UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO

CARRERA: INGENIERÍA CIVIL

Trabajo de titulación previo a la obtención del título de: INGENIERO E INGENIERA CIVIL

TEMA:

EVALUACIÓN Y MEJORAMIENTO HIDRÁULICO DE LA INFRAESTRUCTURA DEL SISTEMA DE RIEGO BIPROVINCIAL AMBUQUÍ

AUTORES:

LUIS ESTEBAN JÁCOME TERÁN GABRIELA FERNANDA VELA IZA

TUTOR:

BYRON ANDRÉS HEREDIA HIDALGO

Quito, agosto de 2021

CESIÓN DE DERECHOS DE AUTOR

Nosotros Luis Esteban Jácome Terán y Gabriela Fernanda Vela Iza, con documentos de identificación N° 100397436-5 y N° 172054954-0, manifestamos nuestra voluntad y cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores del trabajo de titulación intitulado: EVALUACIÓN Y MEJORAMIENTO HIDRÁULICO DE LA INFRAESTRUCTURA DEL SISTEMA DE RIEGO BIPROVINCIAL AMBUQUÍ, mismo que ha sido desarrollado para optar por el título de: Ingeniera e Ingeniero Civil, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en nuestra condición de autores nos reservamos los derechos morales de la obra antes citada. En concordancia, suscribimos este documento en el momento que hacemos entrega del trabajo final en formato digital a la Biblioteca de la Universidad Politécnica Salesiana.

Quito, agosto de 2021

Gabriela Fernanda Vela Iza

jabriela. V

172054954-0

Tund of the same o

Luis Esteban Jácome Terán

100397436-5

DECLARATORIA DE COAUTORIA DEL DOCENTE TUTOR

Yo declaro que bajo mi dirección y asesoría fue desarrollado el trabajo de titulación

denominado EVALUACIÓN Y **MEJORAMIENTO** HIDRÁULICO DE

INFRAESTRUCTURA DEL SISTEMA DE RIEGO BIPROVINCIAL AMBUQUÍ, realizado

por los estudiantes Gabriela Fernanda Vela Iza y Luis Esteban Jácome Terán, obteniendo un

producto que cumple con todos los requisitos estipulados por la Universidad Politécnica

Salesiana, para ser considerado como trabajo final de titulación.

Quito, agosto de 2021

Byron Andrés Heredia Hidalgo

C.I.: 1719147066

iii

DEDICATORIA

El presente trabajo de titulación se lo dedico a Dios y a la Virgen Dolorosa, quienes me han cuidado en todo este tiempo, los cuales me han dado la fuerza y fortaleza para poder culminar con éxito esta grandiosa etapa de mi vida.

A mis padres Patricio y Silvia, por su amor, paciencia, esfuerzo, trabajo y sacrificio de todo este tiempo, por apoyarme en cada decisión y ser siempre ese apoyo incondicional a pesar de la distancia, este logro es por y para ustedes. Son lo mejor que tengo en mi vida.

A mis hermanos María Paula y Santiago, quienes supieron brindarme un consejo cuando los necesite y ser un ejemplo para sus éxitos futuros.

Luis Esteban Jácome Terán

DEDICATORIA

A mi madre, que siempre confió en mí, gracias por su esfuerzo, amor, paciencia y apoyo incondicional que me han permitido llegar a cumplir esta meta.

Gabriela Fernanda Vela Iza

AGRADECIMIENTO

A Dios y Virgen Dolorosa, por brindarme la fortaleza y sabiduría para poder superar las diferentes etapas en el transcurso de la carrera de Ingeniería Civil y poder llegar a la meta de todo universitario.

A mis padres, por apoyarme en todo momento durante esta formación profesional, muchos de mis logros se los debo a ustedes, quienes han sido la guía y el camino para poder llegar a este punto de mi carrera

A mis hermanos María Paula y Santiago, por apoyarme en todo momento sin condiciones a cumplir este sueño de ser Ingeniero Civil y que sepan que todas sus metas se pueden lograr con esfuerzo y dedicación

A Karlita C., a quien agradezco por todo el tiempo que ha estado apoyándome incondicionalmente y darme fortaleza en momentos difíciles.

A mi compañera Gabriela Vela quien con su compresión y compromiso arduo contribuyo a la realización de este proyecto.

A todos mis amigos porque con sus consejos y palabras de aliento hicieron de mí una mejor persona y de una u otra forma me acompañaron a lo largo de mi vida y en el cumplimiento de todos mis sueños y metas

Agradezco a la universidad politécnica salesiana por ser parte de ella y haberme permitido estudiar mi carrera, así como también a los docentes y especialmente a mi tutor Ing. Andrés Heredia, quienes compartieron sus conocimientos y sabiduría para poder culminar de la mejor manera

Luis Esteban Jácome Terán

AGRADECIMIENTO

A Dios por darme la fortaleza para no rendirme y guiarme en cada paso de este camino.

A mis amigos Josué, Andrea y Sandra gracias por su amistad, lealtad y apoyo en cada momento.

A mi compañero de tesis Luis por su amistad y apoyo en el desarrollo de este proyecto.

Al ingeniero Andrés Heredia por compartir sus conocimientos y ayudarnos durante el proceso de titulación.

Gabriela Fernanda Vela Iza

ÍNDICE DE CONTENIDO

CAPÍT	ULO I	1
ANTEC	CEDENTES Y GENERALIDADES	1
1.1.	Introducción.	1
1.2.	Problema de Estudio.	1
1.3.	Justificación.	2
1.4.	Grupo de Objetivos	3
1.5.	Objetivos	3
1.5.1	Objetivo General.	3
1.5.2.	Objetivos Específicos.	3
1.6.	Situación actual del sistema de riego.	4
CAPÍT	ULO II	6
MARC	O TEÓRICO	6
2.1.	Marco Legal	6
2.2.	Entidad a cargo del Sistema.	7
2.3.	Demanda del servicio	7
2.3.1.	Servicio actual	11
2.3.1.1.	Usuarios del Sistema de Riego	11
2.3.1.2.	Plantas Potabilizadoras	. 11
2.3.2.	Proyección de la demanda de servicio	13
2.3.2.1.	Usuarios del sistema de riego	. 15
2.3.2.2.	Plantas Potabilizadoras	. 16
2.4.	Concesión del Sistema de Riego Ambuquí	. 19
2.5.	Ubicación del sistema de riego	. 21
2.6.	Aspectos demográficos	23
2.7.	Aspectos físicos	. 23
2.7.1.	Relieve	23

2.7.2.	Estudios hidrológicos	24
2.7.2.1.	Información meteorológica	
2.7.3.	Suelos	25
2.8.	Aspectos ambientales	27
2.8.1.	Clima	27
2.8.2.	Temperatura	27
2.8.3.	Precipitaciones	28
2.9.	Riego	29
2.9.1.	Sistema de riego	30
2.9.2.	Métodos de riego	30
2.9.2.1.	Riego por gravedad	30
2.9.2.2.	Riego por aspersión	30
2.10.	Levantamiento topográfico	31
CAPÍT	ULO III	32
DESCR	RIPCIÓN ACTUAL DE LA INFRAESTRUCTURA EXISTENTE DEL SI	STEMA
DE RIE	CGO AMBUQUÍ	32
3.1.	Introducción	32
3.2.	Inventario de las estructuras existentes	32
3.2.1.	Captación	32
3.2.1.1.	Localización	34
3.2.1.2.	Estado de la obra	34
3.2.1.3.	Análisis de operación	36
3.2.1.4.	Riesgos	36
3.2.2.	Desarenador	37
3.2.2.1.	Localización	37
3.2.2.2.	Estado de la obra	38
3.2.2.3.	Análisis de operación	38
3.2.2.4.		39

3.2.3.	Canal Principal	40
3.2.3.1.	Localización	45
3.2.3.2.	Estado de la obra	45
3.2.3.3.	Análisis de operación	46
3.2.3.4.	Riesgos	46
3.2.4.	Partidor	46
3.2.4.1.	Localización	47
3.2.4.2.	Estado de la obra	47
3.2.4.3.	Análisis de operación	47
3.2.4.4.	Riesgos	48
3.2.5.	Derivaciones	48
3.2.5.1.	Localización	48
3.2.5.2.	Estado de la obra	49
3.2.5.3.	Análisis de operación	56
3.2.5.4.	Riesgos	56
3.2.6.	Sifones invertidos	56
3.2.6.1.	Localización	56
3.2.6.2.	Estado de la obra	57
3.2.6.3.	Análisis de operación	58
3.2.6.4.	Riesgos	59
3.2.7.	Paso elevado	59
3.2.7.1.	Localización	59
3.2.7.2.	Estado de la obra	59
3.2.7.3.	Análisis de operación	60
3.2.7.4.	Riesgos	61
CAPÍTI	ULO IV	62
ESTUD	IO HIDROLÓGICO Y CARACTERIZACIÓN METEOROLÓGICA	62
4.1.	Recopilación, análisis y evaluación de información existente.	62
4.1.1.	Delimitación de la microcuenca del sistema de riego biprovincial Ambuquí	62
4.1.2.	Identificación de estaciones de trabajo	63

4.1.3.	Recopilación de información existente	66
4.1.4.	Análisis y evaluación de información existente	67
4.1.4.1.	Características físicas	67
4.1.4.2.	Características topográficas	71
4.1.4.3.	Drenaje de la cuenca	76
4.1.4.4.	Suelo.	79
4.2.	Estimación de caudales máximos, medios y mínimos del sistema de riego	87
4.2.1.	Método racional	87
4.2.1.1.	Intensidad	88
4.2.1.2.	Coeficiente de escorrentía	91
4.2.2.	Método del hidrograma unitario	93
4.2.2.1.	Determinación del hietograma de diseño	93
4.2.2.2.	Precipitación Neta	95
4.2.2.3.	Hidrograma triangular del SCS	96
4.2.2.4.	Hidrograma unitario triangular del Soil Conservatiom Service (SCS)	98
4.2.3.	Caudales de aprovechamiento	100
4.2.3.1.	Curva de duración general	100
4.3.	Relleno y validación de series de datos meteorológicos	101
4.3.1.	Relleno de datos	101
4.3.1.1.	Proporción Normal	101
4.3.1.2.	Regresión Lineal	103
4.3.2.	Validación de información	106
4.3.2.1.	Método de dobles acumulaciones (dobles masas)	106
4.3.3.	Polígono de Thiessen	107
4.3.4.	Método de las isoyetas	109
4.3.5.	Isolíneas de temperatura	111
4.4.	Caracterización hidrológica de la fuente	113
4.5.	Caracterización meteorológica de la zona de estudio	113

CAPÍTI	ULO V	. 114
DISEÑO	O HIDRÁULICO	. 114
5.1.	Estimación de caudales de riego y humano	. 114
5.1.1.	Optimización de caudal de las derivaciones del sistema de riego	. 115
5.1.2.	Caudal optimizado total	. 117
5.2.	Condiciones geológicas y geotécnicas	. 117
5.2.1.	Características sísmicas de la zona	. 118
5.3.	Diseño Captación	. 118
5.3.1.	Alternativa Caudal Concesionado	. 121
	Cálculo Rejilla de Entrada	
	Vertedero de salida del desripiador	
5.3.1.4.	Cálculo de la compuerta de lavado del desripiador	. 131
5.3.2.	Alternativa Caudal Teórico	. 134
5.3.2.1.	Cálculo Rejilla de Entrada	. 134
5.3.2.2.	Cálculo del Desripiador	. 137
5.3.2.3.	Vertedero de salida del desripiador	. 139
5.3.2.4.	Cálculo de la compuerta de lavado del desripiador	. 142
5.3.3.	Alternativa Caudal Optimizado Total	. 144
5.3.3.1.	Cálculo Rejilla de Entrada	. 144
5.3.3.2.	Cálculo del Desripiador	. 147
5.3.3.3.	Vertedero de salida del desripiador	. 149
5.3.3.4.	Cálculo de la compuerta de lavado del desripiador	. 152
5.3.4.	Diseño del Azud	. 154
5.3.4.1.	Dimensionamiento del Azud	. 156
5.3.4.2.	Dimensionamiento del zampeado	. 157
5.4.	Diseño de Sifones Invertidos	. 162
5.4.1.	Sifón río Chota	. 163
5.4.1.1.	Tuberías a presión	. 163

5.4.1.2.	Velocidad	163
5.4.1.3.	Perdida de carga por fricción	164
5.4.1.4.	Carga disponible	165
5.4.2.	Sifón Espadillas	166
5.4.2.1.	Tuberías a presión	166
5.4.2.2.	Velocidad	166
5.4.2.3.	Perdida de carga por fricción	167
5.4.2.4.	Carga disponible	168
CAPÍT	ULO VI	170
VIABII	LIDAD TÉCNICA, ECONÓMICA Y FINANCIERA	170
6.1.	Presupuesto referencial	170
6.1.1.	Costos directos	170
6.1.2.	Costos indirectos	170
6.1.3.	Análisis de Precios Unitarios (APUs)	170
6.1.4.	Volúmenes de obra	171
6.2.	Cronograma valorado	173
6.3.	Especificaciones técnicas.	175
6.4.	Operación y mantenimiento de las estructuras del sistema de riego	175
6.4.1.	Equipo básico para el mantenimiento	178
6.4.1.1.	Personal mínimo	178
6.4.1.2.	Equipo y herramientas	178
CAPÍT	ULO VII	180
ESTUD	DIOS DE IMPACTO AMBIENTAL	180
7.1.	Metodología de estudio	180
7.2.	Línea base	180
7.2.1.	Factores Físicos.	180
7.2.2.	Factores Bióticos	182
7.3.	Aspectos ambientales.	184

ANEXO	OS	. 200
REFER	ENCIAS	. 197
RECON	MENDACIONES	. 196
CONCI	LUSIONES	. 194
7.5.	Medidas de mitigación de impactos ambientales	. 193
7.4.3.	Identificación de riesgos del proyecto	. 191
7.4.2.	Impactos de impactos positivos	. 189
7.4.1.	Identificación de impactos negativos	. 188
7.4.	Análisis y evaluación de impactos ambientales	. 185

ÍNDICE DE TABLAS

Tabla 1.	Tiempos del aforamiento con los diferentes elementos flotantes	8
Tabla 2.	Determinación del Factor de Corrección Fc para cálculo de caudales por método	del
Flotador.		. 10
Tabla 3.	Usuarios empadronados del Sistema de riego	.11
Tabla 4.	Plantas Potabilizadoras del Sistema de riego.	. 12
Tabla 5.	Incremento poblacional de las provincias de Imbabura y Carchi del año 2010-20)20.
		. 14
Tabla 6		. 15
Tabla 7.	Proyección de los usuarios al año 2020	. 15
Tabla 8		. 16
Tabla 9.	Proyección de la población beneficiada de las plantas potabilizadoras para el	año
2035		. 17
Tabla 10.	Dotación recomendada por la Senagua.	. 17
Tabla 11.	Censo de población y vivienda	. 23
Tabla 12.	Estaciones hidrológicas y meteorológicas	. 24
Tabla 13.	Climas del Ecuador de acuerdo a la altitud del lugar	. 27
Tabla 14.	Inventario técnico de la estructura de captación.	. 34
Tabla 15.	Inventario técnico del desarenador	. 38
Tabla 16.	Conducción principal del Sistema de riego	.41
Tabla 17.	Conducción en el margen derecho del Sistema de riego	. 42
Tabla 18.	Conducción en el margen izquierdo del Sistema de riego	. 43
Tabla 19.	Resumen de la conducción del sistema de riego	. 44
Tabla 20.	Ubicación derivaciones margen izquierdo.	. 48
Tabla 21.	Ubicación derivaciones margen derecho.	. 49
Tabla 22.	Medición en campo compuertas margen izquierdo	. 53
Tabla 23.	Medición en campo compuertas margen derecho	. 53
Tabla 24.	Caudal Compuertas margen izquierdo	. 55
Tabla 25.	Caudal compuertas margen derecho	. 55
Tabla 26.	Estaciones Meteorológicas del área de estudio	. 64
Tabla 27.	Estaciones hidrológicas del área de estudio	. 65

Tabla 28.	Clasificación de las cuencas por su área.	. 67
Tabla 29.	Forma de la cuenca según el índice de compacidad	. 70
Tabla 30.	Rangos del coeficiente de forma.	.71
Tabla 31.	Pendiente media de la cuenca	. 72
Tabla 32.	Rangos de pendiente y tipo de terreno.	. 72
Tabla 33.	Datos para la curva hipsométrica de la zona de estudio.	. 74
Tabla 34.	Valores de densidad de drenaje de una cuenca	. 78
Tabla 35.	Grupos Hidrológicos rangos y características	. 81
Tabla 36.	Clasificación del suelo según textura y grupo hidrológico	. 83
Tabla 37.	Uso agrícola de la zona de estudio	. 84
Tabla 38.	Rangos de condición hidrológica.	. 84
Tabla 39.	Números de la curva para uso de tierra y grupo hidrológico	. 86
Tabla 40.	Determinación de número de curva ponderada de la zona de estudio	. 86
Tabla 41.	Ecuaciones de intensidad para estación M0105	. 88
Tabla 42.	Intensidades máximas estación M0105	. 89
Tabla 43.	Coeficientes de escorrentía para ser usados en el método racional	. 92
Tabla 44.	Ecuaciones para determinar la intensidad estación M0105	. 93
Tabla 45.	Precipitación total	. 94
Tabla 46.	Ejemplo de relleno de datos por proporción normal	103
Tabla 47.	Criterios de valoración del coeficiente de correlación según Chaddock y Appol	ov.
		104
Tabla 48.	Ejemplo de relleno de datos con regresión lineal	105
Tabla 49.		109
Tabla 50.		111
Tabla 51.		112
Tabla 52.		113
Tabla 53.	Caudal y apertura actual de las derivaciones margen izquierdo	114
Tabla 54.	Caudal y estado actual de las derivaciones del margen derecho	115
Tabla 55.	Valores recomendados de apertura para la optimización del margen izquierdo	116
Tabla 56.	1	116
Tabla 57.	Valores coeficientes "e"	133
Tabla 58.	Valores coeficiente "e"	143

