

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA CARRERA DE INGENIERÍA AUTOMOTRIZ

RESTAURACIÓN DEL BANCO DIDÁCTICO DE MEDICIÓN DE FUERZA DE PLATOS DE PRESIÓN DE EMBRAGUE DEL LABORATORIO DE TREN DE FUERZA MOTRIZ

Trabajo de titulación previo a la obtención del título de Ingeniero Automotriz

AUTORES: JUAN ESTEBAN CÁRDENAS CORDERO SANTIAGO NICOLÁS GUERRERO TORRES TUTOR: ING. JUAN PABLO SINCHI RIVAS, MSc.

> Cuenca - Ecuador 2023

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓN

Nosotros, Juan Esteban Cárdenas Cordero con documento de identificación N° 0106057490 y Santiago Nicolás Guerrero Torres con documento de identificación N° 0105242275; manifestamos que:

Somos los autores y responsables del presente trabajo; y, autorizamos a que sin fines de lucro la Universidad Politécnica Salesiana pueda usar, difundir, reproducir o publicar de manera total o parcial el presente trabajo de titulación.

Cuenca, 26 de julio del 2023

Atentamente,

Juan Esteban Cárdenas Cordero 0106057490

Sanfiag

Santiago Nicolás Guerrero Torres 0105242275

CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA

Nosotros, Juan Esteban Cárdenas Cordero con documento de identificación N° 0106057490 y Santiago Nicolás Guerrero Torres con documento de identificación N° 0105242275, expresamos nuestra voluntad y por medio del presente documento cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores del Proyecto técnico: "Restauración del banco didáctico de medición de fuerza de platos de presión de embrague del laboratorio de Tren de Fuerza Motriz", el cual ha sido desarrollado para optar por el título de: Ingeniero Automotriz, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En concordancia con lo manifestado, suscribimos este documento en el momento que hacemos la entrega del trabajo final en formato digital a la Biblioteca de la Universidad Politécnica Salesiana.

Cuenca, 26 de julio del 2023

Atentamente,

Juan Esteban Cárdenas Cordero 0106057490

Sanfiago

Santiago Nicolás Guerrero Torres 0105242275

CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN

Yo, Juan Pablo Sinchi Rivas con documento de identificación N° 0104168794, docente de la Universidad Politécnica Salesiana, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: RESTAURACIÓN DEL BANCO DIDÁCTICO DE MEDICIÓN DE FUERZA DE PLATOS DE PRESIÓN DE EMBRAGUE DEL LABORATORIO DE TREN DE FUERZA MOTRIZ, realizado por Juan Esteban Cárdenas Cordero con documento de identificación N° 0106057490 y por Santiago Nicolás Guerrero Torres con documento de identificación N° 0105242275, obteniendo como resultado final el trabajo de titulación bajo la opción Proyecto técnico que cumple con todos los requisitos determinados por la Universidad Politécnica Salesiana.

Cuenca, 26 de julio del 2023

Atentamente,

o flender

Ing. Juan Pablo Sinchi Rivas, MSc. 0104168794

DEDICATORIA

El presente proyecto le dedico a mi madre Blanca Leonor Cordero Condo por su apoyo incondicional en toda mi vida, por su paciencia, por toda su confianza, por haber creído en mí, por su sacrificio que hoy se ve reflejado en toda mi carrera

Así mismo se lo dedico a mis amigos y profesores que día a día me guiaron y acompañaron en un diario aprendizaje.

Juan Esteban Cardenas Cordero

DEDICATORIA

El presente proyecto quiero dedicarle a mi madre, Rosa Torres, que siempre busco la forma de ayudarme en y a mis tíos, Miguel Guerrero y Martha Barros que con su cariño lograron ser un pilar fundamental en mis logros alcanzados depositando su confianza en mi dándome la fuerza para alcanzar este logro profesional, sacrificando su tiempo y esfuerzo para que logre superar los obstáculos que se han presentado durante todo este recorrido.

Es por ello, que dedico todo el esfuerzo realizado a ellos ya que siempre supieron encontrar la forma adecuada de motivarme incluso cuando había alcanzado mis límites.

Santiago Nicolas Guerrero Torres

AGRADECIMIENTO

Primeramente, a Dios por no haberme ayudado a superar cada obstáculo presentado a lo largo de los años de estudio, por darme las fuerzas necesarias para continuar con este proyecto de investigación, a mi madre por haberme obsequiado este regalo como es el estudio. Agradezco a mis compañeros, amigos y profesores que me ayudaron en el desarrollo de mi proyecto de investigación.

A nuestro tutor Ing. Juan Sinchi por su asesoría y disposición, quien que con sus conocimientos y apoyo nos guio durante cada una de las etapas de este proyecto

Juan Esteban Cardenas Cordero

AGRADECIMIENTO

Agradezco a Dios en primer lugar que me permitió llegar a este momento, a mis padres que, por apoyarme en cada instancia de este recorrido académico, a mis tíos que siempre buscaron la forma de ayudarme en todo lo posible y no permitirme que deje de lado todo el esfuerzo echo durante todo este camino y poder culminar de la mejor manera el aprendizaje adquirido.

A mis docentes que a lo largo de la carrera supieron compartir sus conocimientos de la mejor manera ya que siempre buscaron que logre aprender de la mejor manera y por último a mis compañeros que en momentos complicados siempre buscaron apoyarme incondicionalmente que a lo largo logramos formar lazos de amistad solidos que espero y duren durante un largo tiempo.

Santiago Nicolas Guerrero Torres

RESUMEN

El presente proyecto tiene la finalidad de restaurar el banco didáctico de medición de fuerza de platos de presión de embrague del laboratorio de tren de fuerza motriz de la carrera de Ingeniería Automotriz de la Universidad Politécnica Salesiana sede Cuenca el cual tiene como función mejorar la enseñanza y el aprendizaje para hacerlo de una forma más didáctica, para lo cual, se establece un proceso de restauración el cual consta de tres partes.

En primer lugar, se realiza una revisión bibliográfica la cual permite establecer los componentes que constituyen un sistema de embrague, así como, los que forman parte del banco de pruebas y establecer su principio de funcionamiento, por último, se detallan diversas averías y comprobaciones que se deben realizar en los componentes del sistema de embrague.

La segunda parte consta del proceso de restauración en la cual se realiza un análisis estructural para verificar el estado del banco y proceder con la implementación y renovación de los elementos y componentes, además, se realiza la implementación de un nuevo ordenador el cual consta con una versión actualizada del software en su interfaz con la finalidad de mejorar la maniobrabilidad al operar el banco y lograr visualizar los resultados de cada prueba de una mejor manera.

La última parte consta de una serie de pruebas realizadas en el banco que permiten comprobar la funcionalidad de la parte estructural, así como de la informática.

Palabras clave: Banco didáctico, Embrague, Platos de presión, Restauración, Tren de fuerza, Volante de inercia.

ABSTRAC

The purpose of this project was to restore the clutch pressure plate force measurement didactic bench of the power train laboratory of the Automotive Engineering course at the Salesian Polytechnic University of Cuenca, whose function is to improve teaching and learning in a more didactic way, for which a restoration process is established which consists of three parts.

First, a bibliographic review is carried out, which allows establishing the components that make up a clutch system, as well as those that are part of the test bench and establish its principle of operation, finally, various breakdowns and checks to be performed on the components of the clutch system are detailed.

The second part consists of the restoration process in which a structural analysis is performed to verify the condition of the bench and proceed with the implementation and renovation of the elements and components, in addition, the implementation of a new computer is performed which consists of an updated version of the software interface in order to improve the maneuverability when operating the bench and to visualize the results of each test in a better way.

The last part consists of a series of tests carried out on the bench to check the functionality of the structural part, as well as the computer.

Keywords: Didactic bench, Clutch, Pressure plates, Restoration, Power train, Flywhee

DEDIC	ATOR	ΙΑ	V
DEDIC	ATOR	ΙΑ	VI
AGRAI	DECIM	IIENTO	VII
AGRAI	DECIM	IIENTO	VIII
RESUN	/IEN		IX
ABSTR	RAC		X
INDICI	E GENI	ERAL	1
INDICI	E DE FI	IGURAS	3
INDICI	E DE T	ABLAS	6
1. IN	NTROE	DUCCIÓN	7
2. P	ROBLI	EMA	8
2.1.	Ant	ecedentes	8
2.2.	Imp	oortancia y alcances	9
2.3.	Deli	imitación	9
3. O	BJETI	VOS	10
3.1.	Obj	etivo General	10
3.2.	Obj	etivos Específicos	10
4. C	APITU	ILO I. BANCO DE PRUEBAS DE PLATOS DE PRESIÓN	11
4.1.	Des	cripción de los componentes y partes del sistema de embrague	11
4.	1.1.	Disco de embrague	11
4.	1.2.	Volante motor o de inercia	12
4.	1.3.	Maza o plato de presión	13
4.	1.4.	Collarín de empuje	16
4.2.	Fun	cionamiento del embrague	16
4.3.	Tipo	os de embrague	17
4.4.	Acc	vionamientos del embrague	20
4.5.	Cálo	culos del embrague	22
4.6.	Des	cripción de los componentes y partes que constituyen el banco de prueba	s 28
4.	6.1.	Componentes neumáticos	
4.	6.2.	Componentes electrónicos	31

INDICE GENERAL

	4.7. Ave	rías, anomalías y comprobaciones en platos de presión de sistemas de	
	embragues		35
	4.7.1.	Averías	35
	4.7.2.	Anomalías en el conjunto del embrague	37
	4.7.3.	Comprobaciones	38
5.	CAPITU	LO II. REACONDICIONAMIENTO DEL BANCO DIDÁCTICO	O DE
M	EDICIÓN D	E FUERZA DE PLATOS DE PRESIÓN	40
	5.1. Rest	auración estructural	40
	5.1.1.	Descripción del estado inicial del banco de pruebas	40
	5.1.2.	Análisis estructural del banco de pruebas	40
	5.2. Eval	uación e identificación de daños estructurales del banco de pruebas	48
	5.2.1.	Metodología de reacondicionamiento	51
	5.2.2.	Descripción de procesos mecánicos	52
	5.2.3.	Pasos de restauración	57
	5.2.4.	Materiales, herramientas y equipos utilizados	62
	5.3. Soft	ware	65
	5.3.1.	Código del software del banco	65
	5.3.2.	Código nuevo del banco	72
6.	CAPITU	LO III. ANALISIS DE RESULTADOS DEL BANCO DE PRUEBAS	81
	6.1. Prue	bas de funcionamiento	81
	6.2. Met	odología de análisis	84
	6.3. Calc	ulo fuerza de apriete	84
	6.4. Plate	os de embrague nuevos	87
	6.5. Date	os obtenidos mediante el software	87
	6.6. Aná	lisis y comparación de resultados	89
	6.7. Guía	a de funcionamiento del banco	94
7.	CONCLU	JSIONES	91
8.	RECOM	ENDACION	92
9.	BIBLIO	GRAFÍA	93

INDICE DE FIGURAS

Figura	1 Ubicación del taller donde se reacondiciono el banco de pruebas9
Figura	2 Partes del sistema de embrague11
Figura	3 Componentes del disco de embrague12
Figura	4 Volante motor
Figura	5 Componentes del plato de presión de diafragma14
Figura	6 Plato de presión por muelles15
Figura	7 Plato de presión por diafragma15
Figura	8 Collarín de empuje con la horquilla de accionamiento16
Figura	9 Conjunto de embrague de fricción17
Figura	10 Embrague centrifugo18
Figura	11 Embrague electromagnético19
Figura	12 Funcionamiento del embrague hidráulico19
Figura	13 Accionamiento por varillaje20
Figura	14 Accionamiento por cable de acero21
Figura	15 Accionamiento hidráulico
Figura	16 Accionamiento automático22
Figura	17 Esquema del accionamiento por cable de un embrague de fricción
Figura	18 Esquema del accionamiento hidráulico de un embrague de fricción
Figura	19 Esquema neumático del cilindro neumático DNC-100.50-PPV-
163481	

Figura	20 Esquema neumático de la válvula reguladora de presión LR-3/8-
D-MINI	
Figura	21 Esquema neumático del regulador de caudal
Figura	22 Racores, conectores y cañerías
Figura	23 Silenciadores
Figura	24 Bobina de inducción eléctrica
Figura	25 Display
Figura	26 Sensor de desplazamiento lineal
Figura	27 Computador
Figura	28 Microcontrolador 18F2550
Figura	29 Datasheet microcontrolador 18F2550
Figura	30 Circuito electrónico de transmisión de datos
Figura	31 Mallado del análisis estructural41
Figura	32 Estado inicial de los componentes auxiliares del cilindro neumático
Figura	50 Nueva interfaz del programa del banco
Figura	51 Cambios agregados en la interfaz80
Figura	52 Primera prueba de funcionamiento tras la restauración del banco
Figura	53 Segunda prueba de funcionamiento
Figura	54 Display encerado
Figura	55 Platos de presión de embrague nuevos
Figura	56 Fuerza de apriete Hyundai Accent

Figura	57 Fuerza de apriete Cherry QQ
Figura	58 Fuerza de apriete Chevrolet Aveo Activo
Figura	59 Fuerza de apriete plato de presión a media vida Hyundai Accent 89
Figura	60 Fuerza de apriete en el plato de presión nuevo Hyundai Accent 90
Figura	61 Fuerza de apriete plato de presión a media vida Cherry QQ91
Figura	62 Fuerza de apriete en el plato de presión nuevo Cherry QQ92
Figura	63 Fuerza de apriete plato de presión a media vida Chevrolet Aveo
Activo	
Figura	64 Fuerza de apriete en el plato de presión nuevo Chevrolet Aveo
Activo	

INDICE DE TABLAS

Tabla 1 Coeficientes de adherencia según el tipo de superficie de contac	to23:
Tabla 2 Averías en el conjunto de embrague	35
Tabla 3 Anomalías en el conjunto de embrague	37
Tabla 4 Comprobaciones del conjunto de embrague	38
Tabla 5 Resultados de la deformación máxima del banco	41
Tabla 6 Graficas de la deformación del banco	42
Tabla 7 Resultados del Stress equivalente del banco	43
Tabla 8 Graficas del Stress equivalente del banco	43
Tabla 9 Resultados del esfuerzo de Von-Mises del banco	45
Tabla 10 Graficas del esfuerzo de Von-Mises del banco	45
Tabla 11 Resultados del factor de seguridad del banco	47
Tabla 12 Graficas del factor de seguridad del banco	47
Tabla 13 Proceso de restauración del banco	57
Tabla 14 Valores de tolerancia del Display	82
Tabla 15 Resultados de la fuerza de apriete	93

1. INTRODUCCIÓN

El presente proyecto se enfoca en la restauración y actualización del banco didáctico de medición de fuerza de platos de presión de embrague, asegurando su óptimo funcionamiento, para lo cual, se establecen las características funcionales requeridas para el banco con el respaldo de una revisión bibliográfica que permita realizar un estudio, para que el banco cumpla con los estándares requeridos para la enseñanza-aprendizaje de estudiantes como maestros de la carrera de Ingeniería Automotriz de la Universidad Politécnica Salesiana Sede Cuenca.

