

UNIVERSIDAD POLITÉCNICA SALESIANA

SEDE: GUAYAQUIL

CARRERA DE: INGENIERÍA INDUSTRIAL

PROPUESTA DE DISEÑO DE UN SISTEMA DE EXTRACCIÓN DE HUMOS
METÁLICOS Y GASES PARA UN TALLER DE SOLDADURA DE UNA EMPRESA
CAMARONERA EN GUAYAQUIL.

Trabajo de titulación previo a la obtención del

Título de: Ingeniero Industrial

AUTORES:

Jesús David Quintero Hernández

Alexander Lautaro Fares Lozano

TUTOR: Ing. Armando Fabrizzio Lopez Vargas Ph.D

Guayaquil, Ecuador

2023

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓN

Nosotros, Alexander Lautaro Fares Lozano con documento de identificación N° 0925380651 y Jesús David Quintero Hernández con documento de identificación N° 0962342531; manifestamos que:

Somos los autores y responsables del presente trabajo; y, autorizamos a que sin fines de lucro la Universidad Politécnica Salesiana pueda usar, difundir, reproducir o publicar demanera total o parcial el presente trabajo de titulación.

Guayaquil, 21 de agosto del año 2023

Atentamente,

Alexander Lautaro Fares Lozano

0925380651

Jesús David Quintero Hernández

0962342531

CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE

TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA

Nosotros, Alexander Lautaro Fares Lozano con documento de identificación No.

0925380651 y Jesús David Quintero Hernández con documento de identificación No.

0962342531, expresamos nuestra voluntad y por medio del presente documento

cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos

patrimoniales en virtud de que somos autores del Proyecto técnico: "Propuesta de

diseño de un sistema de extracción de humos metálicos y gases para un taller de

soldadura de una empresa camaronera en Guayaquil", el cual ha sido desarrollado

para optar por el título de: Ingeniero Industrial, en la Universidad Politécnica

Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos

cedidos anteriormente.

En concordancia con lo manifestado, suscribimos este documento en el momento

que hacemos la entrega del trabajo final en formato digital a la Biblioteca de la

Universidad Politécnica Salesiana.

Guayaquil, 21 de agosto del año 2023

Atentamente,

Alexander Lautaro Fares Lozano 0925380651 Jesús David Quintero Hernández

CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN

Yo, Armando Fabrizzio Lopez Vargas con documento de identificación Nº 0912034790 docente de la Universidad Universidad Politécnica Salesiana, declaro quebajo mi tutoría fue desarrollado el trabajo de titulación "Propuesta de diseño de un sistema de extracción de humos metálicos y gases para un taller de soldadura de una empresa camaronera en Guayaquil", realizado por Alexander Lautaro Fares Lozano con documento de identificación Nº 0925380651 y por Jesús David Quintero Hernández con documentode identificación Nº 0962342531, obteniendo como resultado final el trabajo detitulación bajo la opción proyecto técnico que cumple con todos los requisitos determinados por la Universidad Politécnica Salesiana.

Guayaquil, 21 de agosto del año 2023

Atentamente,

Armando Fabrizzio Lopez Vargas

0912034790

DEDICATORIA

El presente proyecto va dedicado principalmente a Dios, feliz por las oportunidades que me ha brindado en la vida, por haberme dado fortaleza y dedicación en mis cinco años de carrera, a mis abuelos que son parte fundamental de toda mi educación universitaria, proporcionando siempre el apoyo económico y emocional desde el principio de mis estudios, inculcándome buenos valores desde temprana edad hasta ahora en la actualidad, a mis docentes que han sido muy importantes a lo largo de mi preparación académica en mi crecimiento como profesional.

Alexander Lautaro Fares Lozano

Le dedico este proyecto a mi familia, principalmente a mis padres por todo el apoyo brindado, por estar presentes tanto en los buenos momentos como en los no tan buenos, se lo dedico a Dios por llenarme de abundantes bendiciones, guiarme en su camino, por haberme dado las ganas y el entusiasmo durante estos cinco años de carrera universitaria, también, a mis compañeros de estudio que juntos emprendimos este camino tan maravilloso y formar parte de un aprendizaje continuo juntos. Por último, a todos los docentes que me inculcaron y me permitieron adquirir herramientas para desarrollarme en un futuro como profesional.

Jesús David Quintero Hernández

AGRADECIMIENTO

Agradecido principalmente con Dios por haberme brindado una vida sana, sabiduría e inteligencia, gracias a ello he podido recorrer mi camino universitario superando cada obstáculo que se me ha presentado y también por acaecer una crianza junto a mis abuelos, gracias a mi abuela y abuelo he podido ser la persona que soy, responsable, honesto, humilde y cumplidor, a mis docentes por los conocimientos brindados, sus experiencias en la vida y consejos adjudicados.

Alexander Lautaro Fares Lozano

Agradezco principalmente a Dios por ser mi guía y acompañarme durante toda mi vida, sobre todo, en estos cinco años de carrera, le agradezco por la bendición de tener día tras días vida y salud, Le agradezco a mis padres por su formación en valores, por siempre estar presentes por ser los pilares de mi vida, gracias por sus consejos y por siempre darme la mano, a todos los docentes por transmitirme todo el conocimiento que me permite estar aquí, por último, a mis compañeros, que vivimos tan gratos momentos que llevaré y recordaré para toda mi vida, empezamos siendo solo compañeros de clase y hoy puedo decir, que me llevo unos muy grandes amigos.

Jesús David Quintero Hernández

VII

RESUMEN

En este proyecto técnico se analiza y diseña un proceso para la extracción de gases y

humos metálicos que son producidos por la soldadura en un taller, el cual no cuenta con ningún

tipo de extracción, tampoco los trabajadores cuentan con la debida protección respiratoria y

esto puede desencadenar una cantidad de enfermedades respiratorias perjudiciales para el

trabajador.

Se propone un diseño de extracción que, bajo un previo análisis, se eligen los diferentes

equipos, materiales y accesorios que conforman el sistema de extracción necesarios, estos

componentes se escogen a través de diferentes cálculos como caudal, velocidad de transporte,

perdidas de carga en tramos, accesorios, para así, obtener valores necesarios para la selección

de un buen extractor con su respectivo motor. Por consiguiente, lo desarrollado en este

proyecto, responde a una problemática y brinda solución de manera efectiva cumpliendo con

los parámetros de calidad y seguridad.

EL diseño del sistema se basa en tablas y cálculos de ventilación, apoyado con el

programa de diseño AutoCAD, que permite crear planos del sistema y visualizar como quedara

el sistema de ventilación

Palabras claves: Humos, gases, soldadura, sistema de extracción

VIII

ABSTRACT

This technical project analyzes and designs a process for the extraction of metallic gases

and fumes produced by welding in a workshop that lacks any kind of extraction. Additionally,

the workers do not have proper respiratory protection, which can lead to various harmful

respiratory diseases for the workers

A extraction design is proposed that, following a preliminary analysis, selects the

different equipment, materials, and accessories required for the extraction system. These

components are chosen through various calculations such as flow rate, transport velocity,

pressure losses in sections, accessories, in order to obtain necessary values for the selection of

an effective extractor with its respective motor. Consequently, the developments in this project

address an issue and provide an effective solution, complying with quality and safety

parameters.

The design of the system is based on ventilation tables and calculations, supported by

the AutoCAD design program, which allows for the creation of system blueprints and

visualizing how the ventilation system will look.

Key words: Fumes, gases, welding, extraction system"

INDICE GENERAL

UNIVE	RSIDAD POLITÉCNICA SALESIANA	I
CERTIF	FICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TI	TULACIÓN II
	FICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE ACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA	
CERTIF	FICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN	IV
DEDICA	ATORIA	V
	DECIMIENTO	
	EN	
	ACT	
INDICE	GENERAL	IX
INDICE	DE FIGURAS	XI
INDICE	DE TABLAS	XIII
	S	
)	
	RIO DE TÉRMINOS	
INTRO	DUCCIÓN	1
CAPITU	JLO I	2
1 PR	OBLEMÁTICA	2
1.1	DESCRIPCIÓN DEL PROBLEMA	2
1.2	JUSTIFICACIÓN	
1.3	GRUPO OBJETIVO BENEFICIARIO	
1.4	OBJETIVO GENERAL	
1.5	OBJETIVOS ESPECÍFICOS	
CAPITI	JLO II	5
	ARCO TEÓRICO	
2.1	CONTAMINACIÓN DEL AIRE	
2.2	HUMOS METÁLICOS	
2.3	GASES	
2.4	SOLDADURA	
2.4.1	PROCESOS DE SOLDADURA ELECTRODOS Y SU COMPOSICIÓN	
2.5	ELECTRODOS Y SU COMPOSICION ELECTRODOS DE TUNGSTENO	
2.5.1 2.5.2	ELECTRODOS DE TUNGSTENO	
2.5.2	ELECTRODOS DE GRAFITO ELECTRODOS DE ACERO INOXIDABLE	
∠.J.4	LLLC I NODOS DE FLATA	1 0

2.5.5	ELECTRODOS DE COBRE	17
2.5.6	ELECTRODOS DE ALUMINIO	17
2.6	PROBLEMAS RESPIRATORIOS POR SOLDADURA	
2.7	VENTILACIÓN INDUSTRIAL	
2.7.1	TIPOS DE VENTILACIÓN INDUSTRIAL	
2.8	SISTEMA DE EXTRACCIÓN DE HUMO	
2.8.1	COMPONENTES	
CAPITU	LO III	
3. MA	RCO METODOLÓGICO	30
3.1	MÉTODO APLICADO	30
3.2	IDENTIFICACIÓN DE LAS FUENTES DE CONTAMINACIÓN	
3.3	EVALUACIÓN DE ÁREA	
3.3.1		
3.3.2		
3.4	SELECCIÓN DE ELEMENTOS	
3.4.1	,	
3.4.2	SISTEMAS DE CONDUCTOS	40
3.4.3	_	
3.4.4	PÉRDIDA DE CARGA DE CODOS	49
3.4.5		
3.4.6		
3.5	SELECCIÓN DE VENTILADOR	
3.6	SELECCIÓN DEL MOTOR	55
CAPITU	LO IV	56
4. RES	SULTADOS	56
4.1	RESULTADOS DEL ANÁLISIS DE SELECCIÓN DEL TIPO DE VENTILACIÓN	
APLIC	ADA	56
4.2	RESULTADOS DEL DISEÑO Y DIMENSIÓN DEL SISTEMA	56
4.3	RESULTADOS DE LA SELECCIÓN DE COMPONENTES Y ACCESORIOS DEL	
SISTE	MA	58
4.3.1	SISTEMAS DE CAMPANA	58
4.3.2		
4.3.3		
4.3.4		
4.3.5		
4.4	ANÁLISIS ECONÓMICO	64
CONCL	USIONES	65
RECOM	ENDACIONES	67
REFERE	ENCIAS BIBLIOGRÁFICAS	68
ANEXO	S	71

INDICE DE FIGURAS

Figura 1 Soldadura por arco eléctrico	9
Figura 2 Soldadura por resistencia	10
Figura 3 Soldadura por laser	11
Figura 4 Soldadura oxiacetilénica	11
Figura 5 Soldadura con arco de tungsteno y gas	12
Figura 6 Soldadura por arco metálico y gas	13
Figura 7 Electrodo de tungsteno	14
Figura 8 Electrodos de grafio	15
Figura 9 Electrodos de acero inoxidable	16
Figura 10 Electrodos de plata	16
Figura 11 Electrodos de cobre	
Figura 12 Electrodos de aluminio	18
Figura 13 Ventilación natural	20
Figura 14 Ventilación por dilución	21
Figura 15 Ventilación localizada	21
Figura 16 Ventilación mecánica.	22
Figura 17 Componentes de un sistema de ventilación	22
Figura 18 Ductos	25
Figura 19 Ventilador axial	26
Figura 20 Ventilador centrífugo.	27
Figura 21 Motor	28
Figura 22 Acople de correa y polea	29
Figura 23 Fuentes de contaminación	32
Figura 24 Vista superior de taller de mantenimiento	33
Figura 25 Vista 3D estación de trabajo	34
Figura 26 Renovaciones de aire por hora	35
Figura 27 Obtención de caudal según tipo de campana	37
Figura 28 Pérdidas en la entrada de la campana	40
Figura 29 Velocidad de transporte según contaminante	43
Figura 30 Vista 3D sistema de conductos.	45
Figura 31 Presión dinámica de aire en función de su velocidad	47
Figura 32 Coeficiente "n" en campanas	48
Figura 33 Coeficiente "n" en codos	49
Figura 34 Vista 3D sistema de conductos.	50
Figura 35 Coeficiente "n" sombrete	
Figura 36 Ficha técnica de ventiladores centrífugo	53
Figura 37 Curvas características ventilador centrífugo	54
Figura 38 Ficha técnica de motores	
Figura 39 Dimensión del taller de mantenimiento	57

Figura 40 Vista 3D estación de trabajo	57
Figura 41 Dimensión del sistema de conductos	58
Figura 42 Vista frontal y superior de campanas	59
Figura 43 Medidas de ventilador	62
Figura 44 Dimensiones de motor	63
Figura 45 Medidas de motor	63

INDICE DE TABLAS

Tabla 1 Tipos de electrodo de tungsteno	14
Tabla 2 Clasificación de electrodos	18
Tabla 3 Velocidades de captación según su condición	37
Tabla 4 Caudal de captación total en la campana	38
Tabla 5 Espesor según material	44
Tabla 6 Pérdida de carga por tramos	46
Tabla 7 Pérdida de carga en codos	49
Tabla 8 Coeficiente "n" en bifurcaciones	50
Tabla 9 Pérdida en campanas	51
Tabla 10 Pérdida de cargas totales	52
Tabla 11 Valores de caudal y pérdida de carga del sistema	53
Tabla 12 Selección de ventilador centrífugo	54
Tabla 13 Características de ventilador centrífugo	55
Tabla 14 Dimensión de campanas	59
Tabla 15 Características del sistema de conductos	60
Tabla 16 Características de codos y bifurcaciones	61
Tabla 17 Características de motor	62
Tabla 18 Precio de equipos	64
Tabla 19 Costo materiales	64
Tabla 20 Costo mano de obra	64

ANEXOS

Anexo 1	1 Pérdida	de carga p	or rozamiento	de aire.					71
---------	-----------	------------	---------------	----------	--	--	--	--	----

TÍTULO

Propuesta el diseño de un sistema extracción de humos metálicos y gases para un taller de soldadura de una empresa camaronera en Guayaquil

GLOSARIO DE TÉRMINOS

Polvos: las partículas esféricas con diversos tamaños son lo que se conocen como polvos, las cuales se categorizan sin relacionar la fuerza electrostáticas o las generadas la influencia de las corrientes de aire, en ambientes cerrados estas aparecen sin importar el efecto de las fuerzas o corrientes de aire (Mayorga-Chávez, 2022).

