

UNIVERSIDAD POLITÉCNICA SALESIANA

SEDE QUITO

CARRERA DE ELECTRICIDAD

REDUCCIÓN DE ARMÓNICOS CREADOS POR CORRIENTES NO SINUSOIDALES DEBIDO A LA PRESENCIA DE CARGAS NO LINEALES, MEDIANTE TRANSFORMADORES CON CONEXIÓN EN ZIGZAG EN EL SISTEMA DE DISTRIBUCIÓN RESIDENCIAL

Trabajo de titulación previo a la obtención del Título de Ingeniero Eléctrico

AUTOR: MYKE RICHARD ROSERO SANGUCHO TUTOR: ROGELIO ALFREDO ORIZONDO MARTÍNEZ

> Quito - Ecuador 2023

Myke Richard Rosero Sangucho

REDUCCIÓN DE ARMÓNICOS CREADOS POR CORRIENTES NO SINUSOIDALES DEBIDO A LA PRESENCIA DE CARGAS NO LINEALES, MEDIANTE TRANSFORMADORES CON CONEXIÓN EN ZIGZAG EN EL SISTEMA DE DISTRIBUCION RESIDENCIAL

Universidad Politécnica Salesiana, Quito – Ecuador 2023

Carrera de Electricidad

Breve reseña histórica e información de contacto.

Dirigido por:

Rogelio Alfredo Orizondo Martínez (Y'1972 – M'01). Nació en Caracas, Venezuela. Recibió su título en Ingeniería Eléctrica por la Universidad Simón Bolívar en 2006. Actualmente es docente en la Universidad Politécnica Salesiana. Sus áreas de investigación incluyen electrónica de potencia, especialmente FACTS, sistemas de puesta a tierra y protección catódica. rorizondo@ups.edu.ec

Myke Richard Rosero Sangucho (Y'1989 – M'10). Realizó sus estudios de nivel secundario en el Colegio Técnico Particular "Jhon Velck" de la ciudad de Quito. Egresado de Ingeniería Eléctrica de la Universidad Politécnica Salesiana. Su trabajo se basa en la reducción de armónicos creados por corrientes no sinusoidales debido a la presencia de cargas no lineales, mediante transformadores con conexión en zigzag en el sistema de distribución residencial. mroseros@est.ups.edu.ec

Todos los derechos reservados:

Queda prohibida, salvo excepción prevista en la ley, cualquier forma de reproducción, distribución, comunicación pública y transformación de esta obra para fines comerciales, sin contar con la autorización de los titulares de propiedad intelectual. La infracción de los derechos mencionados puede ser constitutiva de delito contra la propiedad intelectual. Se permite la libre difusión de este texto con fines académicos o investigativos por cualquier medio, con la debida notificación a los autores.

DERECHOS RESERVADOS ©2023 Universidad Politécnica Salesiana QUITO - ECUADOR

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓN

Yo, Myke Richard Rosero Sangucho con documento de identificación Nº 1719240838 manifiesto que:

Soy el autor y responsable del presente trabajo; y, autorizo a que sin fines de lucro la Universidad Politécnica Salesiana pueda usar, difundir, reproducir o publicar de manera total o parcial el presente trabajo de titulación.

Quito, 27 de abril del año 2023

Atentamente,

mu

Myke Richard Rosero Sangucho 1719240838

CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA

Yo, Myke Richard Rosero Sangucho con documento de identificación No. 1719240838, expreso mi voluntad y por medio del presente documento cedo a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que soy autor del Artículo Académico: "Reducción de armónicos creados por corrientes no sinusoidales debido a la presencia de cargas no lineales, mediante transformadores con conexión en zigzag en el sistema de distribución residencial", el cual ha sido desarrollado para optar por el título de: Ingeniero Eléctrico, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En concordancia con lo manifestado, suscribo este documento en el momento que hago la entrega del trabajo final en formato digital a la Biblioteca de la Universidad Politécnica Salesiana.

Quito, 27 de abril del año 2023

Atentamente,

IIIII

Myke Richard Rosero Sangucho 1719240838

CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN

Yo, Rogelio Alfredo Orizondo Martínez con documento de identificación N° 1757424195, docente de la Universidad Politécnica Salesiana, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: REDUCCIÓN DE ARMÓNICOS CREADOS POR CORRIENTES NO SINUSOIDALES DEBIDO A LA PRESENCIA DE CARGAS NO LINEALES, MEDIANTE TRANSFORMADORES CON CONEXIÓN EN ZIGZAG EN EL SISTEMA DE DISTRIBUCIÓN RESIDENCIAL, realizado por Myke Richard Rosero Sangucho con documento de identificación N° 1719240838, obteniendo como resultado final el trabajo de titulación bajo la opción de Artículo Académico que cumple con todos los requisitos determinados por la Universidad Politécnica Salesiana.

Quito, 27 de abril del año 2023

Atentamente,

Ing. Rogelio Alfredo Orizondo Martínez, MSc 1757424195

ÍNDICE GENERAL

1		Intr	odu	cción	2
2		Ma	rco t	eórico	3
	2.	1	Sist	ema de Distribución	4
		2.1	.1	Pérdidas en la red de distribución	4
		2.1	.2	Pérdidas por efecto Joule	4
	2.	2	Arm	nónicos	4
		2.2	.1	Origen de la presencia de armónicos	5
		2.2	.2	Efectos de los armónicos dentro del sistema eléctrico	5
		2.2	.3	Equipos generadores de armónicos	6
		2.2	.4	Cargas no lineales	6
	2.	3	Cua	antificación de límites de distorsión	7
		2.3	.1	Distorsión de armónico individual	7
		2.3	.2	Distorsión de armónico total	7
		2.3	.3	Clasificación de armónicos	8
		2.3	.4	Normativas reguladoras de emisión de armónicos	8
	2.	4	Mét	odos para la minimización de armónicos	9
		2.4	.1	Filtros activos	9
		2.4	.2	Filtros pasivos	9
		2.4	.3	Transformadores especiales1	0
	2.	5	Tra	nsformador con conexión en zigzag1	0
		2.5	.1	Modo de conexión de los devanados1	0
3		Ca	so d	e Estudio1	1
	3.	1	Sist	tema IEEE de 13 barras1	1
		3.1	.1	Funcionamiento del sistema sin perturbación armónica1	1
		3.1	.2	Ubicación del componente armónico1	1
		3.1	.3	Modelamiento de la carga no lineal1	2
		3.1	.4	Conexión del transformador en Yy1	2
		3.1	.5	Conexión del transformador en Yz1	3
		3.1	.6	Ubicación del transformador1	3
4		Ana	álisis	s de resultados	3
	4.	1	Оре	eración del transformador de conexión Yy con la carga no lineal	4
	4.	2	Оре	eración del transformador de conexión Yz con la carga no lineal1	6
5		Co	nclu	siones1	7
	5.	1	Tra	bajos futuros1	8

6	R	eferencias	18
	6.1	Matriz de Estado del Arte	23
	6.2	Resumen de Indicadores	27
7	Ai	nexos	28

ÍNDICE DE FIGURAS

Figura 1. Ubicación óptima del transformador con conexión en zigzag Figura 2. Distorsión de la onda sinusoidal Figura 3. Circulación de corrientes armónicas por la red de distribución Figura 4. Impedancia representativa de una carga no lineal Figura 5. Descomposición de un sistema desbalanceado en componentes simétrica	3 5 6 7 s 8
Figura 6. Descomposición de armónicos de la señal sinusoidal	9
Figura 7. Comportamiento del tercer armónico en el neutro	0
Figura 8. Representación de la conexión del transformador en zigzag1	0
Figura 9. Esquema del sistema IEEE de 13 barras	. 1
Figura 10. Señal de voltaje estabilizada1	. 1
Figura 11. Señal de corriente estabilizada1	. 1
Figura 12. Ubicación de la carga no lineal1	.2
Figura 13. Conexión Yy en los devanados del transformador	.2
Figura 14. Conexión Yz en los devanados del transformador	.3
Figura 15. Ubicación del transformador de distribución	.3
Figura 16. Modelado en DigSILENT del sistema IEEE de 13 barras	.4
Figura 17. Distorsión en la onda de corriente	.4
Figura 18. Espectro armónico bajo la operación del transformador con conexión Yyl Figura 19. Espectro armónico en las redes de secuencia operando con la conexión	5
Figura 20. Distorsión del armónico total en la barra 634 con la conevión Vy	5
Figura 20. Distorsion del armónico total en la barra 034 com a conexión 1 y Figura 21. Espectro armónico bajo la operación del transformador con conexión Yz Figura 22. Espectro armónico en las redes de secuencia operando con la conexión Yz	.6 7
Figura 23. Distorsión del armónico total en la barra 634 con la conexión Yz Figura 24. Resumen e indicador de la temática - Estado del arte	.7
Figura 25. Indicador de formulación del problema - Estado del arte	:7 27

ÍNDICE DE TABLAS

Tabla 1. Tipos de armónicos	
Tabla 2. Niveles de distorsión de tensión conforme a la norma IEEE 519	9
Tabla 3. Niveles de distorsión de tensión conforme a la norma IEC 61000	9
Tabla 4. Componentes armónicos de la carga residencial compuesta	12
Tabla 5. Resultados de la distorsión armónica obtenidos en cada fase	15
Tabla 6 . Resultados de la distorsión armónica en las redes de secuencia	15
Tabla 7. Resultados de la distorsión total de armónicos en la barra 634	16
Tabla 8. Resultados de la distorsión armónica en las fases modificando la co	onexión
	16
Tabla 9. Resultados de la distorsión armónica en las redes de secuencia	
modificando la conexión	17

