se pueda seguir otorgando servicio eléctrico a una carga sensible o especial o simplemente no permitir el corte del servicio eléctrico a todos los usuarios del alimentador que se encuentra en falla [42], para que la maniobra tenga éxito se establece en el estudio límites de caída de voltaje, cargabilidad, el punto óptimo de interconexión, coordinación de protecciones, equipos de interconexión, detección de fallas eléctricas, monitoreo y medición, basados en la norma IEEE 1547.

La norma IEEE std 1547 es un estándar del Instituto de Ingenieros Eléctricos y Electrónicos que tiene como objetivo proveer un conjunto de criterios y requisitos para la interconexión de los recursos de Generación distribuida con la red eléctrica.

Los pasos para la interconexión de redes en medio voltaje son los siguientes:

• Establecer e identificar dos alimentadores que se puedan encontrar en algún punto.

- Determinar los ramales troncales de cada alimentador.
- En el punto de encuentro colocar obligatoriamente un reconectador.
- Numerar los nodos de ambos alimentadores
- Estructurar la matriz de incidencia y transpuesta
- Ambos ramales no pueden tener distinta configuración, es decir delta estrella con delta estrella, o a su vez distinto nivel de voltaje.
- Estructurar la data del sistema con el voltaje, factor de potencia, longitudes, demanda máxima, etc.
- Realizar los flujos de potencia de ambos alimentadores para verificar la robustez del sistema eléctrico.
- Utilizar las ecuaciones de Carson para obtener las impedancias del sistema de cada conductor, tanto en r como en x.
- Obtener las caídas de voltaje. Siendo para medio voltaje hasta un 4% como máximo, en medio voltaje por principio de Know. Por el cual se determina la ubicación de los reconectadores para la interconexión.

Ejemplo:

Dos alimentadores realizan el proceso de interconexión, el objetivo primordial de este análisis es la ubicación idónea de los reconectadores.

El alimentador 1 cuenta con 5 nodos y el alimentador 2 cuenta con 6 nodos como se ve en la (Figura 24).

Figura 24. Esquema general de los dos alimentadores

Se procede con la estructuración de las matrices tanto de incidencia como las transpuestas de cada alimentador como se muestra en la (Figura 25).

Alim1 Inciden	icia						<i>1</i> 	Alim2 ncidencia						
nij		1	2	3	4	5	r	nj	1	2	3	4	5	6
	1	1	1	1	1	1		1	1	1	1	1	1	1
	2	0	1	1	1	1		2	0	1	1	0	0	0
	3	0	0	1	0	0		3	0	0	1	0	0	0
	4	0	0	0	1	1		4	0	0	0	1	1	1
	5	0	0	0	0	1		5	0	0	0	0	1	0
								6	0	0	0	0	0	1
Transp	uestas													
nj		1	2	3	4	5	r	nj	1	2	3	4	5	6
	1	1	0	0	0	0		1	1	0	0	0	0	0
	2	1	1	0	0	0		2	1	1	0	0	0	0
	3	1	1	1	0	0		3	1	1	1	0	0	0
	4	1	1	0	1	0		4	1	0	0	1	0	0
	5	1	1	0	1	1		5	1	0	0	1	1	0
								6	1	0	0	1	0	1

Figura 25. Matrices de incidencia y transpuesta de nodos de ambos alimentadores

Se arma la data del sistema como se ve en la (Figura 26), de tal forma que se van enumerando los ramales secundarios, con longitudes, potencias nominales, factor de potencia, el voltaje de operación y conexión del sistema (estrella – delta). Con esto se obtiene las potencias activas y reactivas del sistema, encontrando la corriente nominal que sirve para determinar la sección del conductor adecuada para que soporte la corriente y la potencia que se va a transferir del alimentador primario al alimentador secundario. En este caso, la corriente del primer nodo indica que es la corriente nominal total, la cual soporta este alimentador.

Alim1 Data									
ni (Nodo inicial)	nj (Nodo final)	Lnj	S	Р	Q	Sin	Se	In-r	ni
		mt	kUA	kW	kUAR	kUA	kUA	А	
0	1	. 100	50	47,5	0 1	5,61	50	275	183,33
1	2	90	40	38,0	0 1	2,49	165	225	150,00
2	3	80	60	57,0	0 1	.8,73	60	60	40,00
2	4	110	45	42,7	5 1	4,05		125	83,33
4	5	120	80	76,0	0 2	4,98		80	53,33

Figura 26. Data inicial del alimentador 1

Se realiza el flujo de potencias, para determinar la caída de voltaje y la potencia final como se observa en la (Figura 27).

Figura 27. Flujo de potencias del alimentador 1

Por otro lado, se realiza el mismo procedimiento con el alimentador 2. Estableciendo la data con los parámetros necesarios para calcular la corriente nominal como se muestra en la (Figura 28).

Alim2									
Data									
ni (Nodo inicial)	nj (Nodo final)	Lnj	S	Р	Q	Sin	Se	In-ni	
		mt	kUA	kW	kUAR	kUA	kUA	А	
0	1	90	40	38,00) 12	2,49	235	370	247
1	2	50	55	52,25	5 17	7,17	55	135	90
2	3	60	80	76,00) 24	4,98	80	80	53
1	4	85	50	47,50) 15	5,61		195	130
4	5	90	70	66,50) 21	1,86		70	47
5	6	60	75	71,25	5 23	3,42		75	50

Figura 28. Data inicial del alimentador 2

Se realiza el flujo de potencias como se ve en la (Figura 29), para encontrar la caída de voltaje y la potencia final.

ni	nj	Lnj	Snj(t)	Pnj(t)		Qnj(t)	r a	< C	os Fi	Sen FI	ΔPnj	ΔQnj	ΔUnj		ΔUnj			∆Unj	ΔPnj	ΔQnj	Snj(t)	Pnj(t)	Qnj(t)
													real	imag	real	imag	modulo	%	kW	kUAR			
		mt	kUA	kW		kuar	Ohm/milla						kU	kU	kU	kU					kUA	kW	kUAR
	0	1	90	40	38	12,489996	0,212	0,3968	0,95	0,3122499	0,033723	0,0631194	0,0009702	0,0013218	0,00097	0,001322	0,00164	0,218617	0,033723	0,0631194	40,05178	38,0	3 12,55
	1	2	140	95	90,25	29,6637405	0,212	0,3968	0,95	0,3122499	0,295896	0,5538286	0,0020752	0,0028271	0,003045	0,004149	0,005147	0,686215	0,1056773	0,1977959	55,16237	52,3	6 17,37
	2	3	200	175	166,25	54,6437325	0,212	0,3968	0,95	0,3122499	1,4344	2,6847646	0,0043122	0,0058745	0,007358	0,010023	0,012434	1,657847	0,4303201	0,8054294	80,66277	76,4	3 25,79
	2	4	175	90	85,5	28,102491	0,212	0,3968	0,95	0,3122499	0,331961	0,6213312	0,0023582	0,0032126	0,003328	0,004534	0,005625	0,749979	0,1612383	0,3017895	50,24797	47,6	6 15,91
	4	5	265	160	152	49,959984	0,212	0,3968	0,95	0,3122499	1,58873	2,9736233	0,0049994	0,0068107	0,008328	0,011345	0,014073	1,876465	0,5395688	1,0099098	70,83235	67,0	4 22,87
	4	6	235	165	156,75	51,5212335	0,212	0,3968	0,95	0,3122499	1,498304	2,8043736	0,0047501	0,0064711	0,008079	0,011005	0,013652	1,820292	0,3825458	0,7160103	75,58907	71,6	3 24,13
	S	3	72,5463 kUA			30%		484,3102 k	JA														
	P		353,15 kW				-	c															
	Q		118,63 kUAR					0,4 N	IUA														
	ΔP		1,65 kW																				
	ΔQ		3,09 kUAR																				
	FP		0,95																				

Figura 29. Flujo de potencias del alimentador 2

A continuación, en la (Figura 30) se ejecuta la interconexión de ambos alimentadores, siendo el alimentador 1 el receptor y el alimentador 2 el transmisor.

Figura 30. Interconexión de sistemas siendo alimentador 1 receptor y alimentador 2 transmisor

Se estructura las matrices de incidencia y transpuesta del sistema interconectado de ambos alimentadores como se observa en la (Figura 31).

Incidencia								Transpuesta							
nij	1	2	3	4	5	6	7	nij	1	2	3	4	5	6	7
1	1	1	1	0	0	0	0	1	1	0	0	0	0	0	0
2	0	1	1	0	0	0	0	2	1	1	0	0	0	0	0
3	0	0	1	0	0	0	0	3	1	1	1	0	0	0	0
4	0	0	0	1	1	1	1	4	0	0	0	1	0	0	0
5	0	0	0	0	1	1	1	5	0	0	0	1	1	0	0
6	0	0	0	0	0	1	1	6	0	0	0	1	1	1	0
7	0	0	0	0	0	0	1	7	0	0	0	1	1	1	1
		Figu	ra 31	Matriz	de inc	idenci	a y tra	nspuesta de	el siste	ma int	ercon	ectado			

Ahora se ejecuta los flujos de potencia del sistema interconectado, quedando los resultados finales en la (Tabla 5).

								Acumulada			Total			
ni	nj	Lnij	Lnj	Lnj-total	Snj(t)	Pnj(t)	Qnj(t)	Snj(t)	Pnj(t)	Qnj(t)	Snj(t)	Pnj(t)	Qnj(t)	
		mt	mt	mt	kUA	kW	kUAR	kUA	kW	kUAR	kUA	kW	kUAR	
0,000	1,000	100,000	100,000	100,000	50,090	47,559	15,722	50,090	47,559	15,722	50,090	47,559	15,722	
1,000	2,000	190,000	290,000	290,000	40,263	38,171	12,810	90,353	85,729	28,532	90,353	85,729	28,532	
2,000	3,000	270,000	560,000	560,000	60,650	57,422	19,524	151,003	143,151	48,056	151,003	143,151	48,056	
3,000	4,000	0,000	0,000	560,000	0,000	0,000	0,000	0,000	0,000	0,000	151,003	143,151	48,056	
4,000	5,000	200,000	200,000	760,000	80,663	76,430	25,785	80,663	76,430	25,785	231,665	219,581	73,841	
5,000	6,000	140,000	340,000	1100,000	55,162	52,356	17,372	135,825	128,786	43,157	367,491	348,367	116,998	
6,000	7,000	90,000	430,000	1530,000	40,052	38,034	12,553	175,877	166,820	55,710	543,367	515,187	172,708	

r	х	Cos Fi	Sen Fl	ΔPnj	∆Qnj	∆Uni		∆unj		∆unj	
						real	imag	real	imag	real	imag
Ohm/milla				kW	kUAR	kU	kU	kU	kU	kU	kU
0,212	0,397	0,950	0,312	0,059	0,110	0,001	0,002	0,001	0,002	0,001	0,002
0,212	0,397	0,950	0,312	0,554	1,038	0,005	0,006	0,006	0,008	0,006	0,008
0,212	0,397	0,950	0,312	2,990	5,597	0,011	0,015	0,017	0,023	0,017	0,023
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,017	0,023
0,212	0,397	0,950	0,312	9,552	17,879	0,012	0,017	0,012	0,017	0,029	0,040
0,212	0,397	0,950	0,312	34,790	65,116	0,014	0,019	0,026	0,036	0,056	0,076
0,212	0,397	0,950	0,312	105,790	198,006	0,013	0,018	0,040	0,054	0,095	0,130

∆Uni	ΔPnj	∆Qnj	Snj(t)	Pnj(t)	Qnj(t)	Unj	Snj(t)	Snj(t)	In-nj	
%	kW	kUAR	kUA	kW	kUAR	kU	kUA	kUA	Α	
0,304	0,059	0,110	50,180	47,617	15,832	0,748	291,445	1076,168	1077,463	
1,347	0,363	0,680	90,913	86,093	29,212	0,740	241,355	784,723	786,004	
3,823	1,442	2,699	153,242	144,593	50,754	0,721	151,003	543,367	544,617	
0,000	0,000	0,000	151,002	143,151	48,056	0,750	392,365	392,365	393,664	
2,814	0,305	0,570	232,135	219,886	74,411	0,729	392,365	392,365	393,627	
5,938	0,605	1,132	368,424	348,972	118,130	0,705	311,702	311,702	312,924	
8,908	0,652	1,220	544,372	515,839	173,928	0,683	175,877	175,877	177,060	R1

Tabla 5. Flujos de potencia receptor – transmisor del sistema interconectado

Seguidamente, se invierte el sistema de interconexión, siendo alimentador 1 transmisor y alimentador 2 receptor como se observa en la (Figura 32).

Figura 32. Interconexión de sistemas siendo alimentador 1 transmisor y alimentador 2 receptor

Por último, se calcula el flujo de potencias desde este sentido de interconexión como se muestra en la (Tabla 6).

ni	nj	Lnij	Lnj	Lnj-total	Snj(t)	Pnj(t)	Qnj(t)	Snj(t)	Pnj(t)	Qnj(t)	Snj(t)	Pnj(t)	Qnj(t)
		mt	mt	mt	kUA	kW	kUAR	kUA	kW	kUAR	kUA	kW	kUAR
0,000	1,000	90,000	90,000	90,000	50,180	47,617	15,832	50,180	47,617	15,832	50,180	47,617	15,832
1,000	2,000	140,000	230,000	230,000	90,913	86,093	29,212	141,094	133,710	45,044	141,094	133,710	45,044
2,000	3,000	200,000	430,000	430,000	153,242	144,593	50,754	294,335	278,302	95,798	294,335	278,302	95,798
3,000	4,000	0,000	0,000	430,000	0,000	0,000	0,000	0,000	0,000	0,000	294,335	278,302	95,798
4,000	5,000	270,000	270,000	700,000	40,052	38,034	12,553	40,052	38,034	12,553	334,387	316,336	108,351
5,000	6,000	190,000	460,000	1160,000	55,162	52,356	17,372	95,214	90,389	29,925	429,601	406,726	138,275
6,000	7,000	100,000	560,000	1720,000	80,663	76,430	25,785	175,877	166,820	55,710	605,478	573,545	193,986

r	x	Cos Fi	Sen Fl	ΔPnj	∆Qnj	∆Uni		∆unj		∆unj	
						real	imag	real	imag	real	imag
Ohm/milla				kW	kUAR	kU	kU	kU	kU	kU	kU
0,212	0,397	0,950	0,312	0,053	0,099	0,001	0,002	0,001	0,002	0,001	0,002
0,212	0,397	0,950	0,312	1,072	2,007	0,005	0,007	0,007	0,009	0,007	0,009
0,212	0,397	0,950	0,312	8,724	16,329	0,016	0,022	0,022	0,031	0,022	0,031
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,022	0,031
0,212	0,397	0,950	0,312	18,330	34,308	0,024	0,033	0,024	0,033	0,047	0,064
0,212	0,397	0,950	0,312	50,136	93,840	0,022	0,030	0,046	0,063	0,093	0,127
0,212	0,397	0,950	0,312	147,669	276,392	0,016	0,022	0,063	0,085	0,156	0,212

										1
∆Uni	ΔPnj	∆Qnj	Snj(t)	Pnj(t)	Qnj(t)	Unj	Snj(t)	Snj(t)	In-nj	
%	kW	kUAR	kUA	kW	kUAR	kU	kUA	kUA	Α	
0,274	0,053	0,099	50,262	47,670	15,931	0,748	485,609	1526,516	1527,812	
1,474	0,653	1,222	142,105	134,363	46,265	0,739	435,429	1040,907	1042,187	
5,049	4,058	7,595	300,695	282,360	103,392	0,712	294,335	605,478	606,712	
0,000	0,000	0,000	294,329	278,302	95,798	0,750	311,143	311,143	312,442	
5,483	0,101	0,190	334,535	316,438	108,541	0,709	311,143	311,143	312,371	
10,440	0,403	0,755	430,213	407,129	139,031	0,672	271,091	271,091	272,254	R3
14,116	0,724	1,356	606,584	574,270	195,341	0,644	175,877	175,877	176,993	

Tabla 6. Flujos de potencia de la interconexión transmisor – receptor

En conclusión, se obtiene una caída de voltaje en el nodo 1 del alimentador 2 de 8.907% dando lugar a la ubicación del primer reconectador. Por otra parte, el lugar cercano entre ambos alimentadores genera un punto de quiebre, por lo que se ubica en esa zona un segundo reconectador. En el nodo 2 del alimentador 1, se tiene una caída de voltaje total en medio y bajo voltaje de 10.439% en esa zona dando lugar al tercer reconectador. Es muy importante, para la elección de los reconectadores, la verificación

de las corrientes nominales en la tabla de flujos de potencia del sistema interconectado para no tener inconvenientes con los equipos de interconexión.

CAPÍTULO 3

DISEÑO DEL SISTEMA NODAL PARA LA CARGA ESPECIAL

3.1 Introducción

En este capítulo se analiza los casos de estudio con la carga especial denominada Aeropuerto Mariscal Lamar, primero mediante el software QGISGNU 3.22 se georreferencia el sector para creación de nodos alrededor del sector en una capa shape, el cual será exportado a otro software CYME©. A su vez se realiza la proyección de cargas que servirán para el análisis de flujos e interconexión de la carga especial, con el fin de determinar el adecuado proceso de transferencia de carga de un tramo hacia otro, siendo el primero transmisor, el otro receptor y viceversa. En este sistema de trasferencia de carga se verificará los resultados obtenidos para determinar la viabilidad de una interconexión con la carga especial, manteniendo el servicio de energía sin interrupciones.

3.2 Delimitación del sector

Para poder obtener las coordenadas georreferenciadas, se entra en la pestaña Web, se ingresa en QuickMapServices y se elige OSM Standard, se escoge en que sector se quiere trabajar y se obtiene esa ubicación con Download OSM como se observa en la (Figura 33).

Figura 33. Ubicación del sector

 CSM Downloader
 N

 N
 -2.883061328956911
 E

 W
 -2.893061328956911
 E

 W
 -78.97452063468764

 Save Location:
 -2.8964718711925954
 Save Location:

 Jara/ABRIL 2023/Qgis desde el aeropuerto/Aeropuerto ML/Aeropuerto ML/Aeropuerto ML/Aeropuerto MLosm
 Save File

 V
 Locad layer after download
 Aceptar

El cual va a ser las coordenadas que se ve en la (Figura 34) que se requiere intervenir:

Figura 34. Coordenadas del sector

Se recopila toda la información y se genera una sección de capas es decir un OSM de puntos, multipuntos, cadena de líneas y polígonos como se observa en la (Figura 35).

Figura 35. Capas OSM

Por el cual se crea un archivo shape para cada capa de puntos, multipuntos, cadena de líneas y polígonos como se muestra en la (Figura 36). En la sección formato se selecciona

Archivo shape de ESRI, en la sección nombre de archivo se ingresa en que carpeta se desea guardar el archivo shape como se ve en la (Figura 37 y 38).

Figura 36. Generación de la capa shape – puntos

Figura 37. Selección del formato como Archivo shape de ESRI - puntos

Q Guardar capa vecto	ial como	X Canino Vig
🔇 Guardar capa com	D C C C C C C C C C C C C C C C C C C C	×
\leftrightarrow \rightarrow \checkmark \uparrow	Aeropuerto ML > Aeropuerto ML > C	
Organizar - Nu	eva carpeta	∃ • 🤮
 > CneDrive - Per Escritorio Descargas Documentos Imágenes Música Vídeos 	rsc Nombre Fecha de modificación Ningún elemento coincide con el criterio de búsque	Tipo Tamaño da.
Qgis desde e	ae	
Nombre: Tipo:	OSMpuntos Archivo shape de ESRI (*.shp *.SHP)	
▲ Ocultar carpetas		Guardar Cancelar
	Andrearthin guardado al mana Anortez Gancelez A	

Figura 38. Selección en que carpeta se va a guardar el Nombre de archivo - puntos

En SRC (Sistema de referencia de coordenadas) se ingresa en la sección Filtro el EPSG de Ecuador que es 32717 como se observa en la (Figura 39), para que la ubicación este georreferenciada, para que todas las capas shape poseen el mismo SRC – 32717.

Q Selector de sistema de referencia de coordenadas X						
Seleccionar el sistema de referencia de coordenadas para el archivo transformarán desde el sistema de referencia de coordenadas de la	o vectorial. Los puntos de datos se capa.					
Filtro Q 32717	≪					
Sistemas de referencia de coordenadas usados recientem	ente					
Sistema de referencia de coordenadas	ID de la autoridad					
WGS 84 / UTM zone 17S	EPSG:32717					
 Sistemas de referencia de coordenadas predefinidos 	Esconder SRC obsoletos					
Sistema de referencia de coordenadas	ID de la autoridad 📥					
 Universal Transverse Mercator (UTM) 						
WGS 84 / UTM zone 17S	EPSG:32717					
•						
WGS 84 / UTM zone 17S Propiedades • Unidades: metros • Dinámico (depende de un dátum que no es fijo) • Calestial badus Earth						
	Aceptar Cancelar Avuda					

Figura 39. EPSG de Ecuador

A continuación, en la sección tipo de geometría seleccionamos Punto como se en la (Figura 40), seguidamente se activa las dos opciones incluir dimensión z y forzar multi tipo como se observa en la (Figura 41).

ombre de archivo Verdugo y Jara\ABRIL 2023\Qgis desde el aeropuerto\Aeropuerto ML\Aeropuerto Aeropuerto ML\Aeropuerto ML\Aeropuerto ML\Aeropuerto ML\Aeropuerto ML\Aeropuerto ML\Aeropuerto ML\Aeropuerto Aeropuerto Aerop	ormato	Archivo shape de ESRI					
ombre de la capa RC EPSG:32717 - WGS 84 / UTM zone 175 odificación UTF-8 odificación campos a exportar y sus opciones de exportación / Conservar metadatos de la capa / Conservar metadatos de la capa / Geometría Tipo de geometría Induir dimensión Z Opciones de capa RESIZE INO Opciones personalizadas	ombre de archivo	5 Verdugo y Jara\ABRIL 2023\Qg	is desde el aeropuerto\Aeropuerto ML\Aeropuerto ML\OSMpuntos.shp 🚳 🗌				
RC EPSG:32717 - WGS 84 / UTM zone 175 odificación UTF-8 Guardar sólo los objetos espaciales seleccionados Seleccione campos a exportar y sus opciones de exportación / Conservar metadatos de la capa Geometría Tipo de geometría Induir dimensión Z Opciones de capa Porzar multi tipo Opciones de capa Porzar multi tipo Opciones de capa RESIZE NO SHPT Opciones personalizadas 	ombre de la capa						
odificación UTF-8 Guardar sólo los objetos espaciales seleccionados Seleccione campos a exportar y sus opciones de exportación Conservar metadatos de la capa Geometría Tipo de geometría Godardar multi tipo Cadena de líneas Colección Geometría Colección Geometría SHPT Opciones personalizadas	RC	EPSG:32717 - WGS 84 / UTM zo	ne 175 🔹				
Guardar sólo los objetos espaciales seleccionados Seleccione campos a exportar y sus opciones de exportación / Conservar metadatos de la capa Geometría Tipo de geometría Induir dimensión Z Opciones de capa RESIZE INO SHPT Opciones personalizadas	odificación		UTF-8				
Seleccione campos a exportar y sus opciones de exportación / Conservar metadatos de la capa Geometría Tipo de geometría Ipo de geometría Induir dimensión Z Opciones de capa RESIZE INO Querto supersonalizadas	Guardar sólo lo	s objetos espaciales seleccionados					
Conservar metadatos de la capa Geometría Tipo de geometría Forzar multi tipo Induir dimensión Z Potiono Colección (actual: ninguno) Opciones de capa RESIZE INO Opciones personalizadas	Seleccione can	npos a exportar y sus opcione	s de exportación				
Geometría Automático Tipo de geometría Automático o Forzar multi tipo ✓ Punto `Induir dimensión Z ✓ Obligono Colección (actual: ninguno) Colección Geometría Portiones de capa ✓ SHPT ✓ Opciones personalizadas ✓	/ Conservar meta	datos de la capa					
Tipo de geometría Forzar multi tipo Forzar multi tipo Cadena de líneas Forzar multi tipo Colección (actual: ninguno) Colección (actual: nin	Geometría						
Forzar multi tipo ✓ Punto Induir dimensión Z ✓ Cadena de líneas Deligono Coleción Geometría Binguna geometría Imagenetría Opciones personalizadas ✓	Tipo de geometrí	a	Automático				
Induir dimensión Z ✓ Cadena de líneas Dolígono Extensión (actual: ninguno) ✓ Opciones de capa ✓ Ninguna geometría SHPT ✓ Opciones personalizadas ✓	Forzar multi t	ipo	1 Punto				
Extensión (actual: ninguno) Colección Geometría Opciones de capa Ninguna geometría RESIZE NO SHPT Opciones personalizadas	Incluir dimensión Z		V° Cadena de líneas				
Creatensión (actual: ninguno) Opciones de capa RESIZE NO SHPT Opciones personalizadas			ColecciónGeometría				
Opciones de capa	Extensión	(actual: ninguno)	Ninguna geometría				
RESIZE NO	Opciones de ca	ipa					
SHPT	RESIZE NO		•				
Opciones personalizadas	SHPT		▼				
Opciones personalizadas	Oncionae norm	analiza da c					
	opciones pers	manzauas					

Figura 40. Selección del tipo de geometría - Punto

ormato	Archivo shape de ESRI		
Iombre de archivo	5 Verdugo y Jara\ABRIL 2023\Qgis	desde el aeropuerto\Aeropuerto ML\Aeropuerto ML\OSMpuntos.shp	
ombre de la capa			
RC	EPSG:32717 - WGS 84 / UTM zone	e 175	•
odificación		UTF-8	
Guardar sólo lo	s objetos espaciales seleccionados		
Seleccione car	npos a exportar y sus opciones o	de exportación	
Conservar meta	adatos de la capa		
Geometría			
Tipo de geometri	ía -	° [°] Punto	-
✔ Forzar multi	tipo		
✔ Incluir dimen	isión Z		
Extensión	(actual: ninguno)		
Opciones de ca	ара		
RESIZE NO			-
SHPT			-
Opciones pers	onalizadas		

Figura 41. Activación de las casillas de incluir dimensión Z y forzar multi tipo

Seguidamente se hace lo mismo con las OSM de cadena de líneas y polígonos, teniendo en cuenta que se debe cambiar en cada uno el tipo de geometría como se muestran en la (Figura 42) hasta la (Figura 47).

Figura 43. Capa shape de OSMlineas2

Figura 44. Capa shape de OSMpoligonos

Figura 45. Opción de eliminación de las capas que se utilizan como borrador para la creación de las capas shape

Figura 46. Eliminación de las capas que se utilizan como borrador para la creación de las capas shape

Figura 47. Capas Shape

Ahora se procede con la creación de un límite de área mediante una capa shape, se da un clic en nueva capa de archivo shape como se ve en la (Figura 48) y se configura la nueva capa shape, después de acabar la configuración se da otro clic en Aceptar y se crea la capa shape llamada límite como se muestra en la (Figura 49), consecutivamente se selecciona el tipo de geometría como se muestra en la (Figura 50) y después se obtiene la creación de la capa shape límite como se observa en la (Figura 51).

Figura 48. Nueva capa de archivo shape – límite

🔇 Guardar ca	ipa com	10					×
$\leftarrow \rightarrow \cdot$	~ ^	•	🔲 « Aeropuerto ML > Aeropuerto ML	\checkmark	С		م ML
Organizar 👻	Nu	ueva	carpeta			E] · 🥐
🔉 🌰 OneD	rive - Pe	ersc	Nombre	Fecha de modificació	'n	Тіро	Tamaño
		-	OSMlineas	28/4/2023 18:13		Recurso de forma de	203
Escrito	orio	*	🕘 OSMlineas2	28/4/2023 18:21		Recurso de forma de	16
🚽 Desca	irgas	*	OSMpoligonos	28/4/2023 18:30		Recurso de forma de	. 130
📑 Docur	mentos	*	OSMpuntos	28/4/2023 18:07		Recurso de forma de	. 86
🔀 lmáge	enes	*					
🕒 Músic	a	*					
🚺 Vídeo:	S	*					
🦰 Resum	nen Vere	duç					
No	ombre:	lím	ite				
	Tipo:	Arc	hivo shape de ESRI (*.shp *.SHP)				
▲ Ocultar carp	petas					Guardar	Cancelar

Figura 49. Nombre de archivo de la nueva capa shape – límite

🔇 Nueva	capa de archi	ivo shape				×	
Nombre de	archivo	3RIL 2023\Q	gis desde el aer	opuerto\Aeropuerto M	L\Aeropuerto ML\límite.shp 🔕		
Codificación de archivo		UTF-8	UTF-8				
Tipo de geo Additional o	ometría dimensions	Ningu Punto	na geometría unto				
Nuevo car	про	V Caden	a de líneas				
Nombre		rongo				_	
Tipo	abc Text Data					-	
Longitud	80	Precisión					
5			🖥 Añadir a la	lista de campos			
Lista de c	ampos						
Nombre	Tip	00	Longitud	Precisión			
					Eliminar campo		
					Eliminar campo		
					Aceptar Cancelar Ayu	uð	

Figura 50. En la sección tipo de geometría se selecciona Polígono

Figura 51. Creación de la capa shape límite

Dentro de la capa shape límite se da un clic en conmutar edición como se ve en la (Figura 52) y se da otro clic en añadir polígono como se observa en la (Figura 53), por el cual se continua con el procedimiento hasta la (Figura 56) que es el accionamiento del componente guardar de la edición del límite.

Figura 52. Accionamiento del componente conmutar edición de capas shape

Figura 53. Utilización de la herramienta añadir polígono

Figura 54. Trazos del polígono para limitar la zona

Figura 55. Dirección id del límite que se acabó de trazar

Figura 56. Accionamiento del componente guardar capa en edición del límite que se acabó de trazar

Seguidamente se corta el límite como capa shape con las otras capas shape (OSMpuntos, OSMlineas, OSMlineas2, OSMpoligonos). Se ingresa a la sección Vectorial como se ve en la (Figura 57), seguidamente para poder cortar las capas shape con el límite se tiene la capa de superposición y la capa de entrada como se muestra en la (Figura 58), se sigue el proceso hasta la (Figura 65) quedando la Nueva capa shape OSMlineas.

Figura 57. Accionamiento del componente cortar dentro de la sección Vectorial

Q Cortar			×
Parámetros Registro		Corta	r
Capa de entrada		Este algo	ritmo corta
SMlineas [EPSG:32717]	- 🗘 🔧 🖃	una capa	vectorial
Objetos seleccionados solamente		objetos e	spaciales de
Capa de superposición		adicional	Sólo las
[PSG:32717]	- 🗘 🗸 🕞	de la cap	a de
Objetos seleccionados solamente		entrada o dentro de	lue caen
Cortado		polígono:	s de la capa
[Crear capa temporal]		añadirán	a la capa
		modificar propieda área o lo los objet propieda guardada atributos que actua manualm	, aunque la , de corte á des como ngitud de ss. Si esas des están ss como tendrán alizarse ente.
	0%		Cancelar
Ejecutar como proceso por lotes	Ejecutar	Cerrar	Ayuda

Figura 58. Parámetros de la sección cortar con referente al límite con OSMlineas

Perámetros Registro Capa de entrada Options Invalid feature filtering Io not Filter (Better Performance) Limit features processed Ivo establecido	Q Cortar			>
Image: Comparison of the stable of the st	Parámetros Registro		, Cortai	
Invalid feature filtering Do not Filter (Better Performance) Iter (Better Performance) <	Capa de entrada Op	ions	Este algor	tmo corta
Umit features processed No establecido uma capa o addicinal. Set	Invalid feature filtering	Do not Filter (Better Performance)	utilizando objetos es	los naciales d
0%	Limit features processed	No establecido	una capa adiconal, partes de de la capa entrada qu dentro de polígonos de superp añadirán a resultante Los atribu objetos no modifican propiedad área o lon los objeto propiedad quardadas quardadas atributos i que actual manualme	ioligonal Sólo las Sos objeto de le caen los de la capa las e la capa e la capa e la capa se la capa e se a aunque la de corte lis Sidón se se setán como e los se sestán trarse nite.
0%		201		Grant
Circle and a line of the line		U70		Cancela

Figura 59. Opciones avanzadas de la capa de entrada OSMlineas con la opción No Filtrar (mejor rendimiento)

Figura 60. Capa Cortado con referente a límite con OSMlineas

Figura 61. Eliminación de la capa shape OSMlineas

Figura 62. Nueva capa shape OSMlineas con referente a la capa de Cortado

rmato	Archivo shape de ESRI
ombre de archivo	IS Verdugo y Jara\ABRIL 2023\Qgis desde el aeropuerto\Aeropuerto ML\Aeropuerto ML\OSMlineas.shp 🚳 🗌
ombre de la capa	
RC	EPSG:32717 - WGS 84 / UTM zone 175
odificación	UTF-8
Guardar sólo lo Seleccione can	; objeto 🔇 Guardar capa vectorial como X
Conservar meta Geometría	datos d ? La capa ya existe. ¿Quiere sobrescribir el archivo completo, la capa o añadir los objetos a la capa?
Tipo de geometrí	a Sobrescribir archivo Añadir a la capa Cancelar
 ✓ Incluir dimen Extensión 	sión Z (actual: ninguno)
Opciones de ca	pa
SHPT	

Figura 63. Sobrescribiendo la nueva capa shape OSMlineas con referente a la capa de Cortado

Figura 64. Nueva capa shape OSMlineas con el proceso de cortado

Figura 65. Eliminación de la capa Cortado con referente a la Nueva capa shape OSMlineas

También se realiza el mismo procedimiento en la sección cortar con el límite y las capas shape OSMlineas 2 y OSMpoligonos como se ve en la (Figura 66 y 67).

Figura 66. Eliminación de la capa Cortado con referente a la Nueva capa shape OSMlineas2

Figura 67. Eliminación de la capa Cortado con referente a la Nueva capa shape OSMpoligonos

En cambio, para la capa shape OSMpuntos para cortar con el límite, se realiza el mismo procedimiento, pero en opciones avanzadas de la capa de entrada OSMpuntos en la sección Filtrado de características no valido ya no se elige la opción No Filtrar (mejor rendimiento) si no se elige la de Usar predeterminado como se observa en la (Figura 68) y obteniendo como resultado la (Figura 69).

Figura 68. Opciones avanzadas de la capa de entrada OSMpuntos con la opción Usar predeterminado

Figura 69. Capas shape recortadas dentro del límite

Posteriormente se va transformar la capa shape OSMpoligonos a líneas, es decir de polígonos a líneas como se ve en la (Figura 70) continuando el procedimiento hasta la (Figura 63).

Figura 70. Capa shape OSMpoligonos a una capa shape de líneas con el nombre de casas

Polígonos a líneas)
Parámetros Registro		Políg	onos a
apa de entrada		lineas	
POSMpoligonos [EPSG:32717]	╲	Convertir a líneas	polígonos
Objetos seleccionados solamente			
neas			
:/Users/User/Desktop/TESIS Verdugo y Jara/ABRIL 2023/Qgis desde el aeropuerto/Aeropuerto MLR/Casas.gpkg 🧣	<u>۳. ا</u>		
0%			Cancela
erutar como proceso por lotes	iecutar	Cerrar	Avaids

Figura 71. Opciones de la capa de entrada OSMpoligonos a una capa shape de líneas con el nombre de Casas

Figura 72. Nueva capa shape de líneas con el nombre de Casas

Figura 73. Avenidas y calles de la capa shape Casas

3.3 Creación de la capa shape Nodos

Se crea una nueva capa shape siguiendo la misma metodologia de la (Figura 49), por el cual a esta nueva capa shape se llamara Nodos como se observa en la (Figura 74), se sigue el proceso hasta la (Figura 83).

Q Nueva capa de archivo	shape				\times
Nombre de archivo	RIL 2023\Qgis	s desde el aeropuerto	\Aeropuerto ML\/	Aeropuerto ML\Nodos.sh	ıp 💌 🛄
Codificación de archivo	UTF-8				•
Tipo de geometría	° [°] Punto				•
Additional dimensions	Ninguno	0 2	(+ M values)	O Valores M	
	EPSG:32717	- WGS 84 / UTM zon	e 17S		- 🔥 🛞
Nuevo campo					
Nombre					
Tipo abc Text Data					-
Longitud 80	Precisión				
		Añadir a la lista de	campos		
Lista da campas					
Nombre Tipo		Longitud	Precisión		
ia integ	er	10			
				Elimina	r campo
				Aceptar Cancelar	Ayuda

Figura 74. Creación de la nueva capa shape Nodos

Figura 75. Accionamiento del componente conmutar edición de capas shape con referente a los Nodos

Figura 76. Accionamiento del componente añadir punto de capas shape con referente a los Nodos

Figura 77. Creación del primer nodo en la capa shape Casas

Figura 78. Enumeración de los nodos en la capa shape Casas

Figura 79. Medida entre el nodo 59 – 60 en la capa shape Nodos

Figura 80. Medida entre el nodo 150 – 151 en la capa shape Nodos

Figura 81. Medida entre el nodo 299 – 300 en la capa shape Nodos

Figura 82. Sistema de 300 nodos en la capa shape Nodos con la carga especial Aeropuerto Mariscal Lamar

Figura 83. Límite del Sistema de 300 nodos en la capa shape Nodos con la carga especial Aeropuerto Mariscal Lamar

3.4 Elaboración de las distancias de los nodos con la tabla de atributos

Una vez creado los 300 nodos se continua a colocar las distancias de los nodos con el campo de tabla de atributos como se muestra en la (Figura 84), a su vez la tabla de atributos esta sin datos como se observa en la (Figura 85) de tal forma que se utiliza la opción de calculadora de campos para poder ingresarlos como se ve en la (Figura 86 y 87).

Figura 84. Elección del componente tabla de atributos

2	Nodos—	Objetos T	otales:	300, F	iltrado	s: 300, S	elecc	ionac	los: 0							
J	78	8	2 6	≥¢		<mark>ع</mark> ا			-	Ť	\$ \$	Q	1.	ļ	=	
	i	d												 	 	
37		137	r.													
38		138	1													
39		139)													
40		140)													
41		141														
42		142	!													
43		143	}													
44		144	Ļ													
45		145	j													
46		146	;													
47		147	r													
48		148	}													
49		149)													
50		150)													
51		151														
52		152	1													
53		153	}													
54		154	ļ													
55		155	i													
56		156	5													
57		157	1													
	Mostrar to	dos los ob	jetos es	spaciale	es 🕽											

Figura 85. Tabla de atributos

Figura 86. Selección para abrir el componente calculadora de campos

Figura 87. Ventana de funciones de calculadora de campos

Q *AeropuertoML — QGIS							- 0 ×
Proyecto Editar Ver Capa Configu	iración Co <u>m</u> plemen	Vertexial Distan Dave de datas Web	Malla Descence	Arreda			
🗋 🗁 🗐 🔂 😭 🚺	🖑 🌺 🔎 🖇	Q Nodos — Field Calculator				Σ	- Q -
🧔 🏤 VG 🔏 🖏 🔣 I	V. //. /	Actualizar sólo 0 objetos espaciales seleccior Crear un campo nuevo	nados	Actualizar	campo existente	3 🌏 📘	
Navegador 🔊	× Zmy					Abdón	Calderón Abdon
G 😋 🝸 🖬 🕖	De las Arepas	Nombre del campo de salida				Cāldērón	Calderón
☆ Favoritos	Barrio La	Tino del campo de salida	(entero) T		Ŧ		
Marcadores espaciales	Floresta	hpo del campo de salidar indinero entero e	(entero)			Nas.	Part 125/2 P
🕨 💽 Inicio del proyecto	acrest.	Longitud del campo de salida 10 🗘 Pr	ecisión 3 🔤				tado de c
▶ 🙆 Inicio	- S. Yaup	Expresión Editor de funciones					D wron "Norte
C:\	ayonen c					- Constant and Con	rie del Portete
D:\ (TOSHIBA EXT)	Yaute		🔍 \$x 🚳 🕅	ostrar ayuda	función \$x	Jo De	Arcional De la Ru
GeoPackage		Sx	 Geometría 		Devuelve la coordenada y de la entidad de	C S S	Or Escudo N. Del Nimme
✓ Spatiacite	Tomás de Nora		Sx		punto actual. Si la entidad es una entidad	Selas	Pu Vecional
Capas	Boyart		\$x_at		multipunto, se devolverà la coordenada x del primer punto.	Américas	a monunay O SE
💉 🏨 🔍 🌄 🗛 🔻 👪 😭 🗔	Eugenio Espera				Cinternia	No. S.	Auna and Contra the Suble
V Nodos					Sintaxis	ateo at	· · · · · · · · · · · · · · · · · · ·
✓ — OSMlineas					\$x	MOCS' BIRNING	Luspa base 7
- OSMlineas2	5-2-2-9				Ejemplos) Kutor (
✓ — Casas	S-ell				• ax - 42		totale who
OSMpoligonos	Plogra & e &					parto 1 B - B	Orleo Arrenda Catte
 OSMpuntos 	Born					and the and	0
✓ Iímite	Munoz Sal	= + - / * ^ () '\n'				Los San Sugar 14	e la
V Standard		Objeto espacial 1 🔻 🔍 🕨				conthe	Mayo
	111	Provinuelizari, 722571 2682852288				a 04	
						renez tanan Avenda	and it
						an romebolin le e	
	Series Series	Está editando información de es	ta capa, pero la capa no	está actualment	e en modo edición. Si pulsa Aceptar se activará	Out of the states	Sul
	TIP RE Star	automáticamente el modo de ed	ición.			POPAYa B Land	mvalación del
	Prese					Circi	e l
	Sand Lancentes				Aceptar Cancelar Avuda	Circunvalacion	i
	3 Juan jara	W					
O Forthe and leaders (Chilut)	alle	Boy Av.	0704522 070444 000	Carela Lucion			
Ctriba para localizar (Ctri+K)		Coordenada	0/41252 -250411 10	Escala 1:1796	Amplincador 100% - Ro	adon 0,0 - 👻 V Ri	apresentar @ CP56:3857

Figura 88. Ingreso de la función geométrica \$x

Función \$x

 Devuelve la coordenada x de la entidad de punto actual. Si la entidad es una entidad multipunto, se devolverá la coordenada "x" del primer punto como se observa en la (Figura 88).

