

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE GUAYAQUIL CARRERA DE ELECTRICIDAD

SINCRONISMO DE UN GENERADOR TRIFÁSICO DE 1MVA 480V LINEA-LINEA MCI CON LA RED PÚBLICA DE DISTRIBUCIÓN DE ELECTRICIDAD CNEL EP

Trabajo de titulación previo a la obtención del Título de Ingeniero Eléctrico

AUTORES: EDDY GEOVANNY ARREAGA LEON NORMA ESTHER TORRES RIVAS

TUTOR: ING. OTTO WASHINGTON ASTUDILO ASTUDILLO, MSC

Guayaquil-Ecuador 2024

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓN

Nosotros, Eddy Geovanny Arreaga León con documento de identificación N.º 0931472104 y Norma Esther Torres Rivas con documento de identificación Nº 0941289068 manifestamos que:

Somos autores y responsables del presente trabajo; y. autorizamos a que sin fines de lucro la Universidad Politécnica Salesiana pueda usar, difundir, reproducir o publicar de manera total o parcial el presente trabajo de titulación.

Guayaquil, 19 de marzo del año 2024

Atentamente,

Eddy Avreage L

Jones

Eddy Geovanny Arreaga León 0931472104

Norma Esther Torres Rivas 0941289068

CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA

Nosotros, Eddy Geovanny Arreaga León con documento de identificación N.º 0931472104, y Norma Esther Torres Rivas con documento de identificación N° 0941289068, expresamos nuestra voluntad y por medio del presente documento cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores del proyecto técnico: "Sincronismo de un Generador Trifásico de 1MVA 480V Linea-Linea MCI con la red Pública de Distribución de Electricidad CNEL EP", el cual ha sido desarrollado para optar por el título de: Ingeniero Eléctrico en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En concordancia con lo manifestado, suscribimos este documento en el momento que hago la entrega del trabajo final en formato digital a la Biblioteca de la Universidad Politécnica Salesiana.

Guayaquil, 19 de marzo del año 2024

Atentamente,

Eddy Awreage L

Eddy Geovanny Arreaga León 0931472104

Norma Esther Torres Rivas 0941289068

CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN

Yo, Otto Washington Astudillo Astudillo con documento de identificación N.º 0102054871, docente de la Universidad Politécnica Salesiana, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: SINCRONISMO DE UN GENERADOR TRIFÁSICO DE 1MVA 480V LINEA-LINEA MCI CON LA RED PÚBLICA DE DISTRIBUCIÓN DE ELECTRICIDAD CNEL EP, realizado por Eddy Geovanny Arreaga Leon con documento de identificación N.º 0931472104, y por Norma Esther Torres Rivas con documento de identificación N.º 0941289068, obteniendo como resultado final el trabajo de titulación bajo la opción proyecto técnico que cumple con todos los requisitos determinados por la Universidad Politécnica Salesiana.

Guayaquil, 19 de marzo del año 2024

Atentamente,

And THES

Ing. Otto Washington Astudillo Astudillo, Msc

0102054871

DEDICATORIA

Dedico el presente trabajo a mis padres Jorge y Jessica porque siempre estuvieron pendientes y preocupados por mis procesos y cambios a lo largo del camino universitario.

A mis hermanas Noelia y Dayanara por apoyarme y estar siempre para poder escucharme.

A mis amigos Eddy, Ana, Johnny y Anthony porque todos siempre estuvieron dándome consejos y motivaciones para seguir adelante hasta culminar mi etapa universitaria.

Norma Torres

DEDICATORIA

Dedico este trabajo a Dios, fuente infinita de sabiduría y guía,

A mis padres, cuyo amor incondicional y sacrificio han sido mi mayor inspiración.

A mi amada novia Roxana, por ser mi apoyo inquebrantable y fuente constante de motivación.

A mis valiosos amigos del proceso en la U, Norma, Johnny, Isabel, Anthony, cuya amistad y colaboración hicieron esta travesía académica memorable.

Este logro no habría sido posible sin la bendición divina, el amor familiar y la amistad sincera que he recibido. Agradezco a Dios por la fortaleza, a mis padres por su apoyo inquebrantable, a Roxana y mis amigos por su aliento constante.

Eddy Arreaga

.

AGRADECIMIENTO

Agradezco primeramente a Dios, por darme las fuerzas de continuar por más complicado que haya resultado el cambio y el proceso, me brindo la sabiduría para poder sobrellevar las cosas.

También quiero agradecer a mis docentes que fueron parte de toda la carrera, por sus orientaciones y enseñanzas que estuvieron predispuestos a brindarme durante todo este tiempo, a mi tutor de tesis el Ing. Otto, a mi docente de titulación Ing. Pedro y al Ing. Ervin que nos apoyó con la búsqueda y examinación del programa; todos nos ayudaron en el proceso de revisión y consejos para culminar la tesis.

Por último, pero no menos importante, le agradezco a mi compañero de tesis, porque siempre estuvo insistiendo, preocupándose y viendo todas las maneras posibles para poder culminar juntos este trabajo.

Norma Torres

AGRADECIMIENTO

Agradezco a Dios, guía y sostén en cada paso de esta travesía académica.

A mi respetado tutor de tesis, el Ing. Otto Astudillo, por su orientación sabia y apoyo constante que han sido pilares fundamentales para el éxito de este proyecto.

Al Ing. Pedro Nuñez, mi docente de titulación, agradezco su impulso incansable y su dedicación, llevándonos hasta el último momento con determinación y sabiduría.

A nuestros mentores en la tesis, el ingeniero Ervyn Solano y nuestro compañero de carrera Boris Cuenca, quienes generosamente compartieron su experiencia y conocimientos, haciendo posible la examinación exhaustiva del programa.

Y finalmente, un agradecimiento especial a mi compañera de tesis, quien decidió embarcarse en esta travesía y perseverar hasta el último momento. Su colaboración, dedicación y esfuerzo conjunto han sido cruciales para el logro de este objetivo compartido.

Este logro no habría sido posible sin la gracia divina, la guía de mentores excepcionales, la colaboración de compañeros y el apoyo constante de quienes creyeron en nosotros. A todos, mi profundo agradecimiento.

Eddy Arreaga

RESUMEN

El proyecto en cuestión tiene como finalidad el sincronismo de un generador trifásico de 1MVA con la red pública de distribución CNEL EP, con la finalidad de tener una alternativa idónea para el abastecimiento del suministro eléctrico de una carga variable de hasta 2MVA como método de estudio, lo que implica utilizar un generador eléctrico síncrono a base de motor de combustión interna.

En base a ello se efectuó el análisis de cargabilidad para garantizar un sistema estable a futuro y capaz de cubrir la demanda de necesidades eléctricas, todo mediante el estudio de los elementos eléctricos que conforman el sistema de sincronismo, lo cual permitió realizar el diseño y dimensionamiento adecuado de los equipos.

Finalmente se realizaron las pruebas de estabilidad del sistema independiente y de forma sincronizada en el software ETAP.

Modelado Teórico: En el modelado teórico, se utilizan parámetros y ecuaciones para predecir la potencia activa y reactiva en condiciones ideales. Estos valores se derivan de especificaciones de equipos, resistencias, y otros elementos del sistema. En las tablas de resultado se observo que en nuestro modelo matemático del generador funcionando solamente con la carga es exacto es decir no existe perdida de potencia activa ni reactiva como también cuando se trabaja sincronizado con CNEL que se observa la distribución de corrientes de manera correcta asumiendo la mayor carga nuestra fuente de CNEL y la restante el generador.

Operación Real: La potencia activa y reactiva medida en la operación real puede variar debido a factores como pérdidas de transmisión, variaciones en la carga, cambios en la generación, y eficiencia del equipo. Las condiciones reales a menudo introducen pequeñas diferencias respecto a las predicciones teóricas. Así es como observamos el comportamiento real en nuestra tabla de resultados viendo una diferencia significativa en los dos análisis de las potencias donde tenemos una perdida de potencia de 0.15KVA y 0.1 KW, a diferencia del análisis teórico.

Palabras Claves: Sincronismo, Generador, Software ETAP.

ABSTRACT

The purpose of this project is to synchronize a three-phase generator of 1MVA with the public distribution network CNEL EP, in order to have a suitable alternative for supplying electricity to a variable load of up to 2MVA as a method of study, which involves using a synchronous electric generator based on an internal combustion engine.

Based on this, the loadability analysis was carried out to guarantee a stable system in the future and capable of meeting the demand of electrical needs, all through the study of the electrical elements that make up the synchronous system, which allowed the design and proper sizing of the equipment.

Finally, the stability tests of the independent and synchronized system were carried out in the ETAP software.

Theoretical Modeling: In theoretical modeling, parameters and equations are employed to predict active and reactive power under ideal conditions. These values are derived from equipment specifications, resistances, and other elements of the system. The result tables showed that in our mathematical model, the generator operating solely with the load is accurate, meaning there is no loss of active or reactive power. Similarly, when synchronized with CNEL (electricity distribution company), the current distribution is correctly assumed, with our source being the main load from CNEL and the remaining supplied by the generator.

Real Operation: The measured active and reactive power in real-world operation may vary due to factors such as transmission losses, load variations, changes in generation, and equipment efficiency. Real-world conditions often introduce small differences compared to theoretical predictions. This is evident in our results table, where we observe a significant difference in the two power analyses. There is a power loss of 0.15 KVA and 0.1 KW, unlike the theoretical analysis. Additionally, in the synchronous system analysis, there is a current loss of 60 Amp compared to the theoretical analysis.

Keywords: Synchronism, Generator, ETAP Software.

INDICE GENERAL

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACI	iÓN ;;
CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO	DE
TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA	iii
CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN	iv
DEDICATORIA	v
DEDICATORIA	vi
RESUMEN	ix
ABSTRACT	X
1. INTRODUCCIÓN	1
1.1. El Problema	2
1.1.1. Descripción del problema	2
1.2. Objetivos	3
1.2.1. Objetivo General	3
1.2.2. Objetivos Específicos	3
2. MARCO TEORICO	4
2.1. Principio de Inducción Electromagnética	4
2.1.1. Ley de Faraday	4
2.1.2. Ley de Faraday aplicado a máquina giratoria	5
2.2. Generador síncrono trifásico	5
2.2.1. Partes	6
2.3. Principio de funcionamiento de un generador síncrono trifásico	6
2.4. Modelo real de estado estable de un generador síncrono trifásico	7
2.4.1. Prueba de circuito abierto	7

	2.4	.2.	Prueba de corto circuito	8
	2.4	.3.	Reactancia síncrona saturada	8
	2.5.	Gen	erador síncrono trifásico de polos salientes	9
	2.6.	Gen	erador trifásico de rotor de polos lisos	10
	2.7.	Curv	va de máxima capabilidad	11
	2.8.	Sinc	cronismo de un generador trifásico con un SEP	15
	2.8	.1.	Sincronismo de un generador con el sistema eléctrico de potencia	15
	2.9.	La f	recuencia VS la potencia activa	15
	2.10.	El	l voltaje VS la potencia reactiva	16
	2.1	0.1.	Ley de Faraday	16
	2.1	0.2.	Características para la elección de un generador	18
	2.1	0.3.	Sincronismo entre dos generadores trifásicos de similares características	19
	2.11.	V	ariables de control del generador	21
	2.1	1.1.	Potencia mecánica	21
	2.1	1.2.	Potencia eléctrica	21
	2.1	1.3.	Control de potencia mecánica	21
	2.1	1.4.	Control de corriente de excitación	22
3.	MA	ARCO	D METODOLOGICO	23
	3.1.	Aná	lisis de curva de capabilidad	23
	3.2.	Sinc	cronismo de un generador trifásico con un SEP	35
	3.2	.1.	Frecuencia [Hz] VS Potencia [W]	36
	3.2	.2.	La potencia reactiva VS el Voltaje	41
	3.3.	Aná	lisis teórico y práctico del sincronismo	47
4.	AN	JÁLIS	SIS Y RESULTADOS	62
5.	MF	PLEM	IENTACIÓN	65
	5.1.	Alin	nentador red de CNEL EP	66

5.2.	Transformador reductor 69/13.8 KV en subestación San Lorenzo del Mate	67
5.3.	Medición indirecta trafomix	68
5.4.	Transformador reductor 13.8 KV/480V 2.5 MVA	71
5.5.	Generador trifásico de un 1MVA 480V / 277V	72
CONCI	LUSIONES	73
BIBLIC	OGRAFIA	74
ANEXO	DS	76

INDICE DE FIGURAS

Figura 1. Corriente en un conductor por el movimiento de imán dentro de una bobina4
Figura 2. Devanados a-1, b-2 y c-3 colocados a 120° entre sí en el estator de un generador
trifásico7
Figura 3. Rotor de seis polos salientes
Figura 4. Rotor de polos no salientes (lisos)
Figura 5. Representación de diagrama fasorial de un generador síncrono de polos salientes. 12
Figura 6. Curva de capabilidad de un generador síncrono de polos salientes14
Figura 7. a) Esquema de un generador de corriente alterna, una fem es inducida sobre una
espira que gira en un campo magnético. b) Gráfica de la fem inducida alterna en la espira en
función de t17
Figura 8. Curva de capabilidad con factor de potencia = 0.3, análisis inductivo25
Figura 9. Circuito RL
Figura 10. Simulación de sincronismo con FPcarga = 0.3 inductivo en el software ETAP 27
Figura 11. Curva de capabilidad con factor de potencia = 0.6, análisis inductivo28
Figura 12. Simulación de sincronismo con FPcarga = 0.6 inductivo en el software ETAP 29
Figura 13 . Curva de capabilidad con factor de potencia = 0.8, análisis inductivo30
Figura 14. Simulación de sincronismo con FPcarga = 0.8 inductivo en el software ETAP 31

Figura 15. Curva de capabilidad con factor de potencia = 0.95, análisis inductivo
Figura 16. Simulación de sincronismo con FPcarga = 0.95 inductivo en el software ETAP. 33
Figura 17. Curva de capabilidad con factor de potencia = 0.95, análisis capacitivo
Figura 18. Simulación de sincronismo con FPcarga = 0.95 capacitivo en el software ETAP 35
Figura 19. Análisis grafico de variación de pendientes de frecuencia VS potencia activa 37
Figura 20. Análisis grafico de pendientes de operación frecuencia VS potencia activa del
generador
Figura 21. Variación de pendientes en la frecuencia con una carga de 100KW40
Figura 22. Análisis grafico de variación de pendientes el voltaje VS potencia reactiva 42
Figura 23. Análisis grafico de pendientes de operación voltaje VS potencia reactiva del
generador
Figura 24. Variación de pendientes en voltaje con una carga reactiva de 100KW45
Figura 25. Corrientes teóricas de la carga y fuentes con un FP= 0.3
Figura 26. Simulación de corrientes de la carga y fuentes en software ETAP con FP= 0.349
Figura 27. Corrientes teóricas de la carga y fuentes con un $FP = 0.6$
Figura 28. Simulación de corrientes de la carga y fuentes en software ETAP con FP= 0.652
Figura 30 . Corrientes teóricas de la carga y fuentes con un $FP = 0.8$
Figura 31. Simulación de corrientes de la carga y fuentes en software ETAP con FP= 0.855
Figura 32. Corrientes teóricas de la carga y fuentes con un $FP = 0.95$ inductivo
Figura 29. Simulación de corrientes de la carga y fuentes en el software ETAP con un FP=
0.95 inductivo
Figura 33. Corrientes teóricas de la carga y fuentes con un $FP = 0.95$ capacitivo
Figura 34. Simulación de corrientes de la carga y fuentes en software ETAP con FP= 0.95
capacitivo61
Figura 35. Instalación trifásica con disposición en forma de cruz en el centro. Perspectiva desde
el frente y el lateral70

INDICE DE TABLAS

Tabla I. Resultados entre la potencia activa y reactiva entregada por el generador ante una
carga con FP= 0.3/atraso62
Tabla II. Resultados entre la potencia activa y reactiva entregada por el generador ante una
carga con FP= 0.6/atraso
Tabla III. Resultados entre la potencia activa y reactiva entregada por el generador ante una
carga con FP= 0.8/atraso
Tabla IV. Resultados entre la potencia activa y reactiva entregada por el generador ante una
carga con FP= 0.95/atraso
Tabla V. Resultados entre la potencia activa y reactiva entregada por el generador ante una
carga con FP=0.95/adelanto
Tabla VI. Resultados de corrientes y potencias del sistema en sincronismo con una carga de
FP=0.3/atraso
Tabla VII. Resultados de corrientes y potencias del sistema en sincronismo con una carga de
FP=0.6/atraso
Tabla VIII. Resultados de corrientes y potencias del sistema en sincronismo con una carga de
FP=0.8/atraso
Tabla IX. Resultados de corrientes y potencias del sistema en sincronismo con una carga de
FP=0.95/atraso
Tabla X. Resultados de corrientes y potencias del sistema en sincronismo con una carga de
FP=0.95/adelanto
Tabla XI. Información de la infraestructura de la Unidad de Negocios Santa Elena 66
Tabla XII. Potencia de centrales de generación con fuentes no renovables. 66
Tabla XIII. Longitud y tipo de conductor de la línea de subtransmisión Cerecita
Tabla XIV. Alimentadores de la subestación de San Lorenzo del Mate 67
Tabla XV. Datos de placa del transformador. 67
Tabla XVI. TAP del lado de alta y media tensión del transformador
Tabla XVII. Datos del transformador reductor 13.8KV/480V 71
Tabla XVIII. Datos de relación de transformación. 72
Tabla XIX. Datos del generador74

INDICE DE ANEXOS

Anexo 1. Diagrama unifilar de la red CNEL – San Lorenzo del Mate
Anexo 2. Catalogo 2 de SISELEC S.A
Anexo 3. Protocolo e transformador de INATRA
Anexo 4. Catálogo de Generador de 1MVA – S6L1D-C4Wdg.311/312 STANFORD
Anexo 5. Curva de capabilidad a 60HZ del generador STANFORD
Anexo 6. Datos ingresados en el software ETAP - Grid
Anexo 7. Datos ingresados en el software ETAP – Barra 69KV
Anexo 8. Datos ingresados en el software ETAP – Barras 13.8KV
Anexo 9. Datos ingresados en el software ETAP – Barras 480V
Anexo 10. Datos ingresados en el software ETAP – Transformador 69KV a 13.8KV
Anexo 11. Datos ingresados en el software ETAP – Transformador 13.8KV a 480V 87
Anexo 12. Datos ingresados en el software ETAP – Generador 1MVA / 480V 89
Anexo 13. Datos ingresados en el software ETAP – Carga 2.5MVA91
Anexo 14. Datos ingresados en el software ETAP – Linea tramo 13.8KV
Anexo 15. Datos ingresados en el software ETAP – Linea tramo 480KV CNEL - Carga 94
Anexo 16. ingresados en el software ETAP – Linea tramo 480KV Generador - Carga95
Anexo 17. Planos eléctricos del cuarto eléctrico

INDICE DE ECUACIONES

Ecuación 1. Potencia de generación en el rotor	
Ecuación 2. Límite para definir curva de capabilidad: Corriente en el estator	13
Ecuación 3. Límite para definir curva de capabilidad: Ángulo δ	13
Ecuación 4. Límite para definir curva de capabilidad: Voltaje interno	13
Ecuación 5. Límite para definir curva de capabilidad: Ángulo máximo ôm	13
Ecuación 6. Definición de la curva de capabilidad	14
Ecuación 7. Ley de Faraday en la forma general	16
Ecuación 8. Ley de inducción de Faraday	17
Ecuación 9. fem de movimiento inducida	17
Ecuación 10. Ángulo de carga	23
Ecuación 11. Radio de límite de campo	24
Ecuación 12. Potencia aparente	
Ecuación 13. Fuerza electromotriz	25
Ecuación 14. Ángulo de la fuerza electromotriz	
Ecuación 15. Potencia activa máxima que entrega el generador	
Ecuación 16. Potencia reactiva máxima que entrega el generador	
Ecuación 17. Frecuencia en vacío del generador	
Ecuación 18. Velocidad del sincronismo del estator	39
Ecuación 19. Velocidad angular del estator	39
Ecuación 20. Voltaje en vacío del generador	
Ecuación 21. fem del generador en vacío	
Ecuación 22. Carga máxima reactiva	46
Ecuación 23. Demanda de carga de la potencia activa	
Ecuación 24. Demanda de carga de la potencia reactiva	
Ecuación 25. Potencia activa que debe entregar CNEL	
Ecuación 26. Potencia reactiva que debe entregar CNEL	
Ecuación 27. Corriente máxima del sistema	
Ecuación 28. Corriente de carga del sistema	
Ecuación 29. Corriente del sistema que debe entregar CNEL	

1. INTRODUCCIÓN

Es innegable que la electricidad es crucial para el funcionamiento de los procesos industriales. Las instalaciones manufactureras se enfrentan a desafíos importantes en situaciones de aumento en la demanda o cortes imprevistos de energía, ya que se ven obligadas a detener la producción, resultando en pérdidas sustanciales tanto de materiales como de horas laborales.

