

UNIVERSIDAD POLITÉCNICA SALESIANA

SEDE GUAYAQUIL

CARRERA DE ELECTRICIDAD

ESTUDIO DEL COMPORTAMIENTO ANTE DESCARGAS TIPO RAYO DE LOS SISTEMAS DE PUESTA A TIERRA EN LÍNEAS AÉREAS DE ELECTRICIDAD, MEDIANTE EL SOFTWARE ATP-DRAW.

Trabajo de titulación previo a la obtención del

Título de Ingeniero Eléctrico

AUTORES: Joseph William Torres Pérez

Omaly Manolo Suquitana Lapo

TUTOR: Ing. Otto Washington Astudillo Astudillo

Guayaquil – Ecuador 2024

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓN

Nosotros, Joseph William Torres Pérez con documento de identificación N° 0928729904 y Omaly Manolo Suquitana Lapo con documento de identificación N° 0707046835 manifestamos que:

Somos los autores y responsables del presente trabajo y autorizamos a que sin fines de lucro la Universidad Politécnica Salesiana pueda usar, difundir, reproducir o publicar de manera total o parcial el presente trabajo de titulación.

Guayaquil, 7 de febrero del año 2024

Atentamente; ph William Torres Pérez 0928729904

Omaly Manolo Suquitana Lapo 0707046835

ii

CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA.

Nosotros, Joseph William Torres Pérez con número de identificación N° 0928729904 y Omaly Manolo Suquitana Lapo con número de identificación N° 0707046835, expresamos nuestra voluntad y por medio del presente documento cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de lo que somos autores del: **"ESTUDIO DEL COMPORTAMIENTO ANTE DESCARGAS TIPO RAYO DE LOS SISTEMAS DE PUESTA A TIERRA EN LÍNEAS AÉREAS DE ELECTRICIDAD, MEDIANTE EL SOFTWARE ATP-DRAW"**, el cual ha sido desarrollado para optar por el título de INGENIERO EN ELECTRICIDAD, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En concordancia con lo manifestado, suscribimos este documento en el momento que hacemos la entrega del trabajo final en el formato digital a la biblioteca de la Universidad Politécnica Salesiana.

Guayaquil, 7 de febrero del año 2024

Atentamente;

William Torres Pérez 0928729904

Omaly Manolo Suquitana Lapo 0707046835

CERTIFICADO DE DIRECCIÓN DE TRABAJO DE TITULACIÓN

Yo, Otto Washington Astudillo Astudillo con documento de identificación N° 0102054871 docente de la Universidad Politécnica Salesiana, declaro que bajo mi tutoría fue desarrollado el trabajode titulación: "ESTUDIO DEL COMPORTAMIENTO ANTE DESCARGAS TIPO RAYO DE LOS SISTEMAS DE PUESTA A TIERRA EN LÍNEAS AÉREAS DE ELECTRICIDAD, MEDIANTE EL SOFTWARE ATP-DRAW", realizado por Joseph William Torres Pérez con número de identificación N° 0928729904 y Omaly Manolo Suquitana Lapo con número de identificación N° 0707046835, obteniendo como resultado final el trabajo de titulación bajo la opción Proyecto Tesis que cumple con todos los requisitos determinados por la Universidad Politécnica Salesiana.

Guayaquil, 7 de febrero del año 2024

Atentamente;

Ing. Otto Washington Astudillo Astudillo, 0102054871

DEDICATORIA

En toda mi vida siempre mi sueño ha sido el tener un título, crecer a nivel académico por medio de los buenos momentos, pero también de los difíciles.

Quiero dedicar esta tesis a Ingrid, William, Nayeli, Irving, Delia, Alejandro y Elena por ser el impulso que he necesitado todos estos años para salir adelante en los peores momentos. Por aguantarme las malas noches y mis enojos de lo cual algunos días las cosas no me salían nada bien.

Esto va dedicado a ellos y a mi abuelo Torres que a pesar de que ya no está aquí, soy consciente que él siempre quiso ver la graduación de sus nietos, quiero hacer mención de mis amigos, que, a pesar de las malas noches, siempre estuvieron ahí para sacarme una sonrisa, también dedico ésta tesis a ustedes ingenieros de la UPS, todos los estudiantes los admiramos aunque a veces nos ponen en aprieto entendemos que es parte del proceso.

Joseph William Torres Pérez

Se lo dedico a mis padres por estar ahí presente en cualquier situación, a mis abuelos por apoyarme les dedico este logro más en mi vida a toda mi familia también y a cada ingeniero que me ayudo con cualquier situación que se me presento en el transcurso de mi estudio y especialmente a Dios por este logro más en mi vida.

Omaly Manolo Suquitana Lapo

AGRADECIMIENTO

Quiero agradecer primeramente a Dios porque me ha dado la fortaleza física y mental para poder afrontar este gran reto académico, al Ing. Otto Astudillo, quien en parte ha sido fundamental para el camino hacia esta tesis mediante su ayuda y disposición, he aprendido mucho a lado de él. A mis hermanos Nayelli y Irving, por tener que aguantarme las amanecidas, que sepan que, a pesar de las diferencias, los quiero un mundo. A mi abuela Delia Flores y mi abuelo Alejandro Pérez, gracias por escucharme, por más que me duela que se irán a vivir a otra parte, se que en el fondo estarán bien y que los quiero mucho. A mis amigos José, Jhulio, Mirela, etc.... porque básicamente me han ayudado a llevar mejor la Universidad más de lo que yo mismo pensaba, son unas excelentes personas.

Por último, agradecer a dos personas importantes que por ellos es que he cumplido varios de mis sueños, a mi papá el Ing. William Torres y a mi mamá la Sra. Ingrid Pérez, soy lo que soy en gran parte por ellos, gracias por apoyarme y no dejarme que me rinda en los peores momentos, por corregirme, por enseñarme a que en la vida todo se puede mientras se le pone la dedicación y la aptitud que merece, me enorgullece tenerlos como padres y no podría haberle pedido a Dios unos padres mejor que ellos, porque ellos ya lo son.

Joseph William Torres Pérez

Agradezco a mis padres, Mónica Lapo, mi madre por apoyarme siempre en todo lo que yo necesitaba siempre me apoyo y eso para mí es algo que me motivaba a seguir y dar lo mejor de mí, a mi padre Manuel Suquitana por su consejos por motivarme a ver lo mejor para mi vida por sus enseñanzas y por estar presente en todo también a mis abuelos que estando en Machala veían la forma de enviar comida siempre estaban preocupados porque coma, preocupados porque no salga por la delincuencia que se está viviendo ahora en nuestro país esto es algo que yo siempre estaré bien agradecido con ellos, a mi hermana por motivarme a seguir adelante me enseño que yo puedo dar mucho más y no dejarme llevar por los malos comentarios, a mi hermano por apoyarme en todo y por estar siempre conmigo, a mi amiga Ángeles Hidalgo por estar ahí cuando estaba pasando por un momento muy delicado y por su gran consejo para poder llevar la situación en la que me encontraba, a los ingenieros de la UPS también les agradezco por ayudarme en cualquier trámite o situación que me encontraba siempre pude contar con ellos y es algo que me llevo y me quede muy agradecido con todos ellos.

INDICE

PORTADA1
CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE
TITULACIÓNii
CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANAiii
CERTIFICADO DE DIRECCIÓN DE TRABAJO DE TITULACIÓNiv
DEDICATORIAv
AGRADECIMIENTOvi
ÍNDICEvii
ÍNDICE DE FIGURAS xiv
ÍNDICE DE TABLAS xvii
RESUMEN xviii
ABSTRACTxix
ACRÓNIMOS xx
CAPÍTULO I 22
1.1. TÍTULO 22
1.2. INTRODUCCIÓN 22
1.3. PLANTEAMIENTO DEL PROBLEMA 23
1.4. JUSTIFICACIÓN 23
1.5. DELIMITACIÓN DEL PROBLEMA 24

viii 1.6. BENEFICIARIOS DE LA PROPUESTA
1.7. OBJETIVOS
1.7.1. Objetivo General
1.7.2. Objetivos Específicos
1.7.3. Metodología y Medios
CAPÍTULO II: SISTEMAS DE PUESTA A TIERRA27
2.1. INTRODUCCIÓN
2.2. FUNDAMENTACIÓN TEÓRICA
2.2.1. ELECTRODO VERTICAL SIN ALTURA DE EMPOTRAMIENTO
2.2.1.1. Partes
2.2.1.2. Comportamiento del electrodo ante descargas de baja frecuencia (industrial)31
2.2.1.3. Evaluación del voltaje de paso ante descargas de frecuencia industrial
2.2.1.4. Evaluación del voltaje de toque o contacto ante descargas de frecuencia industrial.36
2.2.1.5. Comportamiento del electrodo ante descargas de alta frecuencia (tipo rayo)
2.2.2. ELECTRODO VERTICAL CON ALTURA DE EMPOTRAMIENTO41
2.2.2.1. Partes
2.2.2.2. Comportamiento del electrodo ante descargas de baja frecuencia (industrial)42
2.2.2.3. Comportamiento del electrodo ante descargas de alta frecuencia (tipo rayo)42
2.2.3. DOS ELECTRODOS VERTICALES CON ALTURA DE EMPORTRAMIENTO45
2.2.3.1. Partes
2.2.3.2. Comportamiento del electrodo ante descargas de baja frecuencia (industrial)45
2.2.3.3. Comportamiento del electrodo ante descargas de alta frecuencia (tipo rayo)47
2.2.4. ELECTRODO HORIZONTAL CON ALTURA DE EMPOTRAMIENTO
2.2.4.1. Partes
2.2.4.2. Comportamiento del electrodo ante descargas de baja frecuencia (industrial)50
2.2.4.3. Comportamiento del electrodo ante descargas de alta frecuencia (tipo rayo)

ix 2.2.5. CONFIGURACIÓN MIXTA DE ANILLO CIRCULAR DE CONDUCTOR DE COBRE DESNUDO		
2.2.5.1. Partes		
2.2.5.2. Comportamiento del electrodo ante descargas de baja frecuencia (industrial)55		
2.2.5.3. Comportamiento del electrodo ante descargas de alta frecuencia (tipo rayo)57		
2.2.6. CONFIGURACIÓN MIXTA DE ANILLOS CUADRADOS MÁS PICAS VERTICALES EN LOS EXTREMOS, EMPOTRADOS A UNA PROFUNDIDA h59		
2.2.6.1. Partes		
2.2.6.2. Comportamiento del electrodo ante descargas de baja frecuencia (industrial)60		
2.2.6.3. Comportamiento del electrodo ante descargas de alta frecuencia (tipo rayo)60		
2.2.7. CONFIGURACIÓN MIXTA DE UN SPT PARA TORRES DE ACERO APLICADAS A LINEAS AÉREAS DE SUBTRANSMISIÓN Y/O TRANSMISIÓN63		
2.2.7.1. Partes		
2.2.7.2. Comportamiento del electrodo ante descargas de baja frecuencia (industrial)63		
2.2.7.3. Comportamiento del electrodo ante descargas de alta frecuencia (tipo rayo)64		
CAPÍTULO III: MODELADO DE SISTEMAS DE PUESTA A TIERRA67		
3.1. MODELADO DE UN ELECTRODO VETICAL SIN EMPOTRAMIENTO 67		
3.1.1. Modelado del SPT ante descargas de frecuencia industrial		
3.1.1.1. Cálculo de la resistencia del SPT ante descargas de frecuencia industrial (R_0) 69		
3.1.1.2. Cálculo de la máxima elevación de voltaje generado por el SPT (V_r) 69		
3.1.1.3. Cálculo de la elevación de voltaje generado por el SPT para $x = 1m (V_1)$ 69		
3.1.1.4. Cálculo de la máxima diferencia de potencial generada por el SPT (V_{r_1}) 70		
3.1.1.5. Cálculo de los voltajes de contacto y paso soportables por una persona de 70 kg70		
3.1.1.6. Cálculo de los voltajes de contacto y paso generados por el SPT71		
3.1.1.7. Evaluación del SPT ante descargas de frecuencia industrial72		
3.1.2. Modelado del SPT para descargas de alta frecuencia (corrientes tipo rayo)73		
3.1.2.1. Cálculo de la resistencia del SPT ante descargas de frecuencia industrial (R_0) 73		

3.1.2.2. Cálculo de la inductancia del electrodo	x 73
3.1.2.3. Cálculo de la capacitancia del suelo	73
3.1.2.4. Cálculo del gradiente de ionización del suelo	74
3.1.2.5. Cálculo de la corriente de ionización del suelo	74
3.1.2.6. Cálculo de la resistencia transitoria del SPT	74
3.1.2.7. Cálculo del voltaje en la resistencia transitoria del SPT	74
3.2. ELECTRODO VERTICAL EMPOTRADO A UNA PROFUNDIDAD (h)	76
3.2.1. Modelado del SPT ante descargas de frecuencia industrial	76
3.2.1.1. Cálculo de la resistencia del SPT ante descargas de frecuencia industrial (R_0)	77
3.2.1.2. Cálculo de la máxima elevación de voltaje generado por el SPT (V_r)	77
3.2.1.3. Cálculo de la elevación de voltaje generado por el SPT para $x = 1m (V_1)$	78
3.2.1.4. Cálculo de la máxima diferencia de potencial generada por el SPT (V_{r_1})	78
3.2.1.5. Cálculo de los voltajes de contacto y paso soportables por una persona de 70 kg.	78
3.2.1.6. Cálculo de los voltajes de contacto y paso generados por el SPT	79
3.2.1.7. Evaluación del SPT ante descargas de frecuencia industrial	80
3.2.2. Modelado del SPT para descargas de alta frecuencia (corrientes tipo rayo)	81
3.2.2.1. Cálculo de la resistencia del SPT ante descargas de frecuencia industrial (R_0)	81
3.2.2.2. Cálculo de la inductancia del electrodo	81
3.2.2.3. Cálculo de la capacitancia del suelo	81
3.2.2.4. Cálculo del gradiente de ionización del suelo	82
3.2.2.5. Cálculo de la corriente de ionización del suelo	82
3.2.2.6. Cálculo de la resistencia transitoria del SPT	82
3.2.2.7. Cálculo del voltaje en la resistencia transitoria del SPT	82
3.3. ELECTRODOS VERTICALES EN LÍNEA CON EMPOTRAMIENTO	84
3.3.1. Modelado del SPT ante descargas de frecuencia industrial	85
3.3.2. Modelado del SPT para descargas de alta frecuencia (corrientes tipo rayo)	86

	xi
3.3.2.1. Cálculo de la resistencia del SPT ante descargas de frecuencia industrial (R_0)	86
3.3.2.2. Cálculo de la inductancia del electrodo	87
3.3.2.3. Cálculo de la capacitancia del suelo	87
3.3.2.4. Cálculo del gradiente de ionización del suelo	88
3.3.2.5. Cálculo de la corriente de ionización del suelo	88
3.3.2.6. Cálculo de la resistencia transitoria del SPT	88
3.3.2.7. Cálculo del voltaje en la resistencia transitoria del SPT	88
3.4. ELECTRODO HORIZONTAL EMPOTRADO A UNA PROFUNDIDAD (h).	90
3.4.1. Modelado del SPT ante descargas de frecuencia industrial	91
3.4.1.1. Cálculo de la resistencia del SPT ante descargas de frecuencia industrial (R_0)	91
3.4.1.2. Cálculo de la máxima elevación de voltaje generado por el SPT (V_r)	91
3.4.1.3. Cálculo de la elevación de voltaje generado por el SPT para $x = 1m (V_1)$	92
3.4.1.4. Cálculo de la máxima diferencia de potencial generada por el SPT (V_{r_1})	92
3.4.1.5. Cálculo de los voltajes de contacto y paso soportables por una persona de 70 kg	g92
3.4.1.6. Cálculo de los voltajes de contacto y paso generados por el SPT	93
3.4.1.7. Evaluación del SPT ante descargas de frecuencia industrial	94
3.4.2. Modelado del SPT para descargas de alta frecuencia (corrientes tipo rayo)	95
3.4.2.1. Cálculo de la resistencia del SPT para frecuencia industrial (R_0)	95
3.4.2.2. Cálculo de la inductancia del electrodo	95
3.4.2.3. Cálculo de la capacitancia del suelo	95
3.4.2.4. Cálculo del gradiente de ionización del suelo	96
3.4.2.5. Cálculo de la corriente de ionización del suelo	96
3.4.2.6. Cálculo de la resistencia transitoria del SPT	96
3.4.2.7. Cálculo del voltaje en la resistencia transitoria del SPT	96
3.5. ELECTRODO FORMADO POR UN ANILLO CIRCULAR DE COBRE DES EMPOTRADO A UNA PROFUNDIDAD (h)	SNUDC 98

	 V11	
3.5.1. Modelado del SPT ante descargas de frecuencia industrial	98	
3.5.1.1. Cálculo de la resistencia del SPT ante descargas de frecuencia industrial (R_0)	99	
3.5.1.2. Cálculo de la inductancia del electrodo	99	
3.5.1.3. Cálculo de la capacitancia del suelo	99	
3.5.1.4. Cálculo del gradiente de ionización del suelo	100	
3.5.1.5. Cálculo de la corriente de ionización del suelo	100	
3.5.1.6. Cálculo de la resistencia transitoria del SPT	100	
3.5.1.7. Cálculo del voltaje en la resistencia transitoria del SPT	100	
3.6. SPT MIXTO: ANILLOS CUADRADOS MÁS PICAS VERTICALES EN EXTREMOS, EMPOTRADOS A UNA PROFUNDIDAD h	LOS 102	
3.6.1. Modelado del SPT ante descargas de frecuencia industrial	103	
3.6.1.1. Cálculo de la resistencia del SPT ante descargas de frecuencia industrial (R_0)	103	
3.6.1.2. Cálculo de la inductancia del electrodo	103	
3.6.1.3. Cálculo de la capacitancia del suelo	103	
3.6.1.4. Cálculo del gradiente de ionización del suelo	104	
3.6.1.5. Cálculo de la corriente de ionización del suelo	104	
3.6.1.6. Cálculo de la resistencia transitoria del SPT	104	
3.6.1.7. Cálculo del voltaje en la resistencia transitoria del SPT	105	
3.7. SPT PARA TORRES DE ACERO APLICADAS A LINEAS ARÉAS DE SUBTRANSMISIÓN Y/O TRANSMISIÓN106		
3.7.1. Modelado del SPT ante descargas de frecuencia industrial $(R_{0.eq})$	107	
3.7.2. Modelado para alta frecuencia de los conductores horizontales (contrapesos)	108	
3.7.3. Modelado para alta frecuencia del electrodo vertical	110	
CAPITULO IV: SIMULACIONES EN ATPDRAW DE LOS CASOS DE ESTUDIO). 113	
4.1. INTRODUCCIÓN	113	
4.1.1. Simulación de un SPT, formado por un electrodo vertical sin empotramiento	114	

4.1.2. Simulación de un SPT, formado por un electrodo vertical con empotramiento	. 118
4.1.3.Simulación de un SPT, formado por electrodos verticales en línea con empotramiento	o122
4.1.4. Simulación de un SPT, formado por electrodo horizontal a una profundidad (h)	. 126
4.1.5. Simulación de un SPT, formado por un anillo circular con empotramiento	. 130
4.1.6. Simulación de un SPT, formado por un anillo cuadrado con picas en los vén empotrado	rtices . 134
4.1.7. Simulación de un SPT mixto aplicado a torres metálicas	. 138
CAPITULO V: ANÁLISIS DE RESULTADOS	. 142
5.1. ELECTRODO VERTICAL SIN EMPOTRAMIENTO	. 142
5.2. ELECTRODO VERTICAL CON EMPOTRAMIENTO	. 144
5.3. DOS ELECTRODOS VERTICALES CONECTADOS EN LÍNEA EMPOTRAMIENTO	CON . 144
5.4. ELECTRODO HORIZONTAL CON EMPOTRAMIENTO	. 147
5.5. ANILLO CIRCULAR CON EMPOTRAMIENTO	. 147
5.6. ANILLO CUADRADO CON PICAS EN LOS VÉRTICES	. 150
5.7. SPT MIXTO APLICADO A TORRES METALICAS	. 150
5.8. RESUMEN DE LOS NIVELES DE SEGURIDAD DE LOS SPT SIMULADOS	. 153
CONCLUSIONES	. 154
RECOMENDACIONES	. 155
REFERENCIAS BIBLIOGRAFICAS	. 156
ANEXOS	. 158

INDICE DE FIGURAS

Figura 1	Elementos de un Sistema de Puesta a Tierra
Figura 2	Electrodo vertical tipo varilla de Puesta a Tierra, sin altura de empotramiento31
Figura 3	Modelo del voltaje de paso del cuerpo humano en ATPDraw33
Figura 4	Modelo del voltaje de toque del cuerpo humano en ATPDraw
Figura 5	Modelo de Electrodo vertical tipo varilla de Puesta a Tierra, sin altura de empotramiento realizada en ATPDraw
Figura 6	Electrodo vertical tipo varilla de esta a Tierra, con altura de empotramiento41
Figura 7	Dos electrodos verticales con altura de empotramiento45
Figura 8	Configuración en ATPDraw del SPT de electrodos verticales en línea con empotramiento
Figura 9	Electrodo horizontal sin altura de empotramiento50
Figura 10	Configuración en ATPDraw de varilla ubicada en horizontal53
Figura 11	Anillo circular de conductor de cobre desnudo54
Figura 12	Longitud critica para Caso 4
Figura 13	Anillo cuadrado más picas verticales en los extremos con empotramiento59
Figura 14	Anillo cuadrado más picas verticales en los extremos con empotramiento63
Figura 15	Toma de tierra para configuración de 4 varillas a tierra68
Figura 16	Toma de tierra para configuración de 4 varillas a tierra76
Figura 17	SPT formado por electrodos verticales en línea empotrados a una profundidad h84
Figura 18	SPT formado por un electrodo horizontal empotrado a una profundidad h90
Figura 19	SPT formado por un anillo de conductor de cobre desnudo empotrado a una profundidad h
Figura 20	SPT formado por un anillo de conductor de cobre desnudo empotrado a una profundidad h
Figura 21	SPT para torres de acero aplicadas a líneas aéreas de subtransmisión y/o transmisión106
Figura 22	Diagrama de simulación para descargas tipo rayo, en un SPT formado por un electrodo vertical sin empotramiento

Figura 23 Pulso de corriente tipo rayo. 8/20 µs	xv 116
Figura 24 Comportamiento de la resistencia transitoria del SPT	116
Figura 25 Máxima elevación de voltaje en el SPT.	116
Figura 26 Voltaje de contacto generado por el SPT.	116
Figura 27 Voltaje de paso generado por el SPT	116
Figura 28 Diagrama de simulación para descargas tipo rayo, en un SPT formado por un electrodo vertical con empotramiento.	119
Figura 29 Diagrama de simulación para descargas tipo rayo, en un SPT formado por un electrodo vertical con empotramiento.	120
Figura 30 Comportamiento de la resistencia transitoria del SPT	120
Figura 31 Máxima elevación de voltaje en el SPT.	120
Figura 32 Voltaje de contacto generado por el SPT.	120
Figura 33 Voltaje de paso generado por el SPT	120
Figura 34 Diagrama de simulación para descargas tipo rayo, en un SPT formado por dos electrodos verticales en línea con empotramiento	123
Figura 35 Pulso de corriente tipo rayo. 8/20 µs	124
Figura 37 Comportamiento de la resistencia transitoria del SPT	124
Figura 38 Voltaje de contacto generado por el SPT.	124
Figura 39 Voltaje de paso generado por el SPT.	124
Figura 40 Diagrama de simulación para descargas tipo rayo, en un SPT formado por un electrodo horizontal con empotramiento	127
Figura 41 Pulso de corriente tipo rayo. 8/20 µs	128
Figura 42 Comportamiento de la resistencia transitoria del SPT	128
Figura 43 Máxima elevación de voltaje en el SPT.	128
Figura 44 Voltaje de contacto generado por el SPT.	128
Figura 45 Voltaje de paso generado por el SPT	128
Figura 46 Diagrama de simulación para descargas tipo rayo, en un SPT formado por un anillo circular con empotramiento	131
Figura 47 Pulso de corriente tipo rayo. 8/20 µs	132

	xvi
Figura 48	Comportamiento de la resistencia transitoria del SPT
Figura 49	Máxima elevación de voltaje en el SPT
Figura 50	Voltaje de contacto generado por el SPT132
Figura 51	Voltaje de paso generado por el SPT
Figura 52	Diagrama de simulación para descargas tipo rayo, en un SPT formado por un anillo circular con empotramiento
Figura 53	Pulso de corriente tipo rayo. 8/20 µs
Figura 54	Comportamiento de la resistencia transitoria del SPT136
Figura 55	Máxima elevación de voltaje en el SPT
Figura 56	Voltaje de contacto generado por el SPT
Figura 57	Voltaje de paso generado por el SPT136
Figura 58	Diagrama de simulación para descargas tipo rayo, en un SPT formado por un anillo circular con empotramiento
Figura 59	Pulso de corriente tipo rayo. 8/20 µs
Figura 60	Comportamiento de la resistencia transitoria del SPT
Figura 61	Máxima elevación de voltaje en el SPT 140
Figura 62	Voltaje de contacto generado por el SPT140
Figura 63	Voltaje de paso generado por el SPT140

INDICE DE TABLAS

Tabla 1	Valores máximos de un Sistema de Puesta a Tierra
Tabla 2	Configuración de la resistencia transitoria del SPT, para uso en ATPDraw75
Tabla 3	Configuración de la resistencia transitoria del SPT, para uso en ATPDraw83
Tabla 4	Configuración de la resistencia transitoria del SPT, para uso en ATPDraw
Tabla 5	Configuración de la resistencia transitoria del SPT, para uso en ATPDraw97
Tabla 6	Configuración de la resistencia transitoria del SPT, para uso en ATPDraw101
Tabla 7	Configuración de la resistencia transitoria del SPT, para uso en ATPDraw105
Tabla 8	Configuración de la resistencia transitoria de los contrapesos 1 y 2 utilizados para el SPT de torres metálicas. Para uso en ATPDraw110
Tabla 9	Configuración de la resistencia transitoria del electrodo vertical para el SPT de torres metálicas. Para uso en ATPDraw
Tabla 10	Tabla general de simulaciones realizadas en el SPT117
Tabla 11	Tabla general de simulaciones realizadas en el SPT
Tabla 12	Tabla general de simulaciones realizadas en el SPT
Tabla 13	Tabla general de simulaciones realizadas en el SPT
Tabla 14	Tabla general de simulaciones realizadas en el SPT
Tabla 15	Tabla general de simulaciones realizadas en el SPT
Tabla 16	Tabla general de simulaciones realizadas en el SPT141
Tabla 17	Máximas corrientes de descargas tipo rayo

RESUMEN

Las líneas aéreas de transporte de electricidad están expuestas a descargas atmosféricas, en algunos casos protegidas mediante hilos de guarda, como es el caso de las líneas de subtransmisión (69 kV) y las líneas de transmisión (138 kV, 230 kV, 500 kV), mientras que las líneas de distribución (13.8 kV) en su gran mayoría no contemplan la necesidad de un hilo de guarda, debido a su poca altura con respecto al suelo (alrededor de los 10 metros), a excepción de aquellos lugares de cielo abierto (no existen construcciones, ni vegetación que superen los 10 metros de altura).

En el caso de las líneas que incorporan hilo de guarda, las corrientes de tipo atmosféricas ya sea por impacto directo o por inducción, deben descargarse a tierra, las mismas que generan un potencial sobre el sistema de puesta a tierra con los consecuentes voltajes de paso y contacto a los cuales quedan expuestos principalmente los seres humanos. En el caso de las líneas de distribución, el fenómeno atmosférico es reflejado mayoritariamente en inducción de voltajes por efectos de caídas de rayos cercanos a las líneas, produciendo en algunos casos flameo directo y en otros flameos inversos en los aisladores, con lo cual se produce igualmente una descarga de corriente a tierra.

En esta investigación presentamos el comportamiento de los sistemas de puesta a tierra más utilizados para estructuras de distribución (electrodo vertical con y sin empotramiento, electrodo horizontal, electrodos en línea). Para subtransmisión presentamos adicionalmente a los anteriores, arreglos tales como, anillo circular y anillo cuadrado con picas en los vértices. Finalmente, para estructuras tipos torres (subtransmisión y transmisión), arreglos tipo contrapesos o contra antenas.

El análisis de distintas simulaciones de sistemas de puesta a tierra para líneas eléctricas revela que algunos no cumplen con los estándares de resistencia recomendados por la norma IEEE, mientras que otros sí. Se destaca la importancia de considerar la resistencia eléctrica de los zapatos en la evaluación de la seguridad de las personas. Para garantizar la seguridad, los sistemas de puesta a tierra deben cumplir con niveles de voltaje de paso y toque, según la referencia de la VDE.

ABSTRACT

Overhead electricity transmission lines are exposed to atmospheric discharges, in some cases protected by guard wires, as is the case of sub-transmission lines (69 kV) and transmission lines (138 kV, 230 kV, 500 kV), while distribution lines (13.8 kV) for the most part do not require a guard wire, due to its low height with respect to the ground (around 10 meters), except for those places with open skies (there are no buildings, nor vegetation that exceeds 10 meters in height). In the case of lines that incorporate guard wire, atmospheric currents, either by direct impact or induction, must be discharged to earth, which generate a potential on the grounding system with the consequent step and contact voltages to which mainly human beings are exposed. In the case of distribution lines, the atmospheric phenomenon is mostly reflected in the induction of voltages due to the effects of lightning strikes near the lines, producing in some cases direct fluttering and in others inverse fluttering in the insulators, which also produces a discharge of current to earth.

In this research we present the behavior of the most commonly used grounding systems for distribution structures (vertical electrode with and without embedded, horizontal electrode, inline electrodes). For subtransmission, in addition to the previous ones, we present arrangements such as circular ring and square ring with spades at the vertices. Finally, for tower-type structures (subtransmission and transmission), counterweight or counter-antenna type arrays. Analysis of different simulations of grounding systems for power lines reveals that some do not meet the resistance standards recommended by the IEEE standard, while others do. The importance of considering the electrical resistance of shoes in the evaluation of people's safety is highlighted. To ensure safety, grounding systems must comply with pass-and-touch voltage levels, as referenced by the VDE.

- SPT: Sistema de Puesta a Tierra
- kV: Kilovoltios
- kA: Kiloamperios
- kVA: Kilovoltios amperios
- *C_{suelo}*: Capacitancia del suelo
- ρ_{suelo} : Resistividad del suelo
- R_0 : Resistencia del electrodo a frecuencia industrial
- \in_{suelo} : Permitividad del suelo
- \in_r : Permitividad relativa
- \in_0 : Permitividad del vacío
- I_r : Corriente de rayo
- *I_g*: Corriente de ionización del suelo
- L: Inductancia del electrodo.
- H: Henrios.
- L_{ong}: Longitud del electrodo.
- *ln*: logaritmo natural.
- V_x : Voltaje de paso en función de la distancia.
- *h*: Altura de empotramiento.
- *i*: iteración.
- *r*: radio del electrodo. (m)
- μ_0 : Permeabilidad magnética del vacío
- R_{Tr} : Resistencia transitoria de la impedancia del electrodo (Ω)
- $I_{0,r}$: Corriente pico de rayo (kA).

- VDE: Federación alemana de industrias electrotécnicas, electrónicas y de tecnologías de la información.
- E_0 : Gradiente de ionización del suelo (kV/m).
- *n*: Numero de electrodos en paralelo.
- *I*: Corriente de descarga, de frecuencia industrial. (A)
- V_0 : Voltaje generado en el SPT para x=0 (kV)
- Z: Impedancia del electrodo ante descargas de corriente de alta frecuencia (Ω)
- V_z : Voltaje en los terminales de la impedancia (kV)
- *x*: Eje para referencia del voltaje de paso.
- L_{C_2} : Longitud critica 2.
- *Long_T*: Longitud total del conductor
- V_{r1} : Diferencia de potencial máxima generado por el SPT.
- $V_{p.sop}$: Voltaje de paso soportable por una persona.
- $V_{p.gen}$: Voltaje de paso generado por el SPT.
- $V_{c.gen}$: Voltaje de contacto generado por el SPT.
- $V_{c.sop}$: Voltaje de contacto soportable por una persona.
- $V_{c.gen}$: Voltaje de contacto generado por el SPT.
- *V. Rtr*: Voltaje en la resistencia transitoria.
- m: Metros.
- F: Faradios.
- *x*: Eje para referencia del voltaje de paso.
- IEEE: Institute of Electrical and Electronics Engineers.

CAPITULO I

1.1. TITULO

Estudio del comportamiento ante descargas tipo rayo de los sistemas de puesta a tierra en líneas aéreas de electricidad, mediante el software ATP-DRAW.

1.2. INTRODUCCIÓN

Es necesario aterrizar el concepto de un sistema de puesta a tierra, compuesto por electrodos y conductores, se erige como un componente esencial en la protección contra eventos como las descargas atmosféricas. Su principal función es establecer un camino seguro para disipar la corriente eléctrica generada durante estos eventos, minimizando así los riesgos asociados con la acumulación de energía y garantizando la seguridad de las estructuras y equipos conectados a la red eléctrica.

La investigación en el campo del estudio del comportamiento ante descargas tipo rayo de los sistemas de puesta a tierra en líneas aéreas de electricidad es de suma importancia en la ingeniería eléctrica, donde la gestión eficiente de la energía y la salvaguarda de las instalaciones son imperativos cruciales. En este contexto, el software ATP-DRAW se presenta como una herramienta esencial para analizar y modelar las respuestas de estos sistemas frente a eventos de descargas atmosféricas, ofreciendo una perspectiva avanzada que contribuye significativamente al diseño y la optimización de sistemas eléctricos aéreos.

La variabilidad de la resistividad eléctrica del suelo constituye un factor crítico en el diseño de sistemas de puesta a tierra eficientes. La resistividad del suelo influye directamente en la capacidad del terreno para disipar la corriente generada por una descarga atmosférica, lo que impacta en la eficiencia y la efectividad del sistema. Por fin, la comprensión detallada de cómo diferentes tipos de suelo afectan el comportamiento de un sistema de puesta a tierra es esencial para desarrollar estrategias de diseño más precisas y adaptadas a las condiciones específicas de la ubicación geográfica.

En este contexto, la presente tesis tiene como objetivo explorar las complejidades asociadas con el comportamiento de los sistemas de puesta a tierra en líneas aéreas de electricidad frente a descargas atmosféricas, haciendo uso del software ATP-DRAW como una herramienta avanzada de simulación. Además, se profundizará en la influencia de los tipos de suelo en la capacidad de estos sistemas para mitigar los efectos adversos de las descargas atmosféricas, contribuyendo así al desarrollo de estrategias de diseño más precisas y seguras en el ámbito de la ingeniería eléctrica. Este enfoque integral busca aportar nuevos conocimientos que

beneficien la eficiencia y la seguridad de las infraestructuras eléctricas en el escenario actual y futuro.

1.3. PLANTEAMIENTO DEL PROBLEMA

Los sistemas aéreos de transporte de electricidad utilizan estructuras que deben ir aterrizadas para garantizar la seguridad de personas y animales, ya que estas están expuestas a la generación de sobrevoltajes de paso y de contacto, que ocurre en el momento de una descarga eléctrica, pudiendo ser de frecuencia industrial o de altas frecuencias.

El crecimiento constante de la demanda de energía eléctrica nos ha llevado al desarrollo de sistemas de transporte de electricidad cada vez más extensos y complejos, especialmente en el ámbito de las líneas aéreas. Estas infraestructuras, sin embargo, se enfrentan a amenazas naturales, siendo las descargas atmosféricas tipo rayo uno de los principales riesgos. La falta de comprensión detallada sobre el comportamiento de los sistemas de puesta a tierra en estas condiciones críticas puede generar consecuencias significativas en términos de seguridad, confiabilidad y mantenimiento de la red eléctrica.

