
2. Georeferencing for Planning Underground Networks

Ph.D. Esteban Inga Ortega is Professor of the Master’s Program in ICT for Education at

Universidad Politécnica Salesiana (Ecuador).

Email: einga@ups.edu.ec
ID https://orcid.org/0000-0002-0837-0642

DOI: 10.17163/abyaups.44.347

2.1 Introduction

Often, problems related to planning electrical networks, drinking water (sewage),
data, and transportation use ideal models that are not geo-referenced. However,
the present work exposes a suitable and innovative methodology to achieve data
analytics from OSM files. This geographic information file can be freely downloaded
from https : //www.openstreetmap.org/ [1].

Then, applying a geo-referenced model to network planning provides charac-
teristics of the environment that are not present in a model of x and y coordinates.
In this sense, using longitude and latitude allows a location with less error for dis-
tance and location calculations that are utilized for the optimal location of wireless
sensors (smart meters), electrical transformers, determination of the route for bury-
ing power and data lines, as well as using the information to determine population
growth in a specific area, evaluation of a rescue zone or planning geographical
areas for vaccination campaigns, among other options, [2]–[4].

Over time, scientific publications seek to innovate concerning previous work
by the scientific community. Thus, applications in planning electrical distribution
networks based on the use of information from OSM perform modeling for the

https://orcid.org/0000-0002-0837-0642
https://doi.org/10.17163/abyaups.44.347

12

deployment of underground networks. Simulation tools such as Cymdist [5]–[7] gen-
erally evaluate the deployed model. In this way, the aim is to serve the deployment
with the minimum cost for using the electric cable and considering variables such
as voltage drops [8], [9].

In addition, the location of the electric vehicle charging center or the mass pub-
lic transport route evaluation will require modeling in a geo-referenced scenario
capable of identifying the optimal location and considering the microscopy of ve-
hicular traffic [10]. Public transportation presents management problems; therefore,
works propose models for creating and using a specific database contemplating
a dynamic spatial analysis of the public transportation network to optimize public
transportation schedules during peak hours [1], [11].

The problem is not knowing the location of public green spaces required for
family space activities. We have proposed articulating different tools to distinguish
public and private green spaces considering a Bayesian hierarchical model and
OSM data from OpenStreetMap [12]. Work to reduce the risk of catastrophes
includes applications based on OpenStreetMap that involve sketching methods
and possible flood routes [13].

This paper highlights georeferencing as a technique that integrates geographic
information and analytical data for decision-making in various areas of knowledge.
Using georeferencing in conjunction with data analytics allows the identification
of spatial patterns and the visualization of information in a more accurate and
detailed way, which can contribute to process optimization and decision-making
in various fields of application. In this sense, the OpenStreetMap OSM file is a source
of geographic data that can be used to generate detailed and accurate maps
of different world regions. The presented figure 2.1 shows the map of a part of
Turkey with the selection of dwellings obtained from a data analytics process. In
addition, a feasible wireless sensor connectivity mesh and the routing between
sensors considering the maximum distance constraint are presented.

Henceforth, the present article is organized as follows: Section 2 briefly reviews
related work. Section 3 presents the traditional problem formulation and the
methodology to solve it. Section 4 contains the results analysis and the proposed
model’s validation. Finally, in section 5, conclusions are presented.

2.2 Related Works

Previous works have presented an electrical network from an OSM file articulated to
simulation processes. Additionally, a heuristic technique using Matlab is evidenced
[14]. The synthesis of geospatial data morphologically intended for the transfer
and quality control of urban form is presented as a contribution of georeferencing

2.2 Related Works 13

SMART CITY

Electric Utility

Gas Company

Drinking Water Utility

Georeferenced Routing

Neighborhood Area Network (NAN)

37.639 37.64 37.641 37.642 37.643 37.644 37.645 37.646 37.647 37.648
37.777

37.778

37.779

37.78

37.781

37.782

37.783

37.784

37.785

Data Analytics

Applications

Algorithm

Figure 2.1: Georeferencing approach to solve problems on real scenarios

for development prediction and urban planning [15]. A detailed schedule-based
transit network is proposed to measure accessibility to hospitals based on transit
in a growing city [16]. Urban heritage management will require examination of
the spatial distribution of buildings as a tangible aspect of the settlement places
through spatial analysis and thus facilitate the processes and time reduction [17].

In the past, IEEE models were used to evaluate an electrical network; however,
innovations involving geo-referenced scenarios are being introduced. These studies
are accompanied by simulators such as Cymdist to verify that the expansion models
meet scalability, reliability, resilience, and efficiency [6], [18]. It has evidenced
methods to detect traffic rules at intersections using GPS traces to assist location-
based applications in the context of smart cities, such as accurately estimating
travel time and fuel consumption from a starting point to a destination. Therefore, it
proposes an automatic, fast, scalable, and inexpensive way to identify the type of
intersection control, such as traffic lights and stop signs [19].

A combination of remote sensing data and statistical methods to estimate park-
ing areas is proposed to solve the problem of adequate parking. Parking spaces
and other traffic zones are detected by considering aerial images; furthermore, an
obstacle model is estimated using parking zones detected from OpenStreetMap
data. A relationship is found between length, street type, and parking zone ob-

14

tained [20], [21]. The relationship between cartography and urban management
provides an option for the study of trends for decision-making by professionals in
charge of drawing buildings with data from OpenStreetMap (OSM) [22]. The man-
agement of geo-referenced information may include information that needs to be
verified due to possible failures in the on-site visit; previous works evaluate labels
and filters to evidence buildings in specific areas [23]. Articulating raster maps into
a single system could be a non-trivial task for institutions handling geo-referenced
information and requiring integration into a geographic information system (GIS)
because of scarce metadata [24].

Table 2.1 presents a summary of the contributions to the use of OpenStreetMap
for different georeferencing applications. The applications are various, so it was
necessary to articulate a bibliometric analysis from VosViewer.

Table 2.1: Summary of related works.
Applications

Author, Year Objectives Electricity Drinking Water Data Gas Transport Other
Garcia, 2023 [6] Power Network Planning ✓ ✓
Kim, 2023 [16] Healthcare accessibility ✓ ✓ ✓
Wu, 2023 [15] Urban Development ✓ ✓ ✓
Gaugl, 2023 [14] Power Network Planning ✓ ✓
Kersapati, 2023 [17] Urban Management ✓ ✓ ✓
Kim, 2022 [25] Small unmanned aircraft ✓ ✓
Song, 2022 [23] Remote sensing - Urban planning ✓ ✓
Hacar, 2022 [22] Urban planning ✓ ✓
Hellekes, 2022 [20] Urban Planning ✓ ✓ ✓
Zourlidou, 2022 [19] Traffic Engineering ✓ ✓ ✓
Milleville, 2022 [24] Gerreferencing ✓ ✓
Present Work Wireless Sensor Network ✓ ✓ ✓

The sample used for the bibliometric analysis with VosViwer corresponds to 2000
scientific documents from Scopus and 1361 scientific documents from the Web of
Science. Consequently, the bibliometric analysis corresponding to countries and
authors allows us to identify the relevance concerning the amount of research using
geo-referenced scenarios, accurately identifying the countries of origin and the
authors that stand out. The information can be contrasted with various applications
where experimentation is desired.

Figure 2.2 shows the list of countries for Scopus, among which the most crucial
scientific impact are Germany, the U.S., China, the U.K., Italy, Netherlands, Austria,
Canada, Ireland, and France. For Web of Science, countries such as the U.S.,
U.K., Germany, China, Canada, Netherlands, France, Italy, Austria, and Ireland are
predominant.

Figure 2.3 shows the impact of the authors with relevance in the work of geo-
referenced scenarios. Scopus authors are presented as Zipf Alexander, Boeing G,
Neis P, Fan H, Jokar Arsanjani, and for Web of Science, relevant authors are Haklay,
Mordechai; Zipf, Alexander; Neis, Pascal; Boeing, Geoff, Arsanjani, Jamal Jokar.

2.2 Related Works 15

ghana

argentina
latvia

bosnia and herzegovina

united arab emirates

slovakia

saudi arabia

cyprus

nigeria

algeria

philippines

croatia

new zealand

taiwan

qatar

mexico

colombia

cambodia

hungary

bangladesh

morocco

thailand

chile

malaysia

indonesia

nepal

luxembourg

iran

sweden

russian federation

south korea

denmark

norwayspain

hong kong

portugal

israel

poland

turkey

greece

brazil

ireland
france

switzerland

singapore japan

australia

canada

austria

italy

united kingdomchina
germany

united states

VOSviewer

(a) Scopus - Countries

thailand

slovakia

serbia

saudi arabia

philippines

morocco

malawi

iraq
cyprus

cambodia

estonia

argentina

wales

luxembourg

tanzania

malaysia

kenya

colombia

romania

new zealand

indonesia

hungary

ghana

egypt

croatia

nepalsouth africa

chile

finland

ecuador

south korea

scotland

russia
israel

iran

greece

singapore

portugal

norway

india

sweden

poland

japan

ireland

brazil

switzerland

spain

australia

france

austria

netherlands

canada
italy

england

germany
usa

VOSviewer

(b) Web of Science - Countries

Figure 2.2: Bibliometric Analysis of Countries. –(a) Scopus. (b) Web of Science. Source: Authors.