Figura 89. Ingreso de la función geométrica \$y

Se repite el mismo proceso anterior con la función geométrica \$y.

Función \$y

 Devuelve la coordenada y de la entidad de punto actual. Si la entidad es una entidad multipunto, se devolverá la coordenada "y" del primer punto como se observa en la (Figura 89).

Luego se obtiene las coordenadas georreferenciadas de cada nodo como se ve en la (Figura 90), después se realiza un procedimiento para poder transformar la tabla de atributos a un archivo CSV que empieza desde la (Figura 91) hasta la (Figura 93).

Q	Nodos— Objetos To	otales: 300, Filtrados	: 300, Seleccionado	s: 0								
/	2 🗟 🕄		i 🗞 블 🔽 I	k T	Ť	\$ \$	Q	16	1.	ý	-	Q.
123	id ▼ = 8 123											
	id	x	у									
1	1	723571	9680637									
2	2	723594	9680620									
3	3	723617	9680601									
4	4	723643	9680581									
5	5	723665	9680561									
6	6	723689	9680539									
7	7	723708	9680516									
8	8	723727	9680488									
9	9	723711	9680459									
10	10	723757	9680499									
11	11	723685	9680442									
12	12	723658	9680424									
13	13	723632	9680408									
14	14	723608	9680391									
15	15	723583	9680374									
16	16	723558	9680356									
17	17	723535	9680341									
18	18	723511	9680325									
19	19	723483	9680307									
20	20	723452	9680287									

Mostrar todos los objetos espaciales 🖕

Figura 90. Tabla de atributos con las coordenadas georreferenciadas en (x,y)

Figura 91. Accionamiento del componente exportar en la capa shape Nodos

🔇 *AeropuertoML — QGIS		- 🗆 ×
Proyecto Editar Ver Capa Configuración Complementos Ver	O Guardar cana vectorial como	1
🗋 🗁 🖶 💫 😫 🔛 👘	Countier cape vectoriar como	📓 🌞 Σ 🗐 - 🚃 - 🍃 🍭 -
💘 🎕 Vi 🎜 🖏 🔛 🛛 🖉 🖉	Formato GeoPackage	🤧 🙊 🍋 💵
Navegador 🛛 🗷	Nombre de archivo	2 Abdón Colderón Abdón
	Nombre de la capa	Calderon
Favoritos	SRC EPSG:32717 - WGS 84 / UTM zone 17S 👻	La Llantero
Marcadores espaciales		A Paraman
Inicio del proyecto Yaupi Yaupi Yaupi	Codificación UTF-8 *	Mado de Grida Norte
C()	Guardar sólo los objetos espaciales seleccionados	De la Banan Veroria del Par
D:\ (TOSHIBA EXT) Yauth State	Seleccione campos a exportar y sus opciones de exportación	the Arcional
🔮 GeoPackage Del P	Conservar metadatos de la cana	1990 g San ps ^{to De} l g del Esture Del Andera Nation
/ SpatiaLite	= Geometría	The second second
Capas I Revers		2 America a good anonumous C
🗸 🛱 🔍 Τ. Ε 🕸 📬 🗔 του του είναι στο Βογαία σ Βογαία στο Βογαία σ Βογαία στο Βογαία σ	Tipo de geometría Automático 👻	
V / Nodos	Forzar multi tipo	and the second s
✓ — OSMlineas	Induir dimensión Z	und & plot the Lups mass the
- OSMlineas2		The control incar of the state
✓ — Casas	Extensión (actual: ninguno)	a marke and a set of the set of t
OSMpoligonos Pio Bravo 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	▼ Opciones de capa	Lignation & Anguno & Page On Arenda Calcio
✓ límite	DESCRIPTION	memory a sure set of
🔻 🗹 🏋 OSM Standard		2 A A A A A A A A A A A A A A A A A A A
	FID	a la a menida Gottin
	GEOMETRY_NAME geom	The survey structure wender
	IDENTIFIER	www.comebanin_ite
Surface And State	SPATIAL INDEX YES	Norman Public States 1054
P. 5 - Marineare		del G S S S G G CUNVASARUE de
Presidente Care	Opciones personalizadas	poperfit a
3 Juen area	Añadir archivo guardado al mapa Aceptar Cancelar Ayuda	Circum
Galler - Carlos - T	S S 10 100 AN	in Sur All Can
Q Escriba para localizar (Ctrl+K)	Coordenada -8794735 -322787 🚿 Escala 1:17962 💌 🔒 Amplificador 100%	♣ Rotación 0,0 ° ♣ ✔ Representar ⊕ EPSG:3857 ●

Figura 92. Ventana de opciones de capa vectorial del archivo shape Nodos

Figura 93. Selección del formato como valores separados por comas (CSV) - Nodos

Se selecciona el nombre y la ubicación del archivo CSV como se muestra en la (Figura 94) en formato Excel, se sigue con el proceso desde la (Figura 95) hasta la (Figura 99).

🔇 *AeropuertoML — QGIS		- 0 ×
Proyecto Editar Ver Capa Configuración Complementos Ver	O Guardar cana vectorial como	
🗋 📄 🗐 🔂 🕄 🖍 🕐 🕫 🔎 🎜		, 🚟 🜞 Σ 🗐 - 🚃 - 🍃 🍭 -
🍬 🎕 Vi 🎜 🖏 🎇 Vi 🥖 🥑 🕯	Formato Valores separados por comas [CSV]	🥦 🙊 👌 🔟
Navegador	Nombre de archivo [ING. ELECTRICA\12. Qgis\4. 300 nodos Aeropuerto ML\Aeropuerto ML\Vodos.csv 40]	Abdón Calderón Abdón
	Nombre de la capa	
Favoritos Barrio La Barrio La Barrio La Barrio Vos	SRC EPSG:32/1/ - WGS 84 / UIM zone 1/5	Lo Llantero
Inicio del proyecto	Codificación UTF-8 *	tratado de Gues
Ayancay	Guardar sólo los obietos espaciales seleccionados	De la Bu Victoria dui
C:\ D:\(TOSHIBA EXT) Journe granted Cumana	Seleccione campos a exportar y sus opciones de exportación	and Porters a Arcional
🔮 GeoPackage 🛛 🖉	✓ Conservar metadatos de la capa	area the standard and the standard Nationary
SpatiaLite	- Geometría	The Rep of the E E The Macional Macional
Capas Ø B		America o a lo alloguinos O SE
	Tipo de geometría Automático 💌	And
V 🖉 Nodos	Forzar multi tipo	Jan Can and the second state of the second sta
✓ — OSMlineas	Induir dimensión Z	and the second s
	h 🗌 Eutensión (actual: singuna)	Deco marca 2
OSMpoligonos		10 MPA MO TO TO TO OTRO
OSMpuntos	▼ Opciones de capa	Augura son augura a set of the set of the set
✓ límite	CREATE_CSVT NO *	Canada In South State 1
🔻 🗹 🎽 OSM Standard	GEOMETRY <predeterminado></predeterminado>	the second second
	LINEFORMAT <predeterminado></predeterminado>	Alendar and analysis and a start
		Ness Mar Transfer Avenue Sale
	SEPARATOR COMPIA	As pursue Ploton E
The second s	STRING_QUOTING IF_AMBIGUOUS	horn a power a second de
B Pressient	WRITE_BOM NO *	consum a lación bu
Garace Corace 3 Juen Javanino	Añadir archivo guardado al mapa Aceptar Cancelar Ayuda	Sar Circumvalue
Q. Escriba para localizar (Ctrl+K)	Coordenada -8794868 -322455 🍪 Escala 1:17962 💌 🔒 Amplificador 100%	Rotación 0,0 ° ↓ ✓ Representar ⊕ EPSG:3857 ●

Figura 94. En la sección SRC se ingresa el EPSG:32717

Figura 95. Capa exportada CSV Nodos que indica que se ha guardado correctamente

日	5-∂- à ∓			_				Ľ	bro1 - Excel					Inic.	ses, 👪	-	0	×
Archive	o Inicio Insertar	Disposición	i de página	Fórmulas	Datos	Revisar	Vista	Ayuda	💡 ¿Qué dese	hacer?								\Box
Obtene datos ~	De texto/CSV	Conexion	recientes nes existentes	Actualizar todo ~	Consult Propiec	tas y cone lades ínculos	kiones	2↓ ZAZ Z↓ Ordenar	Filtro	rrar ver a aplicar anzadas	Texto en columnas	₽ •• • ≪ ≼ ~ @	Análisis de Previs hipótesis ~	ión 🗑 Agru	ıpar × +≣ ıgrupar × =∃ otal			
	De un <u>a</u> rchivo	×.	Desde u	in libro de Exc	el	nexiones			Ordenar y filtrar		Herramienta	s de datos	Previsión	Es	quema 🕞			^
	De una <u>b</u> ase de datos	×	Detext	o/CSV		De text	o/CSV datos de	archivos de te:	to, de valores									
	De <u>A</u> zure	×	De XML			delimita (delimita	dos por c ido por e	omas o de text spacios).	o con formato	J	К	L	М	N	0	р		(▲
2	De los servicios en líne	sa ≯	De JSO	N														
Þ	De otras <u>f</u> uentes	×	De una g	<u>c</u> arpeta														
Ģ	Combinar <u>c</u> onsultas	×	De una	<u>c</u> arpeta Share	Point													
🔽 Ir	niciar Editor de Power Qu	iery																
🔒 c	onfiguración del origen	de datos																_
E 0	Opciones de co <u>n</u> sulta	-																
13																		
14																		
15																		
16																		
17																		
18																		
19																		
20																		
21																		
	Hoja1	(+)			1					1	: 1	1		1				
Links	/4+ A secularity data in a second													HH [2]	m			100%

Figura 96. Obtención de datos del archivo de texto CSV - Nodos en Excel 2019

Archivo Inicio Insertar Disposi					Inic, ses.		
					 Control = 100 		\Box
/ 📄 De texto/CSV 🛛 🗋 Fuen	Nodos.csv				\grupar ~ +∃		
🛄 🗋 De la web 📑 Cone	Origen de archivo	Delimitador	Detección del tipo de datos		esagrupar 🗸 📑		
Jotener datos v III De una tabla o rango	1252: Europeo occidental (Windows)	Coma	Basado en las primeras 200 filas	D	ubtotal		
Obtener v transformar dato				LU	Esquema	2	~
	id x y			~			
A1 \checkmark : $\times \checkmark f_x$	1 723571 9680637						^
	2 723594 9680620						
A B C	3 723617 9680601				0	Р	(-
	4 723643 9680581					-	
· · · · · · · · · · · · · · · · · · ·	5 723665 9680561						_
3	6 723689 9680539						
4	7 723708 9680516						
i	8 723727 9680488						
i	9 723711 9680459						
,	10 723757 9680499						
3	11 723685 9680442						
3	12 723658 9680424						
0	13 723632 9680408						
1	14 723608 9680391						
2	15 723583 9680374						
3	16 723558 9680356						
4	17 723535 9680341						
5	18 723511 9680325						
6	19 723483 9680307						
7	20 723452 9680287						
8	🔒 l os datos de la vista previa se han tr	uncado debido a límites de tamaño		\sim			
9		ancado acorao a mintes de tamano.					
0			County of Transformer data	Canadian			
1			Cargar * Transformar datos	Caricelar			
Hoia1							
nojar (†) C			. [1]		_	-	

Figura 97. Apertura en Excel de archivo CSV - Nodos

1 5 ~ (ở <u>à</u> ,∓						Libro1 - Excel		Inic. ses.	-	٥	×
Archivo Ini	icio Insertar	Disposición de	página	Fórmulas	Datos	Revisar Vista	a Ayuda 📿 ¿Qué desea hacer?					þ
/ De	texto/CSV	🖧 Fuentes reci	entes		Consult	as y conexiones	AL ZA Sorrar	🔔 🖻 🖿 🧱 📈	🕮 Agrupar 🕤 👘			
Ohtener 🕞 De	1 🖬 I 🙂 - 🗉 I	Nodos - Editor d	e Power	Query					- 0	×		
datos 🗸 🋄 De	Archivo Inicio	Transforma	ar A	gregar columna	Vista				/	. 🕐		
A1	Cerrar y cargar • vista p	Propi	edades r avanzao nistrar •	do Administra columnas	r Reducir filas •	ŽI ŽI Dividir columna	Agrupar • por • por	Combinar Combinar Combinar Combinar Configuración d corigen de dato	Corígenes recientes *			^
A A	Cerrar	Consulta			Or	rdenar	Transformar	Parametros Origenes de dato	s Nueva consulta	1		(🔺
2	Consultas [1]	<	\times	√ fx	= Table.Tra	ansformColumnT	ypes(#"Encabezados promovidos",{{"id", In	t64.Type}, {"x", Int64.Type}, {"y", In	t64.Type}})	~		-
3	III Nodos			3 id 💌 1	2 _{3 x}	1 ² 3 ¥						
4			1	1	723571	9680637						
5			2	2	723594	9680620				<u> </u>		_
6			3	3	723617	9680601						_
7			4	4	723643	9680581						_
8			5	5	723665	9680561						_
9			6	6	723689	9680539						_
10			7	7	723708	9680516						-
12			8	8	723727	9680488						
13			9	9	723711	9680459						
14			10	10	723757	9680499						
15			11	11	723685	9680442						
16			12	12	723658	9680424						
17			13	13	723632	9680408						
18			14	14	723608	9680391						
19			15	15	723583	9680374				\sim		
20			16	16	723558	9680356						
21	3 COLUMNAS, 300	FILAS						VIST/	PREVIA DESCARGADA A LAS	21:10		
22												
	Hoja1 (÷						•				Þ
Links At Anna								R	a 📼 💷 🗕 –		-	1009/

Figura 98. Ventana del editor Power Query CSV - Nodos

l	- م ا	े दि	;							Libro1 - Exce	I.					Inic. ses.	1 - 1	ø	×
Ar	chivo	Inicio Inser	ar Disposi	ción de página	Fórmulas	Datos	Revisar	Vista A	yuda	Ç ¿Quéd	esea hacer?								\Box
Pe	<mark>₽0 %</mark> ®ar ∛	Calibri	• 11 4 • 🖽 •	▲ ▲ ▲		≫~~ €≣ • ≣	eb Ajustar t	exto ar y centrar	, g	eneral 5 ~ % 000	*	Formato condicional ~	Dar formato E como tabla ~	istilos de celda ~	Insertar ~ Eliminar ~ Formato ~	∑ ~ A Z V Ordena filtrar	ry Buscary × seleccionar		
Port	tapapeles	5	Fuente	5		Aline	ación		r5	Número	5		Estilos		Celdas	Ed	ición		\sim
К1	.7	• : ×	√ f×																^
1	A	вс	D	E	F	G	н		1	J.	K	L	M	N	0	P	Q	P	
1	id 💌 x	▼ y ▼																	וור
2	1 72	3571 9680637																	
3	2 72	3594 9680620																	
4	3 72	3617 9680601																	
5	4 72	3643 9680581																	
6	5 72	3665 9680561																	
7	6 72	3689 9680539																	
8	7 72	3708 9680516																	_
9	8 72	3727 9680488																	_
10	9 72	3711 9680459																	_
11	10 72	3757 9680499																	_
12	11 72	3685 9680442																	_
13	12 72	3658 9680424																	_
14	13 72	3632 9680408																	_
15	14 72	3608 9680391																	_
16	15 72	3583 9680374										_							_
17	16 72	3558 9680356										_							-
18	1/ /2	3535 9680341																	_
19	18 72	3511 9680325																	-
20	19 72	3483 9680307																	-
21	20 72	3452 9680287																	_
22	21 72	3424 9680268	Hoiat	æ								: 4						-	
		NODOS	nujal	T								: •			(770			_	•
List	o 🛠 Ac	cesibilidad: es n	ecesario investi	gar														+	100%

Figura 99. Exportación de datos a la hoja Nodos en Excel

Para obtener la distancia Lnij entre los puntos de los nodos se puede utilizar dos métodos que son la distancia euclidiana y la distancia Manhattan. Siendo estas las siguientes expresiones matemáticas como se ven en las (ecuaciones 3.1 y 3.2):

$$euclidian = \sqrt{(x_2 - x_1)^2 + (y - y_1)^2}$$
(3.1)

$$manhattan = |x_2 - x_1| + |y_2 - y_1|$$
(3.2)

De manera que en este proceso se utilizó la distancia euclidiana.

Para poder encontrar el nodo 301 – SE se realiza un Minimun Spannig Tree que se refiere a reestructurar la red, es decir se parte desde un bosque o grafo que no tiene forma. Por el cual el algoritmo de Kruskal abre a este grafo o bosque, obteniendo un dígrafo convirtiéndose así en un sistema más estructurado como se ve en la (Figura 100), se continua con el procedimiento desde la (Figura 101) hasta la (Figura 104).

Figura 100. Coordenada de la Subestación (SE) promedio – nodo 301

Figura 101. Adicción de la capa shape SE con referente a la capa Nodos

Figura 102. Elección de la capa shape SE en el directorio para adjuntar al archivo que lo contiene

Figura 103. Coordenada SE - 301 dentro de la capa shape Nodos

Figura 104. Coordenada SE - 301 dentro de la capa shape Nodos sin activación de limite

Lo siguiente a realizar es una exportación del archivo CSV de QGISGNU 3.22 a Matlab, en MatLab se ejecuta un Minimun Spannig Tree que se refiere a reestructurar la red es decir se parte desde un bosque o grafo que no tiene forma y lo transforma en un digráfo convirtiendose así en un sistema más estructurado como se refleja en la (Figura 105), después se muestra el peso del nodo en la (Figura 106) y la abertura que hace Matlab aplicando el minimun spanning tree que se muestra en la (Figura 107).

Figura 105. Grafica en Matlab del grafo con respecto a 300 nodos

Figura 106. Peso del nodo SE – 301 con valor de 95,6643

Figura 107. Abertura del nodo 83 - 84 que realiza Matlab haciendo el Minimun Spannig Tree

En un sistema anillo el mínimo Minimun Spannig Tree consta de una sola abertura como se muestra en la (Figura 108).

Figura 108. Aplicación del mínimo Minimun Spannig Tree con la abertura de nodo 83 – 84 correspondiente al peso 44,911

3.5 Desarrollo en CYME©

3.5.1 Introducción

Para poder realizar un estudio en CYME© se necesita crear primeramente una base de datos como se observa en la (Figura 109) hasta la (Figura 113), después a configurar en el campo Archivo en la sección preferencias como se observa en la (Figura 114) hasta la (Figura 118).

Figura 109. Creación de la base de datos en CYME©

별뺫 CYME 7.1 r02 - CYMDIST - base2.mdb										
Archivo Editar Base de datos Equipos Red Análisis Reporte Mostrar Personalizar Ventana Ayuda										
🛅 🛱 📴 📾 🔚 🖶 🏎 🐷 🐘 🍬 🛸 🕨 🕶 🗠	₽₽₽ <mark> </mark>									
Colorear por red (aleatorio) 🛛 🖓 📴 Etiquetas predeterminadas	Análisis de los dispositivos de protección 🛛 🛩 🔗 🎰 🛕 🗟 🌆 SI 📭 🔚									
■* ** ** は 3 № ∞ × +> 臣 № 元 / 5 (□□□√ ●□□♥==================================									
*	Sistente de la base de datos CVME ? X									
Buscar V 🖳	Base de datos Microsoft Access									
Bases de datos Concela concelár de la bases de datas	Presione el botón Examinar para seleccionar un archivo *.mdb existente o escriba un nuevo nombre de archivo (incluyendo el camino).									
Exportar	Archivo de base de datos (*.mdb):									
<u> </u>										
<u>a</u>										
<u>&</u>										
2	♦ <u>Precedente</u> <u>Siguiente</u> ♦ Cancelar									
w										
°										
<u> </u>										
No se halló la conexión a la base de datos.										

Figura 110. Ubicación del archivo base de datos

Figura 111. Carpeta donde se crea la base de datos tipo Access

CYME 7.1 r02 - CYMDIST - base2.mdb	
Archivo Editar Base de datos Equipos Red Análisis Reporte Mo	istrar Personalizar Ventana Ayuda
🛅 ## 🚔 🙈 🔜 🚔 🇠 💭 🔡 🏘 🕍 🍁 10 🗸 00 🤟	𝒫 𝒫 𝒫 🔲 🛤 🔢 🖬 🔜 🗸 🖓 🖓 🖓 🖓 🖓 🖉
Colorear por red (aleatorio) 🛛 🖓 🚰 Etiquetas predeterminadas	🔤 🗸 🚰 🛛 Anàlisis de los dispositivos de protección 🛛 🗸 🔗 🌆 🔺 🗊 📠 SI 📭 🗄
●* ■* 井 ഥ ഥ & 凾 凾 × ⊕ 匝 № 弐 马 次・	▲ □ □ □ ✓ □ □ □ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
*	Sistente de la base de datos CYME ? X
	Listo para crear la configuración de la base de datos
Bases de datos Frear la conexión de la base de datos	Presione el botón Precedente' si desea cambiar los paràmetros.
vi 🕞 Importar	Base de datos de equipos.
Exportar	Tipo de base de datos: Microsoft Access
	Base de datos de red.
rt:	Ipo de base de datos: Microsoft Access Interpretation de la construction de la
	Base de datos de proyecto
	 Ipo de base de datos: Microsoft Access Archivo: D:\TESIS ING. ELECTRICA\29. Diseño en Cyme\1. Creación de elementos\base2.mdb
¥ &	
	Precedente Siguiente Cancelar
2 0 2	
N an h life have the have to do a	
No ce nallo la conevion a la nace de datoc	

Figura 112. Ubicación de la base de datos en Microsoft Access

CYME 7.1 r02 - CYMDIST - base2.mdb Archivo Eritar Base de dator Environs Red Análisis Renorte Mostrar Personalizar Ventana Avvida	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Colorear por red (aleatorio) - 🖓 Etiquetas predeterminadas - 🖓 Análisis de los dispositivos de pr	rotección 🗸 🗲 🙅 📥 🛕 🗟 📥 🛛 SI 📭 🗄 💳
▋▆▎▌▆▐▌▐▌▐ ▋▐▓▕▓▕▕▁ ▋▁▋▕▓▕▓▎▙▁≟≟▎⊣	□□□∨
Image: Second	eada antre predeterminado brindado
No se halló la conexión a la base de datos.	

Figura 113. Nombre de la configuración de la base de datos – base2

CYME 7.1 r02 - CYMDIST -					
Archivo Editar Base de datos Equipos Red Análisis Reporte	Mostrar Personalizar	Ventana Ayuda			
🗅 🗰 🖴 🖶 🖶 🍇 💹 😫 🔶 🛸 🍋 🗸 c	× - ⊅ ⊅ ⊅ [III 🗅 🖄 🗐 III 🗌		✓ 🛼 # <, I, 4	
Colorear por red (aleatorio) 🛛 🖉 🔛 Etiquetas predeterminadas	Ana	álisis de los dispositivos de pr	otección 🛛 🗸 🈼 📠		=
	UPreferencias			? ×	JD O B
Por omisión		. 😏 /		<u></u>	
Proromatori	Unidades Texto	Simulación Ed	itor Base de datos Reporte	Archivos de Python configuración	
Buscar - Q. 🖪	Unidades principales		Unidades de impedancia		
Bases de datos	Sistema de unidades:	● SI O Ingl.	Impedancias:	como definido \sim	
i Crear la conexión de la base de datos	Unidad de longitud:	⊚m Okm	Impedancias lineales:	Ohmios/km 🗸	
III 📴 Importar					
Q Be Exportar	Unidades de electricidad	8	Unidades por omisión		
Conexiones de la base de datos	Nivel de unidad:	Media tensión $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$	Tipo de carga:	KW-kvar \vee	
😐 D 🦆 base2	kV	2 decimales	Tipo de demanda del medidor:	KW-kvar 🗸	
8					
٠	A	2 decimales	Unidades monetarias		
0	kVA	2 decimales	Moneda:	\$ ~	
	kW	2 decimales	Unidades de ángulo en coordena	das	
<u>A</u>	har	2 decimales	Decimal (por ej. 45.526111)	°)	
X Código Manesia Ubics	KV0	2 decinales	Grados-Minutos-Segundos (por ej. 45° 31' 34" W)	
1 <u>200005</u> No puede abrir el archivo : \CYMDIST.INI	Sistema de coordenada	s			
	EPSG: 32717 - WGS 8	84 / LITM zone 175		Asistente	
				7.00000100	
				Aceptar Cancelar	
Reporte de errores de edición					
Construit a base? (Reserve de datas Assess DATRIS INC. El SOTDICA 22.)	East Eastern base? "	`		
Conectado a base2 (Base de datos Access D:\TESIS ING. ELECTRICA\29. I Listo	Jiseno en Cyme\3. Base f	final - Equipos\base2.mdb).		

Figura 114. Configuración de preferencias – sistema de coordenadas georreferenciadas

CYME 7.1 r02 - CYMDIST - Archivo Editar Base de datos Equipos Red Análisis Reporte	Mostrar Personalizar Ventana Avuda					
Colorear por red (aleatorio) Image: Section 1 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2	Análisis de los dispositivos de protección	V 4 4 1 A	?			
	Unidades Texto Simulación Editor E	Base de datos Reporte	Archivos de	Python		
			configuración			
	Opciones de edición de la red		o'.			
Bases de datos	erasear automaticamente los tramos desconectados		SI No			
"I Crear la conexión de la base de datos	lostrar el diálogo de las propiedades del tramo al añadir un tra	imo o un dispositivo	Sí			
TR Use Importar	lostrar el diálogo de las propiedades del tramo al añadir un dis	apositivo desde la barra de los e	sí No	· ·		
Q Exportar	iempre insertar el dispositivo al añadir desde la barra de los si	ímbolos en una vista esquemáti	ic Sí			
Conexiones de la base de datos	xpandir el árbol en el cuadro de Propriedades del tramo		No	· ·		
b lose2	visar de la inversión de los transformadores y reguladores		No	· ·		
8	'alidar la inversión de los dispositivos irreversibles		Error			
•	acer doble clic en la etiqueta para abrir las propiedades de la	etiqueta	No			
0	iolicitar una confirmación al redibuiar las coordenadas de la re-	h	Sí			
<u>×</u>	dvertir de guardar la red cuando el número de modificaciones	s alcance	500			
<u>^</u>	Opciones al iniciar					
	rreglar las incompatibilidades de fasaje al cargar una red		Sí	·		
Código Mensaje Ubic Dic Dic	lostrar las dependencias al cargar las redes de la base de dat	tos	Sí			
	lostrar el diálogo Propiedades de la vista al crear un nuevo es	itudio	Sí			
	argar automáticamente el último proyecto al iniciar		No	* ·		
	sar los parámetros de simulación del proyecto		Sí			
	l'imarn de actudine raciantae moetradoe		s Ventar Car	ncelar		
Conectado a base2 (Base de datos Access D:\TESIS ING. ELECTRICA\29.	eño en Cyme\3. Base final - Equipos\base2.mdb).					
Listo						

Figura 115. Mostrar el dialogo de propiedades de la vista al crear un nuevo estudio – Editor

🚟 CYME 7.1 r02 - CYMDIST [Principal]	
Mi Archivo Editar Base de datos Equipos Red Análisis Reporte Mostr	ir Personalizar Ventana Ayuda
🛅 🗰 🚔 🔂 😹 🚔 🖏 🗾 🏭 🔶 🐜 🄶 10 + 14 + 🗩 J	୭ ନ 🔲 📴 🕅 🔜 🚽 🖓 🖓 🖉
Colorear por red (aleatorio) V 😭 Etiquetas predeterminadas V	😭 🛛 Análisis de los dispositivos de protección 💿 🛩 🔗 🍶 🛕 🔒 🔝 🕪 🗮 🚍
📑 🕈 井 너 너 🌡 🖦 🕾 🗙 🕁 匝 ኲ 🗔 🗔 🦙 🐼 📗	▥▥臟 [™] <mark> → ← t + </mark> 秒 ಈ 초 ♡ <u>1</u> ⑤ 100% ∨ □ ⊂ ⊡
Por omisión 🗸 🎽	
A Vista	Parámetros del sistema ? X
	Parámetros del sistema
Bases de datos	Frecuencia del sistema: 50,0 Hz
i Crear la conexión de la base de datos	Potencia de base: 24,0 MVA
11 Be Importar	Tensión de base: 22000,0 v
Q Exportar	
Conexiones de la base de datos	Parámetros de cálculo de la línea
base2	Resistencia del conductor a:
5	O 50,0 °C
<u>•</u>	Resistividad promedio de tierra: 100,0 Ohmios-m
2	Modelo de retorno por tierra:
100 m	Medele de cable y de línea en viteraday.
-	
X	Para tramos mas largos que: 230,0 km
	Guardar Aceptar Cancelar
Reporte de errores de edición.	
Conectado a base2 (Base de datos Access D:\TESIS ING. ELECTRICA\29. Diseño en Cy	ne\3. Base final - Equipos\base2.mdb).
0 redes, 0 tramos, 0 zonas	-774,81, 169

Figura 116. Parámetros del sistema – Nuevo estudio

壁 CYME 7.1 r02 - CYMDIST - base2.mdb Archivo Editar Base de datos Equipos Red Análisis Reporte Mostrar Personalizar Ventana Ayuda
□ 井 音 88 星 母 42 18 女 12 中 ロ + CA + り 月 月 回 団 団 団 団 団 マ 唱 早 9 唱 <i>L</i>
Colorear por red (aleatorio) 🗸 🚰 🗄 Etiquetas predeterminadas 🗸 🔛 Ánálisis de los dispositivos de protección 🗸 🗲 🖗 🛓 🛕 🗊 📥 SI 📭 🗄 🚍
[젤□□□▼
Bases de datos Crear la conexión de la base de datos Provinciar Conexiones de la base de datos
concellado a basel juase de dalos necessión nos electricentes, bísello en cyntern creación de elementos (básel indo).

Figura 117. Conexión exitosa a la base de datos Access – base2

CYME 7.1 r02 - CYMDIST [Principal]	ied Análisis Reporte Mostrar Personalizar Ventana Ayuda		- 0 ×
🗋 🕅 🗰 📴 🖬 🖶 🗠 🖉 🤞			
Colorear por red (aleatorio) 🗸 😁 Etiq	97 Preferencias		? ×
■* =* # 나 남 ※ 🖦 🕾 🗙 수)	💴 🛕 💊 💪 😫 🗓 💿 🖻		
	Unidades Texto Simulación Editor Base de datos Reporte Archivos de Python configuración		^
📃 🗏 Buscar 🔹 🔍 🖫	Mostrar las dependencias al cargar las redes de la base de datos	Sí	~ ^
Bases de datos	Mostrar el diálogo Propiedades de la vista al crear un nuevo estudio	Sí	
U Grear la conevión de la base de datos	Cargar automáticamente el último proyecto al iniciar	No	
	Usar los parámetros de simulación del proyecto	Sí	
	Número de estudios recientes mostrados	5	
Exportar	Activar la biblioteca de equipos de CYME	No	
Conexiones de la base de datos	🖬 Diagrama unifilar		
- V base2	Borrar la selección al presionar la tecla ESC	No	-
co Re Equipo	Mostrar el diálogo de selección múltiple al seleccionar elementos mientras mantener presionada la tecla May	No	
Microsoft Access	Centrar el elemento seleccionado al usar las flechas de exploración	Sí	
Archivo: D:\TESIS ING. ELECTRICA\29. D	Retardo de toottip	500	ms
C Red	Retardo de movimiento	100	ms
Microsoft Access	Factor de escala	1,0	
Archivo: D:\TESIS ING. ELECTRICA\29. D	Ángulo AutoGen	90,0	•
S Proyecto	Impresión 'lo que ve es lo que se imprime' en PDF	No	
Archivo: D:\TESIS ING. ELECTRICA\29. D	Sumario del estudio		
•	Reportar los detalles en el reporte sumario del estudio	No	
	Reportar los detalles de las modificaciones geométricas	No	*
× •	Valores por omisión del regulador, del conmutador en carga y del condensador		_
		Acenta	Cancelar
0	T 500 DI		
<u> </u>			*
			>
Reporte de errores de edición			
Conectado a base2 (Base de datos Access D:\TESIS	4G. ELECTRICA\29. Diseño en Cyme\5. Base final - Nodos - final\base2.mdb).		
0 redes 0 tramos 0 zonas		-521 99 148 60	NUM

Figura 118. Elección del factor de escala en la opción de Preferencias

Seguidamente se crea los equipos, el primer equipo es la Fuente como se ve la (Figura 119 y 120).

CYME 7.1 r02 - CYMDIST - base	2.mdb	
Archivo Editar Base de datos	Equipos Red Análisis Reporte Mostrar F	Personalizar Ventana Ayuda
🕒 🗰 🗁 📾 🖬 🖶 :	Fuente	
Colorear por red (aleatorio) Colorear por red (aleatorio)	Fuente Regulador Transformador Generador Motor Sistemas de conversión de energía eólica Microturbina Panel fotovoltaico PCOS Fusible Reconectador Interr, automático de baja tensión	Análisis de los dispositivos de pro
	Interr. automático de baja tensión Interruptor automático Interruptor seccionador Seccionador Protector de red Otros	
🕐 M 🖗 M	Conductor Cable Línea aérea Barra omnibus	>
	Condensador / Reactancia Armónicos	> >
8	Electrónica de potencia	>
<u> </u>	Biblioteca	>

Conectado a base2 (Base de datos Access D:\TESIS ING. ELECTRICA\29. Diseño en Cyme\1. Creación de elementos\base2.mi Permite ver, agregar, eliminar o modificar las subestaciones.

Figura 119. Selección del campo Equipos – Fuente

CYME 7.1 r02 - CYMDIST - base2.mdb	
Archivo Editar Base de datos Equipos Red Analisis Reporte Mostrar Personalizar Ventana Ayuda	
Colorear nor red (aleatorin)	
Colores por red (aleaton) Colores por red (aleaton) Concerner de la base de datos Concexones de la base de datos	Ceneral Linites de carga Armónicos Fiabilidad Sínibolo Tensión del equivalente de fuente Nominal: 12,47 Servicio: 12,47 KULL Ángulo de fase: 0,0 Capacidad nominal Configuración de la fuente Capacidad: 100,0 MWA Impedancias del equivalente de fuente Z1: 0,1 0,6 20: 0,5 2,0 21: 0,1 0,6 20: 0,5 2,0 Potencia de base: 100,0 MVA Calcular usando la potencia de contocincuito: Calcular Calcular usando los detalles de la fuente: Calcular
×0	Arentar Cancelar
8 A	nuyuu Caluba
Conectado a base2 (Base de datos Access D:\TESIS ING. ELECTRICA\29. Diseño en Cyme\1. Creación de elementos\base	e2.mdb).
listo	

Figura 120. Creación de una nueva fuente con el comando Agregar

CYME 7.1 r02 - CYMDIST - base2.mdb Archivo Editar Base de datos Equipos Red Análisis Reporte Mostrar Personalizar Ventana Ayuda D IIII III IIII IIIIIIIIIIIIIIIIII	
Colorear ported (aleatonic) ✓ 🖆 [clouetas meddeterminadas ✓ 🗠 [clouetas meddeterminadas (a) (a) (b) (clouetas meddeterminadas (b) (clouetas meddeterminadas (clouetas meddeterminadas) (clouetas meddeterminadas) (clouetas meddeterminadas) (clouetas medeterminadas) (clouetas meddeterminadas)	e protección V V V V I A Litt I III III III I I I I V V V V V V V V
Image: Second secon	General Linites de carga Armónicos Flabilidad Sinbolo Tensión del equivalente de fuente Normal: 22,0 VLL Servicio: Servicio: 22,0 VLL Julia Ángulo de fase: 0,0 Gapacidad nominal Capacidad nominal Capacidad nominal R Capacidad nominal R Capacidad nominal 0,6 Capacidad nominal 0,6 21: 0,1 0,6 22: 0,1 0,6 22: 0,1 0,6 * Potencia de base: 100,0 MVA Calcular usando la potencia de cortocircuito: Calcular Calcular usando los detalles de la fuente: Calcular Aceptar Cancelar
Conectado a base2 (Base de datos Access D:\TESIS ING. ELECTRICA\29. Diseño en Cyme\1. Creación de elementos\base	e2.mdb).

Listo Figura 121. Configuración de la Subestación (SE) con valores de voltaje, potencia y conexión delta

- Se debe verificar la creación del equipo SE en el campo fuente como se ve en la (Figura 121).
- Para la configuración de la subestación es la conexión delta para el primario y estrella aterrado para el secundario.

3.5.2 Configuraciones y cálculos de los transformadores de dos devanados

Posteriormente se crea el segundo equipo que es el transformador como se ve la (Figura 122) hasta la (Figura 125).

그 표 🗁 🗠 🖬 🕾 위	Fuente		
olorear por red (aleatorio)	Regulador	ŀ	Análisis de los dispositivos de protección 🛛 🗸 🛩 🖗
* ** #* 14 # %	Transformador Generador	> >	Transformador con dos devanados Autotransformador con dos devanados
El Buscar	Motor	>	Transformador desfasador
Bases de datos	Sistemas de conversión de energía eólica Microturbina		Transformador con tres devanados Autotransformador con tres devanados
Grear la conexión de la bas	Panel fotovoltaico PCOS	4	Transformador de puesta a tierra
Conexiones de la base de dato	Fusible Reconectador Interr. automático de baja tensión Interruptor automático Interruptor seccionador Seccionador Protector de red Otros		
	Conductor Cable Línea aérea Bara ompibur	>	
	Condensador / Reactancia	>	
	Armónicos	>	
	Electrónica de potencia	>	

- Figura 122. Selección del campo Equipos Transformador Transformador con dos devanados
 - En CYME© la configuración de los transformadores monofásicos y trifásicos • los valores ingresados aceptan solamente dos decimales.