La utilización del software ATP-DRAW para realizar simulaciones de las condiciones de descarga tipo rayo en sistemas de puesta a tierra añade una capa de complejidad técnica y, al mismo tiempo, proporciona una valiosa herramienta de análisis. Sin embargo, la aplicación precisa y efectiva de este software requiere una comprensión profunda de sus capacidades, limitaciones y, lo más crucial, una adaptación precisa a las condiciones específicas de las líneas aéreas de transporte de electricidad.

1.4. JUSTIFICACIÓN

La creciente actividad electro atmosférica relacionada con el calentamiento global ha generado la necesidad imperante de abordar de manera más precisa la selección y dimensionamiento de sistemas de puesta a tierra. La importancia de contar con un sistema confiable se magnifica, ya que debe ser capaz de gestionar descargas atmosféricas y mantener los niveles de voltaje correspondientes a paso y a toque dentro de límites seguros. La seguridad de seres humanos y animales se convierte en una prioridad crucial, ya que los niveles pico de voltaje generados por las descargas deben mantenerse por debajo de los umbrales máximos tolerables para evitar riesgos. Este desafío se ve agravado por el hecho de que el estudio en torno a sistemas de puesta a tierra adecuados para enfrentar descargas atmosféricas está en una fase incipiente de desarrollo. La escasez de investigaciones exhaustivas y la limitada disponibilidad de referencias confiables subrayan la urgencia de explorar y avanzar en este campo. La falta de

niveles recomendados de confiabilidad específicos para salvar la seguridad de personas y animales frente a descargas tipo rayo representa una laguna significativa en el conocimiento actual.

Es esencial intensificar los esfuerzos de investigación y desarrollo para establecer estándares más robustos y directrices claras en la implementación de sistemas de puesta a tierra. La justificación de esta necesidad se encuentra en la imprevisibilidad de la actividad electro atmosférica, que se ha intensificado con el cambio climático. Ante la creciente amenaza de eventos climáticos extremos, es imperativo contar con sistemas de puesta a tierra que ofrezcan una confiabilidad excepcional y aseguren la integridad de las personas y los animales.

1.5. DELIMITACIÓN DEL PROBLEMA

En el marco de la creciente demanda mundial de energía eléctrica y el consiguiente desarrollo de sistemas de transporte de electricidad cada vez más complejos, la seguridad y confiabilidad de estas infraestructuras se vuelven imperativas. Un aspecto crítico, pero a menudo subestimado de estas líneas aéreas de transporte de electricidad es su vulnerabilidad ante descargas atmosféricas tipo rayo. Las consecuencias potenciales de sobrevoltajes de paso y de contacto, generados durante estos eventos, plantean desafíos significativos para la seguridad y el mantenimiento de la red eléctrica. En este contexto, la presente investigación se enfoca en la comprensión detallada del comportamiento de los sistemas de puesta a tierra en condiciones críticas en frecuencia industrial (Baja Frecuencia) y en frecuencia tipo rayo (Alta Frecuencia), reconociendo la necesidad urgente de abordar esta brecha de conocimiento para garantizar la eficacia y seguridad de las infraestructuras eléctricas.

1.6. BENEFICIARIOS DE LA PROPUESTA

Dentro de los beneficiarios del trabajo investigativo planteado estarán:

Las empresas de mantenimiento y servicios técnicos tienen la oportunidad de mejorar sus prácticas y protocolos mediante la identificación y adopción de mejores enfoques basados en un conocimiento detallado del comportamiento de los sistemas de puesta a tierra en condiciones críticas. Esta comprensión refinada facilitaría el desarrollo de protocolos específicos, lo que resultaría en una mayor eficiencia operativa, reducción de costos y un fortalecimiento de la confiabilidad en las infraestructuras eléctricas. Además, estas empresas pueden ofrecer servicios específicas de las líneas aéreas de transporte de electricidad. Este enfoque no solo les permite abordar de manera efectiva los desafíos asociados a descargas atmosféricas, sino que también abre nuevas oportunidades comerciales al proporcionar soluciones tecnológicas adaptadas a las necesidades únicas de

este sector.

- La Universidad Politécnica Salesiana, sumara un proyecto de investigación más para su destacada trayectoria, así como el mérito por graduar excelentes profesionales.
- La participación de investigadores y académicos se traduce en una contribución significativa al conocimiento científico en seguridad eléctrica, abordando la complejidad del comportamiento de sistemas de puesta a tierra en condiciones críticas. Este aporte no solo enriquece la comprensión actual, sino que también establece una base sólida para investigaciones adicionales y el desarrollo de tecnologías más avanzadas en el campo. La información generada beneficia tanto a la academia como a la industria, impactando directamente la mejora de prácticas industriales y contribuyendo al avance continuo en la eficacia y confiabilidad de infraestructuras eléctricas ante desafíos como descargas atmosféricas y otros riesgos.

1.7. OBJETIVOS

1.7.1. Objetivo General

✓ Estudiar el comportamiento de los sistemas de puesta a tierra utilizados en estructuras para transporte aéreo de electricidad, mediante el software ATP-DRAW.

1.7.2. Objetivos Específicos

- Estudiar el comportamiento de los sistemas de puesta a tierra en sistemas de distribución (13.8kV), mediante el software ATP-DRAW para resguardar la seguridad de personas y animales.
- Estudiar el comportamiento de los sistemas de puesta a tierra para líneas aéreas de subtransmisión (69kV), mediante el software ATP-DRAW para resguardar la seguridad de personas y animales.
- Estudiar el comportamiento de los sistemas de puesta a tierra utilizados en líneas aéreas de transmisión (230kV), mediante el software ATP-DRAW para resguardar la seguridad de personas y animales.

1.7.3. Metodología y Medios

En primer lugar, se realizará una revisión bibliográfica exhaustiva para comprender los fundamentos teóricos y normativos asociados. Posteriormente, se procederá a la familiarización con el software ATP-DRAW, adquiriendo las habilidades necesarias para su manejo. La definición de los parámetros del sistema será un paso crucial, identificando características específicas de la línea de transmisión, estructuras de soporte y propiedades del suelo. La modelación en ATP-DRAW se realizará detalladamente, incluyendo la introducción de descargas tipo rayo en el modelo. Las simulaciones resultantes permitirán analizar el comportamiento del sistema, centrándose en aspectos como la corriente de descarga, voltajes críticos y distribución de corriente en el sistema de puesta a tierra. Se explorarán opciones de optimización del sistema de puesta a tierra, evaluando cómo los ajustes impactan en su eficacia. La validación de resultados se llevará a cabo mediante comparaciones con estudios previos y normativas. Finalmente, se documentarán y presentarán los resultados, asegurando una comunicación clara de los hallazgos obtenidos a lo largo de la investigación.

- 1. Procedimiento
 - 1.1.Investigar sobre los postes eléctricos empleados en el montaje de líneas, junto con las especificaciones técnicas para la conexión a tierra, sin importar la cantidad de varillas.
 - 1.2.Por medio de enfoque matemático se obtendrá la resistencia y por lo consecuente los casos para cada Sistema de Puesta a Tierra.
 - 1.3.Se realizará el análisis matemático donde se obtendrá las impedancias según la ubicación y configuración de cada varilla y el voltaje disipado en el S.P.T. en el software de EXCEL.
 - 1.4.Se familiarizará con los dispositivos de medición respectivos y se tomó las dimensiones de picas en este caso de tipo Copperweld.
 - 1.5.Se va a comprobar por medio del software ATP-DRAW donde se modificará cada característica de la pica que aplicaremos a dicha prueba por si sucede una descarga atmosférica de tipo rayo.
 - 1.6.Obtendremos fórmulas de IEEE que rijan el tema a centrarse en los Sistemas de Puestas a Tierra, que sean verificados y documentado en el software de EXCEL.
 - 1.7.Indagar sobre el impacto de una descarga atmosférica a tierra y como el SPT. reacciona ante dicho impacto.
 - 1.8.Recopilar toda la información que se obtuvo para realizar el estudio de cómo pueden llegar a ser afectadas por la descarga atmosférica de tipo rayo.

CAPITULO II

SISTEMAS DE PUESTA A TIERRA

2.1. INTRODUCCION

Un Sistema de Puesta a Tierra (SPT), llamado también en la literatura general como "conexión a tierra", es un conjunto de partes y elementos fundamentales en el diseño y operación de los sistemas eléctricos, los mismos que proporcionan un camino a tierra de baja resistencia y/o impedancia, ante corrientes de desequilibrio, de falla, de inducción, de impacto, etc..., de frecuencia industrial o de alta frecuencia, por ejemplo cortocircuitos a 60Hz, descargas directas o indirectas tipo rayo (alta frecuencia). [1]

La importancia de una conexión a tierra en todo sistema eléctrico es debido a las siguientes razones:

- Seguridad de personas y animales (voltajes de paso y toque).
- Protección de equipos (ante corrientes de falla).
- Prevenir riesgos de incendios (la corriente de falla fluye a tierra).
- Estabilidad del sistema eléctrico (referencia de voltaje-neutro-tierra).
- Disminución de interferencias electromagnéticas (mejora la calidad del servicio eléctrico).
- Cumplir con estándares establecidos (normas de seguridad y confiabilidad).

Las partes o elementos que forman un sistema de puesta a tierra, según se indica en la Figura 1, para el caso de la protección de un equipo eléctrico son:

- Equipo de protección automática (disyuntor, fusible, etc...)
- Bajante de puesta a tierra (BPT)
- Conexiones
- Electrodo
- Suelo o terreno
- Superficie exterior de contacto

Se debe considerar que todos estos elementos forman parte de cualquier sistema eléctrico. Los sistemas de puesta a tierra de acuerdo a su función se pueden clasificar en los siguientes:

- Puesta a tierra de servicio (SPT.servicio)
- Puesta a tierra de protección (SPT.protección)
- Puesta a tierra para equipos (SPT.equipos)

El Sistema Puesta a Tierra de servicio, es utilizado para referencias de voltaje, aplicable en alimentadores de suministro de electricidad, tales como secundarios en estrella de transformadores, alimentadores monofásicos trifilares, etc..., punto de conexión para el conductor denominado neutro.

El Sistema de Puesta a Tierra de protección, es utilizado para conectar toda estructura, elemento o superficie metálica, que forme parte de un equipo, maquina o sistema que opera o está expuesto a la electricidad, mediante un camino de baja resistencia a tierra, con la finalidad de descargar cualquier corriente de falla y evitar que una persona al entrar en contacto con cualquier elemento o superficie metálica de las instalaciones, sufra la descarga de la mencionada corriente de falla a través de su cuerpo, poniendo en riesgo su integridad física.[2], [3], [4], [5] El Sistema de Puesta a Tierra para equipos es un sistema aplicable para la protección de equipos electrónicos y computadoras, que están construidos en base a dispositivos semiconductores muy sensibles a sobrevoltajes generados por corrientes de falla, lo cual obliga a disponer de un sistema adecuado de puesta a tierra.[1], [6]

Los tres sistemas de puesta a tierra tienen funciones distintas, fijar el voltaje (SPT.servicio), protección de personas (SPT.protección) y protección para equipos electrónicos y computadoras (SPT.equipos), las conexiones eléctricas de cada uno de estos sistemas son independientes entre sí, sin embargo, se debe utilizar un electrodo común para la interconexión de los tres sistemas. [7]

Para el sistema de puesta a tierra frente a descargas atmosféricas en la actualidad no existe una respuesta única y definitiva si debe o no interconectarse con los otros tres sistemas de puesta a

tierra, para lo cual se recomiendan los siguientes criterios que se debe estudiar para encontrar la decisión si es o no posible interconectar el sistema pararrayo con los otros sistemas de puesta a tierra. Estas recomendaciones son:

- Normativas locales
- Clase de instalación (comerciales, industriales, simples, complejas)
- Niveles de interferencias (electromagnéticas, corrosión, baja resistividad)
- Propiedades del suelo (resistividad, geológicas)
- Diseño del sistema pararrayos (fabricantes)

En el caso particular de estructuras utilizadas para el transporte de electricidad, tal es el caso de postes y torres de transmisión, es necesario que estas cuenten con su sistema de puesta a tierra por algunas de las siguientes razones:

- Protección contra descargas atmosféricas (rayos).
- Seguridad física de las personas (personas en contacto con las estructuras)
- Disminución de interferencias electromagnéticas (afecta a equipos de comunicación y control).
- Protección de equipos (equipos conectados a líneas aéreas de electricidad).

De manera general podemos decir que el correcto dimensionamiento y la selección de un sistema de puesta a tierra aplicado a estructuras de transporte aéreo de electricidad es indispensable para:

- Seguridad de las personas (voltajes de paso y toque).
- Protección de equipos (evitar sobrevoltajes).
- Mantener la estabilidad del sistema eléctrico (mantiene un potencial de tierra común).

De acuerdo con referencias dadas por la norma IEEE se recomiendan los siguientes valores máximos de resistencia de un Sistema de Puesta a Tierra, según se indica en la Tabla 1.

Utilizada para	Valor máximo de resistencia del SPT (Ω)
Estructuras para líneas de transmisión.	10-25
Subestación de alta y extra alta tensión. (V≥115kV)	1
Subestación de media tensión de uso exterior en	10
poste.	
Subestaciones de media tensión de uso interior.	10
Protección contra rayos.	4
Neutro de acometida en baja tensión.	25
Descargas electrostáticas.	25
Equipos electrónicos sensibles.	5

Tabla 1. Valores máximos de un Sistema de Puesta a Tierra. [8]Fuente: Norma ANSI/IEEE 80, IEC 603644 442, NTC 2050, NTC 4552.Adaptación: Los autores.

2.2. FUNDAMENTACIÓN TEÓRICA

1. ELECTRODO VERTICAL SIN ALTURA DE EMPOTRAMIENTO.

1.1. Partes.

En la Figura 2 se presenta la aplicación de un Sistema de Puesta a Tierra, formado por las siguientes partes:

- Bajante de Puesta a Tierra: conductor de cobre (desnudo o aislado).
- Electrodo: Tipo varilla o pica (Copperweld).
- Corriente de descarga: frecuencia industrial y alta frecuencia.
- L: longitud del electrodo (metros).
- 2a: Diámetro del electrodo (metros).
- *ρ*: Resistividad del suelo.
- *x*: Eje para referencia del voltaje de paso.

Figura 2. Electrodo vertical tipo varilla de Puesta a Tierra, sin altura de empotramiento. Fuente: Los autores.

1.2. Comportamiento del electrodo antes descargas de baja frecuencia (industrial).

El comportamiento de un electrodo de puesta a tierra, ante descargas de corriente de frecuencia industrial, es de una resistencia definida por la siguiente ecuación:

$$R_0 = \frac{\rho}{2\pi * L} * \ln\left(\frac{a+L}{a}\right) \tag{1}$$

Donde:

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

 ρ : Resistividad del suelo (Ω^*m)

L: Longitud del electrodo (m)

a: Radio del electrodo (m)

ln: logaritmo natural

El voltaje de paso generado por la descarga de corriente de frecuencia industrial, en función y dirección del eje x, según la Figura 2, está dado por la siguiente ecuación:

$$v_x = \frac{\rho \cdot I}{2\pi L} \cdot ln\left(\frac{x+L}{x}\right) \tag{2}$$

Donde:

 v_x : Voltaje de paso en función de la distancia (V)

 ρ : Resistividad del suelo (Ω^*m)

L: Longitud del electrodo (m)

x: Eje de referencia con respecto al electrodo (m)

I: Corriente de descarga, de frecuencia industrial (A)

ln: logaritmo natural

La amplitud máxima del voltaje de paso resulta cuando x = 0, lo cual genera un error de cálculo en la ecuación presentada para el voltaje v_x , situación que se resuelve utilizando como distancia mínima $x = radio \ del \ electrodo$, por lo tanto, el voltaje de paso para una distancia con respecto al eje del electrodo de x = r, es:

$$\boldsymbol{v}_{x=r} = \boldsymbol{v}_r = \frac{\boldsymbol{\rho} \cdot \boldsymbol{I}}{2\pi L} \cdot ln\left(\frac{r+L}{r}\right) \tag{3}$$

Considerando:

r: radio del electrodo (m)

 $v_{x=r}$: Voltaje de paso para una distancia igual al radio del electrodo (V)

- ρ: Resistividad del suelo (Ω*m)
- L: Longitud del electrodo (m)

x: Eje de referencia con respecto al electrodo (m)

I: Corriente de descarga, de frecuencia industrial (A)

ln: logaritmo natural

Por lo tanto, v_r es la amplitud de voltaje máximo generado en el electrodo por efecto de una descarga de corriente de frecuencia industrial.

El mismo que resulta exactamente igual a la relación de, $R_0 * I$, de tal manera que se puede establecer la siguiente relación general para v_r :

$$v_{x=r} = v_r = \frac{\rho \cdot I}{2\pi L} \cdot \ln\left(\frac{r+L}{r}\right) = R_0 * I$$
⁽⁴⁾

Para evaluar si el SPT es seguro ante descargas de corriente a frecuencia industrial, utilizamos el voltaje v_r como fuente de alimentación al correspondiente modelo dado para una persona ante el voltaje de paso y voltaje de toque o contacto.

1.3. Evaluación del voltaje de paso ante descargas de frecuencia industrial.

De acuerdo con la referencia dada por:

VDE: Federación alemana de industrias electrotécnicas, electrónicas y de tecnologías de la información.

El cuerpo humano se puede modelar para evaluar el voltaje de paso mediante tres resistencias en serie, de acuerdo con la Figura 3. [9]

Figura 3. Modelo del voltaje de paso del cuerpo humano en ATPDraw. Fuente: Los autores.

Donde:

 R_{cuerpo} : Resistencia del cuerpo humano = 1000 Ω

 R_{z1} : Resistencia del zapato 1 [Ω]

 R_{z2} : Resistencia del zapato 2 [Ω]

 R_{sf} : Resistencia de la superficie [Ω]

 V_{r1} : Amplitud máxima de voltaje generado en el electrodo (x=r)

V : Voltímetro: mide el voltaje de paso

En el modelo del voltaje de paso se genera un circuito de resistencias que están conectadas en serie por lo cual su resistencia equivalente se aplica mediante la siguiente ecuación:

$$R_{equiv} = R_{zap1} + R_{zap2} + R_{sf} + R_{sf} + R_{cuerpo}$$
⁽³⁾

 R_{equiv} : Resistencia equivalente R_{cuerpo} : Resistencia del cuerpo humano R_{zap1} : Resistencia del zapato 1 R_{zap2} : Resistencia del zapato 2

El voltaje de paso generado por el sistema de puesta a tierra será:

$$V_{p.gener} = R_{cuerpo} * \left[\frac{V_{r1}}{R_{equiv}} \right]$$
⁽⁶⁾

V_{p.gener}: Voltaje de paso generado por el SPT

Rcuerpo: Resistencia del cuerpo humano

 V_{r1} : Amplitud máxima de voltaje generado en el electrodo (x = r)

Requiv: Resistencia equivalente

Una referencia de la resistencia eléctrica presentada por distintos tipos de zapatos es:

Zapato de goma: $R_z < 40k\Omega$

Zapato conductor: $100k\Omega < R_z < 1M\Omega$

Zapato dieléctrico: $R_z > 1M\Omega$

En condiciones normales se entiende que una persona utiliza dos zapatos del mismo tipo $(R_{z1} = R_{z2}).$

Se dice que el SPT es seguro, ante voltaje de paso si se cumple la siguiente condición: Si la lectura del voltímetro (V) es menor que el V_{paso} (IEEE 80-2000). [10]

Donde:

V = Es el voltaje de paso máximo generado en una persona (1000 Ω) que utilizando un determinado tipo de zapato (R_{z1}, R_{z2}), cuando sucede una descarga de corriente de frecuencia industrial (I).

 V_{paso} (*IEEE 80-2000*) = Voltaje de paso de frecuencia industrial máximo soportable por una persona de acuerdo con el estándar IEEE. [10]

El estándar IEEE 80-2000 [10], recomienda las siguientes ecuaciones para determinar los voltajes máximos soportables para una persona, con respecto a voltaje de paso y voltaje de toque o contacto, las mismas que son:

$$V_{paso} = \frac{k}{\sqrt{t_f}} \left(1000 + 6 * C_s * \rho_{superf} \right) \tag{7}$$

Donde:

 V_{paso} = Voltaje de paso máximo soportable por una persona (V)

k=0.157... para persona de 70kg

k=0.116... para persona de 50kg

 t_f = Tiempo de despeje de la falla (seg)

 C_s = Coeficiente de disminución superficial

 ρ_{superf} = Resistividad de la superficie (Ω^* m)

$$V_{toque} = \frac{k}{\sqrt{t_f}} (1000 + 1.5 * C_s * \rho_{superf})$$
⁽⁸⁾

Donde:

 V_{toque} =Voltaje de toque o contacto máximo soportable por una persona (V)

k=0.157... para persona de 70kg

k=0.116... para persona de 50kg

 t_f = Tiempo de despeje de la falla (seg)

 C_s = Coeficiente de disminución superficial

 ρ_{superf} = Resistividad de la superficie (Ω^* m)

$$C_{s} = 1 - \left[\frac{(0.09) \left(1 - \frac{\rho_{suelo}}{\rho_{superf}} \right)}{(2h_{superf} + 0.09)} \right]$$
(9)

 C_s = Coeficiente de disminución superficial

 ρ_{suelo} = Resistividad del suelo (Ω^* m)

 h_{superf} = Altura de la capa superficial (m)

 ρ_{superf} = Resistividad de la superficie (Ω^* m)

Voltaje máximo soportable = Es el voltaje de paso o de contacto máximo que una persona puede soportar antes de entrar en fibrilación ventricular (estado de shock).

1.4. Evaluación del voltaje de toque o contacto ante descargas de frecuencia industrial.

De acuerdo con la referencia dada por:

VDE: Federación alemana de industrias electrotécnicas, electrónicas y de tecnologías de la información.

El cuerpo humano se puede modelar para evaluar el voltaje de toque mediante tres resistencias, de acuerdo con la Figura. 4. [9]

Figura 4. Modelo del voltaje de toque del cuerpo humano en ATPDraw. Fuente: Los autores.
R_{cuerpo} : Resistencia del cuerpo humano

 R_{zap1} : Resistencia del zapato 1

 R_{zap2} : Resistencia del zapato 2

 V_{r1} : Amplitud máxima de voltaje generado en el electrodo (x=r)

V: Voltímetro: mide el voltaje de toque o contacto

 R_{sf} : Resistencia de la superficie

En el modelo del voltaje de toque se genera un circuito de resistencias que están conectadas en paralelo y serie por lo cual su resistencia equivalente se aplica mediante la siguiente ecuación:

$$R_{equiv} = R_{cuerpo} + \frac{\left[\left(R_{zap1} + R_{sf} \right) * \left(R_{zap2} + R_{sf} \right) \right]}{\left(R_{zap1} + R_{sf} \right) + \left(R_{zap2} + R_{sf} \right)}$$
(10)

 R_{equiv} : Resistencia equivalente

 R_{cuerpo} : Resistencia del cuerpo humano

 R_{zap1} : Resistencia del zapato 1

 R_{zap2} : Resistencia del zapato 2

El voltaje de toque o contacto generado por el sistema de puesta a tierra será:

$$V_{c.gener} = R_{cuerpo} * \left[\frac{V_{r1}}{R_{equiv}} \right]$$
(11)

Donde:

V_{c.gener}: Voltaje de contacto generado por el SPT

 R_{cuerpo} : Resistencia del cuerpo humano

 R_{equiv} : Resistencia equivalente

 V_{r1} : Amplitud máxima de voltaje generado en el electrodo

Se dice que el SPT es seguro, ante voltajes de toque si se cumple la siguiente condición: Si la lectura del voltímetro (V) es menor que el V_{toque} (IEEE 80-2000). [10]

Conclusión:

Un SPT es seguro si cumple las dos condiciones anotadas:

- 1. $V_{paso \ generado} < V_{toque}$ (IEEE 80-2000)[10]
- 2. $V_{toque \ generado} < V_{toque} \ (IEEE \ 80-2000)[10]$

El $V_{paso \ generado}$ y el $V_{toque \ generado}$ es el voltaje que aparece en los terminales de R_c (modelo del cuerpo humano = 1000 Ω), de acuerdo con las Figura 3 y Figura 4, corresponde a la lectura del voltímetro, dicho de otra manera, es el voltaje que experimenta o recibe una persona, que debe ser comparado con el voltaje máximo soportable de acuerdo con las recomendaciones dadas por IEEE 80-2000, para evaluar finalmente si el SPT es seguro. [10]

Para el cálculo de $V_{r_{max}}$ es indispensable contar con la corriente de falla máxima esperada en el punto de la instalación, esta corriente es determinada mediante el correspondiente estudio del cortocircuito en el punto de instalación del electrodo de puesta a tierra.[11]

1.5. Comportamiento del electrodo antes descargas de alta frecuencia (tipo rayo).

Todo electrodo de puesta a tierra ante descargas de corriente de alta frecuencia (tipo rayo, alrededor de 3MHz), presentan un comportamiento definido por una impedancia formada por los siguientes elementos:

- Inductancia del electrodo
- Capacitancia del suelo
- Resistencia transitoria del electrodo

En la Figura 5, se indica el arreglo de la impedancia que presenta el electrodo ante una descarga de corriente de alta frecuencia.

Fuente: Los autores.

La inductancia que presenta el electrodo se determina mediante la siguiente ecuación:

$$L = \left(\frac{\mu_0 \cdot L_{ong}}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$
⁽¹²⁾

Donde:

L: Inductancia del electrodo. (H)

 μ_0 : Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (H/m)

Long: Longitud del electrodo. (m)

r: radio del electrodo. (m)

ln: logaritmo natural.

La capacitancia que presenta el suelo ante descargas de corriente de alta frecuencia se define mediante la siguiente ecuación:

$$C_{suelo} = \frac{\epsilon_{suelo} * \rho_{suelo}}{R_0}$$
(12)

Donde:

C_{suelo}: Capacitancia del suelo (F)

 ρ_{suelo} : Resistividad del suelo (Ω^* m)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

 \in_{suelo} : Permitividad del suelo (F/m)

La permitividad del suelo está definida mediante la siguiente ecuación:

$$\in_{suelo} = \in_r * \in_0$$

Donde:

 \in_{suelo} : Permitividad del suelo (F/m)

 \in_r : Permitividad relativa (depende del tipo de suelo)

 ϵ_0 : Permitividad del vacío = 8.85 * 10⁻¹² (F/m)

La resistencia transitoria de la impedancia presentada por el electrodo ante descargas de corriente de alta frecuencia es función de los siguientes parámetros:

- R_0 : Resistencia del electrodo a frecuencia industrial
- I_r : Corriente de rayo

(12)

• *I_g*: Corriente de ionización del suelo

Parámetros que definen la resistencia transitoria de la impedancia mediante la siguiente ecuación:

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0.r}}{I_g}\right)}}$$
(13)

Donde:

 R_{Tr} : Resistencia transitoria de la impedancia del electrodo (Ω)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

 $I_{0.r}$: Corriente pico de rayo (kA)

 I_q : Corriente de ionización del suelo (kA)

La corriente de ionización del suelo es la amplitud de corriente que convierte al suelo en un conductor, dicha corriente se determina mediante la siguiente ecuación:

$$I_g = \frac{G_s * \rho_{suelo}}{2\pi * R_0^2} \tag{14}$$

Donde:

- I_g : Corriente de ionización del suelo (kA)
- G_s: Gradiente de ionización del suelo (kV/m)
- ρ_{suelo} : Resistividad del suelo (Ω^* m)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

La gradiente de ionización del suelo se determina mediante la siguiente ecuación:

$$G_s = 241(\rho_{suelo}^{0.215}) \tag{15}$$

El voltaje que aparece en los terminales de la Resistencia Transitoria en función de la corriente de rayo es:

$$VRtr = Rtr * I0.r$$
⁽¹⁶⁾

VR_{Tr}: Voltaje en la resistencia transitoria del SPT (kV)

- R_{Tr} : Resistencia transitoria del SPT (Ω)
- I_{0r} : Valor pico de corriente tipo rayo (kA)

2. ELECTRODO VERTICAL CON ALTURA DE EMPOTRAMIENTO.

2.1. Partes.

En la Figura 6 se presenta la aplicación de un Sistema de Puesta a Tierra, formado por las siguientes partes:

- Bajante de Puesta a Tierra: conductor de cobre (desnudo o aislado).
- Electrodo: Tipo varilla o pica (Copperweld).
- Corriente de descarga: frecuencia industrial y alta frecuencia.
- L: longitud del electrodo (m).
- 2a: Diámetro del electrodo (m).
- ρ : Resistividad del suelo.
- *x*: Eje para referencia del voltaje de paso.
- *h*: Altura de empotramiento (m).

Figura 6. Electrodo vertical tipo varilla de Puesta a Tierra, con altura de empotramiento. Fuente: Los autores.

2.2. Comportamiento del electrodo antes descargas de baja frecuencia (industrial).

El comportamiento de un electrodo de puesta a tierra, ante descargas de corriente de frecuencia industrial, es de una resistencia definida por la siguiente ecuación:

$$R_0 = \frac{\rho}{2\pi L} ln \left[\frac{h(2a+L)}{a(2h+L)} \right] + \frac{\rho}{2\pi (L+h)} ln \left[\frac{2h+L}{h} \right]$$
(18)

Donde:

 R_0 : Resistencia del electrodo a frecuencia industrial. (Ω)

- ρ : Resistividad del suelo. (Ω^*m)
- L: Longitud del electrodo. (m)

a: Radio del electrodo. (m)

ln: logaritmo natural.

h: Altura de empotramiento (m).

El voltaje de paso generado por la descarga de corriente de frecuencia industrial, en función y dirección del eje x, según la Figura 6, está dado por la siguiente ecuación:

$$v_{x} = \frac{\rho \cdot I}{2\pi (L+h)} ln \left[\frac{\sqrt{x^{2} + h^{2}} + L + h}{\sqrt{x^{2} + h^{2}}} \right]$$
(19)

Donde:

 V_x : Voltaje de paso en función de la distancia. (V)

ρ: Resistividad del suelo. (Ω*m)

L: Longitud del electrodo. (m)

x: Eje de referencia con respecto al electrodo. (m)

I: Corriente de descarga, de frecuencia industrial. (A)

ln: logaritmo natural.

h: Altura de empotramiento (m).

2.3. Comportamiento del electrodo antes descargas de alta frecuencia (tipo rayo).

El comportamiento del electrodo ante descargas de corriente de alta frecuencia es similar al comportamiento del electrodo vertical sin empotramiento, más el efecto inductivo del tramo de la bajante de puesta a tierra que se encuentra empotrada en el suelo.

La ecuación para determinar el efecto inductivo de la bajante de puesta a tierra es:

$$L = \left(\frac{\mu_0 \cdot L_{ong}}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$
⁽²⁰⁾

L: Inductancia del electrodo. (H) μ_0 : Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (T*m/A) L_{ong} : Longitud del electrodo. (m) r: radio del electrodo. (m) ln: logaritmo natural.

La capacitancia que presenta el suelo ante descargas de corriente de alta frecuencia se define mediante la siguiente ecuación:

$$C_{suelo} = \frac{\epsilon_{suelo} * \rho_{suelo}}{R_0}$$
⁽²¹⁾

Donde:

Csuelo: Capacitancia del suelo (F)

 ρ_{suelo} : Resistividad del suelo (Ω^*m)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

 \in_{suelo} : Permitividad del suelo (F/m)

La permitividad del suelo está definida mediante la siguiente ecuación:

$$\in_{suelo} = \in_r * \in_0$$

Donde:

 \in_{suelo} : Permitividad del suelo (F/m)

 \in_r : Permitividad relativa (depende del tipo de suelo)

 ϵ_0 : Permitividad del vacío = 8.85 * 10⁻¹² (F/m)

La resistencia transitoria de la impedancia presentada por el electrodo ante descargas de corriente de alta frecuencia es función de los siguientes parámetros:

- R_0 : Resistencia del electrodo a frecuencia industrial
- I_r : Corriente de rayo
- *I_g*: Corriente de ionización del suelo

Parámetros que definen la resistencia transitoria de la impedancia mediante la siguiente ecuación:

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0.r}}{I_g}\right)}}$$
(23)

Donde:

 R_{Tr} : Resistencia transitoria de la impedancia del electrodo (Ω)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

 $I_{0,r}$: Corriente pico de rayo (kA)

I_g: Corriente de ionización del suelo (kA)

La corriente de ionización del suelo es la amplitud de corriente que convierte al suelo en un conductor, dicha corriente se determina mediante la siguiente ecuación:

$$I_g = \frac{E_0 * \rho_{suelo}}{2\pi * R_0^2} \tag{24}$$

Donde:

 I_q : Corriente de ionización del suelo (kA)

 E_0 : Gradiente de ionización del suelo (kV/m)

 ρ_{suelo} : Resistividad del suelo (Ω^*m)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

La gradiente de ionización del suelo se determina mediante la siguiente ecuación:

$$G_s = 241(\rho_{suelo}^{0.215}) \tag{25}$$

El voltaje que aparece en los terminales de la resistencia transitoria del SPT ante descargas de corriente de alta frecuencia, el mismo que se determina a través de la siguiente ecuación:

$$VRtr = Rtr * I0.r$$
⁽²⁶⁾

Donde:

 VR_{Tr} : Voltaje en la resistencia transitoria del SPT (kV)

 R_{Tr} : Resistencia transitoria del SPT (Ω)

 I_{0r} : Valor pico de corriente tipo rayo (kA)

3. DOS ELECTRODOS VERTICALES CON ALTURA DE EMPOTRAMIENTO.

3.1.Partes:

En la Figura 7 se presenta la aplicación de un Sistema de Puesta a Tierra, formado por las siguientes partes:

- Bajante de Puesta a Tierra: conductor de cobre (desnudo o aislado).
- Electrodos: Tipo varilla o pica (Copperweld).
- Corriente de descarga: frecuencia industrial y alta frecuencia.
- L: longitud del electrodo (m).
- 2a: Diámetro del electrodo (m).
- ρ : Resistividad del suelo.
- $x_{1,2}$: Eje para referencia del voltaje de paso.
- *h*: Altura de empotramiento (m).
- s: Distancia entre electrodos (m).

Figura 7. Dos electrodos verticales con altura de empotramiento. Fuente: Los autores.

3.2. Comportamiento del electrodo antes descargas de baja frecuencia (industrial).

El comportamiento del sistema de puesta a tierra formado por dos electrodos, ante descargas de corriente de frecuencia industrial, es de una resistencia definida por la siguiente ecuación:

$$R_{0} = \frac{\rho}{2\pi * L * n} ln \left[\frac{h(2a+L)}{a(2h+L)} \right] + \frac{\rho}{2\pi * (L+h) * n} * \left[ln \left(\frac{2h+L}{h} \right) + \sum_{i=1}^{n-1} ln \left(\frac{s_{i}+h+L}{s_{i}} \right) \right]$$
(27)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

 ρ : Resistividad del suelo (Ω^*m)

L: Longitud del electrodo (m)

a: Radio del electrodo (m)

ln: logaritmo natural.

h: Altura de empotramiento (m)

s: Distancia entre electrodos (m)

n: Numero de electrodos en paralelo.

i: iteración.

La ecuación que corresponde a la distancia entre los electrodos es la siguiente:

$$s_{min} = (1.5) * L$$
 (28)

Donde:

- s: Distancia entre electrodos (m).
- L: Longitud del electrodo (m)

El voltaje de paso generado por la descarga de corriente de frecuencia industrial, en función y dirección del eje x, según la Figura 7, está dado por la siguiente ecuación:

$$\nu_{x} = \frac{\rho \cdot I}{2\pi * n * (L+h)} \sum_{i=1}^{n} ln \left(\frac{\sqrt{x_{i}^{2} + h^{2}} + L + h}{\sqrt{x_{i}^{2} + h^{2}}} \right)$$
(29)

Donde:

- V_x : Voltaje de paso en función de la distancia. (V)
- ρ: Resistividad del suelo (Ω^*m)
- L: Longitud del electrodo (m)
- n: Numero de electrodos en paralelo.
- *x*: Eje de referencia con respecto al electrodo (m)
- I: Corriente de descarga, de frecuencia industrial (A)

ln: logaritmo natural

- *h*: Altura de empotramiento (m)
- i: iteración

3.3. Comportamiento del electrodo antes descargas de alta frecuencia (tipo rayo).

El comportamiento del sistema de puesta a tierra viene dado por el modelado para descargas de alta frecuencia de cada uno de los electrodos, más el efecto inductivo de los tramos correspondientes a la bajante de puesta a tierra, según se indica en la Figura 8.