16

yang y.xiang l.

wu w.

wu j.

vodacek a.

shen z.

resch b.

rainer b.

marcos d.

kim j.

huang y.

hofer m.

henry c.

he d.

grippa t.

ghamisi p.

efentakis a.

dorn h.de medeiros g.f.b.

chen d.

cakir z.

cai y.

bratic g.

besselink i.

agouris p.

zhong y.

zhao p.

yan y.

tang l.

sun x.

snow r.w.

sester m.ren z.

qian x.

olteanu-raimond a.-m.

okiro e.a.

noskov a.

mou l.

loos l.
liu c.

lin y.

liao z.

li s.

li b.

kashian a.

jiang b.

homburg t.

hoffmann e.j.

guan k.

fritz s.

dong j.

de runz c.

croitoru a.

coetzee s.

chen s.

bakillah m.

ali a.l.

zia m.

zhu x.

yeboah g.

yang l.

wang f.

terveen l.

taubenböck h.

sun y.

rehrl k.

lobry s.

liu s.
li z.

li l.

keller s.

höfle b.

ge y.

forget y.

ding l. chen b.

arsanjani j.j.

zhang z.

xu y.

winter s.

pfoser d.

novack t.

mokbel m.f.
liu w.

liu j.

lee s.

juhász l.

antoniou v.

zhou y.

zhang h.

tomko m.

palen l.

li x.

li w.

hecht b.

ai t.

touya g.

li c.
huang x.

chen y.

chen h.

anderson j.

wang s.

neis p.

jokar arsanjani j.

hu x.

hochmair h.h.
herfort b.

chen j.

tuia d.

li h.
lautenbach s.eckle m.

zhao y.

li y.

see l.

bertolotto m.
ballatore a.zhou x.

zhou q.

zhang x.

wang l. wang z.

zhu x.x. mooney p.

liu y.

brovelli m.a.

minghini m.

wang y.

fan h.

zhang y.

zipf a.

VOSviewer

(a) Scopus - Authors

yang, bisheng

wang, zhiyong

wang, yuanyuan

tian, yuanjian

srivastava, shivangi

skopeliti, andriani

schultz, michael

rousell, adam

resch, bernd

mcardle, gavin

loos, lukas

liu, wei

janowicz, krzysztof

haklay, mordechai (muki)

geiss, christian fendrich, saschafalcao, alexandre x.

edler, dennis

eckle, melanie

dickmann, frank

de sabbata, stefano

de runz, cyril

de albuquerque, joao porto

blaschke, thomas

barron, christopher

bakillah, mohamed sun, yeran

olteanu-raimond, ana-maria

hoefle, bernhard

helbich, marco

grinberger, a. yair

bright, jonathan

antoniou, vyron

anderson, jennings

ali, ahmed loai

abbaspour, rahim ali

ludwig, christina

klonner, carolin

juhasz, levente

hu, xuke

herfort, benjamin

ghamisi, pedram

gao, song

chehreghan, alireza

brovelli, maria antonia

novack, tessio

corcoran, padraig

li, hao
tuia, devis

touya, guillaume

mocnik, franz-benjamin
mobasheri, amin

lautenbach, sven

bertolotto, michela

zhu, xiao xiang

minghini, marco

zhou, qi

neis, pascal

hochmair, hartwig h.

see, linda

mooney, peter

arsanjani, jamal jokar
fan, hongchao

zipf, alexander

VOSviewer

(b) Web of Science- Authors

Figure 2.3: Bibliometric Analysis of Authors. –(a) Scopus. (b) Web of Science. Source: Authors.

2.3 Problem Formulation and Methodology 17

Using VosViewer in the bibliometric analysis of scientific documents from Web of
Science and Scopus, specifically in applying OpenStreetMap in geo-referenced
scenarios, allows the visualization of the scientific production of countries and
authors rigorously and objectively. This tool is essential for analyzing and identifying
the main trends, patterns, and research areas in this area, which translates into
valuable information for strategic decision-making in developing and implementing
geo-referenced projects. In summary, the graphs obtained through VosViewer
provide an overview of the current state of research in this area, contributing
significantly to the advancement of science and technology.

2.3 Problem Formulation and Methodology

Wireless network planning is a fundamental problem in deploying communication
infrastructures, which involves making strategic decisions to reduce costs and
ensure adequate coverage. In this work, a wireless network planning model is
proposed based on geographic data from OpenStreetMap, which considers
population growth in a scalable way and the exact location of each wireless sensor.
The developed model uses an algorithm created with Matlab on a computer with
an Intel Xeon 2.6GHz processor and 128GB RAM to process the data from an OSM
extension file. The latitude and longitude location of the houses are used as the
location of the wireless sensors.

The algorithm has as a constraint the maximum distance, dmax=45 meters,
which can be modified according to the needs of the application. A feasible
mesh of possible connectivity links is generated, and the internal heuristic employs
Dijkstra’s algorithm to find the minimum spanning tree with the distance constraint. It
is important to note that there may be unconnected sensors because the maximum
distance will place some sensors farther away than the allowed distance.

The proposed methodology will create an efficient and scalable wireless net-
work planning model, reducing costs in deploying communications infrastructure
and improving the quality of services offered to the population. Therefore, data
analytics techniques will generate detailed maps of the region of interest to imple-
ment the proposed model. A data collection and cleaning process will be carried
out to generate an OSM file containing accurate and updated information on the
dwellings and existing infrastructure in the region. Subsequently, the algorithm de-
veloped for the location of wireless sensors will be used, considering the maximum
distance restriction and the generation of a feasible mesh of possible connectivity
links. The internal heuristics will employ Dijkstra’s algorithm to find the minimum
spanning tree with the distance constraint. Table 2.2 details the variables used in
the equations.

18

Download OSM file

Extract house and street coordinates in MATLAB

Stratify by clusters using k-means

Calculate distance between nodes

Is distance less than maximum?

Set value in matrix G to 1

Set value in matrix G to 0

Call Dijkstra algorithm using G matrix

End process

yes

no

Figure 2.4: Methodology to perform data analytics on data from an OSM file.

2.3 Problem Formulation and Methodology 19

The Earth’s shape is irregular and approximately spherical, and its surface is
curved. The Haversine formula is commonly used to calculate the distance be-
tween two points on the Earth’s surface accurately. This equation considers the
Earth’s curvature and allows for accurate distance calculations in a geo-referenced
system. The distance results are usually reported in kilometers. Equations 2.1 and 2.2
provide the mathematical expressions for calculating distances using the Haversine
formula for two sets of coordinates.

Table 2.2: Variables related to Haversine equation
Symbol Description
Dij Distance matrix nxn - km
Ra Earth curvature - km
lat, lon Latitude and longitude
distHij Haversine distance - km
E Haversine Equation

Dij = 2 ∗Ra ∗ asin
√
E (2.1)

E = sin2

(
∆lat

2

)2

+ cos (lat1) ∗ cos (lat2) ∗ sin2

(
∆lon

2

)2

(2.2)

This paper presents the possibility of performing data mining on an OSM file to
determine the type of information available and how it could be used in basic,
applied, and quantitative research. Mathworks presents a set of functions that serve
for a process in Matlab, source: https://la.mathworks.com/matlabcentral/fileexchange/35819-
openstreetmap-functions, and they are the following:

• assign _from _parsed.m
• debug_openstreetmap.m
• extract _connectivity.m
• get_unique_node _xy.m
• get_way_tag_key.m
• load_osm_xml.m
• main_mapping.m
• parse_openstreetmap.m
• parse_osm.m
• plot_nodes
• plot_road_network.m

20

• plot_route.m
• plot_way.m
• route_planner.m
• show_map.m
• usage_example.m
However, more than the exposed functions are required because they generate

errors. After all, new functions are requested in Matlab that can be downloaded
from the Internet by searching for them with the following names:

• xml2struct_fex28518.m
• lat_lon_proportions.m
• takehold.m
• plotmd.m
• textmd.m
• restorehold.m
• givehold.m

2.3 Problem Formulation and Methodology 21

The features of each OpenStreetMap layer are detailed below:
■ Standard layer: The Standard layer is the default base map layer of Open-

StreetMap, which contains basic information such as roads, buildings, water
bodies, and administrative boundaries. This layer is designed to provide a
general view of a specific area and is suitable for navigation and available
mapping applications.

■ CyclOSM layer: The CyclOSM layer is specifically designed for cyclists and
displays relevant information, such as bike routes, bike lanes, and bike parking
facilities. It also includes information on points of interest for cyclists, such as
bike shops and repair facilities.

■ Cyclist Map layer: Similar to the CyclOSM layer, the Cyclist Map layer is
designed for cyclists and displays information specific to them, such as bike
routes, bike lanes, and bike parking facilities. It also focuses on safety and
displays areas where cyclists should exercise caution.

■ Transportation Map layer: The Transportation Map layer is designed to display
information about public transportation, such as bus routes, train and metro
stations, and bus stops. It may also include information about parking facilities
and nearby points of interest.

■ ÖPNVKarte layer: Similar to the Transportation Map layer, the ÖPNVKarte layer
focuses explicitly on public transportation in Germany and displays information
about bus routes, trams, metro, and trains. It may also include information
about nearby points of interest.

■ Humanitarian layer: The Humanitarian layer is designed for use in humanitarian
crises such as natural disasters or armed conflicts. It contains relevant informa-
tion for humanitarian aid, such as the location of shelters, hospitals, and water
stations. It may also include information about roads and evacuation routes.

Table 2.3 presents the parameters used in the proposed georeferencing appli-
cation scenario. Each variable will be modified according to the values retrieved
from the OSM file. If the selected area is vast, the information on houses and streets
will be increased. However, the computational time will also increase. Figure 2.5
shows the characteristic of the layers available in OpenStreetMap.