Es por ello que resulta indispensable contar con una fuente de energía complementaria capaz de proporcionar respaldo durante momentos de alta demanda, interrupciones inesperadas o fallos en el suministro eléctrico. La solución a esta problemática reside en la implementación de grupos generadores, los cuales desempeñan un papel crucial al asegurar un suministro ininterrumpido de energía durante eventos de pérdida de potencia. La automatización y control eficaz de estos grupos generadores son elementos esenciales para la pronta restauración del suministro eléctrico. Los dispositivos de transferencia y sincronización permiten administrar estos grupos generadores durante fallos en la red, posibilitando el aumento de la potencia disponible para cubrir la demanda y, por ende, mejorando la confiabilidad del sistema en su conjunto.

En este contexto, este estudio se enfoca en abordar las necesidades de una carga variable de hasta 2MVA a través del diseño de un sistema automático de sincronización para la planta de generación. La característica principal de este sistema radica en que la sincronización de los generadores se ejecuta en una barra común, conectada a un interruptor de transferencia principal encargado de suministrar energía a la carga [1].

Este enfoque innovador busca optimizar la eficiencia y confiabilidad del suministro eléctrico en diversos entornos, mitigando los efectos negativos asociados con interrupciones imprevistas y contribuyendo al funcionamiento ininterrumpido de los procesos productivos.

1.1. El Problema

1.1.1. Descripción del problema

Actualmente la autogeneración de energía en el ámbito industrial se ha consolidado como una práctica común, especialmente respaldada por el uso de paneles solares. La sincronización de generadores, diseñada e implementada como medida preventiva ante posibles desconexiones de la fuente principal de energía, como CNEL, se muestra como un componente esencial para garantizar la confiabilidad del sistema eléctrico. La imposibilidad de prescindir de energía eléctrica, dada la considerable magnitud de pérdidas asociadas, fundamenta la importancia de tales medidas de respaldo.

Sin embargo, la capacidad de suministro energético enfrenta desafíos significativos al intentar satisfacer la creciente demanda generada por el aumento anual de la población y su vez la proliferación de industrias. En este contexto, se plantea la sincronización de un generador como objeto de estudio, destinado a abastecer una carga que supera la capacidad máxima que CNEL puede proporcionar. Este enfoque responde a la necesidad de encontrar soluciones viables para la creciente demanda que no puede ser satisfecha en su totalidad por la red eléctrica pública.

El sistema propuesto contempla la utilización de la red de distribución de CNEL en conjunto con un generador trifásico de 1MVA (480V Linea-Linea MCI), este generador, equipado con un sistema de sincronización, tiene la capacidad de entrar en sincronismo con la red eléctrica pública en caso de que la carga supere el límite establecido por esta última. Este enfoque de sincronización entre un generador y la red eléctrica de CNEL presenta aplicabilidad no solo para industrias que operan con maquinaria a combustión, sino también para aquellas que experimentan desconexiones frecuentes o fallas en el sistema eléctrico, ya sea por voltajes altos o bajos.

La implementación exitosa de este sistema de sincronización no solo redundará en beneficios para las industrias vinculadas a la maquinaria a combustión, sino que también se extenderá a diversos sectores industriales, incluyendo, pero no limitándose a, la agricultura, textiles y agroindustrias. Este enfoque innovador busca proporcionar una solución versátil y eficaz para las industrias que buscan optimizar su suministro eléctrico, mitigando las consecuencias adversas de desconexiones y fallas en el sistema eléctrico, ya sean ocasionadas por fluctuaciones de voltaje o interrupciones habituales.

1.2. Objetivos

1.2.1. Objetivo General

Sincronizar un generador trifásico de 1MVA con motor primario de combustión interna con la red pública de distribución de electricidad CNEL.

1.2.2. Objetivos Específicos

- Analizar el control de potencia activa y reactiva del generador operando de manera independiente, mediante el software ETAP
- Analizar el control de potencia activa y reactiva del generador operando de forma sincronizada con red pública CNEL, mediante el software ETAP
- Dimensionar las protecciones, elementos y equipos eléctricos necesarios para la puesta en marcha del servicio.
- Utilizar la herramienta AutoCAD para iniciar el diseño del cuarto eléctrico, protecciones, y distribución del sistema a implementar.

2. MARCO TEORICO

2.1. Principio de Inducción Electromagnética

2.1.1. Ley de Faraday

La ley de Faraday fue desarrollada a partir de los experimentos llevados a cabo por el reconocido científico británico Michael Faraday, la cual postula que la magnitud de la fuerza electromotriz (fem) inducida en un circuito es equivalente a la velocidad con la que cambia el flujo magnético a través de dicho circuito [2], es decir que establece la conexión fundamental entre un campo magnético que experimenta cambios en el tiempo y el fenómeno de inducción electromagnética. En términos sencillos, esta ley postula que la magnitud de la fuerza electromotriz denominada por sus siglas "FEM" generada en un circuito cerrado es directamente proporcional a la velocidad con la que cambia el flujo magnético que atraviesa dicho circuito. Esta ley Enunciada por Faraday en la década de 1830, este principio esencial del electromagnéticos, desempeñando un papel crucial en diversas aplicaciones tecnológicas y contribuyendo al desarrollo de la teoría electromagnética en el ámbito científico y tecnológico [3].

Figura 1. Corriente en un conductor por el movimiento de imán dentro de una bobina. [4].

Faraday, a pesar de contar con una educación limitada, logró importantes descubrimientos que abarcaron áreas como la inducción electromagnética, el diamagnetismo y la electrólisis. Su impacto en la historia de la ciencia radica en su ardua investigación sobre el campo magnético

alrededor de un conductor con corriente continua, sentando así las bases para el posterior desarrollo del concepto fundamental de campo electromagnético [5].

Por lo que este científico visionario no solo se destacó por sus hallazgos teóricos, sino que también llevó a cabo experimentos pioneros, demostrando la interrelación entre el movimiento de un conductor y la generación de corriente eléctrica. A pesar de sus limitaciones educativas iniciales, Faraday emergió como uno de los científicos más influyentes de su tiempo y dejó un legado duradero en la comprensión de los fenómenos electromagnéticos.

2.1.2. Ley de Faraday aplicado a máquina giratoria

Para entender el contexto se entiende por máquinas giratorias aquellas que representan dispositivos mecánicos fundamentales que incorporan componentes rotativos para desempeñar funciones específicas. Un ejemplo paradigmático de estas máquinas son los motores eléctricos, los cuales eficientemente transforman la energía eléctrica en energía mecánica mediante la rotación de un rotor inmerso en un campo magnético. De manera similar, los generadores eléctricos constituyen dispositivos esenciales al convertir la energía mecánica, obtenida de fuentes como turbinas o motores, en energía eléctrica. Además, las turbinas, presentes en plantas de energía, desempeñan un papel crucial al transformar la energía de fluidos en energía mecánica a través de sus aspas giratorias.

Centrándonos específicamente en los generadores eléctricos, estos dispositivos desencadenan la conversión de energía mecánica en energía eléctrica, aprovechando la disparidad de potencial entre dos polos, siguiendo la ley de Faraday, al inducir la rotación de una espira en presencia de un campo magnético, se genera una variación en el flujo magnético a través de la espira, lo que conduce a la producción de corriente eléctrica [6]. Este fenómeno subraya la importancia de comprender y aplicar los principios de la ley de Faraday en el diseño y operación de generadores eléctricos, destacando la interconexión esencial entre la energía mecánica y eléctrica en estas máquinas giratorias clave para numerosos procesos y sistemas energéticos.

2.2. Generador síncrono trifásico

Dentro de nuestro medio, las máquinas síncronas son mayoritariamente trifásicas y están destinadas principalmente a la generación de energía eléctrica [7].

Entonces, los generadores sincrónicos o también conocidos alternadores, son máquinas que transforman la energía mecánica en energía eléctrica de corriente alterna (CA) [8].

2.2.1. Partes

Compuesto por una serie de elementos a través de los cuales se consigue operar correctamente. Por tanto, sus partes se detallan a continuación:

- Motor: Es la parte más importante porque es la fuente de la fuerza mecánica inicial.
- Alternador: Es el encargado de la producción de la salida eléctrica y de entrada mecánica en los generadores.
- Estator: La parte fija exterior de la máquina en la que se encuentran las bobinas inducidas que producen la corriente eléctrica. El estator se coloca sobre una carcasa metálica que le sirve de soporte.
- **Rotor:** Se trata del componente móvil que gira dentro del estator y que provoca el campo magnético inductor que genera el bobinado inducido.
- **Sistema de combustible:** En función del modelo de generador eléctrico, dispondrá con una capacidad u otra, aunque la media es de una autonomía de 6 a 8 horas.
- **Regulador de voltaje:** Este elemento transforma el voltaje CA en CC.
- Sistemas de enfriamiento y escape: Se encarga de vigilar que el generador eléctrico no se sobrecaliente y se emplea como vía al exterior.
- Sistemas de lubricación: La lubricación garantiza la fluidez y la durabilidad de las actividades del generador eléctrico Fuente especificada no válida.

2.3. Principio de funcionamiento de un generador síncrono trifásico

El principio de funcionamiento de los generadores síncronos es hacer que una bobina gire dentro de un campo magnético, generando así una fuerza electromotriz en la bobina [8].

Para entender el funcionamiento del generador síncrono trifásico se debe saber que este se encuentra constituido por dos componentes fundamentales, una parte móvil que es conocida como rotor o inductor, y una parte estacionaria, conocida como estator o inducido, estas dos partes se encuentran separadas por un espacio que se denomina entre hierro, el cual, juega un papel crucial en la eficiencia y el rendimiento del generador [9].

En un generador trifásico, se introduce corriente al bobinado del rotor, generando un campo magnético. Luego, mediante un motor primario, se induce la rotación del rotor, creando así un campo magnético rotativo en la máquina, este campo magnético rotativo a su vez genera un conjunto de voltajes trifásicos en los bobinados del estator del generador [8].

En resumen, se puede decir que, un generador síncrono trifásico opera al hacer que el rotor gire un campo magnético, lo que resulta en la inducción de corriente alterna en el estator y la generación de voltajes en tres fases.

Figura 2. Devanados a-1, b-2 y c-3 colocados a 120° entre sí en el estator de un generador trifásico. [10]

2.4. Modelo real de estado estable de un generador síncrono trifásico

2.4.1. Prueba de circuito abierto

Esta prueba conlleva en poner al generador en vacío en otras palabras sin carga a sus salidas. Esta deberá girar a una velocidad síncrona y teniendo su corriente en un valor de cero debido a que no tiene cargas. Esto sirve en el estudio del comportamiento de la máquina debido a que ayudará a que vayan obteniendo los valores de la tensión interna de la máquina, el voltaje que se mida en los bornes será el mismo voltaje que tiene internamente el generador debido a que su corriente de campo es cero.

Al graficar estos puntos se tendrá la curva conocida como "curva característica de vacío", la cual consiste en la obtención de una tensión interna producida por una corriente de campo determinada.

Para llevar a cabo el procedimiento de esta prueba, se deberá [11]:

• Aperturar el circuito en los terminales del generador (no haya conexión a una carga)

- Tener a una velocidad síncrona la maquina mediante un sistema mecánico
- Aumentar la corriente de campo de manera progresiva, además medir la tensión en los bornes del generador.

2.4.2. Prueba de corto circuito

La ejecución de esta prueba implica la introducción de un cortocircuito en los terminales del generador, lo que conlleva a la eliminación de la corriente de campo, a continuación, se inicia un incremento progresivo de la corriente de campo. Para llevar a cabo este procedimiento de manera efectiva, se deben seguir los siguientes pasos [11]:

- Establecer la corriente de campo en cero.
- Realizar un cortocircuito en los terminales de la armadura.
- Permitir que la máquina externa ponga en marcha el generador a su velocidad nominal.
- Incrementar progresivamente la corriente de campo hasta alcanzar el nivel máximo de corriente de cortocircuito.

Este método proporciona una evaluación detallada de la capacidad y el comportamiento del generador bajo condiciones específicas, permitiendo un análisis exhaustivo de su rendimiento. Cabe destacar que cada uno de estos pasos es crucial para garantizar la integridad y eficacia del ensayo, brindando información valiosa sobre el rendimiento del generador en diferentes niveles de corriente de campo y condiciones de carga.

2.4.3. Reactancia síncrona saturada

La consideración de la saturación en el núcleo magnético es crucial al abordar los generadores síncronos, que son ampliamente empleados en sistemas de generación de energía. Estos generadores, caracterizados por un rotor giratorio que produce corriente alterna, presentan una reactancia que representa la resistencia del generador al flujo de la corriente alterna. La saturación magnética ocurre cuando el flujo magnético en el núcleo alcanza niveles máximos y ya no puede aumentar, incluso si la corriente se incrementa. En el contexto de los generadores síncronos, esta saturación impacta la relación entre la corriente y el voltaje, afectando también la reactancia sincrónica.

La modelación de la reactancia síncrona saturada es esencial para analizar el comportamiento del generador en condiciones específicas de operación [7]. Este enfoque se revela indispensable al llevar a cabo estudios de estabilidad del Sistema Eléctrico de Potencia (SEP), donde el cálculo y la representación gráfica de la reactancia son fundamentales para evaluar la respuesta del sistema ante perturbaciones y asegurar un funcionamiento óptimo.

Cuando el circuito magnético satura, la reluctancia aumenta, lo que conlleva a una disminución en el valor de la reactancia sincrónica a medida que la saturación se incrementa. Esta variabilidad en la reactancia la denomina reactancia síncrona saturada. La construcción de esta curva puede realizarse gracias a la información obtenida de las pruebas de circuito abierto y cortocircuito anteriores, permitiendo analizar el comportamiento específico del equipo y proporcionando un marco valioso para la comprensión detallada de la influencia de la saturación en la reactancia síncrona [7].

2.5. Generador síncrono trifásico de polos salientes

En la construcción de los generadores síncronos, se emplean dos tipos de rotores: aquellos con polos salientes y otros de rotores cilíndricos lisos [10].

En los generadores con rotores de polos salientes, de denota que estos polos magnéticos sobresalen en lugar de tener una superficie lisa, es decir, se proyectan hacia fuera desde la superficie del rotor. Este diseño particular proporciona ciertas ventajas en términos de control del flujo magnético y adaptabilidad a diversas condiciones de carga y velocidad [8].

Generalmente, los generadores con rotores de polos salientes suelen ser accionados por turbinas hidráulicas que operan a velocidades bajas [10], por lo que son utilizados en equipos accionados por motores relativamente lentos en donde se requiere un mayor número de polos [7].

Los rotores de baja velocidad tienen un diámetro amplio para dar espacio a los polos. Estos polos salientes se colocan en un robusto marco circular de acero, el cual se encuentra fijo en un eje vertical giratorio [10].

Figura 3. Rotor de seis polos salientes. [8].

2.6. Generador trifásico de rotor de polos lisos

Un generador que incorpora un rotor con polos lisos presenta la particularidad de contar con un entrehierro que mantiene un espesor constante a lo largo de toda su circunferencia. Para lograr que el campo magnético tenga una forma senoidal, la distribución de las ranuras en el rotor no debe ser uniforme [8]. La disposición radial de estos rotores se revela esencial, ya que facilita una distribución más efectiva de la Fuerza Magnetomotriz (FMM) en cada polo, mejorando así la forma de onda senoidal de la Fuerza Electromotriz (FEM).

Los generadores síncronos de polos lisos, también denominados o conocidos como polos no salientes, se caracterizan por tener una superficie lisa y cilíndrica en el rotor. Pueden estar configurados con un número par de polos, lo que conlleva diversas ventajas operativas [12]:

- Mínima oscilación: Exhiben una reducida amplitud en el movimiento rotativo, lo que se traduce en un funcionamiento más fluido y eficaz.
- Robusta construcción: Su estructura se caracteriza por su uniformidad y resistencia, aspectos que se deben en parte a la ausencia de polos salientes.
- Elevada velocidad: Estos generadores son idóneos para operar a velocidades elevadas, siendo frecuentemente vinculados a turbinas de vapor o gas.

El funcionamiento de estos generadores se basa en principios electromagnéticos en donde se aplica energía mecánica al rotor, provocando su movimiento y generando una variación en el flujo magnético a través de las bobinas del estator, este cambio en el flujo magnético induce una tensión alterna en las bobinas del estator. La generación del flujo magnético se lleva a cabo mediante una corriente continua proporcionada por el rotor a través de anillos rozantes y escobillas, este proceso electromagnético constituye la base del funcionamiento eficiente de estos generadores síncronos de polos lisos [12].

Figura 4. Rotor de polos no salientes (lisos). [8].

2.7. Curva de máxima capabilidad

El modelado de la máquina síncrona constituye un aspecto esencial en diversos análisis dentro de los sistemas de potencia eléctrica. Para representar la operación de la máquina síncrona, se puede llevar a cabo la elaboración de un diagrama de operación o también denominada una curva de capacidad o capabilidad.

El modelado de esta curva implica tener en cuenta diferentes límites que definen la zona donde el generador opera de forma estable. Para esto es necesario considerar diversos factores que delinean claramente el área en la que la máquina síncrona puede operar de manera consistente y segura [13].

En este sentido, resulta crucial comprender cómo la máquina síncrona opera y se adapta a las condiciones variables en un sistema eléctrico. La detallada delineación de la curva de capacidad

proporciona una visión más holística de su rendimiento, permitiendo así una mejor planificación y gestión de la generación de energía eléctrica en entornos estables y diversos. La identificación y comprensión de los límites en esta representación gráfica facilitan una toma de decisiones más informada para garantizar la eficiencia y estabilidad en la operación de los generadores síncronos en sistemas eléctricos [14].

En el presente trabajo investigativo se han empleado los límites de un sistema de coordenadas rectangulares vinculados a la potencia activa y reactiva (P-Q), además en esta breve descripción, también se ha hecho uso de un sistema de coordenadas polares para ampliar la comprensión y representación de los datos. A continuación se tiene la siguiente figura 4 que presenta el diagrama fasorial de un generador síncrono de polos salientes.

Figura 5. Representación de diagrama fasorial de un generador síncrono de polos salientes. [14].

Con ello podemos deducir la potencia de generación en el rotor como:

$$P = \frac{VE}{X_d}\sin\delta + \frac{V^2}{2}\left(\frac{1}{X_q} - \frac{1}{X_d}\right)\sin(2\delta)$$

$$Q = \frac{VE}{X_d} \cos \delta + \frac{V^2}{2} \left(\frac{X_d - X_q}{X_q X_d} \right) \cos(2\delta) - \frac{V^2}{2} \left(\frac{1}{X_d} + \frac{1}{X_q} \right)$$

Ecuación 1. Potencia de generación en el rotor

Para definir la curva de capabilidad se tienen los siguientes limites

Estator:

$$S = \sqrt{3}V_{nom}I_{nom}$$

Ecuación 2. Límite para definir curva de capabilidad: Corriente en el estator

Ángulo δ:

$$\delta = tan^{-1} \frac{IX_q \cos{(\phi)}}{V + IX_q \sin{(\phi)}}$$

Ecuación 3. Límite para definir curva de capabilidad: Ángulo δ

Voltaje interno:

$$E = V\cos(\delta) + IX_d\sin(\delta + \phi)$$

Ecuación 4. Límite para definir curva de capabilidad: Voltaje interno

Ángulo máximo δ_m :

$$\delta_m = \cos^{-1}(-\frac{C}{8B} + \sqrt{\left(\frac{C}{8B}\right)^2 + \frac{1}{2}})$$

Por lo que recordando tenemos:

$$S = P + jQ$$

$$S = -j\frac{V^2}{2}\left(\frac{1}{X_d} + \frac{1}{X_q}\right) + \frac{V^2}{2}\left(\frac{X_d - X_q}{X_q X_d}\right)\left(\sin(2\delta) + j\cos(2\delta)\right) + \frac{VE}{X_d}\left(\sin\delta + j\cos\delta\right)$$
$$S = A + B + C$$

Ecuación 5. Límite para definir curva de capabilidad: Ángulo máximo δm

$$A = -j\frac{V^2}{2}\left(\frac{1}{X_d} + \frac{1}{X_q}\right)$$
$$B = \frac{V^2}{2}\left(\frac{X_d - X_q}{X_q X_d}\right)\left(\sin(2\delta) + j\cos(2\delta)\right)$$
$$C = \frac{VE}{X_d}(\sin\delta + j\cos\delta)$$

Figura 6. Curva de capabilidad de un generador síncrono de polos salientes. [14].

2.8. Sincronismo de un generador trifásico con un SEP

2.8.1. Sincronismo de un generador con el sistema eléctrico de potencia

En la dinámica de los sistemas eléctricos de potencia, se identifican diversos elementos que desempeñan funciones clave en el manejo de la potencia activa, entre ellos, se destacan transformadores desfasadores, sistemas electrónicos y enlaces de corriente continua, sin embargo, el generador síncrono destaca como el actor principal en el control de carga y frecuencia.

El generador síncrono, detallado en el anexo 4, se muestra como un componente esencial para regular la frecuencia a través de la potencia activa en el sistema. Este dispositivo desempeña un papel fundamental en la sincronización y control de la generación de energía eléctrica, el anexo 5 proporciona una visión detallada del funcionamiento en base a los componentes clave del generador síncrono y cómo estos contribuyen a la regulación de sus límites por diversos factores considerando la potencia activa y reactiva.

