

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO

CARRERA DE MECÁNICA

ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO TERMODINÁMICO DE DOS TIPOS DE REFRIGERANTES (R410A-R32), PARA UN SISTEMA DE REFRIGERACIÓN DE LECHE CON CAPACIDAD DE 100 LITROS

Trabajo de titulación previo a la obtención del Título de: **Ingeniero Mecánico**

AUTORES: ANDRÉS NICOLÁS RODRÍGUEZ ALCÍVAR KEVIN VINICIO SHUGULÍ HERRERA

TUTORA: MARÍA CRISTINA CALERO ARMAS

Quito – Ecuador 2023

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓN

Nosotros, Andrés Nicolás Rodríguez Alcívar, con documento de identificación N° 1718751710 y Kevin Vinicio Shugulí Herrera con documento de identificación N° 1726909938 manifestamos que:

Somos los autores y responsables del presente trabajo; y, autorizamos a que sin fines de lucro la Universidad Politécnica Salesiana pueda usar, difundir, reproducir o publicar de manera total o parcial el presente trabajo de titulación.

Quito, 15 de marzo de 2023.

Atentamente,

Andrés Nicolás Rodríguez Alcívar 1718751710

.

Kevin Vinicio Shugulí Herrera 1726909938

CERTIFICADO DE CESIÓN DE DERECHO DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA

Nosotros, Andrés Nicolás Rodríguez Alcívar, con documento de identificación N° 1718751710 y Kevin Vinicio Shugulí Herrera con documento de identificación N° 1726909938, expresamos nuestra voluntad y por medio del presente documento cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores de la Propuesta Tecnológica: "Análisis comparativo del comportamiento termodinámico de dos tipos de refrigerantes (R410A-R32), para un sistema de refrigeración de leche con capacidad de 100 litros", el cual ha sido desarrollado para optar por el título de: Ingeniero Mecánico, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En concordancia con lo manifestado, suscribimos este documento en el momento que hacemos la entrega del trabajo final en formato digital a la Biblioteca de la Universidad Politécnica Salesiana.

Quito, 15 de marzo de 2023

Atentamente,

Andrés Nicolás Rodríguez Alcívar 1718751710

Kevin Vinicio Shugulí Herrera 1726909938

CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN

Yo, María Cristina Calero Armas con documento de identificación N°1714550645, docente de la Universidad Politécnica Salesiana, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO TERMODINÁMICO DE DOS TIPOS DE REFRIGERANTES (R410A-R32), PARA UN SISTEMA DE REFRIGERACIÓN DE LECHE CON CAPACIDAD DE 100 LITROS, realizado por Andrés Nicolás Rodríguez Alcívar, con documento de identificación N° 1718751710 y por Kevin Vinicio Shugulí Herrera con documento de identificación N° 1726909938, obteniendo como resultado final el trabajo de titulación bajo de opción: Propuestas Tecnológicas que cumple con todos los requisitos determinado por la Universidad Politécnica Salesiana.

Quito, 15 de marzo de 2023

Atentamente,

Fis. María Cristina Calero Armas MSc. 1714550645

DEDICATORIA

El presente trabajo de titulación va dedicado a mis padres Wilson y Susana quienes con sus increíbles consejos y su gran esfuerzo me han ayudado a sobrellevar de la mejor manera los momentos más difíciles, los cuales me han guiado a ser la persona que soy ahora. Gracias por los valores y la tenacidad inculcada para enfrentar todos los problemas que permitieron finalizar una etapa más de estudios, por ello les doy mi trabajo en ofrenda a su amor infinito.

Kevin Vinicio

El presente trabajo de titulación va dedicado a Dios quien ha sido mi guía y fortaleza a lo largo de mi vida estudiantil. A mis padres Eduardo y Olga quienes, con su gran ayuda y esfuerzo, han logrado formar a la persona dedicada y responsable que soy ahora, por los sabios consejos que me han permitido culminar una etapa importante en mi vida.

Andrés Nicolás

AGRADECIMIENTO

Quiero agradecer a mis padres Wilson y Susana quienes, me han dado su apoyo incondicional, económico, los cuales siempre estuvieron pendientes en el transcurso de mi formación, a mis queridos hermanos Erick y David, puesto que siempre estuvieron en mis peores momentos y con sus palabras de aliento me ayudaron a llegar al fin de esta hermosa etapa.

A mis docentes que con el pasar de los años inculcaron conocimientos tanto académicos como profesionales permitiéndome crecer como ser humano, a mi compañero de tesis Andrés con el cual formamos una gran amistad y nos hemos apoyado a lo largo de la carrera, a mis amigos que siempre están pendientes de mi persona y que no me detenga por nada.

Finalmente, a mi tutora la Fis. Cristina Calero quien me acompañó en el transcurso de mi trabajo de titulación y nos guio con su conocimiento, brindando apoyo y soluciones a las interrogantes generadas en el camino.

Kevin Vinicio

Mi más sincero agradecimiento a mis padres Eduardo y Olga quienes con su apoyo incondicional y constante, me ayudaron a terminar esta importante etapa de formación.

A los docentes de la Universidad Politécnica Salesiana que, durante el periodo de estudio, me brindaron su conocimiento académico y técnico con el fin de permitirme crecer como persona y profesional. A mi compañero Vinicio, por el apoyo en el presente trabajo y a lo largo de mi carrera universitaria.

A la Fis. Cristina Calero, quien nos acompañó a lo largo del presente trabajo con su tiempo y apoyo incondicional, gracias por compartir sus conocimientos y experiencias con nosotros, permitiéndonos cumplir con los objetivos proyectados para el presente plan de titulación, mil gracias por confiar en nosotros y guiarnos en todo el proceso.

Andrés Nicolás

ÍNDICE GENERAL

INTRODUC	CCIÓN	1
CAPÍTULO) I	5
PROCESO	DE ENFRIAMIENTO DE LA LECHE Y ORDEÑO MECÁNICO	5
1.1 Est	tado del arte	5
1.1.1	Producción de leche en Ecuador	5
1.1.2	Actividad lechera en el Ecuador	6
1.1.3	Derivados de la leche	6
1.1.4	Transporte	7
1.1.5	Acopio	7
1.2 Est	tructura química de la leche	7
1.2.1	Agua	8
1.2.2	Proteínas	8
1.2.3	Caseínas	8
1.2.4	Materia grasa	9
1.2.5	Propiedades térmicas de la leche	9
1.3 Sis	stemas de enfriamiento y ordeño mecánico	9
1.3.1	Refrigeración con agua natural	10
1.3.2	Refrigeración con agua enfriada	12
1.3.3	Refrigeración directa	12
1.4 Ore	deño mecánico	13
1.4.1	Funcionamiento	14
1.5 Pro	oceso de refrigeración	15
1.5.1	Temperatura de conservación	15
1.5.2	Velocidad de enfriamiento	15

1.5.3	Tiempo de almacenamiento	15
1.5.4	Tanques de almacenamiento	15
1.5.5	Tipos de tanques de leche	16
1.5.6	Tanques de enfriamiento de leche tipo abierto	16
1.5.7	Tanques de enfriamiento de leche tipo cerrado	17
1.5.8	Sistema de expansión directa	17
1.5.9	Tipos de evaporadores	
1.6 Flu	idos refrigerantes	19
1.6.1	Mezclas azeotrópicas (Serie 500)	19
1.6.2	Mezclas zeotrópicas (Serie 400)	
1.6.3	Refrigerantes HFC	
1.6.4	Refrigerante R-410A	
1.6.5	Refrigerante R-32	
1.6.6	Propiedades de los refrigerantes a tratar	
1.7 Cor	nclusiones del capítulo	
CAPÍTUL	.0 II	
ECUACIO	ONES TERMODINÁMICAS A UTILIZAR EN EL SISTEMA DE	
ENFRIAM	AIENTO	
2.1 Ecu	aciones del ciclo de enfriamiento	
2.1.1	Coeficiente de rendimiento (COP)	24
2.1.2	Flujos másicos y volumétricos	24
2.1.3	Tasa de calor absorbido	24
2.1.4	Balance de energía	
2.1.5	Tasa de calor rechazado	
2.1.6	Coeficiente global de transferencia de calor	
2.1.7	Diferencia de temperatura media logarítmica	

	2.1.8	Carga de enfriamiento	26
	2.1.9	Tiempo de enfriamiento	27
	2.1.10	Potencia neta de entrada	27
2	2.2 Ac	laptación del ciclo de refrigeración	27
	2.2.1	Parámetros de trabajo para los refrigerantes	28
2	.3 Cá	llculo de entalpías de la entrada y salida del condensador	31
	2.3.1	Fluido refrigerante R410A	31
	2.3.2	Fluido refrigerante R32	32
2	.4 Cá	ilculo de entalpías de salida y la entrada en el evaporador	33
	2.4.1	Fluido refrigerante R410A	33
	2.4.2	Fluido refrigerante R32	34
2	2.5 Flu	ujos másicos del ciclo	34
	2.5.1	Refrigerante R410A	34
	2.5.2	Refrigerante R32	35
2	.6 Flu	ujo de calor absorbido	35
	2.6.1	Refrigerante R410A	35
	2.6.2	Refrigerante R32	36
2	7 Ba	lance de energía	36
	2.7.1	Refrigerante R410A	36
	2.7.2	Refrigerante R32	37
2	2.8 Te	mperatura media logarítmica (LMTD)	37
	2.8.1	Refrigerante R410A	37
	2.8.2	Refrigerante R32	37
2	2.9 Co	peficiente global de transferencia de calor	38
	2.9.1	Refrigerante R410A	38
	2.9.2	Refrigerante R32	38

2.10	Ca	rga de enfriamiento	
2.11	Tie	empo de enfriamiento	
2.1	1.1	Refrigerante R410A	
2.1	1.2	Refrigerante R32	
2.12	Co	nclusiones del capítulo	
CAPÍTI	ULO) III	
VAL	IDA	CIÓN NUMÉRICA DEL EVAPORADOR TIPO SERPENTIN DEL S	SISTEMA
DE E	NFF	RIAMIENTO MEDIANTE SIMULACIÓN CFD	
3.1	So	ftware especializado ANSYS	
3.2	Di	námica de fluidos computacional	
3.3	AN	SYS Fluent	
3.4	Ge	ometría del evaporador tipo serpentín	
3.5	Ma	allado de la geometría	
3.6	Mo	odelos matemáticos y numéricos	
3.6	.1	Ecuación general de la conservación	
3.6	.2	Ecuación de conservación de la masa	
3.6	.3	Ecuación de conservación del momento	
3.6	.4	Ecuación de la conservación de energía	
3.6	.5	Modelo k-ε de renormalización (RNG)	
3.6	.6	Modelo cambio de fase	
3.6	.7	Error absoluto y relativo	
3.7	Pa	rámetros de trabajo para la simulación	
3.8	Re	sultados de la simulación	
3.9	Va	lidación de la simulación	
3.9	.1	Flujos másicos	
3.10	Va	lidación del diseño entre valores analíticos y la simulación CFD	
	2.10 2.11 2.1 2.1 2.12 2.12 2.12 2.12 2.	2.10 Ca 2.11 Tie 2.11.1 2.11.2 2.12 Co CAPÍTULO VALIDA DE ENFE 3.1 So 3.2 Dir 3.3 AN 3.4 Ge 3.5 Ma 3.6 Mo 3.6.1 3.6.2 3.6.3 3.6.1 3.6.2 3.6.3 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 3.6.4 3.6.5 3.6.5 3.6.5 3.6.7 3.7 Par 3.8 Re 3.9 Va 3.9 Va	 2.10 Carga de enfriamiento 2.11 Tiempo de enfriamiento 2.11.1 Refrigerante R410A 2.11.2 Refrigerante R32 2.12 Conclusiones del capítulo CAPÍTULO III VALIDACIÓN NUMÉRICA DEL EVAPORADOR TIPO SERPENTIN DEL S DE ENFRIAMIENTO MEDIANTE SIMULACIÓN CFD 3.1 Software especializado ANSYS 3.2 Dinámica de fluidos computacional 3.3 ANSYS Fluent 3.4 Geometría del evaporador tipo serpentín 3.5 Mallado de la geometría 3.6.1 Ecuación general de la conservación 3.6.2 Ecuación de conservación del amasa 3.6.3 Ecuación de la conservación de energía 3.6.4 Ecuación de la conservación de energía 3.6.5 Modelo cambio de fase 3.6.7 Error absoluto y relativo 3.7 Parámetros de trabajo para la simulación 3.9 Validación de la simulación 3.9 Validación de la simulación

3.10.1	Coeficiente total de transferencia de calor
3.11 Cor	nclusiones del capítulo
CAPÍTULO	IV
SELECCI	ÓN DEL REFRIGERANTE CON MEJOR COMPORTAMIENTO
TERMOD	INÁMICO PARA EL SISTEMA DE ENFRIAMIENTO DE LECHE55
4.1 Con	nparación del comportamiento en los refrigerantes R410A y R3255
4.1.1	Comparación del contorno de fracción de volumen55
4.1.2	Comparación de contornos de temperatura en el serpentín56
4.1.3	Comparación de la velocidad
4.1.4	Comparación del cambio de fase en función de la longitud del serpentín 58
4.2 Con	nclusiones del capítulo
CAPÍTULO	V
ANÁLISI	S DE COSTOS
5.1 Pre	supuesto de implementación60
5.2 Cor	nclusiones del capítulo61
CONCLUSI	ONES
RECOMEN	DACIONES
LISTA DE F	REFERENCIAS
ANEXOS	

ÍNDICE DE TABLAS

Tabla 1. Estructura primordial de los nutrientes de la leche	8
Tabla 2. Principales datos térmicos.	9
Tabla 3. Cantidad de gérmenes en función del tiempo	10
Tabla 4. Propiedades de los refrigerantes propuestos	21
Tabla 5. Elementos principales del compresor para los refrigerantes R410A y R32	28
Tabla 6. Datos de presiones y temperaturas en los principales puntos del sistema para el	
refrigerante R410A	29
Tabla 7. Datos de presiones y temperaturas en los principales puntos del sistema para el	
refrigerante R32	30
Tabla 8. Propiedades termodinámicas de los fluidos refrigerantes R410A y R32	31
Tabla 9. Entalpías a la entrada y salida del condensador para el refrigerante R410A	32
Tabla 10. Entalpías a la entrada y salida del condensador para el refrigerante R32	32
Tabla 11. Entalpías a la entrada y salida del evaporador para el refrigerante R410	33
Tabla 12. Entalpías a la entrada y salida del evaporador para el refrigerante R32	34
Tabla 13. Dimensionamiento del evaporador tipo serpentín	43
Tabla 14. Valores de calidad de mallado en ANSYS Fluent	44
Tabla 15. Parámetros de trabajo de los refrigerantes R410A y R32 en el serpentín	49
Tabla 16. Flujo másico analítico y de simulación CFD.	52
Tabla 17. Coeficiente total de transferencia de calor analítico y simulación CFD.	53
Tabla 18. Presupuesto para la implementación	60

ÍNDICE DE FIGURAS

Figura 1. Derivados de la leche	7
Figura 2. Unidad de refrigeración enfriada por agua	11
Figura 3. Refrigeración por compresión	12
Figura 4. Tanques de expansión directa	13
Figura 5. Equipo de ordeño	14
Figura 6. Tanque de tipo abierto	16
Figura 7. Tanque de tipo cerrado	17
Figura 8. Proceso de expansión directa	18
Figura 9. Clasificación de los tipos de evaporadores	19
Figura 10. Diagrama presión-entalpía en un sistema de refrigeración por presión de vap	oor
real	23
Figura 11. Diagrama de un ciclo de refrigeración	23
Figura 12. Diagramas termodinámicos para R410A a) T-s y b) P-h	29
Figura 13. Diagramas termodinámicos para R32 a) T-s y b) P-h	30
Figura 14. Entalpía de entrada al condensador R410A	31
Figura 15. Entalpía de salida del condensador R410A	31
Figura 16. Entalpía de entrada al condensador R32	32
Figura 17. Entalpía de salida del condensador R32	32
Figura 18. Entalpía de entrada al evaporador R410A	33
Figura 19. Entalpía de salida del evaporador R410A, a partir del software EES.	33
Figura 20. Entalpía de entrada al evaporador R32	34
Figura 21. Entalpía de salida del evaporador R32	34
Figura 22. Geometría del evaporador tipo serpentín en software especializado ANSYS	43
Figura 23. Mallado de la geometría (ANSYS)	45
Figura 24. Calidad de mallado (a) Skewness, (b) Orthogonal (ANSYS)	45
Figura 25. Fracción de volumen del fluido refrigerante en vapor, (a) R410A, (b) R32	50
Figura 26. Flujo másico (a) R410A, (b) R32	51
Figura 27. Coeficiente total de transferencia de calor (a) R410A, (b) R32	52
Figura 28. Semejanza de resultados R410A y R32	53
Figura 29. Contornos de fracción de volumen obtenidos para (a) R410A, (b) R32	56

Figura 30. Contornos de temperatura obtenidos para (a) R410A, (b) R32.	57
Figura 31. Contornos de velocidad obtenidos para (a) R410A, (b) R32	57
Figura 32. Fracción de volumen de cambio de fase con respecto a la altura del serpentín (a)	
R410A, (b) R32	58

RESUMEN

El presente estudio se orienta en el análisis numérico, simulación y comparación del comportamiento termodinámico de dos refrigerantes, el R410A y R32, en el evaporador tipo serpentín de un enfriador de leche con capacidad de 100 litros. La finalidad es efectuar una comparación de todo el desarrollo de cambio de fase de los refrigerantes mencionados, a través de los resultados entregados por la simulación mediante dinámica computacional CFD con el software ANSYS.

Para generar el ciclo termodinámico se diseñó un sistema de refrigeración en el cual se tomó en cuenta parámetros reales de funcionamiento. Para la interpretación del mismo, se efectuó múltiples simulaciones del evaporador mencionado, cuyas dimensiones fueron 4220 mm de largo y ocupando un espacio de 422 x 246 mm. Los resultados obtenidos fueron, un mejor comportamiento en el cambio de fase en la absorción de calor para el refrigerante R32 con un valor de 10 % por encima del R410A en los ensayos realizados. Así como también, el análisis mostró que ambos refrigerantes, llegan a evaporarse completamente, esto implica que los fluidos propuestos son aptos para trabajar en un sistema de refrigeración de leche.

Palabras claves: refrigerantes, evaporador tipo serpentín, tanques de tipo abierto, tanques de tipo cerrado, simulación CFD.

ABSTRACT

The present study is oriented towards the numerical analysis, simulation and comparison of the thermodynamic behavior of two refrigerants, R410A and R32, in the coil-type evaporator of a milk cooler with a capacity of 100 liters. The purpose is to make a comparison of all the phase change development of the mentioned refrigerants, through the results delivered by the simulation by means of CFD computational dynamics with the ANSYS software.

To generate the thermodynamic cycle, a refrigeration system was designed in which real operating parameters were taken into account. For its interpretation, multiple simulations of the mentioned evaporator were carried out, whose dimensions were 4220 mm long and occupying a space of 422 x 246 mm. The results obtained were a better behavior in the phase change in heat absorption for the refrigerant R32 with a value of 10% above that of R410A in the tests carried out. As well as, the analysis showed that both refrigerants completely evaporate, this implies that the proposed fluids are suitable to work in a milk refrigeration system.

Keywords: refrigerants, coil type evaporator, open type tanks, closed type tanks, CFD simulation.

INTRODUCCIÓN

En la actualidad, se conoce que la producción lechera en el Ecuador representa el 4 % del PIB, por lo que producir y vender leche de calidad es de suma importancia. En el Ecuador, dentro de los procesos que permiten que la leche sea utilizada como materia prima dentro de la industria láctea, se encuentra la refrigeración apenas termina el ordeño mecánico. Bajo esta premisa, se presenta el estudio de los diferentes sistemas de ordeño como manual y mecánico, siendo el último el más utilizado por industrias de media y alta comercialización del producto. En general, los sistemas de expansión directa son los más comunes para la conservación de la leche, mismos que utilizan refrigerantes con alto impacto ambiental.

El evaporador es el elemento más crítico del presente estudio, debido a que es el encargado de retirar calor del sistema. El diseño del mismo permite realizar la adaptación del ciclo real de refrigeración, en él se consideran parámetros como la temperatura y presión de bajas y altas correspondientes al evaporador y condensador respectivamente. Estos datos permitirán comparar la veracidad de los valores analíticos con la simulación CFD, verificando que los parámetros de funcionamiento cumplan con mantener la temperatura menor al valor de ingreso del producto. Posteriormente a obtener la adaptación, se procede a calcular de forma analítica datos como el coeficiente global de transmisión de calor y el flujo másico entre los refrigerantes R410A y R32 para comprender el comportamiento de los fluidos en el evaporador y poder validar con la simulación CFD.

Finalmente, se procede a comparar los resultados obtenidos entre el refrigerante R410A y R32 con el software ANSYS Fluent, con el objetivo de conocer y analizar el comportamiento termodinámico de cada uno, sin necesidad de realizar el experimento en la realidad. Una vez comparados los resultados respecto al cambio de fase, se seleccionará al fluido refrigerante que presente mejor desempeño para el ciclo de refrigeración, respetando parámetros ambientales y de funcionamiento.

PROBLEMA DE ESTUDIO

La presencia de gérmenes que existe en la fase de ordeño, ha causado que la calidad de la leche disminuya. Por ello, para evitar el incremento de los mismos a medida que transcurre el tiempo,

es necesario tener espacios de refrigeración que permitan controlar la temperatura adecuada para obtener un producto idóneo para el consumo humano. Por otra parte, es importante mantenerla con el menor número de gérmenes y para ello es necesario la higiene en el ordeño. El enfriador es parte fundamental en la producción de leche y derivados; de ella depende que el número de gérmenes no aumente. La temperatura adecuada para evitarlo es 4 °C, debido a que la leche se obtiene en el ordeño a 35 °C aproximadamente. Por lo tanto, es necesario mantener en el menor tiempo posible la temperatura antes mencionada para conservar la buena calidad de la leche y sea apto para el consumo humano. Los procesos de refrigeración actuales en cuanto se refieren a la leche utilizan refrigerantes como el R410A, mismo que contiene en sus propiedades generales un GWP (Global Warning Potencial), que es la variable que indica el potencial de calentamiento global. Por esta razón se debe seleccionar un refrigerante con un valor de GWP más bajo. Dicho refrigerante contiene un GWP de 2088 [1] que posee un 67.67% más que el refrigerante R32 con un GWP de 675 [2].

Utilizar un refrigerante con alto número de GWP, causa efectos negativos al ambiente y afecta la capa de ozono, por lo tanto, la presente investigación analizará numéricamente y con simulación en el software especializado el comportamiento termodinámico de los fluidos refrigerantes como el R410A y R32, que pertenecen a la misma familia HFC's, dentro del evaporador para el proceso de refrigeración de 100 litros de leche, con el objetivo de comparar y escoger el mejor refrigerante para el proceso, reduciendo el impacto ambiental, manteniendo temperaturas de trabajo acorde al proceso con una capacidad de enfriamiento y rendimiento mejorado [3].

JUSTIFICACIÓN

La producción de leche en el Ecuador ha presentado incrementos cercanos al 11 % en el último año. Solo la industria láctea representa el 4 % del PIB en el área Agroindustrial para el país, siendo la región Sierra la mayor productora de leche, seguida por la Costa y Amazonía. Dichos datos dan una premisa de la importancia de obtener un producto de excelencia para los consumidores, por lo que centrarse en los refrigerantes que utilizan los sistemas de refrigeración es imprescindible para garantizar la importancia del producto sin afectar el medio ambiente.

El presente análisis comparativo tiene como finalidad analizar el comportamiento termodinámico de dos tipos de refrigerantes (R410A - R32) en el evaporador del sistema de

refrigeración; el cual permitirá escoger el más adecuado para el proceso en estudio, en donde se priorizará el refrigerante con menor impacto ambiental, con mejor rendimiento y que mantenga las temperaturas de trabajo deseadas bajo la selección de propiedades termodinámicas de cada fluido refrigerante.

