UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO

CARRERA: INGENIERÍA CIVIL

Trabajo de titulación previo a la obtención del título de: INGENIEROS CIVILES

TEMA:

ESTUDIO Y DISEÑO DE LA RED DE ALCANTARILLADO PARA LOS BARRIOS CULALÁ ALTO, CULALÁ BAJO, FALCÓN Y ÁREAS DE INFLUENCIA, UBICADO EN LA PARRROQUIA DE ALOASÍ, CANTÓN MEJÍA, PROVINCIA PICHINCHA

AUTORES: LUIS EDUARDO CHICAIZA QUISHPE CHRISTIAN VINICIO PINTADO VACA

TUTORA: VERÓNICA VALERIA YÉPEZ MARTÍNEZ

Quito, agosto del 2021

CESIÓN DE DERECHOS DE AUTOR

Nosotros, CHICAIZA QUISHPE LUIS EDUARDO con documento de

identificación Nº 172324516-1 y PINTADO VACA CHRISTIAN VINICIO con

documento de identificación Nº 190080901-1, manifestamos nuestra voluntad y cedemos

a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en

virtud que somos autores del trabajo de titulación intitulado: ESTUDIO Y DISEÑO DE

LA RED DE ALCANTARILLADO PARA LOS BARRIOS: CULALÁ ALTO,

CULALÁ BAJO, FALCÓN Y ÁREAS DE INFLUENCIA, UBICADO EN LA

PARRROQUIA DE ALOASÍ, CANTÓN MEJÍA, PROVINCIA PICHINCHA, mismo

que ha sido desarrollado para optar por el título de Ingeniero Civil, en la Universidad

Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los

derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en nuestra

condición de autores nos reservamos los derechos morales de la obra antes citada. En

concordancia, suscribimos este documento en el momento que hacemos entrega del

trabajo final en formato digital a la Biblioteca de la Universidad Politécnica Salesiana.

Quito, agosto del 2021.

Chicaiza Quishpe Luis Eduardo

CI: 172324516-1

Pintado Vaca Christian Vinicio

CI: 190080901-1

ii

DECLARATORIA DE COAUTORÍA DEL DOCENTE TUTOR

Yo declaro que bajo mi dirección y asesoría fue desarrollado el proyecto técnico,

con el tema ESTUDIO Y DISEÑO DE LA RED DE ALCANTARILLADO PARA LOS

BARRIOS: CULALÁ ALTO, CULALÁ BAJO, FALCÓN Y ÁREAS DE

INFLUENCIA, UBICADO EN LA PARRROQUIA DE ALOASÍ, CANTÓN MEJÍA,

PROVINCIA PICHINCHA, realizado por Chicaiza Quishpe Luis Eduardo y Pintado

Vaca Christian Vinicio, obteniendo un producto que cumple con todos los requisitos

estipulados por la Universidad Politécnica Salesiana, para ser considerado como trabajo

final de titulación.

Quito, agosto del 2021.

Yépez Martínez Verónica Valeria

CI: 171128559-1

iii

DEDICATORIA

El presente trabajo de titulación quiero dedicárselo A Dios, por permitirme culminar esta etapa tan importante en mi vida; A mis padres, Luis y Rocío por su apoyo incondicional y porque han sido el motor día a día para esforzarme y llenarlos de orgullo, a mis hermanas quienes me han aconsejado en cada paso, por su confianza y sus palabras que son únicas para sentir que lo puedo todo. Los amo.

Chicaiza Quishpe Luis Eduardo

DEDICATORIA

Este proyecto de titulación le dedico a Dios que me ha permitido terminar con mis estudios, en especial a mi madrecita querida María Vaca que siempre estuvo motivándome y apoyándome con sus consejos día a día, a mi hermano Ángel Pintado que me apoyo durante mi estudio tanto económicamente como con sus sabios consejos, a mi hijo adorable Maykel Yandel quien es mi inspiración y mi motivación para luchar y salir adelante como un buen profesional y padre ejemplar.

Christian Vinicio Pintado Vaca

AGRADECIMIENTO

A Dios por permitirnos alcanzar un logro tan importante en nuestras vidas, pues sin importar las condiciones nos supo dar fortaleza, para poder sobrellevar y superar cualquier dificultad que se nos presentó en el camino, ya que es nuestra luz quien guía nuestras vidas y jamás nos dejara caer.

Agradecemos a nuestras familias por creer ciegamente en nosotros para jamás rendirnos en el transcurso del camino, por su confianza, lealtad, apoyo, amor y dedicación para poder ser ingenieros.

A nuestra Universidad Politécnica Salesiana por abrirnos sus puertas y conocer personas extraordinarias, en donde se creó vínculos y quedaran recuerdos inolvidables y anécdotas únicas, a sus docentes que a lo largo de la universidad nos supieron brindar sus conocimientos, para formarnos como profesionales y llegar a donde estamos, pues las mejores lecciones provienen de las experiencias de cada ingeniero y no de un libro.

Y finalmente, a la Ingeniera Verónica Yépez quien ha sido de gran ayuda para la realización de nuestro proyecto final en calidad de tutora.

Chicaiza Quishpe Luis Eduardo

Pintado Vaca Christian Vinicio

ÍNDICE DE CONTENIDO

CAPÍTUI	LO I	1
ANTECE	DENTES Y GENERALIDADES	1
1.1.	[NTRODUCCIÓN	1
1.2.	Objetivos	3
1.2.1.	Objetivo general	3
	Objetivos específicos	
	ALCANCE	
1.4.	Antecedentes	5
1.5.	Línea base	7
1.5.1.	Ubicación del proyecto	7
1.5.2.	Coordenadas	7
1.5.3.	Límites	7
1.5.4.	Área de estudio	8
1.5.5.	Distribución general del suelo	. 10
1.5.6.	Tipo de suelo	. 12
1.5.7.	Topografía y relieve	. 14
1.5.8.	Infraestructura y servicios	. 15
CAPÍTUI	.O II	. 18
BASES D	E DISEÑO	. 18
2.1.	PLANTEAMIENTO Y ANÁLISIS DE ALTERNATIVAS	. 18
2.1.1.	Alternativa 1	. 18
2.1.2.	Alternativa 2	. 18
2.1.3.	Alternativa 3	. 18
2.2.	Trazado del sistema	. 19
2.3.	ÁREAS DE APORTACIÓN	. 20
2.4.	Parámetros de diseño	. 21
2.4.1.	Tipo de sistema	. 21
2.4.2.	Velocidad mínima y máxima	. 21
2.4.3.	Pendiente mínima y máxima	. 22
2.4.4.	Profundidad hidráulica mínima y máxima	. 23
2.4.5.	Profundidad mínima y máxima de la cota clave	. 23

2.4.6.	Pozo de revisión y conexiones domiciliarias	24
2.5. F	ERIODO DE DISEÑO	25
2.5.1.	Material de tuberías	26
2.5.2.	Diámetro mínimo interno	26
2.6. A	NÁLISIS POBLACIONAL	27
2.6.1.	Método aritmético	29
2.6.2.	Método geométrico	30
2.6.3.	Método exponencial	30
2.7.	CAUDAL SANITARIO DE DISEÑO	33
2.7.1.	Caudal doméstico (Qd)	33
2.7.2.	Caudal de infiltración (Qinf)	36
2.7.3.	Caudal de conexiones erradas (Qc.erra)	37
2.7.4.	Caudal medio diario (QMD)	38
2.7.5.	Caudal máximo horario	38
CAPÍTUL	O III	39
	O III OS Y DISEÑOS	
CÁLCULO		39
CÁLCULO 3.1. I	OS Y DISEÑOS	 39
3.1. II 3.2. C	OS Y DISEÑOS DESCRIPCIÓN DEL SISTEMA DE ALCANTARILLADO SANITARIO	39 39 40
3.1. II 3.2. C 3.3. II	OS Y DISEÑOS DESCRIPCIÓN DEL SISTEMA DE ALCANTARILLADO SANITARIO CONSIDERACIONES DE DISEÑO	39 40 41
3.1. II 3.2. C 3.3. II 3.3.1.	OS Y DISEÑOS DESCRIPCIÓN DEL SISTEMA DE ALCANTARILLADO SANITARIO CONSIDERACIONES DE DISEÑO	39 40 41
3.1. II 3.2. C 3.3. II 3.3.1. 3.3.2.	DES Y DISEÑOS	39404141
3.1. II 3.2. C 3.3. II 3.3.1. 3.3.2. 3.3.3.	DES Y DISEÑOS	39404142
3.1. II 3.2. C 3.3. II 3.3.1. 3.3.2. 3.3.3.	DES Y DISEÑOS	3940414242
3.1. II 3.2. C 3.3. II 3.3.1. 3.3.2. 3.3.3. 3.4. II	DES Y DISEÑOS	394041424243
3.1. II 3.2. C 3.3. II 3.3.1. 3.3.2. 3.3.3. 3.4. II 3.4.1.	DESCRIPCIÓN DEL SISTEMA DE ALCANTARILLADO SANITARIO CONSIDERACIONES DE DISEÑO	394041424243
3.1. II 3.2. C 3.3. II 3.3.1. 3.3.2. 3.3.3. 3.4. II 3.4.1. 3.4.2. 3.4.3.	DESCRIPCIÓN DEL SISTEMA DE ALCANTARILLADO SANITARIO CONSIDERACIONES DE DISEÑO	394041424343
3.1. II 3.2. C 3.3. II 3.3.1. 3.3.2. 3.3.3. 3.4. II 3.4.1. 3.4.2. 3.4.3.	DESCRIPCIÓN DEL SISTEMA DE ALCANTARILLADO SANITARIO CONSIDERACIONES DE DISEÑO	3940414243434445

CAPÍTU	ULO IV	49
DISEÑO	O PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES	49
4.1.	DESCRIPCIÓN DE LA PLANTA DE AGUAS RESIDUALES	49
4.2.	CARACTERÍSTICAS DE LAS AGUAS RESIDUALES Y TRATAMIENTO	50
4.3.	SELECCIÓN DE ALTERNATIVAS DE TRATAMIENTO	51
4.4.	DESCRIPCIÓN CONCEPTUAL DE LOS PROCESOS	52
4.4.	1. Tratamiento primario	52
4.4.	2. Tratamiento secundario	55
4.5.	DISEÑO PLANTA DE TRATAMIENTO	56
4.5.	1. Diseño del pre-tratamiento	56
4.5.	2. Diseño del tratamiento primario (Taque Imhoff)	61
4.5.3.	DISEÑO DEL TRATAMIENTO SECUNDARIO (FILTRO ANAEROBIO)	66
4.5.4.	DISEÑO DEL TRATAMIENTO SECUNDARIO (LECHO DE SECADO DE LO	odos)
	67	
CAPÍTU	ULO V	69
IMPAC'	TO AMBIENTAL	69
5.1.	Antecedentes	69
5.2.	OBJETIVOS DEL ESTUDIO	69
5.3.	DESCRIPCIÓN GENERAL DEL ÁREA EN ESTUDIO	70
5.4.	Población	71
5.5.	DESCRIPCIÓN BIOFÍSICA	73
5.5.	1. Litología local	74
5.5.	2. Flora y fauna	74
5.5.	3. Amenazas y vulnerabilidad	76
5.3.	3.3. Fenómenos de geodinámica externa	78
5.6.	ASPECTOS SOCIOECONÓMICOS	79
5.7.	ASPECTOS LEGALES	80
5.8.	FASES QUE CONFORMAN EL PROYECTO	85
5.9.	IDENTIFICACIÓN Y EVALUACIÓN DE IMPACTOS AMBIENTALES	86
5.10.	PLAN DE MANEJO AMBIENTAL (PMA)	89
5.10	0.1. Medidas de prevención y reducción	89
5.10	0.2. Medidas de mitigación de los impactos	95

CAPÍT	CAPÍTULO VI	
PRESU	JPUESTO Y CRONOGRAMA	99
6.1.	Introducción	99
6.2.	Presupuesto referencial	99
6.1.	CRONOGRAMA	105
CAPÍT	ULO VII	107
ANALI	ISIS ECONOMICO FINANCIERO	107
CAPÍT	ULO VIII	112
CONC	LUSIONES Y RECOMENDACIONES	112
8.1.	CONCLUSIONES	112
8.2.	RECOMENDACIONES	113
CAPÍT	ULO IX	114
BIBLIC	OGRAFIA	114

ÍNDICE DE TABLAS

TABLA 1: SUPERFICIES DEL CANTÓN MEJÍA	9
TABLA 2: EVALUACIÓN POBLACIONAL DEL CANTÓN MEJÍA POR PARROQUIAS	10
TABLA 3: USO DEL SUELO	11
TABLA 4: FORMACIONES GEOLÓGICAS DEL CANTÓN MEJÍA	13
TABLA 5: CATASTRO VIAL -ÁREA URBANA PARROQUIA DE ALOASÍ	17
TABLA 6: VELOCIDAD MÁXIMA EN FUNCIÓN AL MATERIAL DE LA TUBERÍA	22
TABLA 7: PROFUNDIDAD MÍNIMA DE LA COTA CLAVE	24
TABLA 8: DISTANCIAS MÁXIMAS ENTRE POZOS DE REVISIÓN	25
Tabla 9: Material de las tuberías	26
TABLA 10: DATOS CENSALES PARROQUIA DE ALOASÍ	27
TABLA 11: ÁREA POBLADA Y DENSIDAD POBLACIONAL	28
TABLA 12: POBLACIÓN INICIAL DEL ÁREA DEL PROYECTO	28
TABLA 13: PROYECCIÓN POBLACIONAL DEL ÁREA DE INFLUENCIA	31
TABLA 14: DOTACIONES RECOMENDADAS	33
TABLA 15: COEFICIENTE DE RETORNO DE AGUAS SERVIDAS DOMESTICAS	34
TABLA 16: COEFICIENTE DE MAYORACIÓN EN FUNCIÓN DE LA POBLACIÓN	35
TABLA 17: RESULTADOS A LOS COEFICIENTES DE MAYORACIÓN	
TABLA 18: COEFICIENTE DE INFILTRACIÓN	36
TABLA 19: APORTES MÁXIMOS POR DRENAJE DOMICILIARIO DE AGUAS LLUVIAS SIN	
SISTEMA PLUVIAL	37
TABLA 20: COEFICIENTE DE RUGOSIDAD DE MANNING	43
TABLA 21: ECUACIONES SECCIÓN DE LA TUBERÍA LLENA	44
TABLA 22: VENTAJAS Y DESVENTAJAS DEL TANQUE IMHOFF	53
TABLA 23: VENTAJAS Y DESVENTAJAS FAFA	56
TABLA 24: DISEÑO DEL CANAL DE INGRESO	58
TABLA 25: DISEÑO VERTEDERO DE EXCESOS	58
Tabla 26: Diseño cribado fino	59
Tabla 27: Diseño del desarenador	59
TABLA 28: DISEÑO DE LA TRAMPA DE GRASAS	61
TABLA 29: EL TIEMPO REQUERIDO PARA LA DIGESTIÓN DE LODOS	64
TABLA 30: DIMENSIONES DEL TANQUE IMHOFF	66
TABLA 31: DISEÑO DEL FAFA	67

.Tabla 32: Diseño lecho de Secado de Lodos	68
TABLA 33: NIVEL DE INSTRUCCIÓN EN EL CANTÓN MEJÍA	72
Tabla 34: Ecosistemas	75
TABLA 35: FAUNA PARROQUIA MACHACHI Y ALOASÍ	76
Tabla 36: Población activa e inactiva urbana y rural	80
Tabla 37: Marco legal	81
TABLA 38: COMPONENTES DE GENERACIÓN DE IMPACTOS AMBIENTALES EN EL F	PROYECTO
	86
TABLA 39: PROBLEMÁTICA DE ALTERACIÓN Y/O CONTAMINACIÓN AL COMPONE	NTE
ABIÓTICO (AIRE, AGUA, SUELO)	88
TABLA 40: PLAN DE MANEJO AMBIENTAL (PMA)	96
TABLA 41: COSTOS DE LOS EQUIPOS UTILIZADOS PARA LA CONSTRUCCIÓN DEL F	PROYECTO
(CÁMARA DE LA CONSTRUCCIÓN)	101
TABLA 42; RUBRO DE LOS COSTOS ADMINISTRATIVOS OPERACIÓN Y MANTENIM	IENTO. 108
TABLA 43: COSTOS DE OPERACIÓN Y MANTENIMIENTO ANUAL	108
Tabla 44: Evaluación financiera	110

ÍNDICE DE ILUSTRACIÓN

ILUSTRACIÓN 1: ÁREA DEL PROYECTO	2
ILUSTRACIÓN 2: LÍMITES DEL PROYECTO	8
ILUSTRACIÓN 3: SUPERFICIES DE USO DE LA TIERRA DEL CANTÓN MEJÍA	11
ILUSTRACIÓN 4: USO DEL SUELO EN EL CANTÓN MEJÍA	12
ILUSTRACIÓN 5: FORMACIONES GEOLÓGICAS DEL CANTÓN MEJÍA	14
ILUSTRACIÓN 6: RELIEVE DEL CANTÓN MEJÍA	15
ILUSTRACIÓN 7: ACCESO A SERVICIOS BÁSICOS	16
ILUSTRACIÓN 8: TRAZADO DE LA RED DE ALCANTARILLADO	20
ILUSTRACIÓN 9: EJEMPLO DE ÁREAS TRIBUTARIAS	21
ILUSTRACIÓN 10: PROYECCIÓN POBLACIONAL DEL ÁREA DE INFLUENCIA	31
ILUSTRACIÓN 11: CRECIMIENTO POBLACIONAL	32
ILUSTRACIÓN 12: POZO TIPO	40
ILUSTRACIÓN 13: ECUACIONES BÁSICAS DE LA SECCIÓN DE LA TUBERÍA A SUPERFICIE	
LIBRE	45
ILUSTRACIÓN 14: PERFIL LONGITUDINAL	46
ILUSTRACIÓN 15: SITIO DE DESCARGA	48
ILUSTRACIÓN 16: SELECCIÓN DE ALTERNATIVAS	52
ILUSTRACIÓN 17: ESTRUCTURA DEL TANQUE IMHOFF	54
ILUSTRACIÓN 18: ESQUEMA PROCESO DE TRATAMIENTO DE AGUAS RESIDUALES	57
ILUSTRACIÓN 19: CRITERIOS PARA EL DISEÑO DE LA CÁMARA DE SEDIMENTACIÓN	62
Ilustración 20: Criterios para el diseño del digestor	63
ILUSTRACIÓN 21: CRITERIOS PARA EL DISEÑO DEL ÁREA DE VENTILACIÓN Y CÁMARA D	ÞΕ
NATAS	65
ILUSTRACIÓN 22: DISEÑO DEL LECHO DE SECADO DE LODOS	68
ILUSTRACIÓN 23: DESCRIPCIÓN GENERAL DEL ÁREA DE ESTUDIO	71
ILUSTRACIÓN 24: ACTIVIDADES OCUPACIONALES	73
ILUSTRACIÓN 25: ECUADOR, ZONAS SÍSMICAS PARA PROPÓSITOS DE DISEÑO Y VALOR E	EL
FACTOR DE ZONA Z NEC 2015	77
ILUSTRACIÓN 26: SISTEMA POLÍTICO ADMINISTRATIVO	85
ILUSTRACIÓN 27: SALARIOS MÍNIMOS DE LA MANO DE OBRA ESTABLECIDOS POR LA	
CONTRALORÍA GENERAL DEL ESTADO	102
ILUSTRACIÓN 28: PRESUPUESTO REFERENCIAL	104

ILUSTRACIÓN 29: CRONOGRAMA DEL PROYECTO)6
---	----

RESUMEN

Al sur de la provincia de Pichincha, cantón Mejía, parroquia Aloasí se encuentran los barrios Culalá Alto, Culalá Bajo y Falcón con un área de proyecto de 196 hectáreas y una población actual de 1894 habitantes, quienes no tienen un sistema de alcantarilla sanitario que garantice sus derechos a una vida digna como de su salud. Uno de los objetivos es diseñar una red de alcantarillado que atraviese estos tres barrios y que posteriormente se conecte a la planta de tratamiento la cual cumpla con las normativas de saneamiento y así garantice una descarga libre de contaminación en la red de la avenida Simón Bolívar. La planta de tratamiento constara con un pre-tratamiento, tratamiento primario, secundario y terciario. El caudal de diseño es de 41,21 l/s, en donde la configuración de esta red dependerá de la topografía del sector, de la ubicación de los pozos de cabecera y direcciones de flujo, así como también de los límites a cumplir para el correcto funcionamiento de la red. Se propuso dos alternativas de descarga debido a que en el sector existe una quebrada que en temporada de verano es seca y esto podría presentar dificultades en el futuro.

Palabras clave: alcantarillado sanitario, aguas residuales, parroquia Aloasí, planta de tratamiento, diseño hidráulico, presupuesto.

ABSTRACT

To the south of the province of Pichincha, canton Mejia, parroquia Aloasi are the neighborhoods Culalá Alto, Culalá Bajo and Falcón with a project area of 196 hectares and a current population of 1894 inhabitants, who do not have a sanitary sewer system that guarantees your rights to a life with dignity as well as your health. One of the objectives is to design a sewerage network that crosses these three neighborhoods and that is subsequently connected to the treatment plant which complies with sanitation regulations and thus guarantees a pollution-free discharge in the Simon Bolívar avenue network. The treatment plant will consist of a pre-treatment, primary, secondary and tertiary treatment. The design flow is 41.211/s, where the configuration of this network will depend on the topography of the sector, the location of the head wells and flow directions, as well as the limits to be met for the correct operation of the network. Two discharge alternatives were proposed because there is a stream in the sector that is dry in the summer season and this could present difficulties in the future.

Keywords: sanitary sewer, wastewater, Aloasí parish, treatment plant, hydraulic design, budget.

CAPÍTULO I

ANTECEDENTES Y GENERALIDADES

1.1. Introducción

El presente proyecto de titulación fue planteado por la Empresa Pública de Agua Potable y Alcantarillado del Cantón Mejía EPAA-MEJIA, EP en donde se tiene como objetivo el análisis, planificación, estudio, diseño del sistema de alcantarillado sanitario y de sus estructuras especiales.

Los barrios Culalá Alto, Culalá Bajo y Falcón se ubican en las faldas del monte Corazón, parroquia de Aloasí, cantón Mejía, tiene una densidad en proceso de consolidación, en donde la totalidad de los pobladores se dedican principalmente a actividades agropecuarias, industrias, manufactureras, comercio, otras relacionadas con servicios y construcción.

Actualmente, la red de alcantarillado, está dividida en tres redes de recolección, una del tipo combinada, construida por el Ex IEOS en 1963, que sirve a la zona central de la ciudad, una segunda red de alcantarillado sanitario que sirve a varias urbanizaciones, construida en 1979, y por último una tercera red de recolección combinada, construida en años posteriores, para cubrir el déficit en las nuevas urbanizaciones.

Debido a los nuevos asentamientos poblacionales que se han establecido en los últimos años y a la alta tasa de crecimiento, además de las enfermedades a las que están expuestos por la inexistencia de este sistema y porque se han visto obligados a realizar la disposición de excretas en pozos sépticos, letrinas o depósito a quebradas aledañas, también de la locación en donde se encuentra el proyecto, se considera necesario el proyecto de la red de recolección de tipo sanitario

Por otra parte el sector no cuenta con un sistema de tratamiento de las aguas residuales, por lo que la primera red descarga, en la quebrada Guarderas que es afluente

de la quebrada El Timbo que atraviesa la ciudad y es receptora de las descargas del sistema existente en Aloasí, mientras las otras redes descargan en la quebrada El Timbo, por consiguiente se implementará una planta de tratamiento para su posterior descarga, en donde reducirá los niveles de contaminación en la zona, ayudando al medio ambiente y por tanto a mejorar el estilo de vida de los habitantes.

Los beneficiarios directos de este proyecto serán los moradores de los barrios Culalá alto, Culalá bajo y Falcón, así como su población futura e indirectamente las poblaciones que se encuentran aguas abajo de las quebradas Guarderas, Soltero y Timbo.

A continuación, en la ilustración (1) se muestra el área del proyecto.

Ilustración 1Área del proyecto

Nota: Área del proyecto fuente (Google Earth 2021). Elaborado por: Luis Chicaiza y Christian Pintado

1.2. Objetivos

1.2.1. Objetivo general

Diseñar una red de alcantarillado sanitario para los barrios Culalá Alto, Culalá Bajo y Falcón, cantón Mejía, provincia de Pichincha, mediante un análisis hidráulico, con el fin de contribuir a mejorar calidad de vida en los moradores.

1.2.2. Objetivos específicos

- Recopilar información preliminar de los barrios Culalá Alto, Culalá Bajo y Falcón, mediante la ayuda de la Empresa Pública de Agua Potable y Alcantarillado del cantón Mejía (EPAA-MEJÍA, EP), para conocer los antecedentes del sector, necesarios en la ejecución del proyecto.
- Identificar las áreas industriales, comerciales y de otras actividades que se encuentran dentro del área de influencia, a través de visitas técnicas al sitio, para una mejor estimación del volumen de aguas residuales.
- Realizar el análisis hidráulico, el presupuesto y cronograma del sistema de alcantarillado sanitario, cumpliendo las normas vigentes de acuerdo a las necesidades del sector y así garantizar su funcionalidad.

1.3. Alcance

En todo proceso de transformación, encaminado a optimizar el nivel de vida de los habitantes, las políticas de progreso juegan un papel significativo, que tienen por objetivo originar un cambio positivo en el modo de vida de los pueblos. Entre los proyectos que contribuyen a realizar estos cambios en las comunidades, están aquellos destinados a satisfacer las necesidades básicas de cada uno de sus pobladores, por lo cual, el diseño de un nuevo sistema de alcantarillado sanitario, son proyectos elementales para el avance y progreso individual como colectivo.

Es por ello por lo que, al no contar con un sistema de evacuación de aguas residuales, se ha contemplado la necesidad de realizar un estudio, en donde se determinará la situación en el que se encuentra la zona, hacer el diseño de la red de recolección por lo que mejorará la salubridad del sector que tiene una extensión de alrededor de 195 ha.

Por lo antes mencionado, se ha determinado que el alcance principal del proyecto es diseñar el sistema de alcantarillado sanitario, pues de esta manera se podrá dotar al sector con el servicio básico, contemplando todas las normativas técnicas vigentes del país, de forma que garantice la eficacia y funcionalidad del proyecto.

1.4. Antecedentes

En los últimos años, se han agudizado los altos niveles de urbanización en el Ecuador, a mediados del siglo XX, Aloasí se consideraba como una región eminentemente rural, la tendencia al desarrollo ha provocado que la parroquia especialmente en los barrios a estudiar, incremente su nivel poblacional; por lo que ha comenzado a tener una expansión urbanística en este sitio, en donde las personas buscan mejorar sus situaciones de vida y el acceso a los servicios básicos.

La totalidad de los habitantes de la parroquia rural del cantón Mejía, se dedican especialmente a actividades agropecuarias, industrias, manufactureras, comercio y otras relacionadas con servicios y construcción; a más de la existencia de estas actividades se tiene las domésticas, las cuales generan descargas de aguas servidas de forma directa cerca de sus domicilios y a las fuentes más cercanas (quebradas). A ello se suma los residuos sólidos que desechan las personas que residen o transitan por estos lugares, de una forma irregular y sin previo tratamiento.

Existen sistemas individuales como: letrinas o tanques sépticos, para la recolección de las aguas residuales en los barrios Culalá Alto, Culalá Bajo, Falcón y áreas de influencia. Sin embargo, por ser una zona rural, la construcción de estos sistemas no tiene ninguna garantía de funcionalidad, en donde asegure que se está trabajando de forma apropiada; a más de ello, al no tener cuidado durante su uso, un mantenimiento adecuado y con la falta de un sistema de alcantarillado, pone en riesgo la salud de las personas, pues llegan a producir focos de enfermedades como: el cólera, la diarrea, la disentería, entre otros; además por la descomposición de la materia orgánica se presenta malos olores, proliferación de roedores, aumento de gases de efecto invernadero, contaminación visual y en el ambiente.

Los moradores solicitaron a la Empresa Pública de Agua Potable y Alcantarillado (EPAA) contar con este servicio básico, el mismo que estará enfocado en las necesidades del sector y de los asentamientos que se están dando. Cabe mencionar que el alcantarillado principal de Aloasí, descarga las aguas a la quebrada El Timbo luego del cruce de la vía panamericana. En la actualidad la cabecera parroquial de Aloasí, dispone de poca información sobre el sistema existente, sin embargo, se conoce que cerca del parque de Aloasí, en la calle Simón Bolívar, cuenta con el sistema de alcantarillado sanitario y es en donde se tendrá que conectar el diseño de la nueva red sanitaria con su respectiva planta de tratamiento.

El área de influencia en donde se implantará el proyecto es de alrededor de 195 ha, en donde según los censos INEC realizados en los años 2001 y 2010 contaban con una población de 6.855 y 9.686 habitantes respectivamente, conociendo así, una población actual de aproximadamente 14.660 habitantes en la parroquia de Aloasí.

1.5. Línea base

1.5.1. Ubicación del proyecto

Los barrios Culalá Alto, Culalá Bajo y Falcón, están localizados en provincia de

Pichincha, cantón Mejía, parroquia de Aloasí, al occidente de la cabecera cantonal

Machachi, situada a 35 km de Quito y a 2.5 km en las faldas del monte Corazón. La altitud

varía desde los 2900 msnm a los 3200 msnm.

1.5.2. Coordenadas

La parroquia de Aloasí se localiza en las siguientes coordenadas UTM tomadas

en el respectivo parque central.

Longitud-NORTE 9942616.29

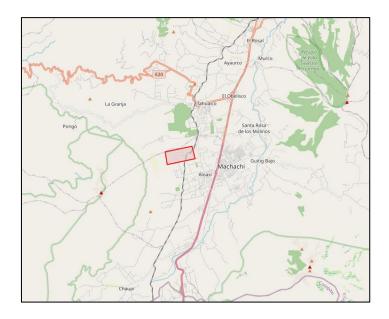
Latitud-ESTE 768853.25

1.5.3. *Límites*

Norte: parroquia Alóag

Sur: parroquia El Chaupi.

Este: cabecera cantonal Machachi


Oeste: parroquias Alóag y El Chaupi

A continuación, en la ilustración (2), se visualiza los límites del proyecto.

7

Ilustración 2

Límites del proyecto

Nota: Limite proyecto fuente Catálogo de Datos de IGM Ecuador. Elaborado por: Luis Chicaiza

1.5.4. Área de estudio

El cantón Mejía fue creado el 23 de julio de 1883, está conformado por una parroquia urbana, Machachi, que a su vez es la cabecera cantonal, y siete parroquias rurales: Aloasí, Alóag, Cutuglagua, Manuel Cornejo Astorga (Tandapi), El Chaupi, Uyumbicho y Tambillo. Tiene una superficie de 1.484,57 km², lo que representa el 12,9% del área total de la provincia, donde Aloasí cuenta con 66,34 km² según (Gobierno del Cantón Mejía 2015) como se indica en la tabla (1).

Tabla 1Superficies del Cantón Mejía

Cantón Mejía		
Parroquia	Superf	icie
Machachi	467,99	Km2
Alóag	235,47	Km2
Aloasí	66,34	Km2
Manuel Cornejo Astorga	480,6	Km2
Cutuglagua	28,36	Km2
El Chaupi	138,3	Km2
Tambillo	46,32	Km2
Uyumbicho	21,19	Km2
Total	1484,57	Km2

Nota: Superficie cantón Mejía fuente (Gobierno del Cantón Mejía 2015). Elaborado por: Luis Chicaiza y Christian Pintado.

Debido a la pequeña área territorial, Aloasí corresponde a una de las parroquias más densamente habitadas del cantón, acelerando el crecimiento en los últimos años desplazando las actividades agrícolas y ganaderas.

De acuerdo con el VI y VII censo poblacional realizado a la parroquia de Aloasí en los años 2001 y 2010 respectivamente que se muestra en la tabla (2) y considerando una proyección a once años, Aloasí posee una población de 14.660 habitantes al presente año.

Aloasí cuenta con actores sociales de apoyo y servicios a la población, producción y al desarrollo, entre los cuales tenemos: cuatro comités y organizaciones barriales que se encarga de gestionar mejoras para los barrios, un Gobierno Autónomo Descentralizado en donde promueve el progreso, cuatro organizaciones sociales para el avance social, económico y de género, cinco unidades educativas y un bachillerato para formar y educar a la niñez como a la juventud, un sub centro de salud que se encarga de la atención primaria curativa, dos organizaciones económicas productivas para actividades agropecuarias, una unidad de policía comunitaria, una organización deportiva, dos juntas de agua de modo que administren el servicio de agua potable para los barrios, cuatro

servicios públicos de manera que dotarán de servicios básicos y registro ciudadano, dos iglesias católicas y una cooperativa de transporte (Gobierno del Cantón Mejía 2015).

Tabla 2Evaluación Poblacional del Cantón Mejía por Parroquias

Cantón Mejía		
Parroquia	Censo 2001	Censo 2010
Machachi	22492	27623
Alóag	8850	9237
Aloasí	6855	9686
Manuel Cornejo Astorga	9987	16746
Cutuglagua	1322	1456
El Chaupi	3132	3661
Tambillo	6571	8319
Uyumbicho	3679	4607
Total	62888	81335

Nota: Censo cantón Mejía fuente INEC 2010. Elaborado por: Luis Chicaiza y Christian Pintado.

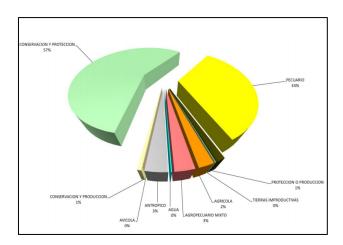
1.5.5. Distribución general del suelo

La Actualización del Plan de Desarrollo y Ordenamiento Territorial menciona que: "la superficie total de uso de la tierra del cantón Mejía (105.571,74 ha), una gran parte del territorio el 32,85%, está destinado para un uso pecuario, donde abarcan grandes extensiones de pasto natural, a este uso le sigue el de conservación y protección con el 57,46% que en abarca toda la vegetación natural como bosques y matorrales" (Gobierno del Cantón Mejía 2015).

1.5.5.1.Uso del suelo

El uso del suelo es el empleo que los seres humanos hacen de la tierra, pues abarca la gestión y modificación del medio ambiente natural para convertirlo en un ambiente construido tal como campos de sembradío, pasturas y asentamientos humanos.

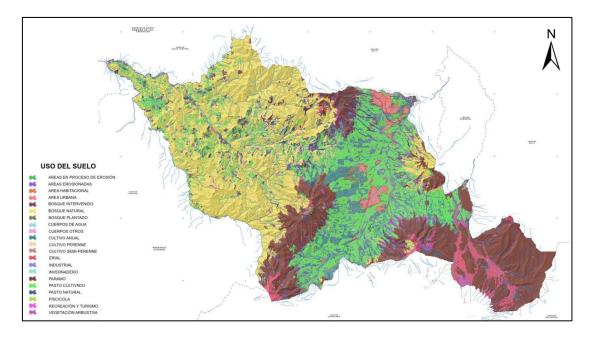
El equipo consultor del PDOT GAD MEJÍA 2015, concluye que la mayor parte de la superficie en la parroquia es destinada a uso de conservación y protección, además del uso pecuario como se muestra en la tabla (3) e ilustración (3).


Tabla 3Uso del Suelo

Superficie de Uso del Cantón Mejía		
Uso del Suelo	Superficie (Ha)	Porcentaje (%)
Agrícola	2206,96	2,09%
Agropecuario Mixto	2768,79	2,62%
Agua	152,75	0,14%
Antrópico	3108,83	2,94%
Avícola	21,64	0,02%
Conservación y Producción	556,11	0,53%
Conservación y Protección	60665,78	57,46%
Pecuario	34680,88	32,85%
Protección o Producción	1304,43	1,24%
Tierras Improductivas	105,56	0,10%
Total	105571,73	100,00%

Nota: Uso del suelo fuente Instituto Ecuatoriano Espacial (IEE 2013) fuente (Gobierno del Cantón Mejía 2015). Elaborado por: Luis Chicaiza y Christian Pintado.

Ilustración 3


Superficies de Uso de la Tierra del cantón Mejía

Nota: Superficie uso del suelo fuente: Instituto Ecuatoriano Espacial (IEE 2013). Elaborado por: Equipo PDOT GAD Mejía 2015.

A continuación, en la ilustración (4) se observa el uso del suelo en el cantón Mejía.

Ilustración 4
Uso del suelo en el cantón Mejía.

Nota: Uso del suelo cantón Mejía fuente: Consultoría 2011. Elaborado por: EQUIPO PDOT GAD. MEJÍA 2015

1.5.6. Tipo de suelo

El cantón Mejía está formado por rocas volcano-sedimentarias de composición andesítica que caracterizan a la formación Macuchi y una secuencia volcanoclástica con intercalaciones de lavas andesíticas pertenecientes a la formación Silante; y que se encuentran cubiertas por conglomerados. Zarapullo está conformado por guijarros con cantos rodados pobremente estratificados en matriz areno-limosa. Mientras que atravesando la parte central hasta el sureste del cantón Mejía presenta rocas volcánicas continentales mayormente depósitos piroclásticos de la formación Cangagua (Gobierno del Cantón Mejía 2015).

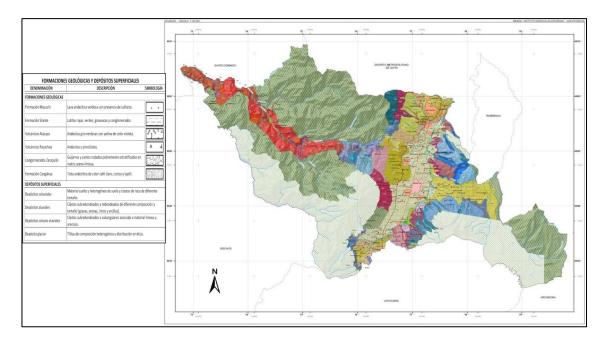
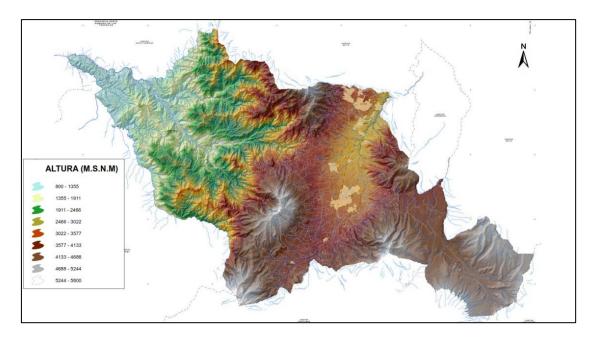

La geología del cantón se identificaron las siguientes estructuras geológicas como se muestra en la tabla (4) e ilustración (5).

Tabla 4Formaciones Geológicas del Cantón Mejía

Formaciones Geológicas		
Nombre	Composición	Ubicación
Formación Macuchi	Lavas andesíticas de color verdoso, además de areniscas volcánicas de grano grueso, volcanoclastos, tobas, limolitas de origen volcánico	Tandapi desde el oeste en San Antonio hacia el sector de la Colina Peñas Blancas, siguiendo el río Pilatón
Formación Silante	Lutitas rojas, verde, grauvacas y conglomerados cuyo clasto probablemente representa intrusiones de una fuente volcánica andesítica, mucho de la sucesión consiste en capas de lutitas rojas.	A lo largo de la ruta Alóag-Santo Domingo
Volcánicos Atacazo	Rocas gris-verdosas con patina de color violeta formadas principalmente de flujos de lava andesítica	Está expuesta en los relieves y vertientes de los volcanes Atacazo y Corazón cuyo límite están marcados por un cambio de pendientes
Volcánicos Pasochoa	Compuestas de rocas muy diferentes del Atacazo estos volcánicos están conformados por andesitas y piroclásticos	Pendientes medias a fuertes aledañas al Pasochoa
Conglomerados Zarapullo	Conformados por guijarros y cantos rodados por la acción de los ríos Pilatón y Toachi	Rancho San José en la parroquia Manuel Cornejo Astorga (Tandapi)
Depósito Glaciar	Conformado por tilitas de composición heterogénea y distribución errática de rocas volcánicas	Oeste de El Chaupi, en el sector de la Loma Pilongo con dirección NE-SW
Formación Cangagua	Depósito piroclástico cuaternario; consiste principalmente de ceniza volcánica andesítica de color café y lapilli en parte consolidada	Cubre gran extensión de la topografía del cantón Mejía, largamente no estratificada originadas por los volcanes Atacazo, Corazón, Pasochoa y Rumiñahui
Depósito Coluvial	Constituyen depósitos prominentes con superficies planas que aparecen al pie de los relieves como resultado del transporte gravitacional de estos relieves primarios, están compuestos por material suelto y heterogéneo de suelo y clastos de roca de diferente tamaño	Principalmente en las parroquias de Manuel Cornejo Astorga (San Ignacio) y en Machachi (San Antonio de Valencia).
Depósito Aluvial	Compuesto por material detrítico, por clastos redondeados a subredondeados de diferente composición y que presentan morfologías semiplanas y cuyos materiales se depositan primero los más pesados y al final los materiales livianos.	Transportado por los ríos San Pedro, Toachi y Pilatón, donde se depositan temporalmente en puntos a lo largo de su llanura de inundación

Nota: Formaciones geológicas fuente Instituto Ecuatoriano Espacial (IEE 2013) fuente (Gobierno del Cantón Mejía 2015). Elaborado por: Luis Chicaiza y Christian Pintado.

Ilustración 5
Formaciones Geológicas del Cantón Mejía


Nota: Formaciones geológicas fuente: Instituto Ecuatoriano Espacial (IEE 2013). Elaborado por: EQUIPO PDOT GAD. MEJÍA 2015.

1.5.7. Topografía y relieve

La población de Aloasí tiene una orografía variada, se encuentra en un valle interandino; consta de topografía relativamente plana, con una pendiente promedio del 1,65% que se desarrolla en el sentido sur - norte, elevándose hacia las montañas que las circundan. Se compone de relieves montañosos, relieves volcánicos colinados, distintos tipos de vertientes, llanuras y superficies de depósitos volcánicos; que corresponden a elevaciones como el Atacazo, Corazón, Illinizas, Pasochoa y Sincholagua (Gobierno del Cantón Mejía 2015).

Como se muestra en la ilustración (6) los niveles del territorio parten de los macizos de las cordilleras occidental y central, entre las que se configuran irregulares valles surcados por quebradas; hacia el este y oeste, los niveles descienden hacia la región amazónica y litoral respectivamente (Aguilar Raza 2016).

Ilustración 6:Relieve del Cantón Mejía

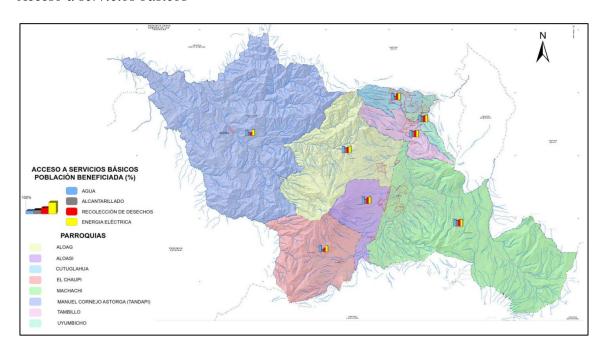
Nota: Relieve del cantón Mejía fuente INSTITUTO ESPACIAL ECUATORIANO. Elaborado por: EQUIPO PDOT GAD. MEJÍA 2015.

1.5.8. Infraestructura y servicios

El sistema de alcantarillado, está dividido en tres redes de recolección, una del tipo combinado, una segunda red de alcantarillado sanitario y por último una tercera red de recolección combinada.

Las parroquias de Machachi y Aloasí cuentan con una red de agua potable que se abastece desde 4 vertientes: San Francisco (2), Alvarez y Puchig, desde las cuales salen líneas de conducción de agua cruda a gravedad y una por bombeo hasta la planta de tratamiento y según los resultados publicados por el INEC del VI censo de vivienda realizado en 2010, tiene una cobertura del 98,13%.

El servicio de energía eléctrica está a cargo de la Empresa Eléctrica Quito, tiene una cobertura del 99,41% según los resultados del censo 2010.


La recolección de desechos sólidos es prestada por la Municipalidad por medio de la Dirección de Servicios Públicos e Higiene y su departamento de Residuos Sólidos,

actualmente el Gobierno Municipal adelanta acciones para que sea efectuado por una Empresa Pública Municipal. La recolección de desechos sólidos se realiza en forma interdiaria, para el efecto cuenta con cuatro vehículos recolectores compactadores, con una cobertura del 98,77% en el cantón Mejía según los resultados del censo INEC 2010.

En la ilustración (7) se muestra los servicios básicos que tiene cada parroquia.

Ilustración 7

Acceso a servicios básicos

Nota: Acceso servicios básicos fuente GAD MEJÍA. Elaborado por: EQUIPO PDOT GAD. MEJÍA 2015.

La vialidad regional del cantón es mínima y todas aquellas que existen son sin planificación mediante una respuesta a las necesidades de expansión y no a una red planificada. Las ciudades de Machachi y Aloasí están separadas por un tramo de 4,42 Km de la carretera Panamericana (E35), la misma que cruza el cantón en sentido norte - sur, desde la cual se conectan varios accesos a las referidas parroquias.

Aloasí tiene alrededor de 26,50 Km de vías urbanas con las capas de rodadura que se muestra en la tabla (5), por otra parte, en los barrios Culalá Alto, Culalá Bajo y El Falcón cuenta con carreteras de tierra, lastre y la av. Simón Bolívar se encuentra asfaltada.

Tabla 5Catastro vial -área Urbana Parroquia de Aloasí

Tipo de calzada	Estado	Long. Levantada (m)	%
Buen Estado	4334	16,34%	
Empedrado	Regular	4103,41	15,47%
	Pésimo	2175,96	8,20%
Tierra	Pésimo	7999,45	30,16%
Lastre	Regular	370,62	1,40%
Asfalto	Buen Estado	687,27	2,59%
		26526,21	100%

Nota: Catastro vial fuente Dirección de Obras Públicas /Catastro vial 2015. Elaborado por: Luis Chicaiza y Christian Pintado.

CAPÍTULO II

BASES DE DISEÑO

Para el dimensionamiento de los elementos del sistema de alcantarillado sanitario prevalecerá la normativa (EMAAP-Q 2009), que se complementa con la norma técnica INEN CO-10.7.601 definida por Ex IEOS (Ex SENAGUA 2016b).

2.1.Planteamiento y análisis de alternativas

2.1.1. Alternativa 1

Diseño de un sistema de alcantarillado sanitario con planta de tratamiento, en donde su descarga se la hará a la red de alcantarillado existente en la av. Simón Bolívar.

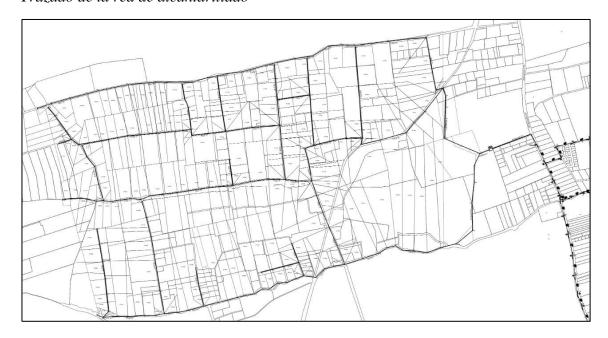
2.1.2. Alternativa 2

Diseño de un sistema de alcantarillado sanitario con planta de tratamiento, en donde su descarga se la hará a la quebrada Soltero.

2.1.3. Alternativa 3

Diseño de un sistema de alcantarillado sanitario con planta de tratamiento, en donde su descarga se la hará a la quebrada Timbo.

Realizando un análisis se escoge la alternativa 1, la misma que resulta más económica y viable al proyecto, pues la descarga se la hará a un colector que está relativamente cerca del sector y por donde fluye únicamente caudal sanitario; por otra parte la alternativa 3 se descarta, debido a que se deberán hacer movimientos de tierra excesivos, pues la quebrada El Timbo se encuentra cerca de la panamericana y es significativamente lejos, mientras la quebrada Soltero es una quebrada que en épocas de verano se encuentra seca y los pobladores la usan como calle alterna, por otro lado en tiempo de lluvias esta tiene un caudal bajo y no es conveniente hacer la descarga, por lo cual la alternativa 2 también se descarta.


2.2. Trazado del sistema

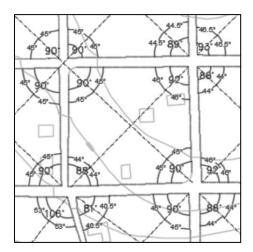
Una vez definido la línea base, área del proyecto, demografía, topografía, relieve, además de la distribución y uso de suelo, se trazará una posible ruta de la red de alcantarillado, considerando la infraestructura que se encuentra construida y la que se va a realizar. Para lo cual se tendrá que tener en consideración lo siguiente:

- Las tuberías deberán proyectarse en tramos rectos entre accesos a las mismas.
- Como guía general, las tuberías seguirán en su trazado, en lo posible, la tendencia del escurrimiento natural de las aguas superficiales, configurándose cuencas de aporte cuyos efluentes serán colectados por emisarios.
- El trazado de tuberías deberá estudiarse a efectos de minimizar costos, planteando las alternativas que permitan discutir la mejor solución antes de su adopción.
- Los trazados deberán implicar la menor profundización posible de las tuberías en el terreno.
- Deberá minimizarse el número de accesos a la red, sin que por ello se resientan las posibilidades de obstrucciones eventuales y el mantenimiento preventivo.
- El trazado de la red y la ubicación de las descargas se realizará de tal forma que no se permitan descargas de aguas servidas sin tratamiento a cauces secos o con flujo intermitente.

A continuación, se muestra el trazado de la red de alcantarillado.

Ilustración 8Trazado de la red de alcantarillado

Nota: Trazado de la red. Elaborado por: Luis Chicaiza y Christian Pintado.


2.3. Áreas de aportación

Se zonificará el proyecto en áreas tributarias (mediante bisectrices) que se describe en la ilustración (9); "fundamentalmente en base a la topografía, delimitando en planos detallados y actualizados las calles, las manzanas urbanizadas y los lotes o predios incluidos en el proyecto, teniendo en cuenta los aspectos urbanísticos definidos en el plan regulador. Se considerará los diversos usos de suelo residencial, comercial, industrial, institucional y público" (Ex SENAGUA 2016b).

De común acuerdo con la (EMAAP-Q 2009), y según las características del proyecto a diseñar, se debe definir las unidades o áreas de distribución para la aplicación de la distribución espacial de la demanda.