Es fundamental comprender que la frecuencia del sistema eléctrico está intrínsecamente ligada a la potencia activa (P), mientras que la tensión de la carga se relaciona con la potencia reactiva (Q). Este enfoque integral permite mejorar el factor de potencia del sistema, asegurando un rendimiento eficiente y estable en términos de carga y frecuencia. En este contexto, el generador síncrono asume un papel central al desempeñar funciones esenciales para gestionar y regular estos aspectos, asegurando el funcionamiento óptimo y estable del sistema eléctrico de potencia.

2.9. La frecuencia VS la potencia activa

El mecanismo de regulación denominado "control droop" está asociado al control primario, desempeñando la función de verificar el suministro de potencia proveniente de cada fuente distribuida al punto de conexión a la red, en otras palabras, este tipo de control facilita la regulación de la cantidad de potencia suministrada por la fuente, permitiendo al sistema restablecer los valores nominales en caso de cualquier perturbación [15].

2.10. El voltaje VS la potencia reactiva

En el contexto de los generadores síncronos, su capacidad de generar o absorber potencia reactiva está directamente vinculada al nivel de excitación del generador, en situaciones de sobreexcitación, el generador suministra más potencia reactiva, mientras que en condiciones de subexcitación, la absorbe. Este comportamiento está sujeto a limitaciones impuestas por la corriente de campo, la región de recalentamiento terminal y la corriente de armadura.

Para gestionar eficientemente estas variaciones, los generadores síncronos suelen estar equipados con reguladores automáticos de voltaje, estos dispositivos desempeñan la función de ajustar de manera continua la excitación y el control del voltaje en la armadura, en otras palabras, estos reguladores automáticos garantizan un mantenimiento preciso y constante de la excitación del generador, permitiendo así una gestión efectiva de la potencia reactiva generada o absorbida. Este control dinámico contribuye a la estabilidad y eficiencia del sistema eléctrico en su conjunto [16].

2.10.1. Ley de Faraday

La creación de un campo eléctrico por un flujo magnético variable está descrita por la siguiente ecuación [2]:

$$\int E.\,ds = \frac{d\phi_B}{dt}$$

Ecuación 7. Ley de Faraday en la forma general

La ley de Faraday indica que la fem, que es esencialmente la "fuerza" que impulsa la corriente eléctrica, es igual a la velocidad con la que el flujo magnético a través de una determinada área cambia en el tiempo. En otras palabras, si se traza una trayectoria cerrada y calculamos la integral del campo eléctrico a lo largo de esa trayectoria, se obtendrá un valor que es igual a la rapidez con la que el flujo magnético a través de cualquier área encerrada por esa trayectoria está cambiando. Esto ilustra la conexión fundamental entre el campo eléctrico y el flujo magnético en el contexto de la generación de una fem [2].

Una implicación directa de esta ley es la generación de corriente eléctrica en una espira conductora que se encuentra dentro de un campo magnético en constante cambio a lo largo del tiempo [2].

Figura 7. a) Esquema de un generador de corriente alterna, una fem es inducida sobre una espira que gira en un campo magnético. b) Gráfica de la fem inducida alterna en la espira en función de t. [2].

En términos más detallados y resumidos, la ley de Faraday nos dice que la fuerza electromotriz inducida en un circuito es proporcional a la velocidad con la que cambia en el tiempo el flujo magnético a través de ese circuito. En esencia, la variación en el flujo magnético dentro del circuito está directamente relacionada con la cantidad de fuerza electromotriz generada, esto es:

$$\varepsilon = -\frac{d\phi_B}{dt}$$

Ecuación 8. Ley de inducción de Faraday

En donde: $\phi_B = \int B \cdot dA$ se dice que es el flujo magnético.

Cuando una barra conductora, con una longitud ℓ , se desplaza a través de un campo magnético B, donde B es perpendicular tanto a la barra como a su velocidad v, se induce una fuerza electromotriz fem de movimiento en la barra. La magnitud de esta fem está determinada por:

$$\varepsilon = -B\ell v$$

Ecuación 9. fem de movimiento inducida

La ley de Lenz denota que cuando se induce una corriente o una fuerza electromotriz fem en un conductor debido a un cambio en el campo magnético, la dirección de la corriente o fem será tal que se oponga a ese cambio. En otras palabras, actúa en sentido contrario al proceso que la originó, una formulación general de la ley de inducción de Faraday es:

$$\varepsilon = \int E.\,ds = -\frac{d\phi_B}{dt} \,\,[Ec.\,8]$$

Esta expresión hace referencia a *E*, que representa el campo eléctrico no conservativo generado por un flujo magnético que cambia en el tiempo [2]. La variación en este flujo magnético induce un campo eléctrico que contribuye a la fuerza electromotriz fem en el circuito.

2.10.2. Características para la elección de un generador

Los generadores cuando están dimensionados en forma apropiada permiten lograr optimización de potencia eléctrica y evita desgastes por el uso inadecuado. Básicamente se debe tomar en cuenta durante la etapa de diseño, tanto por su desempeño eléctrico como ubicación mecánica, ciertas características que son básicas como:

- Vida útil del generador Capacidad de expansión Regulación de frecuencia.
- Regulación de voltaje.
- Respuesta rápida frente a variaciones de voltaje o frecuencia.
- Modo continúo de operación.
- Exactitud.
- Tolerancia a sobrecargas momentáneas.
- Seguridad ante riesgos.
- Operación libre de contaminación.

Para la fábrica de harina, materia de este análisis, toda la planta se pondrá en funcionamiento con los grupos de generación y solo al inicio con el área administrativa y de precalentamiento. En muchas ocasiones, la carga total de la planta es la que debe ser asumida por los generadores en modo continuo. Las cargas pueden ser de tipo resistivo, como los sistemas de calefacción e iluminación incandescente o de tipo inductivo, como motores, en los cuales debe considerarse el factor de potencia, el método de arranque y la cantidad que encenderían al mismo tiempo.

La cantidad de motores en encender al mismo tiempo tiene vital importancia, ya que influye mucho en la disminución del voltaje de alimentación por debajo del requerido para la estabilidad del bus de alimentación o barraje común y que cargas muy sensibles no se vean afectadas. Por último, dependiendo del crecimiento o expansión a futuro que se tenga prevista,

se debe calcular un porcentaje concordante con la planificación futura para posibles ampliaciones.

2.10.3. Sincronismo entre dos generadores trifásicos de similares características

En muchas ocasiones, es esencial unir en paralelo dos o más generadores con el propósito de suministrar energía a una carga compartida, esta práctica se lleva a cabo cuando se requiere una mayor capacidad de generación o para garantizar la disponibilidad de energía en situaciones donde la carga es considerable. La conexión en paralelo permite la colaboración de múltiples generadores, asegurando así una distribución eficiente y confiable de la energía necesaria [10].

Cuando se evalúa la necesidad de conectar en paralelo uno, dos o más generadores de corriente alterna trifásica, resulta crucial tener en consideración aspectos fundamentales y básicos. Esto incluye la atención especial a la tensión generada en los terminales, el desfase entre los voltajes de los generadores y las frecuencias respectivas.

En el contexto del acoplamiento en paralelo de estos generadores, se deben cumplir condiciones esenciales que aseguran el éxito de la operación, abarcando aspectos críticos que respaldan un rendimiento eficiente y coordinado del sistema eléctrico.

Se afirma que un generador se encuentra en sincronía cuando se satisface una serie de requisitos, que incluyen [10]:

- El voltaje generado por el equipo es igual al voltaje presente en el sistema.
- La secuencia de fases del generador es idéntica a la del sistema.
- La frecuencia del generador es idéntica a la del sistema.
- La fase del voltaje del generador está alineada con la fase del voltaje del sistema.

Condiciones explicadas a continuación:

2.10.3.1. Igualdad de voltaje

La primera condición crucial es asegurar la igualdad en los voltajes, lo que implica que la tensión del equipo entrante debe ser precisamente igual a la tensión presente en la línea. Si la tensión final de la máquina recién conectada es mayor o menor que la tensión de la línea, se genera una onda de corriente en la conexión de la nueva máquina. Esto resulta en una corriente
circulante a través del arrollamiento de armadura, las barras colectoras y otros generadores que aportan a la línea. Es esencial que los voltajes en los bornes de cada generador se ajusten a la barra de carga, garantizando que los valores de voltaje eficaz coincidan y que exista concordancia entre las fases [9].

2.10.3.2. Secuencias de fase

Las secuencias de fases implican que al realizar la conexión, la tensión final de la máquina entrante y la tensión presente en la línea deben actuar en sentido opuesto en el circuito cerrado que comprende la máquina entrante, las barras colectoras y otros generadores, si estas tensiones no están en fase durante la conexión, la disparidad resultante en las tensiones genera una corriente instantánea. En situaciones de grandes desplazamientos angulares, puede resultar en un daño en los arrollamientos del equipo [9].

2.10.3.3. Igualdad de frecuencia

Esta condición implica que las dos tensiones sean iguales, esto denota la necesidad de mantener igualdad en las tensiones; es decir, al realizar la conexión, la frecuencia del generador a acoplar y las frecuencias presentes en las barras deben ser perfectamente coincidentes. Cuando las tensiones son iguales y están en fase, las lámparas permanecen apagadas, indicando una sincronización estable. Sin embargo, si bien las tensiones pueden ser iguales, si la frecuencia de la línea y la frecuencia de la máquina entrante no concuerdan, se observa un breve periodo en el que las lámparas se apagan, luego se encienden nuevamente para finalmente apagarse. Este encendido y apagado sigue una secuencia periódica, y la frecuencia de fluctuación señala la discrepancia entre la frecuencia de la máquina entrante y la de la línea. Al variar la velocidad del motor primario, se logra afectar la frecuencia del generador, buscando la perfecta sincronización de todas las ondas entre el generador y la barra de carga. Cabe destacar que la disparidad en las ondas de frecuencia entre dos generadores podría ocasionar una tensión resultante superior a la requerida por la red, provocando daños en los equipos y en la carga conectada a esos grupos electrógenos. La frecuencia de operación, al ser una medida eléctrica de la velocidad mecánica, juega un papel crucial en este proceso. En la conexión de generadores en paralelo, es indispensable que este valor sea uniforme para todos los grupos, ya que cualquier discrepancia entre frecuencias podría inducir corrientes circulantes entre los generadores y afectar la distribución proporcional de carga. En este proceso, cada grupo toma potencia activa de manera proporcional a la velocidad de su motor, contribuyendo a una operación equitativa y eficiente del sistema eléctrico [9].

2.10.3.4. Igualdad de secuencia de fase

Esta condición implica que, durante la conexión, la concordancia en la secuencia de fases se refleja en que los diagramas vectoriales deben girar en la misma dirección.

Los generadores síncronos, al conectarse en paralelo, deben tener un número idéntico de fases respecto a la barra de carga y una correspondencia en sus voltajes, ya que la falta de esto resultaría en un desequilibrio de potencia en las líneas de suministro, provocando un calentamiento excesivo en el conductor afectado. En este caso, los generadores G1 y G2 poseen el mismo número de fases, contribuyendo de manera equitativa al sistema y manteniendo un equilibrio en la potencia entregada a la carga, evitando desbalances perjudiciales [9].

2.11. Variables de control del generador

2.11.1. Potencia mecánica

Producida por la máquina motriz y transferida a través de su eje al generador síncrono, esta electricidad se crea al convertir la energía mecánica en energía eléctrica.

2.11.2. Potencia eléctrica

Se refiere a la electricidad que se produce mediante la corriente de excitación de corriente continua que alimenta el rotor del generador, creando así el campo magnético necesario.

2.11.3. Control de potencia mecánica

La potencia mecánica se gestiona ajustando la velocidad de giro de la máquina motriz (como una turbina, motor de combustión o las palas de un aerogenerador) conectada al eje del generador. En el caso de una turbina, esto implica regular la cantidad de vapor inyectado, mientras que en los motores de combustión se controla el suministro de combustible, ya sea diésel o gas. Un regulador de velocidad garantiza mantener constante la velocidad del generador, controlando así la potencia mecánica. El control de la potencia activa del generador se logra a través del control de la frecuencia. El regulador de velocidad es crucial para mantener constante la velocidad de giro del motor de un grupo electrógeno, desde condiciones sin carga hasta carga máxima. Estos dispositivos, llamados reguladores de velocidad o gobernadores, ajustan la cantidad de combustible suministrado al motor para lograr esta estabilidad. El rango de regulación de velocidad típico para los generadores es de 3.5% arriba o abajo de la velocidad de plena carga. Sin embargo, en aplicaciones específicas, se utilizan gobernadores isócronos con una regulación prácticamente nula, adaptándose a requisitos particulares de la carga.

2.11.4. Control de corriente de excitación

El sistema de excitación es responsable de proporcionar una corriente continua controlada al rotor del generador, asegurando un voltaje constante en la salida de sus terminales. Para controlar esta corriente continua, se utiliza un regulador de voltaje automático (AVR, por sus siglas en inglés, "automatic voltage regulator"). La regulación del voltaje se refleja en la potencia reactiva generada por el generador síncrono. En resumen, el AVR garantiza que el generador mantenga un voltaje estable al ajustar la corriente de excitación, lo que a su vez afecta la potencia reactiva producida.

Regulador de tensión: Son dispositivos que detectan cambios en la tensión generada y corrigen automáticamente las variaciones provocadas por las fluctuaciones de la corriente de carga. Su corrección es indirecta, ya que envían corriente al campo del generador auxiliar (excitatriz), que a su vez suministra la corriente de excitación al campo principal.

3. MARCO METODOLOGICO

3.1. Análisis de curva de capabilidad

Para comenzar con el análisis de la curva de capabilidad se debe considerar que los generadores síncronos poseen límites de operación, estas principalmente se ven afectados por el calentamiento de los devanados rotóricos y estatóricos, esto es perjudicial debido a que acorta la vida útil del generador, entonces se tiene en consideración los siguientes puntos como limitaciones:

- Corriente de armadura máxima: esta corriente se limita por el calentamiento del estator y vida útil del aislamiento.
- Potencia máxima de la turbina: esta capacidad se limita por la fabricación, es decir que se impide la entrega máxima de potencia.
- Corriente máxima de excitación: al inducirse al estator la FEM máxima, genera un límite en la potencia aparente.
- Corriente mínima de excitación: siempre habrá una FEM inducida de valor mínimo, debido a que se debe contrarrestar los flujos residuales.
- Angulo de torque máximo: la potencia que produce un generador síncrono depende del ángulo (torque) entre la tensión en los bornes del generador y la FEM inducida.

Tomando esto en consideración, procedemos a revisar la curva de capabilidad que otorga el catálogo del generador. Esta curva nos da a conocer la operatividad del generador, observando así cuánta potencia activa MW y reactiva MVAR puede entregar el generador en diferentes factores de potencia y ángulos de torque. Para esto se realizó el análisis de 5 casos:

Entonces:

Caso 1: FP= 0.3

 $\Theta = cos^{-1}(FP)$ Ecuación 10. Ángulo de carga $\Theta = cos^{-1}(0,3) = 72.54^{\circ}$

Además, se puede encontrar el radio de límite de campo de la siguiente manera:

$$X_{ss} = \frac{1}{Rcc}$$

Ecuación 11. Radio de límite de campo

$$X_{ss} = \frac{1}{0,42} = 2.38pu$$

En la figura 8 se puede observar que a través del factor de potencia (FP) y del límite de campo (Rcc) se puede encontrar los valores de potencias activa y reactiva.

Teniendo en cuenta que:

$$S^2 = P^2 + Q^2$$
$$S = \sqrt{P^2 + Q^2}$$

Ecuación 12. Potencia aparente

Siendo:

P=0.26MW

Q = 0.82MVAR

$$S = \sqrt{0.26^2 + 0.82^2} = 0.86MVA$$

Figura 8. Curva de capabilidad con factor de potencia = 0.3, análisis inductivo

Con los valores encontrados, se puede hallar el valor de la fem (fuerza electromotriz), analizándolo como se muestra en la figura 9:

Figura 9. Circuito RL

$fem = V \angle 0^{\circ} + X_{SS} \angle 90^{\circ} \cdot I \angle \Theta$

Ecuación 13. Fuerza electromotriz $fem = 1 \angle 0^{\circ} + 2.38 \angle 90^{\circ} \cdot 0.86 \angle -72.54^{\circ} = 3.0157 \angle 11.75^{\circ}$

El ángulo de la fem es igual al ángulo de la carga.

$$\theta = \delta_{carga}$$

Ecuación 14. Ángulo de la fuerza electromotriz

 $\theta = 11.75^{\circ}$

Con ello se puede calcular el radio del límite de campo r_2 :

$$r_2 = \frac{3.0157 \cdot 1 \angle 0^{\circ}}{2.38} = 1.267 \, pu$$

Finalmente, se puede encontrar la potencia activa y reactiva máxima que entrega el generador.

$$P_{max} = r_2 \cdot sin \Theta$$

Ecuación 15. Potencia activa máxima que entrega el generador

$$P_{max} = 1.267 \cdot sin(11.75^\circ) = 0.258$$

 $P_{max} = 0.26$

$$Q_{max} = r_2 \cdot \cos \delta - Rcc$$

Ecuación 16. Potencia reactiva máxima que entrega el generador

$$Q_{max} = 1.267 \cdot cos(11.75^{\circ}) - 0.42 = 0.82$$

 $Q_{max} = 0.82$

Figura 10. Simulación de sincronismo con FPcarga = 0.3 inductivo en el software ETAP Caso 2: FP= 0.6

 $\theta = cos^{-1}(FP)$ [Ec. 10] $\theta = cos^{-1}(0.6) = 53.13^{\circ}$

Siendo:

P = 0.56MW

Q = 0.72MVAR

$$S = \sqrt{0.56^2 + 0.72^2} = 0.912MVA$$

Figura 11. Curva de capabilidad con factor de potencia = 0.6, análisis inductivo

 $fem = V \angle 0^{\circ} + X_{SS} \angle 90^{\circ} \cdot I \angle \Theta \ [Ec. \ 13]$ $fem = 1 \angle 0^{\circ} + 2.38 \angle 90^{\circ} \cdot 0.912 \angle -53.13^{\circ} = 3.03 \angle 25.45^{\circ}$

El ángulo de la fem es igual al ángulo de la carga.

$$\theta = \delta_{carga} = 25.45^{\circ}$$
 [Ec. 14]

Con ello se puede calcular el radio del límite de campo r_2 :

$$r_2 = \frac{3.03 \cdot 1 \angle 0^\circ}{2.38} = 1.273 \ pu$$

Finalmente, se puede encontrar la potencia activa y reactiva máxima que entrega el generador.

$$P_{max} = r_2 \cdot sin \Theta [Ec. 15]$$

 $P_{max} = 1.273 \cdot sin(25.45^\circ) = 0.547$
 $P_{max} = 0.55$

$$Q_{max} = r_2 \cdot \cos \delta - Rcc [Ec. 16]$$

$$Q_{max} = 1.273 \cdot cos(25.45^{\circ}) - 0.42 = 0.729$$

$$Q_{max} = 0.73$$

Figura 12. Simulación de sincronismo con FPcarga = 0.6 inductivo en el software ETAP

Caso 3: FP= 0.8

$$\Theta = cos^{-1}(FP)$$
 [Ec. 10]
 $\Theta = cos^{-1}(0.8) = 36.87^{\circ}$

Siendo:

P = 0.8MW

Q = 0.6MVAR

$$S = \sqrt{0.8^2 + 0.6^2} = 1MVA$$

Figura 13. Curva de capabilidad con factor de potencia = 0.8, análisis inductivo

$$fem = V \angle 0^\circ + X_{SS} \angle 90^\circ \cdot I \angle \Theta \ [Ec. 13]$$

$$fem = 1 \angle 0^{\circ} + 2.38 \angle 90^{\circ} \cdot 1 \angle - 36.87^{\circ} = 3.085 \angle 38.1^{\circ}$$

El ángulo de la fem es igual al ángulo de la carga.

$$\Theta = \boldsymbol{\delta}_{carga} = \mathbf{38.1}^{\circ} [Ec. 14]$$

Con ello se puede calcular el radio del límite de campo r_2 :

$$r_2 = \frac{3.085 \cdot 1 \angle 0^{\circ}}{2.38} = 1.3 \, pu$$

Finalmente, se puede encontrar la potencia activa y reactiva máxima que entrega el generador.

$$P_{max} = r_2 \cdot sin \, \Theta \, [Ec. \, 15]$$

 $P_{max} = 1.3 \cdot sin(38.1^\circ) = 0.8$
 $P_{max} = 0.8$

$$Q_{max} = r_2 \cdot \cos \delta - Rcc[Ec. 16]$$

$$Q_{max} = 1.3 \cdot cos(38.1^{\circ}) - 0.42 = 0.6$$

$$Q_{max} = 0.6$$

Figura 14. Simulación de sincronismo con FPcarga = 0.8 inductivo en el software ETAP

Caso 4: *FP* = **0**.**95** (atraso)

$$\theta = \cos^{-1}(FP) [Ec. 10]$$

$$\theta = cos^{-1}(0.95) = 18.19^{\circ}$$

Siendo:

P = 0.8MW

Q = 0.27 MVAR

 $S = \sqrt{0.8^2 + 0.27^2} = 0.844 MVA$

Figura 15. Curva de capabilidad con factor de potencia = 0.95, análisis inductivo

 $fem = V \angle 0^{\circ} + X_{SS} \angle 90^{\circ} \cdot I \angle \Theta \ [Ec. 13]$

$$fem = 1 \angle 0^{\circ} + 2.38 \angle 90^{\circ} \cdot 0.844 \angle 18.19^{\circ} = 2.51 \angle 49.57^{\circ}$$

El ángulo de la fem es igual al ángulo de la carga.

$$\Theta = \delta_{caraa} = 49.57^{\circ}$$
 [Ec. 14]

Con ello se puede calcular el radio del límite de campo r_2 :

$$r_2 = \frac{2.51 \cdot 1 \angle 0^{\circ}}{2.38} = 1.05 \ pu$$

Finalmente, se puede encontrar la potencia activa y reactiva máxima que entrega el generador.

$$P_{max} = r_2 \cdot sin \Theta$$
 [Ec.15]
 $P_{max} = 1.05 \cdot sin(49.57^\circ) = 0.799$
 $P_{max} = 0.8$

$$Q_{max} = r_2 \cdot \cos \delta - Rcc [Ec. 16]$$

$$Q_{max} = 1.05 \cdot cos(49.57^{\circ}) - 0.42 = 0.26$$

 $Q_{max} = 0.26/atraso$

Figura 16. Simulación de sincronismo con FPcarga = 0.95 inductivo en el software ETAP

Caso 5: FP= 0.95/ adelanto

$$\boldsymbol{\Theta} = \boldsymbol{cos^{-1}(FP)} [Ec. \ 10]$$

$$\theta = cos^{-1}(0.95) = 18.19^{\circ}$$

Siendo:

P = 0.8MW

Q = 0.26MVAR

 $S = \sqrt{0.8^2 + 0.26^2} = 0.84 MVA$

Figura 17. Curva de capabilidad con factor de potencia = 0.95, análisis capacitivo

 $fem = V \angle 0^{\circ} + X_{SS} \angle 90^{\circ} \cdot I \angle \Theta \ [Ec. 13]$

$$fem = 1 \angle 0^{\circ} + 2.38 \angle 90^{\circ} \cdot 0.84 \angle 18.19^{\circ} = 1.936 \angle 78.80^{\circ}$$

El ángulo de la fem es igual al ángulo de la carga.

$$\theta = \delta_{carga} = 78.80^{\circ}$$
 [Ec. 14]

Con ello se puede calcular el radio del límite de campo r_2 :

$$r_2 = \frac{1.936 \cdot 1 \angle 0^\circ}{2.38} = 0.813 \, pu$$

Finalmente, se puede encontrar la potencia activa y reactiva máxima que entrega el generador.

$$P_{max} = r_2 \cdot sin \Theta$$
 [Ec. 15]
 $P_{max} = 0.813 \cdot sin(78.80^\circ) = 0.797$
 $P_{max} = 0.8$

$$Q_{max} = r_2 \cdot \cos \delta - Rcc$$
 [Ec. 16]

$$Q_{max} = 0.813 \cdot cos(78.80^{\circ}) - 0.42 = 0.262$$

 $Q_{max} = 0.26/adelanto$

Figura 18. Simulación de sincronismo con FPcarga = 0.95 capacitivo en el software ETAP

3.2. Sincronismo de un generador trifásico con un SEP

Se destaca que el sincronismo de generadores trifásicos es la conexión en paralelo entre las unidades generadoras a un si sistema eléctrico de potencia, estas unidades generadoras poseen fuentes trifásicas de voltaje y además para que se pueda realizar la sincronización se debe mantener:

- capacidad de potencia activa
- capacidad de potencia reactiva
- tensión nominal del sistema
- frecuencia nominal del sistema

En tal virtud las unidades generadoras pueden sincronizarse de dos maneras:

- Generador con un sistema de potencia
- Entre generadores

Para poder realizar el sincronismo entre un generador y un SEP se debe cumplir las siguientes condiciones:

- La tensión de L-L del generador entrante debe ser ligeramente mayor a la del sistema
- La frecuencia a vacío del generador entrante debe ser ligeramente mayor a la del sistema.
- Poseer igual el ángulo de fase
- Poseer igual la secuencia de fases

Los lazos de control:

- La potencia activa VS frecuencia
- La potencia reactiva VS voltaje

3.2.1. Frecuencia [Hz] VS Potencia [W]

En la siguiente figura, se muestra el análisis preliminar de la variación entre la frecuencia y la potencia activa, esta grafica permite visualizar que la frecuencia a vacío del generador entrante debe ser ligeramente mayor a la frecuencia del sistema, esto para evitar que el generador consuma potencia activa en otras palabras para evitar que se motorice el generador.

Siendo:

m(F vs P): pendiente de operación frecuencia VS Potencia activa del generador.

n_{mp}: velocidad del motor primario

FOG: frecuencia a vacío del generador

PO: punto de operación del generador

P1: potencia activa que el generador entrega al sistema

Figura 19. Análisis grafico de variación de pendientes de frecuencia VS potencia activa.

Adicional se puede observar gráficamente que, al analizar la pendiente de la frecuencia vs la potencia activa, se puede destacar que la frecuencia se controla con la potencia activa tal como se muestra en la siguiente figura:

Figura 20. Análisis grafico de pendientes de operación frecuencia VS potencia activa del generador

Teniendo como análisis que la tangente del ángulo es igual a la pendiente de operación y esta es el resultado de la potencia del generador entre la resta de la frecuencia en vacío del generador y la frecuencia del sistema:

$$tg \theta = m(FvsP) = \frac{P_1}{F_{0G} - F_{sist}} \left[\frac{KW}{Hz}\right]$$
$$P_1 = m(FvsP) \cdot (F_{0G} - F_{sist})$$
$$F_{0G} = \frac{P_1}{m(FvsP)} + F_{sist}$$

Ecuación 17. Frecuencia en vacío del generador

Se analizó la velocidad a vacío que tendría el generador cuando opera con las siguientes cargas: 100KW, 400KW, 1200KW y su potencia máxima P_{max} . Considerando el 50% de la potencia activa del generador. Siendo la pendiente $m(FvsP) = 400 \left[\frac{KW}{Hz}\right]$

Entonces:

Para $P_1 = 100KW$

Frecuencia a vacío del generador:

$$F_{OG} = \frac{P_1}{m(FvsP)} + F_{sist} \quad [Ec. 17]$$
$$F_{OG} = \frac{100KW}{400 \left[\frac{KW}{Hz}\right]} + 60Hz = 60.25Hz$$

Velocidad de sincronismo del estator:

$$n_{mp} = \frac{F_{OG} \cdot F_{sist}}{pp}$$

Ecuación 18. Velocidad del sincronismo del estator

$$n_{mp} = \frac{60.25Hz \cdot 60Hz}{2} = 1807.5 \, rpm$$

Velocidad angular del estator:

$$\omega = \frac{2\pi \cdot F_{OG}}{PP}$$

Ecuación 19. Velocidad angular del estator

$$\omega = \frac{2\pi \cdot 60.25Hz}{2} = 189.28 \left[\frac{rad}{s}\right]$$

Su análisis en una gráfica P vs F sería:

Figura 21. Variación de pendientes en la frecuencia con una carga de 100KW

Para $P_2 = 400 KW$

Frecuencia a vacío del generador:

$$F_{02G} = \frac{400KW}{400\left[\frac{KW}{Hz}\right]} + 60Hz = 61Hz$$

Velocidad de sincronismo del estator:

$$n_{mp} = \frac{61Hz \cdot 60Hz}{2} = 1860.5 \, rpm$$

Velocidad angular del estator:

$$\omega = \frac{2\pi \cdot 61Hz}{2} = 191.64 \left[\frac{rad}{s}\right]$$

Para **P**₃ = **1200***KW*

Frecuencia a vacío del generador:

$$F_{03G} = \frac{1200KW}{400\left[\frac{KW}{Hz}\right]} + 60Hz = 63Hz$$

Velocidad de sincronismo del estator:

$$n_{mp}=\frac{63Hz\cdot 60Hz}{2}=1890\ rpm$$

Velocidad angular del estator:

$$\omega = \frac{2\pi \cdot 63Hz}{2} = 197.92 \left[\frac{rad}{s}\right]$$

Para P_{max} se tiene la siguiente ecuación:

$$P_{max} = \sqrt{3} \cdot V_{LL} \cdot I_f \cdot FP$$
$$P_{max} = \sqrt{3} \cdot 480V \cdot 3007.03A \cdot 1 = 2.5MW$$

Frecuencia a vacío del generador:

$$F_{04G} = \frac{2500KW}{400\left[\frac{KW}{Hz}\right]} + 60Hz = 66.25Hz$$

Velocidad de sincronismo del estator:

$$n_{mp} = \frac{66.25Hz \cdot 60Hz}{2} = 1987.5 \, rpm$$

Velocidad angular del estator:

$$\omega = \frac{2\pi \cdot 66.25Hz}{2} = 208.13 \left[\frac{rad}{s}\right]$$

3.2.2. La potencia reactiva VS el Voltaje

En la siguiente figura se muestra la variación de nivel tensión de la pendiente en diferente s puntos de potencia reactiva, el VLLOG debe ser ligeramente mayor al voltaje del sistema para evitar que el generador consuma potencia reactiva. Siendo:

m(V vs Q): pendiente de operación voltaje VS potencia reactiva del generador.

IF: corriente de fase

- VOG: voltaje a vacío del generador
- QO: punto de operación del generador
- Q1: potencia reactiva que el generador entrega al sistema

Figura 22. Análisis grafico de variación de pendientes el voltaje VS potencia reactiva.

En la figura se puede observar gráficamente que se puede controlar el voltaje terminal del sistema con la potencia reactiva tal como se muestra en la figura 23.

Figura 23. Análisis grafico de pendientes de operación voltaje VS potencia reactiva del generador

Teniendo como análisis que la tangente del ángulo es igual a la pendiente de operación y esta es el resultado de la potencia reactiva del generador entre la resta del voltaje en vacío del generador y el voltaje del sistema:

$$tg \theta = m(VvsQ) = \frac{Q_1}{V_{0G} - V_{sist}} \left[\frac{KVAR}{Hz}\right]$$
$$Q_1 = m(VvsQ) \cdot (V_{0G} - V_{sist})$$
$$V_{0G} = \frac{Q_1}{m(VvsQ)} + V_{sist}$$

Se analizó la corriente de campo para que el generador entregue al sistema las siguientes potencias: 300KVAR, 540KVAR, 1200KVAR y su potencia reactiva máxima Q_{max} . Considerando el 30% de la potencia activa del generador. Siendo estos valores $m(VvsQ) = 180 \left[\frac{KVAR}{V}\right]$

Entonces:

Para $Q_1 = 100 KVAR$

Voltaje en vacío del generador:

$$V_{OG} = \frac{Q_1}{m(VvsQ)} + V_{sist} [Ec. 20]$$
$$V_{OG} = \frac{100KVAR}{180 \left[\frac{KVAR}{V}\right]} + 480V = 480.55V$$

Fem del generador en vacío:

$$Fem_{OG} = \frac{F_{OG}}{\sqrt{3}}$$

Ecuación 21. fem del generador en vacío

$$Fem_{0G} = \frac{480.55V}{\sqrt{3}} = 277.44V$$

Corriente de fase según gráfica de c.c.a:

$$I_{fG} \cong 1.0016A$$

Su análisis en una gráfica V vs Q sería:

Figura 24. Variación de pendientes en voltaje con una carga reactiva de 100KW

Para $Q_2 = 180 KVAR$

Voltaje en vacío del generador:

$$V_{OG} = \frac{Q_1}{m(VvsQ)} + V_{sist} [Ec. 20]$$
$$V_{OG} = \frac{180KVAR}{180\left[\frac{KVAR}{V}\right]} + 480V = 481V$$

Fem del generador en vacío:

$$Fem_{OG} = \frac{F_{OG}}{\sqrt{3}} [Ec. 21]$$

$$Fem_{OG} = \frac{481V}{\sqrt{3}} = 277.7V$$

Corriente de fase según gráfica de c.c.a:

$$I_{fG} \cong 1.0025A$$

Para $Q_3 = 1200 KVAR$

Voltaje en vacío del generador:

$$V_{OG} = \frac{Q_3}{m(VvsQ)} + V_{sist} [Ec. 20]$$
$$F_{OG} = \frac{1200KVAR}{180 \left[\frac{KVAR}{V}\right]} + 480V = 486.66V$$

Fem del generador a vacío:

$$Fem_{0G} = \frac{F_{0G}}{\sqrt{3}} [Ec. 21]$$

$$Fem_{OG} = \frac{486366V}{\sqrt{3}} = 280.97V$$

Corriente de fase según gráfica de c.c.a:

$$I_{fG} \cong 1.014A$$

En el caso de Q_{max} se tiene la siguiente ecuación:

$$Q_{max} = \sqrt{3} \cdot V_{LL} \cdot I_f \cdot FP$$

Ecuación 22. Carga máxima reactiva

$$Q_{max} = \sqrt{3} \cdot 480V \cdot 3007.03A \cdot 1 = 2.5MVAR$$

Para $Q_{max} = 2.5 MVAR$

Voltaje en vacío del generador:

$$V_{OG} = \frac{Q_{max}}{m(VvsQ)} + V_{sist} [Ec. 20]$$
$$V_{OG} = \frac{2500KVAR}{180 \left[\frac{KVAR}{V}\right]} + 480V = 493.88V$$

Fem del generador a vacío:

$$Fem_{0G} = \frac{F_{0G}}{\sqrt{3}} [Ec. 21]$$

 $Fem_{0G} = \frac{293.88V}{\sqrt{3}} = 285.14V$

Corriente de fase según gráfica de c.c.a:

$$I_{fG} \cong 1.02A$$

En el software ETAP no se puede controlar el motor primario del generador, es decir que la frecuencia siempre trabajara en 60Hz, por ende, los cálculos presentados no se analizaran en conjunto con el programa.

3.3. Análisis teórico y práctico del sincronismo

Caso 1: Cuando el $FP_{carga} = 0.3$ entonces el generador entregará $P_{max.Gen} = 0.258MW/$ atraso y $Q_{max.Gen} = 0.82MVAR$

Teniendo siempre la máxima carga de 2.5MVA, se tiene que:

$$\Theta = cos^{-1}(FP)$$
 [Ec. 10]
 $\Theta = cos^{-1}(0.3) = 72.54^{\circ}$

Entonces la carga demanda:

 $P_{carga} = S_{max.carga} \cdot FP$

Ecuación 23. Demanda de carga de la potencia activa

 $P_{carga} = 2.5MVA \cdot 0.30 = 0.75MW$

 $Q_{carga} = S_{max.carga} \cdot Sen \Theta$

Ecuación 24. Demanda de carga de la potencia reactiva

$$Q_{carga} = 2.5MVA \cdot Sen(72.5^{\circ}) = 2.38MVAR$$

Por ende, la potencia que debe entregar Cnel será lo que haga falta para cubrir la demanda de la carga:

$$P_{CNEL} = P_{carga} - P_{max.Gen}$$

Ecuación 25. Potencia activa que debe entregar CNEL $P_{CNEL} = 0.75MW - 0.258 = 0.492MW$

$$Q_{CNEL} = Q_{carga} - Q_{max.Gen}$$

Ecuación 26. Potencia reactiva que debe entregar CNEL

$$Q_{CNEL} = 2.38MVAR - 0.82 = 1.56MVAR$$

Al obtener todas las potencias activas y reactivas del sistema se puede analizar las corrientes que pasan por el mismo:

$$I_{max.Gen} = \frac{P_{max.Gen} \times 10^6 W}{\sqrt{3} \cdot Vll \cdot FP}$$

Ecuación 27. Corriente máxima del sistema

$$I_{max.Gen} = \frac{0.258 \times 10^6 W}{\sqrt{3} \cdot 480V \cdot 0.3} = 1034.42A$$

$$I_{carga} = \frac{P_{carga} \times 10^6 W}{\sqrt{3} \cdot V ll \cdot FP}$$

Ecuación 28. Corriente de carga del sistema

$$I_{carga} = \frac{0.75 \times 10^6 W}{\sqrt{3} \cdot 480 V \cdot 0.3} = 3007.03 A$$

$$I_{CNEL} = I_{carga} - I_{max.Gen}$$

Ecuación 29. Corriente del sistema que debe entregar CNEL

 $I_{CNEL} = 3007.03A - 1034.42A = 1972.61A$

Figura 25. Corrientes teóricas de la carga y fuentes con un FP= 0.3

Figura 26. Simulación de corrientes de la carga y fuentes en el software ETAP con un FP= 0.3

Caso 2: Cuando el $FP_{carga} = 0.6$ entonces el generador entregará $P_{max.Gen} = 0.55 MW/$ atraso y $Q_{max.Gen} = 0.73 MVAR$

Teniendo siempre la máxima carga de 2.5MVA, se tiene que:

$$\theta = cos^{-1}(FP)$$
 [Ec. 10]
 $\theta = cos^{-1}(0.6) = 53.13^{\circ}$

Entonces la carga demanda:

$$P_{carga} = S_{max.carga} \cdot FP \ [Ec. 23]$$
$$P_{carga} = 2.5MVA \cdot 0.6 = 1.5MW$$

$$Q_{carga} = S_{max.carga} \cdot Sen \Theta [Ec. 24]$$

 $Q_{carga} = 2.5MVA \cdot Sen(53.13^{\circ}) = 1.99MVAR$

Por ende, la potencia que debe entregar CNEL será lo que haga falta para cubrir la demanda de la carga:

$$P_{CNEL} = P_{carga} - P_{max.Gen} [Ec. 25]$$

 $P_{CNEL} = 1.5MW - 0.55 = 0.95MW$

 $Q_{CNEL} = Q_{carga} - Q_{max.Gen} [Ec. 26]$ $Q_{CNEL} = 1.99MVAR - 0.73 = 1.26MVAR$

Al obtener todas las potencias activas y reactivas del sistema se puede analizar las corrientes que pasan por el mismo:

$$I_{max.Gen} = \frac{P_{max.Gen} \times 10^{6} W}{\sqrt{3} \cdot V l \cdot F P} [Ec. 27]$$
$$I_{max.Gen} = \frac{0.55 \times 10^{6} W}{\sqrt{3} \cdot 480 V \cdot 0.6} = 1102.58A$$

$$I_{carga} = \frac{P_{carga} \times 10^6 W}{\sqrt{3} \cdot Vll \cdot FP} [Ec. 28]$$
$$I_{carga} = \frac{1.5 \times 10^6 W}{\sqrt{3} \cdot 480V \cdot 0.6} = 3007.03A$$

$$I_{CNEL} = I_{carga} - I_{max.Gen} [Ec. 29]$$

 $I_{CNEL} = 3007.03A - 1102.58A = 1904.45A$

Figura 27. Corrientes teóricas de la carga y fuentes con un FP = 0.6

Figura 28. Simulación de corrientes de la carga y fuentes en el software ETAP con un FP= 0.6

Caso 3: Cuando el $FP_{carga} = 0.8$ entonces el generador entregará $P_{max.Gen} = 0.8MW/$ atraso y $Q_{max.Gen} = 0.6MVAR$

Teniendo siempre la máxima carga de 2.5MVA, se tiene que:

$$\theta = cos^{-1}(FP)$$
 [Ec. 10]
 $\theta = cos^{-1}(0.8) = 36.87^{\circ}$

Entonces la carga demanda:

$$P_{carga} = S_{max.carga} \cdot FP [Ec. 23]$$
$$P_{carga} = 2.5MVA \cdot 0.8 = 2MW$$

$$Q_{carga} = S_{max.carga} \cdot Sen \Theta$$
 [Ec. 24]
 $Q_{carga} = 2.5MVA \cdot Sen(36.87^{\circ}) = 1.5MVAR$

Por ende, la potencia que debe entregar Cnel será lo que haga falta para suplir la demanda de la carga:

$$P_{CNEL} = P_{carga} - P_{max.Gen} [Ec. 25]$$
$$P_{CNEL} = 2MW - 0.8 = 1.2MW$$

 $Q_{CNEL} = Q_{carga} - Q_{max.Gen} [Ec. 26]$

$$Q_{CNEL} = 1.5MVAR - 0.6 = 0.9MVAR$$

Al obtener todas las potencias activas y reactivas del sistema se puede analizar las corrientes que pasan por el mismo:

$$I_{max.Gen} = \frac{P_{max.Gen} \times 10^6 W}{\sqrt{3} \cdot Vll \cdot FP} [Ec. 27]$$
$$I_{max.Gen} = \frac{0.8 \times 10^6 W}{\sqrt{3} \cdot 480V \cdot 0.8} = 1202.81A$$

$$I_{carga} = \frac{P_{carga} \times 10^{6} W}{\sqrt{3} \cdot Vll \cdot FP} [Ec. 28]$$
$$I_{carga} = \frac{2 \times 10^{6} W}{\sqrt{3} \cdot 480V \cdot 0.8} = 3007.03A$$

$$I_{CNEL} = I_{carga} - I_{max.Gen} [Ec. 29]$$

 $I_{CNEL} = 3007.03A - 1102.58A = 1805.22A$

Figura 29. Corrientes teóricas de la carga y fuentes con un FP = 0.8

Figura 30. Simulación de corrientes de la carga y fuentes en el software ETAP con un FP= 0.8
Caso 4: Cuando el $FP_{carga} = 0.95$ entonces el generador entregará $P_{max.Gen} = 0.8MW/atraso$ y $Q_{max.Gen} = 0.26MVAR/atraso$

Teniendo siempre la máxima carga de 2.5MVA, se tiene que:

$$\theta = cos^{-1}(FP)$$
 [Ec. 10]
 $\theta = cos^{-1}(0.95) = 18.19^{\circ}$

Entonces la carga demanda:

$$P_{carga} = S_{max.carga} \cdot FP \ [Ec. 23]$$
$$P_{carga} = 2.5MVA \cdot 0.95 = 2.375MW$$

 $Q_{carga} = S_{max.carga} \cdot Sen \ \Theta[Ec. 24]$ $Q_{carga} = 2.5MVA \cdot Sen(18.19^{\circ}) = 0.78MVAR$

Por ende, la potencia que debe entregar Cnel será lo que haga falta para cubrir la demanda de la carga:

$$P_{CNEL} = P_{carga} - P_{max.Gen} [Ec. 25]$$

 $P_{CNEL} = 2.5MW - 0.8 = 1.7MW$

 $Q_{CNEL} = Q_{carga} - Q_{max.Gen} [Ec.26]$

$$Q_{CNEL} = 0.78MVAR - 0.26 = 0.52MVAR$$

Al obtener todas las potencias activas y reactivas del sistema se puede analizar las corrientes que pasan por el mismo:

$$I_{max.Gen} = \frac{P_{max.Gen} \times 10^{6}W}{\sqrt{3} \cdot Vll \cdot FP} [Ec. 27]$$
$$I_{max.Gen} = \frac{0.8 \times 10^{6}W}{\sqrt{3} \cdot 480V \cdot 0.95} = 1012.9A$$

$$I_{carga} = \frac{P_{carga} \times 10^{6} W}{\sqrt{3} \cdot V ll \cdot FP} [Ec. 28]$$
$$I_{carga} = \frac{2.375 \times 10^{6} W}{\sqrt{3} \cdot 480 V \cdot 0.95} = 3007.03A$$

$$\frac{1}{\sqrt{3}} \cdot 480V \cdot 0.95 = 3007.$$

$$I_{CNEL} = I_{carga} - I_{max.Gen}$$
 [Ec. 29]

$$I_{CNEL} = 3007.03A - 1012.9A = 1994.13A$$

Figura 31. Corrientes teóricas de la carga y fuentes con un FP = 0.95 inductivo

Figura 32. Simulación de corrientes de la carga y fuentes en el software ETAP con un FP= 0.95 inductivo.