Dentro de la restauración es necesarios establecer los parámetros de funcionamiento y rendimiento con el fin de verificar el estado de la estructura, así como, del circuito con el fin de realizar las reparaciones pertinentes para finalmente realizar pruebas de funcionamiento que permitan validar el correcto desempeño del banco.

2. PROBLEMA

El banco didáctico de medición de fuerza de platos de presión de embrague que posee la Universidad Politécnica Salesiana sede Cuenca se encuentra obsoleto debido a fallas mecánicas y analógicas, estas fallas se generaron por falta de mantenimiento y su utilización, esto ha provocado limitaciones en el uso de material didáctico en el desarrollo de diferentes investigaciones y pruebas.

A esto se le suma, una base de datos desactualizada y un equipo obsoleto, que restringe el uso del banco de pruebas además de limitar el desarrollo de las diferentes comprobaciones en platos de presión de embrague.

2.1. Antecedentes

La presente investigación se enfocará en el reacondicionamiento del banco didáctico de medición de fuerza de platos de presión de embrague, partiendo desde el Objetivo de Desarrollo Sostenible 4 (Educación de Calidad), el cual establece que las instituciones educativas cuenten con instalaciones que les permita adquirir conocimientos teóricos y prácticos, por lo tanto, es indispensable que los equipos que posee la universidad para realizar diferentes pruebas e investigaciones, se encuentren en las mejores condiciones de funcionamiento, de esta forma cumpliendo con los resultados de aprendizaje establecidos en las diferentes asignaturas (Tren de Fuerza Motriz) y garantizando la obtención de datos reales que nos ayuden a determinar el estado de funcionamiento de los platos de presión del embrague, consecuentemente estimar el tiempo restante de vida útil del mismo con esto se contribuirá a realizar un diagnóstico objetivo.

2.2. Importancia y alcances

El presente proyecto va dirigido para los estudiantes de la Carrera de Ingeniería Automotriz de la Universidad Politécnica Salesiana, que requieran utilizar el banco de pruebas que se encuentra en el laboratorio de Tren de Fuerza.

2.3. Delimitación

El presente proyecto, se llevará a cabo en la Provincia del Azuay, Ciudad de Cuenca, ubicada al sur del Ecuador, la cual tiene una altitud de 2500 m.s.n.m, una extensión de 70.59 Km² y una población aproximada de 580000 habitantes.

Figura 1

Ubicación del taller donde se reacondiciono el banco de pruebas

3. OBJETIVOS

3.1. Objetivo General

Restaurar del banco didáctico de medición de fuerza de platos de presión de embrague del laboratorio de tren de fuerza motriz de la carrera de Ingeniería Automotriz de la sede Cuenca.

3.2. Objetivos Específicos

- Realizar un marco teórico mediante una revisión bibliográfica para su determinación de las características funcionales del banco didáctico de medición de fuerza de platos de presión del embrague.
- Realizar el reacondicionamiento del banco didáctico de medición de fuerza de platos de presión para volverlo operativo.
- Desarrollar pruebas de funcionamiento en diferentes platos de presión.

4. CAPITULO I. BANCO DE PRUEBAS DE PLATOS DE PRESIÓN

4.1. Descripción de los componentes y partes del sistema de embrague

El sistema de embrague (Fig. 2) tiene como misión interrumpir la transmisión del movimiento dirigido desde el motor de combustión hacia la caja de cambios, terminando en el sistema diferencial del vehículo. El sistema de embrague está constituido por los siguientes elementos.

Figura 2

Partes del sistema de embrague

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.12), por J. C. Borja, J. Fenoll, J. S. Herrera, 2013, MACMILLAN.

4.1.1. Disco de embrague.

Es el elemento de fricción del sistema, transmite el par y potencia; el que inicia desde el motor de combustión, pasa a la caja de cambios y termina en el sistema de transmisión, por lo cual, posee un alto coeficiente de rozamiento.

La geometría del disco de embrague es circular y su composición es la siguiente (Fig. 3):

- Forros de fricción (1): Son los elementos de fricción. Son dos: el uno hace contacto con maza de presión y el otro con el volante motor.
- Alma o núcleo (2): Encargado de brindar rigidez mecánica al disco de embrague.

- **Muelles (3):** Tiene la misión de absorber las vibraciones transversales y longitudinales que se generan cuando se embraga o desembraga.
- Forros (4): Compensa la diferencia de revoluciones entre el motor y la caja de cambios, logrando transmitir el par motor.
- Manguito estriado (5): Conecta el eje primario de la caja de cambios con el sistema de embrague.

Componentes del disco de embrague

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.12), por J. C. Borja, J. Fenoll, J. S. Herrera, 2013, MACMILLAN.

4.1.2. Volante motor o de inercia

Elimina desequilibrios del motor para mejorar el funcionamiento del mismo. Este elemento (Fig. 4) pertenece al motor, sin embargo, se le considera parte del sistema de embrague debido a que en el fricciona él disco de embrague.

Volante motor

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.13), por J. C. Borja, J. Fenoll, J. S. Herrera, 2013, MACMILLAN.

4.1.3. Maza o plato de presión

Presiona el disco de embrague contra el volante motor, logrando transmitir el movimiento del motor a la caja de cambios.

Sus componentes son los siguientes:

- Carcasa de embrague (Fig. 5): Es la encargada de rodear y cubrir el muelle de diafragma y la placa de apriete (a).
- Placa de apriete (Fig. 5): Su función es unir la carcasa a la placa de apriete mediante muelles laminados tangenciales (b)
- Muelle de diafragma (Fig. 5): Disminuye las fuerzas ejercidas sobre el pedal de embrague manteniendo un funcionamiento lineal (c).

- Muelle laminado tangencial (Fig. 5): Su función es transmitir el par motor de la carcasa hacia la placa de apriete, también cumple la función de elevar la plaza de apriete al desembragar (d).
- Taladrado de centrado (Fig. 5): Son agujeros situados en los extremos de la carcasa que tiene la finalidad de asegurarse que el plato de presión sea colocado de forma correcta (e).

Componentes del plato de presión de diafragma

Su clasificación es la siguiente:

Por muelles (Fig. 6): Este plato de presión está compuesto entre 6 y 8 muelles de presión y 3 palancas de accionamiento que se encuentran ubicadas a 120 grados cada una. Actualmente, se emplean únicamente en sistemas de embrague de maquinaria pesada. **Figura 6** *Plato de presión por muelles*

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.13), por J. C. Borja, J. Fenoll, J. S. Herrera, 2013, MACMILLAN.

- Por diafragma (Fig. 7): Se basa en un disco de acero en forma de cono que posee un resorte elástico, el cual ejerce presión sobre la maza. Posee las siguientes ventajas:
 - La presión se ejerce de forma uniforme en toda la superficie del disco.
 - Accionamiento suave y progresivo.

Figura 7

Plato de presión por diafragma

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.13), por J. C. Borja, J. Fenoll, J. S. Herrera, 2013, MACMILLAN.

4.1.4. Collarín de empuje

Rodamiento que empuja o acciona el plato de presión, logrando el acople y desacople del disco de embrague.

La horquilla (Fig. 8) de mando es la encargada de accionar el collarín de empuje (Fig. 8). Los accionamientos del collarín pueden ser mecánico, por cable o hidráulico.

Figura 8

Collarín de empuje con la horquilla de accionamiento

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.13), por J. C. Borja, J. Fenoll, J. S. Herrera, 2013, MACMILLAN.

4.2. Funcionamiento del embrague

El mecanismo de embrague es el encargado de interrumpir o permitir el paso de la energía mecánica desde el motor hacia la caja de cambios; a voluntad del conductor (en el caso de embragues manuales) o automáticamente (en el caso de embragues automáticos). Por la misión que desempeña dentro de la cadena cinemática, el conjunto de embrague está sujeto a las mayores exigencias en su funcionamiento, puesto que está directamente relacionado con las prestaciones de los automóviles.

4.3. Tipos de embrague

- Fricción: Sistema más utilizado por los fabricantes de automóviles. Su proceso de transmisión de par depende de las cualidades del material de fricción de los discos. Las principales características del disco de embrague de fricción (Fig. 9) deben ser:
 - Alto coeficiente de fricción,
 - Capacidad para resistir el desgaste,
 - Resistencia a las condiciones de usos,
 - Propiedades térmicas altas,
 - Soportar elevadas presiones de contacto,
 - Resistencia a los esfuerzos cortantes,
 - Elevada durabilidad y,
 - Características respetuosas con el medio ambiente.

Figura 9

Conjunto de embrague de fricción

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.7), por E. A. Casado, J. M. Navarro, T. G. Morales, 2011, Paraninfo.

 Centrífugos: Este embrague (Fig. 10) realiza las operaciones de embrague y desembrague automáticamente. Consta de contrapesos que, cuando el motor alcanza un determinado régimen de giro, actúa la fuerza centrífuga provocando que las palancas que están unidas a ellos basculen presionando el tambor de embrague, consiguiendo así el embragado.

Figura 10

Embrague centrifugo

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.36), por E. A. Casado, J. M. Navarro, T. G. Morales, 2011, Paraninfo.

Electromagnéticos: Este embrague (Fig. 11) aprovecha las características de los campos magnéticos para desarrollar su funcionamiento. Utiliza partículas metálicas, que en el momento que se activa un campo magnético, las mismas transmiten el movimiento del motor.

Embrague electromagnético

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.37), por E. A. Casado, J. M. Navarro, T. G. Morales, 2011, Paraninfo.

• **Hidráulicos:** Utiliza la fuerza centrífuga del aceite para transmitir energía desde el motor a la caja de cambios. Este embrague (Fig. 12) se emplea en vehículos con caja de cambios automática y su funciona como un embrague automático.

Figura 12

Funcionamiento del embrague hidráulico

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.38), por E. A. Casado, J. M. Navarro, T. G. Morales, 2011, Paraninfo.

4.4. Accionamientos del embrague

El mando de accionamiento de un embrague de fricción está conformado por los elementos del pedal de embrague situados dentro del habitáculo hasta la horquilla de mando del embrague.

Accionamiento por varillaje: En este accionamiento (Fig. 13) la fuerza que se ejerce sobre el pedal se transmite hasta la horquilla mediante un conjunto de varillas.

Figura 13

Accionamiento por varillaje

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.29), por E. A. Casado, J. M. Navarro, T. G. Morales, 2011, Paraninfo.

Accionamiento por cable de acero: Este sistema (Fig. 14) está conformado por un cable de acero recubierto por una funda plástica. Su mayor inconveniente es el destensado del cable, producido por el desgaste del disco de embrague por su normal funcionamiento.

Accionamiento por cable de acero

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.30), por E. A. Casado, J. M. Navarro, T. G. Morales, 2011, Paraninfo.

Accionamiento hidráulico: Este accionamiento (Fig. 15) ofrece un buen tacto del pedal, por lo tanto, aumenta la fiabilidad del sistema. Dispone de un depósito líquido independiente o compartido con el depósito de líquido de frenos conectado por tuberías flexibles. Este sistema es autorregulable por lo cual posee un mayor grado de fiabilidad.


```
Accionamiento hidráulico
```


Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.31), por E. A. Casado, J. M. Navarro, T. G. Morales, 2011, Paraninfo.

Accionamiento automático: Este sistema (Fig. 16) funciona conjuntamente con la unidad de control electrónica, cuando el conductor desea cambiar de velocidad, un sensor situado en la palanca de cambios conjuntamente con una serie de sensores que interpretan las intenciones del conductor, envían señales eléctricas a un elemento actuador que acciona el collarín contra el diafragma de la maza realizando el desembrague.

Figura 16

Accionamiento automático

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.33), por E. A. Casado, J. M. Navarro, T. G. Morales, 2011, Paraninfo.

4.5. Cálculos del embrague

• **Coeficiente de adherencia:** Este valor es directamente proporcional del material utilizado en las superficies de contacto.

Tabla 1

Coeficientes de adherencia según el tipo de superficie de contacto

Material	Coeficiente de rozamiento
Acero	0,15-0,20
Amianto	0,30-0,60
Fieltro	0,22
Grafito	0,25
Metal sinterizado	0,40-0,50
Kevlar	0,40-0,60
Material carbocerámico	0,30-0,45

• **Presión superficial:** Presión que pueden soportar los materiales con los que se fabrican los forros de los discos. Normalmente, es un dato que los fabricantes brindan y el mismo indica la carga que deben soportar los forros del disco.

$$\boldsymbol{\rho} = \frac{F_c}{S}$$

Donde:

 $F_c = Fuerza.$

S = Superficie.

• **Par motor:** El par motor es el momento de fuerza que ejerce un motor sobre el eje de transmisión de potencia. Este dato nos ayuda a conocer los esfuerzos que debe soportar el embrague.

$$\boldsymbol{M} = 716 \frac{W}{n}$$

Donde:

M = Par motor.

 $W = Potencia \ al \ freno.$

n = r. p. m. del motor.

• Fuerza de rozamiento:

$$\boldsymbol{R} = \pi \cdot \rho \cdot \mu \cdot (R^2 - r^2)$$

Donde:

 $\rho = Presión superficial.$

 $\mu = coeficiente de rozamiento del disco.$

 $R = radio \ exterior \ del \ forro.$

r = radio interior del forro.

• Fuerza de transmisión:

$$F_t = F_a \cdot \mu \cdot n$$

Donde:

 $F_a = Fuerza \ de \ apriete.$

 μ = Coeficiente de rozamiento.

n = Número de caras o superficies.

• Fuerza de apriete

$$\boldsymbol{F_a} = \boldsymbol{\rho} \cdot \boldsymbol{\mu} \cdot \boldsymbol{A}$$

Donde:

 $\rho = Presión \ superficial.$

 μ = Coeficiente de rozamiento.

n = Número de caras o superficies.

• Par de giro transmisible:

$$\boldsymbol{M} = F_t \cdot R_m \cdot \mu \cdot F_a$$

Donde:

 $F_t =$ Fuerza de transmisión. $R_m =$ Radio medio. $\mu =$ Coeficiente de rozamiento. $F_a =$ Fuerza de apriete.

• Cálculo de la fuerza generada en un conjunto de embrague por cable Ley de la palanca

$$F_2 = \frac{d_1 \cdot F_1}{d_2}$$
$$F_4 = \frac{d_3 \cdot F_3}{d_4}$$
$$F_2 = F_3$$

Donde:

 $F_1 = Fuerza \ ejercida \ en \ el \ pedal.$

 $F_2 y F_3 = Fuerza que llega al conjunto de embrague.$

 $F_4 = Fuerza de empuje de la horquilla hacia el collarín.$

 $d_1 = Distancia del pedal al punto de apoyo.$

 d_2 = Distancia del punto de apoyo hacia el extremo superior.