Ilustración 9

Ejemplo de áreas tributarias

Nota: Áreas tributarias. Elaborado por: Luis Chicaiza y Christian Pintado.

2.4. Parámetros de diseño

"Los parámetros de diseño contribuyen los elementos básicos para el desarrollo del diseño de un sistema de recolección y evacuación de aguas residuales" (EMAAP-Q 2009).

2.4.1. Tipo de sistema

El sistema de alcantarillado que se empleará será sanitario, en donde para beneficio de la comunidad tiene como objetivo principal reducir la contaminación por la falta de la red de alcantarillado y por consiguiente minimizar el impacto ambiental.

2.4.2. Velocidad mínima y máxima

2.4.2.1.Velocidad mínima

El escurrimiento hidráulico en los colectores (sean estos primarios, secundarios o terciarios), no debe permitir la sedimentación de materia orgánica en el interior, ni su erosión. Por lo tanto, la velocidad mínima de diseño según la norma de diseño para sistemas de abastecimiento de agua potable, disposición de excretas y residuos líquidos en el área rural será de 0,45 m/s pero preferiblemente se deberá tender a alcanzar la

condición V > 0,60 m/s para disponer regularmente de una velocidad suficiente para lavar los sólidos depositados durante periodos de caudal bajo e impedir la acumulación de gas sulfhídrico en el líquido (Ex SENAGUA 2016a) (Ex SENAGUA 2016b).

2.4.2.2.Velocidad máxima

"Los valores máximos permisibles en las tuberías por gravedad dependen del material de fabricación, en función de su sensibilidad a la abrasión" (EMAAP-Q 2009). Se recomienda usar los valores que constan en la tabla (6).

Tabla 6Velocidad máxima en función al material de la tubería

Material de la Tubería	Velocidad máxima (m/seg)
Tubería de hormigón simple hasta 60 cm. de diámetro	4,5
Tubería de hormigón armado de 60 cm. de diámetro o mayores	6
Hormigón armado en obra para grandes conducciones 210/240 kg/cm2	6,0-6,5
Hormigón armado en obra 280/350 kg/cm2. Grandes conducciones	7,0 – 7,5
PEAD, PVC, PRFV	7,5
Acero	9,0 o mayor
Hierro dúctil o fundido	9,0 o mayor

Nota: Velocidad máxima fuente (EMAAP-Q 2009). Elaborado por: Luis Chicaiza y Christian Pintado.

2.4.3. Pendiente mínima y máxima

2.4.3.1.Pendiente mínima

"La pendiente de cada tramo de tubería debe ser semejante a la del terreno natural con el objeto a tener excavaciones mínimas, de modo que se debe proyectar con una pendiente mínima de 0,5%, además de garantizar el régimen hidráulico, evadiendo la acumulación de sedimentos que reduzcan la capacidad del conducto y requiera mantenimiento continuo lo que se demuestra con la verificación de la velocidad mínima" (EMAAP-Q 2009).

2.4.3.2.Pendiente máxima

"Las pendientes máximas serán aquellas que permitan la verificación en cada tramo de estudio y en las condiciones de diseño, la velocidad máxima permisible, las cuales están en función del tipo de material que se utilice, además que concuerde con el calado máximo permisible" (EMAAP-Q 2009).

2.4.4. Profundidad hidráulica mínima y máxima

2.4.4.1.Profundidad hidráulica mínima

"Con tubería parcialmente llena, en congruencia para el cumplimiento de la velocidad mínima, el tirante mínimo debe ser de 5 cm para pendientes fuertes y de 7,5 cm para casos normales de su caudal máximo instantáneo, en cualquier año del período de diseño" (EMAAP-Q 2009).

2.4.4.2.Profundidad hidráulica máxima

"El valor máximo permisible de la profundidad hidráulica para el caudal de diseño en un colector debe estar entre 70% y 85% del diámetro o altura real de éste, donde existe posibles saltos de curvas de remanso y otros fenómenos, permitiendo el espacio para la ventilación e impedir la acumulación de gases tóxicos" (EMAAP-Q 2009).

2.4.5. Profundidad mínima y máxima de la cota clave

2.4.5.1.Profundidad mínima a la cota clave

Los sistemas de alcantarillado deben estar a una profundidad necesaria para permitir el drenaje por gravedad. En donde según la norma (CPE INEN 5 1992) dice que: "para permitir la evacuación de las aguas lluvias y servidas de los predios a cada lado de las calles, desde los niveles más bajos referidos a la rasante de la calzada, cuando la tubería deba soportar tránsito vehicular, para su seguridad se considera un relleno mínimo de 1,2m de alto sobre la cota clave del tubo", mientras en la norma (EMAAP-Q 2009) que se observa en la tabla (7) dice que es de 1,5m de profundidad mínima.

Tabla 7Profundidad mínima de la cota clave

Zona	Profundidad (m)
Peatonal o verde	1,50
Vehicular	1,50

Nota: Profundidad mínima fuente EPMAAP-Q (2009), pg.4. Elaborado por: Luis Chicaiza y Christian Pintado.

2.4.5.2.Profundidad mínima a la cota clave

"La máxima profundidad de las tuberías es del orden de 5m, aunque puede ser mayor siempre y cuando se garanticen los requerimientos geotécnicos de las cimentaciones y estructurales de los materiales y tuberías durante (y después de) su construcción" (EMAAP-Q 2009).

2.4.6. Pozo de revisión y conexiones domiciliarias

2.4.6.1.Pozo de revisión

"La red de alcantarillado deberá estar localizada a una profundidad que garantice su seguridad a las cargas exteriores y que permita descargar libremente las conexiones domiciliarias" (Ex SENAGUA 2016a).

En el pozo de revisión "la altura máxima de descarga libre será 0,6 m. En caso contrario, se agrandará el diámetro del pozo y se instalará una tubería vertical dentro del mismo que intercepte el chorro de agua y lo conduzca hacia el fondo. El diámetro máximo de la tubería de salto será 300mm. Para caudales mayores y en caso de ser necesario, se diseñarán estructuras especiales de salto" (Ex SENAGUA 2016b). Se sugiere trabajar con alturas de salto de 1,50 m para caudales pequeños superiores a esa altura se necesitará construir estructuras de disipación de energía.

Deberá existir un pozo de revisión en cada cambio de dirección, pendiente del colector, sección y cuando sobre pase la distancia máxima entre dos pozos; la distancia

máxima depende del diámetro de la tubería que los conecta, por lo que se presenta los respectivos valores en la tabla (8).

Tabla 8Distancias máximas entre pozos de revisión

Diámetro de la tubería (mm)	Distancia máxima entre los pozos (m)
Menos a 350	100
400-800	150
Mayor a 800	200

Nota: Distancias máximas entre pozos fuente (Ex SENAGUA 2016a). Elaborado por: Luis Chicaiza y Christian Pintado.

En todo pozo de revisión, el colector de salida deberá tener un diámetro igual o superior al de los colectores de entrada (Ex SENAGUA 2016a).

2.4.6.2. Conexiones domiciliarias

"Las conexiones se las realizara con tubería de 100 mm de diámetro y tendrá una pendiente mínima de 1%, esta partirá desde una caja de revisión con sección mínima de 0,6 x 0,6 m provista de sello hidráulico; y en donde la utilización de cualquier accesorio deberá ser aprobado por fiscalización" (Ex SENAGUA 2016a).

2.5. Periodo de diseño

Período de utilización después del cual una obra o estructura puede ser reemplazada por inservible.

La norma de diseño de sistemas de alcantarillado de la EMAAP- Q señala que: "El período de diseño, debe satisfacer las condiciones básicas del proyecto como la capacidad del sistema para atender la demanda futura, la densidad actual y de saturación, la durabilidad de los materiales y equipos empleados, la calidad de la construcción y su operación y mantenimiento. El período de diseño también depende de la demanda del servicio, la programación de inversiones, la factibilidad de ampliaciones y las tasas de crecimiento de la población, del comercio y de la industria. Como mínimo, los sistemas

de recolección y evacuación de aguas residuales deben proyectarse para un período de 30 años" (EMAAP-Q 2009).

2.5.1. Material de tuberías

El material de las tuberías deberá hacerse en función del dimensionado hidráulico de la misma y su verificación estructural a las cargas externas. Por consiguiente, los materiales más usuales se identifican en la tabla (9).

Material de las tuberías

Tabla 9

Material de tuberías		
Hormigón simple (HS)		
Hormigón armado (HA)		
Policloruro de vinilo (PVC)		
Poliéster reforzado con fibra de vidrio (PRFV)		
Polietileno de alta densidad (PEAD)		

Nota: Material de tuberías fuente (EMAAP-Q 2009). Elaborado por: Luis Chicaiza y Christian Pintado.

Se tomará como material principal el PVC, pues cumple con las condiciones de diseño hidráulico en función a las velocidades y el caudal, debido a que posee bajas pérdidas por fricción evitando la acumulación de sedimentos y permitiendo la fluidez.

2.5.2. Diámetro mínimo interno

Según la (EMAAP-Q 2009) "el diámetro interior para la red de alcantarillado sanitario deberá ser como mínimo de 250 mm a causa de evitar obstrucciones en el flujo normal de la tubería por presencia de agentes externos al sistema, ya que podría cerrar por completo la sección transversal del conducto creando reboses de caudal de recolección aguas arriba", mientras en la (Ex SENAGUA 2016b) "para la red de alcantarillado sanitario el diámetro mínimo será de 200 mm".

2.6. Análisis poblacional

"La estimación de la población es un aspecto principal del planeamiento de un sistema de alcantarillado siendo así que, se proyectará la población al final del periodo de diseño" (EMAAP-Q 2009). Los datos demográficos, en especial los censos realizados por la INEC, que se muestra en la tabla (10), son en donde finalmente se obtendrán los parámetros que determinan el crecimiento de la población.

Tabla 10Datos censales parroquia de Aloasí

Parroquia Aloasí		
Censo Población		
1982	4450	
1990	5175	
2001	6855	
2010	9686	

Nota: Datos censales fuente INEC 2010. Elaborado por: Luis Chicaiza y Christian Pintado.

Con base a los dos últimos censos realizados en los años 2001 y 2010 se calculó las tasas o índices de crecimiento (r) de la parroquia, aplicando la expresión:

$$r = \frac{1}{t} Ln \left(\frac{Pfc}{Pa} \right)$$

Dónde:

r= índice de crecimiento poblacional.

t= tiempo transcurrido entre el momento inicial y el que se quiere estimar.

Pfc= población correspondiente al último censo.

Pa= población correspondiente al censo inicial.

$$r = \frac{1}{9} \operatorname{Ln} \left(\frac{9686}{6855} \right)$$

$$r = 3.84\%$$

Por medio del censo realizado en el año 2010 donde la población fue de 9686 habitantes, el Plan Maestro de Agua Potable y Actualización del Plan Maestro de Alcantarillado de Machachi y Aloasí del cantón Mejía menciona que Aloasí contaba con un área poblada de 244,41 Ha en donde cuentan con dos zonas, una residencial en la cabecera parroquial teniendo una densidad de 33,29 hab./Ha, y la periférica con 6,34 hab./Ha que se detalla en la tabla (11).

Tabla 11Área poblada y densidad poblacional

Parroquia	Población 2010 (hab.)	Área Poblada 2010 (Ha)	Densidad Residencial (Ha/hab.)	Densidad Periférica (Ha/hab.)	Densidad Poblacional Total (Ha/hab.)
Aloasí	9.686	244,41	33,29	6,34	39,63

Nota: Densidad población año 2010 fuente INEC y Plan Maestro Machachi-Aloasí. Elaborado por: Luis Chicaiza y Christian Pintado.

Por consiguiente, debido a la falta de información sobre la población de los barrios Culalá Alto, Culalá Bajo y Falcón, se toma como guía la densidad de la zona periférica pues se encuentra alejada de la cabecera parroquial del sector ver tabla (12).

Tabla 12Población inicial del área del proyecto

Parroquia	Población 2010 (hab.)	Área de Influencia (Ha)	Densidad Residencial (Ha/hab.)	Población del Área de Influencia 2010 (hab.)
Aloasí	9.686	195,59	6,34	1.241

Nota: Población inicial área de influencia fuente INEC y Plan Maestro Machachi-Aloasí. Elaborado por: Luis Chicaiza y Christian Pintado.

Una vez obtenido la población inicial y la tasa de crecimiento del periodo 2001-2010 se realizan algunos métodos (proyección aritmética, geométrica, incrementos diferenciales) para la proyección poblacional.

2.6.1. Método aritmético

"Supone un crecimiento vegetativo balanceado por la mortalidad y la emigración" (Ministerio de Ambiente 2014). La ecuación según el método aritmético para calcular la población futura es la siguiente:

$$Pf = Po + ka * n$$

Donde:

Pf = población futura o proyectada.

Po= población actual o inicial.

ka= índice de crecimiento poblacional

n= periodo de diseño.

Para el cálculo de ka, se aplica la ecuación posterior:

$$ka = \frac{Pfc - Pa}{tf - to}$$

$$ka = \frac{9.686 - 6.855}{2.010 - 2.001}$$

$$ka = 314,55$$

Pfc= población correspondiente al último censo.

Pa= población correspondiente al censo inicial.

tf= año correspondiente al último censo.

to= año correspondiente al censo inicial.

2.6.2. Método geométrico

"Es útil en poblaciones que muestren una importante actividad económica, que

genera un apreciable desarrollo y que poseen importantes áreas de expansión las cuales

pueden ser dotadas de servicios públicos sin mayores dificultades" (Ministerio de

Ambiente 2014).

La ecuación que se emplea es:

 $Pf = Po + (1 + r)^n$

Donde:

Pf = población futura o proyectada.

Po= población actual o inicial.

r= índice de crecimiento poblacional.

n= periodo de diseño.

2.6.3. Método exponencial

"Para poder realizar este método se requiere conocer por lo menos tres censos para

poder determinar el promedio de la tasa de crecimiento de la población. Se recomienda

su aplicación a poblaciones que muestren apreciable desarrollo y posean abundantes áreas

de expansión" (Ministerio de Ambiente 2014).

La ecuación empleada por este método es la siguiente:

 $Pf = Po * e^{k(ni)}$

Donde:

Pf = población futura o proyectada.

Po= población actual o inicial.

r= índice de crecimiento de la población.

n= periodo de diseño.

30

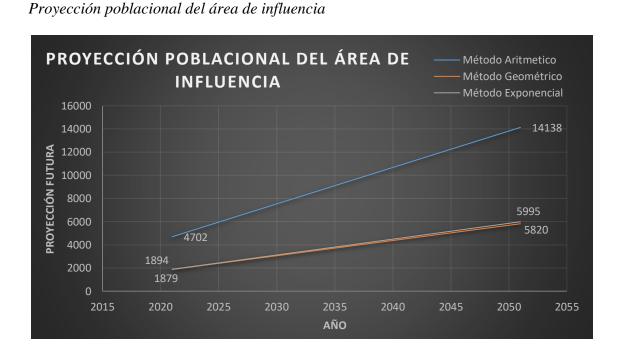

Por último, en la tabla (13) e ilustración (10), se muestra un resumen de las proyecciones realizadas por cada uno de los métodos estadísticos, para obtener la población futura en los próximos años.

Tabla 13Proyección poblacional del área de influencia

Método de Proyección	Población 2021	Población 2051
Aritmética	4.702	14.138
Geométrica	1.879	5.820
Exponencial	1.894	5.995

Nota: Proyección poblacional al periodo de diseño. Elaborado por: Luis Chicaiza y Christian Pintado

Ilustración 10

Nota: Proyección poblacional del área de influencia. Elaborado por: Luis Chicaiza y Christian Pintado.

Una vez estimada la población futura por los métodos estadísticos se podría determinar el número de personas mediante las conexiones domiciliarias y considerando

un número de moradores por cada conexión, por el contrario, al ser solo una apreciación y no tener un dato estadístico real, se omite esta forma de proyectar la población. Por otra parte, en la ilustración (11) teniendo los censos desde el año 1982 al 2010 se realizara una línea de regresión ajustada en donde se observa el coeficiente de correlación y el valor que más se aproxima a la realidad será el valor adoptado para la población de diseño.

Ilustración 11

Crecimiento poblacional

Nota: Crecimiento poblacional con línea de tendencia con su coeficiente de corrección. Elaborado por: Luis Chicaiza y Christian Pintado.

Como se muestra en la ilustración se puede observar que en el periodo de censos mencionados con anterioridad la tendencia tiende a ser exponencial por ser el valor que más se acerca a 1, es por ello que la proyección poblacional que se determinó por el método geométrico y exponencial se parecen en cuanto a la tendencia del crecimiento que ha surgido en Aloasí con el pasar del tiempo, por lo que la población proyectada para el periodo de diseño será de 5.995 habitantes.

2.7. Caudal sanitario de diseño

"El volumen de aguas residuales aportadas a un sistema de recolección y evacuación está integrado por las aguas residuales domésticas, industriales, comerciales e institucionales" (EMAAP-Q 2009), afectados de sus respectivos coeficientes de retorno y mayoración, más los caudales de infiltración y conexiones ilícitas.

2.7.1. Caudal doméstico (Qd)

El aporte doméstico (Qd) está dado por las expresiones.

$$Qd = \frac{D * P * R * M}{86.400}$$

Donde:

D = dotación neta por habitante [lts/hab/día].

"La dotación neta es la cantidad de agua que el consumidor efectivamente recibe para satisfacer sus necesidades. La dotación neta depende del nivel de complejidad del sistema, del clima de la localidad y del tamaño de la población" (Económico 2000).

Su estimación se la hará a través de la norma Ex-IEOS indicadas en la tabla (14), según el número de habitantes y el clima.

Tabla 14Dotaciones recomendadas

Población (hab)	Clima	Dotación Media Futura (lts/hab/dia)
	Frío	120-150
Hasta 5000	Templado	130-160
	Cálido	170-200
	Frío	180-200
5000 a 50000	Templado	190-220
	Cálido	200-230
	Frío	>200
Más de 50000	Templado	>220
	Cálido	>230

Nota: Dotación recomendadas fuente (Ex SENAGUA 2016b). Elaborado por: Luis Chicaiza y Christian Pintado.

La dotación media futura escogida para la superficie de influencia del proyecto será determinada mediante la población futura y el clima frío el cual pertenece la parroquia de Aloasí, por lo que la dotación es 180 (lts/hab/dia).

P= poblacion [hab].

R = coeficiente de retorno.

"El coeficiente de retorno (R) es la fracción del agua de uso doméstico servida, entregada como agua negra al sistema de recolección y evacuación de aguas residuales. Su estimación debe provenir del análisis de información existente de la localidad y/o de mediciones de campo. Cuando esta información resulte inexistente o muy pobre, pueden utilizarse como guía los rangos de valores de R" (EMAAP-Q 2009) descritos en la tabla (15)

Tabla 15Coeficiente de retorno de aguas servidas domesticas

Nivel de complejidad del sistema	Coeficiente de retorno
Bajo y medio	0,7-0,8
Medio alto y alto	0,8-0,85

Nota: Coeficiente de retorno fuente EMAAP-Q. Elaborado por: Luis Chicaiza y Christian Pintado.

Considerando que la gran parte del sector cuenta con áreas verdes en cada propiedad, realmente no regresa el 100% al sistema de alcantarillado, para lo que se tiene el nivel de complejidad bajo y medio, por lo tanto, el coeficiente de retorno ha adoptado será de 0,8.

M = coeficiente de mayoración (Se toma el mayor de los tres)

"El coeficiente de mayoración varía en las diferentes horas de acuerdo con los factores que influye en la variación de los caudales de abastecimiento de agua (clima, patrón de vida, hábitos, etc.), pero es afectado en menor intensidad, en función al

porcentaje de agua suministrada que retorna al alcantarillado y al efecto regulador del flujo a lo largo de los conductos de alcantarillado, que tiende a disminuir los caudales máximos y a elevar los mínimos" (OPS 2005).

La normativa Ras-200 dice que: "puede ser estimada a partir de mediciones de campo o con base en relaciones aproximadas como las de Harmon y Babbit, válidas para poblaciones de 1000 a 1000000 habitantes, y la de Flores, en las cuales se estima M en función del número de habitantes" (Económico 2000).

$$M = 1 + \frac{14}{4 + \sqrt{P}}$$
 Harmon $M = \frac{5}{P^{0.2}}$ Babbit $M = \frac{3,5}{P^{0.1}}$ Los Ángeles

Otra opción, se presenta en la tabla (16) del coeficiente de mayoración el cual está directamente relacionado con la población en miles.

Tabla 16Coeficiente de mayoración en función de la población

Población en miles	M
>0,5	2,4-2
5-10	2-1,85
10-50	1,85-1,6
50-250	1,6-1,33
>250	1,33

Nota: Coeficiente de mayoración fuente SENAGUA, 2016. Elaborado por: Luis Chicaiza y Christian Pintado.

A continuacion, en la tabla (17) se mostrada los resultados obtenidos por cada uno de los metodos mencionados anteriormente.

Tabla 17Resultados a los coeficientes de mayoración

Método	M
Harman	1,17
Babbit	0,88
Los Ángeles	1,47
Población en miles	1.97

Nota: Resultados de los coeficientes de mayoración. Elaborado por: Luis Chicaiza y Christian Pintado.

La EMAAP-Q, recomienda que el coeficiente M debe estar entre el rango:

Finalmente después de observar los resultados por cada método y siguiendo las recomendaciones de la normativa los únicos posibles coeficientes de mayoracion (M), son los obtenidos a partir de los metodos los angles y poblacion en miles, por lo que el valor adoptado será de 1,97.

2.7.2. Caudal de infiltración (Qinf)

La categorización de la infiltración en alta, media y baja se relaciona con las características topográficas, de suelos, niveles freáticos y precipitación, pues es inevitable la infiltración de aguas sub superficiales a las redes de sistemas de alcantarillado sanitario que se muestra en la tabla (18). Por último, la ecuación para el caudal de infiltración es:

$$Qinf = cinf * Área$$

Tabla 18Coeficiente de infiltración

Nivel de complejidad del sistema	Infiltración alta (lts/s-ha)	Infiltración media (lts/s-ha)	Infiltración baja (lts/s-ha)
Bajo y medio	01,-0,3	0,1-0,3	0,05-0,2
Medio alto y alto	0,15-,0,4	0,1-0,3	0,05-0,2

Nota: Coeficiente de infiltración fuente (EMAAP-Q 2009). Elaborado por: Luis Chicaiza y Christian Pintado.

El coeficiente de infiltración que se usa para un sistema con complejidad bajo y medio es de 0,05 (lts-ha).

$$Qinf = cinf * Área$$

$$Qinf = 0,10 * 195,59$$

$$Qinf = 19,56 lts/s$$

2.7.3. Caudal de conexiones erradas (Qc.erra)

"Deben considerarse los aportes de aguas lluvias al sistema de alcantarillado sanitario, provenientes de malas conexiones de bajantes de tejados y patios. Estos aportes son función de la efectividad de las medidas de control sobre la calidad de las conexiones domiciliarias y de la disponibilidad de sistemas de recolección y evacuación de aguas lluvias" (EMAAP-Q 2009).

La (OPS 2005) menciona que: "el caudal por conexiones erradas puede ser del 5% al 10% del caudal máximo horario de aguas residuales", sin embargo en la tabla (19) se puede ver los aportes máximos que tiene la norma de la EMAAP, pero no se las considera debido a que son muy altos los aportes y en el sector del proyecto al ser una zona rural solamente hay casas de un solo piso o dos máximos pero al tener un gran espacio como patio y es donde se usa para la agricultura no tiene conexiones desde su casa hacia la calle directamente para que pueda incrementar el caudal pluvial es por ello que se tomara como aporte el 10% del caudal instantáneo.

Tabla 19Aportes máximos por drenaje domiciliario de aguas lluvias sin sistema pluvial

Nivel de complejidad del sistema	Aporte (lts/s-ha)
Bajo y medio	4-20
Medio alto y alto	2-20

Nota: Aportes máximos de drenaje domiciliario de aguas lluvias fuente EMAAP-Q 2009. Elaborado por: Luis Chicaiza y Christian Pintado.

2.7.4. Caudal medio diario (QMD)

El caudal medio anual para el año de proyecto n (QmD) se calculará por medio de la siguiente expresión:

Qmed =
$$\frac{D * P * R}{86400}$$

Qmed = $\frac{180 * 5.995 * 0.8}{86400}$
Qmed = 9,99 lt/seg

2.7.5. Caudal máximo horario

"El caudal máximo horario, corresponde al consumo máximo registrado durante una hora en un período de un año sin tener en cuenta el caudal de incendio" (Ministerio de Ambiente 2014). Se calculará por medio de la siguiente expresión:

$$QMH = Qmed * M$$
 $QMH = 9,99 * 1,97$
 $QMH = 19,68 lt/seg$

Por lo tanto, el caudal sanitario estaría dado por:

Qsanitario = QMH + Qinf * Qc. erra
Qsanitario =
$$19,68 + 19,56 + 1,97 = 41,21$$
 lt/seg

CAPÍTULO III

CÁLCULOS Y DISEÑOS

3.1. Descripción del sistema de alcantarillado sanitario

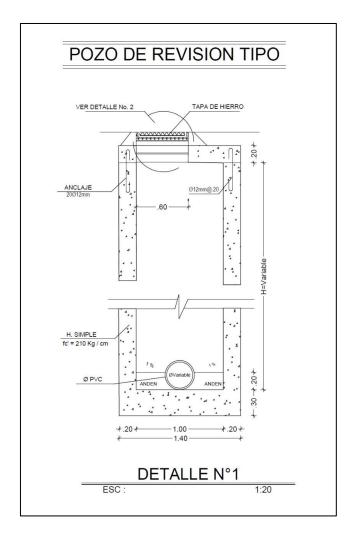
La red de alcantarillado que se diseñará será solamente sanitario debido a que en la avenida principal llamada Simón Bolívar pasa únicamente aguas negras y es en donde se descarga las aguas de esta nueva red, los barrios del proyecto se encuentran aguas arriba de la av. en donde se localiza los barrios Culalá Alto, Culalá Bajo y El Falcón, la planta de tratamiento se ubica muy cerca de la avenida Simón Bolívar este sistema cuenta con 193 pozos de revisión.

En ciertos tramos la topografía resulta montañosa, por lo que el relieve que se visualiza en el proyecto es muy variable.

3.1.1.1.Pozos de revisión

"Se ubicaran pozos al empezar los tramos iniciales; en todo cambio de pendiente (fuertes o marginales definidos por la topografía), dirección contemplando la ubicación de las vías, sección" (EMAAP-Q 2009). La máxima distancia entre pozos dependerá de los diámetros de las tuberías de cada tramo.

3.1.1.2.Pozo de salto


"El pozo de salto es una estructura que permite efectuar el descenso vertical del caudal cuando el desnivel que presenta el terreno es considerable, disipa la energía y minimiza los problemas erosivos; dados la complejidad de flujo" (EMAAP-Q 2009).

"Los pozos de salto interior no serán mayores a 40 cm. Para caídas superiores a 0,70 hasta 4,0 metros, debe proyectarse caídas externas, con o sin colchón de agua, mediante estructuras de pozos especiales" (EMAAP-Q 2009).

A continuación, en la ilustración (12), se visualiza un pozo tipo.

Ilustración 12

Pozo tipo

Nota: Pozo de revisión tipo. Elaborado por: Luis Chicaiza y Christian Pintado.

3.2. Consideraciones de diseño

La Norma de Diseño para Sistemas de Abastecimiento de Agua Potable, Disposición de Excretas y Residuos Líquidos en el Área Rural (Ex SENAGUA 2016a) y La Norma de Diseño de Sistemas de Alcantarillado para la (EMAAP-Q 2009) mencionan que:

- En todo pozo de revisión, el colector de salida deberá tener un diámetro igual o superior al de los colectores de entrada.
- La profundidad hidráulica para el caudal de diseño en un colector debe estar entre
 70% y 85% del diámetro real de éste.

- Se tendrá en cuenta que la relación del caudal obtenido del análisis hidráulico respecto con el caudal a tubería llena no será mayor al 90%.
- La velocidad en el escurrimiento hidráulico de los colectores, se las hará considerando no permitir la sedimentación de materia orgánica en el interior de la tubería ni su erosión; por lo tanto, la velocidad mínima de diseño será de 0,45 m/s, sin embargo se establecerá alcanzar la condición de v > 0,60 m/s que se utiliza para lavar los sólidos depositados durante periodos de caudal bajo, por otro lado la velocidad máxima dependerá del material de la tubería y en todo caso se deberá cumplir con las especificaciones del fabricante.

3.3.Diseño hidráulico de alcantarillado sanitario

En el libro de hidráulica de canales escrito por Ven Te Chow menciona que: "un alcantarillado actúa como un canal abierto siempre y cuando el flujo sea parcialmente lleno, debido a que éste es controlado por muchas variables, como la geometría de entrada, pendiente, tamaño, rugosidad, condiciones de profundidad" (Chow 2004).

En el sistema de alcantarillado, la velocidad de flujo es constante en cada tramo de la tubería, pues este trabaja a gravedad y es considerado como un flujo uniforme.

3.3.1. Comportamiento del flujo

Los comportamientos del flujo de las aguas residuales dentro de la tubería entre dos pozos para una sección parcialmente llena, es posible dos escenarios: uno donde la salida es no sumergible (flujo supercrítico y el control a la entrada) en pendientes supercríticas y subcríticas y la segunda donde la salida es no sumergida (flujo crítico y control a la salida).

3.3.2. Estado del flujo

El estado de flujo está representado por la relación entre las fuerzas inerciales y gravitacionales pues el sistema de alcantarillado trabaja a gravedad y está definido por la ecuación de Froude que se muestra a continuación:

$$F = \frac{V}{\sqrt{g * \frac{A}{T}}}$$

Dónde:

F = Número de Froude.

V = Velocidad media de flujo (m/s).

G = Aceleración de la gravedad (m/s²).

 $A = \text{Área mojada (m}^2).$

T = Ancho superficial (m).

Por tanto, cuando F es igual a 1, el flujo recibe el nombre de flujo crítico; cuando F es mayor a 1 el movimiento del flujo es de régimen supercrítico (aquí predominan las fuerzas inerciales) y finalmente si F es menor a 1 el movimiento es de régimen subcrítico (este es inverso a la anterior por lo cual predomina las fuerzas gravitacionales).

3.3.3. Velocidad

Al ser flujo uniforme, la ecuación que se emplea para la determinación del cálculo hidráulico de velocidad será consecuentemente de Chézy y Manning, pues se trata de la simplificación de la ecuación de Chézy, la cual está dada por la siguiente expresión:

$$V = \frac{R^{\frac{2}{3}} * J^{\frac{1}{2}}}{n}$$

Donde:

V= Velocidad [m/s]

R= Radio hidráulico [R=A/P]

J= Pendiente del tramo

n= Coeficiente de rugosidad de Manning

Para elegir el coeficiente de rugosidad de Manning se tuvo en consideración el tipo de material con el que se va a trabajar en la red de alcantarillado como se muestra en la tabla (20).

Tabla 20Coeficiente de rugosidad de Manning

Material de revestimiento	Coeficiente "n"
Tuberías de PVC/PEAD/PRFV	0,011
Tuberías de hormigón (con buen acabado)	0,013
Tuberías de hormigón con acabado regular	0,014
Mampostería de piedra juntas con mortero de cemento	0,020
Mampostería de piedra partida acomodada (sin juntas)	0,032
Ladrillo juntas con mortero de cemento	0,015
Tierra (trazo recto y uniforme) sin vegetación	0,025

Nota: Coeficiente de rugosidad de Manning según el material fuente (EMAAP-Q 2009) y (Ex SENAGUA 2016b). Elaborado por: Luis Chicaiza y Christian Pintado.

3.4. Dimensionamiento de la sección

3.4.1. Geometría del canal

Las redes de recolección y evacuación del caudal sanitario usualmente pueden ser estructuras cerradas es decir secciones circulares.

3.4.2. Parámetros de sección tubería llena

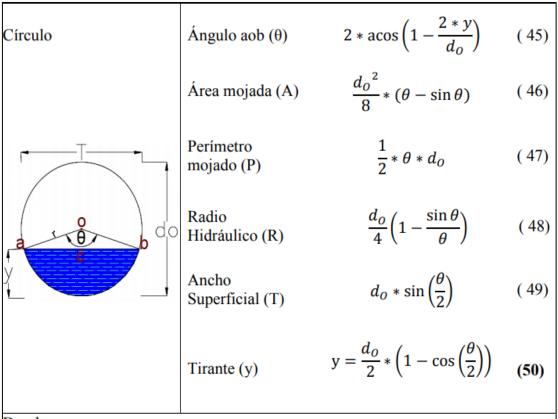
Las ecuaciones primordiales para establecer las particularidades de la sección de la tubería llena se muestran en la tabla (21).

Tabla 21 *Ecuaciones sección de la tubería llena*

Características	Fórmula
Área mojada (A)	$\frac{\pi D^2}{4}$
Perímetro mojado (P)	π D
Radio hidráulico (R)	$\frac{D}{4}$

Nota: Ecuación a tubería llena. Elaborado por: Luis Chicaiza y Christian Pintado.

"Obtenemos el valor K para encontrar el valor de la relación del tirante y el diámetro; en donde la ecuación K es el resultado de la aplicación de la ecuación de caudal y la ecuación de Manning" (Chow 2004).


$$k = \frac{y}{D}$$

3.4.3. Parámetros de sección tubería parcialmente llena

Se determina los valores de diseño empleando las fórmulas que se muestran en la ilustración 13, que son para una sección de flujo a superficie libre, el caudal de diseño, la velocidad de diseño mediante la fórmula de Manning, en tanto que la velocidad mínima se calcula con el caudal sanitario, el caudal y velocidad a tubería llena. En la ilustración (13), se presenta las ecuaciones elementales para determinar características de la sección de la tubería a superficie libre.

Ilustración 13

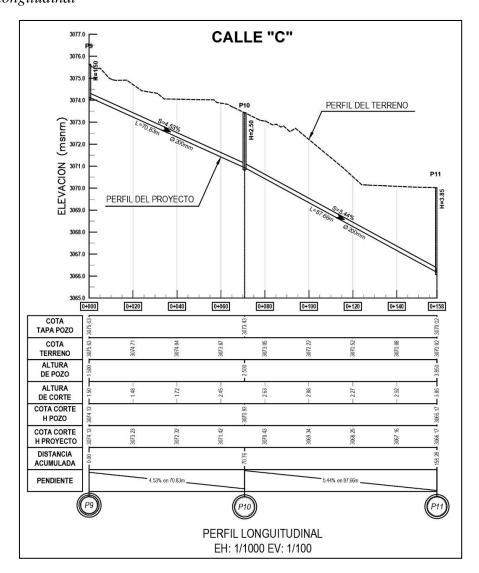
Ecuaciones básicas de la sección de la tubería a superficie libre

Donde:

y: tirante

θ: ángulo que forman el centro del círculo con las aristas a donde llega el líquido

do: diámetro interno de la tubería


T: ancho superficial.

Nota: Ecuación básicas de la sección de la tubería a superficie libre fuente (LLIVE REIMUNDO 2020).

3.5. Profundidad de los conductos

El diseño de la profundidad de los colectores se realizó una vez estudiado las situaciones en campo con su respectivo levantamiento topográfico, donde se conoce las elevaciones de la superficie, en función al diámetro y la pendiente del proyecto, se calcula la profundidad aguas arriba como aguas abajo en dirección al flujo, en la ilustración (14) se pueden observar en los perfiles longitudinales para su comprensión.

Ilustración 14Perfil longitudinal

Nota: Perfil longitudinal de la red de alcantarillado. Elaborado por: Luis Chicaiza y Christian Pintado.

La profundidad de los conductos se lo determina mediante los siguientes pasos:

- 1) Para el inicio de cada tramo se pondrá pozos de cabecera en donde se inicia con un pozo de una profundidad de 1.20 a 1.50 metros más el diámetro de cada tubería y la pendiente de la superficie si se debe profundizar más.
- 2) El nivel del colector aguas arriba se podrá determinar mediante el siguiente proceso:

 $Ct\ colec.\ aguas\ arrba = CTerreno\ aguas\ arrba - (1,50/1,20) - D$

 Se calcula el desnivel teniendo en cuenta la longitud de la tubería y la pendiente de diseño.

$$Desnivel = L x J$$

 El nivel del colector aguas abajo se podrá determinar mediante el siguiente proceso.

 $Cota\ colec.\ aguas\ abajo=CTerreno\ aguas\ arriba-Desnivel$

La altura de flujo aguas abajo se calcula con la siguiente expresión:
 H. aguas abajo = CTerreno aguas abajo - cota colec. aguas abajo

6) Para determinar el nivel de aguas arriba del siguiente tramo se toma en cuenta el nivel de aguas abajo del tramo anterior y la altura de salto dependiendo de lo que requiera el diseño.

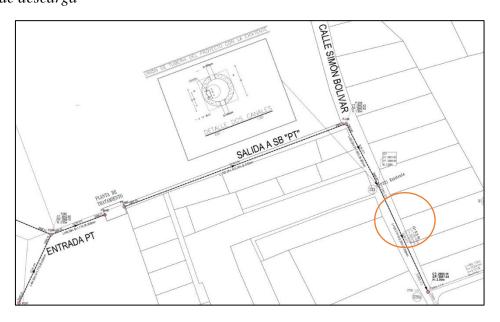
Prof. aguas arriba = pro. aguas abajo + salto

7) Estos pasos se repiten consecutivamente hasta la descarga, siempre y cuando ya no sean pozo de cabecera pues si este es el caso tocara iniciar todo desde el principio.

En el anexo 2, se muestra un resumen de los datos hidráulicos definitivos que conforman el diseño del sistema de alcantarillado cumpliendo con las bases de diseño.

3.6.Descarga

La descarga cumple con la función de evacuar las aguas residuales hacia un cuerpo de agua.


La descarga se la realizará a la red de la av. Simón Bolívar donde contiene solo aguas negras y el proyecto de igual forma son solamente sanitario. Las aguas que se depositan en él serán tratadas antes en la planta de tratamiento.

La tubería que une a la planta de tratamiento es de 300 mm y la tubería con la que va unir a la otra red será de igual forma de diámetro de 300 mm

3.6.1. Descripción del sitio de descarga

La topografía del sector en donde se realizara la descarga es relativamente plana, la planta de tratamiento esta considerablemente cerca de la av. Simón Bolívar en donde se unirán estas dos redes de alcantarillado. A continuación, en la ilustración (15) se puede observar el sitio de descarga.

Ilustración 15Sitio de descarga

Nota: Sitio de descarga a calle Simón Bolívar. Elaborado por Luis Chicaiza y Christian Pintado.

CAPÍTULO IV

DISEÑO PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES

Es trascendente efectuar el tratamiento de aguas residuales, pues luego del uso del agua en actividades agrícolas, institucionales, industriales y domésticas su composición biológica es afectada. El RAS 2000 título E, define las aguas residuales municipales como: "agua residual de origen doméstico comercial e institucional que contiene desechos humanos" (Ministerio de Desarrollo Económico 2000).

El objetivo principal de este capítulo es proporcionar un conjunto de criterios básicos para el diseño de la planta de tratamiento y así igualar o disminuir el nivel de características indeseables del agua y poder cumplir con los requerimientos de calidad del organismo receptor. Por otro lado, al implementar tecnología de tratamiento, mejorará la salud colectiva evitando enfermedades, conserva el medio ambiente y permitirá la utilización del agua para diferentes fines después de su tratamiento.

4.1.Descripción de la planta de aguas residuales

El sitio en donde se localizará la (PTAR) será en un terreno que propietario principal es el municipio, con un área de 200 m², ubicado en coordenadas Norte 9944339.60 Este 768078.60. Este sitio fue seleccionado teniendo en cuenta el relieve ya que es considerablemente plano, será beneficio en la conducción ya que tendrá flujo a gravedad y está situado en un lugar concurrente para su mantenimiento para después descargar el agua tratada a la red de alcantarilla de la calle Simón Bolívar.

4.2. Características de las Aguas Residuales y Tratamiento

Se realizaran cuatro etapas que comprenden procesos químicos, biológicos y físicos para el tratamiento de aguas residuales.

<u>Pre-tratamiento:</u> "comprende la eliminación de residuos, fácilmente separables, utilizando rejillas, desarenadores, etc." (Ex SENAGUA 2016a). Asimismo, se removerá aquellos constituyentes del agua residual que pueden causar dificultades a la operación y mantenimiento" (CPE INEN 5 1992).

<u>Tratamiento Primario:</u> "el objetivo es la remoción de sólidos orgánicos e inorgánicos sedimentables, para disminuir la carga del tratamiento biológico, en caso de ser necesario. Los sólidos removidos en el proceso tienen que ser procesados antes de su disposición final, siendo los más usados los procesos de digestión anaeróbica y lechos de secado" (CPE INEN 5 1992).

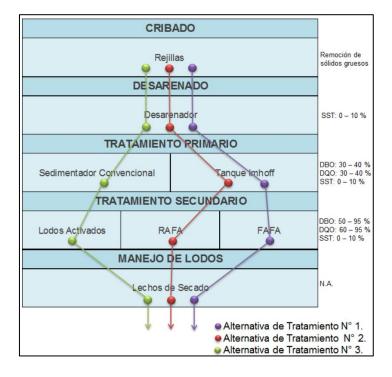
Tratamiento Secundario: "procesos biológicos donde se alcanzan una eficiencia de remoción de DBO y sólidos del orden del 82%, por medio de procesos biológicos aplicados al efluente del tratamiento primario (lagunas de estabilización, lodos activostanques de aireación, filtros biológicos). De igual manera, los lodos resultantes deben ser procesados antes de su disposición final, por medio de métodos de digestión anaeróbica, lecho de secado de arenas, filtración, secado al calor, incineración, etc." (CPE INEN 5 1992)

<u>Tratamiento Terciario o avanzado:</u> "proceso de tratamiento físico-químico o biológico, dirigido a la reducción final y alanzar niveles aceptables de DBO, DQO, pH, coliformes fecales, parásitos (nematodos intestinales) y además contaminantes (solidos suspendidos, fósforo)" (CPE INEN 5 1992).

4.3. Selección de alternativas de tratamiento

Para la selección de alternativas se considera la valoración cualitativa y cuantitativa de las tecnologías evaluadas de acuerdo con las condiciones socio-económicas y ambientales de la zona. A continuación, se describe las diferentes alternativas para el proyecto.

<u>Pre-tratamiento:</u> aquí se utiliza estructuras que ayuden a remover materiales gruesos, pesados y flotantes por medio del cribado. Comprende los procesos de eliminación de residuos, fácilmente separables, es por ello que la rejilla y desarenador serán parte del tratamiento propuesto, el desarenador impide el desgaste en equipos posteriores, así como el exceso acumulado de lodos.


Tratamiento Primario: "para este tratamiento se tomaron en consideracion algunas opciones como los sedimentadores convencionales y tratamientos híbridos como el tanque Imhoff. Al ser un sector rural y teniendo una zona en consolidación el tratamiento que se requiere es básico, por otro lado al no tener suficiente espacio para una laguna de oxidación no se toma en cuenta esta opción ni tampoco un tanque séptico pues el uso de este es limitado para un máximo de 350 habitantes según" (OPS/CEPIS 2005), por lo que lo más idóneo será realizar un tanque de decanto de digestión (Imhoff).

<u>Tratamiento Secundario:</u> al tener como objetivo principal reducir la cantidad de materia orgánica soluble en el agua residual, "se plantearon alternativas biológicas aerobias y anaerobias en donde se considera como tratamiento secundario lodos activados, reactor anaerobio de flujo ascendente (RAFA/UASB) y filtro anaerobio de flujo ascendente (FAFA) (Fandiño 2017), siendo este último el tratamiento que se usará.

<u>Tratamiento Terciario o avanzado:</u> "el tratamiento de lodos en pequeñas poblaciones debe ser práctico y económico. Para este caso el manejo de lodos se realizará por medio de lechos de secado" (Ministerio de Desarrollo Económico 2000).

En conclusión, en la ilustración (16), se describe un esquema donde cada línea representa los posibles tratamiento que se podría utilizar en el proyecto, siendo estos el pre-tratamiento, tratamiento primario, secundario y terciario en donde la opción escogida será la alternativa uno.

Ilustración 16Selección de alternativas

Nota: Selección de alternativas para la PTAR fuente (OPS/CEPIS 2005).

4.4.Descripción conceptual de los procesos

4.4.1. Tratamiento primario

4.4.1.1. Características generales del tanque Imhoff

"El tanque Imhoff es una unidad de tratamiento primario cuya finalidad es la remoción de sólidos suspendidos. Para comunidades de 6000 habitantes o menos, los tanque Imhoff ofrecen ventajas para el tratamiento de aguas residuales domésticas, ya que integran la sedimentación del agua y a digestión de los lodos sedimentados en la misma unidad, por ese motivo también se les llama tanques de doble cámara" (OPS/CEPIS 2005).

Consta de una zona de sedimentación en la cual se remueven los sólidos suspendidos del afluente, una zona de digestión de lodos en donde se realiza la estabilización biológica de los mismos a través de un proceso anaerobio, y una zona de ventilación en donde se liberan los gases producidos por la digestión realizada en el fondo del tanque (OPS/CEPIS 2005).

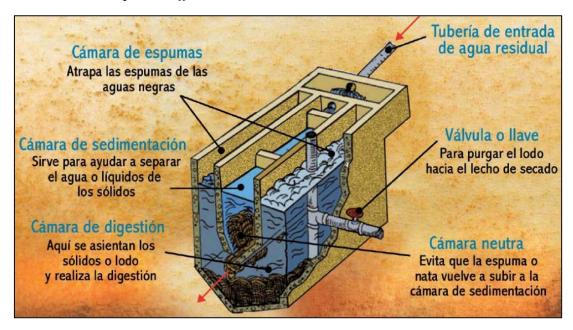
A continuación en la tabla (22) se indica las ventajas y desventajas que se tendrá en un sistema de tratamiento tanque Imhoff descrito por (OPS/CEPIS 2005) y (Fandiño 2017).

Tabla 22 *Ventajas y desventajas del Tanque Imhoff*

Ventajas	Desventajas
 Contribuye a la estabilización del lodo teniendo también un efecto en la calidad del efluente líquido. El lodo generado tiene un menor contenido de humedad y puede ser dispuesto en lechos de secado. El tiempo de retención es relativamente bajo. Bajo costo de construcción y operación. Su operación y mantenimiento son sencillos. No se requiere atención constante de la unidad. Para su construcción se necesita poco terreno en comparación con las lagunas de estabilización. 	 Grandes profundidades. Difícil construcción en suelos fluidos o roca. Puede presentar olores ofensivos. El efluente líquido requiere de postratamiento.

Nota: Ventajas y desventajas del tanque Imhoff fuente (Fandiño 2017; OPS/CEPIS 2005). Elaborado por: Luis Chicaiza y Christian Pintado.

"El tanque Imhoff elimina del 40 al 50% de sólidos suspendidos y reduce la DBO de 25 a 35%. Los lodos acumulados en el digestor del tanque Imhoff se extraen periódicamente y se conducen a lechos de secados" (OPS/CEPIS 2005).


4.4.1.2. Componentes del tanque Imhoff

El tanque Imhoff típico es de forma rectangular y se divide en tres compartimentos en donde en la ilustración (17) se indica las estructuras que lo conforman.

- Cámara de sedimentación
- Cámara de digestión de lodos
- Área de ventilación y acumulación de natas

Ilustración 17

Estructura del tanque Imhoff

Nota: Estructura del tanque Imhoff. Elaborado por:(OPS/CEPIS 2005).

4.4.1.3.Operación y mantenimiento

Luego de pasar por el pre-tratamiento, el afluente ingresa por medio del área de sedimentación, en donde el lodo sedimentado fluye por los muros de esta región llegando a la cámara de digestión del tanque por medio de la ranura que existe en medio de las 2 regiones, que está en la parte inferior del área de sedimentación y en la preeminente del área de digestión. Esta ranura posibilita el paso del lodo, sin embargo previene el paso de gases a partir del sector de digestión al sector de sedimentación, lo cual traería

inconvenientes de flotación de rígidos En la zona de ventilación se debe realizar el retiro manual de natas y espumas (Fandiño 2017).

Los gases y partículas ascendentes, que inevitablemente se producen en el proceso de digestión, son desviados hacia la cámara de natas o área de ventilación. Los lodos acumulados en el digestor se extraen periódicamente y se conducen a lechos de secado, en donde el contenido de humedad se disminuye por infiltración, luego de lo que se retiran y dispone de ellos enterrándolos o tienen la posibilidad de ser usados para mejoramiento de los suelos (OPS/CEPIS 2005).

El tanque Imhoff tiene la gran virtud de hacer en una sola unidad los procesos de sedimentación y estabilización de lodos. Adicionalmente, no necesita de energía para su funcionamiento.

4.4.2. Tratamiento secundario

4.4.2.1. Características generales del filtro anaerobio de flujo ascendente (FAFA)

Los procesos de digestión anaerobia son utilizados para el tratamiento de aguas residuales, ya que con una alta carga orgánica se pueden obtener altas eficiencias de remoción. En los filtros anaerobios de flujo ascendente, el agua residual se alimenta al reactor por medio de un falso fondo por donde el flujo se distribuye uniformemente. Después el agua residual fluye por medio de una masa de firmes biológicos suspendidos, contenidos dentro del sistema por un medio fijo de soporte. La materia orgánica soluble que pasa por medio del filtro, se difunde en las áreas de los rígidos adheridos o floculados, donde se hace el proceso de degradación anaerobia. Los microorganismos se adhieren a la superficie del medio en forma de biopelícula, o bien se agrupan en gránulos dentro de los intersticios del medio. La materia orgánica soluble que pasa a través del filtro, se difunde dentro de las superficies de los sólidos adheridos o floculados, donde se realiza el proceso de degradación anaerobia (Fandiño 2017).

Este reactor está compuesto de tres zonas; la zona de entrada, la zona de empaque y la zona de salida.

En la tabla (23), se presentan las ventajas y desventajas de este tipo tratamiento.

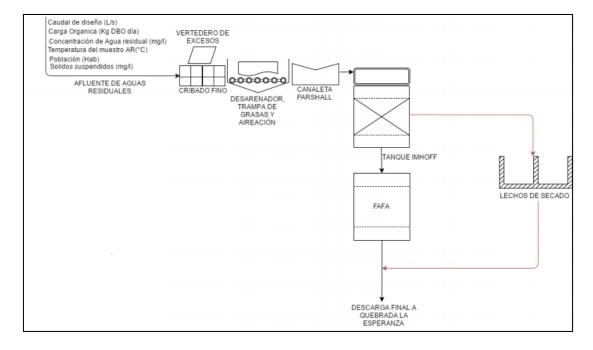
Tabla 23 *Ventajas y desventajas FAFA*

Ventajas	Desventajas	
 Alta eficiencia en remoción de materia orgánica Fácil de instalar Bajo consumo de energía. Poca producción de lodos. Utilización del biogás para energía. 	 Pueden desestabilizarse y se requiere personal especializado para reanudar eficientemente el proceso. Puede requerir de otros procesos para pulir el efluente. 	