Caso 5: Cuando el $FP_{carga} = 0.95$ entonces el generador entregará $P_{max.Gen} = 0.8MW/adelanto$ y $Q_{max.Gen} = 0.26MVAR/adelanto$

Teniendo siempre la máxima carga de 2.5MVA, se tiene que:

$$\theta = cos^{-1}(FP)$$
 [Ec. 10]
 $\theta = cos^{-1}(0.95) = 18.19^{\circ}$

Entonces la carga demanda:

$$P_{carga} = S_{max.carga} \cdot FP \ [Ec. 23]$$
$$P_{carga} = 2.5MVA \cdot 0.95 = 2.375MW$$

$$Q_{carga} = S_{max.carga} \cdot Sen \Theta$$
 [Ec. 24]
 $Q_{carga} = 2.5MVA \cdot Sen(18.19^{\circ}) = 0.78MVAR$

Por ende, la potencia que debe entregar Cnel será lo que haga falta para cubrir la demanda de la carga:

$$P_{CNEL} = P_{carga} - P_{max.Gen} [Ec. 25]$$

 $P_{CNEL} = 2.5MW - 0.8 = 1.7MW$

 $Q_{CNEL} = Q_{carga} - Q_{max.Gen} [Ec. 26]$

$$Q_{CNEL} = 0.78MVAR - 0.26 = 0.52MVAR$$

Al obtener todas las potencias activas y reactivas del sistema se puede analizar las corrientes que pasan por el mismo:

$$I_{max.Gen} = \frac{P_{max.Gen} \times 10^{6}W}{\sqrt{3} \cdot Vll \cdot FP} [Ec. 27]$$
$$I_{max.Gen} = \frac{0.8 \times 10^{6}W}{\sqrt{3} \cdot 480V \cdot 0.95} = 1012.9A$$

$$I_{carga} = \frac{P_{carga} \times 10^{6} W}{\sqrt{3} \cdot V l \cdot F P} [Ec. 28]$$
$$- \frac{2.375 \times 10^{6} W}{2.375 \times 10^{6} W} = 3007.03$$

$$I_{carga} = \frac{2.373 \times 10^{\circ} W}{\sqrt{3} \cdot 480V \cdot 0.95} = 3007.03A$$

$$I_{CNEL} = I_{carga} - I_{max.Gen}[Ec. 29]$$

$$I_{CNEL} = 3007.03A - 1012.9A = 1994.13A$$

Figura 33. Corrientes teóricas de la carga y fuentes con un FP = 0.95 capacitivo

Figura 34. Simulación de corrientes de la carga y fuentes en el software ETAP con un FP= 0.95 capacitivo

4. ANÁLISIS Y RESULTADOS

En las siguientes tablas se muestran los resultados obtenidos mediante el análisis teórico y práctico simulados en el programa del software ETAP, en este punto se compara la entrega de potencias activa y reactiva del generador ante la presencia de una carga variable en conjunto a su factor de potencia. Verificando así que los valores son relativamente iguales, variando por decimales debido a la perdida que existe en la línea que se encuentra entre el generador y la carga.

Tabla I. Resultados entre la potencia activa y reactiva entregada por el generador ante una carga con FP = 0.3/atraso.

Caso 1	F.p carga	P.carga [MW]	PG [MW]	QG [MVAR]
Teórico	0.2	0.95	0.258	0.82
Práctico	0.5	0.85	0.255	0.818

Tabla II. Resultados entre la potencia activa y reactiva entregada por el generador ante una carga con FP = 0.6/atraso

Caso 2	F.p carga	P.carga [MW]	PG [MW]	QG [MVAR]
Teórico	0.6	0.0	0.547	0.73
Práctico	0.6	0.9	0.541	0.718

Tabla III. Resultados entre la potencia activa y reactiva entregada por el generador ante una carga con FP = 0.8/atraso

Caso 3	F.p carga	P.carga [MW]	PG [MW]	QG [MVAR]
Teórico	0.8	1	0.8	0.6
Práctico	0.8	1	0.8	0.6

Tabla IV. Resultados entre la potencia activa y reactiva entregada por el generador ante una carga con FP=0.95/atraso

Caso 4	F.p carga	P.carga [mw]	PG [mw]	QG [mvar]
Teórico	0.05	0.95	0.8	0.26
Práctico	0.95	0.85	0.8076	0.265

Tabla V. Resultados entre la potencia activa y reactiva entregada por el generador ante una carga conFP=0.95/adelanto

Caso 5	F.p carga	P.carga [mw]	Pg [mw]	Qg [mvar]
Teórico	0.05	0.95	0.8	0.26
Práctico	0.95	0.85	0.807	-0.265

En las siguientes tablas podemos observar valores calculados teóricamente con las fórmulas antes citadas con la finalidad de conocer el comportamiento de la potencia activa y reactiva comparando las corrientes entre las fuentes y la carga, ya que dichas corrientes varían al factor de potencia de nuestra carga, en este caso se analizó la carga máxima de 2,5 MVA siendo analizada con varios factores de potencia, cabe mencionar que el análisis no solo se hizo teóricamente, sino también se realizó una simulación del mismo en el software ETAP, donde se introdujeron los mismos parámetros utilizados en nuestros cálculos.

Esto con la finalidad de comparar el comportamiento real de las corrientes, conociendo los valores de la carga como también considerando las pérdidas del sistema debido a que posee líneas de transmisión y cables obteniendo impedancias lo que en consecuencia genera caídas de voltajes.

Tabla VI. Resultados de corrientes y potencias del sistema en sincronismo con una carga de FP=0.3/atraso

Caso 1	Pcarga [MW]	Qcarga [MVAR]	PG [MW]	QG [MVAR]	PCNEL [MW]	QCNEL [MVAR]	Icarga [A]	IG [A]	ICNEL [A]
Teórico	0.75	2.38	0.258	0.82	0.492	1.56	3007.03	1034.42	1972.61
Práctico	0.715	2.273	0.258	0.82	0.464	1.465	2936	1059	1877

Tabla VII. Resultados de corrientes y potencias del sistema en sincronismo con una carga de FP=0.6/atraso

Caso 2	Pcarga [MW]	Qcarga [MVAR]	PG [MW]	QG [MVAR]	PCNEL [MW]	QCNEL [MVAR]	Icarga [A]	IG [A]	ICNEL [A]
Teórico	1.5	1.99	0.55	0.73	0.95	1.26	3007.03	1102.58	1904.45
Práctico	1.452	1.936	0.55	0.73	0.909	1.217	2959	1117	1841

Tabla VIII. Resultados de corrientes y potencias del sistema en sincronismo con una carga de FP=0.8/atraso

Caso 3	Pcarga [MW]	Qcarga [MVAR]	PG [MW]	QG [MVAR]	PCNEL [MW]	QCNEL [MVAR]	Icarga [A]	IG [A]	ICNEL [A]
Teórico	2	1.5	0.8	0.6	1.2	0.9	3007.03	1202.81	1805.22
Práctico	1.993	1.495	0.8	0.6	1.199	0.905	3002	1205	1797

Tabla IX. Resultados de corrientes y potencias del sistema en sincronismo con una carga de FP=0.95/atraso

Caso 4	Pcarga [MW]	Qcarga [MVAR]	PG [MW]	QG [MVAR]	PCNEL [MW]	QCNEL [MVAR]	Icarga [A]	IG [A]	ICNEL [A]
Teórico	2.375	0.78	0.8	0.26	1.7	0.52	3007.03	1012.9	1994.13
Práctico	2.428	0.798	0.8	0.26	1.636	0.551	3040	1001	2040

Caso 5	Pcarga [MW]	Qcarga [MVAR]	PG [MW]	QG [MVAR]	PCNEL [MW]	QCNEL [MVAR]	Icarga [A]	IG [A]	ICNEL [A]
Teórico	2.375	0.78	0.8	0.26	1.7	0.52	3007.03	1012.9	1994.13
Práctico	2.882	-0.947	0.8	0.26	2.096	-1.184	3312	918.5	2628

Tabla X. Resultados de corrientes y potencias del sistema en sincronismo con una carga de FP=0.95/adelanto

5. MPLEMENTACIÓN

5.1. Alimentador red de CNEL EP

La Unidad de Negocios de Santa Elena tiene un área de prestación de 6487,26Km2, donde más de la mitad de su superficie corresponde a la misma provincia de Santa Elena, correspondiéndole un 57%, mientras que a la provincia del Guayas le presta un 14,9% y un 3% a localidades restantes de la provincia de Manabí. [10]

Con ello se puede mencionar que esta unidad de negocio posee una enorme infraestructura en la cual se considera la longitud de líneas en media tensión, los tipos de subestaciones, la cantidad de líneas de subtransmisión y niveles de tensión.

Tabla XI. Información de la infraestructura de la Unidad de Negocios Santa Elena

N. De s	ubestaciones	Líneas de subtran	Redes de media tensión	
Reducción	Seccionamiento	Nivel de tensión (KV)	N. De línea	Distancia (Km)
18	1	69	29	2376.37

Se conoce que CNEL EP – Unidad de Negocio Santa Elena es una empresa de distribución tipo MCI, es decir que funciona a base de motores de combustión interna. En la siguiente tabla se muestra los tipos de potencias con los cuales cuenta esta unidad.

Tabla XII. Potencia de centrales de generación con fuentes no renovables.

Tipo unidad	Provincia	Potencia nominal (MW)	Potencia efectiva (MW)
MCI	Santa Elena	131.8	105.03

Como observación en este tipo de zonas costeras se recomienda utilizar cable de tipo AAAC5005, debido a que los cables son expuestos a grandes cantidades de niveles de corrosión por la salinidad de lugar, en la siguiente tabla mostrada se puede observar la descripción del cableado usado en este sistema de subtransmisión.

Nombre de	Líne subtrai	eas de Ismisión	Longitud de línea		Conductor	
línea	S/E salida	S/E llegada	Distancia (Km)	Тіро	Calibre	Amperios
Cerecita	San Lorenzo del Mate	Cerecita	20.6	AAAC 5005	312.8	360

Tabla XIII. Longitud y tipo de conductor de la línea de subtransmisión Cerecita

Entrando en detalle se da a conocer en la siguiente tabla los datos de la subestación de San lorenzo del Mate, es decir la cantidad de alimentadores, nombres, demandas y factor de potencia con la finalidad de especificar de donde proviene la alimentación de nuestro sistema.

Unidad de negocio	Subestación	Código de alimentador	Nombre de alimentador	Demanda mínima (MW)	Demanda media (MW)	Demanda máxima (MW)	Factor de potencia
		165m160t 13	San juan	0.261	1.495	2.565	0.95
Santa San	165m160t 11	Progreso	0.302	2.029	2.986	0.94	
Elena	Elena Mate	165m160t 14	Interagua	0.061	0.311	0.446	0.99
		165m160t 12	Sabana grande	0.241	0.241	2.037	0.91

Tabla XIV. Alimentadores de la subestación de San Lorenzo del Mate

El diagrama unifilar de los alimentadores que conforman la unidad de negocio Santa Elena se puede pueden observar en el anexo 1. Adicional para los datos ingresados en el software se basó en esta subestación donde los datos de la fuente se muestran en el anexo 6.

5.2. Transformador reductor 69/13.8 KV en subestación San Lorenzo del Mate.

Marca	Qa (MVA)	Foa (MVA)	Demanda máxima registrada (MW)	Factor de potencia	Cargabilidad oa (%)
Shenda	10	12.5	7.16	0.94	76.15
Тіро	N. De serie	Tipo de montaje	Enfriamiento	Impedancia (%)	Corriente en vacío (%)
Sf11-12500/69	Ck181033-1	Exterior	Onan / onaf	6.8	0.18
Pérdidas en vacío (KW)	Perdidas con carga onan (KW)	Numero de fases	Conexión	Frecuencia (Hz)	Norma de fabricación
13.23	41.76	3	Dyn1	60	Iec

Tabla XV. Datos de placa del transformador.

Adicional se tomaron del datasheet los valores de posiciones (TAP) que posee el transformador tanto de alta como de media tensión, estos se pueden visualizar en la tabla XVI la cual se muestra a continuación:

	Lado de alt	a tensión			Lado de	e media t	ensión
Posición		Voltaio	Corri	ente (A)	Voltaio	Corrie	ente (A)
TAP	Conmutaciones	(V)	10 MVA	12,5 MVA	(V)	10 MVA	12,5 MVA
1	2 - 3	72450	79.7	99.6			
2	3 - 4	70725	81.6	102	13800	418.4	523
3	4 - 5	69000	83.7	104.6			
4	5 - 6	67275	85.8	107.3			
5	6 - 7	65550	88.1	110.1			

Tabla XVI. TAP del lado de alta y media tensión del transformador

Este transformador no forma parte de la implementación, pero es muy importante mencionarlo para conocer la capacidad disponible en la unidad de negocio CNEL EP Santa Elena, de donde se toma los datos para alimentar el transformador de nuestro diseño, cabe recalcar que dicho transformador no solo sostiene la carga de nuestro alimentador también las 3 alimentadoras más descritas antes en la tabla XIV. Todas estas características nombradas en la descripción de la tabla XVI se pueden observar en el anexo 2.

De ello se configuro en el software ETAP el diseño del transformador donde en el anexo 10 se muestran los datos ingresados del mismo, adicional en base a ello se colocaron las barras en el software indicando que previo al transformador se ubica la barra de alta (69KV) y la de media (13.8KV) que se encuentra después del transformador, esto se puede visualizar en los anexos 7 y 8.

5.3. Medición indirecta trafomix

En este tipo de medición las señales de voltajes y corrientes que se observan en el medidor provienen de la salida del TRAFOMIX es decir de su devanado secundario de los dichos TT (Transformador de tensión) y TC (Transformador de corriente) que reciben la carga.

- **Transformador de corriente (TC):** Es un instrumento la cual la diferencia entre su devanado primario y secundario es proporcional con la finalidad de obtener de que cuya diferencia de fase sea aproximadamente 0 para que la medición sea apropiada.
- Transformador de Tensión o potencial (TT ó TP): Es un instrumento la cual la diferencia entre su devanado primario y secundario es proporcional con la finalidad de obtener de que cuya diferencia de fase sea aproximadamente 0 para que la medición sea apropiada.
- **Transformador combinado:** Transformador que consta de un transformador de corriente y uno de tensión en la misma caja.

Figura 35. Instalación trifásica con disposición en forma de cruz en el centro. Perspectiva desde el frente y el lateral. [17]

5.4. Transformador reductor 13.8 KV/480V 2.5 MVA

Este transformador en especial tiene dos bobinas, conocidas como el devanado primario y el devanado secundario. El devanado primario está conectado al lado de alta tensión, en este caso, a la fuente de 13.8 kV. El devanado secundario, por otro lado, está conectado al lado de baja tensión, que es el voltaje de salida deseado, que es de 480 V.

Cabe mencionar que para calcular la relación de transformación se debe conocer las vueltas del devanado primario y secundario y dividirlas.

En este caso, como queremos reducir el voltaje, el devanado secundario tendrá más vueltas que el primario. Esta relación de transformación disminuirá el voltaje proporcionalmente y aumentará la corriente en el lado de baja tensión. Los datos del transformador se muestran en la tabla XVII, los cuales fueron tomados del datasheet del transformador el cual se encuentra en el anexo 3.

Potencia (kva)	N. De fases	Grupo de conexión	Refrigerac ión	Impedancia (%)	Calent. Deva (°c)	
	Valtaia					
2500	despacho (v)	Corriente (a)	Тар	Derivaciones	Normativa	
Primario	480	3007.3				
Secundario	13800y/79 67	104.59	3	2.50%	Ansi c5712	
		Resistencia e	ntre terminale	es		
	Ho - h1	Ho - h2	Ho - h3	Promedio a to	Promedio a 85°c	
Alta (ώ)	0.22799	0.22707	0.22706	0.22737	0.27643	
	X1 - x1	X2 - x2	X3 - x0			
Baja (ώ)	0.0005067 1	0.00049616	0.00049943	0.00075115	0.0091321	

Tabla XVII. Datos del transformador reductor 13.8KV/480V

Adicional se puede visualizar en la tabla XVIII los datos de relación de transformación del transformador, estas tablas fueron de ayuda para completar los datos en el software del transformador los cuales se encuentran en el anexo 11. El cual se encuentra conectado entre las barras de media (13.8KV) y la de baja (480V) donde su configuración en el software se encuentra en el anexo 8 y 9.

Relación de transformación							
TAP	Bobina 1	Bobina 2	Bobina 3	Normal	Mínima	Máxima	Volt.deriv
1"a"	17.415	17.408	17.416	17.4288	17.3417	17.5159	14490
1"b"	17.014	17.007	17.016	17.0138	16.9287	17.0989	14145
1"c"	16.614	16.608	16.615	16.5988	16.5158	16.6818	13800
1"d"	16.213	16.207	16.215	16.1838	16.1029	16.2647	13455
1"e"	15.812	15.807	15.814	15.7689	15.6901	15.8477	13110

Tabla XVIII. Datos de relación de transformación.

5.5. Generador trifásico de un 1MVA 480V / 277V

Este generador usado en nuestro diseño en especial tiene una capacidad de 1 MVA limitada por el rotor primario con una potencia activa de 800 MW y una reactiva de 600 MVAR además cuenta con las características mostradas en la tabla XIX, donde sus datos fueron extraídos del datasheet del generador mostrado en el anexo 4.

Tensión de excitación sin carga [V]	Corriente de excitación sin carga [A]	Voltaje de excitación de carga completa [V]	Corriente de excitación de carga completa [A]	Constante del tiempo de excitación [s]
14 - 12.9	0.8 - 0.74	59.0	60.0	0.17
Datos eléctricos a	60Hz:			
Tensión serie Y [V]	Tensión paralelo Y [V]	Tensión Δ [V]	Clasificación base de kVA [Clase] para valores de reactancia [kVA	
480	240	277	100	00

Tabla XIXX. Datos del generador.

Con estas especificaciones se logro completar los datos del generador utilizado en el software, esto se encuentra en el anexo 12 y la carga que se utilizó para el análisis que fue de 2.5MVA esta se puede observar en el anexo 13, las cuales están conectadas a la barra de 480V.