Humos: las partículas sólidas que quedan suspendidas en el aire durante un proceso incompleto que generan un proceso de combustión de materiales derivados del carbón o el petróleo son lo que se conoce como humos (Mayorga-Chávez, 2022).

Humos metálicos: las partículas de tipo esferoidal que se generan durante los procedimientos de condensación del estado gaseoso, producto de la fusión, sublimación o volatilización del metal. En su mayoría aparecen en forma de óxido, puesto que son una reacción química del vapor caliente con el aire (Mayorga-Chávez, 2022).

Gases: los fluidos de tipo amorfos que suelen expandirse y ocupar el cien por ciento del espacio del taller y se mantienen en la atmósfera con presión y temperatura ambiente son considerados gases, por su composición en partículas son de tamaño molecular por lo que se mueven y se transfieren a la masa (Mayorga-Chávez, 2022).

Efectos a la salud de los trabajadores: las consecuencias o afecciones a la salud de los trabajadores del taller de soldadura pueden aparecer como obstrucción de las vías

respiratorias, asfixia y disnea, esto como consecuencia de la concentración de polvos, humos y otras partículas dentro del espacio de trabajo (Zapata Álvarez et al., 2021).

El sistema de extracción: son sistemas que poseen un ducto central medular que se unen a otro donde se encuentran las salidas de gases y el motor eléctrico posicionado en la parte superior. Los dispositivos responsables de la extracción se encuentran posicionados dentro de la parte inferior (Muñoz-Farfán, 2021).

Impacto ambiental: son las alteraciones, modificaciones o cambios bruscos en el ambiente generados por los gases, humos y polvos productos del proceso de la acción o actividad humana (Merlin-Bedoya, 2020).

Defecto: son los efectos que limitan o reducen la capacidad de producción durante el proceso de trabajo planificado por la organización (Merlin-Bedoya, 2020).

Criticidad: son los criterios que permiten identificar las acciones que requieren atención de carácter urgente dentro del contexto laboral (Merlin-Bedoya, 2020).

EPOC: Enfermedad Pulmonar Obstructiva Crónica. El EPOC es una enfermedad pulmonar crónica que se caracteriza por la dificultad para respirar debido a la obstrucción del flujo de aire en los pulmones. Esta enfermedad generalmente es causada por el tabaquismo, aunque también puede ser provocada por la exposición a sustancias irritantes en el ambiente.

SAW: Soldadura por arco sumergido es un proceso de soldadura por arco en el cual el arco eléctrico se produce entre un electrodo de metal fundido y el material base que se va a soldar. A diferencia de otros procesos de soldadura por arco, en la soldadura SAW, el arco eléctrico está sumergido en una capa de polvo o granulado de flujo que protege el arco y el cordón de soldadura de la contaminación atmosferica

INTRODUCCIÓN

Un extractor de humos para soldadura es un dispositivo diseñado para eliminar los humos y gases producidos durante la soldadura. Durante la soldadura, se generan humos y gases que pueden ser perjudiciales para la salud si se inhalan en grandes cantidades. Además, estos humos pueden afectar la calidad del aire en el lugar de trabajo y pueden ser peligrosos si se acumulan en grandes cantidades.

El extractor de humos para soldadura funciona mediante la aspiración de los humos y gases de soldadura en una boquilla o campana de extracción. Los humos son transportados a través de un sistema de tuberías y filtros, donde son tratados y purificados antes de ser liberados al ambiente. El extractor también puede incluir un sistema de ventilación que ayuda a mantener el aire fresco y limpio en el lugar de trabajo.

Los extractores de humos para soldadura son una medida de seguridad importante en cualquier entorno de soldadura, ya sea en talleres profesionales o en trabajos en casa. Son una forma efectiva de reducir la exposición a los humos de soldadura y mejorar la calidad del aire en el lugar de trabajo. Además, pueden ser una inversión rentable a largo plazo, ya que pueden ayudar a prevenir enfermedades relacionadas con la exposición a los humos de soldadura y reducir el costo de mantenimiento de las instalaciones.

CAPITULO I

1 PROBLEMÁTICA

1.1 DESCRIPCIÓN DEL PROBLEMA

Dentro del contexto ecuatoriano las empresas camaroneras se han convertido recientemente en un eje de desarrollo económico del país. No obstante, este desarrollo ha traído consigo una serie de problemas asociados al crecimiento de un rubro empresarial que genera un impacto medioambiental de proporciones considerables (Rodríguez Crespo et al., 2016). Ahora bien, al realizar un acercamiento a la dinámica laboral que se implementa dentro del contexto de estas empresas se pueden observar que existen otros factores de riesgos asociados a la necesidad de elevar los niveles de productividad dentro de este rubro económico nacional.

Por ser una actividad donde se está en contacto directo con el agua y requiere la utilización de elementos metalmecánicos para lograr mantener los niveles de producción en niveles óptimos, se hace necesario que la empresa tenga dentro de sus instalaciones un taller de soldadura para poder mantener los implementos de necesarios para la producción de forma adecuada. La soldadura entonces se presenta como un factor de riesgo considerable dentro del proceso productivo de las empresas de este rubro, puesto que en el proceso de soldadura el personal se encuentra expuesto a materiales químicos peligrosos que ponen en riesgo la salud de los operarios de las maquinarias (Martínez Vargas, 2022).

Este tipo de trabajos se desarrollan en talleres o espacios destinados por el contratante para el desarrollo de la actividad, en ocasiones estos espacios no cumplen con las normas de seguridad mínima en relación a la ventilación y distribución de los espacios adecuados para evitar exponer a los operarios a los efectos de la energía no ionizante que emanan del arco

eléctrico el cual representa uno de los principales factores de riesgo relacionados al humo de la soldadura (Martínez Vargas, 2022).

Si los trabajadores no cumplen con las normas de seguridad necesarias para poder protegerse durante el proceso de soldadura quedan expuestos a estos gases que son altamente tóxicos que generan enfermedades considerables por la exposición a estos humos de origen metálico. El principal error en este punto es que muchas personas consideran que al ser pequeñas las cantidades de emanación de humos durante la soldadura esto no representa un riesgo para la salud de los operarios (López Gómez & Pachacama Pachacama, 2022). En este sentido, se hace necesario realizar diferente un abordaje científico técnico que permita identificar cuáles son los mecanismos que se pueden implementar para garantizar un espacio seguro para todos los trabajadores que hacen vida dentro de un taller de soldadura en el contexto de una empresa camaronera.

Dentro del contexto Industrial los extractores han sido diseñados para permitir extraer el humo concentrado en espacios cerrados cómo es el caso del taller de soldadura de la camaronera analizada. Por sus características técnicas estos dispositivos son ideales para atender casos donde se tienen humos de baja presión como lo son aires de combustión, enfriamiento generado por limpieza, recolección de polvos y control de humos, Por lo que se considera necesario diseñar un extractor para el taller de soldadura de una empresa camaronera de Guayaquil

1.2 JUSTIFICACIÓN

La presente investigación se considera pertinente puesto que permite solventar una situación problemática real dentro del contexto de una empresa camaronera asentada en Guayaquil. Donde en la actualidad, no se cuenta con un sistema de extracción de humos. El

diseño de este extractor responde a una revisión científico-técnica que permite demostrar las habilidades y destrezas desarrolladas durante la formación del profesional de seguridad industrial. El desarrollo de la investigación parte de una revisión de fuentes en diferentes repositorios y revistas científicas, que permitan identificar los aportes teóricos más significativos del estudio propuesta, para posteriormente desarrollar el diseño del extractor el cual responde a las especificaciones técnicas necesarias para el taller de soldadura de una empresa camaronera en Guayaquil.

1.3 GRUPO OBJETIVO BENEFICIARIO

Se prevé diseñar un sistema de extracción humo para soldadura en un taller de mantenimiento en una empresa camaronera en la ciudad de Guayaquil, con el fin de conocer a como esta mejora las condiciones laborales de los empleados del taller soldadura, de modo que cumpla a cabalidad con las condiciones de salud e higiene laboral. Esto permitirá identificar cuáles son los componentes que aportan mayor beneficio en el proceso de extracción de los humos dentro del taller.

1.4 OBJETIVO GENERAL

Proponer el diseño de un sistema de extracción de humos metálicos y gases para un taller de soldadura en una empresa camaronera en Guayaquil.

1.5 OBJETIVOS ESPECÍFICOS

- Analizar los diferentes tipos de ventilación industrial existente.
- Diseñar el sistema de extracción para humos metálicos y gases.
- Seleccionar los equipos y componentes del sistema de extracción del taller de soldadura.
- Realizar un análisis económico del proyecto.

CAPITULO II

2. MARCO TEÓRICO

2.1 CONTAMINACIÓN DEL AIRE

La soldadura es una actividad industrial que puede generar una gran cantidad de humos y gases tóxicos que pueden contaminar el aire y ser perjudiciales para la salud de los trabajadores y para el medio ambiente.

Los humos de soldadura contienen partículas finas y metales pesados, como plomo, cadmio, cromo y níquel, que pueden ser inhalados por los trabajadores y causar problemas respiratorios y enfermedades a largo plazo, como cáncer de pulmón y enfermedad pulmonar obstructiva crónica (EPOC).

Para prevenir la contaminación del aire por humos de soldadura, se pueden tomar medidas de control y prevención, como utilizar sistemas de ventilación adecuados, asegurarse de que los trabajadores utilicen equipo de protección personal, como mascarillas y gafas de seguridad, y limitar la exposición a los humos de soldadura.

También se pueden utilizar técnicas de soldadura más seguras, como la soldadura con gas inerte de tungsteno (TIG) o la soldadura por arco sumergido (SAW), que generan menos humos y gases tóxicos que otros métodos de soldadura.

Es importante que las empresas y los trabajadores tomen medidas para prevenir la contaminación del aire por humos de soldadura y proteger la salud de los trabajadores y el medio ambiente.

2.2 HUMOS METÁLICOS

Los humos metálicos se refieren a las partículas finas de metales que se generan durante procesos industriales como la soldadura, el corte y el pulido de metales. Estos humos pueden ser inhalados por los trabajadores y causar problemas de salud a largo plazo, como enfermedades respiratorias y cáncer de pulmón.

Los humos metálicos pueden contener una variedad de metales, como aluminio, cobre, níquel, plomo y cromo, dependiendo del tipo de trabajo que se esté realizando. La exposición a estos humos puede variar dependiendo de la duración e intensidad de la exposición, la cantidad de humos generados y la ventilación del lugar de trabajo.

Para prevenir la exposición a los humos metálicos, se pueden tomar medidas de control y prevención, como utilizar sistemas de ventilación adecuados, asegurarse de que los trabajadores utilicen equipo de protección personal, como mascarillas y gafas de seguridad, y limitar la exposición a los humos metálicos.

También se pueden utilizar técnicas de trabajo más seguras, como la automatización de procesos, la utilización de dispositivos de corte y pulido con sistemas de extracción de humos y el uso de materiales de relleno que generen menos humos.

Es importante que las empresas y los trabajadores tomen medidas para prevenir la exposición a los humos metálicos y proteger la salud de los trabajadores y el medio ambiente.

2.3 GASES

Los gases de soldadura son gases utilizados para proteger la zona de fusión durante el proceso de soldadura, con el fin de prevenir la oxidación y la contaminación de las superficies metálicas que se están uniendo. Los gases de soldadura más comunes son el argón, el helio, el dióxido de carbono y el nitrógeno.

El argón se utiliza comúnmente en la soldadura TIG (Tungsten Inert Gas) debido a su capacidad para crear una atmósfera inerte y estable alrededor del arco de soldadura, lo que ayuda a prevenir la oxidación y la porosidad en la soldadura.

El helio se utiliza a menudo en la soldadura por arco de gas (GMAW) y en la soldadura por arco sumergido (SAW) debido a su alta conductividad térmica y capacidad de penetración profunda en el metal.

El dióxido de carbono se utiliza a menudo en la soldadura por arco de metal protegido (MIG) debido a su capacidad para proporcionar una atmósfera protectora constante y una mayor velocidad de soldadura.

El nitrógeno se utiliza comúnmente en la soldadura de acero inoxidable y aleaciones de aluminio debido a su capacidad para prevenir la oxidación y mejorar la resistencia a la corrosión.

2.4 SOLDADURA

La soldadura es un proceso de unión de dos o más piezas de metal o termoplásticos mediante la aplicación de calor y/o presión para fundir y unir los materiales. La soldadura se

utiliza en una amplia variedad de aplicaciones industriales, como la fabricación de automóviles, la construcción de puentes, la producción de barcos y la fabricación de maquinaria.

Hay varios tipos de soldadura, como la soldadura por arco eléctrico, la soldadura por gas, la soldadura por láser, la soldadura por resistencia y la soldadura por fricción. Cada tipo de soldadura tiene sus propias ventajas y desventajas, y se utiliza en diferentes aplicaciones según las necesidades específicas.