Potencia Nominal kVA	$I_0 (\% \text{ de } I_n)$	P ₀ (W)	$P_c(W)$	$P_t(W)$	$U_{zn}(\%)^1$
15	2,4	68	192	260	3.0
25	2,0	98	289	387	3,0
37,5	2,0	130	403	533	3,0
50	1,9	160	512	672	3,0
75	1,7	214	713	927	3,0
100	1,6	263	897	1160	3,0
7	Tabla 7 Transformado	res monofásico	s - Clase medio	voltaie < 25KV [437

Tabla 7. Transformadores monofásicos - Clase medio voltaje $\leq 25KV$ [43]

¹· El $U_{zn}(\%)$ representa la reactancia en los transformadores

Impedancias de puesta a terre Rg Xg Impedancias de	© CYME 7.1 r02 - CYMDIST - Aeropuerto10.xst - [Principal] ∭ Archive Editor Base de dator Equipor Red Apólicir Reporte Montrar Personalizar Ventana	Aunda
Codever por red (delation) If Tensformador con dos devanados 7 X Image: set of construction of the base of construct		
Image: P If I = 12	Colorear por red (aleatorio) 🗸 🖼 🖼 Transformador con dos devanados	? ×
Conectado a base2 (Base de datos Access D Cancelar Cancelar Cancelar 272062 Fd 9601642) 1	Image:	General Lintes de carga LTC Flabilidad Símbolo Datos nominales Tipo de transformador: Monofásico Primario Tipo de aliamiento: Immerso en líquido Primario Capacidad nominal: 1000,0 kVA Tensión primaria: 124,9 kVLL Secundario Pérididas en vacio: 0.0 KW Deafase Pérididas en vacio: 0.0 KW Deafase Impedancia 2: 6,0 % X/R: 10,0 Impedancias de puesta a tierra Rg Xg Ohmios Secundario: Impedancias de puesta a tierra Rg Xg Ohmios Ohmios
122002,04, 5001042,1.	Conectado a base2 (Base de datos Access E	Aceptar Cancelar 722082, 64, 9681642, 13

Figura 123. Creación de un nuevo transformador con el comando Agregar

lorear por red (aleatorio) 🛛 🗸 😁	Transformador con dos devanados	· · · · · · · · · · · · · · · · · · ·
 q* t: L: J j k k k k Bases de datos Grear la conexión de la base de dato Conexiones de la base de datos Descar Descar 	Image: State of the state	ga LTC Fiablidad Simbolo ador: Monofásico : Monofásico : Forma acorazada : 15,0 kVA 22,0 kVL : 0,24 kVL 0,07 kW Z: 5,49 % X,R: 78,12 ta a lierra Rg Xg ario: 0,0 0,0 0,0 Ohmios

Figura 124. Configuración de los parámetros del transformador de 15KVA monofásico

Potencia Nominal (kVA)	$I_0 \ (\% \ de \ I_n)$	P ₀ (W)	$P_c(W)$	$P_t(W)$	U _{zn} (%)
30	3,6	134	514	648	3,0
50	3,4	197	776	973	3,0
75	2,6	266	1094	1360	3,5
100	2,6	330	1393	1723	3,5
125	2,6	390	1682	2072	3,5
200	2,1	569	2630	3199	4,0
225	2,1	618	2892	3510	4,0

500	1,7	1090	5770	6860	5,0
800	1,6	1521	8909	10430	5,0
1500	1,5	2395	15770	18165	6,0

Tabla 8. Transformadores trifásicos - Clase medio voltaje $\leq 25KV$ [44]

Cálculo de las pérdidas en vacío del transformador trifásico 30kVA con la siguiente fórmula según la norma INEN 2115 – (Tabla 8):

$$P_0 = 10,514 * P_n^{0,7486} \tag{3.3}$$

$$P_0 = 10,514 * (30)^{0,7486} \tag{3.4}$$

$$P_0 = 134,134 \approx 134 \,[W] \tag{3.5}$$

$$P_0 = 134 \, [W] \tag{3.6}$$

Cálculo de las impedancias de secuencia del transformador trifásico de 30 kVA

$$Reactancia(x_{\%}) = 3\% \tag{3.7}$$

Potencia del transformador (P) =
$$30 [kVA]$$
 (3.8)

$$Voltaje \ primario \ (V_p) = \ 22 \ [kV] \tag{3.9}$$

$$Voltaje \ secundario \ (V_s) = 220 \ [V] \tag{3.10}$$

 $Voltaje \ de \ cortocircuito \ (V_{cc}) = V_p * x_{\%}$ (3.11)

$$V_{cc} = (22kV * 3\%) \tag{3.12}$$

$$V_{cc} = 0,66 \ [kV] \tag{3.13}$$

Corriente de Cortocircuito
$$(I_{cc}) = \frac{P}{\sqrt{3}*V_{cc}}$$
 (3.14)

$$I_{cc} = \frac{30 \, kVA}{\sqrt{3} * 0.66} \tag{3.15}$$

$$I_{cc} = 26,243 \, [A] \tag{3.16}$$

Para el cálculo de la corriente de cortocircuito en los transformadores monofásicos se elimina la raíz de 3 en la fórmula de la corriente de cortocircuito (Icc). También la reactancia según la norma ecuatoriana INEN, varía dependiendo de la potencia de los transformadores a elegir.

Siguiendo con la resolución del transformador trifásico de 30kVA se procede hacer:

El cálculo de la resistencia con referencia a la pérdida del cobre P_{cu} :

$$P_{cu} = 514 \, [W] \tag{3.17}$$

Según la ley de Joule dice que:

$$P = (I^2) * R (3.18)$$

Despejando R:

$$R = \frac{P}{l^2} \tag{3.19}$$

Ahora se reemplaza los valores en la ecuación según la ley de Joule:

$$Resistencia(r) = \frac{P_{cu}}{I_{cc}^2}$$
(3.20)

$$r = \frac{514 \, [W]}{(26,243)^2 \, [A]} \tag{3.21}$$

$$r = 0,746 \ [Ohm] \tag{3.22}$$

Para el cálculo de la impedancia se expresa como la relación:

$$Z = \frac{V}{I} \tag{3.23}$$

Ahora reemplazando la fórmula de la impedancia (Z), se tiene la siguiente ecuación:

$$Z = \frac{V_{cc}\left[V\right]}{I_{cc}\left[V\right]} \tag{3.24}$$

$$Z = \frac{0,66 \,[kV]}{26,243 \,[A]} \tag{3.25}$$

$$Z = \frac{660 \, [V]}{26,243 \, [A]} \tag{3.26}$$

$$Z = 25,149 \ [Ohm] \tag{3.27}$$

Seguidamente, se calcula la reactancia (X), con la fórmula:

$$X = \sqrt{Z^2 - r^2} \ [Ohm] \tag{3.28}$$

$$X = \sqrt{(25,149)^2 - (0,746)^2} \ [Ohm] \tag{3.29}$$

$$X = 25,137 \ [Ohm] \tag{3.30}$$

El proceso de la impedancia a porcentaje se necesita, obtener una (Z_{base}) con la siguiente fórmula, teniendo en cuenta que se obtendrá en valores en por unidad.

$$Potencia \ base \ (S_{base}) = 24 \ [MVA] \tag{3.31}$$

$$Voltaje \ base \ (V_{base}) = 22 \ [kV] \tag{3.32}$$

Impedancia base
$$(Z_{base}) = \frac{V_{base}}{I_{base}} = \frac{V_{base}^2}{S_{base}}$$
 (3.33)

Impedancia base
$$(Z_{base}) = \frac{V_{base}^2}{S_{base}}$$
 (3.34)

$$Z_{base} = \frac{(22)^2 \, [kV]}{24 \, [MVA]} \tag{3.35}$$

$$Z_{base} = 20,166 \ [Ohm] \tag{3.36}$$

A continuación, se calcula la impedancia en porcentaje con la siguiente fórmula:

$$Z_{\%} = \frac{Z}{Z_{base}} \tag{3.37}$$

$$Z_{\%} = \frac{25,149\,[Ohm]}{20,166\,[Ohm]} \tag{3.38}$$

$$Z_{\%} = 1,247 * 100 \% \tag{3.39}$$

$$Z_{\%} = 124,709\% \tag{3.40}$$

Se calcula la *Reactancia* (X)/*Resistencia* (r) de la siguiente manera, con respecto al software siendo x1/r1:

$$x1/r1 = X/r \tag{3.41}$$

$$\frac{x_1}{r_1} = 25,137/0,746 \tag{3.42}$$

$$\frac{x_1}{r_1} = 33,683$$
 (3.43)

General Lintes de carga LTC Fabilidad Simbolo TH 12-F-15KVA TH 12-F-15KVA TH 12-F-15KVA TH 22-F-25KVA TH 22-F-25KVA TH 23-F-15KVA TH 23-F-15KVA TH 23-F-25KVA TH 24-S-50KVA TH 25-S-25KVA TH 25-S-25KVA </th <th>💵 Transformador con dos devanados</th> <th></th> <th></th> <th></th> <th>? ×</th>	💵 Transformador con dos devanados				? ×
DEFAULT Th12F-15KVA TR12F-15KVA Th2F-15KVA TR22F-257.5KVA Th2 de transformador: TR52F-75KVA Th2F-10KVA TR52F-75KVA Gapacidad nominal: TR52F-75KVA 0.0 TR53F-50KVA Forma a columnas TR53F-50KVA 0.0 TR53F-50KVA Forma a columnas TR53F-50KVA 0.13 TR13F-125KVA Periodias en vacio: TR123F-20KVA Tensión primaria: TR123F-20KVA Tensión secundaria: TR14:3F-500KVA Tensión secundaria: TR14:3F-300KVA Tensión cut 4,75 TR16:3F-1500KVA Timpedancias de secuencia Impedancias de puesta a tierra Rg Vg Minis Timpedancias de puesta a tierra Rg VA Onis Secundario: 0,0 0,0 0,0 <td>🔚 🕂 📄 🛋 🗙 Buscar</td> <td>- Q 🖪 🖌</td> <td>General Límites de carga LTC</td> <td>Fiabilidad Símbolo</td> <td></td>	🔚 🕂 📄 🛋 🗙 Buscar	- Q 🖪 🖌	General Límites de carga LTC	Fiabilidad Símbolo	
Impose the secondaria Impose the secon			Datos nominales		Configuración
In the 2-15 kVA IT TR2-2-25 KVA IT TR2-2F-37 5 KVA IT TR3-2F-37 5 KVA IT TR3-2F-37 5 KVA IT TR5-2F-75 KVA IT TR5-2F-75 KVA IT TR5-2F-30 KVA IT TR3-3F-30 KVA IT TR3-3F-30 KVA IT TR1-3F-30 KVA IT TR1-3F-300 KVA IT TR1-3F-300 KVA IT TR1-3F-300 KVA IT TR1-3F-500 KVA IT TR1-3F-500 KVA IT TR1-3F-500 KVA IT TR1-3F-1500 KVA IT TR1-3F-3F MORE			Tipo de transformador:	Trifásico 🗸	Primario
IT TR2-27-27.5KVA IT TR3-27-37.5KVA IT TR4-2F-50KVA IT TR4-3F-50KVA IT TR4-3F-50KVA IT TR4-3F-50KVA IT TR1-3F-20KVA IT TR1-3F-20KVA IT TR13-3F-20KVA IT TR13-3F-50KVA IT TR1-3F-50KVA IT TR1-3F-50KVA IT TR1-3F-50KVA IT TR1-3F-50KVA IT TR1-3F-50KVA IT TR1-3F-60KVA IT TR1-53F-60KVA IT TR1-53F-1500KVA IT TR16-3F-1500KVA IT TR16-3F-1500KVA IT TR16-3F-1500KVA					
Import The 2-P-SOVA Import The 3-P-SOVA Import			Tipo de aislamiento:	Immerso en líquido 🛛 🗸	
Interact Soliva Inpedancias de puesta a tierra Rg Xg Primario: 0,0 0,0 0,0 Ohmios Secundario: 0,0 Ohmios			Tipo de devanado: F	Forma a columnas 🛛 🗸	
Capacidad nominal: 30,0 kVA TR8-37-50KVA TR8-37-50KVA TR8-37-50KVA TR10-37-100KVA TR113-57-25KVA TR113-				20.0	Secundario
Trozzrowya Trozzrowya Trozdrowya			Capacidad nominal:	30,0 kVA	
TR8-3F-50KVA TR8-3F-50KVA TR10-3F-100KVA TR11-3F-125KVA TR12-3F-20KVA TR12-3F-20KVA TR13-3F-225KVA Reversible: Impedancias de secuencia Por omisión Z1: 4,75 % X0/R0: 33,68 Impedancias de puesta a tierra Rg Xg Primario: 0,0 0,0 O,0 Ohmios Aceptar			Tensión primaria:	22,0 kVLL ~	
Imposor-source 0,22 WLL Desfase Imposor-source 0,13 kW Desfase Imposor-source 0,13 kW Desfase Imposor-source 0,13 kW Desfase Imposor-source 0,13 kW Desfase Imposor-source Imposor-source 0,13 kW Desfase Imposor-source Imposor-source 0,13 kW Desfase Imposor-source Imposor-source Imposor-source Imposor-source Imposor-source Imposor-source 0,0 0,0 Ohmios Secundario: 0,0 Ohmios Secundario: 0,0 0,0 Ohmios Secundario: One Ohmios					
Imposition of the second and the se			Tensión secundaria:	0,22 kVLL ~	Destace
Image: TR11-3F-125KVA ITR11-3F-125KVA ITR12-3F-200KVA ITR13-3F-225KVA ITR13-3F-225KVA ITR13-3F-200KVA ITR14-3F-500KVA ITR15-3F-800KVA ITR16-3F-1500KVA ITR16-3F-1500KVA </td <td>TR10-3F-100KVA</td> <td></td> <td>Pérdidas en vacío:</td> <td>0,13 kW</td> <td>Desiase</td>	TR10-3F-100KVA		Pérdidas en vacío:	0,13 kW	Desiase
TR12-3F-200KVA TR13-3F-225KVA TR13-3F-225KVA TR14-3F-500KVA TR15-3F-800KVA TR16-3F-1500KVA TR16-3F-1500KVA Impedancias de secuencia Impedancias de puesta a tierra Rg Xg Primario: 0,0 0,0 Ohmios Secundario: 0,0 0,0 Ohmios Secundario: 0,0 0,0 Ohmios	TR11-3F-125KVA		Roversible:	7	Dy5 V
Impedancias de secuencia TR13-3F-225KVA TR14-3F-500KVA TR15-3F-800KVA TR16-3F-1500KVA Impedancias de puesta a tierra Rg Xg Primario: 0,0 0,0 Ohmios Secundario: 0,0 0,0 Ohmios Aceptar Cancelar	TR12-3F-200KVA		Reversible.		
TR14-3F-500KVA TR15-3F-800KVA TR15-3F-800KVA TR16-3F-1500KVA TR16-3F-1500KVA TR16-3F-1500KVA Z0: 4,75 % X1/R1: 33,68 Z0: 4,75 % X0/R0: 33,68 Impedancias de puesta a tierra Rg Xg Primario: 0,0 0,0 0,0 Ohnios Secundario: 0,0 O,0 Ohnios	TR13-3F-225KVA		Impedancias de secuencia		
TR15-3F-800KVA TR16-3F-1500KVA TR16-3F-1500KVA Impedancias de puesta a tierra Primario: 0,0 0,0 Ohmios Secundario: 0,0 0,0 Ohmios Aceptar Cancelar	TR14-3F-500KVA		Por omisión Z1:	4,75 % X1/R1:	33,68
TR16-3F-1500KVA	TR15-3F-800KVA		Z0:	4,75 % X0/R0:	33,68
Impedancias de puesta a tierra Rg Xg Primario: 0,0 0,0 Ohmios Secundario: 0,0 0,0 Ohmios	TR16-3F-1500KVA				
Impedancias de puesta a tierra Rg Xg Primario: 0,0 0,0 Ohmios Secundario: 0,0 0,0 Ohmios					
Impedancias de puesta a tierra Rg Xg Primario: 0,0 0,0 Ohmios Secundario: 0,0 0,0 Ohmios					
Primario: 0,0 0,0 Ohmios Secundario: 0,0 0,0 Ohmios			Impedancias de puesta a tierra	Ra Xa	
Secundario: 0,0 0,0 Ohmios			Primario		ion
Secundario: 0,0 0,0 Ohmios			Frindrio.		103
Aceptar Cancelar			Secundario:	0,0 0,0 Ohm	ios
Aceptar Cancelar					
Aceptar Cancelar					
Aceptar Cancelar					
Aceptar Cancelar					
Aceptar Cancelar					
Aceptar Cancelar	1				
				Ace	ptar Cancelar

Figura 125. Agregado exitosamente el transformador de 30 KVA

Después se crea el tercer equipo que es la línea aérea como se muestra en la (Figura 126).

또한 CYME 7.1 r02 - CYMDIST - Creación_	equipos.xst - [Principal]	
Archivo Editar Base de datos	Equipos Red Análisis Reporte Mostrar	Personalizar Ventana Ayuda
🗅 🛤 🗁 📾 📓 🖶 🌚	Fuente	
Colorear por red (aleatorio) ~	Regulador	isis de los dispositivos de protección 🛛 🗸 🙀 📊 🛕
: :::::::::::::::::::::::::::::::::::	Transformador	> tet 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Generador	
	Motor	>
Buscar	Sistemas de conversión de energía eólica	
Bases de datos	Microturbina	
Crear la conexión de la base de	Panel fotovoltaico	
🔐 📴 Importar	- Creación_equipos.st - [Principal] de datos Equipos Red Análisis Reporte Mostrar Personalizar Ventana Ayuda Regulador Transformador Generador Motor Sistemas de conversión de energía eólica Microturbina Panel fotovoltaico PCOS Fusible Reconectador Interruptor automático Sisto. ELEC Si NO. ELEC Conductor Si NO. ELEC Conductor Si NO. ELEC Conductor Conductor Conductor Si NO. ELEC Conductor Conductor Conductor Conductor Conductor Conductor Conductor Si NO. ELEC Coble Conductor Conductor Conductor Si NO. ELEC Coble Conductor Conductor Conductor Si NO. ELEC Conductor Si NO. ELEC Conductor Si NO. ELEC Conductor Conductor Conductor Conductor Si NO. ELEC Coble Conductor Con	
Um Exportar	Fusible	
Conexiones de la base de datos	Reconectador	
nt; 🔻 🦆 base2	Interr. automático de baja tensión	
Equipo	Interruptor automático	
Microsoft Access	Interruptor seccionador	
Red	Seccionador	
Microsoft Access	Protector de red	
Archivo: D:\TESIS ING. ELEC	Otros	
Microsoft Access	Conductor	
Archivo: D:\TESIS ING. ELEC	Cable	
	Línea aérea	> Equilibrada
	Lequipos.xst - [Principal] Equipos Red Análisis Fuente Image:	
	Condensador / Reactancia	> Espaciamiento de la línea de simple circuito
N (1)	Armónicos	> Espaciamiento de la línea de doble circuito
	Electrónica de potencia	>
	Biblioteca	>
- <	> <	
Conectado a base2 (Base de datos Acces	s D:\TESIS ING. ELECTRICA\29. Diseño en Cyme	\1. Creación de elementos\base2.mdb).
Permite ver agregar eliminar o modifica	ar al acroaciamiento entre las líneas	

Figura 126. Selección del campo Equipos – Línea Aérea – Espaciamiento de la línea de simple circuito

En esta sección se va a configurar la estructura semicentrada pasante, siendo este poste como se muestra en la (Figura 127) que posee los siguientes datos:

Espaciamiento de circuitos simples			f
🗏 🕂 🗋 🗃 🗙 Buscar 💿 🔍 🔩 🎇	General Notas		
DEFAULT	Tipo de datos de espaciamiento		
SC-3F	Configuración detallada	✓ DMG	
	Configuración de la torre	Distancias	
	Genérico	✓ a: 0,0	pies
	"	b: 0,0	pies
	2 3	c: 0,0	pies
		d: 0,0	pies
	· •	e: 0,0	pies
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Coordenadas (en	pie)
		X	Y
		1 -3,6000001	33,791999
	Nro fases: 3	✓ 2 -1,6400000	33,791999
	Nro conductores / fase: 1	× N1 0.4900000	33,791999
			23,033000
	Distancia entre haces (h) en pie: 0,03		
	Nro conductores neutros: 1	~	
	Estado de los conductores neutros: Edita	r Pre	evisualizar
		Acentar	Cancelar

Figura 127. Configuración de los parámetros de la estructura semicentrada pasante

또한 Conductor		? ×
🗐 🛃 🖻 🗃 🗙 Buscar 🗸 🔿 🔜 🕱	General Límites de carga Fiabilida	d Notas
	Detalles de construcción	
	Palabra código:	ACSR-3/0-AWG
ACSR-2/0-AWG	Tipo de construcción:	Conductor de aluminio reforzado con acero \sim
E ACSR-4/0-AWG DEFAULT	Material:	Aluminio ~
P NONE	Tamaño:	251,6 kcmil 🕜
	Diámetro interno:	0,0 pulgada
	Diámetro externo:	0,5016 pulgada
	RGM:	0,1614 pulgada
	Capacidad nominal	
	Crte perman. nominal:	313,0 A
	Capac. de soporte de cc:	12800,0 A
	Resistencia	
ACSR-1/0-AWG ACSR-2AWG ACSR-2/0-AWG ACSR-2/0-AWG ACSR-4/0-AWG DEFAULT NONE		ac cc
	R 25℃:	0,385 0,334 Ohmios/km
	R 50°C:	0,432 0,366 Ohmios/km
		Acentar Cancelar

Luego se crea el cuarto equipo que es el conductor como se ve en la (Figura 128).

Figura 128. Configuración de los parámetros del conductor 3/0 AWG de aluminio reforzado con acero

En la sección tipo de construcción, se eligen conductores de aluminio reforzado con acero como se muestra en la (Figura 128). Siendo el tamaño en kcmil indicado en la siguiente tabla "Cables ACSR de aluminio desnudo Centelsa", por el cual se toma como base la tabla de cables ACSR de la empresa CENTELSA como se puede observar en la (Figura 129).

	CAB ACS	LES R										-		na empresa	ACCOMPELA Viakable
Cobledo	Código	Calibre			Diámetro (mm)		RMG	''	Peso Apreximado (kg	/km)	Corgo de Roturo	Resistenc (D/	ia Eléctrica km)	Copoci corri	dod de ente
-		-	-	No.	_		_	-	-	-	-				
Juminio / Acero		AWE / Kemil	Acero		Núcleo	Totel	man .		Acero	Total	kg-f	DC o 20'C'1	AC o 75'C		kA
Cobleado 6/1	Swan	4	2.12	2.12	2,12	6.36	2.05	58.1	27,A	85.5	845	1.32	1,70	139	3,2
	Sparrow	2	2.57	2.67	2,67	8.01	2.58	92.3	43.6	136	1290	0.89	/10	184	5,1
-(#L(#)	Robin	1	3,00	3.00	3.00	9.00	2.90	115,4	55.0	171	1612	0.658	0.884	211	6.4
000	Roven	1/0	3,37	3.37	3,37	10.11	3,25	145.8	69.3	216	1965	0.522	0.717	241	8,0
(#18)	Queil	2/0	3.79	3.78	3.78	11.35	3.65	185.1	87.4	273	2405	0.414	0.584	275	10,1
	Pigeon	3/0	4.25	4.25	4,25	12,74	4,10	233,5	110.3	344	3003	0,328	0,479	313	12.8
6339 CDL22.0	Penguin	4/0	4,77	4,77	4,77	14,31	4,61	294,4	139.0	433	3787	0.250	0.395	355	16.1
	Partridge	266.8	2.00	2.57	6.00	16.29	5.52	374.8	171.9	547	5120	0.209	0.255	458	20,3
ableado 26/7	Dstrich	300	2,12	2,73	6,36	17,28	7,01	4215	193,3	615	5757	0,185	0,226	493	22,8
	Linnet	336.4	2.25	2.89	6.74	18.30	7.43	472.6	216.7	689	6400	0.165	0.202	530	25.6

Figura 129. Tabla de conductores Centelsa ACSR

3.5.3 Cálculos de los conductores utilizados en el diseño

• Cálculo del tamaño en kcmil del conductor Raven 1/0
Primero se escoge el diámetro total que se expresa en milímetros. A continuación, el cálculo:

$$Diametro \ total \ (D) = 10,11 \ mm \tag{3.44}$$

$$radio(r) = \frac{D}{2} \tag{3.45}$$

$$r = \frac{10,11}{2} \tag{3.46}$$

$$r = 5,055 mm$$
 (3.47)

$$A = \pi(5,055^{2}) \tag{3.49}$$

$$A = 80,277 \ mm^2 \tag{3.50}$$

Transformando la sección A de mm^2 a kemil se obtiene, el siguiente resultado:

$$A = 158,4 \ kcmil$$
 (3.51)

• Cálculo del diámetro externo para el conductor Raven 1/0:

Se transforma el diámetro externo que esta expresado en mm a pulgadas

$$D = (10,11 mm) * \left(\frac{0.3937}{1 mm}\right) pulgadas$$
(3.52)

$$D = 0,3980 \ pulgadas \tag{3.53}$$

En el RGM el valor viene dado en mm y su transformación a pulgadas es:

$$RGM = 3,25 mm * \left(\frac{0,3937}{1 mm}\right) pulgadas$$
 (3.54)

$$RGM = 0,1279 \, pulgadas \tag{3.55}$$

• Cálculo de la resistencia en ac del conductor raven 1/0

El cálculo de la resistencia a 25°C y 50°C se realiza de la siguiente manera, con la variación de la resistencia del material con la temperatura que está en la (ecuación 3.56):

$$R_{tf} = R_{to} * \left[1 + \alpha \left(t_f - t_o \right) \right]$$
(3.56)

Donde:

 R_{tf} = resistencia final a la temperatura t_f , que está representada en ohmios

 R_{to} = resistencia inicial a la temperatura t_o , que está representada en ohmios

 \propto = coeficiente de temperatura (ver la tabla siguiente)

 t_f = temperatura final en °C (grados centígrados)

 t_o = temperatura inicial en °C (grados centígrados)

La siguiente (Tabla 9) muestra las constantes \propto de cada uno de los conductores:

Material	¢	Material	¢
Aluminio	0.0039	Plata	0.0038
Manganita	0	Estaño	0.0042
Advance	0.00002	Platino	0.0025
Mercurio	0.00089	Hiero	0.0052
Bronce fosforoso	0.002	Plomo	0.0037
Nicromio	0.00013	Kruppina	0.0007
Carbón	0.0005	Tungsteno	0.0041
Niquel	0.0047	Latón	0.002
Niquelina	0.0002	Wolframio	0.0045
Cobre	0.00382	Oro	0.0034

Tabla 9. Constantes \propto de materiales

Para el cálculo del conductor Raven 1/0:

$$R_{tf} = R_{to} * \left[1 + \alpha \left(t_f - t_o \right) \right]$$
(3.57)

Se realiza la corrección de temperatura con la resistencia de 75°C a 25°C que se tiene en la tabla Centelsa del (Anexo A), siendo \propto el coeficiente de temperatura del aluminio $\propto = 0,0039$

$$R_{tf} = 0.717 * [1 + 0.0039(25^{\circ} - 75^{\circ})]$$
(3.58)

$$R_{tf} = 0,577 \tag{3.59}$$

Después se transforma $R_{tf} = 0,577$ que esta a una temperatura de 25°C a una temperatura de 50°C, con similar procedimiento.

$$R_{tf} = 0.577 * [1 + 0.0039(50^{\circ} - 25^{\circ})]$$
(3.60)

$$R_{tf} = 0,647 \tag{3.61}$$

• Cálculo de resistencia en de del conductor raven 1/0

Cálculo de la resistencia a 25°C y 50°C se realiza de la siguiente manera, con la variación de la resistencia del material con la temperatura: $R_{tf} = R_{to} * [1+\alpha (t_f - t_o)]$

Donde:

- R_{tf} = resistencia final a la temperatura t_f , que está representada en ohmios
- R_{to} = resistencia inicial a la temperatura t_o , que está representada en ohmios
- \propto = coeficiente de temperatura (ver la tabla siguiente)
- t_f = temperatura final en °C (grados centígrados)
- t_o = temperatura inicial en °C (grados centígrados)
 - Para el cálculo del conductor Raven 1/0:

$$R_{tf} = R_{to} * \left[1 + \alpha \left(t_f - t_o \right) \right]$$
(3.62)

Se realiza la corrección de temperatura con la resistencia de 20°C a 25 °C que se tiene en la tabla Centelsa del Anexo A, siendo \propto el coeficiente de temperatura del aluminio \propto = 0,0039 que se encuentra en la Tabla 9.

$$R_{tf} = 0.522 * [1 + 0.0039(25 - 20)]$$
(3.63)

$$R_{tf} = 0,532 \tag{3.64}$$

Se ejecuta la corrección de temperatura con la resistencia $R_{tf} = 0,532$ que esta a una temperatura de 25°C a una temperatura de 50°C, con similar procedimiento.

$$R_{tf} = 0.532 * [1 + 0.0039(50 - 25)]$$
(3.65)

$$R_{tf} = 0,583 \tag{3.66}$$

Para los siguientes conductores, se muestra en la siguiente (Tabla 10) como resumen:

Conducto	r	Tamaño (kcmil)	Diámetro externo (pulgadas)	RGM (pulgadas)	Corriente nominal (A)	Corriente (CC)	Resister (Ω/km)	ncia		
ACSR AWG	2	99,5	0,3153	0,1016	184	5100	AC 25° 0,885	50° 0,992	DC 25° 0,907	50° 0,994
(Sparrow) ACSR (Raven)	1/0	105,5	0,3980	0,1279	241	8000	0,577	0,633	0,532	0,583
ACSR (Quail)	2/0	199,7	0,4469	0,1437	275	10100	0,470	0,527	0,422	0,462
ACSR (Pigeon)	3/0	251,6	0,5016	0,1614	313	12800	0,385	0,432	0,334	0,366
ACSR (Penguin)	4/0	317,4	0,5633	0,1815	355	16100	0,318	0,357	0,265	0,290

Tabla 10. Conductores ASCR empleados en el diseño

Nuevamente en el tercer equipo se configura la línea equilibrada como se muestra en la (Figura 138).

💵 CYME 7.1 r02 - CYMDIST - Creación	n_equipos.xst - [Principal]	
백맨 Archivo Editar Base de datos	Equipos Red Análisis Reporte Mostrar	Personalizar Ventana Ayuda
🗋 🗰 📄 💼 📓 🖶 🍇	Fuente	
Colorear por red (aleatonto)	Regulador Transformador Generador Motor Sistemas de conversión de energía eólica Microturbina Panel fotovoltaico PCOS Fusible Reconectador Interruptor automático	Image: Second secon
Cultury Cultu	Interruptor automatico Interruptor seccionador Seccionador Protector de red Otros	
Microsoft Access	Conductor Cable	
	Línea aérea	> Equilibrada
2	Barra omnibus	Desequilibrada
	Condensador / Reactancia	> Espaciamiento de la línea de simple circuito
W D	Armónicos	> Espaciamiento de la línea de doble circuito
	Electrónica de potencia	>
	Biblioteca	>
Conectado a base2 (Base de datos Acce	ess D:\TESIS ING. ELECTRICA\29. Diseño en Cyme	1. Creación de elementos\base2.mdb).

Figura 130. Selección del campo Equipos - Línea Aérea – Equilibrada

3.5.4 Importación de la capa shape de QGISGNU 3.22 hacia la plataforma de CYME©

Se ingresa en el campo Mostrar después se selecciona Mapa de fondo, se elige en tipo shape y se carga la capa shape importada como se ve en la (Figura 131), después se ingresa a los parámetros de la capa shape importada como se observa en la (Figura 132).

1997 CYME 7.1 r02 - CYMDIST [Principal] 1997 Archivo Editar Base de datos Equipos Red Análisis Reporte Mostrar Personalizar Ventana Ayuda 1997 日本語
Colorear por red (aleatorio) V 🔐 Etiquetas predeterminadas V 😭 Análisis de los dispositivos de prot
▋ ■ ● ■ # # # # # & & X ● 표 ┣ 3 ┗ ½ & ■ # ## = → ·
Por omisión
Image: A state of the state
: Mapa de fondo
Seleccionar
: Base de datos
□ Datasets □ □ □ □ □ □ □ □ □ Nodos-SE
Información
<u>9</u>
▲ <u>500 m</u>
X Reporte de errores de edición.
Conectado a base2 (Base de datos Access D:\TESIS ING. ELECTRICA\29. Diseño en Cyme\3. Base final - Equipos\base2.mdb).

Figura 131. Capa shape importada de QGISGNU 3.22 - CYME[®] – Mapa de fondo.

Image: Archive Editar Base de datos Equipos Red Análisis Reporte Mostrar Personaliz Image: Archive Editar Base de datos Equipos Red Análisis Reporte Mostrar Personaliz Image:	ar Ventana Ayuda
Colorear por red (aleatorio) v 🖆 Etiquetas predeterminadas v 🔄 Análisi	s de los dispositivos de protección 🗸 🖗 🌆 🛕 🗊 💼 🔜
■「「〒井└└└ & @ @ × ← 匝 № 末 ↓ 次 ≪ ■ ■ 羅	[₩]
Por omisión V 🖢	
Mapa de fondo Tipo: Shapefiles (*.shp) Base de datos Datasets Datasets Differsion (Nodos-SE) Información (Nodos-SE) Seleccionar: Datasets Seleccionar: Datasets Seleccionar: Datasets Seleccionar: Datasets Seleccionar: Datasets Seleccionar: Datasets Seleccionar: Datasets Seleccionar: Seleccionar: Datasets Seleccionar: Sel	Propiedades de la capa
Reporte de errores de edición.	
Conectado a base2 (Base de datos Access D:\TESIS ING. ELECTRICA\29. Diseño en Cyme\3. Base fina 0 redes 0 tramos 0 zonas	II - Equipos\base2.mdb). 7220

Figura 132. Propiedades de la capa shape Nodos-SE en texto y puntos

En la sección general se especifica el nombre del nudo como se observa en la (Figura 133) y en la sección coordenadas se elige el despliegue mostrar como un nudo, posteriormente se ingresa a los parámetros del nudo como se ve la (Figura 134).

Colorear por r	ed (aleatorio)	~		Etiquetas prede	termir	nadas 🗸 🚰		Análisis de los dispositivos o	de protección	~	9 🖗 🛔		d	SI MP	3 E
∎* ¤* ‡	부부님	ሯ 🗈 🛍	X	計 进 142	-	□, >, ∞, 🔳	550	Propiedades del nudo				? >	<	100 %	~
Por omisión		~	2				C	General Coordenadas R	elámpago de ar	co					
					*	Uista		Nudo							
	Buscar			- 🔍 强	^			Nombre:	301						
General			_					Zona:	NO-DEFINIDO)		\sim			
📥 🏥	÷	—				2 000		Tensión:	0,0	kVLL	🗌 Definido p	ior el usuario			
Líneas y	cables					5,000		Características asignada	as						
<u> </u>	Ó	K	¢¢			6,000 7,000		Induir los nudos en	n las condiciones	anorm	ales				
<u></u>						8,0		Corriente continua no	ominal:		225	Α			
Fuentes	y generadore	s				9,000		Corriente de cresta n	ominal:		32	kA			
🤹 🌀	Ø	(IG)	Ġ			11,000		Corriente asimétrica n	nominal:		19	kA		218,000	
	Ē	占	\diamond			13,000		Corriente simétrica no	ominal (Corte):		32	kA		217,00	
: Transfor	madores y re	guladores												216	200 130
nt X	×4×	μų rr	uli			100 m								132,00	1,00)
🔺 nhn	4998	- ulc			~	<								133,000	
×										-	Aceptar	Cancelar			

Figura 133. Propiedades del nodo 301 - SE

Figura 134. Opciones de presentación visual del símbolo – tamaño

Después se ingresa la línea aérea equilibrada para poder unir los nodos como se muestra la (Figura 135) hasta la (Figura 138).

Figura 135. Adición del símbolo línea aérea equilibrada

🖤 CYME 7.1 r02 - CYMDIST - [Principa	al]					
🚟 Archivo Editar Base de datos	Equipos R	ed Análisis Reporte Mostrar Personali:	ar Ventana Ayuda			
🗋 🖿 🚔 📾 🛃 🖶 🎰	2 8 🔶	🐜 🗼 い 🕶 🕫 🗩 🔲	📰 🗟 🐋 📑 4		I 2	
Colorear por red (aleatorio) V	Prop	piedades del tramo			?	×
	× Nomb	re del tramo	Línea aérea equilibrada			
	- (m)	4 ⇒	Tipo:	Línea aérea equilibrada	~	
Por omisión V	2		Número:	4		
	Zona		Estado:	Conectado \checkmark		
: 📰 🕮 Buscar	NO	-DEFINIDO ~	Longitud:	93,6712 pies	Etapa: No definido	~ 24.
General	Medio	ambiente	Parámetros			00
ria de la companya de	Desc	conocido V Más	Configuración			
			Nombre de la línea:	DEFAULT	~	9,0
the Lineas y cables	Dispos	sitivos		t		20
		Agregar 👄 Quitar	Impedancias equivalente	5		
	i L	Nudos		R + iX G + iB		
		Modelo armónico		Ohmios/mi µS/mi		
Fuentes y generadores			Secuencia positiva:	0,6437 + j2,253 0 + j8,047		
🕵 🌀 🖾 🍈	G		Secuencia homonolar:	0.6437 + i2 253 0 + i8 047		
				010107 112/200		
🔮 🚯 🖽 🛆	4		Drotocción			
: Transformadores y reguladores			riotección			
nh whi du				Ajustes TCC		
i A m m						_
inter the work						- H.
	(R	leducir			<u>A</u> ceptar <u>C</u> anc	celar
IIII A P PI Reporte de errores	ue culcion.	/				

Conectado a base2 (Base de datos Access D:\TESIS ING. ELECTRICA\29. Diseño en Cyme\3. Base final - Equipos\base2.mu 4 en RED_1, Fase : ABC, De 301 A 215, Equip : Línea aérea equilibrada / , Cond : DEFAULT, Long. : 93,7 m

Figura 136. Propiedades del tramo - Línea aérea equilibrada

CYME 7.1 r0	2 - CYMDIST - [P Editar Base de	Principal] datos Equ	lipos F	Red Análisis Reporte Mostrar Person	alizar Ventana Avuda					
in ## 🖻) 📸 🛛 🖬 🚔	b 💩 🗾 (8 4	² _m 🗼 μν τ κα τ 🗩 😕 🗩			v 🔜 🚚 🔍 🗉	2		
Colorear por red	l (aleatorio)	~ 🔗	텔렌 Pro	piedades del tramo					?	×
	It Lt 🗶 🛛	- 🙈 X	Nomb	ore del tramo	Línea aérea equilibrada					
200 T TT			-	301-215	lipo:	Linea aérea equilibrada	a	~		
Por omision		~ 200	7000		Número:	301-215				-
			20110	DEETNIDO	Estado:	Conectado	~			
		_		•••••••••••••••••••••••••••••••••••••••	Longitud:	93,6712 pies		Etapa:	No definido	24
General			Medic	o ambiente	Parámetros					0
u 🖬	18 -	- 1	Des	sconocido ~ Más	Configuración					9
Líneas y c	ables		Dispo	ositivos	Nombre de la línea:	3X4/0(4/0)		~		
	0)	K (.	Agregar Quitar	Impedancias equivalente	s				
: 1			ė	Línea aérea equilibrada		R + jX Obmios/mi	G + jB uS/mi			
E Fuentes y	generadores			Plote of a monitor	Secuencia positiva:	0.5118 + 10.6825	0 + 16.679			
a (a)	× 6	6			Conversion homeonelises		0.110.051			
<u> </u>	φ (Secuencia nomopolar:	0,959 + 11,935	0 + 13,064			
🧕 🐼		5 [
: Transform	adores y regulado	ores			Protection					
<u>*</u>	when the	ω Έγιου				Ajustes TCC				
🔔 mm	4. w	dic rm								
			≪ F	Reducir				Ace	ptar <u>C</u> a	ncelar
	Reporte de e	errores de o	aicion.	1						
C	200 1 1 1	A D	TECIC IN	NC ELECTRICAVOR Diseño en Como VO Rese	Carel Cardinard Instantia					

Conectado a base2 (Base de datos Access D:\TESIS ING. ELECTRICA\29. Diseño en Cyme\3. Base final - Equipos\base2.mdb). 4 en RED_1, Fase : ABC, De 301 A 215, Equip : Línea aérea equilibrada / , Cond : DEFAULT, Long. : 93,7 m

Figura 138. Selección del comando Agregar tramo

3.6 Cálculo de la corriente de los conductores

3.6.1 Calculo de la corriente nominal

La corriente nominal se calcula de acuerdo a la potencia nominal que se instalará en la subestación con la siguiente fórmula que está en la (ecuación 3.67):

$$I = \frac{S_b}{\sqrt{3} * V_b} \tag{3.67}$$

En donde:

I = La corriente nominal [A]

 $S_b =$ La carga total a instalar [kVA]

 $V_b = \text{El nivel de voltaje de trabajo de línea a línea [kV]}$

 $\sqrt{3}$ = La raíz de tres es utilizada sólo en sistemas trifásicos

$$I = \frac{S_b}{\sqrt{3} * V_b} \tag{3.68}$$

$$I = \frac{100[MVA]}{\sqrt{3}*230[KV]}$$
(3.69)

$$I = \frac{100000[KVA]}{\sqrt{3}*230[KV]}$$
(3.70)

$$I = 251,02 A (Corriente nominal)$$
(3.71)

3.6.2 Cálculo de conductores en ramales trifásicos para interconexión de equipos

Los conductores para la interconexión de equipos se calculan con un factor de demanda de 1.25 para que soporten las máximas corrientes que pueden circular por ellos como se representa en la (ecuación 3.72).

$$I = \frac{S_b}{\sqrt{3} * V_b} * 1,25 \tag{3.72}$$

$$I = \frac{100[MVA]}{\sqrt{3}*230[KV]} * 1,25 \tag{3.73}$$

$$I = 313,77 A \tag{3.74}$$

Para ramales monofásicos, es idéntica la fórmula, pero sin la raíz de 3.