Nota: Ventajas y desventajas FAFA fuente (Fandiño 2017). Elaborado por: Luis Chicaiza y Christian Pintado.

4.4.2.2. Operación y mantenimiento

El mayor control que se debe realizar en el FAFA es evitar la colmatación del lecho filtrante por el exceso de lodos, esta situación se controla inspeccionando por lo menos una vez al mes los reboses del segundo compartimiento del sedimentador, si está saliendo agua por ello es necesario realizar un lavado a contra corriente. El aseo va a ser elemental una vez que el medio filtrante esté colmatado y obstruido por el exceso de lodo, esto se notará, si en la inspección mensual el paso de agua está ocurriendo por la tubería de rebose en el segundo compartimiento de sedimentador (Fandiño 2017).


4.5.Diseño planta de tratamiento

4.5.1. Diseño del pre-tratamiento

El caudal de diseño del sistema de tratamiento es el QMH, el cual es de 41,21 L/s. En la ilustración (18), se presenta la distribución de cada proceso de la planta de tratamiento de aguas residuales.

Ilustración 18

Esquema proceso de tratamiento de aguas residuales

Nota: Esquema del proceso de PTAR. Elaborado por:(Fandiño 2017).

4.5.1.1.Canal de ingreso

Con el propósito de entablar un flujo uniforme a la acceso de la PTAR y retener firmes gruesos y finos provenientes del transporte o conducción del agua hasta la PTAR, se proyecta la obra de un canal de ingreso el cual presentará los próximos recursos: vertedero de excesos, rejas para retener rígidos gruesos y finos (cribado), desarenador y canaleta parshall (Fandiño 2017), en la Tabla (24), se presenta el diseño del canal de ingreso.

Tabla 24Diseño del canal de ingreso

Canal de Ingreso)
Caudal (l/s)	41,21
Caudal (m ³ /s)	0,04121
Manning (n)	0,01
Pendiente (%)	0,004
Dimensiones	
Lámina de agua (y)	0,15
Ancho del canal (b)	0,30
Borde libre (t)	0,30
Altura del canal (H)	0,45
Área (A)	0,0450
Velocidad (m/s)	0,92

Nota: Diseño del canal de ingreso. Elaborado por: Luis Chicaiza y Christian Pintado.

4.5.1.2. Vertedero de excesos

Los muros se colocan principalmente paralelas a la dirección de ingreso del flujo y tiene como funcionalidad evacuar el exceso de caudal que traslada la línea de aducción en épocas de aguas altas. Si no se evacúa el caudal excedente, por continuidad, se incrementa el sistema de rapidez en el área del canal de acceso y con ello se reduce la eficiencia del procedimiento (Fandiño 2017); en la tabla (25), se presenta el diseño del vertedero de excedentes.

Tabla 25Diseño vertedero de excesos

Vertedero de excesos			
Caudal (l/s)	41,21		
Caudal (m ³ /s)	0,04121		
Carga sobre el vertedero (m)	0,18		
Longitud del vertedero (m)	0,3		

Nota: Diseño del vertedero de excesos. Elaborado por: Luis Chicaiza y Christian Pintado.

4.5.1.3.Rejas para retener sólidos (cribado)

El primer paso del tratamiento consiste en una unidad de cribado para la retención de sólidos y residuos que eventualmente puedan estar presentes en el agua residual; este sistema consta de rejas finas las cuales permiten atrapar el material sólido y así evitar obstrucción dentro de las unidades subsiguientes (Fandiño 2017).

A continuación, en la tabla (26), se presenta el diseño del cribado.

Tabla 26Diseño cribado fino

Rejilla	
Caudal (1/s)	41,21
Caudal (m ³ /s)	0,04121
Temperatura mínima del agua (C)	10°C
Nivel de complejidad del sistema	Bajo
Perdidas en rejillas	
Factor de forma de las barras (β)	2,42
Ancho de las barras w (mm)	5
Espaciamiento entre las barras b (mm)	20
Velocidad de aproximación del flujo V (m/s)	0,92
Altura o energía de velocidad del flujo de aproximación hv (m)	0,04
Angulo de la rejilla con la horizontal θ (°)	45°
Pedida de energía H (m)	0,011
Numero de varillas	15

Nota: Diseño del cribado fino para el pre tratamiento. Elaborado por: Luis Chicaiza y Christian Pintado.

4.5.1.4.Desarenador

La funcionalidad primordial es la de dividir los sólidos sedimentables por medio de procesos físicos; dichos rígidos (arenas y gravas), se acumulan en el fondo del tanque impidiendo de esta forma su acumulación en los próximos procesos (Fandiño 2017).

El desarenador removerá partículas de arena con densidad=2,65 g/cm3, con diámetros superiores a 0,14mm en donde la composición del desarenador va a ser de parte rectangular y rapidez constante; sin embargo, se crearon 2 unidades con una capacidad

de 41,21 l/s cada una, para tener una en operación y el otro en mantenimiento. Más adelante se muestra el diseño del desarenador en la tabla (27).

Tabla 27Diseño del desarenador

Desarenador	
Caudal (l/s)	41,21
Caudal (m ³ /s)	0,04121
Remoción de partículas de arena Ø (cm)	0,005
Borde libre (m)	0,3
Profundidad útil de sedimentación H (m)	1,5
Porcentaje de remoción (%)	80%
μ Viscosidad cinemática (cm²/s)	0,01
n Grado del desarenador	1
Densidad relativa de la partícula (ρs)	3
Densidad relativa de la partícula (ρ)	1,00
Velocidad de sedimentación Vs (cm/s)	0,21
Tiempo de remoción de la partícula t (s)	714,29
t (horas)	0,198
Tiempo de retención hidráulico θh (horas)	0,79
θh (min)	47,62
θh (segundos)	2857,16
Volumen V (m³)	117,74
Área superficial As (m²)	78,50
Ancho B (m)	4,43
Largo L (m)	17,72
Carga hidráulica superficial del tanque Cs (m³/m².día)	0,0005
Velocidad horizontal Vh (m/s)	0,006
Vh máx (m/s)	0,042

Nota: Diseño del desarenador para el pre tratamiento. Elaborado por: Luis Chicaiza y Christian Pintado.

4.5.1.5.Trampa de grasas

Con la intención de retener grasas y aceites antes del ingreso, se proyecta una trampa de grasas la cual va a tener un periodo de retención de 15 minutos, en la tabla (28), se muestra el diseño de la trampa de grasas.

Tabla 28Diseño de la trampa de grasas

Trampa de grasa	
Caudal (l/s)	41,21
Caudal (m ³ /s)	0,04121
Ancho (m)	1,6
Largo (m)	6,45
Tiempo de retención (min)	15
Área (m²)	10%

Nota: Diseño de la trampa de grasas. Elaborado por: Luis Chicaiza y Christian Pintado.

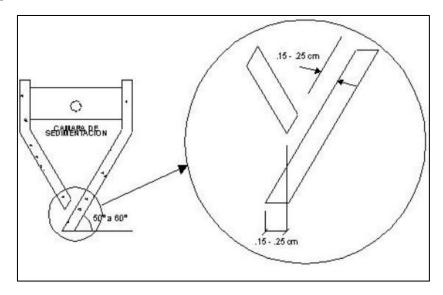
4.5.1.6. Canaleta Parshall

"Para la medición del caudal a la entrada de la PTAR, se instalará una canaleta Parshall de 3" (pulgadas) de garganta. El ancho de la garganta se seleccionó bajo el criterio de W = 1/3 b, donde b es el ancho del canal y W ancho de la garganta de la canaleta. Con el fin de evitar que la canaleta trabaje ahogada se aconseja trabajar con una sumergencia menor al 60 % para canaletas de garganta menor de 0,3m. De acuerdo con lo anterior se procede a verificar que la canaleta no trabaje ahogada" (Fandiño 2017).

4.5.2. Diseño del tratamiento primario (Taque Imhoff)

4.5.2.1.Diseño del sedimentador

Para el diseño del sedimentador se tomó en cuenta los siguientes criterios (OPS/CEPIS 2005):


- El fondo del tanque va a ser de parte transversal a modo de V y la pendiente de los lados en relación a la horizontal va a tener de 50° a 60°.
- El periodo de retención hidráulica, entre 1,5 a 2,5 horas (recomendable 2 horas).
- En la arista central se debería dejar una apertura para paso de los firmes removidos hacia el digestor, esta apertura va a ser de 0,15 a 0,20 m.

 Uno de los lados tendrá que prolongarse, de 15 a 20 centímetros, en consecuencia impida el paso de gases y firmes desprendidos del digestor hacia el sedimentador, situación que disminuirá la función de remoción de rígidos en suspensión de esta unidad de procedimiento.

En la ilustración (19), se observa los criterios adoptados para el diseño de la cámara de sedimentación.

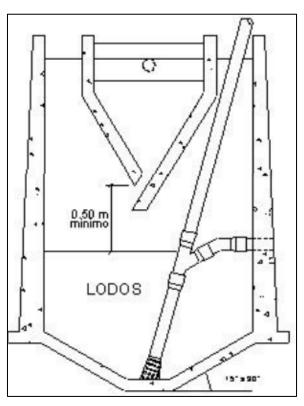
Ilustración 19

Criterios para el diseño de la cámara de sedimentación

Nota: Criterios para el diseño de la cama de sedimentación. Elaborado por:(OPS/CEPIS 2005).

4.5.2.2.Diseño del digestor

Para el diseño del digestor se tomó en cuenta los siguientes criterios (OPS/CEPIS 2005).


- El fondo de la cámara de digestión va a tener la manera de un tronco de pirámide invertida (tolva de lodos), para facilitar el retiro de los lodos digeridos (OPS/CEPIS 2005).
- Los muros laterales de esta tolva van a tener una inclinación de 15° a 30° con en relación a la horizontal (OPS/CEPIS 2005).

- La elevación máxima de los lodos tendrá que estar 0,50m por abajo del fondo del sedimentador (OPS/CEPIS 2005).
- Para quitar e impedir la acumulación de gases, se colocará un tubo de hierro fundido de 200mm de diámetro, en postura alrededor de vertical, con su extremo inferior abierto a unos 15cm por arriba del fondo del tanque (OPS/CEPIS 2005).

En la ilustración (20), se observa los criterios adoptados para el diseño del digestor.

Ilustración 20

Criterios para el diseño del digestor

Nota: Criterios para el diseño del digestor. Elaborado por:(OPS/CEPIS 2005).

Frecuencia del retiro de lodos

La frecuencia de retiro de lodos se lo hará periódicamente una vez, que estos estén digeridos, posteriormente en la tabla (29), se muestra el tiempo en el que se debe retirar los lodos en función de la temperatura del sitio.

Tabla 29 *El tiempo requerido para la digestión de lodos*

Temperatura °C	Tiempo de digestión (días)
5	110,00
10	76,00
15	55,00
20	40,00
>25	30,00

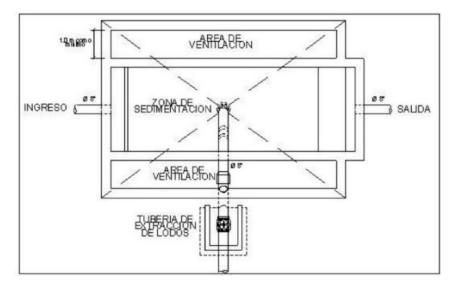
Nota: Tiempo para la digestión de lodo fuente (OPS/CEPIS 2005). Elaborado por: Luis Chicaiza y Christian Pintado.

La (OPS/CEPIS 2005) menciona que se deberán tener en cuenta ciertos criterios para la sustracción de lodos los cuales se describen posteriormente:

- El intervalo de tiempo entre extracciones de lodos continuas tendrá que ser al menos la era de digestión a distinción de la primera sustracción en la que se tendrá que aguardar el doble de tiempo de digestión (OPS/CEPIS 2005).
- El diámetro mínimo de la tubería para la remoción de lodos va a ser de 200
 mm y tendrá que estar situado 15 centímetros por arriba del fondo del
 tanque (OPS/CEPIS 2005).
- Para la remoción se requerirá de una carga hidráulica mínima de 1,80 m (OPS/CEPIS 2005).

4.5.2.3.Diseño del área de ventilación y cámara de natas

Para el diseño de la superficie libre entre las paredes del digestor y el sedimentador (zona de espuma o natas) se tendrán en cuenta los criterios de la (OPS/CEPIS 2005).


- El espaciamiento libre será de 1m como mínimo.
- El área total va a ser por lo menos 30% de la superficie total del tanque.
- El borde libre ser por lo menos de 0,30m.

• Las partes de la superficie del tanque deberán ser accesibles, para que puedan destruirse o extraerse las espumas y los lodos flotantes.

En la ilustración (21), se observa los criterios adoptados para el diseño del área de ventilación y cámara de natas.

Ilustración 21

Criterios para el diseño del área de ventilación y cámara de natas

Nota: Criterios para el diseño del área de ventilación. Elaborado por:(OPS/CEPIS 2005).

A continuación, en la tabla (30), se muestra un resumen del diseño del tanque Imhoff y de sus componentes.

Tabla 30

Dimensiones del tanque Imhoff

Tanque Imhoff				
Descripción	Símbolo	Unidad	Medida	
Borde Libre	h1	m	0,3	
Altura total interna del tanque	Ht	m	0,2	
Cámara de Sedimentaci	ón			
Ancho	b	m	5	
Longitud del tanque	L	m	15	
Altura	h2	m	3	
Ángulo de inclinación del fondo del sedimentador	θ	О	50	
Volumen del sedimentador	Vs	m^3	222,54	
Cámara de decantació	n			
Ancho	В	m	8,2	
Altura	h3	m	1,46	
Volumen de la cámara de decantación	VCN	m^3	179,85	
Ángulo de inclinación de las paredes del fondo	α	О	30	
Ancho del fondo de la cámara del digestor	bD	m	1	
Altura	h5,h4	m	2,10;0,30	
Volumen de la cámara de digestión de lodos	VCL	m^3	181,8	
Área de ventilación y cámara de espumas				
Volumen real de la cámara de espumas	VCEreal	m^3	240	
Espaciamiento libre entre paredes	С	m	1,25	

Nota: Dimensiones del tanque Imhoff. Elaborado por: Luis Chicaiza y Christian Pintado

4.5.3. Diseño del tratamiento secundario (Filtro Anaerobio)

4.5.4. El filtro anaerobio de flujo ascendente (FAFA) es un reactor donde existe un medio de soporte fijo inerte (rosetas plásticas "Biopack"), al cual crecen adheridos los microorganismos, usados en la reducción de materia orgánica. El agua residual tiene un flujo vertical ascendente por medio de la cámara. En el fondo del FAFA se instalarán un falso fondo para una repartición homogénea del agua, y sobre este se colocará el medio filtrante formado por rosetas de plásticas (BIOPACK), con un área superficial de contacto superior a 80 m²/m³. El agua filtrada, se recoge uniformemente por medio de 2 canaletas que se integran y descargan el efluente a un caño que después se conecta con la fuente de agua más

cercana, en esta situación la alcantarilla de la calle Simón Bolívar (Fandiño 2017), en la tabla (31), se encuentra el diseño del filtro anaeróbico.

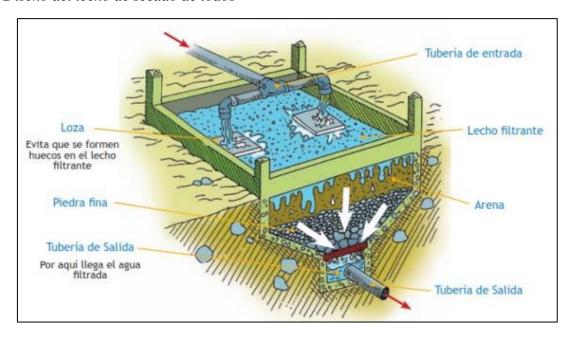
Tabla 31Diseño del FAFA

Filtro anaeróbico			
Caudal (l/s)	41,21		
Caudal (m ³ /s)	0,04121		
Área superficial del filtro (m²)	339,1		
Filtro cuadrado (m)	18,5		
Volumen del lecho filtrante (m ³)	934,64		
Altura del filtro del lecho filtrante (m)	2,73		
Altura del bordo libre (m)	1		
Altura del bajo dren (m)	1		
Tiempo de residencia hidráulica (h)	6,30		
Remoción esperada en el filtro anaerobio (%)	65,34		
Concentración de DBO (mg DBO/L)	47,14		

Nota: Diseño del tratamiento secundario. Elaborado por: Luis Chicaiza y Christian Pintado.

4.5.5. Diseño del tratamiento secundario (Lecho de secado de lodos)

Los lechos de secado de lodos son principalmente el procedimiento más sencilla y económico de deshidratar los lodos estabilizados (lodos digeridos), lo que resulta ideal para pequeñas comunidades (OPS/CEPIS 2005).


Tienen la posibilidad de ser construidos de mampostería, de concreto o terrestres (con diques), con hondura total eficaz de 50 a 60 centímetros. El ancho de los lechos de secado es principalmente de 3 a 6m, sin embargo para instalaciones monumentales tienen la posibilidad de sobrepasar los 10m. La (OPS/CEPIS 2005) menciona que el medio drenante es principalmente de 0,30m de espesor y tendrá que tener los próximos elementos:

 El medio de soporte recomendado está construido por una capa de 0,15m formada por ladrillos colocados sobre el medio filtrante, con una división de 0,02 a 0,03m llena de arena (OPS/CEPIS 2005).

- La arena es el medio filtrante y deberá tener un tamaño efectivo de 0,3 a
 1,3 mm y un coeficiente de uniformidad entre 2 y 5 (OPS/CEPIS 2005).
- Debajo de la arena se deberá colocar un estrato de grava graduada hasta
 0,20m de espesor (OPS/CEPIS 2005).

En la ilustración (22), se observa un esquema de la estructura del lecho de secado de lodos.

Ilustración 22Diseño del lecho de secado de lodos

Nota: Diseño del lecho de secado. Elaborado por:(OPS/CEPIS 2005).

En la tabla (32), se presenta el diseño de lecho de Secado de lodos

Tabla 32Diseño lecho de Secado de lodos

Área de ventilación y cámara de espumas					
Descripción Símbolo Unidad Medida					
Ancho del lecho de secado	BLS real	m	10		
Longitud del lecho	LLs real	m	10,84		
Profundidad de aplicación de lodos	Ha	m	0,4		

Nota: Diseño del lecho de secado para el tratamiento terciario. Elaborado por: Luis Chicaiza y Christian Pintado.

CAPÍTULO V

IMPACTO AMBIENTAL

En el presente capítulo se evalúa los cambios que representa la construcción del sistema de alcantarillado sanitario en la parroquia de Aloasí, en donde se tendrá en cuenta los impactos favorables y desfavorables antes, durante y después del proyecto en el ecosistema; por consiguiente se da soluciones en función de la importancia como de la magnitud después de la evaluación ambiental, por otro lado el tratamiento de las aguas residuales se lo hará de acuerdo a la escala de contaminación y el alcance de responsabilidad establecido por EPMAPS.

5.1.Antecedentes

En los barrios de Aloasí, concretamente en la zona del proyecto la población se ha introducido al ecosistema consecutivamente generando alteraciones, pues para ello hubo talado de árboles, cambio de uso del suelo, han ingresado objetos ajenos como son los autos y finalmente el mal depósito de basura generando problemas a corto, mediano y largo plazo. Por otra parte, el tratamiento de aguas residuales ayuda a mejorar el medio ambiente y especialmente el del río San Pedro.

5.2. Objetivos del estudio

El objetivo principal es identificar y caracterizar los efectos ambientales que puede tener la ejecución del proyecto y plantear las respectivas medidas con el fin de compensar, rehabilitar mitigar y prevenir las afectaciones negativas producto de sus actividades.

Establecer la superficie de influencia del proyecto objeto de estudio y la incidencia de los impactos asociados al mismo en el ámbito local. Delimitar el área de influencia directa e indirecta.

Efectuar una descripción del medio físico del área de influencia del proyecto.

Reducir el impacto ambiental de la construcción del sistema de alcantarillado, cuando este en operación y posteriormente en su mantenimiento.

Elaborar los estudios definitivos del impacto ambiental a partir del plan de manejo conforme a la ley.

5.3.Descripción general del área en estudio

La zona del proyecto está conformado por un paisaje de barrios rurales que tiene bajo valor escénico por su conjunción con naturalidad y ecosistemas existentes, en el sector se puede encontrar con ecosistemas de matorral húmedo montano y bosque siempre verde montano alto, así mismo la quebrada Soltero se encuentra relativamente cerca del área de influencia sin embargo se encuentra seca en épocas de verano, por otro lado tenemos la quebrada El Timbo que se encuentra en las periferias del sector. La mayor parte de la población cuenta con los servicios básicos como son: agua potable, electricidad, recolección de basura, telefonía fija sin embargo no cuenta con el sistema de alcantarillado. El plan es de efecto moderado, donde las medidas de mitigación son simples de valorar y aplicables, por consiguiente, necesitan estudios simplificados de efecto ambiental de acuerdo con la categorización del Banco Mundial.

A continuación, en la ilustración (23) se muestra la descripción general del área de estudio.

Ilustración 23Descripción general del área de estudio

Nota: Descripción general del área del proyecto fuente (IEE 2013). Elaborado por: Luis Chicaiza y Christian Pintado

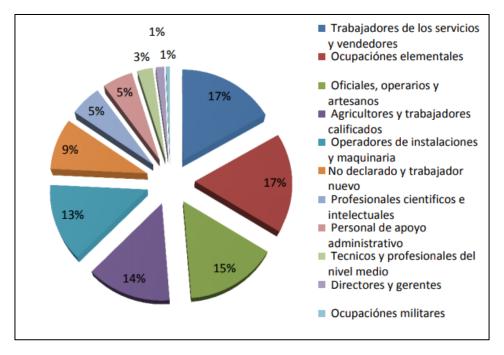
5.4.Población

La Constitución de la República del Ecuador instituye, artículo 14 se reconoce el derecho poblacional a vivir en un ambiente sano y ecológicamente equilibrado, que garantice la sostenibilidad y el buen vivir, "Sumak Kawsay" y el artículo 264 donde los Gobiernos Municipales van a tener las competencia única sin perjuicio; literal 4: "prestar los servicios públicos de agua potable, alcantarillado, depuración de aguas residuales, funcionamiento de desperdicios firmes, ocupaciones de saneamiento ambiental y esos que establezca la ley" (Asamblea Nacional Constituyente 2014).

Para el análisis se tomará presente los datos proporcionados por el Proyecto de Ordenamiento Territorial del cantón Mejía 2015, los estudios se muestran en la tabla (33) en donde muestra el grado de instrucción de los habitantes que habitan en el cantón Mejía (Gobierno del Cantón Mejía 2015).

Tabla 33Nivel de instrucción en el cantón Mejía

Nivel	Número Hombres	%Hombres	Número Mujeres	%Mujeres	Total	%Respecto a población total cantonal
Ninguno	1175	31,86%	2513	68,14%	3688	4,53%
Alfabetización	176	31,43%	384	68,57%	560	0,69%
Preescolar	395	50,45%	388	49,55%	783	0,96%
Primario	13205	50,65%	12864	49,35%	26069	32,05%
Secundario	8509	48,41%	9067	51,59%	17576	21,61%
Educación básica	3992	49,28%	4108	50,72%	8100	9,96%
Bachillerato	3144	52,06%	2895	47,94%	6039	7,42%
Ciclo post bachillerato	337	49,93%	338	50,07%	675	0,83%
Superior	3966	49,14%	4105	50,86%	8071	9,92%
Postgrado	173	52,11%	159	47,89%	332	0,41%
Se ignora	573	46,21%	667	53,79%	1240	1,52%
TOTAL	35645	48,74%	37488	51,26%	73133	89,92%


Nota: Nivel de instrucción en el Mejía fuente (Gobierno del Cantón Mejía 2015). Elaborado por: Luis Chicaiza y Christian Pintado.

La ilustración (7) muestra los servicios básicos (agua potable por red pública, alcantarillado, energía eléctrica, telefonía y recolección de basura), en la parroquia de Aloasí y en general de todo el cantón Mejía; en el caso del área del proyecto, se podría estimar que aproximadamente un 70% de la población cuenta con servicios básicos.

El alcantarillado principal de Aloasí descarga las aguas residuales a la quebrada Timbug luego del cruce de la vía Panamericana, existen sistemas individuales como letrinas o tanques sépticos en las áreas donde no se dispone de redes de recolección de las aguas residuales.

La mayor actividad de los moradores del cantón Mejía es de sector terciario entre los principales tenemos: comercio al por mayor y menor, transporte-almacenamiento, actividades de alojamiento, financieras, inmobiliarias entre otras; por otro lado, el otro porcentaje mayor es el sector primario siendo estas de agricultura, ganadería, pesca y explotación de minas, los cuales se muestran en la ilustración (24).

Ilustración 24
Actividades ocupacionales

Nota: Actividades ocupacionales fuente ONEC-MAG-SICA III Censo Nacional Agropecuario. Elaborado por: EQUIPO PDOT GAD MEJÍA 2014.

5.5.Descripción biofísica

El estudio de este factor es la base de la planificación territorial y del desarrollo para abordar el análisis del patrimonio natural subyacente a la población, determinando el potencial para la organización de diversas actividades y asegurando la condición sostenible de los recursos y responder con prontitud a las amenazas naturales o humanas existentes o potenciales. A continuación, se caracteriza el ecosistema de los barrios del proyecto y la relación de los seres vivos con el medio, definido en la litología local y medio biológico.

5.5.1. Litología local

El municipio de Mejía tiene una orografía variada que integran la cuenca de Machachi, parte del cañón interandino y montañas occidentales. Está compuesto una topografía irregular, primordialmente está formado de relieves montañosos, volcánicos, diversos tipos de vertientes, llanuras y depósitos volcánicos (Gobierno del Cantón Mejía 2015).

5.5.2. Flora y fauna

Según con datos del Instituto Espacial Ecuatoriana, la estructura vegetal en Mejía descrito en la tabla (34), se concluyó que el ecosistema dominante es el bosque húmedo y se definió que el 59,89% o sea cerca de 36.000 ha está en estado poco alterado, en lo que con un cambio moderado el 8,20% y 2,18% bastante alterados, se han mantenido pues se localizan en regiones escarpadas y de difícil ingreso (Gobierno del Cantón Mejía 2015).

La segunda formación dominante es uno de los páramos, en especial al paramo herbáceo o denominado paramo de pajonal, representa el 19,53 % del total; de los cuales el 16,24 % corresponde a medianamente alterado (Gobierno del Cantón Mejía 2015).

Después, está el matorral húmedo con 5 810,10 ha., de estas el 2,83% corresponden a medianamente alterado, el 6,57% permanecen bastante alteradas; y solamente el 0,10% está poco alterado. Al final está la vegetación herbácea húmeda la misma que apenas representa el 0,91% está entre bastante alterada con 121,10 ha y 435 ha como poco alterada (Gobierno del Cantón Mejía 2015).

Tabla 34

Ecosistemas

Formación Vegetal	Porcentaje %
Bosque húmedo medianamente alterado	8,20
Bosque húmedo muy alterado	2,18
Bosque húmedo poco alterado	58,89
Matorral húmedo medianamente alterado	2,83
Matorral húmedo muy alterado	6,57
Matorral húmedo poco alterado	0,10
Paramo arbustivo medianamente alterado	0,16
Paramo arbustivo muy alterado	0,62
Paramo herbáceo medianamente alterado	16,24
Paramo herbáceo muy alterado	0,37
Paramo herbáceo poco alterado	2,92
Vegetación herbácea húmeda poco alterada	0,71
Vegetación herbácea húmeda muy alterada	0,20
Total =	100%

Nota: Ecosistemas fuente INSTITUTO ESPACIAL ECUATORIANO. Elaborado por: Luis Chicaiza y Christian Pintado.

En Aloasí se pueden observar, una gran diversidad faunística como se puede ver en detalle en la tabla (35); en donde en la zona de estudio se registró de manera directa e indirecta un total de 11 especies, 9 familias, agrupadas en 6 órdenes, lo que representa el 2.68% del total de mamíferos registrados para el Ecuador.

Los órdenes Carnivora y Chiroptera (murciélagos) fueron los más representativos con 3 especies cada uno (27.27%), seguido del orden Rodentia (roedores) con 2 especies lo que representa el 18.18%, los órdenes Cingulata, Didelphimorphia y Lagomorpha con una especie.

Tabla 35Fauna parroquia Machachi y Aloasí

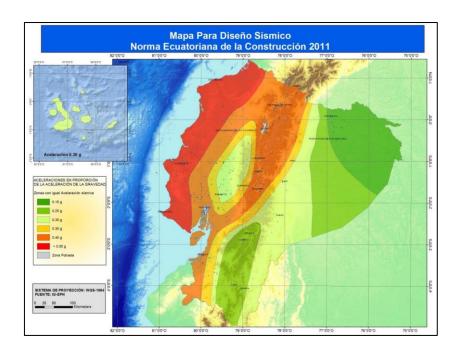
Órdenes	Familias	Especies	Nombre local
	Mustelidae	Mustela frenata	Chucuri
Carnivora	Canidae	Lycalopex culpaeus	Lobo de páramo
	Mephitidae	Conepatus semistriatus	Zorrillo hediondo
Cingulata	Dasypodidae	Dasypus novemcinctus	Armadillo
Didelphimorphia	Didelphidae	Didelphys marsupiales	Raposa
Lagomorpha	Leporidae	Sylvilagus brasiliensis	Conejo
	Dharilla atamaida a	Sturnira erythromos	Murciélago
Chiroptera	Phyllostomidae	Anoura geoffroyi	Murciélago
	Vespertilionidae	Histiotus montanum	Murciélago
Dodontio	Cricatidas	Akodon mollis	Ratón andino
Rodentia	Cricetidae	Thomasomys sp.	Ratón andino

Nota: Fauna de Aloasí fuente (CORPCONSUL CIA. LTDA 2015). Elaborado por: Luis Chicaiza y Christian Pintado.

5.5.3. Amenazas y vulnerabilidad

Ecuador es un territorio de elevado peligro sísmico y volcánico, para la exploración del peligro ambiental se observa los registros de inundaciones, movimientos telúricos, el número de víctimas que ha dejado los terremotos acumulados.

La vulnerabilidad de los proyectos de infraestructura depende de diversos factores sociales, culturales y económicos. Los principales eventos naturales del Ecuador están asociados a terremotos, erupciones volcánicas y huracanes entre otros, también se suman a esta lista las inundaciones, deslizamientos y deslaves.


5.5.3.1.Sismicidad

Según el mapa sismo-tectónico del Ecuador que se muestra en la ilustración (25), el proyecto se localiza en la zona A que se caracteriza por presentar subducción y volcanismos, con predominio de sismos superficiales. El riesgo sísmico es alto.

Existe diferencias en relación a la aceleración máxima para una vida útil de 50 años y con una probabilidad de excedencia del 10%, la aceleración es de 0.27g, en tanto según el mapa de zonificación sísmica del Ecuador, del Código Ecuatoriano de la Construcción-2000, el área del proyecto se localiza en la zona IV con valor de la aceleración más probable de 0.40g.

Ilustración 25

Ecuador, zonas sísmicas para propósitos de diseño y valor del factor de zona Z NEC 2015

Nota: Zonas sísmicas fuente (NEC 2015). Elaborado por: Luis Chicaiza y Christian Pintado.

5.3.3.2. Volcanismo

En el Ecuador continental hay 11 volcanes activos, con interacción a la expansión territorial y la cantidad en realidad habitada, la densidad de los volcanes activos del Ecuador es una de las más altas de todo el mundo.

Los volcanes que tienen influencia directa en el proyecto y podrían afectar el área del proyecto son los siguientes:

- Volcán Cotopaxi: el principal peligro para la zona del proyecto sería la caída de ceniza, estimándose espesores mayores a 25 cm, por tanto la zona es catalogada como de peligro alto (Andrade et al. 2005).
- En el valle interandino en el cual se encuentra Machachi y Alausí, no presentan riesgo del volcán Cotopaxi, mientras en la parte norte de Aloasí hay un riesgo alto de flujos piroplásticos por el volcán Ilinizas.
- Volcán Guagua Pichincha: el área en análisis se encuentra en el sector o
 área "D", determinándose que con viento en dirección al sur este el sector
 podría ser afectada por fenómenos de caída de ceniza con un espesor
 variable entre 5 y 25 centímetros.

5.3.3.3. Fenómenos de geodinámica externa.

Los fenómenos de geodinámica superficial que se pueden presentar en el área son:

- Escurrimiento superficial del agua: en la parte plana es de una intensidad baja a mediana, en tanto que en los bordes de quebradas su intensidad aumenta; el suelo suelto y la desprotección superficial (falta de cobertura vegetal) hace que la acción de la lluvia sea muy erosiva aun cuando los períodos de lluvia sean cortos.
- Erosión hídrica: asociado a los cursos de las quebradas El Timbo y
 Guarderas, así como en el río San Pedro, se presenta socavación del cauce
 en sentido lateral y vertical activa en los cursos donde existen las descargas
 de aguas servidas, contribuye a este proceso la presencia de materiales
 finos.
- Erosión eólica: causada por el arrastre que ejerce el viento sobre la superficie parcialmente cubierta de vegetación y en las vías sin asfalto, su presencia es generalizada en toda el área con una magnitud limitada

 Remoción en masa: se consideran a los movimientos del terreno localizados en las márgenes descomprimidas de las quebradas, por falla del terreno de laderas y taludes de excavación; cuando se agrega a éste la acción de socavación de los cauces se producen deslizamientos compuestos, el proceso se incrementa en épocas de invierno. Las áreas afectadas por el fenómeno son puntuales.

5.6. Aspectos socioeconómicos

En la tabla (36) se explica la población del cantón Mejía en donde: conforme el Censo Nacional de Población y Casa al año 2010, la población del cantón Mejía perteneció a 81.335 personas, de las cuales el 55,90 % se ubicaban en la zona de la PEA. A dicho año el desempleo se ubicaba en el 5,32 % y la población dependiente, o sea aquella que estaba desempleada, personas de la tercera edad o chicos estaba en torno al 44,10 % (Gobierno del Cantón Mejía 2015).

La población económicamente activa del área urbana (58,05 %) es mayor que la población económicamente activa del área rural (55,39 %). El sector urbano cuenta con una mayor población ocupada con un 96,41 % frente a un 96,29 % del sector rural. Por lo tanto, se evidencia una menor desocupación en el área urbana con un 3,59 %; mientras que el área rural registra un 3,71 %. En términos generales, en el Cantón Mejía un número considerable de la población en edad de trabajar es económicamente activa, es decir se dedica a diversas actividades de producción de bienes y servicios (Gobierno del Cantón Mejía 2015).

Tabla 36Población activa e inactiva urbana y rural

	Mejía					
Categoría / Área	Área urbana		Área rural			
	Total (hab.)	%	Total (hab.)	%		
Activa (a)	7751	58,05%	28330	55,39%		
Ocupados	74730	96,41%	27278	96,29%		
Desocupados	278	3,59%	1052	3,71%		
Población Inactiva						
Inactiva (b)	5602	41,95%	22817	44,61%		
Pet (a+b)	13353	100,00%	51147	100,00%		

Nota: Población activa e inactiva urbana y rural fuente INEC Censo de Población y Vivienda 2010. Elaborado por: Luis Chicaiza y Christian Pintado.

5.7. Aspectos legales

El análisis de efecto ambiental se desarrollará en concordancia con los próximos puntos jurídicos involucrados con el desempeño ambiental de esta clase de ocupaciones. En la investigación se tendrá que integrar las posiciones municipales vigentes, que correspondan al plan. Posteriormente, en la tabla (37) se muestra descriptivo el requerimiento de análisis de efecto ambiental y el licenciamiento del plan.

Tabla 37 *Marco legal*

Instrumento	Documento de promulgación	Artículos destacados	Relación con el proyecto
Políticas básicas ambientales del Ecuador	Ley de Gestión Ambiental. Normas de Calidad Ambiental. Ley orgánica del sistema de salud. Normas de EPMAPS	Decreto 1589, registró oficial 320 del 26 julio 2006.	El control de la calidad ambiental para prevenir, limitar y evitar actividades que generen efectos nocivos y peligrosos para la salud humana o deterioren el medio ambiente o los recursos naturales, calidad del aire y contaminación acústica; seguridad del trabajador.
salud. Normas de EPMAPS - A Ambien - A Derecho Libertad - A Derecho naturale - A Biteral 6 Respons No. 449 del 20 de Octubre del 2008 - A Biodiver - A 412 Sec Agua - A Biósfera		Responsabilidades - Art, 395 Naturaleza y Ambiente - Art. 400 Biodiversidad - Art. 411, 412 Sección sexta	La Constitución de la República establece las políticas y lineamientos fundamentales sobre los cuales las instituciones públicas, privadas y los proponentes están obligadas como actores y organismos de control a desarrollar sus actividades y funciones, los artículos pertinentes al estudio se refieren específicamente a reconocer el derecho de la población a vivir en un ambiente sano y ecológicamente equilibrado, que garantice la sostenibilidad y el buen vivir, sumak kawsay.
Instrumento	Documento de promulgación	Artículos destacados	Relación con el proyecto
Ley reformatoria al código penal, capitulo x A. de los delitos contra el medio ambiente	Capítulo agregado por el Art. 2 de la Ley 99-49, Registro Oficial No. 21 del 25 de enero del 2000.	- Art. 437 A - Art. 437 B - Art. 437 C - Art. 437 E	El código penal da a conocer las sanciones que existen, por delitos contra el medio ambiente, o quien causare daño o alteración a la flora, fauna.

Ley orgánica de salud	Publicado en el R.O. No. 423 del 22 de diciembre del 2006, esta ley fue quien derogó al Código de Salud.	- Art. 6, Literal 16 De la Autoridad Sanitaria Nacional - Art. 7, Derechos y Deberes de las personas y del Estado en Relación con la Salud Art. 118, Salud y Seguridad en el Trabajo.	Los artículos tienen relación con el proyecto en vista para regular las normas de seguridad y condiciones ambientales en las que se desarrollan sus actividades los trabajadores.
Ley de gestión ambiental	Llamada también Ley No. 99-37, publicada en el Registro Oficial No. 245 del 30 de Julio de 1999	- Art 1, 2 y 6; Ámbitos y Principios de Ley	Estos artículos se relacionan con el proyecto en vista de que marcan los principios y directrices de la política ambiental para desarrollar el Estudio.
	Instrumentos de Gestión Ambiental	- Art. 19, 20, 21, 22, 24, De la Evaluación de Impacto Ambiental y del Control Ambiental.	Estos artículos se encuentran relacionados al proyecto en vista de que las obras públicas y privadas mixtas y los proyectos de inversión públicos o privados que puedan causar impactos ambientales, deben previamente a su ejecución ser calificados por los organismos descentralizados de control, conforme al Sistema Único de Manejo Ambiental SUMA.

Instrumento	Documento de promulgación	Artículos destacados	Relación con el proyecto
		- Art. 33, Aplicación de Normas Ambientales	La Ley de Gestión Ambiental, se viabiliza a través del Sistema Único de Manejo Ambiental SUMA, el cual es un sistema de coordinación, integración y cooperación entre los diversos ámbitos de la gestión ambiental y manejo de los recursos naturales; este se encuentra regido a las disposiciones técnicas por la autoridad ambiental, en función al Art. 10 de esta Ley.
Codificación de ley de prevención y control ambiental, codificación 2004-020	Publicada en el Suplemento del Registro Oficial No. 418 del 10 de Septiembre del 2004.	- Art. 1, 5 De la Prevención y Control de la Contaminación del Aire.	Está relacionada con la prohibición de expeler hacia la atmósfera o descargar en ella, contaminantes que puedan perjudicar la salud y vida humana, la flora, la fauna y los recursos o bienes del estado o de particulares o constituir una molestia.
			De igual manera en el desarrollo del proyecto de la urbanización queda prohibido descargar, sin sujetarse a las correspondientes normas técnicas y regulaciones aguas residuales que contengan contaminantes que sean nocivos a la salud humana, a la fauna, flora y a las propiedades.

Instrumento	Documento de promulgación	Artículos destacados	Relación con el proyecto
		- Art. 7, De la Prevención y Control de la Contaminación de los suelos.	En el desarrollo del proyecto quedará prohibido descargar, sin sujetarse a las correspondientes normas técnicas y regulaciones, cualquier tipo de contaminantes que puedan alterar la calidad del suelo y afectar a la salud humana, la flora, la fauna, los recursos naturales y otros bienes.
Texto unificado de legislación ambiental secundaria	Publicado en el Registro Oficial Edición Especial 2, del 31 de marzo del 2003.	Libro VI Anexo 1- NORMA DE CALIDAD AMBIENTAL Y DE DESCARGA DE EFLUENTES: RECURSO AGUA, literal 4.2.2.4	Toda área de desarrollo urbanístico, turístico o industrial que no contribuya al sistema de alcantarillado público deberá contar con instalaciones de recolección y tratamiento convencional de residuos líquidos. El efluente tratado descargará a un cuerpo receptor o cuerpo de agua, debiendo cumplir con los límites de descarga a un cuerpo de agua dulce.
		Libro VI Anexo 6 – NORMA DE CALIDAD AMBIENTAL PARA EL MANEJO Y DISPOSICIÓN FINAL DE DESECHOS SÓLIDOS NO PELIGROS, 4.1.3	Los propietarios de las obras tienen la responsabilidad de almacenar las tierras y escombros de manera adecuada y por un tiempo limitado debiendo señalizar de forma adecuada el área utilizada para prevenir cualquier tipo de accidente, evitando de esta manera causar problemas a los peatones o impedir la libre circulación de los vehículos. El propietario de las obras será el responsable por la acumulación de desechos sólidos que se ocasionare en la vía pública estando obligado a dejar limpio el espacio afectado. Los propietario, empresarios y promotores de las obras y trabajos serán responsables solidarios en el transporte de las tierras y escombros. La responsabilidad sobre el destino final de las tierras y escombros, termina en el momento en que estos materiales son recibidos y descargados en los lugares autorizados para el efecto por la entidad de aseo del Municipio.

Nota: Marco legal impacto ambiental. Elaborado por: Luis Chicaiza y Christian Pintado.

En la ilustración (26), se describe el sistema político administrativo del cantón Mejía.

Ilustración 26
Sistema político administrativo

TABLA	TABLA CPIPC 1 Sistema Político Administrativo				
			De las instituciones públicas y de actores privados para guiar o	Objetivos Atención Eficiente a las necesidades de la comunidad	Reconocimiento mutuo de todos los actores en su
trativo	Gestión del Territorio		promover procesos orientados al desarrollo y al manejo del territorio	Facilitar la elaboración de un Plan de Desarrollo (problemas y soluciones): población proponga metas y objetivos, se involucre en el reto de la ejecución de las soluciones	Sistema regitimo
Administ	GAD y orgo trabajo er de aporta	GAD y organizaciones para el trabajo en redes con la finalidad de aportar a la administración del territorio	Comites de auditoría social: diversificar competencias entre empresa pública y privada, cumpliemiento de metas	ONG, gremios, asociaciones de consumidores, organizaciones sociales, empresas, etc.	
ia Político		n p	Promover la democratización del poder	Control Social procesos públicos	De todos los ciudadanos y ciudadanas en la toma de deciciones
stem	Participación Ciudadana			Población sujeto de su desarrollo y protagonismo activo de su transformación Se garantiza la tranparencia y la rendición de cuentas de acuerdo con la Constitución	Gobierno Nacional Gobierno Provincial
iS			Elemento fundamental que garantiza la democracia	Consejo Cantonal de Planificación Instancia de deliberación y generación de lineamientos y consensos estratégicos a largo plazo articulado al desarrollo nacional	GAD Municipal del Cantón Mejía Empresas privadas, organizaciones sociales, ONG, etc.

Nota: Sistema político administrativo fuente (Gobierno del Cantón Mejía 2015). Elaborado por: EQUIPO PDOT GAD MEJIA 2014.

5.8. Fases que conforman el proyecto

El proyecto identifica los componentes que generan un impacto ambiental considerando las acciones relevantes. Muestra impactos a corto, mediano y largo plazo en esas diversas fases construcción y operación, para determinar los componentes que tienen impactos ambientales, en la tabla (38) se enumeran los impactos.

Tabla 38:Componentes de generación de impactos ambientales en el proyecto

Impacto a mediano y largo plazo Impacto a corto plazo -Instalación de campamento -Excavación y movimiento de tierra -Almacenamiento temporal de tierra de -Las fases de construcción se las inicia excavación y materiales de construcción desde la parte de descarga hacia aguas arriba, de esta forma se puede iniciar el -Generación de escombros y desechos sólidos uso del sistema mientras avanza el -Acarreo de material suelto por escorrentía pluvial provecto. -Preparación de materiales -Mantenimiento del sistema una vez -Emisión de polvo y ruido -Condiciones de circulación vehicular terminado el mismo y en diferentes lapsos -Transportación de materiales de construcción, de tiempo. -Monitoreo y seguimiento del sistema. excavación y desechos - Mantenimiento de las Plantas de -Demanda de servicios básicos requerida del Tratamiento personal de trabajo -Calidad del aire, vistas escénicas y paisaje -Afectaciones a propiedades -Cierre de obra

Nota: Componentes de generación de impactos ambiental a corto, mediano y largo plazo. Elaborado por: Luis Chicaiza y Christian Pintado.

5.9.Identificación y evaluación de impactos ambientales

En este capítulo se identifican esos elementos de los impactos del medio ambiente directos sobre los cuales se prevé una más grande afectación basándose en el tamaño del plan de alcantarillado, en la información y el diagnóstico del medio.

Conforme con la tabla (38) los componentes del medio ambiente sobre los cuales hay la más grande incidencia del plan en la etapa de creación son:

- Impactos moderados: vistas escénicas y paisaje, seguido del grado sonoro.
- Después continúan afectaciones irrelevantes sobre lo demás de componentes del medio ambiente.
- Hay una pequeña incidencia negativa sobre infraestructura y el trabajo, ya que, en las afectaciones a características, éstas dejaran de ser productivas y disminuirán el trabajo local.

Y las acciones que mayor incidencia tienen sobre los factores ambientales en la fase de construcción son:

- Incidencia moderada: excavaciones en área por las plantas de procedimiento, seguido por la remoción, limpieza y desbroce
- Las otras actividades su incidencia es irrelevante.
- El mantenimiento de las plantas de procedimiento, primordialmente de aguas residuales, son las que más grande efecto negativo se tiene, y es gracias a la generación de lodos por los procesos de procedimiento.

En la tabla (39) se identifica la problemática para cada sector en la cual la contaminación ha tenido incidencia en los recursos naturales.

Tabla 39

Problemática de alteración y/o contaminación al componente abiótico (aire, agua, suelo)

	Problemática			
Ubicación / Sector	Evidencia de contaminación / Alteración	Actividad antrópicas	Incidencia al recurso natural	
Río San Pedro, Quebrada El Timbo, Quebrada Tomajana, Quebrada Cumbiteo, Río Jambelí, Río Pilatón, Quebrada El Belén	Sólidos en suspensión, mal olor, presencia de ratas	Evacuación de aguas servidas	Agua, aire, suelo	
Florícolas (Aloasí, Machachi, Chaupi)	Olor a pesticidas	Fumigaciones con agroquímicos	Aire, agua, suelo	
Intercambiador El Obelisco de Alóag	Smog	Circulación de transporte pesado	Aire	
Quebrada Miraflores, Quebrada Llugsi, Quebrada El Timbo, Río San Pedro, Quebrada El Belén	Colorantes, aceites, sólidos en suspensión	Descargas de producción industrial de fábricas	Agua, suelo	
Río Mapa, Río Pilatón	Aceites y detergentes	Lavadoras de autos	Agua, suelo	
Río Pilatón	Sólidos en suspensión, mal olor, presencia de ratas	Producción porcícola	Agua, suelo	
Parroquia Chaupi (páramos)	Cambio de uso de suelo (páramo-reforestación con especies exóticas; pino) Disminución de reservas de agua que provocan las disminución de caudales en esteros y ríos	Establecimiento de plantaciones forestales por COTOPAXI y NOVOPAN	Agua, suelo	
Áreas con pendientes mayores a 30% Riveras de ríos, acequias y quebradas con pendientes mayores a 15%	Erosión de suelo Desertificación, Afloramiento de roca, Quema de pajonales e incendios	Disminución de cobertura vegetal por deforestación	Suelo	

Nota: Problemática de alteración y contaminación fuente (Gobierno del Cantón Mejía 2015). Elaborado por: Luis Chicaiza y Christian Pintado.

5.10. Plan de manejo ambiental (PMA)

Se elaboró el Plan de Manejo Ambiental (PMA) del proyecto de acuerdo a una metodología en la cual los programa y actividades para atenuar los impactos negativos relacionados con la ejecución de obra.

Se crearon medidas técnicamente factibles para prevenir, mitigar e indemnizar los impactos del medio ambiente determinados, los cuales emergen de la evaluación ambiental de las ocupaciones de creación del plan y en su etapa de operación.

5.10.1. Medidas de prevención y reducción

A continuación, se señalan las actividades a tener en cuenta con el propósito de mitigar o prevenir los impactos causados por el plan; estas medidas permanecen encaminadas a prevenir los impactos que podrían ocasionarse como resultado del desarrollo de las ocupaciones para la obra.

Las actividades son:

- a) Desalojo y depósito de los materiales excavados.
- b) Transporte de materiales y movimiento de maquinarias
- c) Construcción y funcionamiento de campamentos y bodegas.
- d) Mantenimiento de equipos y maquinaria

Entre otros, los impactos que se producirán por efectos de estas actividades son:

- Polvo
- Ruido
- Acumulación de material

5.10.1.1. Desalojo y depósito de los materiales excavados

Todos los materiales provenientes de las excavaciones y residuos de construcción que no sean adecuados para utilizarlos para agregados, rellenos, terraplenes y otras obras,

así como los materiales sobrantes deberán llevarse a las escombreras autorizadas por el Municipio de Mejía.

El transporte del material de excavaciones y sobrante de las obras, será responsabilidad del constructor.

El constructor no deberá interferir en las labores de otros Contratistas, durante el desalojo de los materiales, ni ocupar zonas asignadas para otros trabajos, sin previa autorización de la Fiscalización.