La soldadura es un proceso crítico en la fabricación de piezas y estructuras metálicas, y es importante que se realice correctamente para garantizar la calidad y la seguridad de los productos. Los soldadores deben seguir procedimientos rigurosos de seguridad y cumplir con las normas y regulaciones aplicables para garantizar la calidad de la soldadura y proteger la salud y la seguridad de los trabajadores.

2.4.1 PROCESOS DE SOLDADURA

La soldadura tiene un precedente mucho más antiguo de lo que se cree, hace miles de años En la época de bronce se pueden observar pruebas acerca de la existencia de piezas metálicas unidas a través de un proceso de soldadura. A lo largo del siglo XX, se desarrolla el proceso de soldadura por arco eléctrico, en la culminación de los años treinta, existe un avance que permite la invención la soldadura por arco eléctrico, pero en este caso con, electrodo de tungsteno y el mismo proceso con alambre consumible, estos procesos nos permiten realizar uniones en aceros inoxidables, aluminio, cobre y magnesio.

2.4.1.1 SOLDADURA POR ARCO ELÉTRICO (SMAW)

Este proceso involucra el uso de un arco eléctrico para fundir el metal. El arco eléctrico se crea a través del aire ionizado originado por el voltaje, el arco eléctrico es aquello que se forma entre el electrodo y la pieza a soldar. La corriente que se ejerce en este proceso puede variar entre 10 y 300 amperes y la diferencia de potencia entre 25 y 50 voltios. La Sociedad Americana de soldadura aws (American Welding Society) Denomina la soldadura por arco eléctrico como SMAW (Shielded M,etal Arc Welding) La soldadura por arco metálico protegido con electrodo revestido y determina este proceso como la unión de dos partes metálicas mediante un material de aporte.

El técnico especializado en procesos industriales requiere conocimientos en electricidad para entender el funcionamiento del equipo utilizado en la soldadura con arco eléctrico. Es esencial tener precaución con la intensidad de corriente empleada, así como con las radiaciones emitidas, el voltaje y los efectos de la corriente al establecer el arco. En este contexto, la corriente eléctrica se convierte en energía térmica con el objetivo de lograr la unión deseada.

Figura 1 Soldadura por arco eléctrico

Fuente: MasterWeld

2.4.1.2 SOLDADURA POR RESISTENCIA

Soldadura por resistencia: Este proceso involucra el uso de dos electrodos que aplican una corriente eléctrica a la pieza de metal para fundir y unir las piezas. Su base consta en la resistencia que ofrecen dos materiales al flujo de la corriente eléctrica. Cuando se produce el calentamiento por la fricción los bordes de las piezas son transformados a un estado pastoso para posterior a ello, aplicarle una fuerza extrema, esto permite que, las moléculas se mezclen entre ellas que da como resultado una unión homogénea y resistente.

Figura 2 Soldadura por resistencia

Fuente: Fronius

2.4.1.3 SOLDADURA LÁSER

Es un método de unión por fusión, esto produce la unión de materiales debido al calor producido por un haz concentrado de luz, éste tipo de método es usado por múltiples aplicaciones como lo son, recipientes, sector automotriz, soldadura continua para tubos entre otros.

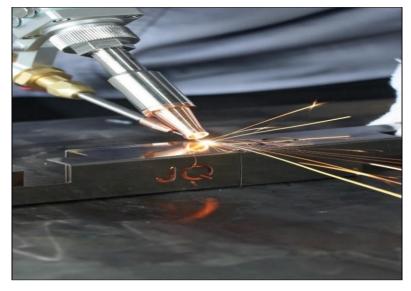


Figura 3 Soldadura por laser

Fuente: JQ Laser

2.4.1.4 SOLDADURA OXIACETILÉNICA

Es un proceso de unión en el cual la mezcla de oxígeno y acetileno da como resultado una flama a una temperatura de, aproximadamente, 3100°C, lo que permite la fundición de las piezas sin necesidad de aplicar una fuerza de presión mecánica.

Figura 4 Soldadura oxiacetilénica

Fuente: Ogrados

2.4.1.5 SOLDADURA CON ARCO DE TUNGSTENO Y GAS (GTAW)

Similar a los otros procesos que involucra el arco eléctrico, circula la corriente entre el electrodo no consumible en este caso de tungsteno y el metal base. La intensidad de corriente viene dada por la protección de un gas inerte, para una protección adecuada se toma en cuenta la distancia entre la tobera de donde proviene el gas inerte y la pieza a soldar, Una distancia muy corta produce salpicadura y una distancia muy lejana no protege el gas inerte de los contaminantes del aire.

Figura 5 Soldadura con arco de tungsteno y gas

Fuente: Fronius

Cada proceso de soldadura tiene sus propias ventajas y desventajas, y se utiliza en función del tipo de metal, el tamaño y la forma de la pieza, y las condiciones específicas de la unión que se está realizando.

2.4.1.6 SOLDADURA POR ARCO METÁLICO Y GAS (GTAW)

Es un proceso en donde la fusión se lleva a cabo por entre un electrodo consumible y el material a soldar, el recubrimiento del arco se obtiene por un gas que puede ser inerte o activo facilitado de forma externa. El sistema de este proceso es de forma automática, el electrodo o rollo de alambre se impulsa y alimenta a la boquilla hacia la zona a soldar.

El material utilizado para añadir o aportar al metal base en el proceso de soldadura es un rollo de alambre de diferentes tipos, como acero al carbono, acero inoxidable, aluminio o cobre. Este alambre está disponible en diversas medidas, que incluyen 0.8 mm, 1.0 mm, 1.2 mm y 1.6 mm. La elección del metal de aporte o alambre se basa en las propiedades mecánicas y la composición química del metal base. Para referirse a este alambre, la norma Aws— A5.18 utiliza una nomenclatura específica.

Figura 6 Soldadura por arco metálico y gas

Fuente: Fronius

2.5 ELECTRODOS Y SU COMPOSICIÓN

Los electrodos son elementos esenciales en muchos procesos electroquímicos y en la soldadura. La composición de los electrodos varía según su uso y aplicación específicos. A continuación, se describen algunos de los tipos de electrodos más comunes y su composición:

2.5.1 ELECTRODOS DE TUNGSTENO

Son utilizados en la soldadura TIG y tienen una alta resistencia a la temperatura. Están compuestos principalmente de tungsteno puro o con pequeñas cantidades de torio, cerio o lantano.

Figura 7 Electrodo de tungsteno

Fuente: Indumaterial

Tabla 1 Tipos de electrodo de tungsteno

COLOR	TIPO DE CORRIENTE	MATERIAL A SOLDAR
VERDE	CA	Magnesio Aluminio
AZUL	CA/CC	Aceros al carbono Aceros inoxidables Aleaciones de aluminio
NEGRO	CA/CC	Destinados al corte
ORO	CA/CC	Acero Acero inoxidable Aleaciones de niquel Titanio
BLANCO	CA	Aluminio
GRIS	CA/CC	Para cualquier metal
ROJO	CA/CC	Acero Niquel Titanio Cobre Aluminio

Fuente: Comercial Distrival

2.5.2 ELECTRODOS DE GRAFITO

Son utilizados en la fabricación de electrodos para la producción de aluminio y otros metales. Están compuestos principalmente de grafito natural o artificial, mezclado con arcilla o resinas para darles cohesión.

Figura 8 Electrodos de grafio

Fuente: Sinometal Machinery Corp

2.5.3 ELECTRODOS DE ACERO INOXIDABLE

Son utilizados en la soldadura de acero inoxidable. Están compuestos de acero inoxidable con pequeñas cantidades de elementos de aleación como cromo, níquel y molibdeno.

Este electrodo es apropiado para soldar acero inoxidable con una composición similar. Tiene una fusión de metal suave y continua, lo que resulta en depósitos lisos al tacto y un perfil de filete que va de plano a cóncavo. Su contenido de carbono controlado le confiere una excelente resistencia a la corrosión intergranular a temperaturas de hasta 300°C. Este electrodo puede aplicarse con amperajes bajos en comparación con los estándares comunes del mercado, lo que resulta en una zona afectada por el calor reducida y una disminución en la formación indeseable de carburos de cromo. Se trata de un electrodo de núcleo sólido de tipo austenítico perteneciente a la familia 18/8, recomendado para soldar aceros inoxidables de los tipos 302,

308, 308-L y 304. Es ideal para revestir o cubrir y proporcionar protección contra la corrosión en aceros suaves.

Figura 9 Electrodos de acero inoxidable

Fuente: Indura

2.5.4 ELECTRODOS DE PLATA

Son utilizados en la soldadura de metales no ferrosos y en la fabricación de joyas. Están compuestos de plata pura o con pequeñas cantidades de cobre, zinc o níquel.

Figura 10 Electrodos de plata

Fuente: Sanobio

2.5.5 ELECTRODOS DE COBRE

Son utilizados en la soldadura de cobre y aleaciones de cobre. Están compuestos de cobre puro o con pequeñas cantidades de fósforo, plata o níquel.

Figura 11 Electrodos de cobre

Fuente: Ecovida Solar

2.5.6 ELECTRODOS DE ALUMINIO

Electrodos de aluminio: son utilizados en la soldadura de aluminio y aleaciones de aluminio. Están compuestos de aluminio puro o con pequeñas cantidades de silicio, manganeso o magnesio.

Es importante tener en cuenta que la composición de los electrodos puede variar dependiendo de la aplicación específica y del fabricante. Por lo tanto, siempre es importante leer las especificaciones del fabricante antes de utilizar un electrodo en cualquier proceso.

Figura 12 Electrodos de aluminio

Fuente: Bulones

A continuación, se presenta la tabla 2 en la cual, presenta una clasificación de electrodos, el cual muestra el código de clasificación, tipo de revestimiento, corriente que puede ser alterna o corriente continua y las diferentes posiciones a soldar, plana, horizontal y sobre cabeza.

Tabla 2 Clasificación de electrodos

Clasificación AWS	Tipo de revestimiento	Corriente y polaridad	Posición a soldar
E-6010	Celulósico Sódico	CC	P.V.SC.H
E-6011	Celulósico Potásico	CA/CC	P.V.SC.H
E-6012	Rutilico Sódico	CA/CC	P.V.SC.H
E-6013	Rutilico Potásico	CA/CC	P.V.SC.H
E-7014	Rutilico HP	CA/CC	P.V.SC.H
E-7015	Rutilico Sódico B.H	CC	P.V.SC.H
E-7016	Rutilico Potásico B.H	CA/CC	P.V.SC.H
E-7018	Rutilico Potásico B.H – HP	CA/CC	P.V.SC.H
E-6020	Óxido de hierro	CA/CC	P.H Filete
E-7024	Rutilico H.P	CA/CC	P.H Filete
E-7027	Óxido de hierro	CA/CC	P.H. Filete
Nomenclatura:	CC: Corriente continua	SC: Sobre cab	eza H: Horizontal
HP: Hierro en Polvo	CA: Corriente Alterna	P: Plana	
B.H: Bajo Hidrógeno	AP: Ambas polaridades	V: Vertical	

Fuente: Norma AWS

2.6 PROBLEMAS RESPIRATORIOS POR SOLDADURA

La exposición a los humos y gases producidos durante la soldadura puede causar problemas respiratorios en algunas personas. Los soldadores y otros trabajadores que están expuestos a estos humos y gases pueden experimentar irritación en los ojos, nariz y garganta, tos, dificultad para respirar, bronquitis crónica y otros problemas pulmonares.

Los humos y gases producidos durante la soldadura contienen una variedad de sustancias tóxicas, incluyendo metales pesados como plomo, zinc, cobre y cadmio, así como gases como el dióxido de nitrógeno y el ozono. La inhalación de estos humos y gases puede ser particularmente peligrosa para las personas que tienen enfermedades respiratorias preexistentes, como el asma.

Para minimizar el riesgo de problemas respiratorios por soldadura, es importante que los trabajadores usen equipo de protección personal adecuado, como respiradores y ventilación adecuada en el lugar de trabajo. Además, los empleadores deben asegurarse de que se sigan las prácticas de seguridad adecuadas para minimizar la exposición a los humos y gases de la soldadura.

2.7 VENTILACIÓN INDUSTRIAL

La ventilación industrial se refiere al proceso de mover el aire dentro y fuera de un espacio industrial para mantener una calidad del aire adecuada y segura. La ventilación industrial es esencial para proteger la salud y la seguridad de los trabajadores y para mantener la calidad del producto en las instalaciones industriales.

Hay dos tipos principales de ventilación industrial: la ventilación natural y la ventilación mecánica. La ventilación natural se refiere al uso de aberturas en el edificio, como puertas y

ventanas, para permitir que el aire fresco entre y el aire viciado salga. La ventilación mecánica implica el uso de ventiladores, conductos y otros equipos para mover el aire dentro y fuera del espacio.

El diseño de un sistema de ventilación industrial dependerá de factores como el tamaño y la forma del espacio, los procesos industriales que se llevan a cabo y los contaminantes presentes en el aire. El objetivo es eliminar o reducir al mínimo los contaminantes del aire en el espacio industrial, para mantener un ambiente de trabajo seguro y saludable.

2.7.1 TIPOS DE VENTILACIÓN INDUSTRIAL

Existen varios tipos de ventilación industrial. A continuación, se presentan algunos de los tipos más comunes:

2.7.1.1 VENTILACIÓN NATURAL

Este tipo de ventilación utiliza aberturas en el edificio, como puertas y ventanas, para permitir que el aire fresco entre y el aire viciado salga. La ventilación natural es más adecuada para edificios pequeños o para áreas específicas dentro de un edificio.

Figura 13 Ventilación natural

Fuente: Vanesa Ezquerra

2.7.1.2 VENTILACIÓN POR DILUCIÓN

Este tipo de ventilación implica el uso de ventiladores para diluir los contaminantes en el aire mediante la introducción de aire fresco en el espacio industrial. Esta técnica es adecuada para edificios grandes o para áreas donde se generan contaminantes en cantidades bajas.