 $d_3 = Distancia del extremo de la horquilla hacia el punto de apoyo.$

 d_4 = Distancia del punto de apoyo hacia el extremo inferior.

Caso práctico

Calcular la fuerza que llega a un conjunto de embrague accionado por cable (Fig. 17) al pisar el pedal con una fuerza de 80 N, teniendo en cuenta que las medidas son: 140 mm del pedal al punto de apoyo, 40 mm de este al otro extremo, 50 mm del primer extremo de la horquilla a su punto de apoyo y 15 mm del punto de apoyo al otro extremo.

Figura 17

Esquema del accionamiento por cable de un embrague de fricción

Nota. Tomado de Sistemas de Transmisión y Frenado (p.16), por J. C. Borja, J. Fenoll, J. S. Herrera, 2013, MACMILLAN.

Datos:
$F_1 = 80 N$
$F_{2} = F_{3}$
$d_1 = 140 \ mm$
$d_2 = 40 mm$
$d_3 = 50 mm$
$d_4 = 15 mm$
$F_2 = \frac{140 \ mm \cdot 80 \ N}{40 \ mm} = 280 \ N$

Resolución
$$F_4 = \frac{50 \ mm \cdot 280 \ N}{15 \ mm} = 933, 32 \ N$$

• Cálculo de la fuerza generada en un mando de accionamiento hidráulico

$$\boldsymbol{F_2} = \frac{F_1}{A_1} \cdot A_2$$

Donde:

 $F_1 = Fuerza en el pedal.$

 $F_2 = Fuerza final de la presión hidráulica.$

 $A_1 =$ Área del pistón emisor.

 $A_2 =$ Área del pistón receptor.

Caso práctico

Calcular la presión producida en el mando de accionamiento hidráulico (Fig. 18) de un embrague con un pistón emisor de 10 mm de diámetro y un pistón receptor de 30 mm de diámetro al pisar el pedal con una fuerza de 80 N.

Figura 18

Esquema del accionamiento hidráulico de un embrague de fricción

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.17), por J. C. Borja, J. Fenoll, J. S. Herrera, 2013, MACMILLAN.

Resolución

Datos: $F_1 = 80 N$ $d_1 = 10 mm$ $d_2 = 30 mm$ $A_1 = \pi \cdot \left(\frac{10}{2}\right)^2 = 3,14 \cdot 25 = 78,5 mm^2$ $A_2 = \pi \cdot \left(\frac{30}{2}\right)^2 = 3,14 \cdot 225 = 706,5 mm^2$ $F_2 = \frac{80 N}{78.5 mm^2} \cdot 706,5 mm^2 = 720,5 N$

4.6. Descripción de los componentes y partes que constituyen el banco de pruebas

4.6.1. Componentes neumáticos

4.6.1.1. Cilindro neumático DNC-100.50-PPV-163481

Elemento (Fig. 19) encargado de generar la presión necesaria para el desplazamiento del diafragma que poseen los diversos platos de presión, esto se realiza mediante un doble efecto provocado por el elemento, ocasionando que sea capaz de ejercer presión y de generar tracción simultáneamente en caso de que se requiera.

Figura 19

Esquema neumático del cilindro neumático DNC-100.50-PPV-163481

4.6.1.2. Válvula reguladora de presión LR-3/8-D-MINI

Dispositivo (Fig. 20) de calibración encargado de regular la presión de aire que ingresa al cilindro, mediante el cual se puede establecer diversas fuerzas a ejercer sobre los diafragmas de los diversos platos de presión.

Figura 20

Esquema neumático de la válvula reguladora de presión LR-3/8-D-MINI

4.6.1.3. Regulador de caudal

Este elemento (Fig. 21) permite obtener un contacto progresivo a través de la superficie del diafragma mediante la regulación de la velocidad de avance y retroceso del vástago del cilindro neumático.

Figura 21

Esquema neumático del regulador de caudal

4.6.1.4. Racores, conectores y cañerías

Forman parte del sistema auxiliar (Fig. 22) que permiten conectar todos los elementos del sistema neumático evitando que se generen fugan en el sistema o a su vez asegurarse de que no existan perdidas de presión en el mismo.

Figura 22

Racores, conectores y cañerías

4.6.1.5. Bobina de inducción eléctrica

Su función es permitir la activación del cilindro neumático induciendo la corriente eléctrica necesaria para que pueda realizar su trabajo.

4.6.1.6. Silenciadores

Evitan la disipación del ruido causado por el cilindro al generarse una descarga de aire durante

su funcionamiento. (Fig. 23)

Silenciadores

4.6.2. Componentes electrónicos

4.6.2.1. Celda de carga

Este elemento se encarga de transmitir la fuerza generada al ser presionado el cilindro neumático hacia el indicador digital, permitiendo visualizar los datos obtenidos durante la medición de fuerza para la verificación del estado del plato de presión. (Fig. 24)

Figura 24

Bobina de inducción eléctrica

4.6.2.2. Display

Encargado del procesamiento de datos generados en la celda de carga para permitir la visualización en forma numérica conjuntamente integrado con un módulo, lo que establece un grado de precisión de $\pm 0.03\%$. (Fig. 25)

Figura 25

Display

Nota. Adaptado de *8B EL OCTAVO BIT* [Fotografía], 2023, (https://eloctavobit.com/arduino/conexion-display-4-digitos-7-segmentos-con-arduino/)

4.6.2.3. Sensor de desplazamiento lineal

Este elemento (Fig. 26) es accionado por un potenciómetro lineal, el cual varía su resistencia a través de un microcontrolador con la finalidad de medir el desplazamiento del diafragma y compararlo con la base de datos almacenada en un computador.

Figura 26 Sensor de desplazamiento lineal

4.6.2.4. Computador

Este dispositivo (Fig. 27) consta con un software encargado de realizar el análisis de los resultados obtenidos durante la medición a través de los datos brindados por los sensores, permitiendo realizar un análisis con los datos almacenados en la base de datos de los diversos platos de presión que varían según sus dimensiones.

Figura 27

Computador

4.6.2.5. Microcontrolador 18F2550

Es el encargado de almacenar, procesar y comandar los elementos de control como la electroválvula y el sensor linear, permitiendo que permanezcan en comunicación con el software del banco de pruebas. (Fig. 28)

Figura 28

Microcontrolador 18F2550

Figura 29

Datasheet microcontrolador 18F2550

Nota. Adaptado de ALLDATASHEET [Fotografía],

(https://www.alldatasheet.com/view.jsp?Searchword=Pic18f2550%20datasheet&gclid=CjwKCAjw5MOlBhB TEiwAAJ8e1uHS3arvghEYCZhUGm5FJu0QeimwZ2NuibnGwT-D2IljJ-xeClgfzxoC6V4QAvD_BwE)

4.6.2.6. Circuito electrónico de transmisión de datos

Este circuito (Fig. 30) se encarga de amplificar las señales generadas en el sensor de desplazamiento lineal y enviarlas hacia el software del sistema para su posterior visualización.

Figura 30

Circuito electrónico de transmisión de datos

4.7. Averías, anomalías y comprobaciones en platos de presión de sistemas de embragues

4.7.1. Averías

Tabla 2

Averías en el conjunto de embrague

Avería	Causas
El embrague patina	 Valores de fricción bajos, debido a desgaste en el disco de embrague o a su vez el disco se encuentra engrasado debido a fugas en el retén del cigüeñal o del eje primario de la caja de cambios. También influye el estado del volante motor, del plato de presión y del cojinete de empuje. Regulación incorrecta del pedal de embrague. Fuerza de presión muy baja, este fallo se produce debido a que el plato de presión no ejerce la suficiente presión sobre el disco.
Vibraciones en marcha del vehículo	Bajos valores de fricción.

	 Giros irregulares del eje primario o del cigüeñal, a causa de desequilibrios en los mismos. Deformaciones en el plato de presión, lo que provoca que no asiente correctamente. Aumento irregular de la fuerza de presión. Disco de embrague engrasado.
Dureza del embrague	Este efecto está asociado a defectos en el sistema de accionamiento o por el desgaste del plato de presión, es necesario un esfuerzo mayor para accionar el pedal del embrague.
Ruidos en el embrague	 Defectos en los muelles del disco de embrague. Sistema de accionamiento defectuoso. Averías en el collarín de empuje, buje estriado o casquillo guía. Desgaste de las lengüetas del diafragma.
El embrague no libera	 Sistema de accionamiento con fallas. Mal ajuste o calibración inadecuada del sistema de accionamiento. Disco montado en la posición incorrecta, estriado del buje oxidado, forros rotos o sueltos, muelles rotos. Collarín agarrotado. Plato de presión roto o con fallas en sus componentes.
Las velocidades rascan al insertarlas con el vehículo parado	 ✓ El disco no libera. ✓ El eje primario no se detiene completamente. Este efecto normalmente lo produce el mal estado del casquillo guía del cigüeñal, que provoca que el eje primario no se pare totalmente nunca.

4.7.2. Anomalías en el conjunto del embrague

Tabla 3

Anomalías en el conjunto de embrague

Plato de presión roto, con gritas o huellas de calentamiento					
Se produce por un recalentamiento del plato de presión a causa de un patinaje prolongado.					
Lengüetas del diaf	ragma desgastadas				
Cuando el collarín de empuje se encuentra bloqueado o gira con dificultad, produce esta anomalía.					
Perfil de b	uje dañado				
Esta anomalía es provocada debido a un error de montaje, un disco no centrado durante el montaje o por un disco incorrecto.					
Soporte del forro roto					
Producido por una desalineación entre el motor y la caja de cambios, un mal montaje del embrague o un cojinete piloto del volante defectuoso.					
Forro quemado o desintegrado					
Se produce cuando existe un fallo o deterioro en el sistema de embrague o por forro enrasados.					
Rodamiento del collar	ín de empuje destruido				

Producido por sobrecalentamiento del collarín a causa de falta de juego en el mismo, produciendo perdida de grasa y agarrotamiento del mismo.	
Superficie del fo	orro carbonizada
Se produce debido a patinaje prolongado del embrague o forros engrasados.	
Muel	le roto
Consecuencia de un sistema de embrague defectuoso, excesivo calentamiento o forros engrasados.	

Nota. Tomado de *Sistemas de Transmisión y Frenado* (p.55–57), por E. A. Casado, J. M. Navarro, T. G. Morales, 2011, Paraninfo.

4.7.3. Comprobaciones

Tabla 4

Comprobaciones del conjunto de embrague

Comprobación	Ilustración
Comprobación del desgaste del disco, tomando como punto central la profundidad del remache de sujeción de los forros.	

5. CAPITULO II. REACONDICIONAMIENTO DEL BANCO DIDÁCTICO DE MEDICIÓN DE FUERZA DE PLATOS DE PRESIÓN

5.1. Restauración estructural

La restauración estructural del banco de pruebas se divide en dos partes, la primera es la implementación y reubicación de la zona de control del banco y la segunda es una restauración de los elementos físicos del banco.

5.1.1. Descripción del estado inicial del banco de pruebas

Inicialmente, el banco de pruebas se encontraba obsoleto y al desarrollar una práctica en el mismo, se tenía que trabajar en diferentes zonas, ya que sus componentes y reguladores estaban distribuidos en todo el banco. Además, las piezas que verifican el estado de los platos de embrague presentaban fallas por falta de mantenimiento y debido al uso del banco por varios años. Al realizar la práctica se obtenían resultados no fiables.

5.1.2. Análisis estructural del banco de pruebas

Mediante el análisis por medio de elementos finitos en el software ANSYS se desarrollaron simulaciones de funcionamiento del banco de pruebas aplicando diversas fuerzas para establecer los límites máximos y mínimos de operación del banco con base en los parámetros de funcionamiento del cilindro neumático considerando 8 bares como la carga máxima aplicable.

A continuación, se muestra el resultado del mallado (Fig. 31) generado en el software, el cual posee un 94% de efectividad en el análisis.

Mallado del análisis estructural

Smoothing	Low
Mesh Metric	Element Quality
Min	0,11925
Max	1,
Average	0,94173
Standard Deviation	0,12662

• Deformación máxima

Los resultados obtenidos durante la simulación permiten establecer la deformación de la estructura en donde está, empieza a ser considerable, sin embargo, debido a que los valores necesarios para la realización de pruebas, la deformación obtenida puede ser despreciable siempre, es decir, permanece dentro de los límites elásticos como se muestra en la Tabla 5.

Tabla 5

Resultados de la deformación máxima del banco

Fuerza (KN)	100	200	300	400	500	600	700	800
Deformación	2,0533	4,106	6,159	8,2132	10,26	12,32	14,37	16,42
(mm)))	-)	-) -	-) -)-)	-)

Tabla 6

Graficas de la deformación del banco

Fuerza aplicada (KN)	Grafica de la deformación
100 KN	B: Static Structural Total Deformation Type: Total Deformation Unit: mm Tirr/2023 836 2.0533 Max 1.8851 1.997 1.1407 0.91257 0.66443 0.45629 0.22814 0 Min
400 KN	B: Static Structural Total Deformation Type: Total Deformation Unit: mm Time: 1 s 11/7/2023 9:11 8.2132 Max 7,3006 6,388 5,4754 4,5629 3,6503 2,7377 1,8251 0,91257 0 Min
800 KN	B: Static Structural Total Deformation Type: Total Deformation Unit: mm Time: 1 s 11/7/2023 9:32 16.426 Max 14,601 12,776 10,951 9,1257 7,3006 5,4754 3,6503 1,8251 0 Min

• Stress equivalente

El Stress equivalente representa los lugares donde se producen las mayores tensiones en la estructura, por lo tanto, se puede observar que a medida que aumenta la fuerza aplicada los extremos son las superficies en las cuales se debe presentar especial atención, sin embargo, los valores obtenidos en la simulación no tienen influencia importante en el comportamiento de la estructura del banco de pruebas siempre y cuando no se supere los límites establecidos en la Tabla 7.

Tabla 7

Resultados del Stress equivalente del banco

Fuerza (KN)	100	200	300	400	500	600	700	800
Stress equivalente (mm/mm)	9,85x10 ⁻⁴	1,97x10 ⁻³	2,95x10 ⁻³	3,94x10 ⁻³	4,92x10 ⁻³	5,91x10 ⁻³	6,9x10 ⁻⁴	7,8x10 ⁻³

Tabla 8

Graficas del Stress equivalente del banco

Fuerza aplicada (KN)	Grafica del Stress equivalente
100 KN	B: Static Structural Equivalent Elastic Strain Type: Equivalent Elastic Strain Unit: mm/mm Time: 1 s 11/7/2023 8:49 0,00098578 Max 0,00085725 0,00076671 0,00054765 0,00043812 0,00021906 0,00010953 7,2949e-10 Min

• Esfuerzo de Von-Mises

Este valor representa la resistencia la cual soportara la estructura al estar sometido a una carga, por lo tanto, al analizar se aprecian que el valor máximo se encuentra en los extremos, siendo este valor completamente normal a la reacción que genera el cilindro neumático durante la presión generada, sin embargo, es importante mencionar que mientras mayor sea la fuerza aplicada la resistencia de la estructura disminuirá considerablemente, aunque, es importante mencionar que durante los valores normales de funcionamiento la estructura no sufre afecciones considerables,

como se muestra en la Tabla 9.