CONCLUSIONES

Se completo el análisis del control de potencia activa y reactiva del generador operando de manera independiente mediante el software ETAP, el cual sirvió de apoyo al realizar la simulación del sistema, así evaluando y contrastando los resultados prácticos simulados con los teóricos. sugiero que esta herramienta proporciono una alternativa para llevar a cabo dicha tarea. La capacidad del software para modelar y simular diversas condiciones operativas nos permitió ajustar los parámetros del generador para garantizar un rendimiento eficiente y confiable.

El análisis del control de potencia activa y reactiva del generador operando de forma sincronizada con la red pública CNEL a través del software ETAP muestra la capacidad de esta herramienta para abordar la complejidad de la interconexión entre generadores y la red eléctrica. ETAP proporciona una plataforma para modelar y simular la operación conjunta, permitiendo evaluar el comportamiento del generador en condiciones de conexión con la red pública CNEL.

Con nuestra simulación podemos observar en las tablas de resultados el comportamiento real de las potencias cuando en el sistema se incluyen impedancias de cables, líneas de transmisión y maquinas eléctricas. Por lo tanto, no se observarán valores exactos sino más bien cercanos a los valores teóricos calculados.

Se destaca la importancia de dimensionar adecuadamente las protecciones, elementos y equipos eléctricos requeridos para iniciar y garantizar el funcionamiento seguro y eficiente de un servicio eléctrico. Este proceso implica la selección y configuración precisa de dispositivos de protección, así como la consideración de los elementos y equipos necesarios para asegurar un suministro eléctrico fiable, minimizando riesgos y cumpliendo con los estándares de seguridad y normativas aplicables.

BIBLIOGRAFIA

[1] E. M. Illesca Cangalaya, "Diseño de un Sistema de Sincronismo Automático para una Central Térmica de 4.5MW con 3 Grupos Electrógenos en un Proyecto Minero del Sur del Perú", Tesis de pregrado de Ingeniería Eléctrica y de Potencia, Universidad Tecnológica del Perú, Lima, Perú, 2019.

[2] R. Serway y R. Beicher, Física para ciencias e ingeniería Tomo II. Quinta edición. México: Mc Graw Hill, 2002.

[3] N. DE Hidalgo, S. Tesis, H. Cisneros, R. García y M. Ramírez, "Caracterización mecánica y microestructural del acero microaleado API X52 unido por el proceso",

[4] A. Barragán, H. Nuñez, G. Cerpa, y M. Rodríguez, Introducción Al Electromagnetismo.Primera edición. México: Grupo Editorial Patria.

[5] Datos de la Biblioteca Nacional de España (2023, octubre 31). Faraday, Michael. [En línea]. Disponible en: https://datos.bne.es/persona/XX1039322.html

[6] T. Martín Blas y A. Serrano Fernández. Inducción magnética: Generador eléctrico. [En línea]. Disponible en: https://www2.montes.upm.es/dptos/digfa/cfisica/magnet/ generador.html

[7] F. Vargas-Machuca Saldarriaga, Máquinas eléctricas rotativas, Cuarta edición. Megaprint Ediciones, 1990.

[8] S. J. Chapman, Máquinas Eléctricas, Tercera edición. Mc Graw Hill, 2000.

[9] J. J. Rodríguez Seco, "Simulador del generador síncrono con acoplamiento a red", Trabajo Fin de Grado en Ingeniería Eléctrica, Universidad de Sevilla, Sevilla, 2022.

[10] T. Wildi, Máquinas Eléctricas y Sistemas de Potencia, Sexta edición. México: Pearson Education, 2007.

[11] K. Estrada Lapo y J. Sisalema Moposita, "Análisis de la curva de capabilidad para la operación de una unidad motor generador ac-ac conectado a la barra y aislado", Proyecto de

Titulación de Ingeniería eléctrica, Universidad Técnica De Cotopaxi, Latacunga, Ecuador, 2022.

[12] Generador síncrono de polos no salientes (cilíndricos), [En línea]. Disponible en: https://www.electricity-magnetism.org/es/generador-sincrono-de-polos-no-salientescilindricos/

[13] D. Ñaupari y M. Bedriñada, Evaluación de la operación del generador síncrono basado en la formulación matemática de la curva de capabilidad. Primera edición. Lima, 2011.

[14] D. Gómez (2007, abril 23) "Modelado del generador síncrono y curva de capabilidad".[En línea]. Disponible en: https://slideplayer.es/slide/157160/

[15] M. Ojeda Suárez y M. Vera Tumbaco, "Regulación de frecuencia en microrredes eléctricas en operación aislada" Proyecto integrador Ingeniería Eléctrica, ESPOL, Guayaquil, Ecuador, 2020.

[16] F. Gonzalez Longatt, Control de Potencia Reactiva-Voltaje, [En línea]. Disponible en: https://fglongatt.org/OLD/Archivos/Archivos/SP_II/Captiulo5.pdf

[17] Norma Técnica de instalación y montaje de sistema de medición activos de conexión transformadores monousuario, RA8-028, Grupo EPM, 2021. [En línea]. Disponible en: https://www.epm.com.co/content/dam/epm/proveedores-y-contratistas/RA8_028_R0_2021.pdf

Anexo 2. Catalogo 2 de SISELEC S.A.

													-
								PRO	TOCO	lo n°-	PL-0	4221059	83-R0
V.	N 2		8										
ROTO	COLO	DE PR	ULE // PBX:	593+4) :	3702700	- 3702701	I // VENTAS(PINATRA	LCOM //	INATRACO	M // GUA	YAQUIL - E	CUADOR
FRIE		042210	05983 AÑ	O FABRIC	ACIÓN:		:	022	ALTITU	JD DE DISEÑ	D:	3	000 msnm
D:		C	NO NO	RMA APL	ICADA:		ANSI C5	7.12	TEMP.	DE DISEÑO:			30 °C
ENCIA:		2500	KVA PC	LARIDAD			V	Ide			08		7,4%
TAJE SER	RIE:		15 kV GF	UPO DE C	CONEXIC	•N:	0	AN	NBA A	V/BV:			110/30 kV
CUENCIA			60 Hz DI	SEÑO Nº:	-	0.	1EFC25003	619	CLASE	DE AISLAM.			A
ENTE:	·			-		PERIODO	Nº:		OFER	TA Nº:			
ORES NO	MINALES						CARA	TERÍSTIC	CAS	PINTURA C	OLOR/ESP	ES.: GRIS/1	20 µm
1	VOLT./DE	SPACHO [V]	CORRIENTE [A] TAP	DERIVA	CIONES	ME	CÁNICAS		DIMENSIONE	S EXT.	REFRIGERA	CIÓN
		480	3007,03				MASA TOTAL	637	0 kg	FRENTE (m):	3,59	NÚM. ELEM.	4X13
UNDARIO	1380	0 Y/7967	104,59	3	+/-2	x 2,5%	VOL. ACEITE	227	3 L	PROF. [m]:	2,01	LARGO [m]:	1,34
L										ALTURA [m]:	2,53	ANCHO [m]:	0,54
				RES	SULTA	DOS DE	LOS EN	SAYOS	3				F
ÍQUIDO AI	ISLANTE			2. RESIST	TENCIA D	E AISLAMIE	ENTO	28,3 °	C TIEMP	PO LECT.: 60	s VOLT.	PRUEBA:	5 kV
2	MARCA:	NY	NAS	AV / BV [N	A\$2]: 2	20000	AV /	RUEBAS	DE AISLA	MIENTO	DV / U	and finizali	
TAJE HUPT ODO:		ASTM D-181	6	(4) 10		contra BV	y tierra [kV]:	34	(B) VO	VOLT	AJE [V]:	_	960
				APLICA	NDO BI	/ contra AV	y tierra (kV):	10	INDU	CIDO FREC	UENCIA [I	Hz]:	480
	011	-		. 20.0	TI	EMPO [s]:		00		TIEM Po	sición	Mater	ial de
IESISTEN	CIA ENTRI	EIEHMINALES	e ATC	. ∠0,3		D	romedio a Tr	Prom	nedio a s	35°C Con	mutador	Fabrie	cación
	,ł	H0-H1	H0-H2	-	HU-H3	e I	0 22727		0 27643		3		OBRE
ALTA [Ω]		,22799	U,22707		U,22/0	<u> </u>	0,22131		0,21040				
DALATO		0050871	0 0004961	6 0	.000490	43	0.0007511	0.	000913	21		C	OBRE
	DE TRAN	ISFORMACIÓN	0,0004801		,		3,2237271						
LAGION	TAP	BOBINA 1	BOBINA	BOB	INA 3	NORMA	AL MÍNI		MÁXIMA	VOLTA	JE DER	IVACIÓN	
	1 "A"	17,4150	17,4080	17,	4160	17,428	8 17,34	17	17,5159		14490		
	2 "B"	17,0140	17,0070	17,	0160	17,013	8 16,92	87	17,0989		14145		
	2	40 0440	16,6080	16,	6150	16,598	8 16,5	58	16,6818		13800		
	30	10,0140		1	2150	16,183	8 16,10	29	16,2647		13455		
	4 "D"	16,2130	16,2070	16,				-	45.04-		10110		1
	4 "D" 5 "E"	16,2130 15,8120	16,2070 15,8070	16,	8140	15,768	9 15,69	01	15,8477	, .	13110		
	4 "D" 5 "E" 6 "F"	16,2130 15,8120	16,2070 15,8070	16,	8140	15,768	9 15,69	01	15,8477		13110		
	4 "D" 5 "E" 6 "F" 7 "G"	16,2130 15,8120	16,2070 15,8070	16,	8140	15,768	9 15,69	DE PÉRDI	15,8477 DAS EN E		13110 D E IMPED	DANCIA (A c	orriente nominal)
PRUEBA S	4 "D" 5 "E" 6 "F" 7 "G"	16,2130 15,8120	16,2070 15,8070	16, 15,	8140	15,768	9 15,69 8. CÁLCULO	DE PÉRDI	15,8477 DAS EN I		13110 D E IMPEC	DANCIA (A c	orriente nominal)
PRUEBA S	4 "D" 5 "E" 6 "F" 7 "G"	16,0140 16,2130 15,8120	16,2070 15,8070	16, 15,] Po [W	8140	15,768	9 15,69 8. CÁLCULO Pc (To):	01 DE PÉRDI 19563	15,8477 DAS EN I W I ² R (8	EL DEVANADO	13110 D E IMPEC 7330 W	DANCIA (A c	orriente nominal) 28,9 [°] C
Vo (V)	4 "D" 5 "E" 6 "F" 7 "G" 5 N CARG	16,6140 16,2130 15,8120 A 2 [A] lo3 [A]	16,2070 15,8070	16, 15, 15, Po (W NT. MEDID 2650	8140	Po [W] ARANT.	9 15,64 8. CÁLCULO Pc (To): I ² R (To):	01 DE PÉRDI 19563 14287	15,8477 DAS EN I W I ² R (8 W Pc (8	EL DEVANADO 5°C): 1 5°C): 2	13110 D E IMPEC 7330 W 21680 W	DANCIA (A c To: Zcc (85°C):	orriente nominal) 28,9 °C 7,4 %
PRUEBA S Vo [V] 1 480,0	4 "D" 5 "E" 6 "F" 7 "G" SIN CARG/ 8,48	16,6140 16,2130 15,8120 4, 52 [A] Io3 [A] 10,25 8,76	16,2070 15,8070 16 [%] lo [% PROM. GARAI 0,30 1,5	16, 15, 15, Po (W NT. MEDID 2650	8140	15,768 Po [W] ARANT. 2500,0	9 15,64 8. CÁLCULO Pc (To): I ² R (To):	01 DE PÉRDI 19563 14287	15,8477 DAS EN I W I ² R (8 W Pc (8	EL DEVANADO 5°C): 1 5°C): 2	13110 D E IMPEL 7330 W 21680 W	DANCIA (A c To: Zoc (85°C):	28,9 °C 7,4 %
PRUEBA S Vo (V) 1 480,0	4 "D" 5 "E" 6 "F" 7 "G" SIN CARG/ 8,48	16,6140 16,2130 15,8120 2 [A] lo3 [A] 10,25 8,76 001901170	16,2070 15,8070 16 [%] 10 [%] PROM. GARAI 0,30 1,5	16, 15, 15, Po(W IT. MEDID 2650	8140 0 G ,0 1:	15,768 Po [W] ARANT. 2500,0	9 15,65 8. CÁLCULO Pc (To): I ² R (To): Pad (To): 9. REGULAC	01 DE PÉRDI 19563 1 14287 5276,6 ÓN A PLE	15,8477 DAS EN F W Pc (8 W Pc (8 W Pc (8 CARC	r	13110 D E IMPEL 7330 W 1680 W 12750 W	DANCIA (A c To: Zcc (85°C): Zcc (85°C) (5,24	28,9 °C
PRUEBA S Vo (V) 1 480,0	4 "D" 5 "E" 6 "F" 7 "G" 5IN CARG/ 101 [A] IC 8,48 1 EN CORTO [C1 [A]	16,6140 16,2130 15,8120 A D2 [A] Io3 [A] 10,25 8,76 DCIRCUITO (c2 [A]	16,2070 15,8070 15,8070 0,00 9R0M. GARA 0,30 1,5 1c [/ 1c3 [A] 9R0	16, 15, 15, Po (W T. MEDID 2650	8140	15,768 Po [W] ARANT. 2500,0	9 15,65 8. CÁLCULO Pc (To): I ² R (To): Pad (To): 9. REGULAC	01 DE PÉRDI 19563 14287 5276,6 ÓN A PLE	15,8477 DAS EN F W Pc (8: W Pc (8: NA CARC	5°C): 1 5°C): 2 5°C): 2 5°C) Garant.: 4 3A Y F.P.=0,8	13110 D E IMPEC 7330 W 21680 W 22750 w	DANCIA (A c To: Zoc (85°C): Zoc (85°C) (5,24	28,9 °C 7,4 % %
Vo (V) 480,0 Vc (V) Vc (V)	4 "D" 5 "E" 6 "F" 7 "G" SIN CARG/ IO1 [A] IC 8,48 1 EN CORTO IC1 [A]	16,2130 16,2130 15,8120 A 2 [A] lo3 [A] 10,25 8,76 0CIRCUITO ic2 [A]	16,2070 15,8070 15,8070 15,8070 15,8070 10,8070 10,8070 10,8070 1,5 10 [/4] 10 [/4]	16, 15, 15, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	8140	15,768	9 15,64 8. CÁLCULO Pc (To): Pad (To): 9. REGULAC 10. RENDIMI	01 DE PÉRDI 19563 14287 5276,6 ÓN A PLE	15,8477 DAS EN F W Pr (8 W Pc (8 W Pc (8 NA CARC	F EL DEVANADO 5°C): 1 5°C): 2 5°C)	13110 D E IMPEC 7330 W 1680 W 12750 W	DANCIA (A c To:	28,9 °C 7,4 % %
PRUEBA S 480,0	4 "D" 5 "E" 6 "F" 7 "G" SIN CARG/ IO1 (A) IC 8,48 1 EN CORTO IC1 [A] 105,4	16,6140 16,2130 15,8120 A 2 [A] lo3 [A] 10,25 8,76 DCIRCUITO Ic2 [A] 105,98 1	16,2070 15,8070 15,8070 15,8070 0,30 1,5 0,30 1,5 102,21 104	16, 15, 15, 2650 2650 .] PA M. ME .5 1!	8140 0 G ,0 11 0 11 0 [W] 0 [DDO 9543	15,768	9 15,65 8. CÁLCULO Pc (To): PR (To): Pad (To): 9. REGULAC 10. RENDIMI	01 DE PÉRDI 19563 14287 5276,6 ÓN A PLE	15,8477 DAS EN I W I ² R (8 W Pc (8 W Pc (8 NA CARC LENA CARC	F	13110 D E IMPEC 7330 W 1680 W 12750 W	DANCIA (A c To:	0 orriente nominal) 28,9 °C 7,4 % Garant.: 7,0 % %
PRUEBA S Vo (V) 1 480,0 PRUEBA B Vc (V) 1018,58 BSERVAC	4 "D" 4 "D" 5 "E" 6 "F" 7 "G" SIN CARG/ 001 [A] 8,48 1 EN CORTCO ic1 [A] 105,4 IONES:	16,6140 16,2130 15,8120 A a a b2 [A] lo3 [A] 10,25 8,76 b0:IRCUITO lo2 [A] 105,98 1 Aceite lib	16,2070 15,8070 15,8070 PROM. GARAI 0,30 1,5 Ics [A] PRO Ics [A] PRO 102,21 104 are de PCB's PCB's	16, 15, 2650 2650	8140 0 G 0 11: 0 [W] 0 [D] 0 9543	15,768	9 15,65 8. CÁLCULO Pc (To): Pa (To): Pa (To): 9. REGULAC 10. RENDIMI	01 DE PÉRDI 19563 14287 5276,6 ÓN A PLE	15,8477 DAS EN F W Pc (8: W Pc (8: NA CARC	r	13110 D E IMPEC 7330 W 21680 W 12750 W :	DANCIA (A c To: Zoc (85°C): Zoc (85°C) C 5,24 98,80	28,9 °C 7,4 % Garant.: 7,0 % %
PRUEBA S 480,0 PRUEBA B Vc (V) 1018,58 BSERVACI	4 "D" 5 "E" 6 "F" 7 "G" SIN CARG/ 101 [A] 8,48 1 101 [A] 101 [A]	16,6140 16,2130 15,8120 15,8120 15,8120 10,25 8,76 10,25 8,76 10,57 8,77 10,57 8,77 10,57 8,77 10,57 8,7	16,2070 15,8070 15,8070 15,8070 15,8070 16(%) 10(%) 10(%) 10(%) 11,5 10,30 1,5 1c2(A) 1c3(A) 102,21 104 102,21 104	16, 15, 15, 2650 2650 .] Pa M. ME .5 19	8140 0 G 0 11 0 [W] 0 DDO 9543 ESPONS	15,768	9 15,65 8. CÁLCULO Po (To): PR (To): 9. REGULAC 10. RENDIMI	01 DE PÉRDI 19563 14287 5276,6 ÓN A PLE ENTO A PLE ENTO A PLE	15,8477 DAS EN E W PR (8 W Pc (8) W Pc (8) NA CARC LENA CARC BRITO	FC): 1 FC): 2 FC): 2 FC): 2 FC): 2 FC): 3 FC): 3 FC: 3 FC	13110 D E IMPEL 7330 W 1680 W 12750 W 12750 W	DANCIA (A c To: Zoc (85°C): Zoc (85°C) (5,24 98,80	28,9 °C
PRUEBA S 480,0 PRUEBA E Vc [V] 1018,58 3SERVACI	4 "D" 5 "E" 6 "F" 7 "G" SIN CARG/ 101 [A] 8,48 1 105,4 IONES:	16,8140 16,2130 15,8120 A 2 [A] lo3 [A] 10,25 8,76 ic2 [A] 105,98 1 Aceite lib FOR:	16,2070 15,8070 15,8070 15,8070 15,8070 16(%) 10(%) 10(%) 1,5 1c [A] 102,21 104 re de PCB's	16, 15, 15, 2650 2650 .] Po (W 2650 .] P. M. ME .5 11	1 0 G 0 G 1 1: DDD 9543	15,768	9 15,65 8. CÁLCULO Pc (To): PR (To): Pad (To): 9. REGULAC 10. RENDIMI	01 19563 14287 5276,6 ÓN A PLE ENTO A PLE	15,8477 DAS EN E W Pc (8: W Pc (8: NA CARC LENA CARC LENA CARC	F EL DEVANADA SFC): 1 SFC): 2 SFC): 2 SFC): 2 SFC): 30A Y F.P.=0,8 RGA Y F.P.=0,8	13110 D E IMPED 7330 W 1680 W 12750 W 12750 W	DANCIA (A c To: Zoc (85°C): Zoc (85°C) C 5,24 98,80 000 in 2022 M	28,9 °C
PRUEBA S 480,0 PRUEBA F Vc [V] 1018,58 BSERVACI LIENTE / IP	4 "D" 5 "E" 6 "F" 7 "G" 3IN CARG/ 101 [A] 10 8,48 1 105,4 105,4 105,4 105,4 105,4	16,6140 16,2130 15,8120 A 2 [A] lo3 [A] 10,25 8,76 0CIRCUITO Ic2 [A] 105,98 1 Aceite lib TOR:	16,2070 15,8070 15,8070 15,8070 15,8070 0,30 1,5 1c [A] PRO 102,21 104 re de PCB's	16, 15, 15, 2650 2650 .] Po (W 2650 .] PA M. ME .5 11	8140 0 G 0 I 1 2 2 2 2 2 2 2 3 3 6 1 1 2 2 2 3 3 3 3 3 3 3 3 3 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5	15,768	9 15,65 8. CÁLCULO Pc (To): PR (To): Pad (To): 9. REGULAC 10. RENDIMI	01 19563 14287 5276,6 ÓN A PLE ENTO A PLE	15,8477 DAS EN F W Fr (8 W Fc (8 W Pc (8 NA CAR CAR CAR CAR CAR CAR CAR CAR CAR CAR	Fili	13110 D E IMPED 7330 W 1680 W 12750 W 12750 W 12750 W	ANCIA (A c To: Zoc (85°C): Zoc (85°C) C 5,24 98,80 @ 98,80 @ 2022,41 2022,41 SPONSAB	28,9 °C
PRUEBA S Vo (V) 1 480,0 PRUEBA I Vc (V) 1018,58 3SERVAC/ JENTE / IP ATRICULA RMA:	4 "D" 5 "E" 6 "F" 7 "G" 3IN CARG/ 101 [A] IC 8,48 1 EN CORTC Ic1 [A] 105,4 IONES: NTERVENT	16,6140 16,2130 15,8120 A a a b2 [A] lo3 [A] 10,25 8,76 b0:IRCUITO lc2 [A] 105,98 1 Aceite lib TOR:	io [%] io [%] PROM. GABAI 0,30 1,5 ic [4 ic3 [A] PRO 102,21 104 re de PCB's	16, 15, 15, 2650 2650 .] Po (W 2650 .] PA M. ME .5 11	8140 0 G 0 I 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	15,768	9 15,65 8. CÁLCULO Pc (To): Pa (To): 9. REGULAC 10. RENDIMI	01 19563 14287 5276,6 ÓN A PLE ENTO A PLE	15,8477 DAS EN F W Pr (8 W Pc (8 W Pc (8 NA CARC LENA CARC BRITO	FII	13110 D E IMPED 7330 W 1680 W 12750 W 12750 W 12750 W 12750 W	DANCIA (A c To:	28,9 °C 7,4 % Garant: 7,0 % % AY 2 6 LLE TÉCNICO E PRUEBAS

Anexo 3. Protocolo de transformador de INATRA

Anexo 4. Catálogo de Generador de 1MVA – S6L1D-C4Wdg.311/312 STANFORD

STAMFORD

S6L1D-C4 Wdg.311/312 - Technical Data Sheet

Standards

STAMFORD industrial alternators meet the requirements of the relevant parts of the IEC 60034 and the relevant sections of other international standards such as BS5000-3, ISO 8528-3, VDE 0530, NEMA MG1-32, CSA C22.2-100 and AS 60034. Other standards and certifications can be considered on request.