Tabla 59.	Valores coeficiente "e".	153
Tabla 60.	Presupuesto referencial	171
Tabla 61.	Uso y cobertura vegetal.	180
Tabla 62.	Red Hídrica o Cobertura de ríos.	181
Tabla 63.	Especies encontradas	183
Tabla 64.	Especies encontradas en la zona	184
Tabla 65.	Matriz de impactos ambientales	185
Tabla 66.	Rango y calificación del impacto	186
Tabla 67.	Matriz de Leopold	187
Tabla 68.	Determinación de las significaciones de los impactos negativos producidos	188
Tabla 69.	Resumen y nivel de los impactos negativos	189
Tabla 70.	Determinación de las significaciones de los impactos positivos producidos	190
Tabla 71.	Resumen y nivel de los impactos positivos	190
Tabla 72.	Riesgos naturales identificados en el proyecto	192
Tabla 73.	Riesgos antrópicos identificados en el proyecto	192
Tabla 74.	Medidas de mitigación	193

ÍNDICE DE FIGURAS

Figura 1. S	Sección de flujo canal trapezoidal	9
Figura 2.	Ubicación de plantas potabilizadoras del sistema de riego Ambuquí	. 13
Figura 3.	Ubicación del sistema de riego biprovincial Ambuquí	. 22
Figura 4.	Estaciones hidrológicas y meteorológicas cercanas al sistema de riego	. 25
Figura 5. T	Cipos de suelos ubicados en el sistema de riego	. 26
Figura 6.	Mapa de temperatura del área de influencia del sistema de riego	. 28
Figura 7.	Mapa de precipitación del área de influencia del sistema de riego	. 29
Figura 8.	Esquema general del sistema de riego Ambuquí	. 32
Figura 9.	Dimensionamiento vista en planta de la captación	. 33
Figura 10.	Vista en 3D de la obra de captación	. 33
Figura 11.	Obra de captación del sistema de riego en el río Chota	. 35
Figura 12.	Limpieza manual de la obra de captación	. 35
Figura 13.	Desgaste de la pared inferior del muro de captación.	. 36
Figura 14.	Esquema del desarenador.	. 37
Figura 15.	Compuerta de desfogue antes del inicio del desarenador.	. 38
Figura 16.	Desarenador del sistema de riego	. 39
Figura 17.	Regleta ubicada en el desarenador	. 39
Figura 18.	Raíz del árbol afectando la compuerta de desfogue del desarenador.	. 40
Figura 19.	Canal principal de conducción.	. 45
Figura 20.	Malezas y escombros en el canal principal.	. 46
Figura 21.	Partidor del sistema de riego.	. 47
Figura 22.	Derivaciones margen izquierda y derecho controladas por compuertas	. 50
Figura 23.	Tomas ilícitas y clandestinas por los usuarios.	. 50
Figura 24.	Compuerta con descarga libre y sumergida	.51
Figura 25.	Compuerta plana vertical	.51
Figura 26.	Esquema de los niveles de la derivación 1 margen izquierdo	. 54
Figura 27.	Sifón río Chota	. 58
Figura 28.	Sifón de Espadillas	. 58
Figura 29.	Tramo inicial del paso elevado	. 60
Figura 30	Tramo final del paso elevado	60

Figura 31.	Delimitación de la cuenca de estudio	63
Figura 32.	Estaciones meteorológicas de la zona de estudio.	65
Figura 33.	Estaciones hidrológicas de la zona de estudio.	66
Figura 34.	Área de la cuenca de estudio.	68
Figura 35.	Curva hipsométrica de la cuenca del río Chota.	75
Figura 36.	Ordenes de drenaje de la cuenca.	77
Figura 37.	Textura de suelos de la zona de estudio.	80
Figura 38.	Hietograma de la precipitación total	95
Figura 39.	Hidrograma sintético triangular	98
Figura 40.	Hidrograma unitario triangular	99
Figura 41.	Hidrograma de la cuenca	99
Figura 42.	Curva de duración general de la estación H0015	101
Figura 43.	Ecuación para el relleno de datos.	105
Figura 44.	Polígonos de Thiessen de la cuenca	108
Figura 45.	Mapa de isoyetas de la cuenca	110
Figura 46.	Mapa de isotermas de la cuenca	112
Figura 47.	Esquema de una toma convencional	119
Figura 48.	Toma de agua de una bocatoma lateral	120
Figura 49.	Vista superior de una bocatoma convencional o lateral.	121
Figura 50.	Dimensionamiento a la entrada y salida de la rejilla.	122
Figura 51.	Dimensionamiento del desripiador	128
Figura 52.	Esquema de la compuerta de lavado	133
Figura 53.	Dimensionamiento a la entrada y salida de la rejilla	135
Figura 54.	Dimensionamiento del desripiador	140
Figura 55.	Esquema de la compuerta de lavado	143
Figura 56.	Dimensionamiento a la entrada y salida de la rejilla	145
Figura 57.	Dimensionamiento del desripiador	150
Figura 58.	Esquema de la compuerta de lavado	153
Figura 59.	Esquema del perfil Creager.	154
Figura 60.	Construcción del perfil Creager	157
Figura 61.	Esquema de la captación con niveles aguas arriba y aguas abajo	159
Figura 62.	Esquema del pozo de disipación	161

Figura 63. Línea de Gra	adiente Hidráulica del sifón del río Chota	165
Figura 64. Línea de grad	liente hidráulica	169
Figura 65. Cronograma	valorado	174
Figura 66. Ubicación de	e transectos de interés en el área de influencia	182
Figura 67. Diagrama de	flujo de actividades	184
Figura 68. Resumen y n	nivel de los impactos negativos	189
Figura 69. Resumen y n	nivel de los impactos positivos	191
Figura 70. Matriz para l	la valoración de riesgos	191

RESUMEN

El presente trabajo consiste en la evaluación y mejoramiento hidráulico de la infraestructura del sistema de riego biprovincial Ambuquí ubicado en las provincias de Carchi e Imbabura, de acuerdo a un análisis en conjunto de las condiciones de funcionamiento de la infraestructura existente, características topográficas, morfométricas, hidrológicas y meteorológicas.

Además, se incluye un estudio hidrológico que deriva en la determinación de las diferentes características que presentan en la influencia de la cuenca del lugar con respecto al sistema de riego. Debido a que el periodo de diseño ha sido superado se realizó un diseño en la obra de captación con las diferentes alternativas de caudales concesionado, teórico y de diseño, como a su vez el diseño del sifón río Chota y Espadillas, que para su implementación se realizó una identificación de los posibles impactos ambientas y las medidas para mitigar.

Consecuente mediante la optimización de las aperturas de las compuertas, se logra garantizar de manera efectiva y sustentable el buen funcionamiento del sistema con la finalidad de abastecer de agua a la población actual y futura, mejorando la calidad de vida de los usuarios.

Se establece el monto total de la obra y posteriormente el cronograma de tiempo que se requiere para ser ejecutada en su totalidad.

Palabras Claves: sistema de riego, Ambuquí, inventario, captación, sifones, optimización.

ABSTRACT

The present work consists of the evaluation and hydraulic improvement of the

infrastructure of the Ambuquí biprovincial irrigation system located in the Carchi and Imbabura

provinces, according to a joint analysis of the operating conditions of the existing infrastructure,

topographic, morphometric characteristics, hydrological and meteorological.

In addition, a hydrological study is included that results in the determination of the

different characteristics that present in the influence of the basin of the place with respect to the

irrigation system. Because the design period has been exceeded, a design was carried out in the

catchment work with the different alternatives of concessioned, theoretical and design flows,

as well as the design of the Chota and Espadillas river siphon, which for its implementation is

carried out an identification of possible environmental impacts and mitigation measures.

Consequently, by optimizing the openings of the gates, it is possible to guarantee in an

effective and sustainable way the proper functioning of the system in order to supply water to

the current and future population, improving the quality of life of users.

The total amount of the work is established and subsequently the time schedule that is

required to be fully executed.

Keywords: irrigation system, Ambuquí, inventory, catchment, siphons, optimization.

xxii

CAPÍTULO I

ANTECEDENTES Y GENERALIDADES

1.1. Introducción.

Este proyecto técnico de titulación se basa en la evaluación y mejoramiento hidráulico de la infraestructura del sistema de riego biprovincial Ambuquí.

A causa del mal estado de los componentes de la infraestructura y el cumplimiento de la vida útil del sistema de riego, las autoridades de la Empresa Pública del Agua (EPA-EP) se ven en la necesidad de realizar una evaluación hidráulica, con el fin de conocer la situación actual de la estructura, analizar y diseñar las posibles mejoras del sistema.

Al presentar problemas de distribución en el caudal, se requiere una alternativa para la optimización de caudales entre los usuarios de riego, presentando un sistema eficiente y equitativo.

Para exponer una solución técnica de los componentes del sistema, se realizan estudios que cumplan con las normativas y especificaciones establecidas.

1.2.Problema de Estudio.

El sistema de riego biprovincial Ambuquí se encuentra localizado en el Valle del Chota, a 30 Km al Norte de la ciudad de Ibarra y fue construido por el ex-Instituto Ecuatoriano de Recursos Hídricos (INERHI) en el año de 1977 para abastecer de agua a los sectores rurales situados en los márgenes del río Chota, desde la población del Juncal-Espadillas, por el margen izquierdo y continuando por San Victorino-Tumbatú por el derecho.

Pese a haber superado su período de diseño, el sistema de riego continúa en operación y representa un ícono hídrico de gran importancia para la producción y mejora de calidad de vida de sus beneficiarios que a la fecha se estiman en 4262 habitantes.

Al momento el sistema refleja algunas dificultades en su operación debido a su prolongado funcionamiento, falta de mantenimiento, control oportunos de parte de autoridades anteriores y su mala planificación, además la escasez de recursos para la prevención de riesgos por causa de agentes ambientales externos que han provocado inestabilidad en las vías de acceso, taludes y quebradas circundantes, así como también las malas prácticas realizadas por los beneficiarios que contribuyen al mal estado.

Por este motivo, es preciso realizar los estudios pertinentes para el diseño del mejoramiento del sistema de riego, que mejor se ajuste a las condiciones naturales del sitio y a las necesidades de los usuarios.

1.3. Justificación.

El sistema de riego cuenta con 28.7 Km de canales principales de distribución y cubre una extensión aproximada de 1800 Ha del Valle del Chota, beneficiando por su margen izquierdo a las poblaciones rurales de Chalguayacu, EL Juncal, Chota, Carpuela, Ambuquí, Bermejal y Espadillas de la parroquia Ambuquí del cantón Ibarra, provincia de Imbabura, y por su margen derecho a las poblaciones de San Victorino, Pusir y Tumbatú pertenecientes a la parroquia San Vicente de Pusir del cantón Bolívar, provincia del Carchi.

La obra de captación se encuentra colmatada, dejando al sistema expuesto a inundaciones y taponamientos frecuentes con materiales de arrastre del río en la rejilla de entrada. Esto explica que al contrario de lo esperado en condiciones lluviosas cuando el afluente del Chota dispone de mayor caudal, la toma colapsa y no ingresa la cantidad de agua requerida.

El canal principal comprende una estructura a continuación de la obra de captación que se conduce por un túnel en roca con sus paredes verticales y solera recubiertos de hormigón, su techo en forma de bóveda, la que está expuesta a frecuentes derrumbes que afectan la operación normal del canal, especialmente cuando se tienen crecidas del río que inundan el túnel, la afectación más grave por esta causa se evidencia principalmente en la boca de entrada. En razón de que no es posible controlar el caudal captado, tampoco se pueden realizar actividades de inspección y mantenimiento.

El sistema no cuenta con planos del diseño original y los operadores actuales no tienen claro el objeto y estado del azud. Tampoco conocen el tiempo en que colapsó la obra de captación, que por investigaciones se presume sucedió antes del año 2010. Dicho personal no tiene conocimientos técnicos actualizados, ni equipos y herramientas apropiadas para la operación de la toma, por lo tanto, es necesario la capacitación y reforzamiento.

Lo expuesto, permite establecer que los problemas hidráulicos del sistema no permitirían abastecer de riego a toda la superficie de los usuarios, por lo tanto, la Empresa Pública del Agua (EPA-EP) en su interés de dar una solución a este problema, ha resuelto realizar los estudios necesarios para el mejoramiento.

Al realizar y efectuar dicho diseño, se logrará optimizar el recurso hídrico, incrementar el número de usuarios y la calidad de riego, con el mejoramiento de las condiciones de vida de los pobladores, al igual que la gestión social y colectiva del agua, logrando un reparto equitativo de caudal y a su vez un buen funcionamiento técnico-administrativo del sistema.

1.4. Grupo de Objetivos

Los beneficiarios directos serán por su margen izquierdo a las poblaciones rurales de Chalguayacu, EL Juncal, Chota, Carpuela, Ambuquí, Bermejal y Espadillas de la parroquia Ambuquí del cantón Ibarra, provincia de Imbabura, y por su margen derecho a las poblaciones de San Victorino, Pusir y Tumbatú pertenecientes a la parroquia San Vicente de Pusir del cantón Bolívar, provincia del Carchi, los cuales mejorarán su calidad de vida a partir del incremento y diversificación de su producción agrícola.

Los beneficiarios indirectos son los productores de las provincias de Imbabura y Carchi, específicamente en los cantones de Ibarra (181.175 personas), Pimampiro (12.970 personas) y el cantón Bolívar (14.347 personas).

1.5. Objetivos.

1.5.1. Objetivo General.

Evaluar y optimizar el estado de funcionamiento en captación y red primaria del sistema de riego biprovincial Ambuquí desde el punto de vista hidráulico, a través de la optimización del caudal, para brindar un servicio hídrico eficiente, contribuir a la producción local y mejorar la calidad de vida de los sectores rurales beneficiados.

1.5.2. Objetivos Específicos.

Recopilar la información del sistema de riego mediante la colaboración de la Empresa Pública del Agua (EPA-EP), para obtener una línea base.

Digitalizar el trazado de la red de riego primario utilizando información existente del sistema, validando mediante restitución cartográfica con los usuarios y trabajadores de la Empresa Pública del Agua (EPA-EP).

Realizar un análisis hidráulico para la captación y red primaria en su estado actual y futuro con una proyección de 15 años.

Establecer las alternativas de solución de los problemas hidráulicos identificados, mediante una descripción actual del sistema en las estructuras principales, para alcanzar el mejor funcionamiento y elevar la eficiencia del servicio de riego.

Pre diseñar un sistema optimizado que cumplan con las necesidades requeridas por los usuarios y con las normativas establecidas.

Diseñar los sifones Espadillas y río Chota con el fin de mejorar el funcionamiento del sistema de riego y cumplir con la normativa del diseño.

1.6. Situación actual del sistema de riego.

El sistema de riego Ambuquí tiene un tiempo de construcción de 40 años, sus componentes están distribuidos por una captación en el Río Chota, una conducción principal a canal abierto en hormigón, túneles en tierra y 2 márgenes (izquierdo y derecho) que conducen el agua hasta los predios beneficiados.

Captación

La captación es directamente en el río, por los aumentos extremos de caudal en época de invierno se ha visto afectada por el arrastre de material pétreo y vegetal, que obstruye totalmente la toma, esto causa desabastecimiento en todo el canal por lo que es necesario realizar una propuesta para mejorar la infraestructura.

Margen izquierdo

El margen izquierdo consta de una caja de distribución, canales en hormigón que por su longevidad y la erosión de los taludes comienzan a tener problemas de filtraciones provocando incluso el colapso de las paredes.

Los túneles construidos en tierra por la longevidad también han comenzado a tener asentamientos de sus paredes internas. El margen izquierdo tiene un paso elevado de 100 metros de luz en estructura metálica y tubería PVC de 300 mm sobre una quebrada que por las crecidas de caudal en época de invierno está desgastando las bases de los taludes lo que origina que la estructura esté en riesgo de colapsar.

Dentro de la infraestructura del margen izquierdo se tiene 2 sifones en tubería de fibrocemento de 300 mm con uniones gibault, al ser instalaciones antiguas (40 años) la cual

cumplió su vida útil y comenzó a presentarse fisuras por el desgaste del material, por lo tanto, es necesario plantear el cambio de tubería.

Margen derecho

El margen se origina en una caja de distribución que ingresa el agua al sifón del río Chota con una tubería de hierro de 300 mm que atraviesa el río, aquí se tiene el inconveniente que la tubería se encuentra expuesta a causa del impacto que provoca el material pétreo que arrastra la corriente, la cual se ha ido deteriorado el muro de protección. En su recorrido el margen derecho este compuesto por canal revestido de hormigón, pasos de quebrada y túneles en tierra.

De manera general los dos márgenes presentas compuertas derivadoras de hierro con volante en mal estado tanto por su tiempo de uso como por la manipulación forzada por parte de los usuarios, presentan fugas que no permiten regular el caudal para una distribución eficiente.

CAPÍTULO II

MARCO TEÓRICO

2.1. Marco Legal

Este proyecto tomará como referencia la "Ley Orgánica de Recursos Hídricos, Usos y Aprovechamiento del Agua", la cual fue aprobada por la Asamblea Nacional el 06 de agosto del 2014 el cual consta con en el Registro Oficial No. 305, en donde se hace referencia a los siguientes artículos:

Artículo 1.- Naturaleza jurídica. Los recursos hídricos son parte del patrimonio natural del Estado y serán de su competencia exclusiva, la misma que se ejercerá concurrentemente entre el Gobierno Central y los Gobiernos Autónomos Descentralizados, de conformidad con la Ley.