Tabla 10. Resultados de la distorsión total en la barra 634 ante el cambio de	
conexión	17
Tabla 11. Matriz de estado del arte	23
Tabla 12. Datos del segmento de línea	28
Tabla 13. Datos de configuración de líneas aéreas	28
Tabla 14. Datos de configuración de líneas subterráneas	28
Tabla 15. Datos de cargas puntuales	28
Tabla 16. Datos de la carga distribuida	28
Tabla 17. Datos del transformador	29

REDUCCIÓN DE ARMÓNICOS CREADOS POR CORRIENTES NO SINUSOIDALES DEBIDO A LA PRESENCIA DE CARGAS NO LINEALES, MEDIANTE TRANSFORMADORES CON CONEXIÓN EN ZIGZAG EN EL SISTEMA DE DISTRIBUCION RESIDENCIAL

Resumen

La evolución tecnológica en los equipos electrónicos ha crecido considerablemente en el sector residencial, por lo que su inclusión crecerá con el pasar de los años. El consumo no lineal de los componentes con los cuáles son diseñados, repercuten negativamente dentro del sistema de distribución. ocasionando daños en equipos, especialmente en el transformador que alimenta a dichas cargas, reduciendo su vida útil, además de una deficiente calidad de suministro eléctrico. Con estos antecedentes, el objetivo puntual de la presente investigación se enfoca en reducir los armónicos originados por este tipo de cargas. Para lograrlo, el método aplicado será a través de la conexión en zigzag, el cual se lo realiza en el sistema de 13 barras IEEE, comparando las conexiones entre los devanados del transformador en Yy y Yz, por medio de la simulación en DigSILENT. Mediante esto se podrá realizar un análisis basado en la obtención del espectro armónico HD_i y THD_i, así como a través de la tabulación de datos. De esta manera, se encontrará la conexión más eficaz para reducir el tercer armónico, y por ende sus componentes de secuencia cero.

Palabras Clave: Armónicos, Cargas no lineales, Distorsión Armónica, Señal Sinusoidal, Transformadores con Conexión en zigzag.

Abstract

The technological evolution in electronic equipment has grown considerably in the residential sector, so it's inclusion will grow over the years. The non-linear consumption of the components with which they are designed, have a negative impact on the distribution system, causing damage to equipment, especially in the transformer that feeds these loads, reducing their useful life, in addition to a poor quality of power supply. With this background, the specific objective of this research is focused on reducing the harmonics originated by this type of loads. To achieve this, the method applied will be through the zigzag connection, which is performed in the IEEE 13-bus system, comparing the connections between the windings of the transformer in Yy and Yz, by means of simulation in DigSILENT. Through this, an analysis based on obtaining the harmonic spectrum HD_i and THD_i, as well as through data tabulation, can be performed. In this way, the most effective connection to reduce the third harmonic, and therefore it's zero sequence components, will be found.

Keywords: Harmonics, Non-Linear Loads, Harmonics Distortion, Sinusoidal Signal, Transformers with zigzag.

1 Introducción

El uso de interfaces de electrónica de potencia ha sido cada vez más común en los aparatos electrónicos modernos, debido a consideraciones de eficacia. De tal manera, que ha inducido a una tendencia que ha provocado incremento en un las distorsiones armónicas que afectan a la red ocasionando de distribución, una degradación neta tanto de la eficiencia y calidad de energía [1],[2].

Por otra parte, los armónicos se producen a raíz de la existencia de cargas no lineales, consideradas como frecuencias adicionales que se añaden a la corriente o voltaje [3]. Este tipo de cargas poseen altos niveles de contenido armónico, por lo que superan la capacidad de carga máxima que pueden soportar los conductores [4].

Generalmente, las cargas no lineales están representadas mediante fuentes de corriente, dado a que presentan una distorsión en su forma de onda, con respecto a la onda sinusoidal pura de la frecuencia fundamental [5].

Actualmente, la cuantificación armónica se ha convertido en un parámetro importante para los ingenieros de las empresas públicas, a consecuencia del aumento de este tipo de cargas [4].

La distorsión producida en la onda de corriente y tensión, es una situación frecuente con respecto a la calidad de energía. Garantizar que esa distorsión se mantenga dentro de un límite determinado, es crucial para la calidad de la electricidad [6].

Según las normas internacionales relativas a la calidad de la electricidad (EN-50160, IEEE519 e IEC 61000) establecen que es necesario mantener las emisiones de armónicos en los dispositivos y servicios eléctricos en general, dentro de los límites permisibles [7].

Los niveles elevados de armónicos (componentes múltiplos de la frecuencia fundamental de 50 o 60Hz) pueden provocar graves problemas técnicos [8]. Así, cuando existen altas frecuencias dentro de un sistema de distribución, tienden a contraer varios impactos perjudiciales que incluyen fallos prematuros de los transformadores, mal funcionamiento de los interruptores automáticos, degradación en los conductores [4].

Ante todo, la presencia de contenido armónico puede desestabilizar el sistema, por lo que es necesario reducir la distorsión armónica por debajo del 5% según la norma IEEE [9].

Habitualmente un sistema conectado a tierra conduce la corriente en el neutro, acarreando varios problemas en cuanto a los armónicos triples [10]. De esta manera, en un sistema de distribución de cuatro hilos, es común que exista una reducción en la capacidad del suministro eléctrico [11].

Por lo tanto, una inyección triple de armónicos por parte de las cargas no lineales, aumenta considerablemente el porcentaje de distorsión en el hilo neutro de la fuente [10]. Normalmente, en este tipo de sistema las cargas no suelen estar distribuidas uniformemente, lo que da lugar a un excedente de corrientes en el neutro, tanto en su régimen fundamental y armónico [12].

De este modo, un sistema trifásico incluso en condiciones de equilibrio, los componentes neutros no se anulan entre sí, sino que se suman. Como resultado, la parte armónica y fundamental de una corriente de carga desequilibrada afectarán a la corriente total del neutro [11].

El transformador en zigzag es un método para reducir la corriente del neutro y eliminar las corrientes armónicas de secuencia cero, ya que provee una ruta para la circulación de estas corrientes, permitiendo que fluya hacia el neutro del transformador [11],[12].

Con esto se pretende reducir significativamente la acumulación de corrientes armónicas de secuencia cero acumuladas en el neutro, que se producen en los sistemas de cuatro hilos [11],[10].

Figura 1. Ubicación óptima del transformador con conexión en zigzag

Para facilitar la comprensión del tema, el artículo tiene la siguiente estructura:

En el capítulo 2 se detalla la parte teórica focalizándose en el sistema de distribución, armónicos, cuantificación de límites de distorsión, métodos de minimización de armónicos y finalmente la conexión en zigzag de los devanados de un transformador.

El capítulo 3 consta del caso de estudio, descripción del sistema de 13 barras IEEE, visualización de la señal de voltaje y corriente sin perturbación armónica, como también, la descripción del procedimiento realizado para la modelación del sistema.

Por su parte, el capítulo 4 contiene el análisis basado en los resultados obtenidos, tras aplicar el método propuesto para la minimización del tercer armónico.

En la sección del capítulo 5 se emiten las conclusiones correspondientes y se sugieren los temas de estudio para su posterior análisis y aplicación futura.

2 Marco teórico

El sistema eléctrico se encuentra sujeto a reglamentaciones para asegurar un nivel de calidad estándar. Esto puede tener una serie de consecuencias indeseables, como un incremento en las pérdidas durante el suministro eléctrico [13].

Las corrientes armónicas elevadas, un bajo factor de potencia y la excesiva corriente neutra debido a cargas no lineales, se constituyen en un problema en la calidad de energía que tiene graves repercusiones en el sistema eléctrico [3]. De esta manera, los transformadores de distribución se ven afectados por las pérdidas ocasionadas por componentes armónicas. Esto conlleva a una reducción en su capacidad de gestión de potencia, resultando así, en una reducción de la misma en los transformadores [2].

2.1 Sistema de Distribución

Los sistemas de distribución de energía eléctrica permiten transportar la electricidad procedente de las subestaciones, hasta los usuarios finales, bajo la regulación de estándares que establecen criterios de calidad, eficiencia y confiabilidad. De esta manera, se procede a mitigar las pérdidas de potencia y perfeccionar el proceso de transporte [14].

El sistema de distribución puede ser aéreo y subterráneo, donde actualmente las ciudades optan por transformar el sistema para que opere bajo tierra, por ser más seguro y estéticamente agradable [15]. Su forma de suministrar la energía eléctrica hacia los usuarios, se la realiza utilizando transformadores en baja tensión [16].

2.1.1 Pérdidas en la red de distribución

Las pérdidas dentro del sistema eléctrico se producen en cada una de sus etapas, sin embargo, el sistema de distribución suele tener las mayores pérdidas atribuidas puntualmente a las líneas de distribución, ya que existe una mayor relación entre la corriente y tensión [17].