22

(a) Standard Layer (b) CyclOSM Layer

(c) Cyclist Map Layer (d) Transportation Map Layer

(e) ÖPNVKarte Layer (f) Humanitarian Layer

Figure 2.5: OpenStreetMap Layers Comparison: Standard, CyclOSM, Cyclist Map, Trans-
portation Map, ÖPNVKarte, and Humanitarian

2.4 Matlab Coding and Results Analysis. 23

Table 2.3: Simulation parameters.
Description Details
Location map Ziya Gökalp Caddesi, Gölbaşı, Adıyaman, Southeastern Anatolia Region, 02500, Turkey
Latitude [37.7781 37.7844] - Bottom to top
Longitude [37.6393 37.6469] - Left to right.
User household 497
Geographic area 503.705,95 m2

Coverage distance 0.045 km - constraint
Streets Sets 67
Topology evaluated Tree
IEEE 802.15.4 Technology Topology type Star, Tree
Candidate sites location Location of the houses

2.4 Matlab Coding and Results Analysis.

Based on the data available in an OpenStreetMap OSM file, it is necessary to
exemplify a specific application considering a geo-referenced scenario. Therefore,
once all the functions are in the same folder and ∗.osm file, you can run the Matlab
script to get the first approach to map retrieval in Matlab. Figure 2.6 a) shows a
graph with the connectivity matrix, with the area’s connections in blue and the
non-connectivity of streets or avenues in white. The figure shows the initial behavior
of the articulation between Matlab and OpenStreetMap. It can be seen that figure
2.6 b) has text that does not allow us to appreciate the map.

0 500 1000 1500 2000 2500 3000 3500

nz = 638

0

500

1000

1500

2000

2500

3000

3500

(a) No Zeros chart

37.64 37.641 37.642 37.643 37.644 37.645 37.646 37.647

Longitude (o)

37.779

37.78

37.781

37.782

37.783

37.784

La
tit

ud
e

(o
)

OpenStreetMap osm file

(b) Stage map

Figure 2.6: The original scenario articulated Matlab & OpenStreetMap considering the
functions available in Mathworks and modified them with the required new functions

The script has been modified from the original Mathworks version authored by
Ioannis Filippidis in 2010 and is presented below.

1 clc; clear all; close all;
2 warning('off','all');

24

3 %=====================================
4 openstreetmap_filename = 'turkey.osm';%Scenario (Chosen City)
5 [parsed_osm , osm_xml] = parse_openstreetmap(openstreetmap_filename);
6 %Retrieve OSM information
7 %Connectivity Matrix and Intersections
8 [connectivity_matrix , intersection_node_indices] =

extract_connectivity(parsed_osm);
9 %Clean duplicate data

10 intersection_nodes = get_unique_node_xy(parsed_osm ,
intersection_node_indices);%

11 start = 1; % node global index
12 target = 9;
13 dg = or(connectivity_matrix , connectivity_matrix .'); %sparse matrix
14 [route , dist] = route_planner(dg, start , target);
15 fig = figure;
16 ax = axes('Parent ', fig);%Axis
17 hold(ax, 'on')%Hold
18 plot_way(ax , parsed_osm)
19 plot_route(ax, route , parsed_osm)
20 only_nodes = 1:10:10000; % Alert! not all nodes , to reduce graphics

memory & clutter
21 plot_nodes(ax, parsed_osm , only_nodes)
22 %=====================================
23 % Page setup before printing the figure in PDF format
24 figure (1);
25 hold(ax, 'off')
26 h=gcf;
27 set(h,'PaperPositionMode ','auto');
28 set(h,'PaperType ','A4');
29 set(h,'PaperOrientation ','landscape ');
30 set(h,'Position ' ,[10 0 500 800]);
31 set(h, 'InvertHardcopy ', 'off')
32 fig = gcf;
33 fig.Color = 'white';
34 print -dpdf -r800 figure1_12
35 %=====================================
36 figure (2);
37 hold(ax, 'off')
38 h=gcf;
39 set(h,'PaperPositionMode ','auto');
40 set(h,'PaperType ','A4');
41 set(h,'PaperOrientation ','landscape ');
42 set(h,'Position ' ,[10 0 500 800]);
43 set(h, 'InvertHardcopy ', 'off')
44 fig = gcf;
45 fig.Color = 'white';
46 print -dpdf -r800 figure1_13

Next, the code is modified to include the background image in PNG format. It is
important to note that the capture of the photo image must have been previously
captured and saved from OpenStreetMap. After line 4, insert the next code:

2.4 Matlab Coding and Results Analysis. 25

• map_map img_filename = ’figure1_standard.png’;
Afterward, line 19 should be modified by the following code
• plot_way(ax, parsed_osm,map_img_filename)
Once the above changes have been made, it can be seen in the figure 2.7

that the png figure is at the bottom of the road and housing map. The figure shows
the houses in green color found in the OSM file. The blue color indicates the main
streets of the selected area. It is important to note that not all regions are complete
and should be observed in the standard layer if the map has houses.

37.64 37.641 37.642 37.643 37.644 37.645 37.646 37.647

Longitude (o)

37.779

37.78

37.781

37.782

37.783

37.784

La
tit

ud
e

(o
)

OpenStreetMap osm file

Figure 2.7: Scenario with the background image of the selected map.

The next step will be to modify the plot_way.m function to identify the information
about the houses and roads. For this purpose, colors are chosen to identify each
set of data. The new code for the plot_way.m function is detailed below.

26

1 %plot_way.m function
2 function [] = plot_way(ax , parsed_osm , map_img_filename)
3 if nargin < 3
4 map_img_filename = [];
5 end
6 [bounds , node , way , ~] = assign_from_parsed(parsed_osm);
7 disp_info(bounds , size(node.id , 2), size(way.id , 2))
8 show_ways(ax, bounds , node , way , map_img_filename);
9

10 function [] = show_ways(hax , bounds , node , way , map_img_filename)
11 show_map(hax , bounds , map_img_filename)
12 house =[];zi=1;zj=1;zk=1; House =[];
13 key_catalog = {};
14 for i=1: size(way.id , 2)
15 [key , val] = get_way_tag_key(way.tag{1,i});
16 % find unique way types
17 if isempty(key)
18 elseif isempty(find(ismember(key_catalog , key) == 1, 1))
19 key_catalog (1, end +1) = {key};
20 end
21 % way = highway or amenity ?
22 flag = 0;
23 switch key
24 case 'highway '
25 flag = 1;
26 % bus stop ?
27 if strcmp(val , 'bus_stop ')
28 disp('Bus stop found')
29 end
30 case 'amenity '
31 % bus station ?
32 if strcmp(val , 'bus_station ')
33 disp('Bus station found')
34 end
35 %===========================
36 case 'building '
37 % houses
38 flag = 2;
39 if strcmp(val , 'yes')
40 disp('House')
41 end
42 case 'alt_name '
43 % houses
44 flag = 3;
45 if strcmp(val , 'yes')
46 disp('Extra Via')
47 end
48 %===========================
49 otherwise
50 disp('way without tag.')
51 end
52 % plot highway

2.4 Matlab Coding and Results Analysis. 27

53 way_nd_ids = way.nd{1, i};
54 num_nd = size(way_nd_ids , 2);
55 nd_coor = zeros(2, num_nd);
56 nd_ids = node.id;
57 for j=1: num_nd
58 cur_nd_id = way_nd_ids (1, j);
59 if ~isempty(node.xy(:, cur_nd_id == nd_ids))
60 nd_coor(:, j) = node.xy(:, cur_nd_id == nd_ids);
61 end
62 end
63 % remove zeros
64 nd_coor(any(nd_coor ==0 ,2) ,:)=[];
65 if ~isempty(nd_coor)
66 % plot way (highway = blue , other = green)
67 if flag == 1
68 plot(hax , nd_coor (1,:), nd_coor (2,:), '-','LineWidth ',1,

'color' ,[0.74 0.33 0.18])% plot streets
69 streets{1,zj}=[nd_coor (1,:); nd_coor (2,:)];
70 zj=zj+1;
71 else
72 end
73 if flag == 2
74 plot(hax , nd_coor (1,:), nd_coor (2,:), '-','LineWidth ',1,

'color' ,[0.37 0.41 0.62]);
75 plot(hax , nd_coor(1,end), nd_coor(2,end), '<','

markersize ',3,'color' ,[128/255 64/255 64/255] ,'
markerfacecolor ' ,[255/255 127/255 39/255]);

76 house(zi ,:)=[nd_coor(1,end) nd_coor(2,end)];
77 House{1,zi}=[nd_coor (1,:); nd_coor (2,:)];
78 zi=zi+1;
79 end
80 if flag == 3
81 plot(hax , nd_coor (1,:), nd_coor (2,:), '-','LineWidth ',1,

'color' ,[0.74 0.33 0.18]);
82 streets2{1,zk}=[nd_coor (1,:); nd_coor (2,:)];
83 zk=zk+1;
84 end
85 end
86 %waitforbuttonpress
87 end
88 disp(key_catalog .')
89
90 function [] = disp_info(bounds , Nnode , Nway)
91 disp(['Bounds: xmin = ' num2str(bounds (1,1)) ,...
92 ', xmax = ', num2str(bounds (1,2)) ,...
93 ', ymin = ', num2str(bounds (2,1)) ,...
94 ', ymax = ', num2str(bounds (2,2))])
95 disp(['Number of nodes: ' num2str(Nnode)])
96 disp(['Number of ways: ' num2str(Nway)])

In addition, to remove the title of the figures, the function show_map.m must be
entered, and the last line of the Matlab code must be disabled at the end of the

28

line %title(ax, ’OpenStreetMap osm file’).