Artículo 5.- Sector estratégico. El agua constituye patrimonio nacional, sector estratégico de decisión y de control exclusivo del Estado a través de la Autoridad Única del Agua. Su gestión se orientará al pleno ejercicio de los derechos y al interés público, en atención a su decisiva influencia social, comunitaria, cultural, política, ambiental y económica.

Artículo 17.- La Autoridad Única del Agua. Es la entidad que dirige el sistema nacional estratégico del agua, es persona jurídica de derecho público. Su titular será designado por la Presidenta o el Presidente de la República y tendrá rango de ministra o ministro de Estado.

Artículo 40.- Principios y objetivos para la gestión del riego y drenaje. El riego y drenaje es un medio para impulsar el buen vivir o sumak kawsay. La gestión del riego y drenaje se regirán por los principios de redistribución, participación, equidad y solidaridad, con responsabilidad ambiental.

La (Asamblena Nacional, 2014) garantiza el derecho humano al agua como el derecho de todas las personas a disponer de agua limpia, suficiente, salubre, aceptable, accesible y asequible para uso personal y doméstico en cantidad, calidad, continuidad y cobertura, entre otros aspectos. También prohíbe toda clase de privatización del agua, por su trascendencia para la vida, la economía y el ambiente, por tanto, no puede ser objeto de ningún acuerdo comercial, con gobierno, entidad multilateral, o empresa privada nacional o extranjera.

Su gestión será exclusivamente pública o comunitaria, no se reconoce ninguna forma de apropiación o de posesión individual o colectiva sobre el agua, sea su estado, y se dispone su redistribución de manera equitativa

2.2. Entidad a cargo del Sistema

La Empresa Pública del Agua EPA-EP, es el ente encargado de la gestión de operación y mantenimiento del sistema de riego Ambuquí.

Esta entidad fue creada mediante el decreto ejecutivo del 17 de abril deL 2014 por el presidente de la república para la contribución al fortalecimiento de la gestión de los recursos hídricos a través de la contratación, administración y supervisión de la infraestructura hídrica. Además, es la encargada de ejecutar, operar y mantener proyectos de control de riego productivo y realiza la gestión comercial de los recursos hídricos, proveyendo de asistencia técnica y comercial a los prestadores de servicios públicos y comunitarios del agua.

2.3.Demanda del servicio

Para conocer la cantidad de agua que el sistema de riego entrega a los beneficiarios del sistema, es necesario realizar la medición de caudal o aforamiento porque al desconocer los caudales disponibles es difícil cuantificar la entrega a los usuarios y en consecuencia su evaluación y manejo (Cadena V., 2016).

Por tal razón, surge la necesidad de realizar el aforamiento para evaluar las condiciones actuales de operación y verificar la optimización del caudal.

Existen algunos métodos para el aforamiento de caudales, los cuales son:

- Método Volumétrico: Permite medir pequeños caudales de agua como los existentes en acequias pequeñas. Su procedimiento consiste que, con un volumen de recipiente conocido, tomar el tiempo que tarda en llenarse.
- Métodos que relacionan el área con la velocidad.

Método del flotador: Este método es muy sencillo, consiste en elegir un tramo del sistema o canal tanto inicial como final y tomar el tiempo en que se demora en llegar el agua.

Debido a las diferentes secciones que presenta el canal de conducción del sistema de riego, se optó a realizar el método del flotador en la parte del desarenador a 300 metros de la captación, en la cual presenta una sección uniforme y recta. Los materiales que se implementaron para la realización fueron: una pelota de ping pong, espuma flex, una botella plástica, cronometro y cinta métrica.

Tabla 1.Tiempos del aforamiento con los diferentes elementos flotantes

Elementos	Longitud - Tramo [m]	Diámetro [m]	t1[s]	t2 [s]	t3 [s]	t4 [s]	t5 [s]	t prom	t [s]
Botella plástica	12.60		15.16	14.75	14.28	12.86	14.83	14.376	_
Espuma flex	12.60	0.26	14.56	14.26	12.95	13.84	14.95	14.112	14.02
Pelota Pin Pon	12.60	0.12	13.73	12.1	13.29	14.33	14.37	13.564	

Nota. Elementos utilizados para el aforamiento. Elaborado por: Los autores

La velocidad de flujo (v) se obtiene de la siguiente manera:

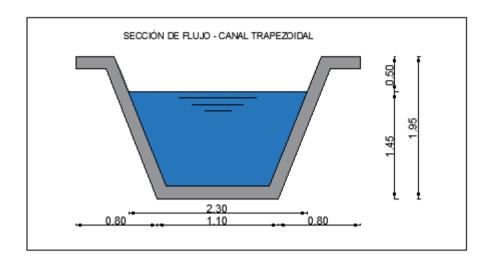
$$v = \frac{d}{t}$$

Donde:

v: Velocidad de flujo (m/s)

d: Distancia entre el punto A y B (m)

t: tiempo en que se demora en llegar el flotador del punto A al B (s)


Ejemplo de cálculo:

$$v = \frac{d}{tprom} = \frac{12.60 \text{ m}}{14.02 \text{ s}} = 0.90 \frac{m}{s}$$

La sección de flujo en el tramo es trapezoidal y se la calcula con la siguiente ecuación:

$$W = \frac{(B+b)}{2} * h$$

Figura 1.
Sección de flujo canal trapezoidal.

Nota. La figura indica las medidas del canal. Elaborado por: Los autores con el programa AutoCAD

Donde:

W: Sección o área de flujo (m²)

B: Base mayor de la sección de flujo (m)

b: Base menor de la sección de flujo (m)

h: Altura de espejo de agua del flujo

Ejemplo de cálculo:

$$W = \frac{(B+b)}{2} * h = \frac{2.30 + 1.10}{2} * 1.45 = 2.465 m2$$

Al realizar este método existe un factor de corrección relacionado con la velocidad, según (Nuñez & Rosales, 2015) el valor de este factor (Fc) "se debe seleccionar de acuerdo al tipo de río o canal y a la profundidad del mismo, referente a los valores de la tabla 2":

Tabla 2.Determinación del Factor de Corrección Fc para cálculo de caudales por método del Flotador

Tipo de Cauce	Factor Corrección (Fc)		
Canal revestido en concreto, profundidad de agua > 15cm	0.8		
Canal en tierra, profundidad de agua > 15cm	0.7		
Riachuelos, profundidad de agua > 15cm	0.5		
Canales de tierra, profundidad de agua < 15cm	0.25 - 0.50		

Nota. Valores del factor de corrección. Elaborado por: Los autores con información tomada de (Nuñez & Rosales, 2015).

El valor de corrección por el método del flotador será de **Fc=0.8** debido a que el canal se encuentra revestido de hormigón y una altura de agua de 1.45 m.

El cálculo del caudal estimado se realiza mediante la siguiente ecuación:

$$Qaforado = Fc * v * W$$

Donde:

Q: Caudal captado (m³/s)

Fc: Factor de corrección relacionado con la velocidad (adimensional)

W: Área de la sección del tramo seleccionado (m²)

V: Velocidad de flujo del tramo seleccionado (m/s)

Ejemplo de cálculo:

$$Qaforado = Fc * v * W = 0.8 * 0.90 * 2.465 = 1.775 \frac{m3}{s}$$

$$Qaforado = 1775 \frac{lt}{s}$$

El caudal obtenido mediante el aforamiento utilizando el método de flotador es de 1775 lt/s.

2.3.1. Servicio actual

2.3.1.1.Usuarios del Sistema de Riego

Para la determinación del servicio actual se parte a través del número de beneficiarios del sistema de riego en función de los usuarios empadronados de acuerdo con la siguiente tabla:

Tabla 3.Usuarios empadronados del Sistema de riego

Sistema de Riego Ambuquí						
Tramo	Sector	Usuarios	Área (Ha)			
Conducción Principal	Chalguayacu	129	97.63			
	Carpuela	171	167.92			
Distribución	La Playa Ambuquí	150	268.74			
margen izquierdo	Bermejal	58	101.61			
	Espadillas	57	87.55			
	San Alfonso	68	107.40			
Distribución margen	Pusir	259	339.74			
derecho	Tumbatú	123	255.99			
To	otal	1015	1426.58			

Nota. Usuarios beneficiados y área de aportación del sistema de riego. Elaborado por: Los autores con información tomada de la (Empresa Pública del Agua, 2016).

Teniendo en consideración que el mayor porcentaje de usuarios se encuentran en el margen izquierdo en los sectores de Carpuela, La playa de Ambuquí, Bermejal, Espadillas y San Alfonso es del 50%, mientras que en el margen derecho es del 38% y por último en la conducción principal los beneficiaros del sector de Chalguayacu es de 12%.

Es conveniente conocer que el área de riego no se va a expandir, y el caudal destinado de 1430 lt/s se mantendrá igual para los diferentes usos del usuario.

2.3.1.2.Plantas Potabilizadoras

En el sistema de riego biprovincial se encuentran 5 plantas de potabilización para consumo humano, captada directamente de los canales bajo la operación y mantenimiento de la Empresa Pública Municipal de Agua Potable y Alcantarillado de Ibarra (EMAPA-I), estas

son: Chalguayacu, Juncal, Carpuela, Ambuquí-Playa Ambuquí y Espadillas. A continuación, en la tabla 4 se detalla la ubicación, caudal captado y la población beneficiada.

Tabla 4.

Plantas Potabilizadoras del Sistema de riego.

	Nombre Planta de Potabilización	Provincia	Cantón	Coordenadas de Ubicación			Caudal	Población
No				Este	Norte	Cota (msnm)	Captado (l/s)	Beneficiada
1	Chalguayacu	Imbabura	Ibarra	171485	46717	1707	3	400
2	Juncal	Imbabura	Ibarra	169921	47235	1692	5	3300
3	Carpuela	Imbabura	Ibarra	166435	48410	1685	8	1200
4	Ambuquí - Playa Ambuquí	Imbabura	Ibarra	833437	49070	1727	5	1720
5	Espadilla	Imbabura	Ibarra	829566.8	51182.6	1619	2	568
TOTAL						23	7188	

Nota. Caudal captado y población beneficiada de las plantas potabilizadoras del sistema de riego. Elaborado por: Los autores con información tomada de la (Empresa Pública del Agua, 2016).

Figura 2.

Ubicación de plantas potabilizadoras del sistema de riego Ambuquí.

Nota. La figura muestra los puntos donde se encuentran las plantas potabilizadoras. Elaborado por: Los autores con el software ArcGIS.

2.3.2. Proyección de la demanda de servicio

Registros vigentes a la fecha según la (Empresa Pública del Agua, 2016) se determinó que en "el año 2010 el sistema ya atendía a 754 usuarios conformados por familias con un promedio de 5 habitantes por hogar, lo que equivale a 3770 habitantes".

El comportamiento de crecimiento de las provincias en estudio se obtuvo información a partir de los censos poblacionales del INEC efectuados en el 2010 con proyección al 2020, que permiten establecer la tasa de incremento de Carchi e Imbabura obteniendo los siguientes datos:

Tabla 5.Incremento poblacional de las provincias de Imbabura y Carchi del año 2010-2020.

Años	Carchi	Imbabura
2010	171.746	413.657
2011	173.410	419.919
2012	175.050	426.223
2013	176.662	432.543
2014	178.228	438.868
2015	179.768	445.175
2016	181.265	451.476
2017	182.719	457.737
2018	184.136	463.957
2019	185.523	470.129
2020	186.869	476.257

Nota. Proyección de los habitantes al año 2020. Elaborado por: Los autores con información tomada del (Censo de Población y Vivienda, 2020).

Para realizar el análisis de incremento poblacional que se reflejará en el Sistema de Riego Ambuquí, se determina cada uno de las tasas de crecimiento para las dos provincias por un periodo de 10 años, indicando los siguientes porcentajes: Carchi 0.848% e Imbabura 1.419%. Utilizando la siguiente formula:

$$i = \left(\frac{Pf}{Po}\right)^{\left(\frac{1}{t}\right)} - 1$$

Donde:

i = incremento poblacional

Pf = Poblaci'on final

Po = Población inicial

t = periodo de tiempo

En tal razón y con el objeto de establecer una coherencia entre el desarrollo productivo evidenciado en las comunidades beneficiarias, se considera un índice de tasa de incremento promedio del total del período 2010-2020 de las dos provincias es 1.13% anual. Como se muestra en la siguiente tabla 6:

Tabla 6.Tasa de incremento de las provincias de Imbabura y Carchi

Provincia Tasa de Incremento Provincial (%)		Tasa de Incremento Provincial Promedio (%)
Carchi	0.8475	1,1333
Imbabura	1.4192	1.1555

Nota. Promedio de la tasa de incremento. Elaborado por: Los autores con Información tomada (Censo de población y vivienda, 2020).

2.3.2.1. Usuarios del sistema de riego

Para realizar la proyección de horizonte de 15 años, se utilizará el método geométrico de cálculo para determinar la población a la fecha mediante la siguiente ecuación:

$$Pf = Po (1+i)^t$$

Donde:

 $Po = Poblaci\'on\ inicial\ del\ periodo$

Pf = Población final del periodo

i = tasa de incremento poblacional en el periodo

t = tiempo en años entre la Poblacion final e inicial

Tabla 7.Proyección de los usuarios al año 2020.

Años	Usuarios	Habitantes
2010	754	3770
2011	763	3813
2012	771	3856
2013	780	3900
2014	789	3944
2015	798	3989
2016	807	4034
2017	816	4079
2018	825	4126
2019	834	4172
2020	844	4220

Nota. Datos procesados para la proyección del sistema de riego. Elaborado por: Los autores.

Se obtiene de la tabla 7 que la población directa estimada al 2020 es de 4220 habitantes, y con el resultado obtenido se realizará la proyección en los próximos 15 años.

Empleando el mismo índice para la proyección del crecimiento poblacional dentro de los 15 próximos años se tienen los siguientes valores:

Tabla 8.Proyección de los usuarios del sistema de riego para el año 2035.

Años	Usuarios	Habitantes
2021	854	4268
2022	863	4316
2023	873	4365
2024	883	4414
2025	893	4464
2026	903	4515
2027	913	4566
2028	924	4618
2029	934	4670
2030	945	4723
2031	955	4777
2032	966	4831
2033	977	4886
2034	988	4941
2035	999	4997

Nota. Datos proyectados para un periodo de 15 años. Elaborado por: Los autores

De la tabla 8 se puede conocer que la población al final del período de estudio alcanzaría los 4997 habitantes.

2.3.2.2.Plantas Potabilizadoras

Con la información base otorgada por la (Empresa Pública del Agua, 2016) mediante un estudio realizado en el 2016 nos indica que en 5 sectores ocupan el agua para el consumo humano con un total de 7188 usuarios que se benefician consumiendo un caudal de 23 lt/s.

Tabla 9.Proyección de la población beneficiada de las plantas potabilizadoras para el año 2035.

Item	Sistema de Riego	Planta Potabilizadora	Provincia	Cantón	Caudal Captado (l/s)	Población Beneficiada 2016	Población Beneficiada 2035
1	Ambuquí	Chalguayacu	Imbabura	Ibarra	3	400	523
2	Ambuquí	Juncal	Imbabura	Ibarra	5	3300	4313
3	Ambuquí	Carpuela	Imbabura	Ibarra	8	1200	1568
4	Ambuquí	Ambuquí-Playa Ambuquí	Imbabura	Ibarra	5	1720	2248
5	Ambuquí	Espadilla	Imbabura	Ibarra	2	568	742
		Total			23	7188	9395

Nota. Información proyectada a 15 años. Elaborado por: Los autores con datos de la (Empresa Pública del Agua, 2016).

Para el año 2035 la población beneficiaria será de 9395 habitantes por lo tanto se realiza un estudio para determinar el caudal necesario.

Al tratarse de agua para consumo humano se tomará en cuenta el siguiente cuadro de dotaciones recomendada, basada en el clima y la población:

Tabla 10.Dotación recomendada por la Senagua.

Población (habitantes)	Clima	Dotación media futura (lt/hab/día)
Hasta 5 000	Frío Templado Cálido	120 - 150 130 - 160 170 - 200
5 000 a 50 000	Frío Templado Cálido	180 - 200 190 - 220 200 - 230
Más de 50 000	Frío Templado Cálido	> 200 > 220 >230

Nota. Dotación recomendada basada en función al clima y su población. Elaborado por: Los autores con información de la (Senagua, 2003).

De la tabla 10 según la (Senagua, 2003) se determina que la dotación media futura se encuentra en un rango de 200 - 230 (lt/hab/día). Para la proyección del caudal, se utilizará la siguiente ecuación en función de la población y dotación, adoptando un valor de 220 lt/hab/día.

$$egin{aligned} m{Q_{2035}} &= rac{Poblacion \ imes Dotación}{86400} \ m{Q_{2035}} &= rac{9395 \ imes 220}{86400} \ m{Q_{2035}} &= 24 \ lt/s \end{aligned}$$

Una vez obtenido el caudal proyectado al año 2035, se debe multiplicar por un coeficiente de variación del consumo máximo diario. Según la (Senagua, 2003) este valor "debe establecerse basándose en estudios de sistemas existentes y aplicar por analogía al proyecto en estudio. En caso contrario se recomienda utilizar los siguientes valores":

$$K_{maxdia} = 1.3 - 1.5$$

Adoptando un $K_{maxdia} = 1.3$.

Para calcular el caudal máximo diario se calcula con la fórmula:

$$\mathbf{Q} \ \mathbf{m} \mathbf{\dot{a}} \mathbf{x} \mathbf{d} \mathbf{i} \mathbf{a} = Q_{2035} \times K_{maxdia}$$

Donde :

Q máxdia: Caudal máximo diario

 $Q_{2035} = Consumo medio anual diario$

 $K_{maxdia} = coeficiente de variación del consumo máximo diario$

$$Q m \acute{a} x dia = 24 \times 1.3$$

$$Q m \acute{a} x dia = 36 lt/s$$

El caudal que corresponde a las plantas potabilizadoras para el año 2035 será de Q=36lt/s

2.4. Concesión del Sistema de Riego Ambuquí

La Concesión de sistema de Riego Ambuquí se realizó en los siguientes términos, según (Empresa Pública del Agua, 2016).