Por otra parte, dentro del sistema de distribución se puede encontrar varias pérdidas, que han sido categorizadas en dos diferentes grupos. La primera se trata de pérdidas técnicas, que son las que se generan durante el proceso de distribución eléctrica, transformadores y efectos físicos. En cuanto a pérdidas no técnicas, se basa en la diferencia de pérdidas totales y técnicas, que generan errores en las mediciones de consumo, fraude, etc [13]. De todas las pérdidas que suelen presentarse en el sistema eléctrico, algunas de las más comunes son las siguientes:

- Efecto Joule
- Efecto corona
- Histéresis
- Corrientes de Foucault

En los sistemas de distribución, las pérdidas se presentan tanto en los alimentadores primarios y secundarios [18]. Básicamente se asocian a la transición de la energía eléctrica a calor, ocasionado por el flujo de corriente que se produce dentro de los conductores, lo que conlleva al denominado efecto Joule [14].

2.1.2 Pérdidas por efecto Joule

El efecto Joule se produce debido a la circulación de corriente sobre elementos resistivos, ocasionando la disipación de calor en los conductores del sistema [13].

En el aspecto matemático, este efecto se representa de la siguiente manera:

$$P = \sum_{h=1}^{\infty} R I_h^2 = P_1 + \sum_{h=2}^{\infty} P_h \qquad (1)$$

Donde:

h = Frecuencia fundamental

R =Constante aproximada

De esta manera, por medio de la sumatoria de las pérdidas ocasionadas tanto por la corriente fundamental y por los diferentes armónicos, se obtiene el resultado de las pérdidas Joule [13].

2.2 Armónicos

Se denominan armónicos a las corrientes o tensiones no sinusoidales, los cuales producen frecuencias de múltiplos enteros con respecto a la frecuencia nominal, para la que está diseñado el sistema de alimentación [2]. Generalmente, los niveles de frecuencia de operabilidad de un sistema son de 50 o 60Hz, dependiendo de la región [19].

Así pues, el valor de la frecuencia de un armónico viene dado por la ecuación:

$$f_h = k x f \tag{2}$$

Donde:

k =Orden de armónico f =Frecuencia de operación

La distorsión de la onda de voltaje se debe principalmente a la existencia de armónicos de corriente, provocando la aparición de armónicos de tensión [20]. Sin embargo, los armónicos de corriente tienen mayor incidencia en la degradación de la calidad de energía, ya que produce mayor caída de tensión [21].

Como puede observarse a partir de la Figura 2, al producirse una perturbación armónica, la señal sinusoidal se deformará dependiendo la cantidad de armónicos presentes.

Figura 2. Distorsión de la onda sinusoidal

Matemáticamente a las corrientes armónicas se las representa por medio de la siguiente ecuación:

$$i_k = \sum_{k=1}^n \sqrt{2} I_k \sin(2\pi f k + \delta_n) \quad (3)$$

Donde:

 i_k = Amplitud de la corriente k = Orden de armónico δ_n = Ángulo de fase

En cuanto a los armónicos de voltaje, la representación matemática será la misma sustituyendo la corriente por el voltaje [10]. Dicho concepto se establece mediante la ecuación:

$$v_k = \sum_{k=1}^n \sqrt{2} V_k \sin(2\pi f k + \delta_n) \qquad (4)$$

Donde:

 v_k = Amplitud de voltaje k = Orden de armónico δ_n = Ángulo de fase

2.2.1 Origen de la presencia de armónicos

La presencia de armónicos en el sistema de distribución se debe principalmente a las cargas residenciales e industriales de características no lineales [22]. Este tipo de cargas producen armónicos en la onda de corriente, deteriorando la calidad y eficiencia del suministro eléctrico [23],[24].

Sin embargo, los armónicos no solamente se generan debido a la incorporación de cargas no lineales a la red eléctrica, también se debe a la inclusión de fuentes con las mismas características [25].

2.2.2 Efectos de los armónicos dentro del sistema eléctrico

El alto índice de armónicos originados dentro del sistema de distribución implica a tener grandes pérdidas debido a fallas inesperadas de los equipos [4]. La elevación de corriente ocasionado por los armónicos, inducen a un aumento de la temperatura en los equipos del sistema eléctrico, reduciendo su rendimiento y vida útil [25].

Como consecuencia de estas perturbaciones armónicas, los efectos más comunes son los siguientes:

• Resonancia

- Incremento en pérdidas
- Sobrecarga en los equipos instalados
- Perturbaciones en carga sensibles
- Consecuencias económicas

2.2.3 Equipos generadores de armónicos En el sistema de distribución residencial se pueden encontrar equipos eléctricos de uso doméstico, con características lineales y no lineales [26]. Ocasionando una mayor inyección de armónicos de corriente en la red de baja tensión, debido a la conexión de equipos como: lámparas, televisores, impresoras, computadoras, aire acondicionado, entre otros, en el sistema eléctrico [22].

A través de la Figura 3 puede observarse como la integración de cargas no lineales, inciden en la aparición de armónicos de corriente dentro del sistema.

Figura 3. Circulación de corrientes armónicas por la red de distribución

El consumo no lineal de estas cargas produce una demanda proporcional entre la corriente y el voltaje [19]. Lo que ocasiona que exista una distorsión armónica en el sistema de distribución a causa de este tipo de cargas que no cumplen con la ley de Ohm [13].

Esta propagación de armónicos se da por medio de los transformadores de servicio hasta el alimentador de distribución. Por lo que, las corrientes armónicas pueden introducirse dentro del sistema de transmisión por medio de los transformadores de distribución [11].

2.2.4 Cargas no lineales

Se entiende por cargas no lineales a todas aquellas cargas capaces de generar corrientes no sinusoidales cuando son alimentadas por fuentes de voltaje no sinusoidal, causantes de fluctuaciones de voltaje, parpadeo y altos niveles de armónicos afectando la calidad de energía [27], [23].

A estas corrientes armónicas no sinusoidales. se las conoce como contribución de carga [28]. Las características de este tipo de cargas pueden ser descritas por medio del factor de cresta $\sqrt{2}$, definido como la relación entre el pico de la onda y el valor eficaz [27].

En función a sus características armónicas, a las cargas no lineales pueden ser clasificadas como fuentes de corriente o de tensión [5].

Por medio de la Figura 4 se muestra la distorsión de corriente asociada a las cargas no lineales, procedente de la composición electrónica con la que se diseñan este tipo de cargas.

Figura 4. Impedancia representativa de una carga no lineal

2.3 Cuantificación de límites de distorsión

Los índices de evaluación de medidas para los límites de distorsión armónica, se las realiza a través de la distorsión armónica individual (HD) y la distorsión armónica total (THD) [29].

Son utilizados como parámetros de medición de eficiencia del sistema eléctrico, cuantificando las variaciones de la señal para establecer una magnitud del efecto que causan los armónicos [3],[30].

2.3.1 Distorsión de armónico individual A la distorsión individual (HD) de cualquier orden, se lo define como el valor porcentual tanto de corriente, como de tensión armónica con respecto al valor de la señal fundamental [31].

Así, cada una de las distorsiones de corriente quedan expresadas por la ecuación:

$$HD_i = \frac{I_h}{I_1} \tag{5}$$

Donde:

 I_h = Componente de armónico de corriente de orden h I_1 = Voltaje fundamental (rms)

Para el caso de una distorsión de tensión individual, este viene expresado mediante la ecuación:

$$HD_{\nu} = \frac{V_h}{V_1} \tag{6}$$

Donde:

 V_h = Componente de armónico de voltaje de orden h V_1 = Voltaje fundamental (rms)

2.3.2 Distorsión de armónico total

Se denomina distorsión armónica total (THD), a la relación porcentual del valor eficaz de los armónicos de orden superior y el valor eficaz del valor fundamental expresado porcentualmente [4]. El valor de la distorsión total se obtiene sumando los armónicos de corriente o voltaje, para después ser comparado con el valor fundamental de la señal original [10].

No obstante, la distorsión de armónicos total (THD) es limitada, puesto que provee la información de la relación de perturbaciones entre nodos [30]. La distorsión total de armónicos se la puede observar como una distorsión armónica de corriente y de tensión [32]. Para calcular la distorsión total de voltaje, se emplea la siguiente ecuación:

$$THD_{v} = \frac{\sqrt{\sum_{h=1}^{\infty} {V_{h}}^{2}}}{V_{1}} x100\% \qquad (7)$$

Donde:

$$V_h$$
 = Componente de armónico de
voltaje de orden h
 V_1 = Voltaje fundamental (rms)

La distorsión total de corriente puede determinarse mediante la ecuación descrita a continuación:

$$THD_{i} = \frac{\sqrt{\sum_{h=1}^{\infty} {I_{h}}^{2}}}{I_{1}} x100\% \quad (8)$$

Donde:

 I_h = Componente de armónico de corriente de orden h I_1 = Corriente fundamental (rms)

2.3.3 Clasificación de armónicos

Las señales de corriente y voltaje normalmente pueden ser clasificados como pares, impares y triples. Donde las magnitudes que presentan los armónicos impares son más significativas, lo que es más perjudicial para el sistema. Estos armónicos pueden surgir de manera indeterminada y se presentan como secuencia positiva, negativa y cero [7],[8].

Conforme a la Tabla 1, se presentan los diferentes armónicos presentes en cada red de secuencia.

Tabla	1.	Tipos	de	armónicos
1 4014	•••			

Corrientes	Armónicas			
h				
Secuencia Positiva 1, 7, 13,				
Secuencia Negativa	5, 11, 17,			
Secuencia Cero	3, 9, 15,			

Los armónicos triples se atribuyen a la composición de múltiplos impares del tercer armónico que originan corrientes de circulación elevadas en el conductor neutro en sistemas de configuración estrella y acoplamiento a tierra. Cabe mencionar que los armónicos de secuencia cero concuerdan con los armónicos triples [8].