Figura 8. Configuración en ATPDraw del SPT de electrodos verticales en línea con empotramiento. Fuente: Los autores.

El comportamiento del electrodo ante descargas de corriente de alta frecuencia es similar al comportamiento de los casos anteriores, más el efecto inductivo del tramo de la bajante de puesta a tierra que se encuentra empotrada en el suelo.

La ecuación para determinar el efecto inductivo de la bajante de puesta a tierra es:

$$L = \left(\frac{\mu_0 \cdot L_{ong}}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$
⁽³⁰⁾

Donde:

L: Inductancia del electrodo (H)

 μ_0 : Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (T*m/A)

Long: Longitud del electrodo (m)

r: radio del electrodo (m)

ln: logaritmo natural

La capacitancia que presenta el suelo ante descargas de corriente de alta frecuencia se define mediante la siguiente ecuación:

$$C_{suelo} = \frac{\epsilon_{suelo} * \rho_{suelo}}{R_0}$$
(31)

Donde:

 C_{suelo} : Capacitancia del suelo (F) ρ_{suelo} : Resistividad del suelo (Ω^* m) R_0 : Resistencia del electrodo a frecuencia industrial (Ω) \in_{suelo} : Permitividad del suelo (F/m)

La permitividad del suelo está definida mediante la siguiente ecuación:

$$\in_{suelo} = \in_r * \in_0$$

Donde:

 \in_{suelo} : Permitividad del suelo (F/m)

 \in_r : Permitividad relativa (depende del tipo de suelo)

 \in_0 : Permitividad del vacío = 8.85 * 10⁻¹² (F/m)

La resistencia transitoria de la impedancia presentada por el electrodo ante descargas de corriente de alta frecuencia es función de los siguientes parámetros:

- *R*₀: Resistencia del electrodo a frecuencia industrial
- I_r : Corriente de rayo
- *I_a*: Corriente de ionización del suelo

Parámetros que definen la resistencia transitoria de la impedancia mediante la siguiente ecuación:

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0,r}}{I_g}\right)}} \tag{33}$$

Donde:

- R_{Tr} : Resistencia transitoria de la impedancia del electrodo (Ω)
- R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

(22)

 $I_{0.r}$: Corriente pico de rayo (kA)

 I_q : Corriente de ionización del suelo (kA)

La corriente de ionización del suelo es la amplitud de corriente que convierte al suelo en un conductor, dicha corriente se determina mediante la siguiente ecuación:

$$I_g = \frac{E_0 * \rho_{suelo}}{2\pi * R_0^2} \tag{34}$$

Donde:

 I_g : Corriente de ionización del suelo (kA)

 E_0 : Gradiente de ionización del suelo (kV/m)

 ρ_{suelo} : Resistividad del suelo (Ω^* m)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

La gradiente de ionización del suelo se determina mediante la siguiente ecuación:

$$G_s = 241(\rho_{suelo}^{0.215}) \tag{35}$$

El voltaje que aparece en los terminales de la impedancia generada por el electrodo ante descargas de corriente de alta frecuencia, el mismo que se determina a través de la siguiente ecuación:

$$V_0 = V_z = Z * I_r \tag{36}$$

Donde:

 V_0 : Voltaje generado en el SPT para x=0 (kV)

- Z: Impedancia del electrodo ante descargas de corriente de alta frecuencia (Ω)
- V_z : Voltaje en los terminales de la impedancia (kV)
- I_r : Corriente de descarga tipo rayo (kA)

4. ELECTRODO HORIZONTAL CON ALTURA DE EMPOTRAMIENTO.

4.1.Partes:

En la Figura 9 se presenta la aplicación de un Sistema de Puesta a Tierra, formado por las siguientes partes:

- Bajante de Puesta a Tierra: conductor de cobre (desnudo o aislado).
- Electrodo: Tipo varilla o pica (Copperweld).
- Corriente de descarga: frecuencia industrial y alta frecuencia.
- L: longitud del electrodo (m).
- 2a: Diámetro del electrodo (m).
- ρ : Resistividad del suelo.
- *x*: Eje para referencia del voltaje de paso.
- *h*: Altura de empotramiento (m).

Figura 9. Electrodo horizontal sin altura de empotramiento. Fuente: Los autores.

4.2. Comportamiento del electrodo antes descargas de baja frecuencia (industrial).

El comportamiento de un electrodo de puesta a tierra, ante descargas de corriente de frecuencia industrial, es de una resistencia definida por la siguiente ecuación:

$$R_0 = \frac{\rho}{2\pi L} ln \left[\frac{h(2a+L)}{a(2h+L)} \right] + \frac{\rho}{\pi * (L+2h)} ln \left[\frac{4h+L}{2h} \right]$$
⁽³⁷⁾

Donde:

 R_0 = Resistencia del electrodo a frecuencia industrial. (Ω)

 ρ = Resistividad del suelo. (Ω *m)

- L= Longitud del electrodo. (m)
- a =Radio del electrodo. (m)
- ln = logaritmo natural.
- h = Altura de empotramiento (m).

i = iteración.

El voltaje de paso generado por la descarga de corriente de frecuencia industrial, en función y dirección del eje x, según la Figura 9, está dado por la siguiente ecuación:

$$V_x = \frac{\rho \cdot I}{\pi (L+h)} * \ln \left[\frac{2\sqrt{x^2 + h^2} + L + 2 * h}{2 * \sqrt{x^2 + h^2}} \right]$$
(38)

Donde:

 V_x = Voltaje de paso en función de la distancia. (V)

- ρ = Resistividad del suelo. (Ω *m)
- L= Longitud del electrodo. (m)

x = Eje de referencia con respecto al electrodo. (m)

I =Corriente de descarga, de frecuencia industrial. (A)

ln = logaritmo natural.

h: Altura de empotramiento (m).

4.3. Comportamiento del electrodo antes descargas de alta frecuencia (tipo rayo).

$$L = \left(\frac{\mu_0 * L_{ong}}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$
⁽³⁹⁾

Donde:

L: Inductancia del electrodo. (H)

 μ_0 : Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (T*m/A)

Long: Longitud del electrodo. (m)

r: radio del electrodo. (m)

ln: logaritmo natural.

La capacitancia que presenta el suelo ante descargas de corriente de alta frecuencia se define mediante la siguiente ecuación:

$$C_{suelo} = \frac{\epsilon_{suelo} * \rho_{suelo}}{R_0}$$
⁵²
⁽⁴⁰⁾

 C_{suelo} : Capacitancia del suelo (F) ρ_{suelo} : Resistividad del suelo (Ω^* m) R_0 : Resistencia del electrodo a frecuencia industrial (Ω) \in_{suelo} : Permitividad del suelo (F/m)

La permitividad del suelo está definida mediante la siguiente ecuación:

$$\in_{suelo} = \in_r * \in_0 \tag{41}$$

Donde:

 \in_{suelo} : Permitividad del suelo (F/m)

 \in_r : Permitividad relativa (depende del tipo de suelo)

 ϵ_0 : Permitividad del vacío = 8.85 * 10⁻¹² (F/m)

La resistencia transitoria de la impedancia presentada por el electrodo ante descargas de corriente de alta frecuencia es función de los siguientes parámetros:

- R_0 : Resistencia del electrodo a frecuencia industrial
- I_r : Corriente de rayo
- I_g: Corriente de ionización del suelo

Parámetros que definen la resistencia transitoria de la impedancia mediante la siguiente ecuación:

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0.r}}{I_g}\right)}}$$
⁽⁴²⁾

Donde:

- R_{Tr} : Resistencia transitoria de la impedancia del electrodo (Ω)
- R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

 $I_{0,r}$: Corriente pico de rayo (kA)

I_g: Corriente de ionización del suelo (kA)

La corriente de ionización del suelo es la amplitud de corriente que convierte al suelo en un conductor, dicha corriente se determina mediante la siguiente ecuación:

$$I_g = \frac{E_0 * \rho_{suelo}}{2\pi * R_0^2} \tag{43}$$

Donde:

 I_q : Corriente de ionización del suelo (kA)

 E_0 : Gradiente de ionización del suelo (kV/m)

 ρ_{suelo} : Resistividad del suelo (Ω^*m)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

La gradiente de ionización del suelo se determina mediante la siguiente ecuación:

$$G_s = 241(\rho_{suelo}^{0.215}) \tag{44}$$

El voltaje que aparece en los terminales de la resistencia transitoria del SPT ante descargas de corriente de alta frecuencia, el mismo que se determina a través de la siguiente ecuación:

$$VRtr = Rtr * I0.r \tag{45}$$

Donde:

 VR_{Tr} : Voltaje en la resistencia transitoria del SPT (kV)

 R_{Tr} : Resistencia transitoria del SPT (Ω)

 I_{0_r} : Valor pico de corriente tipo rayo (kA)

Figura 10. Configuración en ATPDraw de varilla ubicada en horizontal. Fuente: Los autores.

5. CONFIGURACION MIXTA DE ANILLO CIRCULAR DE CONDUCTOR DE COBRE DESNUDO.

5.1. Partes:

En la Figura 11 se presenta la aplicación de un Sistema de Puesta a Tierra, formado por las siguientes partes:

- Bajante de Puesta a Tierra: conductor de cobre (desnudo o aislado).
- Electrodo: Tipo varilla o pica (Copperweld).
- Corriente de descarga: frecuencia industrial y alta frecuencia.
- D: longitud del electrodo (m).
- 2a: Diámetro del electrodo (m).
- ρ : Resistividad del suelo.
- *x*: Eje para referencia del voltaje de paso.
- *h*: Altura de empotramiento (m).

Figura 11. Anillo circular de conductor de cobre desnudo. Fuente: Los autores.

La longitud crítica se utiliza comúnmente en el contexto de la resistencia eléctrica de un electrodo en función de su longitud.

Una mayor longitud crítica significa que el electrodo puede penetrar más en la tierra y aun así mantener una resistencia baja. Esto es especialmente importante en sistemas de puesta a tierra para garantizar una conexión eficiente, ya que una resistencia baja es esencial para disipar corrientes no deseadas y proporcionar una ruta eficaz para la descarga de energía eléctrica.

Para este caso en concreto la longitud critica se define por medio de la siguiente ecuación:

$$L_{C_2} = \sqrt{\frac{\rho \left[\Omega * m\right]}{0.5 \left[MHz\right]}}$$
⁽⁴⁶⁾

Donde:

 L_{C_2} = Longitud critica (m)

 ρ : Resistividad del suelo (Ω^*m)

0.5 = Frecuencia que se trabaja en industrial (MHz)

Una demostración grafica de la componente de la Longitud critica se muestra a continuación:

Figura 12. Longitud critica para Caso 4. Fuente: Los autores

Es importante tener en cuenta que, para este caso, el diámetro de la varilla seria:

$$D = 2L_{C_2} \tag{47}$$

5.2. Comportamiento del electrodo antes descargas de baja frecuencia (industrial).

El comportamiento de un electrodo de puesta a tierra, ante descargas de corriente de frecuencia industrial, es de una resistencia definida por la siguiente ecuación:

$$R_0 = 0.366 * \frac{\rho}{\pi D} * \log\left(\frac{8 * D^2}{a * h}\right)$$
⁽⁴⁸⁾

Donde:

 R_0 = Resistencia del electrodo a frecuencia industrial (Ω)

 ρ = Resistividad del suelo (Ω *m)

D = Longitud del electrodo (m)

log = logaritmo natural

h = Altura de empotramiento (m)

El voltaje de paso generado por la descarga de corriente de frecuencia industrial, en función y dirección del eje x, según la Figura 11, está dado por la siguiente ecuación:

$$v_{x} = \frac{\rho * I}{\pi(\pi * D + h)} ln \left[\frac{2 * \sqrt{x^{2} + h^{2}} + \pi * D + 2 * h}{2 * \sqrt{x^{2} + h^{2}}} \right]$$
(49)

Donde:

 V_x = Voltaje de paso en función de la distancia (V)

 ρ = Resistividad del suelo (Ω *m)

D = Diámetro del anillo circular de cobre (m)

x = Eje de referencia con respecto al electrodo (m)

I =Corriente de descarga, de frecuencia industrial (A)

ln = logaritmo natural

h = Altura de empotramiento (m)

Otra manera de calcular el valor de R_0 es aplicando una ecuación dada por IEEE 142-1991, utilizada para cualquier arreglo geométrico de conductores desnudos de cobre enterrados una profundidad h con respecto al nivel del suelo, tal es el caso de anillos circulares, triangulares, rectangulares, cuadrados, hexagonales, etc., con o sin picas verticales.

$$R_{0} = \frac{\rho}{2\pi * Long_{T}} * ln\left[\frac{\left(2 * Long_{T}\right)}{a}\right] + ln\left[\frac{Long_{T}}{h}\right] - 2 + \left(\frac{2h}{Long_{T}}\right) - \frac{h^{2}}{\left(Long_{T}\right)^{2}} + \frac{h^{4}}{\left(2 * Long_{T}^{4}\right)}$$
(50)

Donde:

 R_0 = Resistencia del electrodo a frecuencia industrial (Ω)

 ρ = Resistividad del suelo (Ω *m)

 $Long_T$ = Longitud total del conductor = Long.anillo + Long.picas (m)

a = radio del conductor que forma el anillo (m)

h = profundidad de empotramiento (m)

5.3. Comportamiento del electrodo antes descargas de alta frecuencia (tipo rayo).

$$L = \left(\frac{\mu_0 \cdot L_{ong}}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$
⁽⁵¹⁾

Donde:

L: Inductancia del electrodo. (H)

 μ_0 : Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (T*m/A)

Long: Longitud del electrodo (m)

r: radio del electrodo (m)

ln: logaritmo natural.

La capacitancia que presenta el suelo ante descargas de corriente de alta frecuencia se define mediante la siguiente ecuación:

_

$$C_{suelo} = \frac{\epsilon_{suelo} * \rho_{suelo}}{R_0}$$
(52)

Donde:

Csuelo: Capacitancia del suelo (F)

 ρ_{suelo} : Resistividad del suelo (Ω^* m)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

 \in_{suelo} : Permitividad del suelo (F/m)

La permitividad del suelo está definida mediante la siguiente ecuación:

$$\in_{suelo} = \in_r * \in_0 \tag{53}$$

(= 2)

Donde:

 \in_{suelo} : Permitividad del suelo (F/m)

 \in_r : Permitividad relativa (depende del tipo de suelo)

 ϵ_0 : Permitividad del vacío = 8.85 * 10⁻¹² (F/m)

La resistencia transitoria de la impedancia presentada por el electrodo ante descargas de corriente de alta frecuencia es función de los siguientes parámetros:

- R_0 : Resistencia del electrodo a frecuencia industrial
- I_r : Corriente de rayo

• *I_g*: Corriente de ionización del suelo

Parámetros que definen la resistencia transitoria de la impedancia mediante la siguiente ecuación:

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0.r}}{I_g}\right)}}$$
(54)

Donde:

 R_{Tr} : Resistencia transitoria de la impedancia del electrodo (Ω)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

 $I_{0,r}$: Corriente pico de rayo (kA)

I_g: Corriente de ionización del suelo (kA)

La corriente de ionización del suelo es la amplitud de corriente que convierte al suelo en un conductor, dicha corriente se determina mediante la siguiente ecuación:

$$I_g = \frac{E_0 * \rho_{suelo}}{2\pi * R_0^2} \tag{55}$$

Donde:

 I_a : Corriente de ionización del suelo (kA)

 E_0 : Gradiente de ionización del suelo (kV/m)

 ρ_{suelo} : Resistividad del suelo (Ω^* m)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

La gradiente de ionización del suelo se determina mediante la siguiente ecuación:

$$G_s = 241(\rho_{suelo}^{0.215}) \tag{56}$$

El voltaje que aparece en los terminales de la impedancia generada por el electrodo ante descargas de corriente de alta frecuencia, el mismo que se determina a través de la siguiente ecuación:

$$\boldsymbol{V}_{0} = \boldsymbol{V}_{\boldsymbol{z}} = \boldsymbol{Z} * \boldsymbol{I}_{\boldsymbol{r}} \tag{57}$$

59

Donde:

- V_0 : Voltaje generado en el SPT para x=0 (kV)
- Z: Impedancia del electrodo ante descargas de corriente de alta frecuencia (Ω)
- V_z : Voltaje en los terminales de la impedancia (kV)
- I_r : Corriente de descarga tipo rayo (kA)

6. CONFIGURACION MIXTA DE ANILLOS CUADRADOS MAS PICAS VERTICALES EN LOS EXTREMOS, EMPOTRADOS UNA PROFUNDIDAD h.

6.1. Partes:

En la Figura 13 se presenta la aplicación de un Sistema de Puesta a Tierra, formado por las siguientes partes:

- Bajante de Puesta a Tierra: conductor de cobre (desnudo o aislado).
- Electrodos: 4 Tipo varilla o pica (Copperweld).
- Corriente de descarga: frecuencia industrial y alta frecuencia.
- *Long_{lado}*: distancia entre picas (m).
- *ρ*: Resistividad del suelo.
- *x*: Eje para referencia del voltaje de paso.
- *h*: Altura de empotramiento (m).

Figura 13. Anillo cuadrado más picas verticales en los extremos con empotramiento. Fuente: Los autores.

6.2. Comportamiento del electrodo antes descargas de baja frecuencia (industrial).

El comportamiento de un electrodo de puesta a tierra, ante descargas de corriente de frecuencia industrial, es de una resistencia definida por la siguiente ecuación:

$$R_{0} = \frac{\rho}{2\pi * Long_{T}} * ln\left[\frac{\left(2 * Long_{T}\right)}{a}\right] + ln\left[\frac{Long_{T}}{h}\right] - 2 + \left(\frac{2h}{Long_{T}}\right) - \frac{h^{2}}{\left(Long_{T}\right)^{2}} + \frac{h^{4}}{\left(2 * Long_{T}\right)^{4}}$$
(58)

Donde:

 R_0 = Resistencia del electrodo a frecuencia industrial. (Ω) ρ = Resistividad del suelo (Ω^* m) $Long_T$ = Longitud total del conductor = Long.anillo + Long.picas (m) a = radio del conductor que forma el anillo (m) h = profundidad de empotramiento (m)

El voltaje de paso generado por la descarga de corriente de frecuencia industrial, en función y dirección del eje x, según la Figura 13, está dado por la siguiente ecuación:

$$V_{x} = \frac{\rho \cdot I}{\pi (L+h)} * \ln \left[\frac{2\sqrt{x^{2} + h^{2}} + L + 2 * h}{2 * \sqrt{x^{2} + h^{2}}} \right]$$
(59)

Donde:

 V_x = Voltaje de paso en función de la distancia (V)

 ρ = Resistividad del suelo (Ω *m)

L= Longitud del electrodo (m)

x = Eje de referencia con respecto al electrodo (m)

I =Corriente de descarga, de frecuencia industrial (A)

- ln = logaritmo natural
- *h*: Altura de empotramiento (m)

6.3. Comportamiento del electrodo antes descargas de alta frecuencia (tipo rayo).

$$L = \left(\frac{\mu_0 * L_{ong}}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$
⁽⁶⁰⁾

Donde:

L: Inductancia del electrodo (H)

 μ_0 : Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (T*m/A)

 L_{ong} : Longitud del electrodo (m)

r: radio del electrodo (m)

ln: logaritmo natural.

La capacitancia que presenta el suelo ante descargas de corriente de alta frecuencia se define mediante la siguiente ecuación:

$$C_{suelo} = \frac{\epsilon_{suelo} * \rho_{suelo}}{R_0} \tag{61}$$

Donde:

C_{suelo}: Capacitancia del suelo (F)

 ρ_{suelo} : Resistividad del suelo (Ω^*m)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

 \in_{suelo} : Permitividad del suelo (F/m)

La permitividad del suelo está definida mediante la siguiente ecuación:

$$\in_{suelo} = \in_r * \in_0 \tag{62}$$

Donde:

 \in_{suelo} : Permitividad del suelo (F/m)

 \in_r : Permitividad relativa (depende del tipo de suelo)

 ϵ_0 : Permitividad del vacío = 8.85 * 10⁻¹² (F/m)

La resistencia transitoria de la impedancia presentada por el electrodo ante descargas de corriente de alta frecuencia es función de los siguientes parámetros:

- R_0 : Resistencia del electrodo a frecuencia industrial
- I_r : Corriente de rayo
- *I_g*: Corriente de ionización del suelo

Parámetros que definen la resistencia transitoria de la impedancia mediante la siguiente ecuación:

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0,r}}{I_g}\right)}} \tag{63}$$

 R_{Tr} : Resistencia transitoria de la impedancia del electrodo (Ω)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

 $I_{0.r}$: Corriente pico de rayo (kA)

 I_q : Corriente de ionización del suelo (kA)

La corriente de ionización del suelo es la amplitud de corriente que convierte al suelo en un conductor, dicha corriente se determina mediante la siguiente ecuación:

$$I_g = \frac{E_0 * \rho_{suelo}}{2\pi * R_0^2} \tag{64}$$

Donde:

Ig: Corriente de ionización del suelo (kA)

 E_0 : Gradiente de ionización del suelo (kV/m)

 ρ_{suelo} : Resistividad del suelo (Ω^* m)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

La gradiente de ionización del suelo se determina mediante la siguiente ecuación:

$$G_s = 241(\rho_{suelo}^{0.215}) \tag{65}$$

El voltaje que aparece en los terminales de la resistencia transitoria del SPT ante descargas de corriente de alta frecuencia, el mismo que se determina a través de la siguiente ecuación:

$$VRtr = Rtr * I0.r \tag{66}$$

Donde:

 VR_{Tr} : Voltaje en la resistencia transitoria del SPT (kV) R_{Tr} : Resistencia transitoria del SPT (Ω) I_{0r} : Valor pico de corriente tipo rayo (kA)

7. CONFIGURACION MIXTA DE UN SPT PARA TORRES DE ACERO APLICADAS A LINEAS AEREAS DE SUBTRANSMISION Y/O TRANSMISION.

7.1.Partes:

En la Figura 14 se presenta la aplicación de un Sistema de Puesta a Tierra, formado por las siguientes partes:

- Bajante de Puesta a Tierra: conductor de cobre (desnudo o aislado).
- Electrodos: 4 Tipo varilla o pica (Copperweld).
- Corriente de descarga: frecuencia industrial y alta frecuencia.
- *Long_{lado}*: distancia entre picas (m).
- *ρ*: Resistividad del suelo.
- *h*: Altura de empotramiento (m).

Figura 14. Anillo cuadrado más picas verticales en los extremos con empotramiento. Fuente: Los autores.

7.2. Comportamiento del electrodo antes descargas de baja frecuencia (industrial).

El comportamiento de un electrodo de puesta a tierra, ante descargas de corriente de frecuencia industrial, es de una resistencia definida por la siguiente ecuación:

$$R_0 = \frac{\rho}{2\pi L} ln \left[\frac{h(2a+L)}{a(2h+L)} \right] + \frac{\rho}{\pi * (L+2h)} ln \left[\frac{4h+L}{2h} \right]$$
(67)

 R_0 = Resistencia del electrodo a frecuencia industrial (Ω)

 ρ = Resistividad del suelo (Ω *m)

 $Long_T$ = Longitud total del conductor = Long.anillo + Long.picas (m)

a = radio del conductor que forma el anillo (m)

h = profundidad de empotramiento (m)

El voltaje de paso generado por la descarga de corriente de frecuencia industrial, en función y dirección del eje x, según la Figura 14, está dado por la siguiente ecuación:

$$V_{x} = \frac{\rho \cdot I}{\pi (L+h)} * \ln \left[\frac{2\sqrt{x^{2} + h^{2}} + L + 2 * h}{2 * \sqrt{x^{2} + h^{2}}} \right]$$
(68)

Donde:

 V_x = Voltaje de paso en función de la distancia (V)

 ρ = Resistividad del suelo (Ω *m)

L= Longitud del electrodo (m)

x = Eje de referencia con respecto al electrodo (m)

I =Corriente de descarga, de frecuencia industrial (A)

ln = logaritmo natural.

h: Altura de empotramiento (m)

7.3. Comportamiento del electrodo antes descargas de alta frecuencia (tipo rayo).

$$L = \left(\frac{\mu_0 * L_{ong}}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$
⁽⁶⁹⁾

Donde:

L: Inductancia del electrodo (H)

 μ_0 : Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (T*m/A)

 L_{ong} : Longitud del electrodo (m)

r: radio del electrodo (m)

ln: logaritmo natural

La capacitancia que presenta el suelo ante descargas de corriente de alta frecuencia se define mediante la siguiente ecuación:

$$C_{suelo} = \frac{\epsilon_{suelo} * \rho_{suelo}}{R_0}$$
(70)

 C_{suelo} : Capacitancia del suelo (F) ρ_{suelo} : Resistividad del suelo (Ω^*m) R_0 : Resistencia del electrodo a frecuencia industrial (Ω) \in_{suelo} : Permitividad del suelo (F/m)

La permitividad del suelo está definida mediante la siguiente ecuación:

$$\in_{suelo} = \in_r * \in_0 \tag{71}$$

Donde:

 \in_{suelo} : Permitividad del suelo (F/m)

 \in_r : Permitividad relativa (depende del tipo de suelo)

 ϵ_0 : Permitividad del vacío = 8.85 * 10⁻¹ (F/m)

La resistencia transitoria de la impedancia presentada por el electrodo ante descargas de corriente de alta frecuencia es función de los siguientes parámetros:

- R_0 : Resistencia del electrodo a frecuencia industrial
- I_r : Corriente de rayo
- I_g: Corriente de ionización del suelo

Parámetros que definen la resistencia transitoria de la impedancia mediante la siguiente ecuación:

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0.r}}{I_g}\right)}}$$
(72)

Donde:

 R_{Tr} : Resistencia transitoria de la impedancia del electrodo (Ω)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

 $I_{0.r}$: Corriente pico de rayo (kA)

 I_g : Corriente de ionización del suelo (kA)

La corriente de ionización del suelo es la amplitud de corriente que convierte al suelo en un conductor, dicha corriente se determina mediante la siguiente ecuación:

$$I_g = \frac{E_0 * \rho_{suelo}}{2\pi * R_0^2} \tag{73}$$

Donde:

 I_q : Corriente de ionización del suelo (kA)

 E_0 : Gradiente de ionización del suelo (kV/m)

 ρ_{suelo} : Resistividad del suelo (Ω^* m)

 R_0 : Resistencia del electrodo a frecuencia industrial (Ω)

La gradiente de ionización del suelo se determina mediante la siguiente ecuación:

$$G_s = 241(\rho_{suelo}^{0.215})$$
(74)

El voltaje que aparece en los terminales de la resistencia transitoria del SPT ante descargas de corriente de alta frecuencia, el mismo que se determina a través de la siguiente ecuación:

$$VRtr = Rtr * I0.r \tag{75}$$

Donde:

VR_{Tr}: Voltaje en la resistencia transitoria del SPT (kV)

 R_{Tr} : Resistencia transitoria del SPT (Ω)

 I_{0_r} : Valor pico de corriente tipo rayo (kA)

CAPITULO III

MODELADO DE SISTEMAS DE PUESTA A TIERRA

Para modelar un SPT, es necesario reconocer los siguientes elementos:

- Bajante de puesta a tierra.
- Electrodo utilizado.
- Condiciones del suelo.
- Condiciones de la superficie.
- Entre otros...

Entre los sistemas de puesta a tierra (SPT) más utilizados en estructuras para líneas de transporte aéreas de electricidad tenemos:

- SPT con electrodo vertical sin empotramiento.
- SPT con electrodo vertical con empotramiento.
- SPT con electrodos verticales en línea.
- SPT con electrodo horizontal con empotramiento.
- SPT con electrodo en forma de anillo (circular, cuadrado, etc...).
- SPT mixto (electrodos verticales, horizontales, anillos, etc...).

3.1. MODELADO DE UN ELECTRODO VERTICAL SIN EMPOTRAMIENTO

El comportamiento de un sistema de puesta a tierra formado por un electrodo vertical tipo varilla sin empotramiento (la conexión de la bajante de puesta a tierra con el terminal del electrodo se encuentra al nivel del suelo). Obedece a:

- Descargas de corriente de frecuencia industrial.
- Descargas de altas corrientes y altas frecuencias (tipo rayo).

3.1.1. Modelado del SPT ante descargas de frecuencia industrial.

En la Figura 15 se muestra el arreglo del SPT formado por un electrodo vertical tipo varilla.

Figura 15. Toma de tierra para configuración de 4 varillas a tierra. Fuente: Los autores.

Caso de estudio [12]: Electrodo: tipo varilla/pica/jabalina Material: Copperweld Longitud: L = 2.40 (m) Diámetro: 2a = 5/8" = 0.0158 m Radio: r = 0.0079 (m) Resistividad del suelo: $\rho_{suelo} = 100$ (Ω *m) Permitividad relativa del suelo: $\epsilon_r = 17$ Corriente de descarga: I(60 Hz) = 2000 (A) Resistividad de la superficie: $\rho_{superficie} = 3000$ (Ω *m), (Hormigón o concreto) Altura de la superficie: h.superficie = 0.1 m Constante de voltajes soportables para personas: k(70kg) = 0.157Tiempo de falla: T. falla = 0.5 seg Resistencia del cuerpo humano: $R. cuerpo = 1000 \Omega$ Resistencia de los zapatos: R. zapato 1 = R. zapato 2 = 50 k Ω (Zapatos de goma)

Para modelar un SPT para descarga de corrientes de frecuencia industrial, se debe determinar los siguientes parámetros:

- R_0 : resistencia del SPT ante descargas de frecuencia industrial.
- V_r : máxima elevación del voltaje generado por el SPT.
- V_1 : voltaje generado por el SPT para x=1 metro, con respecto al eje del electrodo.
- V_{r_1} : diferencia de potencial máxima generado por el SPT.
- $V_{p.sop}$: voltaje de paso soportable por una persona.
- $V_{c.sop}$: voltaje de contacto soportable por una persona.
- $V_{p.gen}$: voltaje de paso generado por el SPT.

- *V_{c.gen}*: voltaje de contacto generado por el SPT.
- Evaluación del SPT.

3.1.1.1. Cálculo de la resistencia del SPT ante descargas de frecuencia industrial (R_0)

Mediante la siguiente ecuación, obtendremos la resistencia del SPT adecuada para este caso:

$$R_0 = \frac{\rho}{2\pi * L} * \ln\left(\frac{a+L}{a}\right)$$

Por lo tanto:

$$\boldsymbol{R_0} = \frac{100}{2\pi(2.4)} * \ln\left(\frac{0.007938 + 2.40}{0.007938}\right) = 37.89\Omega$$

3.1.1.2. Cálculo de la máxima elevación de voltaje generado por el SPT (V_r)

Mediante la siguiente ecuación, obtendremos el voltaje que se genera por el SPT:

$$v_x = \frac{\rho \cdot I}{2\pi L} \cdot \ln\left(\frac{x+L}{x}\right)$$

Por lo tanto:

$$V_{x=r} = V_r = \frac{(100)(2000)}{2\pi(2.4)} * \ln\left(\frac{0.007938 + 2.40}{0.007938}\right)$$

$$V_{x=r} = V_r = 75795 V$$

3.1.1.3. Cálculo de la elevación de voltaje generado por el SPT para $x = 1m (V_1)$

La variación máxima de voltaje con respecto a la tierra respecto a 1 metro es:

$$v_x = \frac{\rho \cdot I}{2\pi L} \cdot ln\left(\frac{x+L}{x}\right)$$

Por lo tanto:

$$V_1 = \frac{100(2000)}{2\pi(2.4)} * \ln\left(\frac{1+2.40}{1}\right)$$

$$V_1 = 16230 V$$

3.1.1.4. Cálculo de la máxima diferencia de potencial generada por el SPT
$$(V_{r_1})$$

$$V_{r1} = V_r - V_1 = 75795 - 16230$$

$$V_{r1} = 59695 V$$

3.1.1.5. Cálculo de los voltajes de contacto y paso soportables por una persona de 70 kg.

Se considera:

k(70kg) = 0.157 ρ . suelo = 100 Ω *m T. falla = 0.5 seg ρ . superficie = 3000 Ω *m (concreto) h. superficie = 0.1 m

El coeficiente de disminución superficial es:

$$C_s = 1 - \left[\frac{(0.09)\left(1 - \frac{\rho_{suelo}}{\rho_{superf}}\right)}{\left(2h_{superf} + 0.09\right)}\right]$$

Por lo tanto:

$$C_s = 1 - \left[\frac{0.09 \left[1 - \frac{100}{3000} \right]}{(2(0.1) + 0.09)} \right] = 0.70$$

El voltaje de contacto o toque máximo soportable por una persona de 70 kg es:

$$V_{toque} = \frac{k}{\sqrt{t_f}} (1000 + 1.5 * C_s * \rho_{superf})$$

Por lo tanto:

$$V_{toque}(70kg) = \frac{0.157}{\sqrt{0.5}} [1000 + (1.5)(0.70)(3000)] = 921.4V$$

El voltaje de paso soportable por una persona de 70 kg es:

$$V_{paso} = \frac{k}{\sqrt{t_f}} (1000 + 6 * C_s * \rho_{superf})$$

Por lo tanto:

$$V_{paso}(70kg) = \frac{0.157}{\sqrt{0.5}} [1000 + (6)(0.7)(3000)] = 3019.63 V$$

3.1.1.6. Cálculo de los voltajes de contacto y paso generados por el SPT.

Se considera: $R. cuerpo = 1000 \Omega$ $R. zapato 1 = R. zapato 2 = 50 k\Omega$ (Zapatos de goma)

 ρ . *superficie* = 3000 Ω *m (concreto)

El voltaje de paso generado por el sistema de puesta a tierra es:

$$R_{sf} = 3 * \rho_{superficie} = 3(3000) = 9000\Omega$$

$$R_{equiv} = R_{zap1} + R_{zap2} + R_{sf} + R_{sf} + R_{cuerpo}$$

$$R_{equiv} = 50000 + 50000 + 9000 + 9000 + 1000 = 119000 \ \Omega$$

Por lo tanto:

$$V_{p.gener} = R_{cuerpo} * \left[\frac{V_{r1}}{R_{equiv}} \right]$$

$$V_{p.gener} = 1000 * \left[\frac{59695}{119000}\right] = 501.63 V$$

El voltaje de contacto generado por el sistema de puesta a tierra es:

$$R_{sf} = 3 * \rho_{superficie} = 3(3000) = 9000\Omega$$

$$R_{equiv} = R_{cuerpo} + \frac{\left[\left(R_{zap1} + R_{sf} \right) * \left(R_{zap2} + R_{sf} \right) \right]}{\left(R_{zap1} + R_{sf} \right) + \left(R_{zap2} + R_{sf} \right)}$$

$$R_{equiv} = 1000 + \frac{\left[(50000 + 9000) * (50000 + 9000)\right]}{(50000 + 9000) + (50000 + 9000)} = 30500 \,\Omega$$

$$V_{c.gener} = R_{cuerpo} * \left[\frac{V_{r1}}{R_{equiv}} \right]$$
$$V_{c.gener} = 1000 * \left[\frac{59695}{30500} \right] = 1957.21 V$$

3.1.1.7. Evaluación del SPT ante descargas de frecuencia industrial

Vp.soportable = 3019.63 *V* Vp.generado = 501.63 *V*..... El **SPT es SEGURO** [9], [13] Vc.soportable = 921.4 *V*.....Vc.generado = 1957.21 *V*..... **El SPT NO es SEGURO** [9], [13]
3.1.2. Modelado del SPT para descargas de alta frecuencia (corrientes tipo rayo)

Para modelar el SPT para descargas de altas corrientes y altas frecuencias, por ejemplo, para corrientes tipo rayo, es necesario determinar los siguientes parámetros:

- R_0 : resistencia del SPT ante descargas de frecuencia industrial
- *L*: inductancia del electrodo de puesta a tierra.
- *C*: capacitancia del suelo.
- \in_s : permitividad del suelo.
- G_s : gradiente de ionización del suelo.
- I_g : corriente de ionización del suelo.
- R_{Tr} : resistencia transitoria del SPT.
- $I_{0.r}$: corriente tipo rayo.
- *V. Rtr*: voltaje en la resistencia transitoria.