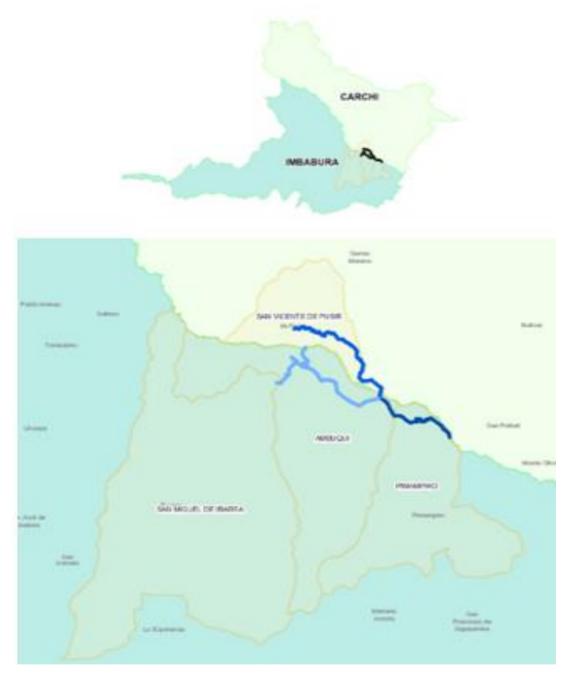
CONSEJO NACIONAL DE RECURSOS HÍDRICO. AGENCIA IBARRA.-Ibarra 15 de Mayo de 1998; las 9h30.- VISTOS El señor Ing. Álvaro Castillo Aguirre, en calidad de Director Ejecutivo de la Corporación Regional de Desarrollo de la Sierra Norte, (CORSINOR), comparece a ésta Agencia manifestando que el Consejo Nacional de Recursos Hídricos (C.N.R.H) en sesión del 18 de Abril de 1996 resolvió adoptar la política de reserva de caudales a fin de garantizar el abastecimiento de agua de los sistemas de riego que se encuentran a cargo de las Corporaciones Regionales de Desarrollo y con tal antecedente solicita la Concesión del derecho de aprovechamiento de las aguas provenientes de los Sistemas de riego Montúfar, San Vicente de Pusir, Ambuquí, Salinas, Santiaguillo, Pisque y Tumbaco perteneciente al Cantón Ibarra, provincia de Imbabura, aguas provenientes del Río Caldera; en una caudal de 1800,0 lt/seg en la cota 1700 msnm sitio de la toma del sistema. Aceptada la petición al trámite correspondiente la Agencia de conformidad con lo que dispone el Art. 83 de la Ley de Aguas, a dispuesto se proceda a citar a los usuarios conocidos o no, a la fijación de carteles conforme prescribe la Ley, a que se efectúen las públicaciones por la prensa y que el Ing. Oswaldo Haro Lozano realice. Perito de la Agencia, realice la inspección técnica de la petición y presenten el informe y croquis respectivos. Una vez que se han evacuado todas y cada una de las diligencias ordenadas por ésta Agencia, conforme consta de los documentos de fojas 7,8,9,10,11,12,13,16 y 17 de los autos, sin que exista oposición de persona alguna y al encontrarse la causa en estado de dictar la resolución que corresponda y para hacerlo se considera; PRIMERO.- Que la Agencia es competente para conocer y resolver la presente causa de conformidad lo dispone el Art. 89 de la Ley de aguas y 13 de su reglamento; **SEGUNDO.-** Que a la petición se le ha dado el trámite previsto en el Art. 85 de la Ley de Aguas, sin que exista omisión de solemnidad sustancial alguna por lo que se declara válido al proceso; **TERCERO.-** Del informe pericial de fojas 16 y 17 vta, se establece según el Análisis Técnico y Recomendaciones esta Agencia lo acoge que el sistema de riego Ambuquí capta las aguas en el Río caldera, en la cota 1755 m.s.n.m perteneciente a la división hidrográfica

siguiente: Sistema Mira, Cuenca Mira, Subcuenca Río Mira, Microcuenca Río Caldera, en la cota 1755 msnm en donde se encuentra ubicado la toma del canal Ambuquí y en este sitio el caudal aforado al Río es de 3600 lt/sg (aforo,22 de octubre de 1997) y al realizarse otro aforo en la cota 1750 msnm en el canal a la entrada del tanque desarenador dio un caudal de 1850,0 lt/sg. Este canal de Riego abastece a los sectores de Ambuquí Pimampiro siendo administrado por la Corporación Regional de Desarrollo de la Sierra Norte (CORSINOR) que actualmente se halla en funcionamiento, obras que antes fueron ejecutadas por el antiguo INERHI. Cabe indicar que según las cartas topográficas del IGM la fuente hidrográfica consta como Río Chota sin que figure el Río Caldera; CUARTO.- Que el peticionario que solicita la concesión del derecho de aprovechamiento de las aguas provenientes del Río Caldera en el caudal de 1800,0 lt/sg como reserva para el sistema de riego Ambuquí, expresa que el caudal reservado no constituye derecho de aprovechamiento; y, de acuerdo al estudio hidrográfico realizado se desprende que si existe el caudal suficiente y disponible para atender la solicitud presentada, con la particularidad de que el sistema de riego Ambuquí se halla en funcionamiento desde hace algún tiempo atrás, por lo cual no amerita la construcción de ninguna clase de obra a construirse. Por todas estas consideraciones expuestas, ésta Agencia.

ADMINISTRANDO JUSTICIA EN NOMBRE DE LA REPÚBLICA Y POR AUTORIDAD DE LA LEY.- Se acepta la petición presentada por el señor Ing Álvaro Castillo Aguirre, en calidad de Director Ejecutivo de la Corporación Regional de Desarrollo de la Sierra Norte (CORSINOR) y se procede a conceder el derecho de aprovechamiento y uso de las aguas del Río Caldera o Chota, en el caudal de 1800 lt/sg para destinarla a los sectores de Ambuquí y Pimampiro, las mismas que serán conducidas y administradas en lo que comprende el canal o sistema de Riego Ambuquí. La tasa anual a pagarse en ésta Agencia será de 72000 a partir del 25 de octubre de 1994 según disposición del Consejo Nacional de

Recursos Hídricos mediante memorándum N0 A.J. 02-016 para el caso de las aguas reservadas a favor de las Corporaciones Regionales de Desarrollo. El plazo de concesión correrá a partir de la ejecución de esta resolución, por un tiempo indeterminado. La misma que una vez ejecutoriada se la inscribirá en el registro

correspondiente que para el efecto lleva esta Agencia, en virtud a lo que dispone el Art. 93 de la Ley de Aguas vigente.


2.5.Ubicación del sistema de riego

El sistema de riego biprovincial Ambuquí se encuentra a 30 km al Noreste de la ciudad de Ibarra en el sector del Valle del Chota, en el límite interandino de las provincias Imbabura y Carchi.

La zona de riego se sitúa geográficamente en las coordenadas 0°24' a 0°29' de Latitud Norte y 77°55' a 78°03' de longitud Oeste, con una altitud entre los 1560 y 1710 msnm.

Figura 3.

Ubicación del sistema de riego biprovincial Ambuquí

Nota. Ubicación provincial y parroquial del sistema. Elaborado por: Los autores con el software ArcGIS

2.6. Aspectos demográficos

De acuerdo con el comportamiento de crecimiento y resultados de los censos poblacionales del INEC realizados en el año 2010, la población de la parroquia tiene un total de 5477 habitantes.

Tabla 11.

Censo de población y vivienda

Sexo	Población	Porcentaje
Hombre	2707	49.42%
Mujer	2770	50.58%
Total	5477	100%

Nota. Censo de población y vivienda 2010, información procesada (Cevallos, 2015).

Elaborado por: Los autores.

Mediante los registros censales y proyección del año 2010 del INEC, la tasa de crecimiento total según es de 0,33% (Cevallos, 2015). Por lo cual se estima que la población beneficiaria dentro de 15 años es de 5929 habitantes.

(Cevallos, 2015) señaló que en la zona de estudio se caracteriza que la población más representativa "es la Afro ecuatoriano con el 42,32 %, seguida por la mestiza que alcanza el 36,5 % y otros grupos étnicos culturales son minoritarios".

2.7. Aspectos físicos

2.7.1. Relieve

Es la formación de una superficie con distintos niveles, por lo general se emplea para denominar las elevaciones y depresiones que se encuentra en nuestro sitio e interfiere en los estudios del clima.

El relieve que atraviesa el canal de riego es irregular debido a que cruza un grupo de pequeñas montañas circundantes del valle del Chota con presencia de varias quebradas y desde el cual parten las derivaciones que se extienden por gravedad hacia las partes bajas del valle donde se encuentran terrenos regulares, con taludes inestables y con constantes derrumbes sobre las estructuras del canal.

2.7.2. Estudios hidrológicos

Permite la medición y determinación de todos los elementos que en su conjunto representan las condiciones del estado atmosférico en un momento dado y un lugar determinado.

Es necesario identificar las estaciones más cercanas a la zona de estudio, para lo cual dicha información será tomada del Instituto Nacional de Meteorología e Hidrología (INAMHI).

2.7.2.1. Información meteorológica

Para obtener la información necesaria de meteorología es necesario contar con estaciones meteorológicas cercanas al sistema de riego. Según (Negrete, 2016) "son un conjunto de instrumentos que permiten medir los fenómenos atmosféricos de manera automática, sin necesidad de personal que constantemente opere los equipos, estas instalaciones nos ayudan a estudiar los cambios climáticos".

El Sistema de riego biprovincial Ambuquí cuenta con un total de 7 estaciones cercanas, cuatro meteorológicas las cuales son: M086 San Vicente de Pusir, M0104 Mira-Fao Granja La Portada, M0310 Mariano Acosta, M0314 Ambuquí, M0315 Pimampiro y M0324 San Francisco de Sigsipamba. Mientras que las estaciones restantes son las hidrológicas: H0015 Chota en Pte. Carretera, H0016 Apaqui AJ Chota y la estación H0017 Apaqui D Gruta La Paz.

Tabla 12. Estaciones hidrológicas y meteorológicas

Nombre de la Estación	Provincia	Latitud	Longitud	Código	Estado
San Vicente de Pusir	Carchi	0.494167	-78.04138	M086	Activa
Mira-Fao Granja La Portada	Carchi	0.553056	-78.27500	M0104	Activa
Mariano Acosta	Imbabura	0.694301	-77.96325	M0310	Activa
Ambuquí	Imbabura	0.492960	-77.96486	M0314	Activa
Pimampiro	Imbabura	0.389722	-77. 94111	M0315	Activa
San Francisco de Sigsipamba	Imbabura	0.483176	-77.92685	M0324	Activa
Chota en Pte. Carretera	Imbabura	0.605882	-78.05988	H0015	Activa
Apaqui AJ Chota	Carchi	0.417585	-77.96212	H0016	Activa
Apaqui D Gruta La Paz	Carchi	0.497317	-77.84858	H0017	Activa

Nota. Ubicación de las estaciones hidrológicas y meteorológicas. Elaborado por: Los autores con información tomada del INAMHI.

Figura 4.

Estaciones hidrológicas y meteorológicas cercanas al sistema de riego

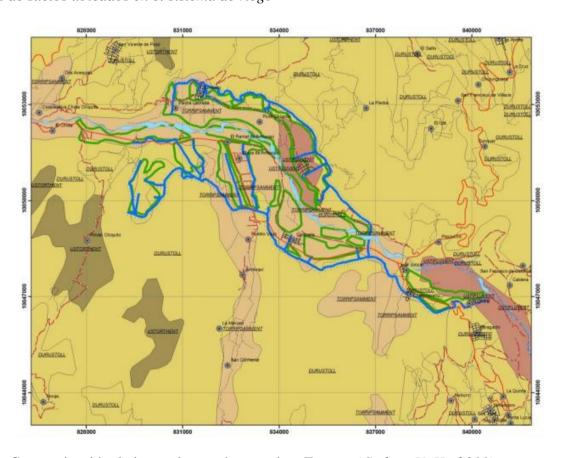
Nota. Identificación de las estaciones hidrológicas y meteorológicas del sistema. Elaborado por: Los autores con el software ArcGIS

2.7.3. Suelos

Como se muestra en la figura 5, se presentan dos órdenes de Suelo, los cuales son:

Entisol

En esta orden de suelo se presentan subgrupos como son: Torripsamment, Ustifluvent y Ustorthent (color taxo) en la figura 5. Para (Cadena V. H., 2011), indica que "no presentan horizontes de diagnóstico, tienen una buena fertilidad y se distribuyen en todos los valles


fluviales. Este tipo de suelo encontramos en los sectores de La Playa de Ambuquí, Carpuela, Chota, Pusir y Tumbatú"

Mollisol

Perteneciente al grupo Durustoll (color amarillo) en la figura 5. (Cadena V. H., 2011) considera que "presentan topografía que varía entre ligeramente inclinada a extremadamente empinada, son suelos excelentes especialmente para cereales. Estos suelos encontramos en los sectores Chalguayacu, Juncal, Bermejal y Espadillas".

Figura 5.

Tipos de suelos ubicados en el sistema de riego

Nota. Caracterización de los suelos según su orden. Fuente: (Cadena V. H., 2011).

Como se puede observar en la figura el Sistema de riego presenta dos tipos opuestos de estructuras. (Cadena V. H., 2011) indica que "a lo largo del río Chota hasta la comunidad del Juncal, los suelos están constituidos por rocas metamórficas. Aguas abajo del Juncal los suelos están formados por sedimentos fluvio-lacustres de origen volcánico".

2.8. Aspectos ambientales

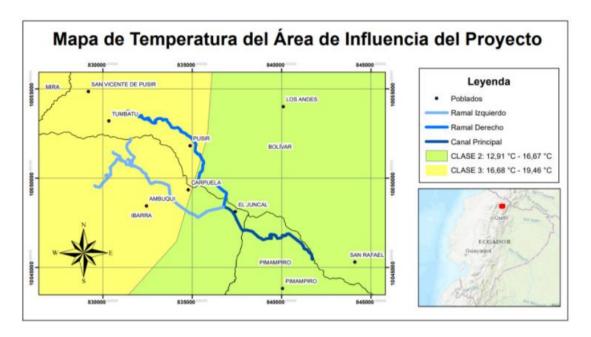
2.8.1. Clima

De acuerdo con la altura en la que se ubican los pisos climáticos también se puede determinar de manera general el clima conforme a su ubicación, en la siguiente tabla 13 podemos observar la información.

Tabla 13.Climas del Ecuador de acuerdo a la altitud del lugar

Clima			
Cálido - Seco	De 0 a 500 msnm		
Cálido - Húmedo	De 0 a 500 msnm		
Subtropical	De 500 a 2300 msnm		
Templado	De 2300 a 3000 msnm		
Frío	De 3000 a 4500 msnm		
Glacial	Más de 4500 msnm		

Nota. Variación del clima de acuerdo a la altitud del lugar. Elaborado por: Los autores con información de (Bohórquez, 2013).


De tal manera que el clima de la localización del sistema de riego es Subtropical, debido a que la altitud se encuentra entre los rangos de 1560 a 1710 msnm.

2.8.2. Temperatura

Como se observa en la figura 6 en el rango comprendido entre 12.91°C - 16.67°C pertenecientes a los sectores de Chalguayacu, Juncal, Carpuela (color verde), mientras el rango de temperatura 16.68°C - 19.46°C se encuentran Chota, San Alfonso, Bermejal, Espadillas, Pusir y Tumbatú (color amarillo).

Figura 6.

Mapa de temperatura del área de influencia del sistema de riego

Nota. Identificación de la temperatura según su clase. Elaborado por: Los autores con el software ArcGIS.

2.8.3. Precipitaciones

La precipitación es de gran importancia nos ayuda a garantizar el estado de las obras estructurales además se puede evitar los desbordamientos que pueden ocasionar en las diferentes poblaciones o en épocas de sequía administrar la cantidad requerida por los usuarios.

Según (Cadena V. H., 2011), "los meses de mayor precipitación son Abril y Octubre con 75.6 mm y 69.8 mm respectivamente y los de menor precipitación son Agosto 0.0 mm y Julio 1.4 mm".

Figura 7.

Mapa de precipitación del área de influencia del sistema de riego

Nota. Identificación de la precipitación según su clase. Elaborado por: Los autores con el software ArcGIS.

Como se observa en la figura 7 en el rango de precipitación comprendida entre 551,26 mm – 727,05 mm pertenecientes a los sectores de Chalguayacu, Juncal, Carpuela (clase 2), mientras que la precipitación de 237.35 mm – 551.25 mm se encuentran Chota, San Alfonso, Bermejal, Espadillas, Pusir y Tumbatú (color celeste).

2.9. Riego

El principal objetivo del riesgo según (García & Briones, 2015) es "suministrar la humedad necesaria para el desarrollo de las plantas y diluir las sales existentes en el suelo. Además, el riego produce unos efectos beneficiosos como es el crear un ambiente favorable para el crecimiento de las plantas".

Los cultivos requieren del agua, el cual es aportada de forma natural por las precipitaciones, pero cuando están en épocas escasas, es necesario aportarlo artificialmente, es decir a través del riego a un determinado terreno o zona de cultivos, con el fin de facilitar el crecimiento de productos, incrementar la producción y garantizar cosechas estables.

2.9.1. Sistema de riego

Los sistemas de riego son un conjunto de infraestructura hidráulica, las cuales permiten conducir o transportar la cantidad de agua necesaria (caudal) desde la fuente hídrica hasta la zona de cultivo y producción agrícola, con el fin de satisfacer las demandas de agua de los usuarios en tiempo y volumen.