Para la descomposición de fasores de un sistema trifásico desbalanceado a uno balanceado, se requiere de un análisis de secuencia positiva Figura 5(a) donde sus tres fasores tienen la misma magnitud y se encuentran desfasados a 120°, la secuencia negativa Figura 5(b) corresponden a tres fasores de igual magnitud con un desfase de 120° en sentido opuesto, de la misma manera la secuencia cero Figura 5(c) mantiene las magnitudes iguales en sus tres fasores, con un desfase nulo.

Figura 5. Descomposición de un sistema desbalanceado en componentes simétricas

2.3.4 Normativas reguladoras de emisión de armónicos

Debido a que los armónicos inciden gravemente en la calidad de energía suministrada, se han establecido ciertos valores limitantes para evaluar las distorsiones armónicas [33]. Para lograr que los niveles de este tipo de perturbaciones sean mínimas, existen los estándares IEEE 519 e IEC 61000-3-6, los cuales son aplicados para regularizar e imitar la emisión de armónicos [6],[34]. De tal manera que estos estándares nos permiten mantener los niveles de corrientes en un cierto límite, donde no se vea afectada la calidad de energía, sin llegar a infringir con los niveles de distorsión de tensión [23]. Por lo tanto, se extiende la durabilidad de los equipos contribuyendo a un servicio más consistente, conforme a las normas y regulaciones pertinentes [7].

La Tabla 2 y Tabla 3 corresponden a los límites de armónicos permitidos, normalizados por las normas IEEE 519 e IEC 61000.

Tabla 2. Niveles de distorsión de tensión conforme a la
norma IEEE 519

Orden de Armónicos	NORMATIVA
h	IEEE 519
THD	8%
3	5%
5	5%
7	5%
9	5%

Tabla 3	Niveles	de distorsi	ión de	tensión	conforme	a la
		norma II	EC 610	000		

Orden de Armónicos	NORMATIVA
h	IEEE 61000
THD	8%
3	5%
5	6%
7	1,5%
9	1,2%

El desarrollo de estos estándares de calidad de energía resulta a partir del desarrollo de prácticas y requerimientos, que se han establecido para controlar los armónicos que se generan dentro del sistema eléctrico [23].

La Figura 6 describe la generación de armónicos de diferente orden, donde a partir de la sumatoria de cada uno ellos junto a la señal fundamental se produce la distorsión de la señal sinusoidal.

2.4 Métodos para la minimización de armónicos

El mejoramiento de la calidad de energía está relacionado directamente con la corrección en la forma de onda de corriente y tensión del sistema de distribución. Generalmente los métodos más utilizados para la minimización de armónicos se realizan a través de filtros pasivos, filtros activos y transformadores con conexiones especiales [35],[36].

2.4.1 Filtros activos

Los filtros activos cuentan con técnicas de control y dispositivos electrónicos de potencia, para suministrar la corriente armónica hacia la carga no lineal, de manera que su consumo de corriente sea nítido [37]. Generalmente se usan para suministrar voltajes variables, solucionando los problemas que pueden presentarse en los filtros pasivos [9].

2.4.2 Filtros pasivos

Este tipo de filtros se componen de elementos pasivos, tales como condensadores, resistencias e inductores, que no necesitan de alimentación externa [9]. Su funcionamiento consiste en desplazar las corrientes armónicas a través de un trayecto que posea una impedancia baja, proporcionada por la combinación de elementos inductivos y capacitivos [7],[38]. Este tipo de filtros no pueden ser sobrecargados y se limitan únicamente a minimizar los armónicos impares [39]. Físicamente su tamaño es mucho más grande en comparación a los filtros activos, y producen una mayor disipación de calor [40].

2.4.3 Transformadores especiales

Este tipo de transformadores son considerados como especiales, dado que a sus diferentes conexiones se los puede utilizar para diferentes aplicaciones. Los transformadores más conocidos son de atenuación de armónicos, rectificadores, convertidores, amplificador de cuadratura y reguladores de ángulo de fase [41].

2.5 Transformador con conexión en zigzag

La presencia de armónicos de corriente o tensión dentro del sistema de distribución eleva la corriente se secuencia cero, ocasionando el aumento de la corriente del neutro [40]. Donde el aumento del valor real de la corriente afecta a los equipos de la red eléctrica [13].

Por otro lado, en la Figura 7 se aprecia que, ante la presencia de armónicos de tercer orden, la acumulación de corriente en el neutro origina una señal con la misma amplitud de la fundamental, pero triplicando la frecuencia.

Figura 7. Comportamiento del tercer armónico en el neutro

Los transformadores con conexión en zigzag tienen la capacidad de atenuar la corriente que circula en el conductor neutro [42]. Proporcionando una ruta de circulación de la corriente del conductor neutro, dividiéndola entre sus tres fases, permitiendo que la corriente neutra circule hasta llegar al neutro del transformador [12].

2.5.1 Modo de conexión de los devanados

La conexión en zigzag de los devanados del transformador hace posible que se mantenga en fase la corriente de secuencia cero [11]. Este tipo de conexión presenta algunas ventajas como, la protección ante sobrecargas, ausencia total el tercer armónico, y su operación se la realiza conectando el transformador en paralelo junto a la carga [43],[44].

Este tipo de conexión se forma mediante la subdivisión del devanado secundario como se muestra en la Figura 8(a) proporcionando dos bobinas conectadas en serie y una parte conectada en estrella. Por medio del diagrama fasorial de la Figura 8(b) se puede observar el comportamiento del voltaje por fase.

Figura 8. Representación de la conexión del transformador en zigzag

Para configurar los devanados del transformador y poder obtener la conexión en zigzag, el terminal a1 se enlaza con el terminal c2, b1 se conecta hacia a2, mientras que c1 se encuentra enlazado al terminal b2, para finalmente conectar los devanados internos al neutro [42].

3 Caso de Estudio

Con el fin de realizar una evaluación técnica para minimizar los armónicos dentro del sistema de distribución, la simulación se realizará considerando el sistema de prueba IEEE de 13 barras. Inicialmente, la simulación se mantendrá en su estado original sin modificar la relación Yy en los devanados del transformador.

Una vez obtenidos los resultados del contenido armónico mediante está conexión, se procede a realizar la modificación en los devanados para obtener una conexión Yz.

3.1 Sistema IEEE de 13 barras

El sistema de prueba consta de una topología radial trifásica desequilibrada, el cual caracteriza el modelo real de un circuito de distribución. Dicho modelo está compuesto por cableado aéreo y subterráneo, banco de capacitores, transformadores, y cargas.

Así pues, la Figura 9 ilustra el esquema unifilar del sistema que se va a modelar.

Figura 9. Esquema del sistema IEEE de 13 barras

3.1.1 Funcionamiento del sistema sin perturbación armónica

Las ilustraciones representadas en la Figura 10 y Figura 11, las formas de onda de las señales de tensión y corriente muestran un máximo nivel de estabilidad en el sistema sin ninguna distorsión armónica. Esto se debe a la inexistencia de alguna carga asociada a la generación de armónicos, por lo que el sistema entregará una señal sinusoidal pura.

3.1.2 Ubicación del componente armónico

Para originar la distorsión armónica se deberá acoplar la carga no lineal a la barra donde se pretende realizar la inyección de armónicos. Para esto, se ha establecido a la barra 634 como punto de inclusión de la carga no lineal, como se muestra en el diagrama de la Figura 12.

Figura 12. Ubicación de la carga no lineal

El efecto de distorsión en la onda sinusoidal depende fundamentalmente de la magnitud de las componentes armónicas

que contenga la carga no lineal.

3.1.3 *Modelamiento de la carga no lineal* El modelo de las cargas utilizadas en el sistema es de impedancia constante, sin embargo, para este análisis se ingresará una carga de tipo fuente de corriente para poder realizar la inyección de armónicos.

Para el modelamiento de la carga no lineal, se estableció un modelo de la librería proporcionada por DigSILENT. En este caso se trata de una carga residencial compuesta, el cual va a generar varios armónicos de n orden.

Los valores presentados en la Tabla 4 indican el orden de los armónicos inyectados por la carga compuesta.

rabia 4. Componentes armonicos de la carga residencial compuesta							
Orden de	I _{h_a}	I _{h_b}	I _{h_c}	á nguloA_h	á nguloB_h	á nguloC_h	
armónico	[%]	[%]	[%]	[°]	[°]	[°]	
3	22,5	25,2	25,2	37	37	37	
5	8,5	8,5	8,5	-175	-175	-175	
7	4,1	4,1	4,1	66,1	66,1	66,1	
9	8,2	8,2	8,2	-86	-86	-86	
11	6,9	6,9	6,9	133	133	133	
13	2,6	2,6	2,6	-2	-2	-2	
15	5,3	5,3	5,3	-175	-175	-175	

Tabla 4. Componentes armónicos de la carga residencial compuesta

3.1.4 Conexión del transformador en Yy Para conocer la magnitud de los armónicos bajo la operación del transformador con conexión en Yy, se realizará la cuantificación de armónicos individuales HD_i y la distorsión total THD_i.

Este tipo de conexión evidentemente cuenta con varias ventajas debido a la formación del neutro. Sin embargo, no es capaz de minimizar los armónicos de diferente orden.