Quality Assurance

Alternators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

Excitation and Voltage Regulators

Excitation System	1				-
AVR Type	MX341	MX321/MX322	DECS100	DECS150	
Voltage Regulation	± 1%	± 0.5%	± 0.25%	± 0.25%	with 4% Engine Governing
AVR Power	PMG	PMG	PMG	PMG	

No Load Excitation Voltage (V)	14 - 12.9
No Load Excitation Current (A)	0.8 - 0.74
Full Load Excitation Voltage (V)	59
Full Load Excitation Current (A)	2.9
Exciter Time Constant (seconds)	0.17

Page 1

S6L1D-C4_Wdg.311/312_A059B535_Rev.C_03.08.2020

Page 7

S6L1D-C4_Wdg.311/312_A059B535_Rev.C_03.08.2020

69 kV Swing Info ID S/E DE 69KV Bus BARRA 69KV 69 kV Connection • 3 Phase • 1 Phase Equipment Tag # Tag # Normal Operation Mode	ro Hating	Short Circuit	Lime Domain	Harmonic	Reliability	Energy Price	Remarks	Comment
Info ID S/E DE 69KV Bus BARRA 69KV	69 kV Swin	ng						
ID S/E DE 69KV Bus BARRA 69KV Bus BARRA 69KV Connection Onection Onection Oracle Image: Provision Data Base Condition Service Image: December 2011 Tag # Normal Operation Mode	Info						¥	F
Bus BARRA 69KV 69 kV Connection Condition O 3 Phase O Ut 1 Phase O Ut Equipment Configuration Tag # Normal Operation Mode	ID	S/E DE 69KV				- Revision Dal	ta	
Connection Connection O 3 Phase O 1 Phase Equipment Tag # Configuration Normal Operation Mode	Bus	BARRA 69KV		~	69 kV		Base	
Connection Out Service In Out State As-Built Equipment Configuration Tag # Normal Operation Mode						Condition		
3 Phase 1 Phase Equipment Tag # Normal Operation Mode	Connection -					Service	Oln ○Out	
Equipment Configuration Tag # Operation Mode		O 3 Phase ○ 1 Phase				State	As-Built	~
Tag # Normal Operation Mode	Equipment					- Configuration	1	
Uperation Mode	Tag #						Normal	
Name Swing	Name					10 9 0	eration Mo wing	de
Description OVoltage Control	Description					0	/oltage Con	trol
Mvar Control PF Control						⊖ F	1var Contro PF Control	I

Anexo 6. Datos ingresados en el software ETAP - Grid

💡 Power Grid Editor - S/E DE 69KV	×
Info Rating Short Circuit Time Domain Harmonic Reliabi	lity EnergyPrice Remarks Comment
69 kV Swing Grounding	
MVAsc X/R kAsc 3-Phase 141,954 4,97 1,188 1-Phase 125,76 41,92 5,252 1,052	SC Impedance (100 MVAb) % R % X Pos. 13,8956 69,0613 Neg. 13,8956 69,0613 Zero 18,267 95,9385
sqrt(3)/II If Vin If	

💱 Bus Editor - BARRA 69KV	×
Harmonic Reliability Re	marks Comment
Info Phase V Load Motor/Gen R	ating Arc Flash Protection
69 kV 0 Amps	Asymmetrical 0 kA
ID BARRA 69KV	Revision Data
Nominal kV69	Base
Bus Voltage	Condition
% VkVAngleInitial100690Operating000	Service Olu Out State As-Built V
Equipment	Connection
Tag #	O 3 Phase
Name	0 1 Phase 2W
Description	0 1 Phase 3W
Priority Critical ~	Load Diversity Factor Min. Max.
Classification	80 % 125 %
Zone 1 🖨 🗸 🗸	Voltage Limit
Area 1 🜩	Min. 90 %
Region 1 🖨	Duration 0 Cycle
🖹 🖻 🔀 BARRA 69KV 🗸	Cancel

Anexo 7. Datos ingresados en el software ETAP – Barra 69KV

Harmonic Rel	liability Motor/Gen	Remarks Rating	s Arc Flash	Comment Protection
13,8 kV 225 Amps			Asymme	etrical 37 kA
ID BARRA 13.8KV		B	evision Data	F
Nominal kV 13,8		Γ	Base	
Bus Voltage		Co	ondition	
% ∨ Initial <u>100</u> Operating 0	kV Angle 13,8 0 0 0	s.	ervice Oln Out State As-Built	~
Equipment		Co	onnection	
Tag #			3 Phase	
Name			🔵 1 Phase 2W	
Description) 1 Phase 3₩	,
Priority Critical	~	Lo	ad Diversity Fac Min.	tor Max.
Classification			80 %	125 %
Zone 1 🗧			oltage Limit	
Area 1 ≑		~	Min. 90	%
Region 1 🖨		~ [Duration 0	Cycle

Anexo 8. Datos ingresados en el software ETAP – Barras 13.8KV

💱 Bus Editor - BARRA 0.48KV2	×
Harmonic Reliability F	Remarks Comment
Info Phase V Load Motor/Gen	Rating Arc Flash Protection
0,48 kV 3000 Amps	Symmetrical 0 kA
Info	
BARRA 0.48KV2	
Nominal kV 0,48	Base
Bus Voltage	Condition
% VkVAngleInitial1000,480Operating000	Service Olut Out State As-Built
Equipment	Connection
Tag #	O 3 Phase
Name	0 1 Phase 2W
Description	◯ 1 Phase 3W
Priority Critical ~	Load Diversity Factor Min. Max.
Classification	
Zone 1 🐳 🗸 🗸	Voltage Limit
Area 1 🔹 🗸	Min. 90 %
Region 1 🜩	Duration 0 Cycle
🗈 🖻 🔀 BARRA 0.48KV2 🗸	🔊 🍓 🅐 OK Cancel

Anexo 9. Datos ingresados en el software ETAP – Barras 480V

	Beliability	J	Bema	arks		Comment
Info	Rating	, Impedance	Tap G	Grounding	Sizing	Protection Harmonic
10 MV/	ANSI Lie	ouid-Fill - C57.12	ONAN/ONAE 65	5 C		69 13.8 kV
luf.						
					u	<u>ا</u> هھ بيل
ID [TRAFO 69	KV a 13.8KV			ст.	m 🔍
Prim	BABBA 69	κv		v –	Revision Dat	a
	2					
Sec.	BARRA 13	.8KV4	~ 13,8	kV		Base
Standard	4				Condition	
otandat	-					In
	AA 💽	ISI			C) Out
		С			State A	s-Built 🗸 🗸
Equipme	nt				Connection	
Ta	g #					
					O 3-Phase	shell v
Na	me				1-Phase	3
Descript	ion					
Descript	.011					
					Second	ary CenterTap
b C		TRAFO 69KV	a 13.8KV	~ [2	> 🙀 🖌	Cancel
2-Wind	ing Transf	TRAFO 69KV	r a 13.8KV TRAFO 69KV a 1 Berna) #4 (Comment
2-Wind	ing Transf Reliability Rating	TRAFO 69KV	r a 13.8KV TRAFO 69KV a Rema Tap G	V Notes that the second	Sizing	OK Cancel
2-Wind nfo 10 MVA	ing Transf Reliability Rating	TRAFD 69KV TRAFD 69KV former Editor - Impedance uid-Fill - C57.12 (r a 13.8KV TRAFO 69KV a Rema Tap G DNAN/DNAF 65	13.8KV Irks arounding	Sizing	Comment Protection Harmonic 69 13.8 kV
2-Wind nfo	ing Transf Reliability Rating ANSI Liq	TRAFO 69KV TRAFO 69KV former Editor - Impedance uid-Fill - C57.12 (r a 13.8KV TRAFO 69KV a Rema Tap G DNAN/ONAF 65	13.8KV Irks arounding 5 C	Sizing	Comment Protection Harmonic 69 13.8 kV
2-Wind nfo 10 MVA	ing Transf Reliability Rating ANSI Liq	TRAFO 69KV TRAFO 69KV former Editor - Impedance uid-Fill - C57.12 (r a 13.8KV TRAFO 69KV a Rema Tap G DNAN/DNAF 65	13.8KV rks àrounding 5 C	Sizing	Comment Protection Harmonic 69 13,8 kV Z Base
2-Wind nfo 10 MVA	ing Transf Reliability Rating ANSI Liq	TRAFO 69KV TRAFO 69KV former Editor - Impedance uid-Fill - C57.12 (X/R	r a 13.8KV TRAFO 69KV a Rema Tap G DNAN/ONAF 65 B/X	V 2 13.8KV rks irounding 5 C	Sizing	Comment Protection Harmonic 69 13,8 kV Z Base MVA
2-Wind nfo 10 MVA Impedance Positive	ing Transf Reliability Rating ANSI Liq ce %Z 8	TRAFD 69KV TRAFD 69KV former Editor - Impedance uid-Fill - C57.12 (X/R 15,5	r a 13.8KV TRAFO 69KV a Rema Tap G DNAN/ONAF 65 R/X 0,065	13.8KV irks irounding 5 C %X 7,983	Sizing %R 0,515	Comment Protection Harmonic 69 13,8 kV Z Base MVA 10
2-Wind nfo 10 MVA Impedance Positive Zero	ing Transf Reliability Rating ANSI Liq ce % 8 8	TRAFO 69KV TRAFO 69KV former Editor - 1 Impedance uid-Fill - C57.12 (X/R 15,5 15,5	r a 13.8KV TRAFO 69KV a Rema Tap G DNAN/ONAF 65 R/X 0,065	13.8KV irks irounding ic 2xx 7,983 7,983	Sizing %R 0,515	Comment Protection Harmonic 69 13,8 kV Z Base MVA 10 ONAN 65
2-Wind nfo 10 MVA Impedance Positive Zero	ing Transf Reliability Rating ANSI Liq ce %Z 8 8 8 Typic:	TRAFO 69KV TRAFO 69KV former Editor - Impedance uid-Fill - C57.12 (X/R 15.5 15.5 15.5	r a 13.8KV TRAFO 69KV a Rema Tap G DNAN/ONAF 65 R/X 0,065 0,065 Typical X/R	13.8KV It is a second secon	Sizing %R 0,515 0,515	Comment Protection Harmonic 69 13,8 kV Z Base MVA 10 ONAN 65
2-Wind nfo 10 MVA Impedance Zero	Ing Transf Reliability Rating ANSI Liq ce %Z 8 8 7.4 8 8	Ciormer Editor - Impedance uid-Fill - C57.12 (X/R 15.5 15.5 al Z & X/R	r a 13.8KV TRAFO 69KV a Bema Tap G DNAN/ONAF 65 R/X 0,065 0,065 Typical X/R	13.8KV irks irounding i C %X 7,983 7,983	Sizing %R 0,515 0,515	Comment Protection Harmonic 69 13,8 kV Z Base MVA 10 ONAN 65
2-Wind nfo 10 MVA Impedance Zero Z Variatio	ing Transf Reliability Rating ANSI Liq Ce %Z 8 8 8 7ypic	Cion Transforme TRAFO 69KV Tormer Editor - Impedance uid-Fill - C57.12 (X/R 15,5 15,5 15,5 al Z & X/R	r a 13.8KV TRAFO 69KV a Rema Tap G DNAN/ONAF 65 R/X 0,065 0,065 Typical X/R	13.8KV irks irounding 5 C 2xx 7,983 7,983	Sizing %R 0,515 0,515	Comment Protection Harmonic 69 13,8 kV Z Base MVA 10 ONAN 65 Z Tolerance
2-Wind nfo 10 MVA Impedanc Zero Z Variatio	ing Transf Reliability Rating ANSI Liq ce %Z 8 8 7 ypic on -5	* Tap	r a 13.8KV TRAFO 69KV a Tap G DNAN/ONAF 65 R/X 0,065 0,065 Typical X/R	13.8KV irks irrounding 5 C 2xx 7,983 7,983 7,983	 Sizing %R 0,515 0,515 ariation 0 	OK Cancel Comment Protection Harmonic 69 69 13,8 kV Z Base MVA 10 ONAN 65 Z Tolerance 2 Tolerance
2-Wind nfo 10 MVA Impedanc Zero Z Variatio	ing Transf Reliability Rating ANSI Liq ce %Z 8 8 Typic n -5	Cition Transforme TRAFD 69KV former Editor - Impedance uid-Fill - C57.12 (X/R 15.5 15.5 15.5 15.5 2 & X/R % Tap % Tap	r a 13.8KV TRAFO 69KV a Tap G DNAN/ONAF 65 R/X 0,065 0,065 Typical X/R	13.8KV irks irounding 5 C 2xx 7,983 7,983 2,27,0	Sizing %R 0,515 0,515	OK Cancel Comment Protection Harmonic 69 69 13,8 kV Z Base MVA 10 ONAN 65 Z Tolerance * * 0 %
2-Wind nfo 10 MVA Positive Zero Z Variatio @ @	Ing Transf Reliability Rating ANSI Liq ce %Z 8 8 7 ypic. on -5 5	X TRAF0 69KV Former Editor - 1 Impedance uid-Fill - C57.12 (X/R 15.5 15.5 al Z & X/R % Tap % Tap	r a 13.8KV TRAFO 69KV a Rema Tap G DNAN/ONAF 65 0,065 0,065 Typical X/R 22 8 8 8	13.8KV irks irounding 5 C 2xx 7,983 7,983 2 Z V. 1	 Sizing %R 0,515 0,515 	Comment Protection Harmonic 69 13,8 kV Z Base MVA 10 ONAN 65 Z Tolerance $\stackrel{*}{\cdot}$ 0 %
2-Wind 10 MVA Impedanc Positive Zero Z Variatic @ 0 No Load	ing Transf Reliability Rating ANSI Liq ce %Z 8 8 7 ypic n -5 5 Test Data	Cion Transforme TRAFD 69KV Tormer Editor - Impedance uid-Fill - C57.12 (X/R 15,5 15,5 15,5 15,5 al Z & X/R X Tap X Tap X Tap (Used for Unbala	r a 13.8KV TRAFO 69KV a Tap G DNAN/DNAF 65 R/X 0,065 0,065 Typical X/R %Z 8 8 8	13.8KV irks irounding 5 C 2x 7,983 7,983 2 Z V. 1 1 1 1 1 1 1 1 1 1 1 1 1	K Sizing %R 0,515 0,515 ariation 0	OK Cancel Comment Protection Harmonic 69 69 13,8 kV Z Base MVA 10 ONAN 65 Z Tolerance * * 0 %
2-Wind nfo 10 MVA Impedance Zero Z Variatice @ No Load	ing Transf Reliability Rating ANSI Liq ce %Z 8 8 Typic on -5 5 Test Data	Cition Transforme TRAFD 69KV former Editor - Impedance uid-Fill - C57.12 (X/R 15.5 15.5 al Z & X/R % Tap % Tap % Tap % TAP % FLA	r a 13.8KV TRAFO 69KV a Tap G DNAN/ONAF 65 R/X 0,065 0,065 0,065 7ypical X/R % 8 8	13.8KV irks ircunding 5 C 2xX 7,983 7,983 2 Z V. interval	Sizing %R 0,515 0,515 ariation 0 % G	OK Cancel Comment Protection Harmonic 69 69 13,8 kV Z Base MVA 10 0NAN 65 Z Tolerance * * 0 % % B %
2-Wind nfo 10 MVA Impedanc Positive Zero Z Variatio @ @ No Load	ing Transf Reliability Rating ANSI Liq ce %Z 8 8 Typic n -5 5 Test Data	Ction Transforme TRAFO 69KV former Editor - Impedance uid-Fill - C57.12 (X/R 15.5 15.5 15.5 15.5 3 2 & X/R % Tap % Tap % Tap % Tap % Tap % FLA 0,5	r a 13.8KV TRAFO 69KV a Tap G DNAN/ONAF 65 R/X 0.065 0.005 00000000	13.8KV irks irounding 5 C 2xx 7,983 7,983 2 Z V. 0nly)	 Sizing %R 0,515 0,515 0,515 0,515 	OK Cancel Protection Harmonic 69 13.8 kV Z Base MVA 10 ONAN 65 Z Tolerance * * 0 % B 0,484
2-Wind nfo 10 MVA Impedance Zero Z Variatio @ @ No Load	ing Transf Reliability Rating ANSI Liq ce 2Z 8 8 Typic n -5 5 Test Data ssitive Zero	Cition Transforme TRAFO 69KV former Editor - Impedance uid-Fill - C57.12 (X/R 15,5 15,5 15,5 15,5 al Z & X/R % Tap % Tap % Tap % Tap % FLA 0,5 0,5	r a 13.8KV TRAFO 69KV a Rema Tap G DNAN/ONAF 65 0,065 0,065 0,065 Typical X/R %Z 8 8 8 8 nced Load Flow of KW 12,5 12 5	13.8KV irks irounding 5 C %X 7,983 7,983 %Z V. only	 Sizing Sizing Sizing Sizing Sizing Sizing 	Comment Protection Harmonic 69 13,8 kV Z Base MVA 10 ONAN 65 Z Tolerance ± 0 % % B 0,484 0,484

🖻 🖻 💌

TRAFO 69KV a 13.8KV

OK Cancel

~ 🔊 🏘 ?