Según (Cadena V., 2016) los sistemas de riego son "procedimientos agronómicos creados para conseguir la máxima eficiencia y economía en la entrega del agua a los cultivos". De la forma o técnica que se aplique, este influye directamente en los cultivos y producción agrícola. Por lo que un manejo eficiente del caudal de riego, está determinada por la distribución y aplicación del recurso hídrico, es primordial una adecuada administración del mismo.

2.9.2. Métodos de riego

Los métodos de riego nos permiten proveer de la cantidad de agua necesaria para el desarrollo de los cultivos. (Cadena V., 2016) ha clasificado a los métodos de riego bajo dos aspectos:

- Por energía de impulsión: Riego por gravedad.
- Por sistema de aplicación: Riego por aspersión.

2.9.2.1.Riego por gravedad

"Este método es el más antiguo y extensivo a nivel mundial de los métodos de riego, en donde fluye por su propio peso y se distribuye en la superficie cultivada" (Cadena V., 2016). Debido a la pendiente que se tiene del terreno recorre desde el punto más alto hacia el más bajo en favor de la inclinación, y conforme vaya recorriendo el caudal el recorrido de este va disminuyendo por la infiltración.

El riego por gravedad puede ser utilizado en la Sierra de nuestro país, en donde se aprovecha las diferencias de alturas, y se lo realiza por surcos y por inundación

2.9.2.2.Riego por aspersión

El riego por aspersión según (Cadena V., 2016) consiste en "entregar el agua al cultivo a través del aire en forma de lluvia, la cual es controlada tanto en duración como en intensidad y frecuencia". Este método se adapta a casi la mayoría de suelos susceptibles de riego, ya que existen aspersores con un amplio rango de capacidad de descarga.

Este método es una alternativa validad para ser empleado en las diferentes regiones de nuestro país, además los riegos por aspersión constituyen dos grupos de sistemas, los cuales son estacionarios y mecanizados.

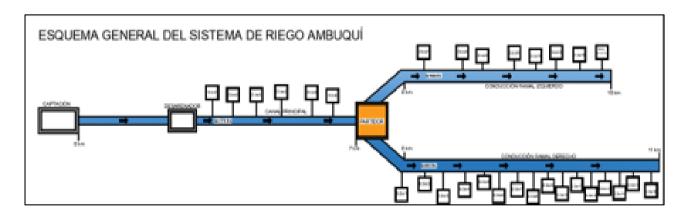
2.10. Levantamiento topográfico

El levantamiento topográfico es un conjunto de operaciones que se lleva a cabo con la finalidad de conocer el terreno y la ubicación de elementos naturales o instalaciones construidas por el hombre antes de realizar un proyecto. En el presente trabajo se recogerán y analizarán todos los datos necesarios para la elaboración de un plano topográfico de la zona de influencia del sistema de riego, en donde se puedan identificar los puntos de interés y la posición exacta mediante coordenadas de longitud, latitud y cotas de terreno o elevación (x, y, z).

El territorio continental ecuatoriano está ubicado en la zona 17 y 18, entre los hemisferios Norte y Sur, divididos por la línea ecuatorial; a partir de lo cual, se ubica el sistema de riego como punto de partida en la Zona 18 Norte.

El sistema de coordenadas que se utilizará para la georreferenciación y el levantamiento topográfico será el UTM WGS 84 (Universal transversal de Mercator del año 1984), la cual se hará con la ayuda de los equipos proporcionados por la empresa.

CAPÍTULO III


DESCRIPCIÓN ACTUAL DE LA INFRAESTRUCTURA EXISTENTE DEL SISTEMA DE RIEGO AMBUQUÍ

3.1.Introducción.

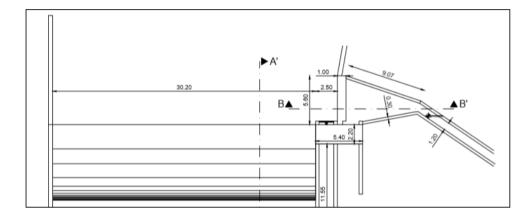
El inventario de la infraestructura hidráulica es un instrumento que contribuye en asegurar la eficiente prestación de servicios de suministro o servicio de monitoreo y gestión, además de la conservación de la parte hidráulica a cargo del operador. El propósito del inventario es facilitar la ubicación e identificación de los diferentes componentes que conforman el sistema de riego y servir como fuente de información básica, a partir de la cual se puede planificar y programar la operación y mantenimiento.

Figura 8.

Esquema general del sistema de riego Ambuquí

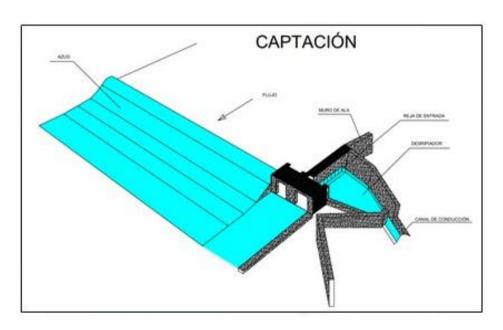
Nota. Distribución de los componentes principales del sistema. Elaborado por: Los autores con el software AutoCAD.

3.2. Inventario de las estructuras existentes.


3.2.1. Captación

El funcionamiento de esta infraestructura se realiza a través de una captación superficial con toma lateral, la cual se caracteriza por captar una corriente de agua con un escurrimiento permanente que permite garantizar la demanda requerida por los usuarios del sistema.

La captación del caudal para el sistema de riego se hace en el río Chota a través de un tipo de bocatoma fluvial con azud, el material de construcción es de hormigón ciclópeo, dicha infraestructura cuenta con una capacidad de 3 m3/s.


Figura 9.

Dimensionamiento vista en planta de la captación

Nota. Captación con toma lateral. Elaborado por: Los autores mediante el programa AutoCAD

Figura 10. Vista en 3D de la obra de captación

Nota. Identificación de los componentes de la captación. Elaborado por: Los autores con el programa AutoCAD.

3.2.1.1. Localización

Está ubicada en el sector La Caldera a 4km aproximadamente en un camino lastrado que se deriva de la vía El Juncal-Pimampiro, en la cota 1710 msnm en las coordenadas:

Zona	Coordenadas X	Coordenadas Y
18N	173779.4	45454.4

3.2.1.2. Estado de la obra

Tabla 14.Inventario técnico de la estructura de captación.

Estructura	Tipo	Caudal	Estado	Problemas
Captación	Superficial con toma lateral	1800 lt/s	Deficiente	Acumulación material de arrastre causando taponamiento rejillas, desripiador obstruyendo el paso del caudal.

Nota. Características y problemas de la obra de captación. Elaborado por: Los autores

La estructura de toma es de hormigón armado y su estado es deficiente, está se encuentra totalmente colmatado con material de arrastre acumulado por las crecientes del río. Además, se debe conocer que no cuenta con la compuerta de desfogue.

La rejilla de toma también se encuentra en estado deficiente, debido a las fuertes crecientes del río, los barrotes se han ido deformando con el transcurso del tiempo, permitiendo el paso de piedras y materiales gruesos al desripiador, la cual no se encuentra cumpliendo su función, por lo que no existe una compuerta de desfogue para expulsar todo el material que ha sido atravesado por la rejilla.

En razón de que las crecientes del Río Chota son muy turbulentas, no se pueden realizar actividades de inspección y mantenimiento rutinario y cualquier acción emergente en este sitio por parte de los operadores, resulta de alto riesgo.

Figura 11.

Obra de captación del sistema de riego en el río Chota

Nota. Localización del azud. Elaborado por: Los autores

Figura 12.Limpieza manual de la obra de captación.

Nota. La obra de captación presenta material acumulado debido a las crecientes del río. Elaborado por: Los autores

3.2.1.3. Análisis de operación

La obra de toma se encuentra en buen funcionamiento, por lo que el caudal captado del río abastece en la distribución de los requerimientos agrícolas y del consumo humano de los beneficiarios del sistema de riego.

Los trabajos de operación se realizan de forma manual, en épocas de crecida los trabajadores remueven y quitan el material en exceso para evitar el taponamiento de las rejillas y el desripiador.

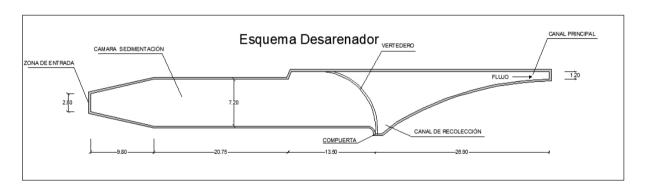
3.2.1.4. Riesgos

Colapso de la estructura, debido al desgaste de la pared inferior del muro de la captación producido por el choque del material pétreo cuando incrementa el caudal. Además del continuo taponamiento con materiales gruesos, tierra, arena, sedimentos y otros elementos. Por lo expuesto anteriormente, es necesario realizar un rediseño de la captación.

Figura 13.

Desgaste de la pared inferior del muro de captación.

Nota. Problemas en el muro de entrada a la captación. Elaborado por: Los autores


Cabe recalcar que la acumulación de sedimentos se encuentra ubicados en la pared a la entrada de la rejilla aproximadamente de una capa de 20 a 25 cm. Como a su vez esta capa la podemos encontrar en la zona del desripiador.

Por lo expuesto anteriormente, se debe colocar la compuerta de lavado, con el fin de expulsar la capa de sedimentos en la zona del desripiador.

3.2.2. Desarenador

La principal función del desarenador es separar y remover el material sólido que transporta el agua, al inicio cuenta con una compuerta metálica que permite desviar el caudal de excesos por un canal de desfogue al río. Se caracteriza por ejecutar un lavado continúo, el cual realiza las operaciones de sedimentación y evacuación simultáneamente.

Figura 14.Esquema del desarenador

Nota. Vista en planta del desarenador tipo lavado continuo. Elaborado por: Los autores con el programa AutoCAD

3.2.2.1.Localización

Se localiza a 300 m de la captación en las coordenadas:

Zona	Coordenadas X	Coordenadas Y
18N	173650.2	45795.3

En su inicio el desarenador cuenta con una compuerta metálica que permite controlar el caudal de servicio del sistema desviando los excesos de agua por un canal de desfogue hacia el río.

Figura 15.

Compuerta de desfogue antes del inicio del desarenador.

Nota. Esta compuerta permite evacuar los excesos de agua al río. Elaborado por: Los autores

3.2.2.2.Estado de la obra

Tabla 15.

Inventario técnico del desarenador

Estructura	Tipo	Caudal Captado	Estado	Problemas
Dagaranadar	Eluio horizontal	1775 1t/a	Duana	Acumulación de
Desarenador	Flujo horizontal	1775 lt/s	Bueno	sedimentos

Nota. Características y problemas del desarenador. Elaborado por: Los autores

El desarenador es de hormigón armado y tiene una longitud aproximada de 70.95 metros, su estado es bueno.

3.2.2.3.Análisis de operación

Su operación es buena y se encuentra controlada por el equipo de operadores, sin embargo, debido al caudal requerido por los usuarios del sistema es difícil realizar la expulsión continua de sedimentos, por lo que se complica la limpieza del desarenador causando un conflicto por la falta de abastecimiento.

Esta estructura tiene una regleta, en la cual los operadores tienen como referencia un valor aproximado de la cantidad de caudal que se entrega a los diferentes beneficiarios.

Figura 16.

Desarenador del sistema de riego

Nota. Dimensionamiento perimetral del desarenador. Elaborado por: Los autores

Figura 17.Regleta ubicada en el desarenador

Nota. La regleta ayuda a controlar el nivel del agua hacia el canal principal. Elaborado por: Los autores

3.2.2.4.Riesgos

Existen árboles y arbustos con raíces que han afectado parte del trayecto perimetral del desarenador y que podrían afectar su estructura y compuertas.

Figura 18. Raíz del árbol afectando la compuerta de desfogue del desarenador.

Nota. Principales riesgos en las partes perimetrales del desarenador. Elaborado por: Los autores.

3.2.3. Canal Principal

Uno de los principales parámetros del sistema es el agua que circula por dichos canales, el cual se asocia a la disponibilidad del recurso hídrico, tipo de suelo y cultivo, condiciones climáticas, métodos de riego, entre otras. A continuación, se observa en la tabla 16 el tipo de conducción que presenta el sistema de riego en los diferentes tramos:

Tabla 16.Conducción principal del Sistema de riego

Conducción Principal				
Tipo Canal	Abscisa Inicial	Abscisa Final		
Túnel	0+000	0+300		
Desarenador	0 + 300	0+450		
Canal Embaulado	0 + 450	0+650		
Túnel	0+650	0+800		
Canal Embaulado Plano	0+800	0+900		
Canal Embaulado	0+900	1+200		
Túnel	1+200	2+000		
Canal Embaulado	2+000	2+600		
Túnel	2+600	2+900		
Canal Embaulado	2+900	3+500		
Canal Abierto	3+500	3+700		
Túnel	3+700	3+850		
Canal Embaulado Plano	3+850	3+900		
Canal Abierto	3+900	4+400		
Túnel	4+400	4+600		
Canal Abierto	4+600	4+800		
Canal embaulado	4+800	5+150		
Túnel	5+150	5+700		
Canal embaulado	5+700	5+750		
Túnel	5+750	7+400		

Nota. Identificación de los tipos de canales a lo largo de la conducción principal. Elaborado por: Los autores con información procesada de la (Empresa Pública del Agua, 2016).

Tabla 17.Conducción en el margen derecho del Sistema de riego

Conducción Margen Derecho			
Tipo Canal	Abscisa Inicial	Abscisa Final	
Sifón Chota	0+000	0+800	
Canal embaulado	0+800	1+050	
Túnel	1+050	1+950	
Canal embaulado	1+950	2+050	
Túnel	2+050	2+400	
Canal embaulado	2+400	2+450	
Túnel	2+450	2+700	
Canal embaulado	2+700	2+850	
Túnel	2+850	2+950	
Canal embaulado	2+950	3+400	
Túnel	3+400	3+600	
Canal embaulado	3+600	3+900	
Túnel	3+900	4+000	
Canal embaulado	4+000	5+050	
Túnel	5+050	5+100	
Canal embaulado	5+100	5+350	
Túnel	5+350	5+400	
Canal embaulado	5+400	6+000	
Túnel	6+000	6+150	
Canal embaulado	6+150	6+900	
Túnel	6+900	7+100	
Canal abierto	7+100	7+150	
Túnel	7+150	7+250	
Canal embaulado	7+250	8+400	
Túnel	8+400	8+550	
Canal embaulado	8+550	9+750	
Túnel	9+750	9+950	
Canal embaulado	9+950	10+900	
Túnel	10+900	11+150	
Canal embaulado	11+150	11+286	

Nota. Identificación de los tipos de canales a lo largo del margen derecho. Elaborado por: Los autores con información procesada de la (Empresa Pública del Agua, 2016).

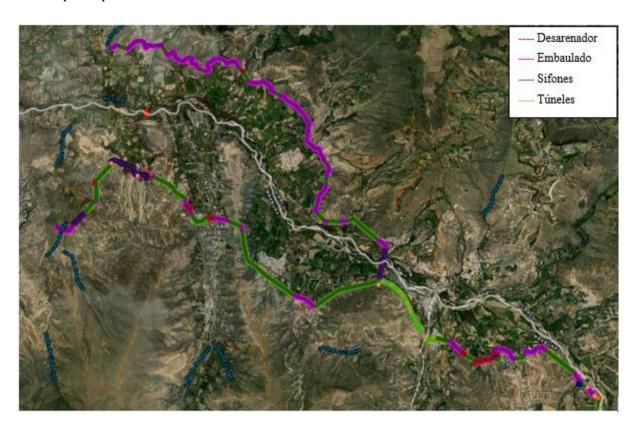
Tabla 18.Conducción en el margen izquierdo del Sistema de riego

Conducción Margen Izquierdo				
Tipo Canal	Abscisa Inicial	Abscisa Final		
Túnel	0+000	1+550		
Canal embaulado	1+550	2+100		
Túnel	2+100	4+100		
Canal embaulado	4+100	4+200		
Túnel	4+200	4+550		
Canal embaulado	4+550	4+800		
Canal abierto	4+800	5+000		
Túnel	5+000	5+450		
Canal embaulado	5+450	5+600		
Canal abierto	5+600	5+700		
Canal embaulado	5+700	5+900		
Túnel	5+900	6+700		
Canal embaulado	6+700	6+800		
Desarenador	6+800	6+850		
Sifón Bermejal	6+850	8+000		
Túnel	8+000	8+500		
Canal abierto	8+500	8+650		
Túnel	8+650	8+950		
Canal embaulado	8+950	9+100		
Túnel	9+100	9+300		
Sifón Espadillas	9+300	9+700		
Canal embaulado	9+700	10+212		

Nota. Identificación de los tipos de canales a lo largo del margen izquierdo. Elaborado por: Los autores con información procesada de la (Empresa Pública del Agua, 2016).

En la tabla 19, se presenta el resumen de los tipos de canal que presenta el sistema de riego de Ambuquí.

Tabla 19.Resumen de la conducción del sistema de riego


Resumen Conducción				
Tramo	Longitud (km)			
	Túnel	4.100		
G 1 1/	Desarenador	0.150		
Conducción Principal	Canal embaulado	2.100		
Timeipai	Canal embaulado plano	0.150		
	Canal abierto	0.900		
	Túnel	3.050		
Margen	Sifón Chota	0.800		
Derecho	Canal embaulado	7.386		
	Canal abierto	0.050		
	Túnel	6.150		
	Desarenador	0.050		
Margen	Canal embaulado	2.012		
Izquierdo	Sifón Bermejal	1.150		
	Canal abierto	0.450		
	Sifón Espadillas	0.400		

Nota. Longitud de los diferentes tipos de canales que intervienen en el sistema. Elaborado por: Los autores

El sistema presenta una longitud de 28.898 km, de los cuales en la parte inicial 7.400 km hasta llegar al partidor, en este punto se divide en dos márgenes: el derecho tiene una longitud de 11.286 km y en el izquierdo de 10.212 km. Además, se encuentran túneles con una extensión total de 13.30 km, sifones que acumulados llegan a los 2.35 km, el canal abierto de 1.4 km y el embaulado de 11.65 km.