3.1.2.1. Cálculo de la resistencia del SPT para frecuencia industrial (R_0)

El cálculo de R_0 se muestra en el modelado del SPT para frecuencia industrial:

$$R_0 = 37.89\Omega$$

3.1.2.2. Cálculo de la inductancia del electrodo.

$$L = \left(\frac{\mu_0 \cdot L_{ong}}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$

$$L = \frac{4\pi * 10^{-7} (2.40)}{2\pi} \cdot \left[\ln\left(\frac{2.(2.4)}{0.007938}\right) - 1 \right] = 2.59 * 10^{-6} H$$

$$L = 0.00259 \, mH$$

3.1.2.3. Cálculo de la capacitancia del suelo.

$$\in_{suelo} = \in_r * \in_0$$

$$\epsilon_{suelo} = 17 * 8.85 * 10^{-12} = 1.50 * 10^{-10} \left(\frac{F}{m}\right)$$

$$C_{suelo} = \frac{\in_{suelo} * \rho_{suelo}}{R_0}$$

$$C_{suelo} = \left(\frac{1.50 * 10^{-10}(100)}{37.89}\right)$$

$$C_{suelo} = 3.97 * 10^{-10} (F) = 0.000397 \mu F$$

3.1.2.4. Cálculo del gradiente de ionización del suelo.

$$G_s = 241(\rho_{suelo}^{0.215})$$

 $G_s = 241(100^{0.215}) = 648.65 (kV/m)$

3.1.2.5. Cálculo de la corriente de ionización del suelo.

$$I_g = \frac{G_s * \rho_{suelo}}{2\pi * R_0^2}$$

$$I_g = \frac{648.65(100)}{2\pi(37.89)^2} = 7.19 \,(kA)$$

3.1.2.6. Cálculo de la resistencia transitoria del SPT.

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0.r}}{I_g}\right)}}$$

3.1.2.7. Cálculo del voltaje en la resistencia transitoria del SPT.

$$V.Rtr = Rtr * I0.r$$

Conocemos: $R_0 = 37.89 \ \Omega \ \dots \ I_g = 7.19 \ \text{kA} \ \dots \ I_{0,r} = (\text{desde 1 hasta } 200 \ \text{kA})$

			1	
I_rayo (A)	R0(Ohm)	lg(A)	R_tr (Ohm)	VR_tr (V)
0	37.89	7190	37.89	
1000	37.89	7190	35.5015	35502
5000	37.89	7190	29.0996	145498
10000	37.89	7190	24.5048	245048
15000	37.89	7190	21.5680	323520
20000	37.89	7190	19.4843	389686
30000	37.89	7190	16.6600	499801
40000	37.89	7190	14.7899	591594
50000	37.89	7190	13.4347	671737
60000	37.89	7190	12.3947	743683
70000	37.89	7190	11.5640	809481
80000	37.89	7190	10.8807	870454
90000	37.89	7190	10.3057	927515
100000	37.89	7190	9.8132	981323
110000	37.89	7190	9.3852	1032373
120000	37.89	7190	9.0087	1081045
130000	37.89	7190	8.6742	1127642
140000	37.89	7190	8.3743	1172406
150000	37.89	7190	8.1036	1215536
160000	37.89	7190	7.8575	1257199
170000	37.89	7190	7.6325	1297533
180000	37.89	7190	7.4259	1336658
190000	37.89	7190	7.2351	1374676
200000	37.89	7190	7.0584	1411675

El cálculo de R_tr y el VR_tr se muestra en la Tabla 2:

Tabla 2.	Configuración de la resistencia transitoria del SPT, para uso en
	ATPDraw. [14], [15]
	Fuente: Los autores.

3.2. ELECTRODO VERTICAL EMPOTRADO A UNA PROFUNDIDAD (h)

El comportamiento de un sistema de puesta a tierra formado por un electrodo vertical tipo varilla con empotramiento (la conexión de la bajante de puesta a tierra con el terminal del electrodo se encuentra a una profundidad (con respecto al nivel del suelo)). Obedece a:

- Descargas de corriente de frecuencia industrial.
- Descargas de altas corrientes y altas frecuencias (tipo rayo).

3.2.1. Modelado del SPT ante descargas de frecuencia industrial.

En la Figura 16 se muestra el arreglo del SPT formado por un electrodo vertical tipo varilla.

Figura 16. Toma de tierra para configuración de 4 varillas a tierra. Fuente: Los autores.

Caso de estudio [12]: Electrodo: tipo varilla/pica/jabalina Material: Copperweld Longitud: L = 2.40 (m) Diámetro: $2a = 5/8^{"} = 0.0158$ m Radio: r = 0.0079 (m) Resistividad del suelo: $\rho_{suelo} = 100$ (Ω *m) Permitividad relativa del suelo: $\epsilon_r = 17$ Corriente de descarga: I(60 Hz) = 2000 (A) Resistividad de la superficie: $\rho_{superficie} = 3000$ (Ω *m) (Hormigón o concreto) Altura de la superficie: h. superficie = 0.1 m Altura de empotramiento: h = 0.5 m Constante de voltajes soportables para personas: k(70kg) = 0.157

Tiempo de falla: T. falla = 0.5 seg

Resistencia del cuerpo humano: $R. cuerpo = 1000 \Omega$

Resistencia de los zapatos: *R. zapato* 1 = R. zapato $2 = 50 \text{ k}\Omega$ (Zapatos de goma)

Para modelar un SPT para descarga de corrientes de frecuencia industrial, se debe determinar los siguientes parámetros:

- R_0 : resistencia del SPT ante descargas de frecuencia industrial.
- V_r : máxima elevación del voltaje generado por el SPT.
- V_1 : voltaje generado por el SPT para x=1 metro, con respecto al eje del electrodo.
- V_{r1} : diferencia de potencial máxima generado por el SPT.
- $V_{p.sop}$: voltaje de paso soportable por una persona.
- $V_{c.sop}$: voltaje de contacto soportable por una persona.
- $V_{p.gen}$: voltaje de paso generado por el SPT.
- *V_{c.gen}*: voltaje de contacto generado por el SPT.
- Evaluación del SPT.

3.2.1.1. Cálculo de la resistencia del SPT ante descargas de frecuencia industrial (R_0)

$$R_0 = \frac{\rho}{2\pi L} ln \left[\frac{h(2a+L)}{a(2h+L)} \right] + \frac{\rho}{2\pi (L+h)} ln \left[\frac{2h+L}{h} \right]$$

Por lo tanto:

$$R_0 = \frac{100}{2\pi(2.4)} ln \left[\frac{0.5(0.0158 + 2.4)}{0.007983(2(0.5) + 2.4)} \right] + \frac{100}{2\pi(2.4 + 0.5)} ln \left[\frac{2(0.5) + 2.4}{0.5} \right]$$

$$R_0 = 35.76 \,\Omega$$

3.2.1.2. Cálculo de la máxima elevación de voltaje generado por el SPT (V_r)

$$v_x = \frac{\rho \cdot I}{2\pi L} \cdot ln\left(\frac{x+L}{x}\right)$$

Por lo tanto:

$$V_{x=r} = V_r = \frac{(100)(2000)}{2\pi(2.4)} * \ln\left(\frac{0.007938 + 2.40}{0.007938}\right)$$

$$V_{x=r} = V_r = 75795 V$$

3.2.1.3. Cálculo de la elevación de voltaje generado por el SPT para $x = 1m (V_1)$

$$v_x = \frac{\rho \cdot I}{2\pi(L+h)} ln \left[\frac{\sqrt{x^2 + h^2} + L + h}{\sqrt{x^2 + h^2}} \right]$$

Por lo tanto:

$$v_1 = \frac{100(2000)}{2\pi(2.4+0.5)} ln \left[\frac{\sqrt{1^2 + 0.5^2} + 2.4 + 0.5}{\sqrt{1^2 + 0.5^2}} \right]$$

 $V_1 = 14040 V$

3.2.1.4. Cálculo de la máxima diferencia de potencial generada por el SPT (V_{r_1})

$$V_{r1} = V_r - V_1 = 75795 - 14040$$

 $V_{r1} = 61755 V$

3.2.1.5. Cálculo de los voltajes de contacto y paso soportables por una persona de 70 kg

Se considera:

k(70kg) = 0.157 ρ . suelo = 100 Ω *m T. falla = 0.5 seg ρ . superficie = 3000 Ω *m (concreto) h. superficie = 0.1 m

El coeficiente de disminución superficial es:

79

$$C_s = 1 - \left[\frac{(0.09) \left(1 - \frac{\rho_{suelo}}{\rho_{superf}} \right)}{\left(2h_{superf} + 0.09 \right)} \right]$$

Por lo tanto:

$$C_s = 1 - \left[\frac{0.09 \left[1 - \frac{100}{3000} \right]}{(2(0.1) + 0.09)} \right] = 0.70$$

El voltaje de contacto o toque máximo soportable por una persona de 70 kg es:

$$V_{toque} = \frac{k}{\sqrt{t_f}} (1000 + 1.5 * C_s * \rho_{superf})$$

Por lo tanto:

$$V_{toque}(70kg) = \frac{0.157}{\sqrt{0.5}} [1000 + (1.5)(0.70)(3000)] = 921.4 V$$

El voltaje de paso soportable por una persona de 70 kg es:

$$V_{paso} = \frac{k}{\sqrt{t_f}} (1000 + 6 * C_s * \rho_{superf})$$

Por lo tanto:

$$V_{paso}(70kg) = \frac{0.157}{\sqrt{0.5}} [1000 + (6)(0.7)(3000)] = 3019.63 V$$

3.2.1.6. Cálculo de los voltajes de contacto y paso generados por el SPT.

Se considera: $R. cuerpo = 1000 \Omega$ $R. zapato 1 = R. zapato 2 = 50 k\Omega$ (Zapatos de goma) $\rho. superficie = 3000 \Omega^*m$ (concreto) El voltaje de paso generado por el sistema de puesta a tierra es:

$$R_{sf} = 3 * \rho_{superficie} = 3(3000) = 9000\Omega$$
$$R_{equiv} = R_{zap1} + R_{zap2} + R_{sf} + R_{sf} + R_{cuerpo}$$
$$R_{equiv} = 50000 + 50000 + 9000 + 9000 + 1000 = 119000 \Omega$$

Por lo tanto:

$$V_{p.gener} = R_{cuerpo} * \left[\frac{V_{r1}}{R_{equiv}} \right]$$

$$V_{p.gener} = 1000 * \left[\frac{61755}{119000} \right] = 518.94 V$$

El voltaje de contacto generado por el sistema de puesta a tierra es:

$$\boldsymbol{R}_{sf} = \boldsymbol{3} * \boldsymbol{\rho}_{superficie} = \boldsymbol{3}(\boldsymbol{3}\boldsymbol{0}\boldsymbol{0}\boldsymbol{0}) = \boldsymbol{9}\boldsymbol{0}\boldsymbol{0}\boldsymbol{0}\boldsymbol{\Omega}$$

$$R_{equiv} = R_{cuerpo} + \frac{\left[\left(R_{zap1} + R_{sf} \right) * \left(R_{zap2} + R_{sf} \right) \right]}{\left(R_{zap1} + R_{sf} \right) + \left(R_{zap2} + R_{sf} \right)}$$

$$R_{equiv} = 1000 + \frac{\left[(50000 + 9000) * (50000 + 9000)\right]}{(50000 + 9000) + (50000 + 9000)} = 30500 \,\Omega$$

$$V_{c.gener} = R_{cuerpo} * \left[\frac{V_{r1}}{R_{equiv}} \right]$$

$$V_{c.gener} = 1000 * \left[\frac{61755}{30500}\right] = 2024.75 V$$

3.2.1.7. Evaluación del SPT antes descargas de frecuencia industrial

Vp.soportable = 3019.63 V Vp.generado = 518.94 V..... El SPT es SEGURO [9], [16]

Vc.soportable = 921.4 *V*.....Vc.generado = 2024.75 *V*..... El SPT NO es SEGURO [9], [16]

3.2.2. Modelado del SPT para descargas de alta frecuencia (corrientes tipo rayo).

Para modelar el SPT para descargas de altas corrientes y altas frecuencias, por ejemplo, para corrientes tipo rayo, es necesario determinar los siguientes parámetros:

- R_0 : resistencia del SPT ante descargas de frecuencia industrial
- *L*: inductancia del electrodo de puesta a tierra.
- *C*: capacitancia del suelo.
- \in_s : permitividad del suelo.
- G_s : gradiente de ionización del suelo.
- I_g : corriente de ionización del suelo.
- R_{Tr} : resistencia transitoria del SPT.
- $I_{0.r}$: corriente tipo rayo.
- *V. Rtr*: voltaje en la resistencia transitoria.

3.2.2.1. Cálculo de la resistencia del SPT para frecuencia industrial (R_0)

El cálculo de R_0 se muestra en el modelado del SPT para frecuencia industrial:

$$R_0 = 35.76\Omega$$

3.2.2.2. Cálculo de la inductancia del electrodo.

$$L = \left(\frac{\mu_0 \cdot L}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$

$$L = \frac{4\pi * 10^{-7} (2.40)}{2\pi} \cdot \left[\ln\left(\frac{2.(2.4)}{0.007938}\right) - 1 \right] = 2.59 * 10^{-6} H$$

 $L = 0.00259 \, mH$

3.2.2.3. Cálculo de la capacitancia del suelo.

$$\in_{suelo} = \in_r * \in_0$$

$$\in_{suelo} = 17 * 8.85 * 10^{-12} = 1.50 * 10^{-10} \left(\frac{F}{m}\right)$$

$$C_{suelo} = \frac{\in_{suelo} * \rho_{suelo}}{R_0}$$

$$C_{suelo} = \left(\frac{1.50 * 10^{-10}(100)}{35.76}\right)$$

$$C_{suelo} = 4.19 * 10^{-1} (F) = 0.000419 \mu F$$

3.2.2.4. Cálculo del gradiente de ionización del suelo.

$$G_s = 241(\rho_{suelo}^{0.215})$$

 $G_s = 241(100^{0.215}) = 648.65 \ (kV/m)$

3.2.2.5. Cálculo de la corriente de ionización del suelo.

$$I_g = \frac{G_s * \rho_{suelo}}{2\pi * R_0^2}$$

$$I_g = \frac{648.65(100)}{2\pi(35.76)^2} = 8.07 \, (kA)$$

3.2.2.6. Cálculo de la resistencia transitoria del SPT.

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0.r}}{I_g}\right)}}$$

3.2.2.7. Cálculo del voltaje en la resistencia transitoria del SPT.

$$V.Rtr = Rtr * I0.r$$

Conocemos: $R_0 = 35.76 \ \Omega \ \dots \ I_g = 8.07 \ \text{kA} \ \dots \ I_{0,r} = (\text{desde 1 hasta } 200 \ \text{kA})$

I_rayo (A)	R0(Ohm)	lg(A)	R_tr (Ohm)	VR_tr (V)
0	35.76	8073	35.76	
1000	35.76	8073	33.7318	33732
5000	35.76	8073	28.1014	140507
10000	35.76	8073	23.9001	239001
15000	35.76	8073	21.1526	317288
20000	35.76	8073	19.1766	383531
30000	35.76	8073	16.4667	494001
40000	35.76	8073	14.6543	586171
50000	35.76	8073	13.3330	666650
60000	35.76	8073	12.3148	738888
70000	35.76	8073	11.4991	804938
80000	35.76	8073	10.8266	866131
90000	35.76	8073	10.2598	923385
100000	35.76	8073	9.7736	977364
110000	35.76	8073	9.3506	1028566
120000	35.76	8073	8.9781	1077376
130000	35.76	8073	8.6469	1124097
140000	35.76	8073	8.3498	1168975
150000	35.76	8073	8.0814	1212209
160000	35.76	8073	7.8373	1253967
170000	35.76	8073	7.6141	1294389
180000	35.76	8073	7.4089	1333596
190000	35.76	8073	7.2194	1371690
200000	35.76	8073	7.0438	1408760

El cálculo de R_tr y el VR_tr se muestra en la Tabla 3:

Tabla 3. Configuración de la resistencia transitoria del SPT, para uso en
ATPDraw. [14], [15]
Fuente: Los autores.

3.3. ELECTRODOS VERTICALES EN LINEA CON EMPOTRAMIENTO.

Se puede formar un SPT con varios electrodos verticales en línea, considerando las siguientes observaciones:

- El arreglo de electrodos (2,3,4, etc...), en línea deben estar empotrados a una profundidad (h) con respecto al nivel del suelo.
- La separación entre cada electrodo (S ≥ 1.5 * L), para evitar recirculaciones de corriente y buscar que la resistencia equivalente se aproxime al paralelo de los electrodos instalados. (Hasta 3 electrodos en línea, la resistencia equivalente es aproximada a las tres resistencias en paralelo), a partir del cuarto electrodo esta proporción se empieza a perder, aunque se mantiene la disminución de la Requiv a medida que se incrementa el número de electrodos.
- La bajante de puesta a tierra debe ser de cobre aislado, sobre todo la parte empotrada en el suelo, para evitar que la bajante pase a formar parte del electrodo y el mismo se comporte como un electrodo equivalente sin empotramiento.

Este arreglo de electrodos en línea se muestra en la Figura 17.

Figura 17. SPT formado por electrodos verticales en línea empotrados a una profundidad h. Fuente: Los autores.

Caso de estudio [12]:

n = 2 electrodos de iguales características

Electrodo: tipo varilla/pica/jabalina

Material: Copperweld

Longitud: L = 2.40 (m)

Diámetro: 2a = 5/8" = 0.0158 m

Radio: r = 0.0079 (m)

Resistividad del suelo: $\rho_{suelo} = 100 (\Omega^* m)$

Permitividad relativa del suelo: $\epsilon_r = 17$ Corriente de descarga: I(60 Hz) = 2000 (A) Resistividad de la superficie: $\rho_{superficie} = 3000$ (Ω^* m) (Hormigón o concreto) Altura de la superficie: h. superficie = 0.1 m Altura de empotramiento: h = 0.5 m Constante de voltajes soportables para personas: k(70kg) = 0.157Tiempo de falla: T. falla = 0.5 seg Resistencia del cuerpo humano: $R. cuerpo = 1000 \Omega$ Resistencia de los zapatos: R. zapato 1 = R. zapato 2 = 50 k Ω (Zapatos de goma)

3.3.1. Modelado del SPT ante descargas de frecuencia industrial.

Para determinar los parámetros (Vr, V1, Vr1) de SPT que utilizan arreglos geométricos más complejos de electrodos (verticales, horizontales, anillos, mixtos, etc....), parámetros que permiten a través de Vr1 determinar los voltajes de seguridad (paso y contacto) que se generan en el SPT ante una determinada descarga de corriente de frecuencia industrial, se puede utilizar los siguientes métodos:

- Método aproximado a través de *R*₀.
- Método más preciso a través de sobreposición de voltajes generados.

Cuando el SPT está formado por más de un electrodo, los voltajes de seguridad paso y contactos generados en un punto dado de la instalación, obedece a la sobreposición de voltajes generados por cada uno de los electrodos que forman el arreglo geométrico, siendo este un método más preciso, pero también más complejo de aplicarlo. [17], [18]

Entonces un método más sencillo para estimar los voltajes de seguridad (paso y contacto) generados en el SPT es el denominado método aproximado a través de R_0 , para lo cual se considera la siguiente estimación:

$$VR_0 = R_0 * I = Vr_1$$

Al conocer la máxima diferencia de potencial generado por el SPT (Vr_1) podemos entonces determinar los voltajes de paso y contacto generados, utilizando los modelos para voltajes de paso y contacto del cuerpo humano presentados y analizados en los casos anteriores.

3.3.2. MODELADO DEL SPT PARA DESCARGAS DE ALTA FRECUENCIA (CORRIENTES TIPO RAYO)

Para modelar el SPT para descargas de altas corrientes y altas frecuencias, por ejemplo, para corrientes tipo rayo, es necesario determinar los siguientes parámetros:

- R_0 : resistencia del SPT ante descargas de frecuencia industrial
- *L*: inductancia del electrodo de puesta a tierra.
- *C*: capacitancia del suelo.
- \in_s : permitividad del suelo.
- G_s : gradiente de ionización del suelo.
- I_g : corriente de ionización del suelo.
- R_{Tr} : resistencia transitoria del SPT.
- $I_{0.r}$: corriente tipo rayo.
- *V. Rtr*: voltaje en la resistencia transitoria.

3.3.2.1. Cálculo de la resistencia del SPT para frecuencia industrial (R₀)

Para el cálculo de R_0 utilizamos la ecuación dada para electrodos verticales en línea empotrados una profundidad h.

$$R_0 = \frac{\rho}{2\pi * L * n} ln \left[\frac{h(2a+L)}{a(2h+L)} \right] + \frac{\rho}{2\pi \cdot (L+h) \cdot n} * \left[ln \left(\frac{2h+L}{h} \right) + \sum_{i=1}^{n-1} ln \left(\frac{s_i+h+L}{s_i} \right) \right]$$

$$\boldsymbol{R_0} = \frac{100}{2\pi * 2.4 * 2} \ln \left[\frac{0.5(2(0.0079) + 2.4)}{0.0079(2(0.5) + 2.4)} \right] + \frac{100}{2\pi * (2.4 + 0.5) * 2}$$

$$*\left[ln\left(\frac{2(0.5)+2.4}{0.5}\right)+\sum_{i=1}^{1}ln\left(\frac{1.5(2.4)+0.5+2.4}{1.5(2.4)}\right)\right]$$

 $R_0 = 19.50\Omega$

En el modelado de un electrodo vertical empotrado (h = 0.5 m) se determinó un valor de R_0 = 35.76 Ω , esto significa que si ponemos dos electrodos en línea de 35,76 Ω y aplicamos el criterio de dos resistencias en paralelo, la resistencia equivalente es:

 R_{equiv} = 17.88 Ω , comparada con la R_0 obtenida mediante la ecuación general (19.50 Ω), la diferencia representa un error de aproximadamente el 8%, proporción que puede mantenerse hasta un tercer electrodo, de acuerdo a lo indicado anteriormente (a partir del cuarto electrodo esta proporción se pierde)

3.3.2.2. Cálculo de la inductancia del electrodo.

Para hallar la inductancia de la varilla se realizó el siguiente proceso:

$$L = \left(\frac{\mu_0 \cdot L}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$
$$L = \frac{4\pi * 10^{-7}(2.40)}{2\pi} \cdot \left[ln\left(\frac{2(2.4)}{0.007938}\right) - 1 \right] = 2.59 * 10^{-6} H$$

$L = 0.00259 \, mH$

3.3.2.3. Cálculo de la capacitancia del suelo.

Para hallar la capacitancia del suelo se realizó el siguiente proceso:

$$\in_{suelo} = \in_r * \in_0$$

$$\epsilon_{suelo} = 17 * 8.85 * 10^{-12} = 1.50 * 10^{-10} \left(\frac{F}{m}\right)$$

$$C_{suelo} = \frac{\epsilon_{suelo} * \rho_{suelo}}{R_0}$$

$$\boldsymbol{C_{suelo}} = \left(\frac{1.50 * 10^{-10}(100)}{19.50}\right)$$

$$C_{suelo} = 7.69 * 10^{-10} (F) = 0.000769 \, \mu F$$

3.3.2.4. Cálculo del gradiente de ionización del suelo.

$$G_s = 241(\rho_{suelo}^{0.215})$$

 $G_s = 241(100^{0.215}) = 648.65 (kV/m)$

3.3.2.5. Cálculo de la corriente de ionización del suelo.

$$I_g = \frac{G_s * \rho_{suelo}}{2\pi * R_0^2}$$

$$I_g = \frac{648.65(100)}{2\pi (19.50)^2} = 27.15 \ (kA)$$

3.3.2.6. Cálculo de la resistencia transitoria del SPT.

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0,r}}{I_g}\right)}}$$

3.3.2.7. Cálculo del voltaje en la resistencia transitoria del SPT.

$$V.Rtr = Rtr * I0.r$$

Conocemos: $R_0 = 19.50 \ \Omega \ \dots \ I_g = 27.15 \ \text{kA} \ \dots \ I_{0,r} = (\text{desde 1 hasta } 200 \ \text{kA})$

La configuración de la resistencia transitoria y el voltaje en la misma se muestra en la Tabla 4

I_rayo (A)	R0(Ohm)	lg(A)	R_tr (Ohm)	VR_tr (V)
0	19.5	27150	19.5	
1000	19.5	27150	19.1505	19151
5000	19.5	27150	17.9196	89598
10000	19.5	27150	16.6702	166702
15000	19.5	27150	15.6502	234753
20000	19.5	27150	14.7972	295943
30000	19.5	27150	13.4404	403211
40000	19.5	27150	12.3993	495971
50000	19.5	27150	11.5678	578391
60000	19.5	27150	10.8839	653036
70000	19.5	27150	10.3086	721599
80000	19.5	27150	9.8157	785260
90000	19.5	27150	9.3875	844872
100000	19.5	27150	9.0108	901076
110000	19.5	27150	8.6760	954365
120000	19.5	27150	8.3761	1005126
130000	19.5	27150	8.1052	1053673
140000	19.5	27150	7.8590	1100258
150000	19.5	27150	7.6339	1145092
160000	19.5	27150	7.4272	1188351
170000	19.5	27150	7.2364	1230184
180000	19.5	27150	7.0596	1270719
190000	19.5	27150	6.8951	1310066
200000	19.5	27150	6.7416	1348321

Tabla 4. Configuración de la resistencia transitoria del SPT, para uso en
ATPDraw. [14], [15]
Fuente: Los autores.

3.4. ELECTRODO HORIZONTAL EMPOTRADO A UNA PROFUNDIDAD (h).

Otra manera de formar un SPT es utilizando un electrodo instalado de forma horizontal, empotrado a una profundidad h, este diseño es recomendado para suelos que presentan baja resistividad a profundidades cercanas a la superficie. El arreglo de este SPT se muestra en la Figura 18.

Figura 18. SPT formado por un electrodo horizontal empotrado a una profundidad h. Fuente: Los autores.

Caso de estudio [12]: Electrodo: tipo varilla/pica/jabalina Material: Copperweld Longitud: L = 2.40 (m) Diámetro: 2a = 5/8" = 0.0158 m Radio: r = 0.0079 (m) Resistividad del suelo: $\rho_{suelo} = 100 (\Omega^* m)$ Permitividad relativa del suelo: $\epsilon_r = 17$ Corriente de descarga: I(60 Hz) = 2000 (A)Resistividad de la superficie: $\rho_{superficie} = 3000 \ (\Omega^*m) \ \dots \ (Hormigón o concreto)$ Altura de la superficie: h. superficie = 0.1 mAltura de empotramiento: h = 0.5 m Constante de voltajes soportables para personas: k(70kg) = 0.157Tiempo de falla: T. falla = 0.5 segResistencia del cuerpo humano: R. cuerpo = 1000Ω Resistencia de los zapatos: R. zapato $1 = R. zapato 2 = 50 \text{ k}\Omega$ (Zapatos de goma)

3.4.1. Modelado del SPT ante descargas de frecuencia industrial.

Para determinar los parámetros del SPT a frecuencia industrial podemos aplicar un método aproximado igual al utilizado en el caso anterior (electrodos verticales en línea), o también mediante la ecuación general del perfil de voltajes para este tipo de arreglo, ecuación que es:

$$v_{x} = \frac{\rho \cdot I}{\pi (L+h)} * ln \left[\frac{2\sqrt{x^{2} + h^{2}} + L + 2 * h}{2 \cdot \sqrt{x^{2} + h^{2}}} \right]$$

Con lo cual se puede obtener: Vr, V1 y Vr1...etc....

3.4.1.1. Cálculo de la resistencia del SPT para frecuencia industrial (R_0)

Para el cálculo de R_0 utilizamos la ecuación dada para un electrodo horizontal empotrado a una profundidad h.

$$R_0 = \frac{\rho}{2\pi L} ln \left[\frac{h(2a+L)}{a(2h+L)} \right] + \frac{\rho}{\pi * (L+2h)} ln \left[\frac{4h+L}{2h} \right]$$

Donde:

$$\boldsymbol{R}_{0} = \frac{100}{2\pi(2.4)} * \ln\left[\frac{0.5(2(0.0079) + 2.4)}{0.0079(2(0.5) + 2.4)}\right] + \frac{100}{\pi * (2.4 + 2(2.4))} * \ln\left[\frac{4(0.5) + 2.4}{2(0.5)}\right]$$

$$R_0 = 31.79$$
 Ω

3.4.1.2. Cálculo de la máxima elevación de voltaje generado por el SPT (V_r)

$$v_x = \frac{\rho \cdot I}{2\pi L} \cdot ln\left(\frac{x+L}{x}\right)$$

Por lo tanto:

$$V_{x=r} = V_r = \frac{(100)(2000)}{2\pi(2.4)} * \ln\left(\frac{0.007938 + 2.40}{0.007938}\right)$$

$$V_{x=r} = V_r = 75795 V$$

3.4.1.3. Cálculo de la elevación de voltaje generado por el SPT para $x = 1m (V_1)$

$$V_{x} = \frac{\rho \cdot I}{\pi (L+h)} * \ln \left[\frac{2\sqrt{x^{2} + h^{2}} + L + 2 * h}{2 \cdot \sqrt{x^{2} + h^{2}}} \right]$$

Por lo tanto:

$$V_x = \frac{100(2000)}{\pi(2.4+0.5)} * \ln\left[\frac{2\sqrt{1^2+h^2}+L+2*h}{2\cdot\sqrt{x^2+h^2}}\right]$$

$$V_1 = 20294 V$$

3.4.1.4. Cálculo de la máxima diferencia de potencial generada por el SPT (V_{r_1})

$$V_{r1} = V_r - V_1 = 75795 - 20294$$

$$V_{r1} = 55501 V$$

3.4.1.5. Cálculo de los voltajes de contacto y paso soportables por una persona de 70 kg

Se considera:

k(70kg) = 0.157 ρ . suelo = 100 Ω *m T. falla = 0.5 seg ρ . superficie = 3000 Ω *m (concreto) h. superficie = 0.1 m

El coeficiente de disminución superficial es:

$$C_s = 1 - \left[\frac{(0.09)\left(1 - \frac{\rho_{suelo}}{\rho_{superf}}\right)}{\left(2h_{superf} + 0.09\right)}\right]$$

Por lo tanto:

$$C_s = 1 - \left[\frac{0.09 \left[1 - \frac{100}{3000} \right]}{(2(0.1) + 0.09)} \right] = 0.70$$

El voltaje de contacto o toque máximo soportable por una persona de 70 kg es:

$$V_{toque} = \frac{k}{\sqrt{t_f}} (1000 + 1.5 * C_s * \rho_{superf})$$

Por lo tanto:

$$V_{toque}(70kg) = \frac{0.157}{\sqrt{0.5}} [1000 + (1.5)(0.70)(3000)] = 921.4 V$$

El voltaje de paso soportable por una persona de 70 kg es:

$$V_{paso} = \frac{k}{\sqrt{t_f}} (1000 + 6 * C_s * \rho_{superf})$$

Por lo tanto:

$$V_{paso}(70kg) = \frac{0.157}{\sqrt{0.5}} [1000 + (6)(0.7)(3000)] = 3019.63 V$$

3.4.1.6. Cálculo de los voltajes de contacto y paso generados por el SPT.

Se considera: $R. cuerpo = 1000 \Omega$ $R. zapato 1 = R. zapato 2 = 50 k\Omega$ (Zapatos de goma) $\rho. superficie = 3000 \Omega^*m$ (concreto) El voltaje de paso generado por el sistema de puesta a tierra es:

$$R_{sf} = 3 * \rho_{superficie} = 3(3000) = 9000\Omega$$
$$R_{equiv} = R_{zap1} + R_{zap2} + R_{sf} + R_{sf} + R_{cuerpo}$$
$$R_{equiv} = 50000 + 50000 + 9000 + 9000 + 1000 = 119000 \Omega$$

Por lo tanto:

$$V_{p.gener} = R_{cuerpo} * \left[\frac{V_{r1}}{R_{equiv}} \right]$$

$$V_{p.gener} = 1000 * \left[\frac{55501}{119000}\right] = 466.39 V$$

El voltaje de contacto generado por el sistema de puesta a tierra es:

$$R_{sf} = 3 * \rho_{superficie} = 3(3000) = 9000\Omega$$

$$R_{equiv} = R_{cuerpo} + \frac{\left[\left(R_{zap1} + R_{sf} \right) * \left(R_{zap2} + R_{sf} \right) \right]}{\left(R_{zap1} + R_{sf} \right) + \left(R_{zap2} + R_{sf} \right)}$$

$$\boldsymbol{R_{equiv}} = 1000 + \frac{\left[(50000 + 9000) * (50000 + 9000)\right]}{(50000 + 9000) + (50000 + 9000)} = 30500 \,\Omega$$

$$V_{c.gener} = R_{cuerpo} * \left[\frac{V_{r1}}{R_{equiv}} \right]$$

$$V_{c.gener} = 1000 * \left[\frac{55501}{30500}\right] = 1819.70 V$$

3.4.1.7. Evaluación del SPT antes descargas de frecuencia industrial

Vp.soportable = 3019.63 V Vp.generado = 466.39 V..... El SPT es SEGURO [9], [16]

Vc.soportable = 921.4 V.....Vc.generado = 1819.70 V..... El SPT NO es SEGURO [9], [16]

3.4.2. MODELADO DEL SPT PARA DESCARGAS DE ALTA FRECUENCIA (CORRIENTES TIPO RAYO)

Para modelar el SPT para descargas de altas corrientes y altas frecuencias, por ejemplo, para corrientes tipo rayo, es necesario determinar los siguientes parámetros:

- R_0 : resistencia del SPT ante descargas de frecuencia industrial
- *L*: inductancia del electrodo de puesta a tierra.
- *C*: capacitancia del suelo.
- \in_s : permitividad del suelo.
- G_s : gradiente de ionización del suelo.
- I_g : corriente de ionización del suelo.
- R_{Tr} : resistencia transitoria del SPT.
- $I_{0.r}$: corriente tipo rayo.
- *V. Rtr*: voltaje en la resistencia transitoria.

3.4.2.1. Cálculo de la resistencia del SPT para frecuencia industrial (R_0)

El cálculo de R_0 se muestra en el modelado del SPT para frecuencia industrial:

$$R_0 = 31.79 \,\Omega$$

3.4.2.2. Cálculo de la inductancia del electrodo.

$$L = \left(\frac{\mu_0 \cdot L}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$

$$L = \frac{4\pi * 10^{-7} (2.40)}{2\pi} \cdot \left[\ln\left(\frac{2.(2.4)}{0.007938}\right) - 1 \right] = 2.59 * 10^{-6} H$$

$$L = 0.00259 \, mH$$

3.4.2.3. Cálculo de la capacitancia del suelo.

$$\in_{suelo} = \in_r * \in_0$$

$$\in_{suelo} = 17 * 8.85 * 10^{-12} = 1.50 * 10^{-10} \left(\frac{F}{m}\right)$$

$$C_{suelo} = \frac{\in_{suelo} * \rho_{suelo}}{R_0}$$

$$C_{suelo} = \left(\frac{1.50 * 10^{-10}(100)}{31.79\,\Omega}\right)$$

$$C_{suelo} = 4.71 * 10^{-10} (F) = 0.000471 \mu F$$

3.4.2.4. Cálculo del gradiente de ionización del suelo.

$$G_s = 241 (\rho_{suelo}^{0.215})$$

 $G_s = 241 (100^{0.215}) = 648.65 (kV/m)$

3.4.2.5. Cálculo de la corriente de ionización del suelo.

$$I_g = \frac{G_s * \rho_{suelo}}{2\pi * R_0^2}$$

$$I_g = \frac{648.65(100)}{2\pi(31.79)^2} = 10.21 \, (kA)$$

3.4.2.6. Cálculo de la resistencia transitoria del SPT.

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0,r}}{I_g}\right)}}$$

3.4.2.7. Cálculo del voltaje en la resistencia transitoria del SPT.

$$V.Rtr = Rtr * I0.r$$

Conocemos: $R_0 = 31.79 \ \Omega \ \dots \ I_g = 10.21 \ \text{kA} \ \dots \ I_{0,r} = (\text{desde 1 hasta } 200 \ \text{kA})$

I_rayo (A)	R0(Ohm)	lg(A)	R_tr (Ohm)	VR_tr (V)
0	31.79	10215	31.79	
1000	31.79	10215	30.3396	30340
5000	31.79	10215	26.0480	130240
10000	31.79	10215	22.5981	225981
15000	31.79	10215	20.2339	303509
20000	31.79	10215	18.4841	369682
30000	31.79	10215	16.0220	480659
40000	31.79	10215	14.3381	573526
50000	31.79	10215	13.0935	654677
60000	31.79	10215	12.1254	727522
70000	31.79	10215	11.3444	794109
80000	31.79	10215	10.6972	855776
90000	31.79	10215	10.1495	913452
100000	31.79	10215	9.6781	967808
110000	31.79	10215	9.2668	1019349
120000	31.79	10215	8.9039	1068465
130000	31.79	10215	8.5805	1115465
140000	31.79	10215	8.2900	1160596
150000	31.79	10215	8.0271	1204063
160000	31.79	10215	7.7877	1246037
170000	31.79	10215	7.5686	1286658
180000	31.79	10215	7.3669	1326050
190000	31.79	10215	7.1806	1364316
200000	31.79	10215	7.0077	1401548

El cálculo de R_tr y el VR_tr se muestra en la Tabla 5:

Tabla 5. Configuración de la resistencia transitoria del SPT, para uso	en
ATPDraw. [14], [15]	
Fuente: Los autores.	