El análisis busca una alternativa a los refrigerantes comunes para los procesos de refrigeración utilizados en el enfriamiento de la leche, es por ello que el uso de un software especializado como ANSYS nos permitirá analizar diferentes variables obtenidas analíticamente con el fin de verificar la operación de los refrigerantes y optar por la menos nociva al medio ambiente.

Un proceso de refrigeración que contenga un refrigerante menos contaminante permite tener beneficios económicos para los productores de leche y ambientales respecto al impacto en la capa de ozono.

Objetivos generales y específicos

Objetivo general

Analizar comparativamente el comportamiento termodinámico de dos tipos de refrigerantes (R410A - R32), para un sistema de refrigeración de leche con capacidad de 100 litros

Objetivos específicos

- Establecer la situación actual del proceso de enfriamiento de la leche posterior al ordeño mecánico
- Diseñar el sistema de enfriamiento de leche tomando en cuenta las propiedades de los refrigerantes en estudio
- Validar el diseño obtenido mediante software especializado
- Determinar el refrigerante que presenta el mejor comportamiento termodinámico para el sistema de enfriamiento de la leche
- Evaluar mediante indicadores financieros la factibilidad de la implementación del proceso de enfriamiento

NOMENCLATURA

COP_R	Coeficiente de desempeño de refrigeración
$\dot{Q_L}$	Flujo de calor absorbido [W]
$\dot{Q_H}$	Calor rechazado [W]
Win	Trabajo neto de entrada [kJ]
₩ _{in}	Potencia del motor [W]
V	Velocidad [m/s]
ρ	Densidad del fluido [kg/m³]
ΰ	Flujo volumétrico del fluido[m³/s]
'n	Flujo másico [kg/s]
Т	Temperatura [°C]
h	Entalpía [kJ/kg]
As	Área de transferencia de calor [m²]
μ	Viscosidad dinámica del fluido [µ Pas. s]
v	Volumen especifico[m³/kg]
S	Entropía [kJ/kg.K]
Ср	Calor especifico del fluido $\left[\frac{kJ}{KgK}\right]$
ρ	Densidad del fluido $\left[\frac{kg}{m^3}\right]$
U	Coeficiente total de transferencia de calor $\left[\frac{W}{m^2} \circ C\right]$
ΔT_{ml}	Diferencia media logarítmica
ΔT_1	Diferencia de temperatura a la entrada
ΔT_2	Diferencia de temperatura a la salida
C_1	Calor específico superior al punto de congelación [kJ/kg.K]
T_{amb}	Temperatura ambiente [°C]
<i>q</i>	Flujo de calor entre los fluidos [W]
Δt	Tiempo de enfriamiento [s]
λ	Conductividad térmica [W/m.K]
Р	Presión [kPa]
L	Longitud del serpentín [m]
D	Diámetro del serpentín [mm]

CAPÍTULO I

PROCESO DE ENFRIAMIENTO DE LA LECHE Y ORDEÑO MECÁNICO

En el presente capítulo tiene como propósito presentar la situación actual del proceso de enfriamiento de la leche, estadísticas de consumo y producción, así como las propiedades de la misma. De igual manera, se expone los sistemas de enfriamiento utilizados posterior al ordeño vacuno, la necesidad de la refrigeración de la leche para evitar la multiplicación de gérmenes y la importancia de mantener espacios adecuados para el ordeño y almacenamiento en tanques de acero inoxidable con el fin de asegurar la condición del producto final. Por otro lado, se realiza una recopilación de información sobre los refrigerantes utilizados para los sistemas de enfriamiento en la industria láctea.

El objetivo de este capítulo es establecer información actual sobre la industria láctea nacional, así como la importancia de mantener procesos de refrigeración adecuados para la leche. Además, de realizar una descripción de los fluidos refrigerantes que serán utilizados para el presente análisis.

1.1 Estado del arte

1.1.1 Producción de leche en Ecuador

La economía en el Ecuador está vinculada a la exportación y producción de productos primarios desde los años 40 en el siglo XX, en la actualidad la exportación de este sector dejo de ser la única fuente que producía ingreso con la llegada del petróleo en los años 70, por lo que, actividades de explotación vacuna nacieron a inicios del siglo XX principalmente en la región Sierra, convirtiéndose en un ingreso importante para la economía local. La región Sierra es la mayor productora de leche según datos obtenidos por la (ESPAC) para el 2013, mismo que señalaba que el país producía 6.26 millones de litros de leche al día, en donde dicha región se lleva la ventaja con un 76.82 % de la producción, seguido por la Costa con un 15.18 % y finalmente la Amazonía con un 8 % de la producción total [4].

El INEC [5] presenta que, la producción de leche al día para el 2019 fue de 6.65 millones de litros, mientras que para el 2020 fue de 6.15 millones de litros; el descenso del 6 % de la producción de leche vacuno se dio a los inicios de la pandemia COVID19 en el país, sin embargo, las estadísticas muestran que la producción diaria a nivel nacional se mantuvo con un

rendimiento de 10.48 litros/vaca solo en la provincia de Pichincha, con un total de 13.49 % de producción en el país.

La producción lechera en el último año ha presentado un aumento significativo del 10.92 % según el Servicio de Rentas Internas para el 2021. Hasta el presente año los datos muestran que la industria láctea en el país genera un PIB del 4 % en el área Agroindustrial y 1.2 millones de empleos que fueron entre directos y otros indirectos. El consumo que se registra por habitante es de 110 litros al año, lo cual refleja que la actividad láctea en el Ecuador es de suma importancia [6].

1.1.2 Actividad lechera en el Ecuador

En el Ecuador según la (AGSO) [7] manifiesta que, cerca de 3.5 millones de hectáreas existen para la industria lechera de los cuales la mayor concentración se encuentra en la Sierra con un 75 % de las mismas. En esta región la leche es un producto de venta que se le considera estable debido a que, en dichas zonas, la gran mayoría son pendientes elevadas o zonas demasiado altas que impiden realizar otra actividad como la siembra.

Se encuentran 298 mil trabajadores entre medianos y grandes productores, de los cuales la gran mayoría se concentran en un área menor a las 100 hectáreas donde se produce cerca del 65 % del total de la leche principalmente en la Sierra.

Los productos lácteos provenientes de la leche, cuentan con un proceso de fabricación riguroso tales como ciertos tipos de análisis sensoriales, químicos, físicos y bacteriológicos, con el único fin de preservar la calidad de los productos finales. Para la elaboración de los mismos se debe realizar algunas etapas como: medir, filtrar, solidificar, desuerar, salar, triturar y moldear. Finalmente se envuelve el producto, precautelando que sea apto para el consumo humano.

1.1.3 Derivados de la leche

Existe variedad de productos lácteos tales como el queso, que son de diferentes tipos, con diferentes sabores y texturas. Además de otros derivados como el yogurt que se obtienen mediante una reducción por fermentación bacteriana y evaporación de la leche, en el caso de la mantequilla se consigue a partir de la agitación de la crema de leche en un recipiente esterilizado; el color puede variar de amarillo a blanco [8].

Figura 1. Derivados de la leche [9].

La leche cruda es de suma importancia debido a que es el elemento principal para la obtención de los derivados antes mencionados.

1.1.4 Transporte

Una vez que culmina el procedimiento de obtención de leche cruda, se procede a la movilización de la leche a las diferentes industrias o centros de acopio, misma que puede ser dirigida por personas naturales con tanques de aceros inoxidables o ductos del mismo material para garantizar la inocuidad de la misma [10].

1.1.5 Acopio

Es un lugar donde se recoge y almacena la producción de varias personas dedicadas a la elaboración de leche, en donde los mismos cuentan con infraestructura, materiales y equipos que permiten garantizar la temperatura del producto de 2 a 4 °C. Estos centros deben contar con áreas dedicadas a la recepción, análisis, enfriamiento y la entrega final [11].

1.2 Estructura química de la leche

Cuenta con una estructura complicada, de la misma depende su calidad y capacidad para la elaboración de derivados. Cuantitativamente puede variar por la especie de la vaca, época del año, periodo de tiempo entre ordeños, zona de producción o la etapa de la lactancia; y en el caso de ser cualitativa, puede variar por sus propiedades y composición.

En la tabla 1, se observan valores promedios de sus componentes principales.

Leche	
87.5	
3.2	
3.6	
4.7	
2.6	
0.6	
0.7	
	Leche 87.5 3.2 3.6 4.7 2.6 0.6 0.7

Tabla 1. Estructura primordial de los nutrientes de la leche [12].

1.2.1 Agua

Es el elemento máximo de la leche, el cual presenta cifras de 80 y 90 % en la mayoría de las especies vacunas. El mismo permite que los elementos que contiene la lactosa y las proteínas se mantengan disolubles, así mismo las proteínas que se encuentran en dispersión y las grasas en mezcla.

1.2.2 Proteínas

Desde la perspectiva nutritiva, las proteínas son el componente más importante ya que, de su contenido depende la elaboración de productos derivados. Ellos aportan al rendimiento de la producción de queso y son los responsables de la coagulación. También intervienen en el sabor y el olor del producto a través de la degradación a lo largo de la maduración.

Las proteínas formadas por aminoácidos están compuestas por Carbono, Oxígeno e Hidrógeno, que permiten junto con el Fósforo, Hierro y Azufre, la solidez de las mismas, potenciando la composición de la leche vista en la tabla 2.

1.2.3 Caseínas

Es la fracción proteica con mayor cantidad en la leche, cerca del 80 % del total del líquido se encuentra asociado a la caseína, la cual se encarga de obtener la estructura compleja de la sustancia. Estas caseínas permiten la creación de la cuajada con la que producen diferentes tipos de quesos.

1.2.4 Materia grasa

Constituyen un importante fragmento de la leche por sus propiedades nutritivas y características físicas. La grasa se localiza en el fluido de forma pequeña dependiendo de la especie, la nutrición del vacuno y la época del año [12].

1.2.5 Propiedades térmicas de la leche

En la tabla 3 según ASHRAE [13], se presenta las propiedades térmicas de la leche entera.

	Porcentaje de Humedad (%)	Punto de congelación inicial (°C)	Calor específico por arriba del punto de congelación (kJ / kgK)	Calor específico bajo cero (kJ / kgK)	Calor latente de fusión (kJ / kg)
Leche	87.69	-0.6	3.89	1.81	293

Tabla 2. Principales datos térmicos [13].

Debido a que la leche presenta azúcares y minerales, la temperatura tendrá que ser mayor a la del agua para llegar al punto de ebullición, por lo que se sitúa en 100.17 °C a nivel del mar.

1.3 Sistemas de enfriamiento y ordeño mecánico

El sistema de enfriamiento es importante para la leche después del ordeño. En un tiempo de dos horas, el número de bacterias que contiene la leche es estable, sin embargo, cuando se sobrepasa este tiempo la conducta de las bacterias puede cambiar según la temperatura a la que se encuentra el producto.

Si la temperatura del fluido está comprendida entre los 15 y 35 °C, las bacterias que se puedan encontrar aún en la leche, se multiplican, produciendo un agriado del producto. Para resolver este problema es necesario mantener la leche a una temperatura que este entre los 0 a 4 °C, esto logrará que el número de gérmenes no se multipliquen y se mantengan estables, tal y como visualizamos en la siguiente tabla.

	Enfricmionto	Enfriamiento	Enfriamiento	Enfriamiento	
Tiempo		rápido a 15 °C	rápido a 8 °C	rápido a 4 °C	
	กลเนาสา	en 1 hora	en 1 hora	en 1 hora	
	Cantidad de	gérmenes por centí	metro cúbico		
Recién ordeñada	10000	10000	10000	10000	
2 horas después	15000	10000	10000	10000	
4 horas después	2000000	25000	15000	10000	
6 horas después	15000000	45000	20000	10000	
8 horas después	30000000	100000	30000	10000	

Tabla 3. Cantidad de gérmenes en función del tiempo [14].

Los datos presentados en la tabla 3, según técnicos franceses ponen en evidencia el contenido microbiano para una leche que después del ordeño tenga una calidad de higiene media, con 10000 gérmenes/cm³ pueden desarrollarse en el periodo de 8 horas de distintas formas con diferentes temperaturas. Se observa que, para la temperatura de 4 °C en un enfriamiento de 1 hora al transcurrir el tiempo desde el ordeño hasta las 8 horas de prueba, los gérmenes se estabilizan sin ningún cambio significativo.

A los productores les importa enfriar la leche en el tiempo máximo de dos horas a una temperatura de 4 °C, con el fin de mantener e inclusive disminuir el incremento de los gérmenes; cabe recalcar que la mayoría de estos, que está en la leche es responsabilidad de la forma higiénica de realizar el ordeño.

El enfriamiento del producto se puede realizar bajo algunas formas como: utilizando agua natural o beneficiándose del frío que producen algunas sustancias químicas al pasar de un estado líquido a gaseoso; se debe tener en cuenta que un equipo de enfriamiento debe cumplir con rapidez, limpieza y comodidad para el productor.

A continuación, se detalla algunos sistemas de refrigeración.

1.3.1 Refrigeración con agua natural

La leche al momento del ordeño está a una temperatura de 37 °C. El agua se debe ubicar tan pronto sea posible con la leche de ordeño, separadas por una pared metálica, evitando que los fluidos en mención se mezclen, con la transferencia de calor, el agua le retira calor a la leche

logrando bajar su temperatura. Existen diferentes tipos de refrigeradores con agua natural como los que se mencionan a continuación.

Los refrigeradores de cortina o cascada, están constituidos por un serpentín por donde fluye el agua con el fin de que la leche llegue a un depósito ubicado en la parte inferior del componente; al bañarse el serpentín de leche, existe transferencia de calor, en donde el calor que contiene la leche pasa directamente al agua.

Los refrigeradores de espiral en circuito cerrado, están formados por un tanque de forma cilíndrica en donde cuyo interior se encuentra un espiral en el que fluye agua, la leche se encuentra en la parte exterior del serpentín en espiral, logrando el objetivo que es enfriar a la leche al estar en contacto con las paredes del cilindro y el serpentín.

Los refrigeradores de placa están conformados por algunas placas metálicas, que están acopladas un tras de otra en forma paralela; los espacios que existen entre las placas están construidos de forma impar para la leche y las placas que están en posición par estarían con el fluido agua, de esta manera las caras de la leche con el agua están en contacto sin mezclarse logrando enfriar la leche por sus paredes delgadas.

Los anillos refrigeradores en el cuello de los bidones es otro tipo de enfriador utilizado para la leche, el mismo consta de unos collares huecos que van instalados en el cuello de los bidones, dichos anillos van conectados a una tubería que brinda agua, mismos que llevan agujeros en serie; dichas perforaciones del collar ayudan a que, con pequeños chorros de agua de forma continua, logren enfriar las paredes exteriores del cántaro.

La inmersión de los cantaros en agua es otro sistema de refrigeración que se utiliza con agua natural, consta en colocar los bidones que contienen la leche ordeñada dentro de depósitos llenos de agua, mismos que se renuevan constantemente. Este tipo de configuración es la refrigeración más lenta.

Figura 2. Unidad de refrigeración con agua natural [14].

1.3.2 Refrigeración con agua enfriada

El método de este tipo de refrigeración es similar al proceso anterior con la condición de que el agua está a una temperatura de 0 °C, por consiguiente, existen diferentes equipos como los tanques de refrigeración helada y equipos de producción de frío.

La refrigeración por compresión consiste en que sustancias como el freón y el amoniaco pasan de estado gaseoso en temperatura y presión normales, a un estado líquido al aumentar su presión, sin embargo, al volver a una presión normal, el fluido vuelve al estado gaseoso.

Los elementos que conforman la refrigeración por compresión son: el compresor, el condensador, evaporador y el frigorífero. El condensador es el encargado de desprender calor para obtener un traspaso de gas a líquido, mientras que el evaporador se encarga de absorber el calor logrando traspasar el líquido a gas.

Los tanques de agua helada consisten en un reservorio en donde la leche se mantiene a una temperatura de 4 °C por 48 horas aproximadamente, el mismo consiste en un evaporador en la parte inferior, que contiene unos conductos por donde circula el fluido frigorífero; el mismo pasará de estado líquido a gas con ayuda del calor que cede el agua, al realizar el intercambio de calor el agua se transforma en hielo. Al ingresar la leche al compartimiento, le cederá calor al hielo para poderse enfriar. Es decir, la refrigeración la realiza el agua más no el tanque.

Figura 3. Refrigeración enfriada por agua [15].

1.3.3 Refrigeración directa

Existen dos tipos de refrigeración directa: la refrigeración por inmersión y los tanques de refrigeración de expansión directa.

Las refrigeraciones por inmersión constan de un compresor que estará ubicado en una pared del lugar, un enfriador que irá en la leche, además de cantaros adaptables al enfriador. Este enfriador lleva consigo al evaporador y un agitador el cual es el encargado de no formar espuma ni producir un efecto de batido.

Los tanques de expansión directa consisten en un reservorio, el cual contiene paredes dobles con materiales aislantes como el poliuretano; el reservorio lleva consigo al evaporador en su parte inferior, tiene también un agitador que remueve la leche cada cierto tiempo y a diferencia de los tanques de agua helada, el tanque de expansión directa absorbe el calor de la leche con ayuda de refrigerantes que circulan por el serpentín del evaporador. Los materiales de estos reservorios son de acero inoxidable y suelen ser de un diseño redondeado para fácil limpieza Estos tanques son herméticos para evitar contaminación del exterior y cuentan con un termostato para programar la temperatura deseada que generalmente es de 4 °C [14].

Figura 4. Tanques de expansión directa [16].

1.4 Ordeño mecánico

El ordeño mecánico nace en 1819 en Inglaterra con instrumentos rudos en el funcionamiento; con el paso de los años se han actualizado según su función clasificándose en aspiración simple, compresión mecánica y la aspiración discontinua.

La aspiración simple está constituida por los catéteres en los pezones y una bomba aspirante que está unida a la extremidad inferior de los catéteres. Este tipo de aspiración dejo de ser usado por que provoca mastitis y procesos inflamatorios en el esfínter del pezón.

La compresión mecánica se trata de imitar el ordeño manual por medio de aparatos de compresión, en donde uno de ellos es a través del sistema hidráulico que funciona con aire comprimido y el sistema mecánico constituido por pequeños rodillos que aprietan el pezón de arriba hacia abajo.

La aspiración discontinua es el sistema que imita la succión realizada por el ternero; dentro de este tipo de aspiración existen dos tipos de máquinas conocidas como ordeñadora a válvula que es la encargada de la obtención de la leche mediante una válvula aspirante y el pulsador que da accionamiento al sistema de ordeño mecánico y es usada en la actualidad.

1.4.1 Funcionamiento

La ordeñadora de vacas funciona mediante un tipo de sistema que mezcla una etapa de vacío, es decir, una etapa sin aire y otra de presión atmosférica. La parte cercana al pezón simula la boca del ternero, en donde cumple la función de succionar y dar masajes al pezón de la vaca mediante un tubo metálico, el mismo está envuelto por un empaque de caucho.

La pezonera va junta a un pulsador donde su función es crear alternativamente la etapa de vacío antes mencionada; el dispositivo cumple con dejar el pezón para ser atraída por un tubo metálico perteneciente al ordeñador, generando la succión de la leche desde una cisterna mamaria.

Las pulsaciones que tiene el pulsador son estándares, esto se debe a que maneja 40 pulsaciones por minuto con la condición de que el ordeño se maneje sobre los 4 pezones a la vez, además, la pulsación contiene 2 etapas conocidas como el masaje y el ordeño, esta relación tiene un valor óptimo de 1 a 1, es decir, que, por cada minuto, la máquina realiza 40 succiones y por ende 40 masajes [17].

Figura 5. Equipo de ordeño [18].

Dentro de los sistemas de ordeño descritos, existen el ordeño móvil y fijo. El ordeño móvil visto en la figura 5, trata de disponer de componentes necesario para un proceso en explotaciones pequeñas; mientras que el fijo se ubica de forma estática en la sala respectiva de ordeño, los más utilizados en este proceso son: la espina de pescado, tándem y paralelo. Estas configuraciones se dan de acuerdo al espacio y requerimiento de la succión de leche [19].

1.5 Proceso de refrigeración

En la industria láctea la refrigeración del producto es muy importante para garantizar la calidad del mismo y su seguridad alimentaria.

1.5.1 Temperatura de conservación

En la mayoría de países, la temperatura de conservación de la leche se ha fijado en 4 °C como se ha mencionado en apartados anteriores, siendo está la temperatura más eficaz para mantener la buena calidad del producto. A pesar de que el punto de congelación según la tabla 3 es de -0,6 °C, se ha comprobado que, bajo los 3 °C, pueden presentarse fenómenos de congelación que afectan a procesos posteriores, alterando la calidad y composición de la leche.

1.5.2 Velocidad de enfriamiento

La velocidad también influye en el número total de gérmenes de la leche, esto se debe a la diferencia entre un enfriamiento instantáneo a uno de mejor y rápida duración. Las primeras dos horas después del ordeño son cruciales ya que, el crecimiento de las bacterias es lento y se aprovecha para enfriarlo hasta la temperatura de conservación.

1.5.3 Tiempo de almacenamiento

A medida que el periodo se prolongue e independientemente de la temperatura a la que se le mantenga a la leche, el crecimiento bacteriano puede aumentar si no se lo trata en el menor tiempo posible [20].

1.5.4 Tanques de almacenamiento

El tanque es un reservorio utilizado para refrigerar y conservar la leche por bajas temperaturas, esto sucede hasta que sea retirada por el camión para transportarla. Este tanque es de acero inoxidable, mismo que debe ser lavado tras la recolección.

1.5.5 Tipos de tanques de leche

El productor dependiendo de la capacidad que posea y el espacio que exista, puede optar por dos tipos de tanques. Uno de ellos es el tanque abierto que puede ir desde los 50 a los 2500 L y los tanques cerrados que van desde los 1000 a 14000 L.

Cuando los tanques son sobre los 1600 L, los fabricantes de los mismos ofrecen conjuntos reducidos con el condensador separado, o recipientes con todo el equipo frigorífico, es decir el compresor y condensador [21].

1.5.6 Tanques de enfriamiento de leche tipo abierto

Estos tipos de reservorios ayudan a que exista una refrigeración veloz y estable. Son fabricados para 2 o 4 ordeños cubriendo con las necesidades de los diferentes productos lecheros.

El tanque se encuentra en posición vertical con unas paredes internas lisas, por motivos de limpieza sus filos son redondeados y la suelda con la que cuenta es perfectamente pulida.

El material que se utiliza en los tanques de enfriamiento es el acero inoxidable (AISI 304) tanto en su pared interna como externa. Contienen un aislamiento térmico de un material alto en densidad y con propiedades de espuma de poliuretano, con un grosor de 45 mm en la mayoría de los casos y 100 mm en la parte inferior. El evaporador de este tipo de tanques es diseñado con el fin de conseguir una mejor refrigeración del producto, esto en gran parte se le debe a la resistencia por su suelda con láser [22].

Figura 6. Tanque de tipo abierto [22].

El tanque consiste en un sistema de expansión directa, en donde circula gas refrigerante por el evaporador ubicado en la parte inferior. Estos tanques también otorgan un compresor y una

grilla de condensación, por donde circula el gas refrigerante en un ciclo parecido al de un refrigerador por compresión. Estos tanques cumplen con la norma ISO 9001:2015 sobre el proceso de fabricación que cumple con padrones internacionales de calidad.

1.5.7 Tanques de enfriamiento de leche tipo cerrado

A diferencia de los tanques de leche tipo abierto, estos se ubican de forma horizontal y tienen forma circular o elíptica. El tanque cuenta con una cuba térmica aislada destinada a acoger la leche.

Están fabricados de acero inoxidables AISI 304, contienen un aislamiento térmico especial de poliuretano de dos componentes de alta densidad además de contar con un motor de agitación El evaporador contiene un diseño especial con soldadura láser en la parte inferior, el mismo evita que la leche se pueda congelar, inclusive de muy pequeñas cantidades. Estos reservorios se caracterizan por tener un sistema de lavado integrado [23].