Figura 19.

Canal principal de conducción

Nota. Representación de los tipos de canales que intervienen en el sistema Elaborado por: Los autores con el paquete computacional ArcGIS versión 10.5

3.2.3.1. Localización

El punto inicial de referencia del canal se encuentra en las coordenadas:

Zona	Coordenadas X	Coordenadas Y
18N	173498.1	45987.6

3.2.3.2. Estado de la obra

En su totalidad los canales se encuentran revestidos de hormigón, presentando formas trapezoidales, rectangular, circular, embovedados y túneles. Estas dos últimas presentan gran cantidad de piedra, basura y lodo que impide el paso del agua, dificultando las operaciones de limpieza, como se puede observar en la figura 20.

Debido a la longevidad del sistema de riego varias partes del canal de conducción presentan taponamientos, fisuras y fugas, las cuales producen el deterioro de la estructura y perdida del caudal.

Figura 20.

Malezas y escombros en el canal principal.

Nota. Malezas y escombros que se encuentran en el canal principal debido a la falta de mantenimiento de usuarios y operadores. Elaborado por: Los autores.

3.2.3.3. Análisis de operación

La intervención de limpieza realizada por parte de los operadores de la Empresa Pública del Agua (EPA-EP) es eficiente, pero en ciertas ocasiones es difícil controlar los taponamientos a lo largo del canal, ya que los usuarios del sistema se encargan de obstaculizar el paso del caudal con la finalidad de beneficiarse y obtener mayor cantidad de agua.

3.2.3.4. Riesgos

En lugares de difícil acceso para realizar mantenimiento como son los canales embaulados y túneles, acumulando malezas y basura en las estructuras. En consecuencia, el agua se desborda causando filtraciones al hormigón y provocando daños estructurales en ellos, los cuales pueden terminar con el colapso de la estructura.

3.2.4. Partidor

Es un cajón de hormigón simple cuyo objetivo es la bifurcación del canal de riego en dos márgenes, el cual divide el caudal hacia el margen derecho e izquierdo, de tal forma que entrega el caudal requerido a los distintos beneficiarios del sistema.

3.2.4.1. Localización

Se encuentra en las coordenadas:

Zona	Coordenadas X	Coordenadas Y
18N	168820.3	48382

3.2.4.2. Estado de la obra

El cajón partidor es de hormigón, se encuentra en buen estado. Este presente alta cantidad de basura, escombros derrumbes laterales y vegetación tupida en su alrededor.

Figura 21.

Partidor del sistema de riego

Nota. El partidor se encarga de distribuir el caudal hacia el margen derecho e izquierdo. Elaborado por: Los autores

3.2.4.3.Análisis de operación

La operación en este punto es buena, consiste en la repartición de caudal que entra al margen derecho cuyo primer tramo es el sifón sobre el río Chota, mientras, que en el lado izquierdo sigue por un canal embaulado. Las operaciones de mantenimiento son realizadas por los operadores de la Empresa Pública del Agua (EPA-EP) constantemente.

El caudal que se distribuye actualmente para el margen izquierdo a partir del partidor es de 1005.35 lt/s, mientras que para el derecho es de 747.77 lt/s. Dando un total de 1753.12 lt/s que circula por dicha estructura.

3.2.4.4.Riesgos

No presentan riesgos en esta parte del sistema.

3.2.5. Derivaciones

A lo largo del sistema las derivaciones se van identificando por la presencia de una compuerta de metal, con vástago y volante. Además, existen tomas ilegales o clandestinas realizadas por usuarios del sistema. Según la administración de la empresa (EPA-EP) existe la normativa establecida, la cual es respaldada por la Autoridad Única del Agua, para que un productor agrícola pueda acceder y modificar la apertura de una compuerta. Sin embargo, algunos usuarios arbitrariamente toman el agua sin notificación previa.

Las derivaciones del sistema son alrededor de 32, las cuales se distribuyen 16 al margen izquierdo y 16 al derecho.

3.2.5.1. Localización

Las derivaciones que se encuentran en el margen izquierdo se presenta en la siguiente tabla:

Tabla 20.Ubicación derivaciones margen izquierdo.

Derivaciones Margen Izquierdo				
No	Zona	Este	Norte	Estado
1	18N	171460.89	46750.30	Buena
2	18N	171227.76	46613.44	Buena
3	18N	170508.39	46943.86	Buena
4	18N	170326.58	47035.75	Buena
5	18N	169842.31	47124.75	Buena
6	18N	169475.96	47836.71	Buena
7	18N	167930.45	48164.42	Buena
8	18N	167039.65	48003.43	Buena
9	18N	166944.99	48037.91	Buena
10	18N	166284.33	48496.39	Buena
11	18N	165755.71	49566.81	Deficiente
12	18N	165411.38	49729.21	Deficiente
13	18N	164938.85	49783.86	Buena
14	18N	163715.38	50661.38	Buena
15	18N	163715.38	50661.38	Buena
16	18N	163715.38	50661.38	Buena

Nota. Estado de las derivaciones del margen izquierdo. Elaborado por: Los autores

Las derivaciones que se encuentran en el margen derecho se presenta en la siguiente tabla:

Tabla 21.Ubicación derivaciones margen derecho.

Derivaciones Margen Derecho				
No	Zona	Este	Norte	Estado
1	18N	168990.38	49141.66	Buena
2	18N	167627.50	50439.84	Buena
3	18N	167546.12	51172.17	Deficiente
4	18N	167516.43	51212.80	Buena
5	18N	167306.26	51416.51	Buena
6	18N	167224.14	51552.02	Buena
7	18N	167164.68	52054.82	Buena
8	18N	166684.70	52495.37	Deficiente
9	18N	165916.23	52836.43	Buena
10	18N	165580.76	53280.67	Deficiente
11	18N	165262.09	53336.68	Buena
12	18N	164514.75	53347.49	Regular
13	18N	163754.54	53627.66	Regular
14	18N	163614.99	53586.88	Dañada
15	18N	163351.28	53707.18	Buena
16	18N	162828.92	53583.04	Regular

Nota. Estado de las derivaciones del margen izquierdo. Elaborado por: Los autores.

3.2.5.2.Estado de la obra

Las compuertas en su mayoría se han ido reemplazando ya sean por cumplir su vida útil o la manipulación forzada de los usuarios, por falta de mantenimiento o mal uso. Los canales de las derivaciones son generalmente mantenidos por los beneficiarios de dicho margen y operadores del sistema, sin embargo, muchos de estos presentan azolve, pérdida del hormigón de revestimiento y alta cantidad de malezas en sus alrededores.

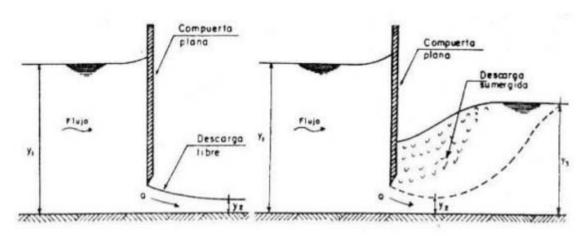
Figura 22.

Derivaciones margen izquierda y derecho controladas por compuertas

Nota. Estado actual de las derivaciones. Elaborado por: Los autores.

Figura 23.

Tomas ilícitas y clandestinas por los usuarios.

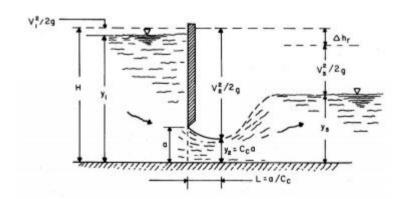


Nota. Las tomas clandestinas son realizadas por tuberías o mangueras. Elaborado por: Los autores.

Una compuerta consiste en una placa plana o curva, que al levantarse permite medir el caudal que atraviesa las obras hidráulicas, y a su vez que regula la descarga producida (Sotelo, 1997). Las compuertas planas según su condición de flujo aguas abajo se clasifican en libre y sumergida, como se puede apreciar en la figura 24:

Figura 24.

Compuerta con descarga libre y sumergida



Nota. Esquema de las compuertas con niveles aguas arriba y abajo. Fuente: (Marbello Perez, 1997).

Por lo general, se forma una apertura entre el piso de un canal y el borde inferior de la compuerta, cuyo ancho coincide con el del canal; bajo estas condiciones el flujo puede considerarse bidimensional (Sotelo, 1997) como se muestra en la figura 25.

Figura 25.

Compuerta plana vertical

Nota. Identificación de los parámetros que intervienen en la compuerta. Fuente: (Sotelo, 1997)

El caudal de una compuerta y las características hidráulicas de su descarga se pueden conocer a partir de los niveles aguas arriba y abajo, mediante la siguiente expresión:

$$Q = C_d * b * a * \sqrt{2g * y_1}$$

Donde:

Q: Caudal de la compuerta $\left(\frac{m^3}{s}\right)$

 C_d : Coeficiente de descarga o gasto

b: Ancho de la compuerta

a: Abertura de la compuerta

y₁: Nivel de agua aguas arriba de la compuerta

Para obtener el valor del caudal real del aforo en el flujo de las compuertas planas el coeficiente de descarga se obtiene en función del coeficiente de contracción (C_c) y de velocidad (C_v), con la siguiente expresión:

$$C_d = \frac{C_c * C_v}{\sqrt{1 + \frac{C_v * a}{y_1}}}$$

Donde:

 C_c : Coeficiente de contracción

 C_v : Coeficiente de velocidad

El coeficiente de contracción (C_c) es un valor que se ha obtenido mediante prácticas de laboratorio con diferentes colaboradores (Sotelo, 1997). Para determinar dicho coeficiente se recomienda asumir $C_c = 0.67$.

Una vez que el fluido pasa la compuerta plana las partículas del mismo no tienen igual velocidad, por lo que es necesario utilizar un coeficiente de velocidad (Sotelo, 1997). Según Knapp la ecuación para calcular el (C_v) es:

$$C_v = 0.960 + 0.0979 * \left(\frac{a}{y_1}\right)$$

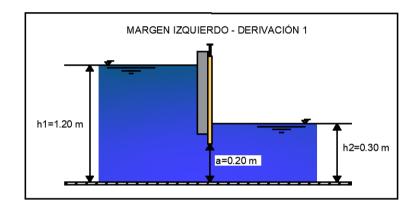
Para conocer el funcionamiento actual y la distribución de cada derivación, se realizó un aforamiento en las compuertas midiendo los niveles de aguas arriba y abajo, y a su vez las dimensiones. Teniendo como resultado la siguiente tabla:

Tabla 22.Medición en campo compuertas margen izquierdo

	Medición en campo de las Compuertas Margen Izquierdo						
No	Nivel aguas arriba (m)	Nivel aguas abajo (m)	Apertura (m)	Ancho (m)	Descarga Sumergida		
1	1.20	0.30	0.20	0.30	Si		
2	1.30	0.40	0.20	0.30	Si		
3	1.10	0.50	0.20	0.30	Si		
4	1.20	0.50	0.20	0.30	Si		
5	1.33	0.38	0.20	0.30	Si		
6	1.05	0.25	0.20	0.30	Si		
7	0.65	0.42	0.20	0.30	Si		
8	0.78	0.66	0.20	0.30	Si		
9	0.75	0.55	0.20	0.30	Si		
10	0.72	0.47	0.20	0.30	Si		
11	0.77	0.20	0.20	0.30	Si		
12	0.75	0.45	0.20	0.30	Si		
13	1.00	0.55	0.20	0.30	Si		
14	0.69	0.50	0.20	0.30	Si		
15	0.55	0.20	0.20	0.30	Si		
16	0.38	0.10	0.20	0.30	Si		

Nota. Datos tomados en campo. Elaborado por: Los autores

Tabla 23.Medición en campo compuertas margen derecho


	Medición en campo de las Compuertas Margen Derecho						
No	Nivel aguas arriba (m)	Nivel aguas abajo (m)	Apertura (m)	Ancho (m)	Descarga Sumergida		
1	0.76	0.23	0.20	0.30	Si		
2	0.74	0.18	0.20	0.30	Si		
3	0.65	0.12	0.20	0.30	Si		
4	0.90	0.58	0.10	0.30	Si		
5	0.78	0.10	0.20	0.30	Si		
6	0.70	0.21	0.20	0.30	Si		
7	0.80	0.37	0.15	0.30	Si		
8	0.83	0.28	0.10	0.30	Si		
9	1.02	0.10	0.10	0.30	Si		
10	1.08	0.35	0.10	0.30	Si		
11	0.68	0.32	0.10	0.30	Si		
12	0.84	0.10	0.10	0.30	Si		
13	0.52	0.25	0.10	0.30	Si		
14	0.95	0.35	0.10	0.30	Si		
15	0.96	0.32	0.10	0.30	Si		
16	0.40	0.18	0.10	0.30	Si		

Nota. Datos tomados en campo. Elaborado por: Los autores

Con la medición de los diferentes niveles de las compuertas se procede a calcular el caudal, como se muestra a continuación:

Figura 26.

Esquema de los niveles de la derivación 1 margen izquierdo

Nota. Niveles aguas arriba y abajo de la compuerta con su apertura. Elaborado por: Los autores con el programa AutoCAD

$$C_c = 0.67$$

$$C_v = 0.960 + 0.0979 * \left(\frac{0.20}{1.20}\right) = \mathbf{0.9763}$$

$$C_d = \frac{0.67 * 0.9763}{\sqrt{1 + \frac{0.67 * 0.20}{1.20}}} = \mathbf{0.4642}$$

$$Qcomp1 = 0.4642 * 0.30 * 0.20 * \sqrt{2 * 9.81 * 1.20} = \mathbf{0.11703} \frac{m^3}{s}$$

$$Qcomp1 = 117.29 \frac{lt}{s}$$

Realizando este procedimiento para cada compuerta del margen derecho como izquierdo se obtiene las siguientes tablas:

Tabla 24.Caudal Compuertas margen izquierdo

		Cauda	l Compu	iertas Ma	argen Izquierdo	
No	h1 (m)	h2 (m)	a (m)	b (m)	Qcomp (m3/s)	Qcomp (lt/s)
1	1.20	0.60	0.20	0.30	0.085	85.29
2	1.30	0.70	0.20	0.30	0.078	77.57
3	1.10	0.65	0.20	0.30	0.066	66.04
4	1.20	0.55	0.20	0.30	0.084	83.58
5	1.33	0.38	0.20	0.30	0.110	110.24
6	1.05	0.35	0.20	0.30	0.092	92.43
7	0.65	0.42	0.20	0.30	0.047	46.87
8	0.78	0.66	0.20	0.30	0.032	31.65
9	0.75	0.55	0.20	0.30	0.042	42.30
10	0.72	0.47	0.20	0.30	0.049	48.61
11	0.77	0.38	0.20	0.30	0.064	64.36
12	0.75	0.45	0.20	0.30	0.054	54.20
13	1.00	0.55	0.20	0.30	0.067	67.18
14	0.69	0.43	0.20	0.30	0.050	50.15
15	0.55	0.30	0.20	0.30	0.051	50.99
16	0.40	0.28	0.20	0.30	0.034	33.88
		Total			1.005	1005.35

Nota. Caudal aforado en las compuertas del margen izquierdo con sus dimensiones y niveles.

Elaborado por: Los autores

Tabla 25.Caudal compuertas margen derecho

		Cauc	dal Compi	uertas Ma	rgen Derecho	
No	h1 (m)	h2 (m)	a (m)	b (m)	Qcomp (m3/s)	Qcomp (lt/s)
1	0.76	0.35	0.20	0.30	0.067	66.96
2	0.74	0.37	0.20	0.30	0.063	62.59
3	0.65	0.32	0.20	0.30	0.060	59.52
4	0.90	0.58	0.20	0.30	0.027	27.12
5	0.78	0.38	0.20	0.30	0.065	65.34
6	0.70	0.30	0.20	0.30	0.067	67.24
7	0.80	0.37	0.20	0.30	0.051	51.00
8	0.83	0.28	0.20	0.30	0.041	40.59
9	1.02	0.30	0.20	0.30	0.047	47.49
10	1.08	0.35	0.20	0.30	0.047	46.97
11	0.68	0.32	0.20	0.30	0.031	30.87
12	0.84	0.29	0.20	0.30	0.040	40.41
13	0.52	0.31	0.20	0.30	0.030	30.05
14	0.95	0.35	0.20	0.30	0.042	41.64
15	0.96	0.32	0.20	0.30	0.058	58.41
16	0.40	0.27	0.20	0.30	0.012	11.57
		Total	l		0.748	747.77

Nota. Caudal aforado en las compuertas del margen derecho con sus dimensiones y niveles. Elaborado por: Los autores

Los niveles de la compuerta y el cálculo respectivo de los diferentes parámetros para obtener el caudal de las derivaciones se encuentran en el **anexo 1**

3.2.5.3.Análisis de operación

La operación se realiza por parte de los mismos usuarios y operadores del sistema, los cuales son los encargados de regular la apertura de las compuertas de acuerdo con la necesidad del usuario, y en los turnos como es el caso en las derivaciones 14, 15 y 16 del margen izquierdo, ellos son los asignados de abrir y cerrar las compuertas. Sin embargo, en varias tomas los usuarios controlan los caudales, utilizando cualquier obstáculo que funcione para detener parcialmente el flujo, y de tal forma aumentar su caudal riego.