Luego se ingresa el equivalente de fuente para poder dar energía al sistema cómo se ve en la (Figura 139).

Figura 139. Creación del Equivalente de fuente - SE perteneciente al nodo 301

CYME 7.1 r02 - CYMDIST - Aeropuerto3.xst - [Principal] Mortra Archivo Editar Base de datos Equipos Red Apálicis Reporte Mortra	ur Dersonalizar Ventana Avuda	
	P I P A State	Q 🖳 🖉
Colorear por red (aleatorio) V 🚰 Etiquetas predeterminadas V	Propiedades de la red ?	
🖬 🖶 井口目 🛦 📾 🕿 X 🗇 田 😡 🗔 🗟 X 🖉	Red Fuente Equivalente Demanda Limitadores Armónicos Notas	
✓ Vista	Fuente	
: 🔚 🕮 Buscar 🚽 🔍 强 🛆	Tipo de fuente: Equivalente (Desde la base de datos Eq) $\qquad \lor$	
General General	Nombre dispositivo: SE 🗸 🗹	
	Nombre: 1	
	Tensión de servicio: 22,0 kVLL	
<u>ا</u>	Nudo de fuente	
Lineas y cables	Nombre: 301	
	Zona: NO-DEFINIDO V	218.000
	Despliegue: Mostrar como un nudo 🗸 🗸	
	Coordenada X: 724074,549	A
	Coordenada Y: 9680418,627	217,000
E Fuentes y generadores	Longitud: -78,9841689 •	
	Latitud: -2,88953 °	216,0
		131
Transformadores y reguladores		132,000
	Arantar Cancal	-
Código Mensaje Ubicación Dispositivo Red		
HIM A PIPIN Reporte de errores de edición. A Reporte de errores de datos de		
Lonectado a basez (Base de datos Access D:\TESIS ING, ELECTRICA\29. Diseño en Cyn 1 redes, 302 tramos, 0 zonas	ne(4. base final - Ivodos - SE\base2.mdb).	724073,47, 968

Figura 140. Propiedades de la red – Sección Fuente – Nombre dispositivo – SE

Una vez ingresada la fuente (SE) como se observa en la (Figura 140), se comprueba que en los nodos exista el voltaje de operación de salida de la subestación (22kV) como se ve en la (Figura 141 y 142).

CYME 7.1 r02 - CYMDIST - Aeropuerto3.xst - [Principal] Archive Editor Para de datas Equipos Rod Apólicis Paracta Mastras	Perceptizar Ventana Auuda	
$\square \square $	P III III III III 5	
Colorear por red (aleatorio) V 🚰 Etiquetas predeterminadas V 🚰	Análisis de los dispositivos de protección 🛛 🗸 🔗	💼 🛕 🗟 🏦 🕺 si
┏╹ φ* 井 ഥ ഥ ໓ 💁 🖏 X φ 压 🕟 汞 ⊑) 🙀 🦗 📖	💷 Propiedades del nudo	? × 🖈
♥ Vista	General Coordenadas Relámpago de arco	
	Nombre: 215	
	Zona: NO-DEFINIDO	
		do por el usuario
Líneas y cables	Características asignadas	
	Incluir los nudos en las condiciones anormales	
	Corriente continua nominal: 225	A
	Corriente de cresta nominal: 32	kA
	Corriente asimétrica nominal: 19	kA
Fuentes y generadores	Corriente simétrica nominal (Corte): 32	kA
🖹 Ġ 🙀 🖽		
Iranstormadores y reguladores 100 pi	Acepta	r Cancelar ,
		· · · ·
Image: Código Mensaje Ubicación Dispositivo Red Image: Código Ubicación Dispositivo Red Image: Código Ubicación Dispositivo Red Image: Código Dispositivo Red Image: Código Dispositivo Red Image: Código Dispositivo Red	trada /	
Conectado a base2 (Base de datos Access D:\TESIS ING. ELECTRICA\29. Diseño en Cyme\4 Node : 215, X : 724061,570975, Y : 9680325,858871	4. Base final - Nodos - SE\base2.mdb).	

Figura 141. Comprobación de voltaje en el nodo 215 (22kV)

III 💼 🔂 🛃 🖶 🔄 🖉 🔅 🔶 🎭 🏟 🔊 マ ∞ マ 🥬 🥬 🥬 rear por red (aleatorio) - ∨ 😚 Eiquetas predeterminadas - ∨ 😚	Análisis de los dispositivos	te protección ∨] 🗲 🛠 💼	<u> - </u>
	Propiedades del nudo			? ×
	Nudo	Relampago de arco		
General	Nombre:	261		
	Zona:	NO-DEFINIDO		~
Î Î	Tensión:	22,0 kVLL	Definido por	el usuario
Líneas y cables	Características asignad	as		
<u>т</u> т	Incluir los nudos e	n las condiciones anorma	les	
	Corriente continua n	ominal:	225	A
ψψ <u>ΨΨ</u> Ψ	Corriente de cresta r	nominal:	32	kA
()	Corriente asimétrica	nominal:	19	kA
Fuentes y generadores	Corriente simétrica n	ominal (Corte):	32	kA
△ ◎ 59,0				
Transformadores y reguladores			Aceptar	Cancelar
·ΥΨ. ΥΫ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́		•		
Código Mensaje Ubicación Dispositivo Red	-4- 1			

Figura 142. Comprobación de voltaje en el nodo 261 (22KV)

Después que se verifica el voltaje de 22kV en los nodos, se empieza a crear los transformadores como se muestra en la (Figura 143 y 144), posteriormente se ingresa a los parámetros del transformador seleccionado como se ve en la (Figura 145 y 146).

Figura 143. Creación de Transformador de dos devanados

orear por red	(aleatorio)									<u> 6</u> .	-98. 4			
s* #	Lt H L	🔏 🗈 🙈 🗙	90	Propiedades del tramo		-								? ×
				Nombre del tramo 4 213-301	⇒	T	ansformador con dos dev Nombre:	ranados TR8-3F-50	KVA			~		
Ġ	Ø	ш. Ш		Fase	c		Estado:	Conectado)		~		Reversib	le
Ă	\diamond			Zona		P	Ubicación: arámetros				\sim	Etapa:	No definido	~
Transform	adores y re	guladores		NO-DEFINIDO	~		General					Configuración		
ά	m	μų		Medio ambiente			Primario:	En el nudo	de orig	gen v		Primario:	<u>∆</u> ±	
uli	- martin	4%		Desconocido $$	Más		Indicador de falla:	No indicade	or de fi	alla 🗸		Secundario:	Y ±	
ule	0000	ulu	Г	Dispositivos			Toma fija					Desfase:	Dy1	\sim
	4	m		🕂 Agregar 📼 Quitar			Toma al primario:	100,0	%	22,0	kVLL	Desfase Gamma:	0,0	grad.
Motores y	cargas	.		Nudos	s		Toma al secundario:	100,0	%	0,22	kVLL	Ramal abierto:	AB	~
수 스	111	M		Medidor			Impedancias de puesta a	tierra Rg		Xq		Fase toma al centr	AB	\sim
(SM)							Primario:	0,0	1	0,0	Ohmios	Protección		
Condensad	lores y rea	ctancias					Secundario:	0,0		0,0	Ohmios	Ajust	es TCC	
÷	ş	木					Tensión nominal del sister	ma						
3	[★]						Primario:	22,0	kVLI	L	Definic	do por el usuario		
ي Maniobra y	protección						Secundario:	0,22	kVLI	L	Definio	do por el usuario		
	Código	Mensaie Ilbic												

Figura 144. Propiedades del Transformador de dos devanados pertenecientes al tramo 213 – 301

Figura 145. Opciones de presentación visual del símbolo con referencia al Transformador

Figura 146. Modificación de atributos como tamaño - color – ancho del símbolo del Transformador

Después se agrega la carga concentrada se muestra en la (Figura 147).

Figura 147. Selección del elemento Carga concentrada

		🐖 🐅 🔛 🗠 🖛 🖙 💬 💭 💭 🛄 🏧 Propiedades del tramo	ai 🔊 👔 A			<u> </u>	?	×
olorear por red (a	ieatono) Y	Nombre del tramo	Transformador con dos de	evanados				
* ** ## L	: 🗄 🕺 🗈 🕼 🗙 🕁		Nombre:	TR8-3F-50KVA		~	1	
			Número:	A				
	Buscar 🚽 🔍 📮	Fase	Estado:	Conectado	~		Reversible	
Ġ	(1)	⊠A ⊠B ⊠C	Ubicación:			Etapa: N	No definido	~
Ā		Zona	Parámetros					
G	⊕ ⊞	NO-DEFINIDO ~	General			Configuración		
L A	لم ا		Primario:	En el nudo de or	iaen 🗸	Primario:	<u>∧</u> ±	
	-	Medio ambiente	Indicador de falla:	No indicador da l	fala V			
Transformad	ores y reguladores	Desconocido V Mas		No maleboor de		Secundario:	I	
mpr.	D hm	Dispositivos	Toma fija			Desfase:	Dy1 ~	
	ala du	🕂 Agregar 😑 Quitar	Toma al primario:	100,0 %	22,0 kVLL	Desfase Gamma:	0,0 g	rad.
ww	77° 794	····Nudos	Toma al secundario:	100.0 %	0.22	Damal abjector	40	
- whe	m why	Transformador con dos devanados			-/	Kainai abierto:	AD V	
N	4	···· Medidor	Impedancias de puesta	a tierra	Ye	Fase toma al centro:	AB 🗸	d
Motores y ca	rgas		Drimariou	Kg	Xg 0.0 Obmics	Protección		
Ι Α	III (M) III		Finano.	0.0	0,0 of the state	Ajustes	TCC	
			Securicano.	0,0	0,0 Onmios			
l 🖤			Tensión nominal del siste	ema				
Condensado	res y reactancias		Primario:	22,0 kVL	LL Defini	do por el usuario		
+	3 🛧		Secundario:	0,22 kVL	LL Defini	do por el usuario		
1 2	rta							
		Reducir				Acepta	ar <u>C</u> anr	celar

Figura 148. Configuración de parámetros de transformador de dos devanados – A – que se sitúa en el nodo 213

Ingresado el transformador A en el nodo 213 como se observa en la (Figura 148), se hace otros ingresos de nuevos transformadores dentro del sistema como se muestra en la (Figura 151). Luego se sigue con la configuración de la carga concentrada (A1) como se observa en la (Figura 149) y de la misma manera otras cargas como se ve en la (Figura 150,152 y 153).

CYME 7.1 r02 - CYMDIST - Aeropuerto3xst - [I CYME 7.1 r02 - CYMDIST - Aeropuerto3xst - [I Colorear por red (aleatorio)	Principal] Red Análisis Reporte Mostrar Personalizar	Ventana Ayuda 詞 👒 🏥 📆 A1			~ I	IQ 🖪 _	2	?	×
	Nombre del tramo	Carga concentrada Número: Estado: Ubicación:	A1 Conectado	,	*		Etapa:	No definido	v
G ⊕ ⊞ ↓ ↓ ⊘ Transformadores y reguladores ↑ ↓ ↓ ↓ ↓ ↓ ↓	Zona NO-DEFINIDO Medio anbiente Desconocido Más Dispositivos da Agenear Outar	Parámetros Modelo de carga: Tipo de cliente: Año: Conexión:	DEFAULT Industrial 2023]	>	Prioridad Normal: Emergenc Distribución Estado:	NING ia: NING n de carga Desbi	UNO UNO oqueado	>
الله الله الله الله الله الله الله الله	Carga concentrada por fase	Potencia aparente: Factor de potencia:	A 15,0 90,0	B 20,0 92,0	C 10,0 90,0	Total 45,0 90,67	kVA %	Formato: kVA & FP	~
Condensadores y reactancias		Consumo: Capacidad conectada: Clientes:	0,0	0,0	0,0	0,0	kWh kVA	Detalles.	··
Código Mensaje Ubicación K K K K	Reducir Reducir A reporte de errores de datos de entrada /						Ace	eptar <u>C</u> a	ancelar

Conectado a base2 (Base de datos Access D\TESIS ING. ELECTRICA\29. Diseño en Cyme\4. Base final - Nodos - SE\base2.mdb) A1 en SE, Fase : ABC, De 302 A 303, Equip : Carga concentrada / , Cond : , Longitud: 0,0 pies

Figura 149. Ingreso de parámetros para el balance de cargas A-B-C en la carga A1

ombre del tramo	Carga concentrada							
📁 B1 🔿	Número:	B1						
·	Estado:	Conectado		\sim				
se ⊠A □B □C	Ubicación:			\sim		Etapa:	No definido	
na	Parámetros							
NO-DEFINIDO ~					Prioridad			
de coltrato	Modelo de carga:	DEFAULT		\sim	Normal:	NING	JNO	~
dio ambiente	Tipo de cliente:	Residencial		~ 🧾	Emergeno	ia: NING	JNO	``
esconocido V Mas	Año:	2023]		Distribució	n de carna		
positivos	Conevión	₹ +	-		Estado:	Deshl	oqueado	
수 Agregar 📼 Quitar								
Nudos Carga conceptrada por fase		Α	В	С	Total			
	Potencia aparente:	10,0	0,0	0,0	10,0	kVA	Formato:	
	Factor de potencia:	90,0	0,0	0,0	90,0	%	kva & FP	~
	Consumo:	0,0	0,0	0,0	0,0	kWh		
	Capacidad conectada:	0,0	0,0	0,0	0,0	kVA	Detalles.	
	Clientes:	0,0	0,0	0,0	0,0		🤺 Perfile	s

Figura 150. Ingreso de la carga B1 monofásica a la Fase A

Propiedades del tramo						?	\times
Nombre del tramo	Transformador con dos d	evanados					
	Nombre:	TR5-2F-75KVA			~		
	Número:	P					
Fase	Estado:	Conectado		~		Reversible	
□А □В ☑С	Ubicación:				Etapa:	No definido	\sim
Zona	Parámetros						
NO-DEFINIDO ~	General				Configuración		
Medio ambiente	Primario:	En el nudo de ori	igen 🗸		Primario:	₹ ±	
Desconocido \vee Más	Indicador de falla:	No indicador de f	falla V		Secundario:	₹ ±	
Dispositivos	Toma fija				Desfase:	YNyn0	~
🕂 Agregar 📼 Quitar	Toma al primario:	100,0 %	22,0	kVLL	Desfase Gamma:	0,0	grad.
Nudos	Toma al secundario:	100,0 %	0,24	kVLL	Ramal abierto:	AB	~
Medidor	Impedancias de puesta	a tierra			Fase toma al centro	AB	~
		Rg	Xg		Destauriée		
	Primario:	0,0	0,0	Ohmios	Protección		
	Secundario:	0,0	0,0	Ohmios	Ajuste	s TCC	
	Tensión nominal del sist	ema					
	Primario:	22,0 kVL	L	Defin	ido por el usuario		
	Secundario:	0,24 kVL	L	Defin	ido por el usuario		
(Reducir					Acept	ar <u>C</u> an	celar

Figura 151. Parámetros del transformador TR5 en el tramo P correspondiente al nodo 46

💵 Propiedades del tramo							? ×
Nombre del tramo	Carga concentrada						
🖕 P1 🖨	Número:	P1					
Fase	Estado:	Conectado	```	1			
ПА ПВ Ис	Ubicación:			/		Etapa:	No definido \sim
Zona	Parámetros						
NO-DEFINIDO ~					Prioridad		
Medio ambiente	Modelo de carga:	DEFAULT		~	Normal:	NINGL	INO ~
Desconocido V Más	Tipo de cliente:	Residencial		× 🔮	Emergenci	a: NINGL	ino ~
	Año:	2023			Distribuciór	n de carga	
Dispositivos	Conexión:	₹Y ±			Estado:	Desblo	oqueado 🗸 🗸
Nudos Carga concentrada por fase		A	В	С	Total		
	Potencia aparente:	0,0	0,0	60,0	60,0	kVA	Formato:
	Factor de potencia:	0,0	0,0	95,0	95,0	%	kva & FP 🛛 🗸
	Consumo:	0,0	0,0	0,0	0,0	kWh	
	Capacidad conectada:	0,0	0,0	0,0	0,0	kVA	Detalles
	Clientes:	0,0	0,0	0,0	0,0		🥁 Perfiles
(Reducir						<u>A</u> ce	ptar <u>C</u> ancelar

Figura 152. Parámetros de la carga P1 en el tramo P con referencia a la Fase C

900 c 900	YME 7.1 r02 Archivo E	- CYMDI ditar Ba	ST - Aeropuert	o3.xst - [Principal] Equipos Red Análisis Reporte Mostrar Pi	ersonalizar Ventana Ayuda	1						-
	#: 🖴	💼 🖬				T1		~	- 🖳 🖉 Q	, 🖪 🧷		
Loli	prear por nive	i de tensio	n (%) 🌱 🖸	Propiedades del tramo							?	×
	¢* 1‡ .	∺ ⊨	ቆ 🗈 🖏 រ	Nombre del tramo	Carga concentrada							
				🖕 T1 📄	Número:	T1						
_					Estado:	Conectado		\sim				192,000
8	Ž	Q	Ж	Fase	Ubicación:			~		Etapa	No definido 🗸 🗸	
ui <mark>G</mark>	$\overline{\Pi}$	Û	Û	Zona	Parámetros							193.00
	Fuentes y g	eneradore	15	NO-DEFINIDO				_	Prioridad	_		195,00
цщ.	ര	\boxtimes	Ó	Medio ambiente	Modelo de carga:	DEFAULT		~	ivormai:	NING	UNO ~	
		4		Desconocido V Más	Tipo de cliente:	Comercial		× 🗹	Emergen	da: NING	UNO ~	
	Ð	Ħ	厶		Año:	2023			Distribució	in de carga		
<u> </u>	Transforma	dores v re	quiadores	Dispositivos	Conexión:	¥ ₹			Estado:	Desb	loqueado 🗸 🗸	
B	a da a	N	- بايد	🕀 Agregar 📼 Quitar								
-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	Ϋ́Ύ	Nudos		A	В	С	Total			
	min	4xxx	www.	Carga concentrada por tase	Potencia aparente:	12,0	13,0	10,0	35,0	kVA	Formato:)00
	, My	11	K .1.		Factor de potencia:	92	91	90	91,0	%	kva & FP 🛛 🗸	
	Motores v c	aroas			Consumo:	0,0	0,0	0,0	0,0	kWh		
2	A		Ó		Capacidad conectada:	0,0	0,0	0,0	0,0	kVA	Detailes	
0	4	111	∭		Clientes:	0,0	0,0	0,0	0,0		Perfiles	
<u> </u>	Condensad	ores y rea	ctancias								-	· ·
	1	5	1									>
× 1		Código 510095	Mensaje Se detectaron	Reducir						An	entar Cancelar	<u></u>
		\ Repo	orte de la carga							00	201000	H
Cone T1 e	ctado a bas n SE, Fase : /	e2 (Base d ABC, De 3	le datos Acces: 44 A 345, Equip	s D:\TESIS ING. ELECTRICA\29. Diseño en Cyme\5. p : Carga concentrada / , Cond : , Longitud: 0,0 j	Base final - Nodos - final∖bas pies	z2.mdb).					72327	4,66, 9680094,66 NUM

Figura 153. Parámetros de la carga T1 en el tramo T correspondiente al nodo 27

Siempre considerar que la potencia (kVA) en los transformadores se tiene que mantener la relación del 30% de la potencia nominal del transformador.

En la (Figura 154) se realiza la configuración para poder ejecutar el análisis de flujo de carga a todo el sistema, luego en la (Figura 155) se ejecuta los flujos de carga de todo el sistema diseñado.

Análisis de flujo d	e carga				?
DEFAULT				~ ₽ 🖉	- 1 🕞 🕞 I 🍘
arámetros Redes	Comandos Límites de tensión / carga	Salida			
Método de cálculo	Caída de tensión - Equilibrada 🛛 🗸	Opciones de cálculo Asumir la transposición de líne Induir la impedancia de la fue	ea ente		
Parámetros de con Tolerancia: Iteraciones: Arranque a 1 p	vergencia 0,1 % (V) 60 .u. (A las condic. nominales)	 ✓ Induir la puesta en carga de l Ajustar las impedancias: Evaluar el estado de los prote Tentativas máximas: 	ectores de red		
Quitar todas la:	e carga y de generación	Condiciones de simulación Temperatura ambiental: Tiempo:	77,0 °F 0:00 *		
Cargas:	Por tipo de carga V	DEFAULT	~		
Motores: Generadores:	Como definido Como definido				
Modelo de carga er	n función de la sensibilidad de la frecuenci	a y de la tensión			
Modelo de carga:	Por tipo de carga \sim	DEFAULT	~		
Guardar				Ejecutar Ace	ptar Cancela

Figura 154. Parámetros de Flujo de carga

El Flujo de potencia de la (Figura 155) es del sistema en condiciones normales considerando que en el nodo 83-84 el reconectador (REC_1) está abierto.

Figura 155. Flujo de carga con el método de Caída de voltaje – Equilibrada

3.7 Diseño de Reconectadores

Los reconectadores empleados en este diseño se enlista en la siguiente (Tabla 11):

RECONEC	TADORES
Nodo	Nombre
83-84	REC_1
138-137	REC_2
135-134	REC_3
15-14	REC_4
46-47	REC_5
101-100	REC_6
14-13	REC 7

Tabla 11. Listado de reconectadores empleados en el diseño

El reconectador REC_1 perteneciente al nodo 83-84, es creado mediante el Minimun Spannig Tree elaborado en Matlab, que indica el lugar ideal donde abrir el circuito.

El reconectador REC_2 perteneciente al nodo 138-137, es creado para interrumpir el flujo de carga hacia la izquierda de la subestación.

El reconectador REC_3 perteneciente al nodo 135-134, de manera inversa al anterior es creado para interrumpir el circuito en el lado derecho de la subestación.

El reconectador REC_4 perteneciente al nodo 15-14, sirve para interruptor el flujo de carga venido del lado izquierdo de la carga especial.

El reconectador REC_5 perteneciente al nodo 46-47, sirve para evitar la sobrecarga producida en ese sector debido a un fallo.

El reconectador REC_6 perteneciente al nodo 101-100, sirve para evitar la sobrecarga en ese sector debido a un fallo.

El reconectador REC_7 perteneciente al nodo 14-13, sirve de manera inversa al REC_4 para interruptor el flujo de carga venido del lado derecho de la carga especial.

 Para poder ingresar los reconectadores en CYME© hay que ir a la sección Equipos y de ahí escoger Reconectador como se observa en la (Figura 156), el resultado de los flujos de potencia de la (Figura 155) se ve reflejado en la (Figura 157 y 158).

Figura 156. Selección del campo Equipos – Reconectador

<u>ן ו</u>	; 🖻 🖻 🕻	4 🖶 🕰 🗵 🛙	🧢 🗞 🖣	N + N +	999) 🖄 E	i T		~ 🕠 🕯	39, 54, 4	2				
lorear p	or nivel de tensió	in (%) 🗸 🚰	Etiquetas prec	leterminadas	~ 😚	Flujo de carg	a		- v 🐬 🖗	🛦 🛕 🖻	🦺 ន 🛛	MP 🗄 🚟				
	뷰뷰븝	🐰 🗈 🕰 🗙 🖡		3940	18 m m	100 Apt	1 2 2		i 🌆 🏛	-å- 👽 1	a 😽					
	بې ۲۵ 🗛 🛥	n 49 ± 2, 49 1	Av-													
		· · · · · · · · · · · · · · · · · · ·	400kata													
		♥ 11.	⊒ vista T			1	1	1								
	Nombre red	Nombre del tramo	Nro. equipo	Código		VB (V)		Conc ajust A (kVA)	Conc ajust B (kVA)	Conc ajust C (kVA)	Conc ajust. (kVA)	FP Conc ajust A (%)	FP Conc ajust B (%)	FP Conc ajust C (%)	FP conc. ajust. (%)	Repa
1	SE	RR1	RR1	Carga concentrada		21761,8			16,0		16,0		91,00		91,00	-
2	SE	AL1	AL1	Carga concentrada		21639,9			8,0		8,0		92,00		92,00	
3	SE	AP1	AP1	Carga concentrada	21844,1	21844,1	21844,1	51,0	51,0	51,0	153,0	93,04	93,04	93,04	93,04	
	SE	<u>A01</u>	<u>A01</u>	Carga concentrada			21805,1			20,0	20,0			92,00	92,00	
5	SE	AN1	AN1	Carga concentrada	21694,7			17,0			17,0	91,00			91,00	
	SE	<u>AM1</u>	AM1	Carga concentrada	21763,2	21763,2	21763,2	16,3	16,3	16,3	49,0	93,09	93,09	93,09	93,09	
	SE	<u>AK1</u>	AK1	Carga concentrada	21868,0	21868,0	21868,0	114,9	114,9	114,9	344,8	93,75	93,75	93,75	93,75	
3	SE	<u>AJ1</u>	AJ1	Carga concentrada	21882,1	21882,1	21882,1	186,6	186,6	186,6	559,9	92,82	92,82	92,82	92,82	
)	SE	<u>Al1</u>	<u>Al1</u>	Carga concentrada			21825,0			8,0	8,0			93,00	93,00	
0	SE	<u>AG1</u>	AG1	Carga concentrada	21750,7	21750,7	21750,7	11,0	11,0	11,0	33,0	93,04	93,04	93,04	93,04	
1	SE	<u>AH1</u>	AH1	Carga concentrada	21884,9	21884,9	21884,9	186,6	186,6	186,6	559,9	92,06	92,06	92,06	92,06	
2	SE	AF1	AF1	Carga concentrada	21856,8			50,0			50,0	93,00			93,00	
3	SE	<u>AE1</u>	<u>AE1</u>	Carga concentrada			21825,1			34,0	34,0			93,00	93,00	
4	SE	<u>AD1</u>	AD1	Carga concentrada		21654,3			9,0		9,0		94,00		94,00	
15	SE	<u>AC1</u>	AC1	Carga concentrada	21775,9	21775,9	21775,9	16,3	16,3	16,3	49,0	92,92	92,92	92,92	92,92	
6	SE	<u>AB1</u>	AB1	Carga concentrada	21882,2	21882,2	21882,2	116,5	116,5	116,5	349,6	93,36	93,36	93,36	93,36	
7	SE	<u>ZZ1</u>	<u>ZZ1</u>	Carga concentrada		21727,3			16,0		16,0		91,00		91,00	
8	SE	<u>YY1</u>	<u>YY1</u>	Carga concentrada			21805,0			25,0	25,0			92,00	92,00	
9	SE	<u>XX1</u>	<u>XX1</u>	Carga concentrada	21894,4	21894,4	21894,4	116,5	116,5	116,5	349,6	93,62	93,62	93,62	93,62	
0	SE	AT1	AT1	Carga concentrada	21910,6	21910,6	21910,6	186,6	186,6	186,6	559,9	93,01	93,01	93,01	93,01	
1	SE	<u>WW1</u>	<u>WW1</u>	Carga concentrada	21898,6			69,0			69,0	94,00			94,00	
2	SE	<u>VV1</u>	<u>VV1</u>	Carga concentrada	21902,5	21902,5	21902,5	116,5	116,5	116,5	349,6	93,25	93,25	93,25	93,25	
3	SE	001	<u>UU1</u>	Carga concentrada		21884,4			50,0		50,0		91,00		91,00	
•	SE	Ш.	<u>111</u>	Carga concentrada	21867,9			34,0			34,0	94,00			94,00	
5	SE	<u>SS1</u>	<u>SS1</u>	Carga concentrada	21916,6	21916,6	21916,6	116,6	116,6	116,6	349,8	93,76	93,76	93,76	93,76	
6	SE	AR1	AR1	Carga concentrada	21930,3	21930,3	21930,3	186,6	186,6	186,6	559,9	92,10	92,10	92,10	92,10	
	I SF 3	н1	CH1	Caroa concentrada	21584-1			: 10.0			10.0	90.00			90.00	
i a	N N E V	Descrite de la secon de		1		[mt : .							1		1	

Figura 157. Flujos de cargas – Cargas en CYME©

Figura 158. Capacidad de corriente nominal del conductor con referente al tramo 83-84

CAPITULO 4

CASOS DE ESTUDIO Y COORDINACIÓN DE PROTECCIONES

El presente diseño consta de un anillo de cargas los cuales rodean a la carga especial "Aeropuerto", consta de 301 nodos distribuidos uniformemente con ramificaciones en algunos sectores.

Por tal motivo se proponen tres casos de estudios para determinar la estabilidad y fiabilidad del sistema al tener este tipo de situaciones en la red eléctrica.

Las fallas en las redes de distribución pueden suscitarse en cualquier momento por lo que es necesario cubrir este inconveniente en la red para que no afecte severamente a las cargas más sensibles en el sistema eléctrico de distribución.

En el anexo A, de manera detallada se puede observar el flujo de potencia del sistema en condiciones normales, presentando todos los datos técnicos de funcionamiento. En este anexo se encuentra toda la información recopilada de CYME© para los elementos propuestos para el diseño nodal del sistema, lista de transformadores propuestos, balanceo de cargas y factor de potencia, detalle de flujos de carga, detalle de la subestación, caídas de voltaje, además de un reporte sumario del diseño en condiciones normales y de anomalías en el diseño en condiciones normales.

En la (Figura 159) se observa el gráfico de la curva de la corriente, en el sistema desde la subestación hasta el nodo 83, como se puede apreciar está por debajo de la nominal que soporta el conductor.

Capacidad nominal del conductor Corriente

Figura 159. Métrica de flujos de carga - Amperios vs distancia en condiciones normales

Se muestra en la (Figura 160) el gráfico del perfil de voltaje desde la subestación hasta el nodo 83, donde se observa de forma paulatina caída de voltaje, en este caso hasta el nodo 83 representa el 1,81% de caída de voltaje.

Figura 160. Perfil de voltaje en condiciones normales

En la (Tabla 12) se muestra un resumen general de resultados que proyecta el software CYME© de la carga total del sistema en condiciones normales, siendo la potencia del anillo de 12747,17 kVA y factor de potencia promedio de 92,32. Así mismo las pérdidas totales del sistema asciende a 222,31 kVA.

Subestación SE								
	Carga t	otal	Carga t	otal	Pérdidas	totales	Pérdida	as totales
Nombre de la red	kVA	FP (%)	kW	FP (%)	kVA	FP (%)	kW	FP (%)
SE	12747,17	92,32	11767,62	92,32	222,31	60,33	134,13	60,33
Total	12747,17	92,32	11767,62	92,32	222,31	60,33	134,13	60,33

Tabla 12. Reporte de la carga de los alimentadores en CYME[®] – condiciones normales

A modo de resumen en la (Tabla 13) se muestra la cantidad de transformadores utilizados en el diseño.

	Monofási	cos		Trifásicos	
Nombre	Cantidad	Potencia	Nombre	Cantidad	Potencia
TR1	4	15 kVA	TR7	1	30 kVA
TR2	6	25 kVA	TR8	1	50 kVA
TR3	6	37,5 kVA	TR9	2	75 kVA
TR4	6	50 kVA	TR10	2	100 kVA
TR5	6	75 kVA	TR11	2	125 kVA
TR6	5	100 kVA	TR12	2	200 kVA
			TR13	3	225 kVA
			TR14	12	500 kVA
			TR15	9	800 kVA
			TR16	1	1500 kVA
Total=	33	Monofásicos	Total=	35	Trifásicos

Tabla 13. Nomenclatura general de transformadores usados en el diseño propuesto

4.1 Caso de estudio zona 1 y zona 2

Los reconectadores están configurados de la siguiente forma en este caso como se muestra en la (Figura 161):

Nombre	🕸 Fase	Estado	1
Tipo: Rec	onectador		
REC 1	ABC	Cerrado	Ŧ
REC 2	ABC	Cerrado	-
REC 3	ABC	Abierto	-
REC 4	ABC	Cerrado	*
REC 5	ABC	Cerrado	*
REC 6	ABC	Cerrado	*
REC 7	ABC	Abierto	*

Figura 161. Configuración de reconectadores del caso 1

En este caso de estudio se delimitan dos zonas casi proporcionales en el anillo de cargas del sistema denominadas zona 1 y zona 2 como se observa en la (Figura 162).

Figura 162. Alimentadores de la zona 1 y zona 2 propuestas para el caso 1

El alimentador de la zona 1 que pertenece a la subestación SE, abarca las zonas comprendidas entre la Avenida España, Avenida Hurtado de Mendoza, Avenida Guapondelig conjuntamente con las calles: Sebastián de Benalcázar, Núñez de Bonilla, Río Palora, Río Cutucú, Río Daule, Río Cenepa, Río Upano, Carmela Iñiguez Moreno, Rio Malacatus, Bulán, Fasayñan, Taday, Cordillera.

Las características técnicas de los alimentadores de zona 1 y zona 2 están representadas en la (Tabla 14):

Zonas	Potencia	Porcentaje	Transformadores	Transformadores		
	instalada	de la carga	trifásicos	monofásicos		
	(kVA)	total (%)				
Zona 1	4491,82	32,15 %	13	13		
Zona 2	9478,09	67,84 %	21	21		
Total (Zona	13969,91	100 %	34	34		
1+Zona 2)						

Tabla 14. Características técnicas de las zonas que conforman el grafo

Transform	mador	Potencia (kVA)	Fase	Tipo transformador	de	Tipo de conexión
А		75	ABC	Trifásico		Delta - estrella
В		15	А	Monofásico		Estrella aterrado – Estrella aterrado
AZ especial)	(Carga	1500	ABC	Trifásico		Delta – estrella
RR		25	В	Monofásico		Estrella aterrado – Estrella aterrado

Tabla 15. Transformadores compartidos entre las zonas

El alimentador de la zona 2 que pertenece a la subestación SE, abarca las zonas comprendidas entre la Avenida Hurtado de Mendoza, Avenida los Andes, Avenida España, conjuntamente con las calles: Fasayñan, Cordillera, Ingapirca, Cerro Rico, Saraurco, Illimani, Antisana, Llanganatis, Luxemburgo, Pan de Azúcar, Reventador, Quillindana, Yaguarcocha, Inca Toparpa, Huila.

Los conductores utilizados en el diseño, son de tipo ACSR 4/0, 3/0, utilizados en las redes trifásicas y calibre 2 en las redes monofásicas. En el software CYME© la línea interpuntada que representa un sistema monofásico.

Las configuraciones de las estructuras aéreas de soporte que predominan en ambas zonas es la semicentrada pasante para los tramos trifásicos y monofásica centrada – pasante o tangente. Para fines de configuración en el software.

La métrica de la corriente que corresponde al nodo 83-84, en el que se produce una falla. A su vez también posee un perfil de carga como se ve en la (Figura 163), un perfil de voltaje como se muestra en la (Figura 164) y por ultimo la capacidad nominal del conductor como se observa en la (Figura 165).

Figura 163. Perfil de carga para caso 1

Figura 164. Perfil de voltaje para caso 1

Capacidad nominal del conductor Corriente

Figura 165. Capacidad nominal del conductor en el caso 1

4.2 Caso # 2 de estudio zona 3 y zona 4

La configuración de los reconectadores se muestra en la siguiente (Figura 166):

Nombre	🕸 Fase	Estado	∎ 🗹 ₹											
Tipo: Reconectador														
REC 1	ABC	Abierto	Ψ.											
REC 2	ABC	Cerrado	Ψ.											
REC 3	ABC	Abierto	Ψ.											
REC 4	ABC	Cerrado	Ŧ											
REC 5	ABC	Cerrado	Ŧ											
REC 6	ABC	Abierto	*											
REC 7	ABC	Cerrado	Ψ.											

Figura 166. Configuración de reconectadores del caso 2

En la (Figura 167) se puede observar las dos zonas propuestas que es la Zona 3 y la Zona 4, también posee un perfil de carga como se muestra en la (Figura 168), un perfil de voltaje como se ve en la (Figura 169). Finalmente, la capacidad nominal del conductor como se observa en la (Figura 170).

Figura 167. Alimentadores de la zona 3 y zona 4 propuestas para el caso 2

Figura 168. Perfil de carga para caso 2

Figura 169. Perfil de voltaje para caso 2

Figura 170. Capacidad nominal del conductor para caso 2

4.3 Caso #3 de estudio zona 5 y zona 6

La configuración de los reconectadores para este caso se ve en la (Figura 171):

🗉 Buscar		- C	- Q 🌆										
Nombre	🙉 Fase	Estado											
Tipo: Re	Tipo: Reconectador												
REC 1	ABC	Cerrado	+										
REC 2	ABC	Abierto	Ψ.										
REC 3	ABC	Cerrado	Ψ.										
REC 4	ABC	Cerrado	Ψ.										
REC 5	ABC	Abierto	*										
REC 6	ABC	Cerrado	*										
REC 7	ABC	Cerrado	*										

Figura 171. Configuración de reconectadores del caso 3

En la (Figura 172) se puede observar las dos zonas propuestas que es la Zona 5 y la Zona 6, también posee un perfil de carga como se muestra en la (Figura 173), un perfil de voltaje como se ve en la (Figura 174). Por último, la capacidad nominal del conductor como se observa en la (Figura 175).

Figura 172. Alimentadores de la zona 5 y zona 6 propuestas para el caso 3

Figura 173. Perfil de carga para caso 3

Figura 174. Perfil de voltaje para caso 3

Capacidad nominal del conductor Corriente

Figura 175. Capacidad nominal del conductor para Caso 3

Métricas

Las métricas que se van a mostrar a continuación ayudaran a definir el impacto que posee la carga especial con la red eléctrica en medio voltaje con referente a los casos de estudio antes mencionados:

• Métrica del Caso 1

La configuración de los reconectadores para la métrica del Caso 1 se ve en la (Figura 176):

Nombre	🕸 Fase	Estado	1
Tipo: Rec			
REC 1	ABC	Cerrado	Ŧ
REC 2	ABC	Cerrado	Ŧ
REC 3	ABC	Abierto	Ψ.
REC 4	ABC	Cerrado	Ψ.
REC 5	ABC	Cerrado	Ψ.
REC 6	ABC	Cerrado	Ψ.
REC 7	ABC	Abierto	-

Figura 176. Configuración de reconectadores del Caso 1

Se ejecuta los Flujos de potencia como se muestra en la (Figura 177), luego se exporta los datos de los flujos como se ve en la (Figura 178).

Figura 177. Flujos de Potencia del Caso 1

Figura 178. Exportación de datos del Flujo de Líneas - cables

Una vez realizada la exportación de los datos de CYME© hacia Excel 2019 como se observa en la (Figura 179), se escoge dos columnas: la primera es Longitud (pi) y la otra es IEquil (A), por el cual al momento de graficar estas dos columnas en Excel 2019 se genera la capacidad nominal del conductor como se muestra en la (Figura 180), de manera que se realizó también una exportación a Matlab y el resultado fue el mismo como se ve en la (Figura 181).