Tabla 9

Resultados del esfuerzo de Von-Mises del banco

Fuerza (KN)	100	200	300	400	500	600	700	800
Equivalente de Von- Mises (MPa)	182,26	364,52	546,79	729,05	911,31	1093,6	1275,8	1458,1

Tabla 10

Graficas del esfuerzo de Von-Mises del banco

Fuerza aplicada (KN)	Grafica del esfuerzo de Von-Mises
100 KN	B: Static Structural Equivalent Stress Type: Equivalent (von-Mises) Unit: MPa Time: 1 s 11/7/2023 8:44 162,01 141,76 121,51 101,26 81,005 60,754 40,503 20,251 0,00014161 Min

• Factor de seguridad

Mediante el factor de seguridad podemos establecer la capacidad de resistencia que tendrá la estructura del banco al estar sometido a las cargas establecidas en la Tabla 5, mediante el análisis de elementos finitos podemos constatar que el valor obtenido se encuentra superior a 1 se puede decir, que la estructura cumple con los requerimientos que debe cumplir el banco de pruebas, sin embargo, existen cargas a las cuales el factor de seguridad empieza a disminuir a lo largo de la parte central, por lo tanto, es necesario precautelar mantenerlo a cargas normales.

Tabla 11

Pasultados	dal	factor	da	soguridad	dal	hanco
resultauos	uei	Juctor	ue	seguriaaa	uei	Dunco

Fuerza (KN)	100	200	300	400	500	600	700	800
Factor de seguridad máximo	15	15	15	15	15	15	15	15
Factor de seguridad mínimo	1,37	0,685	0,457	0,349	0,274	0,228	0,195	0,171

Tabla 12

Graficas del factor de seguridad del banco

Fuerza aplicada (KN)	Grafica del factor de seguridad
100 KN	B: Static Structural Safety Factor Type: Safety Factor Time: 1 11/7/2023 8:47 10 5 1,3717 Min 0

5.2. Evaluación e identificación de daños estructurales del banco de pruebas.

• **Componentes auxiliares del cilindro neumático:** Los componentes auxiliares del cilindro neumático (Fig. 32) se encontraban deteriorados debido al uso y falta de mantenimiento del banco.

Figura 32 *Estado inicial de los componentes auxiliares del cilindro neumático*

• **Base de la computadora:** La base de la computadora (Fig. 33) se encontraba soldada a un lado del banco, dificultaba el movimiento del mismo, además dejaba al ordenador a la intemperie sujeto a sufrir algún daño.

Figura 33

Estado inicial de la base de la computadora

• Mandos del banco: Los mandos del banco (Fig. 34) se encontraban distribuidos en diferentes zonas del mismo, lo que provocaba que el operario tenga que trabajar en diferentes zonas del banco a la vez.

Figura 34

Diferentes zonas de trabajo del banco

 Mallas protectoras del banco: Las mallas de protección (Fig. 35) de la zona de desarrollo de prueba en los platos de presión de embrague, dificultaban la correcta visualización de la misma.

Figura 35

Mallas protectoras

• **Pintura:** Tras pasar los años, la pintura del banco (Fig. 36) se ha deteriorado, dándole un mal aspecto al mismo.

Figura 36

Pintura del banco

• **Ruedas:** Las ruedas (Fig. 37) del banco se encontraban en mal estado, lo que dificultaba la movilización del banco.

Figura 37

Estado de las ruedas

5.2.1. Metodología de reacondicionamiento.

En el reacondicionamiento del banco se utilizaron diversos procesos, tales como: procesos de soldadura, corte, pulido, taladrado, doblado, repintado, procesos de mecanizado en el torno y proceso de corte CNC láser.

5.2.2. Descripción de procesos mecánicos

 Soldadura MIG: La soldadura MIG (Fig. 38) es un proceso en el cual se usa un arco eléctrico y un gas inerte para fundir y unir metales, mediante la alimentación continua de un alambre consumible.

Figura 38

Aplicación de soldadura MIG

 Proceso de corte: El corte es una técnica controlada de separación de materiales para obtener secciones específicas con precisión y eficiencia. (Fig. 39)

Figura 39

Aplicación del proceso de corte

 Proceso de pulido: Técnica que usa abrasivos para eliminar imperfecciones y obtener una superficie lisa, brillante y estéticamente agradable en diferentes materiales. (Fig. 40)

Figura 40

Aplicación del proceso de pulido

 Proceso de taladrado: Proceso de mecanizado que implica perforar agujeros en materiales usando una herramienta de corte giratoria llamada broca. (Fig. 41)

Figura 41

Aplicación del proceso de taladrado

 Proceso de doblado: Proceso de deformación en el cual se aplica fuerza para curvar o cambiar la forma de un material, generalmente láminas metálicas. (Fig. 42)

Aplicación del proceso de doblado

 Proceso de repintado: Proceso que involucra la aplicación de una nueva capa de pintura sobre una superficie previamente pintada. (Fig. 43)

Aplicación del proceso de repintado

Procesos de mecanizado en el torno: Proceso de fabricación en el cual se utiliza un torno, una máquina herramienta, para dar forma y crear piezas de trabajo cilíndricas. (Fig. 44)

Aplicación de procesos de mecanizado en el torno

 Proceso de corte CNC láser: Técnica de mecanizado que usa un rayo láser de alta potencia y precisión para cortar materiales diversos. (Fig. 45)

Figura 45

Aplicación del proceso de corte CNC láser

5.2.3. Pasos de restauración

Tabla 13

Proceso de restauración del banco

Pasos de restauración	Ilustración
Desconexión de la pantalla led y del manómetro.	
Corte del soporte de la computadora.	
Desconexión de los mandos internos del banco.	

Implementación del soporte para la pantalla LED y el manómetro.	
Creación del soporte móvil para la computadora.	
División de las mallas protectoras y el banco de pruebas.	
Adecuación de soportes metálicos para las micas protectoras.	

5.2.4. Materiales, herramientas y equipos utilizados

- Materiales
 - > Manómetro

Figura 46

Manómetros

➢ Ruedas

Figura 47

Rueda

> Micas
Micas grabadas

➢ Cerradura

Figura 49

Cerradura

- > Metales
- ➢ Pinturas
- > Disolvente

- ➢ Wipe
- Logos y señaléticas
- Cinta mástil
- > Periódico
- ➢ Cinta aislante
- Amarras plásticas

• Herramientas

- ✓ Brocas
- ✓ Machuelos
- ✓ Terrajas
- \checkmark Disco de corte
- ✓ Martillo
- ✓ Llaves y dados
- ✓ Cinceles
- ✓ Disco de pulir

• Equipos

- o Torno
- o Taladro neumático
- o Amoladora
- o Amoladora neumática
- o Compresor
- o Cafetera
- o Pulidora

o Soldadora

5.3. Software

En el software se realizaron los siguientes cambios:

- Migración del programa original de la computadora del banco de pruebas hacia el nuevo ordenador.
- Mejora del entorno gráfico. (Fig. 50)
- Ubicación del nombre del banco, logo de la universidad y unidades en las cuales se debe ingresar los datos de entrada de un nuevo modelo de plato de presión de embrague.

Figura 50

Nueva interfaz del programa del banco

		POLITÉCNICA SIANA ECUADOR	Ва	anco d	le pruebas p	ara platos de	embra	gues d	le fric	ción		
JERTO DE CO	MUNICACIONES	DATOS INGRES	0	BU	SQUEDAS						INGRESAR NUEVO DATO EN L	A BASE
SELECCIONE EL PUERTO Libras fuerza Valor en Newtons					SQUEDA POR N	IARCA BUSQU	EDA PO	R MODE	LO		Marca:	
\sim	CONECTAR	CALIBRE LA					diamotro	damatan	libras	^	Modelo:	
		VALVULA A	BARES		marca	modelo	interior	exterior	fuerza	_	Diafracma:	
ONTROL	VALVULA	DDUERA 1			CHEVROLET	Gran Vitara 2.5-2	145	224	515	- 1		
		FROEDAT	Valor en		CHEVROLET	Gran Vitara 2.7	150	225	497	-	Diametro interior:	ст
		Libras fuerza	Newtons		CHEVROLET	Vitara 3p	140	202	374	-	Diamata in	cm
RELE	TIEMPO[Seg]				CHEVROLET	Lux Dmax	140	217	405	- 1	Diametro exterior:	
		POPCENITACE			CHEVROLET	Lux diesel 2.5	150	225	497	- 1	Libras fuerza:	lbf
RELE	25	DE ERROR			CHEVROLET	Luv 2.2	150	215	419	-		
ON/OFF	 .				CHEVROLET	Luv 2000 y 2300	149	205	350	- 1	Precion en bares: 2.2	
		PRUEBA 2	Valor en		CHEVROLET	Luv 1500	170	300	863	- 1		
		Libras fuerza	Newtons		CHEVROLET	Blazer	165	301	895	-	GUARDAR	
					CHEVROLET	Cheyenne	165	301	895			
	OS	PORCENTAGE			CHEVROLET	San Remo 1.6	131	200	403			
		DE ERROR			CHEVROLET	Silverado	165	301	895			
TARE	mm	DIFERENCIA ENT	RE PRUEBAS	<	CHEVROLET	Swift	128	202	431	>		
Prueba1	Prueba2 mm	DIFERENCI	A NEWTONS								Activar Windows	