3.2.5.4. Riesgos

Debido al inadecuado mantenimiento o manejo de los usuarios el canal no podría satisfacer el caudal que necesita el usuario, utilizan cualquier obstáculo para desviar el agua hacia sus cultivos limitando a los demás beneficiarios. Por lo que se recomienda realizar un mejoramiento en la distribución, apertura y dimensiones de las respectivas compuertas.

3.2.6. Sifones invertidos

Los sifones invertidos son conductos cerrados que trabajan a presión, su función es conducir el agua en el cruce de un canal con una depresión topográfica o quebrada, además para pasar por debajo de un camino o vía. En el actual sistema se presenta dos sifones: sifón de río de Chota y Espadillas

3.2.6.1. Localización

El sifón del río Chota se encuentra ubicado en el margen derecho con las siguientes coordenadas:

Zona	Coordenadas X	Coordenadas Y	Tramo
18 N	168936	48912	Inicial

El sifón Espadillas se encuentra ubicado en el margen izquierdo con las siguientes coordenadas:

Zona	Coordenadas X	Coordenadas Y	Tramo
17 N	831359	50734	Inicial
17N	830769	51003	Final

3.2.6.2. Estado de la obra

El sifón del río Chota tiene longitud total de 800 m, se encuentra conformado desde el inicio por una tubería de Hierro Fundido de 500 mm de diámetro exterior y posteriormente 310 m de longitud, en la parte del lecho del río una tubería de PVC del mismo diámetro revestida con hormigón armado de una longitud total de 156 m hasta un cajón de válvula de limpieza. A partir de este punto la tubería vuelve a ser de Hierro Fundido hasta desembocar en un cajón de hormigón. La estructura presenta un estado deficiente, debido a la abrasión del río, lo cual ha provocado el desprendimiento de la tubería por lo está expuesta a los esfuerzos que puedan provocar el material arrastrado por la corriente.

El cajón de inicio del sifón Espadillas está en estado deficiente, con desprendimiento del hormigón, presentan grandes grietas y filtraciones en los muros laterales. Así mismo, el cajón de fin presenta gran cantidad de azolve y vegetación. Por otra parte, la tubería de asbesto cemento tiene filtraciones y la válvula de purga no funciona.

Figura 27.
Sifón río Chota

Nota. En la figura se observa las varillas de acero expuestas. Elaborado por: Los autores.

Figura 28.Sifón de Espadillas

Nota. En la figura se observan fisuras del hormigón. Elaborado por: Los autores

3.2.6.3. Análisis de operación

La tubería de fibrocemento del sifón Espadillas ya cumplió su vida útil, por lo que el caudal que pasa es regulado por los operadores de la empresa, para evitar la presencia de fisuras en la tubería, en las uniones gibault y empaques.

El sifón del río Chota cumple con su función, pero la actividad de limpieza se realiza en el tramo que atraviesa el río para evitar que el golpe del material de arrastre desgaste la tubería.

3.2.6.4. Riesgos

El cajón de transición de llegada del sifón del río Chota tiene paredes bajas, lo que permite el escape de agua, sobre todo cuando se torna turbulento, causando fisuras en la parte superior.

El sifón Espadillas presenta grandes grietas y filtraciones en los muros laterales, provocando desprendimiento de hormigón en la estructura la cual en el futuro puede llegar al colapso.

Debido al cumplimiento de la vida útil de la tubería de los sifones, la cual provoca pérdidas de caudal en ciertos tramos. Por lo que se sugiere realizar un rediseño de los sifones Chota y Espadillas, cumpliendo las condiciones hidráulicas.

3.2.7. Paso elevado

Es una estructura que permite evitar un accidente geográfico como un río, quebrada o cualquier obstáculo físico, el diseño de cada puente depende de su función y de la naturaleza del terreno en el que se construye.

3.2.7.1.Localización

El inicio del paso elevado se encuentra ubicado en la Cantera Ramírez, la cual presenta las siguientes coordenadas:

Zona	Coordenadas X	Coordenadas Y
17 N	832705.2	49699.6

El paso elevado posee tres tuberías a lo largo de su trayectoria, una de 300mm y dos de 250mm.

3.2.7.2.Estado de la obra

El estado de funcionamiento del paso elevado actualmente es crítico, principalmente por la pérdida notoria de caudal aguas arriba de la estructura por causa de que la capacidad de las tuberías no es suficiente para la cantidad de agua que transporta el canal. Debido al desborde de agua en la conexión con las tuberías, el talud adyacente presenta socavación del material, lo que ha provocado un aumento en la sección de la quebrada y por ende ha disminuido la longitud de terreno firme entre el lecho y la fundición del pilar en este extremo afectado.

Figura 29.

Tramo inicial del paso elevado

Nota. Se observa que el talud se encuentra socavado debido a las pérdidas de caudal a la salida de la tubería. Elaborado por: Los autores

Figura 30.

Tramo final del paso elevado.

Nota. Problemas de inestabilidad de taludes. Elaborado por: Los autores.

3.2.7.3. Análisis de operación

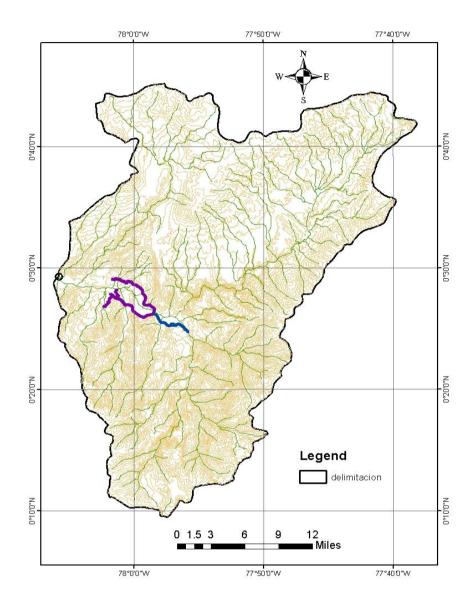
Debido a que la capacidad de la tubería no es suficiente, se ha colocado un tramo de tubería en la parte de la cantera, con la finalidad de evacuar el exceso de agua que llega al paso elevado.

3.2.7.4.Riesgos

Colapso de la estructura provocado por la filtración de agua hacia el talud en el tramo inicial y final, la base que sostiene el paso elevado está a punto de caerse, ocasionado el desabastecimiento de caudal en dirección a los usuarios del margen izquierdo. En consecuencia, se recomienda realizar un estudio geotécnico, rediseño y reconstrucción.

CAPÍTULO IV

ESTUDIO HIDROLÓGICO Y CARACTERIZACIÓN METEOROLÓGICA


4.1. Recopilación, análisis y evaluación de información existente.

4.1.1. Delimitación de la microcuenca del sistema de riego biprovincial Ambuquí

El sistema de riego biprovincial Ambuquí se encuentra delimitada por la cuenca del río Chota, teniendo en consideración que el punto de estudio se encontrará en la obra de captación, el cual tiene por coordenadas geográficas 6908.667 Norte y 724654.258 Este con una altitud de 732 msnm, dicha información fue adquirida del Portal del Ministerio de Ambiente, Agua y Transición Ecológica (MAAE), en formato shapefile, y procesada mediante el programa ArcGIS versión 10.5.

Figura 31.

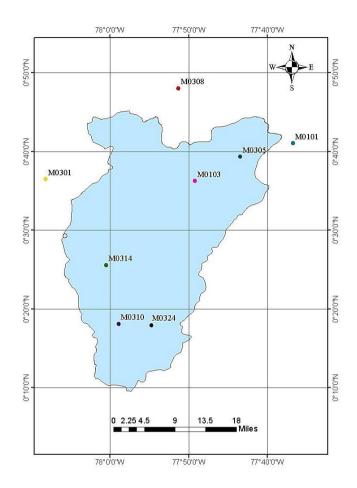
Delimitación de la cuenca de estudio

Nota. Ubicación del sistema de riego dentro de la delimitación de la cuenca. Elaborado por: Los autores con el paquete computacional ArcGIS versión 10.5

4.1.2. Identificación de estaciones de trabajo

En nuestra área de estudio se han identificado las estaciones más cercanas y que estén ubicadas en la cuenca del río del Chota, y son las encargadas de contar con los datos necesarios para realizar el análisis hidrológico.

La ubicación geográfica de cada estación está en reseña a su correspondiente latitud y longitud en coordenadas sexagesimales (grados, minutos, segundos), mientras cuya altitud es medida en metros sobre el nivel del mar (msnm). Las estaciones meteorológicas e hidrológicas, se presentan en la tabla 26, 27 y en la figura 32, 33, a continuación:


Tabla 26.Estaciones Meteorológicas del área de estudio

Código	Estación	Tipo	Latitud	Longitud	Altitud	Estado
M0086	San Vicente de Pusir	AP	0°29'39" N	78°2'29" W	1891	-
M0308	Tufiño	PV	0°48'3" N	77°51'18" W	3418	Activa
M0101	El Carmelo	PV	0°41'3" N	77°36'42" W	2955	Activa
M0103	San Gabriel	CP	0°36'15" N	77°49'10" W	2860	Activa
M0301	FF CC Carchi	PV	0°36'30" N	78°8'11' W	1280	Activa
M0305	Julio Andrade	PV	0°39'21" N	77°43'25" W	2890	Activa
M0310	Mariano Acosta	PV	0°18'6" N	77°58'54" W	2980	Activa
M0312	Pablo Arenas	PV	0°30'8" N	78°11'34" W	2340	Activa
M0314	Ambuquí	PV	0°25'34" N	78°0'28" W	1880	Activa
M0315	Pimampiro	PV	0°23'23" N	78°56'28" W	2090	Activa
M0324	San Francisco de Sigsipamba	PV	0°17'53" N	77°54'42" W	2230	Activa

Nota. Información procesada de (INAMHI, 2015). Elaborado por: Los autores.

A continuación, se identifica las siguientes estaciones meteorológica dentro y cercanas de la zona de estudio.

Figura 32.
Estaciones meteorológicas de la zona de estudio.

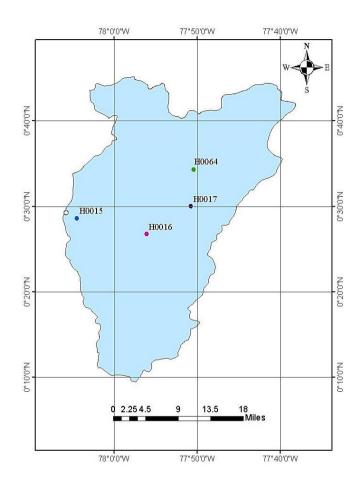

Nota. Estaciones meteorológicas cercanas a la cuenca. Elaborado por: Los autores con el paquete computacional ArcGIS versión 10.5

Tabla 27.Estaciones hidrológicas del área de estudio

Código	Estación	Tipo	Latitud	Longitud	Altitud	Estado
H0013	Blanco Aj Mira	LG	0°45'42" N	78°16'28" W	890	Activa
H0015	Chota En Pte. Carretera	LG	0°28'38" N	78°4'25" W	1515	Activa
H0016	Apaqui Aj Chota	LG	0°26'47" N	77°56'3" W	1715	Activa
H0017	Apaqui Aj Gruta De La Paz #3	LG	0°30'2" N	77°50'44" W	2365	Activa
H0064	El Angel En Pte Ayora	LG	0°37'44" N	77°56'56" W	2850	Activa

Nota. Ubicación geográfica, estado y tipo de las estaciones hidrológicas. Elaborado por: Los autores con información procesada de (INAMHI, 2015).

Figura 33.
Estaciones hidrológicas de la zona de estudio.

Nota. Estaciones hidrológicas cercanas a la cuenca. Elaborado por: Los autores con el paquete computacional ArcGIS versión 10.5

Se trabajará con las estaciones meteorológicas M0314 "Ambuquí", M0315 "Pimampiro" y M0324 "San Francisco de Sigsipamba", mientras que las hidrológicas serán H0015 "Chota en Pte. Carretera" y H0016 "Apaqui Aj Chota", ya que se encuentra cercana al punto de estudio.

4.1.3. Recopilación de información existente

Con la finalidad de obtener la mayor cantidad de información para realizar el estudio, y teniendo en consideración el tiempo de registro que ha llevado cada estación, se obtiene una base de datos meteorológicos e hidrológicos para un periodo de 14 años, los mismos que fueron recopilados de la información existente en la biblioteca virtual del Instituto Nacional de

Meteorología e Hidrología (INAMHI), en los Anuarios Meteorológicos e Hidrológicos (1999-2013).

Las variantes meteorológicas e hidrológicas que se recopilaron fueron la precipitación media mensual y niveles y caudales medios, mínimos y máximos, respectivamente.

4.1.4. Análisis y evaluación de información existente

A continuación, se determinarán parámetros morfométricos, que permite conocer las características físicas de una cuenca, ayuda a la interpretación de la funcionalidad hidrológica y en la definición de las estrategias para la formulación de su manejo mediante el estudio de un conjunto de variables lineales como son de superficie, relieve y drenaje (Gaspari, y otros, 2012).

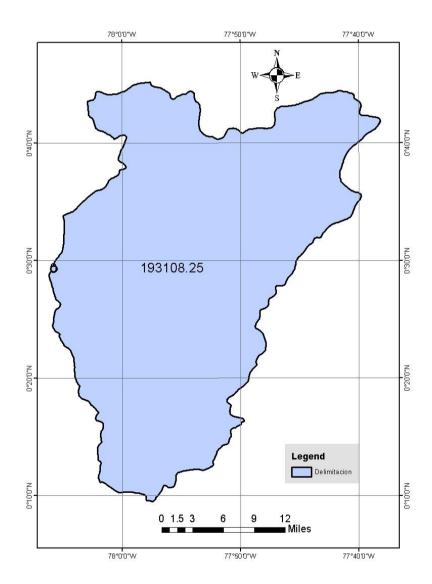
4.1.4.1.Características físicas

Del estudio de la topografía, superficie y perímetro de la cuenca, se determinan características físicas importantes, las cuales desempeñan un papel muy fundamental en el análisis y comportamiento de algunos componentes del ciclo hidrológico (Gutierrez, 2014).

Área de la Cuenca

Según (Gutierrez, 2014) "es el área plana (proyección horizontal) incluida entre su divisoria topográfica, se mide en km², hectáreas u otra unidad de superficie".

La cuenca del río Chota tiene un área de 1931.083 km², la cual se obtuvo mediante las herramientas que presenta el paquete computacional ArcGIS 10.5.


Tabla 28.Clasificación de las cuencas por su área.

Área (km²)	Clasificación
> 5000	Cuenca muy grande
2500 - 5000	Cuenca grande
500 - 2500	Cuenca intermedia grande
250 - 500	Cuenca intermedia pequeña
25 - 250	Cuenca pequeña
< 25	Cuenca muy pequeña

Nota. Identificación del tipo de cuenca según su área. Elaborado por: Los autores con información tomada de (Vásconez, y otros, 2019).

Según la clasificación de la tabla 28, se define como una cuenca intermedia grande, presenta un área de 1931.083 km^{2,} la cual se obtuvo mediante las herramientas que tiene el paquete computacional ArcGIS 10.5.

Figura 34. Área de la cuenca de estudio

Nota. El valor área de la cuenca se encuentra en hectáreas. Elaborado por: Los autores con el paquete computacional ArcGIS versión 10.5.

Perímetro de la Cuenca

"Es la longitud total de la divisoria de aguas, desde el inicio del punto de estudio hasta finalizar en el mismo, se mida en km u otra unidad de longitud" (Gutierrez, 2014).

El perímetro de la cuenca del río Chota es de **237.172 km**, el cual se determinó con el paquete computacional ArcGis 10.5.

Forma de la Cuenca

La forma de la cuenca es fundamental para conocer el comportamiento morfodinámico e hidrológico de la misma; además es determinada por factores geológicos y es crucial por su incidencia en el tiempo de concentración. Este parámetro tiene un gran impacto en la velocidad de respuesta del río ante un evento de precipitación (Vásconez, y otros, 2019).

Índice de compacidad Kc

Es la relación entre el perímetro y el área de la cuenca, es un valor adimensional (Gutierrez, 2014).

$$Kc = 0.28 \left(\frac{P}{\sqrt{A}}\right)$$

Donde:

Kc =indice de compacidad

P = perímetro de la cuenca [km]

A =área de la cuenca [km^2]

entonces:

$$Kc = 0.28 \left(\frac{237.17}{\sqrt{1931.08}} \right)$$

$$Kc = 1.51$$

En la tabla 29 que se presenta a continuación según (Sheng, 1992) establecen rangos para clasificar la forma de la cuenca basándose en este coeficiente:

Tabla 29.Forma de la cuenca según el índice de compacidad

Kc	Forma
1 - 1.25	Redonda a oval redonda
1.25 - 1.50	Oval redonda a ovaloblonda
1.50 - 1.75	Oval oblonda a rectangular oblonda

Nota. Rangos y características de la cuenca según su forma por el índice de compacidad. Elaborado por: Los autores con información de (Sheng, 1992).

Para determinar la forma de la cuenca se toma en cuenta la tabla de rangos, por lo tanto, se define que la cuenca del río Chota es Oval oblonda a rectangular oblonda.

Factor de Forma Kf

Según (Gutierrez, 2014) "es la relación entre el área de drenaje y la longitud axial de la cuenca" y se determina con la siguiente expresión:

$$Kf = \frac{B}{L}$$

$$B = \frac{A}{L}$$

$$Kf = \frac{A}{L^2}$$

Donde:

A =área de drenaje [km]

 $L = longitud \ axial \ de \ la \ cuenca \ [km]$

entonces:

$$Kf = \frac{1931.08}{49.28^2} = \mathbf{0.80}$$

Tabla 30.Rangos del coeficiente de forma.

Kf	Interpretación
> 1	Cuenca achatada, tendencia a ocurrencia de crecidas.
<1	Cuenca alargada, baja susceptibilidad a las crecidas.