Figura 7. Tanque de tipo cerrado [23].

1.5.8 Sistema de expansión directa

Proceso mediante el cual un fluido refrigerante circula en un circuito cerrado entre el evaporador instalado en la parte inferior del reservorio y el condensador que se encarga de la disipación del calor ganado.

El flujo de calor sustraído es expulsado al medio ambiente por medio del condensador que, a un tipo de radiador, disminuye su temperatura y logra condensar el refrigerante; la eficiencia estará relacionada a los cambios climáticos, a mayor temperatura ambiente la eficiencia será menor [24].

Figura 8. Proceso de expansión directa [25].

1.5.9 Tipos de evaporadores

Los evaporadores son considerados intercambiadores de calor ya que, el objetivo principal es mover la energía térmica del reservorio, esto debido a que la transferencia es del elemento de mayor temperatura a la de menor temperatura.

El evaporador consta de un serpentín que enfría el fluido, el cual otorga gran poder calorífico con el fin de bajar la temperatura al producto. A pesar de que existen variedad de tipo de evaporadores, todos cumplen con el mismo fin de renovar el aire, moviendo la energía térmica correspondiente hasta erradicarla en un componente específico [26].

Principalmente, existen tres tipos de evaporadores, uno de alimentación, uno de enfriamiento del líquido y según su construcción, de ellos se subdividen en algunas categorías. Los evaporadores según su alimentación tienen un acumulador que actúa como recipiente de líquido. Los evaporadores clasificados según su construcción, contienen consigo tuberías de cobre para refrigerantes que no sean amoniaco (R717), ahí encontraremos evaporadores conformados por placas, descubiertos o aleteados.

Finalmente, el evaporador de enfriamiento por líquido trata de, evaporadores instalados en recipientes o bandejas con el fin de enfriar un fluido o espacio; el serpentín del evaporador se encuentra separado por un sistema deflector, mismo que separa el cuerpo del serpentín con una alta eficiencia y buenas características ecológicas [27].

En la figura 9, se especifica los diferentes tipos de evaporadores conocidos para sistemas de enfriamiento.

Figura 9. Clasificación de los tipos de evaporadores [28].

1.6 Fluidos refrigerantes

Un fluido refrigerante es el encargado de realizar el enfriamiento de un espacio, quitando calor de un cuerpo a otra sustancia. Son fluidos vitales para cualquier sistema de enfriamiento mecánico, debido al cambio que se produce de estado líquido a vapor y de vapor a líquido. El fluido se puede definir básicamente como un puente para trasladar energía que absorbe al evaporase a baja presión y temperatura, así mismo logra liberarse al condensarse a temperaturas y presiones muy altas.

1.6.1 Mezclas azeotrópicas (Serie 500)

Estas mezclas están conformadas de dos o más componentes de distinta volatilidad. Se caracterizan por no cambiar la composición y la temperatura de saturación al ser utilizadas en sistemas de refrigeración.

Este tipo de mezclas pueden ser destiladas sin cambiar su composición; al mezclar los componentes se comporta de distintas formas, como si se tratara de un refrigerante netamente puro con la condición de que su temperatura de saturación es una sola.

Casi siempre, el punto de ebullición de este tipo de mezclas es inferior al del componente con un menor punto de ebullición. Se puede utilizar en evaporadores de tipo seco o también denominados expansión directa [29].

1.6.2 Mezclas zeotrópicas (Serie 400)

Se denomina mezcla zeotrópicas a las que están conformadas por dos o algunos de diferente volatilidad, cuando se condensan o se evapora su temperatura referente a la saturación y composición cambian. Las fugas también alteran su composición.

Estas mezclas no se comportan como un refrigerante único cuando se somete a diferentes cambios de estado; al comienzo de calentar el líquido un porcentaje se evapora, siendo este el componente más volátil. Conforme hierve la mezcla, el líquido posee una concentración inferior a la del componente más volátil y superior a la que es menos volátil [29].

1.6.3 Refrigerantes HFC

Los hidrofluorocarbonos (HFC) tienen un reducido impacto ambiental debido a que no contiene átomos de cloro, son inofensivos para la capa de ozono, poseen una reducida toxicidad y no son inflamables [30].

1.6.4 Refrigerante R-410A

Este tipo de refrigerante es una mezcla casi azeotrópica la cual está formado por sustancias conocidas como R-125 y R-32, está compuesta del 50 % de cada uno. Es un gas refrigerante que en su parte química se le considera estable con una baja toxicidad y un deslizamiento muy reducido. Estos envases se deben guardar en zonas frías con ventilación y alejadas de distintas fuentes de calor; así mismo, con respecto a las fugas, los vapores se agrupan al nivel del suelo y provocan que el oxígeno se desplace al resto del entorno [1].

1.6.5 Refrigerante R-32

Se le considera a este tipo de refrigerante como un HFC puro, es decir, con cero agotamientos dentro del recubrimiento que tiene la Tierra y un potencial de calentamiento atmosférico reducido, conocido como capa de ozono.

Este gas es una buena alternativa para el R-410A, debido a su eficiencia energética y con un GWP de 675. En el caso de fuga se puede rellenar el equipo de forma directa sin obligación de recuperar el refrigerante remanente en el ambiente [2].

1.6.6 Propiedades de los refrigerantes a tratar

En la tabla 4, se expondrá las propiedades de los refrigerantes con respecto al tema propuesto.
Refrigerante	Composición	GWP	Temperatura critica °C	Punto de ebullición °C	Presión de vapor 25°C	Inflamabilidad	Densidad del líquido (kg/m³)
R410A	HFC R125 50% Y R32	2088	72.13	-51.68	16.5	A1	1062
R32	50% R32 100%	675	78.35	-51.7	16.897	A2L	958.8

Tabla 4. Propiedades de los refrigerantes propuestos [1] [2].

1.7 Conclusiones del capítulo

- Estudios experimentales demostraron que el número de gérmenes a partir del ordeño, pueden multiplicarse si no se mantiene a una temperatura de enfriamiento adecuada, por lo que se recomienda mantener a una temperatura de 4 °C para estabilizar la cantidad de los mismos y evitar su aumento.
- Los fluidos refrigerantes en estudio presentan diferentes propiedades termodinámicas como su composición, inflamabilidad y el potencial de calentamiento global (GWP), siendo el R32 un refrigerante puro al 100 % y el más amigable con el medio ambiente con un valor de 675.

CAPÍTULO II

ECUACIONES TERMODINÁMICAS A UTILIZAR EN EL SISTEMA DE ENFRIAMIENTO

En este capítulo se plasmarán las diferentes ecuaciones termodinámicas para el sistema de enfriamiento de leche, mismas que serán utilizadas para el análisis matemático del evaporador tipo serpentín del tanque de refrigeración. Además, se realizará un análisis numérico de los dos tipos de fluidos refrigerantes utilizados para el estudio R410A y R32, para posteriormente obtener valores de flujos másicos, flujos de calor de alta y baja, coeficientes globales de la transmisión de calor, temperaturas, presiones tanto en entrada y la salida del evaporador, entre otras.

2.1 Ecuaciones del ciclo de enfriamiento

Utilizando un ciclo real de refrigeración y las condiciones de frontera como temperaturas y presiones, se establece un análisis matemático completo del ciclo de refrigeración haciendo hincapié a los cálculos en cada componente.

Para obtener datos reales en la adaptación de los ciclos de enfriamiento para cada refrigerante, los parámetros se tomarán de un estudio de refrigeración real, respetando las propiedades termodinámicas de cada fluido refrigerante.

Los procesos termodinámicos de un sistema real pueden mostrar desviaciones teóricas muy significativas del ciclo teórico debido a las caídas de presiones que existen al flujo real por las pérdidas de energía que existen debido a las tuberías de ingreso a los diferentes componentes. El proceso de refrigeración por compresión real no es isentrópico ya que, las desviaciones implican irreversibilidad dentro del sistema, provocando una reducción de eficiencia y un requerimiento de potencia de compresión adicional. Es por ello que, un diseño adecuado que imponga un sobrecalentamiento del fluido en la salida del evaporador y un subenfriamiento del fluido en la salida del condensador, evitará daños a los componentes del ciclo o que tenga un deficiente funcionamiento [31].

Figura 10. Diagrama presión-entalpía en un sistema de refrigeración por presión de vapor real.

Se conoce que la caída de presión es producida principalmente en los intercambiadores térmicos; componentes como el evaporador al igual que el condensador funcionan en condiciones de flujo bifásico. Silva [32] señala que, la caída de presión en los intercambiadores térmicos puede perjudicar significativamente el COP, reduciéndolo hasta en un 7 % por las pérdidas de presión solo en el evaporador.

Tomando en cuenta la caída de presión de un estudio real, se tomarán en cuenta parámetros como temperaturas de ingreso, salida y velocidad en cada componente.

Figura 11. Diagrama de un ciclo de refrigeración.

A continuación, se presenta las ecuaciones utilizadas en el presente trabajo:

2.1.1 Coeficiente de rendimiento (COP)

La siguiente ecuación viene definida por [33]:

$$COP_{R} = \frac{\dot{Q}_{L}}{\dot{W}_{in}} \tag{1}$$

Donde:

 \dot{Q}_L : Flujo de calor [W]

 \dot{W}_{in} : Trabajo neto de entrada [W]

 COP_R : Coeficiente de rendimiento

2.1.2 Flujos másicos y volumétricos

Es la masa que circula a una determinada velocidad en una sección por un tiempo determinado, misma se representa con la siguiente ecuación [34]:

$$\dot{m} = \rho . \dot{\upsilon} \tag{2}$$

Donde:

 ρ : Densidad del fluido [kg / m³]

 $\dot{\upsilon}$: Flujo volumétrico del fluido refrigerante $[m^3 / s]$

2.1.3 Tasa de calor absorbido

La absorción del calor del tanque de enfriamiento viene dada por la siguiente ecuación [35]:

$$Q_{L} = \dot{m}.(h_{1} - h_{4}) \tag{3}$$

Donde:

 \dot{Q}_{L} : Tasa de calor absorbido [W]

- h_1 : Entalpía del compresor en la entrada [kJ / kg]
- h_4 : Entalpía de la válvula de expansión en la salida [kJ/kg]

2.1.4 Balance de energía

Este principio sobre la conservación de la energía establece que la energía ni se crea ni se pierde, sino que se transforma, basándose en la primera ley de la termodinámica. Bajo este supuesto, la ecuación viene dada por [36]:

$$Q_h = \dot{m}_h \cdot (h_i - h_o) \tag{4}$$

$$Q_c = \dot{m}_c \cdot (h_o - h_i) \tag{5}$$

Donde:

 Q_h : Flujo de calor de entrada [W] Q_c : Flujo de calor de salida [W]

h: Entalpía [kJ / kg]

En caso de no existir un cambio de fase, se puede conseguir la variable con un calor especifico propio del fluido. Además, si se desea conocer variables como las temperaturas de entrada y las de salida, se debe considerar que en el flujo de calor es el mismo a la entrada y salida como menciona la teoría de balance de energía, de ser el caso se puede igualar las ecuaciones aludiendo que el flujo másico es el mismo al ingreso como a la salida.

$$\dot{m}_h \cdot Cp_{_h} \cdot (T_{hi} - T_{ho}) = \dot{m}_c \cdot Cp_{_c} \cdot (T_{co} - T_{ci}) \tag{6}$$

Donde:

 C_p : Calor específico del fluido en estudio [kJ / kgK]

T: Temperatura del fluido en estudio [°C]

2.1.5 Tasa de calor rechazado

La pérdida de calor por parte del refrigerante en el sistema hacia el ambiente, se define por la siguiente ecuación [37]:

$$\dot{Q}_{H} = \dot{m}.(h_{3} - h_{2})$$
 (7)

Donde:

 \dot{Q}_{H} : Tasa de calor rechazado [W]

 h_3 : Entalpía final del condensador [kJ / kg]

2.1.6 Coeficiente global de transferencia de calor

Se entiende como el total de calor, que es transferido por medio de un material, se lo puede definir de la siguiente forma [38]:

$$U = \frac{\dot{Q}_H}{As.\Delta T_{ml}} \tag{8}$$

Donde:

 ΔT_{ml} : Diferencia media logarítmica

 A_s : Área superficial referente a la transferencia térmica $[m^2]$

2.1.7 Diferencia de temperatura media logarítmica

Establece el impulso con respecto a la fuerza que promueve el traspaso de calor en un determinado movimiento en un intercambiador térmico; con el fin de examinar el incremento de calor en el fluido frío y caliente [38].

$$\Delta T_{ml} = \frac{\Delta T_1 - \Delta T_2}{In(\Delta T_1 - \Delta T_2)} \tag{9}$$

Donde:

 ΔT_1 : Delta de temperaturas a la entrada y salida en fases caliente y frio [°C]

 ΔT_2 : Delta de temperaturas a la salida y entrada en fases caliente y frio [°C]

2.1.8 Carga de enfriamiento

Para establecer la porción de calor precisa que se debe retirar desde un espacio refrigerado, se emplea la siguiente ecuación [39] [13]:

$$Q_1 = m.C_1.(T_1 - T_2) \tag{10}$$

Donde:

m : Masa de la sustancia [*kg*]

 C_1 : Cp por arriba del punto de congelación [kJ / kgK]

 T_1 : Temperatura al ambiente de la sustancia [°C]

 T_2 : Temperatura del reservorio [°C]

2.1.9 Tiempo de enfriamiento

Para establecer el tiempo en función que se demora en enfriar el compartimiento al fluido, se emplea la siguiente ecuación [34].

$$\Delta t = \frac{W_{in}}{\dot{W}_{motor}} \tag{11}$$

Donde:

 \dot{W}_{motor} : Potencia del motor [W]

 W_{in} : Potencia neta de entrada [kJ]

2.1.10 Potencia neta de entrada

La potencia neta de entrada viene relacionada a cuanto consume el compresor con respecto a cuanto enfría el evaporador, la misma se emplea con la siguiente ecuación [34].

$$W_{in} = \frac{Q_L}{COP_R} \tag{12}$$

Donde:

 Q_L : Calor rechazado [kJ]

2.2 Adaptación del ciclo de refrigeración

Para este análisis comparativo, se toma en cuenta las cifras reales de un estudio numérico realizado a un evaporador con un compresor de 1/4 [hp] de potencia. Se usan los valores del incremento de calor que se tienen a la entrada y salida de los componentes del ciclo de refrigeración, para un refrigerante R600a [3].

Teniendo en cuenta el modelo real, se realiza una adaptación para los refrigerantes en estudio, considerando las propiedades mecánicas del evaporador y el compresor en mención, por otra parte, es necesario considerar las características mecánicas del compresor para una correcta adaptación del modelo.

A continuación, se presenta las características mecánicas del compresor utilizado en el presente modelo.

Compresor Panasonic 5PS102UB			
Potencia	1 hp		
Desplazamiento [cc]	10.2		
Flujo volumétrico [m ³ /s]	0.0021792		
Capacidad de enfriamiento [W]	2930		
Voltaje / Frecuencia nominal	115 V 60 Hz		

Tabla 5. Elementos principales del compresor para los refrigerantes R410A y R32 [40] [41].

2.2.1 Parámetros de trabajo para los refrigerantes

Para obtener presiones y temperaturas acordes a la adaptación para un enfriador de leche, se debe tener en cuenta varios parámetros, tanto para condensación como evaporación.

- El incremento de calor en el fluido refrigerante del evaporador, debe ser 4 a 7 °C, más fría, que la del componente evaporador cuando esté trabajando el compresor.
- El incremento de calor en el fluido refrigerante enfriado por el flujo de aire en el condensador, debe estar entre 17 y 19 °C aproximadamente más caliente que la temperatura del medio ambiente.

Bajo esa premisa, se tiene la siguiente ecuación a 13 °C de temperatura ambiente para la temperatura del fluido refrigerante del condensador enfriado atmosféricamente.

$$T_{cond} = T_{amb} + 18^{\circ}C$$

$$T_{cond} = 13^{\circ}C + 18^{\circ}C$$

$$T_{cond} = 31^{\circ}C$$
(13)

La temperatura perteneciente al apartado de evaporación esta entre los 8 a 10 °C aproximadamente más fría a la temperatura que se requiere en el recipiente, por lo que, por motivos de cálculos y para cumplir con las especificaciones del compresor a trabajar, se trabajará con un valor de -10 °C.

En la figura 12, se muestra los diagramas (T-S)y(P-h), adaptados para el ciclo de enfriamiento con R410A, en la misma se considera el calor crítico al que llega el fluido refrigerante, manteniendo la disposición del ciclo en su objetivo de cumplir con la refrigeración de la leche. El ciclo se modelo mediante el software especializado de Honeywell, elaborado con datos del laboratorio de Buffalo-NY-USA para diferentes fluidos refrigerantes [42].

Figura 12. Diagramas termodinámicos para R410A a) T-s y b) P-h

Mediante las gráficas presentadas, se obtienen los siguientes datos de presión y temperatura en diferentes puntos del ciclo de refrigeración.

Los valores serán utilizados en las diferentes ecuaciones expuestas en el presente capítulo, cabe recalcar que dichos datos fueron obtenidos de la adaptación realizada para el refrigerante R410A a partir del estudio real del que está basado el presente análisis.

Tabla 6. Datos de presiones y temperaturas en los principales puntos del sistema para el refrigerante R410A.

Componento	Temperatura de	Temperatura de	Presión de	Presión de salida
Componente	ingreso [°C]	salida [°C]	ingreso [kPa]	[kPa]
Compresor	-9.74	59.69	481	1930.6
Condensador	30.96	25.84	1930.6	1930.6
Evaporador	-15.2	-9.84	481	481

En la figura 13, se muestra los diagramas (T-S) y (P-h), adaptados para el ciclo de enfriamiento con R32, en la misma se considera la temperatura crítica que llega al fluido refrigerante.

Figura 13. Diagramas termodinámicos para R32 a) T-s y b) P-h

Mediante las gráficas presentadas, se obtienen los siguientes datos de presión y temperatura en diferentes puntos del ciclo de refrigeración.

Componente	Temperatura de	Temperatura de	Presión de	Presión de salida
Componente	ingreso [°C]	salida [°C]	ingreso [kPa]	[kPa]
Compresor	-9.78	78.21	488.4	1972.9
Condensador	30.90	25.90	1972.9	1972.9
Evaporador	-14.98	-9.88	488.4	488.4

 Tabla 7. Datos de presiones y temperaturas en los principales puntos del sistema para el refrigerante R32.

Con las presiones obtenidas por el software especializado, se obtienen los siguientes valores referentes a los refrigerantes en estudio.

Refrigerante	Presión [kPa]	Volumen [m³/kg]	Entalpía [kJ/kg]	Entropía [kJ/kg.K]	Calor especifico [kJ/kgK]	Viscosidad [µPa.s]
R/10A	481	0.05410	416.11	1.8405	1.017	11.47
K +10A	1930.6	0.01270	426.28	1.7494	1.569	13.85
D22	488.4	0.07497	511.59	2.2109	1.114	10.83
К32	1972.9	0.01779	515.53	2.0438	1.733	13.65

Tabla 8. Propiedades termodinámicas de los fluidos refrigerantes R410A y R32 [41].

2.3 Cálculo de entalpías de la entrada y salida del condensador

Con los datos mostrados, la temperatura y presión expresadas en las tablas 6, 7 y 8, se procede a obtener los datos de entalpía con el software EES

2.3.1 Fluido refrigerante R410A

Para la entropía de 1.8405 [kJ/kg·K] y una presión de 1930.6 [kPa] se obtiene la entalpía de entrada

h2=Enthalpy(R410A;P=1930,6 [kPa];s=1,8405 [kJ/kg-K])

h2 = 454,9 [kJ/kg]

Figura 14. Entalpía de entrada al condensador R410A [43].

Presión de 1930.6 [kPa] y una calidad de 0 otorgada por el software de Honeywell se obtiene:

h4=Enthalpy(R410A;P=1930,6 [kPa];x=0)

h4 = 249,7 [kJ/kg]

Figura 15. Entalpía de salida del condensador R410A [43].

Tras los cálculos obtenidos mediante el software EES, se tienen los siguientes datos:

Condonasdon	Condiciones de trobais	Entalpía [kJ/kg]	
Condensador	Condiciones de trabajo	R410A	
Entrada	P = 1930.6 [kPa]	454.0	
Entrada	s = 1.8405 [kJ/kg·K]	404.7	
0-1:4-	P = 1930.6 [kPa]	240.7	
Sanda	$\mathbf{x} = 0$	249.7	

Tabla 9. Entalpías a la entrada y salida del condensador para el refrigerante R410A

2.3.2 Fluido refrigerante R32

Presión de 1972.9 [kPa] y entropía de 2.2109 [kJ/kg-K] se obtiene la entalpía de entrada

h5=Enthalpy(R32;P=1972,9[kPa];s=2,2109[kJ/kg-K])

h5 = 569,4 [kJ/kg]

Figura 16. Entalpía de entrada al condensador R32 [43].

Presión de 1972.9 [kPa] y calidad de 0 otorgada por el software Honeywell se obtiene la entalpía de salida

h6=Enthalpy(R32;P=1972,9 [kPa];x=0) h6 = 257,1 [kJ/kg]

Figura 17. Entalpía de salida del condensador R32 [43].

Tras los cálculos obtenidos mediante el software EES, se tienen los siguientes datos:

Condensador	Condiciones de trabajo	Entalpía [kJ/kg] R32
Entrada	P = 1972.9 [kPa] s = 2.2109 [kJ/kg·°K]	569.4
Salida	P = 1972.9 [kPa] x = 0	257.1

Tabla 10. Entalpías a la entrada y salida del condensador para el refrigerante R32

2.4 Cálculo de entalpías de salida y la entrada en el evaporador

Para las entalpías tanto de ingreso, como de salida en el evaporador, se calcula con los datos de entropía obtenidos por el software de Honeywell, considerando el ciclo de refrigeración visto en la figura 12 y 13.

2.4.1 Fluido refrigerante R410A

Para una calidad de 0.262 otorgada por el software de Honeywell y una presión de bajas de 481 [kPa] se obtiene la entalpía de entrada.

> h=Enthalpy(R410A;P=481 [kPa];x=0,262) h = 240,2 [kJ/kg]

Figura 18. Entalpía de entrada al evaporador R410A [43].

Una presión de 481 [kPa] y una calidad de 1 que otorga el software de Honeywell, se obtiene la entalpía de salida

h3=Enthalpy(R410A;P=481 [kPa];x=1) h3 = 416,2 [kJ/kg]

Figura 19. Entalpía de salida del evaporador R410A, a partir del software EES.

Tras los cálculos obtenidos mediante el software EES, se tienen los siguientes datos:

Evaporador	Condiciones de trabajo	Entalpía [kJ/kg] R410A
Entrada	P = 481 [kPa] x = 0.262	240.2
Salida	P = 481 [kPa] x = 1	416.2

Tabla 11. Entalpías a la entrada y salida del evaporador para el refrigerante R410

2.4.2 Fluido refrigerante R32

Presión de 488.4 [kPa] y una calidad de 0.216, la cual es proporcionada por el software de Honeywell, se obtiene la entalpía de entrada.

h7=Enthalpy(R32;P=488,4 [kPa];x=0,216)

h7 = 247,2 [kJ/kg]

Figura 20. Entalpía de entrada al evaporador R32 [43].

Una presión de 488.4 [kPa] y una calidad de 1 que otorga el software Honeywell, se obtiene la entalpía de salida.

h8=Enthalpy(R32;P=488,4 [kPa];x=1) h8 = 511,6 [kJ/kg]

Figura 21. Entalpía de salida del evaporador R32 [43].

Los datos obtenidos mediante el software EES se detallan en la siguiente tabla.

Fyonorodor	Condicionas do trobaio	Entalpía [kJ/kg]	
	Condiciones de trabajo	R32	
Entrada	P = 488.4 [kPa]	247.2	
Entrada	x = 0.216	247.2	
Calida	P = 488.4 [kPa]	511 6	
Sanda	$\mathbf{x} = 1$	311.0	

Tabla 12. Entalpías a la entrada y salida del evaporador para el refrigerante R32

2.5 Flujos másicos del ciclo

Con el flujo volumétrico del compresor en estudio ubicado en la tabla 5, la ecuación 6 y la tabla 8 con la densidad de los refrigerantes, se procede a determinar el flujo másico.