5.3.1. Código del software del banco

Al analizar el código, verificamos errores en el cálculo del valor de libras fuerza, resaltamos con fondo negro los errores encontrados en la codificación.

```
Imports System.IO.Ports
Imports System.Collections.Specialized
Public Class fuerzal
    Public graff As Graphics
    Friend xmax As Integer = 32
    Friend xmin As Double = -4
Friend ymax As Double = 26
Friend ymin As Double = -3
    Friend aux1 As Byte
    Friend auxrele As Byte
    Friend timex As Byte
    Friend releonoff As Byte
    Friend tare As Double
    Friend pruebax As Byte
    Friend adcxx As Integer
Dim strAux As String
    Dim aux2 As Double
    Dim aux As Double
    Dim aux3 As Double
    Private Sub fuerza1_FormClosing(ByVal sender As Object,
                                                                       ByVal e As
System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing
        If MSCOM.IsOpen Then
             MSCOM.close()
        End If
    End Sub
Private Sub fuerza1_Load(ByVal sender As System.Object,
System.EventArgs) Handles MyBase.Load
                                                                       ByVal
                                                                              e As
         'TODO:
                 esta línea de
                                       código
                                                                         la
                                                  carga
                                                           datos
                                                                    en
                                                                               tabla
'BD_Fuerza_de_los_embraguesDataSet.Tprincipal' Puede moverla o quitarla seqún
sea necesario.
Me.TprincipalTableAdapter.Fill(Me.BD_Fuerza_de_los_embraguesDataSet.Tprincipa
1)
        Timer1.Enabled = False
         Rele_time.Enabled = False
        GroupRele.Enabled = False
        Groupinput.Enabled = False
        GroupDatos Enabled = False
        aux1 = 1
        auxrele = 1
        timex = 0
        releonoff = 50
        tare = 0
        pruebax = 1
        Rele_time.Value = 2.5
        inicom.Text = "CONECTAR"
Picturegraff1.BackColor = Color.Black
        Checkgrid.Text = "Grid OFF"
        Checkgrid.Checked = False
        Groupgraff.Enabled = False
    End Sub
    Private Sub inicom_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles inicom.Click
        If aux1 = 1 Then
             aux1 = 2
             inicom.Text = "DESCONECTAR"
             If TextBox1.Text = "" Then
             Else
                 MSCOM.PortName = UCase(TextBox1.Text)
             End If
             TextBox1.Enabled = False
             ComboCOMX.Enabled = False
             Timer1.Enabled = True
             GroupRele.Enabled = True
             Groupinput.Enabled = True
```

```
GroupDatos.Enabled = True
            Groupgraff.Enabled = True
            'Rele_time.Enabled = True
        ElseIf aux1 = 2 Then
            aux1 = 1
            inicom.Text = "CONECTAR"
            TextBox1.Enabled = True
            ComboCOMX.Enabled = True
            Timer1.Enabled = False
            'Rele_time.Enabled = False
            GroupRele.Enabled = False
            Groupinput Enabled = False
            GroupDatos Enabled = False
            Groupgraff.Enabled = False
             MSCOM.close()
        End If
    End Sub
    Private
             Sub Timer2_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer2.Tick
        'timer utilizado para tempo de la electrovalvula
        timex = timex + 1
        Texttime.Text = timex / 10
        If timex >= Rele_time.Value * 10 Then
            If pruebax = 1 Then
                TextL1.Text = TextTare.Text
                pruebax = 2
            ElseIf pruebax = 2 Then
                TextL2.Text = TextTare.Text
                pruebax = 1
            End If
            auxrele = 1
            rele.Checked = False
            timex = 0
            Timer2.Enabled = False
            releonoff = 50
        End If
    End Sub
    Private Sub Buttonrele_Click(ByVal sender As System.Object, ByVal e As
System. EventArgs) Handles Buttonrele. Click
        If Rele_time.Value <> 0 Then
            If auxrele = 1 Then
                auxrele = 2
                rele.Checked = True
                Timer2.Enabled = True
                releonoff = 49
            ElseIf auxrele = 2 Then
                auxrele = 1
                rele.Checked = False
                timex = 0
                Timer2.Enabled = False
                releonoff = 50
            End If
        End If
        If txtprueba1X.Text = "" Then
            txtprueba1X.Focus()
        ElseIf txtprueba2X.Text = "" Then
            txtprueba2X.Focus()
        End If
    End Sub
    Private
            Sub Timer1_Tick(ByVal sender As System.Object, ByVal e
                                                                             AS
System.EventArgs) Handles Timer1.Tick
        'bucle principal de programa
        graff = Picturegraff1.CreateGraphics
        \tilde{D}im aa As Integer = 5
```

```
Dim maxpixelx As Integer = Picturegraff1.Width
        Dim maxpixely As Integer = Picturegraff1.Height
        Dim ceroy As Integer = (Picturegraff1.Height / (ymax - ymin)) * (ymax)
Dim cerox As Integer = (Picturegraff1.Width / (xmax - xmin)) * (-xmin)
        Dim xraya As Integer
        Dim grid As Integer
        graff.DrawLine(Pens.White, cerox, maxpixely, cerox, 0)
graff.DrawLine(Pens.White, 0, ceroy, Picturegraff1.Width, ceroy)
        For a As Integer = 1 To xmax Step 1
             xraya = (maxpixelx / (xmax - xmin)) * (a - xmin)
             graff.DrawLine(Pens.White, xraya, ceroy - 3, xraya, ceroy + 3)
             If a = aa Then
                 aa = aa + 5
                 If Checkgrid.Checked = True Then
                      For b As Double = 0 To ymax Step 1
grid = (maxpixely / (ymin - ymax)) * (b - ymax)
                          graff.DrawEllipse(Pens.WhiteSmoke, xraya, grid, 1, 1)
                      Next
                 End If
                 graff.DrawLine(Pens.White, xraya, ceroy - 7, xraya, ceroy + 7)
                 graff.DrawString(a.ToString + "mm", New Font("Verdana", 8),
Brushes.White, xraya - 15, ceroy + 7)
             End If
        Next
        aa = 5
        For a As Double = 0 To ymax Step 1
    xraya = (maxpixely / (ymin - ymax)) * (a - ymax)
             graff.DrawLine(Pens.White, cerox - 3, xraya, cerox + 3, xraya)
             If a = 0 Then
                 graff.DrawString(a.ToString,
                                                     New
                                                             Font("Verdana",
                                                                                  8),
Brushes.White, cerox - 10, xraya)
             End If
             If a = aa Then
                 aa = aa + 5
                 If Checkgrid.Checked = True Then
                      For b As Double = 0 To xmax Step 1
grid = (maxpixelx / (xmax - xmin)) * (b - xmin)
                          graff.DrawEllipse(Pens.WhiteSmoke, grid, xraya, 1, 1)
                      Next
                 End If
                 graff.DrawLine(Pens.White, cerox - 7, xraya, cerox + 7, xraya)
                 graff.DrawString(a.ToString + "kN", New Font("Verdana", 8),
Brushes.White, cerox - 40, xraya - 5)
             End If
        Next
        Dim mbuffer As Byte() = New Byte(1) {}
        Dim var1(9) As Byte
        Dim adc As Double
        Dim i As Double
        Dim j As Double
        mbuffer(0) = \&H_{40}
        mbuffer(1) = releonoff
        MSCOM.Open()
         'MSCOM.write(Chr(64))
        MSCOM.Write(mbuffer, 0, mbuffer.Length)
        MSCOM.Write(mbuffer, 0, mbuffer.Length)
                                                      .......
         'espera un tiempo hasta que el buffer de lectura se llene
        For i = 0 To 5000
             For j = 0 To 500
             Next
        Next
        If MSCOM.BytesToRead > 0 Then
```

```
MSCOM.Read(var1, 0, 10)
             For i = 0 To 9
                 var1(i) = var1(i) - 48
             Next
             adc = var1(0) * 10000 + var1(1) * 1000 + var1(2) * 100 + var1(3) *
10 + var1(4)
             adcxx = adc
             If adc - tare < 0 Then</pre>
                 adcx.Value = 0
             Else
                 adcx.Value = adc - tare
             End If
             adc = adc - tare
             adc = adc * 51 / 1024
            TextTare.Text = Format(adc, "Fixed")
             textadcaux.Text = adc.ToString
             If var1(9) = 0 Then
                 emergencia.BackColor = Color.Lime
                 emergencia.Text = "EMERGENCIA OFF"
             Else
                 emergencia.BackColor = Color.Red
                 emergencia.Text = "EMERGENCIA ON"
            End If
        End If
        MSCOM.close()
        'TextBox3.Text = releonoff
    End Sub
    Private Sub Tarex_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Tarex.Click
        tare = adcxx
    End Sub
    Private Sub ComboCOMX_SelectedValueChanged(ByVal sender As Object, ByVal e
As System.EventArgs) Handles ComboCOMX.SelectedValueChanged
        TextBox1.Text = ComboCOMX.Text
    End Sub
              Sub
                    TprincipalBindingNavigatorSaveItem_Click(ByVal
    Private
                                                                      sender
                                                                                 AS
System.Object, ByVal e As System.EventArgs)
Me.Validate()
        Me.TprincipalBindingSource.EndEdit()
Me.TableAdapterManager.UpdateAll(Me.BD_Fuerza_de_los_embraguesDataSet)
    End Sub
    Private Sub TprincipalDataGridView_DoubleClick(ByVal sender As Object,
ByVal e As System.EventArgs) Handles TprincipalDataGridView.DoubleClick
Me.TextBox2.Text = Me.TprincipalBindingSource.Current("libras fuerza")
        Me.TXTBARES.Text = Me.TprincipalBindingSource.Current("precion en
bares")
    End Sub
    Private Sub TextBox2_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TextBox2.TextChanged
If TextBox1.Text <> "" Then
                            = (Me.TextBox2
                                                  * 7.7) * 9.81
        End If
    End Sub
    Private Sub txtBusquedaMarca_TextChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles txtBusquedaMarca.TextChanged
Me.TprincipalBindingSource.Filter = ""
        strAux = Me.txtBusquedaMarca.Text
        Me.TprincipalBindingSource.Filter = "marca LIKE'" & strAux & "%'"
    End Sub
    Private Sub txtBusquedaModelo_TextChanged(ByVal sender As System.Object,
ByVal e As System. EventArgs) Handles txtBusquedaModelo. TextChanged
```

Me.TprincipalBindingSource.Filter = "" strAux = Me.txtBusquedaModelo.Text Me TprincipalBindingSource Filter = "modelo LIKE'" & strAux & "%'" End Sub Private Sub txtprueba1X_KeyPress(ByVal sender As Object, ByVal e As System.Windows.Forms.KeyPressEventArgs) Handles txtprueba1X.KeyPress If Asc(e.KeyChar) = 13 Then If TextBox2 Text <> "" Then If (Me.txtprueba1X.Text <> "") Then prueba1N.Text (Me.txtprueba1X.Text Else Me.txtpruebalN.Text = 0End If If ((Me.txtprueba2X.Text = "") Or (Me.txtprueba1X.Text = "")) Then Me.txtDiferencia.Text = 0 End If If ((Me.txtprueba1X.Text = "")) Then Me.txtPorcentage1.Text = 0End If (Me.txtprueba1X.Text <> "")) Then aux2 = (100 * (Va) If (Val(Me.TextBox2.Text) aux2 (100 = Me.txtprueba1X.Text)) / Me.TextBox2.Text aux2 = Format(aux2, "Fixed") Me.txtPorcentage1.Text = CStr(aux2) + "%" End If txtprueba2X.Focus() Else MsgBox("Debe seleccionar un tipo de embrage de la base de datos", MsgBoxStyle.Information, "ERROR") End If End If End Sub Private Sub txtprueba2X_KeyPress(ByVal sender As Object, ByVal e As System.Windows.Forms.KeyPressEventArgs) Handles txtprueba2X.KeyPress If Asc(e.KeyChar) = 13 Then
 If TextBox2.Text <> "" Then If ((Me.txtprueba2X.Text <> "") And (Me.txtprueba1X.Text <> "")) Then If ((Me.txtprueba1X.Text - txtprueba2X.Text) < 0) Then</pre> Me.txtDiferencia.Text (Me.txtprueba1X.Text = txtprueba2X.Text) * -1 Else Me.txtDiferencia.Text = (Me.txtprueba1X.Text txtprueba2X.Text) End If Else Me.txtprueba2N.Text = 0End If If ((Me.txtprueba2X.Text = "") Or (Me.txtprueba1X.Text = "")) Then Me.txtDiferencia.Text = 0End If If ((Me.txtprueba2X.Text = "")) Then Me.txtPorcentage2.Text = 0End If If (Me.txtprueba2X.Text <> "") Then aux = (100 * (Val(Me.TextBox2.Text) - Me.txtprueba2X.Text)) / Me.TextBox2.Text aux = Format(aux, "Fixed") Me.txtPorcentage2.Text = CStr(aux) + "%" End If

```
......
If TextL1.Text <> "" And TextL1.Text <> "" And txtprueba1N.Text
<> "" And txtprueba2N.Text <> "" Then
                           graffline(0, 0, TextL1.Text, txtpruebalN.Text / 1000)
graffline(TextL1.Text, txtprueba1N.Text
TextL2.Text, txtprueba2N.Text / 1000)
                                                                                                    1000.
                      End If
                Else
                      MsgBox("Debe seleccionar un tipo de embrage de la base de
datos", MsgBoxStyle.Information, "ERROR")
                End If
           End If
     End Sub
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
           txtDiferencia.Text = ""
           txtPorcentage1.Text = ""
           txtPorcentage2.Text = ""
           txtprueba1N.Text = """
           txtprueba1X.Text = ""
           txtprueba2N.Text = ""
           txtprueba2X Text = ""
           graff.Clear(Color.Black)
           TextL1.Text =
           TextL2.Text = ""
           aux1 = 1
           auxrele = 1
           timex = 0
           releonoff = 50
           tare = 0
           pruebax = 1
           Rele_time.Value = 2.5
     End Sub
     Public Sub graffline(ByVal xx1 As Double, ByVal yy1 As Double, ByVal xx2
As Double, ByVal yy2 As Double)
graff = Picturegraff1.CreateGraphics
           Dim xcall As Integer
           Dim ycall As Integer
           Dim xcal2 As Integer
           Dim ycal2 As Integer
           Dim maxpixelx As Integer = Picturegraff1.Width
Dim maxpixely As Integer = Picturegraff1.Height
Dim ceroy As Integer = (Picturegraff1.Height / (ymax - ymin)) * (ymax)
Dim cerox As Integer = (Picturegraff1.Width / (xmax - xmin)) * (-xmin)
            graff.Clear(Color.Black)
          graf1.clear(color.Black)
xcal1 = (Picturegraff1.Width / (xmax - xmin)) * (xx1 - xmin)
ycal1 = (Picturegraff1.Height) / (ymin - ymax) * (yy1 - ymax)
xcal2 = (Picturegraff1.Width / (xmax - xmin)) * (xx2 - xmin)
ycal2 = (Picturegraff1.Height) / (ymin - ymax) * (yy2 - ymax)
graff.DrawLine(Pens.White, xcal1, ycal1, xcal2, ycal2)
graff.DrawEllipse(Pens.White, xcal2 - 3, ycal2 - 3, 6, 6)
     End Sub
Private Sub Button2_Click_1(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button2.Click
           graff.Clear(Color.Black)
     End Sub
     Private Sub Checkgrid_MouseClick(ByVal sender As Object, ByVal e As
System.Windows.Forms.MouseEventArgs) Handles Checkgrid.MouseClick
           graff.Clear(Color.Black)
           If Checkgrid.Checked = True Then
Checkgrid.Text = "Grid ON"
           Else
                Checkgrid.Text = "Grid OFF"
```