Figura 14 Ventilación por dilución

Fuente: Robovent

2.7.1.3 VENTILACIÓN LOCALIZADA

Este tipo de ventilación utiliza sistemas de extracción localizada para capturar los contaminantes en su fuente antes de que se propaguen por el espacio. Esta técnica es adecuada para áreas donde se generan contaminantes en cantidades altas y para procesos que requieren una extracción de aire localizad

Figura 15 Ventilación localizada

Fuente: Ms clima

2.7.1.4 VENTILACIÓN MECÁNICA

Este tipo de ventilación utiliza ventiladores y conductos para mover el aire dentro y fuera del espacio industrial. La ventilación mecánica es más adecuada para edificios grandes o para áreas donde se requiere un control preciso de la calidad del aire.

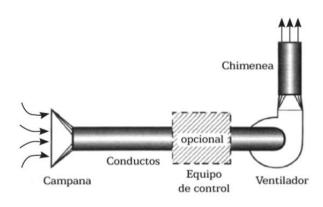

El tipo de ventilación industrial adecuada dependerá del tamaño y la forma del espacio, los procesos industriales que se llevan a cabo y los contaminantes presentes en el aire. Es importante realizar un análisis detallado de los requerimientos antes de seleccionar el tipo de ventilación a utilizar.

Figura 16 Ventilación mecánica

Fuente: Soler&Palau

Figura 17 Componentes de un sistema de ventilación

Fuente: Ventilación Industrial

2.8 SISTEMA DE EXTRACCIÓN DE HUMO

Un sistema de extracción de humo es un conjunto de dispositivos y equipos diseñados para eliminar el humo generado en un espacio cerrado, ya sea por la combustión de materiales, el uso de maquinaria o cualquier otra fuente. Los sistemas de extracción de humo son críticos en lugares como edificios comerciales, fábricas, hospitales, laboratorios, cocinas comerciales y en cualquier lugar donde la acumulación de humo pueda representar un peligro para la salud o la seguridad.

Estos sistemas generalmente consisten en una red de conductos y ventiladores que extraen el aire contaminado del espacio y lo envían hacia el exterior o hacia un sistema de filtración para su purificación. Los sistemas de extracción de humo también pueden incluir sensores de humo y calor que activan automáticamente el sistema cuando detectan un incendio.

Es importante que los sistemas de extracción de humo sean instalados y mantenidos por profesionales capacitados y que cumplan con los códigos y regulaciones de seguridad aplicables. De esta manera, se puede garantizar que el sistema funcionará correctamente en caso de emergencia y ayudará a proteger la vida y la propiedad.

2.8.1 COMPONENTES

Los sistemas de ventilación localizada son más complejos de diseñar en comparación de los sistemas de ventilación general. Por ejemplo, las campanas deben estar diseñadas de una forma apropiada y sobre todo, estar localizada en el lugar correcto para que el control de los contaminantes sea eficiente; Los conductos y el ventilador también deben ser diseñados correctamente para poder extraer la cantidad exacta deseada de aire a través de cada campana.

Los sistemas de ventilación exhaustiva local se componen por cinco fundamentales componentes como lo son:

2.8.1.1 SISTEMA DE CAPTACIÓN DE AIRE O CAMPANA

Las campanas de ranura o lateral se encuentran en proximidad o detrás de una fuente, mientras que las campanas de tiro hacia abajo se ubican directamente debajo de la fuente. Extraen el aire contaminado hacia abajo a través de la fuente y hacia el dispositivo de control correspondiente. Algunos ejemplos de uso de campanas de tiro hacia abajo son soldaduras en banco y cortes con soplete.

El diseño de la campana depende de las características de la fuente que se desea controlar, teniendo en cuenta aspectos como la temperatura y composición de las emisiones. Además, los factores ambientales, como la velocidad y temperatura del aire circundante, también son relevantes. La forma de la campana es determinante en la cantidad de flujo de aire requerido para capturar las emisiones de manera efectiva.

2.8.1.2 CONDUCTOS

Después de que los contaminantes son capturados por la campana, se dirigen al equipo de control a través de un sistema de conductos. Este sistema de conductos, que se extiende desde el dispositivo de captura hasta el equipo de control, incluye elementos como conductos rectos, accesorios como codos y entradas, dispositivos de control de flujo (compuertas) y soportes para los conductos. Los conductos de un sistema de ventilación local exhaustiva cumplen varias funciones esenciales:

- Transportar el aire contaminado desde las diferentes campanas hasta el punto de descarga.
- Minimizar el consumo de energía al reducir las pérdidas por fricción.
- Mantener una velocidad de transporte adecuada para evitar la deposición y obstrucción de los contaminantes en el conducto.
- Mantener el equilibrio del sistema en todo momento.
- Mediante un diseño adecuado, hay que asegurar que cada campana capture el flujo de aire necesario.

Figura 18 Ductos

Fuente: Macrofilter

El sistema de conductos puede ser fabricado con materiales tanto metálicos como plásticos. La elección del material se basa en las características del flujo de aire, consideraciones estructurales, costos de adquisición e instalación, aspecto estético y otros factores. Los metales utilizados incluyen acero al carbono (sin protección o galvanizado), acero inoxidable y aluminio. En cuanto a los materiales plásticos, los más comúnmente empleados son PVC (cloruro de polivinilo) y FRP (plástico reforzado con fibra de vidrio), aunque también se han utilizado PP (polipropileno) y LPE (polietileno lineal).

2.8.1.3 VENTILADORES

Para lograr el movimiento del aire a través de un sistema de ventilación exhaustiva, es necesario proporcionar energía para superar las pérdidas de presión del sistema. En la mayoría de los casos, esta energía se suministra mediante dispositivos llamados ventiladores. Estos ventiladores operan mediante la transferencia de energía mecánica al aire a través de un rotor que gira a alta velocidad, aumentando así la energía cinética del aire y generando parcialmente presión estática. Los ventiladores se pueden clasificar en dos categorías principales: ventiladores axiales y ventiladores centrífugos.

• Ventiladores axiales: Los ventiladores axiales generan energía en el aire mediante un movimiento de rotación en forma de remolino provocado por el rotor. En este tipo de ventiladores, el flujo de aire a través del rotor se mantiene en la misma dirección que el eje del rotor. Estos ventiladores se utilizan para desplazar grandes volúmenes de aire en espacios abiertos. Tienen una alta eficiencia mecánica, que puede llegar hasta el 95%, pero no pueden superar caídas de presión muy altas (entre 5 y 25 mm H2O). Debido a esto, los ventiladores axiales se aplican principalmente en la ventilación general y se conocen como extractores o inyectores de aire.

Figura 19 Ventilador axial

Fuente: Equiproin

• Ventiladores Centrífugos: El término "ventilador centrífugo" se refiere a la manera en que el ventilador transmite energía a la corriente de aire. El aire ingresa al ventilador a través de una abertura concéntrica con el eje de una pieza en rotación rápida llamada rotor. Este rotor está equipado con álabes adheridos a él. El aire fluye entre los álabes hacia el exterior debido a la fuerza centrífuga y sale del rotor con una mayor velocidad que en la entrada. El aire de salida se recoge en una carcasa en forma de espiral llamada voluta y se dirige fuera del ventilador a través de una conducción tangencial a la voluta.

Figura 20 Ventilador centrífugo

Fuente: Equiproin

2.8.1.4 MOTOR

Un motor es un dispositivo eléctrico que convierte la energía eléctrica en energía mecánica mediante la interacción de fuerzas electromagnéticas. La figura 14 muestra las partes de un motor.

Figura 21 Motor

Fuente: Equiproin

Selección de correas y poleas: Las correas son una opción económica y sin complicaciones para transmitir potencia cuando se diseñan adecuadamente. Se utilizan cuando el motor no está directamente conectado al eje del ventilador. Las correas en V son las más comunes y ofrecen las siguientes ventajas:

- Permiten una alta relación de velocidad, ya que la forma en V de las correas compensa el menor arco de contacto en la polea más pequeña.
- Permiten sistemas más compactos al utilizar distancias cortas entre los centros de las poleas.
- Protegen el motor y los rodamientos contra las fluctuaciones de carga.
- No requieren lubricación, lo cual es especialmente importante en las instalaciones directas.
- Son libres de vibraciones o ruidos que se producen en los sistemas de transmisión directa.

Figura 22 Acople de correa y polea

Fuente: Sedisa

CAPITULO III

3. MARCO METODOLÓGICO

3.1 MÉTODO APLICADO

Se ha elegido el método de ventilación exhaustiva local. Es un sistema de ventilación diseñado para retirar y eliminar contaminantes del aire en un área específica. En lugar de ventilar todo el espacio, se concentra en la eliminación de los contaminantes generados en un lugar determinado.

Este método implica el uso de una campana o sistema de extracción que se coloca cerca de la fuente de contaminación, como un equipo de soldadura, una estación de trabajo o un proceso industrial. La campana captura los contaminantes en el aire y los dirige hacia un sistema de extracción.

El sistema de extracción incluye conductos y ventiladores que retiran los contaminantes del aire y los expulsan al exterior del edificio, o pueden ser purificados a través de filtros antes de ser recirculados nuevamente. Este enfoque asegura que los contaminantes se eliminen de manera eficiente y evita que se dispersen en el resto del área de trabajo.

La ventilación exhaustiva local es muy utilizada en entornos industriales donde se generan sustancias químicas o partículas en el aire que pueden ser perjudiciales para la salud de los trabajadores. También se utiliza en laboratorios, salas limpias y en áreas de trabajo con alta concentración de humo, polvo o vapores dañinos.

Es importante tener en cuenta las directrices y normas de seguridad específicas para cada industria al implementar un sistema de ventilación exhaustiva local. Esto asegurará que se

tomen medidas adecuadas para proteger la salud y seguridad de las personas que trabajan en esos entornos.

3.2 IDENTIFICACIÓN DE LAS FUENTES DE CONTAMINACIÓN

La soldadura es un proceso que puede generar diversas fuentes de contaminación.

Algunas de las fuentes comunes de contaminantes durante la soldadura incluyen:

- Humos de soldadura: Durante la soldadura, los materiales base y los consumibles
 (como electrodos o alambres de soldadura) se calientan y pueden liberar humos tóxicos.

 Estos humos contienen partículas finas, óxidos metálicos, compuestos de silicio,
 compuestos de manganeso, fluoruros y otros productos químicos.
- Gases y vapores: Algunos procesos de soldadura pueden generar gases y vapores
 peligrosos, como el dióxido de carbono, monóxido de carbono, ozono, óxidos de
 nitrógeno y compuestos orgánicos volátiles.
- Radiación: La soldadura por arco puede generar radiación ultravioleta (UV) y radiación infrarroja (IR) que pueden ser perjudiciales para la piel y los ojos si no se toman las precauciones adecuadas.
- Ruido: Las operaciones de soldadura pueden generar niveles de ruido altos, especialmente cuando se utilizan procesos de soldadura por arco.
- Polvo: Además de los humos de soldadura, puede generarse polvo y partículas finas debido a la manipulación de los materiales base y la preparación de la superficie antes de la soldadura.

Figura 23 Fuentes de contaminación

Fuente: Acomet

Es importante identificar y evaluar adecuadamente estas fuentes de contaminación antes de implementar medidas de control y protección adecuadas. Esto implica realizar una evaluación de riesgos y utilizar equipos de protección personal (EPP) adecuados, como respiradores, cascos de soldadura, guantes y protección auditiva. Asimismo, se deben utilizar sistemas de ventilación adecuados, como la ventilación exhaustiva local, para controlar y eliminar los contaminantes en el lugar de trabajo.

3.3 EVALUACIÓN DE ÁREA

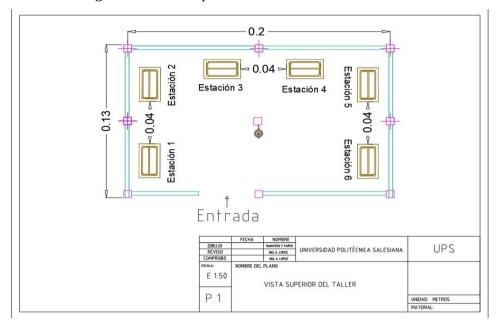


Figura 24 Vista superior de taller de mantenimiento

Fuente: Autores

3.3.1 MONITOREO DE LA CALIDAD DEL AIRE

Realizar mediciones de los niveles de contaminantes en el aire, como los humos de soldadura, para comprender los posibles riesgos a los que están expuestos los trabajadores. Para calcular el caudal de aire que va a ser extraído, se debe conocer el volumen de las estaciones de trabajo ya que, son nuestra fuente de aspersión de humos. El conocimiento del volumen se lleva a cabo, multiplicando, el largo por el ancho y por la altura.

$$V = L.A.H. (1)$$

V= Volumen en m³

L= Largo en metros

A= Ancho en metros

H= Altura en metros

Por su parte, el manual de ventilación industrial nos sugiere la siguiente fórmula para conocer el caudal:

$$Q = V.N \tag{2}$$

Siendo Q el caudal del aire en m³/h

V= Volumen m³

N= Numero de renovaciones de aire por hora

El proyecto tiene las siguientes medidas de las estaciones de trabajo de los soldadores como lo muestra la figura 25:

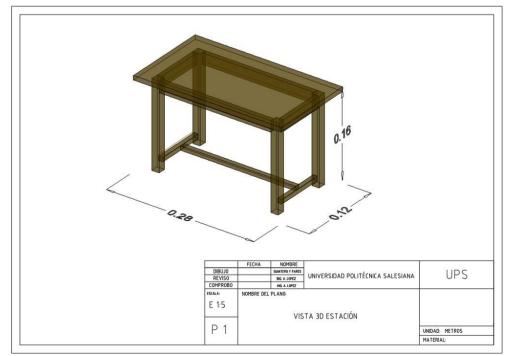


Figura 25 Vista 3D estación de trabajo

Fuente: Autores

L=1,4m; A=0.6m; H=0.8m

Ya teniendo conocimiento del volumen de la fuente, se puede dar a conocer el caudal que se necesita extraer, para conocer el caudal como lo indica la formula (2) se necesita conocer el volumen que ya ha sido calculado y las renovaciones de aire por hora. La norma DIN 1946 indica que, las renovaciones de aire por hora en un taller de soldadura están comprendido entre 20-30 renovaciones de aire por hora a continuación una figura que muestra dicha información.