	÷. €									Cas	o_1.xlsx - Exce	1							Inic. ses.	⊞ –	σ×
	vo Inicio	Insertar																			
Pegar	★ Cortar ♦ Copiar ♦ Copiar Portapapeles	formato	ri • 8 K S - ⊞ - Fuente	• A* A* • <u>A</u> - <u>6</u>		Ajustar Combi Alineación	rtexto nar y centrar * G	General \$ - % 000 Número	* 0 .00 For condia	mato Dar for cional * como t	mato abla *	 •	Bueno Celda de co Estilos	Incorrecto Celda vincu	Neutra I Entrad	il · ·	Insertar Elimina Celdar	r Formato	∑ Autosuma - Relienar + Ø Borrar +	A Z Ordenar y B filtrar * sele Edición	uscar y kcionar *
A2		×	$\checkmark f_X$:	1																	*
4	А	8	С	D	E	F	G	H	 Retencia teta	J Retencia total	K	L	М	N	O	Р	Q	R	S	Т	U ^
1	Vro. equipo	Nudo origen	Nudo destino	ld equipo	Código	v	Longitud pi	de paso (kW)	de paso (kvar)	de paso (kVA)	Fp promedio (%)	IEquil (A)	Desfase I (*)	totales (kW)	totales (kvar)	Carga (%)					
2 1		301	215	3X4/0/(4/0)	Línea aérea equilibrada	21995,4	307,3	2108	990	2329	90,53	61,1	-25,14	0,3	0,4	17,2	•				
3 21	5-214	215	214	33(3/0(3/0)	Linea aérea equilibrada	21993,8	99,5	1996	738	2127	93,8	55,8	-20,29	0,1	0,1	17,8					
4 21	4-213	214	1	3X4/0/(4/0)	Línea aérea equilibrada	21991,1	98,1	4139	1742	4491	92,17	117,9	-22,83	0,4	0,5	33,2					
5 21	3-136	1	2	3X4/0/(4/0)	Línea aérea equilibrada	21988	112.3	4002	1677	4339	92.23	113,9	-22.75	0,4	0.6	32,1					
6 13	6-135	2	3	33(3/0(3/0)	Linea aérea equilibrada	21988	88.4	15	7	16	90.72	0.4	-24.9	0	0	0.1					
7 13	5.267	3	4	102020	Línea aérea	21987.9	107.8	15	7	16	90.59	13	-25.07	0	0	0.7					
0 26	7.368	t.		10202	Linea aérea	11097.9	106.3	15		14	80.54		-15.42	-		0.7					
		t	Č.	Long L	Linea aérea	11007,0	100,5						-10,11			0,7					
9 26	8-209			182(2)	Elinea aérea	21987,7	118	15	-	16	90,52	2,3	-25,16	0	0	0,7					
10 26	9-270	6		1X2(2)	equilibrada Línea aérea	21987,6	118,1	15	7	16	90,48	1,3	-25,22	0	0	0,7					
11 27	0-271	7	8	13(2(2)	equilibrada Linea aérea	21987,5	118,9	15	7	16	90,44	1,3	-25,27	0	0	0,7					
12 27	1-272	8	9	13(2(2)	equilibrada Línea aérea	21987,4	107,5	15	7	16	90,4	1,3	-25,32	0	0	0,7					
13 27	2-273	9	10	13(2(2)	equilibrada	21987,3	107,3	15	7	16	90,37	1,3	-25,37	0	0	0,7					
14 27	3-274	10	11	13(2(2)	equilibrada	21987,2	105,3	15	7	16	90,33	1,3	-25,42	0	0	0,7					
15 13	6-137	2	114	33(3/0(3/0)	equilibrada	21984,8	100,6	3987	1670	4323	92,24	113,5	-22,74	0,5	0,5	36,3					
16 13	7-275	114	116	13(2(2)	Linea aérea equilibrada	21984,7	120,3	9	5	10	88,77	0,8	-27,43	0	0	0,4					
17 27	5-276	116	117	13(2(2)	Línea aérea equilibrada	21984,7	119,4	9	5	10	88,71	0,8	-27,51	0	0	0,4					
18 13	8-139	115	118	3X3/0(3/0)	Linea aérea equilibrada	21980,9	125,1	3977	1665	4312	92,24	113,2	-22,73	0,6	0,6	36,2					
19 13	9-140	118	119	3X3/0(3/0)	Línea aérea equilibrada	21977.8	100.9	3977	1664	4311	92.25	113.2	-22.74	0.5	0.5	36.2					
20 14	0-141	119	120	3X3/0(3/0)	Linea aérea equilibrada	21975.2	86.2	3847	1609	4170	92,26	109.5	-22.72	0.4	0.4	35					
21 14		100		2012 EDG 200	Linea aérea	31073.0		1447	1600	****	e3.34		22.22								
				000000000	Línea aérea																
22 14	2-143			3A3/0(3/0)	Línea aérea	24999,5	95,2	arda	13/8	-100	74,5	al1,1	-22,67	0,4	0,4	34,4					
23 14	3-144	122	123	3X3/0(3/0)	equilibrada Linea aérea	21966,6	97,1	3784	1577	4100	92,3	107,7	-22,67	0,4	0,4	34,4					
24 14	4-145	123	124	33(3/0(3/0)	equilibrada Línea aérea	21963,1	116,8	3784	1577	4099	92,3	107,7	-22,67	0,5	0,5	34,4					
25 14	5-146	124	128	3X3/0(3/0)	equilibrada	21959,6	120,2	3754	1564	4066	92,3	106,9	-22,67	0,5	0,5	34,2					
	> Fl	ujo de c Lí	neas y cables	+									1								F.

Figura 179. Exportación de datos del Flujo de líneas - cables a Excel 2019

Figura 180. Capacidad nominal del conductor - Amperios vs Distancia del Caso 1 en Excel 2019

Figura 181. Capacidad nominal del conductor - Amperios vs Distancia del Caso 1 en MATLAB R2022b

• Métrica del Caso 2

La configuración de los reconectadores para la métrica del Caso 2 se ve en la (Figura 182):

Nombre	🕸 Fase	Estado	≣ 🗹 ₹											
Tipo: Reconectador														
REC 1	ABC	Abierto	~											
REC 2	ABC	Cerrado	Ψ.											
REC 3	ABC	Abierto	Ψ.											
REC 4	ABC	Cerrado	Ψ.											
REC 5	ABC	Cerrado	Ψ.											
REC 6	ABC	Abierto	*											
REC 7	ABC	Cerrado	*											

Figura 182. Configuración de reconectadores del Caso 2

Se ejecuta los Flujos de potencia como se muestra en la (Figura 183), luego se exporta los datos de los flujos como se ve en la (Figura 184).

Figura 183. Flujos de Potencia del Caso 2

Figura 184. Exportación de datos del Flujo de Líneas – cables

Una vez efectuada la exportación de los datos de CYME© hacia Excel 2019 como se muestra en la (Figura 185), se selecciona dos columnas: la primera es Longitud (pi) y la otra es IEquil (A), de manera que al momento de graficar estas dos columnas en Excel 2019 se origina la capacidad nominal del conductor como se observa en la (Figura 186), por ende se realizó también una exportación a Matlab y el resultado fue similar como se ve en la (Figura 187).

	ڻ . ن	•								Cas	o_2.xlsx · Exce	ı							Inic. ses.	= –	a ×
Archi	ivo Inicio	Insertar	Diseño de pá	gina Fórm	ulas Datos	Revisar	Vista Ayur	da Ç2Qué	desea hacer?												.Q. Compartir
Ê	🔏 Cortar	Callb	ri - 8	- A A	= = *	ab Ajustar	texto	General		ļ II	Norma	l.	Bueno	Incorrecto	Neutra	il 👘	🖶 💌	ì	∑ Autosuma ~	Ź₩ ,	ρ
Pegar	Copiar	formato N /	K S	<u> - A</u> -		Combin	nar y centrar +	\$ - % ∞	0 00 For	nato Dar for	mato Cálculo		Celda de co	Celda vincu	Entrad	la 🗸	Insertar Eliminar Fo	ormato	e Borrar *	Ordenar y Bu	scar y
	Portapapeles	6	Fuente	6		Alineación	5	Número	rs condic	ional - como u	1018 -		Estilos				Celdas			Edición	honar -
A2	-	1 ×	√ fx :	1																	~
	A	B	c	D	E	F	G	н	1	1	к	L	м	N	0	P	0	R	s	т	U *
1	Nro. equipo	Nudo origen	Nudo destino	ld equipo	Código	v	Longitud	Potencia total de paso (kW)	Potencia total de paso (kvar)	Potencia total de paso (kVA)	Fp promedio	IEquil (A)	Desfase I	Pérdidas totales (kW)	Pérdidas totales (kvar)	Carga (%)					
2 1		301	215	384/0/(4/0)	Línea aérea equilibrada	21991,6	307,3	3797	1796	4201	90,4	110,2	-25,32	1,1	1,4	31,1					
3 2	15-214	215	214	3X3/0(3/0)	Linea aérea equilibrada	21988.9	99.5	3594	1341	3836	93.7	100.7	-20.46	0.4	0.4	32.2					
4 1	14.213	214		784/0/(4/0)	Linea aérea	21083.8	-	7454	1167	8097	92.05	117.6	.71		17	10.0					
			ł.	100 a (0, 0, 0)	Linea aérea			-	1001	20.44	03.00	208.6	22.04								
5 4	13-130		ŕ	384/0/(4/0)	Linea aérea	21970,2	114,9	/316	3030	7744	92,09	208,6	-22,99	1,4	1,9	58,8					
6 1	36-135	2	3	3X3/0(3/0)	equilibrada Línea aérea	21978,2	88,4	15	7	16	90,72	0,4	-24,91	0	0	0,1					
7 1	35-267	3	4	13(2)	equilibrada Línea aérea	21978,1	107,8	15	7	16	90,59	1,3	-25,08	0	0	0,7					
8 21	67-268	4	5	1X2(2)	equilibrada	21978	106,3	15	7	16	90,56	1,3	-25,13	0	0	0,7					
9 2	68-269	5	6	13(2(2)	equilibrada	21977,9	118	15	7	16	90,52	1,3	-25,18	0	0	0,7					
10 2	69-270	6	7	13(2(2)	equilibrada	21977,8	118,1	15	7	16	90,48	1,3	-25,23	0	0	0,7					
11 2	70-271	7	8	13(2(2)	Linea aérea equilibrada	21977,7	118,9	15	7	16	90,44	1,3	-25,29	0	0	0,7					
12 2	71-272	8	9	182(2)	Linea aérea equilibrada	21977,6	107,5	15	7	16	90,4	1,3	-25,34	0	0	0,7					
13 2	72-273	,	10	182(2)	Linea aérea eguilibrada	21977,5	107,3	15	7	16	90.37	1.3	-25.39	0	0	0.7					
14 2	73-276	10	11	182(2)	Linea aérea equilibrada	21977.4	105.3	15	7	16	90.33	1.3	-25.44	0	0	0.7					
15 1	26 127			222.022.00	Linea aérea	22072.4	100.6	7900	1000	2026	02.2	108.3	22.06								
10 10		È.		36300,0703	Linea aérea	21974/4	100,0			1920	20.77	205,2	-24,00								
10 1	11-275			****(2)	Línea aérea	es#/2,3	sed,3				aa,77	0,8	-27,45		-						
17 2	75-276	116	117	182(2)	equilibrada Línea aérea	21972,3	119,4	9	5	10	88,7	0,8	-27,53	0	0	0,4					
18 1	38-139	115	118	3X3/0(3/0)	equilibrada Línea aérea	21965,2	125,1	7289	3081	7914	92,11	207,9	-22,95	1,9	2,1	66,4					
19 1	39-140	118	119	3X3/0(3/0)	equilibrada Linea aérea	21959,4	100,9	7288	3079	7911	92,11	208	-22,95	1,5	1,7	66,4					
20 14	40-141	119	120	3X3/0(3/0)	equilibrada	21954,5	86,2	7157	3023	7769	92,12	204,2	-22,95	1,3	1,4	65,3					
21 1	41-142	120	121	3X3/0(3/0)	equilibrada	21949,2	94,4	7155	3021	7767	92,12	204,3	-22,95	1,4	1,6	65,3					
22 1	42-143	121	122	3X3/0(3/0)	Emea aérea equilibrada	21943,9	95,2	7092	2990	7697	92,15	202,5	-22,92	1,4	1,5	64,7					
23 1	43-144	122	123	33(3/0(3/0)	Linea aérea equilibrada	21938,5	97,1	7091	2988	7695	92,15	202,5	-22,92	1,4	1,6	64,7					
24 1	44-145	123	124	3X3/0(3/0)	Linea aérea equilibrada	21931,9	116,8	7090	2987	7693	92,16	202,5	-22,92	1.7	1,9	64,7					
25 1	45-146	124	128	3x3/0(3/0)	Línea aérea equilibrada	21925,2	120,2	7058	2972	7658	92,16	201,6	-22,93	1.7	1,9	64,4					
4	> Flu	ujo de c Lí	neas y cables	+	time along								1	17							

Figura 185. Exportación de datos del Flujo de Líneas – cables a Excel 2019

Figura 186. Capacidad nominal del conductor - Amperios vs Distancia del Caso 2 en Excel 2019

Figura 187. Capacidad nominal del conductor - Amperios vs Distancia del Caso 2 en MATLAB R2022b

• Métrica del Caso 3

La configuración de los reconectadores para la métrica del Caso 3 se ve en la (Figura 188):

🔳 Busca	r	- C	- Q 🌆					
Nombre	🙉 Fase	Estado						
Tipo: Re	conectador							
REC 1	ABC	Cerrado	Ψ.					
REC 2	ABC	Abierto	Ŧ					
REC 3	ABC	Cerrado	Ψ.					
REC 4	ABC	Cerrado	Ŧ					
REC 5	ABC	Abierto	*					
REC 6	ABC	Cerrado	Ŧ					
REC 7	ABC	Cerrado	*					

Figura 188. Configuración de reconectadores del Caso 3

Se ejecuta los Flujos de potencia como se observa en la (Figura 189), después se exporta los datos de los flujos como se ve en la (Figura 190).

Figura 189. Flujos de Potencia del Caso 3

Figura 190. Flujos de Potencia del Caso 3

Una vez ejecutada la exportación de los datos de CYME© hacia Excel 2019 como se ve en la (Figura 191), se elige dos columnas: la primera es Longitud (pi) y la otra es IEquil (A), de modo que al momento de graficar estas dos columnas en Excel 2019 se genera la capacidad nominal del conductor como se observa en la (Figura 192), por ello se realizó también una exportación a Matlab y el resultado fue análogo como se muestra en la (Figura 193).

	9 · 6									Cas	o_3.xlsx - Excel								Inic. ses.	⊞ –		×
Archi	vo Inicio	Insertar	Diseño de pá	gina Fórm	ulas Datos	Revisar	Vista Ayu	la Ç₂Qué	desea hacer?												я с о	mpartir
T.	🔏 Cortar	Calib	ri * 8	- A A -		ab Ajusta	r texto	General	-	ļ (Norma		Bueno	Incorrecto	Neutra	al i	€= 🖎		∑ Autosuma ·	ZY	ρ	
Pegar	Copiar Copiar	N A	s - 🖽 -	<u>ð - A</u> -		E Comb	inar y centrar 👻	\$ - %	6.0 .00 For	nato Dar for	mato Cálculo		Celda de co	Celda vincu	Entrad	la 💡	Insertar Eliminar F	ormato	Relienar *	Ordenar y	Buscar y	
	Portapapeles	5	Fuente	5		Alineación	-	Número	r, condic	ional * como ti	sbla *		Estilos				Celdas			filtrar * : Edición	seleccionar	· .
A2		i X	√ fa :	1																		~
	۵	B	C	D	F	F	G	н			ĸ		м	N	0	p	0	P	s	т		
	New Annual State	March and State	Nuda duata		C1.41-1		Lunderd	Potencia total	Potencia total	Potencia total	E		Burdensel	Pérdidas	Pérdidas				-			
1	Nro. equipo	Nubb ongen	NUCO GESCINO	is equipo	Codigo	•	pi	(kW)	(kvar)	(kVA)	(%)	(A)	(1)	(kW)	(kvar)	(%)						
2 1		301	215	3X4/0/(4/0)	Linea aérea equilibrada	21987,7	307,3	5593	2619	6176	90,56	162,1	-25,1	2,3	3,1	45,7						
3 2	15-214	215	214	3X3/0(3/0)	Linea aérea equilibrada	21983,7	99,5	5291	1949	5639	93,83	148,1	-20,24	0,8	0,9	47,3						
4 2	4-213	214	1	3X4/0/(4/0)	Línea aérea equilibrada	21976,3	98,1	10975	4604	11902	92,21	312,6	-22,78	2,8	3,7	88						
5 21	13-136	1	2	3X4/0/(4/0)	Linea aérea equilibrada	21967,9	112,3	10836	4536	11747	92,24	308,6	-22,75	3,1	4,1	86,9						
6 1	16-135	2	3	3X3/0(3/0)	Linea aérea equilibrada	21960,4	88,4	10823	4528	11732	92,25	308,3	-22,75	3	3,3	98,5						
7 1	15-267	3	4	1X2(2)	Línea aérea equilibrada	21960,3	107,8	15	7	16	90,59	1,3	-25,11	0	0	0,7						
8 2	57-268	4	5	1X2(2)	Linea aérea equilibrada	21960,2	106.3	15	7	16	90.55	1.3	-25.16	0	0	0.7						
9 2	8-269	5	6	1X2(2)	Línea aérea equilibrada	21960.1	118	15	7	16	90.52	13	-25.21	0	0	0.7						
10 2	4-220		7	182(2)	Lines séres	21960	118.1	15	7	16	90.48	14	-25.26	0	0	0.7						
11 2	0.271	2		182(2)	Linea aérea equilibrada	21959.9	118.9	15	7	16	90.44	1.1	-25.31	0	0	0.7						
12 2	1.272			112(2)	Linea aérea	21050.8	107.5	15	7	16	90.4	1.1	-35.37		0	0.7						
12 1		Č.	10	10111	Linea adrea	21050.2	107.9	15		16	00.17	1.2	36.41			0.7						
14 1	0.000	10		100(0)	Línea aérea	31059.6	105.3	15		16	80.33	13	35.46			0.7						
				ana(a)	Linea aérea	11999,0	200,5	10004			00.00		-23,40									
15 1	14-133	12	15	383/0(3/0)	Línea aérea	21952.0	92	10806	4517	11/12	92,20	307,9	-22,74	5,1	3,5	98,4						
10 1	0-112		10	383/0(3/0)	Linea aérea	21344,5	103,3	2220	41/0	20734	72,24	283,9	-22,79	2,9	3,3	30,7						
1/ 1	NC-131	10		3A3/0[3/0]	Linea aérea	21533,4	110,1	9993	4107	10/20	22,24	283,3	-22,19	3,3	3,7	30,7						
18 1	4-430			3×3/0(3/0)	Línea aérea	2 4928,7	en,4		4152	20/52	74,24	683	-22,8	-	4.1	3N/A						
19 1	0-129	18		383/0(3/0)	equinorada Línea aérea	21920,6	104,1	9870	41/8	20698	92,26	281,7	-22,79	2,9	3,5	30						
20 1	19-128	25	26	3X5/0(5/0)	equilibrada Línea aérea	21912,7	101,5	9867	4125	10694	92,26	281,7	-22,79	2,8	3,2	90						
21 1	8-127	26	27	3X3/0(3/0)	equilibrada Línea aérea	21904,3	112,5	9537	3993	10339	92,24	272,4	-22,84	2,9	3,3	87						
22 1	7-126	27	28	3X3/0(3/0)	equilibrada Línea aérea	21895,8	112	9534	3990	10335	92,25	272,4	-22,84	2,9	3,3	87						
23 1	16-125	28	32	3X3/0(3/0)	equilibrada Línea aérea	21887,7	109,7	9466	3963	10262	92,24	270,6	-22,85	2,8	3,2	86,5						
24 1	15-124	32	36	3X3/0(3/0)	equilibrada Línea aérea	21881,3	93,4	8612	3628	9345	92,16	246,5	-22,99	2	2,2	78,8						
25 1	14-123	36	37	3X3/0(3/0)	equilibrada	21873,4	116,5	8610	3625	9343	92,16	246,5	-22,99	2,5	2,8	78,8						v
	> Flu	ijo de c Lír	neas y cables	+									8.4									E.

Figura 191. Exportación de datos del Flujo de Líneas – cables a Excel 2019

⊟. 5.																								Inic, ses.			
Archivo I	nicio Ins										Diseño	Format															
1 × 00	rtar	Calibr	ri (Cuerps *	10 - /	A* A* =	= _ >	- ab Alus		General		1.00			Normal		Bueno	Incorre	ecto	Neutral			B		∑ Autosuma	· A	Ω	
Pegar Co	piar -	N #	<	1.1.6.	A	= = =			e . 0/			to Darfo	ermato []			Celda de co	Colday		Entrada		Insertar B	iminar Fo	rmato		Ordenary	Buscar	
- 💉 Co	piar formato		2.10		<u>-</u> .				- ş · /c	, 000 ,00 ⇒,	condicio	nal = como	tabla -		_		COUL		LIIGUUU			*	*	😻 Borrar *	filtrar *	selecciona	ar =
Portapap	eles		Fuent	5e			Alineación		15 Nú	mero						Estilos						Celdas			Edición		
Gráfico 1		×	$\checkmark f_X$,
A		8	с		D	E	F	G	н		1	J.	1.1	к	ι	M	N		0	Р	Q		R	s	1		U
Longiti	ad IE	Equil																									
2 107.3	0.0	(A)	0												-0-												
3 307.3	0.6		1								0	aso 3 -	Can	acida	d non	ob lenin	l condu	ctor									E
4 133,2	0,6										0	430 5	cup	uciau	u non	innur uc	i condu										
5 128,3	0,6			350																							7 H
6 127,8	0,6																										
7 127,6	0,6																										
8 127,3	0,6								~																		
9 126,7	0,7			300					1																		
10 125,6	0,7								. L	۱ I																	
11 124,7	0,7									<u>۲</u>																	
12 124,7	0,7			25.0																							
14 124	0.7			250						5																	
15 124	0.8									1																	
16 123.9	0,8			_						- L																	
17 123,1	0,9			Z																							
18 123,1	0,9			S						5																	
19 122,5	0,9			<u>.e</u>						1																	
20 122,2	1,3		9	le																							0
21 121,8	1,3			L 150						\																	
22 121,5	1,3			A						- 1																	
23 121,4	1,3									- 1																	
24 121,3	1,3																										
25 121,3	1,5			100																							
27 121	1.3																										
28 121	1,3																										
29 120,7	1,3										ι I																
30 120,7	1,3			50							L																
31 120,4	1,3										1																
32 120,3	1,3										1																
33 119,9	1,3										<u>~</u>																
34 119,7	1,3			0																							
35 119,4	1,6				0			50		100				150			200			250				300			350
36 119,4	1,6												Dist	tancia	a desc	de la fue	ente (pi)									
37 119,4	1,6														0												
38 119,4	2,4		0												0												
<	Flujo de	c Lír	neas y cal	bles	\oplus												(P
																										-	

Figura 192. Capacidad nominal del conductor - Amperios vs Distancia del Caso 3 en Excel 2019

Figura 193. Capacidad nominal del conductor - Amperios vs Distancia del Caso 3 en MATLAB R2022b

Por último, se implementa la comparación de las tres métricas individuales en una sola Métrica de la Capacidad nominal del conductor en los tres Casos de estudio como se observa en la (Figura 194).

Figura 194. Métrica de la Capacidad nominal del conductor en los tres Casos de estudio

4.4 Relé 51 en el software CYME©

Para poder colocar los relés, primero se debe ejecutar un flujo de carga. Seguidamente con el comando Control+V se encuentra la corriente nominal (In) como se muestra en la (Figura 196), después se sitúa con el cursor un tramo que este alado de un reconectador para poder ver la corriente máxima como se ve en la (Figura 200) y mínima como se observa en la (Figura 199) en ese tramo, seguidamente se procede a un análisis de fallas por cortocircuito que se ve en la (Figura 197 y 198).

Ejemplo del Relé 51

En este ejemplo solo el reconectador 1 (REC 1) estará abierto y los otros reconectadores estarán cerrados como se muestra en la (Figura 195).

E Buscar		- Q 🖣	.
Nombre	🕮 Fase	Estado	
Tipo: Rec	onectador		
REC 1	ABC	Abierto	Ŧ
REC 2	ABC	Cerrado	Ŧ
REC 3	ABC	Cerrado	Ψ.
REC 4	ABC	Cerrado	*
REC 5	ABC	Cerrado	*
REC 6	ABC	Cerrado	Ψ.
REC 7	ABC	Cerrado	Ψ.

Figura 195. Configuración de los reconectadores del ejemplo del relé 51

Figura 196. Cuadro de flujo de carga con el comando Control+V

Figura 197. Sección Análisis – Análisis de fallas – Cortocircuito

Figura 198. Cuadro de Análisis de fallas - Cortocircuito

Figura 199. Corriente de cortocircuito mínima en el tramo 16-15

Figura 200. Corriente de cortocircuito máxima en el tramo 16-15

Una vez que CYME© calcula los valores de cortocircuito en el tramo 16-15, se ingresa al software CYMTCC 4.5 para realizar la coordinación de protecciones con los relés 51, por lo que la coordinación es entre un relé principal y un relé de respaldo, el primer relé en dispararse será quien tenga un TMS muy bajo.

Es necesario determinar el TMS del relé de respaldo teniendo presente el tiempo de pasó mínimo de 200 ms, respetando el tiempo máximo de ajuste de 400 ms. A continuación, se tiene que conocer las fórmulas de las curvas tiempo – corriente y desarrollarlas para llenar los parámetros del relé.

Para *M* > 1

$$t(I) = \frac{A}{M^P - 1} + B \tag{4.1}$$

Donde:

t(I) es el tiempo de operación en segundos

M es la corriente expresada en múltiplos de la corriente de activación

A, B, p son constantes elegidas para proporcionar las características de curva seleccionadas. Se escoge el tipo de curva moderadamente inversa porque este relé es de sobrecorriente ya que tiene el mayor cambio en el tiempo de operación a medida que cambia la magnitud de la corriente, este relé de sobrecorriente es más rápido para responder en situaciones de falla.

4.4.1 Cálculo del relé 51 en el ejemplo del tramo 16-15

Hay que tener en cuenta que el relé principal va estar colocado en el tramo 16-15 y el relé de respaldo va ser el que este debajo de la subestación.

Ahora se debe utilizar la (Figura 196) para elegir el valor de la corriente de carga (In) del tramo 16-15 que es:

$$In = 93,9 [A]$$
 (4.2)

Nuevamente en la (Figura 199) se toma el valor de la corriente mínima, mientras que en la (Figura 200) se toma el valor de la corriente máxima:

$$Iccmin = 6182,2 [A]$$
 (4.3)

$$Iccmax = 71387,6 [A]$$
 (4.4)

Por el cual se realizó el cálculo de los parámetros del relé teniendo en cuenta los siguientes pasos:

 Primero se calcula la corriente de activación con la siguiente fórmula que se muestra en la (ecuación 4.5).

$$M = \frac{I_{ccmin}}{I_n} \tag{4.5}$$

$$M = \frac{6182,2}{93,9} \tag{4.6}$$

$$M = 65,838 \tag{4.7}$$

 Después con el valor de la corriente de activación se calcula el tiempo de operación que es la (ecuación 4.8), con referente a las constantes de las características de la curva se toman los valores con respecto a la característica moderadamente inverso.

Characteristic	Α	В	p	t _r
Moderately inverse	0,0515	0,1140	0,0200	4,85
Very inverse	19,61	0,4910	2	21,6
Extremely inverse	28,2	0,1217	2	29,1

$$t(I) = \left(\frac{A}{M^{P}-1} + B\right)(TMS) \tag{4.8}$$

Tabla 16. Tabla de constantes y exponentes para características estándar

$$t(I) = \left(\frac{0,0515}{(65,838)^{0,02} - 1} + 0,114\right)(0,1) \tag{4.9}$$

$$t(I) = 0,0703 [segundos]$$
 (4.10)

Este relé principal va actuar en 70 milisegundos cuando exista una falla, por el cual cuando se hace la coordinación entre dos relés se debe respetar el tiempo de actuación de 200 a 400 milisegundos de tal forma que se adiciona el tiempo de paso (tp) y el tiempo de comunicación (tcm) como se ve en la (ecuación 4.11).

$$t(I)_{final} = t(I) + tp + tcm \tag{4.11}$$

$$t(I)_{final} = 0,0703 + 0,2 + 0,03 \tag{4.12}$$

$$t(I)_{final} = 0,3003 [segundos] \tag{4.13}$$

El relé de respaldo va actuar en 300 milisegundos cuando exista una falla, pero ahora se calcula de forma inversa el Time Dial (TMS) es decir ya se obtuvo el valor del t(I)final, por lo tanto, se procede a despejar el TMS como se muestra en la (ecuación 4.16).

$$t(I) = \left(\frac{A}{M^P - 1} + B\right)(TMS) \tag{4.14}$$

$$t(I)_{final} = \left(\frac{A}{M^P - 1} + B\right)(TMS) \tag{4.15}$$

$$\left[\frac{t(l)_{final}}{\left(\frac{A}{M^{P}-1}+B\right)}\right] = TMS$$
(4.16)

$$\left[\frac{0,3003}{\left(\frac{0,0515}{(65,838)^{0,02}-1}+0,114\right)}\right] = TMS$$
(4.17)

$$(TMS) = 0,426 [segundos]$$
 (4.18)

Como el TMS tiene 0,426 segundos se lo aproxima a los 0,5 segundos ya que el cuadrante de tiempo en CYMTCC 4.5 es de 0,5 segundos. Se vuelve a calcular el tiempo de disparo del relé de respaldo con un Time Dial de 0,5 segundos y da como respuesta 0,351 segundos. Esto quiere decir que el relé de respaldo va actuar en 351 milisegundos cuando exista una falla como se observa en la (Figura 201).

Acthono Invisos Fearture Observat Pearture Vata Ayuda Nito 70/0 Pro Q, Out-doess hour? M X Calibri 12 A/X T T A/X Microsoft General Image: Calibrit of the state of the	Bueno Incorrecto Neutral Emergence ∑ Autocuma ∑ Autocuma Celda viencu Entrada Inserte Diminiar Diminiare Diminiar Diminiare Diminiar Diminiar Diminiare Di
Contra Contra Contra Contra Mormal Copier demote N K S - □ - △ - △ - S = = = 0 + - A (action to formation to formation) S - S = S = S = S = S = S = S = S = S =	Bueno Incorrectio Neutral Image: Celdarding control of the cellarding cont
Portsapeles N K S + (b) + (b	Celda de co Celda vincul Entrada
Portagapeses is Fuenze is Alineación is Número is	1000 CHIMA 10000 C
D21 - X - fr =(+D11/(POTENCIA(D14)-D13)-1)+D12)*D20	sama consu saman v
A Principal	
5	
6 In 93.9 A	
7 Iccmax 7138,6 A	
8 Iccmin 6182,2 A	
9 TMS 0,1	
10	
11 A 0,0515	
12 B 0,114	
13 p 0,02	
14 M 65,838126	
15 t(i) 0,0703579 seg	
16	
17 tp 0,2 seg	
18 t(i) 0,3003579 seg	
19 IMS 0,4269001	
20 IMS 0,5	
21 t(I) 0,351/895 seg	
22 ip 0,2514316 seg	
23	
25	
↔ Hoja1 Hoja2 ⊙	

Figura 201. Cálculo de los parámetros del relé 51 del ejemplo – Excel 2019

A continuación, se ingresa al software CYMTCC 4.5 para poder hacer la coordinación de los relés 51 como se muestra en la (Figura 202) hasta la (Figura 206).

Figura 202. Ingreso de los valores de las corrientes de cortocircuito

Figura 203. Ingreso de los valores en el Relé 1 siendo el principal

Figura 204. Ingreso de los valores en el Relé 2 siendo el de respaldo

Figura 204. Margen del dispositivo para trazar la línea de cruce entre las curvas de los relés

Figura 205. Parámetros del relé para poder ingresar los segundos en el dibujo

Figura 206. Tiempo del relé 1 y 2

Finalmente se analizan los resultados de los tiempos de disparo de los relés, entre el software CYMTCC y Excel 2019, como se muestra en la (Figura 207).

Margen del dispositivo Modo seguimiento: Espacio mínimo en tiempo	Reporte	× Principa	I	
1ro 1-RELAY SQ D POWER LOGIC SIT		In	93,9 A	
2do 2-RELAY SQ D POWER LOGIC SIT		lccmax	7138,6 A	
Dispositivo Segundos	Corriente [A]	Iccmin	6182,2 A	
2-RELAY SQ D POWER LOGIC SIT 0.3806	1281.3110	TMS	0,1	
		А	0,0515	
		В	0,114	
		р	0,02	
		Μ	65,838126	
		t(i)	0,0703579 seg	
		tp	0,2 seg	
		t(i)	0,3003579 seg	
Dibujar en trazado		Margen del dispositivo TMS	0,4269001	
Línea vertical e horizontal Círculo		dt: 0.3045 [s] TMS	0,5	
Mostrar		t(i)	0,3517895 seg	
Dispositivo no encontrado No mostrar los dispositiv Dibujar círculo(s) Dibujar línea horizontal Cambio en la curva Put	vos ocurtados se 1ro	Precisión tp	0,2514316 seg	
Dibujar línea vertical Cambio en la curva Put	se 2do	3.3333		

Figura 207. Comparación de resultados en CYMTCC y Excel por el cual son semejantes

4.5 Aplicación del Relé 51 en los Casos de Estudio

- Primera coordinación de los relés aplicado en el Caso 2 del tramo 48-47

Se realiza un proceso similar como se explicó en la sección 4.4, pero se tendrá en consideración que los relés serán colocados dependiendo del tramo que se ha elegido.

Se toma el caso 2 con referente al tramo 48-47, a su vez la configuración de los reconectadores se ve en la (Figura 208).

Nombre	🙉 Fase	Estado	
Tipo: Rec	onectador		
REC 1	ABC	Abierto	Ŧ
REC 2	ABC	Cerrado	-
REC 3	ABC	Abierto	-
REC 4	ABC	Cerrado	Ŧ
REC 5	ABC	Cerrado	
REC 6	ABC	Abierto	-
REC 7	ABC	Cerrado	-

Figura 208. Configuración de reconectadores del Caso 2

Con el comando Control+V se encuentra la corriente nominal (In) como se muestra en la (Figura 209), después se sitúa con el cursor un tramo que este alado de un reconectador para poder ver la corriente máxima como se ve en la (Figura 211) y mínima como se observa en la (Figura 210) en ese tramo.

Figura 209. Cuadro de flujo de carga con el comando Control+V

Figura 210. Corriente de cortocircuito mínima en el tramo 48-47

Figura 211. Corriente de cortocircuito máxima en el tramo 48-47

Hay que tener en cuenta que el relé principal va estar colocado en el tramo 48-47 y el relé de respaldo va ser el que este debajo de la subestación alado del reconectador REC_2.

Ahora se debe utilizar la (Figura 209) para elegir el valor de la corriente de carga (In) del tramo 48-47 que es:

$$In = 184,1 [A] \tag{3.78}$$

Nuevamente en la (Figura 210) se toma el valor de la corriente mínima, mientras que en la (Figura 211) se toma el valor de la corriente máxima:

$$Iccmin = 9030,4 [A]$$
 (3.79)

$$Iccmax = 10427,4 [A] \tag{3.80}$$

Debido a lo cual se hizo el cálculo de los parámetros del relé teniendo en cuenta los pasos que se siguieron en el ejemplo del relé 51 que está en la sección 4.4, de manera que los cálculos se ven reflejados en la (Figura 212).

⊡ 5.	C2 - 4					AjusteOriginal.xlsx	- Excel				Inic. ses. 68	- ø ×
Archivo II	nicio Insertar I	Diseño de página	Fórmulas Datos Re	visar Vista Ayuda	Nitro PDF Pro	¿Qué desea hacer?						우. Compartir
Program Program Portapap	rtar Calibri piar * N K piar formato	• 12 • A S • ⊞ • <u>0</u> • J Fuente	$\mathbf{A}^{*} = = = \gg \cdot \text{g}$ $\mathbf{A} \cdot = = = \Rightarrow \bullet = = =$ $\mathbf{G} \text{Allow}$	E Ajustar texto Geo Combinar y centrar • \$	neral • • % ∞ \$8 \$8 Número 5	Formato Dar formato dicional • como tabla •	rmal Bueno culo Celda de Estilos	co Celda vincul	Neutral	Insertar Eliminar Formato Celdas	∑ Autosuma * A	y Buscary seleccionar
D21	* I X V	∫r =(+D11	/(POTENCIA(D14;D13)-1)	+D12)*D20								v
	А	В	С	D	E	F	G	н	1	J	К	L *
4			Principal									
5												
6			In	184,1	A							
7			lccmax	10427,4	Α							
8			lccmin	9030,4	Α							
9			TMS	0,1								
10												
11			A	0,0515								
12			В	0,114								
13			р	0,02								
14			M	49,051602								
15			t(i)	0,0750049	seg							
16												
17			tp	0,2	seg							
18			t(i)	0,3050049	seg							
19			TMS	0,4066465								
20			TMS	0,5								
21			t(i)	0,3750247	seg							
22			tp	0,2700197	seg							
23												
24												
25	Hoja1 Hoja2	(+)						1 4				
Lista	, , , , , , , , , , , , , , , , , , , ,										用 (2) 円	+ 164%

Figura 212. Cálculo de los parámetros del relé 51 del Caso 2 en el tramo 48-47

A continuación, se ingresa al software CYMTCC 4.5 para poder hacer la coordinación de los relés 51. Se ejecuta reiteradamente todo el proceso de la sección 4.4 explicada anteriormente y los resultados se verán reflejados en la (Figura 213 y 214).

Figura 213. Ingreso de los valores de las corrientes de cortocircuito

Figura 214. Comparación de resultados en CYMTCC y Excel por el cual son semejantes

- Segunda coordinación de los relés aplicado en el Caso 3 del tramo 85-84

Se realiza un proceso similar como se explicó en la sección 4.4, pero se tendrá en consideración que los relés serán colocados dependiendo del tramo que se ha elegido.

Se toma el caso 3 con referente al tramo 85-84, por lo cual el estado de encendido de los reconectadores se observan en la (Figura 215).

Nombre	😨 Fase	Estado	1
Tipo: Reco	onectador		
REC 1	ABC	Cerrado	~
REC 2	ABC	Abierto	Ŧ
REC 3	ABC	Cerrado	Ŧ
REC 4	ABC	Cerrado	+
REC 5	ABC	Abierto	+
REC 6	ABC	Cerrado	+
REC 7	ABC	Cerrado	Ψ.

Figura 215. Configuración de reconectadores del Caso 3

Nuevamente con el comando Control+V se encuentra la corriente nominal (In) como se observa en la (Figura 216), luego se sitúa con el cursor un tramo que este alado de un reconectador para poder ver la corriente máxima como se muestra en la (Figura 218) y mínima como se observa en la (Figura 217) en ese tramo.

regultuda/, Card: 30,000, Longitude: 1192 pies Figura 216. Cuadro de flujo de carga con el comando Control+V

Figura 217. Corriente de cortocircuito mínima en el tramo 85-84

Figura 218. Corriente de cortocircuito máxima en el tramo 85-84

Hay que tener en cuenta que el relé principal va estar colocado en el tramo 85-84 y el relé de respaldo va ser el que este alado del reconectador REC_6.

Ahora se debe utilizar la (Figura 216) para elegir el valor de la corriente de carga (In) del tramo 85-84 que es:

$$In = 185,6 [A] \tag{3.78}$$

Nuevamente en la (Figura 217) se toma el valor de la corriente mínima, mientras que en la (Figura 218) se toma el valor de la corriente máxima:

$$Iccmin = 7011,4 [A]$$
 (3.79)

$$Iccmax = 8096 [A]$$
 (3.80)

Debido a lo cual se hizo el cálculo de los parámetros del relé teniendo en cuenta los pasos que se siguieron en el ejemplo del relé 51 que está en la sección 4.4, de manera que los cálculos se ven reflejados en la (Figura 219).