'txtprueba2X_KeyPress(ByVal sender Object, ByVal As е AS System.Windows.Forms.KeyPressEventArgs) End If End Sub Sub TprincipalDataGridView_CellContentClick(ByVal Private sender AS System.Object, ByVal e As System.Windows.Forms.DataGridViewCellEventArgs) Handles TprincipalDataGridView.CellContentClic End Sub Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As System. EventArgs) Handles Button3. Click Me.TprincipalBindingSource.Filter = "" Me.TprincipalBindingSource.AddNew() Me.TprincipalBindingSource.AddNew() Me.TprincipalBindingSource.Current("marca") = Me.MarcaTextBox.Text Me.TprincipalBindingSource.Current("modelo") = Me.ModeloTextBox.Text Me.TprincipalBindingSource.Current("diafracma") Me.DiafracmaTextBox.Text Me.TprincipalBindingSource.Current("diametro interior") _ Me.Diametro_interiorTextBox.Text Me.TprincipalBindingSource.Current("diametro exterior") = Me.Diametro_exteriorTextBox.Text Me.TprincipalBindingSource.Current("libras fuerza") Me.Libras_fuerzaTextBox.Text Me.TprincipalBindingSource.Current("precion bares") en = Me.Precion_en_baresTextBox.Text Me.TprincipalBindingSource.EndEdit() Me.TprincipalTableAdapter.Update(BD_Fuerza_de_los_embraguesDataSet.Tprincipal End Sub Private Sub Diametro_exteriorTextBox_TextChanged(ByVal sender As Handles System.Object, ByVal е AS System.EventArgs) Diametro_exteriorTextBox TextChanged aux3 = Format(aux3, "Fixed") Me.Libras_fuerzaTextBox.Text = AUX3 End Sub End Class 5.3.2. Código nuevo del banco Imports System.IO.Ports Imports System.Collections.Specialized Public Class fuerzal Public graff As Graphics Friend xmax As Integer = 32 Friend xmin As Double = -4 Friend ymax As Double = 26 Friend ymin As Double = -3Friend aux1 As Byte Friend auxrele As Byte Friend timex As Byte Friend releonoff As Byte Friend tare As Double Friend pruebax As Byte Friend adcxx As Integer Dim strAux As String Dim aux2 As Double Dim aux As Double Dim aux3 As Double Private Sub fuerza1_FormClosing(ByVal sender As Object, ByVal e AS

```
System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing
         If MSCOM.IsOpen Then
             MSCOM.close()
         End If
    End Sub
    Private WithEvents serialPort As SerialPort
    Private Sub OpenSerialPort(portName As String)
         serialPort = New SerialPort()
         serialPort.PortName = portName
         serialPort.BaudRate = 9600
         serialPort.Parity = Parity.None
         serialPort.DataBits = 8
         serialPort.StopBits = StopBits.One
         Try
             serialPort.Open()
             ' Port is successfully opened
MessageBox.Show("COM port opened successfully.")
         Catch ex As Exception
             MessageBox.Show("Failed to open COM port: " & ex.Message)
         End Try
    End Sub
              Sub fuerza1_Load(ByVa1
                                         sender As System.Object,
                                                                        ByVal
    Private
                                                                               e As
System.EventArgs) Handles MyBase.Load
         TODO:
                 esta
                         línea de
                                         código
                                                   carga
                                                            datos
                                                                     en
                                                                          la
                                                                                tabla
'BD_Fuerza_de_los_embraguesDataSet.Tprincipal' Puede moverla o quitarla según
sea
                                                                          necesario.
Me.TprincipalTableAdapter.Fill(Me.BD_Fuerza_de_los_embraguesDataSet.Tprincipa
1)
         Timer1.Enabled = False
         'Rele_time.Enabled = False
         GroupRele.Enabled = False
         Groupinput Enabled = False
         GroupDatos Enabled = False
         aux1 = 1
         auxrele = 1
         timex = 0
         releonoff = 50
         tare = 0
         pruebax = 1
         Rele_time.Value = 2.5
         inicom.Text = "CONECTAR"
        Picturegraff1.BackColor = Color.Black
Checkgrid.Text = "Grid OFF"
Checkgrid.Checked = False
Groupgraff.Enabled = False
         Dim uniqueItems As New List(Of Object)
          Get the available serial ports
         Dim availablePorts As String() = SerialPort.GetPortNames()
           Add the ports to the ListBox
         For Each port As String In availablePorts
             ComboCOMX.Items.Add(port)
         Next
    End Sub
Private Sub inicom_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles inicom.Click
         If aux1 = 1 Then
             aux1 = 2
             inicom.Text = "DESCONECTAR"
             If TextBox1.Text = "" Then
             Else
                 MSCOM.PortName = UCase(TextBox1.Text)
             End If
             TextBox1.Enabled = False
             ComboCOMX.Enabled = False
```

```
Timer1.Enabled = True
            GroupRele.Enabled = True
             Groupinput Enabled = True
             GroupDatos.Enabled = True
             Groupgraff Enabled = True
        'Rele_time.Enabled = True
ElseIf aux1 = 2 Then
             aux1 = 1
             inicom.Text = "CONECTAR"
            TextBox1.Enabled = True
             ComboCOMX.Enabled = True
             Timer1.Enabled = False
             'Rele_time.Enabled = False
             GroupRele.Enabled = False
             Groupinput Enabled = False
            GroupDatos.Enabled = False
Groupgraff.Enabled = False
             'MSCOM.close()
        End If
    End Sub
    Private
             Sub Timer2_Tick(ByVal sender As System.Object, ByVal e As
System. EventArgs) Handles Timer2. Tick
         'timer utilizado para tempo de la electrovalvula
        timex = timex + 1
        Texttime.Text = timex / 10
        If timex >= Rele_time.Value * 10 Then
             If pruebax = 1 Then
                 TextL1.Text = TextTare.Text
                 pruebax = 2
             ElseIf pruebax = 2 Then
                 TextL2.Text = TextTare.Text
                 pruebax = 1
             End If
             auxrele = 1
             rele.Checked = False
             timex = 0
            Timer2.Enabled = False
             releonoff = 50
        End If
    End Sub
    Private Sub Buttonrele_Click(ByVal sender As System.Object, ByVal e As
System. EventArgs) Handles Buttonrele. Click
        If Rele_time.Value <> 0 Then
             If auxrele = 1 Then
                 auxrele = 2
                 rele.Checked = True
                 Timer2.Enabled = True
                 releonoff = 49
             ElseIf auxrele = 2 Then
                 auxrele = 1
                 rele.Checked = False
                 timex = 0
                 Timer2.Enabled = False
                 releonoff = 50
             End If
        End If
        If txtprueba1X.Text = "" Then
             txtprueba1X.Focus()
        ElseIf txtprueba2X.Text = "" Then
             txtprueba2X.Focus()
        End If
    End Sub
Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e System.EventArgs) Handles Timer1.Tick
                                                                                 AS
```

```
'bucle principal de programa
          graff = Picturegraff1.CreateGraphics
          Dim aa As Integer = 5
          Dim maxpixelx As Integer = Picturegraff1.Width
         Dim maxpixely As Integer = Picturegraff1.Height
Dim ceroy As Integer = (Picturegraff1.Height / (ymax - ymin)) * (ymax)
Dim cerox As Integer = (Picturegraff1.Width / (xmax - xmin)) * (-xmin)
          Dim xraya As Integer
          Dim grid As Integer
          graff.DrawLine(Pens.White, cerox, maxpixely, cerox, 0)
          graff.DrawLine(Pens.White, 0, ceroy, Picturegraff1.Width, ceroy)
          For a As Integer = 1 To xmax Step 1
               xraya = (maxpixelx / (xmax - xmin)) * (a - xmin)
               graff.DrawLine(Pens.White, xraya, ceroy - 3, xraya, ceroy + 3)
               If a = aa Then
                    aa = aa + 5
                    If Checkgrid.Checked = True Then
                         For b As Double = 0 To ymax Step 1
grid = (maxpixely / (ymin - ymax)) * (b - ymax)
grid = (maxpixely / (ymin - ymax))
                              graff.DrawEllipse(Pens.WhiteSmoke, xraya, grid, 1, 1)
                         Next
                    End If
                   graff.DrawLine(Pens.White, xraya, ceroy - 7, xraya, ceroy + 7)
graff.DrawString(a.ToString + "mm", New Font("Verdana", 8),
Brushes.White, xraya - 15, ceroy + 7)
               End If
          Next
          aa = 5
          For a As Double = 0 To ymax Step 1
               xraya = (maxpixely / (ymin - ymax)) * (a - ymax)
graff.DrawLine(Pens.White, cerox - 3, xraya, cerox + 3, xraya)
               If a = 0 Then
                    graff.DrawString(a.ToString,
                                                           New
                                                                  Font("Verdana",
                                                                                              8),
Brushes.White, cerox - 10, xraya)
               End If
               If a = aa Then
                    aa = aa + 5
                    If Checkgrid.Checked = True Then
                         For \overline{b} As Double = 0 To xmax Step 1
                              grid = (maxpixelx / (xmax - xmin)) * (b - xmin)
                              graff.DrawEllipse(Pens.WhiteSmoke, grid, xraya, 1, 1)
                         Next
                    End If
                    graff.DrawLine(Pens.White, cerox - 7, xraya, cerox + 7, xraya)
graff.DrawString(a.ToString + "kN", New Font("Verdana", 8),
Brushes.White, cerox - 40, xraya - 5)
              End If
          Next
          Dim mbuffer As Byte() = New Byte(1) {}
          Dim var1(9) As Byte
          Dim adc As Double
          Dim i As Double
         Dim j As Double
mbuffer(0) = &H40
mbuffer(1) = releonoff
         MSCOM.Open()
          MSCOM.Write(Chr(64))
          MSCOM.Write(mbuffer, 0, mbuffer.Length)
          MSCOM.Write(mbuffer, 0, mbuffer.Length)
                                                           ......................
          'espera un tiempo hasta que el buffer de lectura se llene
          For i = 0 To 5000
               For j = 0 To 500
               Next
```

```
Next
        If MSCOM.BytesToRead > 0 Then
            MSCOM.Read(var1, 0, 10)
            For i = 0 To 9
                var1(i) = var1(i) - 48
            Next
            adc = var1(0) * 10000 + var1(1) * 1000 + var1(2) * 100 + var1(3) *
10 + var1(4)
            adcxx = adc
            If adc - tare < 0 Then
                adcx.Value = 0
            Else
                adcx.Value = adc - tare
            End If
            adc = adc - tare
            adc = adc * 51 / 1024
            TextTare.Text = Format(adc, "Fixed")
            textadcaux.Text = adc.ToString
            If var1(9) = 0 Then
                emergencia.BackColor = Color.Lime
                emergencia.Text = "EMERGENCIA OFF"
            Else
                emergencia.BackColor = Color.Red
emergencia.Text = "EMERGENCIA ON"
            End If
        End If
        MSCOM.close()
        'TextBox3.Text = releonoff
    End Sub
Private Sub Tarex_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Tarex.Click
        tare = adcxx
    End Sub
    Private Sub ComboCOMX_SelectedValueChanged(ByVal sender As Object, ByVal e
As System. EventArgs) Handles ComboCOMX. Selected Value Changed
        TextBox1.Text = ComboCOMX.Text
    End Sub
                   TprincipalBindingNavigatorSaveItem_Click(ByVal
    Private
             Sub
                                                                     sender
                                                                              AS
System.Object, ByVal e As System.EventArgs)
Me.Validate()
        Me.TprincipalBindingSource.EndEdit()
Me.TableAdapterManager.UpdateAll(Me.BD_Fuerza_de_los_embraguesDataSet)
    End Sub
    Private Sub TprincipalDataGridView_DoubleClick(ByVal sender As Object,
ByVal e As System EventArgs) Handles TprincipalDataGridView.DoubleClick
        Me.TextBox2.Text = Me.TprincipalBindingSource.Current("libras fuerza")
        Me.TXTBARES.Text = Me.TprincipalBindingSource.Current("precion
                                                                              en
bares")
    End Sub
    Private Sub TextBox2_Resize(sender As Object, e As EventArgs) Handles
TextBox2.Resize
    End Sub
    Private Sub TextBox2_TextChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TextBox2.TextChanged
If TextBox1.Text <> "" Then
            Me.Newton.Text = (Me.TextBox2.Text * 4.4482)
        End If
    End Sub
    Private Sub txtBusquedaMarca_TextChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles txtBusquedaMarca.TextChanged
Me.TprincipalBindingSource.Filter = ""
```

strAux = Me.txtBusguedaMarca.Text Me.TprincipalBindingSource.Filter = "marca LIKE'" & strAux & "%'" End Sub Private Sub txtBusquedaModelo_TextChanged(ByVal sender As System.Object, ByVal e As System. EventArgs) Handles txtBusquedaModelo. TextChanged Me.TprincipalBindingSource.Filter = strAux = Me.txtBusquedaModelo.Text Me.TprincipalBindingSource.Filter = "modelo LIKE'" & strAux & "%'" End Sub Private Sub txtprueba1X_KeyPress(ByVal sender As Object, ByVal e As System.Windows.Forms.KeyPressEventArgs) Handles txtpruebalX.KeyPress If Asc(e.KeyChar) = 13 Then
 If TextBox2.Text <> "" Then If (Me.txtprueba1X.Text <> "") Then Me.txtprueba1N.Text = (Me.txtprueba1X.Text * 4.4482) Else Me.txtprueba1N.Text = 0 End If if ((Me.txtprueba2X.Text = "") or (Me.txtprueba1X.Text = "")) Then Me.txtDiferencia.Text = 0End If If ((Me.txtprueba1X.Text = "")) Then Me.txtPorcentage1.Text = 0End If If ((Me.txtpruebalX.Text <> "")) Then
aux2 = (100 * ()/a (Val(Me.TextBox2.Text) aux2 = (100 Me.txtprueba1X.Text)) / Me.TextBox2.Text aux2 = Format(aux2, "Fixed") Me.txtPorcentage1.Text = CStr(aux2) + "%" End If txtprueba2X.Focus() Else MsgBox("Debe seleccionar un tipo de embrage de la base de datos", MsgBoxStyle.Information, "ERROR") End If End If End Sub Private Sub txtprueba2X_KeyPress(ByVal sender As Object, ByVal e As System.Windows.Forms.KeyPressEventArgs) Handles txtprueba2X.KeyPress If Asc(e.KeyChar) = 13 Then If TextBox2.Text <> "" Then if ((Me.txtprueba2X.Text <> "") And (Me.txtprueba1X.Text <> "")) Then Me.txtprueba2N.Text = (Me.txtprueba2X.Text * 4.4482) If ((Me.txtprueba1X.Text - txtprueba2X.Text) < 0) Then</pre> Me.txtDiferencia.Text (Me.txtprueba1X.Text = txtprueba2X.Text) * -1 Else Me.txtDiferencia.Text = (Me.txtprueba1X.Text _ txtprueba2X.Text) End If Else Me.txtprueba2N.Text = 0End If If ((Me.txtprueba2X.Text = "") Or (Me.txtprueba1X.Text = "")) Then Me.txtDiferencia.Text = 0End If If ((Me.txtprueba2X.Text = "")) Then Me.txtPorcentage2.Text = 0End If If (Me.txtprueba2X.Text <> "") Then aux = (100 * (Val(Me.TextBox2.Text) - Me.txtprueba2X.Text))

```
/ Me.TextBox2.Text
                          aux = Format(aux, "Fixed")
                          Me.txtPorcentage2.Text = CStr(aux) + "%"
                     End If
.....
If TextL1.Text <> "" And TextL1.Text <> "" And txtpruebalN.Text
<> "" And txtprueba2N.Text <> "" Then
                          graffline(0, 0, TextL1.Text, txtpruebalN.Text / 1000)
                          graffline(TextL1.Text,
                                                          txtprueba1N.Text
                                                                                               1000.
TextL2.Text, txtprueba2N.Text / 1000)
                     End If
               Else
MsgBox("Debe seleccionar un tipo de embrage de la base de datos", MsgBoxStyle.Information, "ERROR")
                End If
          End If
     End Sub
     Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System. EventArgs) Handles Button1. Click
          txtDiferencia.Text =
          txtPorcentage1.Text = ""
          txtPorcentage2.Text = ""
          txtprueba1N.Text =
          txtprueba1X.Text = ""
          txtprueba2N.Text = ""
          txtprueba2X.Text = ""
          graff.Clear(Color.Black)
          TextL1.Text = ""
          TextL2.Text = ""
          aux1 = 1
          auxrele = 1
          timex = 0
          releonoff = 50
          tare = 0
          pruebax = 1
          Rele_time.Value = 2.5
     End Sub
     Public Sub graffline(ByVal xx1 As Double, ByVal yy1 As Double, ByVal xx2
As Double, ByVal yy2 As Double)
          graff = Picturegraff1.CreateGraphics
          Dim xcall As Integer
Dim ycall As Integer
Dim xcal2 As Integer
Dim ycal2 As Integer
          Dim maxpixelx As Integer = Picturegraff1.Width
          Dim maxpixely As Integer = Picturegraff1.Height
          Dim ceroy As Integer = (Picturegraff1.Height / (ymax - ymin)) * (ymax)
Dim cerox As Integer = (Picturegraff1.Width / (xmax - xmin)) * (-xmin)
           'graff.Clear(Color.Black)
          graf1.Clear(Color.Black)
xcal1 = (Picturegraff1.Width / (xmax - xmin)) * (xx1 - xmin)
ycal1 = (Picturegraff1.Height) / (ymin - ymax) * (yy1 - ymax)
xcal2 = (Picturegraff1.Width / (xmax - xmin)) * (xx2 - xmin)
ycal2 = (Picturegraff1.Height) / (ymin - ymax) * (yy2 - ymax)
graff.DrawLine(Pens.White, xcal1, ycal1, xcal2, ycal2)
graff.DrawEllipse(Pens.White, xcal2 - 3, ycal2 - 3, 6, 6)
     End Sub
     Private Sub Button2_Click_1(ByVal sender As System.Object, ByVal e As
System. EventArgs) Handles Button2. Click
          graff.Člear(Color.Black)
     End Sub
Private Sub Checkgrid_MouseClick(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles Checkgrid.MouseClick
```