Figura 26 Renovaciones de aire por hora

TIPO DE LOCAL	RENOVACIONES DE AIRE POR HORA	SECTOR
Almacenes	5-10	
Cabinas de pintura	25-50	
Cocinas industriales	15-30	
Fundiciones	8-15	
Inodoro industrial	8-15	
Laboratorios	8-15	
Laminadores	8-12	7
Locales de aerógrafos	10-20	NDUSTRIA
Locales de decapado	5-15] IS
Remojos	≤ 80] 💆
Salas de fotocopias	10-15	_ ≤
Salas de máquinas	10-40	
Talleres de gran alteración del aire	10-20	
Talleres de montaje	4-8	
Talleres de poca alteración del aire	3-6	
Talleres de soldadura	20-30	
Tintorerías	5-15	

Fuente: Autores

Para esta evaluación se toma el volumen previamente calculado y el valor más alto con respecto a las renovaciones de aire por hora (comprendido entre 20-30) Se usó el valor de 30 renovaciones de aire por hora. El caudal del aire que se debe recaudar es de:

$$Q = 0.672 \times 30$$

$$Q = 20,16 \, m^3/h$$

3.3.2 EVALUACIÓN DE LA VENTILACIÓN

Comprobar la eficacia de la ventilación y los sistemas de extracción existentes en el taller. Asegurarse de que estén correctamente diseñados, instalados y mantenidos para garantizar la eliminación adecuada de los contaminantes generados durante la soldadura. En caso necesario, considerar el uso de ventilación exhaustiva local para capturar los contaminantes en la fuente.

3.4 SELECCIÓN DE ELEMENTOS

3.4.1 SISTEMA DE CAPTACIÓN

La fórmula de Dalla-Valle proporciona una aproximación aceptable para calcular la velocidad en el eje en campanas de formas circulares, cuadradas y rectangulares.

$$Q = V_c (10x^2 + A)$$

Q = Caudal de aire en m³/s

Vc = Velocidad de captación

A =Área de la abertura de la campana en m^2

x = Distancia entre la fuente de emisión y la campana en m

Figura 27 Obtención de caudal según tipo de campana

Fuente: Ventilación Industrial

La velocidad de captación se recoge de la siguiente tabla:

Tabla 3 Velocidades de captación según su condición

Condiciones de dispersión del contaminante	Ejemplos	Velocidad de captación (m/s)
Liberado casi sin velocidad en aire tranquilo	Evaporación en tanques, desengrase.	0,3 – 0,5
Liberado a baja velocidad en aire moderadamente tranquilo	Cabinas de pintura, llenado intermitente de tanques, soldadura, baños electrolíticos, decapado.	0,5 – 1,0
Liberado con alta velocidad inicial en una zona de movimiento muy rápido del aire	Pulido, operaciones de abrasión en general, esmerilado, desmolde en fundiciones	2,5 - 10
Generación activa en una zona de rápido movimiento del aire	Aplicación de pintura con pistola, llenado de recipientes, trituración	1,0 – 2,5

Fuente: Ventilación Industrial

Para el desarrollo de la formula Dalla-Valle se tomó la mayor velocidad de captación en este caso 1 m/s, el área de la campana es propuesta por los autores del proyecto y por último la guía de ventilación para humos de soldadura AWS F3.2:2018 en la sección 8 indica que, para este caso de ventilación exhaustiva local, la campana debe estar instalada a una distancia de

entre (150mm-380mm) con respecto a la fuente de emisión de humos. Para la ejecución del proyecto se hizo uso de una distancia de entre la campana y la fuente de 0.2m.

$$Q = 1,385 \text{ m}^3/\text{s}$$
; $A = (0,4\text{m}.\ 0,4\text{m}) = 0,16 \text{ m}^2$; $x = 0,2\text{m}$; $Vc = 1 \text{ m/s}$

Tabla 4 Caudal de captación total en la campana

Estaciones de trabajo	Vc = Velocidad de captación (m/s)	A = Área de abertura de la campana (m)	X = Distancia entre la fuente de emisión y la campana (m)	Q = Caudal de aire captado (m³/s)
Estación 1	1	0,16	0,2	0,56
Estación 2	1	0,16	0,2	0,56
Estación 3	1	0,16	0,2	0,56
Estación 4	1	0,16	0,2	0,56
Estación 5	1	0,16	0,2	0,56
Estación 6	1	0,16	0,2	0,56
TOTAL				3,36

Fuente: Autores

En el taller de soldadura existen, seis mesas de trabajo con las mismas dimensiones, por lo cual, el caudal de captación de cada una de las campanas en cada mesa de trabajo es el mismo, ya que, poseen los mismos valores. La sumatoria del caudal de aire captado en el eje de la campana de todo el sistema es de 3,35 m³/s o transformado 12096 m³/h

Presión estática de la campana: La presión estática en el interior de la campana se refiere a la presión necesaria para acelerar el aire estacionario hasta alcanzar la velocidad de captación recomendada y compensar las pérdidas en la entrada de la campana. A medida que el aire entra en la campana, las líneas de flujo convergen en un punto más adelante, a cierta distancia de la entrada de la campana o ranura. Ese punto donde las líneas de flujo se vuelven paralelas se conoce como vena contracta. Después de la vena contracta, la velocidad del aire disminuye a medida que se expande en el conducto, lo que provoca

una disminución de la presión. Cuanto más estrecha sea la vena contracta, mayor será la caída de presión a través de la campana.

En esta situación, la campana cuenta con ranuras que permiten la entrada de aire, y las pérdidas en la entrada se estiman de la siguiente manera:

$$H_{\rho} = F.P_V + F_r.P_{\nu\nu} \tag{4}$$

H_e = Pérdidas en la entrada de la campana en mm H₂O

F = Factor de pérdidas en la campana

P_v = Presión de velocidad en el conducto, mm H₂o

P_{vr} = Presión de velocidad en la ranura, mm H₂O

F_r = Factor de pérdidas en la ranura

Quiere decir que, la presión estática para una campana que posee ranura se calcula así:

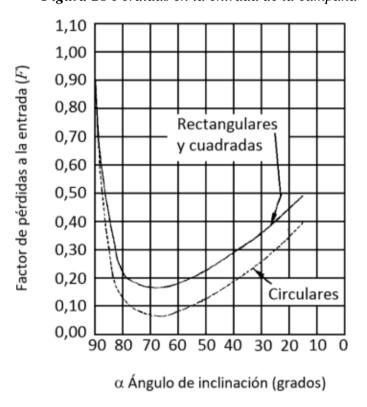
$$P_{ec} = P_v + P_{vr} + FP_V + F_r P_{vr} \tag{5}$$

Donde:

Pec = Presión estática en la campana, mm H₂O

P_v = Presión de velocidad en el conducto, mm H₂O

P_{vr} = Presión de velocidad en la ranura, mm H₂O


F = Factor de pérdidas en la campana

F_r = Factor de pérdidas en la ranura

Durante muchos años de experiencia, se han realizado cálculos de las pérdidas en la entrada de la campana y del coeficiente de entrada para varias campanas típicas. Para el caso del desarrollo del proyecto se trabaja con una campana con ranuras lo que quiere decir que:

 $H_e = 1,78 P_v$

Figura 28 Pérdidas en la entrada de la campana

Fuente: American conference of governmental

3.4.2 SISTEMAS DE CONDUCTOS

Un sistema de conductos consta de diferentes elementos, como tramos de tubería recta, accesorios, dispositivos de control de caudal y soportes. Los tramos rectos de tubería son simples de entender y visualizar. Por otro lado, la categoría de accesorios engloba una variedad de componentes que desempeñan una o más de las siguientes funciones:

- Cambiar la dirección del flujo de aire en el conducto.
- Modificar la velocidad del flujo de aire.

- Conectar differentes conductos.
- Facilitar la unión de dos o más componentes.
- Permitir la expansión o contracción para compensar los efectos térmicos.

Los accesorios más frecuentemente empleados en sistemas de conductos son los codos y las entradas. Los codos se utilizan para alterar la dirección del flujo de aire, generalmente en 30°, 45°, 60° y 90°, aunque también pueden diseñarse para otros grados. El radio desde el centro hasta la línea del codo determina la velocidad a la cual se produce este cambio de dirección. Un estándar común para el radio de curvatura es 1,5 veces el diámetro del codo. Para regular el flujo de aire en un sistema de ventilación local, se emplean compuertas. La compuerta más frecuentemente utilizada es la de tipo mariposa, que consiste en una placa sujeta a una varilla que se puede girar para controlar el flujo de gas.

Las principales variables por considerar en el diseño de un sistema de conductos son la longitud, el diámetro y el espesor de las paredes de los conductos. La longitud requerida del sistema de conductos depende de factores como la distancia entre la fuente de emisión y el equipo de control, así como el número de cambios de dirección necesarios en los conductos.

En los sistemas de ventilación industrial, se prefieren los conductos circulares en lugar de los conductos rectangulares, a menos que existan circunstancias excepcionales, debido a las siguientes razones:

 Los conductos circulares generan menores pérdidas por fricción, ya que su sección circular tiene un perímetro menor en comparación con áreas iguales en conductos rectangulares.

- Los conductos circulares ofrecen una mayor resistencia mecánica a la deformación cuando la presión interna es inferior a la presión atmosférica.
- Los conductos circulares tienen una distribución de velocidades más uniforme en su sección en comparación con los conductos rectangulares.

En resumen, las ventajas de los conductos circulares en términos de menor pérdida por fricción, mayor resistencia mecánica y distribución uniforme de velocidades los convierten en una elección preferida en los sistemas de ventilación industrial. Teniendo esta información en cuenta se implementarán ductos circulares para el proyecto.

El caudal de aire y la velocidad de transporte están relacionadas por la ecuación de la continuidad que indica que, A=Q/Vt, donde área es la sección transversal del conducto, Q, el caudal y V_t la velocidad de transporte. La Transformación la ecuación anterior del área transversal queda de la siguiente forma:

$$\pi \frac{D^2}{4} = \frac{Q}{V_t} \tag{6}$$

Despejando el Diámetro resulta:

$$D = \sqrt{\frac{4 \, Q}{\pi \, V_t}}$$

Haciendo uso de los valores establecidos para el desarrollo del proyecto se obtiene el diámetro del conducto de la siguiente forma:

Q: 0,56 m³/s, Caudal de aire captado en la campana.

 $V_t = 12,5\,$ m/s, Velocidad de transporte de humos de soldadura, la siguiente figura 29 expone las distintas velocidades de transporte en las que incluye los humos de soldadura.

Figura 29 Velocidad de transporte según contaminante

Contaminante	Ejemplo	V _t (m/s)
Vapores, gases, humos de combustión	Todos los vapores, gases y humos	5 – 10
Humos de soldadura	Soldadura	10 – 13
Partículas muy finas y ligeras	Partículas de algodón, aserrín, talco	13 – 15
Partículas finas y secas	Partículas de caucho, baquelita, algodón, virutas (ligeras), detergente, cuero	15 – 20
Partículas industriales	Partículas de café, cuero, sílice, ladrillo, arcilla, fundiciones, caliza	18 – 20
Partículas pesadas	Partículas de viruta metálica, moldes de fundición, madera	20 – 23
Partículas pesadas y húmedas	Partículas de cemento	> 23

Fuente: Ventilación Industrial

Se obtiene como resultado un diámetro de 0.24m, para efectos de diseño y con respecto a la fabricación de los ductos, se usara un ducto 10" por condiciones de mercado es más común la fabricación de este tipo de diámetro de pulgada de este proyecto se usará un espesor de 2 mm acero al carbón galvanizado también buscando una rentabilidad económica en el proyecto, el acero al carbón galvanizado al ser un material de resistencia baja su costo es menor, pero totalmente funcional para la ejecución del proyecto ya que, este es comúnmente usado en producción de alimentos, equipos de climatización, ventilación, calefacción entre otros.

A continuación, se muestra la tabla 5 que indica los diferentes espesores nominales según el material a escoger:

Tabla 5 Espesor según material

	Espesor nominal (mm)				
Calibre	Acero a	ıl carbón	Acero inoxidable	Aluminio	
	Galvanizado	No galvanizado	(304 o 316)	3003-H144	
28	0,46	0,36	0,38	0,61	
26	0,53	0,44	0,46	0,78	
24	0,67	0,58	0,61	0,98	
22	0,82	0,73	0,76	1,22	
20	0,97	0,88	0,92	1,54	
18	1,26	1,17	1,22	1,95	
16	1,55	1,46	1,53	2,20	
14	1,92	1,82	1,91		
12	2,64	2,55	2,67		
10	3,37	3,28	3,43		

Fuente: Ventilación Industrial

Para el cálculo de las pérdidas de cargas se hace uso del nomograma que se muestra en el anexo 1 nos muestra la perdida de carga por rozamiento del aire. Para la obtención de las pérdidas de carga se debe conocer el diámetro del conducto y la velocidad de transporte. Para este caso de estudio se tienen los siguientes valores:

Diámetro: 10" (0.254m)

V_t (Velocidad de transporte: 12,5m/s

Para conocer la perdida de carga por tramos, se realiza de la siguiente forma:

$$\Delta P conducto = V_p x L \tag{7}$$

Siendo L, la longitud del tramo y Vp valor de pérdida de carga.