2.5.1 Refrigerante R410A

A una presión de 481 [kPa] y el volumen de 0.05410 [m³/kg] de vapor saturado, en conjunto a un flujo volumétrico de 0.0021792 [m³/s] del compresor en estudio, se obtiene

 $\dot{m} = \rho \cdot \dot{\upsilon}$

Conociendo que la densidad es igual a 1/v, siendo v el volumen específico se tiene:

$$\dot{m} = \frac{\dot{\upsilon}}{\upsilon}$$
$$\dot{m} = \frac{0,0021792 \, m^3/s}{0,05410 \, m^3/kg}$$
$$\dot{m} = 0,0402809 \, kg/s$$

2.5.2 Refrigerante R32

A una presión de 488.4 [kPa] y el volumen de 0.07497 [m³/kg], en vapor saturado, en conjunto a un flujo volumétrico de 0.0021792 [m³/s] del compresor en estudio, se obtiene

$$\dot{m} = \frac{\dot{\upsilon}}{\upsilon}$$
$$\dot{m} = \frac{0,0021792 \, m^3/s}{0,07497 \, m^3/kg}$$
$$\dot{m} = 0,0290676 \, kg/s$$

2.6 Flujo de calor absorbido

La ecuación (3) permite obtener la absorción de calor del tanque en conjunto con los valores de entalpías del evaporador, tanto de ingreso como de salida.

2.6.1 Refrigerante R410A

Las variables a utilizar para el cálculo son el flujo másico correspondiente al refrigerante R410A con un valor de 0.0402809 [kg/s] y las entalpías de ingreso y salida al evaporador según sea el caso.

$$\dot{Q}_{L} = \dot{m} \cdot (h_{1} - h_{4})$$
$$\dot{Q}_{L} = 0,0402809 \frac{kg}{s} \cdot (416, 2\frac{kJ}{kg} - 240, 2\frac{kJ}{kg})$$
$$\dot{Q}_{L} = 7,089438 \frac{kJ}{s}$$

2.6.2 Refrigerante R32

Las variables a utilizar para el cálculo son el flujo másico correspondiente al refrigerante R32 con un valor de 0.0290676 [kg/s] y las entalpías de ingreso y salida al evaporador según sea el caso.

$$\dot{Q}_{L} = \dot{m} \cdot (h_{1} - h_{4})$$
$$\dot{Q}_{L} = 0,0290676 \, kg/s \cdot (511,6 \, kJ/kg - 247,2 \, kJ/kg)$$
$$\dot{Q}_{L} = 7,685473 \frac{kJ}{s}$$

2.7 Balance de energía

Se habla de la primera ley de la termodinámica expuesta en la teoría del balance de energía, se puede calcular el flujo másico del fluido a enfriar.

2.7.1 Refrigerante R410A

Utilizando la ecuación (6) y un Cp de 3.89 [kJ/kg.K], se calcula el flujo másico de la siguiente forma:

$$\dot{Q}_{h} = \dot{Q}_{c}$$

$$\dot{m}_{h} \cdot Cp_{h} \cdot (T_{h,i} - T_{h,o}) = \dot{m}_{c} \cdot Cp_{c} \cdot (T_{c,o} - T_{c,i})$$

$$\dot{m}_{h} = \frac{7,089438 \, kJ/s}{3,89 \, kJ/kg.K \cdot (35 - 4)K}$$

$$\dot{m}_h = 0,0587896 \, kg/s$$

2.7.2 Refrigerante R32

Utilizando la ecuación (6) y un Cp de 3.89 [kJ/kg.K], se calcula el flujo másico de la siguiente forma:

$$\dot{m}_{h} = \frac{7,685473 \, kJ/s}{3,89 \, kJ/kg.K \cdot (35-4)K}$$
$$\dot{m}_{h} = 0,0637322 \, kg/s$$

2.8 Temperatura media logarítmica (LMTD)

En base a la ecuación (9) se puede lograr obtener el incremento de calor para la media logarítmica con la condición de que un evaporador se considera un intercambiador térmico de tubos y coraza, además de tener una temperatura de ingreso del fluido a 35 °C y obtener una temperatura deseada de 4 °C.

2.8.1 Refrigerante R410A

Para una temperatura deseada de 4 °C, se obtiene el LMTD de la siguiente forma:

$$\Delta T_{ml} = \frac{\Delta T 1 - \Delta T 2}{\ln(\Delta T 1 / \Delta T 2)}$$
$$\Delta T_{ml} = \frac{(T_{hi} - T_{co}) - (T_{ho} - T_{ci})}{In \left(\frac{T_{hi} - T_{co}}{T_{ho} - T_{ci}}\right)}$$
$$\Delta T_{ml} = \frac{(35 + 9, 84)^{\circ}C - (4 + 15, 2)^{\circ}C}{\ln((35 + 9, 84)^{\circ}C / (4 + 15, 2)^{\circ}C)}$$
$$\Delta T_{ml} = 30,2291^{\circ}C$$

2.8.2 Refrigerante R32

En el caso del R32; para una temperatura deseada de 4 °C, se procede a obtener el LMTD de la siguiente forma:

$$\Delta T_{ml} = \frac{(35+9,88)^{\circ}C - (4+14,98)^{\circ}C}{\ln((35+9,88)^{\circ}C/(4+14,98)^{\circ}C)}$$
$$\Delta T_{ml} = 30,0951^{\circ}C$$

2.9 Coeficiente global de transferencia de calor

Empleando la ecuación (8), se puede determinar el coeficiente global U, considerando la geometría del evaporador para obtener el área superficial, el flujo térmico y la temperatura media logarítmica.

El flujo de calor de altas podemos obtener con el flujo másico calculado, considerando las entalpías del condensador a la salida y en la entrada. Además de obtener el área superficial con la geometría del evaporador, tomando en cuenta el diámetro y longitud del mismo.

2.9.1 Refrigerante R410A

Para un LMTD de 30.2291 °C y un diámetro de 0.00793 [m], del evaporador, se obtuvieron los siguientes resultados:

$$U = \frac{\dot{Q}_H}{As.\Delta T_{ml}}$$

$$U = \frac{(0,0402809 \, kg/s \cdot (249,7-454,9) \, kJ/kg)}{(4,22m \cdot \pi \cdot 0,00793m) \cdot 30,2291^{\circ}C}$$
$$U = \frac{8265,64068 \, J/s}{(0,1051321m^2) \cdot 30,2291^{\circ}C}$$
$$U = 2600,85395W/m^2 \cdot {^\circ}C$$

2.9.2 Refrigerante R32

Para un LMTD de 30.2291 °C y un diámetro de 0.00793 [m], del evaporador, se obtuvieron los siguientes resultados:

$$U = \frac{19903,5660 \, J/s}{(0,1051321m^2) \cdot 30,0951^{\circ}C}$$

$$U = 6290,7174W/m^2 \cdot C$$

2.10 Carga de enfriamiento

Al ser la temperatura de congelación menor a la temperatura que permanece el enfriador de leche, cuyos datos podemos corroborar en la tabla 2; se obtiene la carga de enfriamiento del producto con la ecuación (10), considerando una densidad de 1.031 [g/cm³] para el fluido.

$$Q_{1} = m.C_{1}.(T_{1} - T_{2})$$

$$Q_{1} = 103, 1kg.3, 89 kJ/kg \cdot C.(35 - 4) C$$

$$Q_{1} = 12432, 829 kJ$$

2.11 Tiempo de enfriamiento

Para obtener el tiempo de enfriamiento total con la ecuación (11), es necesario calcular la potencia neta de entrada mediante la ecuación (12); permitiendo conseguir el tiempo de enfriamiento entre la razón de cuanto consume el motor y la potencia de entrada del mismo, además el COP de enfriamiento se obtuvo del software especializado de Honeywell.

2.11.1 Refrigerante R410A

Para un COP_{R} de 4.332, se obtienen los siguientes resultados:

$$W_{in} = \frac{Q_L}{COP_R}$$
$$W_{in} = \frac{m_l \cdot C_p \cdot \Delta T}{4,332}$$
$$W_{in} = \frac{12432,83kJ}{4,332}$$
$$W_{in} = 2869,99kJ$$

Al obtener el trabajo de entrada que es, el consumo de ingreso al compresor, se puede obtener el tiempo que se va a demorar en enfriar el fluido.

$$\Delta t = \frac{W_{in}}{\dot{W}_{motor}}$$
$$\Delta t = \frac{2869,99kJ}{1045W}$$
$$\Delta t = 2746,40s$$
$$\Delta t = 45,77 \text{ min}$$

2.11.2 Refrigerante R32

Para un COP_R de 4.373, se obtienen los siguientes resultados:

$$W_{in} = \frac{Q_L}{COP_R}$$
$$W_{in} = \frac{12432,83kJ}{4,373}$$
$$W_{in} = 2843,09kJ$$
$$\Delta t = \frac{W_{in}}{W_{motor}}$$
$$\Delta t = \frac{2843,09kJ}{1045W}$$
$$\Delta t = 2720,66s$$
$$\Delta t = 45,34 \text{ min}$$

2.12 Conclusiones del capítulo

- Al analizar las propiedades termodinámicas, se evidencia que el refrigerante R32 presenta mejores especificaciones con respecto al cuidado del medio ambiente y por ende, realizar un cambio a este refrigerante por un R410A usado ampliamente en la industria frigorífica y de aire acondicionado, representa beneficio energético, ambiental y de tiempo ya que, como se puedo evidenciar al refrigerante R32 bajo las mismas condiciones le toma menos tiempo en bajar la temperatura de la leche de 35 °C a 4 °C.
- El valor obtenido para el coeficiente global de transferencia de calor en el refrigerante R410A y R32, es de 2600.85395 y 6290.7174 [W/m²·°C] respectivamente, esto demuestra que el refrigerante R32 tiene mejor respuesta a la transferencia de calor por convección y conducción entre el fluido caliente y frío.

CAPÍTULO III

VALIDACIÓN NUMÉRICA DEL EVAPORADOR TIPO SERPENTIN DEL SISTEMA DE ENFRIAMIENTO MEDIANTE SIMULACIÓN CFD

En este capítulo, se detalla el diseño de la geometría del evaporador tipo serpentín del sistema de enfriamiento de leche. El componente evaporador el cual se encarga de retirar calor al fluido por lo que, es el elemento principal para el análisis del comportamiento termodinámico de los refrigerantes R410A y R32.

Se utilizan los cálculos realizados en el capítulo II para el apartado de boundary conditions en el simulador CFD, así mismo, se detalla los modelos matemáticos que son utilizados por el software especializado para realizar la simulación del evaporador tipo serpentín.

Finalmente, se realizará la comparación de resultados obtenidos por el software especializado mediante la simulación CFD con los obtenidos de forma analítica.

3.1 Software especializado ANSYS

La herramienta de simulación ANSYS desarrolla nuevos métodos de procesos de fabricación, logrando el objetivo de reducir los costes de tiempo y fabricación invertidos en determinado producto. Los elementos finitos que conlleva el funcionamiento del software, pueden predecir cómo funcionará determinado elemento bajo un medio real [44].

3.2 Dinámica de fluidos computacional

Se conoce que la dinámica de fluidos computacional (CFD) por sus siglas en inglés, es la unión de herramientas que permiten resolver enumerarles modelos matemáticos que gobiernan diferentes fenómenos como la fluidodinámica. La misma permite obtener soluciones aproximadas, prediciendo el proceso de cualquier equipo de un proceso industrial [45].

3.3 ANSYS Fluent

ANSYS Fluent permite obtener cálculos que simulen la circulación de fluidos comunes y de transmisión de calor, así como la interacción de dos o más fluidos a través de condiciones establecidas en el simulador. Fluent brinda capacidad de analizar problemas existentes para diseñar y optimizar soluciones, así como también realizar el análisis de un equipo en funcionamiento [46].

3.4 Geometría del evaporador tipo serpentín

Se diseñó un evaporador de tipo serpentín para el sistema de enfriamiento de leche por el cual fluirá refrigerante R410A y R32. El diseño cuenta con las dimensiones expuestas en la tabla 13. El mismo se ubicará en la parte inferior del tanque de enfriamiento para retirar el calor necesario con el fin de llegar a la temperatura deseada.

Variables	Dimensión
Diámetro exterior	7.93 mm
Diámetro interior	6.31 mm
Espesor	0.81 mm
Longitud Total	4220 mm
Área superficial	0.1051321 m ²
Espacio que ocupa	422 x 246 mm

 Tabla 13. Dimensionamiento del evaporador tipo serpentín [3].

Con las cifras de la tabla 13, se puede observar la figura 22, con la geometría del evaporador que está compuesta de cobre de temple flexible.

Figura 22. Geometría del evaporador tipo serpentín en software especializado ANSYS.

3.5 Mallado de la geometría

Con parámetros establecidos previamente, se genera un mallado computacional para obtener resultados puntuales; el tamaño del mallado es de suma importancia en flujos turbulentos y en geometrías de estudio donde exista cambios de fase, en dichos casos el mallado debe ser de mejor calidad dependiendo de la capacidad computacional del computador [47].

El mallado no apropiado puede generar resultados alejados de la realidad, por lo que el refinado de la malla debe ser el idóneo para poder definir la convergencia de la misma. La convergencia se la debe analizar desde el punto de calidad de malla; existe dos tipos de herramientas denominadas Skewness y Orthogonal dentro del producto Fluent usado para el estudio.

El Skewness mide la distorsión del mallado por lo que, valores altos en la calidad de la malla no es recomendable. Caso contrario sucede con la calidad de malla Orthogonal, ya que recomienda valores altos para resultados óptimos en la simulación computacional.

En la tabla 10, se puede visualizar las cifras de la calidad en la malla de acuerdo a la herramienta seleccionada [46].

Skewn	iess	Orthogonal		
Calidad	Valor	Calidad	Valor	
Excelente	0-0.25	Excelente	0.95-1.00	
Muy buena	0.25-0.50	Muy buena	0.70-0.95	
Buena	0.50-0.80	Buena	0.20-0.69	
Aceptable	0.80-0.94	Aceptable	0.15-0.20	
Mala	0.95-0.97	Mala	0.001-0.14	
Inaceptable	0.98-1.00	Inaceptable	0-0.001	

Tabla 14. Valores de calidad de mallado en ANSYS Fluent [46].

Mediante la tabla 10, se analiza la distorsión que se puede presentar en la geometría, afectando en la convergencia del mallado y en los resultados finales. Por ello, para el presente estudio se buscó que el mallado con la herramienta skewness y orthogonal presenten valores promedio a la calidad excelente.

En la figura 23 se puede visualizar el mallado generado para la geometría del evaporador tipo serpentín.

Figura 23. Mallado de la geometría (ANSYS).

A continuación, se presenta en la figura 24 (a) la calidad del mallado para el Skewness y (b) la calidad de mallado para el Orthogonal, con valores promedios de 0,16 y 0,64 respectivamente.

Quality				
Check Mesh Quality	Yes, Errors			
Target Skewness	Default (0,9)			
Smoothing	Medium			
Mesh Metric	Skewness			
Min	1,0974e-006			
Max	0,89898			
Average	0,16167			
Standard Deviation	9,8796e-002			
□ Quality	(a)			
Check Mesh Quality	Yes, Errors			
Target Skewness	Default (0,9)			
Smoothing	Medium			
Mesh Metric	Orthogonal Quality 🔻			
Min	1,4233e-002			
Max	0.99122			

Figura 24. Calidad de mallado (a) Skewness, (b) Orthogonal (ANSYS)

(b)

0,63689

Standard Deviation 0,28386

3.6 Modelos matemáticos y numéricos

Average

Correspondiente a la dinámica de fluido computacional, se utilizan modelos matemáticos como numéricos para la simulación de flujos volumétricos, entre ellas las ecuaciones de momento, masa y conservación. Dichas ecuaciones se expresan en términos de variables intensivas o específicas, es decir, en medida a las unidades de masa.

Las ecuaciones otorgadas por Navier-Stokes formadas por derivadas parciales no lineales, detallan el movimiento del fluido desde las leyes de movimiento de Newton donde se considera mecanismos físicos responsables del análisis y generación del flujo [48].

3.6.1 Ecuación general de la conservación

Las ecuaciones generales de gobierno para la mecánica de fluidos, se manifiestan por la unidad de masa, la presente ecuación se muestra de forma difusiva o vectorial, siendo la última la más simplificada [48].

$$\frac{\partial(\rho\phi)}{\partial t} + \nabla \cdot (\vec{\rho \nu} \phi) = \nabla \cdot (\Gamma \nabla \phi) + \delta$$
(13)

3.6.2 Ecuación de conservación de la masa

La ecuación de la continuidad, dispone que el aumento de masa al fondo de un elemento con fluido, puede ser el efecto del flujo neto de masa hacia el elemento. Esto se debe a que la masa no puede crearse ni mucho menos destruirse. Dicho esto, la ecuación que representa esta teoría viene dada de la siguiente manera [48].

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\vec{\rho v}) = 0 \tag{14}$$

3.6.3 Ecuación de conservación del momento

La expresión de la siguiente ecuación para un fluido newtoniano, representa la relación lineal de las tensiones cortantes y las deformaciones en un flujo adivergente e incompresible. Utilizando las propiedades de los diferentes campos vectoriales se puede reformular la ecuación de la siguiente forma [48].

$$\frac{\partial(\rho\dot{v})}{\partial} + \nabla \cdot (\rho \vec{v} \vec{v}) = \nabla \cdot (\mu \nabla \vec{v}) - \nabla p + \rho \vec{g}$$
(15)

3.6.4 Ecuación de la conservación de energía

En términos conservativos, la presente ecuación se puede considerar de forma simplificada bajo un flujo de menor velocidad, despreciando la disipación viscosa e incompresible

$$\frac{\partial(\partial y)}{\partial t} + \nabla \cdot (\rho \vec{v} h) = \nabla \cdot \left(\frac{k}{C_p} \cdot \nabla h\right) + S_h$$
(16)

La ecuación general de la conservación de energía, es el punto de partida de la ecuación, donde k representa la conductividad térmica, relacionando la temperatura con la entalpía [48].

3.6.5 Modelo k-E de renormalización (RNG)

Los modelos físicos necesitan un detalle del desarrollo en el cambio de fase mediante cambios de velocidad a causa de la densidad y turbulencias existentes. El modelo RNG, contiene el efecto de turbulencia mediante el número de Prandtl, mejorando el número de Reynolds con respecto a la viscosidad efectiva [3]. De acuerdo con Sachdeva. [49] el modelo RNG significa un modelo de turbulencia establecido en renormalización, con ecuaciones características para formular la viscosidad de Foucault, es decir, indica mejores resultados con relación a fluidos sólidos y gaseosos en procesos multifásicos

Para k:

$$\frac{\partial}{\partial_{t}}(pk) + \frac{\partial}{\partial_{xi}}(pku_{i}) = \frac{\partial}{\partial_{xj}}\left(a_{k}\mu_{eff}\frac{\partial}{\partial_{xj}}\right) + G_{k} + G_{b} - \rho\varepsilon - Y_{M} + S_{k}$$
(17)

Para ε :

$$\frac{\partial}{\partial_{t}}(p\varepsilon) + \frac{\partial}{\partial_{xi}}(p\varepsilon u_{i}) = \frac{\partial}{\partial_{x\cdot j}}\left(a_{k}\mu_{eff}\frac{\partial}{\partial_{x\cdot j}}\right) + G_{1\varepsilon}\frac{\varepsilon}{k}\cdot(G_{k} + (C_{3\cdot\varepsilon}\cdot G_{b})) - C_{2\varepsilon}\rho\frac{\varepsilon^{2}}{k} - R_{\varepsilon} + S_{\varepsilon}$$
(18)

Donde k representa la producción de energía cinética de turbulencia y ε se refiere al aumento de precisión del método RNG [3].

3.6.6 Modelo cambio de fase

Para lograr la simulación de variación de fase, se debe utilizar el planteamiento Euler-Euler; la misma soluciona las ecuaciones de continuidad y momento en cada fase liada. Se debe tomar en cuenta que los modelos de turbulencia son aceptados y para varios tipos de arrastre para todas las fases con una misma presión.

En el modelo previamente descrito, se tiene la interacción de dos fases, una de ellas se presenta como primaria por la sigla (q) y secundaria con la sigla (p). Dichas nomenclaturas se utilizan en la variación de fase en conjunto con el modelo de Lee que contiene la ecuación del movimiento de vapor, se considera la fase y velocidad del vapor [3].

$$\frac{\partial}{\partial_t}(\alpha_p \rho_p) + \nabla \cdot (\alpha_p \rho_p \overrightarrow{V_p}) = \dot{m}_{qp} - \dot{m}pq$$
(19)

La ecuación presenta la continuidad de masa por fase, en donde existe una transmisión de masa por una fase p a una q, que viene dada por:

$$\frac{\partial}{\partial_t} \cdot (\alpha_q \rho_q) + \nabla \cdot (\alpha_q \rho_q \overrightarrow{V_q}) = \sum_{p=1}^n (\dot{m}_{pq} - \dot{m}_{qp}) + S_q$$
(20)

Con la obtención de la ecuación de continuidad, se puede expresar el balance de momento por fase de la siguiente manera:

$$\frac{\partial}{\partial_t} \cdot (\alpha_q \rho_q \vec{V_q}) + \nabla \cdot (\alpha_q \rho_q \vec{V_q V_p})$$
(21)

El modelo multifásico Euleriano con una interfaz para flujos sólidos y gaseosos se expresa de la siguiente forma mediante la conservación de la energía:

$$\frac{\partial}{\partial_{t}} \cdot (\alpha_{q} \rho_{q} h_{q}) + \nabla \cdot (\alpha_{q} \rho_{q} \overrightarrow{u_{q}} \overrightarrow{h_{p}})$$

$$= -\alpha_{q} \frac{\partial p_{q}}{\partial_{t}} + \overrightarrow{t_{q}} : \nabla \cdot \overrightarrow{\mu_{q}} - \nabla \cdot \overrightarrow{q_{q}} + S_{q} + \sum_{p=1}^{n} (Q_{pq} + \dot{m}_{pq} h_{pq} - \dot{m}_{qp} h_{qp})$$
(22)

3.6.7 Error absoluto y relativo

El error absoluto está marcado por la diferencia entre una medida real y el valor aproximado

$$Ea = Valor_{real} - Valor_{approximado}$$
(23)

Con la ecuación 23, se puede obtener el error relativo porcentual que viene dado por el cociente entre el valor absoluto y el valor real [50].

$$Er = \frac{Ea}{Valor_{real}} \cdot 100\%$$
(24)

3.7 Parámetros de trabajo para la simulación

A continuación, se presenta los parámetros iniciales de ingreso al software especializado para cada refrigerante, en los mismos se considera sus propiedades termodinámicas, presión de bajas y temperaturas de ingreso al serpentín, respetando las condiciones críticas en cada una de las variables que están en consideración

Tabla 15. Parámetros de trabajo de los refrigerantes R410A y R32 en el serpentín

Parámetro	R410A	R32
Temperatura de mezcla	-15.2	-14 98
saturada [°C]	10.2	1.00
Presión de baja [kPa]	481	488.4
Flujo de calor por área (W/m ²)	67433.6192	73103.0104

3.8 Resultados de la simulación

Los resultados reflejan, datos importantes como el cambio de fase desde el ingreso hasta la salida del refrigerante en el evaporador tipo serpentín. En los dos casos del refrigerante R410A y R32 se evidencia el cambio de fase de mezcla saturada a vapor saturado en su totalidad, tal y como se analizó en las figuras 12 y 13. La figura 25, evidencia el cambio de fase mediante el

contorno de fracción de volumen en donde, el literal (a) pertenece al refrigerante R410A y el literal (b) al refrigerante R32.

Este corresponde y muestra los contornos

Figura 25. Fracción de volumen del fluido refrigerante en vapor, (a) R410A, (b) R32.