3.5. ELECTRODO FORMADO POR UN ANILLO CIRCULAR DE COBRE DESNUDO EMPOTRADO A UNA PROFUNDIDAD (h).

Un SPT formada por un anillo circular de conductor de cobre desnudo, empotrado a una profundidad h, con respecto al nivel suelo, como se muestra en la Figura 19,

Figura 19. SPT formado por un anillo de conductor de cobre desnudo empotrado a una profundidad h. Fuente: Los autores.

Caso de estudio [12]: Electrodo: tipo anillo circular Material: cobre desnudo Diámetro: D = 2.40 m Radio del conductor de cobre: r = a = 0.0079 (m) Resistividad del suelo: $\rho_{suelo} = 100$ (Ω^* m) Permitividad relativa del suelo: $\epsilon_r = 17$ Altura de empotramiento: h = 0.5 m Tiempo de falla: T. falla = 0.5 seg Resistencia del cuerpo humano: $R. cuerpo = 1000 \Omega$ Resistencia de los zapatos: R. zapato 1 = R. zapato 2 = 50 k Ω (Zapatos de goma)

3.5.1. Modelado del SPT ante descargas de frecuencia industrial.

Para el análisis del comportamiento del SPT ante descargas de frecuencia industrial podemos aplicar el mismo método (aproximado) presentado en el caso anterior, en base a la resistencia R_0 .

3.5.1.1. Cálculo de la resistencia del SPT para frecuencia industrial (R_0)

En la literatura general de SPT se encuentra varias ecuaciones, que nos permiten calcular R_0 , sin embargo, podemos utilizar una ecuación dada por la Norma IEEE 14 142-1991, para conductores horizontales empotrados o enterrados a una profundidad h del suelo, siendo una ecuación bastante general para cualquier tipo de arreglos geométricos tipo anillos (circulares, cuadrado, rectangulares, hexagonales, etc.), aplicable para arreglos de anillos con o sin picas en sus perfiles o vértices. [19]

Para el cálculo de R_0 utilizamos la ecuación dada para un electrodo formado por un anillo de conductor de cobre desnudo empotrado a una profundidad h.

$$R_{0} = \frac{\rho}{2\pi * Long_{T}} * ln\left[\frac{\left(2 * Long_{T}\right)}{a}\right] + ln\left[\frac{Long_{T}}{h}\right] - 2 + \left(\frac{2h}{Long_{T}}\right) - \frac{h^{2}}{\left(Long_{T}\right)^{2}} + \frac{h^{4}}{\left(2 * Long_{T}\right)^{4}}$$

 $Long_T = Long.anillo + Long.picas$

$Long_T = \pi * D + 0 = \pi * 2.4 = 7.56 m$

$$\boldsymbol{R}_{0} = \frac{100}{2\pi * 7.56} * \ln\left[\frac{(2 * 7.56)}{0.0079}\right] + \ln\left[\frac{7.56}{0.5}\right] - 2 + \left(\frac{2(0.5)}{7.56}\right) - \frac{(0.5)^{2}}{(7.56)^{2}} + \frac{(0.5)^{4}}{\left(2 * (7.56)^{4}\right)}$$

 $R_0 = 18.35\Omega$

3.5.1.2. Cálculo de la inductancia del electrodo.

$$L = \left(\frac{\mu_0 \cdot L}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$

$$L = \frac{4\pi * 10^{-7} (7.56)}{2\pi} \cdot \left[\ln \left(\frac{2.(7.56)}{0.007938} \right) - 1 \right] = \mathbf{1.31} * \mathbf{10^{-6}} H$$

$$L = 0.00131 \, mH$$

3.5.1.3. Cálculo de la capacitancia del suelo.

$$\in_{suelo} = \in_r * \in_0$$

$$\in_{suelo} = 17 * 8.85 * 10^{-12} = 1.50 * 10^{-10} \left(\frac{F}{m}\right)$$

$$C_{suelo} = \frac{\in_{suelo} * \rho_{suelo}}{R_0}$$

$$\boldsymbol{C_{suelo}} = \left(\frac{1.50 * 10^{-10}(100)}{18.35 \,\Omega}\right)$$

$$C_{suelo} = 8.17 * 10^{-10} (F) = 0.000817 \mu F$$

3.5.1.4. Cálculo del gradiente de ionización del suelo.

$$G_s = 241(\rho_{suelo}^{0.215})$$

= 241(100^{0.215}) = 648.65 (kV/m)

3.5.1.5. Cálculo de la corriente de ionización del suelo.

 G_s

$$I_g = \frac{G_s * \rho_{suelo}}{2\pi * R_0^2}$$

$$I_g = \frac{648.65(100)}{2\pi(18.35)^2} = 30.65 \,(kA)$$

3.5.1.6. Cálculo de la resistencia transitoria del SPT.

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0.r}}{I_g}\right)}}$$

3.5.1.7. Cálculo del voltaje en la resistencia transitoria del SPT.

$$V.Rtr = Rtr * I0.r$$

Conocemos: $R_0 = 18.35 \ \Omega \ \dots \ I_g = 30.65 \ \text{kA} \ \dots \ I_{0.r} = (\text{desde 1 hasta } 200 \ \text{kA})$

100

I_rayo (A)	R0(Ohm)	lg(A)	R_tr (Ohm)	VR_tr (V)
0	18.35	30659	18.35	
1000	18.35	30659	18.0579	18058
5000	18.35	30659	17.0149	85075
10000	18.35	30659	15.9344	159344
15000	18.35	30659	15.0367	225550
20000	18.35	30659	14.2753	285507
30000	18.35	30659	13.0457	391371
40000	18.35	30659	12.0874	483494
50000	18.35	30659	11.3133	565664
60000	18.35	30659	10.6711	640267
70000	18.35	30659	10.1272	708903
80000	18.35	30659	9.6588	772701
90000	18.35	30659	9.2499	832487
100000	18.35	30659	8.8888	888885
110000	18.35	30659	8.5670	942375
120000	18.35	30659	8.2778	993342
130000	18.35	30659	8.0161	1042092
140000	18.35	30659	7.7777	1088876
150000	18.35	30659	7.5594	1133905
160000	18.35	30659	7.3585	1177352
170000	18.35	30659	7.1728	1219368
180000	18.35	30659	7.0004	1260078
190000	18.35	30659	6.8400	1299594
200000	18.35	30659	6.6901	1338012

El cálculo de R_tr y el VR_tr se muestra en la Tabla 6:

Tabla 6. Configuración de la resistencia transitoria del SPT, para uso en
ATPDraw. [14], [15]
Fuente: Los autores.

3.6. SPT MIXTO: ANILLOS CUADRADOS MAS PICAS VERTICALES EN LOS EXTREMOS, EMPOTRADOS UNA PROFUNDIDAD h.

Se puede formar SPT mixtos esto significa, arreglos geométricos con electrodos verticales, horizontales, anillos, etc...

Un ejemplo de este tipo de arreglos se presenta en la Figura 20, para el caso de un anillo cuadrado con picas verticales en los vértices, empotrados a una profundidad h.

Figura 20. SPT formado por un anillo de conductor de cobre desnudo empotrado a una profundidad h. Fuente: Los autores.

Caso de estudio [12], [20]: Electrodo: tipo anillo cuadrado Material: cobre desnudo Longitud de cada lado = 2.40 m Radio del conductor de cobre: r = a = 0.0079 (m) Pica 1= Pica 2= Pica 3= Pica 4... 2.40 m / 5/8" Long.pica = 2.40 m Radio.pica = a = 0.0079 (m) Resistividad del suelo: $\rho_{suelo} = 100$ (Ω *m) Permitividad relativa del suelo: $\epsilon_r = 17$ Altura de empotramiento: h = 0.5 m Tiempo de falla: T. falla = 0.5 seg Resistencia del cuerpo humano: $R. cuerpo = 1000 \Omega$ Resistencia de los zapatos: R. zapato 1 = R. zapato 2 = 50 k Ω (Zapatos de goma) Para el análisis del comportamiento del SPT ante descargas de frecuencia industrial podemos aplicar el mismo método (aproximado) presentado en el caso anterior, en base a la resistencia R_0 .

3.6.1.1. Cálculo de la resistencia del SPT para frecuencia industrial (R_0)

Para el cálculo de R_0 utilizamos la ecuación dada para un electrodo formado por un anillo de conductor de cobre desnudo más picas, empotrados a una profundidad h.

$$R_{0} = \frac{\rho}{2\pi * Long_{T}} * ln\left[\frac{\left(2 * Long_{T}\right)}{a}\right] + ln\left[\frac{Long_{T}}{h}\right] - 2 + \left(\frac{2h}{Long_{T}}\right) - \frac{h^{2}}{\left(Long_{T}\right)^{2}} + \frac{h^{4}}{\left(2 * Long_{T}^{4}\right)}$$

 $Long_T = Long.anillo + Long.picas$

$$Long_T = 4(Long. lado) + 4(2.40) = 4(2.40) + 4(2.40) = 19.2 m$$

$$\boldsymbol{R}_{0} = \frac{100}{2\pi * 19.2} * \ln\left[\frac{(2*19.2)}{0.0079}\right] + \ln\left[\frac{19.2}{0.5}\right] - 2 + \left(\frac{2(0.5)}{19.2}\right) - \frac{(0.5)^{2}}{(19.2)^{2}} + \frac{(0.5)^{4}}{(2*(19.2)^{4})}$$

 $R_0 = 8.73\Omega$

3.6.1.2. Cálculo de la inductancia del electrodo.

$$L = \left(\frac{\mu_0 \cdot L}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$

$$L = \frac{4\pi * 10^{-7} (2.40)}{2\pi} \cdot \left[\ln\left(\frac{2.(2.4)}{0.007938}\right) - 1 \right] = 2.59 * 10^{-6} H$$

$$L = 0.00259 \, mH$$

$$\epsilon_{suelo} = \epsilon_r * \epsilon_0$$

$$\epsilon_{suelo} = 17 * 8.85 * 10^{-12} = 1.50 * 10^{-10} \left(\frac{F}{m}\right)$$

$$C_{suelo} = \frac{\epsilon_{suelo} * \rho_{suelo}}{R_0}$$

$$\boldsymbol{C_{suelo}} = \left(\frac{1.50 * 10^{-10}(100)}{8.73\,\Omega}\right)$$

$$C_{suelo} = 1.71 * 10^{-9} (F) = 0.00171 \mu F$$

3.6.1.4. Cálculo del gradiente de ionización del suelo.

$$G_s = 241(\rho_{suelo}^{0.215})$$

 $G_s = 241(100^{0.215}) = 648.65 (kV/m)$

3.6.1.5. Cálculo de la corriente de ionización del suelo.

$$I_g = \frac{G_s * \rho_{suelo}}{2\pi * R_0^2}$$

$$I_g = \frac{648.65(100)}{2\pi(8.73)^2} = 135.45 \,(kA)$$

3.6.1.6. Cálculo de la resistencia transitoria del SPT.

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0.r}}{I_g}\right)}}$$

3.6.1.7. Cálculo del voltaje en la resistencia transitoria del SPT.

$$V.Rtr = Rtr * I0.r$$

Conocemos: $R_0 = 8.73 \ \Omega \ \dots \ I_g = 135.45 \ \text{kA} \ \dots \ I_{0,r} = (\text{desde 1 hasta } 200 \ \text{kA})$

El cálculo de R_tr y el VR_tr se muestra en la Tabla 7:

I_rayo (A)	R0(Ohm)	lg(A)	R_tr (Ohm)	VR_tr (V)
0	8.73	135457	8.73	
1000	8.73	135457	8.6980	8698
5000	8.73	135457	8.5732	42866
10000	8.73	135457	8.4246	84246
15000	8.73	135457	8.2834	124251
20000	8.73	135457	8.1491	162982
30000	8.73	135457	7.8990	236970
40000	8.73	135457	7.6706	306824
50000	8.73	135457	7.4609	373047
60000	8.73	135457	7.2676	436054
70000	8.73	135457	7.0885	496195
80000	8.73	135457	6.9220	553764
90000	8.73	135457	6.7668	609012
100000	8.73	135457	6.6215	662154
110000	8.73	135457	6.4853	713378
120000	8.73	135457	6.3571	762847
130000	8.73	135457	6.2362	810702
140000	8.73	135457	6.1219	857070
150000	8.73	135457	6.0137	902061
160000	8.73	135457	5.9111	945775
170000	8.73	135457	5.8135	988300
180000	8.73	135457	5.7206	1029716
190000	8.73	135457	5.6321	1070094
200000	8.73	135457	5.5475	1109498

Tabla 7. Configuración de la resistencia transitoria del SPT, para uso en
ATPDraw. [14], [15]
Fuente: Los autores.

3.7. SPT PARA TORRES DE ACERO APLICADAS A LINEAS AEREAS DE SUBTRANSMISION Y/O TRANSMISION.

Se puede formar un SPT para torres de acero mediante un arreglo de dos conductores empotrados horizontalmente y sumado al vértice un electrodo empotrado verticalmente, de acuerdo a la Figura 21. [21]

Figura 21. SPT para torres de acero aplicadas a líneas aéreas de subtransmisión y/o transmisión. Fuente: Los autores.

Caso de estudio [12]:

Electrodos 1 y 2: Conductores de cobre horizontales (contrapesos)

Longitud: 10 metros

Calibre: #2 / 0 MCM cobre suave / 7 hilos

Sección: 67.35 mm²

Radio: 4.63 mm = 0.00463 m

Electrodo 3: Varilla de Copperweld

Longitud: 2.4 metros

Diámetro: 5/8"

Radio: 0.0079 m

Resistencia del cuerpo humano: $R. cuerpo = 1000 \Omega$

Permitividad relativa del suelo: $\epsilon_r = 25$

Resistividad del suelo: $\rho_{suelo} = 1000 \ (\Omega^*m)$

Altura de empotramiento: h = 0.5 m

3.7.1. Cálculo de la Resistencia equivalente del SPT a frecuencia industrial $(R_{0.eq})$

De acuerdo a la Figura 21, la torre se comporta como bajante de puesta a tierra, y la corriente de descarga se divide a través de los 4 nodos (A, B, C, D), cada uno de los nodos está formado por 3 electrodos de puesta a tierra, los mismos que resultan del equivalente paralelo de los dos conductores horizontales y la pica vertical.

Finalmente, la resistencia equivalente del SPT $(R_{0.eq})$ es el resultado del paralelo de las resistencias equivalentes de los nodos A, B, C, D.

Para determinar la resistencia de los conductores horizontales aplicamos la ecuación dada para un electrodo empotrado horizontalmente una profundidad h, mientras que el electrodo vertical obedece a la ecuación dada para un electrodo vertical empotrado a una profundidad h.

Cálculo de $R_0 1 = R_0 2$... conductores horizontales

$$R_0 = \frac{\rho}{2\pi L} ln \left[\frac{h(2a+L)}{a(2h+L)} \right] + \frac{\rho}{\pi * (L+2h)} ln \left[\frac{4h+L}{2h} \right]$$

$$\boldsymbol{R}_{0} = \frac{1000}{2\pi(10)} * \ln\left[\frac{0.5(2(0.0046) + 10)}{0.0046(2(0.5) + 10)}\right] + \frac{1000}{\pi * (10 + 2(0.5))} * \ln\left[\frac{4(0.5) + 10}{2(0.5)}\right]$$

$$R_0 = 145.02 \ \Omega = R_0 1 = R_0 2 \dots Para los nodos A, B, C, D$$

Cálculo de R₀3 ... electrodo vertical

$$R_0 = \frac{\rho}{2\pi L} ln \left[\frac{h(2a+L)}{a(2h+L)} \right] + \frac{\rho}{2\pi (L+h)} ln \left[\frac{2h+L}{h} \right]$$

Por lo tanto:

$$R_0 = \frac{1000}{2\pi(2.4)} ln \left[\frac{0.5(0.0158 + 2.4)}{0.007983(2(0.5) + 2.4)} \right] + \frac{1000}{2\pi(2.4 + 0.5)} ln \left[\frac{2(0.5) + 2.4}{0.5} \right]$$

$$R_0 = 356.90 \ \Omega = R_0 3$$

Cálculo de $R_{0.eq}$ (A = B = C = D)

$$R_{0.eq} (A = B = C = D) = (R_0 1) // (R_0 2) // (R_0 3)$$
$$R_{0.eq} (A = B = C = D) = (145.02) // (145.02) // (356.90)$$
$$R_{0.eq} (A = B = C = D) = 60.27 \Omega$$

Cálculo de la R_{0.eq} (SPT)

$$R_{0.eq} (SPT) = (R_{0.eq}A) // (R_{0.eq}B) // (R_{0.eq}C) // (R_{0.eq}D)$$
$$R_{0.eq} (SPT) = (60.27) // (60.27) // (60.27) // (60.27)$$
$$R_{0.eq} (SPT) = 15.07 \Omega$$

Para una torre sin descargador de sobrevoltajes la resistencia de puesta a tierra debe ser menor a 25 Ω , por lo tanto, el arreglo geométrico presentado (15.07 Ω), cumple con lo recomendado para esta estructura.

Si la torre incluye en la línea un descargador de sobrevoltaje, la resistencia de pie de torre debe ser menor a 10 Ω , por lo tanto, el SPT presentado debe ser mejorado para cumplir con la recomendación normativa.

3.7.2. Modelado para alta frecuencia de los conductores horizontales (contrapesos)

La metodología a seguir es la misma que utilizamos para el modelado de un electrodo horizontal empotrado a una profundidad h.

$$R_0 = 145.02 \ \Omega$$

$$L = \left(\frac{\mu_0 \cdot L}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$

$$L = \frac{4\pi * 10^{-7}(10)}{2\pi} \cdot \left[\ln\left(\frac{2(10)}{0.00463}\right) - 1 \right] = \mathbf{1} \cdot \mathbf{47} * \mathbf{10}^{-5} H$$

L = 0.0147 mH
$$\in_{suelo} = \in_r * \in_0$$

$$\in_{suelo} = 25 * 8.85 * 10^{-12} = 2.21 * 10^{-10} \left(\frac{F}{m}\right)$$

$$C_{suelo} = \frac{\in_{suelo} * \rho_{suelo}}{R_0}$$

$$C_{suelo} = \left(\frac{2.21 * 10^{-10}(1000)}{142.02 \,\Omega}\right)$$

$$C_{suelo} = 1.55 * 10^{-9} (F) = 0.00155 \,\mu F$$

$$G_s = 241(\rho_{suelo}^{0.215})$$

$$G_s = 241(1000^{0.215}) = 1064.18 (kV/m)$$

$$I_g = \frac{G_s * \rho_{suelo}}{2\pi * R_0^2}$$

$$I_g = \frac{1064.18(1000)}{2\pi(142.02)^2} = 8.39 \,(kA)$$

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0.r}}{I_g}\right)}}$$

V.Rtr = Rtr * I0.r

Para: $R_0 = 145.02 \quad \Omega \dots I_g = 8.39 \text{ kA} \dots I_{0,r} = (\text{desde 1 hasta } 200 \text{ kA})$

I_rayo (A)	R0(Ohm)	lg(A)	R_tr (Ohm)	VR_tr (V)
0	145.02	8390	145.02	
1000	145.02	8390	137.0806	137081
5000	145.02	8390	114.7938	573969
10000	145.02	8390	97.9531	979531
15000	145.02	8390	86.8548	1302822
20000	145.02	8390	78.8363	1576726
30000	145.02	8390	67.7953	2033860
40000	145.02	8390	60.3853	2415411
50000	145.02	8390	54.9718	2748588
60000	145.02	8390	50.7940	3047641
70000	145.02	8390	47.4437	3321059
80000	145.02	8390	44.6794	3574352
90000	145.02	8390	42.3480	3811324
100000	145.02	8390	40.3473	4034728
110000	145.02	8390	38.6057	4246626
120000	145.02	8390	37.0718	4448612
130000	145.02	8390	35.7073	4641944
140000	145.02	8390	34.4831	4827637
150000	145.02	8390	33.3768	5006524
160000	145.02	8390	32.3706	5179296
170000	145.02	8390	31.4502	5346537
180000	145.02	8390	30.6041	5508742
190000	145.02	8390	29.8228	5666340
200000	145.02	8390	29.0985	5819698

La configuración de la R_tr y el VR_tr se muestra en la Tabla 7:

Tabla 8. Configuración de la resistencia transitoria de los contrapesos 1 y2 utilizados para el SPT de torres metálicas. Para uso en ATPDraw. [14],[15]

Fuente: Los autores.

3.7.3. Modelado para alta frecuencia del electrodo vertical.

La metodología a seguir es la misma que utilizamos para el modelado de un electrodo vertical empotrado a una profundidad h.

$$R_0 = 356.90 \ \Omega = R_0 3$$

$$L = \left(\frac{\mu_0 \cdot L}{2\pi}\right) \left[ln\left(\frac{2L}{r}\right) - 1 \right]$$

$$L = \frac{4\pi * 10^{-7} (2.40)}{2\pi} \cdot \left[\ln\left(\frac{2.(2.4)}{0.007938}\right) - 1 \right] = 2.59 * 10^{-6} H$$

$$\in_{suelo} = \in_r * \in_0$$

$$\in_{suelo} = 25 * 8.85 * 10^{-12} = 2.21 * 10^{-10} \left(\frac{F}{m}\right)$$

$$C_{suelo} = \frac{\in_{suelo} * \rho_{suelo}}{R_0}$$

$$\boldsymbol{C_{suelo}} = \left(\frac{2.21 * 10^{-10}(1000)}{356.90}\right)$$

$$C_{suelo} = 6.19 * 10^{-1} (F) = 0.000619 \mu F$$

 $G_s = 241(\rho_{suelo}^{0.215})$

$$G_s = 241(1000^{0.215}) = 1064.18 (kV/m)$$

$$I_g = \frac{G_s * \rho_{suelo}}{2\pi * R_0^2}$$

$$I_g = \frac{1064.18(1000)}{2\pi(356.90)^2} = 1.32 \ (kA)$$

$$R_{Tr} = \frac{R_0}{\sqrt{1 + \left(\frac{I_{0.r}}{I_g}\right)}}$$

$$V.Rtr = Rtr * I0.r$$

Para: $R_0 = 356.90 \ \Omega \ \dots \ I_g = 1.32 \ \text{kA} \ \dots \ I_{0,r} = (\text{desde 1 hasta } 200 \ \text{kA})$

La configuración de R_tr y el VR_tr se muestra en la Tabla 8:

I_rayo (A)	R0(Ohm)	lg(A)	R_tr (Ohm)	VR_tr (V)
0	356.9	1320	356.9	
1000	356.9	1320	269.2090	269209
5000	356.9	1320	163.1079	815539
10000	356.9	1320	121.8738	1218738
15000	356.9	1320	101.5017	1522526
20000	356.9	1320	88.8055	1776110
30000	356.9	1320	73.2694	2198082
40000	356.9	1320	63.7901	2551604
50000	356.9	1320	57.2388	2861938
60000	356.9	1320	52.3640	3141837
70000	356.9	1320	48.5543	3398802
80000	356.9	1320	45.4710	3637683
90000	356.9	1320	42.9092	3861829
100000	356.9	1320	40.7367	4073671
110000	356.9	1320	38.8639	4275034
120000	356.9	1320	37.2278	4467335
130000	356.9	1320	35.7823	4651697
140000	356.9	1320	34.4931	4829028
150000	356.9	1320	33.3338	5000076
160000	356.9	1320	32.2842	5165465
170000	356.9	1320	31.3278	5325721
180000	356.9	1320	30.4516	5481295
190000	356.9	1320	29.6451	5632574
200000	356.9	1320	28.8995	5779896

Tabla 9. Configuración de la resistencia transitoria del electrodo verticalpara el SPT de torres metálicas. Para uso en ATPDraw. [14], [15]Fuente: Los autores.

CAPITULO IV

SIMULACIONES EN ATPDRAW DE LOS CASOS DE ESTUDIO

4.1. Introducción.

Los casos de estudios seleccionados y modelados en el CAPITULO III, son:

- SPT formado por un electrodo vertical sin empotramiento.
- SPT formado por un electrodo vertical con empotramiento.
- SPT formado por electrodos verticales en línea con empotramiento.
- SPT formado por un electrodo horizontal con empotramiento.
- SPT formador por un anillo circular con empotramiento.
- SPT formado por un anillo cuadrado con picas en los extremos, con empotramiento.

Para cada uno de los casos de estudio se ha definido parámetros generales tales como:

- Tipo de terreno.
- Resistividad del terreno.
- Tipo y características del electrodo.
- Profundidad de empotramiento.
- Tipo y características del conductor de cobre.
- Tipo y características de la bajante de puesta a tierra.
- Impedancia del cuerpo humano.
- Resistencia eléctrica de los zapatos.
- Pulso de corriente tipo rayo.
- Amplitudes de corriente tipo rayo.

4.2. Simulación de un SPT, formado por un electrodo vertical sin empotramiento.

Para esta simulación se considera los siguientes parámetros:

- Tipo de terreno: humus
- Resistividad del terreno*: $100 \Omega^*m$
- Permitividad relativa de terreno: 17
- Permitividad del vacío: $8.85 * 10^{-12}$ (F/m)
- Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (H/m)
- Tipo de electrodo: varilla / pica / jabalina
- Material del electrodo: Copperweld
- Longitud del electrodo: 2.40 m
- Diámetro del electrodo: 5/8"
- Bajante de puesta a tierra: cobre desnudo / 7 hilos / #2 AWG
- Longitud de la bajante de puesta a tierra: 10 m
- Corriente tipo rayo: pulso 8 / 20 µs
- Amplitud de corrientes tipo rayo (1 200 kA)
- Impedancia del cuerpo humano: 1000Ω
- Resistencia eléctrica de los zapatos: $(50k\Omega, 100k\Omega, 150k\Omega, 1M\Omega, 100M\Omega)$

El diagrama de simulación y los resultados se presentan en las figuras: 22, 23, 24, 25, 26, 27, Tabla 10:

Figura 23. Pulso de corriente tipo rayo. 8/20 μs **Fuente:** Los autores.

Figura 25. Máxima elevación de voltaje en el SPT. Fuente: Los autores.

Figura 24. Comportamiento de la resistencia transitoria del SPT. Fuente: Los autores.

Figura 26. Voltaje de contacto generado por el SPT. Fuente: Los autores.

Figura 27. Voltaje de paso generado por el SPT. Fuente: Los autores.

0
≍
4
2
0
Ā
F
Ś
ш
5
\leq
=
ŝ
Ë
2
~
2
A
0
\leq
=
≥
A
<u>m</u>
2
₹
1
=
2
S
_
4
2
*
5
-
2
2
E
5
щ
-
\leq
¥
0
Ξ.
0
Q
≤
Σ
2
0
ш.
5
5
~
Ľ.
×
-
õ
õ
A
2
щ
2
_
(
G
00
CTO G
ACTO G
TACTO G
INTACTO G
ONTACTO G
CONTACTO G
Y CONTACTO G
0 Y CONTACTO G
VSO Y CONTACTO G
ASO Y CONTACTO G
PASO Y CONTACTO G
DE PASO Y CONTACTO G
DE PASO Y CONTACTO G
ES DE PASO Y CONTACTO G
VES DE PASO Y CONTACTO G
FAJES DE PASO Y CONTACTO G
LTAJES DE PASO Y CONTACTO G
OLTAJES DE PASO Y CONTACTO G
VOLTAJES DE PASO Y CONTACTO G
: VOLTAJES DE PASO Y CONTACTO G
1 : VOLTAJES DE PASO Y CONTACTO G
1 : VOLTAJES DE PASO Y CONTACTO G
S # 1 : VOLTAJES DE PASO Y CONTACTO G
OS # 1 : VOLTAJES DE PASO Y CONTACTO G
DOS # 1 : VOLTAJES DE PASO Y CONTACTO G
ADOS # 1 : VOLTAJES DE PASO Y CONTACTO G
LTADOS # 1 : VOLTAJES DE PASO Y CONTACTO G
ULTADOS # 1 : VOLTAJES DE PASO Y CONTACTO G
SULTADOS # 1 : VOLTAJES DE PASO Y CONTACTO G
RESULTADOS # 1 : VOLTAJES DE PASO Y CONTACTO G
E RESULTADOS # 1 : VOLTAJES DE PASO Y CONTACTO G
DE RESULTADOS # 1 : VOLTAJES DE PASO Y CONTACTO G
V DE RESULTADOS # 1 : VOLTAJES DE PASO Y CONTACTO G
LA DE RESULTADOS # 1 : VOLTAJES DE PASO Y CONTACTO G
BLA DE RESULTADOS # 1 : VOLTAJES DE PASO Y CONTACTO G
FABLA DE RESULTADOS # 1 : VOLTAJES DE PASO Y CONTACTO G

					RESI	STENCIA ELECTR	ICA DE LOS ZAPAT	TOS			
			Zapato c	conductivo			Za	pato dielectrico /	Zapato anti-estat	tico	
		501	KD KD	100	kn	150	0 kD	1 N	UN UN	100	MD
I.rayo (kA)	Max. elev. de voltaje (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)
0.5	17.73	0.6818	0.1757	0.3478	0.0883	0.2328	0.05897	0.03543	0.008871	0.000355	0.00008876
1	35.45	1.36	0.35	0.69	0.18	0.4669	0.1179	0.07086	0.01774	0.0007101	0.0001775
2	62.98	2.42	0.62	1.23	0.31	0.82	0.20	0.12	0.03	0.00126	0.00003150
3	90.41	3.477	0.8959	1.774	0.4502	1.19	0.3007	0.1806	0.04523	0.00181	0.00004525
4	117.9	4.534	1.168	2.313	0.587	1.552	0.392	0.2355	0.05897	0.00236	0.00059
5	145.4	5.591	1.44	2.852	0.7238	1.914	0.4834	0.2904	0.07272	0.00291	0.0007267
9	165.3	6.358	1.638	3.243	0.823	2.176	0.5496	0.3302	0.08267	0.003309	0.0008272
7	185.3	7.123	1.835	3.633	0.922	2.438	0.6157	0.3699	0.09263	0.003707	0.0009267
8	205.3	7.889	2.032	4.023	1.021	2.7	0.6819	0.4097	0.1026	0.004105	0.001026
6	225.2	8.654	2.229	4.414	1.12	2.962	0.748	0.4494	0.1125	0.004503	0.001126
10	245.1	9.419	2.426	4.804	1.219	3.224	0.8142	0.4892	0.1225	0.004902	0.001225
<u>15</u>	323.6	12.44	3.204	6.343	1.61	4.257	1.075	0.6459	0.1617	0.006472	0.001618
20	389.8	14.99	3.859	7.642	1.939	5.128	1.295	0.7781	0.1948	0.007797	0.001949
25	445	17.11	4.405	8.723	2.214	5.854	1.478	0.8881	0.2224	0.008899	0.002225
30	500.1	19.23	4.951	9.803	2.488	6.579	1.661	0.9981	0.2499	0.01	0.0025
40	592	22.76	5.861	11.61	2.945	7.789	1.967	1.182	0.2959	0.01184	0.00296
50	672.4	25.85	6.657	13.18	3.345	8.846	2.234	1.342	0.336	0.01345	0.003362
60	744.6	28.63	7.372	14.6	3.704	9.796	2.474	1.486	0.3721	0.01489	0.003723
70	810.6	31.17	8.025	15.89	4.033	10.67	2.693	1.618	0.4051	0.01621	0.004053
80	871.9	33.53	8.632	17.09	4.338	11.47	2.897	1.74	0.4357	0.01744	0.004359
06	929.3	35.73	9.2	18.22	4.623	12.23	3.087	1.855	0.4644	0.01859	0.004646
100	983.4	37.82	9.736	19.28	4.892	12.94	3.267	1.963	0.4915	0.01967	0.004916
120	1084	41.68	10.73	21.25	5.392	14.26	3.601	2.163	0.5417	0.02168	0.005419
140	1176	45.22	11.64	23.06	5.851	15.47	3.907	2.347	0.5877	0.02352	0.00588
160	1262	48.52	12.49	24.74	6.277	16.58	4.192	2.518	0.6305	0.02523	0.006309
180	1342	51.61	13.29	26.31	6.677	17.66	4.459	2.679	0.6707	0.02684	0.006711
200	1418	54.54	14.04	27.8	7.056	18.66	4.712	2.831	0.7088	0.02836	0.007091

Tabla 10. Tabla general de simulaciones realizadas en el SPT.Fuente: Los autores.

117

4.3. Simulación de un SPT, formado por un electrodo vertical con empotramiento.

Para esta simulación se considera los siguientes parámetros:

- Profundidad del empotramiento: 0.5 m
- Tipo de terreno: humus
- Resistividad del terreno*: $100 \Omega^*m$
- Permitividad relativa de terreno: 17
- Permitividad del vacío: $8.85 * 10^{-12}$ (F/m)
- Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (H/m)
- Tipo de electrodo: varilla / pica / jabalina
- Material del electrodo: Copperweld
- Longitud del electrodo: 2.40 m
- Diámetro del electrodo: 5/8"
- Bajante de puesta a tierra: cobre desnudo / 7 hilos / #2 AWG
- Longitud de la bajante de puesta a tierra: 10 m
- Corriente tipo rayo: pulso 8 / 20 µs
- Amplitud de corrientes tipo rayo (1 200 kA)
- Impedancia del cuerpo humano: 1000Ω
- Resistencia eléctrica de los zapatos: $(50k\Omega, 100k\Omega, 150k\Omega, 1M\Omega, 100M\Omega)$

Los parámetros utilizados para modelar este tipo de SPT, de acuerdo con los cálculos realizados en el CAPITULO III, son los siguientes:

- Corriente tipo rayo = $10 \text{ kA} / \text{pulso} = 8/20 \text{ }\mu\text{s}$
- $R_0 = 35.76 \ \Omega$
- *L. bajante* = $13 \mu H$
- *L. electrodo* = 0.00259 mH
- *C. suelo* = 0.000419 µF

- Figura 28: Diagrama de simulación del SPT.
- Figura 29: Pulso de corriente tipo rayo.
- Figura 30: Configuración de la resistencia transitoria del SPT.
- Figura 31: Máxima elevación del voltaje generado en el SPT.
- Figura 32: Voltaje de contacto generado en el SPT.
- Figura 33: Voltaje de paso generado en el SPT.
- Tabla 11: Tabla general de simulaciones realizadas en el SPT.

Figura 28. Diagrama de simulación para descargas tipo rayo, en un SPT formado por un electrodo vertical con empotramiento. Fuente: Los autores.