La longitud se puede apreciar en la figura 30.

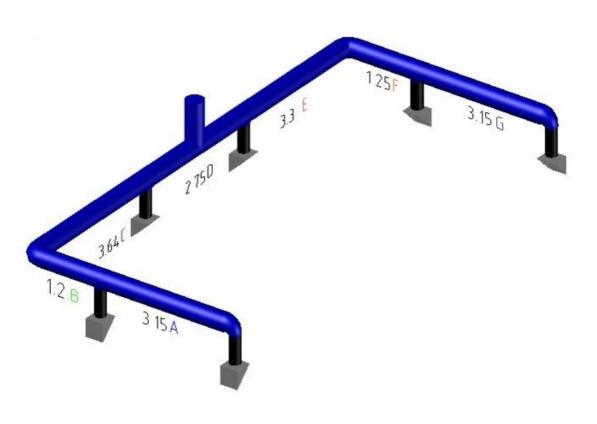


Figura 30 Vista 3D sistema de conductos

Nota: Los valores se refieren a una medida en metros Fuente: Autores

Para el diseño de los codos, se otorgan valores del mismo diámetro en condiciones de mercado que se fijó anteriormente, es decir, 10" o 0.254m y un ángulo de 90°, tener en cuenta

la relación de a mayor radio de curvatura menores serán las pérdidas de cargas por fricción. En este caso de estudio se emplea un radio de curvatura de 250mm o 0.25m,

3.4.3 PÉRDIDA DE CARGA DE DUCTOS

A continuación, en la siguiente tabla 6 se especificará los valores de perdida de carga unitaria y por tramos:

Tabla 6 Pérdida de carga por tramos

Tramo	Longitud (metros)	Velocidad de transporte (m/s)	Diámetro (m)	Caudal (m ³ /s)	Perdida de carga (mm.c.d.a/m)	Perdida de carga por tramos (mm.c.d.a/m)
A-B	3.95	12,5	0.254	0,63	0,8	3,16
B-CODO 2	2	12,5	0.35	1,2	0,5	1
COD2-C	3.64	12,5	0,35	1,2	0,5	1,274
C-Text	1.375	12,5	0.4	1,57	0,4	0,55
E-Text	1,375	12,5	0,4	1,57	0,4	0,55
E-CODO 3	3.3	12,5	0.4	1,57	0,4	1,32
CODO 3- F	2.05	12,5	0.35	1,2	0,5	1,025
F-G	3.95	12,5	0.254	0,63	0,8	3,16
TOTAL						12,039

Fuente: Autores

Para el cálculo de pérdida de cargas en los codos, campanas y sombrete, se hará uso de figuras que muestran el valor de coeficiente "n" que es de vital importancia para aplicar la fórmula de las pérdidas de cargas en los accesorios, dicha formula hace relación entre la presión dinámica y el coeficiente "n" la fórmula de las pérdidas de cargas es:

$$\Delta P = n \times Pd \ (mm \ c. \ d. \ a.) \tag{8}$$

En el caso de la presión dinámica, se obtiene a través de la figura 31 muestra una gráfica, Está gráfica nos permite visualizar la presión dinámica en función de su velocidad, la velocidad de transporte ya se conoce previamente y tiene un valor de 12,5 m/s.

PRESIÓN DINÁMICA DE AIRE EN FUNCIÓN DE SU VELOCIDAD m/s 25 20 VELOCIDAD Se considera aire a 20° C. 760 mm c.d.a. densidad 1,2 kp/m3 y humedad del 40% 4.75 0.5 40 50 60 70 PRESIÓN DINÁMICA

Figura 31 Presión dinámica de aire en función de su velocidad

Fuente: Manual de ventilación

A una velocidad de 12,5 m/s se obtiene un valor de 7,5 mm c.d.a, este valor se multiplicará por el factor "n" de pendiendo sea el caso (codos, campana, sombrete) extraído de las figuras que se muestran a continuación

CAMPANAS DE CAPTACIÓN 0,9 0,8 0,7 0,6 0,5 Boca rectangular o cuadrada 0,4 0,3 0,2 Boca redonda 0,1 Ángulo α 0,0 + 20° 40° 60° 100° 160° 80° 120° 140° 180°

Figura 32 Coeficiente "n" en campanas

Fuente: Manual de ventilación

.

Figura 33 Coeficiente "n" en codos

Fuente: Manual de ventilación

3.4.4 PÉRDIDA DE CARGA DE CODOS

A continuación, la tabla 7 que nos muestra las pérdidas de carga en los codos:

Tabla 7 Pérdida de carga en codos

Codos	Diámetro del ducto (metros)	Angulo de inclinación	Radio de curvatura (Metros)	R/D	Coeficiente "n"	Perdida de carga (mm c.d.a.)
C1	0.254	90°	0.125	0.5	0,3	2,25
C2	0.35	90°	0.125	0.35	0,35	2,625
C3	0.35	90°	0.125	0.35	0,35	2,625
C4	0.254	90°	0.125	0.5	0,3	2,25
Total						9,75

Fuente: Autores

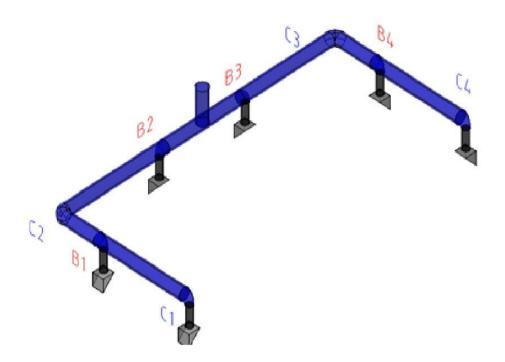


Figura 34 Vista 3D sistema de conductos

Nota: La letra "C" Corresponde a Codos y la Letra "B" Corresponde a Bifurcaciones. Fuente: Autores.

Seguidamente se obtendrán mediante una tabla 8 los valores de las bifurcaciones:

Accesorio Angulo (Ø) n 0,06 10 15° max 15 0,09 20 0,12 25 0,15 30 0,18 35 0,21 40 0,25 45 0,28 50 0,32 60 0,44 90 1,00

Tabla 8 Coeficiente "n" en bifurcaciones

Fuente: Ventilación industrial

Las bifurcaciones tienen un ángulo de 45°, lo que da como resultado un factor n de: 0,28. Multiplicado por la presión dinámica con un valor de 7,5 mm c.d.a. Entonces cada bifurcación tiene una pérdida de carga de 7,5 mm c.d.a. que, multiplicando dicho valor por la

cantidad de bifurcaciones en el sistema con un total de 4 bifurcaciones, se obtiene una pérdida total de carga en las bifurcaciones de 8.4 mm c.d.a.

3.4.5 PÉRDIDA DE CARGAS EN CAMPANAS

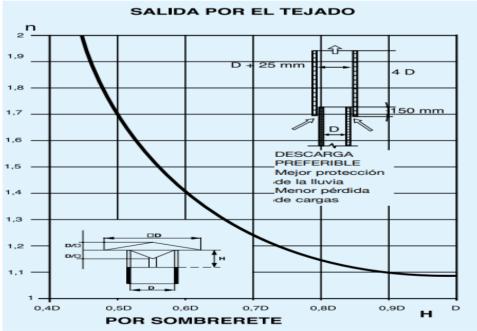

Las pérdidas de carga en la campana se analizan en la tabla 9:

Tabla 9 Pérdida en campanas

Campana	Ángulo	Factor "n"	Perdida de carga (mm c.d.a)
Campana 1	90°	0,15	1,125
Campana 2	90°	0,15	1,125
Campana 3	90°	0,15	1,125
Campana 4	90°	0,15	1,125
Campana 5	90°	0,15	1,125
Campana 6	90°	0,15	1,125
Total			6,75

Fuente: Autores

Figura 35 Coeficiente "n" sombrete
SALIDA POR EL TEJADO

Fuente: Manual de ventilación

La figura 35 nos muestra una gráfica nos permite allá el factor "n" de perdida de carga del sombrete, con un valor de 0,5D arroja un factor "n" de 1,7 multiplicado por la pérdida de carga dinámica de valor: 7,5 mm c.d.a, se obtiene una pérdida de carga de: 12,75 mm c.d.a.

Para finalizar el análisis total de la perdida de cargas se presenta la tabla #, se realiza una sumatoria general para así obtener una cantidad total de la cantidad de perdida de carga que nos permita hacer una correcta elección de ventiladores y otros componentes del sistema de extracción.

3.4.6 PÉRDIDAS DE CARGAS TOTALES

Tabla 10 Pérdida de cargas totales

Componente	Perdida de carga
	(mm c.d.a.)
Campana	6,75
Codo	9,75
Sombrete	12,75
Ductos	12,039
Bifurcaciones	8,4
Total	49,689

Fuente: Autores

3.5 SELECCIÓN DE VENTILADOR

Una parte fundamental de la selección del ventilador es conocer el caudal total del sistema y las pérdidas de cargas total, a continuación, la tabla 11 aportará los datos necesarios para la selección del ventilador.

Tabla 11 Valores de caudal y pérdida de carga del sistema

	Caudal		Pérdidas d	e carga
(m ³ /h)	(m^3/m)	(cfm)	(mm c.d.a)	(Pascales)
12096	201,6	17607,9	55,7	546,2

Fuente: Autores

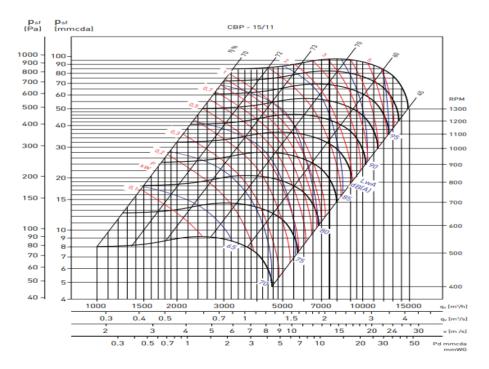
Ya conociendo esos valores podemos extraer de la ficha técnica del fabricante los datos que sean acordes a nuestra necesidad con respecto a la selección del ventilador, en la figura 36 podemos observar los distintos modelos y sus valores velocidad máxima, caudal y peso.

Figura 36 Ficha técnica de ventiladores centrífugo

Modelo	Equivalencia (mm)	Velocidad máxima recomendada (r.p.m.)	Caudal máximo (m³/h)	Peso (kg)
CBP-7/7	180/180	2400	2.800	5
CBP-9/7	240/180	2500	6.000	8
CBP-9/9	240/240	2100	7.000	9
CBP-10/8	270/200	2500	6.500	10
CBP-10/10	270/270	1900	7.900	11
CBP-12/9	320/240	2000	8.000	14
CBP-12/12	320/320	1500	10.000	16
CBP-15/11	380/280	2000	12.500	20
CBP-15/15	380/380	1200	16.000	23
CBP-18/13	460/330	1200	18.500	28
CBP-18/18	460/460	950	22.000	33

Fuente: Soler&Palau

El ventilador seleccionado es de tipo centrífugo que cumple con el caudal necesario de extracción, ya que la necesidad está por debajo de los 12500 m³/h. haciendo un resumen de la tabla 12 se obtiene:


Tabla 12 Selección de ventilador centrífugo

Modelo	Equivalencia (mm)	Velocidad máxima recomendada (r.p.m)	Caudal Máximo (m³/h)	Peso (kg)
CBP-15/11	380/280	2000	12.500	20

Fuente: Autores

En la figura 37 Se muestra las curvas características del funcionamiento del ventilador centrífugo que, en base a las necesidades del proyecto, se observa el cumplimiento correcto a su vez, se obtienen los valores de, potencia absorbida, nivel de presión sonora, velocidad máxima y caudal.

Figura 37 Curvas características ventilador centrífugo

Fuente: Soler&Palau

La información de las curvas permite obtener en base a las necesidades del proyecto el valor de Potencia absorbida, nivel de revoluciones, nivel de potencia sonora. En la tabla 13 se puede apreciar un resumen de los valores obtenidos de acuerdo con el ventilador seleccionado.

Tabla 13 Características de ventilador centrífugo

VENTILADOR CENTRIFUGO MODELO CBP-15/11									
Caudal (m3/h)	Perdidas de	Nivel de	Nivel de	Nivel de					
	carga	revoluciones	potencia sonora	potencia					
	(mm c.d.a)	(rpm)	(dB)	(kW)					
12096	50	1200	95	5					

Fuente: Autores

3.6 SELECCIÓN DEL MOTOR

Para la selección del motor, se debe tener en cuenta el nivel de potencia, que en este caso el ventilador centrifugo necesita 5kW y el nivel de revoluciones en este caso 1200 revoluciones por minuto, la empresa fabricante de motores muestra una tabla con modelos y distintos valores, a continuación, en la figura 38 se puede observar las características del motor, para consiguiente realizar una correcta selección.

Figura 38 Ficha técnica de motores

	Tipo	Tamaño Constructivo	Pote HP	ncia kW	Eficiencia %	F.Servicio FS	Corrie 220 VAC	nte (A) 440 VAC			
	VELOCIDAD 1.200 rpm (6 polos)										
100160480	1LA7073 - 6YA66	80	0.5	0.37	64.3	1.05	2.2	1.1			
100160485	1LA7080 - 6YA66	80	0.75	0.56	55.6	1.05	3.0	1.5			
100160491	1LA7083 - 6YA66	80	1.0	0.74	67.5	1.15	4.2	2.1			
100160497	1LA7090 - 6YA66	90	1.5	1.12	75.7	1.15	6.6	3.3			
100160503	1LA7096 - 6YA66	90	2.0	1.50	78.5	1.15	7.8	3.9			
100160513	1LA7112 - 6YA66	112	3.0	2.20	79.1	1.15	11.8	5.9			
100160516	1LA7113 - 6YA66	112	4.0	3.00	83.5	1.15	15.0	7.5			
100160522	1IA7130 - 6YA76	132 S/M	5.0	3.73	83.5	1.15	16.4	8.2			
100160528	1LA7133 - 6YA76	132 S/M	7.5	5.60	85.2	1.15	26.0	13.0			
100160532	1LA/135 - 6YA/6	132 S/M	10.0	7.5	86.0	1.05	33.0	16.5			
100160536	1LA7164 - 6YA76	160 M/L	15.0	11.2	89.0	1.15	47.4	23.7			
100160542	1LA7167 - 6YA76	160 M/L	20.0	14.9	89.5	1.10	66.0	33.0			
100160445	1LA5186 - 6YA86	180 L	25.0	18.7	90.9	1.05	67.5	33.8			

Fuente: Siemens

La empresa fabricante de motores posee el modelo que más conviene para una buena extracción en conjunto con el ventilador previamente seleccionado, el modelo de motor es el 1LA7133 – 6YA76, cumple con los 5kW y las revoluciones por minutos en este caso 1200.