Los contornos desplegados, muestran la fase de mezcla saturada que existe al ingreso del evaporador tipo serpentín, en donde de acuerdo a la tabla 11 se aprecia el ingreso a una temperatura menor a la que sale, indicando el cambio de fase por completo a vapor sobrecalentado. El proceso de evaporación es de forma gradual a medida que recorre el fluido por el serpentín.

Además, se puede apreciar que la evaporación de los dos refrigerantes indica un proceso de evaporación similar, realizando el cambio de fase en un determinado paso del serpentín, mostrando volúmenes de fracción similares. El refrigerante R410A y R32 presentan evaporación a partir del paso 2 con la única diferencia que el inicio del cambio de fase no es a la misma distancia del serpentín, cabe señalar que el refrigerante R32 a pesar de presentar condiciones similares de fracción de volumen; las temperaturas de salida varían mínimamente, destacando que el refrigerante en mención presenta mejores propiedades y características a favor del medio ambiente, produciendo el mismo fin de enfriar el compartimiento con un impacto menor a la capa de ozono. Es así que, mediante la simulación es probable analizar el cambio de fase de mezcla saturada a vapor sobrecalentado en diferentes porciones de fracción

de volumen, obteniendo la mayor temperatura en términos de calor latente a la salida del serpentín

3.9 Validación de la simulación

La simulación CFD permite obtener resultados como el flujo másico, flujos de calor y temperaturas o presiones de trabajo, mediante el ingreso de variables vistas en la tabla 6 y 7 correspondiente a cada refrigerante; el objetivo de esto es comparar los valores analíticos con los de la simulación. En la validación se muestra que el flujo másico de entrada y salida son similares, demostrando que el diseño del evaporador es apto para el sistema de enfriamiento con los refrigerantes propuestos.

3.9.1 Flujos másicos

Basado en los principios de conservación de masa expuesta con anterioridad, los métodos de elementos finitos utilizados por el software son los encargados de controlar la conservación local. La transferencia de la masa neta en un intervalo de tiempo va relacionado al aumento o la disminución de la masa total en el volumen de control; este tipo de transferencia hace alusión al movimiento neto de la masa desde una ubicación a otra por el flujo que recorre en un determinado espacio [51].

Mediante la figura 26, analizaremos el flujo másico al ingreso y salida del evaporador tipo serpentín mediante el comando Surface Integral, mismo que contiene opciones como el Mass Flow Rate utilizado en este caso.

Mass Flow Rate	[kg/s]	Mass Flow Rate	[kg/s]
inlet outlet	0.040484827 -0.040484827	inlet outlet	0.029818977 0.029703154
Net	-3.6914916e-15	Net	0.059522131

(a)

(b)

Figura 26. Flujo másico (a) R410A, (b) R32

3.10 Validación del diseño entre valores analíticos y la simulación CFD

La tabla 12, presenta el flujo másico obtenido de forma analítica comparada con la simulación CFD, en ella se evidencia que el flujo en la salida y en la entrada es el mismo cumpliendo con el principio de conservación de energía.

Refrigerante	Flujo másico a la entrada (kg/s)	Flujo másico a la salida (kg/s)	Flujo másico analítico (kg/s)	Porcentaje de error (%)
R410A	0.040484827	0.040484827	0.0402809	0.50371
R32	0.029818977	0.029703154	0.0290676	2.5197

Tabla 16. Flujo másico analítico y de simulación CFD.

3.10.1 Coeficiente total de transferencia de calor

El coeficiente total de transferencia de calor térmico de cada refrigerante está dado por la cantidad de calor absorbido por el evaporador tipo serpentín.

mixture Area-Weighted Average Surface Heat Transfer Coef. pared_calor	[W/(m^2 K)] 2380.3413	mixture Area-Weighted Average Surface Heat Transfer Coef. pared_calor	[W/(m^2 K)]
- (a)		(b)	

Figura 27. Coeficiente total de transferencia de calor (a) R410A, (b) R32

La figura 27, muestra los coeficientes totales de transferencia de calor por el material que está formado el serpentín para cada refrigerante respectivamente. Se calculó el porcentaje de error entre el valor analítico y el valor del software con la ecuación (24), mismos que se evidencian en la tabla 13.

Refrigerante	Coeficiente total de transferencia de calor (CFD) [W/m ² K]	Coeficiente total de transferencia de calor (analítico) [W/m ² K]	Porcentaje de error (%)
R410A	2380.3413	2600.85395	9.26
R32	6227.892	6290.7174	1.00

Tabla 17. Coeficiente total de transferencia de calor analítico y simulación CFD.

Mediante el software especializado MatLab, se presenta la variación de los resultados entre lo obtenido experimentalmente y la simulación CFD. La misma se observa en la figura 28, donde se analiza la relación de resultados entre el coeficiente total de transferencia de calor con respecto al flujo másico obtenido.

Figura 28. Semejanza de resultados R410A y R32.

El esparcimiento entre los resultados obtenidos de forma numérica y analítica, se visualiza de forma mínima, esto sucede porque el porcentaje de error tanto del flujo másico como del coeficiente total de transferencia de calor no supera el 3 y 9 % respectivamente.

3.11 Conclusiones del capítulo

- Los resultados obtenidos dependen de diferentes factores; uno de ellos son las ecuaciones de gobierno, mismas que rigen dentro de la simulación a medida que recorre el flujo por el serpentín; ecuaciones como las mencionadas en el apartado 3.6 permiten en conjunto con el mallado, obtener resultados cercanos a la realidad. La calidad del mallado es muy importante, de su refinamiento depende la veracidad de los resultados al momento de llegar a la convergencia en cuanto a resultados finales se refiere; es así que, con una calidad de 0,16 para el método de oblicuidad, ubicándolo en el rango de excelente, se obtienen valores próximos a los calculados en el capítulo II.
- El modelo RNG escogido para la presente simulación, proporcionó resultados apegados a la realidad debido a que se lo utiliza en efectos de turbulencia y remolino en cuanto se refiere al recorrido de un fluido dentro de un determinado sistema. La validación del estudio mediante simulación CFD de diferentes variables, muestran la autenticidad del estudio, indicando resultados con errores menos al 10 % entre los datos obtenidos analíticamente con la simulación presentada.

CAPÍTULO IV

SELECCIÓN DEL REFRIGERANTE CON MEJOR COMPORTAMIENTO TERMODINÁMICO PARA EL SISTEMA DE ENFRIAMIENTO DE LECHE

En este capítulo se realizará la selección del refrigerante que presente el mejor comportamiento termodinámico. Las simulaciones CFD permiten obtener resultados mediante opciones de contorno en un plano que muestra el flujo a lo largo del serpentín; se podrá; analizar gradientes de temperatura, fracción de volumen para observar el cambio de fase y velocidad del fluido en el serpentín.

Además, se realizará una comparación de los resultados entre los dos refrigerantes con el fin de seleccionar el más apto para el sistema de enfriamiento en base a las temperaturas requeridas para la leche y tomando en cuenta las propiedades de cada refrigerante con el fin de mejorar las condiciones medioambientales y las de refrigeración.

4.1 Comparación del comportamiento en los refrigerantes R410A y R32

Los resultados obtenidos de la simulación CFD para los refrigerantes R410A y R32 se muestran en la figura 29, utilizando la opción de contorno otorgado por el results del simulador, se consigue contornos de gradiente de temperatura del fluido refrigerante, así como los contornos de fracción de volumen que permitirán ver a que altura del serpentín comienza el cambio de fase de mezcla saturada a vapor saturado. Además, se realiza un análisis de selección del refrigerante para optar por el más apto para el sistema de enfriamiento de leche.

4.1.1 Comparación del contorno de fracción de volumen

La comparación del contorno de fracción de volumen nos permite analizar el cambio de fase de mezcla saturada a vapor saturado para cada refrigerante. Para ello se utiliza un plano yz para seleccionar el contorno en la misma y lograr interpretar el comportamiento del refrigerante por el evaporador.

La figura 29, muestra un comportamiento similar relacionado al cambio de fase. Se muestra diferencia en el refrigerante R410A, donde indica un 8 % de líquido saturado y un cambio en el segundo paso con 19 % de fracción de volumen de mezcla saturada, logrando que al noveno paso el vapor sobrecalentado empiece a ser más notorio.

A diferencia del refrigerante R410A, el refrigerante R32 tiene un comportamiento similar con la variación de que, un 10 % es líquido saturado y un 30 % de fracción de volumen en el tercer paso es mezcla saturada, cambiando de fase al octavo paso por completo a vapor sobrecalentado.

Figura 29. Contornos de fracción de volumen obtenidos para (a) R410A, (b) R32.

4.1.2 Comparación de contornos de temperatura en el serpentín.

A continuación, en la figura 30, se muestra la temperatura interna del evaporador para cada uno de los refrigerantes en estudio. La información correspondiente al gradiente de temperatura nos señala que, existe un aumento de temperatura significativa a partir del octavo paso, a la misma distancia en donde el fluido experimenta un cambio de fase notable. Esto puede explicarse por la acción de calor latente en el cambio mencionado, desde una mezcla saturada a vapor.

Tanto en el refrigerante R410A como en el refrigerante R32, muestra una entrada a una temperatura relativamente baja, misma que va acorde a los parámetros expuestos en el capítulo II con respecto a la adaptación del ciclo, además se observa la mayor temperatura a la salida con valores de -9.84 y -9.88 °C para el R410A y R32 respectivamente.

Figura 30. Contornos de temperatura obtenidos para (a) R410A, (b) R32.

4.1.3 Comparación de la velocidad

La figura 31 indica los contornos de velocidad desde el ingreso al serpentín hasta la salida del mismo. Las gráficas indican que, para el refrigerante R410A existe un aumento de velocidad en el cuarto paso con un valor de 1.8 m/s. El refrigerante R32 tiene un comportamiento similar, con la variación de la velocidad en el octavo paso con un valor de 3.4 m/s a diferencia del R410A que alcanza la misma velocidad al noveno paso, demostrando que el cambio de fase a vapor sobrecalentado sucede a la par del aumento de velocidad en determinada sección del serpentín.

Figura 31. Contornos de velocidad obtenidos para (a) R410A, (b) R32.

4.1.4 Comparación del cambio de fase en función de la longitud del serpentín

La figura 32, nos indica la fracción de volumen en referencia al cambio de fase desde la mezcla saturada hasta el vapor saturado. La figura indica los dos casos de análisis con respecto a los refrigerantes R410A y R32 en donde se refleja que, una fracción de mezcla permanece a la altura del primer paso del evaporador y que a partir de los 0.03 m de altura existe el cambio de fase.

Se debe dar importancia al volumen de fracción que se evapora ya que, el refrigerante R32 presenta un cambio de fase más veloz que el refrigerante R410A, a pesar de que la altura de cambio de fase sea aproximada en ambos casos.

Figura 32. Fracción de volumen de cambio de fase con respecto a la altura del serpentín (a) R410A, (b) R32.

4.2 Conclusiones del capítulo

- Para ambos casos, las simulaciones del presente estudio, mostraron un cambio de fase simétrico, es decir que a lo largo del serpentín en la sección que ocurre la evaporación del refrigerante, no se presenta fracciones de líquido saturado.
- La comparación del contorno de velocidad permite ver que, a medida que sucede el cambio de fase la velocidad aumenta. Para el caso del R32 el valor es de 4.14 m/s, esto debido a que el proceso de evaporación es más veloz, demostrando el gran desempeño que tiene en el sistema de enfriamiento.

Para ambos casos, el cambio de fase comienza desde los 0.03 m de altura, con la diferencia de que, el refrigerante R32, presenta una mayor rapidez de evaporación que el R410A, valores que van acorde al cambio de fase y que se puede corroborar con los contornos de temperatura, velocidad y volumen de fracción.

CAPÍTULO V

ANÁLISIS DE COSTOS

5.1 Presupuesto de implementación

En el presente apartado, se da a conocer el costo que tendría la implementación de la propuesta tecnológica en un sistema de enfriamiento de 100 litros de leche. En la tabla 14, se indica el valor de cada uno de los componentes utilizados para el análisis y elementos del sistema de enfriamiento.

Ítem	Cantidad	Valor (\$)
Planchas Acero Inoxidable	4	140
(AISI 304)	4	140
Evaporador	1	25
Compresor	1	70
Condensador	1	50
Sensor de temperatura	1	17
Tubo capilar	1.5 m	2.50
Poliuretano	3000 gr	30
Termómetro	1	37
Resortes	2	20
Cables	3 m	4
Corte laser de piezas	4	40
Sistema de control	1	160
Agitador 1200 rpm	1	900
Válvula de mariposa	1	42
Acople 2"	1	6
Sujeción	1	4
Tapón de vaciado	1	22
R410A	1	110
R32	1	180

Tabla 18. Presupuesto para la implementación

Total, R410A	1679.5
Total, R32	1749.5

5.2 Conclusiones del capítulo

- De acuerdo con el presupuesto para elaboración e implementación del sistema de enfriamiento, el valor total tiene un presupuesto de \$1679.5 con el uso del refrigerante R410A y un valor de \$1749.50 para el refrigerante R32, generalmente equipos de enfriamiento de leche como la marca DeLaval o Milkplan de origen extranjero mantienen precios aproximados de \$2735 para tanques con capacidad de 100 litros, por lo que elaborarla en el país la haría más rentable.
- El Refrigerante R410A presenta un valor menor al refrigerante R32 para la implementación en el sistema de enfriamiento, debido a que el refrigerante R32 no se comercializa a gran escala en el país. Sin embargo, la utilización del refrigerante R32 aporta mejor desempeño al sistema, logrando reducir tiempos de enfriamiento, absorbiendo el calor de forma adecuada para el compresor propuesto en el estudio, y reduciendo en gran parte el potencial de calentamiento global.

CONCLUSIONES

- La investigación bibliográfica presentada en el estudio, sobre el estado actual de la leche en el Ecuador, así como del proceso de ordeño mecánico; mostró la importancia de la refrigeración del producto para el consumo humano. La presencia de bacterias que existen desde el ordeño, pueden multiplicarse al paso de las horas sin un correcto enfriamiento de la leche, es por ello que uno de los parámetros a tomar en cuenta es la temperatura de enfriamiento, siendo la más recomendable 4 °C. Los refrigerantes R410A y R32 son de los más óptimos para el objetivo deseado en la refrigeración de la leche, debido a que ambos cumplen con evaporarse en su totalidad dentro del serpentín.
- El diseño del evaporador tipo serpentín utilizado para el presente análisis comparativo, demostró un funcionamiento óptimo y adecuado dentro del proceso de evaporación para un ciclo real. Los cálculos obtenidos analíticamente fueron comparados con la simulación CFD; valores como el flujo másico y el coeficiente global de transferencia de calor se pudieron validar con porcentajes de error de 0.50371 y 9.26 % para el refrigerante R410A y valores de 2.5197 y 1 % para el R32 respectivamente. De igual forma, cabe recalcar que para la simulación CFD se toma en cuenta condiciones de operación en la etapa de evaporación, resaltando las presiones de altas y bajas con las cuales los refrigerantes trabajan dentro del sistema de enfriamiento. La presión de bajas del refrigerante R32 es la más alta con un valor de 488,4 kPa a diferencia del refrigerante R410A con un valor de 481 kPa.
- Las condiciones de borde como el mallado en la simulación CFD son de suma importancia, de ellas depende la calidad y veracidad de resultados finales en conjunto con el modelo matemático planteado, permitiendo obtener variables de cálculo como el flujo másico utilizado para la validación del presente estudio, obteniendo una diferencia de 1.158e-04 para el R32 y 3.69e-15 para el R410A entre la entrada y la salida en el evaporador, constatando que el modelo utilizado es fiable y muestra valores cercanos a la realidad.

- Los resultados de la simulación CFD muestran que, el refrigerante R32 realiza un cambio de fase más rápido en comparación al refrigerante R410A. En la figura 29 se pudo analizar como el cambio de fase a vapor sobrecalentado comienza en el 8vo paso, mientras que para el R410A comienza en el 9no paso, demostrando que el refrigerante R32 muestra un mejor desempeño para el sistema de enfriamiento de 100 L. Además, se toman en cuenta sus propiedades termodinámicas, mismas que son más amigables al medio ambiente con un GWP de 675 unidades a diferencia del R410A que, a pesar de ser efectivo en la transferencia de calor y contener una inflamabilidad baja, contiene un GWP de 2088 unidades, haciéndolo un fluido refrigerante R32 es el más idóneo para el sistema de enfriamiento R32 es el más idóneo para el sistema de enfriamiento considerable al ambiente. Por consiguiente, se considera que el refrigerante R32 es el más idóneo para el sistema de enfriamiento propuesto.
- La implementación del refrigerante R32 al sistema de enfriamiento con capacidad de 100 L, representa un costo de \$1749.50 con un tanque de enfriamiento de fabricación nacional, mientras que para el refrigerante R410A es de \$1679.50. La diferencia es de \$70 debido a que el refrigerante R32 no se comercializa a gran escala en el país, sin embargo, importarla para la implementación ya sea a un tanque de producción extranjera o regional, no repercute en el desempeño del sistema tomando en cuenta que los compresores aptos para el R410A son idóneos para el R32 en la gran mayoría de casos. Por lo tanto, se constata que trabajar con refrigerante R32 en el sistema de refrigeración, permite obtener mejores resultados en cuanto a la eficiencia del sistema y beneficios ambientales sin afectar los parámetros de trabajo requeridos para la leche.

RECOMENDACIONES

- Se recomienda realizar varios ensayos con método matemático expuesto para el evaporador tipo serpentín, con el fin de disminuir el error entre los datos analíticos y simulados.
- Realizar diferentes tipos de análisis con refrigerantes de uso industrial, dando prioridad a los menos nocivos con el ambiente, con el fin de obtener cada vez más alternativas, manteniendo condiciones de funcionamiento acordes al sistema y mejorando las condiciones medioambientales.
- Se recomienda utilizar un mallado refinado, con el fin de obtener datos con menor error entre la parte analítica y simulada, permitiendo obtener resultados veraces para el sistema de enfriamiento y realizar un correcto análisis en todo el serpentín.

LISTA DE REFERENCIAS

- [1] GASSERVEI, "Ficha técnica R-410A," Madrid, 2020.
- [2] GASSERVEI, "Ficha técnica R-32," Madrid, 2020.
- [3] F. Toapanta-Ramos, C. Andrade-Terán, and W. Quitiaquez, "Numerical study using cfd of the evaporator of a domestic refrigerator with r600a and r410a; [Estudio numérico mediante cfd del evaporador de un refrigerador doméstico con r600a y r410a]," *RISTI Revista Iberica de Sistemas e Tecnologias de Informacao*, vol. 2021, no. E39, pp. 477 492, 2021, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101926889&partnerID=40&md5=db0085193a45182951bbc87f08787b82
- [4] J. M. Oñate Haro, "Cadena agroalimentaria de la leche vacuna en Ecuador y sus potencialidades exportadoras. Periodo 2008 - 2015," Pontifica Universidad Catolica del Ecuador, 2018.
- [5] INEC, "Encuesta de Superficie y Producción Agropecuaría Continua 2020," 2020. https://bit.ly/3ylLBVU
- [6] Centro de la Industria láctea del Ecuador, "El sector lácteo ecuatoriano se reactiva con miras positivas para el 2022," Quito, Dec. 2021.
- [7] J. P. Grijalva Cobo, "La industria lechera en Ecuador: un modelo de desarrollo," *RETOS*, vol. 1, no. 1, pp. 66–67, 2011.
- [8] G. y A. Ministerio de Agricultura, "Proceso para la elaboración de productos lácteos," Ciudad de Guatemala, 2011.
- [9] Trimble, "SketchUp." 2022.
- [10] A. M. Olajide and G. LaPointe, "Microorganisms Associated with Raw Milk☆," in *Encyclopedia of Dairy Sciences (Third Edition)*, Third Edit., P. L. H. McSweeney and J. P. McNamara, Eds. Oxford: Academic Press, 2022, pp. 319–328. doi: https://doi.org/10.1016/B978-0-12-818766-1.00023-4.
- [11] X. Campaña Hoyos and P. Aguilar, "Estudio de Mercado 'Sector Lácteo' Versión Pública," Quito, 2021.
- [12] Á. L. López Ruiz and D. Barriga Velo, *La leche. Composición y características*, Junta de A. Sevilla: Consejería de Agricultura, Pesca y Desarrollo Rural, 2016.
- [13] ASHRAE, "ASHRAE® HANDBOOK," Atlanta, 2014.
- [14] B. Hernández, La refrigeración de la leche, Madrid. Extensión Agraría, 1975.

- [15] Mueller, "Unidad de refrigeración enfriada por agua," 2022. https://bit.ly/3ggU32o (accessed Oct. 16, 2022).
- [16] Milkplan, "Red Alimentaria," 2019. https://bit.ly/3T8Tg1Y (accessed Oct. 07, 2022).
- [17] A. Andrade, E. Molina, and A. Calderón, *Ordeño con Equipo Mecánico*, Bogotá. Servicio Nacional de Aprendizaje, 1985.
- [18] Agrocerezo, "Equipos de ordeño," 2015. https://bit.ly/3rD8mAT (accessed Oct. 08, 2022).
- [19] INTAGRI, "Ordeño Mecánico," Artículos técnicos de INTAGRI, vol. 1, no. 48, p. 4, 2020.
- [20] Cofrico, "Sala Refrigeración Industria Lactea: La refrigeración industrial de los lácteos,"
 2022. https://bit.ly/3yqtRZs (accessed Oct. 09, 2022).
- [21] J. Estevez Mendéz and J. Dominguez, *Montaje y mantenimiento de equipos de refrigeracion comercial*, 1st ed. Navarra: PARANINFO, 2016.
- [22] Milkplan, "Tanques de enfriamiento de leche tipo abierto," Atenas, 2022.
- [23] Milkplan, "Tanques de enfrimaiento de leche tipo cerrado," Atenas, 2022.
- [24] D. Hernandez Flaño, "Proceso y Sistema de Enfriamiento de la leche con recuperación de calor," 2012
- [25] EGTI, "Deshumectador funcionamiento básico y construcción," 2021. https://bit.ly/3yrfunI. (accessed Oct. 09, 2022).
- [26] Yu. F. Maydanik, S. V Vershinin, and M. A. Chernysheva, "Comparison tests of loop heat pipes with flat evaporators of different types," *Int J Heat Mass Transf*, vol. 186, p. 122491, 2022, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.122491.
- [27] Y. Zhang, H. Zhang, H. Yang, Y. Chen, and C. W. Leung, "Counter-crossflow indirect evaporative cooling-assisted liquid desiccant dehumidifier: Model development and parameter analysis," *Appl Therm Eng*, vol. 217, p. 119231, 2022, doi: https://doi.org/10.1016/j.applthermaleng.2022.119231.
- [28] Tusocal Instalaciones Industriales, "¿Qué son los evaporadores y qué función cumplen?," 2020. https://bit.ly/3VgpLgs. (accessed Oct. 09, 2022).
- [29] INDUBEL, Gases Refrigerantes. Buenos Aires, 2020.
- [30] T. A. Jacob and B. M. Fronk, "A heat transfer model to predict superheated and saturated condensation of HFC/HFO refrigerant mixtures," *Int J Heat Mass Transf*, vol. 170, p. 120947, 2021, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.120947.