Los materiales provenientes de las excavaciones y que el constructor o la fiscalización deseen utilizar, deberán depositarse donde la fiscalización ordene.

El contratista deberá tomar todas las precauciones del caso para conservar y preservar los drenajes existentes y prevenir cualquier acumulación de agua, que resulte del depósito de los materiales excavados. Estos depósitos deberán ser estables y no deberán producir inestabilidad en los taludes naturales cercanos o de alguna parte de la obra.

5.10.1.2. Transporte de Materiales y Movimiento de Maquinarias

A fin de mitigar los impactos que el transporte de materiales y el desplazamiento de maquinarias producen, posteriormente, se muestran las ocupaciones y medidas que permitan provocar el mínimo malestar a la salud humana y al ambiente que circunda a la obra.

A lo largo de la obra, y especialmente con fundamento de los movimientos terrestres que se tengan que llevar a cabo para consumar las condiciones de diseño de la obra, en la fase de creación, carga, transporte o de colocación de materiales, se tendrá que evadir que estas labores hagan contaminación atmosférica por acción de las partículas de polvo.

Se deberán tomar cada una de las precauciones correctas para evadir el vertido de material a lo largo del transporte. Para el impacto, los vehículos contarán con lonas de recubrimiento.

Los trabajos de transporte de materiales para la obra, deberán programarse y acoplarse de forma de eludir todo mal a las vías existentes, a las estructuras y a otros bienes públicos o privados. Se tendrá que tener en cuenta que los vehículos no excedan los pesos por eje máximos autorizados.

Todo material que sea encontrado fuera de lugar, a causa de descuido en el transporte, como restos de hormigón, rocas, etc., será retirado inmediatamente.

5.10.1.3. Construcción y funcionamiento de campamentos y bodegas

"El diseño y la ubicación de los campamentos y sus instalaciones, deberán ser tales que no ocasionen la contaminación de aguas superficiales. Las edificaciones para campamentos podrán ser del tipo fijo, desmontable o móvil" (TÚQUERREZ RODRÍGUEZ and TOAPANTA ZURITA, JEFFERSON 2021)

"Los campamentos deben satisfacer necesidades sanitarias, higiénicas, recreativas y de seguridad, y para esto deben contar con sistemas adecuados de provisión de agua, evacuación de desechos, alumbrado, equipos de extinción de incendios, y señalización informativa y de precaución contra accidentes e incendios" (TÚQUERREZ RODRÍGUEZ and TOAPANTA ZURITA, JEFFERSON 2021).

5.10.1.4. Mantenimiento de equipos y maquinaria

El mantenimiento de equipos y maquinaria necesario para la ejecución del proyecto debe disponer de ciertas condiciones mínimas de prevención y control de contaminantes, pues en esa área se trabaja con aceite, grasas, gasolinas, etc.

Para el efecto se deberá tomar en cuenta las siguientes acciones:

Para el mantenimiento de maquinaria donde se estacionen o movilicen maquinaria o vehículos, debe ser un lugar definido donde se deberá instalar sistemas de manejo y disposición de grasas y aceites (trampas de grasas) a fin de que todos los derrames y posteriores escurrimientos de grasas y combustibles que eventualmente ocurran en estas áreas, no contaminen los cuerpos receptores (TÚQUERREZ RODRÍGUEZ and TOAPANTA ZURITA, JEFFERSON 2021).

Los residuos de aceites y lubricantes deberán retenerse en recipientes herméticos y disponerse en sitios adecuados de almacenamiento con miras a su posterior desalojo y eliminación, cumpliendo con lo establecido en el TULAS.

El abastecimiento de combustible, mantenimiento de maquinaria y equipo pesado, así como el lavado de vehículos, se efectuará en forma tal que se eviten derrames de hidrocarburos u otras sustancias contaminantes a las alcantarillas o al suelo directamente.

5.10.1.5. Medidas para el control del polvo

Este trabajo consistirá en la aplicación de un paliativo para controlar el polvo que se produzca, como consecuencia de la construcción de la obra o del tráfico de vehículos y equipo pesado que transita por el proyecto y los accesos.

En este sentido, se deberá considerar las siguientes acciones:

El control de polvo se lo hará mediante el empleo de agua, la misma que deberá ser distribuida de modo uniforme con un sistema de mangueras y rociadores, o banquero con su respectiva flauta. La rata de aplicación será entre los 0,90 y los 3,5 litros por metro cuadrado. Su frecuencia de aplicación se definirá en base a los requerimientos durante la realización de los trabajos.

5.10.1.6. Prevención y control de la contaminación del aire

Con el fin de mitigar los impactos negativos en la calidad del aire debidos a las emisiones de gases contaminantes que salen de vehículos, transporte pesado, maquinaria y otros, a continuación, se dan las pautas a seguir a fin de lograr dicho objetivo.

El constructor deberá ejecutar los trabajos con equipos y procedimientos constructivos que minimicen la emisión de contaminantes hacia la atmósfera, por lo que será de su responsabilidad el control de la calidad de emisiones, olores, humos, polvo y quemas incontroladas.

Para esto, tendrá que conservar un correcto mantenimiento de sus grupos y maquinaria, en especial de esos propulsados por motores de combustión interna con uso de combustibles fósiles. Llevará un riguroso control de las emisiones de humos y gases.

Se prohibirá la utilización de equipos, materiales o maquinaria que produzcan emisiones objetables de gases, olores o humos a la atmósfera. El personal técnico y obreros de la obra vial, deberán ser protegidos contra los riesgos producidos por altas concentraciones de polvo en el aire, que se producirá en las diversas actividades de la construcción.

No se dejará la quema a cielo abierto, sea para supresión de desechos, llantas, cauchos, plásticos, de arbustos o maleza, en zonas desbrozadas, o de otros residuos, o sencillamente para abrigar a los empleados a lo largo de tiempos fríos. Para evadir este caso, el constructor emplazará rótulos con frases preventivas y alusivas al asunto en todos los frentes de trabajo, para información y entendimiento de todo el personal que trabaja en la obra.

5.10.1.7. Prevención y control de ruidos y vibraciones

El sonido es todo ruido indeseable percibido por el receptor y que al igual que las vibraciones, si no se implementan las medidas de prevención y control correctas, tienen

la posibilidad de crear relevantes implicaciones negativas en la salud de los obreros y operarios de las fuentes generadoras de éstos, además de la población circundante al proyecto.

Para el efecto se deberá tomar en cuenta los siguientes aspectos:

Los niveles de ruido, y vibraciones generados en los diversos frentes de trabajo deberán ser controlados a fin de evitar perturbar a quienes habitan en las inmediaciones al proyecto.

La maquinaria y grupos, cuyo desempeño haga niveles de sonido mejores a los 75 dB, deberán ser movilizados a partir de los sitios de obra a los talleres para ser reparados y retornarán al trabajo cuando éstos cumplan con los niveles admisibles. Además, se garantiza que las labores de creación que realizarán se efectuarán en los rangos de sonido estipulados en la Ley de Prevención y Control de la Contaminación, Reglamento relacionado al sonido.

El control y corrección del ruido y/o vibraciones puede requerir de la ejecución de alguna de las siguientes acciones:

Reducir la causa, mediante la utilización de silenciadores, para el caso de vehículos, maquinaria o equipo pesado y de amortiguadores para mitigar las vibraciones.

Aislamiento de la fuente emisora mediante la instalación en locales cerrados y o en los talleres de mantenimiento la maquinaria, revistiendo las paredes con material absorbente de sonido.

Control y eliminación de señales audibles innecesarias tales como sirenas y pitos.

Hay que evitar que los trabajos de excavación sean realizados por la noche, a fin de no interferir en las horas de descanso de la población de las inmediaciones del proyecto.

5.10.2. Medidas de mitigación de los impactos

Estas medidas son para reducir o disminuir el impacto de un efecto ambiental negativo hasta llevarlo a un grado permisible o aceptable. Por lo tanto, se toma presente las próximas ocupaciones:

- Se tendrá que llevar a cabo métodos de segregación de los desperdicios contaminados con hidrocarburos.
- Se tendrá que detectar sitios destinados para el almacenamiento temporal de éste tipo de desperdicios.
- Se deberá concienciar al personal sobre la correcta disposición de los desechos contaminados con hidrocarburos.
- Se deberá entregar estos desechos a un gestor tecnificado de residuos, para esto recurrirá al listado de la Dirección de la Secretaría de Ambiente del Municipio de Mejía.

En tabla (40) contiene la estructura, el impacto y las medidas que se pueden dar al plan de manejo ambiental.

Tabla 40Plan de manejo ambiental (PMA)

Estructura	Impacto	Descripción	Medidas
Prevención y mitigación de impactos	Erosión y escorrentía cargada de sólidos, deterioro del suelo	Depósito temporal de tierra y escombros arrastrados por la escorrentía pluvial	Desalojo pertinente y oportuno de material de excavación, avance por tramos manteniendo una limpieza continua, iniciando desde la parte inferior del sistema, utilización de barreras de intersección que impidan el asolvamiento de los cuerpos a la quebrada
Manejo de desechos	Emisiones gaseosas y material articulado y control de ruido	El sistema de alcantarillado a implementar conlleva múltiples materiales, maquinaria que pueden llegar a contaminar el suelo y agua; el movimiento de grandes maquinarias generará ruido	Fiscalización vigila que se respete y se deposite los materiales sobrantes en una escombrera certificada; monitoreo de calidad de agua a base de parámetros fisicoquímicos y bacteriológicos, para el control del polvo se deberá humedecer periódicamente el material; la jornada de trabajo no involucra el tranquilo descanso de los moradores.
Contingencia y emergencia	Riesgo de accidentes a trabajadores	Ante la carencia de entubamiento y técnica constructiva se puede provocar deslizamientos o derrumbes.	Fiscalización debe aprobar los esquemas descriptivos de entubamiento, apuntalamiento y soportes para precautelar la seguridad; charlas de actuación frente a riesgos eminentes; protección para los trabajadores con equipo de seguridad y afiliación al IESS.

Estructura	Impacto	Descripción	Medidas
Rehabilitación de áreas afectadas	Aumento de carga sedimentaria en los cuerpos hídricos, pérdida de estabilidad	Cobertura vegetal removida, mayor exposición de suelo a lluvias, intensifica procesos de erosión.	Verificación de las principales causas de pérdidas de suelo magnitud de procesos erosivos, revegetación inmediata al término de trabajos en cada tramo, conformación de pendientes y terrazas como construcción de barreras.
Participación ciudadana	Afectación al bienestar de los transeúntes como la población y trabajadores	Las actividades de apertura implantada en áreas con asentamientos humanos generan ruido, polvo, vibraciones, asentamientos, tránsito vehicular,	Éste impacto localizado es de corta duración, las medidas de construcción se socializarán
Monitoreo y seguimiento	Almacenamiento de combustibles y productos químicos	El incorrecto manejo de aceites, combustibles, grasa puede presentar una combustión y/o afectación al agua y suelo.	Capacitación e inducción ambiental en obra para el correcto almacenamiento en bodega, para material especial como material combustible e inflamable, el cual se debe ubicar en el patio de mantenimiento de maquinaria; exigir gestores autorizados para la recepción de estos lubricantes, y ubicar la señalética pertinente.
Exclusión de planta de tratamiento	Aumento de carga sedimentaria disminuye la calidad del agua.	Al no presentar planta de tratamiento, el caudal sanitario puede presentar alteraciones a la calidad del agua cuando éste desemboque a un cauce natural.	Éste impacto negativo se considera con la magnitud de carga sedimentaria descargada al cauce natural, si bien la población es de 5995 habitantes proyectados en 30 años, éste se unirá a sistemas que existen aguas abajo y se manejará en un futuro por la planta de tratamiento de

Estructura	Impacto	Descripción	Medidas
Cierre y abandono	Gestión de aguas residuales en campamento, mantenimiento de la maquinaria para que no produzcan contaminación excesiva.	Parte de la construcción del sistema es devolver el entorno inicial del área intervenida.	Dotación de un sistema de disposición de excretas que no afecte al entorno conectándose al sistema este trabaja con tramos desde la parte inferior con el beneficio de utilización inmediata, queda prohibido quemar todo tipo de basura; se realiza el mantenimiento de los equipos y maquinarias; desmontaje y limpieza del campamento.

Nota: Plan de manejo ambiental fuente (LLIVE REIMUNDO 2020). Elaborado por: Luis Chicaiza y Christian Pintado.

CAPÍTULO VI

PRESUPUESTO Y CRONOGRAMA

6.1.Introducción

Para realizar el presupuesto se debe recopilar todas las actividades que comprende el proyecto, es por ello que se debe identificar toda información que se presenta para la ejecución del sistema de alcantarilla sanitario, el presupuesto es una estimación del costo total antes del inicio de obra y el costo que tendrá cada etapa mediante la cuantificación de los rubros y los precios unitarias pues esto es conocer a detalle cada una de las herramientas, materiales, equipo, cantidad y mano de obra que se emplea en cada actividad.

Se elaboró el presupuesto del proyecto y cada APU en función a las revistas proporcionadas por la Cámara de la Construcción en conjunto con las especificaciones de la EPAA-Mejía.

6.2.Presupuesto referencial

Costos directos

Son aquellos que influyen de manera directa en la construcción del proyecto.

Costos indirectos

Para ello se tomó en cuenta la suma de los costos técnicos más lo administrativos los mismos que son indispensables para llevar acabo la obra.

Los gastos generales no relacionados con el tiempo de ejecución de obra se presentan a continuación, pero antes se indica que en el EPAA se trabaja con los costos indirectos con el 20%.

- Gastos en licitación y contratación
- Patentes
- Licitaciones no otorgadas

- Impuestos
- Servicios básicos

Precio Unitario

Un Análisis de Precio Unitario (APU) es un modelo que estima el costo por unidad de medida de una partida, un APU consta de varios ítems como:

- Equipo y herramienta
- Mano de obra
- Materiales.

La unidad de tiempo del análisis es 1 día. Por lo tanto, los equipos, cuando son alquilados se expresan por \$/día, el rendimiento igualmente se expresa por día. El rendimiento es definido como: la cantidad de obra realizada en un día, con el personal indicado, utilizando las herramientas y equipos indicados.

Equipo y Herramienta

A continuación, se indica el costo de los equipos y herramientas que se utilizaron para la elaboración de los APUS y posteriormente el presupuesto que se presenta en la tabla (41).

Tabla 41Costos de los equipos utilizados para la construcción del proyecto (Cámara de la construcción)

Descripción	Unidad	Tarifa (\$)
Retroexcavadora	hora	25.00
Cortadora dobladora de hierro	hora	1.20
Amoladora eléctrica	hora	1.17
Equipo de Topografía	hora	3.50
Andamio módulo incluye transp.	hora	5.00
Plancha vibrocompactadora	hora	4.24
Caldero	hora	1.20
Sapo apisonador	hora	5.02
Maquina limpieza interna tub -sanblasting	hora	1.38
Excavadora	hora	41.00
Cizalla	hora	0.14
Vibrador eléctrico/gasolina (4-5 m)	hora	2.34
Encofrado metálico	hora	0.05
Equipo Pintura	hora	2.00
Concretera 1 saco	hora	8.38
Volqueta 8m3	hora	30.00
Vibrador	hora	2.34
Compactador Mecánico	u	6.25
Tanquero	hora	14.00
Camioneta	hora	6.16
Computadora de escritorio	hora	1.00

Nota: Costos de los equipos. Elaborado por: Luis Chicaiza y Christian Pintado

Mano de obra

Se delimita como el esfuerzo y/o conocimiento, tanto físico como mental, que una persona puede aportar para completar una tarea de la actividad productiva.

En la ilustración (27), se exponen los salarios de la mano de obra establecidos por la Contraloría General del Estado, de los cuales ciertas categorías se utilizaron para la elaboración de cada uno de los APUS del proyecto.

Ilustración 27

Salarios mínimos de la mano de obra establecidos por la Contraloría General del Estado

REAJUSTE DE PRECIOS SALARIOS MÍNIMOS POR LEY

CATEGORÍAS OCUPACIONALES	SUELDO	DÉCIMO	DÉCIMO	TRANS-	APORTE	FONDO	TOTAL	JORNAL	COST
	UNIFICADO	TERCER	CUARTO	PORTE	PATRONAL	RESERVA	ANUAL	REAL	HORAR
REMUNERACIÓN BÁSICA UNIFICADA MÍNIMA	400,00								
CONSTRUCCIÓN Y SERVICIOS TÉCNICOS Y ARQUIT	ECTONICOS								
ESTRUCTURA OCUPACIONAL E2									
Peón	410,40	410,40	400,00		598,36	410,40	6.743,96	28,94	1 3
Ayudante de albañil	410,40	410,40	400,00		598,36	410,40	6.743,96	28,94	
Ayudante de carpintero	410,40	410,40	400,00		598,36	410,40	6.743,96	28,94	
Ayudante de electricista	410,40	410,40	400,00		598,36	410,40	6.743,96	28,94	
Ayudante de fierrero	410,40	410,40	400,00		598,36	410,40	6.743,96	28,94	
Ayudante de plomero	410,40	410,40	400,00		598,36	410,40	6.743,96	28,94	
ESTRUCTURA OCUPACIONAL D2	400.00								
Ayudante de maquinaria	422,28	422,28	400,00		615,68	422,28	6.927,60	29,73	
Albañil	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Operador de equipo liviano	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Pintor	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Pintor de exteriores	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
intor empapelador	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
етете	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Carpintero	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Encofrador o carpintero de ribera	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Plomero	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Electricista o intalador de revestimiento en general	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Ayudante de perforador	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Cadenero	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Mampostero	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Enlucidor	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Hojalatero	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Técnico liniero eléctrico	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Técnico en montaje de subestaciones	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
l'écnico electromecánico de construcción	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Obrero especializado en la elaboración de prefabricados de hormigón	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
Parqueteros y colocadores de pisos	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	
ESTRUCTURA OCUPACIONAL C1									
Maestro eléctrico/liniero/subestaciones	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	
Maestro mayor en ejecución de obras civiles	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	
Maestro soldador especializado (En Construcción - Estr.Oc.C1)									
ESTRUCTURA OCUPACIONAL C2									
Operador de perforador (En Construcción)	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	
Perfilero (En Construcción)	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	
Técnico en albañilería	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	
Fécnico en obras civiles	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	
Vaestro de obra	439.95	439.95	400.00		641,45	439.95	7.200.75	30.90	
ESTRUCTURA OCUPACIONAL B3	,	,	,		1,45	,	200,75],,,,	
inspector de obra	464.32	464.32	400.00		676.98	464.32	7.577.46	32.52	
Supervisor eléctrico general / Supervisor sanitario general	464,32	464,32	400,00		676,98	464,32	7.577,46	32,52	
ESTRUCTURA OCUPACIONAL B1	404,32	404,32	400,00		070,98	404,32	7.577,40	32,32	
ngeniero Eléctrico	465,51	465,51	400.00		678,71	465,51	7.595.85	32,60	
ngemero Electrico ngeniero Civil (Estructural, Hidráulico y Vial)	465,51	465,51	400,00		678,71	465,51	7.595,85	32,60	
Residente de Obra	465,51	465,51	400,00		678,71	465,51	7.595,85	32,60	
LABORATORIO	405,51	405,51	400,00		0/8,/1	405,51	1.393,683	32,00	
LABORATORIO Laboratorista: (En Construcción - Estr.Oc.C1)	463,52	463,52	400.00		675,81	463,52	7.565,09	32,47	
Laboratorista: (En Construcción - Estr. Oc. C1)	405,32	405,32	400,00		073,81	405,32	1.000,09	52,47	
	463.52	463.52	400.00		675.81	463.52	7 565 00	22.47	
Fopógrafo (En Construcción - Estr.Oc.C1)	405,32	405,32	400,00		0/3,81	405,32	7.565,09	32,47	
Dibujante (En Construcción - Estr.Oc.C2)	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	

OPERADORES Y MECANICOS DE EQUIPO PESADO Y C	AMINERO D	E EXCAV	ACIÓN, C	ONSTRUC	CCIÓN, INDUS	TRIA Y OT	RAS SIMILAI	RES	
ESTRUCTURA OCUPACIONAL C1									
Motoniveladora	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Excavadora	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Grúa puente de elevación	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Pala de castillo	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Grúa estacionaria	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Draga/Dragline	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Tractor carriles o ruedas (bulldozer, topador, roturador, malacate, trailla)	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Tractor tiende tubos (side bone)	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Mototrailla	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Cargadora frontal (Payloader, sobre ruedas u orugas)	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Retroexcavadora	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Auto-tren cama baja (trayler)	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Fresadora de pavimento asfáltico / Rotomil	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Recicladora de pavimento asfáltico / Rotomil	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Planta de emulsión asfáltica	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Máquina para sellos asfálticos	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Squider	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Camión articulado con volteo (En Construcción)	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Camión mezclador para micropavimentos	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Camión cistema para cemento y asfalto (Adicional al traslado debe									
conectar los equipos para embarque y desembarque, monitorear equipo de	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
presión)									
Perforadora de brazos múltiples (jumbo)	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Máquina tuneladora (topo)	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Concretera rodante / migser	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Máquina extendedora de adoquín	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Máquina zanjadora	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,06
Nota: El listado corresponde exclusivamente a las estructuras ocupacionale Ministeriales MDT-2020-249 y MDT-2020-282 de 30 de noviembre y 22 d								n los Acuerdos	

	SUELDO	DÉCIMO	DÉCIMO	TRANS-	APORTE	FONDO	TOTAL	JORNAL	COSTO
CATEGORÍAS OCUPACIONALES	UNIFICADO	TERCER	CUARTO	PORTE	PATRONAL	RESERVA	ANUAL	REAL	HORARI
ESTRUCTURA OCUPACIONAL C2 Operador responsable de planta hormigonera	439,95	439.95	400,00		641,45	439.95	7.200,75	30.90	3,8
						439,95			
Operador responsable de planta trituradora	439,95	439,95	400,00		641,45		7.200,75	30,90	3,8
Operador responsable de planta asfáltica	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Operador de track drill	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Operador de rodillo autopropulsado	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Operador de distribuidor de asfalto	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Operador de distribuidor de agregados	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Operador de acabadora de pavimento de hormigón	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Operador de acabadora de pavimento asfaltico	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Operador de grada elevadora / canastilla elevadora	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Operador de bomba impulsadora de hormigón, equipos móviles de planta,									
nolino de amianto, planta dosificadora de hormigón, productos terminados	439,95	439,95	400,00		641,45	439,95	7.200,75	30.90	3.
tanques moldeados, postes de alumbrado eléctrico, acabados de piezas	433,33	439,93	400,00		041,45	439,93	7.200,73	30,90	٥,
afines)									
Operador de tractor de ruedas (barredora, cegadora, rodillo remolcado,	439.95	439,95	400,00		641,45	439.95	7.200,75	30,90	3.
franjeadora)	,				-	,			
Operador de caldero planta asfáltica	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Operador de barredora autopropulsada	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Operador de punzón neumático	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Operador compresor	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Camión de carga frontal (En Construcción)	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3.
Operador de camión de volteo con o sin articulación / Dumper (En									
Construcción)	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
Operador miniexcavadora/minicargadora con sus aditamentos	439.95	439.95	400.00		641.45	439.95	7.200.75	30.90	3.
Operador termoformado	439.95	439.95	400.00		641.45	439.95	7.200.75	30.90	3.
Técnico en carpintería	439,95	439,95	400,00		641.45	439,95	7.200,75	30,90	3,
Técnico en mantenimiento de viviendas y edificios	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
	433,33	435,53	400,00		041,45	439,93	7.200,75	30,90	
ESTRUCTURA OCUPACIONAL C3	422.29	422.29	400,00		C15 70	422.20	6.927,76	20.72	
Operador máquina estacionaria clasificadora de material					615,70	422,29		29,73	3,
Soldador en construcción	422,29	422,29	400,00		615,70	422,29	6.927,76	29,73	3,
MECÁNICOS									
Mecánico de equipo pesado caminero (En Constricción - Estr.Oc.C1)	463,52	463,52	400,00		675,81	463,52	7.565,09	32,47	4,
	,						,		
Mecánico de equipo liviano (Estr.Oc.C3)	422,29	422,29	400,00		615,70	422,29	6.927,76	29,73	3,
SIN TITULO									
Engrasador o abastecedor responsable en construcción (En Construcción -	415,75	415,75	400,00		606,16	415,75	6.826,66	29.30	3,
Estr.Oc.D2)	415,75	415,75	400,00		000,10	415,75	0.020,00	25,50	-
CHOFERES PROFESIONALES									
CHOFER: De vehículos de emergencia (Ambulancia, motobomba,			400.00		206.44	61101	0.004.00	12.51	
carrocistema, entre otros - Estr.Oc.C1)	614,84	614,84	400,00		896,44	614,84	9.904,20	42,51	5,
CHOFER: Para camiones pesados y extra pesados con o sin remolque de									
más de 3.5 toneladas (Estr.Oc.C1)	614,84	614,84	400,00		896,44	614,84	9.904,20	42,51	5,
CHOFER: Tráiler (Estr.Oc.C1)	614,84	614,84	400,00		896,44	614,84	9.904,20	42,51	5.
CHOFER: Volquetas (Estr.Oc.C1)	614,84	614,84	400,00		896,44	614.84	9.904,20	42,51	5,
CHOFER: Tanqueros (Estr.Oc.C1)	614,84	614,84	400,00		896,44	614,84	9.904,20	42,51	5.
CHOFER: Plataformas (Estr.Oc.C1)	614,84	614,84	400,00		896,44	614,84	9.904,20	42,51	5.
CHOFER: Otros camiones (Estr.Oc.C1)	614.84	614.84	400,00		896.44	614.84	9.904,20	42,51	5.
CHOFER: Onos camiones (Estr.Oc.C1) CHOFER: Para ferrocarriles (Estr.Oc.C1)		614,84	400,00		896,44		9.904,20	42,51	5,
	614,84					614,84			
CHOFER: Para auto ferros (Estr.Oc.C1)	614,84	614,84	400,00		896,44	614,84	9.904,20	42,51	5,
CHOFER: Camiones para transportar mercancías o sustancias peligrosas	614,84	614,84	400,00		896,44	614,84	9.904,20	42,51	5,
y otros vehículos especiales (Estr.Oc.C1)									
CHOFER: Para transporte Escolares-Personal y turismo, hasta 45	608,39	608,39	400,00		887,03	608,39	9.804,49	42,08	5,
pasajeros (Estr.Oc.C2)		1				-		-	
CHOFER: Para camiones sin acoplados (Estr.Oc.C3)	594,06	594,06	400,00		866,14	594,06	9.582,98	41,13	5,
ESTRUCTURA OCUPACIONAL C2									
Operador de bomba lanzadora de concreto	439,95	439,95	400,00		641,45	439,95	7.200,75	30,90	3,
ESTRUCTURA OCUPACIONAL D2									
Preparador de mezcla de materias primas	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	3,
Tubero (En Construcción)	415,75	415,75	400,00		606,16	415,75	6.826,66	29,30	3.
ESTRUCTURA OCUPACIONAL E2	,		,.,		,	,		,	-,
Resanador en general (En Construcción)	410.40	410.40	400.00		598 36	410.40	6.743.96	28.94	3.
Tinero de pasta de amianto	410,40	410,40	400,00		598,36	410,40	6.743,96	28.94	3.

Nota: Salarios mínimos establecidos por la contraloría en el año 2021. Elaborado por:(ESTADO 2021).

Se elaboraron 41 rubros para la construcción del alcantarillado sanitario. Los rubros se dividieron en replanteo y nivelación, excavaciones, rasanteo, rellenos, acarreo y transporte de material, suministro instalación tubería plástica PVC, suministro instalaciones de conexiones domiciliarias, construcción de pozos de revisión, tanque Imhoff, lecho de secados de lodos, seguridad de obra y mitigación ambiental.

En la ilustración (28), se visualiza el presupuesto con todos los rubros, unidades, cantidades y costos unitarios y totales del proyecto.

Ilustración 28

Presupuesto referencial

PROYECTO:	ESTUDIO Y DISEÑO DE LA RED DE ALCANTAR CULALÁ BAJO, FALCÓN Y ÁREAS DE INFLU ALOASÍ, CANTÓN MEJÍA,	JENCIA, UB	ICADO EN LA	APARRROQ	
FECHA:	MARZO 2021				
	PARROQUIA DE ALOASÍ CANTÓN MEJÍA, PROVINCIA			I	
N° RUBRO	DESCRIPCION	UNIDAD	CANTIDAD	P.UNITARIO	P.TOTAL
1	REPLANTEO Y NIVELACION				21310.63
1.1	Replanteo y Nivelación de pozos de Revisión	M2	297.10	1.63	484.96
1.2	Replanteo y Nivelación de Zanja	ML	13347.08	1.56	20825.67
2	EXCAVACIONES				73784.35
2.1	Excavación de Zanjas a Máquina en Tierra H=0.00-2.75m	M3	12787.25	2.30	29425.94
2.2	Excavación de Zanjas a Máquina en Tierra H=2.76-3.99m	M3	8958.00	2.71	24260.58
2.3	Excavación de Zanjas a Máquina en Tierra H=4.00-6.00m	M3	6184.12	3.25	20097.83
3	RAZANTEO				14815.85
3.1	Rasanteo de Zanja	M2	10787.71	1.37	14815.85
4	RELLENOS	140	4070 77	0.57	111115.5
4.1	Relleno Compactado -Cama de Arena en Zanja	M3 M3	1078.77 26391.18	3.57	3853.16
5	Relleno Compactado Con Material de Excavación ACARREO Y TRANSPORTE DE MATERIAL	IVI3	26391.18	4.06	107262.4 3197.04
<u>~</u>		Ma	1955.23	1.64	3197.04
5.1	Desalojo Mecánico de Material Distancia=3km (Car, trans y vol) SUMINSTRO INSTALACIÓN TUBERIA PLÁSTICA PVC	M3	1955.23	1.64	
6		Mo	600.00	14.00	393660.8
6.1	Entibado (Apuntalamiento de Zanja) Tubería Plastica Alcantarillado. D.N.I. 200mm Mat.Transp.Inst	M2 ML	600.00 11454.67	14.96 28.00	8973.90 320704.4
6.3	Tubería Plastica Alcantarillado. D.N.I. 200mm Mat.Transp.Inst Tubería Plastica Alcantarillado. D.N.I. 250mm Mat.Transp.Inst	ML	1583.84	32.92	52137.92
6.4	Tubería Plastica Alcantarillado, D.N.I. 250mm Mat.Transp.inst	ML	308.57	38.39	11844.62
7	SUMINSTRO INSTALACIÓN DE CONEXIONES DOMICILIARIAS	IVIL	308.37	36.39	81694.30
		U	0.45.00	04.00	
7.1	Conexión Domiciliaria Silla YEE 200mmx160mm Conexión Domiciliaria Silla YEE 250mmx160mm	U	845.00 120.00	81.02 85.65	68458.08 10277.70
7.3	Conexión Domiciliaria Silla YEE 300mmx160mm	U	34.00	87.02	2958.53
8	CONSTRUCCIÓN DE POZOS DE REVISIÓN	U	999.00	87.02	181805.0
8.1	Excavación para Pozos de Revisión en Tierra 0.00-6m	M3	876.46	5.96	5224.56
8.2	Hormigon Simple f'c=210kg/cm2 (Base del pozo)	M3	89.13	143.37	12778.28
8.3	Construcción Pozos de Revisión de HS fc=210kg/cm2	ML	511.46	252.53	129160.4
8.4	Tapa de HF con cerco D=600mm	U	193.00	159.47	30777.06
8.5	Limpieza de Pozo de Revisión	U	193.00	20.02	3864.65
9	CONSTRUCCIÓN DE TANQUE IMOHOFF		13333		10061.35
9.1	Replanteo y Nivelación de la Estructura	M2	197.22	1.63	321.93
9.2	Excavación con Maquina a Cielo Abierto en Tierra	M3	172.98	3.61	624.63
9.3	Desalojo Mecánico de Material Distancia=3km (Car, trans y vol)	M3	172.98	1.64	282.84
9.4	Replantillo Hormigon Simple f´c=180kg/cm2 e=5cm	M2	10.32	11.40	117.61
9.5	Acero de Refuerzo fy=4200kg/cm2	KG	649.89	1.71	1113.57
9.6	Encofrado/Desencofrado Madera Cepillada	M2	126.00	14.02	1767.01
9.7	Hormigón Simple f´c=280kg/cm2	М3	28.16	176.74	4976.90
9.8	Enlucido Vertical con Impermeabilizante	M2	72.70	11.79	856.85
10	CONSTRUCCIÓN DE LECHO DE SECADO DE LODOS				7911.69
10.1	Excavación con Maquina a Cielo Abierto en Tierra	M3	55.36	3.61	199.91
10.2	Desalojo Mecánico de Material Distancia=3km (Car, trans y vol)	M3	55.36	1.64	90.52
10.3	Replantillo Hormigon Simple f'c=180kg/cm2 e=5cm	M2	186.90	11.40	2129.90
10.4	Acero de Refuerzo fy=4200kg/cm2	KG	330.25	1.71	565.88
10.5	Encofrado/Desencofrado Madera Cepillada	M2	78.50	14.02	1100.90
10.6	Hormigón Simple f´c=280kg/cm2	M3	5.42	176.74	957.91
10.7	Arena en Zanja de Infiltración	М3	39.45	21.69	855.48
10.8	Grava en Zanja deInfiltración	М3	39.45	27.53	1085.98
10.9	Enlucido Vertical con Impermeabilizante	M2	78.50	11.79	925.21
11	SEGURIDAD DE OBRA Y MITIGACIÓN AMBIENTAL				1243.20
11.1	Cono de Señalización	U	7.00	7.62	53.34
11.2	Cinta Plástica de Seguridad (Peligro) 1=250m	U	13.00	15.90	206.70
11.3	Tanquero de Aqua para Control de Polvo	Viaje	30.00	32.77	983.16

Nota: Presupuesto referencial. Elaborado por: Luis Chicaiza y Christian Pintado.

El presupuesto total teniendo en cuenta los costos indirectos al 20% es de \$900.599,90 (Novecientos mil quinientos noventa y nueve con noventa centavos). En los anexos, se presenta los APUS.

6.1.Cronograma

El cronograma representa el tiempo aproximado que tendrá que durar el proyecto, esto ayudara a que durante la ejecución de la obra se controle el avance y los limites disponibles para terminar cada etapa.

El tiempo de cada rubro está dada por la suma y su rendimiento da como consecuencia la duración total de la obra.

El cronograma se hace presente principalmente en el desarrollo o administración de proyectos, lo fundamental del cronograma es que plasma todas las labores y fechas previstas a partir del inicio hasta el final de las ocupaciones que se van a hacer.

Para el desarrollo del cronograma se emplea la herramienta de Microsoft Project, mismo que nos permite realizar el trabajo sin problema, ayuda a establecer el Desglose Estructurado de Trabajo (DET), el cual trata de un diagrama que permite dividir el trabajo de todo el proyecto de manera ordenada y jerárquica, en unidades bien definidas, independientes, medibles y controlables, es decir nos permite establecer una base de control del proyecto.

En la elaboración del cronograma se considera un calendario con días laborables de lunes a viernes, trabajando con las respectivas cuadrillas 8 horas diarias, durante un periodo de tiempo de aproximadamente 7 meses y medio.

A continuación, en la ilustración (29) se muestra el cronograma del proyecto.

Ilustración 29

Cronograma del proyecto

Nota: Cronograma del proyecto. Elaborado por: Luis Chicaiza y Christian Pintado.

CAPÍTULO VII

ANALISIS ECONOMICO FINANCIERO

El plan tiene como objetivo fundamental ofrecer el servicio básico a la población y de esta forma mejorar su salubridad, para lo que se hace la evaluación económica financiera e identifica la inversión y ahorro del plan.

El diseño se realiza para dar cobertura a los barrios Culalá Alto, Culalá Bajo y Falcón, cubriendo así el 100% del área de servicio, para lo cual se considerará alternativas en donde tendrá un incremento de costo del 10 y 20% del hipotético caso que ocurran inviernos templados en su frecuencia e intensidad u otro tipo de inconveniente.

El sistema de alcantarillado es un plan de inversión media, sin embargo, al ser una red sanitaria y no combinada o separada se tendrá un ahorro significativo en comparación a los mencionados, para ello el cálculo de la inversión se usa la evaluación de 30 años pues es el periodo de diseño del proyecto comienza el año 2021, con una población actual de 1894 habitantes y una tasa de crecimiento de 3.84% y el costo del proyecto total de: de \$ 900.599.90 USD.

El regular desempeño y el triunfo de operación del sistema dependen del habitual desempeño de los recursos hidráulicos que lo componen, las porciones habituales de rígidos en sedimentación y en suspensión, tienen la posibilidad de obstruir la conducta del sistema, ocasionando la derivación de las aguas residuales, es de esta forma que se plantea reducir el peligro de taponamiento por medio de el mantenimiento periódico de las construcciones especiales. Por consiguiente, que se crea un rubro para obtener el costo de gestión, operación y mantenimiento del sistema en donde se programa 2 limpiezas al año, una a principios de invierno y otra a fines de este, en la tabla (42) se puede mirar lo dicho.

Tabla 42

Rubro de los costos administrativos operación y mantenimiento

Diseño de sistema de alcantarillado sanitario									
Administrativo									
Descripción	Cantidad	Salario Básico	Factor	Rend	Costo anual				
Director de operación y mantenimiento	1,00	2.600,00	\$ 1,30	0,05	169				
Secretaria	1,00	394,00	1,30	0,05	25,61				
Gastos corrientes	1,00	300,00	1,00	2,00	600				
Subtotal					794,61				
	Оре	eración							
Descripción	Cantidad	Salario Básico	Factor	Rend	Costo anual				
Ingeniero de O y M	1,00	750,00	1,30	0,10	97,5				
Jefe de cuadrilla	1,00	500,00	1,30	0,20	130				
Plomero	1,00	394,00	1,30	0,20	102,44				
Jornalero	2,00	394,00	1,30	0,20	204,88				
Peón	4,00	394,00	1,30	0,20	409,76				
Subtotal					944,58				
	MANTE	NIMIENTO							
Descripción	Cantidad	Salario Básico	Factor	Rend	Costo anual				
Material de obra civil 0,1%	900599,90		0,10%		900,5999				
Herramienta menor (0,05%)	900599,90		0,05%		450,29995				
Subtotal					1350,89985				
Total	Total 3090,08985								

Nota: Rubro de los costos administrativos. Elaborado por: Luis Chicaiza y Christian Pintado.

Los precios de gestión, operación y mantenimiento incrementarán con el pasar de los años, gracias a la alteración de los salarios, componentes sociales y rendimientos de trabajo por lo cual se pondrá el facto de 1.01% de aumento.

El pago de la obra de la red de alcantarillado se cobrará en las cartillas de pago mensual del agua potable con una tasa de 38.60% del costo total de consumo, precio de acometida de 400 USD a diferentes letras de pago como el cliente ocupe o se le realice

más simple, por consiguiente se recibe la tabla (43) donde se observa los egresos menos las ganancias del sistema.

Tabla 43Costos de operación y mantenimiento anual

#	Año	Población Proyectada (hab)	Conexiones (U)	Costo de operación y mantenimien to anual	Costo servicio anual por	Ingreso anual por tarifa	Egresos menos ingresos
0	2021	1894	316	\$ 3.090,09	\$ 9,78	\$ 37.920,00	\$ 34.829,91
1	2022	1968	328	\$ 3.120,99	\$ 9,52	\$ 39.360,00	\$ 36.239,01
2	2023	2045	341	\$ 3.152,20	\$ 9,24	\$ 40.920,00	\$ 37.767,80
3	2024	2125	355	\$ 3.183,72	\$ 8,97	\$ 42.600,00	\$ 39.416,28
4	2025	2209	369	\$ 3.215,56	\$ 8,71	\$ 44.280,00	\$ 41.064,44
5	2026	2295	383	\$ 3.247,72	\$ 8,48	\$ 45.960,00	\$ 42.712,28
6	2027	2385	398	\$ 3.280,19	\$ 8,24	\$ 47.760,00	\$ 44.479,81
7	2028	2478	413	\$ 3.312,99	\$ 8,02	\$ 49.560,00	\$ 46.247,01
8	2029	2575	430	\$ 3.346,12	\$ 7,78	\$ 51.600,00	\$ 48.253,88
9	2030	2676	446	\$ 3.379,59	\$ 7,58	\$ 53.520,00	\$ 50.140,41
10	2031	2781	464	\$ 3.413,38	\$ 7,36	\$ 55.680,00	\$ 52.266,62
11	2032	2890	482	\$ 3.447,52	\$ 7,15	\$ 57.840,00	\$ 54.392,48
12	2033	3003	501	\$ 3.481,99	\$ 6,95	\$ 60.120,00	\$ 56.638,01
13	2034	3120	520	\$ 3.516,81	\$ 6,76	\$ 62.400,00	\$ 58.883,19
14	2035	3243	541	\$ 3.551,98	\$ 6,57	\$ 64.920,00	\$ 61.368,02
15	2036	3369	562	\$ 3.587,50	\$ 6,38	\$ 67.440,00	\$ 63.852,50
16	2037	3501	584	\$ 3.623,37	\$ 6,20	\$ 70.080,00	\$ 66.456,63
17	2038	3639	607	\$ 3.659,61	\$ 6,03	\$ 72.840,00	\$ 69.180,39
18	2039	3781	631	\$ 3.696,20	\$ 5,86	\$ 75.720,00	\$ 72.023,80
19	2040	3929	655	\$ 3.733,17	\$ 5,70	\$ 78.600,00	\$ 74.866,83
20	2041	4083	681	\$ 3.770,50	\$ 5,54	\$ 81.720,00	\$ 77.949,50
21	2042	4243	708	\$ 3.808,20	\$ 5,38	\$ 84.960,00	\$ 81.151,80
22	2043	4409	735	\$ 3.846,28	\$ 5,23	\$ 88.200,00	\$ 84.353,72
23	2044	4581	764	\$ 3.884,75	\$ 5,08	\$ 91.680,00	\$ 87.795,25
24	2045	4761	794	\$ 3.923,59	\$ 4,94	\$ 95.280,00	\$ 91.356,41
25	2046	4947	825	\$ 3.962,83	\$ 4,80	\$ 99.000,00	\$ 95.037,17
26	2047	5141	857	\$ 4.002,46	\$ 4,67	\$ 102.840,00	\$ 98.837,54
27	2048	5342	891	\$ 4.042,48	\$ 4,54	\$ 106.920,00	\$ 102.877,52
28	2049	5551	926	\$ 4.082,91	\$ 4,41	\$ 111.120,00	\$ 107.037,09
29	2050	5769	962	\$ 4.123,74	\$ 4,29	\$ 115.440,00	\$ 111.316,26
30	2051	5995	1000	\$ 4.164,97	\$ 4,16	\$ 120.000,00	\$ 115.835,03
				\$ 108.563,32		\$ 2.178.360,00	\$ 2.069.796,68
				Gasto		Ingreso	Ganancia

Nota: Costos de operación y mantenimiento. Elaborado por: Luis Chicaiza y Christian Pintado.

La inversión total es de: 900.599,90 USD y si se estima una tarifa de 10 USD a los 30 años el lucro es de: 2'069.796,68 USD. La evaluación financiera se muestra en la tabla (44) para los precios de inversión se expone una recuperación del 50% del costo de la obra total obteniéndose un costo anual referencial y el 30% del costo residual adicional en el último año.

Tabla 44 *Evaluación financiera*

#	Ingreso		asto O&M	Fl	ujo de caja
1	\$ 78.720,00	\$	3.120,99	\$	75.599,01
2	\$ 81.840,00	\$	3.152,20	\$	78.687,80
3	\$ 85.200,00	\$	3.183,72	\$	82.016,28
4	\$ 88.560,00	\$	3.215,56	\$	85.344,44
5	\$ 91.920,00	\$	3.247,72	\$	88.672,28
6	\$ 95.520,00	\$	3.280,19	\$	92.239,81
7	\$ 99.120,00	\$	3.312,99	\$	95.807,01
8	\$ 103.200,00	\$	3.346,12	\$	99.853,88
9	\$ 107.040,00	\$	3.379,59	\$	103.660,41
10	\$ 111.360,00	\$	3.413,38	\$	107.946,62
11	\$ 115.680,00	\$	3.447,52	\$	112.232,48
12	\$ 120.240,00	\$	3.481,99	\$	116.758,01
13	\$ 124.800,00	\$	3.516,81	\$	121.283,19
14	\$ 129.840,00	\$	3.551,98	\$	126.288,02
15	\$ 134.880,00	\$	3.587,50	\$	131.292,50
16	\$ 140.160,00	\$	3.623,37	\$	136.536,63
17	\$ 145.680,00	\$	3.659,61	\$	142.020,39
18	\$ 151.440,00	\$	3.696,20	\$	147.743,80
19	\$ 157.200,00	\$	3.733,17	\$	153.466,83
20	\$ 163.440,00	\$	3.770,50	\$	159.669,50
21	\$ 169.920,00	\$	3.808,20	\$	166.111,80
22	\$ 176.400,00	\$	3.846,28	\$	172.553,72
23	\$ 183.360,00	\$	3.884,75	\$	179.475,25
24	\$ 190.560,00	\$	3.923,59	\$	186.636,41
25	\$ 198.000,00	\$	3.962,83	\$	194.037,17
26	\$ 205.680,00	\$	4.002,46	\$	201.677,54
27	\$ 213.840,00	\$	4.042,48	\$	209.797,52
28	\$ 222.240,00	\$	4.082,91	\$	218.157,09
29	\$ 230.880,00	\$	4.123,74	\$	226.756,26
30	\$ 240.000,00	\$	4.164,97	\$	235.835,03

Nota: Evaluación financiera. Elaborado por: Luis Chicaiza y Christian Pintado.

TASA	15%
VAN	\$ 676.906,66
TIR	11,32%
B/C	\$ 0.75

Para el flujo financiero considerando un periodo de vida útil o de diseño de 30 años y dando una tasa de descuento del 15%, obtenemos una rentabilidad en el tiempo VAN positivo de 676.906,66 USD lo que simboliza un lucro al futuro; y una TIR, la tasa en la cual se repondrá y se recuperara la inversión inicial es de 11,32% pues mientras mayor sea el TIR más beneficioso es el proyecto.

CAPÍTULO VIII

CONCLUSIONES Y RECOMENDACIONES

8.1. Conclusiones

El diseño del sistema de alcantarillado sanitario ayudará a minimizar el daño ambiental como a mejorar las condiciones de vida de la población, además de brindar un servicio básico a estos barrios.

Para el cálculo de la población proyectada en un tiempo de diseño de 30 años se utilizaron varios métodos estadísticos, sin embargo se estableció como primordial el método exponencial pues su línea de tendencia coincidía a los anteriores censos realizados, por lo cual nos dio como resultado que la población de diseño es de 5995 habitantes.

La cuantificación del caudal sanitario está basada en las normas EMAAP-Q y los criterios dados por la EPAA-MEJÍA; donde nos dio como resultado un caudal de conexiones erradas de 1,97 lt/s; infiltración 19,56 lt/s y caudal domestico 19,68 l/s con un coeficiente de retorno de 0,8 y coeficiente de mayoración 1,97 dando un total de caudal doméstico de 41,21 l/s.

Se estableció que el diseño del nuevo sistema de alcantarillado en conjunto con la planta de tratamiento de aguas residuales tenga una duración de 30 años, en donde el proyecto tendrá una tubería con longitud total de 13,35 km con diámetros de 200, 250 y 300 mm de acuerdo al tipo de tramo al que pertenece constará de 193 pozos con 118 pozos de revisión, 19 pozos de cabecera, 56 pozos de salto de 0.5m.

La planta de tratamiento propuesta fue diseñada en base a los criterios de la Organización Panamericana de la Salud (OPS), la cual tratará caudales de aguas residuales, el caudal pasará por procesos como: pre-tratamientos, tratamiento primario,

secundario y terciario para ser descargado a la red de alcantarillado de la av. Simón Bolívar.

En el Cantón existe abundante flora y fauna silvestres, que necesitan un cuidado primordial para que no se vean afectadas por las actividades productivas, aprovechando los recursos naturales bajo un modelo sostenible.

Se generará empleo para la población en diferentes actividades en la fase de construcción y en la de operación del proyecto.

El presupuesto referencial para este plan se basa en el precio unitario actual administrado por la Cámara de la Industria de la Construcción, en donde se aprecia que se construirá en alrededor de 7 meses y medio con un total de \$ 900.599,90 (Novecientos mil quinientos noventa y nueve con noventa centavos).

8.2. Recomendaciones

Se recomienda efectuar un estudio geotécnico y geo-mecánico completo en el área donde se va a implantar la estructura de tratamiento de aguas residuales.

Mantener y limpiar a tiempo bien los pozos de revisión para evitar bloqueos y daños a corto y largo plazo.

Los residentes interactuarán con los residentes sobre la importancia de limpiar y mantener el sistema para su sustento, cómo evitar el uso de métodos antiguos para eliminar las heces, la salud y el bienestar global y evitar los problemas y la inestabilidad de la comunidad.

CAPÍTULO IX

BIBLIOGRAFIA

- Aguilar Raza, Ana María. 2016. "Vivienda Rural Colectiva En Aloasí." *Revista CENIC*.

 Ciencias Biológicas 152(3):28.
- Andrade, Daniel, Minard. Hall, Patricia. Mothes, Liliana Troncoso, Jean-Philippe Elssen, Pablo Smaniego, José Egred, Patricio Ramón, David Rivero, and Hugo Yepes. 2005.

 Los Peligros Volcanicos Asociados Con El Cotopaxi.
- Asamblea Nacional Constituyente. 2014. "Constitucion de La Republica Del Ecuador." Registro Ofcial 449 1–222.
- Chow, Ven Te. 2004. "Hidraulica de Canales Abiertos." 674.
- CORPCONSUL CIA. LTDA. 2015. "Plan Maestro de Agua Potable Y Actualización Del Plan Maestro de Alcantarillado de Machachi Y Aloasí Del Cantón Mejía." 286.
- CPE INEN 5, Norma Tecnica Ecuatoriana. 1992. "Normas Para Estudio Y Diseño De Sistemas De Agua Potable Y Disposición De Aguas Residuales Para." 291.
- Económico, Ministerio de Desarrollo. 2000. "RAS 2000 Título D Sistemas de Recolección Y Evaluación de Aguas Residuales Domésticas Y Pluviales."