Figura 30. Comportamiento de la resistencia transitoria del SPT. Fuente: Los autores.

Figura 31. Máxima elevación de voltaje en el SPT. Fuente: Los autores.

Figura 33. Voltaje de paso generado por el SPT. Fuente: Los autores.

0
2
7
2
-
2
-
-
ŝ
z
~
2
0
5
F
z
A
-
0
5
<u> </u>
2
A
<u>e</u>
2
4
_
-
2
0
C
_
A
$\underline{\circ}$
*
-
-
0
0
~
—
\mathbf{O}
-
~
5
_
m and a m
0
-
0
8
ADO
MADO
RMADO
ORMADO
FORMADO
T FORMADO
PT FORMADO
SPT FORMADO
N SPT FORMADO
UN SPT FORMADO
R UN SPT FORMADO
DR UN SPT FORMADO
POR UN SPT FORMADO
S POR UN SPT FORMADO
DS POR UN SPT FORMADO
DOS POR UN SPT FORMADO
ADOS POR UN SPT FORMADO
RADOS POR UN SPT FORMADO
IERADOS POR UN SPT FORMADO
INERADOS POR UN SPT FORMADO
SENERADOS POR UN SPT FORMADO
GENERADOS POR UN SPT FORMADO
O GENERADOS POR UN SPT FORMADO
TO GENERADOS POR UN SPT FORMADO
ICTO GENERADOS POR UN SPT FORMADO
FACTO GENERADOS POR UN SPT FORMADO
VTACTO GENERADOS POR UN SPT FORMADO
DNTACTO GENERADOS POR UN SPT FORMADO
CONTACTO GENERADOS POR UN SPT FORMADO
Y CONTACTO GENERADOS POR UN SPT FORMADO
Y CONTACTO GENERADOS POR UN SPT FORMADO
50 Y CONTACTO GENERADOS POR UN SPT FORMADO
450 Y CONTACTO GENERADOS POR UN SPT FORMADO
PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
E PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
S DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
ES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
UES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
FAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
LTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
OLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
: VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
S # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
OS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
DOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
ADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
TADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
ILTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
SULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
ESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
E RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
DE RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
A DE RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
ILA DE RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
BLA DE RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO
TABLA DE RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO

		MQ	V.p.gener. (kV)	0.00008433	0.0001686	0.0003021	0.0004356	0.0005691	0.0007025	0.0008011	0.0008996	0.0009981	0.001097	0.001195	0.001587	0.001918	0.002194	0.002471	0.002932	0.003336	0.003697	0.004028	0.004336	0.004625	0.004896	0.005399	0.005857	0.006290	0.006692	0.007071
		100	V.c.gener. (kV)	0.0003373	0.0006746	0.001209	0.001742	0.002276	0.00281	0.003204	0.003598	0.003992	0.004386	0.00478	0.006347	0.007672	0.008773	0.009884	0.01173	0.01334	0.01479	0.01612	0.01735	0.01850	0.01958	0.02159	0.02345	0.02515	0.02677	0.02829
	/ Zapato anti-estatico	MD	V.p.gener. (kV)	0.008429	0.01686	0.0302	0.04354	0.05688	0.07022	0.08007	0.08991	0.09976	0.1096	0.1194	0.1586	0.1917	0.2194	0.2468	0.2931	0.3334	0.3695	0.4026	0.4334	0.4622	0.4893	0.5396	0.5859	0.6288	0.6689	0.7072
	Zapato dielectrico		V.c.gener. (kV)	0.03366	0.06732	0.1206	0.1739	0.2272	0.2804	0.3197	0.359	0.3984	0.4377	0.4771	0.6334	0.7657	0.876	0.9863	1.170	1.331	1.476	1.605	1.731	1.846	1.954	2.154	2.340	2.510	2.672	2.824
A DE LOS ZAPATOS		υ	V.p.gener. (kV)	0.05603	0.1121	0.1121	0.2007	0.2894	0.3781	0.5323	0.5977	0.6631	0.7286	0.794	1.054	1.274	1.458	1.640	1.948	2.212	2.457	2.677	2.882	3.073	3.253	3.588	3.895	4.180	4.445	4.698
RESISTENCIA ELECTRIC		150 k	V.c.gener. (kV)	0.2218	0.4437	0.7948	1.146	1.497	1.848	2.108	2.367	2.626	2.885	3.144	4.175	5.047	5.775	6.501	7.714	8.778	9.712	10.60	11.41	12.17	12.88	14.20	15.42	16.56	17.57	18.61
		kΩ	V.p.gener. (kV)	0.0839	0.1678	0.3306	0.4334	0.5662	0.699	0.797	0.895	0.993	1.091	1.189	1.579	1.908	2.183	2.458	2.916	3.319	3.680	4.010	4.315	4.601	4.872	5.368	5.832	6.259	6.659	7.039
	conductivo	100	V.c.gener. (kV)	0.3305	0.661	1.184	1.707	2.23	2.754	3.14	3.526	3.913	4.299	4.685	6.22	7.52	8.604	9.686	11.50	13.06	14.49	15.79	17.01	18.09	19.20	21.17	22.97	24.65	26.25	27.74
	Zapato (kn	V.p.gener. (kV)	0.1669	0.3339	0.5981	0.8624	1.127	1.391	1.586	1.781	1.976	2.171	2.366	3.141	3.798	4.343	4.893	5.806	6.605	7.322	7.977	8.588	9.153	9.695	10.69	11.60	12.46	13.26	14.010
		50	V.c.gener. (kV)	0.6479	1.296	2.322	3.347	4.373	5.399	6.158	6.915	7.672	8.429	9.186	12.2	14.75	16.68	19.00	22.54	25.61	28.42	30.99	33.35	35.56	37.65	41.52	45.08	48.36	51.46	54.42
			Max. elev. de voltaje (kV)	16.48	33.69	60.37	87.03	113.7	140.4	160.1	179.8	199.5	219.2	238.8	317.1	383.4	438.9	494.2	586.5	667.2	739.4	805.9	867.4	924.9	979.3	1080	1172	1257	1339	1414
			I.rayo (kA)	0.5	1	2	3	4	5	9	7	8	6	10	15	20	25	30	40	50	60	70	80	90	100	120	140	16 0	180	200

Tabla 11. Tabla general de simulaciones realizadas en el SPT.Fuente: Los autores.

121

4.4. Simulación de un SPT, formado por electrodos verticales en línea con empotramiento.

Para esta simulación se considera los siguientes parámetros:

- Profundidad del empotramiento: 0.5 m
- Tipo de terreno: humus
- Resistividad del terreno*: $100 \Omega^*m$
- Permitividad relativa de terreno: 17
- Permitividad del vacío: $8.85 * 10^{-12}$ (F/m)
- Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (H/m)
- Tipo de electrodo: varilla / pica / jabalina
- Material del electrodo: Copperweld
- Numero de electrodos: 2 (de características iguales)
- Longitud del electrodo: 2.40 m
- Diámetro del electrodo: 5/8"
- Bajante de puesta a tierra: cobre desnudo / 7 hilos / #2 AWG
- Longitud de la bajante de puesta a tierra: 10 m
- Corriente tipo rayo: pulso 8 / 20 μs
- Amplitud de corrientes tipo rayo (1 200 kA)
- Impedancia del cuerpo humano: 1000Ω
- Resistencia eléctrica de los zapatos: $(50k\Omega, 100k\Omega, 150k\Omega, 1M\Omega, 100M\Omega)$

Los parámetros utilizados para modelar este tipo de SPT, de acuerdo con los cálculos realizados en el CAPITULO III, son los siguientes:

- Corriente tipo rayo = $20 \text{ kA} / \text{pulso} = 8/20 \text{ }\mu\text{s}$
- $R_0 = 19.50 \ \Omega$
- *L. bajante* = $13 \mu H$
- *L. electrodo* = 0.00259 mH
- *C.suelo* = $0.000769 \ \mu F$

- Figura 34: Diagrama de simulación del SPT.
- Figura 35: Pulso de corriente tipo rayo.
- Figura 36: Configuración de la resistencia transitoria del SPT.
- Figura 37: Máxima elevación del voltaje generado en el SPT.
- Figura 38: Voltaje de contacto generado en el SPT.
- Figura 39: Voltaje de paso generado en el SPT.
- Tabla 12: Tabla general de simulaciones realizadas en el SPT.

Figura 36. Comportamiento de la resistencia transitoria del SPT. Fuente: Los autores.

Figura 37. Máxima elevación de voltaje en el SPT. Fuente: Los autores.

Figura 38. Voltaje de contacto generado por el SPT. Fuente: Los autores.

Figura 39. Voltaje de paso generado por el SPT. Fuente: Los autores.

0	
5	-
<	4
-	r
•	0
	7
F	-
5	0
- 5	-
- 2	~
Ē	
Ē	r
-	r
- 9	Ç.
•	-
	ц
	-
	-
	-
- 5	2
	-
- 2	
	=
-	≨
- 2	*
Ē	-
•	0
- 5	7
2	≥
	-
2	2
C	0
4	د
-	T.
1	5
1	5
1	2
5	-
1	3
-	
5	Ţ
1	2
Ŀ	-
i.	
5	>
•	2
0	5
6	ב
0	D
Ē	r
- 2	2
- 5	
	-
2	3
	≍
	-
5	¥
5	ž
-	P P C K
100 00	N PUK
000 000	AUU PUK
	IADU PUK
DOD DOD NAME	KINADU PUK
and out the	UKINADU PUK
	FURIMADU PUK
TODA OCTANADO T	I FUKIMADU FUK
TOT COMMON TO	IL FUKIMADU FUK
TOT OUT TOT TOT	I SFI FUKIMADU FUK
N COLUMN COLUMN	IN SPI FURMADU PUR
THI COLUMN DO DOD	UN SPI FUKIMADU PUK
D IN COLORADO DOD	IK UN SPI FUKIMADU PUK
DO DO MANDO TOS INI DO	UK UN SPI FUKIMADU PUK
TOT DO NUMBER TO NUMBER OF	FUK UN SFI FUKIMADU FUK
DOU OUNDED TO MILLOO SC	IS FOR UN SPI FURMADU FUR
DOD OD MACH TO MILL DOD DOD	JUS FUK UN SFI FUKIMADU FUK
DOC DOD HIN COT FORMADO DOD	AUUS FUK UN SFI FUKIMAUU FUK
TO DO TO TO TO TO TO TO TO	KADUS FUK UN SPI FUKIMADU FUK
FUNDOR DOD THIS COLUMN DO DOD	EKADUS FUK UN SPI FUKIMADU FUK
NEPADOC POD LIN COT FORMADO DOD	INERADUS FOR UN SPI FURMADU FUR
THERAPS POPULIN CALINARY POPULATION	JEINERADUS FOR UN SPI FURMADU FUR
CENTRADOS DOD HIN SDT FORMADO DOD	J GEINERADUS FUK UN SPI FUKINIADU PUK
OCCULTANCE FOR HIS COMMON OF	U GENERADUS FUR UN SPI FURIMADU FUR
TO CIMPACE TO INI TO DO ANTO DO	LIU GENERADUS FUR UN SPI FURIMADU PUR
ACTO CENTERADOS DOD HIN SET FORMADO DOD	ACIU GENERADUS PUK UN SPI FURMADU PUK
TACTO CENERADOS DOR LINI GET FORMADO DOR	VIACIO GENERADUS PUK UN SPI FURMADU PUK
NUTLETO CENTRADOS DOD LINI SAT FORMADO DOD	JINIACIO GENERADUS PUR UN SPI FURIMADU PUR
TOWITHCTO CENTERADOC DOD LINE CONVENCE	UNIACIO GENERADUS PUR UN SPI FURIMADU PUR
CONTACTO CENERADOS DOB LINI SDT FORMADO DOD	CUNIACIU GENERADUS PUK UN SPI FURMADU PUK
V CONTACTO CENIERADOS DOB LINI EDT FORMADO DOD	I CUNIACIO GENERADUS FUK UN SPI FUKIMADU PUK
OV CONTRACTO CENERADOS DOB LINI STAT FORMADO DOD	O T CUINIACIO GENERADUS FUR UN SPI FURINADU PUR
TO V CONTRACT OF A DA POR HAL CTATION V CON	ASO I CUNIACIO GENERADUS PUK UN SPI FURIMADU PUK
DACO V CONTICTO CENERADOS DOR INI SET FORMADO DOR	PASO I CUNIACIO GENERADUS PUR UN SPI FURIMADU PUR
TO A CONTICUTOR CENTRA DOS DON UNI SET FORMADO DON	E PASO I CONTACTO GENERADUS POR UN SPI FURMADU PUR
DE DAGO V CONTACTO CENTRADOS DOB LINI SAT FORMADO DOR	UE FASU 1 CUNIACIO GENERADUS PUK UN SPI FURMADU PUK
C DE DAGO V CONTACTO CENTRADOC DOR LINI CRE FORMADO ROR	S DE PASO Y CONTACTO GENERADOS POR UN SPI FURMADO POR
IFE DE DAGO V CONTACTO CENEDADOS DOD INI GDT FODMADO DOD	JES DE PASO Y CONTACTO GENERADOS POR UN SPI FORMADO POR
A LEG DE DACO V CONTACTO CENEDADOS DOD HAI COT FORMADO DOD	AJES DE PASO Y COINTACTO GENERADOS POR UN SPI FURIVIADO POR
TAILS DE DAGO V CONTACTO CENEDADOS DOB UNI SET FORMADO DOD	LIALES DE PASO Y CONTACTO GENERADOS POR UN SPI FORIMADO POR
NITALES DE DAGO V CONTRACTO CENTRADOS DON LIN SEE FORMADO DON	ULIAJES DE PASO Y CONTACTO GENERADOS POR UN SPI FORIVIADO POR
POLICY IN THE REPORT OF A CONTRACT OF A CONT	VULIAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO POR
VOLTALES DE DAGO V CONTACTO CENEDADOS DOB LINI SET FORMADO DOP	: VULIAJES DE PASO I CUNIACIO GENERADOS POR UN SPI FURMADO POR
OUNTRY IS DE DAGO V CONTACTO CENEDA DOS DOB LINI COT FORMADO DOD	3 : VULIAJES DE PASO I CONTACIO GENERADOS POR UN SPI FURMADO POR
U CONTRICT DE DECOVICONTICTO CENTRADOS DOB UNI SOL FORMADO DOB	# 3 : VULIAJES DE PASO Y CONTACTO GENERADOS POR UN SPI FURMADO POR
P # 2 . MOLTATES DE DAGO V CONTACTO CENEDADOS DON INI SDE FORMADO DOD	2 # 3 : VULIALES DE PASO 1 CONTACTO GENERADOS POR UN SPI FORMADO POR
DE # 3 . VIOLTATE DE DACO V CONTACTO CENEDADOC DOD IM EDT FORMADO DOD	US # 3 ; VULIAJES UE PASO 1 CONTACTO GENERADOS POR UN SPI FURMADO POR
DOG H 2 - HOLTALEC DE DAGO V CONTACTO CENTRADOS DOD HINI SDE FORMADO DOD	UOS # 3 ; VULIAJES DE PASO 1 CUNIACI O GENERADOS POR UN SPI FURMADO POR
	AUOS # 3 ; VOLIAJES DE PASO I CONTACIO GENERADOS POR UN SPI FURINADO POR
	LIADUS # 3 ; VULIAJES DE PASO 1 CUNIACI O GENERADUS POR UN SPI FORMADU POR
	ULIADOS # 3 ; VULIAJES DE PASO 1 CONTACIO GENERADOS POR UN SPI FURMADO POR
	SOLIADOS # 3 : VULIADES DE PASO 1 CUNIACIO GENERADOS POR UN SPI FURMADO POR
	KESULIADUS # 3 ; VULIAJES DE PASO 1 CUNIACIO GENERADUS PUR UN SPI FURMADU PUR
	E KESULIAUUS # 3 : VULIAJES UE PASU 1 CUNIACIU GENERADUS PUR UN SPI FURMADU PUR
	UE KESULIADOS # 3 : VOLIAJES DE PASO I CONIACIO GENERADOS POR UN SPI FORMADO POR
	A DE KESULIADOS # 3 ; VOLIAJES DE PASO 1 CONTACIO GENERADOS POR UN SPI FORMADO POR
	LA DE KESULIADOS # 3 : VOLIAJES DE PASO 1 CONTACTO GENERADOS POR UN SPT FORMADO POR
	NGLA DE RESULLAUOS # 3 : VULLALES DE PASO I CONTACI O GENERADOS POR UN SPI FURMADO POR
	I ABLA DE KESULI AUOS # 3 ; VULI AJES DE PASO 1 CUNI ACI O GENERAUOS POR UN SPI FURMAUO PUR

		MD	V.p.gener. (kV)	0.00002396	0.00004790	0.00009585	0.0001399	0.0001839	0.0002281	0.0002723	0.0003164	0.0003602	0.0004042	0.0004484	0.0006421	0.0008351	0.001006	0.001177	0.001484	0.001755	0.002024	0.002258	0.002493	0.002700	0.002910	0.003291	0.003642	0.003969	0.004277	0.004568
	ico	100	V.c.gener. (kV)	0.00009581	0.0001915	0.0003835	0.0005596	0.0007364	0.0009114	0.001088	0.001263	0.001441	0.001619	0.001795	0.002568	0.003341	0.004025	0.004707	0.005937	0.007020	0.008082	0.009041	0.009973	0.01081	0.01165	0.01317	0.01457	0.01587	0.01710	0.01827
	o / Zapato anti-estat	MQ	V.p.gener. (kV)	0.002396	0.004790	0.009583	0.01399	0.01835	0.02281	0.02716	0.03161	0.03602	0.04044	0.04480	0.06413	0.08344	0.1005	0.1176	0.1483	0.1754	0.2023	0.2258	0.2492	0.2702	0.2910	0.3285	0.3641	0.3967	0.4268	0.4561
TOS	Zapato dielectric	11	V.c.gener. (kV)	0.00957	0.01912	0.03827	0.05589	0.07350	0.09105	0.1086	0.1262	0.1438	0.1613	0.1790	0.2563	0.3334	0.4014	0.4692	0.5919	0.6996	0.8079	0.9022	0.9943	1.077	1.160	1.310	1.454	1.584	1.705	1.823
TRICA DE LOS ZAPA		kn	V.p.gener. (kV)	0.01593	0.03183	0.06368	0.09297	0.1221	0.1516	0.1807	0.2101	0.2394	0.2686	0.2980	0.4258	0.5512	0.6684	0.7813	0.9855	1.166	1.345	1.502	1.653	1.795	1.934	2.186	2.420	2.633	2.842	3.033
RESISTENCIA ELEC		150	V.c.gener. (kV)	0.06308	0.01261	0.2522	0.3680	0.4843	0.6001	0.7149	0.8317	0.9487	1.063	1.180	1.688	2.198	2.647	3.097	3.903	4.615	5.322	5.947	6.559	7.113	7.660	8.662	9.580	10.44	11.25	12.01
		kn	V.p.gener. (kV)	0.02385	0.04766	0.09536	0.1393	0.1832	0.2265	0.2707	0.3147	0.3587	0.402	0.4464	0.6386	0.8306	1.000	1.171	1.477	1.744	2.013	2.246	2.477	2.69	2.896	3.274	3.624	3.945	4.255	4.543
	nductivo	100	V.c.gener. (kV)	0.09398	0.1879	0.3758	0.5488	0.7215	0.8948	1.068	1.241	1.413	1.586	1.757	2.518	3.275	3.944	4.612	5.818	6.881	7.936	8.862	9.773	10.6	11.42	12.9	14.28	15.56	16.77	17.91
	Zapato co	kn	V.p.gener. (kV)	0.04744	0.09466	0.1898	0.2771	0.3637	0.4519	0.5386	0.6266	0.7131	0.8012	0.8882	1.270	1.654	1.993	2.330	2.937	3.474	4.005	4.467	4.930	5.351	5.759	6.517	7.211	7.857	8.468	9.043
		50	V.c.gener. (kV)	0.1843	0.3685	0.7372	1.076	1.415	1.754	2.093	2.433	2.773	3.108	3.449	4.938	6.421	7.735	9.051	11.41	13.50	15.57	17.38	19.16	20.79	22.39	25.31	28.00	30.51	32.90	35.05
			Max. elev. de voltaje (kV)	47.89	95.89	191.8	279.9	368.1	456.2	544.6	632.6	721.1	809.2	897.4	1283	1671	2011	2353	2968	3504	4043	4520	4981	5408	5823	6578	7284	7939	8554	9135
			I.rayo (kA)	0.5	1	2	3	4	5	9	7	8	6	10	15	20	25	30	40	50	60	70	80	90	100	120	140	160	180	200

Tabla 12. Tabla general de simulaciones realizadas en el SPT.Fuente: Los autores.

4.5. Simulación de un SPT, formado por electrodo horizontal a una profundidad (h).

Para esta simulación se considera los siguientes parámetros:

- Profundidad del empotramiento: 0.5 m
- Tipo de terreno: humus
- Resistividad del terreno*: $100 \Omega^*m$
- Permitividad relativa de terreno: 17
- Permitividad del vacío: $8.85 * 10^{-12}$ (F/m)
- Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (H/m)
- Tipo de electrodo: varilla / pica / jabalina
- Material del electrodo: Copperweld
- Numero de electrodos: 2 (de características iguales)
- Longitud del electrodo: 2.40 m
- Diámetro del electrodo: 5/8"
- Bajante de puesta a tierra: cobre desnudo / 7 hilos / #2 AWG
- Longitud de la bajante de puesta a tierra: 10 m
- Corriente tipo rayo: pulso 8 / 20 µs
- Amplitud de corrientes tipo rayo (1 200 kA)
- Impedancia del cuerpo humano: 1000Ω
- Resistencia eléctrica de los zapatos: $(50k\Omega, 100k\Omega, 150k\Omega, 1M\Omega, 100M\Omega)$

Los parámetros utilizados para modelar este tipo de SPT, de acuerdo con los cálculos realizados en el CAPITULO III, son los siguientes:

- Corriente tipo rayo = $40 \text{ kA} / \text{pulso} = 8/20 \text{ }\mu\text{s}$
- $R_0 = 31.79 \ \Omega$
- *L. bajante* = $13 \mu H$
- *L.electrodo* = 0.00259 mH
- *C.suelo* = $0.000471 \ \mu F$

- Figura 40: Diagrama de simulación del SPT.
- Figura 41: Pulso de corriente tipo rayo.
- Figura 42: Configuración de la resistencia transitoria del SPT.
- Figura 43: Máxima elevación del voltaje generado en el SPT.
- Figura 44: Voltaje de contacto generado en el SPT.
- Figura 45: Voltaje de paso generado en el SPT.
- Tabla 13: Tabla general de simulaciones realizadas en el SPT.

Figura 42. Comportamiento de la resistencia transitoria del SPT. Fuente: Los autores.

Figura 44. Voltaje de contacto generado por el SPT. Fuente: Los autores.

Figura 45. Voltaje de paso generado por el SPT. Fuente: Los autores.

AVO	
A	
\sim	
-	
0	
E	
S	
μŭ	
5	
	
2	
R	
0	
0	
=	
z	
A	
Ē	
-	
7	
õ	
≡	
₹	
5	
프	
2	
7	
2	
5	
-	
A	
5	
5	
ž	
2	
ō	
Ŧ	
0	
ă	
5	
ž	
2	
=	
-	
\leq	
-	
Ë	
Ä	
0	
ă	
A	
>	
2	
0	
5	
S	
Z	
8	
0	
-	
S	
Z	
A	
2	
щ	
ENE	
GENE	
O GENE	
TO GENE	
ACTO GENE	
TACTO GENE	
NTACTO GENE	
ONTACTO GENE	
CONTACTO GENE	
Y CONTACTO GENE	
O Y CONTACTO GENE	
ASO Y CONTACTO GENE	
PASO Y CONTACTO GENE	
E PASO Y CONTACTO GENE	
DE PASO Y CONTACTO GENE	
ES DE PASO Y CONTACTO GENE	
UES DE PASO Y CONTACTO GENE	
TAJES DE PASO Y CONTACTO GENE	
ILTAJES DE PASO Y CONTACTO GENE	
OLTAJES DE PASO Y CONTACTO GENE	
: VOLTAJES DE PASO Y CONTACTO GENE	
4 : VOLTAJES DE PASO Y CONTACTO GENE	
# 4 : VOLTAJES DE PASO Y CONTACTO GENE	
5 # 4 : VOLTAJES DE PASO Y CONTACTO GENE	
OS # 4 : VOLTAJES DE PASO Y CONTACTO GENE	
DOS # 4 : VOLTAJES DE PASO Y CONTACTO GENE	
TADOS # 4 : VOLTAJES DE PASO Y CONTACTO GENE	
ILTADOS # 4 : VOLTAJES DE PASO Y CONTACTO GENE	
SULTADOS # 4 : VOLTAJES DE PASO Y CONTACTO GENE	
ESULTADOS # 4 : VOLTAJES DE PASO Y CONTACTO GENE	
RESULTADOS # 4 : VOLTAJES DE PASO Y CONTACTO GENE	
JE RESULTADOS # 4 : VOLTAJES DE PASO Y CONTACTO GENE	
V DE RESULTADOS # 4 : VOLTAJES DE PASO Y CONTACTO GENE	
LA DE RESULTADOS # 4 : VOLTAJES DE PASO Y CONTACTO GENE	
(BLA DE RESULTADOS # 4 : VOLTAJES DE PASO Y CONTACTO GENE	

		MD	V.p.gener. (kV)	0.00007585	0.001518	0.002767	0.004017	0.005266	0.006515	0.007475	0.008434	0.009393	0.001035	0.001131	0.001519	0.001851	0.002131	0.002470	0.002877	0.003288	0.003658	0.003997	0.004307	0.0046070	0.004887	0.005409	0.005898	0.006341	0.006767	0.007171
	atico	100	V.c.gener. (kV)	0.00030	0.0006069	0.001106	0.001607	0.002106	0.002606	0.00299	0.003372	0.003754	0.004140	0.004523	0.006077	0.007400	0.008520	0.009637	0.001151	0.001315	0.001463	0.001598	0.001725	0.001842	0.001955	0.002163	0.002356	0.002536	0.002706	0.002867
	Zapato anti-esta	٨D	V.p.gener. (kV)	0.0075	0.015	0.027	0.040	0.052	0.065	0.074	0.084	0.093	0.103	0.113	0.151	0.185	0.212	0.240	0.287	0.328	0.365	0.399	0.431	0.461	0.488	0.539	0.588	0.633	0.676	0.715
SOL	pato dielectrico /	1	V.c.gener. (kV)	0.03	0.06	0.11	0.16	0.21	0.26	0.298	0.336	0.374	0.413	0.451	0.606	0.739	0.85	0.96	1.14	1.31	1.46	1.59	1.72	1.83	1.95	2.15	2.34	2.53	2.70	2.86
KICA DE LOS ZAFA	Zaj) kΩ	V.p.gener. (kV)	0.050	0.100	0.183	0.266	0.349	0.432	0.496	0.560	0.624	0.687	0.751	1.01	1.23	1.41	1.60	1.91	2.18	2.43	2.65	2.86	3.06	3.24	3.59	3.91	4.21	4.49	4.76
SISTENCIA ELECTR		150	V.c.gener. (kV)	0.199	0.399	0.727	1.05	1.38	1.71	1.96	2.21	2.47	2.72	2.97	3.99	4.87	5.60	6.33	7.57	8.65	9.62	10.51	11.34	12.12	12.86	14.23	15.49	16.68	17.79	18.87
RES		kΩ	V.p.gener. (kV)	0.075	0.151	0.275	0.399	0.523	0.648	0.742	0.839	0.933	1.03	1.12	1.51	1.84	2.12	2.39	2.86	3.27	3.63	3.97	4.28	4.58	4.86	5.38	5.86	6.30	6.73	7.13
	conductivo	100	V.c.gener. (kV)	0.297	0.594	1.08	1.57	2.06	2.55	2.92	3.3	3.68	4.05	4.43	5.95	7.25	8.35	9.43	11.27	12.89	14.34	15.67	16.90	18.07	19.17	21.21	23.10	24.86	26.53	28.11
	Zapato c	kn	V.p.gener. (kV)	0.15	0.3	0.547	0.795	1.04	1.29	1.48	1.67	1.86	2.04	2.23	3.008	3.66	4.21	4.77	5.69	6.51	7.24	7.91	8.53	9.12	9.67	10.71	11.66	12.56	13.40	14.20
		50	V.c.gener. (kV)	0.5825	1.166	2.127	3.087	4.047	5.006	5.745	6.482	7.216	7.956	8.693	11.68	14.24	16.38	18.52	22.12	25.28	28.13	30.68	33.16	35.43	37.59	41.59	45.29	48.77	52.03	55.15
			Max. elev. de voltaje (kV)	15.15	30.31	55.27	80.26	105.2	130.2	149.4	168.4	187.6	206.9	226	303.6	370.1	426	481.6	575.2	657.4	731.2	799.1	862.2	921.3	977.2	1081	1178	1268	1353	1434
			I.rayo (kA)	0.5	1	2	3	4	5	9	7	8	<mark>6</mark>	10	15	20	25	30	40	50	60	70	80	06	100	120	140	160	180	200

4.6. Simulación de un SPT, formado por un anillo circular con empotramiento.

Para esta simulación se considera los siguientes parámetros:

- Profundidad del empotramiento: 0.5 m
- Tipo de terreno: humus
- Resistividad del terreno*: $100 \Omega^*m$
- Permitividad relativa de terreno: 17
- Permitividad del vacío: $8.85 * 10^{-12}$ (F/m)
- Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (H/m)
- Tipo de electrodo: varilla / pica / jabalina
- Material del electrodo: Copperweld
- Longitud del electrodo: 2.40 m
- Diámetro del electrodo: 5/8"
- Bajante de puesta a tierra: cobre desnudo / 7 hilos / #2 AWG
- Longitud de la bajante de puesta a tierra: 10 m
- Corriente tipo rayo: pulso 8 / 20 µs
- Amplitud de corrientes tipo rayo (1 200 kA)
- Impedancia del cuerpo humano: 1000Ω
- Resistencia eléctrica de los zapatos: $(50k\Omega, 100k\Omega, 150k\Omega, 1M\Omega, 100M\Omega)$

Los parámetros utilizados para modelar este tipo de SPT, de acuerdo con los cálculos realizados en el CAPITULO III, son los siguientes:

- Corriente tipo rayo = $50 \text{ kA} / \text{pulso} = 8/20 \text{ }\mu\text{s}$
- $R_0 = 18.35 \ \Omega$
- *L. bajante* = $13 \mu H$
- *L. electrodo* = 0.00131 mH
- *C.suelo* = $0.000817 \mu F$

- Figura 46: Diagrama de simulación del SPT.
- Figura 47: Pulso de corriente tipo rayo.
- Figura 48: Configuración de la resistencia transitoria del SPT.
- Figura 49: Máxima elevación del voltaje generado en el SPT.
- Figura 50: Voltaje de contacto generado en el SPT.
- Figura 51: Voltaje de paso generado en el SPT.
- Tabla 14: Tabla general de simulaciones realizadas en el SPT.

Figura 46. Diagrama de simulación para descargas tipo rayo, en un SPT formado por un anillo circular con empotramiento. Fuente: Los autores.

Figura 48. Comportamiento de la resistencia transitoria del SPT. Fuente: Los autores.

Figura 49. Máxima elevación de voltaje en el SPT. Fuente: Los autores.

Figura 50. Voltaje de contacto generado por el SPT. Fuente: Los autores.

Figura 51. Voltaje de paso generado por el SPT. Fuente: Los autores.

-	
2	
A	
-	
P	
F	
S	
E	
S	
2	
Ř	
2	
щ	
Z	
A	
-	
P	
2	
≣	
4	
2	
5	
P	
2	
-	
5	
C	
¥.	
5	
R	
0	
9	
=	
Z	
7	
Ì,	
2	
0	
Ē	
F	
S	
IN S	
S NN S	
OR UN S	
POR UN S	
DS POR UN S	
DOS POR UN S	
RADOS POR UN SI	
ERADOS POR UN SI	
ENERADOS POR UN SI	
GENERADOS POR UN S	
O GENERADOS POR UN SI	
CTO GENERADOS POR UN SI	
ACTO GENERADOS POR UN SI	
NTACTO GENERADOS POR UN SI	
CONTACTO GENERADOS POR UN SI	
CONTACTO GENERADOS POR UN S	
D Y CONTACTO GENERADOS POR UN S	
SO Y CONTACTO GENERADOS POR UN S	
PASO Y CONTACTO GENERADOS POR UN SI	
IE PASO Y CONTACTO GENERADOS POR UN SI	
DE PASO Y CONTACTO GENERADOS POR UN SI	
ES DE PASO Y CONTACTO GENERADOS POR UN SI	
AJES DE PASO Y CONTACTO GENERADOS POR UN SI	
LTAJES DE PASO Y CONTACTO GENERADOS POR UN SI	
OLTAJES DE PASO Y CONTACTO GENERADOS POR UN S	
: VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SI	
5 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SI	
#5: VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SI	
35 # 5 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SI	
DOS # 5 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SI	
TADOS # 5 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SI	
ILTADOS # 5 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SI	
SULTADOS # 5 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN S	
RESULTADOS # 5 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SI	
IE RESULTADOS # 5 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SI	
V DE RESULTADOS # 5 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN S	
LA DE RESULTADOS # 5 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN S	
ABLA DE RESULTADOS # 5 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN S	

					RESISTENCIA ELECTRIC	A DE LOS ZAPATOS				
		Zapato (conductivo				Zapato dielectric	o / Zapato anti-estatico		
		50 kΩ	100) kn	150 k	υ		1 MΩ	100	MD
je (kV	() V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)
	0.34	0.0893	0.1719	0.04493	0.1188	0:030	0.01803	0.00451	0.0001803	0.0000451
	0.69	0.1787	0.3541	0.08989	0.2376	0.060	0.03604	0.00902	0.0003613	0.0000903
	1.33	0.3447	0.6828	0.1732	0.4578	0.1157	0.06951	0.01738	0.0006967	0.0001742
	1.98	0.5108	1.011	0.2567	0.6786	0.1714	0.1029	0.02574	0.001031	0.000258
	2.62	0.6767	1.338	0.340	0.8993	0.2269	0.1362	0.03416	0.001366	0.0003419
	3.27	0.8425	1.669	0.4234	1.120	0.2828	0.1698	0.04254	0.001701	0.0003418
	3.84	0.9891	1.959	0.4976	1.316	0.3316	0.1992	0.04997	0.001999	0.0004986
	4.41	1.137	2.250	0.5715	1.510	0.3816	0.2292	0.05740	0.002297	0.0005738
	4.98	1.284	2.543	0.6446	1.707	0.4310	0.2586	0.06479	0.002589	0.0006483
	5.55	1.431	2.835	0.7180	1.901	0.4803	0.2883	0.07221	0.002887	0.0007230
	6.12	1.577	3.126	0.7934	2.097	0.5298	0.3180	0.07967	0.003180	0.0007956
	8.673	2.233	4.425	1.123	2.968	0.7493	0.4505	0.1126	0.004511	0.001129
	10.99	2.830	5.603	1.421	3.760	0.9498	0.5701	0.1429	0.005710	0.001427
	13.03	3.356	6.646	1.685	4.459	1.126	0.6764	0.1694	0.006773	0.001695
	15.07	3.879	7.682	1.950	5.153	1.302	0.7822	0.1958	0.007838	0.00196
	18.63	4.791	9.499	2.410	6.375	1.609	0.9668	0.2420	0.009691	0.002422
	21.81	5.606	11.12	2.822	7.459	1.884	1.131	0.2830	0.01134	0.002835
	24.70	6.359	12.58	3.194	8.442	2.134	1.282	0.3206	0.01283	0.003211
	27.30	7.045	13.95	3.540	9.356	2.364	1.420	0.3543	0.01421	0.003557
	29.84	7.682	15.21	3.858	10.21	2.577	1.549	0.3875	0.01552	0.003880
	32.15	8.281	16.39	4.162	11.00	2.779	1.670	0.4175	0.01673	0.004180
	34.36	8.848	17.52	4.442	11.76	2.969	1.783	0.4462	0.01787	0.00467
	38.45	006.6	19.60	4.975	13.15	3.320	1.995	0.4995	0.01999	0.004992
	42.19	10.86	21.51	5.458	14.43	3.644	2.190	0.5480	0.02194	0.005460
	45.69	11.76	23.30	5.91	15.63	3.941	2.361	0.5932	0.02376	0.005940
	48.96	12.60	24.97	6.335	16.75	4.229	2.540	0.6347	0.02543	0.006366
	52.06	13.40	26.54	6.732	17.81	4.498	2.696	0.6755	0.02707	0.006751

Tabla 14. Tabla general de simulaciones realizadas en el SPT.Fuente: Los autores.