- [31] M. C. Constantino and F. T. Kanizawa, "Evaluation of pressure drop effect on COP of single-stage vapor compression refrigeration cycles," *Thermal Science and Engineering Progress*, vol. 28, p. 101048, 2022, doi: https://doi.org/10.1016/j.tsep.2021.101048.
- [32] J. Silva, "Estudios experimentales y teóricos sobre condensación por transferencia de calor y caída de presión bifásica dentro de minicanales para los refrigerantes de bajo GWP R1234ze(E) y R32," Universidad de São Paulo, 2017. doi: 10.11606/T.18.2017.tde-10112017-133617.
- [33] D. Sun, T. Fei, Z. Liu, J. Xu, and J. Qin, "Performance analysis of a new transcritical R744 refrigeration cycle with expander-mechanical overheating," *Appl Therm Eng*, vol. 218, p. 119285, 2023, doi: https://doi.org/10.1016/j.applthermaleng.2022.119285.
- [34] Y. Cengel and M. Boles, *Termodinámica*, Octava Edi. México D.F., 2015.
- [35] R. Tarodiya and A. Levy, "Surface erosion due to particle-surface interactions A review," *Powder Technol*, vol. 387, pp. 527–559, 2021, doi: https://doi.org/10.1016/j.powtec.2021.04.055.
- [36] T. Bergman, A. Lavine, F. Incropera, and D. Dewitt, *Fundamentals Of Heat And Mass Transfer*, Séptima Ed. Misuri: John Wiley & Sons, 2011.
- [37] J. Beyrami and A. Hakkaki-Fard, "Performance evaluation of the solar-driven multiejector refrigeration cycle without an auxiliary heat source," *Appl Therm Eng*, vol. 217, p. 119214, 2022, doi: https://doi.org/10.1016/j.applthermaleng.2022.119214.
- [38] Y. Cengel and A. Ghajar, *Transferencia de calor y masa*, Cuarta edi. México D.F., 2011.
- [39] R. Dossat, *Principios de refrigeración*. CECSA, 1961.
- [40] Panasonic, "Ficha técnica Panasonic 5PS102UB," 2018.
- [41] ASHRAE, "Thermophysical Properties of Refrigerants," 2009.
- [42] Honeywell, "Genetron Properties Suit.," 2022.
- [43] EES, "Engineering Equation Solver." 2015.
- [44] A. Rodríguez, "Simulación mediante el método de los elementos finitos de una estructura metálica," Universidad Carlos III de Madrid, 2010.
- [45] M. Zamora, "Simulación numérica de la inyección de gas en columnas en flujo oscilatorio," Universidad Politécnica de Cartagena, 2016.
- [46] ANSYS, "Ansys Fluent," Brochure, 2020. http://bitly.ws/xY8I
- [47] O. Leonidivna and P. Torres, *Introducción al análisis térmico y de fluidos mediante* Ansys, 1 ra edici. Cuenca: Editorial Universitaria Abya-Yala, 2018.

- [48] J. Fernández, *Técnicas numéricas en ingeniería de fluidos*, Departamen. Barcelona: Editorial Reverté S.A., 2012.
- [49] A. Sachdeva, "CFD investigation of cooling of a heated cylinder placed on a flat surface," *Mater Today Proc*, vol. 64, pp. 1543–1548, 2022, doi: https://doi.org/10.1016/j.matpr.2022.06.364.
- [50] E. Arriagada and V. Peralta, Error Absoluto Error Relativo, Texto N°2. Santiago de Chile: Inacap, 2008.
- [51] N. Zhang, H. Zheng, C. Yuan, and W. Wu, "A conservation-prioritized approach simultaneously enhancing mass and momentum conservation of least-squares method for Stokes/Navier–Stokes problems," *Comput Methods Appl Mech Eng*, vol. 398, p. 115246, 2022, doi: https://doi.org/10.1016/j.cma.2022.115246.

ANEXOS

Tabla de propiedades termodinámicas del refrigerante R410A

Thermophysical Properties of Refrigerants

Refrigerant 410A [R-32/125 (50/50)] Properties of Liquid on Bubble Line and Vapor on Dew Line

Pres-	Temper	rature,* C	Density.	, Volume,	Enth kJ	alpy, /kg	Entr kJ/(k	opy, g·K)	Specifi c _a , kJ/	c Heat (kg·K)	c le	Veloc	ity of 1, m/s	Visco µP	osity, a-s	Thermal mW/(Cond. m·K)	Surface	Pres-
MPa	Bubble	Dew	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	mN/m	MPa
0.01	-88.23	-88.14	1460.6	2.09888	76.56	378.76	0.4588	2.0927	1.344	0.668	1.227	1004	159.7	669.9	8.29	177.3	7.44	24.72	0.01
0.02	-78.79	-78.70	1432.9	1.09659	89.26	384.25	0.5258	2.0432	1.345	0.696	1.228	958	162.8	552.9	8.71	170.8	7.79	22.91	0.02
0.04	-68.12	-68.04	1401.1	0.57309	103.64	390.29	0.5978	1.9956	1.351	0.734	1.231	906	165.8	454.8	9.17	163.3	8.21	20.90	0.04
0.06	-01.22	-01.14	1363.9	0.39193	120.14	394.10	0.6426	1.9687	1.358	0.762	1.235	847	167.5	371.8	9.47	154.6	8.73	19.62	0.06
0.1	-51.70	-51.62	1350.5	0.24256	125.99	399.17	0.7024	1.9358	1.369	0.805	1.243	826	169.5	347.8	9.88	151.5	8.93	17.88	0.1
0.10132	-51.44	-51.36	1349.7	0.23957	126.34	399.31	0.7040	1.9350	1.370	0.807	1.244	824	169.5	346.4	9.90	151.3	8.94	17.84	0.10132
0.12	-48.06	-47.98	1339.0	0.20427	130.99	401.05	0.7247	1.9243	1.375	0.823	1.247	808	170.1	329.0	10.04	148.9	9.11	17.23	0.12
0.14	-44.87	-44.79	1328.8	0.17661	135.39	402.67	0.7441	1.9147	1.380	0.839	1.251	792	170.6	313.8	10.18	146.6	9.26	16.65	0.14
0.16	-42.02	-41.94	1319.6	0.13065	139.34	404.09	0.7612	1.9065	1.385	0.854	1.255	765	170.9	280.0	10.30	144.6	9.40	16.15	0.16
0.2	-37.07	-36.99	1303.4	0.12595	146.23	406.50	0.7905	1.8928	1.395	0.881	1.263	753	171.5	280.3	10.51	141.1	9.66	15.27	0.2
0.22	-34.89	-34.80	1296.2	0.11503	149.29	407.53	0.8034	1.8871	1.399	0.893	1.266	743	171.6	271.8	10.61	139.5	9.77	14.89	0.22
0.24	-32.85	-32.76	1289.4	0.10587	152.15	408.49	0.8153	1.8818	1.404	0.904	1.270	732	171.8	264.2	10.70	138.1	9.88	14.54	0.24
0.26	-30.94	-30.85	1283.0	0.09807	154.84	409.36	0.8264	1.8770	1.408	0.916	1.274	723	171.9	257.2	10.78	136.7	9.98	14.21	0.26
0.28	-29.14	-29.05	1276.9	0.09135	157.38	410.18	0.8368	1.8726	1.413	0.926	1.277	714	172.0	251.0	10.86	135.5	10.08	13.90	0.28
0.32	-25.82	-25.73	1265.5	0.08035	162.10	411.65	0.8558	1.8647	1.421	0.946	1.285	697	172.0	239.8	11.00	133.10	10.27	13.33	0.32
0.34	-24.28	-24.19	1260.2	0.07579	164.29	412.32	0.8646	1.8611	1.426	0.956	1.288	689	172.1	234.9	11.07	132.10	10.36	13.06	0.34
0.36	-22.81	-22.72	1255.0	0.07172	166.40	412.95	0.8703	1.8577	1.430	0.965	1.292	682	172.1	230.3	11.13	131.00	10.46	12.81	0.36
0.38	-21.40	-21.31	1250.1	0.06806	168.43	413.54	0.8810	1.8545	1.434	0.975	1.295	675	172.0	226.0	11.19	130.10	10.55	12.57	0.38
0.4	-20.04	-19.95	1245.3	0.06476	170.38	414.10	0.8887	1.8514	1.438	0.983	1.299	668	172.0	221.9	11.25	129.10	10.64	12.35	0.40
0.44	-18.74	-18.65	1236.1	0.06176	172.26	414.04	0.8960	1.8458	1.443	1.001	1.305	655	172.0	218.1	11.36	128.20	10.75	11.92	0.42
0.46	-16.27	-16.18	1231.8	0.05652	175.84	415.63	0.9099	1.8432	1.451	1.009	1.310	649	171.8	211.1	11.42	126.50	10.91	11.71	0.46
0.48	-15.10	-15.00	1227.5	0.05421	177.55	416.09	0.9165	1.8407	1.455	1.017	1.313	643	171.8	207.8	11.47	125.70	10.99	11.52	0.48
0.5	-13.96	-13.86	1223.3	0.05209	179.21	416.53	0.9228	1.8383	1.459	1.025	1.317	637	171.7	204.7	11.52	124.90	11.08	11.33	0.50
0.55	-11.26	-11.16	1213.4	0.04743	183.17	417.54	0.9379	1.8326	1.469	1.045	1.326	623	171.4	197.6	11.64	123.10	11.28	10.89	0.55
0.6	-8.74	-8.64	1104.9	0.04352	186.89	418.46	0.9518	1.8275	1.479	1.064	1.335	610	171.2	191.2	11.75	121.40	11.48	10.47	0.60
0.7	-4.15	-4.05	1186.3	0.03732	193.74	420.03	0.9772	1.8183	1.499	1.101	1.354	586	170.5	180.0	11.96	118.20	11.88	9.73	0.70
0.75	-2.04	-1.93	1178.1	0.03482	196.92	420.71	0.9888	1.8141	1.509	1.119	1.363	574	170.2	175.1	12.06	116.80	12.07	9.39	0.75
0.8	-0.03	0.08	1170.1	0.03262	199.96	421.33	0.9998	1.8102	1.519	1.136	1.373	564	169.8	170.6	12.15	115.50	12.26	9.07	0.80
0.85	1.89	1.99	1162.4	0.03068	202.88	421.89	1.0103	1.8065	1.529	1.154	1.382	554	169.4	166.4	12.24	114.20	12.45	8.77	0.85
0.9	3.72	3.83	1154.9	0.02894	205.69	422.41	1.0204	1.8030	1.540	1.171	1.392	544	169.0	162.4	12.33	113.00	12.64	8.48	0.90
0.95	2.48	2.28	1147.6	0.02738	208.40	422.88	1.0300	1.7996	1.550	1.188	1.402	525	168.0	155.7	12.41	110.70	12.82	7.05	0.95
1.1	10.36	10.47	1126.8	0.02351	216.03	423.31	1.0567	1.7903	1.581	1.239	1.413	508	167.2	148.8	12.65	108.60	13.39	7.46	1.10
1.2	13.34	13.46	1113.7	0.02145	220.76	424.68	1.0730	1.7846	1.603	1.274	1.457	492	166.3	143.1	12.81	106.70	13.79	7.01	1.20
1.3	16.15	16.26	1101.0	0.01970	225.26	425.19	1.0883	1.7792	1.624	1.31	1.481	477	165.4	137.8	12.95	104.80	14.19	6.59	1.30
1.4	18.79	18.91	1088.8	0.01819	229.56	425.59	1.1027	1.7741	1.647	1.347	1.506	462	164.4	133.0	13.12	103.10	14.60	6.20	1.40
1.5	21.30	21.41	1076.9	0.01687	233.68	425.89	1.1165	1.7691	1.670	1.385	1.532	448	163.4	128.5	13.23	101.50	15.03	5.83	1.50
1.0	23.68	25.80	1065.2	0.01571	237.65	426.11	1.1296	1.7644	1.694	1.424	1.560	435	162.4	124.3	13.58	99.98	15.46	5.16	1.00
1.8	28.13	28.25	1042.6	0.01376	245.19	426.31	1.1542	1.7552	1.745	1.509	1.621	410	160.3	116.8	13.66	97.15	16.38	4.86	1.80
1.9	30.22	30.34	1031.6	0.01293	248.79	426.31	1.1657	1.7508	1.772	1.555	1.655	398	159.3	113.3	13.81	95.82	16.86	4.57	1.90
2.0	32.22	32.34	1020.7	0.01218	252.29	426.24	1.1769	1.7464	1.800	1.603	1.690	386	158.2	110.1	13.95	94.56	17.36	4.29	2.00
2.1	34.16	34.28	1009.9	0.0115	255.71	426.10	1.1878	1.7421	1.830	1.655	1.728	375	157.1	107.0	14.10	93.34	17.88	4.03	2.10
2.2	36.02	36.14	999.2	0.01088	259.05	425.90	1.1983	1.7379	1.861	1.709	1.769	364	156.0	104.0	14.25	92.17	18.42	3.78	2.20
2.5	39.56	39.68	978.0	0.00978	262.52	425.33	1.2085	1.7294	1.094	1.831	1.860	343	153.8	98.5	14.40	89.96	19.58	3.34	2.40
2.5	41.25	41.37	967.5	0.00929	268.67	424.95	1.2282	1.7251	1.967	1.898	1.911	332	152.6	95.9	14.71	88.91	20.21	3.10	2.50
2.6	42.89	43.00	957.0	0.00883	271.77	424.51	1.2377	1.7209	2.008	1.971	1.966	322	151.5	93.4	14.87	87.89	20.87	2.89	2.60
2.7	44.48	44.59	946.4	0.00841	274.82	424.02	1.2470	1.7166	2.052	2.050	2.026	313	150.3	91.0	15.03	86.91	21.56	2.69	2.70
2.8	46.02	46.14	935.8	0.00802	277.84	423.47	1.2561	1.7123	2.100	2.136	2.091	303	149.1	88.6	15.21	85.96	22.29	2.50	2.80
2.9	47.53	47.64	925.2	0.00764	280.82	422.85	1.2651	1.7079	2.153	2.230	2.163	293	147.9	86.3	15.38	85.04	23.07	2.31	2.90
3.2	40.99	51.91	892.6	0.00665	283.78	422.18	1.2913	1.6944	2.211	2.535	2.243	264	140.7	79.0	15.96	82.42	25.89	1.81	3.20
3.4	54.49	54.59	870.0	0.00607	295.43	418.78	1.3085	1.6849	2.522	2.879	2.663	247	141.7	75.7	16.39	80.81	27.77	1.50	3.40
3.6	57.05	57.15	846.3	0.00555	301.26	416.60	1.3254	1.6747	2.752	3.276	2.970	229	139.0	71.7	16.87	79.29	30.17	1.22	3.60
3.8	59.50	59.59	821.0	0.00506	307.16	414.03	1.3425	1.6638	3.070	3.815	3.386	210	136.3	67.7	17.43	77.90	33.02	0.97	3.80
4.0	61.85	61.93	793.5	0.00460	313.24	410.97	1.3600	1.6517	3.541	4.596	3.987	192	133.4	63.7	18.08	76.68	36.48	0.74	4.00
4.2	64.10	64.17	762.6	0.00417	319.65	407.24	1.3783	1.6380	4.306	5.826	4.929	173	130.4	59.4	18.87	75.77	40.86	0.53	4.20
4.903*	71.36	71.36	439.5	0.00218	368.55	368.55	1.5181	1.5181	_	_	_	_	_	_	_	_	_	0.00	4.903

Temperatures on ITS-90 scale

^bBubble and dew points at one standard atmosphere

^eCritical point

Tabla de propiedades termodinámicas del refrigerante R32

Thermophysical Properties of Refrigerants

30.9

Refrigerant 32	(Difluoromethane)	Properties of	of Saturated	Liquid and	Saturated V	Vapor
rectinger unit 22	(is may a since many	1 toperties o	A CONTRACTOR OF CAL	inquira ana		- apor