En la Figura 13 se puede observar la conexión de los devanados del transformador.

3.1.5 Conexión del transformador en Yz Con la modificación del devanado secundario del transformador, con una conexión en zigzag, se obtiene la conexión Yz. Al igual que la conexión Yy también facilita un punto neutro, sin embargo, al presentar una doble bobina en el devanado secundario, se logrará minimizar la magnitud de ciertos armónicos.

La Figura 14 muestra la conexión del transformador de distribución tras la modificación del devanado secundario.

3.1.6 Ubicación del transformador

Cuando se trata de minimizar algún tipo de perturbación eléctrica, es necesario poder encontrar un lugar óptimo para la colocación del equipo con el cual se va a reducir dicha perturbación. De manera, que el análisis se lo realizará planteando la ubicación del transformador entre la barra 633 y 634, según lo representado por la Figura 15.

Figura 15. Ubicación del transformador de distribución

4 Análisis de resultados

Para constatar el impacto armónico dentro del sistema de distribución, la inclusión de la carga no lineal se la realizó bajo la operación del transformador con conexión Yy y Yz. El análisis se enfoca en la comparación de la capacidad que tienen estas diferentes conexiones para la mitigación de armónicos.

Aunque ambas conexiones facilitan un punto neutro para la circulación de corriente, existe una marcada diferencia en cuanto al alcance que tiene cada una de estas conexiones para la mitigación de armónicos.

El modelado en DigSILENT del sistema de IEEE de 13 barras está representado como se muestra en la Figura 16. Esto una vez después de haber ingresado todos sus parámetros técnicos para su simulación.

Figura 16. Modelado en DigSILENT del sistema IEEE de 13 barras

Antes de empezar con las simulaciones respectivas, es necesario conocer cómo inciden negativamente las cargas no lineales al sistema eléctrico, ocasionando así la distorsión en la onda sinusoidal, tal como se ilustra en la Figura 17.

Figura 17. Distorsión en la onda de corriente

4.1 Operación del transformador de conexión Yy con la carga no lineal

En este apartado se detallan los resultados alcanzados mediante la simulación en DigSILENT. Donde para conocer si los armónicos inyectados cumplen con los límites permitidos, se estableció la normativa IEEE para sistemas que se encuentren alrededor de los 69kV, donde la relación entre la corriente de cortocircuito (Isc) y la corriente de carga (IL), tiene valores inferiores a los 20kA.

Partiendo de esto, se puede observar que las componentes armónicas proporcionadas por la carga no lineal, presenta contenido armónico de tercer orden muy al límite de los niveles permisibles para este tipo de sistema, y otro que infringe los límites.

Como puede constatarse en la Figura 18, la carga no lineal conectada en la barra 634 genera armónicos de diferente orden. En el cual, al ser parte de un sistema desbalanceado, la cantidad de armónicos en cada fase varía.

A partir de la tabulación de datos presentados en la Tabla 5, se observa que el armónico de orden 15 está infringiendo con el límite permitido, debido a que cada una de sus fases sobrepasa el 2% que permite la normativa. De acuerdo con los resultados obtenidos, el HD_i para la fase A hay un excedente de 0,87%, en la fase B del 0,27% y finalmente la fase C cuenta con un 0,38%.

Tabla 5. Resultados de la distorsión armónica obtenidos en cada fase

h	FASE A	FASE B	FASE C
	[%]	[%]	[%]
1	100	100	100
3	3,906	3,243	3,320
5	1,470	1,102	4,1
7	0,829	1,269	0,978
9	2,857	1,710	2,144
11	1,911	1,539	1,532
13	0,951	0,628	0,777
15	2,874	2,270	2,381

En la Figura 19 se visualiza que cada contenido armónico inyectado por la carga no lineal, presenta un porcentaje de distorsión en sus diferentes redes de secuencia. Esto indica que los armónicos de orden 3, 9, y 15 contienen una corriente elevada en la red de secuencia cero.

De igual manera, puede apreciarse que el armónico 5 y 11 presentan una alta distorsión en su red de secuencia negativa. Sin embargo, el objetivo específico de este documento se enfoca en lograr reducir el tercer armónico, por lo que únicamente se tomará en cuenta el orden de armónicos mencionados inicialmente.

operando con la conexión Yy

El límite de distorsión permisible para los armónicos de orden 3 y 9 es del 4%, mientras que para el 15 es del 2%. Por medio de los resultados detallados en la Tabla 6, se evidencia que la red de secuencia cero de estos armónicos, superan los límites de permisibilidad. Teniendo así en el componente 3 un excedente del 20,49%, mientras que los de orden 9 y 15 poseen el 3,96% y 3,07% respectivamente.

Tabla 6 . Resultados de la distorsión armónica en las redes de secuencia

h	SEC (+)	SEC (-)	SEC (0)
	[%]	[%]	[%]
1	99,152	9,176	9,200
3	2,281	2,662	24,489
5	0,992	8,408	0,784
7	4,046	0,414	0,532
9	0,914	1,176	7,966
11	1,090	6,762	0,850
13	2,536	0,363	0,444
15	0,828	0,998	5,073

Una vez conocida la cantidad de HD_i de cada componente armónico originado por la carga, se procede a realizar la cuantificación del THD_i en la barra 634. Esta se la puede observar mediante la Figura 20.

Los resultados de los niveles de THD_i cuantificados mediante la conexión Yy se detallan en la Tabla 7. De acuerdo con la normativa, los límites permisibles para este sistema son del 5%, por lo que se evidencia que tanto la fase A y fase C existe un excedente de armónicos, los cuales sobrepasan con el 1,25% y el 0,16% respectivamente.

Tabla 7. Resultados de la distorsión total de armónicos en la barra 634

	FASE A	FASE B	FASE C
	[%]	[%]	[%]
THDi	6,2516	4,9172	5,1549

4.2 Operación del transformador de conexión Yz con la carga no lineal

El espectro armónico que se presenta en la Figura 21, nos indica que se ha conseguido minimizar los componentes armónicos y por ende, se ha logrado mantenerlos dentro de los límites establecidos, mediante la modificación en el devanado secundario del transformador.

En función a los resultados presentados en la Tabla 8, se ha logrado reducir el armónico 15, el cual se encontraba fuera de los límites permitidos en cada una de sus fases. De tal manera, que la distorsión armónica se mantiene por debajo del 1%.

Tabla 8. Resultados de la distorsión armónica en las fases modificando la conexión

h	FASE A	FASE B	FASE C
	[%]	[%]	[%]
1	100	100	100
3	0,573	0,074	0,141
5	1,335	1,077	1,291
7	0,763	1,284	0,973
9	0,869	0,299	0,276
11	1,724	1,328	1,824
13	0,784	0,853	0,625
15	0,965	0,278	0,583

Según la Figura 22, las diferentes redes de secuencia de cada armónico son de bajo nivel de distorsión, a excepción de las componentes de orden 5 y 11 que superan el límite permitido en cuanto a sus componentes de secuencia negativa.

En los resultados presentados en la Tabla 9, se aprecia la reducción en su totalidad de las componentes de secuencia cero en el tercer armónico, además de su múltiplo de orden 15 respectivamente. Sin embargo, se puede constatar que tanto en la secuencia negativa de la componente 5 y 11 no presentan reducción alguna que permita mantener su distorsión dentro de los límites permitidos.

 Tabla 9. Resultados de la distorsión armónica en las redes de secuencia modificando la conexión

h	SEC (+)	SEC (-)	SEC (0)
	[%]	[%]	[%]
1	99,585	9,089	0,385
3	2,406	2,818	-
5	1,120	8,414	0,012
7	4,034	0,539	0,007
9	1,288	1,464	-
11	1,401	6,668	-
13	2,482	0,559	-
15	1,304	1,332	-

Mediante la Figura 23 se puede apreciar que existe una disminución en el THD_i en cada fase tras realizar la modificación de la conexión en el devanado secundario.

Figura 23. Distorsión del armónico total en la barra 634 con la conexión Yz

Dentro de la Tabla 10 se presentan los resultados del THD_i en sus tres fases, logrando que se mantengan en un margen del 5%.

Tabla 10. Resultados de la distorsión total en la barra 634 ante el cambio de conexión

	FASE A	FASE B	FASE C
	[%]	[%]	[%]
THDi	2,8225	2,3388	2,6014

5 Conclusiones

Finalmente, una vez culminadas con las simulaciones planteadas en el sistema de 13 barras, se ha dado cumplimiento a cada uno de los objetivos específicos. En la cual se concluye:

La obtención de las señales de corriente y tensión mediante la simulación nos permitió conocer el origen de distorsión armónica en la señal de tensión, donde se evidenció que mientras el contenido de armónicos de corriente producido por la carga sea mucho más elevado, existirá una mayor repercusión sobre la tensión.

Una elevada cantidad de armónicos presente dentro del sistema eléctrico induce a una pérdida de potencia, por lo que no basta con dar solución únicamente a los armónicos, sino que necesariamente amerita a una compensación reactiva.

Las mediciones del HD_i realizadas en la barra 634 mediante la conexión Yv. evidencian una reducción en los componentes triples, sin embargo, no ha resultado del todo efectivo para reducir los múltiplos de este orden de armónico. Por lo que, para alcanzar el objetivo y lograr minorar estos componentes, se realizó el cambio en la conexión del trasformador.