4.7. Simulación de un SPT, formado por un anillo cuadrado con picas en los vértices empotrado.

Para esta simulación se considera los siguientes parámetros:

- Profundidad del empotramiento: 0.5 m
- Tipo de terreno: humus
- Resistividad del terreno*: $100 \Omega^*m$
- Permitividad relativa de terreno: 17
- Permitividad del vacío: $8.85 * 10^{-12}$ (F/m)
- Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (H/m)
- Tipo de electrodo: varilla / pica / jabalina
- Material del electrodo: Copperweld
- Longitud del electrodo: 2.40 m
- Diámetro del electrodo: 5/8"
- Bajante de puesta a tierra: cobre desnudo / 7 hilos / #2 AWG
- Longitud de la bajante de puesta a tierra: 10 m
- Corriente tipo rayo: pulso 8 / 20 µs
- Amplitud de corrientes tipo rayo (1 200 kA)
- Impedancia del cuerpo humano: 1000Ω
- Resistencia eléctrica de los zapatos: $(50k\Omega, 100k\Omega, 150k\Omega, 1M\Omega, 100M\Omega)$

Los parámetros utilizados para modelar este tipo de SPT, de acuerdo con los cálculos realizados en el CAPITULO III, son los siguientes:

- Corriente tipo rayo = $60 \text{ kA} / \text{pulso} = 8/20 \text{ }\mu\text{s}$
- $R_0 = 8.73 \ \Omega$
- *L. bajante* = $13 \mu H$
- *L. electrodo* = 0.00259 mH
- *C.suelo* = $0.00171 \ \mu F$

- Figura 52: Diagrama de simulación del SPT.
- Figura 53: Pulso de corriente tipo rayo.
- Figura 54: Configuración de la resistencia transitoria del SPT.
- Figura 55: Máxima elevación del voltaje generado en el SPT.
- Figura 56: Voltaje de contacto generado en el SPT.
- Figura 57: Voltaje de paso generado en el SPT.
- Tabla 15: Tabla general de simulaciones realizadas en el SPT.

Figura 52. Diagrama de simulación para descargas tipo rayo, en un SPT formado por un anillo circular con empotramiento. Fuente: Los autores.

135

Figura 53. Pulso de corriente tipo rayo. 8/20 μs **Fuente:** Los autores.

Figura 56. Voltaje de contacto generado por el SPT. Fuente: Los autores.

Figura 57. Voltaje de paso generado por el SPT. Fuente: Los autores.

									-				_									-						_		
		MD	V.p.gener. (kV)	0.000005509	0.00001102	0.00002202	0.00003305	0.00004407	0.00005487	0.00006569	0.00007647	0.00008739	0.00009820	0.0001091	0.0001631	0.0002173	0.0002697	0.0003224	0.0004270	0.0005288	0.0006308	0.0007297	0.0008271	0.0009227	0.001018	0.001204	0.001386	0.001564	0.001736	0.001905
	CO	100 N	V.c.gener. (kV)	0.00002204	0.00004407	0.00008810	0.00001322	0.0001763	0.0002197	0.0002629	0.0003061	0.0003495	0.0003925	0.0004362	0.0006517	0.0008692	0.001079	0.001289	0.001707	0.002116	0.002518	0.002919	0.003311	0.003694	0.004070	0.004825	0.005544	0.006256	0.006946	0.007625
	0 / Zapato anti-estati	UV	V.p.gener. (kV)	0.0005507	0.001101	0.002203	0.003299	0.004400	0.005487	0.006566	0.007650	0.008735	0.009816	0.01098	0.01631	0.02166	0.02694	0.03218	0.04265	0.05289	0.06306	0.07294	0.08280	0.09232	0.1017	0.1206	0.1384	0.1564	0.1736	0.1905
RESISTENCIA ELECTRICA DE LOS ZAPATOS	Zapato dielectrico	11	V.c.gener. (kV)	0.002198	0.004398	0.008796	0.01319	0.01759	0.02192	0.02623	0.03046	0.03488	0.03920	0.04353	0.05214	0.06514	0.08663	0.1076	0.1706	0.2112	0.2515	0.2914	0.3307	0.3679	0.4064	0.4815	0.5534	0.6245	0.6933	0.7610
		U U	V.p.gener. (kV)	0.003661	0.007319	0.01464	0.02195	0.02927	0.03636	0.04368	0.05081	0.05805	0.06522	0.07246	0.1084	0.1443	0.1792	0.2143	0.2835	0.3517	0.4192	0.4845	0.5504	0.6137	0.6757	0.8003	0.9213	1.040	1.154	1.267
		1501	V.c.gener. (kV)	0.01447	0.02899	0.05799	0.08698	0.1158	0.1445	0.1730	0.2014	0.2299	0.2585	0.2869	0.4293	0.5707	0.7093	0.8484	1.123	1.393	1.660	1.920	2.180	2.430	2.679	3.169	3.647	4.4114	4.566	5.017
		kn	V.p.gener. (kV)	0.00548	0.01096	0.02192	0.03287	0.04385	0.0462	0.06539	0.07619	0.08690	0.09770	0.1085	0.1623	0.2161	0.2686	0.3209	0.4252	0.5268	0.6277	0.7259	0.8242	0.9190	1.012	1.199	1.380	1.555	1.726	1.895
	nductivo	100	V.c.gener. (kV)	0.02155	0.04306	0.08639	0.1293	0.1278	0.2152	0.2577	0.3002	0.3421	0.3852	0.4271	0.6397	0.8520	1.056	1.264	1.675	2.074	2.474	2.862	3.247	3.610	3.992	4.727	5.435	6.133	6.808	7.476
	Zapato cor	Ű	V.p.gener. (kV)	0.01090	0.02181	0.04363	0.06538	0.08726	0.1087	0.1302	0.1516	0.1730	0.1944	0.2157	0.3231	0.4302	0.5344	0.6379	0.8461	1.048	1.249	1.443	1.638	1.828	2.012	2.387	2.739	3.098	3.429	3.769
		501	V.c.gener. (kV)	0.04227	0.08475	0.1694	0.2536	0.3389	0.4221	0.5056	0.5890	0.6720	0.7535	0.8387	1.255	1.670	2.074	2.479	3.274	4.066	4.851	5.615	6.371	7.102	7.830	9.277	10.67	12.01	13.35	14.65
			Max. elev. de voltaje (kV)	1.101	2.201	4.399	6.609	8.803	10.96	13.15	15.31	17.46	16.63	21.81	32.54	43.36	53.97	64.47	85.42	105.8	126.1	146	165.6	184.6	203.6	241.1	277.3	312.9	347.4	380.8
			I.rayo (kA)	0.5	1	2	3	4	5	9	7	8	6	10	15	20	25	30	40	50	60	70	80	90	100	120	140	160	180	200

TABLA DE RESULTADOS # 6 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT DE FORMA ANILLO CUADRADO CON PICAS EN LOS VERTICES EMPOTRADO...... ANTE CORRIENTES TIPO RAYO

137

Tabla 15. Tabla general de simulaciones realizadas en el SPT.Fuente: Los autores.

4.8. Simulación de un SPT mixto aplicado a torres metálicas.

Para esta simulación se considera los siguientes parámetros:

- Profundidad del empotramiento: 0.5 m
- Tipo de terreno: humus
- Resistividad del terreno*: $100 \Omega^*m$
- Permitividad relativa de terreno: 17
- Permitividad del vacío: $8.85 * 10^{-12}$ (F/m)
- Permeabilidad magnética del vacío = $4\pi * 10^{-7}$ (H/m)
- Tipo de electrodo: varilla / pica / jabalina
- Material del electrodo: Copperweld
- Longitud del electrodo: 2.40 m
- Diámetro del electrodo: 5/8"
- Bajante de puesta a tierra: cobre desnudo / 7 hilos / #2 AWG
- Longitud de la bajante de puesta a tierra: 10 m
- Corriente tipo rayo: pulso 8 / 20 µs
- Amplitud de corrientes tipo rayo (1 200 kA)
- Impedancia del cuerpo humano: 1000Ω
- Resistencia eléctrica de los zapatos: $(50k\Omega, 100k\Omega, 150k\Omega, 1M\Omega, 100M\Omega)$

Los parámetros utilizados para modelar este tipo de SPT, de acuerdo con los cálculos realizados en el CAPITULO III, son los siguientes:

- Corriente tipo rayo = $70 \text{ kA} / \text{pulso} = 8/20 \text{ }\mu\text{s}$
- $R_0 = 145.02 \ \Omega$
- *L. bajante* = $13 \mu H$
- L.electrodo = 0.0147 mH
- *C. suelo* = $0.00155 \ \mu F$

- Figura 58: Diagrama de simulación del SPT.
- Figura 59: Pulso de corriente tipo rayo.
- Figura 60: Configuración de la resistencia transitoria del SPT.
- Figura 61: Máxima elevación del voltaje generado en el SPT.
- Figura 62: Voltaje de contacto generado en el SPT.
- Figura 63: Voltaje de paso generado en el SPT.
- Tabla 16: Tabla general de simulaciones realizadas en el SPT.

Figura 59. Pulso de corriente tipo rayo. 8/20 μs **Fuente:** Los autores.

Figura 60. Comportamiento de la resistencia transitoria del SPT. Fuente: Los autores.

Figura 62. Voltaje de contacto generado por el SPT. Fuente: Los autores.

Figura 63. Voltaje de paso generado por el SPT. Fuente: Los autores.

0
≽
2
0
ď
F
ŝ
F
2
₩
2
ō
C
ш
Ξ
A
S
3
≤
Ξ
≥
S
哭
2
0
5
A
g
9
3
₽
~
2
⋝
₹
Ы
S
2
2
٣
М
S
0
9
2
ш
<u></u>
σ
0
E
¥
È
Z
2
5
0
S
A
Δ
S
4
-
-
Ē
/OLT/
: VOLT/
7 : VOLTI
7 : VOLT/
S # 7 : VOLT/
1100 : 7 # 200
ADOS # 7 : VOLT/
TADOS # 7 : VOLT/
JLTADOS # 7 : VOLT/
SULTADOS # 7 : VOLT/
RESULTADOS # 7 : VOLT/
E RESULTADOS # 7 : VOLT/
DE RESULTADOS # 7 : VOLT/
A DE RESULTADOS # 7 : VOLT/
BLA DE RESULTADOS # 7 : VOLT/
ABLA DE RESULTADOS # 7 : VOLT

•										
		Zapato c	onductivo			Za	pato dielectrico /	Lapato anti-esta	tico	
	501	ku	100	kŋ	150) kΩ	1	٥V	100	MD
x. elev. de voltaje (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)
6.824	0.2625	0.06759	0.1338	0.03397	0.08982	0.022680	0.01363	0.003412	0.0001364	0.00003414
13.65	0.5249	0.1352	0.2677	0.06793	0.1796	0.045360	0.02725	0.006824	0.0002729	0.00006826
27.3	1.05	0.2701	0.3534	0.1359	0.3593	0.09072	0.05451	0.01365	0.0005456	0.0001365
40.94	1.575	0.4055	0.803	0.2038	0.5389	0.1361	0.08176	0.02046	0.0008193	0.0002048
54.59	2.1	0.5407	1.071	0.2717	0.7185	0.1815	0.109	0.0273	0.001092	0.0002728
68.24	2.625	0.6759	1.338	0.3397	0.8982	0.2268	0.1363	0.03412	0.001365	0.0003412
81.89	3.15	0.8111	1.606	0.4076	1.0770	0.2722	0.1634	0.04094	0.001636	0.0004095
95.54	3.674	0.9463	1.874	0.4755	1.2570	0.31750	0.1908	0.047770	0.001911	0.0004775
109.2	4.199	1.081	2.141	0.5435	1.437	0.36290	0.218	0.05459	0.002183	0.0005460
122.8	4.724	1.217	2.409	0.6114	1.617	0.4083	0.24530	0.06142	0.002458	0.0006138
136.5	5.249	1.352	2.677	0.67930	1.796	0.4536	0.27250	0.06824	0.002728	0.0006826
193.3	7.435	1.915	3.7910	0.9621	2.544	0.6425	0.386	0.09665	0.003866	0.0009667
250.1	9.613	2.474	4.900	1.244	3.291	0.8308	0.4991	0.1249	0.005002	0.001251
301.4	11.59	2.982	5.908	1.499	3.963	1.002	0.6014	0.1507	0.006031	0.001508
350.3	13.46	3.465	6.852	1.742	4.607	1.163	0.6992	0.1750	0.007006	0.001750
447.7	17.22	4.433	8.780	2.225	5.890	1.488	0.8939	0.2238	0.008950	0.002238
544.9	20.96	5.393	10.68	2.708	7.162	1.812	1.088	0.2725	0.01091	0.002725
629.2	24.19	6.216	12.33	3.130	8.273	2.089	1.255	0.3143	0.01258	0.003145
706.8	27.20	6.998	13.87	3.519	9.306	2.349	1.568	0.3535	0.01415	0.003537
785.4	30.20	7.776	15.40	3.906	10.33	2.610	1.711	0.3925	0.01571	0.003925
856.4	32.92	8.486	16.80	4.264	11.28	2.848	1.845	0.4283	0.01714	0.004286
923.1	35.55	9.151	18.12	4.600	12.14	3.070	2.091	0.4618	0.01849	0.004623
1048	40.28	10.36	20.51	5.213	13.79	3.481	2.322	0.5237	0.02094	0.005238
1162	44.73	11.51	22.81	5.786	15.30	3.860	2.540	0.5813	0.02326	0.005815
1274	48.97	12.60	24.97	6.336	16.75	4.231	2.736	0.6365	0.02545	0.006367
1371	52.72	13.57	26.87	6.820	18.04	4.555	2.736	0.6852	0.02739	0.006854
1465	56.35	14.51	28.73	7.288	19.28	4.868	2.924	0.7318	0.02931	0.007327
	x. elev. de voltaje (kV) 6.824 6.824 13.65 27.3 40.94 54.59 68.24 81.89 95.54 109.2 109.2 109.2 109.2 109.2 103.3 250.1 109.2 103.3 250.1 103.3 103.3 103.3 103.3 116.2 103.3 104.8	S0 S0 6.824 0.2625 6.824 0.2625 13.65 0.2625 13.65 0.5249 27.3 1.05 40.94 1.575 54.59 2.1 68.24 0.5249 7.3 1.05 40.94 1.575 54.59 2.1 68.24 3.15 95.54 3.15 95.54 3.15 95.54 3.15 95.54 3.15 95.54 3.15 95.30 1109.2 122.8 4.199 122.8 4.199 136.5 5.249 136.5 5.201 9.613 301.4 1152.8 7.435 350.3 13.46 136.5 5.49 36.49 2.020 856.4 30.20 856.4 30.20 856.4 30.20 70.68	Sol k() Sol k() s. elev. de voltaje (kV) V.c.gener. (kV) V.p.gener. (kV) 6.824 0.2625 0.06759 13.65 0.25249 0.1352 13.65 0.5249 0.1352 27.3 1.05 0.06759 13.65 0.5249 0.1352 27.3 1.05 0.2701 40.94 1.575 0.4055 54.59 2.1 0.5407 68.24 2.5249 0.1352 13.65 1.575 0.4055 81.89 3.15 0.4055 81.89 3.15 0.4055 81.89 3.15 0.4055 81.89 3.15 0.4055 81.89 3.15 0.4055 81.89 3.15 0.4055 81.89 3.15 0.4055 95.54 3.674 0.9463 109.2 3.674 0.9463 109.2 1.217 1.217 105.4 1.2169 1.915<	Sol kn Zapato Conductivo x. elev. de voltaje (kly) V.c.gener. (kly) V.c.gener. (kly) V.c.gener. (kly) 6.824 0.2625 0.06759 0.1338 13.65 0.25249 0.1352 0.2677 27.3 1.05 0.2701 0.3534 13.65 0.5249 0.1352 0.2677 27.3 1.05 0.2701 0.3534 40.94 1.575 0.4055 0.8033 54.59 2.1 0.5407 1.071 68.24 2.655 0.66759 1.338 91.99 3.15 0.8111 1.666 95.54 3.614 0.9463 1.874 109.2 4.199 0.8111 1.666 95.54 3.613 0.9463 1.874 112.2 8.189 3.1610 2.338 12.65 5.249 1.317 2.409 13.65 5.249 1.317 2.409 13.65 5.244 1.317 2.409	Zapato conductivo x.elev. de voltaje (kV) X.egener. (kV) V.egener. (kV) V.egener. (kV) 6.824 0.2655 0.06759 0.1338 0.03397 13.65 0.2554 0.06759 0.1338 0.03397 13.65 0.5249 0.1352 0.06793 0.03397 13.65 0.5249 0.1352 0.06793 0.03397 27.3 1.055 0.04055 0.03334 0.03397 3.15 0.2500 0.1352 0.06793 0.03397 40.94 1.055 0.4055 0.03334 0.03397 54.59 0.5549 0.5407 0.6593 0.03397 55.54 0.5407 1.071 0.2147 0.2147 55.54 0.5403 1.071 0.5954 0.0475 130.2 1.352 0.5404 0.0476 0.476 132.5 5.444 1.117 0.5493 0.1476 130.2 1.352 2.6677 0.4660 0.476 130	Zapato conductivo Zapato conductivo Import Import	Zapato conductivo Solv JSOR J13 J15 0.2579 0.3337 0.33397 0.03892 0.03072 0.03750 J13.65 J2.11 1.666 0.4076 0.4076 1.0770 0.2175 0.2679 0.13150 J13.65 J3.674 0.6733 J3.414 4.900 0.6114 1.617 0.0023 J13.63 J3	Japage Conductivo Japage Conductivo S0 k0 Jo k0 Jo k0 Japage Conductivo Japage Conductivo	Acpart contactivity Color contactivity Acp	Application contaction of the propertication of the properiod of the proproperiod of the properiod of the properiod of the

Tabla 16. Tabla general de simulaciones realizadas en el SPT.Fuente: Los autores.

CAPITULO V

ANALISIS DE RESULTADOS

Se realizaron las correspondientes simulaciones en ATPDraw, para los SPT formados por: electrodo vertical sin empotramiento, electrodo vertical con empotramiento, dos electrodos verticales conectados en línea con empotramiento, electrodo horizontal con empotramiento, anillo circular con empotramiento, anillo cuadrado con picas en los vértices y SPT mixto aplicado a torres metálicas.

5.1. Electrodo vertical sin empotramiento.

Los valores correspondientes a la simulación realizada, respecto al comportamiento de un SPT formado por un electrodo vertical sin empotramiento, se muestran en la Tabla 10, de la misma se observa los siguientes aspectos:

• Para zapatos conductivos (hasta 50 k Ω).

El SPT es seguro hasta descargas tipo rayo de 1 kA.

• Para zapatos conductivos (entre 50 y 100 k Ω).

El SPT es seguro hasta descargas tipo rayo de 3 kA.

• Para zapatos dieléctricos (150 k Ω).

El SPT es seguro hasta descargas tipo rayo de 5 kA.

- Para zapatos dieléctricos (1 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 100 kA.
- Para zapatos antiestáticos (100 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 200 kA.

Considerando que el SPT es seguro si se cumplen las dos condiciones de voltajes de seguridad, que de acuerdo a la referencia VDE [9], son los siguientes:

- Voltaje de contacto máximo: 2 kV
- Voltaje de paso máximo: 50 kV

0
2
F
2
-
2
=
ŝ
Ē
z
ш
~
2
ō
ŭ
z
A
0
-
Z
ш
5
5
2
F
O
Ā
≥
ш
-
≤
S
-
2
2
2
-
-
0
0
Ř
Ε.
2
-
ш
~
5
_
Ĕ
0
D
0
A
5
2
ō
ш
à
S
>
5
_
Ë
2
S
0
4
.
₹
ίω.
G
1
0
¥
5
5
5
2
~
0
S
◄
Δ.
ш
S
шĭ
3
Ē
-
0
>
•••
-
##
\sim
S
S
ADOS
TADOS
LTADOS
ULTADOS
ESULTADOS
RESULTADOS
E RESULTADOS
DE RESULTADOS
N DE RESULTADOS
A DE RESULTADOS
BLA DE RESULTADOS
ABLA DE RESULTADOS
TABLA DE RESULTADOS

		MQ	V.p.gener. (kV)	0.00008876	0.0001775	0.00003150	0.00004525	0.00059	0.0007267	0.0008272	0.0009267	0.001026	0.001126	0.001225	0.001618	0.001949	0.002225	0.0025	0.00296	0.003362	0.003723	0.004053	0.004359	0.004646	0.004916	0.005419	0.00588	0.006309	0.006711	0.007091
	tico	100	V.c.gener. (kV)	0.000355	0.0007101	0.00126	0.00181	0.00236	0.00291	0.003309	0.003707	0.004105	0.004503	0.004902	0.006472	0.007797	0.008899	0.01	0.01184	0.01345	0.01489	0.01621	0.01744	0.01859	0.01967	0.02168	0.02352	0.02523	0.02684	0.02836
	Zapato anti-esta	UV	V.p.gener. (kV)	0.008871	0.01774	0.03	0.04523	0.05897	0.07272	0.08267	0.09263	0.1026	0.1125	0.1225	0.1617	0.1948	0.2224	0.2499	0.2959	0.336	0.3721	0.4051	0.4357	0.4644	0.4915	0.5417	0.5877	0.6305	0.6707	0.7088
TOS	pato dielectrico /	1 N	V.c.gener. (kV)	0.03543	0.07086	0.12	0.1806	0.2355	0.2904	0.3302	0.3699	0.4097	0.4494	0.4892	0.6459	0.7781	0.8881	0.9981	1.182	1.342	1.486	1.618	1.74	1.855	1.963	2.163	2.347	2.518	2.679	2.831
RESISTENCIA ELECTRICA DE LOS ZAPA	Za	0 kΩ	V.p.gener. (kV)	0.05897	0.1179	0.20	0.3007	0.392	0.4834	0.5496	0.6157	0.6819	0.748	0.8142	1.075	1.295	1.478	1.661	1.967	2.234	2.474	2.693	2.897	3.087	3.267	3.601	3.907	4.192	4.459	4.712
		15(V.c.gener. (kV)	0.2328	0.4669	0.82	1.19	1.552	1.914	2.176	2.438	2.7	2.962	3.224	4.257	5.128	5.854	6.579	7.789	8.846	9.796	10.67	11.47	12.23	12.94	14.26	15.47	16.58	17.66	18.66
		kn	V.p.gener. (kV)	0.0883	0.18	0.31	0.4502	0.587	0.7238	0.823	0.922	1.021	1.12	1.219	1.61	1.939	2.214	2.488	2.945	3.345	3.704	4.033	4.338	4.623	4.892	5.392	5.851	6.277	6.677	7.056
	onductivo	100	V.c.gener. (kV)	0.3478	0.69	1.23	1.774	2.313	2.852	3.243	3.633	4.023	4.414	4.804	6.343	7.642	8.723	9.803	11.61	13.18	14.6	15.89	17.09	18.22	19.28	21.25	23.06	24.74	26.31	27.8
	Zapato c	kn	V.p.gener. (kV)	0.1757	0.35	0.62	0.8959	1.168	1.44	1.638	1.835	2.032	2.229	2.426	3.204	3.859	4.405	4.951	5.861	6.657	7.372	8.025	8.632	9.2	9.736	10.73	11.64	12.49	13.29	14.04
		50	V.c.gener. (kV)	0.6818	1.36	2.42	3.477	4.534	5.591	6.358	7.123	7.889	8.654	9.419	12.44	14.99	17.11	19.23	22.76	25.85	28.63	31.17	33.53	35.73	37.82	41.68	45.22	48.52	51.61	54.54
			Max. elev. de voltaje (kV)	17.73	35.45	62.98	90.41	117.9	145.4	165.3	185.3	205.3	225.2	245.1	323.6	389.8	445	500.1	592	672.4	744.6	810.6	871.9	929.3	983.4	1084	1176	1262	1342	1418
			I.rayo (kA)	0.5	1	2	3	4	5	9	7	8	9	10	15	20	25	30	40	50	60	70	80	<mark>06</mark>	100	120	140	160	180	200

Tabla 10. Tabla general de simulaciones realizadas en el SPT.Fuente: Los autores.

5.2. Electrodo vertical con empotramiento.

En la Tabla 11 se muestra los resultados de la simulación correspondiente a un SPT formado por un electrodo vertical con empotramiento:

- Para zapatos conductivos (hasta 50 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 1 kA.
- Para zapatos conductivos (entre 50 y 100 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 3 kA.
- Para zapatos dieléctricos (150 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 5 kA.
- Para zapatos dieléctricos (1 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 100 kA.
- Para zapatos antiestáticos (100 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 200 kA.

5.3. Dos electrodos verticales conectados en línea con empotramiento.

En la Tabla 12 se muestra los resultados de la simulación correspondiente a un SPT formado por dos electrodos verticales conectados en línea con empotramiento:

- Para zapatos conductivos (hasta 50 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 5 kA.
- Para zapatos conductivos (entre 50 y 100 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 10 kA.
- Para zapatos dieléctricos (150 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 15 kA.
- Para zapatos dieléctricos (1 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 200 kA.
- Para zapatos antiestáticos (100 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 200 kA.
| - |
|---|
| 0 |
| ~ |
| 2 |
| - |
| 0 |
| <u>a</u> |
| - |
| S |
| 쁘 |
| ⋝ |
| Ξ |
| ☴ |
| * |
| 5 |
| 2 |
| ~ |
| - |
| 2 |
| A |
| |
| |
| |
| 0 |
| - |
| Z |
| 쁘 |
| 5 |
| 4 |
| 2 |
| F |
| 0 |
| Δ. |
| ≥ |
| Ē |
| > |
| 5 |
| 3 |
| <u> </u> |
| 7 |
| C |
| Ĕ. |
| 2 |
| ш т |
| 5 |
| 0 |
| × |
| 吕 |
| 2 |
| Ľ |
| 5 |
| ш |
| - |
| - |
| 2 |
| _ |
| 8 |
| 0 |
| 9 |
| 0 |
| × |
| _ |
| - |
| Ā |
| MA |
| RMA |
| ORMA |
| FORMA |
| T FORMA |
| SPT FORMA |
| V SPT FORMA |
| JN SPT FORMA |
| UN SPT FORMA |
| R UN SPT FORMA |
| OR UN SPT FORMA |
| POR UN SPT FORMA |
| S POR UN SPT FORMA |
| OS POR UN SPT FORMA |
| DOS POR UN SPT FORMA |
| ADOS POR UN SPT FORMA |
| RADOS POR UN SPT FORMA |
| JERADOS POR UN SPT FORMA |
| ENERADOS POR UN SPT FORMA |
| 5ENERADOS POR UN SPT FORMA |
| GENERADOS POR UN SPT FORMA |
| O GENERADOS POR UN SPT FORMA |
| TO GENERADOS POR UN SPT FORMA |
| ICTO GENERADOS POR UN SPT FORMA |
| FACTO GENERADOS POR UN SPT FORMA |
| VTACTO GENERADOS POR UN SPT FORMA |
| DNTACTO GENERADOS POR UN SPT FORMA |
| CONTACTO GENERADOS POR UN SPT FORMA |
| CONTACTO GENERADOS POR UN SPT FORMA |
| Y CONTACTO GENERADOS POR UN SPT FORMA |
| D Y CONTACTO GENERADOS POR UN SPT FORMA |
| SO Y CONTACTO GENERADOS POR UN SPT FORMA |
| ASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| IE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| S DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| IES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| AJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| TAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| JLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| OLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| S # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| OS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| DOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| ADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| TADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| JLTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| SULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| DE RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| DE RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| A DE RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| <pre>sLA DE RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA</pre> |
| ABLA DE RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |
| TABLA DE RESULTADOS # 2 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMA |

		0 M0	V.p.gener. (kV)	0.00008433	0.0001686	0.0003021	0.0004356	0.0005691	0.0007025	0.0008011	0.0008996	0.0009981	0.001097	0.001195	0.001587	0.001918	0.002194	0.002471	0.002932	0.003336	0.003697	0.004028	0.004336	0.004625	0.004896	0.005399	0.005857	0.006290	0.006692	0.007071
		100	V.c.gener. (kV)	0.0003373	0.0006746	0.001209	0.001742	0.002276	0.00281	0.003204	0.003598	0.003992	0.004386	0.00478	0.006347	0.007672	0.008773	0.009884	0.01173	0.01334	0.01479	0.01612	0.01735	0.01850	0.01958	0.02159	0.02345	0.02515	0.02677	0.02829
	co / Zapato anti-estatico	1 MΩ	V.p.gener. (kV)	0.008429	0.01686	0.0302	0.04354	0.05688	0.07022	0.08007	0.08991	0.09976	0.1096	0.1194	0.1586	0.1917	0.2194	0.2468	0.2931	0.3334	0.3695	0.4026	0.4334	0.4622	0.4893	0.5396	0.5859	0.6288	0.6689	0.7072
	Zapato dielectric		V.c.gener. (kV)	0.03366	0.06732	0.1206	0.1739	0.2272	0.2804	0.3197	0.359	0.3984	0.4377	0.4771	0.6334	0.7657	0.876	0.9863	1.170	1.331	1.476	1.605	1.731	1.846	1.954	2.154	2.340	2.510	2.672	2.824
A DE LOS ZAPATOS		υ	V.p.gener. (kV)	0.05603	0.1121	0.1121	0.2007	0.2894	0.3781	0.5323	0.5977	0.6631	0.7286	0.794	1.054	1.274	1.458	1.640	1.948	2.212	2.457	2.677	2.882	3.073	3.253	3.588	3.895	4.180	4.445	4.698
RESISTENCIA ELECTRIC		150 k	V.c.gener. (kV)	0.2218	0.4437	0.7948	1.146	1.497	1.848	2.108	2.367	2.626	2.885	3.144	4.175	5.047	5.775	6.501	7.714	8.778	9.712	10.60	11.41	12.17	12.88	14.20	15.42	16.56	17.57	18.61
		kn	V.p.gener. (kV)	0.0839	0.1678	0.3306	0.4334	0.5662	0.699	0.797	0.895	0.993	1.091	1.189	1.579	1.908	2.183	2.458	2.916	3.319	3.680	4.010	4.315	4.601	4.872	5.368	5.832	6.259	6.659	7.039
	conductivo	100	V.c.gener. (kV)	0.3305	0.661	1.184	1.707	2.23	2.754	3.14	3.526	3.913	4.299	4.685	6.22	7.52	8.604	9.686	11.50	13.06	14.49	15.79	17.01	18.09	19.20	21.17	22.97	24.65	26.25	27.74
	Zapato	0 kΩ	V.p.gener. (kV)	0.1669	0.3339	0.5981	0.8624	1.127	1.391	1.586	1.781	1.976	2.171	2.366	3.141	3.798	4.343	4.893	5.806	6.605	7.322	7.977	8.588	9.153	9.695	10.69	11.60	12.46	13.26	14.010
		5(V.c.gener. (kV)	0.6479	1.296	2.322	3.347	4.373	5.399	6.158	6.915	7.672	8.429	9.186	12.2	14.75	16.68	19.00	22.54	25.61	28.42	30.99	33.35	35.56	37.65	41.52	45.08	48.36	51.46	54.42
			Max. elev. de voltaje (kV)	16.48	33.69	60.37	87.03	113.7	140.4	160.1	179.8	199.5	219.2	238.8	317.1	383.4	438.9	494.2	586.5	667.2	739.4	805.9	867.4	924.9	979.3	1080	1172	1257	1339	1414
			I.rayo (kA)	0.5	1	2	3	4	5	9	7	8	6	10	15	20	25	30	40	50	09	70	80	90	100	120	140	160	180	200

Tabla 11. Tabla general de simulaciones realizadas en el SPT.Fuente: Los autores.

		AD AD	V.p.gener. (kV)	0.00002396	0.00004790	0.00009585	0.0001399	0.0001839	0.0002281	0.0002723	0.0003164	0.0003602	0.0004042	0.0004484	0.0006421	0.0008351	0.001006	0.001177	0.001484	0.001755	0.002024	0.002258	0.002493	0.002700	0.002910	0.003291	0.003642	0.003969	0.004277	0.004568
	CO	1001	V.c.gener. (kV)	0.00009581	0.0001915	0.0003835	0.0005596	0.0007364	0.0009114	0.001088	0.001263	0.001441	0.001619	0.001795	0.002568	0.003341	0.004025	0.004707	0.005937	0.007020	0.008082	0.009041	0.00973	0.01081	0.01165	0.01317	0.01457	0.01587	0.01710	0.01827
	/ Zapato anti-estati	UV	V.p.gener. (kV)	0.002396	0.004790	0.009583	0.01399	0.01835	0.02281	0.02716	0.03161	0.03602	0.04044	0.04480	0.06413	0.08344	0.1005	0.1176	0.1483	0.1754	0.2023	0.2258	0.2492	0.2702	0.2910	0.3285	0.3641	0.3967	0.4268	0.4561
TOS	Zapato dielectrico	1 N	V.c.gener. (kV)	0.00957	0.01912	0.03827	0.05589	0.07350	0.09105	0.1086	0.1262	0.1438	0.1613	0.1790	0.2563	0.3334	0.4014	0.4692	0.5919	0.6996	0.8079	0.9022	0.9943	1.077	1.160	1.310	1.454	1.584	1.705	1.823
CTRICA DE LOS ZAPA		kn	V.p.gener. (kV)	0.01593	0.03183	0.06368	0.09297	0.1221	0.1516	0.1807	0.2101	0.2394	0.2686	0.2980	0.4258	0.5512	0.6684	0.7813	0.9855	1.166	1.345	1.502	1.653	1.795	1.934	2.186	2.420	2.633	2.842	3.033
RESISTENCIA ELEC		150	V.c.gener. (kV)	0.06308	0.01261	0.2522	0.3680	0.4843	0.6001	0.7149	0.8317	0.9487	1.063	1.180	1.688	2.198	2.647	3.097	3.903	4.615	5.322	5.947	6.559	7.113	7.660	8.662	9.580	10.44	11.25	12.01
		kn	V.p.gener. (kV)	0.02385	0.04766	0.09536	0.1393	0.1832	0.2265	0.2707	0.3147	0.3587	0.402	0.4464	0.6386	0.8306	1.000	1.171	1.477	1.744	2.013	2.246	2.477	2.69	2.896	3.274	3.624	3.945	4.255	4.543
	inductivo	100	V.c.gener. (kV)	0.09398	0.1879	0.3758	0.5488	0.7215	0.8948	1.068	1.241	1.413	1.586	1.757	2.518	3.275	3.944	4.612	5.818	6.881	7.936	8.862	9.773	10.6	11.42	12.9	14.28	15.56	16.77	17.91
	Zapato co	kn	V.p.gener. (kV)	0.04744	0.09466	0.1898	0.2771	0.3637	0.4519	0.5386	0.6266	0.7131	0.8012	0.8882	1.270	1.654	1.993	2.330	2.937	3.474	4.005	4.467	4.930	5.351	5.759	6.517	7.211	7.857	8.468	9.043
		50	V.c.gener. (kV)	0.1843	0.3685	0.7372	1.076	1.415	1.754	2.093	2.433	2.773	3.108	3.449	4.938	6.421	7.735	9.051	11.41	13.50	15.57	17.38	19.16	20.79	22.39	25.31	28.00	30.51	32.90	35.05
			Max. elev. de voltaje (kV)	47.89	95.89	191.8	279.9	368.1	456.2	544.6	632.6	721.1	809.2	897.4	1283	1671	2011	2353	2968	3504	4043	4520	4981	5408	5823	6578	7284	7939	8554	9135
			I.rayo (kA)	0.5	1	2	£	4	5	9	7	8	6	10	15	20	25	30	40	50	60	70	80	90	100	120	140	160	180	200

TABLA DE RESULTADOS # 3 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO POR DOS ELECTRODOS VERTICALES EN LINEA CON EMPOTRAMIENTO..... ANTE CORRIENTES TIPO RAYO

146

Tabla 12. Tabla general de simulaciones realizadas en el SPT.Fuente: Los autores.