Figure 2.8: The scenario considers dwellings, roads, and the point of the residence closest to
a street.

Generally, it is required to work with the information separately according to the
application to be developed. The main algorithm retrieves information on houses,
roads, and recreational areas. A triangle is placed at the point of each home. In
this sense, the main algorithm and the plot_way function are modified and are now
called new_plot_way.

The MATLAB code starts by clearing the console (clc), clearing all variables
(clear all), and closing all open figures (close all). Then, you set the name of the map
file to use (openstreetmap_filename) and the map image (map_img_filename).
Next, the OSM (OpenStreetMap) information is extracted from the file, and the
connectivity matrix and intersection node indices are obtained. Duplicate data is
removed, and the start and end nodes are established.

The shortest path between these nodes is then found using Dijkstra’s algorithm,
and a figure is created to show the map and route. The working area is set, and
data not in the specified region is removed. A legend is set for the figure, and
the page is set up before printing the figure in PDF format. In summary, the code
processes OSM data and displays the shortest route between two nodes on a map,
which can be helpful for transportation network analysis and urban planning.

1 clc; clear all; close all;
2 warning('off','all');

2.4 Matlab Coding and Results Analysis. 29

3 %=====================================
4 openstreetmap_filename = 'turkey.osm';%Scenario (Chosen City)
5 %Image
6 map_img_filename = 'figure1_estandar.png';%Imagen PNG o EPS
7 [parsed_osm , osm_xml] = parse_openstreetmap(openstreetmap_filename);

%Retrieve OSM information
8 %Connectivity Matrix and Intersections
9 [connectivity_matrix , intersection_node_indices] =

extract_connectivity(parsed_osm);
10 %Clean duplicate data
11 intersection_nodes = get_unique_node_xy(parsed_osm ,

intersection_node_indices);%
12 start = 1; % node global index
13 target = 9;
14 dg = or(connectivity_matrix , connectivity_matrix .'); %sparse matrix
15 [route , dist] = route_planner(dg, start , target);
16 fig = figure;
17 ax = axes('Parent ', fig);%Axis
18 hold(ax, 'on')%Hold
19 new_plot_way(ax , parsed_osm ,map_img_filename)%Include Image
20 plot_route(ax, route , parsed_osm)
21 only_nodes = 1:10:10000; % Alert! not all nodes , to reduce graphics

memory & clutter
22 plot_nodes(ax, parsed_osm , only_nodes)
23 %=====================================
24 % geo -referenced Scenario Work Area Grid
25 lonlim =[37.6393 37.6469]; % Left -Right X Limits
26 latlim =[37.7781 37.7844]; % Lower -Upper Y Limits
27 %=====================================
28 % Vector retrieved from OSM information
29 [House ,house ,streets ,z1 ,z2 ,z3 ,z4]= new_plot_way(ax , parsed_osm ,

map_img_filename);
30 [House]= delete_data(lonlim ,latlim , House ');
31 House=House ';
32 streets =[streets];
33 legend ([z1,z2,z3 ,z4],'Street ','Recreation ','House','Reference ','

fontname ','times new roman ','fontsize ',13,'location ','SO','
orientation ','horizontal ');

34 % Page setup before printing the figure in PDF format
35 figure (1);
36 hold(ax, 'off'),box('on');
37 h=gcf;
38 set(h,'PaperPositionMode ','auto');
39 set(h,'PaperType ','A4');
40 set(h,'PaperOrientation ','landscape ');
41 set(h,'Position ' ,[10 0 500 800]);
42 set(h, 'InvertHardcopy ', 'off')
43 fig = gcf;
44 fig.Color = 'white';
45 print -dpdf -r800 figure1_14
46 figure (2);
47 hold(ax, 'off'),box('on');

30

48 h=gcf;
49 set(h,'PaperPositionMode ','auto');
50 set(h,'PaperType ','A4');
51 set(h,'PaperOrientation ','landscape ');
52 set(h,'Position ' ,[10 0 500 800]);
53 set(h, 'InvertHardcopy ', 'off')
54 fig = gcf;
55 fig.Color = 'white';
56 print -dpdf -r800 figure1_17

The MATLAB algorithm "new_plot_way" is a function that receives three input
arguments: the first argument is the "ax" object representing the coordinate system
in which the map will be drawn, the second argument is the "parsed_osm" object
representing the map data file in OSM format. The third argument is the filename
of the map image. This function uses the "assign_from_parsed" function to extract
node and path information from the OSM file and then calls the "show_ways"
function to draw the nodes and paths in the "ax" object. The "show_ways" function
uses the "show_map" function to display the map image in the "ax" object.

Then, the "show_ways" function traverses the paths in the "way" entity to deter-
mine their type and draws them in the "ax" object with a different color for each
class. If a path is a house, it also draws a marker at the last position of the path
and stores the place in a "house" array. Finally, the function "new_plot_way" returns
the objects "house," "house," "streets," "z1", "z2", "z3," and "z4," containing information
about the drawn nodes and paths.

The algorithm demonstrates a practical application of geospatial data pro-
cessing and map visualization in MATLAB. The implementation of the algorithm
uses structured programming techniques. The use comprises control structures
such as cycles, case selection, and nested functions that perform specific tasks.
Array indexing is also used, and attention is paid to code efficiency to avoid redun-
dancy in data representation and improve performance. The algorithm is easily
understandable and modular, facilitating its maintenance and extension. Table
2.4 presents the variables used in the algorithm’s 1 pseudocode, and the Matlab
code is also presented below.

2.4 Matlab Coding and Results Analysis. 31

Table 2.4: Variables related to the new_plot_way algorithm
Name Description
ax Axis object of the plot
parsed_osm Parsed OpenStreetMap data
map_img_filename Filename of the map image
bounds Boundary coordinates of the plot
node Node coordinates
way Way information
House List of house coordinates
house Temporary list of house coordinates
streets List of street coordinates
key_catalog Catalog of unique way tags
i Loop index variable
key Current way tag key
val Current way tag value
flag Flag variable used for differentiating between different types of ways
nd_coor Coordinate of the current node

32

Algorithm 1 Function new_plot_way
1: function show_ways(hax, bounds, node, way,map_img_filename)
2: show_map(hax, bounds,map_img_filename)
3: house← []
4: House←
5: streets←
6: key_catalog ←
7: for i← 1 to size(way.id, 2) do
8: key, val← get_way_tag_key(way.tag1, i)
9: if ∼ isempty(key) & isempty(find(ismember(key_catalog, key) == 1, 1)) then

10: key_catalogend+ 1← key
11: end if
12: if key ==′ highway′ then
13: if strcmp(val,′ bus_stop′) then
14: continue
15: else
16: flag ← 1
17: streetsend+ 1← node.xy(:, way.nd1, i)
18: end if
19: end if
20: if key ==′ amenity′ then
21: if strcmp(val,′ bus_station′) then
22: continue
23: else
24: flag ← 2
25: end if
26: end if
27: if key ==′ building′ then
28: if strcmp(val,′ yes′) then
29: flag ← 3
30: nd_coor ← node.xy(:, way.nd1, i)
31: house(end+ 1, :)← [nd_coor(1, end), nd_coor(2, end)]
32: Houseend+ 1← nd_coor
33: else
34: continue
35: end if
36: end if
37: if key ==′ alt_name′ then
38: if strcmp(val,′ yes′) then
39: flag ← 4
40: streetsend+ 1← node.xy(:, way.nd1, i)
41: else
42: continue
43: end if
44: end if
45: end for
46: end function

1 function [House ,house ,streets ,z1 ,z2 ,z3,z4] = new_plot_way(ax,
parsed_osm , map_img_filename)

2 if nargin < 3

2.4 Matlab Coding and Results Analysis. 33

3 map_img_filename = [];
4 house =[]; House =[]; streets =[]; streets2 =[];z1=[];z2=[];z3=[];z4

=[];
5 end
6 [bounds , node , way , ~] = assign_from_parsed(parsed_osm);
7 % disp_info(bounds , size(node.id, 2), size(way.id, 2))
8 [House ,house ,streets ,z1 ,z2 ,z3 ,z4]= show_ways(ax , bounds , node , way ,

map_img_filename);
9 function [House ,house ,streets ,z1 ,z2 ,z3,z4] = show_ways(hax , bounds ,

node , way , map_img_filename)
10 show_map(hax , bounds , map_img_filename)
11 house =[];zi=1;zj=1;zk=1; House =[];
12 % plot(node.xy(1,:), node.xy(2,:), '.r','markersize ',10);
13 key_catalog = {};
14 for i=1: size(way.id , 2)
15 [key , val] = get_way_tag_key(way.tag{1,i});
16 % find unique way types
17 if isempty(key)
18 %
19 elseif isempty(find(ismember(key_catalog , key) == 1, 1))
20 key_catalog (1, end +1) = {key};
21 end
22 % way = highway or amenity ?
23 flag = 0;
24 switch key
25 case 'highway '
26 flag = 1;
27 % bus stop ?
28 if strcmp(val , 'bus_stop ')
29 disp('Bus stop found')
30 end
31 case 'amenity '
32 % bus station ?
33 flag = 2;
34 if strcmp(val , 'bus_station ')
35 disp('Bus station found')
36 end
37 case 'building '
38 % houses
39 flag = 3;
40 if strcmp(val , 'yes')
41 disp('I found a house ')
42 end
43 case 'alt_name '
44 % houses
45 flag = 4;
46 if strcmp(val , 'yes')
47 disp('Extra Via')
48 end
49 otherwise
50 % disp('Path.')
51 end