Inter Inter <th< th=""><th>-</th><th>Pres-</th><th>Density,</th><th>Volume,</th><th>Enth</th><th>alpy, Ave</th><th>Entr kJ/(k</th><th>opy, v·K)</th><th>Specific kJ//k</th><th>Heat cp,</th><th>- 1-</th><th>Veloc</th><th>ity of d. m/s</th><th>Visco</th><th>osity,</th><th>Thermal mW/(</th><th>Cond., m·K)</th><th>Surface</th><th>-</th></th<>	-	Pres-	Density,	Volume,	Enth	alpy, Ave	Entr kJ/(k	opy, v·K)	Specific kJ//k	Heat cp,	- 1-	Veloc	ity of d. m/s	Visco	osity,	Thermal mW/(Cond., m·K)	Surface	-
15.4.1*** 0.100**********************************	Temp.,*	sure, MPa	kg/m ³ Liquid	m²/kg Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Tension, mN/m	Temp.,* °C
130 000013 1412 17.45 0.00013 17.6 0.0210 5.77 2.66 7.77 7.74 1.50 2.57 1.51 1.51 1.51 1.51 1.51 2.57 2.57 2.57 2.57 2.57 1.51 1.51 1.51 2.57 <th>-136.81*</th> <th>0.00005</th> <th>1429.3</th> <th>453.850</th> <th>-19.07</th> <th>444.31</th> <th>-0.1050</th> <th>3.2937</th> <th>1.592</th> <th>0.660</th> <th>1.321</th> <th>1414</th> <th>169.6</th> <th>1226.0</th> <th>5.70</th> <th>242.9</th> <th>6.95</th> <th>39.01</th> <th>-136.81</th>	-136.81*	0.00005	1429.3	453.850	-19.07	444.31	-0.1050	3.2937	1.592	0.660	1.321	1414	169.6	1226.0	5.70	242.9	6.95	39.01	-136.81
100 0.0044 134 0.109 130 0.10 131 121 132 131 122 131 122 131 122 131 122 131 122 131 122 131 122 131 122 131 122 131 122 131 122 131 122 131 122 131 122 131 122 131 121 131 1	-130	0.00013	1412.7	174.360	-8.26	448.77	-0.0276	3.1651	1.583	0.665	1.318	1378	173.6	1023.0	5.97	240.6	6.97	37.47	-130
100 000811 1398 7 222 100 100 121 110 121 110 121 110 121 110 121 110 121 110 1111 111 <th< td=""><td>-120</td><td>0.00048</td><td>1388.4</td><td>51.1840</td><td>23.20</td><td>400.33</td><td>0.0790</td><td>2.8668</td><td>1.575</td><td>0.674</td><td>1.315</td><td>1326</td><td>179.2</td><td>664.6</td><td>6.80</td><td>236.1</td><td>7.02</td><td>33.02</td><td>-120</td></th<>	-120	0.00048	1388.4	51.1840	23.20	400.33	0.0790	2.8668	1.575	0.674	1.315	1326	179.2	664.6	6.80	236.1	7.02	33.02	-120
■●● 0.00887 1313 3.2710 5.4.2 4.8.7 6.4.2 5.597 5.51 5.597 5.51 5.597 5.51 5.56 7.57 1.31 1161 1163 4.64 6.0 1.00 7.64 2.56 -0.97 3.00 0.00071 1.52.4 0.00071 1.52.4 0.00071 2.51.6 0.00071 1.52.4 0.00071 2.51.6 0.00071 2.51.6 0.00071 2.51.6 0.00071 2.51.6 0.00071 2.51.6 0.00071 2.51.6 0.00071 2.51.6 0.00071 2.51.6 0.00071 <	-100	0.00381	1339.0	7.22200	38.83	468.31	0.2711	2.7515	1.560	0.703	1.310	1221	189.5	556.1	7.22	224.3	7.27	30.83	-100
-279 0.01020 1214 1104	-90	0.00887	1313.9	3.27210	54.42	474.61	0.3586	2.6529	1.559	0.725	1.310	1169	194.1	472.6	7.64	217.4	7.45	28.68	-90
640 0.04496 133.7 0.9476 103.8 42.21 12.30 101.41 20.31 90.22 87.3 12.30 101.41 12.20 13.20 10.41 12.20 13.20 10.41 12.20 13.20 10.21 12.21 12.22 <	-70	0.01865	1268.4	0.88072	85.66	480.72	0.5204	2.4939	1.566	0.754	1.314	1066	202.0	352.7	8.48	202.2	7.96	26.36	
-11.45° 0.0131 1229 0.3444 0 1.459 0.454 0 0.555 2.308 1.537 0.473 0 1.238 0.71 0 204 270, 9.25 0 140 140 0.45 0.204 -35 0 0.005 0 1174 0 1174 0 0.114 0.45 0.204 -35 0 0.55 0 2.014 0 0.45 0 0.25 0 2.014 0 0.59 0 0.214 0 0.57 0 0.55 0 0.214 0 0.25 0 0.25 0 0.214 0 0.25 0	-60	0.06496	1235.7	0.50786	101.38	492.11	0.5958	2.4289	1.576	0.833	1.320	1014	205.1	308.2	8.91	194.2	8.28	22.42	-60
440 0.17141 11982 0.19741 11323 50200 1.268 0.1569 1201 2154 9.54 175 1718 9.10 1844 4.6 350 0.11071 1164.6 0.16480 139.45 52.000 1.616 0.955 1.308 899 21.04 22.16 9.21 1.51 9.21 1.52 9.21 1.52 9.21 1.52 9.21 1.52 9.21 1.52 9.21 1.52 9.21 1.52 9.21 1.51 9.21 1.52 9.21 1.52 9.21 1.52 9.21 1.52 9.21 1.52 9.21 1.52 9.50 1.52 2.52 1.52 1.51 9.21 1.52 9.50 0.53 2.52 1.42 1.61 1.72 2.50 1.53 2.52 1.64 1.60 1.53 1.64	-51.65*	0.10133	1212.9	0.33468	114.59	496.45	0.6565	2.3805	1.587	0.875	1.328	971	207.4	276.7	9.26	187.4	8.60	20.74	-51.65
38 0.19409 11744 0.18114 15.45 20.219 17.47 900 20.16 22.21 9.2 17.64 9.19 18.25 3.38 30 0.1519 11.162.8 0.15365 14.23 54.44 0.2211 11.62.8 0.15365 14.23 54.64 0.0771 12.34 879 11.64 0.172.8 9.29 17.64 0.89 13.64 22.21 10.00 17.12 9.39 17.27 -1.44 20 0.27344 115.0 0.13091 144.25 0.270 0.2137 11.31 10.04 13.43 884 21.13 21.21 21.14 10.09 11.2 29.01 16.12 -2.23 2.5 0.1127 11.85 0.1037 20.33 22.25 11.64 10.01 11.21 13.34 2.45 2.6 0.04755 11.38 0.0172 12.34 2.45 11.64 10.40 10.31 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 <th< td=""><td>-40</td><td>0.17741</td><td>1180.2</td><td>0.19743</td><td>133.23</td><td>502.02</td><td>0.7382</td><td>2.3200</td><td>1.608</td><td>0.940</td><td>1.343</td><td>910</td><td>209.7</td><td>239.4</td><td>9.75</td><td>177.8</td><td>9.10</td><td>18.44</td><td>-40</td></th<>	-40	0.17741	1180.2	0.19743	133.23	502.02	0.7382	2.3200	1.608	0.940	1.343	910	209.7	239.4	9.75	177.8	9.10	18.44	-40
	-38	0.19409	1174.4	0.18134	136.45	502.91	0.7519	2.3103	1.612	0.952	1.347	900	210.1	233.6	9.84	176.1	9.19	18.05	-38
12 0.25149 11459 0.1477 144.18 504.77 0.726 2.224 1.242 0.90 1358 848 2110 217.4 0.9 71.2 9.50 16.89 -32 23 0.2344 11450 0.1207 152.72 507.66 0.8193 2.2447 1.437 10.17 1.367 847 211.3 207.4 1.024 1.033 1.024 1.034 1.044 1.035 1.037 847 211.5 1.979 1.044 9.931 1.612 2.88 1.047 1.044 1.051 1.077 85.2 1.010 1.033 1.022 1.633 1.017 1.446 9.99 9.720 2.210 1.641 1.075 1.88 81.61 1.16 1.033 1.022 1.643 1.017 1.643 1.017 1.643 1.017 1.613 1.017 1.641 1.035 1.018 1.646 1.029 1.018 1.041 1.023 1.018 1.014 1.21 1.026 1.018 1.018 1.018 1.018 1.018 1.018 1.018 1.018	-36	0.21197	1168.6	0.16680	139.69	503.78	0.7655	2.3008	1.616	0.965	1.350	889	210.4	228.1	9.92	174.5	9.29	17.66	-36
-30 0.27744 [151.0 0.13091 1494.5 506.27 506.27 507.27 507.60 507.27 507.60 507.27 507.60 507.27 507.60 507.27 507.60 507.27 507.60 507.27 507.60 507.27 507.60 507.27 507.60 507.27 507.60 507.80 507.27 507.60 507.27 507.60 507.27 507.60 507.70 10.35 16.45 9.397 517.61 507.70 10.35 16.45 9.597 507.60 507.70 10.37 16.6 10.57 11.88 10.61 10.57 13.89 10.61 10.57 18.89 10.61 10.57 18.89 10.61 10.57 18.90 10.37 <	-32	0.25159	1156.9	0.14173	146.18	505.47	0.7926	2.2824	1.626	0.990	1.358	868	210.9	217.4	10.09	171.2	9.50	16.89	-32
2:3: 0.290/5 [143.0 0.2107 0.217/2 200/00 0.019 9.11 6.12 -1.80 2:4 0.290/5 [113.0 0.1109 1.931 305.7 0.8432 2.247 1.444 1.405 1.377 817 216 0.133 10.62 0.63 0.851 0.57 0.8432 2.247 1.444 1.405 1.377 817 216 0.133 10.62 10.61 10.31 10.61 10.31 10.61 10.31 10.9 14.44 -1.8 2:0 0.4675 112.6 0.0864 16.24 30.997 0.822 2.2210 1.661 10.75 13.98 05 21.17 18.46 10.061 10.31 10.19 14.44 -1.8 1:6 0.4077 11.82 0.4074 11.82 14.24 11.8 11.66 14.41 14.8 10.01 13.3 10.6 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 <th< td=""><td>-30</td><td>0.27344</td><td>1151.0</td><td>0.13091</td><td>149.45</td><td>506.27</td><td>0.8060</td><td>2.2735</td><td>1.631</td><td>1.004</td><td>1.363</td><td>858</td><td>211.1</td><td>212.3</td><td>10.18</td><td>169.5</td><td>9.60</td><td>16.50</td><td>-30</td></th<>	-30	0.27344	1151.0	0.13091	149.45	506.27	0.8060	2.2735	1.631	1.004	1.363	858	211.1	212.3	10.18	169.5	9.60	16.50	-30
22 0.34706 1152 0.10931 19331 98437 0.2475 1246 1045 1377 22 2113 1073 1043 1044 993 1053 1045 1049 22 20 0.04075 1120.6 0.0994 16524 999.97 0.8252 2210 1.661 1075 1389 1052 1164 1075 1389 1052 1164 1075 1389 1052 1164 1075 1389 1064 1041 1041 1043 1144 148 1152 1168 1400 784 2117 1064 1061 1053 1059 1152 1064 1152 1164 1040 784 2117 1064 1061 1053 1059 1156 1059 1156 1059 1156 1059 1156 1059 1156 1059 1156 1059 1156 1059 1150 1144 143 141 141 141 141 141 141 141 141 141 141 141 141 141 141 <td< td=""><td>-28</td><td>0.29675</td><td>1145.0</td><td>0.12107</td><td>152.72</td><td>507.06</td><td>0.8193</td><td>2.2647</td><td>1.637</td><td>1.017</td><td>1.367</td><td>847</td><td>211.3</td><td>207.4</td><td>10.26</td><td>167.9</td><td>9.71</td><td>16.12</td><td>-28</td></td<>	-28	0.29675	1145.0	0.12107	152.72	507.06	0.8193	2.2647	1.637	1.017	1.367	847	211.3	207.4	10.26	167.9	9.71	16.12	-28
122 0.037600 1126.7 0.09646 165.4 5097.2 2210 16.5 1.597 572 2210 1.889 16.6 1.017 1.889 16.61 1.013 1.014 <td< td=""><td>-24</td><td>0.34796</td><td>1132.9</td><td>0.10393</td><td>159.31</td><td>508.57</td><td>0.8458</td><td>2.2476</td><td>1.648</td><td>1.045</td><td>1.377</td><td>826</td><td>211.5</td><td>197.9</td><td>10.43</td><td>164.6</td><td>9.95</td><td>15.36</td><td>-24</td></td<>	-24	0.34796	1132.9	0.10393	159.31	508.57	0.8458	2.2476	1.648	1.045	1.377	826	211.5	197.9	10.43	164.6	9.95	15.36	-24
-20 0.40075 1120.6 0.08945 163.4 90997 0.87.0 2210 1.681 1.075 1.389 90 211.7 18.46 10.70 1997 10.32 1244 -13 14 0.037667 1108.0 0.07762 172.45 51128 0.8879 22149 1.675 1.166 1.400 1784 211.7 18.46 10.70 1997 10.32 1424 -13 14 0.037667 1108.0 0.07762 172.45 51128 0.8879 22149 1.672 1.168 1.400 1784 211.7 18.46 10.70 1997 10.32 1424 -13 14 0.03476 1108.0 0.06710 112.70 0.712 172.85 112.8 0.8879 22149 1.622 1.122 1.408 772 211.7 17.46 10.87 1522 10.89 1.39 1.46 1.39 14 0.05267 10.058 0.0581 18.276 513.0 0.9856 2.1915 1.688 1.156 1.423 751 211.5 16.45 1.10.96 1.542 1.02 1.77 -10 -8 0.62414 1082.2 0.0589 18.618 50.9520 0.9965 2.1915 1.698 1.156 1.423 751 211.5 16.45 1.150 1.21 1.205 -6 0.6786 10.50 0.0558 18.96 0.540 0.9620 2.174 1.715 1.192 1.40 730 2112 16.11 1.123 1500 1.21 1255 -4 -0 0.7388 10.68.9 0.0515 193.05 51.44 0.9742 2.160 1.725 1.211 1.450 719 2110 15.51 1.30 1.90 1.21 1.255 -4 -0 0.7388 10.68.9 0.0515 193.05 51.44 0.9742 2.160 1.725 1.211 1.450 719 2110 15.51 1.32 1.448 1.138 11.69 -4 -2 0.7224 1042.3 0.0424 20.335 515.64 10.272 1.026 2.143 1.646 71 2.108 1.540 1.142 4.183 1.159 0.01.21 0.03110 10553 0.00550 20.505 1.0126 2.1471 1.756 1.227 1.441 6.67 210.5 1.154 1.451 1.133 10.59 0 2 0.6647 1048.3 0.0424 20.335 515.64 1.027 2.139 1.777 1.234 1.486 1.028 2.1481 1.41 1.77 1.192 1.446 1.157 1.231 1.23 0.29 4 6 0.98113 10142 0.03734 2.0739 515.66 1.022 2.1399 1.767 1.294 1.403 7.19 0.1390 1.2.6 9.60 8 10 1.0009 10.07 0.03518 2.14.15 0.1647 1.0393 1.2165 1.134 0.52 1.204 1.418 1.144 1.114 1.141 1.114 0.137 1.193 1.023 2 2 0.0347 2.0739 2.0217.5 51.64 0.023 2.1158 1.106 1.157 1.534 4.11 2.10 1.174 1.127 9.255 1.0 1 0.1009 10.07 0.03518 2.14.16 1.007 2.1256 1.120 0.1274 1.249 9.44 6 8 1.0346 0.107.0 0.03518 2.14.15 0.1087 2.1033 1.549 1.13 1.555 6.13 2.100 1.276 1.279 9.255 1.0 1 0.10109 10.07.0 0.03518 2.14.15 1.100 2.177 1.190 1.154 1.55 1.12 2.154 1.10 1.154 1.24 1.14 1.14 1.14 1.14 1.14 1.14 1.1	-22	0.37600	1126.7	0.09646	162.62	509.28	0.8589	2.2392	1.654	1.060	1.383	816	211.6	193.3	10.52	163.0	10.07	14.99	-22
11.6 0.8799 11.9 0.0797 12.19 12.09 <th< td=""><td>-20</td><td>0.40575</td><td>1120.6</td><td>0.08963</td><td>165.94</td><td>509.97</td><td>0.8720</td><td>2.2310</td><td>1.661</td><td>1.075</td><td>1.389</td><td>805</td><td>211.7</td><td>188.9</td><td>10.61</td><td>161.3</td><td>10.19</td><td>14.61</td><td>-20</td></th<>	-20	0.40575	1120.6	0.08963	165.94	509.97	0.8720	2.2310	1.661	1.075	1.389	805	211.7	188.9	10.61	161.3	10.19	14.61	-20
14.6 0.5097 110.7 0.0724 107.7 0.9217 91.18 0.909 2.070 16.82 11.22 11.08 17.2 01.017 15.2 16.41 0.87 15.2 16.08 15.2 16.08 15.2 16.08 15.2 16.08 15.2 16.08 15.2 16.08 15.2 16.08 15.2 16.08 15.2 16.08 15.2 16.08 15.2 16.08 16.0 17.4 17.17	-16	0.47067	1108.0	0.07762	172.63	511.28	0.8979	2.2149	1.675	1.106	1.401	784	211.7	180.5	10.78	158.1	10.46	13.87	-16
-12 0.54327 10952 1.690 1.139 1.416 762 211.5 105.4 105.5 105.6 115.1 115.4 11.44 115.5 11.44 115.5 11.44 115.5 11.44 145.5 11.34 -10.5 115.5 11.34 -10.5 115.5 11.34 -10.5 11.35 11.34 -12.5 11.470 697 210.5 15.46 11.55 11.34 -12.5 11.470 697 210.5 15.66 10.55 10.55 10.55 11.65 11.65 11.65 11.65 11.65 10.55 11.65 11.65 11.65 11.65 11.65 11.65 11.65 11.65 11.65 11.65 11.65 11.65 11	-14	0.50597	1101.7	0.07234	175.99	511.89	0.9109	2.2070	1.682	1.122	1.408	773	211.7	176.4	10.87	156.5	10.60	13.50	-14
-10 0.5423 10822 0.0380 12.0 0.139 1.139 1.130 1.134 1.121 1.141	-12	0.54327	1095.2	0.06749	179.37	512.47	0.9237	2.1992	1.690	1.139	1.416	762	211.6	172.4	10.96	154.9	10.74	13.14	-12
-6 0.66786 10756 0.05508 189.60 514.00 0.202 2.1764 1.715 1.192 1.440 730 211.2 151.1 112.2 151.1 112.2 151.1 112.2 151.1 112.2 151.1 112.2 151.0 113.4 140 4.138 114.0 4.47 114.2 145.8 11.34 4.2 0 0.81310 1053.0 0.0002 151.50 1.121 1.470 667 105.8 11.61 143.7 11.91 10.63 2 0 0.84310 1043.0 0.03984 20.03 515.56 10.122 1.141 1.757 1.291 1.443 667 10.1 1.161 143.7 1.131 1.056 642 20.47 140.8 1.102.1 1.131 1.031 1.224 1.493 615 200.1 137.7 1.190 139.0 1.256 1.66.0 1.132 1.131 1.50 642 204.7 140.8 1.212.9 2.21 1.414 1.200 1.212.9 1.21 1.556 1.125 1.516 1.516.1 1.502 1.5	-10	0.58265	1088.8	0.05889	186.18	513.02	0.9363	2.1915	1.098	1.136	1.423	741	211.5	164.8	11.14	153.2	11.04	12.41	-10
-4 0.71388 106.855 19.05 514.49 0.9747 2.160 1.725 12.10 15.75 11.32 148.4 11.38 1.469 -4 -0 0.81310 1055.35 0.04527 20.000 515.30 1.0000 2.1543 1.745 1.221 1.466 666 210.5 156.6 11.37 11.63 143.7 11.43 1.431 10.431 2 0.864.7 10.832 2.122 1.484 66 210.5 156.6 11.22 1.481 11.75 11.37 11.643 11.73 10.643 2 2.086.47 1.6032 2.1226 1.722 1.481 19.0652 209.6 144.0 11.81 140.5 12.34 9.94 6 10 1.16900 10127 0.01328 2.146.7 1.0032 1.213 1.481 10.02 13.85 1.514 1.534 613 200.85 13.46 12.00 13.74 12.9 9.25 10 1.1.640.01 13.74 14.84 9.11 1.1.640 1.1.640 9.1.75 2.00 13.74 12.99	-6	0.66786	1075.6	0.05508	189.60	514.03	0.9620	2.1764	1.715	1.192	1.440	730	211.2	161.1	11.23	150.0	11.21	12.05	-6
-2 0.8264 1045 1055 0.0457 1045 1055 0.156 102 0.143 1.73 1.23 1.24 0.40 104 104 11.24 140.8 11.33 11.34 -2 0.86647 1048. 0.0426 20:50 51565 10.126 2.143 1.73 1.241 1.48 646 2102 147.3 11.61 145.7 11.93 10.63 2 0.986647 1048. 0.0426 20:50 51565 10.126 2.1471 1.756 1.224 1.481 646 2102 147.3 11.61 145.7 11.93 10.63 2 0.98164 10120 00174 210.55 516.24 1.0377 2.1327 1.779 1.317 1.506 664 20:40.8 11.31 14.2 14.18 10.140.5 12.34 9.94 6 8 1.0420 1070 0.03308 217.4 516.64 1.0373 2.1256 1.792 1.341 1.519 632 20:40.140.8 11.80 140.5 12.34 9.94 6 10 1.10600 1019.7 0.03308 217.4 516.64 1.033 2.1256 1.792 1.341 1.519 632 20:40 140.8 11.80 140.5 12.34 9.94 6 11 1.10600 1019.7 0.03308 217.4 516.64 1.033 2.1146 1.820 1.393 1.549 630 206.0 131.6 12.10 137.4 12.79 9.25 10 12 1.1740 1012.2 0.0311 2.213.6 516.40 1.0737 2.1141 1.820 1.393 1.549 630 206.9 131.6 12.10 137.4 12.79 9.25 10 12 1.1740 098.1 0.047 0.02929 225.01 516.90 1.0878 2.1144 1.820 1.593 1.644 502 206.9 125.8 12.60 132.8 13.66 8.24 16 18 1.3460 989.3 0.0292 323.3 516.95 1.102 2.0972 1.831 1.450 1.583 607 20.69 125.8 12.60 132.8 13.66 8.24 16 18 1.3460 989.3 0.0293 212.95 51.0103 2.0972 1.81 1.480 5154 1.44 572 204.9 11.75 13.00 12.28 11.36 8.24 16 12 1.579 0.973.3 0.0207 238.8 516.52 1.1032 2.0760 1.965 1.548 1.644 572 204.9 11.75 13.00 12.2 14.48 7.26 22 14 1.6448 9.652 0.02175 2.464.9 516.22 1.1503 2.0668 1.926 1.548 1.642 1.672 59 20.4 114.9 13.14 12.66 14.83 6.94 24 14 61 7.59 9.50 0.0122 2.928 515.29 15.20 1.2071 1.977 1.712 1.750 9.54 201.1 14.59 11.14 12.21 15.1 1.62 5.59 6.30 12 2.05710 956.8 0.02051 2.4753 15.19 1.1629 2.0616 1.944 1.624 1.549 548 203.1 11.24 1.245 1.44 0.14 4.77 38 30 1.9279 0.932 0.01447 27.145 513.49 1.2991 2.0051 1.818 1.041 1.974 9.73 1.422 11.61 1.804 4.77 18 44 2.25910 981.0 0.0172 2.9292 515.2 1.519 1.016 1.816 1.24 1.193 1.901 191.1 1.655 5.37 3.4 32 2.35970 9025 0.01447 27.145 513.49 1.2991 2.0051 1.811 1.949 194.5 192.5 106.1 1.159 0.159 3.34 44 62 2.8400 912.0 0.0172 2.9292 515.2 1.201 2.0091 2.163 1.910 992 2.514 6.44 1.131 1	-4	0.71388	1068.9	0.05155	193.05	514.49	0.9747	2.1690	1.725	1.211	1.450	719	211.0	157.5	11.32	148.4	11.38	11.69	-4
2 0.86647 1048.3 0.04246 2015.0 515.65 1.0126 2.1471 1.756 1.272 1.481 686 210.2 147.3 11.61 143.7 11.93 10.63 2 4 0.92245 1081.3 0.03743 210.58 515.64 1.0377 1.219 1.137 10.50 664 209.4 144.0 11.40 11.34 9.94 6 8 1.04260 1027.0 0.03518 21.145 15.64 1.062 1.153 644 208.0 13.74 12.79 9.25 10 12 1.17420 101.22 0.03112 221.36 516.69 1.0753 2.1141 1.830 1.393 1.549 630 208.0 13.6 1.20 13.74 13.28 13.28 1.39 8.58 1.41 1.602 592 26.3 12.6 13.28 13.56 8.24 16 14 1.2440 98.1 1.41 1.802 598 1.623 1.230 1.237 1.132 1.335 7.91 18 1.446 1.227	-2	0.76226	1055.3	0.04829	200.00	515.30	0.9874	2.1616	1.735	1.251	1.460	697	210.8	150.6	11.42	146.8	11.22	10.99	-2
4 0.92245 10413 0.03986 207.03 515.96 1.0252 21.399 1.707 1.294 1.493 675 209.5 144.0 11.70 142.1 12.13 10.29 4 6 0.98115 10142 0.03518 21.41.5 516.24 1.037 21.327 17.79 13.17 156.66 1.0628 20.85 134.6 12.00 137.4 12.29 9.92 10 12 1.71420 10122 0.03112 22.16 516.69 1.0628 2.1185 1.391 1.494 630 20.80 13.16 12.10 13.54 8.89 14 14 1.24450 1004.7 0.02292 22.501 516.90 1.0878 2.1043 1.835 1.421 1.565 61.28 12.04 13.45 1.528 12.60 12.28 1.26 12.28 1.26 12.28 1.26 12.28 1.26 12.28 1.26 12.29 1.175 2.04 14.73 13.12 13.28 15.46 12.20 12.38 15.46 12.29 14.16 14.29<	2	0.86647	1048.3	0.04246	203.50	515.65	1.0126	2.1471	1.756	1.272	1.481	686	210.2	147.3	11.61	143.7	11.93	10.63	2
6 0.98113 103442 2.01035 516.47 1.0307 2.1257 1.779 1.317 1.500 662 2094 140.5 12.34 9.94 6 10 1.10650 1017 0.03306 21.774 516.66 10.628 2.1185 1.800 1.537 612 0.055 134.4 12.00 137.4 12.79 9.25 10 12 1.7142 0.02292 225.01 516.80 10.737 2.1141 1.820 1.393 1.549 630 20.60 131.6 12.2.8 1.304 8.91 12 14 1.24450 1004.7 0.02278 22.8.65 516.95 1.128 2.0902 1.888 1.81 1.602 595 20.63 12.30 12.38 1.385 1.21 1.266 1.233 1.385 1.905 1.544 1.622 1.500 1.286 1.200 1.286 1.200 1.286 1.201 1.206 1.448 7.26 2.2 24 1.6440 9655 0.02175 2.816.95 1.1237 2.0051 1.855	4	0.92245	1041.3	0.03986	207.03	515.96	1.0252	2.1399	1.767	1.294	1.493	675	209.8	144.0	11.70	142.1	12.13	10.29	4
10 1.10699 10197 0.03308 217.7 516.66 1.022 2.1125 1.134 641 208.5 134.6 1.200 137.4 1.2.90 2.2.5 10 12 1.17420 10122 0.03112 221.35 516.80 1.0753 2.1114 1.820 1.355 642 2.08.0 131.6 12.00 137.4 1.2.90 1.2.8 1.3.56 8.2.8 1.4 1.4.50 1.5.55 618 0.2.0 1.2.88 1.3.56 8.2.4 1.6.6 1.6.7 1.2.8 1.3.56 8.2.4 1.6.6 1.6.7 1.2.8 1.3.56 8.2.8 1.4.6 1.8.8 1.5.14 1.6.22 5.4.6 1.0.6.2 1.2.8 1.2.6 1.2.8 1.2.97 1.4.1.6 7.9 1.3.8 1.5.14 1.6.22 5.4.8 1.6.4 1.3.9 1.9.1 1.3.6 1.5.14 1.6.22 5.4.8 1.6.4 1.3.9 1.9.1 1.3.6 1.3.4 1.2.2 1.3.4 1.2.5 1.3.5 1.9.1 1.3.5 1.2.1 1.5.5 1.5.5 1.5.5 1.5.5 1.5.5 1.5.5<	6	0.98113	1034.2	0.03743	210.58	516.24	1.05/7	2.1327	1.779	1.317	1.506	652	209.4	140.8	11.80	140.5	12.34	9.94	6
12 1.17420 1012.2 0.03112 2213.6 516.80 1.0673 2.1114 1.825 1.421 1.565 618 207.5 128.7 1.248 134.3 13.29 8.58 14 16 1.31790 997.1 0.02758 228.8 516.95 1.1003 2.0972 1.851 1.450 1.583 607 20.6.9 125.8 12.48 134.3 1.329 8.58 14 18 1.39460 993.0 0.02758 228.8 516.95 1.122 2.0902 1.868 1.414 1.622 584 2.066 12.03 12.86 1.77 1.312 1.383 7.91 18 20 1.47460 965.2 0.02175 243.69 516.62 1.503 2.0688 1.926 1.855 1.664 560 20.31 112.2 1.28 12.44 3.43 1.32.8 1.511 6.62 2.6 2.83 3.31 12.21 1.81 6.62 2.6 2.83 3.31 12.21 1.81 6.5 9.93 0.021 1.314 12.6 1.55	10	1.10690	1019.7	0.03308	217.74	516.66	1.0628	2.1185	1.806	1.367	1.534	641	208.5	134.6	12.00	137.4	12.79	9.25	10
14 1.24450 100477 0.20229 225.01 516.59 1.1003 2.0972 1.285 1.265 618 207.5 128.7 1.248 134.3 13.29 8.58 14 16 1.31970 9971.002758 226.68 516.95 1.1128 20902 1.858 1.645 1.53 607 206.9 122.8 12.66 129.7 14.16 7.59 20 21 1.5799 973.3 0.02107 239.89 516.79 1.1737 2.0760 1.905 1.548 1.644 572 204.9 117.5 1.300 1.282 1.44.8 7.26 2.2 24 1.64450 956.6 0.02151 247.53 516.39 1.1629 2.0616 1.948 1.624 1.693 548 201.3 112.8 1.25.1 1.519 6.62 2.6 26 1.73530 994.6 0.01826 253.32 515.72 1.188 2.0471 1.997 1.712 1.750 524 201.5 1.071 1.358 122.1 16.01 599 30 1.997 <td>12</td> <td>1.17420</td> <td>1012.2</td> <td>0.03112</td> <td>221.36</td> <td>516.80</td> <td>1.0753</td> <td>2.1114</td> <td>1.820</td> <td>1.393</td> <td>1.549</td> <td>630</td> <td>208.0</td> <td>131.6</td> <td>12.10</td> <td>135.9</td> <td>13.04</td> <td>8.91</td> <td>12</td>	12	1.17420	1012.2	0.03112	221.36	516.80	1.0753	2.1114	1.820	1.393	1.549	630	208.0	131.6	12.10	135.9	13.04	8.91	12
18 1.3940 989.3 0.002598 222.9 516.95 1.1128 2.0902 1.848 1.602 595 206.3 122.0 12.73 131.2 <	14	1.24450	1004.7	0.02929	225.01	516.90	1.0878	2.1043	1.835	1.421	1.565	618	207.5	128.7	12.48	134.3	13.29	8.58	14
20 1.4740 981.4 0.02437 23.67 1.1253 2.0811 1.886 1.514 1.622 584 202.6 120.3 12.86 12.97 14.16 7.59 20 22 1.5579 973.3 0.02307 23.89 516.79 1.1378 2.0760 1.905 1.548 1.644 572 204.9 117.5 13.00 12.82 14.48 7.64 24 24 1.64480 965.2 0.02175 23.66 516.62 1.1632 2.068 1.261 1.881 1.464 1.467 1.673 516.20 1.175 2.0544 1.972 1.667 1.721 536 202.4 109.7 13.43 12.36 15.59 6.30 28 30 1.9275 93.96 0.01826 255.32 515.29 1.2007 2.0397 2.025 1.760 1.783 512 20.06 104.64 1.374 12.06 16.64 5.68 32 34 2.1350 91.7 0.01625 263.28 514.77 1.2262 2.0265 1.813 1.819	18	1.39460	989.3	0.02598	232.39	516.95	1.1128	2.0902	1.868	1.481	1.602	595	206.3	123.0	12.73	131.2	13.85	7.91	18
22 1.55790 973.3 0.02175 241.64480 965.2 0.02175 241.69 516.6.2 1.1503 2.0616 1.985 1.664 560 204.1 114.9 1.14 126.6 1.4.83 6.94 24 26 1.73530 956.6 0.02151 247.53 516.39 1.1629 2.0616 1.948 1.624 1.693 548 203.3 112.2 13.28 125.1 15.19 6.62 26 28 1.82750 939.6 0.01826 253.2 51.57 1.1881 2.0471 1.997 1.712 1.750 524 201.5 107.1 1.358 122.1 16.01 5.99 30 32 2.02940 930.7 0.0122 259.28 51.529 1.0397 2.025 1.813 1.819 499 199.6 102.1 13.90 119.1 16.95 5.37 34 36 2.24540 912.4 0.01333 267.3 514.77 1.2132 2.005 1.813 1.819 499 192.5 14.44 114.6 18.65 4.47 <td>20</td> <td>1.47460</td> <td>981.4</td> <td>0.02448</td> <td>236.12</td> <td>516.90</td> <td>1.1253</td> <td>2.0831</td> <td>1.886</td> <td>1.514</td> <td>1.622</td> <td>584</td> <td>205.6</td> <td>120.3</td> <td>12.86</td> <td>129.7</td> <td>14.16</td> <td>7.59</td> <td>20</td>	20	1.47460	981.4	0.02448	236.12	516.90	1.1253	2.0831	1.886	1.514	1.622	584	205.6	120.3	12.86	129.7	14.16	7.59	20
26 1.7530 956.2 0.00151 247.3 516.39 1.1639 1.000 <	22	1.55790	973.3	0.02307	239.89	516.79	1.1378	2.0760	1.905	1.548	1.644	572	204.9	117.5	13.00	128.2	14.48	7.26	22
28 1.82950 948.3 0.01935 251.40 516.09 1.1755 2.0544 1.972 1.667 1.721 536 202.4 109.7 13.43 123.6 15.59 6.30 28 30 1.92750 939.6 0.01826 253.25 515.72 1.181 2.0471 1.997 1.712 1.750 524 201.5 107.1 11.58 122.1 16.01 5.99 30 32 2.02440 930.7 0.01722 263.28 514.77 1.2134 2.0322 2.055 1.813 1.819 499 199.6 102.1 13.90 119.1 16.95 5.37 34 36 2.35970 902.8 0.01447 271.45 513.49 1.2391 2.0169 2.124 1.933 1.901 474 197.4 97.3 14.25 116.1 18.64 4.77 38 40 2.47830 833.0 0.01287 279.8 511.82 1.2650 2.0011 2.266 2.077 2.001 448 194.9 92.5 14.64 114.6 18.65	26	1.73530	956.8	0.02051	247.53	516.39	1.1629	2.0616	1.948	1.624	1.693	548	203.3	112.2	13.28	125.1	15.19	6.62	26
30 1.92750 939.6 0.01826 255.32 515.72 1.1881 2.0471 1.997 1.712 1.750 524 201.5 107.1 13.58 122.1 16.01 5.59 30 32 2.02940 930.7 0.01722 259.28 515.29 1.2007 2.0397 2.025 1.813 1.819 499 199.6 102.1 13.90 119.1 16.46 5.68 32 34 2.13530 921.7 0.01633 267.34 514.17 1.2262 2.0246 2.088 1.870 1.858 487 198.5 99.7 14.07 117.6 17.47 5.07 36 38 2.35970 902.8 0.01447 271.45 51.349 1.2391 2.0169 2.163 2.001 1.474 197.4 97.3 14.25 116.1 18.44 4.7 38 40 2.4618 83.0 0.01287 279.84 51.182 1.2650 2.0011 2.062 2.077 2.001 448 194.9 92.5 14.64 113.1 19.22 4.18	28	1.82950	948.3	0.01935	251.40	516.09	1.1755	2.0544	1.972	1.667	1.721	536	202.4	109.7	13.43	123.6	15.59	6.30	28
34 2.13210 930.7 0.01122 2.0328 511.2.9 1.2007 2.0337 2.025 1.1803 112 100.3 1.2001 1.04.0 2.040 2.055 1.8113 1.819 99 196.6 102.1 13.90 119.1 16.95 5.37 34 36 2.24540 912.4 0.01533 267.34 514.17 1.2124 1.933 1.901 474 197.4 97.3 14.25 116.1 18.04 4.77 38 40 2.47830 893.0 0.0165 275.6 512.71 1.2502 2.001 2.163 2.001 1.948 461 196.2 94.9 14.44 114.6 18.65 4.47 40 42 2.66140 883.0 0.01287 279.84 51.81 1.9620 2.011 2.206 4.35 193.6 90.2 14.84 111.6 20.05 3.89 44 46 2.86160 861.9 0.01144 2.88.50 509.72 1.2914 1.9845 2.309 2.255 2.160 2.060 4.35 193.6	30	1.92750	939.6	0.01826	255.32	515.72	1.1881	2.0471	1.997	1.712	1.750	524	201.5	107.1	13.58	122.1	16.01	5.99	30
36 2.24540 912.4 0.01533 267.34 514.17 1.2262 2.0246 2.088 1.870 1.858 487 198.5 99.7 14.07 117.6 17.47 5.07 36 38 2.35970 902.8 0.01447 271.45 513.49 1.2391 2.0169 2.124 1.933 1.901 474 197.4 97.3 14.25 116.1 18.04 4.77 38 40 2.47830 893.0 0.01365 275.61 512.71 1.2520 2.0091 2.163 2.001 444 194.9 92.5 1.4.44 114.6 18.65 4.47 40 42 2.60140 881.0 0.01214 284.13 510.83 1.2781 1.9929 2.255 2.160 2.060 435 193.6 90.2 14.84 111.6 20.05 3.89 44 46 2.86160 861.9 0.01142 288.50 509.72 1.2914 1.9845 2.309 2.254 2.126 421 192.3 87.8 15.06 110.1 2.085 3.61	34	2.13530	921.7	0.01625	263.28	514.77	1.2134	2.0397	2.025	1.813	1.819	499	199.6	104.0	13.90	119.1	16.95	5.37	34
38 2.35970 902.8 0.01447 271.45 \$13.49 1.2391 2.0169 2.124 1.933 1.901 474 197.4 97.3 14.25 116.1 18.04 4.77 38 40 2.47830 893.0 0.01365 275.61 512.71 1.2520 2.001 2.163 2.001 1.948 461 196.2 94.9 14.44 114.6 18.65 4.47 40 44 2.7020 872.6 0.01214 284.13 510.83 1.2781 1.9929 2.255 2.160 2.060 435 193.6 90.2 14.84 111.6 2.005 3.89 44 46 2.86160 861.9 0.01144 288.50 509.72 1.2914 1.9845 2.309 2.254 2.126 421 192.3 87.8 15.06 110.1 2.085 3.61 46 48 2.99890 850.8 0.01078 292.95 508.48 1.3048 1.9759 2.369 2.358 2.01 408 180.8 15.50 10.70 2.69 3.06	36	2.24540	912.4	0.01533	267.34	514.17	1.2262	2.0246	2.088	1.870	1.858	487	198.5	99.7	14.07	117.6	17.47	5.07	36
40 2.47830 895.0 0.01365 275.61 512.71 1.2520 2.0011 2.165 2.001 1.184 196.2 94.9 14.44 114.5 184.55 4.47 40 42 2.60140 883.0 0.01287 279.84 511.82 1.2650 2.0011 2.206 2.077 2.001 448 194.9 92.5 14.64 113.1 19.32 4.18 42 44 2.72920 872.6 0.01214 284.13 510.83 1.2781 1.9929 2.255 2.160 2.060 435 193.6 90.2 14.84 111.6 20.05 3.89 44 46 2.86160 861.9 0.01144 288.50 509.72 1.2914 1.9845 2.309 2.254 2.126 421 192.3 87.8 15.06 110.1 20.85 3.61 46 48 2.99890 850.8 0.00178 292.95 508.48 1.9048 1.977 2.287 394 189.3 83.2 15.54 107.0 2.69 3.06 50 2.328	38	2.35970	902.8	0.01447	271.45	513.49	1.2391	2.0169	2.124	1.933	1.901	474	197.4	97.3	14.25	116.1	18.04	4.77	38
44 2.72920 872.6 0.01214 284.13 510.83 1.2781 1.9929 2.255 2.160 2.060 435 193.6 90.2 14.84 111.6 20.05 3.89 44 46 2.86160 861.9 0.01144 288.50 509.72 1.2914 1.9845 2.309 2.254 2.126 421 192.3 87.8 15.06 110.1 20.85 3.61 46 48 2.99890 850.8 0.01078 292.95 508.48 1.3048 1.9759 2.369 2.358 2.201 408 190.8 85.5 15.29 108.6 21.73 3.33 48 50 3.14120 839.3 0.01015 297.49 507.10 1.3183 1.9670 2.439 2.477 2.287 394 189.3 83.2 15.54 1.07.0 2.69 3.06 50 54 3.44150 81.48 0.00957 306.87 503.86 1.3461 1.9482 2.609 2.717 2.499 365 186.0 78.5 16.09 104.0 2.477	40	2.60140	883.0	0.01363	275.61	512.71	1.2520	2.0091	2.165	2.001	2.001	401	196.2	94.9	14.44	113.1	19.32	4.47	40
46 2.86160 861.9 0.01144 288.50 509.72 1.2914 1.9845 2.309 2.254 2.126 421 192.3 87.8 15.06 110.1 20.85 3.61 46 48 2.99890 850.8 0.01078 292.95 508.48 1.3048 1.9759 2.369 2.358 2.201 408 190.8 85.5 15.29 108.6 21.73 3.33 48 50 3.14120 839.3 0.01015 297.49 507.10 1.3183 1.9670 2.439 2.477 2.287 394 189.3 83.2 15.54 107.0 22.69 3.06 50 52 3.28870 827.3 0.00955 302.12 505.57 1.3321 1.9578 2.518 2.613 2.385 379 187.7 80.8 15.80 105.5 2.3.77 2.79 52 54 3.4150 81.48 0.00897 306.87 50.386 1.3461 1.9482 2.609 2.717 2.499 365 186.0 78.5 16.09 104.0 2.97	44	2.72920	872.6	0.01214	284.13	510.83	1.2781	1.9929	2.255	2.160	2.060	435	193.6	90.2	14.84	111.6	20.05	3.89	44
48 2.99890 850.8 0.01078 29295 508.48 1.3048 1.9799 2.399 2.358 2.201 408 190.8 85.5 15.29 108.6 21.73 3.33 48 50 3.14120 839.3 0.01015 297.49 507.10 1.3183 1.9670 2.439 2.477 2.287 394 189.3 83.2 15.54 107.0 22.69 3.06 50 52 3.28870 827.3 0.00955 30.21 505.57 1.3321 1.9578 2.518 2.613 2.385 379 187.7 80.8 15.80 105.5 23.77 2.79 52 54 3.44150 814.8 0.00897 30.687 503.86 1.3461 1.9482 2.609 2.717 2.499 365 186.0 78.5 16.09 104.0 24.97 2.52 54 56 3.59970 801.7 0.00843 311.74 501.95 1.3603 1.9382 2.717 2.845 3.175 2.793 335 182.4 73.8 16.73 100.9	46	2.86160	861.9	0.01144	288.50	509.72	1.2914	1.9845	2.309	2.254	2.126	421	192.3	87.8	15.06	110.1	20.85	3.61	46
52 3.28870 827.3 0.00955 302.12 505.57 1.3321 1.9578 2.518 2.613 2.385 317 817.7 80.8 15.80 105.5 23.77 2.79 52 54 3.44150 814.8 0.00897 306.87 503.86 1.3461 1.9482 2.609 2.771 2.499 365 186.0 78.5 16.09 104.0 24.97 2.52 54 56 3.59970 801.7 0.00843 311.74 501.95 1.3603 1.9382 2.717 2.956 2.633 350 184.3 76.1 16.39 102.5 26.31 2.26 56 58 3.76350 78.9 0.00790 316.75 499.82 1.3749 1.9277 2.845 3.175 2.79 320 180.4 71.4 1.09 94.76 60 3.93320 733.3 0.00740 321.93 497.44 1.3898 1.9166 3.193 3.7711 3.228 304 178.3 68.9 17.49 97.8 31.54 1.52 62 4.10890 75.8	48	3.14120	839.3	0.01078	292.95	508.48	1.3048	1.9759	2.369	2.358	2.201	394	189.3	83.2	15.29	108.6	21.73	3.33	48
54 3.44150 814.8 0.00897 306.87 503.86 1.3461 1.9482 2.609 2.771 2.499 365 186.0 78.5 16.09 104.0 24.97 2.52 54 56 3.59970 801.7 0.00843 311.74 501.95 1.3603 1.9382 2.717 2.956 2.633 350 184.3 76.1 16.39 102.5 2.6.31 2.26 56 58 3.76350 78.79 0.00790 316.75 499.82 1.3749 1.9277 2.845 3.175 2.793 335 182.4 73.8 16.73 100.9 27.83 2.01 58 60 3.93320 773.3 0.00740 321.93 497.44 1.3898 1.916 3.01 3.441 2.987 320 180.4 71.4 17.09 99.4 2.955 1.76 60 62 4.109090 751.8 0.00691 327.30 494.76 1.4052 1.9048 3.193 3.771 3.228 104 178.3 68.9 1.749 97.8 31.54	52	3.28870	827.3	0.00955	302.12	505.57	1.3321	1.9578	2.518	2.613	2.385	379	187.7	80.8	15.80	105.5	23.77	2.79	52
56 3.59970 801.7 0.00843 311.74 501.95 1.3603 1.9822 2.717 2.956 2.633 320 184.3 76.1 16.39 102.5 26.31 2.26 56 58 3.76350 787.9 0.00790 316.75 499.82 1.3749 1.9277 2.845 3.175 2.793 335 182.4 73.8 16.73 100.9 27.83 2.01 58 60 3.93320 773.3 0.00740 321.93 497.44 1.3898 1.9166 3.001 3.441 2.987 320 180.4 71.4 17.09 99.4 29.55 1.76 60 62 4.10890 757.8 0.00691 327.30 494.76 1.4052 1.9048 3.193 3.771 3.228 304 178.3 66.4 17.95 96.3 33.85 1.52 62 64 4.29090 741.1 0.00644 332.90 491.73 1.4211 1.8922 3.438 4.190 3.535 288 176.1 66.4 17.95 96.3 33.85	54	3.44150	814.8	0.00897	306.87	503.86	1.3461	1.9482	2.609	2.771	2.499	365	186.0	78.5	16.09	104.0	24.97	2.52	54
60 3.9320 773.3 0.00740 321.93 497.44 1.3898 1.9166 3.001 3.441 2.987 320 180.4 71.4 17.09 99.4 29.55 1.76 60 62 4.10890 757.8 0.00691 327.30 494.76 1.4052 1.9448 3.193 3.771 3.228 304 178.3 66.9 17.49 97.8 31.54 1.52 62 64 4.29090 741.1 0.00644 332.90 491.73 1.4211 1.8922 3.438 4.190 3.535 288 176.1 66.4 17.95 96.3 33.85 1.29 64 66 4.47930 723.0 0.00598 338.78 488.26 1.4377 1.8785 3.761 4.743 3.938 271 173.7 63.8 18.46 94.8 36.59 1.06 66 68 4.67450 703.2 0.00553 345.02 484.25 1.4553 1.8634 4.207 5.508 4.495 254 171.2 61.1 19.06 93.3 39.90 <t< td=""><td>58</td><td>3.59970</td><td>801.7</td><td>0.00843</td><td>311.74</td><td>501.95 400.82</td><td>1.3603</td><td>1.9382</td><td>2.717</td><td>2.956</td><td>2.633</td><td>350</td><td>184.3</td><td>73.8</td><td>16.39</td><td>102.5</td><td>26.31</td><td>2.26</td><td>58</td></t<>	58	3.59970	801.7	0.00843	311.74	501.95 400.82	1.3603	1.9382	2.717	2.956	2.633	350	184.3	73.8	16.39	102.5	26.31	2.26	58
62 4.10890 757.8 0.00691 327.30 494.76 1.4052 1.9048 3.193 3.771 3.228 304 178.3 68.9 17.49 97.8 31.54 1.52 62 64 4.29090 741.1 0.00644 332.90 491.73 1.4211 1.8922 3.438 4.190 3.535 288 176.1 66.4 17.95 96.3 33.85 1.29 64 66 4.47930 723.0 0.00598 338.78 488.26 1.4377 1.8785 3.761 4.743 3.938 271 173.7 63.8 18.46 94.8 36.59 1.06 66 68 4.67450 703.2 0.00553 345.02 484.25 1.4553 1.8634 4.207 5.508 4.495 254 171.2 61.1 19.06 93.3 39.90 0.85 68 70 4.87680 680.9 0.00508 351.73 479.52 1.4740 1.8465 6.639 531.6 236 168.4 58.2 19.76 92.0 44.04 0.64 <t< td=""><td>60</td><td>3.93320</td><td>773.3</td><td>0.00740</td><td>321.93</td><td>497.44</td><td>1.3898</td><td>1.9166</td><td>3.001</td><td>3.441</td><td>2.987</td><td>320</td><td>180.4</td><td>71.4</td><td>17.09</td><td>99.4</td><td>29.55</td><td>1.76</td><td>60</td></t<>	60	3.93320	773.3	0.00740	321.93	497.44	1.3898	1.9166	3.001	3.441	2.987	320	180.4	71.4	17.09	99.4	29.55	1.76	60
64 4.29090 741.1 0.00644 332.90 491.73 1.4211 1.8922 3.438 4.190 3.535 288 176.1 66.4 17.95 96.3 33.85 1.29 64 66 4.47930 723.0 0.00598 338.78 488.26 1.4377 1.8785 3.761 4.743 3.938 271 173.7 63.8 18.46 94.8 36.59 1.06 66 68 4.67450 703.2 0.00553 345.02 484.25 1.4553 1.8634 4.207 5.508 4.495 254 171.2 61.1 19.06 93.3 39.90 0.85 68 70 4.87680 680.9 0.00508 351.73 479.52 1.4740 1.8464 4.865 6.639 5.316 236 168.4 58.2 19.76 92.0 44.04 0.64 70 75 5.41680 605.9 0.00391 372.39 461.72 1.5314 1.7880 10.130 15.600 11.720 186 159.6 49.5 22.56 91.5 62.91	62	4.10890	757.8	0.00691	327.30	494.76	1.4052	1.9048	3.193	3.771	3.228	304	178.3	68.9	17.49	97.8	31.54	1.52	62
00 4.47530 72.3.0 9.00276 336.16 460.26 1.4371 1.6762 3.761 4.143 3.936 271 173.7 63.8 18.46 94.8 36.39 1.06 66 68 4.67450 703.2 0.00553 345.02 484.25 1.4553 1.8634 4.207 5.508 4.495 254 171.2 61.1 19.06 93.3 39.90 0.85 68 70 4.87680 60.9 0.00558 351.73 479.52 1.4740 1.8464 4.865 6.639 5.316 236 168.4 58.2 19.76 92.0 44.04 0.64 70 75 5.41680 605.9 0.00391 372.39 461.72 1.5314 1.7880 10.130 15.600 11.720 186 159.6 49.5 22.56 91.5 62.91 0.19 75 78.11° 5.78200 424.0 0.00236 414.15 1.6486 ∞ ∞ ∞ 0 <t< td=""><td>64</td><td>4.29090</td><td>741.1</td><td>0.00644</td><td>332.90</td><td>491.73</td><td>1.4211</td><td>1.8922</td><td>3.438</td><td>4.190</td><td>3.535</td><td>288</td><td>176.1</td><td>66.4</td><td>17.95</td><td>96.3</td><td>33.85</td><td>1.29</td><td>64</td></t<>	64	4.29090	741.1	0.00644	332.90	491.73	1.4211	1.8922	3.438	4.190	3.535	288	176.1	66.4	17.95	96.3	33.85	1.29	64
70 4.87680 680.9 0.00508 351.73 479.52 1.4740 1.8464 4.865 6.639 5.316 236 168.4 58.2 19.76 92.0 44.04 0.64 70 75 5.41680 605.9 0.00391 372.39 461.72 1.5314 1.7880 10.130 15.600 11.720 186 159.6 49.5 22.56 91.5 62.91 0.19 75 78.11° 5.78200 424.0 0.00236 414.15 414.15 1.6486 1.6486 2 2 0.0 2 0.00 78.11 Triple point *Triple point	68	4.47930	703.2	0.00553	345.02	488.20	1.4553	1.8634	4.207	5.508	4.495	254	171.2	61.1	19.06	94.8	39.90	0.85	68
75 5.41680 605.9 0.00391 372.39 461.72 1.5314 1.7880 10.130 15.600 11.720 186 159.6 49.5 22.56 91.5 62.91 0.19 75 78.11° 5.78200 424.0 0.00236 414.15 11.6486 1.6486 ∞ ∞ ∞ 0 0.0	70	4.87680	680.9	0.00508	351.73	479.52	1.4740	1.8464	4.865	6.639	5.316	236	168.4	58.2	19.76	92.0	44.04	0.64	70
70.11 3.76200 424.0 0.00230 414.13 414.13 1.0480 1.0480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	75	5.41680	605.9	0.00391	372.39	461.72	1.5314	1.7880	10.130	15.600	11.720	186	159.6	49.5	22.56	91.5	62.91	0.19	75
	78.11°	3.78200	424.0 ITS 00	0.00236	414.15	414.15	1.0486	Triple pri	an int	8	0	0	Normal			8	8	500	78.11 fical point