5.4. Electrodo horizontal con empotramiento.

En la Tabla 13 se muestra los resultados de la simulación correspondiente a un SPT formado por un electrodo horizontal con empotramiento:

- Para zapatos conductivos (hasta 50 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 1 kA.
- Para zapatos conductivos (entre 50 y 100 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 3 kA.
- Para zapatos dieléctricos (150 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 6 kA.
- Para zapatos dieléctricos (1 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 100 kA.
- Para zapatos antiestáticos (100 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 200 kA.

5.5. Anillo circular con empotramiento.

En la Tabla 14 se muestra los resultados de la simulación correspondiente a un SPT formado por un electrodo tipo anillo circular con empotramiento:

- Para zapatos conductivos (hasta 50 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 3 kA.
- Para zapatos conductivos (entre 50 y 100 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 6 kA.
- Para zapatos dieléctricos (150 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 9 kA.
- Para zapatos dieléctricos (1 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 120 kA.
- Para zapatos antiestáticos (100 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 200 kA.

		MD	V.p.gener. (kV)	0.00007585	0.001518	0.002767	0.004017	0.005266	0.006515	0.007475	0.008434	0.009393	0.001035	0.001131	0.001519	0.001851	0.002131	0.002470	0.002877	0.003288	0.003658	0.003997	0.004307	0.0046070	0.004887	0.005409	0.005898	0.006341	0.006767	0.007171
	tico	100	V.c.gener. (kV)	0.00030	0.0006069	0.001106	0.001607	0.002106	0.002606	0.00299	0.003372	0.003754	0.004140	0.004523	0.006077	0.007400	0.008520	0.009637	0.001151	0.001315	0.001463	0.001598	0.001725	0.001842	0.001955	0.002163	0.002356	0.002536	0.002706	0.002867
	Zapato anti-esta	UV	V.p.gener. (kV)	0.0075	0.015	0.027	0.040	0.052	0.065	0.074	0.084	0.093	0.103	0.113	0.151	0.185	0.212	0.240	0.287	0.328	0.365	0.399	0.431	0.461	0.488	0.539	0.588	0.633	0.676	0.715
TOS	pato dielectrico /	1 N	V.c.gener. (kV)	0.03	0.06	0.11	0.16	0.21	0.26	0.298	0.336	0.374	0.413	0.451	0.606	0.739	0.85	0.96	1.14	1.31	1.46	1.59	1.72	1.83	1.95	2.15	2.34	2.53	2.70	2.86
RICA DE LOS ZAPA	Za	0 kΩ	V.p.gener. (kV)	0.050	0.100	0.183	0.266	0.349	0.432	0.496	0.560	0.624	0.687	0.751	1.01	1.23	1.41	1.60	1.91	2.18	2.43	2.65	2.86	3.06	3.24	3.59	3.91	4.21	4.49	4.76
ISTENCIA ELECTI		15(V.c.gener. (kV)	0.199	0.399	0.727	1.05	1.38	1.71	1.96	2.21	2.47	2.72	2.97	3.99	4.87	5.60	6.33	7.57	8.65	9.62	10.51	11.34	12.12	12.86	14.23	15.49	16.68	17.79	18.87
RES		kΩ	V.p.gener. (kV)	0.075	0.151	0.275	0.399	0.523	0.648	0.742	0.839	0.933	1.03	1.12	1.51	1.84	2.12	2.39	2.86	3.27	3.63	3.97	4.28	4.58	4.86	5.38	5.86	6.30	6.73	7.13
	onductivo	100	V.c.gener. (kV)	0.297	0.594	1.08	1.57	2.06	2.55	2.92	3.3	3.68	4.05	4.43	5.95	7.25	8.35	9.43	11.27	12.89	14.34	15.67	16.90	18.07	19.17	21.21	23.10	24.86	26.53	28.11
	Zapato c	kn	V.p.gener. (kV)	0.15	0.3	0.547	0.795	1.04	1.29	1.48	1.67	1.86	2.04	2.23	3.008	3.66	4.21	4.77	5.69	6.51	7.24	7.91	8.53	9.12	9.67	10.71	11.66	12.56	13.40	14.20
		50	V.c.gener. (kV)	0.5825	1.166	2.127	3.087	4.047	5.006	5.745	6.482	7.216	7.956	8.693	11.68	14.24	16.38	18.52	22.12	25.28	28.13	30.68	33.16	35.43	37.59	41.59	45.29	48.77	52.03	55.15
			Max. elev. de voltaje (kV)	15.15	30.31	55.27	80.26	105.2	130.2	149.4	168.4	187.6	206.9	226	303.6	370.1	426	481.6	575.2	657.4	731.2	799.1	862.2	921.3	977.2	1081	1178	1268	1353	1434
			I.rayo (kA)	0.5	1	2	3	4	5	9	7	8	6	10	<u>15</u>	20	25	30	40	50	60	70	80	06	100	120	140	160	180	200

Т Т

TABLA DE RESULTADOS # 4 : VOLTAJES DE PASO Y CONTACTO GENERADOS POR UN SPT FORMADO POR UN ELECTRODO HORIZONTAL A UNA PROFUNDIDAD h ANTE CORRIENTES TIPO RAYO

Tabla 13. Tabla general de simulaciones realizadas en el SPT. Fuente: Los autores.

148

	0
	2
	2
	0
1	ĕ
- 1	F
	ŝ
	E
	Z
	₩
	2
	0
	0
	Ξ.
	z
	A
	_
	2
	Ξ
	⋝
	A
	Ě
	Ö
	ď.
	≥
1	ш
	Z
	0
	~
	A
	2
	~
	5
	0
	4
	=
	5
	~
	3
	o
	-
	Ë
- 1	b
	S
	2
	_
	E.
	2
	S
	Ö
	9
	2
	ш
	2
	G
	õ
	Ĕ
	2
	1
	Z
	Q
	2
	-
	S
	đ
	0
	ш
	-
	З,
	2
	F.
	d
	ž
	•••
1	S
	#
	S
	ă
	A
	5
	S
	2
	ш
	-
	≤
	8
	◄

						RESISTENCIA ELECTRIC	A DE LOS ZAPATOS				
			Zapato	conductivo				Zapato dielectrico	o / Zapato anti-estatico		
		5	0 kΩ	100	N kD	150 k	U		1 MΩ	100	MD
I.rayo (kA)	Max. elev. de voltaje (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)
0.5	9.034	0.34	0.0893	0.1719	0.04493	0.1188	0:030	0.01803	0.00451	0.0001803	0.0000451
1	18.06	0.69	0.1787	0.3541	0.08989	0.2376	0.060	0.03604	0.00902	0.0003613	0.0000903
2	34.84	1.33	0.3447	0.6828	0.1732	0.4578	0.1157	0.06951	0.01738	0.0006967	0.0001742
3	51.60	1.98	0.5108	1.011	0.2567	0.6786	0.1714	0.1029	0.02574	0.001031	0.000258
4	68.37	2.62	0.6767	1.338	0.340	0.8993	0.2269	0.1362	0.03416	0.001366	0.0003419
5	85.14	3.27	0.8425	1.669	0.4234	1.120	0.2828	0.1698	0.04254	0.001701	0.0003418
9	100	3.84	0.9891	1.959	0.4976	1.316	0.3316	0.1992	0.04997	0.001999	0.0004986
7	114.9	4.41	1.137	2.250	0.5715	1.510	0.3816	0.2292	0.05740	0.002297	0.0005738
8	129.7	4.98	1.284	2.543	0.6446	1.707	0.4310	0.2586	0.06479	0.002589	0.0006483
6	144.6	5.55	1.431	2.835	0.7180	1.901	0.4803	0.2883	0.07221	0.002887	0.0007230
10	159.5	6.12	1.577	3.126	0.7934	2.097	0.5298	0.3180	0.07967	0.003180	0.0007956
15	225.8	8.673	2.233	4.425	1.123	2.968	0.7493	0.4505	0.1126	0.004511	0.001129
20	285.9	10.99	2.830	5.603	1.421	3.760	0.9498	0.5701	0.1429	0.005710	0.001427
25	338.8	13.03	3.356	6.646	1.685	4.459	1.126	0.6764	0.1694	0.006773	0.001695
30	392.0	15.07	3.879	7.682	1.950	5.153	1.302	0.7822	0.1958	0.007838	0.00196
40	484.3	18.63	4.791	9.499	2.410	6.375	1.609	0.9668	0.2420	0.009691	0.002422
50	567.1	21.81	5.606	11.12	2.822	7.459	1.884	1.131	0.2830	0.01134	0.002835
60	642.3	24.70	6.359	12.58	3.194	8.442	2.134	1.282	0.3206	0.01283	0.003211
70	711.5	27.30	7.045	13.95	3.540	9.356	2.364	1.420	0.3543	0.01421	0.003557
80	775.9	29.84	7.682	15.21	3.858	10.21	2.577	1.549	0.3875	0.01552	0.003880
06	836.3	32.15	8.281	16.39	4.162	11.00	2.779	1.670	0.4175	0.01673	0.004180
100	893.7	34.36	8.848	17.52	4.442	11.76	2.969	1.783	0.4462	0.01787	0.00467
120	6.666	38.45	0.900	19.60	4.975	13.15	3.320	1.995	0.4995	0.01999	0.004992
140	1097	42.19	10.86	21.51	5.458	14.43	3.644	2.190	0.5480	0.02194	0.005460
160	1188	45.69	11.76	23.30	5.91	15.63	3.941	2.361	0.5932	0.02376	0.005940
180	1273	48.96	12.60	24.97	6.335	16.75	4.229	2.540	0.6347	0.02543	0.006366
200	1354	52.06	13.40	26.54	6.732	17.81	4.498	2.696	0.6755	0.02707	0.006751

¹⁴⁹

Tabla 14. Tabla general de simulaciones realizadas en el SPT.Fuente: Los autores.

5.6. Anillo cuadrado con picas en los vértices.

En la Tabla 15 se muestra los resultados de la simulación correspondiente a un SPT formado por un anillo cuadrado con picas en los vértices con empotramiento:

- Para zapatos conductivos (hasta 50 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 20 kA.
- Para zapatos conductivos (entre 50 y 100 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 40 kA.
- Para zapatos dieléctricos (150 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 70 kA.
- Para zapatos dieléctricos (1 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 200 kA.
- Para zapatos antiestáticos (100 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 200 kA.

5.7. SPT mixto aplicado a torres metálicas.

En la Tabla 16 se muestra los resultados de la simulación correspondiente a un SPT mixto aplicado a torres metálicas:

- Para zapatos conductivos (hasta 50 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 3 kA.
- Para zapatos conductivos (entre 50 y 100 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 7 kA.
- Para zapatos dieléctricos (150 kΩ).
 El SPT es seguro hasta descargas tipo rayo de 10 kA.
- Para zapatos dieléctricos (1 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 90 kA.
- Para zapatos antiestáticos (100 MΩ).
 El SPT es seguro hasta descargas tipo rayo de 200 kA.

0	
2	
F	
2	
0	
2	
=	
-	
5	
E	
Z	
<u> </u>	
2	
¥.	
0	
0	
щ	
5	
5	
-	
0	
ā	
A	
2	
5	
2	
=	
~	
5	
5	
Ē	
R	
щ	
>	
S	
0	
-	
Z	
-	
S	
3	
¥	
Δ.	
2	
0	
C	
0	
ŏ	
A	
2	
A	
C	
0	
-	
=	
\leq	
-	
A	
≥	
2	
0	
-	
ш	
-	
D	
S	
Z	
8	
O	
Б	
S	
Ő	
õ	
A	
2	
ш	
2	
10	
0	
0	
7	
F	
Z	
O	
J	
>	
-	
S	
3	
a	
14.1	
õ	
-	
ш	
5	
T I	
0	
-	
_	
1:9	
1:9#	
1:9#5	
1:9#SC	
): 9 # SOO	
ADOS # 6 : \	
TADOS # 6 : \	
ILTADOS # 6 : \	
SULTADOS # 6 : \	
ESULTADOS # 6 : \	
RESULTADOS # 6 : \	
IE RESULTADOS # 6 : \	
DE RESULTADOS # 6 : \	
A DE RESULTADOS # 6 : \	
ILA DE RESULTADOS # 6 : \	
ABLA DE RESULTADOS # 6 : \	
TABLA DE RESULTADOS # 6 : \	

					INCOUNT LINEAR AND					
		Zapato con	nductivo				Zapato dielectric	o / Zapato anti-estat	ico	
	501	SU CO	100	kn	150	kn	11	NΩ	100	MD
Max. elev. de voltaje (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)	V.c.gener. (kV)	V.p.gener. (kV)
1.101	0.04227	0.01090	0.02155	0.00548	0.01447	0.003661	0.002198	0.0005507	0.00002204	0.000005509
2.201	0.08475	0.02181	0.04306	0.01096	0.02899	0.007319	0.004398	0.001101	0.00004407	0.00001102
4.399	0.1694	0.04363	0.08639	0.02192	0.05799	0.01464	0.008796	0.002203	0.00008810	0.00002202
6.609	0.2536	0.06538	0.1293	0.03287	0.08698	0.02195	0.01319	0.003299	0.00001322	0.00003305
8.803	0.3389	0.08726	0.1278	0.04385	0.1158	0.02927	0.01759	0.004400	0.0001763	0.00004407
10.96	0.4221	0.1087	0.2152	0.0462	0.1445	0.03636	0.02192	0.005487	0.0002197	0.00005487
13.15	0.5056	0.1302	0.2577	0.06539	0.1730	0.04368	0.02623	0.006566	0.0002629	0.00006569
15.31	0.5890	0.1516	0.3002	0.07619	0.2014	0.05081	0.03046	0.007650	0.0003061	0.00007647
17.46	0.6720	0.1730	0.3421	0.08690	0.2299	0.05805	0.03488	0.008735	0.0003495	0.00008739
16.63	0.7535	0.1944	0.3852	0.09770	0.2585	0.06522	0.03920	0.009816	0.0003925	0.00009820
21.81	0.8387	0.2157	0.4271	0.1085	0.2869	0.07246	0.04353	0.01098	0.0004362	0.0001091
32.54	1.255	0.3231	0.6397	0.1623	0.4293	0.1084	0.05214	0.01631	0.0006517	0.0001631
43.36	1.670	0.4302	0.8520	0.2161	0.5707	0.1443	0.06514	0.02166	0.0008692	0.0002173
53.97	2.074	0.5344	1.056	0.2686	0.7093	0.1792	0.08663	0.02694	0.001079	0.0002697
64.47	2.479	0.6379	1.264	0.3209	0.8484	0.2143	0.1076	0.03218	0.001289	0.0003224
85.42	3.274	0.8461	1.675	0.4252	1.123	0.2835	0.1706	0.04265	0.001707	0.0004270
105.8	4.066	1.048	2.074	0.5268	1.393	0.3517	0.2112	0.05289	0.002116	0.0005288
126.1	4.851	1.249	2.474	0.6277	1.660	0.4192	0.2515	0.06306	0.002518	0.0006308
146	5.615	1.443	2.862	0.7259	1.920	0.4845	0.2914	0.07294	0.002919	0.0007297
165.6	6.371	1.638	3.247	0.8242	2.180	0.5504	0.3307	0.08280	0.003311	0.0008271
184.6	7.102	1.828	3.610	0.9190	2.430	0.6137	0.3679	0.09232	0.003694	0.0009227
203.6	7.830	2.012	3.992	1.012	2.679	0.6757	0.4064	0.1017	0.004070	0.001018
241.1	9.277	2.387	4.727	1.199	3.169	0.8003	0.4815	0.1206	0.004825	0.001204
277.3	10.67	2.739	5.435	1.380	3.647	0.9213	0.5534	0.1384	0.005544	0.001386
312.9	12.01	3.098	6.133	1.555	4.4114	1.040	0.6245	0.1564	0.006256	0.001564
347.4	13.35	3.429	6.808	1.726	4.566	1.154	0.6933	0.1736	0.006946	0.001736
380.8	14.65	3.769	7.476	1.895	5.017	1.267	0.7610	0.1905	0.007625	0.001905

Tabla 15. Tabla general de simulaciones realizadas en el SPT.Fuente: Los autores.

151

0	
2	
7	
~	
-	
0	
Ā	
E	
-	
S	
щ	
Z	
ш	
~	
~	
5	
2	
0	
ш	
-	
Z	
ŝ	
-	
0	
\simeq	
4	
_	
=	
2	
1	
~	
~	
=	
2	
-	
-	
-	
0	
õ	
7	
1	
2	
-	
Δ.	
4	
0	
2	
~	
5	
~	
-	
Δ.	
S	
7	
5	
-	
~	
5	
~	
-	
S	
0	
õ	
7	
2	
10	
=	
щ.	
9	
0	
2	
2	
4	
Z	
0	
Ũ	
-	
~	
0	
š	
4	
0	
2	
10	
ŭ	
Ĕ	
ALES	
TAJES	
DLTAJES	
OLTAJES	
VOLTAJES	
: VOLTAJES	
7 : VOLTAJES	
1 : VOLTAJES	
# 7 : VOLTAJES	
S # 7 : VOLTAJES	
DS # 7 : VOLTAJES	
DOS # 7 : VOLTAJES	
ADOS # 7 : VOLTAJES	
TADOS # 7 : VOLTAJE	
ITADOS # 7 : VOLTAJE	
JLTADOS # 7 : VOLTAJE	
SULTADOS # 7 : VOLTAJE	
ESULTADOS # 7 : VOLTAJE	
RESULTADOS # 7 : VOLTAJE	
RESULTADOS # 7 : VOLTAJES	
DE RESULTADOS # 7 : VOLTAJES	
DE RESULTADOS # 7 : VOLTAJES	
A DE RESULTADOS # 7 : VOLTAJES	
LA DE RESULTADOS # 7 : VOLTAJES	
BLA DE RESULTADOS # 7 : VOLTAJES	
ABLA DE RESULTADOS # 7 : VOLTAJES	
TABLA DE RESULTADOS # 7 : VOLTAJES	

		MD	V.p.gener. (kV)	0.00003414	0.00006826	0.0001365	0.0002048	0.0002728	0.0003412	0.0004095	0.0004775	0.0005460	0.0006138	0.0006826	0.0009667	0.001251	0.001508	0.001750	0.002238	0.002725	0.003145	0.003537	0.003925	0.004286	0.004623	0.005238	0.005815	0.006367	0.006854	0.007327
	itico	100	V.c.gener. (kV)	0.0001364	0.0002729	0.0005456	0.0008193	0.001092	0.001365	0.001636	0.001911	0.002183	0.002458	0.002728	0.003866	0.005002	0.006031	0.007006	0.008950	0.01091	0.01258	0.01415	0.01571	0.01714	0.01849	0.02094	0.02326	0.02545	0.02739	0.02931
	Zapato anti-esta	٨D	V.p.gener. (kV)	0.003412	0.006824	0.01365	0.02046	0.0273	0.03412	0.04094	0.047770	0.05459	0.06142	0.06824	0.09665	0.1249	0.1507	0.1750	0.2238	0.2725	0.3143	0.3535	0.3925	0.4283	0.4618	0.5237	0.5813	0.6365	0.6852	0.7318
TOS	pato dielectrico /	1 N	V.c.gener. (kV)	0.01363	0.02725	0.05451	0.08176	0.109	0.1363	0.1634	0.1908	0.218	0.24530	0.27250	0.386	0.4991	0.6014	0.6992	0.8939	1.088	1.255	1.568	1.711	1.845	2.091	2.322	2.540	2.736	2.736	2.924
RICA DE LOS ZAPA	Za	0 kΩ	V.p.gener. (kV)	0.022680	0.045360	0.09072	0.1361	0.1815	0.2268	0.2722	0.31750	0.36290	0.4083	0.4536	0.6425	0.8308	1.002	1.163	1.488	1.812	2.089	2.349	2.610	2.848	3.070	3.481	3.860	4.231	4.555	4.868
ISTENCIA ELECTI		15	V.c.gener. (kV)	0.08982	0.1796	0.3593	0.5389	0.7185	0.8982	1.0770	1.2570	1.437	1.617	1.796	2.544	3.291	3.963	4.607	5.890	7.162	8.273	9.306	10.33	11.28	12.14	13.79	15.30	16.75	18.04	19.28
RES		kΩ	V.p.gener. (kV)	0.03397	0.06793	0.1359	0.2038	0.2717	0.3397	0.4076	0.4755	0.5435	0.6114	0.67930	0.9621	1.244	1.499	1.742	2.225	2.708	3.130	3.519	3.906	4.264	4.600	5.213	5.786	6.336	6.820	7.288
	onductivo	100	V.c.gener. (kV)	0.1338	0.2677	0.3534	0.803	1.071	1.338	1.606	1.874	2.141	2.409	2.677	3.7910	4.900	5.908	6.852	8.780	10.68	12.33	13.87	15.40	16.80	18.12	20.51	22.81	24.97	26.87	28.73
	Zapato c	kΩ	V.p.gener. (kV)	0.06759	0.1352	0.2701	0.4055	0.5407	0.6759	0.8111	0.9463	1.081	1.217	1.352	1.915	2.474	2.982	3.465	4.433	5.393	6.216	6.998	7.776	8.486	9.151	10.36	11.51	12.60	13.57	14.51
		50	V.c.gener. (kV)	0.2625	0.5249	1.05	1.575	2.1	2.625	3.15	3.674	4.199	4.724	5.249	7.435	9.613	11.59	13.46	17.22	20.96	24.19	27.20	30.20	32.92	35.55	40.28	44.73	48.97	52.72	56.35
			Max. elev. de voltaje (kV)	6.824	13.65	27.3	40.94	54.59	68.24	81.89	95.54	109.2	122.8	136.5	193.3	250.1	301.4	350.3	447.7	544.9	629.2	706.8	785.4	856.4	923.1	1048	1162	1274	1371	1465
			I.rayo (kA)	0.5	1	2	3	4	5	9	7	8	6	10	15	20	25	30	40	50	60	70	80	06	100	120	140	160	180	200

Tabla 16. Tabla general de simulaciones realizadas en el SPT.Fuente: Los autores.

152

PT SEA SEGURO			Tipo de estructura	Lineas de distribucion / subtransmision	Lineas de subtransmision y transmision						
ARA QUE EL S		100 MΩ	I.rayo (kA)	200	200	200	200	200	200	200	
FIPO RAYO, P	os zapatos	1 MΩ	I.rayo (kA)	100	100	200	100	120	200	06	
DESCARGAS	electrica de l	150 kΩ	I.rayo (kA)	5	5	15	9	6	70	10	
RRIENTES DE	Resistencia	100 kΩ	I.rayo (kA)	3	3	10	3	9	40	7	
MAXIMAS COI		50 kΩ	I.rayo (kA)	1	1	<mark>5</mark>	1	3	20	3	
-			R0(Ohm)	37.89	35.96	19.5	31.79	18.35	8.73	15.07	
			SPT	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7	

Caso 7: Sistema mixto Para torres metalicas Caso 6: Anillo cuadrado con picas Caso 5: Anillo circular Caso 4 : Electrodo horizontal con empotramiento Caso 2: Electrodo vertical con empotramiento Caso 1: Electrodo vertical sin empotramiento Caso 3: Dos electrodos en linea

Tabla 17. Máximas corrientes de descargas tipo rayo.Fuente: Los autores.

5.8. Resumen de los niveles de seguridad de los SPT simulados.

CONCLUSIONES

De acuerdo con el análisis realizado a los resultados de las distintas simulaciones de algunos sistemas de puesta a tierra, utilizados para estructuras de transporte de electricidad mediante líneas aéreas, aplicadas a niveles de distribución, subtransmisión y transmisión, podemos establecer las siguientes conclusiones:

- Los SPT formados por un electrodo vertical sin empotramiento, electrodo vertical con empotramiento y electrodo horizontal con empotramiento, para un terreno de 100 Ω^* m, presentan valores de resistencias eléctrica a frecuencia industrial (R_0), mayores a los recomendados por la norma IEEE (25 Ω). [19]
- Los SPT formados por dos electrodos en línea, un anillo circular, un anillo cuadrado con picas en los vértices y un sistema mixto de electrodos, si cumplen con lo recomendado por la norma IEEE ($R_0 < 25 \Omega$). [19]
- Los SPT que presentan mayor seguridad a descargas tipo rayo, de acuerdo a la referencia VDE, son los formados por dos electrodos verticales en línea y el anillo cuadrado con picas en sus vértices.
- Se ha demostrado claramente mediante las simulaciones realizadas, la importancia de la resistencia eléctrica de los zapatos en la evaluación de los voltajes de seguridad (paso y toque) soportables por una persona. [9]
- El voltaje de seguridad más crítico es el correspondiente al voltaje de toque (2 kV.max), mientras que la evaluación del voltaje de paso soportable con seguridad (50 kV) cumplen en un mayor rango de corrientes de descarga tipo rayo los distintos sistemas de puesta a tierra.
- Para que un SPT sea seguro debe cumplir con los dos niveles de evaluación, voltajes de paso y toque (de acuerdo a la referencia VDE). [9]
- En el diseño de un SPT para estructuras utilizadas en líneas aéreas de electricidad, se debe considerar primero, la resistencia a frecuencia industrial del SPT debe ser menor a 25 Ω para líneas sin descargador de sobrevoltajes, pero para líneas aéreas con descargadores de sobrevoltaje la resistencia a frecuencia industrial del SPT debe ser menor a 10 Ω . La segunda condición que debe cumplir el SPT es cumplir con los niveles de voltaje de seguridad de paso y toque ante descargas tipo rayo, según la referencia dada por la VDE (Asociación Alemana de Industrias Eléctricas, Electrónicas, Comunicaciones, ...)[9]

RECOMENDACIONES:

En el campo de los SPT aplicados a estructuras utilizadas en líneas de transporte aéreo de electricidad, es necesario considerar las siguientes recomendaciones:

- Modelar y simular otros tipos de arreglos geométricos de electrodos, para evaluar sus respuestas a frecuencia industrial y a descargas tipo rayo, con el objetivo de disponer de mayores alternativas para un SPT más seguro.
- Modelar y simular electrodos tipo químicos, para observa su comportamiento a frecuencia industrial y a descargas tipo rayo.
- Realizar mayores investigaciones de campo, para modelar y simular sistemas de puesta a tierra más comunes utilizadas por las empresas de electricidad a nivel de nuestro país, así como también las correspondientes referencias normativas, que se utiliza a nivel de frecuencia industrial como a nivel de descargas tipo rayo.
- Realizar estudios que permitan contrastar los resultados obtenidos en el modelado y simulación de SPT, con las respuestas dadas en el campo de aplicación.
- Realizar estudios mediante herramientas informáticas más especializadas en la respuesta de un SPT ante frecuencia industrial y corrientes tipo rayo

REFERENCIAS BIBLIOGRAFICAS:

- [1] "SISTEMAS DE PUESTA A TIERRA 0", Consultado: el 15 de noviembre de 2023. [En línea]. Disponible en: https://analfatecnicos.net/archivos/08.PuestaATierra.pdf
- [2] "Componentes simétricas y aplicación en los elementos del sistema de potencia Potencia Literaria". Consultado: el 28 de agosto de 2023. [En línea]. Disponible en: https://asp2dh.wordpress.com/componentes-simetricas-y-aplicacion-en-los-elementos-delsistema-de-potencia/
- [3] A. G. Martínez -Jtp, "Universidad Tecnológica Nacional FRRo Cátedra: Electrotécnia II-Método de las Componentes Simétricas Universidad Tecnológica Nacional Facultad Regional Rosario CATEDRA: ELECTROTECNIA II CUADERNILLO: METODO DE LAS COMPONENTES SIMETRICAS".
- [4] "Universidad Nacional de Colombia : Descargas Eléctricas Atmosféricas (DEAT)". Consultado: el 16 de noviembre de 2023. [En línea]. Disponible en: https://minas.medellin.unal.edu.co/gruposdeinvestigacion/pass-un/investigacion/lineas-deinvestigacion/10-investigacion/lineas-de-investigacion/4-descargas-electricasatmosfericas-deat.html
- [5] "Desequilibrio de tensión y corriente Francesc Fornieles". Consultado: el 28 de agosto de 2023. [En línea]. Disponible en: https://fornieles.es/electrotecnia/desequilibrio-tensiony-corriente-componentes-simetricas/
- [6] "PROTECCIÓN EXTERNA DE EDIFICACIONES CONTRA DESCARGAS ATMOSFÉRICAS". Consultado: el 16 de noviembre de 2023. [En línea]. Disponible en: https://www.redalyc.org/articulo.oa?id=84911652030
- [7] I. DE Eléctricas Alta Tensión, S. ELÉCTRICAS Profesor, y P. Ángel Blasco Espinosa, "UNIVERSIDAD POLITÉCNICA DE VALENCIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ESCUELA POLITÉCNICA SUPERIOR DE ALCOY SISTEMA DE PUESTA A TIERRA EN".
- [8] "Algunas Consideraciones Para Realizar Mediciones de Resistividad de Tierra y Resistencia de Puesta a Tier... | Trabajo eléctrico, Electrostatica, Simbologia electrica". Consultado: el 5 de marzo de 2024. [En línea]. Disponible en: https://ar.pinterest.com/pin/algunas-consideraciones-para-realizar-mediciones-deresistividad-de-tierra-y-resistencia-de-puesta-a-tierra-pdf-docu--314196511513449308/
- "DIN VDE 0100-410 VDE 0100-410:2007-06 Standards VDE Publishing House". Consultado: el 5 de marzo de 2024. [En línea]. Disponible en: https://www.vde-verlag.de/standards/0100120/din-vde-0100-410-vde-0100-410-2007-06.html
- [10] "80-2000 IEEE (Español) | PDF | Corriente eléctrica | voltaje". Consultado: el 28 de diciembre de 2023. [En línea]. Disponible en: https://pt.scribd.com/doc/221167756/80-2000-IEEE-Espanol
- [11] "MALLAS A TIERRA GROUNDING SYSTEMS". Consultado: el 7 de febrero de 2024. [En línea]. Disponible en: https://tecnoweld.com.co/wpcontent/uploads/2017/12/varillas-de-puesta-a-tierra.pdf
- [12] "Características técnicas y usos de varillas de acero revestidas con cobre para electrodos de puesta a tierra | PDF". Consultado: el 7 de febrero de 2024. [En línea]. Disponible en: https://pt.scribd.com/document/451458925/VARILLAS-COPPERWELD-FICHA
- [13] "RIESGOS DEBIDOS A LA ELECTRICIDAD". Consultado: el 7 de febrero de 2024.
 [En línea]. Disponible en: https://www.insst.es/documents/94886/4155694/Tema%209.%20Riesgos%20debidos%20 a%20la%20electricidad%20%28I%29.pdf
- [14] "Excel Concepto, historia y usos". Consultado: el 20 de noviembre de 2023. [En línea]. Disponible en: https://concepto.de/excel/
- [15] "ATPDraw Home". Consultado: el 16 de noviembre de 2023. [En línea]. Disponible en: https://www.atpdraw.net/
- [16] "Tema 9. Riesgos debidos a la electricidad (I)". Consultado: el 28 de diciembre de 2023.
 [En línea]. Disponible en: https://www.insst.es/documents/94886/4155694/Tema%209.%20Riesgos%20debidos%20 a%20la%20electricidad%20%28I%29.pdf

- [17] J. Gonzales, "Proteccion de Descargas Admosfericas | PDF | Relámpago | Electricidad". Consultado: el 7 de febrero de 2024. [En línea]. Disponible en: https://pt.scribd.com/document/327069297/Proteccion-de-Descargas-Admosfericas
- [18] "Power System Transients Parameter Determination", Consultado: el 21 de noviembre de 2023. [En línea]. Disponible en: https://referenceglobe.com/CollegeLibrary/library_books/20180126065127Power%20Syst em%20Transients%20Parameter%20Determination%20By%20Juan%20A%20Martinez% 20Velasco.pdf
- [19] P. Systems Engineering Committee of the IEEE Industry Applications Society, "IEEE Std 142-2007 (Revision of IEEE Std 142-1991) IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems".
- [20] Sitme, "Catálogo de productos". Consultado: el 7 de febrero de 2024. [En línea]. Disponible en: https://sitmecopperweld.com/wp-content/uploads/2021/03/catalogo-deproductos-sitme-1.pdf
- [21] M. Arbelaez, J. Humberto, S. A. Ingeniero, y E. P. Asociado, "PROTECCIÓN EXTERNA DE EDIFICACIONES CONTRA DESCARGAS ATMOSFÉRICAS", *Scientia Et Technica*, vol. XII, núm. 32, pp. 165–168, 2006, Consultado: el 16 de noviembre de 2023. [En línea]. Disponible en: https://www.redalyc.org/articulo.oa?id=84911652030

ANEXOS

			DICIEN	ABRE			ENI	ERO			FEBF	RECO	
NO.	ACTIVIDAD	Semana 1	Semana 2	Semana 3	Semana 4	Semana 1	Semana 2	Semana 3	Semana 4	Semana 1	Semana 2	Semana 3	Semana 4
1	Investigación sobre postes eléctricos de tendido de líneas y configuraciones técnicas de puesta a tierra para cualquier # de picas.												
7	Conocer el equipo de medición conocido como telurómetro, obtener las medidas de varillas de tipo Cooperweld.												
m	Realizar pruebas por medio del software ATP- DRAW donde se modificó cada característica de la varilla que aplicaríamos a dicha prueba en el caso de que se presente una descarga atmosférica.												
4	Avance del anteproyecto con el docente tutor.												
2	Buscar y obtener formulas regidas por IEEE en el tema de puesta a tierra por medio de internet y en Excel plasmar en una tabla con sus respectivos resultados.												
Q	Tener de referencia un poste de 13.8kV o 69kV, en el que se estudiará el momento en que ca una descarga tipo rayo en dicho poste para cubrir cada detalle.												
7	Reconocer los efectos que pueden ocasionar dependiendo de la ubicación vertical u horizontal de una varilla en un S.P.T.												
8	Investigación sobre descargas atmosféricas, sus tipos y efectos al reaccionar en contra de un S.P.T.												
6	Investigación exhaustiva acerca de la norma de la tensión de paso y de contacto según la IEEE.												
10	Analizar la recopilación de datos y ver el nivel de tensión en el que una persona o animal puede ser afectada por la descarga tipo rayo.												
11	Exposición del análisis realizado.												

Presupuesto					
Cantidad	Descripción	Costo unitario (\$)	Costo Total (\$)		
2	Transporte	5.00	10.00		
2	Datos de internet	50.00	100.00		
6	Resma de Hojas	5.00	30.00		
2	Casco de seguridad industrial	15.00	30.00		
2	Comida	10.00	20.00		
2	Botas dieléctricas	40.00	80.00		
1	Computadora	500.00	500.00		
	770.00				
	92.40				
	862.40				

ANEXO 2. Presupuesto

ANEXO 3. Varillas de PT tipo Copperweld.

ANEXO 4. Conductor de cobre desnudo para redes de tierra

CARACTERISTICAS	UNIDAD	VALOR REQUERIDO	
FABRICANTE		DECOPPER S.A.C.	
MATERIAL		ACERO SAE 1020 RECUBIERTO CON COBRE	
NORMA DE FABRICACION		NTC – 2206	
DIMENSIONES:			
Longitud	mts	2.40	
Diametro	mm	5/8 y 3/4	
ESPESOR MINIMO DE LA CAPA DE COBRE	mm	0.27	

ANEXO 5. Características de la varilla tipo Copperweld

ANEXO 6. Efectos de la corriente alterna de 50 Hz, trayecto mano izquierda-los dos pies

ANEXO 7. Conductor de cobre, Cable copperweld

ANEXO 8 Alambre copperwel

ANEXO 6. Conectores Mecánico para varilla

ANEXO 7. Cargas exotérmicas