CAPITULO IV

4. RESULTADOS

4.1 RESULTADOS DEL ANÁLISIS DE SELECCIÓN DEL TIPO DE VENTILACIÓN APLICADA

En la propuesta de diseño se seleccionó un sistema de ventilación exhaustiva local, siendo esta la más efectiva para este caso de estudio que son los humos de soldadura, este tipo de ventilación nos permite captar todos aquellos contaminantes desde la fuente antes que se dispersen por toda el área, la norma AWS nos indica que, no debe existir una prolongada distancia entre la campana de captación y la fuente, esto ayuda a que se cumpla también una efectiva extracción de humos de soldadura.

4.2 RESULTADOS DEL DISEÑO Y DIMENSIÓN DEL SISTEMA

Para el diseño y dimensión del sistema se realizaron las medidas acordes de área del taller de mantenimiento, las distintas distribuciones de las estaciones de trabajo, para así tener los diferentes valores con respecto a distancia de campana y longitud de ductos, la figura 39 denota la dimensión del taller. La figura 40 permite visualizar las dimensiones del área de trabajo, que permite el cálculo de volumen, para luego conocer el caudal. Se puede apreciar la distancia correspondiente entre las estaciones de trabajo, gracias al conocimiento de las medidas totales se puede obtener un valor de longitud total, mismo que permite cotizar precios referentes a la plancha de acero galvanizado ya que, la presentación de esta es en kilogramos.

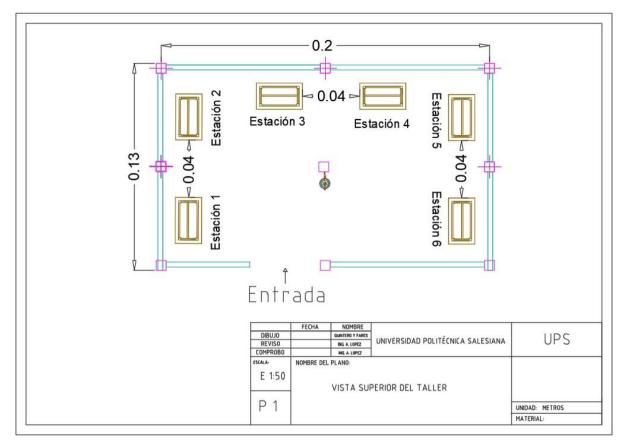
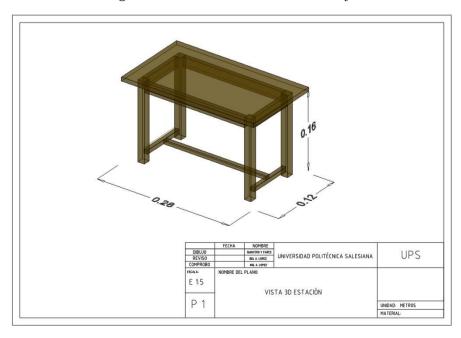



Figura 39 Dimensión del taller de mantenimiento

Fuente: Autores

Figura 40 Vista 3D estación de trabajo

Fuente: Autores

Figura 41 Dimensión del sistema de conductos UPS UNIVERSIDAD POLITÉCNICA SALESIANA NOMBRE DEL PLANO: E 1:50

Por último, la figura 41 presenta las dimensiones del sistema.

Fuente: Autores

P 1

VISTA SIMÉTRICA

UNIDAD: METROS MATERIAL:

4.3 RESULTADOS DE LA SELECCIÓN DE COMPONENTES Y ACCESORIOS DEL **SISTEMA**

El resultado de la selección de componentes y accesorios del sistema de ventilación exhaustiva incluye:

4.3.1 SISTEMAS DE CAMPANA

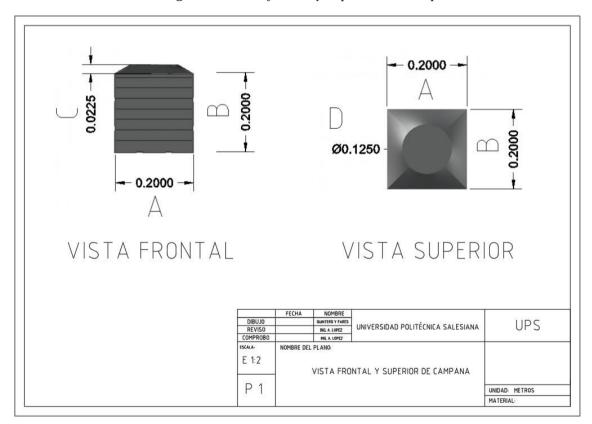

Con un buen dimensionamiento, en base a las distintas pérdidas de carga, caudal necesario a extraer, distancia de captación, se logró realizar una propuesta de diseño de campana acorde al funcionamiento del sistema de captación, las medidas de las campanas se presentan en la tabla 14 y a su vez en la figura 42.

Tabla 14 Dimensión de campanas

Estación	Material	Espesor (mm)	A (metros)	B (metros)	C (metros)	D (metros)
		(111111)	(menos)	(metros)	(metros)	(menos)
Estación 1	Galvanizado	2	0.4	0.4	0.05	0.25
Estación 2	Galvanizado	2	0.4	0.4	0.05	0.25
Estación 3	Galvanizado	2	0.4	0.4	0.05	0.25
Estación 4	Galvanizado	2	0.4	0.4	0.05	0.25
Estación 5	Galvanizado	2	0.4	0.4	0.05	0.25
Estación 6	Galvanizado	2	0.4	0.4	0.05	0.25

Fuente: Autores

Figura 42 Vista frontal y superior de campanas

Fuente: Autores

4.3.2 SISTEMA DE CONDUCTOS

Para el sistema de conductos, se analizó el caudal con respecto a cada tramo y la variación que este tiene con respecto al diámetro de la tubería en la tabla 15 se muestra los valores de caudal, perdida de carga, longitud, diámetro, material y espesor.

Tabla 15 Características del sistema de conductos

Tramo	Longitud (metros)	Material	Diámetro (mm)	Caudal (m³/s)	Espesor (mm)	Perdida de carga por tramos (mm.c.d.a/m)
A-B	3.95	Galvanizado	254	0,63	2	3,16
B-CODO 2	2	Galvanizado	350	1,2	2	1
COD2-C	3.64	Galvanizado	350	1,2	2	1,274
C-Text	1.375	Galvanizado	400	1,57	2	0,55
E-Text	1,375	Galvanizado	400	1,57	2	0,55
E-CODO 3	3.3	Galvanizado	400	1,57	2	1,32
CODO 3- F	2.05	Galvanizado	350	1,2	2	1,025
F-G	3.95	Galvanizado	254	0,63	2	3,16

Fuente: Autores

4.3.3 CODOS Y BIFURCACIONES

En el caso de los codos se analizó las distintas variaciones de diámetro del conducto, en total hay 4 codos en el conducto a un ángulo de 90° y para las bifurcaciones se usó un ángulo de 45°, estando a un ángulo de inclinación adecuado ya que, en el manual de ventilación recomiendan un ángulo mayor a 35°.

En la tabla 16 se expone cada uno de los accesorios, con las medidas previamente determinadas:

Tabla 16 Características de codos y bifurcaciones

Codos	Diámetro del ducto (metros)	Angulo de inclinación	Bifurcación	Diámetro del conducto	Angulo de inclinación
C1	0.254	90°	B1	0.25	45°
C2	0.35	90°	B2	0.25	45°
C3	0.35	90°	В3	0.25	45°
C4	0.254	90°	B4	0.25	45°

Fuente: Autores

4.3.4 SELECCIÓN DEL VENTILADOR EXTRACTOR

La selección del ventilador de pende del caudal total a extraer y las pérdidas de cargas, teniendo conocimiento de esos valores, para este caso el caudal total que se necesita extraer es de 12096 m³/h y una pérdida de carga de 50 mm c.d.a. con estos valores y la ficha técnica que proporciona se procede a seleccionar el ventilador centrifugo modelo CBP-15/11, con capacidad máxima de extracción de 1200 rpm, peso de 20 kg, perdidas de carga superiores a 50 mm c.d.a y con estas características y medidas:

15/11 81,5

Figura 43 Medidas de ventilador

Fuente: Soler&Palau

Modelo	Equivalencia (mm)	Velocidad máxima (r.p.m)	Caudal Máximo (m³/h)	Peso (kg)	Potencia kW
CBP-15/11	380/280	1200	12.500	20	5

4.3.5 SELECCIÓN DE MOTOR

Partiendo de la velocidad máxima recomendada y la potencia que sugiere el ventilador centrífugo permite buscar en el catálogo de fabricante de motores y su respectiva ficha técnica el motor que sea más acorde a las necesidades, para el correcto funcionamiento del ventilador centrífugo, con una velocidad de 1200 rpm y una potencia de 5 kW se selecciona el motor modelo: ILA7133-6YA76.

Tabla 17 Características de motor

Modelo	Equivalencia (mm)	Potencia	Corrie 220VAC-		Eficiencia %	Peso (kg)
ILA7133- 6YA76	380/280	7.5HP-5.60kW	26	13	85.2	54

Fuente: Siemens

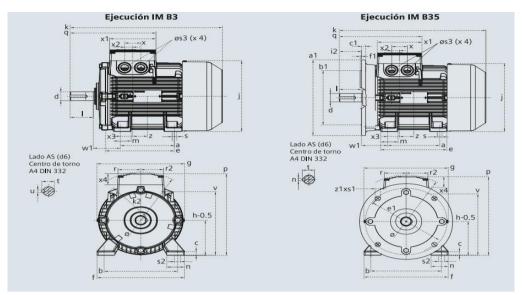


Figura 44 Dimensiones de motor

Fuente: Siemens

Figura 45 Medidas de motor

Motor tamaño		1000000	didas d M B3,					medidas de la forma constructiva IM B3										as de l va IM I		Marin Landson		
	1	d	t	u	g	g,	p/p ₂	k	а	b	h	W ₁	s	е	f	a1	b1	c1	e1	f1	s1	k
071	30	14	16.1	5	148	_	178.5	240	90	112	71	45	7	107.5	132	160	110	5.5	130	3.5	10.5	23
080	40	19	21.5	6	163	_	193.5	273.5	100	125	80	50	9.5	119.5	150	200	130	8	165	3.5	13	28
090 S	50	24	26.9	8	181	_	211.5	331	100	140	90	56	10	114.5	165	200	130	7	165	3.5	13	32
090 L	50	24	26.9	8	181	_	211.5	331	125	140	90	56	10	144.5	165	200	130	7	165	3.5	13	32
112 M	60	28	31.0	8	227	-	260	393	140	190	112	70	12	176	226	250	180	11	215	4	14.5	38
132 S	80	38	41.3	10	264.5	_	315	481	140	216	132	89	12	1218	256	300	230	14	265	4	15	48
132 M	80	38	41	10	266	_	299	491	178	216	132	89	12	218	226	300	230	12	265	4	4.5	49
160 M	110	42	45.0	12	320	-	365.5	629	210	254	160	109	15	300	300	350	250	20	300	5	18	62
160 L	110	42	45.0	12	320		365.5	629	254	254	160	109	15	300	300	350	250	20	300	5	18	62
180 M	110	48	51.5	14	357	499	410	653	241	279	180	121	16	301	339	350	250	13	300	5	18	65
180 L	110	48	51.5	14	357	499	410	691	279	279	180	121	16	339	339	350	250	13	300	5	18	69
200 L	110	55	59.0	16	403	534	460	743	305	318	200	133	20	385	398	400	300	15	350	5	18	74
225 S	*140	*60	*64	18	447	-	569	*830	286	356	225	149	19	361	436	450	350	16	400	5	17.5	*83
225 M	*140	*60	*64	18	447	-	569	*830	311	356	225	149	19	361	436	450	350	16	400	5	17.5	*83
250 M	140	*65	*69	18	520	-	680	930	349	406	250	168	24	409	506	550	450	18	500	5	17.5	93
280 S	140	*75	*79.5	*20	575	-	735	1005	368	457	280	190	24	479	557	550	450	18	500	5	17.5	100
280 M	140	*75	*79.5	*20	575	-	735	1005	419	457	280	190	24	479	557	550	450	18	500	5	17.5	100
315 S ¹⁾	140	65	69	18	645	-	-	1110	406	508	315	216	28	527	628	660	550	22	600	6	22	111
315 S ²⁾	170	85	85	22	-	-	-	1140	-			-	-		-	-		-	-	_	_	114
315 M ¹⁾	140	65	69	18	645	-	-	1110	406	508	315	216	28	527	628	660	550	22	600	6	22	111
315 M ²⁾	170	80	85	22	-	-	-	1140	-	-	215	716	-	-	-	-	-	-	-	-	-	114
315 L ¹⁾	140	65	69	18	645	_	_	1250	508	508	315	216	28	578	628	660	550	22	600	6	22	125
315 L ²⁾	170	80	85	22	-	-	-	1280	-	-	_	-	-	-	_	-	-	-	_	-	-	128