 Reglamento Técnico Del Sector De Agua Potable Y Saneamiento Basico 97.
- EMAAP-Q. 2009. "Normas de Diseño de Sistemas de Alcantarillado Para La EMAAP-Q." 176.
- ESTADO, CONTRALORÍA GENERAL DEL. 2021. "Salarios Mínimos Por Ley." 2.
- Ex SENAGUA. 2016a. "Norma de Diseño Para Sistemas de Abastecimiento de Agua Potable, Disposición de Excretas Y Residuos Líquidos En El Área Rural." Secretaria Del Agua 44.
- Ex SENAGUA. 2016b. "Normas Para Estudio Y Diseño de Sistemas de Abastecimiento de Agua Potable Y Disposición de Aguas Residuales, Para Poblaciones Mayores a

- 1000 Habitantes." Secretaria Del Agua (6):420.
- Fandiño, Hans. 2017. "Diseño Preliminar de La Planta de Tratamiento de Aguas Residuales Del Municipio de La Esperanza Departamento Norte de Santander En Colombia." 65.
- Gobierno del Cantón Mejía. 2015. "Actualización Del Plan De Desarrollo Y Ordenamiento Territorial." Informe Del Gobierno Del Cantón Mejía 2(2015):517.
- Google Earth. 2021. "Google Earth." Retrieved May 8, 2021 (https://earth.google.com/web/).
- IEE. 2013. "Instituto Espacial Ecuatoriano | Ecuador Guía Oficial de Trámites Y Servicios." Retrieved May 8, 2021 (https://www.gob.ec/iee).
- LLIVE REIMUNDO, VERÓNICA VALERIA. 2020. "DISEÑO DEL SISTEMA DE ALCANTARILLADO COMBINADO Y ESTRUCTURAS ESPECIALES PARA LOS BARRIOS ALTOS DE LA ARGELIA ETAPA TRES Y CUATRO, PARROQUIA LA ARGELIA, CANTÓN QUITO, PROVINCIA DE PICHINCHA." UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO 1–100.
- Ministerio de Ambiente, vivienda y desarrollo económico. 2014. *RAS 2000 Título "B"*Sistemas de Acueducto.
- Ministerio de Desarrollo Económico. 2000. "RAS 2000 Titulo E-Tratamiento de Aguas Residuales." Reglamento Técnico Del Sector De Agua Potable Y Saneamiento Basico 150.
- NEC. 2015. "NORMA ECUATORIANA DE LA CONSTRUCCIÓN CARGAS SÍSMICAS -DISEÑO SISMO RESISTENTE." Design and Optimization of Metal Structures 139. doi: 10.1533/9781782420477.27.
- OPS. 2005. "Guías Para El Diseño de Tecnologías de Alcantarillado." *Organizacion*Panamericana De La Salud Cepi 73.

- OPS/CEPIS. 2005. "Guía Para El Diseño de Tanques Sépticos, Tanques Imhoff Y Lagunas de Estabilización." *Publicaciones Estadísticas Y Geográficas. SINA* 40.
- TÚQUERREZ RODRÍGUEZ, VÍCTOR BRYAN, and ALEX TOAPANTA ZURITA,
 JEFFERSON. 2021. "EVALUACIÓN DE LA RED DE ALCANTARILLADO
 EXISTENTE Y DISEÑO DE LA RED PRINCIPAL, EMISARIO Y PLANTA DE
 TRATAMIENTO DEL BARRIO SAN JOSÉ DE TUCUSO EN LA PARROQUIA
 DE MACHACHI." UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO 1–
 114.

Anexo1: DISEÑO DEL ALCANTARILLADO SANITARIO

ESTUDIO Y DISEÑO DE LA RED DE ALCANTARILLADO PARA LOS BARRIOS CULALÁ ALTO, CULALÁ BAJO, FALCÓN Y ÁREAS DE INFLUENCIA, UBICADO EN LA PARRROQUIA DE ALOASÍ, CANTÓN MEJÍA, PROVINCIA PICHINCHA

N CAL	Tube	Poz	L	A (m2)	A(H	Caudal domést ico	Caudal infiltrac	Caudal conexio	Caud al sanita	Cauda l adicio	Caud al de	Ø(m	Pendie nte	Pendie nte	(Mani	A L		Qdis/	Capaci dad de	Cheq	Velocidad diseño	Chequ eo de	Qs/	Veloci dad mínim	Chequ	Cala	Veloci dad	Calad o Crític	Y/Yc	N° -	Cotas (msnm)	Cota Salid	Altu ra	SALTO
LE	ría		(m)	A(m2)		Qdom (l/s) Qdom	ión Qinf (l/s)	nes erradas (l/s)	rio Qs(l/s	nal Qacu m (l/s)	diseño Qdis(l /s).	Ø(m m)	Terren o (%)	Proyec to (%)	ng) n	VII (m/ s)	Qll (lt/s)	QII	diseño (%)	ueo	máxima Vdismax(m/s).	Vdism ax	QII	a Vmin (m/s)	eo de Vmin	do Y (m).	crítica Vcrit (m/s).	o Ycrit (m).	rit	Frou de	TERRE NO	PROYE CTO	a y entra da	Pozo (m)	(m)
		P1	60,6	5012,												2.0	125	0.000				CUMP	0,00		CUMP	0,000		0.001	0.111		3.165,66	3.163,16	CS	2,5	
	1		7	15	0,50	0,0504	0,0501	0,0050	0,1056	0,0000	0,1056	200	8,60	8,60	0,01	3,9	125, 07	0,000	0,08	OK	1,10	LE	0,00	1,14	LE	17	0,04	0,001 521	04	27,03			 		
		P2																														3.157,94	CE	2,5	0
	2	P2 6	52,2	10384	1.04	0.1045	0,1038	0,0105	0.2100	0.1056	0,3244	200	9,94	8,34	0,01	3,9	123, 11	0,002	0,26	OK	1,16	CUMP	0,00	1 14	CUMP	0,000	0,07	0,003	0,156 62	16,13	3.160,44	3.157,94	CS	2,5	
(A)	2	P3	5	,86	1,04	0,1043	0,1036	0,0103	0,2166	0,1030	0,3244	200	9,94	0,54	0,01	2	11	6	0,20	OK	1,10	LE	18	1,14	LE	53	0,07	365	62	10,13	3.154,25	3.152,75	CE	1,5	0
CALLE (A)		P3																														3.152,75	CS	1,5	
CA	3		8,2	7193,	0,72	0,0724	0,0719	0,0072	0,1516	0,3244	0,4760	200	1,33	2,01	0,01	1,9	60,3 9	0,007	0,79	OK	0,62	CUMP LE	0,00	0,60	CUMP	0,001	0,12	0,004	0,342 65	4,99					
		P4	4	33												2	9	9			·	LE	25		LE	58		601	65		3.153,08	3.150,98	CE	2,10	0
		P4																													3.153,08	3.150,98	CS	2,1	1
	4	8	34,9	4670, 24	0,47	0,0470	0,0467	0,0047	0,0984	0,4760	0,5744	200	0,13	2,1	0,01	1,9	61,9 1	0,009	0,93	OK	0,65	CUMP LE	0,00 16	0,60	CUMP LE	0,001 86	0,13	0,005 293	0,350 57	4,82					
		P10 4	1	24												'	1	3				LE	10		LE	80		293	31	•	3.153,19	3.149,19	CE	4	
		P6																													3.093,59	3.092,09	CS	1,5	1
	5		4,9 0	14400 ,66	1,44	0,1449	0,1440	0,0145	0,3034	0,0000	0,3034	200	4,43	5,77	0,01	3,2	102, 40	0,003	0,30	OK	0,97	CUMP LE	0,00 30	0,97	CUMP LE	0,000 59	0,08	0,003 23	0,183 5	12,72					
E (B		P7		ŕ																											3.090,27	3.087,77	CE	2,5	0
CALLE (B)		P7	2 5	2247												2.0	101	0.002				CHIMD	0.00		CHIMD	0.000		0.002	0.162		3.090,27	3.087,77	CS	2,5	
	6		6 6	2347, 95	0,23	0,0236	0,0235	0,0024	0,0495	0,3034	0,3529	200	9,07	8,14	0,01	3,8 7	121, 65	0,002 9	0,29	OK	1,15	CUMP LE	0,00 04	1,10	CUMP LE	0,000 58	0,08	0,003 567	0,162 66	15,24					
		P8																														3.083,41	CE	2	1
	7	P9	0,8	14500	1.15	0.1450	0.1450	0.0146	0.2055	0.0000	0.2055	200	2.11	4.50	0.01	2,8	90,6	0,003	0.24	OV	0.06	CUMP	0,00	0.06	CUMP	0,000	0.00	0,003	0,207	10.57	3.075,63	3.074,13	CS	1,5	
(C)	/	P10	3	,57	1,45	0,1459	0,1450	0,0146	0,3055	0,0000	0,3055	200	3,11	4,52	0,01	8	90,6 3	4	0,34	OK	0,86	LE	34	0,86	LE	67	0,08	248	0,207 57	10,57	3.073,43	3.070,93	CE	2,5	
CALLE (C)		P10																														3.070,93	CS	2,5	1
CA	8			7618,	0,76	0,0767	0,0762	0,0077	0,1605	0,3055	0,4661	200	3,89	5,4	0,01	3,1	99,3	0,004	0,47	OK	0,97	CUMP	0,00	0,92	CUMP	0,000	0,10	0,004	0,213	10,11		21070,75			
		P11	6	83												6	6	/			·	LE	16		LE	94		387	86	-	3.070,02	3.066,17	CE	3,85	
		P12																													3.075,04	3.072,54	CS	2,5	1
	9		9	8209, 23	0,82	0,0826	0,0821	0,0083	0,1730	0,0000	0,1730	200	6,66	5,42	0,01	3,1 6	99,2 5	0,001 7	0,17	OK	0,92	CUMP LE	0,00 17	0,92	CUMP LE	0,000 35	0,06	0,002 189	0,159 27	15,73					
		P13																													3.069,69	3.068,19	CE	1,5	<u>.</u>
		P13	0.7	17700												1.0	<i>c</i> 0 <i>c</i>	0.000				CITIAN	0.00		CITIAD	0.001		0.005	0.254	-	3.069,69	3.068,19	CS	1,5	
a a	10		6	17788 ,41	1,78	0,1790	0,1779	0,0179	0,3748	0,1730	0,5478	200	0,33	2,02	0,01	3	7	0,009	0,90	OK	0,63	CUMP LE	62	0,60	CUMP LE	81	0,13	0,005	0,354 71	4,73					
LE (P11																													3.070,02		CE	3,85	1
CALLE (D)		P11	6.4	17551												1.9	61.1	0.022				CUMP	0,00		CUMP	0,004		0.010	0,425		3.070,02	3.066,17	CS	3,85	
	11		4	,68	1,76	0,1766	0,1755	0,0177	0,3698	1,0138	1,3836	200	2,46	2,06	0,01	5	9	0,022 6	2,26	OK	0,76	LE	60	0,61	LE	52	0,21	64	09	3,61	2.077.00	206125			
		P14																													3.067,89		CE	3,5	
	12			15234	1.52	0.1522	0,1523	0.0152	0.3210	1 3926	1,7046	200	6,12	2,80	0,01	2,2	71,3	0,023	2,39	OK	0,90	CUMP		0,69	CUMP	0,004	0,22	0,012 351	0,386	4,16	3.067,89	3.004,39	CS	3,5	
	12		8	,73	1,32	0,1333	0,1323	0,0153	0,3210	1,3836	1,/040	200	0,12	2,80	0,01	7	7	9	2,39	OK	0,90	LE	45	0,09	LE	78	0,22	351	76	4,10	3.063,83	3.062.53	CE	1,3	
		1 13								<u> </u>		<u> </u>			<u> </u>			<u> </u>	<u> </u>									<u> </u>			5.005,05	3.002,33	CE	1,3	.]

$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	5 CS 7 CE 7 CS 8 CE 8 CS 9 CE 9 CS 2 CE 2 CS	CE 3,3 CE 3,3 CE 5 CE 5 CE 5 CE 5 CE 5	0,5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 CE 7 CS 8 CE 8 CS 9 CE 9 CS 2 CE 2 CS	CE 3,3 CS 3,3 CE 5 CS 5 CE 5 CS 5 CE 5	0,5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 CS 8 CE 8 CS 9 CE 9 CS 2 CE 2 CS	CE 5 CS 5 CE 5 CCS 5 CCS 5	0,5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 CS 8 CE 8 CS 9 CE 9 CS 2 CE 2 CS	CE 5 CS 5 CE 5 CCS 5 CCS 5	0,5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 CE 8 CS 9 CE 9 CS 2 CE 2 CS	CE 5 CS 5 CE 5 CCS 5	0,5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 CE 9 CS 2 CE 2 CS	CE 5 CE 2	
Part	9 CE 9 CS 2 CE 2 CS	CE 5 CE 2	
Part	9 CE 9 CS 2 CE 2 CS	CE 5 CS 5 CE 2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9 CS 2 CE 2 CS	CS 5 CE 2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 CS 2 CE 2 CS	CS 5 CE 2	
17	2 CE 2 CS	CE 2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 CS		
18		CS 2,5	
P23	7 CE		
P23 R P24 P25	7 CE		
20 76.1 10237 7.56 1.02 0.1030 0.1024 0.0103 0.2157 0.0000 0.2157 0.0000 0.2157 200 0.54 1.85 0.01 1.85 5.80 0.		CE 1,5	
P25 P25 P25 P26 P26 P26 P26 P27 P27 P27 P27 P28	1 CS	CS 1,5	
P25 86,9 10853 1,09 0,1092 0,1085 0,0109 0,2287 0,2157 0,4444 200 0,72 2,45 0,01 2,1 66,7 0,006 7,006 0,007 0,67 0			
21			_
P26 R27	0 CS	CS 2,5	
P26 R50 P27	7 CE	SE 4	
22 86,0 9827, 16 0,98 0,098 0,098 0,098 0,098 0,098 0,098 0,098 0,098 0,098 0,098 0,099 0,2071 0,444 0,6514 200 0,01 2,31 0,01 2,0 64,8 0,010 0 1,00 OK 0,69 CUMP 1E 0,00 32 0,61 CUMP 0,002 0,14 0,005 808 0,345 95 4,91 3,160,98 3,154,9	_		-
P27 3.160,98 3.154,9	7 65		+
	8 CE	CE 6	+
□ P27	_		1
E T T T T T T T T T T T T T T T T T T T			
P28 / 3/	8 CE	CE 5	
P28 3.158,18 3.153,1	8 CS	CS 5	
24 39,7 8 91 0,39 0,0396 0,0394 0,0040 0,0830 0,8179 0,9009 200 6,64 2,36 0,01 2,0 65,5 4 7, 1,37 OK 0,73 CUMP LE 0,00 13 0,60 CUMP 0,002 75 0,16 0,007 0,369 89 4,45			
P29 3.155,54 3.152,2			_
P29 46,4 3992, 0.40 0.0402 0.0399 0.0040 0.0841 0.0009 0.0009 0.0841 0.0009 0.0841 0.0009 0.0841 0.0009 0.0841 0.0009 0.0841 0.0009 0.00009 0.00009 0.00000000	4 CS	CS 3,3	
1 72 0.40 0.040 0.040 0.040 0.064 0.			
P30 3.151,72 3.150,4			_
26 40,8 1252, 19 0,13 0,0126 0,0125 0,0013 0,0264 0,9850 1,0114 200 3,97 2,16 0,01 1,9 62,6 0,016 2 1,62 OK 0,72 CUMP 0,00 1,014 0,00 CUMP 0,003 0,18 0,008 0,393 0,18 0,008 0,393 4,04 3.151,72 3.150,42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CS	CS 1,3	
26 P31	4 CE	CE 3,8	+
P31 3.135,34 5.149,5 P32 3.131,91 3.130,4	T I CE	-	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1,5	+
27			+
28 P33	1 CS	CE 3,5	1

		97,6	21094											1.6 51	7 0.012				CUMP	0.00	·	CUMP	0.002		0.006	0.406		ĺ		.	
		P34 97,6	21084 ,95											5 7	7 0,012				LE	0,00 86		LE	0,002 47		0,006 078	0,406 98	-	3.128,83	3.127,33	CE	1,5
		P34																											3.127,33		1,5
	29		18966	0.1909	0,1897	0.0191	0.3996	0.6403	1.0399	200	1.21	1,65	0,01	1,7 54,		1,90	ОК	0,65	CUMP	0,00	0,60	CUMP		0,19	0,008	0,445	3,37				
		P36	,29	, , , , , ,				.,.	,,,,,,		,		- 7-	4 4	0	,		.,	LE	73	,,,,,	LE	8		535	17	-	3.129,89	3.125,89	CE	4
		P36																										3.129,89	3.125,89	CS	4
	31	182,	35450 3,55	0.3568	0,3545	0,0357	0.7470	1.0399	1,7869	200	0,10	1.19	0,01	1,4 46, 8 8	5 0,038	3,84	ОК	0,68	CUMP	0,01	0,60	CUMP	0,007	0,27	0,014 052	0,546		,			
		P37 67	,86					Í			Í		ŕ	8 8	4			ŕ	LE	60	,	LE	67	,	052		_	3.129,71	3.123,71	CE	6
		P37																										3.129,71	3.123,71	CS	6
	32		9501, 0.95	0.0956	0,0950	0,0096	0.2002	1.7869	1,9871	200	5.80	3,61	0,01	2,5 80, 8 9	9 0,024	2,45	ОК	1,03	CUMP	0,00 25	0,76	CUMP		0,22	0,013	0,356 67	4,69				
		P14 19	48	,,,,,,	,,,,,	,,,,,,,	,,,,,,,,,	-,,			2,00		-,	8 9	5			-,	LE	25	-,	LE	91	-,	758	67	.,	3.123,09	3.119,59	CE	3,5
		0 P40																										·	3.107,06		1,5
	34	90,2	12836	0.1292	0,1284	0,0129	0.2705	0.0000	0 2705	200	0,01	1,67	0,01	1,7 55, 6 5	1 0,004	0,49	OK	0,60	CUMP	0,00 49	0,60	CUMP	0,000	0,10	0,003 281	0,298	6,12	5.100,50	3.107,00		1,5
	34	P41 6	,41	0,1272	0,1204	0,0127	0,2703	0,0000	0,2705	200	0,01	1,07	0,01	6 5	9	0,47	OK	0,00	LE	49	0,00	LE	98	0,10	281	99	0,12	3.108,55	3.105,55	CE	3
Æ		P41																										3.108,55	3.105,55	CS	3
CALLE (H)	35	44,2	3550, 0.36	0.0357	0,0355	0,0036	0.0748	0.2705	0.3453	200	7,30	3.91	0,01	2,6 84,	3 0,004	0,41	ок	0,81	CUMP	0,00	0,77	CUMP	0,000	0,09	0,003 553	0,230 49	9,04		2.102,22		
(AL)		P42	35 0,30	0,0007	0,000	0,0000	0,07.10	0,2700	0,0100	200	7,00		0,01	8 2	1	0,.1		0,01	LE	09	0,77	LE	82	0,0>	553	49	-	3.105,32	3.103,82	CE	1,5
_		P42																										3.105,32	3.103,82	-	1,5
	36		3042, 0.30	0.0306	0,0304	0,0031	0.0641	0.3453	0,4094	200	6,46	8,2	0,01	3,8 123 8 94	0,003	0,34	ОК	1,16	CUMP	0,00 05	1,10	CUMP		0,08	0,003	0,169 79	14,29	, .			
		P43	38 0,30	,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,	.,	3,5 .5 5	,,,,,,,		2,12		-,	8 94	4	,,,,,,		-,	LE	05	-,	LE	67	,,,,,	955	79	- 1,-2	3.101,57	3.099,07	CE	2,5
		P44																										3.079,84	3.077,34	-	2,5
	37	56,7	14326 1,43	0,1442	0,1433	0,0144	0,3019	0,0000	0,3019	200	8,92	8,92	0,01	4,0 127 5 36	7, 0,002	0,24	ОК	1,19	CUMP	0,00	1,19	CUMP		0,07	0,003	0,148	17,45	,			
		P45	,36	,				,,,,,,,,			- ,-		- 7-	5 36	4	,		, -	LE	24	, -	LE	47		189	64	-	3.074,78	3.072,28	CE	2,5
Ξ		P45																										3.074,78	3.072,28		2,5
CALLE (I)	38	54,3	11341 1,13	0,1141	0,1134	0,0114	0,2390	0,3019	0,5408	200	9,26	9,26	0,01	4,1 129 3 72	0,004	0,42	ок	1,25	CUMP LE	0,00	1,20	CUMP LE		0,09	0,004	0,173 63	13,82				
CAI		P46	,08						ŕ					3 12	2				LE	18		LE	83		802	63	·	3.069,75	3.067,25	CE	2,5
		P46																										3.069,75	3.067,25		2,5
	39	80,9	4493, 60 0,45	0,0452	0,0449	0,0045	0,0947	0,5408	0,6355	200	8,53	7,91	0,01	3,8 119	0,005	0,53	ОК	1,18	CUMP LE	0,00 08	1,09	CUMP LE	0,001 06	0,10	0,005 423	0,195 46	11,57				
		P47	00											2 92						08			00		423	40		3.062,85	3.060,85	CE	2
		P48																										3.064,47	3.062,97	CS	1,5
	40	99,7	10085 .14	0,1015	0,1009	0,0101	0,2125	0,0000	0,2125	200	1,62	2,13	0,01	1,9 62, 8 6	1 0,003	0,34	ок	0,60	CUMP LE	0,00 34	0,60	CUMP LE	0,000 68	0,08	0,002 579	0,265	7,33				
CALLE (J)	L	P47	7= 1																									3.062,85	3.060,85	CE	2
ALI		P47																										3.062,85	3.060,85	CS	2
)	41	69,6	4254, 32 0,43	0,0428	0,0425	0,0043	0,0896	0,8480	0,9376	200	6,34	7,06	0,01	3,6 113 1 30	3, 0,008	0,83	ок	1,17	CUMP LE	0,00 08	1,03	CUMP LE	0,001 66	0,13	0,007 258	0,228 06	9,18				
		P49														<u> </u>												3.058,43	3.055,93	CE	2,5
		P50																										3.181,49	3.177,49	CS	4
Q	42	30,6	11426 ,98 1,14	0,1150	0,1143	0,0115	0,2408	0,0000	0,2408	200	18,53	11,34	0,01	4,5 143 7 58	3, 0,001	0,17	ок	1,33	CUMP LE	0,00 17	1,33	CUMP LE	0,000 34	0,06	0,002 727	0,122 98	23,19				
CALLE (K)		P51																										3.175,82	3.174,02	CE	1,8 0,5
ALI		P51																										3.175,82	3.173,52	CS	2,3
)	43	36,7	1737, 38 0,17	0,0175	0,0174	0,0017	0,0366	0,2408	0,2774	200	7,32	7,9	0,01	3,8 119 1 55	0,002	0,23	ОК	1,12	CUMP LE	0,00 03	1,08	CUMP LE	0,000 46	0,07	0,003 02	0,153 67	16,60				
		P52																										3.173,13	3.170,63	CE	2,5
CALLE (L)	44	P53 70,6	4059, 0.41	0,0409	0,0406	0,0041	0.0855	0.0000	0,0855	200	2,39	2,39	0,01	2,1 65, 0 5	9 0,001	0,13	OK	0,60	CUMP	0,00	0,60	CUMP		0,05	0,001 352	0,191	11,89	3.116,91	3.115,11	CS	1,8
CA	7-7	4	28 0,41	0,0403	0,0400	0,0041	0,0033	-0,0000	0,0000	200	2,37	2,39	0,01	0 5	3	0,13	- OK	0,00	LE	13	0,00	LE	26	0,05	352	91	11,07				

		P54				1					I		I			Ì	I					-		I	ĺ				3.115,22	3.113,42	СЕ	1,8	
		P54																											3.115,22	3.113,42		1,8	
	45	48,2	5516, 81 0,53	5 0,05	55 0,055	2 0,00	56 0,110	52 0,0855	0,2018	200	4,94	4,31	0,01	2,8 8	8,5 0,0	002	0,23	OK	0,83	CUMP LE	0,00 13	0,81	CUMP LE	0,000 46	0,07	0,002 443	0,186 52	12,41	<u> </u>	-			
		P55	81											2	0	3				LE	15		LE	40		443	32		3.112,84	3.111,34	CE	1,5	
		P55																											3.112,84	3.111,34	CS	1,5	
	46	59,4	4694, 59 0,4°	7 0,04	72 0,046	0,00	47 0,098	39 0,2018	0,3007	200	5,74	7,93	0,01	3,8 1		002 5	0,25	OK	1,12	CUMP LE	0,00 08	1,09	CUMP LE	0,000	0,07	0,003 177	0,157 64	15,98					
		P56																			00			3		1,,,			3.109,43	3.106,63	CE	2,8	
		P56																											3.109,43	3.106,63	CS	2,8	
	47	51,4	$\begin{vmatrix} 4122, \\ 74 \end{vmatrix}$ 0,4	0,04	15 0,041	0,00	41 0,086	69 0,3007	0,3875	200	10,24	9,7	0,01	4,2 1	32, 0,0 53	002 9	0,29	OK	1,25	CUMP LE	0,00 07	1,20	CUMP LE	0,000 58	0,08	0,003 791	0,154 27	16,50				\perp	
		P57																											3.104,16	3.101,66	CE	2,5	
		P58	5707											21 6	6.5	001				CUMD	0.00		CHMD	0.000		0.001	0.210		3.103,03	3.101,53	CS	1,5	
	48	60,7	5797, 74 0,58	0,05	83 0,058	0,00	0,122	0,0000	0,1222	200	1,94	2,43	0,01	2,1 6	3	001 8	0,18	OK	0,62	CUMP LE	0,00 18	0,62	LE	0,000 37	0,06	742	0,210 83	10,33			\longmapsto	\longrightarrow	
		P59																											3.101,85	3.100,05	CE	1,8	
		P59	11036											22 7	0.9	005				CUMP	0,00		CUMP			0,003	0,274		3.101,85	3.100,05	CS	1,8	
M)	49	7	,18 1,10	0,11	11 0,110	4 0,01	11 0,232	25 0,1222	0,3547	200	3,26	2,77	0,01	2,2 7	6	0	0,50	OK	0,69	LE	33	0,67	LE	0,001	0,10	647	12	6,97					
CALLE (M)		P60																											3.099,85	3.098,35	CE	1,5	
CAI	50	P60 71,5	12115	1 0 12	10 0 121	0.01	22 0 25	53 0,3547	0.6100	200	1.20	2,32	0,01	2,0 6	4,9 0,0	009	0.04	OV	0.68	CUMP	0,00	0.62	CUMP	0,001	0.14	0,005	0,341	5.01	3.099,85	3.098,35	CS	1,5	
	50	P61 6	,28	0,12	19 0,121	2 0,01	22 0,25	0,3547	0,0100	200	1,20	2,32	0,01	7	4	4	0,94	OK	0,68	LE	39	0,62	LE	88	0,14	5	58	5,01	3.098.99	3.096,69	CE	2,3	
		P61																											3.098,99	3.096,69	+ +	2,3	
	51	79,0	6230,	2 0.06	27 0,062	3 0.00	63 0.13	13 0,6100	0.7412	200	2 53	3,42	0,01	2,5 7	8,8 0,0	009	0,94	OK	0,83	CUMP		0,73	CUMP		0,14	0,006		6,11	3.070,77	3.070,07		2,5	
	31	P62 3	34 0,0.	0,00	0,002	0,00	0,13	0,0100	0,7112	200	2,33	5,12	0,01	1	1	4	0,51		0,03	LE	17	0,75	LE	88	0,11	287	21	0,11	3.096,99	3.093,99	CE	3	
		P63																											3.086,45	3.084,95	CS	1,5	
	52	66,9	4158, 32 0,42	2 0,04	18 0,041	5 0,00	42 0,08	76 0,0000	0,0876	200	1,55	3,05	0,01	2,3 7	4,4 0,0	001	0,12	OK	0,68	CUMP LE	0,00 12	0,68	CUMP LE	0,000 24	0,05	0,001 377	0,170 95	14,15					-
		P64	32											'	2	2					12		LE	24		311	93		3.085,41	3.082,91	CE	2,5	
$\widehat{\mathbf{z}}$		P64																											3.085,41	3.082,91	CS	2,5	
CALLE (N)	54	86,9 4	14392 ,23	0,14	48 0,143	0,01	45 0,303	0,0876	0,3909	200	8,99	7,84	0,01	3,8 1		003	0,33	OK	1,13	CUMP LE	0,00 25	1,12	CUMP LE	0,000 65	0,08	0,003 821	0,171	14,10					
CAI		P66	,																							-			3.077,59	3.076,09	CE	1,5	
		P66																											3.077,59	3.076,09	CS	1,5	
	55	144, 18	10853 ,31 1,09	9 0,10	92 0,108	5 0,01	09 0,223	0,3909	0,6195	200	0,20	1,94	0,01	1,8 5 9	9,3 0,0 1	010 4	1,04	OK	0,60	CUMP LE	0,00 39	0,60	CUMP LE	0,002 09	0,14	0,005	0,384 69	4,19					
		P68																											3.077,30	3.073,30	CE	4	
		P10 0																											3.177,48	3.173,98	CS	3,5	
	85	38,5 7	$\begin{bmatrix} 5072, \\ 40 \end{bmatrix}$ 0,5	0,05	10 0,050	7 0,00	51 0,100	0,0000	0,1069	200	11,87	9,3	0,01	4,1 1	29, 0,0 90	000 8	0,08	OK	1,18	CUMP LE	0,00 08	1,18	CUMP LE	0,000 16	0,04	0,001 566	0,105 05	29,37					
		P10 1																											3.172,90	3.170,40	CE	2,5	0,5
		P10																											3.172,90	3.169,90	CS	3	
0	86	45,8	9982, 1,00	0 0,10	05 0,099	3 0,01	00 0,210	0,1069	0,3172	200	11,49	9,31	0,01	4,1 1	30, 0,0	002	0,24	ОК	1,22	CUMP LE	0,00	1,20	CUMP	0,000	0,07	0,003	0,147 58	17,64					
CALLE (O)		P10	75					., .,			, ,			4)9	4	,		,	LE	16	,	LE	49		305	58	,,,	3.167,63	3.165,63	CE	2	0,5
CA		2 P10																															0,0
	0.5	2	11325		40 0 115	,	14	0.015	0.5550	200	0.00	11.04	0.01	4,5 1	42, 0.0	003	0.20	OV	1.05	CUMP	0,00	1.00	CUMP	0,000	0.00	0,004	0,159	15.55	3.10/,03	3.165,13	CS	2,5	
	87	P10 4	,27	0,11	40 0,113	0,01	14 0,23	50 0,3172	0,5558	200	9,88	11,21	0,01	4,5 1	42, 0,0 73	9	0,39	OK	1,37	LE	17	1,32	LE	78	0,09	878	67	15,67		0.4 =0 = :	 		
		3	11524											1111	28 04	005				CUMP	0.00		CUMP	0.001		0.006	0 101			3.160,89	CE	3	0,5
	88	P10 46,7 3 4	11534 ,63 1,1:	5 0,11	61 0,115	0,01	16 0,243	30 <mark>0,5558</mark>	0,7989	200	10,57	10,6	0,01	4,4 1 1	50, U,0 52	8	0,58	OK	1,37	CUMP LE	0,00 18	1,28	CUMP LE	0,001 15	0,11	0,006 335	0,181 96	12,88	3.163,89	3.160,39	CS	3,5	

•	P5																											-	3.158,95	3.155,45	CE	3,5	0.
	P5																													3.154,95		4	
89		5,7 56	0,56	0,05	65 (0,0562	0,0057	0,1183	0,7989	0,9172	200	16,13	14,85	0,01	5,2 16	4, 0,005	0,56	ОК	1,62	CUMP LE	0,00 07	1,49	CUMP LE	0,001 12	0,10	0,006 934	0,161	15,48			1		
•	P10 4		13												3 3	0				LE	07		LE	12		934			3.153,19	3.149,69	CE	3,5	
	P10 4																												3.153,19	3.149,19	CS	4	
90	37	7,5 62 2 1	0,63	0,06	31 (0,0627	0,0063	0,1322	1,4916	1,6238	200	16,26	12,3	0,01	4,7 14 5 2	9, 0,010	1,09	ОК	1,60	CUMP LE	0,00 09	1,36	CUMP LE	0,002 18	0,15	0,010 728	0,202 76	10,95			1		_
	P10 5																												3.147,09	3.144,59	CE	2,5	
	P10 5																												3.147,09	3.144,09	CS	3	
91		7,4 11	027 53 1,10	0,11	10	0,1103	0,0111	0,2324	1,6238	1,8561	200	13,55	11,50	0,01	4,6 14 0 5	4, 0,012 9 8	1,28	ОК	1,59	CUMP LE	0,00 16	1,33	CUMP LE	0,002 57	0,16	0,011 932	0,215 17	10,02					_
	P10 6	,																											3.140,66	3.138,66	CE	2	
	P10 6																												3.140,66	3.138,16	CS	2,5	
92		3,3 14	768 29 1,48	0,14	86	0,1477	0,0149	0,3112	1,8561	2,1673	200	11,51	9,63	0,01	4,2 13 1 3	2, 0,016	1,64	ОК	1,53	CUMP LE	0,00 24	1,24	CUMP LE	0,003 28	0,18	0,013 68	0,239 44	8,54			1		_
	P10 7	,																											3.134,52	3.133,02	CE	1,5	
	P10 7																												3.134,52	3.133,02	CS	1,5	
93		3,4 70 5 6	003, 0,70	0,07	05	0,0700	0,0070	0,1476	2,1673	2,3149	200	4,73	5,35	0,01	3,1 98 4 8	,5 0,023	2,35	ок	1,24	CUMP LE	0,00 15	0,91	CUMP LE	0,004 7	0,21	0,015 12	0,310 59	5,78			1		_
	P10 8																											1	3.132,23	3.130,43	CE	1,8	
	P10 8																												3.132,23	3.130,43	CS	1,8	
94	52	2,8 74 2 6	179, 0,75	0,07	53 (0,0748	0,0075	0,1576	2,3149	2,4725	200	7,02	7,40	0,01	3,6 11 9 0	6, 0,021 1 3	2,13	ок	1,42	CUMP LE	0,00 14	1,06	CUMP LE	0,004 26	0,20	0,015 515	0,274 74	6,94			1		
	P10 9																												3.128,52	3.126,52	CE	2	
	P10 9																												3.128,52	3.126,02	CS	2,5	
95	64	1,1 16 5 ,	610 74	0,16	72	0,1661	0,0167	0,3500	2,4725	2,8224	200	11,35	10,6	0,01	4,4 13 1 6	8, 0,020 2 4	2,04	ОК	1,68	CUMP LE	0,00 25	1,30	CUMP LE	0,004 07	0,20	0,016 835	0,241 9	8,41					
	P11 0																												3.121,24	3.119,24	CE	2	
	P11 0																												3.121,24	3.118,74	CS	2,5	
96	68	3,5 23	550 90 2,30	0,23	70	0,2355	0,0237	0,4962	2,8224	3,3187	200	11,41	10,8	0,01	4,4 14 6 1	0, 0,023 2 7	2,37	ОК	1,76	CUMP LE	0,00 35	1,34	CUMP LE	0,004 74	0,22	0,019 206	0,246 63	8,16					_
	P11 1																												3.113,42	3.111,42	CE	2	
	P11 1																												3.113,42	3.110,92	CS	2,5	
97	55	5,3 18 5 ,	942 31 1,89	0,19	06	0,1894	0,0191	0,3991	3,3187	3,7178	200	11,64	9,83	0,01	4,2 13 5 6	3, 0,027 7 8	2,78	ОК	1,76	CUMP LE	0,00 30	1,26	CUMP LE	0,005 56	0,23	0,021 378	0,260	7,53					
	P11 2																												3.106,98	3.105,48	CE	1,5	
	P11 2																												3.106,98	3.105,48	CS	1,5	
98	,	9,4 29 7 ,4	846 49 2,98	0,30	04	0,2985	0,0300	0,6289	3,7178	4,3466	200	5,55	7,06	0,01	3,6 11 1 2	3, 0,038 7 4	3,84	ОК	1,65	CUMP LE	0,00 56	1,12	CUMP LE	0,007 67	0,27	0,025 379	0,302 4	6,01					
	P11 3																												3.101,46	3.098,46	CE	3	
	P11 3																												3.101,46	3.097,96	CS	3,5	
99	(2,2 12	904 1,29	0,12	.99 (0,1290	0,0130	0,2719	4,3466	4,6185	200	13,68	10,85	0,01	4,4 14 7 4	0, 0,032 5 9	3,29	OK	1,94	CUMP LE	0,00 19	1,30	CUMP LE	0,006 58	0,25	0,025 507	0,257 85	7,64					
	P11 4																												3.094,32	3.092,32	CE	2	
	P11 4																												3.094,32	3.091,82	CS	2,5	
100		2,0 11	591 13	0,11	66 (0,1159	0,0117	0,2442	4,6185	4,8628	200	10,16	10,16	0,01	4,3 13 3 9	5, 0,035 0 8	3,58	ОК	1,93	CUMP LE	0,00 18	1,26	CUMP LE	0,007 16	0,26	0,026 891	0,266 12	7,28					
	P11																												3.090,05	3.087,55	CE	2,5	

	101	P11 5 27,6	5707,	0.57	0.0574	0,0571	0.0057	0.1202	4.9629	4.0920	200	1676	11.40	0.01	4,5 1	43,	0,034	2.46	OV	2,02	CUMP	0,00	1 21	CUMP	0,006	0,26	0,027	0,255	7.75	3.090,05	3.087,05	CS	3	
	101	P8 9	08	0,57	0,0574	0,0571	0,0057	0,1202	4,8028	4,9830	200	10,70	11,40	0,01	8	96	6	3,46	OK	2,02	LE	08	1,31	LE	92	0,26	114	32	7,75	3.085,41	3.083,91	CE	1,5	0,5
		P8																												3.085,41	3.083,41	CS	2	
	102	89,9 6	17952 ,29	1,80	0,1807	0,1795	0,0181	0,3783	5,3359	5,7142	200	5,22	6,9	0,01	3,5 1 6	11, 94	0,051	5,10	OK	1,80	CUMP LE	0,00 34	1,06	CUMP LE	0,010 21	0,32	0,032 531	0,313 84	5,69					
		P11 6																												3.080,71	3.077,21	CE	3,5	0
		P11 6	21676												4.2	2.4	0.047				CHIMP	0.00		CITATO	0.000		0.024	0.276		3.080,71	3.077,21	CS	3,5	
	103	89,5 8	,44	3,17	0,3188	0,3168	0,0319	0,6674	5,7142	6,3816	200	11,09	10,0	0,01	9	62	4	4,74	OK	2,10	CUMP LE	0,00 50	1,31	CUMP LE	48	0,30	315	0,276 29	6,89			 		
		7																												3.070,78	3.068,28	CE	2,5	0
		P11 7	10085												3 3 1	04	0.065				CUMP	0,00		CUMP			0.038	0,335		3.070,78	3.068,28	CS	2,5	
	104	81,7 8	,75	2,00	0,2011	0,1999	0,0201	0,4211	6,3816	6,8027	200	6,03	6,03	0,01	3,3 1	69	0,003	6,50	OK	1,84	LE	40	1,01	LE	0,013	0,36	773	18	5,15					
		8 P11																												3.065,85	3.063,35			
		54,4	3522												34 1	07.	0.000				CUMP	0,00		CUMP	0.000		0.001	0.112		3.070,04	3.066,54	CS	3,5	
	105	P12	86	0,35	0,0355	0,0352	0,0035	0,0742	0,0000	0,0742	200	7,31	6,4	0,01	3,4 1	82	7	0,07	OK	0,98	LE	07	0,98	LE	14	0,04	229	0,112 04	26,67					
		0 P12																												3.066,06	3.063,06	CE	3	0,5
	10.5	39,9	5337.	0.72	0.0505	0.0504	0.0054	0.1125	0.07.10	0.404	•••	44.50	0.77	0.04	4.1 1	31.	0.001	0.44	0.77		CUMP	0,00		CUMP	0.000		0.002	0.123	22.05	3.066,06	3.062,56	CS	3,5	
	106	P12	30	0,53	0,0537	0,0534	0,0054	0,1125	0,0742	0,1867	200	14,50	9,55	0,01	9	76	4	0,14	OK	1,21	LE	09	1,20	LE	28	0,05	288	0,123 83	22,95	3.060,26	2.059.76	CE	1.5	
´ -		1 P12	1																												3.058,76	CE	1,5	Ü
	107	70,4	11511	1.15	0.1150	0.1151	0.0116	0.2425	0.1967	0.4202	200	7.21	9.02	0.01	3,8 1	20,	0,003	0,36	OV	1,15	CUMP	0,00	1,12	CUMP	0,000	0,08	0,004	0,174 08	13,77	3.060,26	3.058,76	CS	1,5	
	107	P12 9	,59	1,13	0,1138	0,1151	0,0116	0,2423	0,1807	0,4292	200	7,51	8,02	0,01	4	71	6	0,30	UK	1,13	LE	20	1,12	LE	71	0,08	085	08	15,//	3.055,11	3.053,11	CE	2	0
		2 P11																												3.070,04				O
	108	9 46,9	4518, 50	0.45	0.0455	0,0452	0.0045	0.0952	0.0000	0.0952	200	11.39	11.40	0.01	4,5	43,	0,000	0,07	OK	1,30	CUMP		1,30	CUMP		0,04	0,001	0,091	36,09	3.070,04	3.000,34	CS	3,3	
		P16	50		,	,			Í	ĺ				ĺ	8	96	7				LE	07		LE	13		444	57		3.064,69	3.061,19	CE	3,5	0,5
		P16																												3.064,69	3.060,69	CS	4	
	109	2	2183, 65	0,22	0,0220	0,0218	0,0022	0,0460	1,9479	1,9939	200	16,02	8,81	0,01	4,0 1 3	26, 58	0,015	1,58	OK	1,45	CUMP LE	0,00 04	1,14	CUMP LE	0,003 15	0,18	0,012 861	0,244 96	8,25					
		P12 3																												3.059,80	3.058,00	CE	1,8	0
		P12 3																												3.059,80	3.058,00	CS	1,8	
9	110	8	12844 ,46	1,28	0,1293	0,1284	0,0129	0,2706	1,9939	2,2646	200	6,38	6,67	0,01	3,5 1 1	10, 15	0,020 6	2,06	OK	1,34	CUMP LE	0,00 25	1,03	CUMP LE	0,004 11	0,20	0,014 573	0,282 16	6,67					
		P12 4																												3.055,39	3.053,39	CE	2	0
5		P12 4															0.021							CIVID FD	0.005		0.015			3.055,39	3.053,39	CS	2	
	111	6	16664 ,14	1,67	0,1677	0,1666	0,0168	0,3511	2,2646	2,6157	200	2,37	3,93	0,01	2,6 8	0	0,031	3,10	OK	1,15	CUMP LE	0,00 42	0,81	CUMP LE	0,006 19	0,25	288	0,358 1	4,67				<u> </u>	
		P12 5																												3.053,87	3.050,87	CE	3	0
		P12 5	5645,												37 1	10	0.023				CUMP	0,00		CUMP	0.004		0.016	0,272		3.053,87	3.050,87	CS	3	
	112	1	13	0,56	0,0568	0,0565	0,0057	0,1189	2,6157	2,7346	200	9,70	7,81	0,01	3,7 1	14	0	2,30	OK	1,49	LE	10	1,09	LE	59	0,21	833	72	7,02					
-		P23	1													\dashv														3.046,17		CE	1,5	0
	113	P23 33,1 7	2684, 95	0,27	0,0270	0,0268	0,0027	0,0566	4,4786	4,5351	200	3,53	4,43	0,01	2,8 8 6	89,7 6	0,050 5	5,05	OK	1,44	CUMP LE	0,00 06	0,81	CUMP LE	0,010 11	0,31	0,027 843	0,362 93	4,57	3.046,17	3.044,67	CS	1,5	

	P12 6																													3.045,00	3.043,20	СЕ	1,8	0
	P12 6																													3.045,00	3.043,20	CS	1,8	1
	114	3	22903 ,16	2,29	0,2305	0,2290	0,0230	0,4826	4,5351	5,0177	200	1,67	1,88	0,01	1,8 6	58,4 0	0,085 9	8,59	OK	1,14	CUMP LE	0,00 83	0,60	CUMP LE	0,017 19	0,41	0,033 948	0,506 22	2,78					
	P12 7																													3.043,38	3.041,38	CE	2	0
	P12 7		21161												2.5	70.6	0.060				CHIMAD	0.00		CHIMP	0.012		0.022	0.402		3.043,38	3.041,38	CS	2	
	115 P12	86	21161 ,95	2,12	0,2130	0,2116	0,0213	0,4459	5,0177	5,4636	200	2,35	3,49	0,01	3	4	0,068 6	6,86	OK	1,43	CUMP LE	0,00 56	0,79	CUMP LE	0,013 72	0,37	0,033 983	76	3,90		 		<u> </u>	
	8 P12																													3.040,28	3.036,78		3,5	0
	8	63,8	13443												1.9	97.2	0.059				CUMP	0,00		CUMP	0,014		0,029	0,508		3.040,28	3.036,78	CS	3,5	
	116 P12	1	,91	1,34	0,1353	0,1344	0,0135	0,2833	5,4636	5,7468	250	3,93	1,58	0,01	8	6	0,059	5,91	OK	1,05	LE	29	0,60	LE	77	0,38	053	44	2,76	2.025.55	2.025.77	GE		
	9 P12																													3.037,77	3.035,77	CE	2	0
	117	76,0	22225	2 22	0,2237	0,2223	0,0224	0.4692	5 7/60	6 2151	250	2.57	1,91	0,01	2,1	106, 77	0,058	5 92	OK	1,15	CUMP	0,00	0,66	CUMP	0,014	0,38	0,030	0,476	3,04	3.037,77	3.035,77	CS	2	
	P13	2	,67	2,22	0,2237	0,2223	0,0224	0,4083	3,7408	0,2131	250	2,37	1,91	0,01	8	77	2	3,62	OK	1,13	LE	44	0,00	LE	55	0,38	564	15	3,04	3.035.82	3.034,32	CE	1,5	0
	0 P13																													3.035.82	,		1,5	
	118	147, 31	21012	2,10	0,2115	0,2101	0,0211	0,4427	6,2151	6,6579	250	0,18	1,53	0,01	1,9	95,7	0,069	6,95	OK	1,10	CUMP LE	0,00 46	0,60	CUMP LE	0,017 38	0,41	0,033 403	0,520 39	2,66	5.055,02	3.034,32		1,5	
	P79		,03												3	3	3					40		LE	36		403	39		3.035,56	3.032,06	CE	3,5	0
	P13 2																													3.158,31	3.154,31	CS	4	1
	119	31,2	813,0 7	0,08	0,0082	0,0081	0,0008	0,0171	0,0000	0,0171	200	15,91	13,7	0,01	5,0	157, 66	0,000	0,01	OK	1,41	CUMP LE	0,00	1,41	CUMP LE	2,2E- 05	0,01	0,000 457	0,047 51	96,57					
	P31																													3.153,34	3.150,04	CE	3,3	0,5
	P31		733,2	0.07	0.0074	0.0072	0.0007	0.0154	1.0206	1 0 4 4 0	200	0.55	C 45	0.01	3,4	108,	0,009	0.06	OT		CUMP	0,00	0.07	CUMP	0,001	0.14	0,007	0,244	0.20	3.153,34	3.149,54	CS	3,8	
	120 P13	_ 1	0	0,07	0,0074	0,0073	0,0007	0,0154	1,0286	1,0440	200	8,55	6,45	0,01	5	108, 29	6	0,96	OK	1,14	LE	01	0,97	LE	93	0,14	897	15	8,29	3.147.24	3.144,94	CE	2,3	0
	P13																													3.147,24	,		2,3	
	122		24335	2,43	0,2449	0,2434	0,0245	0,5128	1,0440	1,5568	200	4,07	6,43	0,01	3,4	108,	0,014 4	1,44	ок	1,21	CUMP		1,05	CUMP	0,002 88	0,17	0,010	0,268	7,20	01117,21	3.111,51			
	P13	8	,63												4	09	4			·	LE	47		LE	88	•	738	24		3.145,17	3.141,67	CE	3,5	0
	P13																													3.145,17	3.141,67	CS	3,5	ı
E	123	80,0	8290, 95	0,83	0,0834	0,0829	0,0083	0,1747	1,5568	1,7315	200	9,95	10,50	0,01	4,4 0	138, 16	0,012 5	1,25	ок	1,51	CUMP LE	0,00	1,27	CUMP LE	0,002 51	0,16	0,011 345	0,220 93	9,63					
CALLE (R)	P13 8		75													10						13		L	31		3.13	75		3.137,21	3.133,21	CE	4	0,5
Z\	P13 8																													3.137,21	3.132,71	CS	4,5	ı
	126	56,3 4	5982, 36	0,60	0,0602	0,0598	0,0060	0,1260	1,7315	1,8575	200	15,37	12	0,01	4,6 7	146, 60	0,012 7	1,27	OK	1,61	CUMP LE	0,00 09	1,33	CUMP LE	0,002 53	0,16	0,011 928	0,212 46	10,21					
	P13 9																													3.128,55	3.126,05	CE	2,5	0,5
	P13 9																													3.128,55	3.125,55	CS	3	
	127	8	810,1	0,08	0,0082	0,0081	0,0008	0,0171	1,8575	1,8746	200	11,85	11,90	0,01	4,6 8	147, 09	0,012 7	1,27	OK	1,62	CUMP LE	0,00 01	1,32	CUMP LE	0,002 55	0,16	0,012 023	0,212	10,24					
	P14 0																													3.123,09	3.120,09	CE	3	0,5
	P14 0		2205												4.2	124	0.020				CHIMA	0.00		CHIMP	0.005		0.022	0.261		3.123,09	3.119,59	CS	3,5	
	128 P14	77,2	3385, 78	0,34	0,0341	0,0339	0,0034	0,0713	3,8616	3,9330	200	11,13	9,90	0,01	7	154,	0,029	2,93	OK	1,79	CUMP LE	0,00 05	1,21	LE	0,005 86	0,24	0,022 393	84	7,46		 		 	
	1		Q014						-						A 1	120	0.021				CHMP	0.00		CUMP	0.006		0.022	0.260			3.111,99		2,5	0,5
	129 P14	42,0	8914, 88	0,89	0,0897	0,0891	0,0090	0,1878	3,9330	4,1208	200	11,69	9,4	0,01	5	38	0,031 6	3,16	OK	1,78	CUMP LE	0,00 14	1,20	LE	0,006 32	0,25	0,023 456	49	7,15	3.114,49	3.111,49	CS	3	