34

52 %plot highway
53 way_nd_ids = way.nd{1, i};
54 num_nd = size(way_nd_ids , 2);
55 nd_coor = zeros(2, num_nd);
56 nd_ids = node.id;
57 for j=1: num_nd
58 cur_nd_id = way_nd_ids (1, j);
59 if ~isempty(node.xy(:, cur_nd_id == nd_ids))
60 nd_coor(:, j) = node.xy(:, cur_nd_id == nd_ids);
61 end
62 end
63 % remove zeros
64 nd_coor(any(nd_coor ==0 ,2) ,:)=[];
65 if ~isempty(nd_coor)
66 %plot way (highway = blue , other = green)
67 if flag == 1
68 z1=plot(hax , nd_coor (1,:), nd_coor (2,:), '-','LineWidth '

,1.25,'color' ,[185/255 122/255 87/255]);% Plot Street
69 streets{1,zj}=[nd_coor (1,:); nd_coor (2,:)];
70 zj=zj+1;
71 else
72 z2=plot(hax , nd_coor (1,:), nd_coor (2,:), '-'

,'LineWidth ',1,'color' ,[0/255 162/255
232/255]);%Recreational areas

73 end
74 if flag == 3
75 z3=plot(hax , nd_coor (1,:), nd_coor (2,:), '-','LineWidth '

,1,'color' ,[128/255 07/255 255/255]);%Plot Houses
76 z4=plot(hax , nd_coor(1,end), nd_coor(2,end)

, '<','markersize ',4,'color' ,[1 0 0]);
77 house(zi ,:)=[nd_coor(1,end) nd_coor(2,end)];
78 House{1,zi}=[nd_coor (1,:); nd_coor (2,:)];
79 zi=zi+1;
80 end
81 if flag == 4
82 plot(hax , nd_coor (1,:), nd_coor (2,:), '-','LineWidth ',1,

'color' ,[1 0 0]);
83 streets2{1,zk}=[nd_coor (1,:); nd_coor (2,:)];
84 zk=zk+1;
85 end
86 end
87 %waitforbuttonpress
88 end
89 disp(key_catalog .')
90
91 function [] = disp_info(bounds , Nnode , Nway)
92 disp(['Bounds: xmin = ' num2str(bounds (1,1)) ,...
93 ', xmax = ', num2str(bounds (1,2)) ,...
94 ', ymin = ', num2str(bounds (2,1)) ,...
95 ', ymax = ', num2str(bounds (2,2))])
96 disp(['Number of nodes: ' num2str(Nnode)])
97 disp(['Number of ways: ' num2str(Nway)])

2.4 Matlab Coding and Results Analysis. 35

The presented Matlab algorithm named delete_data uses an iterative approach
to remove unwanted data from a geospatial dataset. First, boundaries are defined
for longitude and latitude, which are assigned to two variables called "lonlim" and
"latlim," respectively. Next, a list of intersection vectors "int" containing information
about intersections between streets in a city or geographic area is traversed. At
each iteration, the x and y coordinates of the street intersections are extracted and
filtered to include only those within the previously defined longitude and latitude
limits. The filtered data is stored in a "deleting" matrix to store the deleted data.

In summary, the algorithm uses an iterative filtering approach to remove un-
wanted data from a geospatial dataset based on the boundaries defined for
longitude and latitude. The algorithm runs in a loop for each intersection vector
"int," extracting and filtering street intersections’ x and y coordinates. The filtered
data is stored in a "deleting" array for further processing or deletion. This filtering
approach can help remove noisy or irrelevant data in urban geography or visualize
maps of specific geographic areas. Table 2.5 presents the variables used in the
algorithm 2 that eliminates data outside the analysis area; the Matlab code is
shown below.

Table 2.5: Variables related to the Function delete_data
Variable Description
long A vector of longitudes
lat A vector of latitudes
int A cell array of street coordinates
jg Index variable for iterating through int
streetsx A vector of street longitudes
streetsy A vector of street latitudes
tot A matrix of selected street coordinates
ui Index variable for iterating through streetsx or tot
tot2 A matrix of selected street coordinates after both latitude and longitude filters
deleting A cell array of deleted street coordinates

36

Algorithm 2 Function delete_data
1: function delete_data(long, lat, int)
2: deleting ← []
3: for jg ← 1 to length(int) do
4: streetsx← []; streetsy ← [];
5: if length(cat(2, intjg, 1)) ̸= 0 then
6: streetsx, streetsy ← cat(2, intjg, 1)(1, :), cat(2, intjg, 1)(2, :)
7: end if
8: tot← []
9: for ui← 1 to length(streetsx) do

10: if lonlim(1, 1) < streetsx(ui) < lonlim(1, 2) then
11: tot← [tot; streetsx(ui), streetsy(ui)]
12: end if
13: end for
14: tot2← []
15: for ui← 1 to length(tot) do
16: if latlim(1, 1) < tot(ui, 2) < latlim(1, 2) then
17: tot2← [tot2; tot(ui, :)]
18: end if
19: end for
20: deleting{jg, 1} ← [tot2(:, 1)′; tot2(:, 2)′]
21: end for
22: return deleting
23: end function

1 function [deleting]= delete_data(long ,lat ,int)
2 lonlim =[]; latlim =[];
3 lonlim=long; latlim=lat;
4 for jg=1: length(int)
5 Xtr =[]; Ytr =[]; xeb =[]; yeb =[]; tx=[]; ty=[];
6 streetsx =[]; streetsy =[]; delete =[];
7 if length(cat(2,int{jg ,1}))~=0
8 streets_1=cat(2,int{jg ,1});
9 streetsx=streets_1 (1,:);

10 streetsy=streets_1 (2,:);
11 end
12 Xtr=streetsx; Ytr=streetsy;
13 xeb=Xtr '; yeb=Ytr ';
14 for ui=1: length(xeb)
15 filtro1=xeb(ui);
16 if filtro1 >lonlim (1,1) && filtro1 <lonlim (1,2)
17 tx(ui)=filtro1;
18 else
19 tx(ui)=0;
20 end
21 end
22 tot=[tx ' yeb];
23 if length(tot)~=0
24 delete=find(tot(:,1) ==0);
25 tot(delete ,:) =[];
26 xeb=tot(:,1);

2.4 Matlab Coding and Results Analysis. 37

27 yeb=tot(:,2);
28 else
29 xeb =[];
30 yeb =[];
31 end
32 ty=zeros(1,length(yeb));
33 for ui=1: length(yeb)
34 filtro2=yeb(ui);
35 if filtro2 >latlim (1,1) && filtro2 <latlim (1,2)
36 ty(ui)=filtro2;
37 else
38 ty(ui)=0;
39 end
40 end
41 tot2=[xeb ty '];
42 if length(tot2)~=0
43 delete2=find(tot2 (:,2) ==0);
44 tot2(delete2 ,:) =[];
45 xtr=tot2 (:,1);
46 ytr=tot2 (:,2);
47 else
48 xtr =[];
49 ytr =[];
50 end
51 xtr=xtr '; %stores the intersections within the scenario
52 ytr=ytr '; %stores the intersections within the scenario
53 deleting{jg ,1}=[xtr;ytr];
54 end
55 end

Figure 2.9: New scenario considering the location of housing, streets, and recreation areas.

38

Figure 2.9 represents the dwellings recovered from the OSM archive in purple.
Each sector or stratum can be represented by color. The representation identifies
a single color for didactic purposes. A correct planning process considers geo-
referenced scenarios to determine the solution to a specific problem.

After evaluating the interface between OpenStreetMap and Matlab, we will
load the information generated in the above file. For storing all the variables, you
can type in the command window after obtaining the graphs the command: save
store.mat esc. Then in a new script, we make an application to perform the routing
of a set of sensors located in each house. Wireless communication is established
with a maximum distance that must be met, in this case, 45 meters.

The algorithm in question uses MATLAB programming language to perform a
series of operations on a data set stored in a file with a .mat extension. First, all
variables in the current workspace are deleted, the screen is cleared, and all
system warnings are disabled. Next, the store.mat file containing the data to be
analyzed is loaded.

Subsequently, a figure is generated in which the data of the house variable is
graphically represented, using the k-means algorithm to divide the data into three
groups or clusters. Other symbols and colors represent the different clusters, and a
reference point (centroids) is added for each cluster.

Then, a series of network analysis operations are performed using Dijkstra’s
technique to calculate the shortest path between all the network nodes. The
distance between the different nodes is calculated using Haversine’s formula,
and a maximum length of 0.045 (45 meters) is set to establish the connections
between the network nodes. Finally, the connections between the different nodes
of the network are graphically represented, and the shortest path between each is
calculated.

The presented MATLAB algorithm uses data and graph analysis techniques
to graphically represent a data set and calculate the shortest path between its
different nodes.

The generated between line 20 and line 40 of the code aims to calculate the
Haversine distance between each pair of geographic coordinate points (latitude
and longitude) provided in two different vectors. The result is stored in a distance
matrix called distH, where each entry represents the distance between a pair of
points. Then, a maximum distance limit (dmax) is set, and a line is drawn between
two points only if their distance is less than or equal to dmax. It is done to visualize
issues that are close enough to each other on a map, represented by points and
lines so that they can be connected in a network graph.