Para cumplir con la reducción del tercer armónico se realizó la conexión en zigzag, con el cual se ha logrado reducir la componente de orden 15, donde la fase A pasa del 2,8% a 0,9%, su fase B del 2,2% a 0,2% y finalmente su fase C del 2,3% a 0,5%. De esta manera se ha conseguido controlar la circulación armónica de cada uno y de cierta manera proteger al transformador, evitando tanto pérdidas técnicas como no técnicas.

Al realizar el análisis en un sistema de cuatro hilos, es necesario realizar un análisis enfocado a las redes de secuencia para conocer la cantidad de armónicos que circulan por cada uno de ellos. Los resultados arrojaron un elevado índice de armónicos de secuencia cero en las componentes 3, 9 y 15, donde a través de la conexión zigzag se logró reducirlos y mantenerlos dentro del límite permitido en este sistema.

Para finalizar, si bien los armónicos inyectados a la barra 634 no sobrepasan los límites de manera abrupta, ocasionan una distorsión en la señal de corriente y por ende a la tensión. Por lo cual, en base a la medición del posterior THD_i а -la modificación de la conexión, se logra que la fase A pase del 6,2% al 2,8%, en la fase B del 4,9% al 2,3%, mientras que la fase C pase del 5,1% al 2,6%. Por consiguiente, las condiciones de operación del sistema y la calidad del suministro eléctrico serán mucho más eficiente y confiable.

Trabajos futuros 5.1

En función a los resultados alcanzados por medio de este estudio, podrán ser

considerados a futuro para la elaboración de investigaciones en:

Sistemas de puesta a tierra para centrales fotovoltaicas y eólicas.

Minimización de las caídas de tensión originadas durante un evento de cortocircuito a tierra.

6 Referencias

[1] Y. Wang, J. Yong, Y. Sun, W. Xu, and D. Wong, "Characteristics of Harmonic Distortions in Residential Distribution Systems," IEEE Transactions on Power Delivery, vol. 32, no. 3, pp. 1495–1504, 2017, doi:

10.1109/TPWRD.2016.2606431.

- [2] E. Cherian and G. R. Bindu, "Minimizing harmonics and transformer derating in low voltage distribution networks bv DC distribution," in 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research, ICETIETR 2018. 2018, 5-10. pp. doi: 10.1109/ICETIETR.2018.8529063.
- [3] M. R. Babu, P. Roy, and R. Banerjee, "Harmonic Analysis for Power Loss Minimization in Radial Distribution System," 2020 11th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2020, 2020, doi: 10.1109/ICCCNT49239.2020.92255 26.
- [4] M. E. Farrag, A. Haggag, H. Farooq, and W. Ali, "Analysis and mitigation harmonics of caused by air conditioners in а distribution system," 2017 19th International Middle-East Power **Systems** Conference, **MEPCON** 2017 Proceedings, vol. 2018-Febru, no. December, pp. 702-707, 2018, doi: 10.1109/MEPCON.2017.8301258.

- [5] R. B. Gonzatti, S. C. Ferreira, C. H. da Silva, L. E. Borges Da Silva, G. Lambert-Torres, and L. G. F. Silva, "Hybrid active power filter applied harmonic compensation of to current-source type and voltagesource type nonlinear loads," 2013 Brazilian Power *Electronics* Conference, COBEP 2013 Proceedings, pp. 1257-1262, 2013, doi: 10.1109/COBEP.2013.6785277.
- [6] N. M. Meitei, D. Tamang, and S. Gao, "A new harmonic analysis reporting technique to improve power quality in distribution system network applications," Proceedings of the 2021 1st International Conference Advances on in Electrical. Computing, Communications and Sustainable Technologies, ICAECT 2021, 2021, doi:

10.1109/ICAECT49130.2021.93925 40.

[7] A. Wagar, M. Amir, and I. Alam, Suppression "Harmonics in Distribution Networks composed of Power Uninterruptible Supply Systems," 2019 4th International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST), vol. 1, 2019, doi:

10.1109/ICEEST48626.2019.89817 04.

- [8] R. Gonzalez, A. Arguello, J. Quiros-Tortos, and G. Valverde, "Statistical analysis of residential harmonic spectrum in Costa Rica," 2016 IEEE 36th Central American and Panama Convention, CONCAPAN 2016, 2016, doi: 10.1109/CONCAPAN.2016.794238 6.
- [9] J. Aswal and Y. Pal, "Harmonic mitigation in a 3-phase, 3-wire system using hybrid filter," *Proceedings of the International*

Conference on Trends in Electronics and Informatics, no. Icoei, pp. 743– 746, 2018, doi: 10.1109/ICOEI.2018.8553776.

- [10] K. Karthi, R. Radhakrishnan, J. M. Baskaran, and L. S. Titus, "Role of ZigZag transformer on neutral current reduction in three phase four wire power distribution system," 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies, ICICICT 2017, vol. 2018-Janua, pp. 138–141, 2018, doi: 10.1109/ICICICT1.2017.8342548.
- [11] S. K. Shaikh, A. M. Mulla, S. U. Bagwan, and Y. A. Makandar, "Analysis and Aplication of Zigzag Transformer in Distribution System Mitigation for of Triplen Harmonics," International Journal on Electrical Engineering and Informatics, no. Icces, pp. 94–98, 2020. doi: 10.1109/ICCES48766.2020.913785 7.
- Y. Pal, A. Swarup, and B. Singh, [12] "3P-3W UPQC with zig-zag transformer for 3P-4W distribution system," International Journal on Electrical Engineering and Informatics, vol. 4, no. 2, pp. 231-243, 2012. doi: 10.15676/ijeei.2012.4.2.4.
- [13] R. M. Soares, M. E. Oliveira, M. A. A. Freitas, G. P. Viajante, and E. N. Chaves, "Loss analysis due to influence of harmonics in a distribution system," *Renewable Energy and Power Quality Journal*, vol. 19, no. 19, pp. 402–406, 2021, doi: 10.24084/repqj19.304.
- [14] A. Águila Téllez, G. López, I. Isaac, and J. W. González, "Optimal reactive power compensation in electrical distribution systems with distributed resources. Review,"

Heliyon, vol. 4, no. 8, 2018, doi: 10.1016/j.heliyon.2018.e00746.

- [15] A. Cardoni, G. P. Cimellaro, M. Domaneschi, S. Sordo, and A. Mazza, "Modeling the interdependency between buildings and the electrical distribution system for seismic resilience assessment," International Journal of Disaster Risk Reduction, vol. 42, no. September 2019, p. 101315, 2020, doi: 10.1016/j.ijdrr.2019.101315.
- E. Piris, D. Aquino, W. Furler, and E. [16] Paredes, "Modeling and Simulation Electricity of an Distribution System-Case Study: Compañiá de Luz y Fuerza S.A," 2019 IEEE 39th Central America and Panama Convention, CONCAPAN 2019, vol. 2019-Novem, 2019. doi: 10.1109/CONCAPANXXXIX4727 2.2019.8976973.
- [17] M. Mahdavi, H. H. Alhelou, N. D. Hatziargyriou, and F. Jurado, "Reconfiguration of Electric Power Distribution Systems: Comprehensive Review and Classification," *IEEE Access*, vol. 9, pp. 118502–118527, 2021, doi: 10.1109/ACCESS.2021.3107475.
- [18] M. Addisu, A. O. Salau, and H. Takele, "Fuzzy logic based optimal placement of voltage regulators and capacitors for distribution systems efficiency improvement," *Heliyon*, vol. 7, no. 8, p. e07848, 2021, doi: 10.1016/j.heliyon.2021.e07848.
- [19] M. Siranec, A. Bolf, A. Otcenasova, M. Regula, and M. Novak, "The influences of electrical traction on distribution system," *Transportation Research Procedia*, vol. 40, pp. 489– 496, 2019, doi: 10.1016/j.trpro.2019.07.071.
- [20] A. Dubey, Nimkar Pushpak, Chandekar Anshadha, Bangde Parikshit, and Bopche Minakshi, "A Preliminary Study on Harmonics

Generated by the Grid-Connected PV System on Distribution," 2018 International Conference on Smart Electric Drives and Power System (ICSEDPS), pp. 50–53, 2018, doi: 10.1109/ICSEDPS.2018.8536004.

- [21] C. Wenge, H. Guo, and C. Roehrig, "Measurement-based harmonic current modeling of mobile storage for power quality study in the distribution system," *Archives of Electrical Engineering*, vol. 66, no. 4, pp. 801–814, 2017, doi: 10.1515/aee-2017-0061.
- [22] A. Baloi and F. Molnar-Matei, "A fuzzy approach for power quality standards," Proceedings - UKSim 15th International Conference on Computer Modelling and Simulation, UKSim 2013, pp. 27–32, 2013, doi: 10.1109/UKSim.2013.64.
- [23] M. Rusli and I. Rendroyoko, "Development of Power Quality Control Procedures and Standards to Control the Connection of Non-Linear Loads in Electric Power 22 Systems," nd International Conference on Electricity Distribution (CIRED 2013), no. 231, 10–13. 2013. doi: pp. 10.1049/cp.2013.0621.
- [24] M. N. D. Dang, N. Al-Mutawaly, and J. Lepoutre, "From transmission to distribution networks-harmonic impacts on modern grid," *Canadian Conference on Electrical and Computer Engineering*, vol. 2015-June, no. June, pp. 452–459, 2015, doi: 10.1109/CCECE.2015.7129319.
- [25] J. Boo and Jinhui Wang, "Research on Harmonic Analysis of Low Voltage Distribution Networks and its Monitoring System," 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2016, doi: 10.1109/IMCEC.2016.7867447.