	P14																																<u> </u>	\perp
	2 P14																													3.109,50	-	CE	2	
121	2.	79,7	21169	2.12	0.2120	0.2117	0.0212	0.4460	4.1206	4500	200	0.04	0.00	0.01	4,2	134,	0,033	2.20	OV	1.00	CUMP	0,00	1.20	CUMP	0,006	0.26	0,025	0,265	7.20	3.109,50	3.107,00	CS	2,5	+
131		9	,06	2,12	0,2130	0,2117	0,0213	0,4460	4,1208	4,5669	200	9,94	9,99	0,01	9	77	0,033	3,39	OK	1,88	CUMP LE	0,00	1,28	CUMP LE	0,006 78	0,26	0,025 484	95	7,29	2 101 55	2 000 07	GE	2.5	+
	P43																													3.101,57 3.101,57		CE	2,5 3	-
133		70,9	11502	1.15	0.1150	0,1150	0.0116	0.2424	4.0766	5 2197	200	0.02	0.02	0.01	4,2	134,	0,038	3,88	OK	1,96	CUMP	0,00	1,24	CUMP	0,007	0,28	0,028 697	0,270 7	7,10	3.101,57	3.098,37	CS	3	+
133	P14	0	,53	1,13	0,1138	0,1130	0,0116	0,2424	4,9702	5,2100	200	9,93	9,93	0,01	8	36	8	3,00	OK	1,90	LE	18	1,24	LE	77	0,28	697	7	7,10	3.094,53	3.091,53	CE	3	\dagger
	5 P14																														3.091,03	CS	3,5	-
135	5	49,8	20228	2.02	0.2026	0,2023	0.0204	0.4262	5 2194	5,6448	200	10.26	9,26	0,01	4,1	129,	0,043	4,35	OK	1,97	CUMP	0,00 33	1,23	CUMP	0,008	0,29	0,031	0,280	6,74	3.094,33	3.091,03	CS	3,3	+
133	P14	1	,07	2,02	0,2030	0,2023	0,0204	0,4202	3,2180	3,0440	200	10,20	9,20	0,01	3	71	5	4,33	OK	1,97	LE	33	1,23	LE	7	0,29	061	2	0,74	3.089,42	3.086,42	CE	3	†
	6 P14																																	4
136	6	50,5	17349	1.72	0.1746	0,1735	0.0175	0.2655	5 6110	6 0102	200	0.16	8,2	0,01	3,8	121,	0,049	4,93	OK	1,93	CUMP	0,00	1,15	CUMP	0,009	0,31	0,033 297	0,296	6 21	3.089,42	3.085,92	CS	3,5	+
130	P14	2	,01	1,/3	0,1740	0,1733	0,0173	0,3033	3,0446	0,0103	200	9,16	0,2	0,01	8	91	3	4,93	OK	1,93	LE	30	1,13	LE	86	0,31	297	13	0,21	2 094 70	2 091 70	CE	3	+
	7 P14																														3.081,79			-
	7	40,1	17856	4.50	0.4505	0.4504	0.0400	0.05.0	. 040		•••	12.05	40.4	0.01	4.3	135.	0.047	4.50	0.77	2.11	CUMP	0,00	4.05	CUMP	0,009	0.20	0.034	0,274		3.084,79	3.081,29	CS	3,5	4
137	P14	9	,89	1,79	0,1797	0,1786	0,0180	0,3762	6,0103	6,3866	200	13,06	10,1	0,01	1	35	0,047	4,72	OK	2,11	LE	28	1,27	LE	44	0,30	318	99	6,93	2.050.54	2055.24			1
	8 P14																														3.077,24	CE	2,3	_
	8	45,3	8854,												3.7	117	0.055				CUMP	0,00		CUMP	0.011		0.036	0.306		3.079,54	3.076,74	CS	2,8	4
138	P14	8	41	0,89	0,0891	0,0885	0,0089	0,1866	6,3866	6,5731	200	10,51	7,65	0,01	5	90	0,055 7	5,57	OK	1,95	LE	16	1,09	LE	15	0,33	0,036 39	4	5,90					1
	9																													3.074,77		CE	1,5	_
	P14 9	<i>16</i> 1	24350												2.2	101	0.060				CUMP	0.00		CHMP	0.013		0.040	0.244		3.074,77	3.073,27	CS	1,5	1
139		46,1 9	,33	2,44	0,2451	0,2435	0,0245	0,5131	6,5731	7,0862	200	0,24	5,65	0,01	3	35	0,069 9	6,99	OK	1,83	CUMP LE	0,00 51	0,99	CUMP LE	0,013 98	0,37	0,040 564	71	4,94				<u> </u>	1
	P15 0																													3.074,66	3.070,66	CE	4	_
	P15 0	24.2	2215													400	0054				CITY TO				0.010		0.000			3.074,66	3.070,66	CS	4	
140	D15	34,2	2217, 35	0,22	0,0223	0,0222	0,0022	0,0467	7,0862	7,1329	200	13,80	9,42	0,01	7	130, 88	5	5,45	OK	2,15	CUMP LE	0,00	1,18	CUMP LE	9	0,33	0,038 255	93	6,57				<u> </u>	1
	P15 1																													3.069,93	3.067,43	CE	2,5	
	P15 1																													3.069,93	3.066,93	CS	3	
141		50,1 2	3028, 16	0,30	0,0305	0,0303	0,0030	0,0638	7,1329	7,1967	200	9,92	6,92	0,01	3,5 7	112, 19	0,064 1	6,41	OK	1,96	CUMP LE	0,00 06	1,01	CUMP LE	0,012 83	0,35	0,040 095	0,319 98	5,52					
	P15 2																													3.064,96	3.063,46	CE	1,5	
	P15 2																													3.064,96	3.063,46	CS	1,5	
142		46,5 8	2895, 90	0,29	0,0291	0,0290	0,0029	0,0610	7,1967	7,2577	200	0,47	4,77	0,01	2,9	93,0 8	0,078	7,80	ОК	1,75	CUMP LE	0,00 07	0,84	CUMP LE	0,015 59	0,39	0,042 342	0,368 28	4,47					Ī
	P15																													3.064,74	3.061,24	CE	3,5	
	P15																													3.064,74	3.061,24	CS	3,5	1
143		50,0	2657, 32	0,27	0,0267	0,0266	0,0027	0,0560	7,2577	7,3137	200	9,54	6,54	0,01	3,4 7	109, 02	0,067 1	6,71	ок	1,94	CUMP LE	0,00 05	0,99	CUMP LE	0,013 42	0,36	0,041 029	0,327 02	5,35					1
	P15 4	_																				30					~/			3.059,97	3.057,97	CE	2	Ī
	P15 4																													3.059,97	3.057,97	CS	2	1
144	7	40,0	816,2 4	0,08	0,0082	0,0082	0,0008	0,0172	7,3137	7,3309	200	3,85	5,09	0,01	3,0	96,2 3	0,076 2	7,62	ок	1,79	CUMP LE	0,00 02	0,86	CUMP LE	0,015 24	0,39	0,042 325	0,359 98	4,63					†
	P49	-																												3.058,43	3.055,93	CE	2,5	T

	P49	61,0	1687												3.0	123	0.067				CUMP	0.00		CUMP	0.013		0.044	0.302		3.058,43	3.055,93	CS	2,5	
	145 P15	9	36	0,17	0,0170	0,0169	0,0017	0,0356	8,2686	8,3041	200	6,71	8,35	0,01	2	20	4	6,74	OK	2,19	CUMP LE	03	1,11	CUMP LE	48	0,36	0,044 623	11	6,02	3.054,33	3.050,83	CE	3,5	0
	P15																													3.054,33	3.050,83	CS	3,5	
	140	59,8 6	6889, 92	0,69	0,0693	0,0689	0,0069	0,1452	8,3041	8,4493	200	7,32	7,32	0,01	3,6 7	115, 34	0,073 3	7,33	OK	2,12	CUMP LE	0,00 13	1,06	CUMP LE	0,014 65	0,38	0,046 159	0,317 41	5,59					
	P15 6																														3.046,45	-	3,5	0
	P15 6		5293,	0.50	0.0522	0.0520	0.0052	0.1115	0.4402	0.5400	200	10.46	0.4	0.01	3,9	123,	0,069	6.05	OW	2.22	CUMP	0,00	1 12	CUMP	0,013	0.27	0,045	0,302	6.01	3.049,95	3.046,45	CS	3,5	
	147 P15	1	81	0,53	0,0533	0,0529	0,0053	0,1115	8,4493	8,5608	200	10,46	8,4	0,01	2	25	5	6,95	OK	2,22	CUMP LE	09	1,12	CUMP LE	89	0,37	0,045 938	39	6,01	3.044,98	3.042,48	CE	2,5	0
	7 P15																														3.042,48		2,5	v
	148	54,7	1256, 96	0,13	0,0126	0,0126	0,0013	0,0265	8,5608	8,5873	200	4,62	4,26	0,01	2,8	87,9 8	0,097 6	9,76	OK	1,80	CUMP LE	0,00	0,79	CUMP LE	0,019 52	0,44	0,050 113	0,389	4,11	·				
	P15 8		70														Ü					05			32					3.042,45	3.040,15	CE	2,3	
	P15 9		1.400												4.2	126	0.000				CHIMP	0.00		CHIMP	4.25		0.000	0.065		3.196,05	3.192,55	CS	3,5	
	149 P16	2	20	0,14	0,0141	0,0140	0,0014	0,0295	0,0000	0,0295	200	12,25	10,21	0,01	4,3	27	2	0,02	OK	1,22	CUMP LE	0,00	1,22	LE	4,3E- 05	0,02	0,000 658	84	59,19	2.407.02	2 10 7 02			
	0 P16																													3.187,02 3.187,02	3.185,02	CE CS	2,5	0,5
	150	96,3	6152, 01	0,62	0,0619	0,0615	0,0062	0,1296	0,0295	0,1591	200	7,88	8,4	0,01	3,9	123,	0,001	0,13	OK	1,13	CUMP LE	0,00	1,13	CUMP LE	0,000	0,05	0,002 052	0,125	22,48	3.167,02	3.104,32	CS	2,5	
	P16 2	8	01												3	33	3				LE	10		LE	20		052	30		3.179,43	3.176,43	CE	3	0,5
	P16 2																													3.179,43	3.175,93	CS	3,5	
	152 P16	90,2	12196 ,92	1,22	0,1227	0,1220	0,0123	0,2570	0,1591	0,4161	200	10,98	9,10	0,01	4,0 9	128, 62	0,003	0,32	OK	1,22	CUMP LE	0,00 20	1,19	CUMP LE	0,000 65	0,08	0,003 99	0,162 17	15,31					
	4 P16																													3.169,52		CE	1,8	0,5
	4		6967,	0.70	0,0701	0,0697	0,0070	0 1468	0.4161	0.5629	200	8 87	9,23	0.01	4,1	129,	0,004	0.43	OK	1,25	CUMP LE	0,00	1,18	CUMP LE	0,000	0,09	0,004 936	0,176	13,54	3.169,52	3.167,22	CS	2,3	
	P16		21	0,70	0,0,01	0,0057	0,0070	0,1.00	0,1101	0,0023	200	0,07	7,20	0,01	2	57	3	0,.5		1,20	LE	11	1,10	LE	87	0,05	936	04	15,5	3.164,64	3.162,14	CE	2,5	0,5
E (S)	P16																													3.164,64	3.161,64	CS	3	
CALL	155	40,4 1	4600, 23	0,46	0,0463	0,0460	0,0046	0,0969	0,5629	0,6598	200	11,73	10,5	0,01	4,4 0	138, 11	0,004 8	0,48	ок	1,34	CUMP LE	0,00 07	1,25	CUMP LE	0,000 96	0,10	0,005 508	0,173 47	13,84					
	P16 6																													3.159,90	3.157,40	CE	2,5	0,5
	P16 6	41,3	5472,	0.55	0.0551	0.0545	0.0055	0.1152	0.6500	0.555	200	12.02	10.00	0.01	4,4	140,	0,005	0.55	OW	1.20	CUMP	0,00	1.20	CUMP	0,001	0.10	0,006	0,177	10.07	3.159,90	3.156,90	CS	3	
	156 P16	2	68	0,55	0,0551	0,0547	0,0055	0,1153	0,6598	0,7752	200	12,03	10,88	0,01	8	64	0,005 5	0,55	OK	1,39	CUMP LE	08	1,28	LE	0,001	0,10	209	55	13,37	3.154,93	3.152.43	CE	2,5	0,5
	P16																													3.154,93			3	-,-
		35,4 6	4398, 99	0,44	0,0443	0,0440	0,0044	0,0927	0,7752	0,8678	200	12,07	13,5	0,01	4,9 8	156, 55	0,005 5	0,55	ок	1,54	CUMP LE	0,00 06	1,42	CUMP LE	0,001 11	0,10	0,006 673	0,166 14	14,77					
	P16 8															-														3.150,65	3.147,15	CE	3,5	0,5
	P16 8		4012												10	152	0.006				CHMP	0.00		CUMP	0.001		0.007	0.174		3.150,65	3.146,65	CS	4	
	158 P16	32,6 0	4012, 23	0,40	0,0404	0,0401	0,0040	0,0845	0,8678	0,9524	200	19,54	12,8	0,01	5	50	0,006	0,62	OK	1,52	CUMP LE	0,00 06	1,38	CUMP LE	25	0,11	0,007 162	39	13,73	2 144 20	2 142 49	CE.	1.0	0.5
	9 P16																													3.144,28	3.142,48	CE CS	2,3	0,5
	159 9	37,2	4304, 99	0,43	0,0433	0,0430	0,0043	0,0907	0,9524	1,0431	200	12,26	10,91	0,01	4,4 8	140, 86	0,007 4	0,74	OK	1,43	CUMP LE	0,00 06	1,28	CUMP LE	0,001 48	0,12	0,007 704	0,192 24	11,86	3.144,40	3.141,70	C.3	2,3	
L	l	1	1	1		1	1	ı				1		I	1								I					l						

Ì	P17 0																												!	3.139,72	3.137,92	СЕ	1,8	0,
	P17 0	41.6	700												1.2	121	0.000				CVIDAD	0.00		CVIDAD	0.001		0.000	0.200		3.139,72	3.137,42	CS	2,3	<u> </u>
160	P17	41,6	4907, 02	0,49	0,0494	0,0491	0,0049	0,1034	1,0431	1,1465	200	11,96	9,6	0,01	0	131, 82	0,008 7	0,87	OK	1,37	CUMP LE	0,00	1,20	CUMP LE	0,001 74	0,13	0,008 334	71	10,49			<u> </u>	<u> </u>	—
	1 P17																														3.133,44	CE	1,3	0,
161	1	54,9	6550,	0.66	0.0659	0,0655	0.0066	0,1380	1 1465	1 2845	200	9 30	9,7	0,01	4,2	132,	0,009	0,97	OK	1,39	CUMP LE	0,00	1,21	CUMP	0,001	0,14	0,009 043	0,214 28	10,08	3.134,74	3.132,94	CS	1,8	<u> </u>
101	P17	2	47	0,00	0,0037	0,0033	0,0000	0,1300	1,1403	1,2043	200	7,50	2,1	0,01	2	58	7	0,57	OR	1,37	LE	10	1,21	LE	94	0,14	043	28	10,00	3.129,63	3.127,63	CE	2	0
	P17 2																													3.129,63	3.127,13	CS	2,5	
162		58,0 0	5835, 85	0,58	0,0587	0,0584	0,0059	0,1230	1,2845	1,4075	200	8,71	8,71	0,01	4,0 0	125, 81	0,011	1,12	ок	1,35	CUMP LE	0,00 10	1,15	CUMP LE	0,002 24	0,15	0,009 761	0,229 22	9,11					
	P17 3																													3.124,58	3.122,08	CE	2,5	
	P17 3	70.1	7005												12	125	0.011				CHIMD	0.00		CHIMD	0.002		0.010	0.210		3.124,58	3.121,58	CS	3	
163	P17	72,1 1	7095, 93	0,71	0,0714	0,0710	0,0071	0,1495	1,4075	1,5570	200	10,10	10,10	0,01	1	48	0,011 5	1,15	OK	1,46	CUMP LE	0,00 11	1,24	CUMP LE	0,002	0,15	0,010 471	52	9,72				<u> </u>	_
	5 P17																														3.114,30		3	_
165	5	55,8	352,5	0.04	0.0035	0,0035	0.0004	0,0074	1.5570	1.5644	200	12.65	10.9	0,01	4,4	140,	0,011	1,11	OK	1,51	CUMP		1,26	CUMP		0,15	0,010	0,212	10,22		3.113,80	CS	3,5	-
100	P17	2	4	0,0 .	0,0022	0,0000	0,000	0,007	1,0070	1,0011	200	12,00	20,5	0,01	7	49	1	1,11		1,01	LE	01	1,20	LE	23	0,15	485	4	10,22		3.107,74	CE	2,5	
	P17 6																													3.110,24	3.107,24	CS	3	
166		75,5 5	12846 ,13	1,28	0,1293	0,1285	0,0129	0,2707	1,5644	1,8351	200	6,10	6,76	0,01	3,5 3	110, 89	0,016 5	1,65	ок	1,28	CUMP LE	0,00 24	1,04	CUMP LE	0,003 31	0,18	0,012 23	0,270 61	7,10					
	P17 7																													3.105,63	3.102,13	CE	3,5	
-	P17 7	93,4	472,4												2.8	80.3	0,020				CUMP	0.00		CUMP	0.004		0.012	0.324		3.105,63	3.102,13	CS	3,5	
167	P17	4	0	0,05	0,0048	0,0047	0,0005	0,0100	1,8351	1,8450	200	5,67	4,4	0,01	4	89,3 1	7	2,07	OK	1,09	LE	01	0,80	LE	13	0,20	739	0,324 32	5,41	2 100 22	2 000 02	GE	2.2	-
	9 P17																													3.100,33		CE	2,3 2,3	-
169	9	78,7	5432,	0,54	0,0547	0,0543	0,0055	0,1145	1,8450	1,9595	200	7,39	6,37	0,01	3,4	107, 65	0,018	1,82	OK	1,27	CUMP LE	0,00	0,98	CUMP	0,003	0,19	0,012 964	0,280	6,72	3.100,33	3.096,03		2,3	-
	P18 0	5	42												3	03	2				LE	11		LE	64		904	8		3.094,51	3.093,01	CE	1,5	
	P18 0																													3.094,51	3.093,01	CS	1,5	
170		59,0 7	4299, 55	0,43	0,0433	0,0430	0,0043	0,0906	1,9595	2,0501	200	6,06	6,06	0,01	3,3 4	104, 97	0,019 5	1,95	ОК	1,26	CUMP LE	0,00 09	0,95	CUMP LE	0,003 91	0,20	0,013 516	0,289	6,44					
	P18 1 P18																												<u> </u>		3.089,43	CE	1,5	-
-	1	62,8	4622,	0.46	0.0465	0.0462	0.0047	0.0074	2.0501	2 1 4775	200	2.44	2.771	0.01	2,6	82,1	0,026	2.62	OK	1.06	CUMP	0,00	0.75	CUMP	0,005	0.22	0,014	0,357	4,68	3.090,93	3.089,43	CS	1,5	-
171	P18	62,8	55	0,46	0,0465	0,0462	0,0047	0,0974	2,0501	2,14/5	200	2,44	3,71	0,01	1	2	0,026	2,62	OK	1,06	CUMP LE	12	0,75	LE	0,005	0,23	0,014 633	43	4,68	3.089.40	3.087,10	CE	2,3	-
	2 P18																												+		3.087,10	CS		
172	2	59,3 5	452,9 2	0,05	0,0046	0,0045	0,0005	0,0095	2,1475	2,1570	200	8,31	8,64	0,01	3,9	125,	0,017	1,72	OK	1,46	CUMP LE	0,00 01	1,12	CUMP LE	0,003 44	0,18	0,013	0,251 13	7,95				-,-	+
Ī	P18 3	5	2													30						01			77		/ U -1	13		3.084,47	3.081,97	CE	2,5	
	P18 3														_															3.084,47	3.081,97	CS	2,5	
173		87,5 2	6686, 36	0,67	0,0673	0,0669	0,0067	0,1409	2,1570	2,2979	200	7,19	6,04	0,01	3,3	104, 83	0,021 9	2,19	OK	1,29	CUMP LE	0,00	0,96	CUMP LE	0,004 38	0,21	0,014 828	0,295 66	6,22					
	P18 4																													3.078,18	3.076,68	CE	1,5	

174	P1 4	90,1	658,9	0.07	0.0066	0,0066	0.0007	0.0120	2 2070	2 2110	200	2.71	2.71	0.01	2,6 82	,0 0,028	2.92	OV	1.00	CUMP	0,00	0.74	CUMP	0,005	0,24	0,015	0,361	-	3.078,18	3.076,68	CS	1,5	
1/4	P1 5	4	9	0,07	0,0000	0,0000	0,0007	0,0139	2,2919	2,3118	200	3,/1	3,/1	0,01	1 3	2	2,82	OK	1,08	LE	02	0,74	LE	63	0,24	0,015 568	85	4,59	3.074,84	3.073,34	CE	1,5	0
	P1 5	;	7200												27 11	6 0.021				CHMD	0.00		CUMD	0.004		0.015	0.272		3.074,84	3.073,34	CS	1,5	
175	P1	6	7399, 42	0,74	0,0745	0,0740	0,0074	0,1559	2,3118	2,4677	200	6,37	7,47	0,01	1 5	6 0,021	2,12	OK	1,43	CUMP LE	0,00	1,07	CUMP LE	23	0,20	519	0,272 85	7,02	3.069,05	3.066,55	CE	2,5	0
	7 P1																												3.069,05	3.066,55		2,5	U
177	7		7395, 87	0,74	0,0744	0,0740	0,0074	0,1558	2,4677	2,6235	200	9,60	8,15	0,01	3,8 12 7 7	1, 0,021	2,16	ок	1,49	CUMP LE	0,00 13	1,12	CUMP LE	0,004 31	0,21	0,016 143	0,267 08	7,24		,		,	
	P1:	3																											3.062,45	3.060,95	CE	1,5	0
	P1:	3	733,7												25 70	9 0.033				CUMP	0,00		CHMP	0,006		0.017	0,374	_	3.062,45	3.060,95	CS	1,5	
178	P1	3	9	0,07	0,0074	0,0073	0,0007	0,0155	2,6235	2,6390	200	3,52	3,52	0,01	5	0,035	3,30	OK	1,11	LE	02	0,72	LE	6	0,25	622	58	4,36	3.060.23	3.058,73	CE	1,5	0
	9 P1	.8																											3.060,23	3.058,73	CS	1,5	U
179	9	82,4	829,6 8	0,08	0,0083	0,0083	0,0008	0,0175	2,6390	2,6565	200	3,88	3,88	0,01	2,6 83	,9 0,031	3,16	ок	1,15	CUMP LE	0,00 02	0,75	CUMP LE	0,006 33	0,25	0,017 539	0,360 69	4,62				,	
	P1:)																											3.057,03	3.055,53	CE	1,5	0
	P1:)	15668												3 1 09	4 0.030				CUMP	0,00		CUMP	0.006		0.018	0,322		3.057,03	3.055,53	CS	1,5	
180	P1:	86,1	,20	1,57	0,1577	0,1567	0,0158	0,3301	2,6565	2,9866	200	5,33	5,33	0,01	3	3	3,03	OK	1,33	LE	34	0,94	LE	07	0,24	795	85	5,45	3.052,44	3.050,94	CE	1.5	0
	1 P1																												3.052,44		CE CS	1,5 1,5	U
181	1	91,6	12557 ,88	1,26	0,1264	0,1256	0,0126	0,2646	2,9866	3,2512	200	2,64	4,06	0,01	2,7 85	,8 0,037	3,79	ок	1,24	CUMP LE	0,00 31	0,81	CUMP LE	0,007 57	0,27	0,020 789	0,364 19	4,55		2.020,5		1,0	
	P1:	.9	,00																		31			37		707	17		3.050,02	3.047,22	CE	2,8	0
	P1:	2	5455												2.0 10	5 0.024				CUMP	0,00		CHMD	0.005		0.010	0,270	-	3.050,02	3.047,22	CS	2,8	
182	P1:	91,9	66	0,55	0,0549	0,0546	0,0055	0,1150	3,2512	3,3661	200	10,07	8,66	0,01	3,9 12 9 4	5, 0,026 7 8	2,68	OK	1,63	LE	09	1,14	CUMP LE	37	0,23	83	59	7,10	3.040,76	2 020 26	CE	1,5	0.2
	P1:																													3.039,26			0,2
183	3	154, 86	23824	2,38	0,2398	0,2382	0,0240	0,5020	3,3661	3,8681	250	1,05	1,34	0,01	1,8 89	,6 0,043	4,32	ок	0,87	CUMP LE	0,00 56	0,60	CUMP LE	0,010 79	0,33	0,020 792	0,519 11					_,-	
	P7	-																											3.042,38	3.037,38	CE	5	0
64	P7		17226 ,32	1.72	0.1734	0,1723	0.0173	0.3630	3.8681	4.2311	250	2.19	2,19	0,01	2,3 11	4, 0,037 7 0	3,70	OK	1,05	CUMP	0,00	0,70	CUMP	0,009	0,30	0,021 251	0,434	3,49	3.042,38	3.037,38	CS	5	
	P7		,32	-,	3,2121	3,27.20	0,000	0,000	.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_,_,	7-2	3,02	3 4	7 0	,,,,		-,00	LE	32	3,13	LE	24	3,00	251	84		3.040,00	3.035,00	CE	5	0
	P7		1106,												4.4 22	0, 0,019		0.00		CUMP	0,00		CUMP	0.004		0.018	0,255	F	3.040,00	3.035,00	CS	5	
65	P7	3	84	0,11	0,0111	0,0111	0,0011	0,0233	4,2311	4,2544	250	12,26	8,1	0,01	4,4 22 9 2	2 3	1,93	OK	1,69	LE	01	1,26	LE	83	0,22	937	04	7,76	3.035,56	3.032,06	CE	3,5	
	P7	79																										-	3.035,56			3,5	
248	P2	41,0	0,00	0,00	0,0000	0,0000	0,0000	0,0000	10,912	10,912 3	250	14,33	11,41	0,01	5,3 26	1, 0,041 2 8	4,18	OK	2,50	CUMP LE	0,00	1,50	CUMP LE	0,010 45	0,32	0,041 122	0,254 06	7,81					
	9 P2	24																									_		3.029,68	3.027,38		2,3	
249	9		0,00	0,00	0,0000	0,0000	0,0000	0,0000	10,912	10,912 3	250	10,46	10,82	0,01	5,1 25 8 2	4, 0,042 4 9	4,29	OK	2,50	CUMP LE	0,00	1,46	CUMP LE	0,010 73	0,32	0,041 861	0,256 33	7,71	3.U2Y,08	3.026,88	CS	2,8	

		P25 0																													3.023,87	3.020,87	СЕ	3	
		P25 0	57.7							10.012	10.012					5.1	254	0.042				CUMP	0.00		CHMP	0.010		0.041	0.256		3.023,87	3.020,37	CS	3,5	
	250	P25	57,7	0,00	0,00	0,0000	0,0000	0,0000	0,0000	10,912	3	250	14,29	10,8	0,01	8	39	9	4,29	OK	2,50	CUMP LE	00	1,46	CUMP LE	72	0,32	0,041 845	0,256 28	7,71	3.015,62	3.014,12	CE	1,5	
		P25 1																														3.014,12		1,5	
	251		98,5 1	0,00	0,00	0,0000	0,0000	0,0000	0,0000	10,912	10,912 3	250	2,34	3,36	0,01	2,8 9	141, 71	0,077	7,70	OK	1,70	CUMP LE	0,00 00	0,81	CUMP LE	0,019 25	0,43	0,047 795	0,402 79	3,91					
		P25 2 P25																														3.010,81		2,5	
	252	2	88,8	0.00	0.00	0,0000	0,0000	0,0000	0.0000	10,912	10,912	250	7,91	7 01	0,01	4,4	217, 36	0,050	5,02	OK	2,20	CUMP LE	0,00	1,20	CUMP	0,012 55	0,35	0,042	0,294	6,27	3.013,31	3.010,81	CS	2,5	
	232	P25	0	0,00	0,00	0,0000	0,0000	0,0000	0,0000	3	3	230	7,91	7,91	0,01	3	36	2	3,02	OK	2,20	LE	00	1,20	LE	55	0,33	675	1	0,27	3.006,29	3.003,79	CE	2,5	
		P25 3																													3.006,29	3.003,79	CS	2,5	
	253		99,5 0	0,00	0,00	0,0000	0,0000	0,0000	0,0000	10,912	10,912 3	250	3,66	4,66	0,01	3,4 0	166, 94	0,065 4	6,54	OK	1,90	CUMP LE	0,00 00	0,96	CUMP LE	0,016 34	0,40	0,046 146	0,354 12	4,75					
		P24 8 P20																														2.999,15	CE	3,5	
	201	9	52,2	2764,	0.28	0,0278	0,0276	0,0028	0.0583	0.0000	0 0583	200	9.06	8 11	0.01	3,8	121,	0,000	0,05	OK	1,10	CUMP LE	0,00	1,10	CUMP	9,6E-	0,03	0,001	0,091 97	35,85	3.189,72	3.186,22	CS	3,5	
	<u> </u>	P21 0	9	77	0,20	0,0270	0,0270	0,0020	0,0303	0,0000	0,0202	200	7,00	0,11	0,01	6	41	5	0,03		1,10	LE	05	1,10	LE	05	0,03	043	97	33,03	3.184,98	3.181,98	CE	3	0,5
		P21 0																													3.184,98	3.181,48	CS	3,5	
	203	P21	93,7	10403 ,88	1,04	0,1047	0,1040	0,0105	0,2192	0,0583	0,2775	200	9,30	8,24	0,01	3,9	122, 37	0,002	0,23	OK	1,14	CUMP LE	0,00 18	1,13	CUMP LE	0,000 45	0,07	0,003 009	0,150 71	17,09					
		2 P21								1																						3.173,76	CE	2,5	0
	204	2	48,7	3889, 15	0,39	0,0391	0,0389	0,0039	0,0819	0,2775	0,3594	200	6,42	7,44	0,01	3,7	116,	0,003	0,31	OK	1,10	CUMP LE	0,00	1,05	CUMP LE	0,000 62	0,08	0,003 612	0,171 12	14,13	3.176,26	3.173,76	CS	2,5	
	_	P52	8	13													31	1				LE	07		LE	02		012	12		3.173,13	3.170,13	CE	3	0
	-	P52	44,0	4774,	0.40		0.0455	0.0040	0.1005	0.5250		•••	44.05			4.5	143.	0.005	0.51	0.77		CUMP	0.00		CUMP	0.001	0.40	0,005	0.171		3.173,13	3.170,13	CS	3	
	205	P21 3	4	61	0,48	0,0481	0,0477	0,0048	0,1006	0,6368	0,7374	200	11,35	11,4	0,01	7	67	0,005	0,51	OK	1,41	LE	07	1,30	LE	03	0,10	977	74	14,05	3.168,13	3.165,13	CE	3	0,5
CALLE (S)		P21 3																													3.168,13	3.164,63	CS	3,5	
CAI	206	P21	53,0	3227, 24	0,32	0,0325	0,0323	0,0032	0,0680	0,7374	0,8054	200	12,55	10,7	0,01	4,4	139, 26	0,005 8	0,58	OK	1,38	CUMP LE	0,00 05	1,26	CUMP LE	0,001 16	0,11	0,006 38	0,181 29	12,96					
		4 P21								1																						3.158,97	CE	2,5	0,5
	207	4	61,6	9724,	0,97	0,0979	0,0972	0,0098	0,2049	0,8054	1,0103	200	10,14	11,0	0,01	4,4	141,	0,007	0,72	OK	1,43	CUMP LE	0,00	1,30	CUMP	0,001 43	0,12	0,007	0,190	12,06	3.161,47	3.138,47	CS	3	
		P21 5	4	79												9	10	2				LE	15		LE	43		533	1		3.155,22	3.151,72	CE	3,5	0,5
		P21 5																													3.155,22	3.151,22	CS	4	
	208	P21	34,9	9307, 56	0,93	0,0937	0,0931	0,0094	0,1961	1,0103	1,2064	200	15,01	9,3	0,01	4,1	129, 97	0,009	0,93	OK	1,36	CUMP LE	0,00 15	1,20	CUMP LE	0,001 86	0,13	0,008 662	0,214 34	10,08	24:0:=				
		6 P21																													3.149,97 3.149,97		CE CS	2 2,5	0,5
	209	6	45,9	12299 ,82	1,23	0,1238	0,1230	0,0124	0,2592	1,2064	1,4656	200	14,10	12	0,01	4,6 9	147,	0,010	1,00	OK	1,55	CUMP LE	0,00 18	1,36	CUMP LE	0,001	0,14	0,009 902	0,201 08	11,09	3.147,7/	3.141,41	CS	4,3	
		P21 7	′	,02																		LE	18		LE						3.143,49	3.141,99	CE	1,5	0,5
	210	P21 7	49,6 1	13408 ,13	1,34	0,1349	0,1341	0,0135	0,2825	1,4656	1,7481	200	12,72	11,71	0,01	4,6 4	145, 92	0,012	1,20	OK	1,59	CUMP LE	0,00 19	1,35	CUMP LE	0,002 4	0,15	0,011 395	0,210 27	10,37	3.143,49	3.141,49	CS	2	

	P21 8																													3.137,18	3.135,68	CE	1,5	0,5
	P21 8	<i>57 5</i>	15204												1.6	144	0.014				CHIMD	0.00		CHIMD	0.002			0.220		3.137,18	3.135,18	CS	2	
211	P21	7	15284 ,85	1,53	0,1538	0,1528	0,0154	0,3221	1,7481	2,0701	200	12,35	11,5	0,01	0	48	0,014	1,43	OK	1,62	CUMP LE	0,00 22	1,35	CUMP LE	0,002 87	0,17	0,013	44	9,66					
	9 P21																													3.130,07	3.128,57	CE	1,5	0
	9	88,0	24558												3.7	118	0.021				CUMP	0.00		CHMP	0,004		0.016	0.272		3.130,07	3.128,57	CS	1,5	
212	P22	6	,62	2,46	0,2471	0,2456	0,0247	0,5175	2,0701	2,5876	200	5,97	7,7	0,01	6	14	0,021 9	2,19	OK	1,46	LE	44	1,14	LE	38	0,21	0,016 096	17	7,04				\vdash	
	0 P22																													3.124,81	3.121,81	CE	3	0
213	0	40,4	11416	1.14	0.1140	0.1142	0.0115	0.2406	2.507/	2,8281	200	11.01	0.50	0,01	4,1	131, 42	0,021	2.15	OK	1,61	CUMP	0,00	1,22	CUMP	0,004	0,21	0,016	0,253	7,84	3.124,81	3.121,81	CS	3	
213	P22	8	,99	1,14	0,1149	0,1142	0,0113	0,2406	2,3670	2,8281	200	11,91	9,50	0,01	8	42	5	2,15	UK	1,01	LE	18	1,22	LE	3	0,21	0,016 979	49	7,04	3 110 00	3.117,99	CE	2	0.5
	1 P22																														3.117,49	CS		0,5
214	1	51,4	14622	1.46	0.1472	0.1462	0.0147	0.3081	2.8281	3,1362	200	10.30	11.3	0,01	4,5	143,	0,021	2,19	ОК	1,77	CUMP	0,00	1,33	CUMP		0,21	0,018	0,239 41	8,54	3.117,77	3.117,47	CS	2,3	
	P22	7	,85			,									6	13	9	, -		,	LE	22	,	LE	38	,	305	41	- ,-	3.114,69	3.111,69	CE	3	0,5
	P22																													3.114,69	3.111,19	CS	3,5	
215	2	37,5	9154, 46	0,92	0,0921	0,0915	0,0092	0,1929	3,1362	3,3291	200	15,48	11,5	0,01	4,6	144, 49	0,023	2,30	ОК	1,81	CUMP LE	0,00 13	1,33	CUMP LE	0,004 61	0,21	0,019 212	0,239	8,51	•				
	P22	3	40													42						13			01		212	83		3.108,88	3.106,88	CE	2	0,:
	P22 3																													3.108,88	3.106,38	CS	2,5	
216	J	41,3 8	1689, 34	0,17	0,0170	0,0169	0,0017	0,0356	3,3291	3,3647	200	11,41	10,20	0,01	4,3 3	136, 16	0,024 7	2,47	ОК	1,73	CUMP LE	0,00 03	1,22	CUMP LE	0,004 94	0,22	0,019 532	0,253 03	7,86					
	P57																													3.104,16		CE	2	0,5
	P57	29,3	1629,												4.0	128	0.029				CUMP	0,00		CHMP	0,005		0.021	0,269		3.104,16	3.101,66	CS	2,5	
217	P22	2	36	0,16	0,0164	0,0163	0,0016	0,0343	3,7523	3,7866	200	11,46	9,1	0,01	9	43	0,029 5	2,95	OK	1,72	LE	03	1,16	LE	9	0,24	888	41	7,15	3.100,80	2 000 00	CE	1.0	
	4 P22																														3.099,00	CE	1,8 1,8	
218	4	105,	25358 ,84	2 54	0.2552	0.2536	0.0255	0.5343	3 7866	4,3209	200	3 58	3 58	0.01	2,5	80,6	0,053	5,36	OK	1,32	CUMP	0,00	0,81	CUMP	0,010	0,32	0,027 317	0,392	4 07	3.100,00	3.099,00	CS	1,0	
210	P22	05	,84	2,31	0,2332	0,2330	0,0233	0,5515	3,7000	1,5209	200	3,50	3,50	0,01	7	7	6	3,30		1,32	LE	66	0,01	LE	71	0,32	317	17	1,07	3.097,04	3.095,24	CE	1,8	0
	5 P22																														3.095,24	CS	1,8	
219	5	62,6 8	10766 ,92	1,08	0,1084	0,1077	0,0108	0,2269	4,3209	4,5478	200	0,08	2,0	0,01	1,9	60,2	0,075 5	7,55	ОК	1,12	CUMP LE	0,00 38	0,60	CUMP LE	0,015 11	0,38	0,030	0,490 67	2,91					
	P62	O	,,,2																		LL	30		LL	**		700	0,		3.096,99	3.093,99	CE	3	0
	P62																													3.096,99	3.093,99	CS	3	
220	P22	131, 30	17485 ,48	1,75	0,1760	0,1749	0,0176	0,3684	5,2890	5,6574	200	8,22	7,46	0,01	3,7	116, 43	0,048 6	4,86	OK	1,84	CUMP LE	0,00 32	1,10	CUMP LE	0,009 72	0,31	0,031 944	0,304 23	5,96					
	6																														3.084,20	CE	2	0
221	P22 6	138,	15927		0.1.50=	0.4500	0.01-5	0.25-	ي					0.01	3.7	116.	0.051		0.77	4.00	CUMP	0,00		CUMP	0,010	0.25	0.033	0.305	<i>-</i> -	3.086,20	3.084,20	CS	2	
221	P68	16	,76	1,59	0,1603	0,1593	0,0160	0,3356	5,6574	5,9930	200	6,44	7,53	0,01	2	98	0,051	5,12	OK	1,88	LE	29	1,10	LE	25	0,32	0,033 567	0,305 24	5,93	2.077.20	2.072.90	CE	2.5	0.4
	P68																														3.073,80	CE CS	3,5 4	0,5
222	- 30		8390,	0,84	0,0844	0,0839	0,0084	0,1768	6,6125	6,7893	200	4,72	2,24	0,01	2,0	63,8	0,106	10,63	ОК	1,35	CUMP LE	0,00	0,60	CUMP	0,021	0,46	0,043 787	0,485	2,96	,	2.2.2,23			
	P22	2	14												5	δ	3			•	LE	28		LE	26	•	/8/	48	·	3.074,06	3.071,76	CE	2,3	0

223	P22 7 9		4148	1.41	0.1424	0,1415	0.0142	2 0.2	981	6.7893	7.0874	200	3,98	3.14	0.01	2,4	75,5	0,093	9,39	OK	1,52	CUMP LE	0,00	0,72	CUMP	0,018	0,43	0,043	0,430	3,54	3.074,06	3.071,76	CS	2,3	
	P22 8	5	,70	2,12	*,	3,2	.,,,,,			-,	,,,,,,,,		2,22		,,,,,	0	0	9	,,,,,		-,	LE	39	.,,_	LE	78	,,,,	625	39		3.070,28	3.068,78	CE	1,5	0
	P22 8																														3.070,28	3.068,78	CS	1,5	
224	P11	05, 1 77	,08	1,06	0,1065	0,1058	0,0106	5 0,2	229	7,0874	7,3103	200	4,19	5,13	0,01	3,0	96,6 1	0,075 7	7,57	OK	1,80	CUMP LE	0,00	0,90	CUMP LE	0,015	0,39	0,042 292	0,357 84	4,67			<u> </u>		
	8 P21																															,	CE	2,5	0
225	8		8410	1 84	0 1853	0,1841	0,0185	5 03	879	14,113	14,500 9	200	8,67	8,7	0,01	4,0	125,	0,115	11,55	OK	2,73	CUMP LE	0,00	1,19	CUMP LE	0,023	0,48	0,074 013	0,312	5 73	3.065,85	3.063,35	CS	2,5	
	P22	4	,78	1,01	0,1033	0,1011	0,010.	0,5	.075	0	9	200	0,07	0,7	0,01	0	54	5	11,33		2,73	LE	31	1,17	LE	1	0,10	013	12	3,73	3.060,09	3.057,59	CE	2,5	0
	P22 9																														3.060,09	3.057,59	CS	2,5	Ì
226		4,2 4 9	1824, 49	0,48	0,0486	0,0482	0,0049	0,1	017	14,500 9	14,602 6	200	7,75	6,97	0,01	3,5 8	112, 55	0,129 7	12,97	ОК	2,55	CUMP LE	0,00 09	1,02	CUMP LE	0,025 95	0,50	0,076 419	0,339 54	5,05					
	P12 2																														3.055,11	3.053,11	CE	2	(
	P12 2	5,4 1	4113						1	15.031	15.329					1.9	60.3	0,254				CUMP	0.00		CUMP	0,050		0.089	0.570		3.055,11	3.053,11	CS	2	
227	P23	4	,95	1,41	0,1420	0,1411	0,0142	2 0,2	974	8	15,329 2	200	0,68	2,00	0,01	2	60,3	1	25,41	OK	1,64	LE	49	0,60	LE	82	0,71	135	0,570 18	2,32	3.054,60	3.051,60	CE	3	
	0 P23																														<u> </u>		CS	3	
228	8	8,6 2	.1121 .78	2,11	0,2126	0,2112	0,0213	3 0,4	450	15,329	15,774	200	3,18	2,62	0,01	2,2	68,9	0,228 7	22,87	OK	1,84	CUMP LE	0,00 65	0,69	CUMP LE	0,045 74	0,67	0,089 717	0,509 86	2,75	,,,,				
	P23 1	,	,70							2							,	,				LE	03		LE	/		717	80		3.051,78	3.049,28	CE	2,5	
	P23 1																														3.051,78	3.049,28	CS	2,5	
229	P13	9,9 3 1	,43	3,00	0,3023	0,3003	0,0302	2 0,6	328	15,774	16,407 0	200	3,92	2,67	0,01	2,2	69,6	0,235 7	23,57	OK	1,87	CUMP LE	0,00 91	0,73	CUMP LE	0,047	0,68	0,092 524	0,509	2,75					<u> </u>
	1 P13																														3.048,65	, , , , , , , , , , , , , , , , , , ,	CE	1,5	
230	1	7,7 2	1644	2 16	0.2178	0,2164	0.0219	8 04	560	16,407	16,863 1	200	1 76	2,07	0,01	1,9	61,3	0,275	27,51	OK	1,70	CUMP LE	0,00	0,62	CUMP	0,055	0,73	0,096 243	0,571	2,31	3.048,65	3.047,15	CS	1,5	\vdash
	P23	0	,11	2,10	0,2176	0,2104	0,0210	0,4	300	0	1	200	1,70	2,07	0,01	5	1	1	27,31	OK	1,70	LE	74	0,02	LE	01	0,73	243	57	2,31	3.046,93	3.045,13	CE	1,8	
	P23																															3.045,13			
231		00, 8	3284, 19	0,83	0,0834	0,0828	0,0083	3 0,1	745	16,863 1	17,037 6	200	4,45	4,95	0,01	3,0 2	94,8 8	0,179 6	17,96	ок	2,38	CUMP LE	0,00 18	0,88	CUMP LE	0,035 91	0,59	0,090 643	0,396 21	4,01					
	P15 8																														3.042,45	3.040,15	CE	2,3	
	P15 8	2,1 4	1690,							25 624	25.723					3.2	101	0,253				CUMP	0,00		CUMP	0,050		0 126	0.401		3.042,45	3.040,15	CS	2,3	<u> </u>
234			30	0,47	0,0472	0,0469	0,0047	7 0,0	988	9	25,723 8	200	6,23	5,7	0,01	3,2 4	101, 68	0,233	25,30	OK	2,77	CUMP LE	10	0,93	CUMP LE	6	0,70	042	0,401 43	3,93	2.026.71	2.024.01	GE	1.0	\vdash
	5 P23																															3.034,91	CE	1,8 1,8	
235	5 8	3,0 2		2,20	0,2212	0,2198	0,0221	1 0,4	632	25,723	26,186 9	200	6,54	6,78	0,01	3,5	110,	0,235	23,59	OK	2,98	CUMP LE	0,00 42	1,07	CUMP LE	0,047 19	0,68	0,126 322	0,373	4,38	3.030,/1	J.UJ4,71		1,0	
	P23	9	,44							8	9					3	99	9				LE	42		LE	19		322	30		3.031,28	3.029,28	CE	2	
	P23 6																														3.031,28	3.029,28	CS	2	
236		0,0 2	,72	2,22	0,2234	0,2220	0,0223	3 0,4	677	26,186 9	26,654 6	200	6,92	7,92	0,01	3,8	119, 97	0,222	22,22	ок	3,18	CUMP LE	0,00 39	1,15	CUMP LE	0,044 44	0,66	0,126 731	0,350 63	4,82					$\overline{\square}$
	P23 7	11 2	15/12							26 654	27 292					4.2	122	0.206				CUMP	0.00		CUMP	0.041		0.129	0.220			·	CE	2,5	'
237	P23 4 7	+,4 3 7	,61	3,45	0,3476	0,3454	0,0348	3 0,7	278	6	27,382 5	200	10,84	9,71	0,01	3	89	0,206 0	20,60	OK	3,50	CUMP LE	0,00 55	1,31	LE	0,041 21	0,64	476	76	5,50	3.027,82	3.025,32	CS	2,5	

238 P: 92 P: 93 P: 94 P: 95 P:	P23 9 P23 9	39,7	27233	2.72																									ľ					
238 P: 92 P: 93 P: 94 P: 95 P:	P23 9 P23 9	39,7		2.72				<u> </u>																						3.023,00	3.021,00	CE	2	0
239 P:	P23 9 P23 9	9		2.72												120					CVV CD	0.00		CVIN FR	0.045			0.054		3.023,00	3.021,00	CS	2	
239 P	9 P23 9			,	0,2741	0,2723	0,0274	0,5738	5	27,956 3	200	7,97	8,0	0,01	3,8	120, 35	0,232	23,23	OK	3,20	CUMP LE	0,00 48	1,17	CUMP LE	0,046 46	0,68	0,131 096	39	4,74					
239 P	9							<u> </u>																							3.017,83	CE	2	0
Pi (55,8	30438				0,0306		27.956	28.597					4.0	125	0.227				CUMP	0.00		CUMP	0.045		0.134	0.337		3.019,83	3.017,83	CS	2	
	P24	1	,43	3,04	0,3063	0,3044	0,0306	0,6413	3	6	200	8,73	8,73	0,01	4,0 1	125, 95	0,227	22,71	OK	3,40	CUMP LE	0,00 51	1,23	CUMP LE	41	0,67	0,134 441	77	5,09	3.014,96	2.012.06	CE		
I P	0 P24							+																						· ·	3.012,96	CE CS	2	0
240	0	66,7	27735	2 77	0,2791	0,2774	0,0279	0 5844	28,597	29,182	200	7,56	6,80	0,01	3,5 4	111,	0,262	26,25	OK	3,00	CUMP LE	0,00	1,09	CUMP LE	0,052	0,72	0,136 224	0,385	4,18	3.014,90	3.012,90	CS		
	P24	0	,71	2,7.	0,2771	0,277	0,0277	0,0011	6	0	200	7,50		0,01	4	19	5	20,20		2,00	LE	53	1,00	LE	49	0,72	224	34	.,10	3.009,92	3.008,42	CE	1,5	0
P'	P24							<u> </u>																						3.009,92	3.008,42	CS	1,5	
241	1 (69,8 8	32390 ,47	3,24	0,3260	0,3239	0,0326	0,6825	29,182	29,864 5	200	3,98	4,69	0,01	2,9 4	92,3 8	0,323	32,33	OK	2,60	CUMP LE	0,00 74	0,94	CUMP LE	0,064 66	0,80	0,142 291	0,454 41	3,26					
P.	P24 2		,							_					-	_														3.007,14	3.005,14	CE	2	0
P.	P24 2																													3.007,14	3.005,14	CS	2	
242	D24	84,3	,12	2,06	0,2074	0,2061	0,0207	0,4343	29,864	30,298	250	0,96	1,55	0,01	1,9 6	96,3 3	0,314 5	31,45	OK	1,70	CUMP LE	0,00 45	0,60	CUMP LE	0,078 63	0,88	0,122 126	0,643 86	1,94					
	P24 3 P24							<u> </u>																						·	3.003,83	CE	2,5	
	3	100,							30.298	30,298					1.5	76.3	0.397		0.77		CUMP	0,00		CUMP	0.099		0,125	0.791		3.006,33	3.003,83	CS	2,5	
243 P	P24	56	0,00	0,00	0,0000	0,0000	0,0000	0,0000	8	8	250	0,38	0,97	0,01	5	2	0,397	39,70	OK	1,40	CUMP LE	00	0,60	LE	25	0,99	321	99	1,42	3.005,95	3.002,85	CE	3,1	
P	4 P24							\vdash																							3.002,85		3,1	
244	4	133,	0.00	0.00	0.0000	0,0000	0,0000	0.0000	30,298	30,298	250	0.13	0.73	0,01	1,3	66,2	0,457	45.75	OK	1,30	CUMP LE	0,00	0,60	CUMP LE	0,114	1,06	0,131	0,872	1,23	3.003,73	3.002,03	СБ	3,1	
P:	P24	52			ŕ		ĺ		8	8		,		ĺ	5	3	5	,		,	LE	00	ŕ	LE	3/	,	101	36	ĺ	3.005,77	3.001,87	СЕ	3,9	
PTTP B	P24																													3.005,77	3.001,87	CS	3,9	
21T	1	103, 98	0,00	0,00	0,0000	0,0000	0,0000	0,0000	30,298 8	30,298 8	250	0,58	0,67	0,01	1,2 9	63,4	0,477 7	47,77	ок	1,30	CUMP LE	0,00 00	0,60	CUMP LE	0,119 42	1,08	0,134 933	0,885 01	1,20					
ATING P.	6																													3.005,17	3.001,17	CE	4	
Ρ.	P24 6	02.2							20.200	20.200					1.	70.4	0.201				CITI ID	0.00		CITATA	0.005		0.127	0.746		3.005,17	3.001,17	CS	4	
246	P24	83,3	0,00	0,00	0,0000	0,0000	0,0000	0,0000	30,298	30,298 8	250	0,46	1,06	0,01	1,6 2	79,4 3	0,381 4	38,14	OK	1,50	CUMP LE	0,00	0,60	CUMP LE	0,095 36	0,97	0,127 763	36	1,55					
	7 P24							 																							3.000,29		4,5	
	7	64,5	0.00	0.00	0.0000	0.0000	0.0000	0.000	30.298	30,298	250	2.22		0.01	2.0	102.	0,294	20.10	0.77	1.00	CUMP	0,00	0.50	CUMP	0,073	0.67	0,121	0,606	2.12	3.004,79	3.000,29	CS	4,5	
247 P	P24	5	0,00	0,00	0,0000	0,0000	0,0000	0,0000	8	8	250	3,32	1,77	0,01	2,0 9	102, 74	0,294 9	29,49	OK	1,80	CUMP LE	00	0,60	CUMP LE	73	0,85	0,121 539	63	2,12	3.002,65	2.999,15	CE	3,5	
8	8 P24							+																							2.999,15		3,5	
	8 4	49,0 7	0,00	0,00	0,0000	0,0000	0,0000	0,0000	41,211	41,211 0	300	4,77	1,71	0,01	2,3	164, 48	0,250 6	25,06	OK	2,00	CUMP LE	0,00	0,65	CUMP LE	0,075 17	0,86	0,132 074	0,569 13	2,33	3.002,03	2.999,15	CS	3,3	