Anexo 10. Datos ingresados en el software ETAP – Transformador 69KV a 13.8KV

2-Winding Transform	mer Editor - 1	rafo 69K\	/ a 13.8KV)
Reliability		Be	emarks			Comme	nt
Info Rating	Impedance	Тар	Groundin	g	Sizing	Protection	Harmonic
10 MVA ANSI Liquid	-Fill - C57.12 C)NAN/ONAF	65 C			69	13,8 kV
Fixed Tap			LTC /V	oltage	e Regulato	r	
% Tap	kV Tap	Per Unit Turn Ratio		AVR		Manual or Operating Tap	Real-Time Scanned
Prim 0	69	1	Prim.		LTC	0	0
Sec 2,5	14,145	1,025	Sec.		LTC	0	0
	RAFO 69KV a	a 13.8KV	~	≥	<i>6</i> 6	? ОК	Cancel

	Reliabili	ty	F	emarks		Comment
Info	Rating	Impedance	Тар	Grounding	Sizing	Protection Harmonic
2,5 M	VA ANSI I	Liquid-Fill OA 65 0	;			13,8 0,48 kV
Info						
ID	ΤΒΔΕΟ 11	3.8KV a 480V			2	
Prim.	BARRA 1	3.8KV	~	13,8 kV	-Revision Da	ata
Sec.	BARRA 0	.48KV2	~	0,48 kV		Base
Standa	rd				Condition	
	•	NO			Service S	D In
		IN 51			C	Out
					State	As-Built 🗸
Equipm	ent				Connection	
Т	ag #				O 3.Phas	
N	ame				0 1-Phas	se Sriell V
Descrip	otion					
					🗌 Secon	dary CenterTap
	🗌 Tı	raction Transforme				
2-Wind	ing Transf	TRAFO 13.8K	V a 480V RAFO 13.8	√ [KV a 480V	> #	? OK Cancel
	Reliability		B	emarks		Comment
o	Rating	Impedance	Тар	Grounding	Sizing	Protection Harmon
2,5 MVA	ANSI Lie	quid-Fill OA 65 C				13,8 0,48 kV
	ce					Z Base
npedano		Y/B	R/X	**	%R	MVA
npedano Positive	%Z	10.67	0.094	5 72E	11522	
npedano ^o ositive	%Z 5,75	10,67	0,094	5,725	0,537	2,5

Anexo 11. Datos ingresados en el software ETAP – Transformador 13.8KV a 480V

	Reliability		Be	emarks		Comme	ent
Info	Rating	Impedance	Тар	Grounding	Sizing	Protection	Harmonic
2,5 MVA	ANSI Liq	uid-Fill OA 65 C	:			13,8	0,48 kV
Impodance						7.0	
mpeuario	.e					2 D dt	ie .
Decision	%Z	X/R	R/X	**	%R		MVA
Fositive	5,75	10,67	0,094	5,725	0,537		25
Zero	5,75	10,67	0,094	5,725	0,537		0A 65
	Туріса	lZ&X/R	Typical X/I	7			
- Z Variatio	n					Z Tol	erance
			%Z	%ZV	ariation		
@	-5	% Тар	5,75)	+	0 %
@	5	% Тар	5,75)	· · ·	0 %
No Load	Test Data (i	Used for Unbala	nced Load Fl	ow only)			
		% FLA	kW		% G	% E	I
Po	ositive	0	0		0	0	
	Zero	0	0		0	0	
Buried	I Delta Wind	ding	Zero Se	q. Impedance		Typical Value	
þ	∽	TRAFO 13.8K	√a 480V	~ 2	> 🙀 (? ОК	Cancel

	Reliability		Re	marks		Comme	ent
Info	Rating	Impedance	Тар	Grounding	Sizing	Protection	Harmon
2,5 M	VA ANSI Liqu	id-Fill OA 65 C				13,8	0,48 kV
Fixed T	ар			1 ⊢ LTC / Vol	tage Regulato	ır ———	
	% Tap	kV Tap	Per Unit Turn Ratio	م	VR	Manual or Operating Tap	Real-Tim Scanned
Prim	. 0	13,8	1	Prim.		0	0
Sec	5	0.504	1.05	Sec.		0	0

armonic Prote	ection Reliabili	ty Fue			omain	u anu M		arks Co
to Rating	Capability I	.mp/Mod	el Gr	ounding	Inertia	Excite	er Go	vernor
U,48 KV U,8 M	IW MyarConti	101						
Info						\odot		
					- Rovi	vion Data		<u> </u>
					nevi	SION Data	3	
ID Generad	or 1MVA						Base	
					Conc	lition		
						. 0	In	
Bus Bus42			~	U,48 kV	Serv		Out	
					St	ate As-	Built	\sim
Equipment					Confi	iguration		
т н						1	Vormal	
lag #						Oper	ation Mod	le
							na	
Name						⊖ Volt	age Cont	rol
Description						O Mva	ar Control	
							Control	
						<u> </u>		
	2							Connel
	S Generador I	MVA		~		9 🚺		Cancer
Synchronous	Generator Edito	or - Geni	erador 1	IMVA				
Synchronous	Serierator Luito	n - Gene	erador	INIVA				
	ction Reliabilit	ty Fue	l Cost	Time Do	main	0 and M	Rema	arks Co
armonic Prote	Capability 1	тримоа	er an	ounding	inerua	Excite	a do	vernor
armonic Prote fo Rating								
armonic Prote fo Rating 0,48 kV 0,8 M	W Mvar Contr	ol						
armonic Prote fo Rating 0,48 kV 0,8 M Rating MW	W Mvar Contr	ol % PF		K0 (A		× E (f	P	oles
armonic Prote fo Rating 0,48 kV 0,8 M Rating MW 0,8	W Mvar Contr kV 0,48	ol % PF 80		MVA 1	3	% Eff. 95	P	oles 4
armonic Prote fo Rating 0,48 kV 0,8 M Rating MW 0,8 %	W Mvar Contr kV 0,48 of Bus Nom. kV	ol % PF 80		MVA 1 FLA	;	% Eff. 95	P	oles 4 PM
armonic Prote fo Rating 0,48 kV 0,8 M Rating MW 0,8 %	W Mvar Contr kV 0,48 of Bus Nom, kV 100	ol % PF 80		MVA 1 FLA 1203	;	% Eff. 95	P R	oles 4 PM 800
armonic Prote fo Rating 0,48 kV 0,8 M Rating MW 0,8 %	W Mvar Contr kV 0,48 of Bus Nom, kV 100	ol % PF 80		MVA 1 FLA 1203	;	% Eff. 95	Pi B	oles 4 PM 800
armonic Prote fo Rating 0,48 kV 0,8 M Rating 0,8 0,8 % %	W Mvar Contr kV 0,48 of Bus Nom, kV 100 Category	ol % PF 80 % V	Angle	MVA 1 FLA 1203 MW	Mvar	% Eff. 95 % PF	P R 1 Qmax	oles 4 PM 800 Qmir
armonic Prote fo Rating 0,48 kV 0,8 M Rating 0,8 % 0,8 % % Gen. 1 Design	W Mvar Contr kV 0,48 of Bus Nom. kV 100 Category	ol % PF 80 % V	Angle	MVA 1 FLA 1203 MWV 0,8	Mvar 0	% Eff. 95 % PF 100	P B 11 Qmax 0,6	0les 4 PM 800 Qmir -0,42
armonic Prote fo Rating 0,48 kV 0,8 M Rating 0,8 % 0,8 % 0,8 % 8 6 6 6 6 7 1 Design 2 Normal	W Mvar Contr kV 0,48 of Bus Nom. kV 100 Category	ol % PF 80 % V	Angle	MVA 1 FLA 1203 MW 0,8 0,8	Mvar 0	% Eff. 95 % PF 100 100	P B Qmax 0,6 0,6	0les 4 PM 800 Qmir -0,42 -0,42
armonic Prote fo Rating 0,48 kV 0,8 M Rating MW 0,8 % 0,8 % % Gen. 1 Design 2 Normal 3 Shutdown	W Mvar Contr kV 0,48 of Bus Nom. kV 100 Category	0 % PF 80 % V	Angle	MVA 1 FLA 1203 MW 0,8 0,8 0,8	Mvar 0 0	% Eff. 95 % PF 100 100 85	P R 11 Qmax 0,6 0,6 0,85	0les 4 PM 800 -0,42 -0,42 -0,42

Anexo 12. Datos ingresados en el software ETAP – Generador 1MVA / 480V

	Gen. Lategory	~ V	Angle	141.44	Mvar	~~ F F	Qillax	Quin
1	Design			0,8	0	100	0,6	-0,42
2	Normal			0,8	0	100	0,6	-0,42
3	Shutdown			0	0	85	0,85	-0,42
4	Emergency			0	0	85	0,85	-0,42
5	Standby			0	0	85	0,85	-0,42
^{>} rir	me Mover Rating Continuous	Peak		Mva	ar Limits Capabilit	y Curve		
⊃rir 1	me Mover Rating Continuous HP MW HI 072,8 0,8 13	Peak 5	MW 1	Mva O	ar Limits Capabilit User-De	y Curve fined	Pea 61	k Mvar 9,744
Prin 1 Dpr	me Mover Rating Continuous HP MW HI 072,8 0,8 13 erating Values	Peak 5 41	MW 1	Mva 0	ar Limits Capabilit User-De	y Curve fined	Pea 61	k Mvar 9,744
Prir 1 Dp	ne Mover Rating Continuous HP MW HI 072,8 0,8 13 erating Values & V	Peak 41	MW 1	Mva O MW	ar Limits Capabilit User-De	y Curve fined Mvar	Pea 61	k Mvar 9,744

💱 Synchronous Generator Editor - Generador 1MVA \times Harmonic Protection Reliability Fuel Cost Time Domain O and M Remarks Comment Rating Capability Imp/Model Grounding Inertia Exciter Governor PSS Info 0,48 kV 0,8 MW Mvar Control Impedance Xd'' Tolerance Ohm % 0 14 Xd''/Ra 34,146 Ra 0,41 Ra 0,000945 Xd'' % - 1 7 X2/R2 14,583 X2 R2 0,48 R2 0,001106 Inertia Xo 1 X0/R0 2,439 R0 0,41 R0 0,000945 Н 0 Rdc 0 Rdc 0 Dynamic Model % % Sec Subtransient Xd 155 Χq 155 T do' 6,5 Sbreak 0,8 Transient 165 Xdu 165 Tdo'' 0,035 S100 1,07 Xqu 🔵 Equivalent 28 65 Tgo' 1,25 S120 1,18 Χď Χq Typical Data \times_{L} 15 Xq'' 19 Tgo'' 0,035 0 Damping IEC 60909 S.C. Туре Exciter Type Turbine 160% \sim Gen. Diesel \sim Compound Exc. Adjust KG based on PG PG 7,5 % Rotor Round-Rotor \sim GOST S.C. Exciter Type $\,$ Thyristor Independent Excitation $\,$ \sim 🗈 💼 🔽 🤇 Generador 1 MVA 🗸 🔊 🍓 🎦 🛛 OK 🛛 Cancel

Reliability	S II NI	Remarks	Con	nment
Loading	Lable/Vd	Lable Amp	Time Domain	Harmoni
1 0,75 MW 2,385 Mv	ar 0,48 kV		Cable Info r	not available
Info			$\stackrel{\leftarrow}{\leftarrow}$	F
ID LARGA 4			Revision Data	
Bus BARRA 0.48KV		✓ 0,48 kV	Base	
Equipment			Condition	
Tag #			Service OIn	
Name			State As-Built	~
Description			Configuration	
			Norma	
Data Type Estimated	\sim		Status Continue	ous 🗸
Priority Other	\sim		Connection	
			🗿 3 Phase	
Load Type Other	\sim		1 Phase	
			Quantity	1
Demand Factor			Reference kV	
Continuous Int	ermittent S	pare	Calculated	kV
100	50	0 %	O User-Defined	0

Anexo 13. Datos ingresados en el software ETAP – Carga 2.5MVA

1 0	codding	E a balan A Ca	. c	Sable Area	Time	- Demain	Li avec e e
1 0		Lable/Vo	. U	able Amp	1 Im	e Domain	Harmon
1 0,	,75 MW 2,385 Mvar	0,48 kV				Cable Info	not available
Rating	38						
ы	V MVA	66.7	Mum	•/	DE	A	Grounding
ĸ	v	MW	Mvar	~		Amps	Y
0,4	48 2,5	0,75	2,385)	30	3007	Coloulator
							Calculator
Loodin							
Loadir	ng						
\square	Load	ling		Lo	ad	Feeder	Loss
Lt	Category		%	MW	Mvar	MW	Mvai
1	Design		100	0,75	2,385	0	0
2	Normal		100	0,75	2,385	0	0
3	Brake		0	0	0	0	0
4	Winter Load		0	0	0	0	0
5	Summer Load		0	0	0	0	0
6	FL Reject		0	0	0	0	0
7	Emergency		0	0	0	0	0
8	Shutdown		0	0	0	0	0
9.	Accident		0	0	0	0	0
-							-
	Operating Loa	id: 0.71	5 MW	+i 2.27	3 Mvar		
				1			
Sag & Info	Tension Ampacity Parameter Configu	Compensation uration Groupin	Reliabilit ng Earth	y Remarks Impedance	Commen Protection		
----------------	---------------------------------------	---------------------------------	------------------------	----------------------------------	----------------------		
EPRI/M	.LAYER	T1 25 ℃	Code	336	komil		
ACSR	60 Hz	T2 75°C	Merlin	~ 18	Strands		
Info ID	Line15			Revision Data	S		
From	BARRA 13.8KV4	~ 1	3,8 kV	Condition			
To	BARRA 13.8KV	~ 1	3,8 kV	Service Out State As-Built	~		
Equipn T	ient ag #			Connection 3 Phase 1 Phase			
Desc	iption			Length			
WH7Li O Lib	b Selection rary			Length Unit kn	10 n ~		
OW	arehouse			Tolerance	90 %		
	Line15		~ 🔊	👪 🥐 🛛 ОК	Cance		

Anexo 14. Datos ingresados en el software ETAP – Linea tramo 13.8KV

Info Parar	Ampacity neter Config	uration Groupin	ng Earth	Impedance Protection
EPRI/M.LAYER		T1 25 °C	Code	336 komil
ACSR	60 Hz	T2 75°C	Merlin	 18 Strands
- Phase Conduct	or			
Conductor Tup	• B.T1 (25 *	C) B.T2(75°C)	×.	Conductor Lib
AL ~	0,2785	0,3332	0,463	ohms per 1 mile
Outside Diamet	er GMR		Xa'	
0,684 i	n 0,0221	ft	0,1054	megohms per 1 mile
EPRI/M.LAYER ACSR	60 Hz	T1 25 °C T2 75 °C	Code Waxwing	267 kcmil ~ 18 Strands
Ground Wire				
Conductor Typ	e R-T1 (25 °	C) R-T2(75°C)	Xa	Ground Wire Lib
AL V	0,351	0,4201	0,477	ohms per 1 mile
	er GMR		×a'	Cond. Wire Lib
Uutside Diamet		ft	0,1089	megohms per 1 mile

EPRI/M.LAYER T1 25 °C Code 336 kcmil ACSR 60 Hz T2 75 °C Merlin 18 Strands Configuration Type GMD	nfo F	sion Ampac Parameter C	ity onfigurat	Lompe ion	nsation Grouping	Reliability g Earth	Impe	marks dance	Protectio
ACSR 60 Hz T2 75 °C Merlin Verlin 18 Strands	EPRI/M.LAY	ΈR		T1	25 °C	Code		336	kemil
Configuration Type GMD Horizontal 3,78 ft Phase Height Spacing 24 ft AB 3 ft BC 3 ft CA 6 ft Ground Wires Number of Ground Wires 1 CG CG 1,5 ft CADD CMD CMD CMD CG Conductors/phase 1	ACSR	60 Hz		Т2	75 °C	Merlin	\sim	18	Strands
Horizontal 3,78 ft Phase Height Spacing 24 ft AB 3 ft BC 3 ft CA 6 ft Ground Wires Number of Ground Wires 1 CG CG CG CG CG CG CG CG CG Conductors Conductors/phase 1	Con	figuration Type		GMD	I	Layout			
Phase Height Spacing 24 ft AB 3 ft BC 3 ft CA 6 ft Number of Ground Wires 1 CG CG 1.5 ft Conductors/phase 1	Horizont	al	~	3,78	ft	cet		G	
Height Spacing 24 ft AB 3 ft BC 3 ft Height Height Ground Wires CA 6 ft Image: Conductors Ground Wires 1 Ca 5 ft Conductors CG 1.5 ft Conductors/phase 1	Phase						ô	₿ 🗳	
24 ft AB 3 ft BC 3 ft Height CA 6 ft Image: Separation International Conductors/phase Internation Conductors/phase Internation Conductors/phase Internatio	ł	Height		Spaci	ng				
BC 3 ft CA 6 ft CA 6 ft Number of Ground Wires 1 CG CG 1.5 ft Conductors/phase 1		24 ft	AB	3	ft				
Ground Wires CG			D.C.	2	0				
CA 6 ft Ground Wires CG CG CG CG CG CG CG CG CG CCnductors Conductors Conduct			BC	3	It		eight		
Ground Wires Conductors CG CG CG CG CG CG CG CG CC CC CC CC CC			CA	6	ft				
Ground Wires Conductors Number of Ground Wires 1 CG CG L,5 ft Conductors/phase 1						<u> 775177</u>	/ \////	12 1/2 1	//////
Number of Ground Wires 1 Transposed CG Separation 0 inc 1,5 ft Conductors/phase 1	Ground Wi	res				Conducto	ors		
CG Separation 0 inc 1,5 ft Conductors/phase 1	Nu	umber of Ground	Wires		1	🗌 Trar	nsposed		
1,5 ft Conductors/phase 1				CG.		S	eparatior	n	0 incl
				15	ft	Conducto	ors/phase		1
				1,0	ĸ				

Info	- Pha	se Sia Physical	zing - GND/PE Impedance	Reliab Configu	ility uration	Routing Loadi) ing	Remarks Ampacity	Commer Protectio
1	NEC-S	TD	Mag.	60 Hz			Code :	500	
1	THW	4	100 %	0,6 kV	1/C	CU	500	~ A\	WG/kcmil
Info									
	ID	Cable8							S
F	From	BARRA 0.4	8KV2	~	0,48 kV	-Be	vision [Ìata	
	To	BARRA 0.4	8KV	~	0,48 kV	The second		Base	
							ndition - Servici	o In	
	Tag i Nam	#					ndition Servici Stati	e Oln Out e As-Built	~
Desc	Tag i Nam	#				- No.	ndition Service State	e Olut Out e As-Built nductors / Phas	~ e
Desc	Tag : Nam cription	#	Libre	ary		- No.	Servici Stati . of Cor	e Olut Out As-Built I	~ :e
Desc	Tag i Nam cription n Leng	#	m v	ary Library.		No.	Service State . of Cor nnectio	e Olut Out e As-Built nductors / Phas 1	v se

Anexo 15. Datos ingresados en el software ETAP – Linea tramo 480KV Cnel - Carga

Sizing - Phase Info Physical		Sizing - GND/PE Impedance		Reliability Routing Rer Configuration Loading Arr					s ty	Comment Protection
NEC	STD	Мад] .	60 Ha	2		Code	: 500		
THW	/N	100	%	0,6 k\	/ 1/	'C C	U 500		~ AW	/G/kcmil
Option				Units				Fre	equency	
Positive Seq.		Zero Seq.		O 0H	ims per	1000	ft	\sim	Project	t
Library		Library		0.01					60	Hz
) Calculated	1	🔾 Calcula	ated	O UP	ims				Data	
									60	Hz
mpedance -	Library									
	В	×	L		Z		X/R	R/X		Y
Pos	0.029	0.048	0.000	1273	0.0560	8	1.655	0.604		0
1 00.	0,020	0,040	0,000	1210	0,0000		1,000			-
🔶 Zero	0,09135	0,11808	0,000	3132	0,1492	9	1,293	0,774		0
² aloulated In	nodanco									
calculateu III	ipeuarice									
Layou	ut	Flat			Conduit	Туре		Steel		
	R	х	L		Z		×/R	R/X		Y
Pos.	0	0	0		0		0	0		0
Zero	0	0	0		0		0	0		0
Cable Tempe	rature									
	Base 7	5 V °C	Min.	75	°C	Max.	75	°C		
					_					

Info	- Pha	se Si Physical	zing - GND/PI Impedanc	E Relia ce Config	bility juration	Routing Loading	Remarks Ampacity	Commen Protectio
N	NEC-9	STD	Mag.	60 Hz		Code	: 500	
T	THWN	V	100 %	0,6 kV	1/C	CU 500	~ A	WG/kemil
Info								
	ID	Cable9				(-	S
F	From	Bus42		~	0,48 kV	Devision	Data	
	To	BARRA 0.4	8KV	~	0,48 kV	Revision	Data	
Equipm	nent -					Condition	O In	
Equipm	nent - Tag‡	#				Condition	e Oln	
Equipm	nent - Tagi	#				Condition Servio Sta	ce Oln Out te As-Built	~
Equipm	nent – Tagi Nam	#				Condition Servic Sta	e Out Out As-Built	~
Equipm	nent - Tagi Namo	#				Condition Servic Sta	e Oln Out te As-Built nductors / Pha	S6
Equipm Desc	nent - Tagi Nam	#				Condition Servic Sta	e In Out te As-Built nductors / Pha	v 198
Equipm Desc Length	nent – Tag f Nam	#		Library		Condition Servic Sta No. of Co Connecti	e In Out te As-Built nductors / Pha	v ISB
E quipm Desc Length	nent - Tag Nam Cription	#		Library		Condition Servic Sta No. of Co Connecti	e O In O Uut te As-Built nductors / Pha 6	

Anexo 16. ingresados en el software ETAP – Linea tramo 480KV Generador - Carga

Sizing - Phase Sizing - GND. Info Physical Impeda		PE	Reliability Routing Configuration Loading		ting ading	Remarks Ampacity		Comment Protection				
NEC-STD		Mag	j.	60 Ha	:		Code	: 500				
THWN		100	%	0,6 k\	/ 1/	°C C	U 500		- AW	G/kemil		
) ption Positive Seq.		Units Ohms per 1000 km V Project										
Calculated		Calculation Calculation	ated	OOh	ms				60 Data	Hz		
		0		-			60 H					
mpedance - Libra	ry											
F	}	×	L		Z		X/R	R/X		Y		
Pos. 0,0	29	0,048	0,000	273	0,0560	8	1,655	0,604		0		
➡ Zero 0,09	135	0,11808	0,000	3132	0,1492	9	1,293	0,774		0		
Calculated Imped	ance											
Layout		Flat			Condui	Туре		Steel				
F	}	×	L		z		X/R	R/X		Y		
Pos. 0)	0	0		0		0	0		0		
Zero)	0	0		0		0	0		0		
Cable Temperatur	е											
Ba	ase 75	~ °C	Min.	75	°C	Max.	75	°C				

Anexo 17. Planos eléctricos del cuarto eléctrico.