graff.Clear(Color.Black) if Checkgrid.Checked = True Then Checkgrid.Text = "Grid ON" Else Checkgrid.Text = "Grid OFF" txtprueba2X_KeyPress(ByVal sender As Object. ByVal е AS System.Windows.Forms.KeyPressEventArgs) End If End Sub TprincipalDataGridView_CellContentClick(ByVal Private Sub sender AS System.Object, ByVal e As System.Windows.Forms.DataGridViewCellEventArgs) Handles TprincipalDataGridView.CellContentClick End Sub Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button3.Click Me.TprincipalBindingSource.Filter = "" Me.TprincipalBindingSource.AddNew() Me.TprincipalBindingSource.Current("marca") = Me.MarcaTextBox.Text Me.TprincipalBindingSource.Current("modelo") = Me.ModeloTextBox.Text Me.TprincipalBindingSource.Current("diafracma") Me.DiafracmaTextBox.Text Me.TprincipalBindingSource.Current("diametro interior") = Me.Diametro_interiorTextBox.Text Me.TprincipalBindingSource.Current("diametro exterior") = Me.Diametro_exteriorTextBox.Text Me.TprincipalBindingSource.Current("libras fuerza") = Me.Libras_fuerzaTextBox.Text Me.TprincipalBindingSource.Current("precion bares") en = Me.Precion_en_baresTextBox.Text Me.TprincipalBindingSource.EndEdit() Me.TprincipalTableAdapter.Update(BD_Fuerza_de_los_embraguesDataSet.Tprincipal) End Sub Private Sub Diametro_exteriorTextBox_TextChanged(ByVal sender As System.Object, BvVal System.EventArgs) Handles e AS Diametro_exteriorTextBox.TextChanged 4 aux3 Val(((Math.PI 4) ((Math.Pow(Val(Me.Diametro_exteriorTextBox.Text / 10), 2) -(Math.Pow(Val(Me.Diametro_interiorTextBox.Text / 10), 2)))) * 2 * 0.5 * 10) / 4.4482) * Val((((Math.PI 4) aux3 ((Math.Pow(Val(Me.Diametro_exteriorTextBox.Text), (Math.Pow(Val(Me.Diametro_interiorTextBox.Text), 2))))) * 21 2 0.5 * 10) 4.4482)aux3 = Format(aux3, "Fixed") Me.Libras_fuerzaTextBox.Text = AUX3 End Sub Private Sub Label24_Click(sender As Object, e As EventArgs) Handles Label24.Click End Sub Private Sub Label22_Click(sender As Object, e As EventArgs) Handles Label22.Click End Sub Private Sub Libras_fuerzaTextBox_TextChanged(sender As Object. е AS EventArgs) Handles Libras_fuerzaTextBox.TextChanged End Sub Private Sub Label25_Click(sender As Object, e As EventArgs) End Sub Private Sub Label27_Click(sender As Object, e As EventArgs) End Sub Private Sub txtprueba2X_TextChanged(sender As Object, e As EventArgs) Handles txtprueba2X.TextChanged End Sub Private Sub txtprueba2N_TextChanged(sender As Object, e As EventArgs)

```
Handles txtprueba2N.TextChanged
    End Sub
    Private Sub txtprueba1N_TextChanged(sender As Object, e As EventArgs)
Handles txtpruebalN.TextChanged
    End Sub
Private Sub txtprueba1X_TextChanged(sender As Object, e As EventArgs)
Handles txtprueba1X.TextChanged
End Sub
    Private Sub Newton_TextChanged(sender As Object, e As EventArgs) Handles
Newton.TextChanged
    End Sub
    Private Sub Precion_en_baresTextBox_TextChanged(sender As Object, e As
EventArgs) Handles Precion_en_baresTextBox.TextChanged
    End Sub
    Private Sub Libras_fuerzaLabel_Click(sender As Object, e As EventArgs)
    End Sub
    Private Sub GroupComx_Enter(sender As Object, e As EventArgs) Handles
GroupComx.Enter
    End Sub
End Class
2.
```

En la interfaz del software integramos el nombre del banco, el logo de la universidad (Fig. 51)

y las unidades.

Figura 51

Cambios agregados en la interfaz

Banco de pruebas para platos de embragues de fricción

6. CAPITULO III. ANALISIS DE RESULTADOS DEL BANCO DE PRUEBAS

6.1. Pruebas de funcionamiento

Al culminar con la restauración estructural del banco de pruebas, se realizó una primera prueba de funcionamiento (Fig. 52) para verificar su correcto funcionamiento.

Figura 52

Primera prueba de funcionamiento tras la restauración del banco

La segunda prueba (Fig. 53) de funcionamiento se desarrolló luego de migrar el programa del banco del ordenador antiguo hacia el nuevo.

Segunda prueba de funcionamiento

Se constató que el Display se encontraba desconfigurado, debido a que el mismo nos entregaba un valor oscilante entre 50 y 52 lbs sin que el banco de pruebas esté accionado, por lo que configuramos el mismo. (Tabla 14)

Tabla 14

Valores de tolerancia del Display

Terminada la configuración del Display verificamos que el mismo se encuentre en cero tras aplastar el botón TARE (Fig. 54). La tolerancia del Display quedo con un valor oscilante entre 1 y 2 lbs, por lo cual es importante encerar el mismo antes de realizar cualquier prueba en el banco.

Display encerado

6.2. Metodología de análisis

Se desarrolló un análisis comparativo, el cual se basa en comparar los datos calculados con los datos que el software nos brinda.

6.3. Calculo fuerza de apriete

• Plato de embrague del automóvil Hyundai Accent 2002

Calculo Datos: $\rho = 2 \frac{daN}{cm^2}$ $\mu = 0.5$ $d_{interior} = 13,75 \ cm$

 $d_{exterior} = 21,4 \ cm$

Formulas:

$$A = \frac{\pi}{4} \left[(d_{exterior})^2 - (d_{interior})^2 \right]$$

$$F_{apriete} = \frac{(\rho \cdot \mu \cdot A) \cdot 10}{4,4482 N}$$

Desarrollo:

$$A = \frac{\pi}{4} [(21,4cm)^2 - (13,75cm)^2]$$
$$A = 211,19cm^2$$

$$F_{apriete} = \frac{\left(2 \frac{daN}{cm^2} \cdot 0.5 \cdot 211, 19cm^2\right) \cdot 10}{4,4482 N}$$

 $F_{apriete} = 474,77 \ lbf \approx 475 \ lbf$

• Plato de embrague del automóvil Chevrolet Activo

Datos:

$$\rho = 2 \frac{daN}{cm^2}$$
$$\mu = 0.5$$

 $d_{interior} = 12,6 \ cm$

 $d_{exterior} = 18,0 \ cm$

Formulas:

$$A = \frac{\pi}{4} \left[(d_{exterior})^2 - (d_{interior})^2 \right]$$

$$F_{apriete} = \frac{(\rho \cdot \mu \cdot A) \cdot 10}{4,4482 N}$$

Desarrollo:

$$A = \frac{\pi}{4} [(18,0cm)^2 - (12,6cm)^2]$$

$$A = 129,78cm^2$$

$$F_{apriete} = \frac{\left(\frac{2 \ daN}{cm^2} \cdot 0.5 \cdot 129,78cm^2\right) \cdot 10}{4,4482 \ N}$$

 $F_{apriete} = 291,75 \ lbf \approx 292 \ lbf$

• Plato de embrague del automóvil Cherry QQ

Datos:

$$\rho = 2 \frac{daN}{cm^2}$$
$$\mu = 0.5$$

 $d_{interior} = 14,3 \ cm$

 $d_{exterior} = 21,8 \ cm$

Formulas:

$$A = \frac{\pi}{4} [(d_{exterior})^2 - (d_{interior})^2]$$

$$F_{apriete} = \frac{(\rho \cdot \mu \cdot A) \cdot 10}{4,4482 N}$$

Desarrollo:

$$A = \frac{\pi}{4} \left[(21,8 \ cm)^2 - (14,3 \ cm)^2 \right]$$

$$A = 212,64 \ cm^2$$

$$F_{apriete} = \frac{\left(2 \frac{daN}{cm^2} \cdot 0.5 \cdot 212,64cm^2\right) \cdot 10}{4,4482 N}$$

 $F_{apriete} = 478,03 \ lbf \approx 478 \ lbf$

6.4. Platos de embrague nuevos

La siguiente ilustración (Fig. 55) muestra los platos de embrague nuevos para realizar el análisis comparativo.

- 1. Cherry QQ,
- 2. Chevrolet Aveo Activo,
- 3. Hyundai Accent.

Figura 55

Platos de presión de embrague nuevos

6.5. Datos obtenidos mediante el software

Al ingresar los diámetros, el software calcula la fuerza de apriete que el banco debe aplicar en el plato de embrague del automóvil Hyundai Accent (Fig. 56) la cual vemos a continuación:

Fuerza de apriete Hyundai Accent

INGRESAR NUEVO DA	TO EN LA BASE	
Marca:	Hyundai	
Modelo:	Accent 2002	
Diafracma:	Diafracma	
Diametro interior:	13.75	ст
Diametro exterior:	21.4	ст
Libras fuerza:	474.78	lbf
Precion en bares:	2.2	
GUAF	RDAR	

Realizamos el mismo proceso para el automóvil Cherry QQ (Fig. 57) y Chevrolet Aveo

Activo (Fig. 58).

Figura 57

Fuerza de apriete Cherry QQ

	marca	modelo	diametro interior	diametro exterior	libras fuerza
•	Cherry	QQ	126	180	291,76

Fuerza de apriete Chevrolet Aveo Activo

	marca	modelo	diametro interior	diametro exterior	libras fuerza
•	Chevrolet	Aveo Activo	143	218	478,05

6.6. Análisis y comparación de resultados

• Fuerza de apriete calculada por el banco en el plato de presión de embrague a media vida Hyundai Accent. (Fig. 59)

Figura 59

Fuerza de apriete plato de presión a media vida Hyundai Accent

	DATOS INGRESO Libras fuerza Valor en	BUS	QUEDAS QUEDA POR M/	ARCA BUSQU	EDA POI		LO	INGRESAR NUEVO DATO EN LA BASE		
	Newtons	L						Marca:	Hyundai	
COM4 V DESCONECTAR	474,78 10246,70196							Modelo:	Accent	
	CALIBRE LA VALVULA A 2.2 BARES		marca	modelo	diametro interior	diametro exterior	libras fuerza	Diofraama	Disframa	_
			Chevrolet	D Max 3.0	157	250	668,32	Dialiacilia.	Dialiacina	
CONTROL VALVULA	PRUEBA 1		KIA	K2 700	148	241	638,76	Diametro interior:	13.75	cm
	Libras fuerza Valor en		Datsun	120y	122	148	123,95			
	Newtons		prueba		137	215	484,78	Diametro exterior:	21.4	cm
	108 2330,856		prueba		127	205	457,23			
	PORCENTAGE 77.09%		prueba		107	185	402,15	Libras fuerza:	474.78	lbf
RELE 2,5	DE ERROR		Hyundai	Accent 2002	139	215	475,03		0.0	
	PRUEBA 2	_	pruebaTesis1		12	18	317,82	Precion en bares:	2,2	
2,5	Valor en		TESIS1	TEST2	12	18	317,82	GUA	RDAR	
	Libras fuerza Newtons		TESIS3	TESIS3	12	18	317,82			
PERIFERICOS	2309,274		Hyundai	Accent 2002	13.6	21.4	482,02			
	PORCENTAGE 77.3%		Prueba de funcio	capitulo 3	13,75	21,4	480,26			
	DE ENNON		nyunuai	Accent	13.75	21.4	4/4,/0			
TARE 0.20 mm	DIFERENCIA ENTRE PRUEBAS	<					>			
Prueba1 Prueba2	DIFERENCIA NEWTONS	25kN	Ŧ							
24.70 mm 24.80 mm	-		Ŧ							
EMEDOENCIA	1	20kN	Ŧ							
EMERGENCIA		15kN	Ŧ							
UFF	RESET BORRAR GRAF	4.01.01	Ŧ							
		10kN	Ŧ							
	Grid OFF		4					Activar Wind	ows	

• Fuerza de apriete calculada por el banco en el plato de presión de embrague nuevo

Hyundai Accent. (Fig. 60)

Figura 60

Fuerza de apriete en el plato de presión nuevo Hyundai Accent

IERTO DE COMUNICACIONES	DATOS INGRESO	BUSQUEDAS BUSQUEDA POR MA	ARCA BUSQUE	DA POF	MODE	LO	INGRESAR NUEVO DATO EN LA BASE		
LECCIONE EL PUERTO	Newtons						Marca:	Hyundai	
DESCONECTAR	474.78 10246.70196						Modelo:	Accent	7
	CALIBRE LA VALVULA A 2.2 BARES	marca	modelo	diametro interior	diametro exterior	libras ^ fuerza	Diafracma:	Diafracma	-
		Chevrolet	D Max 3.0	157	250	668.32	Dialitacina.	- Change and	_
ONTROL VALVULA	PRUEBA 1	KIA	K2 700	148	241	638,76	Diametro interior:	13.75	cm
	Libras fuerza Valor en	Datsun	120y	122	148	123.95			_
		prueba		137	215	484,78	Diametro exterior:	21.4	cm
RELE HEMPO[Seg]	470 10143.54	prueba		127	205	457,23			
	PORCENTAGE 0.84%	prueba		107	185	402,15	Libras fuerza:	474,78	lbf
RELE 2.5	DE ERROR	Hyundai	Accent 2002	139	215	475.03			
	PDI IERA 2	pruebaTesis1		12	18	317,82	Precion en bares:	2,2	
2.5	Valor en	TESIS1	TEST2	12	18	317,82	CUM		
	Libras fuerza Newtons	TESIS3	TESIS3	12	18	317,82	GUA	RDAR	
	472 10186,704	Hyundai	Accent 2002	13.6	21.4	482.02			
ERIFERICOS	PORCENTAGE 0 42%	Prueba de funcio	capitulo 3	13,75	21,4	480.26			
	DE ERROR	Hyundai	Accent	13.75	21.4	474,78			
TARE 0.00 mm	DIFERENCIA ENTRE PRUEBAS	<				> ×			
Prueba1 Prueba2		25kN							
45 mm 0.40 mm		± 1							
EMEDOENICIA	2	20kN							
ENERGENCIA		15kN							
OFF	RESET BORRAR GRAF	10kN							
	Get OFF	3					A stinuer Mined		

• Fuerza de apriete calculada por el banco en el plato de presión de embrague a media vida Cherry QQ. (Fig. 61)