- [26] P. Rodriguez-Pajaron, H. Mendonca, and A. Hernandez, "Nonlinear Load Modelling for Harmonic Analysis of Aggregated Residential Loads with OpenDSS," Proceedings of International Conference on Harmonics and Quality of Power, *ICHOP*, vol. 2020-July, pp. 0-5, 2020. doi: 10.1109/ICHOP46026.2020.917792 2.
- [27] A. H. Mohammadzadeh Niaki and S. Afsharnia, "Effect of Nonlinear Load on the Performance of Distributed Generation Islanding Detection Methods," in 2020 10th Smart Grid Conference, SGC 2020, 2020, pp. 3-8. doi: 10.1109/SGC52076.2020.9335749.
- [28] M. Keivanfard and G. Nemati, "Detection of harmonic pollution ranking of non-linear load in the HORMOZGAN distribution power system by using new power quality index." IET Conference Publications, vol. 2013, no. 615 CP, 10 - 13, 2013, doi: pp. 10.1049/cp.2013.1218.
- [29] H. Dghim, A. El-Naggar, and I. Erlich, "Harmonic Distortion in Low Voltage Grid with Grid - Connected Photovoltaic," 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), 2018, doi: 10.1109/ICHOP.2018.8378851.
- P. E. C. Stone, J. Wang, Y. J. Shin, [30] and R. A. Dougal, "Efficient harmonic filter allocation in an industrial distribution system," IEEE **Transactions** on Industrial Electronics, vol. 59, no. 2, pp. 740-751. 2012, doi: 10.1109/TIE.2011.2157279.
- M. M. El-Sayed, A. A. Abou El-Ela, [31] and R. A. El-Sehiemy, "Effect of Photovoltaic System on Power Quality in Electrical Distribution

2016 Networks." Eighteenth International Middle East Power Systems Conference (MEPCON), doi: 2016. 10.1109/MEPCON.2016.7837019.

J. Niitsoo, J. Kilter, I. Palu, P.

- [32] Taklaja, and L. Kütt, "Harmonic Levels of Domestic and Electrical Vehicle Loads in Residential Distribution Networks." 2013 Africon, 1-5,2013. pp. doi: 10.1109/AFRCON.2013.6757800.
- J. A. Sa'ed, M. Ouraan, O. Samara, [33] S. Favuzza, and G. Zizzo, "Impact of Integrating Photovoltaic Based DG on Distribution Network Harmonics," 2017 IEEE Conference International on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS *Europe*), pp. 1-5, 2017,doi: 10.1109/EEEIC.2017.7977786.
- [34] N. Cho, H. Lee, R. Bhat, and K. Heo, "Analysis of Harmonic Hosting Capacity of IEEE Std. 519 with IEC 61000-3-6 in Distribution Systems," PES GTD *2019 IEEE* Grand Conference International and Exposition Asia, GTD Asia 2019, pp. 730-734, 2019, doi: 10.1109/GTDAsia.2019.8715918.
- D. Kumar and F. Zare, "Harmonic [35] Analysis of Grid Connected Power Electronic Systems in Low Voltage Distribution Networks," IEEE J *Emerg Sel Top Power Electron*, vol. 4, no. 1, pp. 70-79, 2016, doi: 10.1109/JESTPE.2015.2454537.
- [36] A. G. Peter and K. A. Saha, "Comparative study of harmonics reduction and power factor enhancement of six and 12-pulses HVDC system using passive and shunt APFs harmonic filters," 2018 International Conference on the Domestic Use of Energy, DUE 2018,

pp. 1–7, 2018, doi: 10.23919/DUE.2018.8384395.

- [37] P. S. Sanjan *et al.*, "Enhancement of power quality in domestic loads using harmonic filters," *IEEE Access*, vol. 8, pp. 197730–197744, 2020, doi: 10.1109/ACCESS.2020.3034734.
- [38] F. L. Qingxin Shi, Hao Liang, Tianyi Hou, Linquan Bai, Wilsun Xu, "Passive Filter Installation forHarmonic Mitigation in Residential Distribution Systems," 2017 IEEE Power & Energy Society General Meeting, pp. 0–4, 2017, doi: 10.1109/PESGM.2017.8273994.
- P. Abirami and C. N. Ravi. [39] "Enhancing stability grid by maintaining power quality in distribution network using FOPID and ANN controlled shunt active filter," Environ Dev Sustain, vol. 24, no. 6, pp. 7551–7578, Jun. 2022, doi: 10.1007/s10668-021-01643-2.
- [40] Р. Thakur. "Nonlinear Load Distribution and Drives Selection Configuration for Harmonic Mitigation as per IEEE 519-2014 Standard," Proceedings of 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2018, no. L, 2018. doi: 10.1109/PEDES.2018.8707566.
- [41] S. Gandhi Jeyaraj, R. Milne, and G. Mitchell, "On-site Testing of Special Transformers," in 10th IET International Conference on AC and DC Power Transmission (ACDC 2012), 2012. doi: 10.1049/cp.2012.1992.
- [42] M. Badoni, A. Singh, and B. Singh, "Power Quality Enhancement Using Euclidean Direction Search Based Control Technique," *IEEE Transactions on Industrial Electronics*, vol. 67, no. 3, pp. 2231–

2240, 2020, doi: 10.1109/TIE.2019.2905835.

- [43] J. Wen, H. Oin, S. Wang, and B. Zhou, "Basci Connections Strategies Isolated of **Phase-Shifting** Transfromer for Multipulse Rectifiers: A Review," Simposio Asia-Pacífico 2012 sobre compatibilidad electromagnética, 105-108. 2012. pp. doi: 10.1109/APEMC.2012.6237815.
- [44] A. K. Giri, S. R. Arya, and R. Maurya, "Transformer based passive compensation neutral current in distributed power techniques generation system," 2020 lst International Conference on Power, Control and Computing Technologies, ICPC2T 2020, pp. 379-384. 2020, doi: 10.1109/ICPC2T48082.2020.90714 82.

6.1 Matriz de Estado del Arte

Tabla 11. Matriz de estado del arte

		DATOS			Т	EMÁTIO	CA		FO FUI	RMULA PROB NCIONE	CIÓN E LEMA S OBJE	DEL TOS	RES PI	TRICCI DEL ROBLEM	ONES AA	PF RESO	PROPUESTAS PARA RESOLVER EL PROBLEMA				SOLU PROPI	CIÓN JESTA	
ITEM	AÑO	TÍTULO DEL ARTÍCULO	CITAS	Sistema de distribución eléctrica	Armónicos	Efectos de los armónicos en el sistema de distribución	Cuantificación de límites de distorsión armónica	Métodos para la minimización de armónicos	Modelamiento y simulación del sistema	Operación del sistema en condiciones normales	Inclusión de la carga no lineal	Modificación en la conexión de los devanados del tranformador	Desbalance del sistema	Distorsión de corriente armónica	Índices de medición armónica de corriente HD y THD	Transformadores con conexión en zigzag	Filtración de armónicos	Espectro armónico	Comparación de la medicion de resultados	Reducción del tercer armónico	Reducción de corrientes armónicas de secuencia cero	Reducción de pérdidas	Mejoramiento de la calidad de energía
1	2017	Characteristics of Harmonic Distortions in Residential Distribution Systems	18	æ	æ	₩		æ						×	æ				¥				
2	2018	Minimizing harmonics and transformer derating in low voltage distribution networks by DC distribution	15	æ						₩	₽							æ		₩	₩	₩	
3	2020	Harmonic Analysis for Power Loss Minimization in Radial Distribution System	24								¥		¥				¥	¥					
4	2018	Analysis and mitigation of harmonics caused by air conditioners in a distribution system	16	¥		×		æ						æ	æ								×
5	2013	Hybrid active power filter applied to harmonic compensation of current-source type and voltage-source type nonlinear loads	9			æ																	
6	2021	A new harmonic analysis reporting technique to improve power quality in distribution system network applications	11	¥			₩							¥			¥	¥				¥	¥
7	2019	Harmonics Suppression in Distribution Networks composed of Uninterruptible Power Supply Systems	18							₩								×				×	
8	2016	Statistical analysis of residential harmonic spectrum in Costa Rica	13		×	×								×	×								
9	2018	Harmonic mitigation in a 3-phase, 3-wire system using hybrid filter	12				×	×				₩					×			æ	₩		
10	2018	Role of ZigZag transformer on neutral current reduction in three phase four wire power distribution system	16								æ	₩				×	×			æ	æ		