In the Matlab algorithm, graph theory calculates the distance between nodes
in a graph G=(V, E), where V is the set of vertices and E is the edges. The algorithm

2.4 Matlab Coding and Results Analysis. 39

from line 42 uses a distance matrix distH to store the distances between each
pair of nodes in the graph. The line of code distH(distH==0)=inf; states that if the
distance between two nodes is zero, it should be considered infinite, which prevents
it from being used in path planning. Then, the line G(distH<=dmax)=1; establishes
a network connectivity matrix, where nodes at a distance less than or equal to
dmax are connected. Finally, Dijkstra’s algorithm is used by calling the function
dijkstra_A, to find the shortest path between an initial node N and all other nodes
in the network G, generating a distance matrix dp and a predecessor matrix that
can be used to reconstruct the shortest path between any pair of nodes. Table 2.6
presents the variables used in the algorithm’s 3 pseudocode for planning a wireless
sensor network in a geo-referenced scenario; the Matlab code is presented below.

Table 2.6: Variables related to the Main algorithm
Variable Description
X Input data for k-means clustering
k Number of clusters
idx2 Cluster indices for each data point
C Cluster centroids
G Adjacency matrix for graph
n Number of data points
distH Pairwise distances between data points
lon Longitudes for data points
lat Latitudes for data points
dmax Maximum distance threshold for connecting graph edges
path Array to store paths for each node
dp Array to store shortest distances for each node
pred Array to store predecessor nodes for each node in the shortest path

40

Algorithm 3 Main Algorithm of Network Planning
1: Load store.mat
2: X ← house
3: k ← 3
4: [idx2, C]← kmeans(X, k)
5: G← zeros(length(house))
6: n← length(X)
7: distH ← zeros(n, n)
8: G← zeros(n, n)
9: lon← X(:, 1)

10: lat← X(:, 2)
11: for i← 1 to n− 1 do
12: for j ← i+ 1 to n do
13: distH(i, j)← haversine([lat(i), lon(i)], [lat(j), lon(j)])
14: if ∼ isreal(distH(i, j)) then
15: i, j,pause
16: end if
17: distH(j, i)← distH(i, j)
18: end for
19: end for
20: distH(distH == 0)←∞
21: G(distH ≤ dmax)← 1
22: path← []
23: [dp, pred]← dijkstra_A(G,N)
24: for i← 1 to N do
25: node← i
26: pathnode← [node]
27: totalCost← 0
28: while pred(node) < N + 1 and pred(node) > 0 do
29: pred(node)
30: pathi← [pathi, pred(node)]
31: totalCost← totalCost+ distH(node, pred(node))
32: node← pred(node)
33: end while
34: end for

2.4 Matlab Coding and Results Analysis. 41

1 clc; clear all; close all;
2 warning('off','all');
3 load store.mat
4 %=======================================
5 figure (2);hold on; grid on; box ('on');
6 X=house;
7 k=3; colores=lines(k);
8 [idx2 ,C] = kmeans(X,k);
9 z2=plot(X(idx2 ==1,1),X(idx2 ==1,2),'h','color',colores (1,:),'

MarkerSize ' ,12);
10 plot(X(idx2 ==1,1),X(idx2 ==1 ,2),'.r','MarkerSize ' ,12);
11 z3=plot(X(idx2 ==2,1),X(idx2 ==2,2),'o','color',colores (2,:),'

MarkerSize ' ,12);
12 plot(X(idx2 ==2,1),X(idx2 ==2,2),'.k','MarkerSize ' ,12);
13 z4=plot(X(idx2 ==3,1),X(idx2 ==3,2),'s','color',colores (3,:),'

MarkerSize ' ,12);
14 plot(X(idx2 ==3,1),X(idx2 ==3,2),'.b','MarkerSize ' ,12);
15 z5=plot(C(:,1),C(:,2),'kx','MarkerSize ',15,'LineWidth ' ,2);
16 legend('Cluster 1','Cluster 2','Centroids ','Location ','NW');
17 G=zeros(length(house));
18 n=length(X); distH=zeros(n,n); G=0* distH;
19 lon=X(:,1);lat=X(:,2);
20 for i=1:n-1
21 for j=(i+1):n
22 distH(i,j)=haversine ([lat(i) lon(i)],[lat(j) lon(j)]);
23 if ~isreal(distH(i,j))
24 i,j,pause;
25 end
26 distH(j,i)=distH(i,j);
27 end
28 end
29 %=======================================
30 dmax =0.045;
31 M=length(lon);
32 N=length(lat);
33 for i=1:N
34 for j=1:N
35 if distH(i,j)<=dmax
36 z6=plot([lon(j) lon(i)],[lat(j) lat(i)],'-','color'

,[127/255 127/255 127/255]);hold on;
37 end
38 end
39 end
40 %=======================================
41 % Graph Theory
42 distH(distH ==0)=inf;
43 G(distH <=dmax)=1;
44 path =[];
45 [dp ,pred]= dijkstra_A(G,N);
46 for i=1:N
47 node=i;
48 path{node }=[node];

42

49 totalCost =0;
50 while pred(node)<N+1 & pred(node) >0
51 pred(node);
52 path{i}=[path{i} pred(node)];
53 totalCost=totalCost+distH(node , pred(node));
54 if length(path{i})==2
55 col =[1 0.4 0.2];
56 ancho =1;
57 if pred(node)>0 & pred(node)<=N & pred(node)>0 & pred(

node) <=N,col=[1 0 1]; ancho =1.15; end % Connexion
58 z7=plot([lon(node) lon(pred(node))],[lat(node) lat(pred(

node))],'-','color',col ,'linewidth ',ancho);
59 d = findobj('Color' ,[1 0 1]);
60 end
61 node=pred(node);hold on; grid on;
62 end
63 end
64 %=======================================
65 legend ([z2,z3 ,z4 ,z5 ,z6 ,z7(1)],'Group1 ','Group2 ','Group3 ','Centroide '

,'Mesh Feasible ','Routing ','fontname ','times new roman ','fontsize
',13,'location ','SO','orientation ','horizontal ');

66 %=======================================
67 figure (2);
68 hold(ax, 'off'),box('on');
69 h=gcf;
70 set(h,'PaperPositionMode ','auto');
71 set(h,'PaperType ','A4');
72 set(h,'PaperOrientation ','landscape ');
73 set(h,'Position ' ,[10 0 800 700]);
74 set(h, 'InvertHardcopy ', 'off')
75 fig = gcf;
76 fig.Color = 'white';
77 print -dpdf -r800 figure1_18
78 figure (3);
79 imagesc(G);colormap(jet);colorbar;
80 xlabel('X-axis')
81 ylabel('Y-axis')
82 hold(ax, 'on'),grid on; box('on');
83 h=gcf;
84 set(h,'PaperPositionMode ','auto');
85 set(h,'PaperType ','A4');
86 set(h,'PaperOrientation ','landscape ');
87 set(h,'Position ' ,[10 0 500 800]);
88 set(h, 'InvertHardcopy ', 'off')
89 fig = gcf;
90 fig.Color = 'white';
91 print -dpdf -r800 figure1_19

2.4 Matlab Coding and Results Analysis. 43

The Dijkstra algorithm is a weighted, directed graph search algorithm that starts
at an initial node and finds the shortest path to all other nodes. The algorithm uses
a priority queue data structure to maintain a set of visited nodes and another set
of unvisited nodes. The algorithm’s pseudocode begins by initializing the priority
queue with the starting node and its zero cost. Next, the algorithm selects the
node with the lowest cost from the priority queue and marks it as visited. Then,
the cost of the adjacent nodes to the visited node is updated if the current cost is
greater than the sum of the cost of the visited node and the weight of the edge
that connects them. This process is repeated until all nodes are visited or the final
node is reached. At the end of the algorithm, the shortest path from the starting
node to all other nodes in the graph is obtained. Table 2.7 presents the variables
used in the algorithm’s pseudocode 4; the Matlab code is presented below.

Table 2.7: Variables related to the Dijkstra’s algorithm
Variable Description
V Set of vertices in the graph
E Set of edges in the graph
s Start vertex
Q Priority queue of vertices to be processed
dist Array of shortest distances from s to each vertex
prev Array of previous vertices on the shortest path from s to each vertex
u Current vertex being processed
v Neighbor of u
length(u, v) Length of the edge between vertices u and v
alt Alternative distance from s to v via u

1 function [d pred]= dijkstra_A(A,u)
2 % David F. Gleich
3 % Copyright , Stanford University , 2008 -2009
4 if isstruct(A),
5 rp=A.rp; ci=A.ci; ai=A.ai;
6 check =0;
7 else
8 [rp ci ai]= sparse_to_csr(A); check =1;
9 end

10 if check && any(ai) <0, error('gaimc:dijkstra ', ...
11 'dijkstra ''s algorithm cannot handle negative edge weights.'