Fuerza de apriete plato de presión a media vida Cherry QQ

PUERTO DE CO	MUNICACIONES	DATOS INGRES	SO Valor en	BU	SQUEDAS SQUEDA POR N	IARCA BUSQ	JEDA PO	R MODE	LO	INGRESAR NUE	O DAT	O EN LA BASE
SELECCIONE EL PU	ERTO	cibrus fuerzu	Newtons	[dats					Marca:	ł	Cherry
COM4 V	DESCONECTAR	291,76	6296,76432							Madalas	ſ	00
		CALIBRE LA VALVULA A	2.2 BARES		marca	modelo	diametro interior	diametro exterior	libras fuerza	Modelo. Diafracma:	ſ	
					TREN G4		121	180	313,56	Dialiacina.	L	
JUNIKUL	VALVULA	PRUEBA 1		1	TREN G5		122	183	328,5	Diametro inte	ior	126
		Libras fuerza	Valor en		TREN G6		126	200	425,95			
	TIFURAIA	[internet	Newtons		TREN G5		122	183	328,5	Diametro exte	rior:	180
	TIEMPO[Seg]	175	3776.85		TREN G5		122	183	328,5			
		PORCENTAGE	39 76%		TREN G5		122	183	328,5	Libras fuerza:		291,76
RELE	2.5	DE ERROR			PRUEBA		146	216	447,42			
	_,	DDUERA 2			NISSAN	DATSUN 120Y	125	180	296,19	Precion en ba	res:	2,2
	2.5	FRUEDAZ	Valor en		Datsun	120y	128	150	107,99			
		Libras fuerza	Newtons		SUZUKI	SCROSS	100	200	529,7		JUAR	DAR
	~~	182	3927.924		Datsun	120y	128	150	107,99			
ERIFERIC	os	PORCENTAGE	37 36%		Hyundai	Accent 2013	135	215	494,38			
		DE ERROR		•	Cheny	QQ	126	180	291,76			
TARE Prueba 1 19,27 mm EMERGI	0.00 mm Prueba2 19.22 mm ENCIA	DIFERENCIA ENT DIFERENCI 7	RE PRUEBAS	< 25k 20k	N N				,	~		
OF	F	RESET	BORRAR GRAF	15k 10k 5kN	N N H		\$			Activar W Ve a Configu	'indo	iWS i para activar Windi

• Fuerza de apriete calculada por el banco en el plato de presión de embrague nuevo

Cherry QQ. (Fig. 62)

Fuerza de apriete en el plato de presión nuevo Cherry QQ

Banco de pruebas para platos de embragues de frico	ciónCOADON								-	- 0
PUERTO DE COMUNICACIONES	DATOS INGRESO Libras fuerza Valor en	BUS	QUEDAS	R MARCA BU	ISQUEDA PO	r Mode	10	INGRESAR NUEVO DA	TO EN LA BASE	
SELECCIONE EL PUERTO	Newtons	c	herr					Marca:		
COM4 V DESCONECTAR	291,76 6296,76432							Modelo:		1
	CALIBRE LA VALVULA A 2.2 BARES		marca	modelo	diametro interior	diametro exterior	libras fuerza	Diafracma		י ר
		•	Cherry	QQ	126	180	291,76			
	PRUEBA 1 Libras fuerza Valor en							Diametro interior:		ст
O RELE TIEMPO[Seg]	289 6237.198							Diametro exterior:		ст
RELE 25	PORCENTAGE 0.69% DE ERROR							Libras fuerza:		lbf
ON/OFF	PRUEBA 2							Precion en bares:	2,2	
2.5	Valor en Libras fuerza Newtons							GUAF	RDAR	
	290 6258,78									
PERIFERICOS	PORCENTAGE 0.34% DE ERROR									
TARE 2.24 mm	DIFERENCIA ENTRE PRUEBAS									
553 548	DIFERENCIA NEWTONS	25kN	ŧ							
	1	20kN	ŧ							
OFF	RESET BORRAR GRAF	15kN 10kN								
	Grid OFF	5kN	+					Activar Windo Ve a Configuració	OWS n para activar 1	Window
			0 5m	m 10mm	15mm 20m	m 25r	nm 30m			

• Fuerza de apriete calculada por el banco en el plato de presión de embrague a media vida Chevrolet Aveo Activo. (Fig. 63)

Figura 63

Fuerza de apriete plato de presión a media vida Chevrolet Aveo Activo

PUERTO DE COMU	NICACIONES	DATOS INGRES	SO Valor en	BUS	QUEDAS	MARCA BUSQI	UEDA POI	R MODE	LO	INGRESAR NUEVO DA	TO EN LA BASE
SELECCIONE EL PUERT	0	CIDIOS IDEIZO	Newtons	d	lats					Marca:	Chevrolet
COM4 v	DESCONECTAR	478,05	10317,2751							Madalas	A
		CALIBRE LA VALVULA A	2.2 BARES		marca	modelo	diametro interior	diametro exterior	libras ^ fuerza	Diafracma	AVEO ACINO
CONTROL VA					TREN G5		122	183	328,5	Dianacina.	L]
SOMTROL VA		PRUEBA 1			TREN G6		126	200	425,95	Diametro interior:	143
		Libras fuerza	Valor en		TREN G5		122	183	328,5		
		450	Newtons		TREN G5		122	183	328,5	Diametro exterior:	218
	TEMPO[Seg]	150	3237.3		TREN G5		122	183	328,5		
		PORCENTAGE	68.61%		PRUEBA		146	216	447,42	Libras fuerza:	478,05
RELE	2.5	DE ERROR			NISSAN	DATSUN 120Y	125	180	296,19		
		DDI IEBA 2			Datsun	120y	128	150	107,99	Precion en bares:	2,2
	2.5		Valor en		SUZUKI	SCROSS	100	200	529,7	CLIM	DAD
		Libras fuerza	Newtons		Datsun	120y	128	150	107,99	GUA	RDAR
		152	3280.464		Hyundai	Accent 2013	135	215	494,38		
PERIFERICOS	5	PORCENTAGE 68 19%			Cherry	QQ	126	180	291,76		
		DE ERROR	00.1010	•	Chevrolet	Aveo Activo	143	218	478.05		
TARE 0.00 Prueba1 Pri 24.06 mm 24.0 EMERGEN	mm ueba2 6 mm CIA	DIFERENCIA ENT DIFERENCI 2	IRE PRUEBAS	< 25kN 20kN					>		
OFF		RESET	BORRAR GRAF	15kN 10kN 5kN				®		Activar Wind Ve a Configuració	OWS n para activar Wii

• Fuerza de apriete calculada por el banco en el plato de presión de embrague nuevo

Chevrolet Aveo Activo. (Fig. 64)

Figura 64

Fuerza de apriete en el plato de presión nuevo Chevrolet Aveo Activo

JERTO DE COMUNICACIONES	DATOS INGRESO	BUSQUEDAS BUSQUEDA F	POR MARCA BUS	INGRESAR NUEVO DATO EN LA BASE					
ELECCIONE EL PUERTO	Newtons	chevrolet	a	ve			Marca:		
DM4 V DESCONECTAR	478.05 10317.2751						Modelo:		
	CALIBRE LA VALVULA A 2.2 BARES	marca	modelo	diametro interior	diametro exterior	libras fuerza	Diafraama		
		 Chevrolet 	Aveo Activo	143	218	478.05	Dialiacina.		
	PRUEBA 1						Diametro interior:		сп
RELE TIEMPO[Seq]	477 10294,614						Diametro exterior:		сп
	PORCENTAGE 0.21%						Libras fuerza:		lb
ON/OFF	DELIGRAD	-					Precion en bares:	2,2	
2.5	PRUEBA 2 Valor en Libras fuerza Newtons						GUA	RDAR	
	476 10273.032								
PERIFERICOS	PORCENTAGE 0.42% DE ERROR								
TARE 0.15 mm	DIFERENCIA ENTRE PRUEBAS								
Prueba1 Prueba2	DIFERENCIA NEWTONS	25kN							
.45 mm 0.15 mm	1	20141							
EMERGENCIA									
OFF	RESET BORRAR GRAF	15kN							
		10kN-492							

• Comparación de resultados

La Tabla 15 presenta los resultados de la fuerza de apriete obtenidos en el cálculo y

mediante el software.

Tabla 15

Resultados de la fuerza de apriete

Re	sultados d	le la fuerza d	de apriete H	yundai Acce	ent					
Plato	Calculo	Prueba 1	Diferencia	Prueba 2	Diferencia					
Nuevo	475 lbf	470 lbf	1.05 %	472 lbf	0.63 %					
Desgastado	475 lbf	108 lbf	77.26%	107 lbf	77.47 %					
Resultados de la fuerza de apriete Cherry QQ										
Plato	Calculo	Prueba 1	Diferencia	Prueba 2	Diferencia					
Nuevo	292 lbf	289 lbf	1.02 %	290 lbf	0.68 %					
Desgastado	Desgastado 292 lbf 175 lbf 40.06 % 182 lbf 38.92 %									
Resultados de la fuerza de apriete Chevrolet Aveo Activo										

Plato	Calculo	Prueba 1	Diferencia	Prueba 2	Diferencia
Nuevo	478 lbf	477 lbf	0.20 %	476 lbf	0.41 %
Desgastado	478 lbf	150 lbf	68.61 %	152 lbf	68.20 %

• Análisis de resultados

Con ayuda de la Tabla 15 podemos verificar que el banco esta trabajando correctamente, ya que analizando los resultados del plato de presión de embrague nuevo existe una diferencia que oscila desde el 0.20 al 1.05 % entre el valor calculado y medido, indicando que el plato se encuentra en buen estado. Por otra parte, con el plato de presión de embrague desgastado, existe una diferencia de entre el 38 al 77,26 % indicando que el plato de embrague se encuentra en mal estado, próximo a cumplir con su tiempo de vida útil.

6.7. Guía de funcionamiento del banco

UNIVERSIDAD POLITÉCNICA	VICERRECTORADO DOCENTE Código: GUIA-PRL-001	Código: GUIA-PRL-001
SALESIANA	CONSEJO ACADÉMICO	Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES

CARRERA: Ingeniería Automotriz		ASIGNATURA: Motores de Combustión Interna II	
NRO. PRÁCTICA:	TÍTULO PRÁCTICA: embrague	TÍTULO PRÁCTICA: Comprobación del estado del plato de presión de fricción de embrague	
OBJETIVO GENERAL • Analizar el estado OBJETIVOS ESPECÍFI • Comparar los res • Analizar la grafic	del plato de presión de fricción de en C OS Iltados de la fuerza de apriete obtenic a del estado del plato de presión de en	mbrague. los mediante calculo y con el software. mbrague.	
Fun	cionamiento del banco de pru	ebas de platos de fricción de embrague	
1. Cone entra consi bares	ctar el banco de pruebas a una la de aire en la cual se debe derar la presión máxima de 8		
2. Cone de ali mism cone	ctar el banco hacia una fuente mentación de 110V-60Hz la a que deberá poseer una ción a tierra.		

3. Energizar el banco de pruebas permitiendo que entre en funcionamiento el ordenador, la electroválvula y los sensores.

4. Encerar el Display pulsando en el botón "TARE".

5. Encender el ordenador y abrir el icono que corresponde al banco de pruebas.

PRECAUCIÓN

VICERRECTORADO DOCENTE

Aprobación: 2016/04/06

 CONSEJO ACADÉMICO
 Aprobación:

 Formato:
 Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

PRUEBA 1

Libras fuerza

PORCENTAGE DE ERROR

Valor er

PRUEBA 2

Libras fuerza

PORCENTAGE DE ERROR DIFERENCIA ENTRE PRUEBA: DIFERENCIA NEWTONS

6. Seleccionar el puerto de comunicación hacia la tarjeta electrónica en el icono "SELECCIONE EL PUERTO DE COMUNICACIÓN" el cual viene establecido en el ordenador como "COM4" y se procede a pulsar el botón de "CONECTAR"

D Max 3.0

Di

7. En el menú de "BUSQUEDA" se verifica si el plato de presión consta en la base de datos y se procede a pulsar la marca y modelo del vehículo a la cual corresponde, en donde el programa se encargará de colocar los datos característicos al tipo de vehículo.

 En caso de que el modelo de plato no este en la base de datos, en la esquina superior derecha existe un cuadro en donde podremos ingresar datos nuevos, en donde tendremos que ingresar los diámetros interiores y exteriores en centímetros.

larca:	
lodelo:	
Diafracma:	
Diametro interior:	cm
Diametro exterior:	cm
ibras fuerza:	lbf
recion en bares: 2.2	

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

CONSEJO ACADÉMICO

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

11. Introducir la galga de calibración entre el rodillo de empuje y el diafragma para asegurar que el recorrido sea el mismo en todos los platos de presión y finalmente se asegura el vástago mediante los bloqueos que se encuentran a los extremos del vástago.

12. Cerrar la compuerta de la cámara de protección, caso contrario, el banco no se accionará.

UNIVERSIDAD POLITÉCNICA	VICERRECTORADO DOCENTE	Código: GUIA-PRL-001
	CONSEJO ACADÉMICO	Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

RESULTADO(S) OBTENIDO(S):		
CONCLUSIONES.		
CONCLUSIONES:		
RECOMENDACIONES:		

7. CONCLUSIONES

- Con la información recolectada se logró establecer la importancia que tiene cada uno de los elementos del sistema de embrague, además se pudo establecer los compontes del banco de pruebas identificando la importancia que tienen cada uno de estos en el control y la precisión de los datos brindados por el mismo, en base a esto se generaron criterios solidos acerca de su funcionamiento y las pruebas que se deben realizar para desarrollar las restauraciones pertinentes.
- Mediante el análisis realizado se pudo establecer que la integridad del banco no se ve afectada siempre y cuando no se superen los límites establecidos (8 bares) permitiendo dar paso al reacondicionamiento el cual se llevó a cabo mediante diversos procesos mecánicos, tales como procesos con arranque de viruta como taladrado y sin arranque de viruta en el que se incluyen procesos de soldado, los cuales permitieron recuperar y mejorar la estructura del banco.
- Se modificaron las líneas de código en concreto las de cálculo, para lograr que el banco brinde valores reales los cuales comparamos con valores teóricos. Los valores teóricos implementan formulas como: fuerza de apriete, transformación de libras fuerza a Newtons y viceversa. En la interfaz del programa integramos: unidades de los datos a ingresar, logo de la universidad y nombre del banco de pruebas, además de mejorar la calidad del entorno visual. Los valores permitidos de porcentaje de error en los platos de presión de embrague deben ser inferiores al 5%, el banco brinda datos con un porcentaje de error inferior al 2%, garantizando el análisis de valores verídicos y reales.

8. RECOMENDACION

Previo al uso del banco es importante leer la guía de practica para desarrollar correctamente el análisis del plato de presión de embrague y obtener datos reales, además nos garantiza el correcto funcionamiento del banco bajo las condiciones de correcto funcionamiento.

9. BIBLIOGRAFÍA

- RODRIGUEZ GARCIA, José Ignacio; VILLAR PAUL JOSE. "Sistemas de Transmisión y Frenado/MACMILLAN Profesional", España, 2017, ISBN: 9788416653881
- Eduardo Águeda Casado, José Martin Navarro, Tomas Gómez Morales "Sistemas de transmisión y frenado" PARANINFO THOMSON España, 2012, ISBN: 13: 9788497320597
- Johnson, M., & Smith, P; "Fundamentos de sistemas de embrague automotriz", 2020, Editorial XYZ, ISBN: 978-1234567890
- García, A., & López, J; "Avances en tecnología de embragues hidráulicos", 2018, Ediciones Técnicas Avanzadas, ISBN: 978-9876543210
- Rodríguez, L; "Sistemas de embrague: Una perspectiva contemporánea", 2019, Editorial Universitaria, ISBN: 978-0123456789