Fuente: Siemens

4.4 ANÁLISIS ECONÓMICO

Tabla 18 Precio de equipos

Detalle	Cantidad	Precio unitario	Precio total		
Ventilador centrifugo CBP-	1	430,00 \$	430,00 \$		
15/11	-	120,00 φ	120,00 φ		
Motor ILA7133-6YA76	1	672,00 \$	672,00 \$		
Plancha galvanizada 2mm -	2	60,00 \$	120,00 \$		
para ductos	2	00,00 \$	120,00 \$		
Plancha galvanizada 2mm –	1	60,00 \$	60,00 \$		
para campanas y accesorios	1	00,00 \$	00,00 \$		
Panel de control	1	45,00 \$	45,00 \$		
Soporte y anclaje para	40	2,71 \$	108,00 \$		
ductos	40	۷,/1 Φ	100,00 ф		
Filtro de aire	4	18,50 \$	\$ 74,00 \$		
Total			\$ 1509, 00 \$		

Fuente: Autores

Tabla 19 Costo materiales

Detalle	Cantidad	Precio unitario	Precio total
Cable N°10	1	60,00 \$	60,00 \$
Cable N°16	1	35,00 \$	35,00 \$
Interruptor	1	1,80 \$	1,80 \$
Breaker doble	1	15,00 \$	15,00 \$
Tacos Fisher F6	100	0,15 \$	15,00 \$
Pernos 3/8	200	0,25 \$	50,00 \$
Arandelas 3/8	150	0,08 \$	\$ 12,00 \$
Total			\$ 188, 80 \$

Fuente: Autores

Tabla 20 Costo mano de obra

Detalle	Cantidad	Precio unitario	Precio total
Instalación eléctrica	1	200,00 \$	200,00 \$
Instalación de motor	1	45,00 \$	45,00 \$
Instalación de ventilador	1	45,00 \$	45,00 \$
Instalación de ductos	1	350,00 \$	350,00 \$
Instalación de campana	6	20 \$	180,00\$
Total			820,00 \$

Fuente: Autores

CONCLUSIONES

Mediante un proceso de diseño, se logró elaborar un plano que representa todas las estaciones de trabajo y maquinaria empleadas en un taller de soldadura. Este plano fue creado a través de un análisis visual y la recopilación de datos, lo que nos permitió identificar las principales fuentes de emisión de humos. Y, por lo tanto, se determinó, un sistema de ventilación exhaustiva en áreas específicas y una extracción general para la renovación del aire, siendo este el más efectivo porque una ventilación exhaustiva local no permite que se dispersen los humos de soldadura y los capta de manera rápida y efectiva.

Mediante los cálculos respectivos se determinó un caudal de 12906 m³/h con una cantidad de 55 mm c.d.a de pérdida de carga. Se calculó el caudal a extraer en el sistema de captación en este caso de la campana, en esta propuesta se dimensionó una campana cuadrada con un área de 0.16 m² y un ángulo de abertura de la campana de 90°, en total son, seis campanas con las mismas dimensiones distribuidas en cada una de las seis estaciones de trabajo en el cual los soldadores desarrollan su actividad, el caudal captado es necesario para la selección de ductos correcta, Se seleccionó ductos de distintos diámetros, los conductos que parten desde la campana hacia el ducto principal poseen un diámetro de 0.25 y el ducto principal maneja medidas de 0.35 m, 0.35 m, 0.4 m, 0.4m, 0.4m, 0.35m y con longitudes de 3.95 m, 2 m, 3.64 m, 1.375 m, 1.375 m, 3.3 m, 2.05 m, 3.95 m. Se seleccionó para todo el sistema de ductos acero al carbono galvanizado con un espesor de 2 mm. En cuanto a los codos y las bifurcaciones, se tiene, cuatro codos con un ángulo de inclinación de 90°, diámetro de, 0.25 m, 0.35m, 0.35 m, 0.25 m, con respecto a las bifurcaciones, el sistema posee cuatro con un ángulo de inclinación de 45° con un diámetro de tubería de 0.25 m cada una. Lo que da como resultado un total de longitud de todo el sistema de conductos de 27.19 m.

Conociendo las pérdidas de carga y el caudal necesario de extracción se escogió un ventilador centrífugo con una pérdida de carga superior a los 80 mm c.d.a, con capacidad máxima de caudal de 12500 m³/h y una velocidad máxima de 1200 rpm. Estos datos cumplen con la necesidad del sistema siendo esta de 12906 m³/h y una pérdida de 55 mm c.d.a. El valor de rpm permite la selección de un motor que aporte lo necesario para el buen funcionamiento del ventilador, en este caso, se seleccionó un motor con una potencia de 7.5HP, 1200 rpm.

Y, finalmente, se realizó un análisis de costo, en el cual se incluyen el costo de equipos un total de 1509,00 \$, un costo total de materiales 188,80\$ y, por último, un costo total de mano de obra de 820,00\$ dando como resultado, una inversión total de todo el sistema de 2517,80 \$

RECOMENDACIONES

A través de un proceso de diseño meticuloso, se logró confeccionar un plano detallado que representa todas las estaciones de trabajo y equipos utilizados en un taller de soldadura. Se debe buscar que la fuente de emisión de humos se encuentre lo más próximo al sistema de captación, para así, realizar una efectiva extracción localizada y no permitir la dispersión de los distintos humos.

Se recomienda que, el sistema de conductos al ser cilíndrico no debe poseer fuga de ningún tipo, al ser fabricado este debe poseer un cierre hermético. Realizar una correcta colocación de los anclajes y realizar limpieza en las rejillas de la campana, estas pueden hacerse cada tres meses o más de pendiendo del estado de suciedad y el ambiente a la cual estén expuestas.

Luego de analizar los resultados del estudio se precisa pasada las primeras 500 horas de funcionamiento realizar una inspección, de pendiendo de su uso esta inspección se hará a los seis meses, esto puedo variar pero de manera general realizar a inspección visual a la mitad de año de funcionamiento, pasados los tres años realizar una re-lubricación y limpieza, esta última de pendiendo de su ubicación para este proyecto, como se colocará en la cubierta se recomienda realizar una limpieza por todo el polvo y suciedad a la que se encuentra afectado.

Por último, se recomienda que desde un punto de vista económico la empresa aplique un proceso de licitación para poder realizar la adquisición de los equipos y sistemas necesarios para poder utilizar materiales de calidad que permitan la implementación eficiente del sistema de extracción.

REFERENCIAS BIBLIOGRÁFICAS

Camargo Bonilla, O. F. (2021). Propuesta de una metodología para el control y seguimiento al proceso de soldadura en la empresa cpc ingeniería y mantenimiento S.A.S. Repositorio Universidad Antonio Nariño.

http://186.28.225.13/bitstream/123456789/5070/1/2021Oscar%20Fernando%20Camargo%20 Bonilla.pdf

Flores Perez, L. R., & Choque Huisa, E. (2021). Estudio de gases emitidos en los procesos de soldadura eléctrica, MIG MAG Y TIG del taller de soldadura en Universidades, Arequipa-Perú, 2019. Repositorio Institucional: Universidad Autónoma San Francisco.

http://repositorio.uasf.edu.pe/bitstream/20.500.14179/387/1/TRAB%20INV%20CHOQUE%2 0HUISA.pdf

Flores Tipas, M. K., & Paredes Rios, J. D. (2020). Diseñar la disposición de equipos para un taller de soldadura con capacidad de 20 personas en la Unidad Educativa del Muchacho Trabajador en el sector de Cotocollao, cantón Quito. Repositorio Institucional de la Universidad Politécnica Salesiana.

https://dspace.ups.edu.ec/bitstream/123456789/18678/4/UPS%20-%20ST004526.pdf
Güney, B. (2021). Microstructure analysis of welding fume of low and medium carbon steels.

Revista de Metalurgia, 57(1). https://doi.org/10.3989/revmetalm.187

Lopez Gomez, V. G., & Pachacama Pachacama, B. A. (2022). Diseño y fabricación de un Blower Centrifugo para el Taller de Soldadura del Bloque H del Instituto Superior Tecnológico Vida Nueva. Repositorio Digital Tecnológico Superior Vida Nueva. http://dspace.istvidanueva.edu.ec/handle/123456789/219

Martínez Vargas, J. D. (2022). Análisis y evaluación de los factores de riesgos laborales en el

área operativa de la Empresa Construrom S.A. con propuesta de mejora. Repositorio

Universidad de Guayaquil. http://repositorio.ug.edu.ec/handle/redug/64246

Mayorga Chávez, R. G. (2022). Propuesta de medidas preventivas y correctivas para disminuir el riesgo de material particulado en los talleres académicos de soldadura del

Instituto Superior Tecnológico Tsáchila. Escuela Politécnica Nacional de Ecuador.

https://bibdigital.epn.edu.ec/bitstream/15000/23252/1/CD%2012667.pdf

Merlin Bedoya, P. R. (2020). Diseño de un plan de mantenimiento centrado en confiabilidad (RCM) en una empresa camaronera del Cantón Durán. Universidad de Guayaquil.

http://repositorio.ug.edu.ec/bitstream/redug/51273/1/4.%20DISE%C3%91O%20DE%20UN
%20PLAN%20DE%20MANTENIMIENTO%20CENTRADO%20EN%20CONFIABILIDA
D%20%28RCM%29%20EN%20UNA%20EMPRESA%20CAMARONERA%20D.pdf

Muñoz-Farfán, R. F., Hernández-Solís, A. A., Macías-Zambrano, T. Y., Chinga-Muentes I, E. I., & Mejía-Andrade, J. T. (2021). Sistema de extracción de humos de soldadura en la industria. *Dominio de la ciencia*, 7(4), 2032-2044.

https://dialnet.unirioja.es/servlet/articulo?codigo=8383967

Nikolov Terziev, V. (2020). Estudio de la aplicación del Kamishibai en la industria de estampación y soldadura. UPCommons. http://hdl.handle.net/2117/345169

Orrala Hernández, D. A., & Gutiérrez Barzola, C. X. (2020). *Propuesta para el diseño de un sistema de gestión de seguridad y salud ocupacional (Normas ISO 45001) para una empresa camaronera*. Repositorio Institucional de la Universidad Politécnica Salesiana. Retrieved 2020, from https://dspace.ups.edu.ec/bitstream/123456789/18464/1/UPS-GT002913.pdf

Rodríguez Crespo, G., Chiriboga Calderón, F. G., & Lojan Feijoo, A. C. (2016). Las camaroneras ecuatorianas: una polemica medio ambiental. *Universidad y Sociedad*, 8(3). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202016000300020

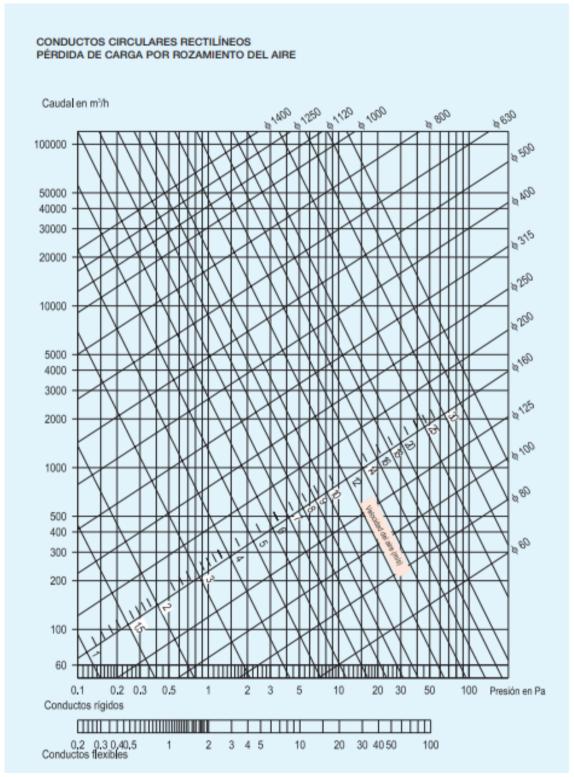
Valencia Arias, C. A. (2022). *Diseño de extractor de humos de soldadura en la planta Renault Sofasa*. Repositorio Institucional Universidad de Antioquia.

https://bibliotecadigital.udea.edu.co/bitstream/10495/31617/7/ValenciaCarlos_2022_Extractor_ HumosSoldadura.pdf

Velásquez Martínez, E. G. (2019). *Diseño de un extractor de particulas de plomo en un sistema de fundición artesanal*. Repositorio Universidad de San Carlos de Guatemala. https://core.ac.uk/download/pdf/326018415.pdf

Villanueva Condori, D. I. (2020). Implementación de dispositivo extractor de polo para mantenimiento eléctrico de motor anular gmd de los molinos de bolas C2 sociedad minera Cerro Verde. Repositorio Institucional de la UNSA. http://hdl.handle.net/20.500.12773/12987 Zapata Álvarez, S. A., Bautista Ávila, D., Laguna Acosta, C. P., Rojas Valderrama, P. P., Rincón Rojas, Y. A., & Contreras Pacheco, F. (2021). Efectos adversos por el uso de sustancias químicas en la salud de los trabajadores de la industria de la construcción. Rev Investig Salud Univ Boyacá, 8(2).

https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/644/649


Echeverri Londoño, C. A. (2011). *Ventilación industrial*. Ediciones de la U. https://bibliotecas.ups.edu.ec:3488/es/ereader/bibliotecaups/70982?page=33

American Welding Society AWS (2018). F3.2. Guía de ventilación para humos de soldadura, 2da edición.

American Welding Society AWS (2020) A3.0 Definiciones y términos estandar de las soldaduras incluidos los términos para junta adhesiva, soldadura fuerte, soldadura blanda, corte térmico y termorrociado. 13ra edición.

ANEXOS

Anexo 1 Pérdida de carga por rozamiento de aire

Fuente: Manual de ventilación