); end
12 n=length(rp) -1;
13 d=Inf*ones(n,1); T=zeros(n,1); L=zeros(n,1);
14 pred=zeros(1,length(rp) -1);
15 n=1; T(n)=u; L(u)=n; % oops , n is now the size of the heap
16 % enter the main dijkstra loop
17 d(u) = 0;
18 while n>0
19 v=T(1); ntop=T(n); T(1)=ntop; L(ntop)=1; n=n-1; % pop the head

off the heap

44

Algorithm 4 Dijkstra’s algorithm
1: Q← priority queue of vertices, initialized with start vertex s
2: dist[s]← 0
3: prev[s]← undefined
4: for each vertex v ∈ V \ s do
5: dist[v]←∞
6: prev[v]← undefined
7: add v to Q
8: end for
9: while Q is not empty do

10: u← vertex in Q with minimum dist[u]
11: remove u from Q
12: for each neighbor v of u do
13: alt← dist[u] + length(u, v)
14: if alt < dist[v] then
15: dist[v]← alt
16: prev[v]← u
17: decrease-key v in Q to dist[v]
18: end if
19: end for
20: end while

20 k=1; kt=ntop; % move element T(1) down the
heap

21 while 1,
22 i=2*k;
23 if i>n, break; end % end of heap
24 if i==n, it=T(i); % only one child , so skip
25 else % pick the smallest child
26 lc=T(i); rc=T(i+1); it=lc;
27 if d(rc)<d(lc), i=i+1; it=rc; end % right child is

smaller
28 end
29 if d(kt)<d(it), break; % at correct place , so end
30 else T(k)=it; L(it)=k; T(i)=kt; L(kt)=i; k=i; % swap
31 end
32 end % end heap down
33 % for each vertex adjacent to v, relax it
34 for ei=rp(v):rp(v+1) -1 % ei is the edge index
35 w=ci(ei); ew=ai(ei); % w is the target , ew is the

edge weight
36 % relax edge (v,w,ew)
37 if d(w)>d(v)+ew
38 d(w)=d(v)+ew; pred(w)=v;
39 % check if w is in the heap
40 k=L(w); onlyup =0;
41 if k==0
42 % element not in heap , only move the element up the

heap
43 n=n+1; T(n)=w; L(w)=n; k=n; kt=w; onlyup =1;
44 else kt=T(k);

2.4 Matlab Coding and Results Analysis. 45

45 end
46 % update the heap , move the element down in the heap
47 while 1 && ~onlyup ,
48 i=2*k;
49 if i>n, break; end % end of heap
50 if i==n, it=T(i); % only one child , so

skip
51 else % pick the smallest

child
52 lc=T(i); rc=T(i+1); it=lc;
53 if d(rc)<d(lc), i=i+1; it=rc; end % right child

is smaller
54 end
55 if d(kt)<d(it), break; % at correct place , so

end
56 else T(k)=it; L(it)=k; T(i)=kt; L(kt)=i; k=i; % swap
57 end
58 end
59 % move the element up the heap
60 j=k; tj=T(j);
61 while j>1, % j==1 => element at

top of heap
62 j2=floor(j/2); tj2=T(j2); % parent element
63 if d(tj2)<d(tj), break; % parent is smaller , so

done
64 else % parent is larger , so

swap
65 T(j2)=tj; L(tj)=j2; T(j)=tj2; L(tj2)=j; j=j2;
66 end
67 end
68 end
69 end
70 end

Josiah Renfree created the Haversine function in 2010. This function calculates
the distance between two geographic locations using the Haversine formula. To use
the function, the user must provide two locations in latitude and longitude, which
can be in degrees, minutes, and seconds or decimal format. If the user provides
the locations in degrees, minutes, and seconds format, the function converts them
to decimals for calculation. The function also verifies that two sites are provided,
and that the locations are valid before performing distance calculations. Once the
inputs have been confirmed, the function uses the Haversine formula to calculate
the distance between the two locations in kilometers and then converts this value
to miles and nautical miles. In summary, a haversine function is a helpful tool for
calculating the distance between two geographic locations in different units of
measurement. The Matlab code for the Haversine distance is presented below.

1 function [km nmi mi] = haversine(loc1 , loc2)
2 % Created by Josiah Renfree

46

3 % May 27, 2010
4 %% Check user inputs
5 % If two inputs are given , display error
6 if ~isequal(nargin , 2)
7 error('User must supply two location inputs ')
8 % If two inputs are given , handle data
9 else

10 locs = {loc1 loc2}; % Combine inputs to make checking easier
11 % Cycle through to check both inputs
12 for i = 1: length(locs)
13 % Check inputs and convert to decimal if needed
14 if ischar(locs{i})
15 % Parse lat and long info from current input
16 temp = regexp(locs{i}, ',', 'split');
17 lat = temp {1}; lon = temp {2};
18 clear temp
19 locs{i} = []; % Remove string to make room for

array
20 % Obtain degrees , minutes , seconds , and hemisphere
21 temp = regexp(lat , '(\d+)\D+(\d+)\D+(\d+)(\w?)', 'tokens

');
22 temp = temp {1};
23 % Calculate latitude in decimal degrees
24 locs{i}(1) = str2double(temp {1}) + str2double(temp {2})

/60 + ...
25 str2double(temp {3}) /3600;
26 % Make sure hemisphere was given
27 if isempty(temp {4})
28 error('No hemisphere given ')
29 % If latitude is south , make decimal negative
30 elseif strcmpi(temp{4}, 'S')
31 locs{i}(1) = -locs{i}(1);
32 end
33 clear temp
34 % Obtain degrees , minutes , seconds , and hemisphere
35 temp = regexp(lon , '(\d+)\D+(\d+)\D+(\d+)(\w?)', 'tokens

');
36 temp = temp {1};
37 % Calculate longitude in decimal degrees
38 locs{i}(2) = str2double(temp {1}) + str2double(temp {2})

/60 + ...
39 str2double(temp {3}) /3600;
40 % Make sure hemisphere was given
41 if isempty(temp {4})
42 error('No hemisphere given ')
43 % If longitude is west , make decimal negative
44 elseif strcmpi(temp{4}, 'W')
45 locs{i}(2) = -locs{i}(2);
46 end
47 clear temp lat lon
48 end
49 end

2.4 Matlab Coding and Results Analysis. 47

50 end
51 % Check that both cells are a 2-valued array
52 if any(cellfun(@(x) ~isequal(length(x) ,2), locs))
53 error('Incorrect number of input coordinates ')
54 end
55 % Convert all decimal degrees to radians
56 locs = cellfun(@(x) x .* pi./180, locs , 'UniformOutput ', 0);
57 %% Begin calculation
58 R = 6371; % Earth 's radius in km
59 delta_lat = locs {2}(1) - locs {1}(1); % difference in latitude
60 delta_lon = locs {2}(2) - locs {1}(2); % difference in

longitude
61 a = sin(delta_lat /2)^2 + cos(locs {1}(1)) * cos(locs {2}(1)) * ...
62 sin(delta_lon /2)^2;
63 c = 2 * atan2(sqrt(a), sqrt(1-a));
64 km = R * c; % distance in km
65 %% Convert result to nautical miles and miles
66 nmi = km * 0.539956803; % nautical miles
67 mi = km * 0.621371192; % miles

48

Figure 2.10 shows the feasible mesh obtained in gray due to the maximum
distance restriction allowed, in this case, 45 meters. The pink color indicates the
minimum spanning tree. There are unconnected nodes, which gives rise to the
Steiner Tree Problem, and Steiner nodes could allow the connectivity of all nodes.
The Steiner nodes will be a set of feasible points active only if they are required
to connect to the wireless sensors proposed in this scenario. The scalability in the
growing populations also facilitates the sensors to be interconnected due to their
proximity.

Figure 2.10: Node routing through the use of Dijkstra’s Algorithm.

The connectivity matrix shown in figure 2.11 shows symmetry. Only the values in
yellow have been considered possible connections in matrix G. Those represented
in green are the unlabeled connections between the nodes.

2.5 Conclusions 49

50 100 150 200 250 300 350 400 450

X-axis

50

100

150

200

250

300

350

400

450

Y
-a

xi
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.11: Connectivity matrix between 479 nodes.

2.5 Conclusions

This scientific article presented a method for OSM file reading in Matlab using a
combination of existing tools. The limitation of direct OSM file reading by Matlab
was overcome, and a structured file was obtained, allowing for efficient working
with the data.

Furthermore, additional Matlab functions not found in MathWorks were explored.
Several valuable functions were found that improved the efficiency of the data
reading and filtering process, allowing for processing large datasets in a reasonable
amount of time.

New Matlab scripts with the filtered house and dwelling data from OSM files
have been generated. These scripts allow for extracting relevant information about
the location and features of homes and dwellings, which is helpful in network
planning.

It was demonstrated that applications for network planning in geo-referenced
scenarios could be created using the data obtained from OSM files. It enables the
identification of critical areas and planning for effective solutions in emergencies.

Finally, a didactic process was proposed that allows new research innovation
from the information in OSM files and the generated Matlab codes. This process

50

guides users in identifying new research opportunities using geo-referenced data
obtained from OSM files and Matlab tools. Overall, the results demonstrate the
usefulness of combining free software tools and Matlab for geospatial data pro-
cessing.

Georeferencing has been a valuable tool in planning various activities and
has allowed complex problems to be solved efficiently. The code presented in
this paper has demonstrated how georeferencing can be combined with other
techniques, such as graph theory, to solve problems in different areas. In particular,
it has been presented how georeferencing and graph theory can be used to
solve routing and route planning problems in geographic regions, which can have
practical applications in logistics, transportation, and other activities.

Notably, the code presented in this paper demonstrates the innovation of using
georeferencing and provides a practical and accessible tool for solving real-world
problems. In addition, the code is presented clearly and concisely, which makes it
easily reproducible and adaptable to solve other similar problems in different areas.
In summary, the code shown in this article is a valuable contribution to the scientific
community. It can be used as a basis for future georeferencing and geographic
planning work.

Bibliography

[1] L. Machado and E. Inga, “Optimal Placement of UDAP in Advanced Metering
Infrastructure for Smart Metering of Electrical Energy Based on Graph Theory”,
Electronics (Switzerland), vol. 11, no. 11, 2022, issn: 20799292. doi: 10 . 3390 /
electronics11111767.