Tabla de los compresores compatibles para los refrigerantes R410A y R32 marca Panasonic.

系列	机种名	排气量 Displacement	制X Cooling	∲量 Capacity	输入功率 Input Power	能效比COP	测试条件	运行电容 Run capacitor
aeries	Model	(cc)	W	BTU/H	W	W/W	Test condition	μF/V
R410A								
110V 60Hz								
	5RS062TA	6.2	1765	6022	600	2.94	N-TEC	35/250
	5RS066TA	6.7	1895	6466	655	2.89	N-TEC	35/250
R	5RS066TB	6.7	1895	6466	650	2.92	N-TEC	35/250
	5RS072TA	7.3	2065	7046	710	2.91	N-TEC	35/250
115V 60Hz								
	5RS058UA	5.8	1640	5596	590	2.78	N-TEC	35/250
	5RS062UA	6.2	1785	6090	605	2.95	N-TEC	25/250
	5RS066UA	6.7	1890	6449	665	2.84	N-TEC	35/250
R	5RS072UB	7.3	2055	7012	730	2.82	N-TEC	35/250
	5RS080UA	8.0	2250	7677	790	2.85	N-TEC	35/250
	5RS080UB	8.0	2300	7848	780	2.95	N-TEC	35/250
	5RS086UA	8.6	2490	8496	855	2.91	N-TEC	35/250
	5PS102UB	10.2	2930	9997	1045	2.80	N-TEC	40/250
R410A 110V 60Hz R 115V 60Hz R	5PS102UD	10.2	3030	10338	1010	3.00	N-TEC	55/370
P	5PS108UA	10.8	3185	10867	1060	3.00	N-TEC	55/370
	5PS118UB	11.8	3450	11771	1190	2.90	N-TEC	50/250

Plano de geometría del evaporador

Tanque de enfriamiento MPV 100 utilizado para el análisis [22].

MPV5	50 - N	/IPV3	00								
Tipo de tan	que	A	A1	A2	в	BI	82	н	ht	h2	h3
MPV 50	(2)	560	280	365	520	280	365	1350	1050	820	440
MPV 100	(2)	780	330	400	680	410	500	1660	1190	980	420
MPV 200	(2 & 4)	1030	530	610	890	530	610	1520	1220	990	420
MPV 300	(284)	1130	530	620	990	530	610	1700	1250	1030	420

Los números entre paréntasts representan valores de ordeño