⊡ 5.	C ² · · ·					AjusteOrigi	nal.xlsx - Excel					Inic. ses.	• –	σ	×
Archivo II	nicio Insertar	Diseño de página 🛛 Fé	ormulas Datos Re	wiser Vista Ayuda	Nitro PDF Pro 🔾	¿Qué desea hacer?								,Я, Com	partir
Con	rtar Calibri	- 12 - A A	= = ≡ ≫ • a	b Ajustar texto Ger	neral -	B, 💓	Normal	Bueno	Incorrecto	Neutral	🐑 袨 📋	∑ Autosuma →	AΖΨ	ρ	
Pegar 💉 Co	piar formato N K	s - 🗌 - 🛕 - 🛕		Combinar y centrar + \$	- % 000 30 400 co	Formato Dar formato	Cálculo	Celda de co	. Celda vincul	Entrada 💡	Insertar Eliminar Formato	📌 Borrar =	Ordenar y filtrar * se	Buscar y leccionar *	
Portapap	ieles 15	Fuente	. Alinea	dón 15	Número G			Estilos			Celdas		Edición		^
D21	• I × •	fx =(+D11/(P	OTENCIA(D14;D13)-1)	+D12)*D20											~
	A	В	С	D	E	F		G	н	1	J	K		L	^
4			Principal												
5															
6			In	185,6	Α										
7			lccmax	8096	Α										
8			lccmin	7011,4	Α										
9			TMS	0,1											
10															
11			A	0,0515											
12			В	0,114											
13			р	0,02											
14			Μ	37,77694											
15			t(i)	0,0797596	seg										
16															
17			tp	0,2	seg										
18			t(i)	0,3097596	seg										
19			TMS	0,3883664											
20			TMS	0,5											
21			t(i)	0,3987981	seg										
22			tp	0,2890385	seg										
23															
24															
25															-
	Hoja1 Hoja2	(+)						i i				III (**) (TT) NGAN
LISSO													-		104%

Figura 219. Cálculo de los parámetros del relé 51 del Caso 3 en el tramo 85-84

A continuación, se ingresa al software CYMTCC 4.5 para poder hacer la coordinación de los relés 51. Se ejecuta nuevamente todo el procedimiento de la sección 4.4 descrito previamente y los resultados se verán mostrados en la (Figura 220 y 221).

A Barrier Constraints and and an analysis of the second and analysis of the second a	Control color la control color color la control colo
	Telefond Tel
Study1	

Figura 220. Ingreso de los valores de las corrientes de cortocircuito

Figura 221. Comparación de resultados en CYMTCC y Excel por el cual son semejantes

- Tercera coordinación de los relés aplicado en el Caso 3 del tramo 13-12

Se realiza un proceso similar como se explicó en la sección 4.4, pero se tendrá en consideración que los relés serán colocados dependiendo del tramo que se ha elegido.

Se toma el caso 3 con referente al tramo 13-12, a su vez la configuración de los reconectadores se ve en la (Figura 222).

Nombre	😨 Fase	Estado	1					
Tipo: Reconectador								
REC 1	ABC	Cerrado	Ŧ					
REC 2	ABC	Abierto	Ŧ					
REC 3	ABC	Cerrado	Ŧ					
REC 4	ABC	Cerrado	Ŧ					
REC 5	ABC	Abierto	Ŧ					
REC 6	ABC	Cerrado	Ŧ					
REC 7	ABC	Cerrado	-					

Figura 222. Configuración de reconectadores del Caso 3

Con el comando Control+V se encuentra la corriente nominal (In) como se ve en la (Figura 223), después se sitúa con el cursor un tramo que este alado de un reconectador para poder ver la corriente máxima como se observa en la (Figura 225) y mínima como se muestra en la (Figura 224) en ese tramo.

Figura 223. Cuadro de flujo de carga con el comando Control+V

Figura 224. Corriente de cortocircuito mínima en el tramo 13-12

Figura 225. Corriente de cortocircuito máxima en el tramo 13-12

Hay que tener en cuenta que el relé principal va estar colocado en el tramo 13-12 y el relé de respaldo va ser el que este alado del reconectador REC_1.

Ahora se debe utilizar la (Figura 223) para elegir el valor de la corriente de carga (In) del tramo 13-12 que es:

$$In = 91,1 [A] \tag{3.78}$$

Nuevamente en la (Figura 224) se toma el valor de la corriente mínima, mientras que en la (Figura 225) se toma el valor de la corriente máxima:

$$Iccmin = 4830,9 [A] \tag{3.79}$$

Iccmax = 5578,2 [A] (3.80)

Debido a lo cual se hizo el cálculo de los parámetros del relé teniendo en cuenta los pasos que se siguieron en el ejemplo del relé 51 que está en la sección 4.4, de manera que los cálculos se ven reflejados en la (Figura 226).

⊡ 5.	C ² · · ·					AjusteOrigi	nal.xlsx - Excel					Inic. ses.	a –	σ	×
Archivo Inicio Inserter Diserio de página Fórmulea Detos Revisar Vista Ayuda Neto PEF Pro 🖓 (Qué desen lucer?															
Con	rtar Calibri	• 12 • A A	· = = * · ·	b Ajustar texto Ger	neral •	B, 💓	Normal	Bueno	Incorrecto	Neutral	🐑 袨 📋	∑ Autosuma ·	ZΨ	ρ	
Pegar 💉 Co	piar formato N K	s - 🗌 - 🛕 - 🛕		Combinar y centrar • \$	- % 000 100 000 co	Formato Dar formato ndicional - como tabla	Cálculo	Celda de co	Celda vincul	Entrada 💡	Insertar Eliminar Formato	📌 Borrar =	Ordenar y filtrar * se	Buscar y eleccionar *	
Portapap	eles 12	Fuente	. Alinea	ción 15	Número 15			Estilos			Celdas		Edición		^
D21 · 1 × 4 fi = (+011/(POTENCIA(D14,D13)-1)-D12)*D20 *															
	A	В	С	D	E	F		G	Н		J	K		L	^
4			Principal												
5															
6			In	91,1	Α										
7			lccmax	5578,2	Α										
8			lccmin	4830,9	Α										
9			TMS	0,1											
10															
11			A	0,0515											
12			В	0,114											
13			р	0,02											
14			M	53,02854											
15			t(i)	0,073707	seg										
16															
17			tp	0,2	seg										
18			t(i)	0,303707	seg										
19			TMS	0,4120464											
20			TMS	0,5											
21			t(i)	0,3685349	seg										
22			tp	0,2648279	seg										
23															
24															
25															-
	Hoja1 Hoja2	(+)						1.4) NGAY
LISSO													_		10439

Figura 226. Cálculo de los parámetros del relé 51 del Caso 3 en el tramo 13-12

A continuación, se ingresa al software CYMTCC 4.5 para poder hacer la coordinación de los relés 51. Se ejecuta reiteradamente todo el proceso de la sección 4.4 explicado anticipadamente y los resultados se verán mostrados en la (Figura 227 y 228).

Figura 227. Ingreso de los valores de las corrientes de cortocircuito

Figura 228. Comparación de resultados en CYMTCC y Excel por el cual son semejantes

CAPITULO 5

CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

En los casos de estudio para identificar el impacto de las cargas especiales en los sistemas de distribución se realizaron las métricas de cada caso de estudio, el cual muestra la capacidad nominal del conductor que posee cada fase.

En el IEEE Std 1547, tiene a consideración que cuando existe una caída de voltaje debe ser del 10% al usuario final, como también se considera que en el 10% es un máximo de caída de voltaje incluyendo la interconexión. En bajo voltaje se tiene un 6%, esto significa que se debe obtener hasta un 4% en medio voltaje de manera que se coloca un elemento de protección como puede ser un reconectador o seccionalizador. En los flujos de potencia de los casos de estudio se deriva que en los sistemas propuestos son aptos para implementar la maniobra de interconexión, por el cual la caída de voltaje debe ser la mínima posible y se recomienda que no debe ser mayor al 4% en el tramo de interconexión cuando el sistema está en condiciones normales, con esta recomendación se consolida que se pueda incorporar la mayor cantidad de carga factible en la maniobra de transferencia sin superar los límites permitidos de caída de voltaje.

La coordinación de protecciones se realizó con el relé 51, por el cual este relé es de sobrecorriente ya que tiene el mayor cambio en el tiempo de operación a medida que cambia la magnitud de la corriente, este relé de sobrecorriente es más rápido para responder en situaciones de falla.

En el Caso de Estudio en condiciones normales, el diseño propuesto consta de un sistema anillo, la aplicación del Minimun Spannig Tree crea una apertura en la red en el nodo 83-84, lo que quiere decir que el sistema funcionaría sin problemas. Lo que manifiesta es que no se tendría inconvenientes de caída de voltaje, subvoltaje ni sobrevoltaje.

Se debe tener especial cuidado en la elección de los conductores para los ramales troncales y ramales secundarios dependiendo su cargabilidad estos conductores puedan soportar el voltaje y la corriente demandada. Los valores de caída de voltaje mayores al 4% indican un problema serio el cual se puede corregir con la ubicación de los reconectadores.

Podemos concluir que el adecuado funcionamiento del sistema de protecciones de una red de distribución depende de la coordinación de sus elementos o dispositivos de protección instalados, por el cual ante el suceso de una falla el dispositivo más cercano a la misma actué en el menor tiempo posible, reduciendo la sección de red dañada y por ende la cantidad de usuarios sin suministro.

Con referente a los reconectadores son dispositivos que al hallar una sobrecorriente son capaces de interrumpirla y reconectar automáticamente para reenergizar la línea, por el cual en el software CYME© la ejecución de estas conexiones de apertura y recierre permite el despeje de fallas.

5.2 Recomendaciones

Se recomienda en este tipo de cargas especiales, cubrir la mayoría de escenarios de interconexión para que esta carga no pierda continuidad de energía.

Es de vital importancia que los reconectadores diseñados en este proyecto propuesto no alejado de la realidad puedan incorporarse a un sistema SCADA del cual no sea necesario colocar personal en campo para las respectivas maniobras de apertura y cierre de los dispositivos, siendo este sistema controlado vía remota desde el puesto de mando y control.

Capacitación en el manejo y destreza del software CYME© para tener la experticia necesaria para efectuar la planificación y el análisis de los sistemas de distribución de manera confiable y segura.

Se sugiere que al momento de realizar las capas shape en QGISGNU 3.22, hay que ingresar de manera factible el sistema de referencia de coordenadas (EPSG) ya que son las coordenadas georreferenciadas del sector que se va a intervenir.

Al calcular las reactancias hay que tener en cuenta que tipo de transformador es, ya que los monofásicos son con la norma INEN 2114 y trifásicos con la INEN 2115.

Con referente a los transformadores en el software CYME© hay que considerar a que conexión están conectados los devanados primario y secundario, ya que si la conexión es otra saldrá un error en la simulación.

BIBLIOGRAFÍA

- S. K. Zimba, I. Nyamutswa, and A. Chikova, "Islanding power systems to minimize impact of system disturbances in Southern African Power Pool," 2017 IEEE AFRICON Sci. Technol. Innov. Africa, AFRICON 2017, vol. 1, pp. 1107–1112, 2017, doi: 10.1109/AFRCON.2017.8095637.
- [2] Y. Nie, G. Zhang, and H. Duan, "An interconnected panorama of future cross-regional power grid: A complex network approach," *Resour. Policy*, vol. 67, no. March, p. 101692, 2020, doi: 10.1016/j.resourpol.2020.101692.
- [3] M. Brinkerink, B. Gallachóir, and P. Deane, "A comprehensive review on the benefits and challenges of global power grids and intercontinental interconnectors," *Renew. Sustain. Energy Rev.*, vol. 107, no. April 2021, pp. 274–287, 2019, doi: 10.1016/j.rser.2019.03.003.
- [4] Y. Yu, P. Ju, Y. Peng, B. Lou, and H. Huang, "Analysis of Dynamic Voltage Fluctuation Mechanism in Interconnected Power Grid with Stochastic Power Disturbances," J. Mod. Power Syst. Clean Energy, vol. 8, no. 1, pp. 38–45, 2020, doi: 10.35833/MPCE.2018.000693.
- [5] N. Y. Chiang and V. M. Zavala, "Large-scale optimal control of interconnected natural gas and electrical transmission systems," *Appl. Energy*, vol. 168, pp. 226–235, 2016, doi: 10.1016/j.apenergy.2016.01.017.
- [6] L. F. A. Paredes, *Estudio para el mejoramiento del factor de potencia en los puntos de interconexión de EMELNORTE con el sistema nacional interconectado*. Ibarra, 2021.
- [7] A. E. B. Caballero and D. J. R. Soria, "Efecto de la interconexión regional Perú-Ecuador en el sistema de generación de energía eléctrica del Perú," Univ. Nac. del St., pp. 1–127, 2019.
- [8] J. Kabouris, M. Karystianos, B. Nomikos, G. Tsourakis, J. Mantzaris, and E. Voumvoulakis, "Power system static and dynamic security studies for the 1st phase of Crete Island Interconnection," vol. 67, no. 2, pp. 33–43, 2018.
- [9] S. V. Podkoval'nikov, V. A. Savel'ev, O. V. Khamisov, and L. Y. Chudinova, "Justification of Effectiveness of International Power Interconnections with Separation of Effects between Participants," *Autom. Remote Control*, vol. 79, no. 10, pp. 1756–1766, 2018, doi: 10.1134/S0005117918100028.
- [10] B. Qiao, J. Zhang, L. Liu, J. Zhang, L. Ma, and Y. Fan, "Interconnection switch on-off state identification of distribution networks based on load measurement," *Proc. 30th Chinese Control Decis. Conf. CCDC 2018*, pp. 524–529, 2018, doi: 10.1109/CCDC.2018.8407188.
- [11] Daniel Hernán Arévalo Camacho and Jonathan Abimael Guzmñan Sicha, "Interconexión de redes eléctricas en bajo voltaje aplicado a la empresa eléctrica regional centro sur C.A.," 2019.
- [12] R. Sen Biswas, A. Pal, T. Werho, and V. Vittal, "A Graph Theoretic Approach to Power System Vulnerability Identification," *IEEE Trans. Power Syst.*, vol. 36, no. 2, pp. 923–935, 2021, doi: 10.1109/TPWRS.2020.3010476.
- [13] M. Hydro, "Transmission System Interconnection Requirements," vol. 1.1, pp. 1–44, 2021, [Online]. Available: www.nspower.ca
- [14] Imdadullah, B. Alamri, M. A. Hossain, and M. S. Jamil Asghar, "Electric power network interconnection: A review on current status, future prospects and research direction," *Electron.*, vol. 10, no. 17, pp. 1–29, 2021, doi: 10.3390/electronics10172179.
- [15] A. Alzakkar, M. V. Vladimirovich, Y. Samofalov, I. Ildar, and I. Valeev, "The impact of electrical interconnection between countries on the stability of electrical power systems," *Proc. 2022 4th Int.*

Youth Conf. Radio Electron. Electr. Power Eng. REEPE 2022, pp. 3-8, 2022, doi: 10.1109/REEPE53907.2022.9731442.

- [16] J. D. Juárez Cervantes, Sistemas de Distribución de Energía Eléctrica, vol. 52, no. 1. Mexico, 2017.
- [17] A. Raza, A. Benrabah, T. Alquthami, and M. Akmal, "A review of fault diagnosing methods in power transmission systems," *Appl. Sci.*, vol. 10, no. 4, 2020, doi: 10.3390/app10041312.
- [18] R. A. Tîrnovan and M. Cristea, "Advanced techniques for fault detection and classification in electrical power transmission systems: An overview," *Proc. 2019 8th Int. Conf. Mod. Power Syst. MPS 2019*, 2019, doi: 10.1109/MPS.2019.8759695.
- [19] J. Yang, J. Zhao, J. Qiu, and F. Wen, "A Distribution Market Clearing Mechanism for Renewable Generation Units With Zero Marginal Costs," *IEEE Trans. Ind. Informatics*, vol. 15, no. 8, pp. 4775–4787, 2019, doi: 10.1109/tii.2019.2896346.
- [20] S. E. Razavi et al., "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," *Renew. Sustain. Energy Rev.*, vol. 105, no. February, pp. 157–167, 2019, doi: 10.1016/j.rser.2019.01.050.
- [21] B. Wang, J. A. Camacho, G. M. Pulliam, A. H. Etemadi, and P. Dehghanian, "New reward and penalty scheme for electric distribution utilities employing load-based reliability indices," *IET Gener. Transm. Distrib.*, vol. 12, no. 15, pp. 3647–3654, 2018, doi: 10.1049/iet-gtd.2017.1809.
- [22] C. M. Furse, M. Kafal, R. Razzaghi, and Y. J. Shin, "Fault Diagnosis for Electrical Systems and Power Networks: A Review," *IEEE Sens. J.*, vol. 21, no. 2, pp. 888–906, 2021, doi: 10.1109/JSEN.2020.2987321.
- [23] A. H. Adzhiev and D. D. Kuliev, "Characteristics of Storm Activity and Parameters of Lightning Discharges in the South of the European Part of Russia," *Izv. - Atmos. Ocean Phys.*, vol. 54, no. 4, pp. 372–379, 2018, doi: 10.1134/S0001433818040187.
- [24] D. D. B. Martins, W. R. Faria, and B. R. P. Junior, "Probabilistic short-circuit analysis: A new approach integrating intermittent power injection," *IEEE Power Energy Soc. Gen. Meet.*, vol. 2020-Augus, pp. 2–6, 2020, doi: 10.1109/PESGM41954.2020.9281978.
- [25] W. Wang, X. Gao, B. Fan, X. Zeng, and G. Yao, "Faulty Phase Detection Method Under Single-Line-to-Ground Fault Considering Distributed Parameters Asymmetry and Line Impedance in Distribution Networks," *IEEE Trans. Power Deliv.*, vol. 37, no. 3, pp. 1513–1522, 2022, doi: 10.1109/TPWRD.2021.3091646.
- [26] M. N. Alam, "Adaptive Protection Coordination Scheme Using Numerical Directional Overcurrent Relays," *IEEE Trans. Ind. Informatics*, vol. 15, no. 1, pp. 64–73, 2019, doi: 10.1109/TII.2018.2834474.
- [27] F. Olivier and D. Ernst, "Modelling of three-phase four-wire low-voltage cables taking into account the neutral connection to the earth," *CIRED Work.*, no. 0593, pp. 7–8, 2018.
- [28] M. R. Djalal, M. Saini, and A. S. Yunus, "Load Flow Analysis After the Entry of Renewable Power Plants in the Sulselrabar System," J. Electr. Technol. UMY, vol. 5, no. 2, pp. 80–87, 2021, doi: 10.18196/jet.v5i2.12897.
- [29] H. C. Kiliçkiran, İ. Şengör, H. Akdemir, B. Kekezoğlu, O. Erdinç, and N. G. Paterakis, "Power system protection with digital overcurrent relays: A review of non-standard characteristics," *Electr. Power Syst. Res.*, vol. 164, no. June, pp. 89–102, 2018, doi: 10.1016/j.epsr.2018.07.008.
- [30] R. Strydom and P. E. Hertzog, "Optimization of recloser methods on medium voltage distribution networks," *3C Tecnol. innovación Apl. a la pyme*, vol. 10, no. 3, pp. 57–71, 2021, doi: 10.17993/3ctecno/2021.v10n3e39.57-71.

- [31] Y. A. M. Alsumaidaee, C. T. Yaw, S. P. Koh, S. K. Tiong, C. P. Chen, and K. Ali, "Review of Medium-Voltage Switchgear Fault Detection in a Condition-Based Monitoring System by Using Deep Learning," *Energies*, vol. 15, no. 18, 2022, doi: 10.3390/en15186762.
- [32] Y. Bajda, O. Grechko, V. Buhaichuk, and R. Knápek, "To the Problem of Protection of Medium Voltage Instrument Transformers with Fuses : Analytical Research," vol. 60, no. 3, pp. 92–102, 2021.
- [33] Z. Shen *et al.*, "A Method for Extracting Stray Capacitance and Hysteresis Curves of Potential Transformers Based on Frequency Referring," *IEEE Trans. Power Deliv.*, vol. 37, no. 3, pp. 1897– 1905, 2022, doi: 10.1109/TPWRD.2021.3100602.
- [34] G. Zhu, K. Zhou, L. Lu, Y. Li, H. Xi, and Q. Zeng, "Online Monitoring of Power Cables Tangent Delta Based on Low-Frequency Signal Injection Method," *IEEE Trans. Instrum. Meas.*, vol. 70, 2021, doi: 10.1109/TIM.2021.3069020.
- [35] I. Ullah, R. U. Khan, F. Yang, and L. Wuttisittikulkij, "Deep learning image-based defect detection in high voltage electrical equipment," *Energies*, vol. 13, no. 2, 2020, doi: 10.3390/en13020392.
- [36] J. P. Nascimento, N. S. D. Brito, and B. A. Souza, "An adaptive overcurrent protection system applied to distribution systems," *Comput. Electr. Eng.*, vol. 81, 2020, doi: 10.1016/j.compeleceng.2019.106545.
- [37] N. M. Aljamali and A. H. Jaber, "Review in Protection of Laboratory and Electrical Equipment in Laboratories and Institutions," J. Controll. Convert., vol. 6, no. 1, pp. 24–42, 2021, [Online]. Available: www.matjournals.com
- [38] G. S. Chawda *et al.*, "Comprehensive Review on Detection and Classification of Power Quality Disturbances in Utility Grid with Renewable Energy Penetration," *IEEE Access*, vol. 8, pp. 146807–146830, 2020, doi: 10.1109/ACCESS.2020.3014732.
- [39] J. Liu, H. Song, H. Sun, and H. Zhao, "High-Precision Identification of Power Quality Disturbances under Strong Noise Environment Based on FastICA and Random Forest," *IEEE Trans. Ind. Informatics*, vol. 17, no. 1, pp. 377–387, 2021, doi: 10.1109/TII.2020.2966223.
- [40] P. Khetarpal and M. M. Tripathi, "A critical and comprehensive review on power quality disturbance detection and classification," *Sustain. Comput. Informatics Syst.*, vol. 28, p. 100417, 2020, doi: 10.1016/j.suscom.2020.100417.
- [41] B. F. Melnikov and Y. Y. Terentyeva, "Building communication networks: On the application of the Kruskal's algorithm in the problems of large dimensions," *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 1047, no. 1, 2021, doi: 10.1088/1757-899X/1047/1/012089.
- [42] W. Group, *IEEE Application Guide for IEEE Std 1547, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems*, no. April. 2008.
- [43] Instituto Ecuatoriano de Normalización, "NTE INEN 2114:2004," Inst. Ecuatoriano Norm., pp. 1– 7, 2012, [Online]. Available: https://www.normalizacion.gob.ec/buzon/normas/1338-3.pdf
- [44] NTE INEN 2115:2004, "Instituto Ecuatoriano de Normalización," *Inst. Ecuatoriano Norm.*, pp. 1– 8, 2012, [Online]. Available: https://www.normalizacion.gob.ec/buzon/normas23/2115.pdf

ANEXO A

A. Elementos propuestos para el diseño nodal del sistema en condiciones normales

Nombre del tramo	Nombre	Tipo de Transformador	Fases	Potencia		
А	TR13	Trifásico	ABC	75 kVA		
В	TR1	Monofásico	А	15 kVA		
С	TR12	Trifásico	ABC	200 kVA		
D	TR6	Monofásico	С	100 kVA		
Е	TR3	Monofásico	В	37,5 kVA		
F	TR5	Monofásico	С	75 kVA		
G	TR11	Trifásico	ABC	125 kVA		
Н	TR13	Trifásico	ABC	225 kVA		
Ι	TR5	Monofásico	А	75 kVA		
J	TR6	Monofásico	В	100 kVA		
K	TR10	Trifásico	ABC	100 kVA		
L	TR3	Monofásico	А	37.5 kVA		
М	TR14	Trifásico	ABC	30 kVA		
N	TR4	Monofásico	С	50 kVA		
0	TR11	Trifásico	ABC	125 kVA		
Р	TR5	Monofásico	С	75 kVA		
AS	TR15	Trifásico	ABC	800 kVA		
0	TR12	Trifásico	ABC	200 kVA		
S	TR14	Trifásico	ABC	500 kVA		
AW	TR15	Trifásico	ABC	800 kVA		
Т	TR4	Monofásico	В	50 kVA		
U	TR3	Monofásico	А	37.5 kVA		
V	TR15	Trifásico	ABC	800 kVA		
W	TR4	Monofásico	В	50 kVA		
AZ	TR16	Trifásico	ABC	1500 kVA		
X	TR14	Trifásico	ABC	500 kVA		
Y	TR2	Monofásico	A	25 kVA		
Z	TR14	Trifásico	ABC	500 kVA		
AA	TR15	Trifásico	ABC	800 kVA		
BB	TR14	Trifásico	ABC	500 kVA		
CC	TR6	Monofásico	A	100 kVA		
DD	TR14	Trifásico	ABC	500 kVA		
FF	TR14	Trifásico	ABC	500 kVA		
GG	TR10	Monofásico	A	100 kVA		
НН	TR5	Monofásico	B	75 kVA		
II	TR4	Monofásico	C	50 kVA		
JI II	TR14	Trifásico	ABC	500 kVA		
КК	TR2	Monofásico	C	25 kVA		
MM	TR15	15 Trifásico		800 kVA		
NN	TR6	6 Monofásico		100 kVA		
00	TR3	Monofásico	В	37,5 kVA		

QQ	TR1	Monofásico	С	15 kVA
RR	TR2	Monofásico	В	25 kVA
SS	TR14	Trifásico	ABC	500 kVA
AR	TR15	Trifásico	ABC	800 kVA
TT	TR4	Monofásico	А	50 kVA
UU	TR5	Monofásico	В	75 kVA
VV	TR14	Trifásico	ABC	500 kVA
WW	TR6	Monofásico	А	100 kVA
AT	TR15	Trifásico	ABC	800 kVA
XX	TR14	Trifásico	ABC	500 kVA
YY	TR3	Monofásico	С	37,5 kVA
ZZ	TR2	Monofásico	В	25 kVA
AB	TR14	Trifásico	ABC	500 kVA
AC	TR9	Trifásico	ABC	75 kVA
AD	TR1	Monofásico	В	15 kVA
AE	TR4	Monofásico	С	50 kVA
AF	TR5	Monofásico	А	75 kVA
AG	TR8	Trifásico	ABC	50 kVA
AH	TR15	Trifásico	ABC	800 kVA
AI	TR2	Monofásico	С	25 kVA
AJ	TR15	Trifásico	ABC	800 kVA
AK	TR14	Trifásico	ABC	500 kVA
AL	TR1	Monofásico	В	15 kVA
AM	TR9	Trifásico	ABC	75 kVA
AN	TR2	Monofásico	Α	25 kVA
AO	TR3	Monofásico	С	37,5 kVA
AP	TR13	Trifásico	ABC	225 kVA

Tabla A 1. Transformadores monofásicos y trifásicos empleados
Nodo	Numero	Nombre	Tipo de Cliente	Poten (KV	cia Apa /A) - Fa	arente ases	Factor de Potencia (FP %) - Fases			
11040	i (unici o	del tramo	inpo de cheme	Α	В	С	Α	В	С	
213	A1	A1	Industrial	10	25	17	90	92	90	
276	B1	B1	Residencial	10			90			
140	C1	C1	Comercial	70	50	20	90	95	92	
142	D1	D1	Residencial			68			90	
212	E1	E1	Residencial		32			93		
280	F1	F1	Residencial			41			92	
209	G1	G1	Comercial	25	40	20	93	92	91	
288	H1	H1	Comercial	55	65	35	90	95	90	
152	I1	I1	Residencial	50			91			
205	J1	J1	Residencial		69			94		
286	K1	K1	Industrial	20	30	20	90	93	94	
291	L1	L1	Residencial	30			92			
294	M1	M1	Comercial	7	8	6	93	94	92	
165	N1	N1	Residencial			35			93	
300	01	01	Comercial	30	35	30	92	94	93	
46	P1	P1	Residencial			60			95	
43	AS1	AS1	Industrial	205	260	90	93	95	94	
40	Q1	Q1	Industrial	50	30	55	94	92	91	
200	S1	S1	Comercial	110	115	125	94	92	93	
30	AW1	AW1	Industrial	170	180	210	91	93	92	
27	T1	T1	Residencial		37			95		
196	U1	U1	Residencial	29			94			
193	V1	V1	Industrial	195	190	175	91	90	92	
18	W1	W1	Residencial		38			92		
14	AZ1	AZ1	Industrial	355	350	345	93	92	91	
12	X1	X1	Comercial	125	110	115	95	94	95	
7	Y1	Y1	Residencial	18			94			
4	Z1	Z1	Comercial	150	110	90	95	91	92	
1	AA1	AA1	Industrial	170	180	210	91	92	95	
51	BB1	BB1	Industrial	140	100	110	95	91	92	
55	CC1	CC1	Residencial	65			95			
190	DD1	DD1	Industrial	115	125	110	94	95	92	
187	FF1	FF1	Industrial	90	125	135	91	93	94	
64	GG1	GG1	Residencial	63			95			
184	HH1	HH1	Residencial		42			91		
70	II1	II1	Residencial			30			95	
180	JJ1	JJ1	Comercial	80	140	125	95	91	92	
74	KK1	KK1	Residencial			16			95	
176	MM1	MM1	Industrial	130	160	270	93	92	91	
172	NN1	NN1	Residencial	69			95			

A.2 Balanceo de cargas y factor de potencia de cada carga concentrada

168	001	001	Residencial		25			94	
82	QQ1	QQ1	Residencial			9			91
274	RR1	RR1	Residencial		16			91	
266	SS1	SS1	Comercial	110	115	125	92	95	94
265	AR1	AR1	Industrial	160	110	290	93	91	92
218	TT1	TT1	Residencial	34			94		
264	UU1	UU1	Residencial		50			91	
128	VV1	VV1	Comercial	100	85	165	91	92	95
221	WW1	WW1	Residencial	69			94		
259	AT1	AT1	Comercial	190	195	175	94	92	93
261	XX1	XX1	Comercial	80	160	110	94	95	91
123	YY1	YY1	Residencial			25			92
258	ZZ1	ZZ1	Residencial		16			91	
224	AB1	AB1	Comercial	125	115	110	91	95	94
228	AC1	AC1	Industrial	10	15	24	94	92	93
255	AD1	AD1	Residencial		9			94	
230	AE1	AE1	Residencial			34			93
252	AF1	AF1	Residencial	50			93		
233	AG1	AG1	Industrial	7	20	6	94	93	92
249	AH1	AH1	Industrial	165	205	190	91	92	93
246	AI1	AI1	Residencial			8			93
236	AJ1	AJ1	Comercial	120	210	230	94	93	92
243	AK1	AK1	Comercial	125	80	140	92	94	95
240	AL1	AL1	Residencial		8			92	
97	AM1	AM1	Comercial	10	33	6	94	93	92
93	AN1	AN1	Residencial	17			91		
89	AO1	AO1	Residencial			20			92
85	AP1	AP1	Industrial	52	50	51	94	92	93
BALANCE DE CARGAS TOTALES POR FASE =				4060	4163	4281	92,80	92,78	92,62

Tabla A 2. Balance de cargas y factor de potencia de las cargas del diseño propuesto

A.3 Detalle de los tramos monofásicos

Potencia del transformador perteneciente al tramo	Tramos origen - destino	Fases	Conteo		
	137-275	А	1		
1R1 - 15 KVA	275-276	А	1		
TR6 - 100 kVA	142	С	1		
	145-210	В			
TR3 - 37,5 kVA	210-212	В	1		
	212-211	В			
	147-277	С			
	277-278	С	1		
1 K5 - 75 KVA	278-279	С	1		
	279-280	С			
TR5 - 75 kVA	152	А	1		
TR6- 100 kVA	154-205	В	1		
	158-287	А			
	287-288	А			
TR3 - 37,5 kVA	288-289	А	1		
	289-290	А			
	290-291	А			
TR4 - 50 kVA	165	В	1		
TR5 - 75 kVA	46	С	1		
TR4 - 50 kVA	27	В	1		
	25-194	А			
TR3 - 37,5 kVA	194-196	А	1		
	196-195	А			
TR4 - 50 kVA	18	В	1		
TR2 - 25 kVA	7	А	1		
TR6 - 100 kVA	55	Α	1		
TR6 - 100 kVA	64	Α	1		
	66-181	В			
TD 5 75 1-V A	181-182	В	1		
1 K J - 7 J K V A	182-183	В	1		
	183-184	В			
TR4 - 50 kVA	70	С	1		
TR2 - 25 kVA	74	С	1		
	76-169	А			
TR6 - 100 VVA	169-170	А	1		
	170-171	А	1		
	171-172	А			
TP3 375 WA	77-167	В	1		
1 K - J / J K V A	167-168	В	1		

TR1 - 15 kVA	82	С	1				
	135-267	В					
	267-268	В					
	268-269	В					
TR2 - 25 kVA	269-270	В	1				
	270-271	В					
	272-273	В					
	273-274	В					
	131-216	А					
TR4 - 50 kVA	216-217	А	1				
	217-218	А					
	130-262	В					
TR5 - 75 kVA	262-263	В	1				
	263-264	В					
	126-219	А					
TR6 - 100 kVA	219-220	А	1				
	220-221	А					
TR3 - 37,5 Kva	123	С	1				
	119-256	В					
TR2 - 25 kVA	256-257	В	1				
	257-258	В					
	115-253	В					
TR1 - 15 kVA	253-254	В	1				
	254-255	В	_				
	112-229	С	1				
1 K4 - 30 KVA	229-230	С	1				
	111-250	А					
TR5 - 75 kVA	250-251	А	1				
	251-252	А	$\begin{array}{c c c} B & 1 \\ A & 1 \\ A & 1 \\ A & 1 \\ B & 1 \\ C & 1 \\ C & 1 \\ C & 1 \\ B & 1 \\ C & 1 \\ C & 1 \\ \hline 34 \\ \end{array}$				
	106-244	С					
TR2 - 25 kVA	244-245	С	1				
	245-246	С					
	101-237	В					
TD 1 15 LVA	237-238	В	1				
IRI - IS KVA	238-239	В					
	239-240	В	В				
TR2 - 25 kVA	93	А	1				
TR3 - 37,5 kVA	89	С	1				
Total de transformadores monofásicos =			34				

Tabla A 3. Especificaciones de los tramos monofásicos del grafo

A.4 Pesos de los nodos

ID	X	у	ni	nj	Lnij	
SE	724075	9680420	301	215	95,664	
1	723571	9680637	1	2	28,601	
2	723594	9680620	2	3	29,833	
3	723617	9680601	3	4	32,802	
4	723643	9680581	4	5	29,732	
5	723665	9680561	5	6	32,558	
6	723689	9680539	6	7	29,833	
7	723708	9680516	7	8	33,838	
8	723727	9680488	8	9	33,121	
9	723711	9680459	9	11	31,064	
10	723757	9680499	11	12	32,450	
11	723685	9680442	12	13	30,529	
12	723658	9680424	13	14	29,411	
13	723632	9680408	14	15	30,232	
14	723608	9680391	15	16	30,806	
15	723583	9680374	16	17	27,459	
16	723558	9680356	17	18	28,844	
17	723535	9680341	18	19	33,287	
18	723511	9680325	19	20	36,892	
19	723483	9680307	20	21	33,838	
20	723452	9680287	21	22	26,627	
21	723424	9680268	22	191	32,450	
22	723402	9680253	191	192	32,757	
23	723379	9680238	192	193	35,511	
24	723355	9680221	22	23	27,459	
25	723323	9680200	23	24	29,411	
26	723297	9680183	24	25	38,275	
27	723265	9680162	25	194	31,064	
28	723237	9680143	194	195	36,056	
29	723213	9680127	195	196	37,443	
30	723190	9680111	25	26	31,064	
31	723159	9680091	26	27	38,275	
32	723132	9680073	27	28	33,838	
33	723109	9680057	28	29	28,844	
34	723078	9680036	29	30	28,018	
35	723052	9680018	30	31	36,892	
36	723026	9680001	31	32	32,450	
37	723001	9679984	32	33	28,018	
38	723025	9679965	33	197	31,113	
39	723047	9679945	197	198	37,643	
40	723072	9679925	198	199	33,302	
41	723100	9679901	199	200	30,480	

	1				
42	723125	9679878	33	34	37,443
43	723149	9679857	34	35	31,623
44	723171	9679832	35	36	31,064
45	723193	9679804	36	37	30,232
46	723226	9679786	37	38	30,610
47	723248	9679762	38	39	29,732
48	723260	9679733	39	40	32,016
49	723292	9679751	40	41	36,878
50	723784	9680517	41	42	33,971
51	723810	9680539	42	43	31,890
52	723837	9680563	43	44	33,302
53	723865	9680587	44	45	35,609
54	723890	9680609	45	46	37,590
55	723918	9680632	46	47	32,558
56	723942	9680651	47	48	31,385
57	723967	9680671	48	49	36,715
58	723991	9680691	49	166	27,295
59	724014	9680710	8	10	31,953
60	724035	9680728	10	50	32,450
61	724056	9680745	50	51	34,059
62	724081	9680767	51	52	36,125
63	724110	9680792	52	53	36,878
64	724137	9680815	53	54	33,302
65	724161	9680835	54	55	36,235
66	724179	9680850	55	56	30,610
67	724199	9680866	56	188	38,079
68	724219	9680885	188	189	31,890
69	724241	9680905	189	190	30,480
70	724266	9680925	56	57	32,016
71	724288	9680943	57	58	31,241
72	724309	9680959	58	59	29,833
73	724331	9680976	59	60	27,659
74	724358	9680997	60	185	31,828
75	724387	9681019	185	186	36,401
76	724417	9681039	186	187	35,384
77	724442	9681057	60	61	27,019
78	724465	9681074	61	62	33,302
79	724489	9681091	62	63	38,288
80	724524	9681104	63	64	35,468
81	724562	9681108	64	65	31,241
82	724593	9681103	65	66	23,431
83	724628	9681095	66	181	34,540
84	724672	9681086	181	182	31,145
85	724708	9681091	182	183	27,803
86	724744	9681101	183	184	29,069

87	724767	9681117	66	67	25,612
88	724789	9681099	67	68	27,586
89	724815	9681081	68	69	29,732
90	724835	9681063	69	70	32,016
91	724862	9681053	70	71	28,425
92	724893	9681055	71	72	26,401
93	724922	9681056	72	177	34,785
94	724948	9681046	177	178	30,000
95	724968	9681028	178	179	31,401
96	724989	9681007	179	180	30,000
97	725012	9680986	72	73	27,803
98	725029	9680971	73	74	34,205
99	725040	9680942	74	75	36,401
100	725025	9680916	75	173	33,838
101	725002	9680901	173	174	30,610
102	724974	9680883	174	175	32,016
103	724952	9680868	175	176	32,802
104	724921	9680848	75	76	36,056
105	724896	9680833	76	169	31,241
106	724874	9680818	169	170	27,803
107	724847	9680798	170	171	35,609
108	724818	9680776	171	172	32,016
109	724794	9680759	76	77	30,806
110	724772	9680743	77	167	36,359
111	724747	9680724	167	168	36,401
112	724725	9680707	77	78	28,601
113	724699	9680686	78	79	29,411
114	724669	9680663	79	80	37,336
115	724638	9680640	80	81	38,210
116	724614	9680622	81	82	31,401
117	724587	9680602	82	83	35,903
118	724563	9680584	83	84	44,911
119	724539	9680566	84	85	36,346
120	724515	9680548	85	86	37,363
121	724490	9680529	86	87	28,018
122	724465	9680508	87	88	28,425
123	724440	9680488	88	89	31,623
124	724411	9680470	89	90	26,907
125	724388	9680454	90	91	28,792
126	724360	9680433	91	92	31,064
127	724334	9680413	92	93	29,017
128	724307	9680393	93	94	27,857
129	724281	9680374	94	95	26,907
130	724257	9680355	95	96	29,698
131	724234	9680338	96	97	31.145

132	724207	9680317	97	98	22,672
133	724182	9680298	98	99	31,016
134	724160	9680281	99	100	30,017
135	724136	9680263	100	101	27,459
136	724115	9680246	101	237	29,206
137	724091	9680228	237	238	32,802
138	724064	9680206	238	239	29,206
139	724033	9680183	239	240	28,653
140	724009	9680164	101	102	33,287
141	723988	9680149	102	103	26,627
142	723965	9680131	103	104	36,892
143	723944	9680112	104	241	33,838
144	723920	9680095	241	242	36,249
145	723891	9680072	242	243	33,422
146	723861	9680052	104	105	29,155
147	723833	9680032	105	234	37,537
148	723809	9680011	234	235	29,732
149	723786	9679993	235	236	37,014
150	723763	9679975	105	106	26,627
151	723734	9679951	106	244	35,440
152	723713	9679936	244	245	34,015
153	723687	9679915	245	246	37,014
154	723662	9679895	106	107	33,601
155	723636	9679874	107	108	36,401
156	723614	9679858	108	109	29,411
157	723588	9679839	109	110	27,203
158	723560	9679817	110	247	34,670
159	723538	9679798	247	248	36,069
160	723509	9679777	248	249	29,732
161	723481	9679764	110	231	33,601
162	723454	9679758	231	232	35,468
163	723419	9679757	232	233	31,145
164	723382	9679757	110	111	31,401
165	723347	9679757	111	250	34,828
166	723319	9679755	250	251	34,655
167	724461	9681026	251	252	31,145
168	724483	9680997	111	112	27,803
169	724441	9681019	112	229	30,529
170	724458	9680997	229	230	37,014
171	724480	9680969	112	113	33,422
172	724500	9680944	113	114	37,802
173	724398	9680987	114	115	38,601
174	724417	9680963	115	253	36,069
175	724437	9680938	253	254	35,228
176	724457	9680912	254	255	31.113