[2] E. Inga, R. Hincapié, and S. Céspedes, “Capacitated Multicommodity Flow Problem for
Heterogeneous Smart Electricity Metering Communications Using Column Generation”,
Energies, vol. 13, no. 1, p. 97, 2019. doi: 10.3390/en13010097.

[3] E. Inga, S. Céspedes, R. Hincapié, and A. Cárdenas, “Scalable Route Map for Ad-
vanced Metering Infrastructure Based on Optimal Routing of Wireless Heterogeneous
Networks”, IEEE Wireless Communications, vol. 24, no. April, pp. 1–8, 2017, issn: 1536-
1284. doi: 10.1109/MWC.2017.1600255. [Online]. Available: https://ieeexplore.
ieee.org/document/7909154/.

[4] E. Inga, J. Inga, and A. Ortega, “Novel approach sizing and routing of wireless sensor
networks for applications in smart cities”, Sensors, vol. 21, no. 14, pp. 1–17, 2021, issn:
14248220. doi: 10.3390/s21144692.

[5] E. Quintana and E. Inga, “Optimal Reconfiguration of Electrical Distribution System
Using Heuristic Methods with Geopositioning Constraints”, Energies, vol. 15, no. 15,
pp. 1–20, 2022, issn: 19961073. doi: 10.3390/en15155317.

[6] J. García and E. Inga, “Georeferenced rural distribution network model considering
scalable growth of users in rural areas”, Heliyon, vol. 9, no. 1, e12724, 2023, issn:
24058440. doi: 10.1016/j.heliyon.2022.e12724. [Online]. Available: https://doi.
org/10.1016/j.heliyon.2022.e12724.

[7] A. Valenzuela, E. Inga, and S. Simani, “Planning of a resilient underground distribution
network using georeferenced data”, Energies, vol. 12, no. 4, 2019, issn: 19961073. doi:
10.3390/en12040644.

https://doi.org/10.3390/electronics11111767
https://doi.org/10.3390/electronics11111767
https://doi.org/10.3390/en13010097
https://doi.org/10.1109/MWC.2017.1600255
https://ieeexplore.ieee.org/document/7909154/
https://ieeexplore.ieee.org/document/7909154/
https://doi.org/10.3390/s21144692
https://doi.org/10.3390/en15155317
https://doi.org/10.1016/j.heliyon.2022.e12724
https://doi.org/10.1016/j.heliyon.2022.e12724
https://doi.org/10.1016/j.heliyon.2022.e12724
https://doi.org/10.3390/en12040644

52 BIBLIOGRAPHY

[8] H. Lara and E. Inga, “Efficient Strategies for Scalable Electrical Distribution Network
Planning Considering Geopositioning”, Electronics (Switzerland), vol. 11, no. 19, pp. 1–
15, 2022, issn: 20799292. doi: 10.3390/electronics11193096.

[9] F. Pabón, E. Inga, and M. Campaña, “Planning Underground Power Distribution
Networks to Minimize Negative Visual Impact in Resilient Smart Cities”, Electricity,
vol. 3, no. 3, pp. 463–479, 2022. doi: 10.3390/electricity3030024.

[10] M. Campaña, E. Inga, and J. Cárdenas, “Optimal sizing of electric vehicle charging
stations considering urban traffic flow for smart cities”, Energies, vol. 14, no. 16, pp. 1–
16, 2021, issn: 19961073. doi: 10.3390/en14164933.

[11] L. Andrei and O. Luca, “Open tools for analysis of elements related to public transport
performance. Case study: Tram network in Bucharest”, Applied Sciences (Switzerland),
vol. 11, no. 21, 2021, issn: 20763417. doi: 10.3390/app112110346.

[12] C. Ludwig, R. Hecht, S. Lautenbach, M. Schorcht, and A. Zipf, “Mapping public urban
green spaces based on openstreetmap and sentinel-2 imagery using belief functions”,
ISPRS International Journal of Geo-Information, vol. 10, no. 4, 2021, issn: 22209964.
doi: 10.3390/ijgi10040251.

[13] C. Klonner, M. Hartmann, R. Dischl, et al., “The sketch map tool facilitates the
assessment of openstreetmap data for participatory mapping”, ISPRS International
Journal of Geo-Information, vol. 10, no. 3, 2021, issn: 22209964. doi: 10.3390/
ijgi10030130.

[14] R. Gaugl, S. Wogrin, U. Bachhiesl, and L. Frauenlob, “GridTool: An open-source tool
to convert electricity grid data”, SoftwareX, vol. 21, p. 101 314, 2023, issn: 23527110.
doi: 10.1016/j.softx.2023.101314. [Online]. Available: https://doi.org/10.
1016/j.softx.2023.101314.

[15] A. N. Wu and F. Biljecki, “InstantCITY: Synthesising morphologically accurate geospa-
tial data for urban form analysis, transfer, and quality control”, ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 195, no. November 2022, pp. 90–104, 2023,
issn: 09242716. doi: 10 .1016 /j .isprsjprs. 2022. 11. 005. [Online]. Available:
https://doi.org/10.1016/j.isprsjprs.2022.11.005.

[16] J. Kim, S. Rapuri, E. Chuluunbaatar, et al., “Developing and evaluating transit-
based healthcare accessibility in a low- and middle-income country: A case study in
Ulaanbaatar, Mongolia”, Habitat International, vol. 131, no. December 2022, 2023,
issn: 01973975. doi: 10.1016/j.habitatint.2022.102729.

[17] M. I. Kersapati, “Land use-based stakeholders mapping for natural heritage preservation
– Case study: Hampstead Heath Ponds, London”, Urban Forestry and Urban Greening,
vol. 80, p. 127 821, 2023, issn: 16108167. doi: 10.1016/j.ufug.2022.127821. [Online].
Available: https://doi.org/10.1016/j.ufug.2022.127821.

[18] L. Amaya, “Optimal Design of Electrical Distribution Networks Using Optimization
Models . Diseño Óptimo de Redes Eléctricas de Distribución Mediante Modelos de
Optimización .”, Ingeniería y Competitividad, 2023. doi: 10.25100/iyc.v25i1.11572.

[19] S. Zourlidou, M. Sester, and S. Hu, “Recognition of Intersection Traffic Regulations
from Crowdsourced Data”, ISPRS International Journal of Geo-Information, vol. 12,
no. 1, p. 4, 2022, issn: 22209964. doi: 10.3390/ijgi12010004.

https://doi.org/10.3390/electronics11193096
https://doi.org/10.3390/electricity3030024
https://doi.org/10.3390/en14164933
https://doi.org/10.3390/app112110346
https://doi.org/10.3390/ijgi10040251
https://doi.org/10.3390/ijgi10030130
https://doi.org/10.3390/ijgi10030130
https://doi.org/10.1016/j.softx.2023.101314
https://doi.org/10.1016/j.softx.2023.101314
https://doi.org/10.1016/j.softx.2023.101314
https://doi.org/10.1016/j.isprsjprs.2022.11.005
https://doi.org/10.1016/j.isprsjprs.2022.11.005
https://doi.org/10.1016/j.habitatint.2022.102729
https://doi.org/10.1016/j.ufug.2022.127821
https://doi.org/10.1016/j.ufug.2022.127821
https://doi.org/10.25100/iyc.v25i1.11572
https://doi.org/10.3390/ijgi12010004

BIBLIOGRAPHY 53

[20] J. Hellekes, A. Kehlbacher, M. L. Díaz, et al., “Parking space inventory from above:
Detection on aerial images and estimation for unobserved regions”, IET Intelligent
Transport Systems, no. November, pp. 1–13, 2022, issn: 17519578. doi: 10.1049/itr2.
12322.

[21] C. M. Albrecht, R. Zhang, X. Cui, et al., “Change Detection from Remote Sensing to
Guide OpenStreetMap Labeling”, ISPRS International Journal of Geo-Information,
vol. 9, no. 7, 2020, issn: 22209964. doi: 10.3390/ijgi9070427.

[22] M. Hacar, “Analyzing the Behaviors of OpenStreetMap Volunteers in Mapping Building
Polygons Using a Machine Learning Approach”, ISPRS International Journal of Geo-
Information, vol. 11, no. 1, 2022, issn: 22209964. doi: 10.3390/ijgi11010070.

[23] H. Song, L. Yang, and J. Jung, “Self-Filtered Learning for Semantic Segmentation of
Buildings in Remote Sensing Imagery With Noisy Labels”, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 1113–1129,
2022, issn: 21511535. doi: 10.1109/JSTARS.2022.3230625.

[24] K. Milleville, S. Verstockt, and N. Van de Weghe, “Automatic Georeferencing of
Topographic Raster Maps”, ISPRS International Journal of Geo-Information, vol. 11,
no. 7, pp. 1–17, 2022, issn: 22209964. doi: 10.3390/ijgi11070387.

[25] J. Kim and E. Atkins, “Airspace Geofencing and Flight Planning for Low-Altitude,
Urban, Small Unmanned Aircraft Systems”, Applied Sciences (Switzerland), vol. 12,
no. 2, 2022, issn: 20763417. doi: 10.3390/app12020576.

https://doi.org/10.1049/itr2.12322
https://doi.org/10.1049/itr2.12322
https://doi.org/10.3390/ijgi9070427
https://doi.org/10.3390/ijgi11010070
https://doi.org/10.1109/JSTARS.2022.3230625
https://doi.org/10.3390/ijgi11070387
https://doi.org/10.3390/app12020576