		Pten t0																													3.000,31	2.998,31	CE	2
(i	256	PTsa 10 P- 249	202, 57	0,00	0,00	0,0000	0,0000	0,0000	0,0000	41,211	41,211	300	3,49	3,34	0,01	3,2 5	229, 82	0,179	17,93	OK	2,60	CUMP LE	0,00	0,91	CUMP LE	0,053	0,73	0,125 872	0,427 39	3,58				1,8
SALIDA A SB (PT)	257	P- 249	59,3	0,00	0,00	0,0000	0,0000	0,0000	0,0000	41,211	41,211	300	1,65	1,65	0,01	2,2	161, 58	0,255	25,51	OK	2,00	CUMP LE	0,00	0,64	CUMP LE	0,076 52	0,87	0,133 648	0,572 51	2,31	2.992,43		CS	1,5

Anexo2: RESUMEN DE TUBERIA Y POZOS

		RESUME	N DE TUBERÍA	\S	
NOMBRE	Ø (mm)	L (m)	COTA ENTRADA (m)	COTA SALIDA (m)	S (%)
TUB-1	200,00	60,67	3163,16	3157,94	8,64%
TUB-2	200,00	62,25	3157,94	3152,75	8,37%
TUB-3	200,00	88,24	3152,75	3150,98	2,01%
TUB-4	200,00	84,91	3150,98	3149,19	2,10%
TUB-5	200,00	74,95	3092,09	3087,77	5,77%
TUB-6	200,00	53,56	3087,77	3083,41	8,16%
TUB-7	200,00	70,83	3074,13	3070,93	4,53%
TUB-8	200,00	87,66	3070,93	3066,17	5,44%
TUB-9	200,00	80,29	3072,54	3068,19	5,42%
TUB-10	200,00	99,76	3068,19	3066,17	2,03%
TUB-11	200,00	86,44	3066,17	3064,39	2,06%
TUB-12	200,00	66,38	3064,39	3062,53	2,80%
TUB-13	200,00	96,94	3062,53	3060,69	1,90%
TUB-15	200,00	96,48	3056,87	3055,18	1,75%
TUB-16	200,00	171,48	3055,18	3052,89	1,33%
TUB-17	200,00	45,83	3052,89	3047,82	11,13%
TUB-18	200,00	40,74	3047,32	3044,67	6,52%
TUB-20	200,00	76,17	3160,51	3159,10	1,85%
TUB-21	200,00	86,98	3159,10	3156,97	2,45%
TUB-22	200,00	86,05	3156,97	3154,98	2,32%
TUB-23	200,00	75,17	3154,98	3153,18	2,39%
TUB-24	200,00	39,78	3153,18	3152,24	2,37%
TUB-25	200,00	46,41	3152,24	3150,42	3,93%
TUB-26	200,00	40,83	3150,42	3149,54	2,16%
TUB-27	200,00	82,51	3130,41	3128,77	1,99%
TUB-28	200,00	97,69	3128,77	3127,33	1,47%
TUB-29	200,00	87,37	3127,33	3125,89	1,65%
TUB-31	200,00	182,67	3125,89	3123,71	1,19%
TUB-32	200,00	114,19	3123,71	3119,59	3,61%
TUB-34	200,00	90,26	3107,06	3105,55	1,67%
TUB-35	200,00	44,24	3105,55	3103,81	3,93%
TUB-36	200,00	58,08	3103,81	3099,07	8,20%
TUB-37	200,00	56,71	3077,34	3072,28	8,95%
TUB-38	200,00	54,34	3072,28	3067,25	9,29%
TUB-39	200,00	80,91	3067,25	3060,85	7,94%
TUB-40	200,00	99,75	3062,97	3060,85	2,13%
TUB-41	200,00	69,68	3060,85	3055,93	7,07%
TUB-42	200,00	30,60	3177,49	3174,02	11,41%
TUB-43	200,00	36,76	3173,52	3170,63	7,91%

TUB-44	200,00	70,64	3115,11	3113,42	2,39%
TUB-45	200,00	48,22	3113,42	3111,34	4,33%
TUB-46	200,00	59,40	3111,34	3106,63	7,95%
TUB-47	200,00	51,44	3106,63	3101,66	9,71%
TUB-48	200,00	60,79	3101,53	3100,05	2,44%
TUB-49	200,00	61,37	3100,05	3098,35	2,78%
TUB-50	200,00	71,56	3098,35	3096,69	2,32%
TUB-51	200,00	79,03	3096,69	3093,99	3,42%
TUB-52	200,00	66,97	3084,95	3082,91	3,06%
TUB-53	200,00	86,94	3082,91	3076,09	7,86%
TUB-55	200,00	144,18	3076,09	3073,30	1,94%
TUB-64	250,00	108,56	3037,38	3035,00	2,19%
TUB-65	250,00	36,23	3035,00	3032,06	8,13%
TUB-256	300,00	202,57	2997,70	2990,93	3,34%
TUB-85	200,00	38,57	3173,98	3170,40	9,32%
TUB-86	200,00	45,87	3169,90	3165,63	9,36%
TUB-87	200,00	37,84	3165,13	3160,89	11,26%
TUB-88	200,00	46,74	3160,39	3155,45	10,64%
TUB-89	200,00	35,70	3154,95	3149,69	14,88%
TUB-90	200,00	37,63	3149,19	3144,59	12,33%
TUB-91	200,00	47,45	3144,09	3138,66	11,52%
TUB-92	200,00	53,36	3138,16	3133,02	9,67%
TUB-93	200,00	48,45	3133,02	3130,43	5,36%
TUB-94	200,00	52,82	3130,43	3126,52	7,42%
TUB-95	200,00	64,15	3126,02	3119,24	10,62%
TUB-96	200,00	68,52	3118,74	3111,42	10,76%
TUB-97	200,00	55,35	3110,92	3105,48	9,86%
TUB-98	200,00	99,47	3105,48	3098,46	7,08%
TUB-99	200,00	52,20	3097,96	3092,32	10,87%
TUB-100	200,00	42,03	3091,82	3087,55	10,19%
TUB-101	200,00	27,69	3087,05	3083,91	11,41%
TUB-102	200,00	89,99	3083,41	3077,21	6,91%
TUB-103	200,00	89,58	3077,21	3068,28	10,02%
TUB-104	200,00	81,78	3068,28	3063,35	6,04%
TUB-105	200,00	54,42	3066,54	3063,06	6,42%
TUB-106	200,00	39,99	3062,56	3058,76	9,55%
TUB-107	200,00	70,49	3058,76	3053,11	8,04%
TUB-108	200,00	46,97	3066,54	3061,19	11,46%
TUB-109	200,00	30,52	3060,69	3058,00	8,85%
TUB-110	200,00	69,08	3058,00	3053,39	6,69%
TUB-111	200,00	64,16	3053,39	3050,87	3,93%
TUB-112	200,00	79,41	3050,87	3044,67	7,84%
TUB-113	200,00	33,17	3044,67	3043,20	4,44%

TUB-114	200,00	97,03	3043,20	3041,38	1,87%
TUB-115	200,00	131,86	3041,38	3036,78	3,49%
TUB-116	250,00	63,81	3036,78	3035,77	1,59%
TUB-117	250,00	76,02	3035,77	3033,77	1,90%
TUB-117	250,00	147,31	3034,32	3032,06	1,53%
TUB-119	200,00	31,23	3154,31	3150,04	13,81%
TUB-120	200,00	71,31	3149,54	3144,94	6,46%
TUB-122	200,00	50,88	3144,94	3141,67	6,43%
TUB-123	200,00	80,00	3141,67	3133,31	10,51%
TUB-126	200,00	56,34	3132,81	3126,05	12,09%
TUB-127	200,00	46,08	3125,55	3120,09	11,92%
TUB-129	200,00	77,28	3119,59	3111,99	9,89%
TUB-130	200,00	42,67	3111,49	3107,49	9,41%
TUB-131	200,00	79,79	3107,00	3099,07	9,99%
TUB-133	200,00	70,90	3098,57	3091,53	9,98%
TUB-135	200,00	49,81	3091,03	3086,42	9,29%
TUB-136	200,00	50,52	3085,92	3081,79	8,21%
TUB-137	200,00	40,19	3081,29	3077,24	10,13%
TUB-138	200,00	45,38	3076,74	3073,27	7,67%
TUB-139	200,00	46,19	3073,27	3070,66	5,66%
TUB-140	200,00	34,28	3070,66	3067,43	9,49%
TUB-141	200,00	50,12	3066,93	3063,46	6,94%
TUB-142	200,00	46,58	3063,46	3061,25	4,75%
TUB-143	200,00	50,02	3061,24	3057,97	6,56%
TUB-144	200,00	40,05	3057,97	3055,93	5,09%
TUB-145	200,00	61,09	3055,93	3050,83	8,37%
TUB-146	200,00	59,86	3050,83	3046,45	7,34%
TUB-147	200,00	47,51	3046,45	3042,48	8,40%
TUB-148	200,00	54,72	3042,48	3040,15	4,25%
TUB-149	200,00	73,77	3192,55	3185,05	10,22%
TUB-150	200,00	96,38	3184,55	3176,43	8,45%
TUB-152	200,00	90,23	3175,93	3167,72	9,14%
TUB-154	200,00	55,01	3167,22	3162,14	9,27%
TUB-155	200,00	40,41	3161,64	3157,40	10,55%
TUB-156	200,00	41,32	3156,90	3152,43	10,89%
TUB-157	200,00	35,46	3151,93	3147,15	13,58%
TUB-158	200,00	32,60	3146,65	3142,48	12,90%
TUB-159	200,00	37,20	3141,98	3137,92	10,98%
TUB-160	200,00	41,64	3137,42	3133,44	9,61%
TUB-161	200,00	54,92	3132,94	3127,63	9,72%
TUB-162	200,00	58,00	3127,13	3122,08	8,73%
TUB-163	200,00	72,11	3121,58	3114,30	10,16%
TUB-165	200,00	55,87	3113,80	3107,74	10,91%

TUD 166	200.00	75.50	2107.24	2102.12	6 790/
TUB-166	200,00	75,52	3107,24	3102,13	6,78%
TUB-167	200,00	93,44	3102,13	3098,03	4,40%
TUB-169	200,00	78,75	3098,03	3093,01	6,38%
TUB-170	200,00	59,07	3093,01	3089,43	6,06%
TUB-171	200,00	62,82	3089,43	3087,10	3,72%
TUB-172	200,00	59,35	3087,10	3081,97	8,67%
TUB-173	200,00	87,52	3081,97	3076,68	6,06%
TUB-174	200,00	90,14	3076,68	3073,34	3,71%
TUB-175	200,00	90,86	3073,34	3066,55	7,49%
TUB-177	200,00	68,74	3066,55	3060,95	8,18%
TUB-178	200,00	63,13	3060,95	3058,73	3,51%
TUB-179	200,00	82,48	3058,73	3055,53	3,89%
TUB-180	200,00	86,12	3055,53	3050,94	5,33%
TUB-181	200,00	91,69	3050,94	3047,22	4,06%
TUB-182	200,00	91,91	3047,22	3039,46	8,47%
TUB-183	250,00	154,86	3039,46	3037,38	1,35%
TUB-257	300,00	59,32	2990,93	2989,95	1,65%
TUB-201	200,00	52,29	3186,22	3181,98	8,14%
TUB-204	200,00	48,78	3173,76	3170,13	7,47%
TUB-205	200,00	44,04	3170,13	3165,13	11,41%
TUB-206	200,00	53,06	3164,63	3158,97	10,74%
TUB-207	200,00	61,64	3158,47	3151,72	11,00%
TUB-208	200,00	34,98	3151,22	3147,97	9,36%
TUB-209	200,00	45,97	3147,47	3141,99	12,01%
TUB-210	200,00	49,61	3141,49	3135,68	11,78%
TUB-211	200,00	57,57	3135,18	3128,57	11,56%
TUB-212	200,00	88,06	3128,57	3121,81	7,70%
TUB-213	200,00	40,48	3121,81	3117,99	9,49%
TUB-214	200,00	51,47	3117,49	3111,69	11,34%
TUB-215	200,00	37,53	3111,19	3106,88	11,54%
TUB-216	200,00	41,38	3106,38	3102,16	10,27%
TUB-217	200,00	29,32	3101,66	3099,00	9,10%
TUB-218	200,00	105,05	3099,00	3095,24	3,58%
TUB-219	200,00	62,68	3095,24	3093,99	2,00%
TUB-220	200,00	131,30	3093,99	3084,20	7,47%
TUB-232	200,00	138,16	3084,20	3073,80	7,55%
TUB-222	200,00	68,62	3073,30	3071,76	2,24%
TUB-223	200,00	95,04	3071,76	3068,78	3,14%
TUB-224	200,00	105,77	3068,78	3063,35	5,15%
TUB-225	200,00	66,44	3063,35	3057,59	8,70%
TUB-226	200,00	64,29	3057,59	3053,11	6,98%
TUB-227	200,00	75,44	3053,11	3051,60	2,00%
TUB-228	200,00	88,67	3051,60	3049,28	2,62%

1	i i		1	Ì	İ
TUB-229	200,00	79,91	3049,28	3047,15	2,67%
TUB-230	200,00	97,70	3047,15	3045,13	2,07%
TUB-231	200,00	100,57	3045,13	3040,15	4,95%
TUB-233	200,00	92,14	3040,15	3034,91	5,70%
TUB-235	200,00	83,09	3034,91	3029,28	6,79%
TUB-236	200,00	50,02	3029,28	3025,32	7,94%
TUB-237	200,00	44,47	3025,32	3021,00	9,75%
TUB-238	200,00	39,79	3021,00	3017,83	8,00%
TUB-239	200,00	55,81	3017,83	3012,96	8,75%
TUB-240	200,00	66,70	3012,96	3008,42	6,83%
TUB-241	200,00	69,86	3008,42	3005,14	4,70%
TUB-242	250,00	84,37	3005,14	3003,83	1,55%
TUB-243	250,00	100,56	3003,83	3002,85	0,98%
TUB-244	250,00	133,52	3002,85	3001,87	0,73%
TUB-245	250,00	103,98	3001,87	3001,17	0,68%
TUB-246	250,00	83,35	3001,17	3000,29	1,05%
TUB-247	250,00	64,55	3000,29	2999,15	1,77%
TUB-248	250,00	41,02	3032,06	3027,38	11,48%
TUB-249	250,00	55,57	3026,88	3020,87	10,88%
TUB-250	250,00	57,72	3020,37	3014,12	10,90%
TUB-251	250,00	98,51	3014,12	3010,81	3,36%
TUB-252	250,00	88,80	3010,81	3003,79	7,92%
TUB-14	200,00	95,20	3058,75	3056,87	1,98%
TUB-254	250,00	99,50	3003,79	2999,15	4,67%
TUB-255	300,00	49,08	2999,15	2998,31	1,71%
TUB-203	200,00	93,73	3181,48	3173,76	8,26%

		RESU	MEN DE PO	OZOS		
	Ø	L (1	m)	COTA		Н
N° POZO	(mm)	NORTE	ESTE	SALIDA (m)	S (%)	POZO (m)
P160	1000	9944558,07	765926,08	3187,05	3184,55	2,50
P210	1000	9944498,05	765943,46	3184,98	3181,48	3,50
P162	1000	9944584,11	766018,52	3179,43	3175,93	3,50
P212	1000	9944422,39	765998,25	3176,26	3173,76	2,50
P51	1000	9944369,08	765990,72	3175,82	3173,52	2,30
P52	1000	9944381,82	766025,09	3173,13	3170,13	3,00
P101	1000	9944089,61	766018,42	3172,90	3169,90	3,00
P164	1000	9944606,76	766105,47	3169,52	3167,22	2,30
P213	1000	9944355,82	766060,29	3168,13	3164,63	3,50
P102	1000	9944092,04	766064,02	3167,63	3165,13	2,50

P165	1000	9944621,12	766158,33	3164,64	3161,64	3,00
P103	1000	9944087,67	766101,37	3163,89	3160,39	3,50
P25	1000	9943865,19	766163,41	3161,60	3159,10	2,50
P214	1000	9944363,91	766112,41	3161,47	3158,47	3,00
P27	1000	9943694,42	766191,01	3160,98	3154,98	6,00
P26	1000	9943779,43	766177,81	3160,97	3156,97	4,00
P2	1000	9944295,43	766100,95	3160,44	3157,94	2,50
P166	1000	9944629,12	766197,71	3159,90	3156,90	3,00
P5	1000	9944077,75	766146,78	3158,95	3154,95	4,00
P28	1000	9943619,66	766198,53	3158,18	3153,18	5,00
P29	1000	9943580,15	766203,08	3155,54	3152,24	3,30
P215	1000	9944374,95	766172,68	3155,22	3151,22	4,00
P167	1000	9944637,86	766237,85	3154,93	3151,93	3,00
P3	1000	9944247,35	766140,17	3154,25	3152,75	1,50
P31	1000	9943505,25	766179,54	3153,34	3149,54	3,80
P104	1000	9944079,46	766182,05	3153,19	3149,19	4,00
P4	1000	9944161,18	766159,07	3153,08	3150,98	2,10
P30	1000	9943534,08	766208,44	3151,72	3150,42	1,30
P168	1000	9944644,69	766272,32	3150,65	3146,65	4,00
P216	1000	9944381,36	766206,92	3149,97	3147,47	2,50
P134	1000	9943509,83	766250,55	3147,24	3144,94	2,30
P105	1000	9944074,72	766219,09	3147,09	3144,09	3,00
P135	1000	9943508,35	766301,30	3145,17	3141,67	3,50
P169	1000	9944650,31	766304,16	3144,28	3141,98	2,30
P217	1000	9944389,67	766251,79	3143,49	3141,49	2,00
P106	1000	9944082,69	766265,56	3140,66	3138,16	2,50
P170	1000	9944654,85	766340,85	3139,72	3137,42	2,30
P138	1000	9943514,08	766380,66	3137,31	3132,81	4,50
P218	1000	9944398,72	766300,22	3137,18	3135,18	2,00
P171	1000	9944658,55	766382,13	3134,74	3132,94	1,80
P107	1000	9944090,85	766318,03	3134,52	3133,02	1,50
P33	1000	9943996,94	766393,81	3132,27	3128,77	3,50
P108	1000	9944085,35	766366,10	3132,23	3130,43	1,80
P219	1000	9944404,15	766357,15	3130,07	3128,57	1,50
P36	1000	9943815,85	766431,45	3129,89	3125,89	4,00
P37	1000	9943635,51	766460,50	3129,71	3123,71	6,00
P172	1000	9944663,43	766436,58	3129,63	3127,13	2,50
P34	1000	9943901,88	766416,29	3128,83	3127,33	1,50
P139	1000	9943514,30	766436,60	3128,55	3125,55	3,00
P109	1000	9944105,23	766414,88	3128,52	3126,02	2,50
P220	1000	9944412,49	766444,55	3124,81	3121,81	3,00
P173	1000	9944662,94	766494,36	3124,58	3121,58	3,00
P140	1000	9943523,34	766481,45	3123,09	3119,59	3,50

P110	1000	9944111,27	766478,38	3121,24	3118,74	2,50
P221	1000	9944416,31	766484,67	3119,99	3117,49	2,50
P175	1000	9944664,06	766566,09	3117,30	3113,80	3,50
P54	1000	9944584,10	766581,08	3115,22	3113,42	1,80
P222	1000	9944421,48	766535,55	3114,69	3111,19	3,50
P141	1000	9943530,96	766557,98	3114,49	3111,49	3,00
P111	1000	9944119,74	766545,99	3113,42	3110,92	2,50
P55	1000	9944539,39	766599,01	3112,84	3111,34	1,50
P176	1000	9944664,33	766621,63	3110,24	3107,24	3,00
P142	1000	9943539,71	766599,56	3109,50	3107,00	2,50
P56	1000	9944480,87	766608,07	3109,43	3106,63	2,80
P223	1000	9944424,94	766572,67	3108,88	3106,38	2,50
P41	1000	9943659,34	766651,78	3108,55	3105,55	3,00
P112	1000	9944128,58	766600,35	3106,98	3105,48	1,50
P177	1000	9944685,25	766694,02	3105,63	3102,13	3,50
P42	1000	9943616,41	766662,28	3105,32	3103,81	1,51
P57	1000	9944429,96	766613,52	3104,16	3101,66	2,50
P59	1000	9944629,56	766750,05	3101,85	3100,05	1,80
P43	1000	9943560,23	766676,25	3101,57	3098,57	3,00
P113	1000	9944143,76	766698,40	3101,46	3097,96	3,50
P224	1000	9944400,92	766616,54	3100,80	3099,00	1,80
P179	1000	9944703,96	766785,47	3100,33	3098,03	2,30
P60	1000	9944568,89	766759,13	3099,85	3098,35	1,50
P61	1000	9944498,19	766770,09	3098,99	3096,69	2,30
P225	1000	9944412,66	766720,86	3097,04	3095,24	1,80
P62	1000	9944420,28	766783,06	3096,99	3093,99	3,00
P145	1000	9943577,78	766744,58	3094,53	3091,03	3,50
P180	1000	9944714,38	766863,37	3094,51	3093,01	1,50
P114	1000	9944148,83	766750,05	3094,32	3091,82	2,50
P181	1000	9944729,89	766920,25	3090,93	3089,43	1,50
P7	1000	9944207,60	766812,13	3090,27	3087,77	2,50
P115	1000	9944152,35	766791,71	3090,05	3087,05	3,00
P146	1000	9943589,51	766792,77	3089,42	3085,92	3,50
P182	1000	9944746,41	766980,82	3089,40	3087,10	2,30
P226	1000	9944440,26	766912,46	3086,20	3084,20	2,00
P8	1000	9944154,67	766819,13	3085,41	3083,41	2,00
P64	1000	9944680,73	767028,15	3085,41	3082,91	2,50
P147	1000	9943602,86	766841,32	3084,79	3081,29	3,50
P183	1000	9944761,22	767038,07	3084,47	3081,97	2,50
P116	1000	9944173,42	766906,93	3080,71	3077,21	3,50
P148	1000	9943612,72	766880,08	3079,54	3076,74	2,80
P184	1000	9944778,83	767123,64	3078,18	3076,68	1,50
P66	1000	9944594,34	767035,04	3077,59	3076,09	1,50

P68	1000	9944450,94	767049,81	3077,30	3073,30	4,00
P185	1000	9944792,63	767212,65	3074,84	3073,34	1,50
P45	1000	9943741,32	767012,83	3074,78	3072,28	2,50
P149	1000	9943620,99	766924,56	3074,77	3073,27	1,50
P150	1000	9943645,17	766963,83	3074,66	3070,66	4,00
P227	1000	9944382,58	767055,60	3074,06	3071,76	2,30
P10	1000	9944587,92	767111,23	3073,43	3070,93	2,50
P117	1000	9944186,21	766995,14	3070,78	3068,28	2,50
P228	1000	9944288,05	767065,03	3070,28	3068,78	1,50
P119	1000	9944336,97	767173,00	3070,04	3066,54	3,50
P11	1000	9944600,36	767197,87	3070,02	3066,17	3,85
P151	1000	9943643,65	766997,92	3069,93	3066,93	3,00
P46	1000	9943755,22	767065,12	3069,75	3067,25	2,50
P13	1000	9944699,76	767189,65	3069,69	3068,19	1,50
P187	1000	9944840,75	767289,43	3069,05	3066,55	2,50
P14	1000	9944514,14	767203,71	3067,89	3064,39	3,50
P120	1000	9944284,64	767187,52	3066,06	3062,56	3,50
P118	1000	9944183,07	767076,71	3065,85	3063,35	2,50
P152	1000	9943673,26	767038,21	3064,96	3063,46	1,50
P153	1000	9943676,43	767084,63	3064,74	3061,24	3,50
P16	1000	9944351,43	767217,37	3064,69	3060,69	4,00
P15	1000	9944448,04	767209,53	3063,83	3062,53	1,30
P47	1000	9943775,18	767143,27	3062,85	3060,85	2,00
P188	1000	9944846,47	767357,70	3062,45	3060,95	1,50
P121	1000	9944245,78	767196,18	3060,26	3058,76	1,50
P17	1000	9944836,18	767421,71	3060,25	3058,75	1,50
P189	1000	9944844,25	767420,75	3060,23	3058,73	1,50
P19	1000	9944645,15	767437,10	3060,18	3055,18	5,00
P18	1000	9944741,25	767428,67	3060,17	3056,87	3,30
P229	1000	9944176,21	767142,54	3060,09	3057,59	2,50
P154	1000	9943696,05	767130,52	3059,97	3057,97	2,00
P123	1000	9944359,66	767246,63	3059,80	3058,00	1,80
P49	1000	9943710,20	767167,93	3058,43	3055,93	2,50
P20	1000	9944474,15	767449,74	3057,89	3052,89	5,00
P190	1000	9944854,24	767502,57	3057,03	3055,53	1,50
P124	1000	9944375,69	767313,67	3055,39	3053,39	2,00
P122	1000	9944176,31	767206,67	3055,11	3053,11	2,00
P230	1000	9944105,14	767231,67	3054,60	3051,60	3,00
P155	1000	9943701,41	767228,18	3054,33	3050,83	3,50
P125	1000	9944386,71	767376,83	3053,87	3050,87	3,00
P191	1000	9944864,55	767587,94	3052,44	3050,94	1,50
P231	1000	9944021,79	767261,82	3051,78	3049,28	2,50
P192	1000	9944875,65	767678,88	3050,02	3047,22	2,80

P156	1000	9943744,19	767269,82	3049,95	3046,45	3,50
P21	1000	9944428,78	767453,69	3049,82	3047,32	2,50
P131	1000	9943948,03	767292,48	3048,65	3047,15	1,50
P232	1000	9943858,88	767332,38	3046,93	3045,13	1,80
P23	1000	9944388,19	767455,98	3046,17	3044,67	1,50
P157	1000	9943756,14	767315,64	3044,98	3042,48	2,50
P127	1000	9944378,36	767543,87	3043,38	3041,38	2,00
P158	1000	9943765,54	767369,50	3042,45	3040,15	2,30
P77	1000	9944730,49	767797,90	3042,38	3037,38	5,00
P193	1000	9944882,84	767770,18	3040,76	3039,46	1,30
P128	1000	9944414,11	767670,71	3040,28	3036,78	3,50
P78	1000	9944624,06	767819,14	3040,00	3035,00	5,00
P129	1000	9944464,33	767710,06	3037,77	3035,77	2,00
P235	1000	9943794,15	767456,92	3036,71	3034,91	1,80
P130	1000	9944518,97	767762,90	3035,82	3034,32	1,50
P79	1000	9944635,09	767853,52	3035,56	3032,06	3,50
P236	1000	9943819,99	767535,69	3031,28	3029,28	2,00
P249	1000	9944596,20	767865,71	3029,68	3026,88	2,80
P237	1000	9943847,44	767577,32	3027,82	3025,32	2,50
P250	1000	9944540,96	767865,48	3023,87	3020,37	3,50
P238	1000	9943857,56	767620,41	3023,00	3021,00	2,00
P239	1000	9943835,78	767653,57	3019,83	3017,83	2,00
P251	1000	9944483,64	767862,97	3015,62	3014,12	1,50
P240	1000	9943832,22	767709,05	3014,96	3012,96	2,00
P252	1000	9944385,19	767861,23	3013,31	3010,81	2,50
P241	1000	9943823,10	767774,97	3009,92	3008,42	1,50
P242	1000	9943847,45	767840,37	3007,14	3005,14	2,00
P243	1000	9943869,04	767921,92	3006,33	3003,83	2,50
253	1000	9944350,35	767942,60	3006,29	3003,79	2,50
P244	1000	9943933,45	767999,14	3005,95	3002,85	3,10
P245	1000	9944066,90	767994,95	3005,77	3001,87	3,90
P246	1000	9944170,22	768006,63	3005,17	3001,17	4,00
P247	1000	9944253,57	768006,90	3004,79	3000,29	4,50
P248	1000	9944312,00	768034,30	3002,65	2999,15	3,50
P-249	1000	9944406,86	768286,49	2992,43	2990,93	1,50
P1	1000	9944350,21	766075,40	3165,66	3163,16	2,50
P6	1000	9944281,75	766802,08	3093,59	3092,09	1,50
P9	1000	9944577,42	767041,26	3075,63	3074,13	1,50
P12	1000	9944779,71	767183,66	3075,04	3072,54	2,50
P17	1000	9944836,18	767421,71	3060,25	3058,75	1,50
P24	1000	9943940,15	766150,00	3162,01	3160,51	1,50
P32	1000	9944076,44	766371,78	3131,91	3130,41	1,50
P40	1000	9943748,25	766636,29	3108,56	3107,06	1,50

P44	1000	9943727,09	766958,17	3079,84	3077,34	2,50
P48	1000	9943868,63	767108,48	3064,47	3062,97	1,50
P50	1000	9944360,82	765961,47	3181,49	3177,49	4,00
P53	1000	9944653,76	766569,48	3116,91	3115,11	1,80
P58	1000	9944689,83	766742,29	3103,03	3101,53	1,50
P63	1000	9944747,38	767021,88	3086,45	3084,95	1,50
P100	1000	9944085,02	765980,29	3177,48	3173,98	3,50
P119	1000	9944336,97	767173,00	3070,04	3066,54	3,50
P132	1000	9943516,13	766150,58	3158,31	3154,31	4,00
P159	1000	9944533,80	765856,82	3196,05	3192,55	3,50
P209	1000	9944538,09	765910,11	3189,72	3186,22	3,50

Anexo3: DISEÑO DE LA PLANTA DE TRATAMIENTO

Diseño Planta de tratamiento

Datos:

Q sanitario = 0.04121 m3/s = 41.21 l/s

Periodo de diseño = 30 años

Población futura = 5995 habitantes

1. Diseño Pre-tratamiento

Canal de ingreso

Caudal (1/s) = 41,21 1/s

Caudal $(m^3/s) = 0.0412 \text{ m}^3/\text{s}$

Manning (n) = 0.01

Pendiente (%) = 0.004

$$Q = \frac{A^{\frac{5}{3}} \times \sqrt{s}}{n \times p^{\frac{2}{3}}}$$

$$0.0412 = \frac{A^{\frac{5}{3}} \times \sqrt{s}}{n \times p^{\frac{2}{3}}}$$

Teniendo en cuenta que:

$$A = 2y^2$$

$$P = 4y$$

Reemplazando:

$$0.0412 = \frac{(2y^2)^{\frac{5}{3}} \times \sqrt{0.004}}{0.01 \times (4y)^{\frac{2}{3}}}$$

$$y = 0.14m$$

Teniendo en cuenta que:

$$P = b+2y$$

$$P = 4y$$

Reemplazando:

$$P = b + 2y$$

$$4y = b + 2y$$

$$b = 2y = 2 \times (0.14) = 0.28 m$$

Una vez determinado las secciones del canal de entrada, se considerara dimensiones constructivas por lo cual $y=0.15\ m;\,b=0.30\ m$ y se asumirá un borde libre $t=0.30\ m$.

Vertedero de excesos

Caudal (1/s) = 41,21 1/s

Caudal $(m^3/s) = 0.0412 \text{ m}^3/\text{s}$

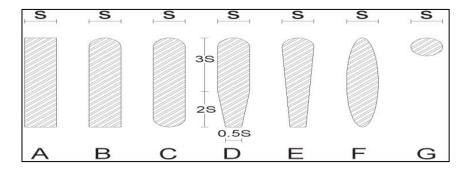
Longitud (m) = 0.30 m

A continuación se presenta la fórmula para determinar la carga sobre el vertedero

$$H = \left(\frac{Q}{1,84 \times L}\right)^{\frac{2}{3}}$$

$$H = \left(\frac{0,0412}{1,84 \times 0,30}\right)^{\frac{2}{3}}$$

$$H = 0,18 m$$


Rejas para retener solidos

La pantalla se compone esencialmente de alambres de sombreado, paneles perforados o listones poco espaciados. La Figura 8 muestra el diseño preliminar de la pantalla basado en el diseño del canal de 0.30 m.

La pérdida de energía a través de la rejilla es función de la forma de las barras y la altura del flujo o la energía de velocidad entre las barras (Ministerio de Ambiente 2014).

A continuación se presenta las diferentes formas de barrotes de rejillas y a su vez el coeficiente de perdida para las rejillas.

Diferentes formas de barrotes de rejillas

Fuente: (Ministerio de Ambiente 2014)

Factor de forma para rejillas

Forma	A	В	C	D	E	F	G
β	2.42	1.83	1.67	1.035	0.92	0.76	1.79

Fuente: (Ministerio de Ambiente 2014)

El (Ministerio de Desarrollo Económico 2000) "recomienda un espaciamiento entre las barras de la rejilla de 15 a 50 mm para rejillas limpiadas manualmente, y entre 3 y 77 mm para rejillas limpiadas mecánicamente".

Por lo cual se adoptara un espaciamiento de 20 mm y el ancho de barra de 5 mm.

Para garantizar un área de acumulación adecuada, la velocidad de aproximación a las rejillas debe estar entre 0.3 y 0.6 m/s para rejillas limpiadas manualmente, entre 0.3 y 0.9 m/s para rejillas limpiadas mecánicamente (Ministerio de Desarrollo Económico 2000).

Altura o energía de velocidad del flujo de aproximación hy se calculó con la siguiente formula:

$$hv = \frac{v^2}{2 \times g}$$

$$hv = \frac{0.92^2}{2 \times 9.81} = 0.04 \, m$$

Ahora se determina la perdida de energía H (m)

$$H = \beta \times \left(\frac{w}{b}\right)^{\frac{4}{3}} \times hv \times sen\theta$$

$$H = 2,42 \times \left(\frac{0.005}{0,020}\right)^{\frac{4}{3}} \times 0,04 \times sen45$$

$$H = 0,011 m$$

Desarenador

Se recomienda que los desarenadores con un caudal inferior a $50~\mathrm{L/s}$ sean limpiados manualmente

La expresión de velocidad de sedimentación desarrollada por HANZEN Y STOKES tiene la siguiente forma.

$$vs = \frac{g}{18} \times \frac{ps - p}{u} \times \emptyset^2$$

Donde:

Vs: velocidad de sedimentación (cm/s).

g: gravedad (981 cm/s).

ps: peso específico de la partícula.

p: peso específico del agua.

μ: viscosidad cinemática (0,01059 cm2/s).

Ø: Diámetro de la partícula (0,005 cm).

Para el diseño del desarenador se tendrá en consideración varios aspectos como:

Se considera los pesos específicos de arena y grava de 2.65.

Relación larga/ ancho: 3/1 o 5/1.

Profundidades mínimas 1.5 m y máxima 4.5 m.

La zona de lodos debe tener una relación larga/profundidad de 10/11 y pendientes de 5% a 8%.

Tiempo de retención hidráulico entre 30 min y 4h.

Carga hidráulica entre 15 y 80 m3/m2/d.

$$vs = \frac{981}{18} \times \frac{2,65 - 1}{0,1059} \times 0,05^2$$

$$vs = 0.21 \, cm/s$$

Tiempo de sedimentación se calculó con la siguiente formula:

$$t = \frac{H}{Vs}$$

$$t = \frac{150}{0,21} = 714,29 \, s$$

t: tiempo de remoción de la partícula.

H: profundidad útil de sedimentación.

Tiempo de retención hidráulico, tiempo en que se demora en entrar y salir la partícula.

$$\theta h = Nh \times t$$

$$\theta h = 4 \times \frac{714,29}{60} = 47,62 \, min$$

El Volumen del desarenador se calculó con la siguiente formula

$$V = Q \text{ diseño} \times \theta h$$

$$V = 0.04121 \times 2857,16 = 117,74 \, m^3$$

Área superficial se determina de la siguiente forma

$$As = \frac{V}{H}$$

$$As = \frac{117,74}{1,50} = 78,49 \, m^2$$

$$L = B \times 4$$

Reemplazando:

$$B = \frac{As}{L}$$

$$B = \frac{78,49}{B \times 4}$$

$$B = 4,43 \text{ m}$$

$$L = 17,72 \text{ m}$$

Carga hidráulica superficial del tanque se calculó con la siguiente formula

$$Cs = \frac{Qdiseno}{As}$$

$$Cs = \frac{0,04121}{78.49} = 0,0005 m$$

Velocidad horizontal se determina de la siguiente forma

$$Vh = \frac{Qdiseno}{B \times H}$$

$$Vh = \frac{0.04121}{4.43 \times 1.50} = 0.006 \text{ m/s}$$

Velocidad horizontal máxima

Vh max =
$$20 \times Vs$$

Vh max = $20 \times 0.21 cm /s$
Vh max = $4.2 \frac{cm}{s} = 0.42 m/s$

Se tiene que verificar que Vh max > Vh

Trampa de grasas

El tanque debe tener 0.25m² de área por cada litro por segundo, una relación ancho/longitud de 1:4 hasta 1:18, una velocidad ascendente mínima de 4mm/s. El solvente desengrasante con tiempo de retención de 15 minutos está diseñado para retener el aceite y la grasa antes de ingresar al depósito Imhoff.

$$A = 0.25 m^2 \times 1Lt$$

$$A = 0.25 m^2 \times 41,21$$

$$A = 10,30 m^2$$

La trampa de grasas tendrá una relación de 1:4 en ancho/longitud respectivamente

$$A = B \times L$$

$$A = B \times 4B$$

$$B = 1,605 \text{ m} = 1,60 \text{ m}$$

$$L = 6.42 \text{ m} = 6.45 \text{ m}$$

2. Diseño Tratamiento primario (Tanque Imhoff)

Cámara de sedimentación

De acuerdo con la teoría (OPS/CEPIS 2005) se adopta:

Borde libre: h1=0,30 m

Periodo de retención: R=1,5 horas

Carga Superficial: $Cs = 1m3 / (m2 \times hora)$

Área del sedimentador

$$As = \frac{Qsanitario}{Cs} = \frac{148.36 \text{ m}^3/h}{1m^3/(m^2 \times hora)} = 148,36 \text{ m}^2$$

Altura mínima de la cámara de sedimentación

$$h2min = cs \times Tr = 1 \frac{m^3}{m^2 \times hora} \times 1,5 horas$$

$$h2min = 1.5 m$$

Volumen de sedimentación

Vmin= 1500 lt (Ex SENAGUA 2016b)

$$vs = Q \times Tr = 148.36 \frac{m^3}{h} \times 1,5 \text{ horas}$$

$$vs = 222,54 m^3 > Vmin Ok$$

Dimensionamiento del sedimentador

De acuerdo con la teoría (OPS/CEPIS 2005) se adopta:

Angulo de inclinación de las paredes del fondo del sedimentador: $\theta = 50^{\circ}$

$$vs = \frac{b \times h2}{2} \times L$$

Las relaciones L/b deberá ser como minino 2:1 Por lo tanto, se adopta, L= 3b

Reemplazando:

$$vs = \frac{b \times h2}{2} \times L$$

$$vs = \frac{b \times h2}{2} \times (3b) = \frac{3 \times b^2 \times h2}{2}$$

$$tan\theta = \frac{h2}{\frac{b}{2}}$$

$$h2 = tan\theta \times \frac{b}{2}$$

Reemplazando:

$$vs = \frac{3 \times b^2}{2} \times \left(tan\theta \times \frac{b}{2} \right) = \frac{3}{4} \times b^3 \times tan\theta$$
$$b = \left(\frac{2 \times vs}{3 \times tan\theta} \right)^{\frac{1}{3}} = \left(\frac{2 \times 222,54}{3 \times tan50} \right)^{\frac{1}{3}}$$
$$b = 5,00 \text{ m}$$

Reemplazando el valor de b, se obtiene:

$$L = 3b = 3 \times 5,00$$

$$L = 15,00 m$$

$$h2 = tan50 \times \frac{5,00}{2}$$

$$h2 = 3,00 m$$

Cámara de decantación o cámara neutra

De acuerdo con la teoría en la (Ex SENAGUA 2016b) se adopta:

Tasa= 30 l/hab

Volumen de la cámara de decantación

$$vcn = tasa \times Poblacion$$

$$vcn = 30 \frac{l}{hab} \times 5995$$

$$vcn = 179850 \ l = 179,85 \ m^3$$

Ancho de la cámara del tanque

De la misma manera, de acuerdo con las normas (Ex SENAGUA 2016b) se adopta: Espaciamiento libre entre las paredes del digestor y las del sedimentador: C=1.30m

Espesor de las paredes del sedimentador: e=0,30m

Altura máxima de los lodos por debajo del fondo del sedimentador: h3min = 0,5mEntonces

$$B = b + 2c + 2e = 5,00 + (2 \times 1,3) + (2 \times 0,30)$$
$$B = 8,20m$$

Altura de la cámara de decantación

$$vcn = B \times h3 \times L$$

$$h3 = \frac{vcn}{B \times L} = \frac{179,85}{8,20 \times 15,00}$$

$$h3 = 1,46 \text{ } m > h3min$$

Se adopta h3 = 1,50 m

Cámara de almacenamiento y digestión de lodos

Volumen mínimo del digestor

De acuerdo con la norma (OPS/CEPIS 2005) se adopta:

$$Vdmin = \frac{70 \times P \times fcr}{1000}$$

Donde:

P: Población

fcr: factor de capacidad relativa

Temperatura °C	Factor de capacidad relativa
5	2
10	1,4
15	1
20	0,7
>25	0,5

$$Vdmin = \frac{70 \times 5995 \times 1,4}{1000} = 587,51 \, m^3$$

Altura de la cámara de almacenamiento y digestión de lodos

De acuerdo con la norma (OPS/CEPIS 2005) se adopta:

Angulo de inclinación de las paredes del fondo del digestor: α=30°

Ancho del fondo de la cámara del digestor: bD = 1m

$$\tan \propto = \frac{h5}{\frac{B - bd}{2}}$$

$$h5 = \tan \propto \left(\frac{B - bd}{2}\right) = \tan 30 \left(\frac{8,20 - 1}{2}\right) = 2,08 m$$
Se adopta $h5 = 2,10 \text{ m}$

Entonces:

$$v1 = \left(\frac{B+bd}{2}\right) \times h5 \times L = \left(\frac{8,20+1}{2}\right) \times 2,10 \times 15,00$$
$$v1 = 144,90 \ m^3$$

Altura de lodos en el digestor:

Se adopta
$$h4 = 0.30 \text{ m}$$

 $v2 = B \times h4 \times L$
 $v2 = 8.20 \times 0.30 \times 15.00$
 $v2 = 36.90 \text{ } m^3$

Volumen de la cámara de almacenamiento y digestión de lodos

$$vcl = c1 + v2$$

 $vcl = 144,90 + 36,90$
 $vcl = 181,80 m^3$

Tiempo requerido para la digestión de lodos

El tiempo requerido para la digestión de lodos varia con la temperatura.

Temperatura °C	Tiempo de digestion (dias)
5	110
10	76
15	55
20	40
>25	30

Área de ventilación y cámara de espumas

- Área total del compartimiento de digestión

$$Acl = B \times L = 8,20 \times 15,00$$

 $Acl = 123,00 m^2$

- Área de ventilación (Ex SENAGUA 2016b) se adopta:

Aventmin =
$$30\% \times Acl = 30\% \times 123,00$$

Aventmin = $36,90 m^2$

Ahora:

Aventmin =
$$2 \times c \times L$$

$$c = \frac{\text{Aventmin}}{2 \times L} = \frac{36,90}{2 \times 15,00} = 1,23m$$

Por lo tanto c = 1,25 m

- Cámara de espumas

De acuerdo con la norma (Ex SENAGUA 2016b) se adopta:

Tasa= 30 l/hab

vce = tasa × Poblacion
vce =
$$30 \times 5995$$

vce = $179850 l = 179,85 m^3$

Entonces:

Vmincamra de espumas=1500lt (Ex SENAGUA 2016b)

$$vcereal = 2 \times \left[\left(\frac{1}{2} \times \frac{b}{2} \times h2 \right) + (c \times h2) \right] \times L$$

$$vcereal = 2 \times \left[\left(\frac{1}{2} \times \frac{5,00}{2} \times 3,00 \right) + (1,25 \times 3,00) \right] \times 15,00$$

$$vcereal = 240,00 \ m^3 > 1,5 \ m^3 \ Ok$$

Altura total interna del tanque Imhoff

$$HT = h1 + h2 + h3 + h4 + h5$$
 $HT = 0.30 + 3.00 + 1.50 + 0.30 + 2.10$
 $HT = 7.20 \text{ m}$

3. Diseño Tratamiento Secundario (FAFA)

Cálculo del área superficial del filtro, en m2

$$A = \frac{Q}{CHS}$$

$$A = \frac{3560,54 \, m^3/dia}{10,5 \, m^3/m^2d}$$

$$A = 339,1 \, m^2$$

Obtener el lado del filtro si es cuadrado, en este caso lo es:

$$L = \sqrt{A}$$

$$L = \sqrt{339,1} = 18,41 \, m = 18,50 \, m$$

Estudios indican que los filtros anaerobios producen una buena calidad de efluente cuando trabajan con cargas orgánicas volumétricas de 0.25 a 0.75 kg de DBO m3 /d.

Se considera una carga orgánica volumétrica (COV) de 0.50 kg de DBO m3 /d en el lecho filtrante.

$$V = \frac{Q \times So}{COV}$$

$$V = \frac{3560,54 \times 0,13125}{0,5} = 934,64 \, m^3$$

Cálculo de la altura del lecho filtrante

$$hm = \frac{V}{A}$$

$$hm = \frac{934,64}{339.1} = 2,73 m$$

Cálculo de la altura total del filtro

$$H = hm + b + d$$

$$H = 2.73 + 0.5 + 1 = 4.23 \text{ m}$$

Cálculo del volumen total del filtro

$$Vt = AH = 339.1 \times 4.23 = 1434.40 m^3$$

Cálculo del tiempo de residencia hidráulica

$$TRH = \frac{V}{Q}$$

$$TRH = \frac{934,64}{3560,54} = 0,262 d = 6,30 h$$

Estimación de la remoción del filtro anaerobio

$$E = 100 \times (1 - 0.87(TRH^{-0.5}))$$

$$E = 100 \times (1 - 0.87(6.30^{-0.5})) = 65.34\%$$

4. Diseño Tratamiento terciario (Lechado)

- Carga de solidos que ingresa al sedimentador (C, en kg se SS/día)

$$c = \frac{Población \times contribución per cápita (gr SS hab \times día)}{1000}$$

De acuerdo con la norma (OPS/CEPIS 2005) se adopta:

Contribución per cápita promedio = 48,69 gr SS/ (hab x día)

$$c = \frac{5995 \times 48,69}{1000}$$

$$c = 291,90 \ kg \frac{SS}{hab \times dia}$$

- Masa de solidos que conforman los lodos (Msd, en Kg SS/día)

$$Msd = (0.5 \times 0.7 \times 0.5 \times c) + (0.5 \times 0.3 \times c)$$

$$Msd = (0.5 \times 0.7 \times 0.5 \times 291,90) + (0.5 \times 0.3 \times 291,90)$$

$$Msd = 94.87 \text{ kg SS/(hab × dia)}$$

Volumen diario de lodos dirigidos

$$Vld = \frac{Msd}{dlodo \times \frac{\% \ de \ solidos}{100}}$$

De acuerdo con la norma (OPS/CEPIS 2005) se adopta:

Densidad de lodos: 1,05 kg/l

Contenido promedio de solidos: % solidos = 12,5 %

$$Vld = \frac{94,87}{1,05 \times \frac{12,5\%}{100}}$$

$$Vld = 722,82 l/dia$$

- Volumen de lodos a extraerse del tanque (Vel,en m3)

$$Vel = \frac{Vld \times Td}{1000}$$

Tiempo de digestión d= 60 días (OPS/CEPIS 2005)

$$Vel = \frac{722,82 \times 60}{1000}$$

$$Vel = 43,37 \ m3 < Vcl = 181,80 \ m^3 \ Ok$$

- Área de lecho de secado (Als, en *m*2)

$$Als = \frac{Vel}{Ha}$$

Ha: profundidad de aplicación, entre 0.20 a 0.40m (OPS, pág. 19) se adopta:

Ha=0.40m

Als =
$$\frac{43,37}{0,40}$$

Als =
$$108,43 m^2$$

De acuerdo con la norma (OPS/CEPIS 2005) se adopta:

El ancho de los lechos de secado es generalmente de 3 a 6m, pero para instalaciones grandes puede sobrepasar los 10m.