177	724320	9680926	115	116	30,000
178	724338	9680902	116	225	29,411
179	724357	9680877	225	226	35,384
180	724375	9680853	226	227	31,401
181	724211	9680837	227	228	33,601
182	724232	9680814	116	117	33,601
183	724249	9680792	117	118	30,000
184	724268	9680770	118	222	38,288
185	724058	9680706	222	223	35,609
187	724104	9680651	223	224	37,802
186	724080	9680677	118	119	35,014
188	723951	9680614	119	256	31,145
190	723992	9680567	256	257	32,757
189	723972	9680590	257	258	33,838
191	723420	9680226	119	120	30,000
192	723437	9680198	120	121	31,401
193	723456	9680168	121	122	32,650
194	723349	9680176	122	123	32,016
196	723390	9680115	123	124	34,132
195	723369	9680146	124	125	28,018
197	723131	9680035	125	259	35,847
198	723155	9680006	259	260	36,892
200	723203	9679964	260	261	36,715
199	723180	9679984	125	126	20,025
201	723454	9679790	126	219	29,155
202	723453	9679824	219	220	30,232
203	723568	9679868	220	221	41,400
204	723555	9679898	126	127	32,802
205	723645	9679928	127	128	33,601
206	723746	9680001	128	129	32,202
207	723767	9680026	129	130	30,610
208	723746	9680053	130	262	37,014
209	723718	9680080	262	263	36,359
210	723869	9680103	263	264	32,280
212	723821	9680156	130	131	28,601
211	723845	9680130	131	216	31,953
213	724093	9680274	216	217	33,838
214	724074	9680300	217	218	32,802
215	724060	9680325	131	132	34,205
216	724223	9680368	132	133	31,401
217	724204	9680396	133	265	36,715
218	724184	9680422	265	266	35,468
219	724349	9680460	133	134	36,715
220	724332	9680485	134	135	27,803
221	724307	9680518	135	267	33.287

222	724538	9680613	267	268	31,385
223	724516	9680641	268	269	36,056
224	724493	9680671	269	270	36,249
225	724590	9680639	270	271	36,249
226	724566	9680665	271	272	31,953
227	724547	9680690	272	273	33,242
228	724527	9680717	273	274	32,696
229	724709	9680733	135	136	27,019
230	724686	9680762	136	213	30,000
231	724752	9680770	213	214	32,202
232	724729	9680797	214	215	28,653
233	724708	9680820	136	137	30,000
234	724871	9680861	137	275	36,235
235	724851	9680883	275	276	38,013
236	724828	9680912	137	138	34,828
237	724984	9680924	138	139	38,601
238	724964	9680950	139	140	30,610
239	724946	9680973	140	141	25,807
240	724921	9680987	141	142	29,206
241	724940	9680820	142	143	28,320
242	724955	9680787	143	144	29,411
243	724976	9680761	144	145	37,014
244	724884	9680784	145	210	38,013
245	724885	9680750	210	211	36,125
246	724886	9680713	211	212	35,384
247	724801	9680724	145	146	36,056
248	724827	9680699	146	147	34,409
249	724849	9680679	147	277	34,000
250	724769	9680697	277	278	35,341
251	724793	9680672	278	279	34,438
252	724814	9680649	279	280	37,162
253	724663	9680614	147	148	31,890
254	724683	9680585	148	149	29,206
255	724705	9680563	149	281	32,558
256	724562	9680545	281	282	30,871
258	724598	9680489	149	150	29,206
257	724579	9680517	150	206	31,064
259	724406	9680423	206	207	32,650
260	724426	9680392	207	208	34,205
261	724444	9680360	208	209	38,897
262	724286	9680332	150	151	37,643
263	724305	9680301	151	152	25,807
264	724314	9680270	152	153	33,422
265	724200	9680266	153	154	32,016
266	724213	9680233	154	205	37,121

267	724154	9680235	154	155	33,422
268	724166	9680206	155	156	27,203
269	724178	9680172	156	283	33,601
270	724193	9680139	283	284	31,780
271	724208	9680106	284	285	27,514
272	724219	9680076	285	286	31,385
273	724231	9680045	156	157	32,202
274	724244	9680015	157	203	35,228
275	724108	9680196	203	204	32,696
276	724125	9680162	157	158	35,609
277	723849	9680002	158	287	28,302
278	723864	9679970	287	288	33,242
279	723879	9679939	288	289	32,573
280	723894	9679905	289	290	31,623
281	723792	9679961	290	291	29,411
282	723805	9679933	158	159	29,069
283	723634	9679831	159	160	35,805
284	723647	9679802	160	161	30,871
285	723656	9679776	161	162	27,659
286	723668	9679747	162	201	32,000
287	723584	9679802	201	202	34,015
288	723596	9679771	162	163	35,014
289	723606	9679740	163	292	29,833
290	723576	9679730	292	293	36,056
291	723548	9679721	293	294	29,017
292	723442	9679738	163	164	37,000
293	723440	9679702	164	165	35,000
294	723439	9679673	165	166	28,071
295	723272	9679704	48	295	31,385
296	723296	9679685	295	296	30,610
297	723325	9679673	296	297	31,385
298	723355	9679664	297	298	31,321
299	723386	9679657	298	299	31,780
300	723414	9679653	299	300	28,284

Tabla A 4. Detalle de pesos y distancias entre nodos

A.5 Flujos de carga - Cargas

Nombre red	Nombre del tramo	Nro. equipo	Código	VA (V)	VB (V)	VC (V)	Conc ajust A (kVA)	Conc ajust B (kVA)	Conc ajust C (kVA)	Conc ajust. (kVA)	FP Conc ajust A (%)	FP Conc ajust B (%)	FP Conc ajust C (%)	FP conc. ajust. (%)
SE	RR1	RR1	Carga concentrada		21758,8			16		16		91		91
SE	AL1	AL1	Carga concentrada		21636,9			8		8		92		92
SE	AP1	AP1	Carga concentrada	21841,2	21841,2	21841,2	51	51	51	153	93,04	93,04	93,04	93,04
SE	AO1	AO1	Carga concentrada			21802,2			20	20			92	92
SE	AN1	AN1	Carga concentrada	21691,7			17			17	91			91
SE	AM1	AM1	Carga concentrada	21760,2	21760,2	21760,2	16,3	16,3	16,3	49	93,09	93,09	93,09	93,09
SE	AK1	AK1	Carga concentrada	21865	21865	21865	114,9	114,9	114,9	344,8	93,75	93,75	93,75	93,75
SE	AJ1	AJ1	Carga concentrada	21879,1	21879,1	21879,1	186,6	186,6	186,6	559,9	92,82	92,82	92,82	92,82
SE	AI1	AI1	Carga concentrada			21822			8	8			93	93
SE	AG1	AG1	Carga concentrada	21747,7	21747,7	21747,7	11	11	11	33	93,04	93,04	93,04	93,04
SE	AH1	AH1	Carga concentrada	21881,9	21881,9	21881,9	186,6	186,6	186,6	559,9	92,06	92,06	92,06	92,06
SE	AF1	AF1	Carga concentrada	21853,8			50			50	93			93
SE	AE1	AE1	Carga concentrada			21822,1			34	34			93	93
SE	AD1	AD1	Carga concentrada		21651,3			9		9		94		94
SE	AC1	AC1	Carga concentrada	21772,9	21772,9	21772,9	16,3	16,3	16,3	49	92,92	92,92	92,92	92,92

SF	AB1	AB1	Carga	21879.2	21879.2	21879.2	116.5	116.5	116.5	349.6	93,36	93.36	93.36	93.36
SE	ZZ1	ZZ1	Carga concentrada		21724,3			16		16		91		91
SE	YY1	YY1	Carga concentrada			21802			25	25			92	92
SE	XX1	XX1	Carga concentrada	21891,5	21891,5	21891,5	116,5	116,5	116,5	349,6	93,62	93,62	93,62	93,62
SE	AT1	AT1	Carga concentrada	21907,7	21907,7	21907,7	186,6	186,6	186,6	559,9	93,01	93,01	93,01	93,01
SE	WW1	WW1	Carga concentrada	21895,6			69			69	94			94
SE	VV1	VV1	Carga concentrada	21899,5	21899,5	21899,5	116,5	116,5	116,5	349,6	93,25	93,25	93,25	93,25
SE	UU1	UU1	Carga concentrada		21881,5			50		50		91		91
SE	TT1	TT1	Carga concentrada	21864,9			34			34	94			94
SE	SS1	SS1	Carga concentrada	21913,6	21913,6	21913,6	116,6	116,6	116,6	349,8	93,76	93,76	93,76	93,76
SE	AR1	AR1	Carga concentrada	21927,3	21927,3	21927,3	186,6	186,6	186,6	559,9	92,1	92,1	92,1	92,1
SE	B1	B1	Carga concentrada	21580,3			10			10	90			90
SE	01	01	Carga concentrada	21687,4	21687,4	21687,4	31,7	31,7	31,7	95	93,08	93,08	93,08	93,08
SE	S1	S1	Carga concentrada	21669,3	21669,3	21669,3	116,6	116,6	116,6	349,9	93,01	93,01	93,01	93,01
SE	U1	U1	Carga concentrada	21546,6			29			29	94			94
SE	V1	V1	Carga concentrada	21637,3	21637,3	21637,3	186,6	186,6	186,6	559,9	90,99	90,99	90,99	90,99
SE	AZ1	AZ1	Carga concentrada	21624	21624	21624	349,9	349,9	349,9	1049,8	92,03	92,03	92,03	92,03

SF	וחח	וחח	Carga	21578 4	21578.4	21578.4	116.6	116.6	116.6	349.8	93 79	93 79	93 79	93 79
52	001	DD1	Carras	21370,4	21370,4	21370,4	110,0	110,0	110,0	545,0	55,75	55,75	55,75	55,75
SE	FF1	FF1	Carga concentrada	21571,2	21571,2	21571,2	116,6	116,6	116,6	349,8	92,92	92,92	92,92	92,92
SE	HH1	HH1	Carga concentrada		21555,5			42		42		91		91
SE	JJ1	JJ1	Carga concentrada	21560,6	21560,6	21560,6	114,9	114,9	114,9	344,7	92,37	92,37	92,37	92,37
SE	MM1	MM1	Carga concentrada	21574,9	21574,9	21574,9	186,6	186,6	186,6	559,9	91,77	91,77	91,77	91,77
SE	NN1	NN1	Carga concentrada	21566,7			69			69	95			95
SE	001	001	Carga concentrada		21491			25		25		94		94
SE	QQ1	QQ1	Carga concentrada			21279,3			9	9			91	91
SE	КК1	КК1	Carga concentrada			21451,7			16	16			95	95
SE	1	1	Carga concentrada			21539,7			30	30			95	95
SE	GG1	GG1	Carga concentrada	21579,3			63			63	95			95
SE	CC1	CC1	Carga concentrada	21506,3			65			65	0,95			0,95
SE	BB1	BB1	Carga concentrada	21584,8	21584,8	21584,8	116,5	116,5	116,5	349,6	93,02	93,02	93,02	93,02
SE	AA1	AA1	Carga concentrada	21604,1	21604,1	21604,1	186,5	186,5	186,5	559,4	92,93	92,93	92,93	92,93
SE	Z1	Z1	Carga concentrada	21587,9	21587,9	21587,9	116,5	116,5	116,5	349,6	93,09	93,09	93,09	93,09
SE	Y1	Y1	Carga concentrada	21443,5			18			18	94			94
SE	X1	X1	Carga concentrada	21603,3	21603,3	21603,3	116,7	116,7	116,7	350	94,7	94,7	94,7	94,7

			Carga											
SE	W1	W1	concentrada		21543,4			38		38		92		92
SE	T1	T1	Carga concentrada		21603,5			37		37		95		95
SE	AW1	AW1	Carga concentrada	21672,6	21672,6	21672,6	186,6	186,6	186,6	559,9	92,04	92,04	92,04	92,04
SE	Q1	Q1	Carga concentrada	21674,6	21674,6	21674,6	45	45	45	134,9	92,39	92,39	92,39	92,39
SE	AS1	AS1	Carga concentrada	21740,3	21740,3	21740,3	184,9	184,9	184,9	554,8	94,13	94,13	94,13	94,13
SE	P1	P1	Carga concentrada			21721,8			60	60			95	95
SE	N1	N1	Carga concentrada			21707,9			35	35			93	93
SE	M1	M1	Carga concentrada	21514,5	21514,5	21514,5	7	7	7	21	93,12	93,12	93,12	93,12
SE	L1	L1	Carga concentrada	21683,9			30			30	92			92
SE	К1	К1	Carga concentrada	21733,6	21733,6	21733,6	23,3	23,3	23,3	69,9	92,5	92,5	92,5	92,5
SE	J1	J1	Carga concentrada		21823			69		69		94		94
SE	11	11	Carga concentrada	21809,6			50			50	91			91
SE	G1	G1	Carga concentrada	21792,6	21792,6	21792,6	28,3	28,3	28,3	85	92,07	92,07	92,07	92,07
SE	H1	H1	Carga concentrada	21824,7	21824,7	21824,7	51,6	51,6	51,6	154,7	92,3	92,3	92,3	92,3
SE	F1	F1	Carga concentrada			21838,2			51	51			92	92
SE	E1	E1	Carga concentrada		21757,8			32		32		93		93
SE	D1	D1	Carga concentrada			21881,7			68	68			90	90

SE	C1	C1	Carga concentrada	21866,3	21866,3	21866,3	46,6	46,6	46,6	139,7	92,24	92,24	92,24	92,24
SE	A1	A1	Carga concentrada	21900,9	21900,9	21900,9	50	50	50	150	90,76	90,76	90,76	90,76

Tabla A 5. Detalle de caídas de voltaje

A.6 Flujos de carga en subestación

					Potencia total de	Potencia total de	Potencia total de	Fp	
			Capacidad		paso	paso	paso	promedio	IEquil
Nro. equipo	Id equipo	Código	(kVA)	V	(kW)	(kvar)	(kVA)	(%)	(A)
1	SE	Subestación		22000	11768	4900	12747	92,32	334,5

Tabla A 6. Detalle de carga en la subestación propuesta

A.7 Flujos de líneas y cargas

Nro. equipo	Nudo origen	Nudo destino	Id equipo	Código	v	Longitud pi	Potencia total de paso (kW)	Potencia total de paso (kvar)	Potencia total de paso (kVA)	Fp promedio (%)	IEquil (A)	Desfase I (°)	Pérdidas totales (kW)	Pérdidas totales (kvar)	Carga (%)
1	301	215	3X4/0/(4/0)	Línea aérea equilibrada	21986,9	307,3	5994	2785	6609	90,69	173,4	-24,92	2,7	3,6	48,9
215-214	215	214	3X3/0(3/0)	Línea aérea equilibrada	21982,6	99,5	5669	2069	6035	93,94	158,5	-20,07	0,9	1	50,6
214-213	214	1	3X4/0/(4/0)	Línea aérea equilibrada	21974,7	98,1	11760	4892	12737	92,33	334,5	-22,61	3,2	4,3	94,2
213-136	1	2	3X4/0/(4/0)	Línea aérea equilibrada	21965,7	112,3	11620	4824	12582	92,36	330,6	-22,58	3,6	4,8	93,1
136-135	2	3	3X3/0(3/0)	Línea aérea equilibrada	21962,8	88,4	4317	1731	4651	92,82	122,2	-21,9	0,5	0,5	39,1
135-267	3	4	1X2(2)	Línea aérea equilibrada	21962,7	107,8	15	7	16	90,59	1,3	-25,11	0	0	0,7
267-268	4	5	1X2(2)	Línea aérea equilibrada	21962,6	106,3	15	7	16	90,55	1,3	-25,16	0	0	0,7
268-269	5	6	1X2(2)	Línea aérea equilibrada	21962,5	118	15	7	16	90,52	1,3	-25,2	0	0	0,7
269-270	6	7	1X2(2)	Línea aérea equilibrada	21962,4	118,1	15	7	16	90,48	1,3	-25,26	0	0	0,7

270-271	7	8	1X2(2)	Línea aérea equilibrada	21962,3	118,9	15	7	16	90,44	1,3	-25,31	0	0	0,7
271-272	8	9	1X2(2)	Línea aérea equilibrada	21962,2	107,5	15	7	16	90,4	1,3	-25,36	0	0	0,7
272-273	9	10	1X2(2)	Línea aérea equilibrada	21962,1	107,3	15	7	16	90,37	1,3	-25,41	0	0	0,7
273-274	10	11	1X2(2)	Línea aérea equilibrada	21962	105,3	15	7	16	90,33	1,3	-25,46	0	0	0,7
134-133	12	13	3X3/0(3/0)	Línea aérea equilibrada	21959,7	92	4302	1724	4634	92,83	121,8	-21,89	0,5	0,5	38,9
133-132	13	16	3X3/0(3/0)	Línea aérea equilibrada	21956,9	103,3	3455	1380	3720	92,87	97,8	-21,83	0,3	0,4	31,2
132-131	16	17	3X3/0(3/0)	Línea aérea equilibrada	21953,8	116,1	3454	1379	3720	92,87	97,8	-21,83	0,4	0,4	31,2
131-130	17	18	3X3/0(3/0)	Línea aérea equilibrada	21951,5	86,4	3422	1367	3685	92,86	96,9	-21,84	0,3	0,3	31
130-129	18	25	3X3/0(3/0)	Línea aérea equilibrada	21948,8	104,1	3376	1346	3634	92,89	95,6	-21,8	0,3	0,4	30,5
129-128	25	26	3X3/0(3/0)	Línea aérea equilibrada	21946,2	101,5	3376	1345	3634	92,89	95,6	-21,8	0,3	0,4	30,5
128-127	26	27	3X3/0(3/0)	Línea aérea equilibrada	21943,5	112,5	3048	1217	3282	92,87	86,3	-21,84	0,3	0,3	27,6
127-126	27	28	3X3/0(3/0)	Línea aérea equilibrada	21940,9	112	3048	1216	3282	92,88	86,3	-21,84	0,3	0,3	27,6
126-125	28	32	3X3/0(3/0)	Línea aérea equilibrada	21938,3	109,7	2982	1192	3212	92,85	84,5	-21,87	0,3	0,3	27
125-124	32	36	3X3/0(3/0)	Línea aérea equilibrada	21936,8	93,4	2131	860	2298	92,74	60,5	-22,06	0,1	0,1	19,3
124-123	36	37	3X3/0(3/0)	Línea aérea equilibrada	21934,8	116,5	2131	860	2298	92,74	60,5	-22,06	0,2	0,2	19,3
123-122	37	38	3X3/0(3/0)	Línea aérea equilibrada	21933,1	105,2	2108	850	2273	92,75	59,8	-22,04	0,1	0,1	19,1
122-121	38	39	3X3/0(3/0)	Línea aérea equilibrada	21931,4	102,5	2108	849	2273	92,75	59,8	-22,04	0,1	0,1	19,1

121-120	39	40	3X3/0(3/0)	Línea aérea equilibrada	21929.8	102.3	2108	849	2272	92.75	59.8	-22.04	0.1	0.1	19.1
120-119	40	41	3X3/0(3/0)	Línea aérea equilibrada	21928.1	99.3	2108	849	2272	92.75	59.8	-22.04	0.1	0.1	19.1
119-118	41	45	3X3/0(3/0)	Línea aérea equilibrada	21926,5	100	2093	842	2256	92,77	59,4	-22,02	0,1	0,1	19
118-117	45	48	3X3/0(3/0)	Línea aérea equilibrada	21925,1	99,8	1765	715	1905	92,68	50,1	-22,16	0,1	0,1	16
117-116	48	49	3X3/0(3/0)	Línea aérea equilibrada	21923,6	111,6	1765	715	1904	92,68	50,2	-22,16	0,1	0,1	16
116-115	49	55	3X3/0(3/0)	Línea aérea equilibrada	21922,3	95,7	1719	696	1855	92,69	48,8	-22,16	0,1	0,1	15,6
115-114	55	59	3X3/0(3/0)	Línea aérea equilibrada	21920,6	128,3	1711	693	1846	92,68	48,6	-22,16	0,1	0,1	15,5
114-113	59	60	3X3/0(3/0)	Línea aérea equilibrada	21919	124,5	1710	693	1846	92,68	48,6	-22,16	0,1	0,1	15,5
113-112	60	61	3X3/0(3/0)	Línea aérea equilibrada	21917,5	107,1	1710	693	1845	92,68	48,6	-22,17	0,1	0,1	15,5
112-111	61	64	3X3/0(3/0)	Línea aérea equilibrada	21916,3	93,2	1679	680	1811	92,68	47,7	-22,17	0,1	0,1	15,2
111-110	64	68	3X3/0(3/0)	Línea aérea equilibrada	21915	105,5	1632	661	1761	92,68	46,4	-22,18	0,1	0,1	14,8
110-109	68	75	3X3/0(3/0)	Línea aérea equilibrada	21914,3	81,5	1084	428	1165	93	30,7	-21,68	0	0	9,8
109-108	75	76	3X3/0(3/0)	Línea aérea equilibrada	21913,5	99	1084	428	1165	93	30,7	-21,69	0	0	9,8
108-107	76	77	3X3/0(3/0)	Línea aérea equilibrada	21912,5	119,1	1084	428	1165	93	30,7	-21,69	0	0	9,8
107-106	77	78	3X3/0(3/0)	Línea aérea equilibrada	21911,5	110,8	1084	428	1165	93	30,7	-21,69	0	0	9,8
106-105	78	82	3X3/0(3/0)	Línea aérea equilibrada	21910,8	87,3	1076	425	1157	92,99	30,5	-21,69	0	0	9,7
105-104	82	86	3X3/0(3/0)	Línea aérea equilibrada	21910,4	95,5	555	215	595	93,22	15,7	-21,34	0	0	5

104-103	86	90	3X3/0(3/0)	Línea aérea equilibrada	21910,2	121	230	94	249	92,63	6,6	-22,26	0	0	2,1
103-102	90	91	3X3/0(3/0)	Línea aérea equilibrada	21910	84,8	230	94	249	92,62	6,6	-22,28	0	0	2,1
102-101	91	92	3X3/0(3/0)	Línea aérea equilibrada	21909,7	110,3	230	94	249	92,61	6,6	-22,29	0	0	2,2
101-237	92	93	1X2(2)	Línea aérea equilibrada	21909,6	97,5	7	3	8	91,29	0,6	-24,22	0	0	0,3
237-238	93	94	1X2(2)	Línea aérea equilibrada	21909,6	105,2	7	3	8	91,23	0,6	-24,3	0	0	0,3
238-239	94	95	1X2(2)	Línea aérea equilibrada	21909,5	100,1	7	3	8	91,16	0,6	-24,4	0	0	0,4
239-240	95	96	1X2(2)	Línea aérea equilibrada	21909,5	92,4	7	3	8	91,1	0,6	-24,49	0	0	0,4
100-99	97	98	3X3/0(3/0)	Línea aérea equilibrada	21909,5	97	223	91	241	92,64	6,3	-22,24	0	0	2
99-98	98	99	3X3/0(3/0)	Línea aérea equilibrada	21909,3	102,2	223	91	241	92,63	6,3	-22,25	0	0	2
98-97	99	100	3X3/0(3/0)	Línea aérea equilibrada	21909,2	74,9	223	91	241	92,63	6,3	-22,27	0	0	2
7	101	100	3X3/0(3/0)	Línea aérea equilibrada	21909	98,7	177	72	191	92,63	5	-22,26	0	0	1,7
96-95	101	102	3X3/0(3/0)	Línea aérea equilibrada	21908,8	98,3	177	72	191	92,62	5	-22,28	0	0	1,6
95-94	102	103	3X3/0(3/0)	Línea aérea equilibrada	21908,7	87,1	177	72	191	92,61	5	-22,3	0	0	1,6
94-93	103	104	3X3/0(3/0)	Línea aérea equilibrada	21908,6	92	177	72	191	92,6	5	-22,31	0	0	1,6
93-92	104	105	3X3/0(3/0)	Línea aérea equilibrada	21908,5	93,2	161	65	174	92,8	4,6	-22	0	0	1,5
92-91	105	106	3X3/0(3/0)	Línea aérea equilibrada	21908,3	103,1	161	65	174	92,79	4,6	-22,01	0	0	1,5
91-90	106	107	3X3/0(3/0)	Línea aérea equilibrada	21908,2	94	161	65	174	92,78	4,6	-22,03	0	0	1,5

90-89	107	108	3X3/0(3/0)	Línea aérea equilibrada	21908,1	86,9	161	65	174	92,77	4,6	-22,05	0	0	1,5
89-88	108	109	3X3/0(3/0)	Línea aérea equilibrada	21908	103,3	143	57	154	92,9	4,1	-21,85	0	0	1,3
88-87	109	110	3X3/0(3/0)	Línea aérea equilibrada	21907,9	94,9	143	57	154	92,88	4,1	-21,87	0	0	1,3
87-86	110	111	3X3/0(3/0)	Línea aérea equilibrada	21907,8	92,1	143	57	154	92,87	4,1	-21,89	0	0	1,3
86-85	111	112	3X3/0(3/0)	Línea aérea equilibrada	21907,6	124,7	143	57	154	92,86	4,1	-21,91	0	0	1,3
85-84	112	113	3X3/0(3/0)	Línea aérea equilibrada	21907,6	119,2	0	0	0	0	0	89,87	0	0	0
104-241	86	87	3X3/0(3/0)	Línea aérea equilibrada	21910,1	110	324	122	346	93,62	9,1	-20,69	0	0	2,9
241-242	87	88	3X3/0(3/0)	Línea aérea equilibrada	21909,8	115,9	324	122	346	93,62	9,1	-20,7	0	0	2,9
242-243	88	89	3X3/0(3/0)	Línea aérea equilibrada	21909,6	110,6	324	122	346	93,61	9,1	-20,71	0	0	2,9
105-234	82	83	3X3/0(3/0)	Línea aérea equilibrada	21910,3	125,6	521	210	562	92,75	14,8	-22,07	0	0	4,7
234-235	83	84	3X3/0(3/0)	Línea aérea equilibrada	21909,9	97,1	521	210	562	92,75	14,8	-22,08	0	0	4,7
235-236	84	85	3X3/0(3/0)	Línea aérea equilibrada	21909,4	122,2	521	210	562	92,74	14,8	-22,08	0	0	4,7
106-244	78	79	1X2(2)	Línea aérea equilibrada	21911,5	117,4	8	3	8	93,01	0,6	-21,67	0	0	0,3
244-245	79	80	1X2(2)	Línea aérea equilibrada	21911,4	111,1	8	3	8	92,94	0,6	-21,78	0	0	0,3
245-246	80	81	1X2(2)	Línea aérea equilibrada	21911,4	123,1	8	3	8	92,87	0,6	-21,88	0	0	0,3
110-231	68	69	3X3/0(3/0)	Línea aérea equilibrada	21914,9	114,1	31	13	33	92,67	0,9	-22,18	0	0	0,3
231-232	69	70	3X3/0(3/0)	Línea aérea equilibrada	21914,9	115,6	31	13	33	92,6	0,9	-22,29	0	0	0,3

232-233	70	71	3X3/0(3/0)	Línea aérea	21014.0	98	31	13	33	97 53	0.9	-22.4	0	0	0.3
110 247	10	71	2X2/0(2/0)	Línea aérea	21914,9	30	517	220	55	92,55	0,9	-22,4	0	0	1.7
110-247	68	72	3X3/0(3/0)	equilibrada	21914,5	112,7	517	220	562	91,99	14,8	-23,2	0	0	4,7
247-248	72	73	3X3/0(3/0)	Línea aérea equilibrada	21914	118	517	220	562	91,99	14,8	-23,21	0	0	4,7
248-249	73	74	3X3/0(3/0)	Línea aérea equilibrada	21913.6	102,6	517	221	562	91,98	14,8	-23,22	0	0	4,7
111-250	64	65	1X2(2)	Línea aérea	21916	116.8	47	19	50	97.83	4	-21.94	0	0	22
111-230	04	05	17(2)	equinorada	21710	110,0	7	17	50	72,05	-	-21,74	0	0	2,2
250-251	65	66	1X2(2)	Línea aérea equilibrada	21915,7	112,1	47	19	50	92,82	4	-21,95	0	0	2,2
251-252	66	67	1X2(2)	Línea aérea equilibrada	21915.4	100.1	47	19	50	92.81	4	-21.97	0	0	2.2
			(=)	Línea aérea						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
112-229	61	62	1X2(2)	equilibrada	21917,3	101,3	32	13	34	92,7	2,7	-22,13	0	0	1,5
229-230	62	63	1X2(2)	Línea aérea equilibrada	21917,1	119	32	13	34	92,69	2,7	-22,16	0	0	1,5
				Línea aérea	, , , , , , , , , , , , , , , , , , ,							, í			
115-253	55	56	1X2(2)	equilibrada	21922,3	122,5	9	3	9	93,16	0,7	-21,42	0	0	0,4
253-254	56	57	1X2(2)	Línea aérea equilibrada	21922,2	111,1	9	3	9	93,1	0,7	-21,52	0	0	0,4
254-255	57	58	1X2(2)	Línea aérea	21922.2	107.6	9	3	9	93.04	0.7	-21.61	0	0	0.4
234 233	51	50	1712(2)		21722,2	107,0	,	5	,	<i>y3</i> ,04	0,7	21,01	0	0	0,1
116-225	49	50	3X3/0(3/0)	equilibrada	21923,6	101,6	46	19	49	92,58	1,3	-22,32	0	0	0,4
225-226	50	51	3X3/0(3/0)	Línea aérea equilibrada	21923.5	113.6	46	19	49	92.53	1.3	-22.39	0	0	0.4
				Líneo gáreo		,.				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,-	,_ ,			
226-227	51	52	3X3/0(3/0)	equilibrada	21923,5	102,9	46	19	50	92,49	1,3	-22,46	0	0	0,4
227-228	52	53	3X3/0(3/0)	Línea aérea equilibrada	21923,4	108,1	46	19	50	92,44	1,3	-22,52	0	0	0,4
118-222	45	46	3X3/0(3/0)	Línea aérea equilibrada	21926,2	127,8	328	127	351	93,24	9,3	-21,3	0	0	3

222-223	46	47	3X3/0(3/0)	Línea aérea	21925.9	116	328	127	351	93 23	93	-21.31	0	0	3
223-224	47	54	3X3/0(3/0)	Línea aérea equilibrada	21925.6	121.3	328	127	351	93.22	9.3	-21.32	0	0	3
119-256	41	42	1X2(2)	Línea aérea equilibrada	21928	102,5	15	7	16	90,4	1,3	-25,41	0	0	0,7
256-258	42	43	1X2(2)	Línea aérea equilibrada	21927,9	112,7	15	7	16	90,37	1,3	-25,46	0	0	0,7
258-257	43	44	1X2(2)	Línea aérea equilibrada	21927,9	108,4	15	7	16	90,33	1,3	-25,51	0	0	0,7
125-259	32	33	3X3/0(3/0)	Línea aérea equilibrada	21937,6	118,1	851	332	913	93,15	24	-21,41	0	0	7,7
259-260	33	34	3X3/0(3/0)	Línea aérea equilibrada	21937,2	120,7	328	125	351	93,49	9,2	-20,87	0	0	3
260-261	34	35	3X3/0(3/0)	Línea aérea equilibrada	21936,9	119,4	328	125	351	93,48	9,2	-20,89	0	0	3
126-219	28	29	1X2(2)	Línea aérea equilibrada	21940,5	93,7	65	24	69	93,88	5,5	-20,23	0	0	3
219-220	29	30	1X2(2)	Línea aérea equilibrada	21940,2	100,7	65	24	69	93,88	5,5	-20,24	0	0	3
220-221	30	31	1X2(2)	Línea aérea equilibrada	21939,7	133,2	65	24	69	93,87	5,5	-20,25	0	0	3
130-262	18	22	1X2(2)	Línea aérea equilibrada	21951,2	119,4	46	21	50	90,83	4	-24,8	0	0	2,2
262-263	22	23	1X2(2)	Línea aérea equilibrada	21950,9	121	46	21	50	90,82	4	-24,81	0	0	2,2
263-264	23	24	1X2(2)	Línea aérea equilibrada	21950,6	106,6	46	21	50	90,8	4	-24,83	0	0	2,2
131-216	17	19	1X2(2)	Línea aérea equilibrada	21953,6	104,9	32	12	34	93,73	2,7	-20,46	0	0	1,5
216-217	19	20	1X2(2)	Línea aérea equilibrada	21953,4	105,5	32	12	34	93,72	2,7	-20,48	0	0	1,5
217-218	20	21	1X2(2)	Línea aérea equilibrada	21953,3	108,8	32	12	34	93,7	2,7	-20,5	0	0	1,5

133-265	13	14	3X3/0(3/0)	Línea aérea equilibrada	21958.9	121.3	846	344	913	92.66	24	-22.15	0	0	7.7
265-266	14	15	3X3/0(3/0)	Línea aérea equilibrada	21958.6	113.8	329	124	352	93.62	9.2	-20.64	0	0	3
136-137	2	114	3X3/0(3/0)	Línea aérea equilibrada	21959,9	100.6	7300	3088	7926	92,1	208,3	-22,98	1,5	1,7	66,6
137-275	114	116	1X2(2)	Línea aérea equilibrada	21959,9	120,3	9	5	10	88,77	0,8	-27,47	0	0	0,4
275-276	116	117	1X2(2)	Línea aérea equilibrada	21959,8	119,4	9	5	10	88,7	0,8	-27,56	0	0	0,4
138-139	115	118	3X3/0(3/0)	Línea aérea equilibrada	21952,7	125,1	7290	3082	7914	92,11	208,1	-22,97	1,9	2,1	66,5
139-140	118	119	3X3/0(3/0)	Línea aérea equilibrada	21946,9	100,9	7288	3080	7912	92,11	208,1	-22,97	1,5	1,7	66,5
140-141	119	120	3X3/0(3/0)	Línea aérea equilibrada	21942,1	86,2	7157	3023	7769	92,12	204,4	-22,97	1,3	1,4	65,3
141-142	120	121	3X3/0(3/0)	Línea aérea equilibrada	21936,8	94,4	7155	3021	7767	92,12	204,4	-22,97	1,4	1,6	65,3
142-143	121	122	3X3/0(3/0)	Línea aérea equilibrada	21931,4	95,2	7092	2990	7697	92,15	202,6	-22,94	1,4	1,5	64,7
143-144	122	123	3X3/0(3/0)	Línea aérea equilibrada	21926	97,1	7091	2988	7695	92,15	202,6	-22,94	1,4	1,6	64,7
144-145	123	124	3X3/0(3/0)	Línea aérea equilibrada	21919,5	116,8	7090	2987	7693	92,16	202,6	-22,94	1,7	1,9	64,7
145-146	124	128	3X3/0(3/0)	Línea aérea equilibrada	21912,8	120,2	7058	2973	7659	92,16	201,7	-22,95	1,7	1,9	64,4
146-147	128	129	3X3/0(3/0)	Línea aérea equilibrada	21906,4	114	7056	2971	7656	92,17	201,7	-22,95	1,6	1,8	64,4
147-148	129	134	3X3/0(3/0)	Línea aérea equilibrada	21900,6	105,2	7008	2949	7603	92,17	200,4	-22,94	1,5	1,7	64
148-149	134	135	3X3/0(3/0)	Línea aérea equilibrada	21895,3	96,2	7006	2947	7601	92,18	200,4	-22,95	1,4	1,5	64
149-150	135	138	3X3/0(3/0)	Línea aérea equilibrada	21890,3	92,6	6861	2885	7443	92,18	196,3	-22,94	1,3	1,4	62,7

150-151	138	143	3X3/0(3/0)	Línea aérea equilibrada	21883,5	125,5	6781	2850	7356	92,19	194	-22,94	1,7	1,9	62
151-152	143	144	3X3/0(3/0)	Línea aérea equilibrada	21879	85	6780	2848	7354	92,2	194	-22,94	1,1	1,3	62
152-153	144	145	3X3/0(3/0)	Línea aérea equilibrada	21873,3	106,5	6733	2826	7302	92,21	192,7	-22,93	1,4	1,6	61,6
153-154	145	146	3X3/0(3/0)	Línea aérea equilibrada	21867,6	107,2	6732	2824	7300	92,21	192,7	-22,93	1,4	1,6	61,6
154-155	146	148	3X3/0(3/0)	Línea aérea equilibrada	21861,8	111,6	6665	2799	7229	92,2	190,9	-22,95	1,4	1,6	61
155-156	148	149	3X3/0(3/0)	Línea aérea equilibrada	21857,1	89,1	6664	2797	7227	92,21	190,9	-22,95	1,1	1,3	61
156-157	149	154	3X3/0(3/0)	Línea aérea equilibrada	21851,5	106	6597	2769	7155	92,21	189	-22,95	1,3	1,5	60,4
157-158	154	157	3X3/0(3/0)	Línea aérea equilibrada	21845,6	114,8	6596	2767	7153	92,21	189	-22,95	1,4	1,6	60,4
158-159	157	163	3X3/0(3/0)	Línea aérea equilibrada	21840,7	93,9	6567	2754	7121	92,22	188,2	-22,95	1,2	1,3	60,1
159-160	163	164	3X3/0(3/0)	Línea aérea equilibrada	21834,6	118	6566	2752	7119	92,22	188,2	-22,95	1,5	1,7	60,1
160-161	164	165	3X3/0(3/0)	Línea aérea equilibrada	21829,3	101,8	6564	2751	7117	92,23	188,2	-22,95	1,3	1,4	60,1
161-162	165	166	3X3/0(3/0)	Línea aérea equilibrada	21824,5	91,6	6563	2749	7116	92,23	188,2	-22,95	1,1	1,3	60,1
162-163	166	172	3X3/0(3/0)	Línea aérea equilibrada	21818,6	114,3	6562	2748	7114	92,24	188,2	-22,95	1,4	1,6	60,1
163-164	172	171	3X3/0(3/0)	Línea aérea equilibrada	21812,3	121,4	6541	2739	7091	92,24	187,6	-22,95	1,5	1,7	59,9
164-165	171	173	3X3/0(3/0)	Línea aérea equilibrada	21806,3	115,5	6539	2737	7089	92,25	187,6	-22,95	1,4	1,6	59,9
165-166	173	174	3X3/0(3/0)	Línea aérea equilibrada	21801,6	92,9	6505	2722	7052	92,25	186,7	-22,96	1,1	1,3	59,6
166-49	174	176	3X3/0(3/0)	Línea aérea equilibrada	21797	87,7	6504	2721	7050	92,25	186,7	-22,96	1,1	1,2	59,6

49-48	176	177	3X3/0(3/0)	Línea aérea equilibrada	21790,9	118,8	6503	2720	7049	92,26	186,7	-22,96	1,5	1,6	59,6
48-295	177	178	3X3/0(3/0)	Línea aérea equilibrada	21790,8	101,4	89	36	96	92,85	2,5	-22,07	0	0	0,8
295-296	178	179	3X3/0(3/0)	Línea aérea equilibrada	21790,8	104,8	89	36	96	92,83	2,5	-22,1	0	0	0,8
296-297	179	180	3X3/0(3/0)	Línea aérea equilibrada	21790,7	99,5	89	36	96	92,81	2,5	-22,14	0	0	0,8
297-298	180	181	3X3/0(3/0)	Línea aérea equilibrada	21790,6	103,7	89	36	96	92,78	2,5	-22,17	0	0	0,8
298-299	181	182	3X3/0(3/0)	Línea aérea equilibrada	21790,6	102,9	89	36	96	92,76	2,5	-22,2	0	0	0,8
299-300	182	183	3X3/0(3/0)	Línea aérea equilibrada	21790,5	95,9	89	36	96	92,74	2,5	-22,24	0	0	0,8
48-47	177	184	3X3/0(3/0)	Línea aérea equilibrada	21785,6	105,5	6413	2683	6951	92,25	184,2	-22,97	1,3	1,4	58,8
46-45	185	186	3X3/0(3/0)	Línea aérea equilibrada	21779,5	121,2	6354	2662	6889	92,23	182,6	-23,01	1,4	1,6	58,3
45-44	186	187	3X3/0(3/0)	Línea aérea equilibrada	21773,6	117,4	6353	2660	6887	92,24	182,6	-23,01	1,4	1,5	58,3
44-43	187	188	3X3/0(3/0)	Línea aérea equilibrada	21767,9	112,2	6351	2659	6885	92,24	182,6	-23,01	1,3	1,5	58,3
43-42	188	189	3X3/0(3/0)	Línea aérea equilibrada	21763,2	101,4	5826	2468	6328	92,08	167,8	-23,26	1	1,1	53,6
42-41	189	190	3X3/0(3/0)	Línea aérea equilibrada	21758	112,5	5825	2467	6326	92,08	167,8	-23,26	1,1	1,3	53,6
41-40	190	191	3X3/0(3/0)	Línea aérea equilibrada	21752,5	118,7	5824	2466	6325	92,09	167,8	-23,26	1,2	1,3	53,6
40-39	191	192	3X2/0(2/0)	Línea aérea equilibrada	21746,9	106,3	5698	2412	6187	92,09	164,2	-23,26	1,2	1,2	59,7
39-38	192	193	3X3/0(3/0)	Línea aérea equilibrada	21742,5	97,1	5696	2411	6186	92,09	164,2	-23,26	0,9	1	52,5
38-37	193	194	3X3/0(3/0)	Línea aérea equilibrada	21737,9	102,3	5696	2410	6184	92,1	164,2	-23,26	1	1,1	52,5