		DATOS			Т	EMÁTI	CA		FO FUN	RMULA PROB	CIÓN E LEMA S OBJE	DEL TOS	REST PF	FRICCI DEL ROBLEM	ONES MA	PR RESO	OPUES LVER E	TAS PAI L PROB	RA LEMA		SOLU PROP	CIÓN UESTA	
	AÑO	TÍTULO DEL ARTÍCULO	CITAS	Sistema de distribución eléctrica	Armónicos	Efectos de los armónicos en el sistema de distribución	Cuantificación de límites de distorsión armónica	Métodos para la minimización de armónicos	Modelamiento y simulación del sistema	Operación del sistema en condiciones normales	Inclusión de la carga no lineal	Modificación en la conexión de los devanados del tranformador	Desbalance del sistema	Distorsión de corriente armónica	Índices de medición armónica de corriente HD y THD	Transformadores con conexión en zigzag	Filtración de armónicos	Espectro armónico	Comparación de la medicion de resultados	Reducción del tercer armónico	Reducción de corrientes armónicas de secuencia cero	Reducción de pérdidas	Mejoramiento de la calidad de energía
1	1 2020	Analysis and Aplication of Zigzag Transformer in Distribution System for Mitigation of Triplen Harmonics,"	16		æ									¥		æ				æ	×		
1	2 2012	3P-3W UPQC with zig-zag transformer for 3P-4W distribution system	21	¥	×				¥		×	×				Ħ				₩	×		
1	3 2021	Loss analysis due to influence of harmonics in a distribution system	13			×	¥																¥
1	4 2018	Optimal reactive power compensation in electrical distribution systems with distributed resources. Review	104	æ																			
1	5 2020	Modeling the interdependency between buildings and the electrical distribution system for seismic resilience assessment	40		¥				¥													₩	
1	6 2019	Modeling and Simulation of an Electricity Distribution System-Case Study: Compañiá de Luz y Fuerza S.A	6	×															¥				
1	7 2021	Reconfiguration of Electric Power Distribution Systems: Comprehensive Review and Classification	137										×										×
1	8 2021	Fuzzy logic based optimal placement of voltage regulators and capacitors for distribution systems efficiency improvement	33	¥																			₩
1	9 2019	The influences of electrical traction on distribution system	8	×																			
2	0 2018	A Preliminary Study on Harmonics Generated by the Grid-Connected PV System on Distribution	16		×	×									×			¥					
2	1 2017	Measurement-based harmonic current modeling of mobile storage for power quality study in the distribution system	35		₩									₩									¥
2	2 2013	A fuzzy approach for power quality standards	9	×							×			×	×								

		DATOS			Т	EMÁTIO	CA		FO FUN	RMULA PROB	CIÓN E LEMA S OBJE	DEL TOS	REST PH	TRICCI DEL ROBLEM	ONES 1A	PR RESO	OPUES LVER E	TAS PA L PROB	RA SLEMA		SOLU PROP	ICIÓN UESTA	
ITEM	AÑO	TÍTULO DEL ARTÍCULO	CITAS	Sistema de distribución eléctrica	Armónicos	Efectos de los armónicos en el sistema de distribución	Cuantificación de límites de distorsión armónica	Métodos para la minimización de armónicos	Modelamiento y simulación del sistema	Operación del sistema en condiciones normales	Inclusión de la carga no lineal	Modificación en la conexión de los devanados del tranformador	Desbalance del sistema	Distorsión de corriente armónica	Índices de medición armónica de corriente HD y THD	Transformadores con conexión en zigzag	Filtración de armónicos	Espectro armónico	Comparación de la medicion de resultados	Reducción del tercer armónico	Reducción de corrientes armónicas de secuencia cero	Reducción de pérdidas	Mejoramiento de la calidad de energía
23	2013	Development of Power Quality Control Procedures and Standards to Control the Connection of Non-Linear Loads in Electric Power Systems	5				₩				承												
24	2015	From transmission to distribution networks-harmonic impacts on modern grid	14	æ		₩					₩												
25	2016	Research on Harmonic Analysis of Low Voltage Distribution Networks and its Monitoring System	9		×	×																	
26	2020	Nonlinear Load Modelling for Harmonic Analysis of Aggregated Residential Loads with OpenDSS	11		₩	×																₩	¥
27	2020	Effect of Nonlinear Load on the Performance of Distributed Generation Islanding Detection Methods	21								Ħ			¥									
28	2013	Detection of harmonic pollution ranking of non-linear load in the HORMOZGAN distribution power system by using new power quality index	8	₩			₩				承												
29	2018	Harmonic Distortion in Low Voltage Grid with Grid - Connected Photovoltaic	22											×	¥			₩					
30	2012	Efficient harmonic filter allocation in an industrial distribution system	20	¥		₩											¥						
31	2016	Effect of Photovoltaic System on Power Quality in Electrical Distribution Networks	30	×		₩																	₩
32	2013	Harmonic Levels of Domestic and Electrical Vehicle Loads in Residential Distribution Networks	15			¥	¥																
33	2017	Impact of Integrating Photovoltaic Based DG on Distribution Network Harmonics	12	×	×						₩				æ			₩					

		DATOS			Т	EMÁTI	CA		FO FUN	RMULA PROB NCIONE	ACIÓN E LEMA S OBJE	DEL TOS	RES [®] PI	TRICCI DEL ROBLEM	ONES MA	PR RESO	PROPUESTAS PARA RESOLVER EL PROBLEMA				SOLU PROP	CIÓN UESTA	
ITEM	AÑO	TÍTULO DEL ARTÍCULO	CITAS	Sistema de distribución eléctrica	Armónicos	Efectos de los armónicos en el sistema de distribución	Cuantificación de límites de distorsión armónica	Métodos para la minimización de armónicos	Modelamiento y simulación del sistema	Operación del sistema en condiciones normales	Inclusión de la carga no lineal	Modificación en la conexión de los devanados del tranformador	Desbalance del sistema	Distorsión de corriente armónica	Índices de medición armónica de corriente HD y THD	Transformadores con conexión en zigzag	Filtración de armónicos	Espectro armónico	Comparación de la medicion de resultados	Reducción del tercer armónico	Reducción de corrientes armónicas de secuencia cero	Reducción de pérdidas	Mejoramiento de la calidad de energía
34	2019	Analysis of Harmonic Hosting Capacity of IEEE Std. 519 with IEC 61000-3-6 in Distribution Systems	9				₩								₩				æ				
35	2016	Harmonic Analysis of Grid Connected Power Electronic Systems in Low Voltage Distribution Networks	20		₩		₩																
36	2018	Comparative study of harmonics reduction and power factor enhancement of six and 12-pulses HVDC system using passive and shunt APFs harmonic filters	25	₩													₩						₩
37	2020	Enhancement of power quality in domestic loads using harmonic filters	25					×									₩						×
38	2017	Passive Filter Installation forHarmonic Mitigation in Residential Distribution Systems	22	¥	₩	×																	
39	2022	Enhancing grid stability by maintaining power quality in distribution network using FOPID and ANN controlled shunt active filter	14					₩															
40	2018	Nonlinear Load Distribution and Drives Configuration Selection for Harmonic Mitigation as per IEEE 519- 2014 Standard	8	₩			₩								₩								
41	2012	On-site Testing of Special Transformers	4	×												×				×	×		
42	2020	Power Quality Enhancement Using Euclidean Direction Search Based Control Technique	27									æ				æ	¥						
43	2012	Basci Connectios Strategies of Isolated Phase-Shifting Transfromer for Multipulse Rectifiers: A Review	11		₩		¥									×				×	×		
44	2020	Transformer based passive neutral current compensation techniques in distributed power generation system	22	*				₩									¥		*	¥	¥		
		CANTIDAD:		20	13	13	10	6	2	2	10	4	2	9	9	6	9	7	4	8	8	5	10

6.2 Resumen de Indicadores

Figura 24. Resumen e indicador de la temática - Estado del arte

Figura 25. Indicador de formulación del problema - Estado del arte

Figura 26. Indicador de solución - Estado del arte

7 Anexos

Nodo A	Nodo B	Longitud (pies)	Configuración
632	645	500	603
632	633	500	602
633	634	0	XFM-1
645	646	300	603
650	632	2000	601
684	652	800	607
632	671	2000	601
671	684	300	604
671	680	1000	601
671	692	0	Switch
684	611	300	605
629	675	500	606

Tabla 12. Datos del segmento de línea

Tabla 13. Datos de configuración de líneas aéreas

Configuración	Fases	Fase	Neutro	Espaciamiento
		ACSK	ACSK	ID
601	BACN	556,500 26/7	4/0 6/1	500
602	C A B N	4/0 6/1	4/0 6/1	500
603	C B N	1/0	1/0	505
604	A C N	1/0	1/0	505
605	C N	1/0	1/0	510

Tabla 14. Datos de configuración de líneas subterráneas

Configuración	Fases	Cable	Neutro	Espaciamiento ID
606	A B C N	250,000 AA, CN	Ninguno	515
607	A N	1/0 AA, TS	1/0 Cu	520

Tabla 15. Datos de cargas puntuales

Nodo	Carga	F-1	F-1	F-2	F-2	F-3	F-3
	Modelo	kW	kVAr	kW	kVAr	kW	kVAr
634	Y-PQ	160	110	120	90	120	90
645	Y-PQ	0	0	170	125	0	0
646	D-Z	0	0	230	132	0	0
652	Y-Z	128	86	0	0	0	0
671	D-PQ	385	220	385	220	385	220
675	Y-PQ	485	190	68	60	290	212
692	D-I	0	0	0	0	170	151
611	Y-I	0	0	0	0	170	80
	TOTAL	158	606	973	627	1135	753

Tabla 16. Datos de la carga distribuida

Nodo	Nodo	Carga	F-1	F-1	F-2	F-2	F-3	F-3
A	B	Modelo	kW	kVAr	kW	kVAr	kVAr	kVAr
632	671	Y-PQ	17	10	66	38	117	68

	kVA	kV-Alto	kV-Bajo	R - %	X - %	
Subestación 5,000		115 - D	115 - D 4.16 Gr. Y		8	
XFM-1	500	4.16 – Gr. W	0.48 – Gr. W	1.1	2	

Tabla 17. Datos del transformador