Ancho del lecho de secado: BLS = 10 m

Entonces

$$Als = Bls \times Lls$$

$$Lls = \frac{Als}{Bls} = \frac{108,43}{10}$$

$$Lls = 10,84 m$$

Anexo 4: APUS

NOMBRE DEL PROYECTO:

ESTUDIO Y DISEÑO DE LA RED DE ALCANTARILLADO PARA LOS BARRIOS CULALÁ ALTO, CULALÁ BAJO, FALCÓN Y ÁREAS DE INFLUENCIA, UBICADO EN LA PARRROQUIA DE ALOASÍ, CANTÓN MEJÍA, PROVINCIA PICHINCHA

UBICACIÓN:

PARROQUIA ALOASÍ-CANTON MEJÍA

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES:

FECHA: MARZO/2021

CHICAIZA LUIS Y PINTADO CHRISTIAN

Replanteo y Nivelación de pozos de Revisión

UNIDAD: M2 HOJA 1

1.63

RUBRO: DETALLE:

		EQUIPOS			
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	A	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					0.05
Equipo de Topografía	1.00	3.50	3.50	0.081	0.28
SUBTOTAL M					0.33
		MANO DE OBRA		<u>.</u>	
DESCRIPCION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	A	В	C = A x B	R	D = C x R
Peón	1.00	3.62	3.62	0.081	0.29
Cadenero	1.00	3.66	3.66	0.081	0.29
Topógrafo	1.00	4.06	4.06	0.081	0.33
SUBTOTAL N					0.91
		MATERIALES			
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
DEGGIN CIGIT			Α	В	C = A x B
Estacas		UNIDAD	0.1500	0.40	0.06
Pintura (Esmalte)		UNIDAD	0.0200	3.00	0.06
SUBTOTAL O					0.12
TRANSPORTE		1			
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			A	В	C = A x B
SUBTOTAL P				0.00	
		TOTAL COSTO DIRECT	O (M+N+O+P)		1.36
		INDIRECTOS Y UTILIDA	ADES:	20.00%	0.27
ESTOS VALORES NO INC	LUYEN IVA	OTROS INDIRECTOS:			
		COSTO TOTAL DEL RU	JBRO:		1.63

VALOR OFERTADO:

ESTUDIO Y DISEÑO DE LA RED DE ALCANTARILLADO PARA LOS BARRIOS CULALÁ ALTO, CULALÁ BAJO, FALCÓN Y ÁREAS DE INFLUENCIA, UBICADO EN LA PARRROQUIA DE ALOASÍ, CANTÓN MEJÍA, PROVINCIA PICHINCHA NOMBRE DEL PROYECTO:

UBICACIÓN: PARROQUIA ALOASÍ-CANTON MEJÍA

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Replanteo y Nivelación de Zanja UNIDAD: ML DETALLE: HOJA 2

		EQUIPOS						
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO			
DESCRIPCION	A	В	C = A x B	R	D = C x R			
Herramienta menor (5% M.O)					0.05			
Equipo de Topografía	1.00	3.50	3.50	0.081	0.28			
SUBTOTAL M					0.33			
		MANO DE OBRA						
DESCRIPCION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO			
DEGUNIFULUI	A	В	C = A x B	R	D = C x R			
Peón	1.00	3.62	3.62	0.081	0.29			
Cadenero	1.00	3.66	3.66	0.081	0.29			
Topógrafo	1.00	4.06	4.06	0.081	0.33			
SUBTOTAL N	SUBTOTAL N							
		MATERIALES						
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO			
			Α	В	C = A x B			
Estacas		UNIDAD	0.1500	0.40	0.06			
SUBTOTAL O					0.06			
TRANSPORTE		1						
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO			
			A	В	C = A x B			
SUBTOTAL P					0.00			
		TOTAL COSTO DIRECT	O (M+N+O+P)		1.30			
		INDIRECTOS Y UTILIDA	ADES:	20.00%	0.26			
ESTOS VALORES NO	INCLUYEN IVA	OTROS INDIRECTOS:						
		COSTO TOTAL DEL RU	JBRO:		1.56			
		VALOR OFERTADO:			1.56			

NOMBRE DEL PROYECTO:

ESTUDIO Y DISEÑO DE LA RED DE ALCANTARILLADO PARA LOS BARRIOS CULALÁ ALTO,

PARROQUIA ALOASÍ-CANTON MEJÍA

CULALÁ BAJO, FALCÓN Y ÁREAS DE INFLUENCIA, UBICADO EN LA PARRROQUIA DE ALOASÍ,

CANTÓN MEJÍA, PROVINCIA PICHINCHA

UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES:

FECHA: MARZO/2021

CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: UNIDAD: M3 Excavación de Zanjas a Máquina en Tierra H=0.00-2.75m

DETALLE: HOJA 3 **EQUIPOS** CANTIDAD TARIFA COSTO HORA RENDIMIENTO COSTO DESCRIPCION В $C = A \times B$ $D = C \times R$ R Herramienta menor (5% M.O) 0.03 Retroexcavadora 1.00 30.00 30.00 0.045 1.35 SUBTOTAL M 1.38 MANO DE OBRA CANTIDAD JORNAL /HR COSTO HORA RENDIMIENTO COSTO DESCRIPCION Α В $C = A \times B$ R D = C x R Peón 1.00 3.62 3.62 0.045 0.16 Ayudante de maquinaria 1.00 3.72 3.72 0.045 0.17 Operador de Equipo Pesado 1.00 3.86 3.86 0.045 0.17 Inspector 0.20 4.07 0.81 0.045 0.04 SUBTOTAL N 0.54 MATERIALES UNIDAD CANTIDAD P. UNITARIO COSTO DESCRIPCION В C = A x B SUBTOTAL O 0.00 TRANSPORTE UNIDAD CANTIDAD TARIFA COSTO DESCRIPCION C = A x B В SUBTOTAL P 0.00 TOTAL COSTO DIRECTO (M+N+O+P) 1.92 INDIRECTOS Y UTILIDADES: 20.00% 0.38 ESTOS VALORES NO INCLUYEN IVA OTROS INDIRECTOS: COSTO TOTAL DEL RUBRO: 2.30 VALOR OFERTADO: 2.30

NOMBRE DEL PROYECTO:

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Excavación de Zanjas a Máquina en Tierra H=2.76-3.99m UNIDAD: M3 DETALLE: HOJA 4

		EQUIPOS			
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					0.04
Retroexcavadora	1.00	25.00	25.00	0.060	1.50
SUBTOTAL M					1.54
		MANO DE OBR	A		
DECODIDOION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	$D = C \times R$
Peón	1.00	3.62	3.62	0.060	0.22
Ayudante de maquinaria	1.00	3.72	3.72	0.060	0.22
Operador de Retroexcavadora	1.00	3.86	3.86	0.060	0.23
Inspector	0.20	4.07	0.81	0.060	0.05
SUBTOTAL N					0.72
		MATERIALES	i	1	
UNIDAD			CANTIDAD	P. UNITARIO	COSTO
DESCRIPCION			Α	В	C = A x B
SUBTOTAL O					0.00
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
DECOMIN CION			Α	В	C = A x B
0.107.07.11.0					
SUBTOTAL P		TOTAL 000TO DIDECTO ***	N. O. D.		0.00
		TOTAL COSTO DIRECTO (M+			2.26
F0T00 VALCTOO ::	0 IN 61 I IV/51 IV/4	INDIRECTOS Y UTILIDADES:		20.00%	0.45
ESTOS VALORES N	O INCLUYEN IVA	OTROS INDIRECTOS:			
		COSTO TOTAL DEL RUBRO:			2.71
		VALOR OFERTADO:			2.71

ESTUDIO Y DISEÑO DE LA RED DE ALCANTARILLADO PARA LOS BARRIOS CULALÁ ALTO, CULALÁ NOMBRE DEL PROYECTO: BAJO, FALCÓN Y ÁREAS DE INFLUENCIA, UBICADO EN LA PARRROQUIA DE ALOASÍ, CANTÓN MEJÍA,

PROVINCIA PICHINCHA

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Excavación de Zanjas a Máquina en Tierra H=4.00-6.00m UNIDAD: M3 DETALLE: HOJA 5

		EQUIPOS					
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO		
DESCRIPCION	Α	В	$C = A \times B$	R	$D = C \times R$		
Herramienta menor (5% M.O)					0.04		
Retroexcavadora	1.00	25.00	25.00	0.072	1.80		
SUBTOTAL M					1.84		
		MANO DE OE	RA	•			
DESCRIPCION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO		
DESCRIPCION	Α	В	$C = A \times B$	R	D = C x R		
Peón	1.00	3.62	3.62	0.072	0.26		
Ayudante de maquinaria	1.00	3.72	3.72	0.072	0.27		
Operador de Equipo Pesado	1.00	3.86	3.86	0.072	0.28		
Inspector	0.20	4.07	0.81	0.072	0.06		
SUBTOTAL N	JUBTOTAL N						
		MATERIALE	S	-			
UNIDAD CANTIDAD P.				P. UNITARIO	COSTO		
DESCRIPCION			Α	В	C = A x B		
OUDTOTAL O					0.00		
SUBTOTAL O					0.00		
TRANSPORTE		UNIDAD	CANTIDAD	TARIFA	COSTO		
DESCRIPCION		UNIDAD	A	B	C = A x B		
SUBTOTAL P					0.00		
-		TOTAL COSTO DIRECTO (M+	N+O+P)		2.71		
		INDIRECTOS Y UTILIDADES:	,	20.00%	0.54		
ESTOS VALORES N	O INCLUYEN IVA	OTROS INDIRECTOS:					
		COSTO TOTAL DEL RUBRO:		-	3.25		
		VALOR OFERTADO:			3,25		

ESTUDIO Y DISEÑO DE LA RED DE ALCANTARILLADO PARA LOS BARRIOS CULALÁ ALTO, CULALÁ NOMBRE DEL PROYECTO: BAJO, FALCÓN Y ÁREAS DE INFLUENCIA, UBICADO EN LA PARRROQUIA DE ALOASÍ, CANTÓN MEJÍA,

PROVINCIA PICHINCHA

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Rasanteo de Zanja UNIDAD: M2 DETALLE: HOJA 6

		EQUIPOS			
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	$C = A \times B$	R	D = C x R
Herramienta menor (5% M.O)					0.05
SUBTOTAL M					0.05
1		MANO DE OB			
DESCRIPCION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
	A	В	C = A x B	R	D = C x R
Peón	2.00	3.62	7.24	0.100	0.72
Albañil	1.00	3.66	3.66	0.100	0.37
SUBTOTAL N					1.09
		MATERIALE			
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
			A	В	C = A x B
SUBTOTAL O					0.00
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
DECOMA CION			A	В	C = A x B
SUBTOTAL P					0.00
		TOTAL COSTO DIRECTO (M+	N+O+P)		1.14
		INDIRECTOS Y UTILIDADES:	•	20.00%	0.23
ESTOS VALORES NO	INCLUYEN IVA	OTROS INDIRECTOS:			
		COSTO TOTAL DEL RUBRO:			1.37
		VALOR OFERTADO:		<u> </u>	1.37

ESTUDIO Y DISEÑO DE LA RED DE ALCANTARILLADO PARA LOS BARRIOS CULALÁ ALTO, CULALÁ BAJO,

NOMBRE DEL PROYECTO: FALCÓN Y ÁREAS DE INFLUENCIA, UBICADO EN LA PARRROQUIA DE ALOASÍ, CANTÓN MEJÍA, PROVINCIA

PICHINCHA

UBICACIÓN: PARROQUIA ALOASÍ-CANTON MEJÍA

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Relleno Compactado -Cama de Arena en Zanja UNIDAD: M3
DETALLE: HOJA 7

EQUIPOS CANTIDAD TARIFA COSTO HORA RENDIMIENTO COSTO DESCRIPCION D = C x R Α В $C = A \times B$ R Herramienta menor (5% M.O) 0.11 SUBTOTAL M 0.11 MANO DE OBRA CANTIDAD JORNAL /HR RENDIMIENTO COSTO HORA COSTO DESCRIPCION $C = A \times B$ $D = C \times R$ Peón 1.00 3.62 3.62 0.400 1.45 Albañil 0.50 3.66 1.83 0.400 0.73 SUBTOTAL N 2.18 **MATERIALES** UNIDAD CANTIDAD P. UNITARIO COSTO DESCRIPCION C = A x B Arena 0.0500 13.75 0.69 m3 SUBTOTAL O 0.69 TRANSPORTE CANTIDAD UNIDAD TARIFA COSTO DESCRIPCION В $C = A \times B$ SUBTOTAL P 0.00 TOTAL COSTO DIRECTO (M+N+O+P) 2.98 INDIRECTOS Y UTILIDADES: 20.00% 0.60 ESTOS VALORES NO INCLUYEN IVA OTROS INDIRECTOS: COSTO TOTAL DEL RUBRO: 3.57 VALOR OFERTADO: 3.57 FECHA: MARZO/2021

168

ESTUDIO Y DISEÑO DE LA RED DE ALCANTARILLADO PARA LOS BARRIOS CULALÁ ALTO, CULALÁ NOMBRE DEL PROYECTO: BAJO, FALCÓN Y ÁREAS DE INFLUENCIA, UBICADO EN LA PARRROQUIA DE ALOASÍ, CANTÓN MEJÍA,

PROVINCIA PICHINCHA

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Relleno Compactado (Con Material de Excavación) UNIDAD: M3 DETALLE: HOJA 8

		EQUIPOS						
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO			
DESCRIPCION	Α	В	C = A x B	R	$D = C \times R$			
Herramienta menor (5% M.O)					0.10			
Compac. manual de placa 5 hp	1.00	4.24	4.24	0.285	1.21			
UBTOTAL M								
		MANO DE OBI	RA					
DESCRIPCION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO			
DESCRIPCION	Α	В	C = A x B	R	D = C x R			
Peón	1.00	3.62	3.62	0.285	1.03			
Albañil	1.00	3.66	3.66	0.285	1.04			
SUBTOTAL N					2.07			
		MATERIALES						
DESCRIPCION		UNIDAD	CANTIDAD A	P. UNITARIO B	COSTO C = A x B			
					0-475			
SUBTOTAL O					0.00			
TRANSPORTE				1				
DECODIDATON		UNIDAD	CANTIDAD	TARIFA	COSTO			
DESCRIPCION			A	В	C = A x B			
SUBTOTAL P					0.00			
		TOTAL COSTO DIRECTO (M+N	I+O+P)		3.39			
		INDIRECTOS Y UTILIDADES:		20.00%	0.68			
ESTOS VALORES NO	INCLUYEN IVA	OTROS INDIRECTOS:						
		COSTO TOTAL DEL RUBRO:			4.06			
		VALOR OFERTADO:			4.06			

NOMBRE DEL PROYECTO:

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

CHICAIZA LUIS Y PINTADO CHRISTIAN EJECUTORES:

RUBRO: UNIDAD: M3 Desalojo Mecánico de Material Distancia=3km (Car, trans y vol) DETALLE: HOJA 9

		EQUIPOS						
DECORIDATION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO			
DESCRIPCION	Α	В	C = A x B	R	D = C x R			
Volquta 8m3					0.04			
Cargadora frontal	1.00	25.00	25.00	0.020	0.50			
SUBTOTAL M								
		MANO DE OBR	RA					
DECORPORAL	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO			
DESCRIPCION	Α	В	C = A x B	R	D = C x R			
Chofer licencia "e"	2.00	5.29	10.58	0.045	0.48			
Audante de maquinaria	1.00	3.65	3.65	0.045	0.16			
Operador de Cargadora frontal	1.00	4.05	4.05	0.045	0.18			
SUBTOTAL N								
		MATERIALES	3	·				
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO			
DESCRIPCION			Α	В	C = A x B			
SUBTOTAL O					0.00			
TRANSPORTE		LINIDAD	CANTIDAD	TARIFA	00070			
DESCRIPCION		UNIDAD	A	TARIFA B	COSTO C = A x B			
				В	C-AXB			
SUBTOTAL P					0.00			
		TOTAL COSTO DIRECTO (M+	N+O+P)		1.36			
		INDIRECTOS Y UTILIDADES:		20.00%	0.27			
ESTOS VALORES NO	INCLUYEN IVA	OTROS INDIRECTOS:						
		COSTO TOTAL DEL RUBRO:			1.64			
		VALOR OFERTADO:			1.64			

NOMBRE DEL PROYECTO:

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Entibado (Apuntalamiento de Zanja) UNIDAD: U

Entibado (Apuntalamiento de Zanja)			UNIDAD: U			
		HOJA 10				
	EQUIPOS					
CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO		
A	В	C = A x B	R	D = C x R		
				0.08		
				0.08		
	MANO DE OB	RA				
CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO		
A	В	C = A x B	R	D = C x R		
2.00	3.62	7.24	0.150	1.09		
1.00	3.66	3.66	0.150	0.55		
				1.64		
	MATERIALE	S				
DESCRIPCION		CANTIDAD	P. UNITARIO	COSTO		
		Α	В	C = A x B		
	kg	0.0100	1.70	0.02		
	m	2.0000	0.99	1.98		
=2.40m	m	3.5000	2.50	8.75		
				10.75		
	UNIDAD	CANTIDAD	TARIFA	COSTO		
		A	В	C = A x B		
				0.00		
	TOTAL COSTO DIRECTO (M+N	I+O+P)		12.46		
ES NO INCLUYEN IVA	TOTAL COSTO DIRECTO (M+N INDIRECTOS Y UTILIDADES: OTROS INDIRECTOS:	l+O+P)	20.00%	12.46 2.49		
ES NO INCLUYEN IVA	INDIRECTOS Y UTILIDADES:	+0+P)	20.00%			
	CANTIDAD A CANTIDAD A 2.00	CANTIDAD	CANTIDAD	HOJA 10 EQUIPOS CANTIDAD TARIFA COSTO HORA RENDIMIENTO R		

ESTUDIO Y DISEÑO DE LA RED DE ALCANTARILLADO PARA LOS BARRIOS CULALÁ ALTO, CULALÁ

NOMBRE DEL PROYECTO: BAJO, FALCÓN Y ÁREAS DE INFLUENCIA, UBICADO EN LA PARRROQUIA DE ALOASÍ, CANTÓN

MEJÍA, PROVINCIA PICHINCHA

UBICACIÓN: PARROQUIA ALOASÍ-CANTON MEJÍA

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Tubería Plastica Alcantarillado. D.N.I. 200mm (Mat.Transp.Inst) UNIDAD: ML
DETALLE: HOJA 11

EQUIPOS RENDIMIENTO CANTIDAD COSTO HORA COSTO **TARIFA** DESCRIPCION Α В $C = A \times B$ R D = C x R Herramienta menor (5% M.O) 0.02 SUBTOTAL M 0.02 MANO DE OBRA JORNAL /HR CANTIDAD RENDIMIENTO COSTO COSTO HORA DESCRIPCION В $C = A \times B$ $D = C \times R$ Peón 1.00 3.62 3.62 0.063 0.23 Albañil 1.00 3.66 3.66 0.063 0.23 0.03 Maestro Mayor 0.10 4.07 0.41 0.063 SUBTOTAL N 0.48 MATERIALES CANTIDAD P. UNITARIO COSTO UNIDAD DESCRIPCION Α В $C = A \times B$ Tubería PVC Alcantarillado D=250mm 1.0000 20.00 20.00 m UNIDAD 0.1600 2.82 Aceite quemado 17.64 0.0080 0.005 Anillo de caucho 250 gl 0.57 SUBTOTAL O 22.83 TRANSPORTE UNIDAD CANTIDAD TARIFA COSTO DESCRIPCION $C = A \times B$ Α В SUBTOTAL P 0.00 TOTAL COSTO DIRECTO (M+N+O+P) 23.33 INDIRECTOS Y UTILIDADES: 20.00% 4.67 ESTOS VALORES NO INCLUYEN IVA OTROS INDIRECTOS: COSTO TOTAL DEL RUBRO: 28.00 VALOR OFERTADO: 28.00 FECHA: MARZO/2021

ESTUDIO Y DISEÑO DE LA RED DE ALCANTARILLADO PARA LOS BARRIOS CULALÁ ALTO, CULALÁ NOMBRE DEL PROYECTO:

BAJO, FALCÓN Y ÁREAS DE INFLUENCIA, UBICADO EN LA PARRROQUIA DE ALOASÍ, CANTÓN

MEJÍA, PROVINCIA PICHINCHA

UBICACIÓN: PARROQUIA ALOASÍ-CANTON MEJÍA

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

FECHA: MARZO/2021

RUBRO: Tubería Plastica Alcantarillado. D.N.I. 250mm (Mat.Transp.Inst) UNIDAD: ML

DETALLE: HOJA 12 EQUIPOS CANTIDAD TARIFA COSTO HORA RENDIMIENTO COSTO DESCRIPCION Α $C = A \times B$ $D = C \times R$ 0.03 Herramienta menor (5% M.O) SUBTOTAL M 0.03 MANO DE OBRA CANTIDAD JORNAL /HR COSTO HORA RENDIMIENTO COSTO DESCRIPCION D = C x R В $C = A \times B$ Peón 1.00 3.62 3.62 0.075 0.27 Albañil 1.00 3.66 3.66 0.075 0.27 0.10 0.075 0.03 Maestro Mayor 4.06 0.41 SUBTOTAL N 0.58 **MATERIALES** UNIDAD CANTIDAD P. UNITARIO COSTO DESCRIPCION $C = A \times B$ Tubería PVC Alcantarillado D=250mm 1.0000 24.00 24.00 Aceite quemado UNIDAD 0.1600 17.64 2.82 Anillo de caucho 250 0.0080 0.57 0.005 ql SUBTOTAL O 26.83 TRANSPORTE UNIDAD CANTIDAD TARIFA COSTO DESCRIPCION $C = A \times B$ Α В SUBTOTAL P 0.00 TOTAL COSTO DIRECTO (M+N+O+P) 27.43 INDIRECTOS Y UTILIDADES: 20.00% 5.49 ESTOS VALORES NO INCLUYEN IVA OTROS INDIRECTOS: COSTO TOTAL DEL RUBRO: 32.92 VALOR OFERTADO: 32.92

NOMBRE DEL PROYECTO:

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Tubería Plastica Alcantarillado. D.N.I. 300mm (Mat.Transp.Inst) UNIDAD: ML DETALLE:

HOJA 13

		EQUIPOS			
DEGODIDOLON	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	$D = C \times R$
Herramienta menor (5% M.O)					0.04
SUBTOTAL M					0.04
		MANO DE OBR	A	<u>.</u>	
DEGGDIDOLON.	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Peón	1.00	3.62	3.62	0.100	0.36
Albañil	1.00	3.66	3.66	0.100	0.37
Maestro Mayor	0.10	4.06	0.41	0.100	0.04
SUBTOTAL N					0.77
		MATERIALES	i .		
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
			Α	В	C = A x B
Tubería PVC Alcantarillado D=250	mm	m	1.0000	28.00	28.00
Aceite quemado		UNIDAD	0.1800	17.64	3.18
Anillo de caucho 250		gl	0.0100	0.57	0.006
SUBTOTAL O					31.18
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
52001till 01011			Α	В	C = A x B
SUBTOTAL P		•	•	•	0.00
		TOTAL COSTO DIRECTO (M	+N+O+P)		31.99
		INDIRECTOS Y UTILIDADES	:	20.00%	6.40
ESTOS VALORES NO	O INCLUYEN IVA	OTROS INDIRECTOS:			
		COSTO TOTAL DEL RUBRO	1		38.39
		VALOR OFERTADO:			38.39

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Conexión Domiciliaria Silla YEE 200mmx160mm UNIDAD: U

DETALLE:	TALLE: HOJA 14							
		EQUIPOS	<u> </u>					
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO			
DESCRIPCION	Α	В	C = A x B	R	D = C x R			
Herramienta menor (5% M.O)					0.18			
SUBTOTAL M					0.18			
		MANO DE OI	BRA					
	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO			
DESCRIPCION	Α	В	C = A x B	R	D = C x R			
Peón	1.00	3.62	3.62	0.500	1.81			
Albañil	1.00	3.66	3.66	0.500	1.83			
SUBTOTAL N	JBTOTAL N							
		MATERIAL	ES	·				
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO			
			Α	В	C = A x B			
Silla YEE 200mmx160		UNIDAD	1.0000	8.50	8.50			
Tubería Plástica de Alcantarillado	D=160mm	m	6.0000	9.18	55.08			
Tubo Pvc Polipega		gl	0.0050	22.18	0.11			
SUBTOTAL O					63.69			
TRANSPORTE				<u>, </u>				
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO			
DESCRIPCION			Α	В	C = A x B			
CURTOTAL R					0.00			
SUBTOTAL P		TOTAL COSTO DIDECTO (44)	N.O.D)		0.00			
		TOTAL COSTO DIRECTO (M+	N+U+P)	20.000/	67.51			
ECTOC VALORES NO	O INCLUVENINA	INDIRECTOS Y UTILIDADES:		20.00%	13.50			
ESTOS VALORES N	U INCLUYEN IVA	OTROS INDIRECTOS:		<u> </u>	04.00			
		COSTO TOTAL DEL RUBRO: VALOR OFERTADO:		<u> </u>	81.02 81.02			
FECHA: MARZO/2021		VALUK UPERTADU:			01.02			

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Conexión Domiciliaria Silla YEE 250mmx160mm UNIDAD: U

DETALLE:				HOJA 15	
		EQUIPOS			
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					0.18
SUBTOTAL M					0.18
		MANO DE OB	RA		
	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Peón	1.00	3.62	3.62	0.500	1.81
Albañil	1.00	3.66	3.66	0.500	1.83
SUBTOTAL N					3.64
		MATERIALE	S		
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
			Α	В	C = A x B
Silla YEE 250mmx160		UNIDAD	1.0000	12.36	12.36
Tubería Plástica de Alcantarillado D	=160mm	m	6.0000	9.18	55.08
Tubo Pvc Polipega		gl	0.0050	22.18	0.11
SUBTOTAL O					67.55
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			A	В	C = A x B
SUBTOTAL P		<u> </u>			0.00
		TOTAL COSTO DIRECTO (M+)	N+O+P)		71.37
		INDIRECTOS Y UTILIDADES:		20.00%	14.27
ESTOS VALORES NO	INCLUYEN IVA	OTROS INDIRECTOS:			
		COSTO TOTAL DEL RUBRO:			85.65
		VALOR OFERTADO:			85.65

NOMBRE DEL PROYECTO:

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Conexión Domiciliaria Silla YEE 300mmx160mm UNIDAD: U DETALLE: HOJA 16

DETALLE:				HOJA 16						
		EQUIPOS	3							
DECORIDORA	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	совто					
DESCRIPCION	Α	В	C = A x B	R	$D = C \times R$					
Herramienta menor (5% M.O)					0.18					
SUBTOTAL M	JBTOTAL M									
		MANO DE O	BRA	•						
	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO					
DESCRIPCION	Α	В	C = A x B	R	D = C x R					
Peón	1.00	3.62	3.62	0.500	1.81					
Albañil	1.00	3.66	3.66	0.500	1.83					
SUBTOTAL N	JBTOTAL N									
		MATERIAL	ES	·						
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO					
			Α	В	C = A x B					
Silla YEE 300mmx160		UNIDAD	1.0000	13.50	13.50					
Tubería Plástica de Alcantarillado I	D=160mm	m	6.0000	9.18	55.08					
Tubo Pvc Polipega		gl	0.0050	22.18	0.11					
SUBTOTAL O					68.69					
TRANSPORTE										
DECORIDATION		UNIDAD	CANTIDAD	TARIFA	COSTO					
DESCRIPCION			Α	В	C = A x B					
SUBTOTAL P					0.00					
		TOTAL COSTO DIRECTO (M+	N+O+P)		72.51					
		INDIRECTOS Y UTILIDADES:		20.00%	14.50					
ESTOS VALORES NO	O INCLUYEN IVA	OTROS INDIRECTOS:								
		COSTO TOTAL DEL RUBRO:			87.02					
		VALOR OFERTADO:			87.02					

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Excavación para Pozos de Revisión en Tierra 0.00-6m UNIDAD: M3 DETALLE: HOJA 17

		EQUIPOS	5		
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DEGORIFOION	Α	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					0.06
Excavadora	1.00	50.00	50.00	0.075	3.75
SUBTOTAL M					3.81
		MANO DE O	BRA		
	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Peón	1.00	3.62	3.62	0.075	0.27
Ayudante de Maquinaria	1.00	3.72	3.72	0.075	0.28
Operador Retroexcavadora	1.00	4.06	4.06	0.075	0.30
Inspector	1.00	4.06	4.06	0.075	0.30
SUBTOTAL N					1.16
		MATERIAL	ES		
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
			Α	В	C = A x B
SUBTOTAL O				•	0.00
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
DECORAL CION			A	В	C = A x B
SUBTOTAL P					0.00
		TOTAL COSTO DIRECTO (M+	N+O+P)		4.97
	O INCLUIVEN IVA	INDIRECTOS Y UTILIDADES: OTROS INDIRECTOS:		20.00%	0.99
ESTOS VALORES N					
ESTOS VALORES N	O INCLUTENTVA	COSTO TOTAL DEL RUBRO:			5.96

PICHINCHA

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Hormigon Simple f'c=210kg/cm2 (Base del pozo) UNIDAD: M3 DETALLE: HOJA 18

		EQUIPO:	S					
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO			
DESCRIPCION	Α	В	C = A x B	R	D = C x R			
Herramienta menor (5% M.O)					2.58			
Concretera 1 Saco	1.00	4.38	4.38	1.778	7.79			
UBTOTAL M								
		MANO DE O	BRA					
DESCRIPCION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO			
DESCRIPCION	Α	В	C = A x B	R	D = C x R			
Peón	6.00	3.62	21.72	1.778	38.61			
Albañil	2.00	3.66	7.32	1.778	13.01			
SUBTOTAL N					51.63			
		MATERIAL						
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO			
			A	В	C = A x B			
Cemento Holcim		kg	250.0000	0.15	37.50			
Arena		m3	0.6000	13.75	8.25			
Ripio		m3	0.8500	13.75	11.69			
Agua		m3	0.2500	0.16	0.04			
SUBTOTAL O					57.48			
TRANSPORTE		1						
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO			
			A	В	C = A x B			
SUBTOTAL P					0.00			
		TOTAL COSTO DIRECTO (M-	-N+O+P)		119.47			
		INDIRECTOS Y UTILIDADES:		20.00%	23.89			
ESTOS VALORES N	O INCLUYEN IVA	OTROS INDIRECTOS:		20.00 /0	20.03			
LOTOG FALORES IN	O IIIOZO I ZIRIYA	COSTO TOTAL DEL RUBRO:		<u> </u>	143.37			
		VALOR OFERTADO:			143.37			
FECHA: MARZO/2021					1-0.01			

PICHINCHA

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Construcción Pozos de Revisión de HS fc=210kg/cm2 UNIDAD: ML DETALLE: HOJA 19

		EQUIPO	S		
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DECORAL CION	Α	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					1.98
Concretera 1 Saco	1.00	4.38	4.38	2.650	11.61
Vibrador	1.00	2.00	2.00	2.650	5.30
SUBTOTAL M					18.89
		MANO DE C	BRA		
DEGODIDAION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Peón	2.00	3.62	7.24	2.650	19.19
Albañil	1.00	3.66	3.66	2.650	9.70
Inspector	1.00	4.06	4.06	2.650	10.76
SUBTOTAL N					39.64
		MATERIAL	_ES		
		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
DESCRIPCION			Α	В	C = A x B
Cemento		kg	195.0000	0.15	29.25
Arena		m3	0.3700	13.75	5.09
Ripio		m3	0.5100	13.75	7.01
Agua		m3	0.1530	0.16	0.02
Alambre de Amarre # 18		kg	0.0800	2.15	0.17
Acero de Reffuerzo Fy=4200kg/	cm2 12mm	kg	10.6600	1.18	12.58
Acero de Reffuerzo Fy=4200kg/	cm3 16mm	kg	8.5700	1.18	10.11
Pingos		ml	4.0000	1.09	4.36
Tabla de monte 0.25mX2.4		UNIDAD	2.5000	0.72	1.80
Clavos		kg	0.8500	1.78	1.51
Encofrado y desencofrado metál	ico pozo de Revisión	UNIDAD	1.0000	80.00	80.00
SUBTOTAL O					151.91
TRANSPORTE					
		UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION			A	В	C = A x B
SUBTOTAL P					0.00
		TOTAL COSTO DIRECTO (M-	+N+O+P)		210.44
ESTOS VALORES	NO INCLUYEN IVA	INDIRECTOS Y UTILIDADES	:	20.00%	42.09
ESTOS VALORES	NO INCLUTENTVA	OTROS INDIRECTOS: COSTO TOTAL DEL RUBRO			252.53

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Tapa de HF con cerco D=600mm UNIDAD: U

		EQUIPOS			
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					0.44
Camioneta					5.80
CUDTOTAL M					6.24
SUBTOTAL M		MANO DE O	DDA		0.24
	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	A	B	C = A x B	R	D=CxR
Peón	2.00	3.62	7.24	0.500	3.62
Albañil	1.00	3.66	3.66	0.500	1.83
Inspector	1.00	4.06	4.06	0.500	2.03
Chofer	0.50	5.31	2.66	0.500	1.33
SUBTOTAL N					8.81
· · · · · · · · · · · · · · · · · · ·		MATERIAL	ES .		
		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
DESCRIPCION			Α	В	C = A x B
Cemento		kg	25.0000	0.15	3.75
Arena		m3	0.2800	13.75	3.85
Ripio		m3	0.3800	13.75	5.23
Agua		m3	0.1000	0.16	0.02
Tapa hf D=600mm		UNIDAD	1.0000	105.00	105.000
SUBTOTAL O					117.84
TRANSPORTE				•	
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION			Α	В	C = A x B
SUBTOTAL P					0.00
		TOTAL COSTO DIRECTO (M+	N+O+P)		132.89
		INDIRECTOS Y UTILIDADES:		20.00%	26.58
ESTOS VALORES NO	INCLUYEN IVA	OTROS INDIRECTOS:			
		COSTO TOTAL DEL RUBRO:			159.47
		VALOR OFERTADO:			159.47

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Limpieza de Pozo de Revisión UNIDAD: U

1021101	p.oza ao . ozo ao				
DETALLE:				HOJA 20.1	
		EQUIPOS			
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					0.23
Camion Cisterna con Equipo de Agua Bombeado					8.52
SUBTOTAL M	l				8.75
		MANO DE OBRA			
DESCRIPCION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
JESCRIPCION	Α	В	C = A x B	R	$D = C \times R$
Peón	2.00	3.62	7.24	0.500	3.62
Inspector	0.50	4.06	2.03	0.500	1.02
SUBTOTAL N					4.64
		MATERIALES		•	
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
DESCRIPCION			Α	В	C = A x B
Desinfectantes		kg	1.0000	2.50	2.50
Agua		m3	5.0000	0.16	0.80
SUBTOTAL O					3.30
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	совто
DESCRIPCION			A	В	C = A x B
SUBTOTAL P					0.00
		TOTAL COSTO DIRECTO (M+	-N+O+P)		16.69
		INDIRECTOS Y UTILIDADES:		20.00%	3.34
ESTOS VALORES NO INCL	UYEN IVA	OTROS INDIRECTOS:			
		COSTO TOTAL DEL RUBRO:			20.02
		VALOR OFERTADO:			20.02

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES:

CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Excavación con Maquina a Cielo Abierto en Tierra UNIDAD: M3 DETALLE: HOJA 21

		EQUIPOS					
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO		
DESCRIPCION	Α	В	C = A x B	R	D = C x R		
Herramienta menor (5% M.O)					0.05		
Retroexcavadora	1.00	25.00	25.00	0.080	2.00		
SUBTOTAL M	<u>L</u>				2.05		
MANO DE OBRA							
DESCRIPCION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO		
DESCRIPCION	Α	В	$C = A \times B$	R	D = C x R		
Peón	1.00	3.62	3.62	0.080	0.29		
Ayudante de maquinaria	1.00	3.72	3.72	0.080	0.30		
Operador de Retroexcavadora	1.00	3.86	3.86	0.080	0.31		
nspector	0.20	4.07	0.81	0.080	0.07		
SUBTOTAL N	L				0.96		
		MATERIALE	ES .				
DECORIDATION.		UNIDAD	CANTIDAD	P. UNITARIO	COSTO		
DESCRIPCION			Α	В	C = A x B		
SUBTOTAL O					0.00		
SUBTOTAL O TRANSPORTE							
		UNIDAD	CANTIDAD	TARIFA	совто		
TRANSPORTE		UNIDAD	CANTIDAD A	TARIFA B			
TRANSPORTE		UNIDAD			COSTO		
RANSPORTE		UNIDAD TOTAL COSTO DIRECTO (M+1	A		COSTO C = A x B		
TRANSPORTE DESCRIPCION SUBTOTAL P	NO INCLUYEN IVA	TOTAL COSTO DIRECTO (M+I	A		COSTO C = A x B		
TRANSPORTE DESCRIPCION SUBTOTAL P	NO INCLUYEN IVA	TOTAL COSTO DIRECTO (M+I	A	В	COSTO C = A x B		

PICHINCHA

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Replantillo Hormigon Simple f'c=180kg/cm2 e=5cm UNIDAD: M2 DETALLE: HOJA 22

		EQUIPO	S		
DECODIDATON	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					0.25
Concretera	1.00	2.00	2.00	0.110	0.22
SUBTOTAL M					0.47
		MANO DE O	BRA		
DEGODIDOLON	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Peón	10.00	3.62	36.20	0.110	3.98
Albañil	2.00	3.66	7.32	0.110	0.81
Inspector	0.50	4.07	2.04	0.110	0.22
SUBTOTAL N					5.01
		MATERIAL	ES	•	
		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
DESCRIPCION			Α	В	C = A x B
Cemento		kg	16.0000	0.16	2.56
Arena		m3	0.0400	13.75	0.55
Piedra 3/4"		m3	0.0500	17.50	0.88
Agua		m3	0.0100	3.00	0.03
SUBTOTAL O					4.02
TRANSPORTE		LINIDAD	CANTIDAD	TADIFA	00070
DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C = A x B
			A	В	U-AXB
SUBTOTAL P					0.00
OUDIVIALE		TOTAL COSTO DIRECTO (M-	+N+Ω+P)		9.50
		INDIRECTOS Y UTILIDADES:	,	20.00%	1.90
ESTOS VALORES N	O INCLUYEN IVA	OTROS INDIRECTOS:	•	20.00 /0	1.50
ESTOS VALORES N	O INCLUTENTIVA	COSTO TOTAL DEL RUBRO:		-	11.40
		VALOR OFERTADO:	•	<u> </u>	11.40
FECHA: MARZO/2021					11.40

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Acero de Refuerzo fy=4200kg/cm2 UNIDAD: kg

DETALLE: HOJA 23

DETALLE:				HOJA 23	
		EQUIPOS			
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					0.02
Moladora	1.00	1.00	1.00	0.050	0.05
SUBTOTAL M					0.07
		MANO DE OB	RA		
	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Peón	1.00	3.62	3.62	0.050	0.18
Fierrero	1.00	3.66	3.66	0.050	0.18
SUBTOTAL N					0.36
		MATERIALE	S		
DEGODIDOLON		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
DESCRIPCION			Α	В	C = A x B
Alambre de galvanizado # 18		kg	0.0080	2.15	0.02
Acero de Reffuerzo Fy=4200kg/cm	2	kg	1.0300	0.95	0.98
SUBTOTAL O					1.00
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
SECONII GION			A	В	C = A x B
SUBTOTAL P					0.00
		TOTAL COSTO DIRECTO (M+)	N+O+P)		1.43
		INDIRECTOS Y UTILIDADES:		20.00%	0.29
ESTOS VALORES NO	INCLUYEN IVA	OTROS INDIRECTOS:			
		COSTO TOTAL DEL RUBRO:			1.71
		VALOR OFERTADO:			1.71

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Encofrado/Desencofrado Madera Cepillada UNIDAD: M2 DETALLE: HOJA 24

DETALLE.				1100A 24	
		EQUIPOS			
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	$D = C \times R$
Herramienta menor (5% M.O)					0.08
Amoladora	1.00	1.25	1.25	0.180	0.23
SUBTOTAL M					0.31
		MANO DE OE	BRA	•	
DESCRIPCION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	$D = C \times R$
Peón	1.00	3.62	3.62	0.180	0.65
Albañil	1.00	3.66	3.66	0.180	0.66
Maestro Mayor	0.50	4.06	2.03	0.180	0.37
SUBTOTAL N					1.68
		MATERIALI	S	•	
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	соѕто
DESCRIPCION			Α	В	C = A x B
Madera Monte Cepillada		m2	1.0000	6.00	6.00
Cuarton		UNIDAD	1.1000	2.85	3.14
Clavos		kg	0.2000	2.55	0.51
Aceite Quemado		gl	0.1000	0.57	0.06
SUBTOTAL O					9.70
TRANSPORTE					9.70
TIVE ON L		UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION			A	В	C = A x B
SUBTOTAL P					0.00
		TOTAL COSTO DIRECTO (M+	N+O+P)		11.69
ESTOS VALORES N	IO INCLUYEN IVA	INDIRECTOS Y UTILIDADES: OTROS INDIRECTOS:		20.00%	2.34
		COSTO TOTAL DEL RUBRO:		<u> </u>	14.02
		VALOR OFERTADO:		<u> </u>	14.02
FECHA: MARZO/2021					17102

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Hormigon Simple f'c=280kg/cm2 UNIDAD: M3 DETALLE: HOJA 25

		EQUIPOS	3		
DECORPORAL	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					2.83
Concretera	1.00	2.00	2.00	1.000	2.00
Vibrador	1.00	1.99	1.99	1.000	1.99
SUBTOTAL M					6.82
		MANO DE O	BRA		
	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Peón	10.00	3.62	36.20	1.000	36.20
Albañil	3.00	3.66	10.98	1.000	10.98
Inspector	1.00	4.07	4.07	1.000	4.07
Maestro Mayor	1.00	5.31	5.31	1.000	5.31
SUBTOTAL N					56.56
		MATERIAL	ES		
		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
DESCRIPCION			Α	В	C = A x B
Cemento		kg	360.5000	0.16	57.68
Arena		m3	0.6500	13.75	8.94
Ripio		m3	0.9500	17.50	16.63
Agua		m3	0.2200	3.00	0.66
SUBTOTAL O					83.90
TRANSPORTE					
		UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION			A	В	C = A x B
SUBTOTAL P					0.00
		TOTAL COSTO DIRECTO (M+	N+O+P)		147.28
		INDIRECTOS Y UTILIDADES:		20.00%	29.46
ESTOS VALORES NO	INCLUYEN IVA	OTROS INDIRECTOS:			
		COSTO TOTAL DEL RUBRO:			176.74
		VALOR OFERTADO:			176.74

NOMBRE DEL PROYECTO:

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Arena en Zanja de Infiltración UNIDAD: M3 HO IV 26

		EQUIPO	S		
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					0.17
SUBTOTAL M					0.17
		MANO DE O	BRA		
DESCRIPCION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Peón	1.00	3.62	3.62	0.450	1.63
Inspector	1.00	4.07	4.07	0.450	1.83
SUBTOTAL N					3.46
		MATERIAL	.ES	•	
DEGODIDOLON		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
DESCRIPCION			Α	В	C = A x B
Arena		m3	1.0500	13.75	14.44
SUBTOTAL O					14.44
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION			A	В	C = A x B
SUBTOTAL P			1	1	0.00
		TOTAL COSTO DIRECTO (M-	+N+O+P)		18.07
		INDIRECTOS Y UTILIDADES:		20.00%	3.61
ESTOS VALORES NO	INCLUYEN IVA	OTROS INDIRECTOS:			
		COSTO TOTAL DEL RUBRO:	1		21.69
		VALOR OFERTADO:			21.69

NOMBRE DEL PROYECTO:

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Grava en Zanja de Infiltración UNIDAD: M3 DETALLE: HOJA 27

		EQUIPO	S		
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					0.02
SUBTOTAL M				1	0.02
		MANO DE C	BRA		
DESCRIPCION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Peón	1.00	3.62	3.62	0.040	0.14
Inspector	1.00	4.07	4.07	0.040	0.16
SUBTOTAL N					0.31
		MATERIAL	LES		
DEGODIDOLON		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
DESCRIPCION			Α	В	C = A x B
Ripio		m3	1.0500	21.54	22.62
SUBTOTAL O					22.62
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION			A	В	C = A x B
SUBTOTAL P			I		0.00
		TOTAL COSTO DIRECTO (M	+N+O+P)		22.94
		INDIRECTOS Y UTILIDADES	:	20.00%	4.59
ESTOS VALORES NO	O INCLUYEN IVA	OTROS INDIRECTOS:			
		COSTO TOTAL DEL RUBRO	:		27.53
		VALOR OFERTADO:			27.53

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Enlucido Vertical con Impermeabiliznte UNIDAD: m2

		EQUIPO	S		
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	совто
DESCRIPCION	Α	В	C = A x B	R	D = C x R
Herramienta menor (5% M.O)					0.35
Andamio	1.00	0.05	0.05	0.750	0.04
SUBTOTAL M					0.39
		MANO DE O	BRA	•	
	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	$D = C \times R$
Peón	1.00	3.62	3.62	0.750	2.72
Carpintero	1.00	3.66	3.66	0.750	2.75
Maestro Mayor	0.50	4.06	2.03	0.750	1.52
SUBTOTAL N					6.98
		MATERIAL	.ES	•	
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
DESCRIPCION			Α	В	$C = A \times B$
Cemento		kg	8.0000	0.15	1.20
Arena		m3	0.0500	13.75	0.69
Agua		m3	0.0200	0.16	0.00
Cementina		kg	3.1300	0.09	0.28
Impermeabilizante para mortero		kg	1.0000	0.28	0.28
SUBTOTAL O					2.45
TRANSPORTE					
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO
			A	В	C = A x B
SUBTOTAL P					0.00
		TOTAL COSTO DIRECTO (M-	+N+O+P)		9.82
		INDIRECTOS Y UTILIDADES:		20.00%	1.96
ESTOS VALORES NO	INCLUYEN IVA	OTROS INDIRECTOS:			
		COSTO TOTAL DEL RUBRO			11.79
		VALOR OFERTADO:			11.79

UBICACIÓN: PARROQUIA ALOASÍ-CANTON MEJÍA

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES:

CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Cono de Señalización UNIDAD: u

DETALLE:				HOJA 29	
		EQUIPOS			
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	Α	В	C = A x B	R	D = C x R
					0.00
SUBTOTAL M					0.00
		MANO DE OBI	RA		
DEGODIDOLON	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	A	В	C = A x B	R	D = C x R
SUBTOTAL N					0.00
		MATERIALE	S	•	
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO
DESCRIPCION			Α	В	C = A x B
Cono de Señalización Vial		UNIDAD	1.0000	6.35	6.35
SUBTOTAL O					6.35
		IINIDAD	CANTIDAD	TARIFA	
TRANSPORTE		UNIDAD	CANTIDAD A	TARIFA B	6.35 COSTO C = A x B
TRANSPORTE		UNIDAD			совто
TRANSPORTE		UNIDAD			совто
TRANSPORTE		UNIDAD TOTAL COSTO DIRECTO (M+N	A		COSTO C = A x B
TRANSPORTE			A		COSTO C = A x B
TRANSPORTE DESCRIPCION SUBTOTAL P	S NO INCLUYEN IVA	TOTAL COSTO DIRECTO (M+N	A	В	COSTO C = A x B
TRANSPORTE DESCRIPCION SUBTOTAL P	S NO INCLUYEN IVA	TOTAL COSTO DIRECTO (M+N INDIRECTOS Y UTILIDADES:	A	В	COSTO C = A x B

NOMBRE DEL PROYECTO:

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

SECOTORES.	CHICALEA EDIO I FINTADO CHICIOTIAN					
RUBRO:	Cinta Plástica de Segurid	ad (Peligro) 1=250m	UNIDAD: U			
DETALLE:			HOJA 30			
		EQUIPOS	S			
DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO	
DESCRIPCION	Α	В	C = A x B	R	$D = C \times R$	
					0.00	
SUBTOTAL M					0.00	
		MANO DE O	BRA	_		
	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO	
DESCRIPCION	A	В	C = A x B	R	D = C x R	
SUBTOTAL N					0.00	
		MATERIAL	ES	<u> </u>		
		UNIDAD	CANTIDAD	P. UNITARIO	COSTO	
DESCRIPCION			Α	В	C = A x B	
Cinta Plástica de seguridad (peligro)		UNIDAD	1.0000	13.25	13.25	
SUBTOTAL O					13.25	
TRANSPORTE						
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO	
DESCRIPTION			A	В	C = A x B	
SUBTOTAL P						
		TOTAL COSTO DIRECTO (M+N+O+P)			13.25	
		INDIRECTOS Y UTILIDADES: 20.00%			2.65	
ESTOS VALORES NO INCLUYEN IVA		OTROS INDIRECTOS:				
		COSTO TOTAL DEL RUBRO:			15.90	
		VALOR OFERTADO:		<u> </u>	15.90	
FECHA: MARZO/2021						

PARROQUIA ALOASÍ-CANTON MEJÍA UBICACIÓN:

ANALISIS DE PRECIOS UNITARIOS

EJECUTORES: CHICAIZA LUIS Y PINTADO CHRISTIAN

RUBRO: Tanquero de Agua para Control de Polvo UNIDAD: Viaje

RUBRO:	Tanquero de Agua para Control de Polvo			UNIDAD: Viaje		
DETALLE:		HOJA 31				
		EQUIPO	S			
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO	
DESCRIPCION	Α	В	C = A x B	R	D = C x R	
Tanquero	1.00	14.00	14.00	1.0000	14.00	
SUBTOTAL M					14.00	
		MANO DE O	BRA	_		
DESCRIPCION	CANTIDAD	JORNAL /HR	COSTO HORA	RENDIMIENTO	COSTO	
	Α	В	C = A x B	R	$D = C \times R$	
Chofer Tanquero	1.00	5.31	5.31	1.0000	5.31	
SUBTOTAL N						
		MATERIAL	ES			
DESCRIPCION		UNIDAD	CANTIDAD	P. UNITARIO	COSTO	
			A	В	C = A x B	
Agua		m3	8.0000	1.00	8.00	
SUBTOTAL O				1	8.00	
TRANSPORTE			_			
DESCRIPCION		UNIDAD	CANTIDAD	TARIFA	COSTO	
			A	В	C = A x B	
SUBTOTAL P					0.00	
		TOTAL COSTO DIRECTO (M+N+O+P)			27.31	
ESTOS VALORES NO INCLUYEN IVA		INDIRECTOS Y UTILIDADES: 20.00% OTROS INDIRECTOS:			5.46	
		COSTO TOTAL DEL RUBRO:	:		32.77	
		VALOR OFERTADO:		32.77		