37-36	194	195	3X3/0(3/0)	Línea aérea equilibrada	21733.2	103.7	5695	2409	6183	92.1	164.2	-23.26	1	1.1	52.5
36-35	195	196	3X3/0(3/0)	Línea aérea equilibrada	21728,6	99,5	5694	2408	6182	92,1	164,2	-23,26	0,9	1,1	52,5
35-34	196	197	3X3/0(3/0)	Línea aérea equilibrada	21723,8	106,1	5693	2407	6181	92,11	164,2	-23,26	1	1,1	52,5
34-33	197	198	3X3/0(3/0)	Línea aérea equilibrada	21718,3	121,4	5692	2406	6179	92,11	164,2	-23,27	1,2	1,3	52,5
33-197	198	199	3X3/0(3/0)	Línea aérea equilibrada	21718,1	101,1	327	130	352	92,88	9,3	-22,11	0	0	3
197-198	199	200	3X3/0(3/0)	Línea aérea equilibrada	21717,7	123,1	327	130	352	92,87	9,3	-22,12	0	0	3
198-200	200	201	3X3/0(3/0)	Línea aérea equilibrada	21717,5	111	327	130	352	92,87	9,3	-22,13	0	0	3
200-199	201	202	3X3/0(3/0)	Línea aérea equilibrada	21717,2	100,3	327	130	352	92,86	9,3	-22,14	0	0	3
33-32	198	203	3X3/0(3/0)	Línea aérea equilibrada	21714,4	92,5	5364	2274	5826	92,07	154,9	-23,34	0,8	0,9	49,5
32-31	203	204	3X3/0(3/0)	Línea aérea equilibrada	21709,7	108,9	5363	2273	5825	92,07	154,9	-23,34	0,9	1	49,5
31-30	204	205	3X3/0(3/0)	Línea aérea equilibrada	21704,6	118,6	5362	2272	5824	92,07	154,9	-23,34	1	1,1	49,5
30-29	205	206	3X3/0(3/0)	Línea aérea equilibrada	21701,1	90,1	4844	2050	5260	92,09	139,9	-23,32	0,6	0,7	44,7
29-28	206	207	3X3/0(3/0)	Línea aérea equilibrada	21697,5	94,5	4844	2050	5260	92,09	139,9	-23,32	0,7	0,7	44,7
28-27	207	208	3X3/0(3/0)	Línea aérea equilibrada	21693,1	112,4	4843	2049	5259	92,1	139,9	-23,32	0,8	0,9	44,7
27-26	208	209	3X3/0(3/0)	Línea aérea equilibrada	21688,4	123,9	4807	2036	5221	92,08	138,9	-23,35	0,8	0,9	44,4
26-25	209	210	3X3/0(3/0)	Línea aérea equilibrada	21684,4	104	4806	2035	5219	92,08	138,9	-23,35	0,7	0,8	44,4
25-194	210	211	1X2(2)	Línea aérea equilibrada	21684,2	117,3	27	10	29	93,53	2,3	-21,12	0	0	1,3

194-196	211	212	1X2(2)	Línea aérea equilibrada	21684	119,4	27	10	29	93,52	2,3	-21,15	0	0	1,3
196-195	212	213	1X2(2)	Línea aérea equilibrada	21683,8	124,7	27	10	29	93,5	2,3	-21,18	0	0	1,3
25-24	210	216	3X3/0(3/0)	Línea aérea equilibrada	21679,5	127,6	4778	2024	5189	92,08	138,2	-23,36	0,9	1	44,1
24-23	216	217	3X3/0(3/0)	Línea aérea equilibrada	21676	92,5	4777	2023	5188	92,08	138,2	-23,36	0,6	0,7	44,1
23-22	217	218	3X3/0(3/0)	Línea aérea equilibrada	21672,6	88,9	4777	2023	5187	92,08	138,2	-23,36	0,6	0,7	44,1
22-191	218	219	3X3/0(3/0)	Línea aérea equilibrada	21672,1	107,8	511	234	562	90,91	15	-25,03	0	0	4,8
191-192	219	220	3X3/0(3/0)	Línea aérea equilibrada	21671,7	106,8	511	234	562	90,91	15	-25,04	0	0	4,8
192-193	220	221	3X3/0(3/0)	Línea aérea equilibrada	21671,2	112,7	511	234	562	90,9	15	-25,04	0	0	4,8
22-21	218	222	3X3/0(3/0)	Línea aérea equilibrada	21669,6	88,8	4265	1788	4625	92,22	123,2	-23,16	0,5	0,5	39,4
21-22	222	223	3X3/0(3/0)	Línea aérea equilibrada	21665,7	112,7	4265	1788	4624	92,23	123,2	-23,16	0,6	0,7	39,4
20-19	223	224	3X3/0(3/0)	Línea aérea equilibrada	21661,6	120,7	4264	1787	4623	92,23	123,2	-23,16	0,6	0,7	39,4
19-18	224	225	3X3/0(3/0)	Línea aérea equilibrada	21658	108,2	4263	1786	4622	92,23	123,2	-23,16	0,6	0,7	39,4
18-17	225	226	3X3/0(3/0)	Línea aérea equilibrada	21654,7	98,1	4228	1770	4583	92,24	122,2	-23,16	0,5	0,6	39
17-16	226	227	3X3/0(3/0)	Línea aérea equilibrada	21651,7	86,8	4227	1770	4583	92,24	122,2	-23,16	0,5	0,5	39
16-15	227	228	3X3/0(3/0)	Línea aérea equilibrada	21648,3	101,8	4227	1769	4582	92,24	122,2	-23,16	0,5	0,6	39
13-12	230	231	3X3/0(3/0)	Línea aérea equilibrada	21645,8	98,1	3258	1355	3528	92,33	94,1	-23,03	0,3	0,3	30,1
12-11	231	232	3X3/0(3/0)	Línea aérea equilibrada	21643,2	110,1	2925	1240	3177	92,06	84,7	-23,43	0,3	0,3	27,1

11-9	232	233	3X3/0(3/0)	Línea aérea equilibrada	21640,9	98,7	2925	1240	3177	92,06	84,7	-23,43	0,2	0,3	27,1
6	233	234	3X3/0(3/0)	Línea aérea equilibrada	21638,3	111,8	2924	1240	3176	92,07	84,7	-23,43	0,3	0,3	27,1
8-10	234	242	3X3/0(3/0)	Línea aérea equilibrada	21636,5	107,3	2059	895	2245	91,71	59,9	-23,95	0,1	0,2	19,1
10-50	242	243	3X3/0(3/0)	Línea aérea equilibrada	21634,7	106,1	2059	895	2245	91,71	59,9	-23,95	0,1	0,2	19,1
3	243	244	3X3/0(3/0)	Línea aérea equilibrada	21632,9	111,3	2059	895	2245	91,71	59,9	-23,96	0,1	0,2	19,1
51-52	244	245	3X3/0(3/0)	Línea aérea equilibrada	21631,2	117,7	1732	764	1894	91,49	50,5	-24,28	0,1	0,1	16,1
52-53	245	246	3X3/0(3/0)	Línea aérea equilibrada	21629,5	124	1732	764	1893	91,49	50,5	-24,28	0,1	0,1	16,1
53-54	246	247	3X3/0(3/0)	Línea aérea equilibrada	21627,9	109,2	1732	764	1893	91,49	50,5	-24,28	0,1	0,1	16,1
54-55	247	248	3X3/0(3/0)	Línea aérea equilibrada	21626,3	116,7	1732	764	1893	91,49	50,5	-24,28	0,1	0,1	16,1
55-56	248	249	3X3/0(3/0)	Línea aérea equilibrada	21624,9	100,5	1731	699	1867	92,73	49,8	-22,46	0,1	0,1	15,9
56-188	249	250	3X3/0(3/0)	Línea aérea equilibrada	21624,6	121,8	329	123	351	93,65	9,4	-21	0	0	3
188-190	250	251	3X3/0(3/0)	Línea aérea equilibrada	21624,3	104,3	329	123	351	93,65	9,4	-21,01	0	0	3
190-189	251	252	3X3/0(3/0)	Línea aérea equilibrada	21624,1	102	329	123	351	93,64	9,4	-21,02	0	0	3
56-57	249	253	3X3/0(3/0)	Línea aérea equilibrada	21623,8	102,9	1402	576	1515	92,5	40,5	-22,8	0,1	0,1	12,9
57-58	253	254	3X3/0(3/0)	Línea aérea equilibrada	21622,6	102,5	1402	576	1515	92,5	40,5	-22,8	0,1	0,1	12,9
58-59	254	255	3X3/0(3/0)	Línea aérea equilibrada	21621,5	98,9	1402	576	1515	92,5	40,5	-22,81	0,1	0,1	12,9
59-60	255	256	3X3/0(3/0)	Línea aérea equilibrada	21620,5	92,9	1402	576	1515	92,5	40,5	-22,81	0,1	0,1	12,9

60-185	256	257	3X3/0(3/0)	Línea aérea equilibrada	21620.2	106.1	326	131	352	92.78	9.4	-22.39	0	0	3
185-187	257	258	3X3/0(3/0)	Línea aérea equilibrada	21619,9	118,3	326	131	352	92,77	9,4	-22,4	0	0	3
187-186	258	259	3X3/0(3/0)	Línea aérea equilibrada	21619,6	114,7	326	131	352	92,77	9,4	-22,41	0	0	3
60-61	256	260	3X3/0(3/0)	Línea aérea equilibrada	21619,7	88,9	1075	444	1164	92,42	31,1	-22,94	0	0	9,9
61-62	260	261	3X3/0(3/0)	Línea aérea equilibrada	21618,8	106,4	1075	444	1164	92,42	31,1	-22,94	0	0	9,9
62-63	261	262	3X3/0(3/0)	Línea aérea equilibrada	21617,7	127,3	1075	445	1164	92,42	31,1	-22,94	0	0	9,9
63-64	262	263	3X3/0(3/0)	Línea aérea equilibrada	21616,7	120,4	1075	445	1164	92,41	31,1	-22,95	0	0	9,9
64-65	263	264	3X3/0(3/0)	Línea aérea equilibrada	21615,9	98	1015	425	1100	92,26	29,4	-23,18	0	0	9,4
65-66	264	265	3X3/0(3/0)	Línea aérea equilibrada	21615,3	79	1015	425	1100	92,26	29,4	-23,18	0	0	9,4
66-181	265	266	1X2(2)	Línea aérea equilibrada	21615	112	38	18	42	90,89	3,4	-25,13	0	0	1,8
181-182	266	267	1X2(2)	Línea aérea equilibrada	21614,8	100,6	38	18	42	90,88	3,4	-25,15	0	0	1,8
182-183	267	268	1X2(2)	Línea aérea equilibrada	21614,6	88,8	38	18	42	90,86	3,4	-25,17	0	0	1,8
183-184	268	269	1X2(2)	Línea aérea equilibrada	21614,4	98,3	38	18	42	90,85	3,4	-25,18	0	0	1,8
66-67	265	270	3X3/0(3/0)	Línea aérea equilibrada	21614,6	83,1	977	407	1058	92,31	28,3	-23,11	0	0	9
67-68	270	271	3X3/0(3/0)	Línea aérea equilibrada	21613,9	89,1	977	407	1058	92,31	28,3	-23,11	0	0	9
68-69	271	272	3X3/0(3/0)	Línea aérea equilibrada	21613,2	97,1	977	407	1058	92,31	28,3	-23,11	0	0	9
69-70	272	273	3X3/0(3/0)	Línea aérea equilibrada	21612,3	108,6	977	407	1058	92,3	28,3	-23,12	0	0	9

70-71	273	274	3X3/0(3/0)	Línea aérea equilibrada	21611.6	92.6	948	397	1028	92.22	27.5	-23.24	0	0	8.8
71-72	274	275	3X3/0(3/0)	Línea aérea equilibrada	21611	85,3	948	397	1028	92,22	27,5	-23,24	0	0	8,8
72-177	275	276	3X3/0(3/0)	Línea aérea equilibrada	21610,7	113,4	320	134	346	92,24	9,3	-23,21	0	0	3
177-178	276	277	3X3/0(3/0)	Línea aérea equilibrada	21610,4	98,7	320	134	346	92,24	9,3	-23,22	0	0	3
178-179	277	278	3X3/0(3/0)	Línea aérea equilibrada	21610,2	102,2	319	134	346	92,23	9,3	-23,23	0	0	3
179-180	278	279	3X3/0(3/0)	Línea aérea equilibrada	21609,9	98,2	319	134	346	92,23	9,3	-23,24	0	0	3
72-73	275	280	3X3/0(3/0)	Línea aérea equilibrada	21610,5	91,4	628	264	681	92,21	18,2	-23,26	0	0	5,8
73-74	280	281	3X3/0(3/0)	Línea aérea equilibrada	21610	111,9	628	264	681	92,21	18,2	-23,26	0	0	5,8
74-75	281	282	3X3/0(3/0)	Línea aérea equilibrada	21609,4	117,7	613	258	665	92,15	17,8	-23,35	0	0	5,7
75-173	282	283	3X3/0(3/0)	Línea aérea equilibrada	21608,9	108,2	515	224	562	91,69	15	-24,01	0	0	4,8
173-174	283	284	3X3/0(3/0)	Línea aérea equilibrada	21608,5	103,1	515	224	562	91,69	15	-24,02	0	0	4,8
174-175	284	285	3X3/0(3/0)	Línea aérea equilibrada	21608,1	102	515	224	562	91,69	15	-24,03	0	0	4,8
175-176	285	286	3X3/0(3/0)	Línea aérea equilibrada	21607,6	107,8	515	224	562	91,68	15	-24,03	0	0	4,8
75-76	282	287	3X3/0(3/0)	Línea aérea equilibrada	21609,3	119,7	98	34	104	94,38	2,8	-19,8	0	0	0,9
76-169	287	288	1X2(2)	Línea aérea equilibrada	21608,9	102,7	66	22	69	94,88	5,6	-18,9	0	0	3
169-170	288	289	1X2(2)	Línea aérea equilibrada	21608,6	90,5	66	22	69	94,88	5,6	-18,91	0	0	3
170-171	289	290	1X2(2)	Línea aérea equilibrada	21608,2	116,1	66	22	69	94,87	5,6	-18,92	0	0	3

171 172	200	201	1 ¥ 2(2)	Línea aérea	21607.8	104.7	66	22	60	94 87	5.6	18.03	0	0	3
76 77	290	291	2X2/0(2/0)	Línea aérea	21600.2	101.6	22	12	24	02.22	0.0	-10,95	0	0	0.2
77-167	287	292	3X3/0(3/0)	Línea aérea	21609,3	119.9	24	9	25	93,22	0,9	-20.87	0	0	0,3
167-168	293	294	3X3/0(3/0)	Línea aérea equilibrada	21609,2	121,5	24	9	25	93,66	0,7	-21,02	0	0	0,2
77-78	292	295	3X3/0(3/0)	Línea aérea equilibrada	21609,3	94,8	8	4	9	91,39	0,2	-24,44	0	0	0,1
78-79	295	296	3X3/0(3/0)	Línea aérea equilibrada	21609,3	94,1	8	4	9	91,17	0,2	-24,76	0	0	0,1
79-80	296	297	3X3/0(3/0)	Línea aérea equilibrada	21609,2	126,7	8	4	9	90,94	0,2	-25,07	0	0	0,1
80-81	297	298	3X3/0(3/0)	Línea aérea equilibrada	21609,2	124	8	4	9	90,64	0,2	-25,49	0	0	0,1
81-82	298	299	3X3/0(3/0)	Línea aérea equilibrada	21609,2	102	8	4	9	90,33	0,2	-25,89	0	0	0,1
82-83	299	300	3X3/0(3/0)	Línea aérea equilibrada	21609,2	117,6	0	0	0	0	0	89,5	0	0	0
8-7	234	235	3X3/0(3/0)	Línea aérea equilibrada	21637,5	107,4	865	345	931	92,9	24,8	-22,19	0	0	7,9
1	235	236		Línea aérea por fase	21637,1	102	848	338	913	92,89	24,4	-22,2	0	0	5,1
6-5	236	237	3X3/0(3/0)	Línea aérea equilibrada	21636,4	104	848	338	913	92,89	24,4	-22,2	0	0	7,8
5-4	237	238	3X3/0(3/0)	Línea aérea equilibrada	21635,7	98	848	338	913	92,88	24,4	-22,21	0	0	7,8
4-3	238	239	3X3/0(3/0)	Línea aérea equilibrada	21635,3	107	521	208	561	92,85	15	-22,26	0	0	4,8
3-2	239	240	3X3/0(3/0)	Línea aérea equilibrada	21634,9	97,9	521	209	561	92,85	15	-22,27	0	0	4,8
2-1	240	241	3X3/0(3/0)	Línea aérea equilibrada	21634,5	92,6	521	209	562	92,84	15	-22,27	0	0	4,8

163-292	172	175	3X3/0(3/0)	Línea aérea	21818.6	97.5	20	8	21	97 37	0.6	-22.83	0		0.2
292-293	175	169	3X3/0(3/0)	Línea aérea	21818.6	118.6	20	8	21	92,32	0,6	-22,05	0	0	0,2
293-294	169	170	3X3/0(3/0)	Línea aérea equilibrada	21818.5	95.7	20	8	21	92,11	0.6	-23,14	0	0	0,2
162-201	166	167	3X3/0(3/0)	Línea aérea equilibrada	21824,5	104,9	0	0	0	0	0	89,77	0	0	0
201-202	167	168	3X3/0(3/0)	Línea aérea equilibrada	21824,5	112,1	0	0	0	0	0	89,77	0	0	0
158-287	157	158	1X2(2)	Línea aérea equilibrada	21845,4	94,8	28	12	30	91,5	2,4	-24	0	0	1,3
287-288	158	159	1X2(2)	Línea aérea equilibrada	21845,2	109,7	28	12	30	91,48	2,4	-24,02	0	0	1,3
288-289	159	160	1X2(2)	Línea aérea equilibrada	21845,1	105,2	28	12	30	91,46	2,4	-24,05	0	0	1,3
289-290	160	161	1X2(2)	Línea aérea equilibrada	21844,9	106,1	28	12	30	91,45	2,4	-24,07	0	0	1,3
290-291	161	162	1X2(2)	Línea aérea equilibrada	21844,7	97	28	12	30	91,43	2,4	-24,1	0	0	1,3
157-203	154	155	3X3/0(3/0)	Línea aérea equilibrada	21851,5	112,6	0	0	0	0	0	89,81	0	0	0
203-204	155	156	3X3/0(3/0)	Línea aérea equilibrada	21851,5	105,9	0	0	0	0	0	89,81	0	0	0
156-283	149	150	3X3/0(3/0)	Línea aérea equilibrada	21857	107,6	65	27	71	92,21	1,9	-22,95	0	0	0,6
283-284	150	151	3X3/0(3/0)	Línea aérea equilibrada	21857	104,9	65	27	71	92,18	1,9	-23	0	0	0,6
284-285	151	152	3X3/0(3/0)	Línea aérea equilibrada	21856,9	90,6	65	27	71	92,14	1,9	-23,05	0	0	0,6
285-286	152	153	3X3/0(3/0)	Línea aérea equilibrada	21856,9	102,4	65	27	71	92,12	1,9	-23,09	0	0	0,6
154-205	146	147	1X2(2)	Línea aérea equilibrada	21867,2	126,4	65	24	69	93,87	5,5	-20,34	0	0	3

150-206	138	139	3X3/0(3/0)	Línea aérea equilibrada	21890,2	102,1	79	34	86	91,87	2,3	-23,4	0	0	0,7
206-207	139	140	3X3/0(3/0)	Línea aérea equilibrada	21890,1	104,8	79	34	86	91,85	2,3	-23,44	0	0	0,7
207-208	140	141	3X3/0(3/0)	Línea aérea equilibrada	21890,1	112,2	79	34	86	91,82	2,3	-23,48	0	0	0,7
208-209	141	142	3X3/0(3/0)	Línea aérea equilibrada	21890	126,3	79	34	86	91,79	2,3	-23,52	0	0	0,7
149-281	135	136	3X3/0(3/0)	Línea aérea equilibrada	21895,2	104,3	143	61	156	92,11	4,1	-23,06	0	0	1,3
281-282	136	137	3X3/0(3/0)	Línea aérea equilibrada	21895	99,8	143	61	156	92,09	4,1	-23,08	0	0	1,3
147-277	129	130	1X2(2)	Línea aérea equilibrada	21906,1	111,5	47	20	51	91,84	4,1	-23,44	0	0	2,2
277-278	130	131	1X2(2)	Línea aérea equilibrada	21905,8	109,1	47	20	51	91,82	4,1	-23,45	0	0	2,2
278-279	131	132	1X2(2)	Línea aérea equilibrada	21905,5	119,9	47	20	51	91,81	4,1	-23,47	0	0	2,2
279-280	132	133	1X2(2)	Línea aérea equilibrada	21905,2	119,9	47	20	51	91,8	4,1	-23,49	0	0	2,2
145-210	124	125	1X2(2)	Línea aérea equilibrada	21919,2	129	30	12	32	92,45	2,6	-22,51	0	0	1,4
210-212	125	126	1X2(2)	Línea aérea equilibrada	21919	116,2	30	12	32	92,43	2,6	-22,54	0	0	1,4
212-211	126	127	1X2(2)	Línea aérea equilibrada	21918,8	114,9	30	12	32	92,41	2,6	-22,57	0	0	1,4
5	215	214	3X4/0/(4/0)	Línea aérea equilibrada	21982,5	99,5	6093	2825	6716	90,72	176,4	-24,89	0,9	1,2	49,7
4	301	215	3X3/0(3/0)	Línea aérea equilibrada	21986,6	307,3	5774	2115	6149	93,9	161,4	-20,12	2,8	3,2	51,6

Tabla A 7. Características técnicas de líneas y cables en condiciones normales

A.8 Reporte sumario del diseño en condiciones normales

Resumen total	kW	kvar	kVA	FP(%)
Fuentes (Potencia de equilibrio)	11767,62	4900,34	12747,17	92,32
Generadores	0	0	0	0
Producción total	11767,62	4900,34	12747,17	92,32
Carga leída (no regulada)	11633,49	4738,8	12561,62	92,61
Carga utilizada (regulada)	11633,54	4738,86	12561,69	92,61
Condensadores shunt (regulados)	0	0	0	0
Reactancias shunt(reguladas)	0	0	0	0
Motores	0	0	0	0
Cargas totales	11633,54	4738,86	12561,69	92,61
Capacitancia del cable	0	0	0	0
Capacitancia de la línea	0	-15,75	15,75	0
Capacitancia shunt total	0	-15,75	15,75	0
Pérdidas en las líneas	94,04	107,7	142,98	65,77
Pérdidas en los cables	0	0	0	0
Pérdidas de carga del transformador	1,3	69,59	69,6	1,86
Pérdidas en vacío del transformador	38,79	0	38,79	100
Pérdidas totales	134,13	177,29	222,31	60,33

Tabla A 8. Reporte sumario del sistema en condiciones normales

A.9 Reporte sumario de anomalías en el diseño en condiciones normales

Condiciones anormales	Fase	Conteo	Peor caso	Valor
	А	0	214-213	94,23 %
Sobrecarga	В	0	214-213	94,23 %
	С	0	214-213	94,23 %
	А	0	Y	97,47 %
Subvoltaje	В	0	00	97,69 %
	С	0	QQ	96,72 %
	А	0	SE	100,00 %
Sobrevoltaje	В	0	SE	100,00 %
	С	0	SE	100,00 %

Tabla A 9. Reporte sumario de anomalías en el diseño en condiciones normales

A.10 Costo anual de las pérdidas

Costo anual de las pérdidas del sistema	kW	MW-h/año	k\$/año
Pérdidas en las líneas	94,04	823,81	24,71
Pérdidas en los cables	0	0	0,00
Pérdidas de carga del transformador	1,3	11,35	0,34
Pérdidas en vacío del transformador	38,79	339,81	10,19
Pérdidas totales	134,13	1174,98	35,25

Tabla A 10. Costo anual de las pérdidas del sistema
A.11 Flujo de carga en los Transformadores

Nro. equipo	Nudo origen	Nudo destino	Id equipo	Código	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)	Potencia total de paso (kW)	Potencia total de paso (kvar)	Potencia total de paso (kVA)	Fp promedio (%)	IEquil (A)	Desfase I (°)	Pérdidas totales (kW)	Pérdidas totales (kvar)	Carga
			TR2-2F-	8		ĺ ĺ	, , , , , , , , , , , , , , , , , , ,						, ìí			
RR	11	395	25KVA	Transformador	25	22	0,24	15	7	16	90,29	1,3	-25,51	0,1	0,3	64
AL	96	426	TR1-2F- 15KVA	Transformador	15	22	0,24	7	3	8	91,04	0,6	-24,57	0,1	0,2	53,3
AP	112	432	TR13-3F- 225KVA	Transformador	225	22	0,22	143	57	154	92,83	4,1	-21,96	0,6	1,2	68
AO	108	430	TR3-2F- 37.5KVA	Transformador	37,5	22	0,24	19	8	20	91,67	1,6	-23,68	0,1	0,2	53,3
AN	104	428	TR2-2F- 25KVA	Transformador	25	22	0,24	16	7	17	90,23	1,4	-25,66	0,1	0,4	68
AM	100	400	TR9-3F- 75KVA	Transformador	75	22	0,22	46	19	50	92,58	1,3	-22,34	0,3	0,8	65,3
AK	89	424	TR14-3F- 500KVA	Transformador	500	22	0,22	324	122	346	93,61	9,1	-20,72	1,1	1,9	69
AJ	85	422	TR15-3F- 800KVA	Transformador	800	22	0,22	521	210	562	92,74	14,8	-22,09	1,5	2	70
AI	81	420	TR2-2F- 25KVA	Transformador	25	22	0,24	8	3	8	92,8	0,6	-21,99	0,1	0,1	32
AG	71	416	TR8-3F- 50KVA	Transformador	50	22	0,22	31	13	33	92,47	0,9	-22,49	0,2	0,6	66
AH	74	418	TR15-3F- 800KVA	Transformador	800	22	0,22	517	221	562	91,98	14,8	-23,22	1,5	2	70
AF	67	414	TR5-2F- 75KVA	Transformador	75	22	0,24	47	19	50	92,8	4	-21,99	0,2	0,4	66,7
AE	63	412	TR4-2F- 50KVA	Transformador	50	22	0,24	32	13	34	92,67	2,7	-22,18	0,2	0,4	68
AD	58	410	TR1-2F- 15KVA	Transformador	15	22	0,24	9	3	9	92,98	0,7	-21,7	0,1	0,3	60
AC	53	408	TR9-3F- 75KVA	Transformador	75	22	0,22	46	19	50	92,4	1,3	-22,59	0,3	0,8	65,3
AB	54	406	TR14-3F- 500KVA	Transformador	500	22	0,22	328	127	351	93,22	9,3	-21,33	1,1	2	69,9
ZZ	44	404	TR2-2F- 25KVA	Transformador	25	22	0,24	15	7	16	90,29	1,3	-25,56	0,1	0,3	64

YY	37	402	TR3-2F- 37.5KVA	Transformador	37,5	22	0,24	23	10	25	91,54	2	-23,83	0,1	0,4	66,7
XX	35	398	TR14-3F- 500KVA	Transformador	500	22	0,22	328	125	351	93,48	9.2	-20,9	1,1	1,9	69.9
AT	33	440	TR15-3F- 800KVA	Transformador	800	22	0,22	522	208	562	92,93	14,8	-21,76	1,6	2	70
WW	31	386	TR6-2F- 100KVA	Transformador	100	22	0,24	65	24	69	93,86	5,5	-20,26	0,3	0,4	69
VV	26	360	TR14-3F- 500KVA	Transformador	500	22	0,22	327	128	351	93,1	9,2	-21,49	1,1	1,9	69,9
UU	24	348	TR5-2F- 75KVA	Transformador	75	22	0,24	46	21	50	90,79	4	-24,85	0,2	0,4	66,7
TT	21	346	1R4-2F- 50KVA	Transformador	50	22	0,24	32	12	34	93,69	2,7	-20,53	0,2	0,4	68
SS	15	338	TR14-3F- 500KVA	Transformador	500	22	0,22	329	124	352	93,61	9,2	-20,65	1,1	1,9	70
AR	14	436	TR15-3F- 800KVA	Transformador	800	22	0,22	517	220	562	92,02	14,8	-23,1	1,6	2	70
В	117	313	TR1-2F- 15KVA	Transformador	15	22	0,24	9	5	10	88,64	0,8	-27,64	0,1	0,4	66,7
0	183	312	TR11-3F- 125KVA	Transformador	125	22	0,22	89	36	96	92,72	2,5	-22,27	0,4	1,2	76
s	202	342	TR14-3F- 500KVA	Transformador	500	22	0,22	327	131	352	92,86	9,3	-22,15	1,1	2	70
U	213	350	TR3-2F- 37.5KVA	Transformador	37,5	22	0,24	27	10	29	93,48	2,3	-21,21	0,1	0,5	77,3
V	221	352	TR15-3F- 800KVA	Transformador	800	22	0,22	511	234	562	90,9	15	-25,05	1,5	2	70
AZ	229	452	TR16-3F- 1500KVA	Transformador	1500	22	0,22	968	414	1053	91,97	28,1	-23,57	2,4	2,9	70
DD	252	367	TR14-3F- 500KVA	Transformador	500	22	0.22	329	123	352	93.64	9.4	-21.03	1.1	2	70
FF	259	371	TR14-3F- 500KVA	Transformador	500	22	0,22	326	131	352	92,76	9,4	-22,42	1,1	2	70
HH	269	375	TR5-2F- 75KVA	Transformador	75	22	0,24	38	18	42	90,84	3,4	-25,2	0,2	0,3	56
IJ	279	379	TR14-3F- 500KVA	Transformador	500	22	0,22	319	134	346	92,22	9,3	-23,24	1,1	2	68,9

				TR15-3F-													
Ν	ИΜ	286	383	800KVA	Transformador	800	22	0,22	515	224	562	91,68	15	-24,04	1,5	2	70
				TR6-2F-													
N	N	291	387	100KVA	Transformador	100	22	0,24	66	22	69	94,86	5,6	-18,94	0,3	0,4	69
				TR3-2F-						_							
C	00	294	389	37.5KVA	Transformador	37,5	22	0,24	24	9	25	93,56	2	-21,16	0,1	0,4	66,7
				TR1-2F-							_						
Ç	QQ	299	393	15KVA	Transformador	15	22	0,24	8	4	9	89,79	0,7	-26,61	0,1	0,3	60
				TR2-2F-						_							
K	KK	281	381	25KVA	Transformador	25	22	0,24	15	5	16	94,39	1,3	-19,77	0,1	0,4	64
				TR4-2F-		- 0					• •						
1	I	273	377	50KVA	Transformador	50	22	0,24	29	10	30	94,74	2,4	-19,15	0,2	0,3	60
-		2.02	2.52	TR6-2F-	T 0 1	100			<i>c</i> 0		(2)	04.00		10.0			
C	ΰG	263	3/3	TOOKVA	Transformador	100	22	0,24	60	20	63	94,88	5,1	-18,9	0,3	0,3	63
6		240	265	1R6-2F-	т с 1	100	22	0.24	1	(5	65	1.24	5.2	00.71	0.2	0.4	15
<u> </u>		248	365	100KVA	Transformador	100	22	0,24	1	65	65	1,34	5,2	-89,/1	0,3	0,4	65
				TR14-3F-													
В	BB	244	363	500KVA	Transformador	500	22	0,22	326	130	351	92,87	9,4	-22,23	1,1	2	69,9
				TD 15 2D													
		241	2(1	1R15-3F-	T	800	22	0.22	501	200	5(2)	02.94	1.5	22.29	1.5	2	(0.0
A	AA	241	301	800K V A	Transformador	800	22	0,22	521	209	362	92,84	15	-22,28	1,5	2	69,9
				TR14-3F-													
Ζ	2	238	306	500KVA	Transformador	500	22	0,22	326	130	351	92,93	9,4	-22,13	1,1	2	69,9
				TR2-2F-													
Y	ľ	235	358	25KVA	Transformador	25	22	0,24	17	7	18	93,25	1,5	-21,63	0,1	0,4	72
				TD14 2E													
v	z	231	356	1K14-5F-	Transformador	500	22	0.22	332	114	352	04 55	0.4	10.45	1 1	2	70
	1	231	330		Transformation	500	22	0,22	552	114	332	94,55	9,4	-19,45	1,1	2	70
v	X 7	225	354	50KVA	Transformador	50	22	0.24	35	15	38	01 50	3.1	24.1	0.2	0.5	76
	•	225	554	TR4-2E-	Transformation	50	22	0,24	55	15	50	,57	5,1	-24,1	0,2	0,5	70
т	Г	208	344	50KVA	Transformador	50	22	0.24	35	12	37	94.66	3	-19 19	0.2	0.5	74
-		200	511	2011/11	Transformador	50		0,21	55	12	51	> 1,00	5	17,17	0,2	0,0	, ,
				TR15-3F-													
A	AW	205	446	800KVA	Transformador	800	22	0,22	517	221	562	91,95	15	-23,53	1,5	2	70
				TR12-3F-													
C)	191	336	200KVA	Transformador	200	22	0.22	125	53	136	92.14	3.6	-23.18	0.6	1.2	67.5
_	<	171	220	2001111	Transformation	200		0,22	120	00	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5,0	20,10	0,0		07,0
				TR15-3F-													
A	AS	188	438	800KVA	Transformador	800	22	0,22	524	189	557	94,05	14,8	-20,16	1,5	2	69,4
		1.0.5		TR5-2F-										100			
P	,	185	322	75KVA	Transformador	75	22	0,24	57	19	60	94,77	4,8	-18,9	0,2	0,5	80
	*	1.50	200	1R4-2F-		-				1.0		00.00					-
N	N	173	308	50KVA	Transformador	50	22	0,24	33	13	35	92,66	2,8	-22,35	0,2	0,4	70

м	170	311	TR7-3F- 30KVA	Transformador	30	22	0.22	20	8	21	92.02	0.6	-23.28	0.2	0.7	70
	170	511	TD2 2E	Transformation	50	22	0,22	20	0	21	72,02	0,0	23,20	0,2	0,7	70
L	162	304	37.5KVA	Transformador	37,5	22	0,24	28	12	30	91,41	2,4	-24,12	0,1	0,5	80
			TD 10.2E													
К	153	334	100KVA	Transformador	100	22	0,22	65	28	71	92,09	1,9	-23,13	0,3	1	69,9
			TR6-2F-													
J	147	330	100KVA	Transformador	100	22	0.24	65	24	69	93,86	5,5	-20,36	0.3	0,4	69
			TR5-2F-								- Í		,		ĺ.	
Ι	144	328	75KVA	Transformador	75	22	0,24	46	21	50	90,79	4	-24,94	0,2	0,4	66,7
			TD 11 2F													
C	1.40	224	1R11-3F-	т с 1	125	22	0.22	70	24	97	01.76	2.2	22.50	0.4	0.0	(0
G	142	324	125KVA	Transformador	125	22	0,22	/9	34	80	91,76	2,3	-23,56	0,4	0,9	68
			TR13-3F-													
Н	137	326	225KVA	Transformador	225	22	0.22	143	61	156	92,08	4,1	-23,1	0,6	1,2	68,7
			TR5-2F-								- Í		,		ĺ.	
F	133	332	75KVA	Transformador	75	22	0.24	47	20	51	91,79	4,1	-23,5	0,2	0,4	68
			TR3-2F-								- Í		,			
Е	127	319	37.5KVA	Transformador	37,5	22	0.24	30	12	32	92,4	2,6	-22,6	0,1	0,6	85,3
			TR6-2F-													
D	121	317	100KVA	Transformador	100	22	0,24	61	30	68	89,85	5,4	-26,12	0,3	0,4	68
			TD 10.0F													
C	110	215	1R12-3F-	T 6 1	200	22	0.00	120	~~	1.41	01.00	2.7	22.17	0.6	1.2	(0.0
C	119	315	200KVA	Iransformador	200	22	0,22	129	22	141	91,99	3,7	-23,17	0,6	1,3	69,9
			TR13-3F-													
А	1	302	225KVA	Transformador	225	22	0,22	137	64	151	90,54	4	-25,15	0,6	1,1	66,6

Tabla A 11. Detalle de flujo de carga en los transformadores

ANEXO B

B. Diseño en Matlab

B.1 Código Matlab para encontrar el Minimun Spannig Tree

```
s=transpose(xlsread('Pesos', 'Nodos300', 'H2:H302'))
t=transpose(xlsread('Pesos', 'Nodos300', 'I2:I302'))
w=transpose(xlsread('Pesos', 'Nodos300', 'J2:J302'))
G=graph(s,t,w);
grid on
p=plot(G, 'EdgeLabel', G.Edges.Weight);
[T,pred]=minspantree(G)
```

highlight(p,T)

B.2 Código Matlab para encontrar la métrica de la Capacidad nominal del

conductor de un caso individual

```
data=xlsread('Caso_1.xlsx');
x=data(:,1)
x2=data(:,2);
figure(1)
plot(x,x2,'-r');
title('Caso 1 - Capacidad nominal del conductor')
xlabel('Distancia desde la fuente (pi)')
ylabel('Amperios (A)');
legend('Caso_1');
grid on;
```

B.3 Código Matlab para encontrar las tres métricas de la Capacidad nominal del

conductor en los tres casos de estudio

```
% Especifica el nombre del archivo Excel y las hojas de trabajo
archivoExcel = 'Libro1.xlsx';
hojal = 'Caso 1'; % Nombre de la primera hoja de trabajo
hoja2 = 'Caso 2'; % Nombre de la segunda hoja de trabajo
hoja3 = 'Caso 3'; % Nombre de la tercera hoja de trabajo
% Lee los datos de las tres hojas de trabajo individualmente desde el
archivo de Excel
datos1 = xlsread(archivoExcel, hoja1);
datos2 = xlsread(archivoExcel, hoja2);
datos3 = xlsread(archivoExcel, hoja3);
% Extrae las variables independientes y dependientes de cada tabla
x1 = datos1(:, 1); %hoja1
y1 = datos1(:, 2); %hoja1
x2 = datos2(:, 1); %hoja2
y2 = datos2(:, 2); %hoja2
x3 = datos3(:, 1); %hoja3
y3 = datos3(:, 2); %hoja3
```

% Crea un gráfico con tres curvas baso en los casos de estudio figure (4); %Crea la ventana de figura plot(x1, y1, 'r', 'LineWidth', 1); %Dibuja la curva en rojo del Caso_1 hold on; plot(x2, y2, 'b', 'LineWidth', 1); %Dibuja la curva en azul del Caso_2 plot(x3, y3, 'm', 'LineWidth', 1); %Dibuja la curva en rosa del Caso_3 grid on; %Activación de la cuadrícula % Edicion de los nombres de los ejes y título del gráfico xlabel('Distancia desde la fuente (pi)'); %Nombre del título en el eje x ylabel('Amperios (A)'); %Nombre del título en el eje y title('Métrica de la Capacidad nominal del conductor en los tres Casos de estudio');%Nombre del título del gráfico legend('Caso_1', 'Caso_2', 'Caso_3');%Creación de las etiquetas de los casos

C. Diseño nodal propuesto en QGISGNU 3.22

Figura C 1. Diseño nodal en capa shape