Nota. Interpretación de la cuenca según su coeficiente de forma. Elaborado por: Los autores con Información tomada de (Reyes, Ulises, & Carvajal, 2014).

Dado este resultado de factor de forma de la cuenca del río Chota y mediante la tabla 30 se determina que por las condiciones de la misma tiene baja susceptibilidad a las crecidas.

4.1.4.2. Características topográficas

Se debe tomar en cuenta a la pendiente como un factor significativo para la cuenca ya que presenta relación con el relieve, por lo que al tener un valor elevado y dependiendo de las condiciones del suelo este provocará erosión y al vincularse en la corriente principal disminuirá el tiempo de concentración (Bustamante, 2019).

Pendiente media de la cuenca (S)

La pendiente media es una característica primordial porque presenta influencia en la infiltración, escurrimiento superficial y la humedad del suelo, en el efecto del agua al caer a la superficie, por la velocidad que adquiere y la erosión que se produce (Gutierrez, 2014).

Para determinar la pendiente media de la cuenca se realizará un análisis estadístico de la media ponderada de las pendientes dentro de un área, en la que podríamos considerar constante la máxima pendiente (Gutierrez, 2014).

Mediante la utilización del programa ArcGis 10.5 se pudo obtener las pendientes mínimas y máximas de la cuenca del río Chota.

Tabla 31.Pendiente media de la cuenca

Clase	Pendiente mínima	Pendiente máxima	Promedio	Ocurrencias	Promedio x Ocurrencias
1	0	4.76	2.38	4019	9565.22
2	4.76	9.52	7.14	4734	33800.76
3	9.52	14.28	11.9	5150	61285
4	14.28	19.04	16.66	3879	64624.14
5	19.04	23.79	21.415	2780	59533.7
6	23.79	28.55	26.17	2423	63409.91
7	28.55	33.31	30.93	1970	60932.1
8	33.31	38.07	35.69	1453	51857.57
9	38.07	42.83	40.45	801	32400.45
10	42.83	47.6	45.215	211	9540.365
		Σ		27420	446949.22

Nota. Análisis estadístico de la cuenca en función a sus pendientes y probabilidad de ocurrencias. Elaborado por: Los autores con el programa ArcGIS 10.5.

La fórmula para determinar la pendiente media es la siguiente:

entonces:

$$S = \frac{\Sigma (Promedio \times Ocurrencias)}{\Sigma (Ocurrencias)}$$
$$S = \frac{446 949.22}{27 420}$$
$$S = 16.30 \%$$

Tabla 32.Rangos de pendiente y tipo de terreno.

Rangos de Pendiente	Tipo de terreno
0 -2	Llano
2 - 5	Suave
5 - 10	Accidentado medio
10 - 15	Accidentado
15 - 25	Fuertemente accidentado
35 - 50	Escarpado
>50	Muy escarpado

Nota. Identificación del tipo de terreno en función a su pendiente Elaborado por: Los autores con información tomada de (Gutierrez, 2014)

Teniendo en cuenta la tabla 32 de clasificación de cuencas dependiendo de la pendiente media, se determina que la cuenca del río Chota, tiene un tipo de relieve fuertemente accidentado.

Pendiente media del río

Es la variación de elevación del río respecto a la cota mayor y la menor a lo largo de su longitud, también conocida como pendiente media (Gutierrez, 2014) y se calculará mediante el método de las elevaciones extremas:

$$Ir = \frac{C_{m\acute{a}x} - C_{min}}{L_r} \times 100$$

Donde:

 $C_{m\acute{a}x} = cota \, m\acute{a}xima \, [m. \, s. \, n. \, m]$

 $C_{min} = cota minima [m. s. n. m]$

 $L_r = longitud del río [m]$

entonces:

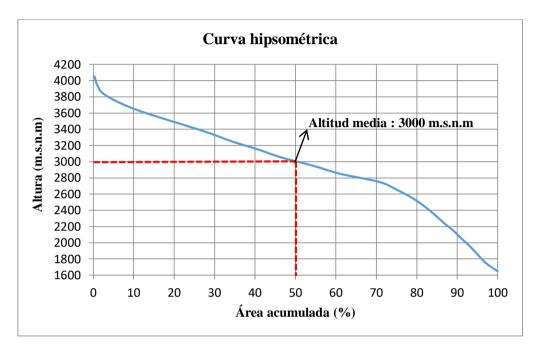
$$Ir = \frac{4100 - 1600}{76287.87} \times 100$$

$$Ir = 3.27 \%$$

Curva hipsométrica

Permite conocer de qué forma está distribuida el área sobre cada cota, representando de cierta manera el relieve de la cuenca (Gutierrez, 2014).

Para graficar la curva hipsométrica en las ordenadas se dispone los valores de altitud, mientras que el valor de las abscisas es el producto de la ponderación de las áreas con respecto a la altitud media, como se presenta en la tabla 33 y en la figura 35 respectivamente.


Tabla 33.Datos para la curva hipsométrica de la zona de estudio.

Intervalo entre curvas de nivel	Cota media (m)	Área (km2)	Cota media x Área	Área / Área total (%)	Porcentaje de área acumulado (%)
4100-4000	4050	5.695	23063.576	0.296	0.296
4000 - 3900	3950	11.712	46262.412	0.608	0.903
3900 - 3800	3850	24.424	94032.685	1.268	2.171
3800 - 3700	3750	63.983	239935.103	3.321	5.491
3700 - 3600	3650	88.545	323187.954	4.595	10.087
3600 - 3500	3550	115.144	408762.503	5.976	16.062
3500 - 3400	3450	125.410	432665.656	6.508	22.571
3400 - 3300	3350	120.622	404084.337	6.260	28.831
3300 - 3200	3250	104.837	340720.777	5.441	34.272
3200 - 3100	3150	124.852	393285.126	6.480	40.751
3100 - 3000	3050	113.562	346364.222	5.894	46.645
3000 - 2900	2950	148.560	438252.490	7.710	54.355
2900 - 2800	2850	130.032	370592.300	6.748	61.103
2800 - 2700	2750	186.198	512044.484	9.663	70.766
2700 - 2600	2650	86.237	228529.041	4.476	75.242
2600 - 2500	2550	72.478	184820.042	3.761	79.003
2500 - 2400	2450	55.696	136455.629	2.890	81.894
2400 - 2300	2350	47.741	112191.766	2.478	84.371
2300 - 2200	2250	42.892	96506.613	2.226	86.597
2200 - 2100	2150	47.323	101743.719	2.456	89.053
2100 - 2000	2050	39.381	80731.710	2.044	91.097
2000 - 1900	1950	42.653	83173.348	2.214	93.311
1900 - 1800	1850	36.043	66678.947	1.871	95.181
1800 - 1700	1750	37.483	65594.827	1.945	97.127
1700 - 1600	1650	55.367	91355.423	2.873	100
		1926.872	5621034.69	100	

Nota. Intervalos de las curvas de nivel de la cuenca con su respectiva área. Elaborado por: Los autores con el paquete computacional ArcGIS versión 10.5.

Figura 35.

Curva hipsométrica de la cuenca del río Chota.

Nota. Altitud media de la cuenca en función a la curva hipsométrica. Elaborado por: Los autores mediante el paquete computacional Excel

Altitud media de la cuenca

Es la relación que existe entre la suma de los productos de la altitud media y dos curvas de nivel consecutivas sobre el área total de la cuenca. (Gutierrez, 2014). Se determina con la siguiente ecuación:

$$Hmedia = \frac{\Sigma (A_c \times H_c)}{\Sigma A}$$

Donde:

 $A_c = \text{\'A}rea\ comprendida\ entre\ dos\ curvas\ de\ nivel\ consecutivas\ [km]$

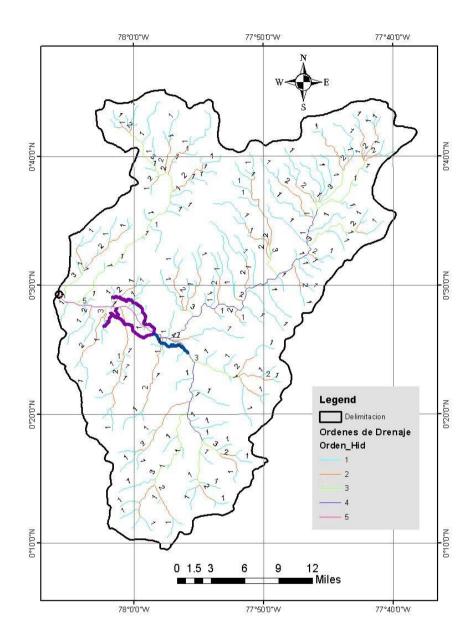
 $H_c = Altitud media entres cotas adyacentes [m]$

A =Área total de la cuenca [km^2]

entonces:

$$Hmedia = \frac{5781034.69}{1931.08}$$

Hmedia = 2995 m.s.n.m


Según los datos registrados con ArcGIS, la elevación media de la cuenca es: 3000 (m.s.n.m).

4.1.4.3.Drenaje de la cuenca

El sistema de drenaje está constituido por el río principal y sus respectivos afluentes, cuyo punto de estudio se encuentra cercana la captación, que nos permite realizar una evaluación hidrológica de la cuenca (Gutierrez, 2014).

Figura 36.

Ordenes de drenaje de la cuenca.

Nota. Identificación del grado de ramificación. Elaborado por: Los autores con el programa ArcGIS versión 10.5.

Ordenes de drenaje

De acuerdo con los diferentes afluentes se puede presentar el grado de ramificación del sistema de drenaje, asignándoles de forma ascendente desde el origen de la divisoria hasta descargar en el cauce principal. (Bustamante, 2019)

A las nacientes o ríos que no poseen afluentes se los denomina de orden 1, la unión de ríos de orden 1 se clasifica como río de orden 2, la unión de ríos de orden 2 se los designa de orden 3 y así sucesivamente. La cantidad de ríos de cada orden indica el orden de drenaje de los ríos de la cuenca (Vásconez, y otros, 2019).

Densidad de drenaje

Es la capacidad que tiene una cuenca hidrográfica para evacuar con mayor o menor facilidad aguas provenientes de las precipitaciones que quedan sobre la superficie de la tierra dependiendo del grado de saturación que presenta el suelo. Es decir, es la relación entre longitud total de drenaje y el área de la cuenca (Gutierrez, 2014), se determina con la siguiente expresión:

$$\mathbf{Dd} = \frac{L}{A}$$

Dónde:

L = longitud total de drenaje [km]

A =área de la cuenca [km^2]

entonces:

$$Dd = \frac{956.83}{1931.08}$$

$$Dd = 0.495 \approx 0.50$$

Tabla 34.Valores de densidad de drenaje de una cuenca

Densidad de Drenaje (km/km2)	Categoría		
< 0.5	Pobre		
0.5 - 1.5	Regular		
1.5 - 2.5	Buena		
2.5 - 3.5	Muy buena		
>3.5	Bien drenadas		

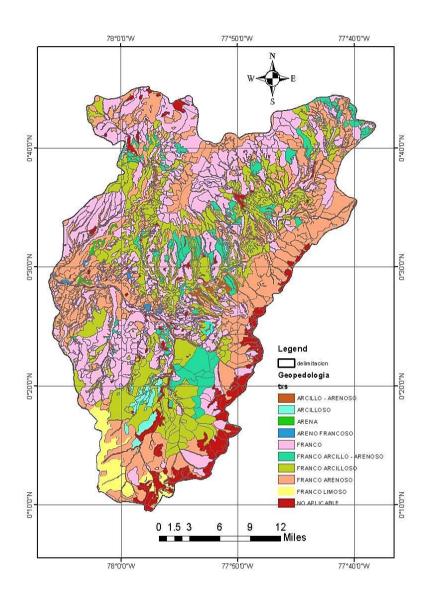
Nota. Categorización de la cuenca en función a la densidad de drenaje. Elaborado por: Los autores con información de (Reyes, Ulises, & Carvajal, 2014).

Se determina que la densidad de drenaje es 0.50, por lo tanto, la capacidad de la cuenca es regular.

4.1.4.4.Suelos

Es de gran importancia su análisis ya que los suelos desempeñan un factor fundamental en el fenómeno de la escorrentía, dependiendo de su permeabilidad se generará de forma más rápida, es decir que presenta una relación directa (Gutierrez, 2014).

La caracterización de la cuenca de estudio se realizará en función a su textura y uso, el cual nos brindará una visión general de las condiciones de suelo.


Textura de Suelos

"Es la relación relativa de arena, limos y arcillas contenidos en el suelo; es decir que atendiendo a su textura, los suelos se clasifican en arenosos, limosos y arcillosos según el componente predominante" (Cadena V., 2016).

Basándose en la información obtenida del Portal Ministerio de Ambiente, Agua y Transición Ecológica (MAAE), la cual se procesó mediante el programa ArcGIS 10.5 para la caracterización de suelo, como se puede observar en la siguiente figura 37.

Figura 37.

Textura de suelos de la zona de estudio.

Nota. Identificación de los suelos que intervienen en la cuenca. Elaborado por: Los autores con el programa ArcGIS 10.5

Clasificación de Hidrológica del Suelo

Finalmente, después de determinar la textura del suelo se le asigna el grupo hidrológico que corresponde, de acuerdo al procedimiento Soil Conservation Service (SCS).

Tabla 35.Grupos Hidrológicos rangos y características

Grupo	Textura	Tasa Infiltración (mm/h)	Profundidad Efectiva del suelo (cm/denominación)		Drenaje de suelo	Movimiento del agua en el suelo	
	Arenoso	12	160	_	Muy Excesivamente drenados	Muy Rápido	
A	Areno franco	11	145	Muy Profundos	Excesivamente drenados	• •	
	Franco arenoso	10	130	_	Algo Excesivamente	Rápido	
	Franco	9	115	Profundos	drenado	_	
В	Franco limoso	8	100		Moderadamente bien drenados	Moderado	
	Limoso	7	85	Moderadamente			
	Franco arcillo- arenoso	6	70	profundos	Bien drenados	Optimo	
C	Franco arcilloso	5	55		Moderadamente bien drenados	Moderado	
	Franco arcillo limoso	4	40	Superficiales	Imperfectamente	Lento	
	Arcillo arenoso	3	25	Muy superficiales	drenados	Lemo	
D	Arcillo limoso	2	10	Ext.	Escasamente drenado		
	Arcilloso	1	0	Superficiales	Muy escasamente drenado	Muy lento	

Nota. Permite clasificar a los suelos en grupos hidrológicos. Elaborado por: Los autores con información procesada de Engineering Field Manual (SCS,1982).

En la tabla 35 se definen cuatro grupos de acuerdo al tipo de suelo, presentan diferentes características como infiltración, profundidad efectiva, drenaje y movimiento de agua en el suelo, a continuación, se describe cada uno de los grupos:

Grupo A

Arena profunda, suelos profundos depositados por el viento y limos agregados, presentan una textura de arenoso a franco-arenoso, una tasa de infiltración de 10-12 mm/h, su drenaje se encuentra excesivamente drenado y el movimiento de agua en el suelo varia de muy rápido a rápido.

Grupo B

Suelos poco profundos depositados por el viento y marga arenosa, presenta una textura de franco a limoso, una tasa de infiltración de 7-9 mm/h, su drenaje se encuentra bien drenado y el movimiento de agua en el suelo varia de rápido a moderado.

Grupo C

Margas arcillosas y arenosas, poca profundidad, alto contenido en arcilla y bajo contenido orgánico, presenta una textura de franco arcillo-arenoso a franco-arcillo-limoso, una tasa de infiltración de 4-6 mm/h, su drenaje se diversa de bien drenado a imperfectamente drenado y el movimiento de agua en el suelo varia de optimo a lento.

Grupo D

Suelos expansibles cuando se mojan, altamente plásticas y algunos son salinos, presenta una textura arcillo-arenoso a arcilloso, una tasa de infiltración 1-3 mm/h, su drenaje diverso de imperfectamente a escasamente drenado y el movimiento de agua en el suelo varia de lento a muy lento.

Por lo tanto, una vez definido los grupos y con la información procesada en paquete computacional ArcGIS 10.5 se asigna a cada textura del suelo su grupo hidrológico correspondiente; además el área parcial que tiene cada uno de estos, a continuación, se presenta la tabla 36:

Tabla 36. Clasificación del suelo según textura y grupo hidrológico

Textura	Grupo Hidrológico	Área (km2)	Área cuenca (km2)	Área parcial (%)
Arcillo - Arenoso	D	8.44		0.44
Arcilloso	D	19.08		0.99
Arena	A	3.65		0.19
Areno Francoso	A	4.32		0.22
Franco	В	615.55	1931.32	31.87
Franco Arcillo - Arenoso	C	172.45	1931.32	8.93
Franco Arcilloso	C	312.71		16.19
Franco Arenoso	C	605.9		31.37
Franco Limoso	В	58.67		3.04
No Aplicable	-	130.57		6.76

Nota. Porcentaje de áreas según el tipo de suelo que intervienen en la cuenca. Elaborado por: Los autores con el programa ArcGIS 10.5.

Se determina que el suelo que ocupa mayor área de la cuenca es el Tipo C con 56.492%, seguido del Tipo B con 34.91%, el Tipo D con 1.42%, y finalmente el Tipo A con 0.412%.

Uso de suelo de la cuenca

Este parámetro se considera para determinar el Valor de CN, dentro del cual se destaca el suelo y el tratamiento. Estos parámetros se clasifican en relación con las crecientes que pueden producir el escurrimiento.

Desde la información generada en el gráfico 37 y con el uso del paquete computacional Excel se procede a caracterizar la cuenca en función del uso de suelo, se va agrupando las diferentes clases con fines agrícolas, es decir; los diferentes tipos de cultivos que tiene la zona. Las zonas de pastizales o praderas se presentan a manera de áreas de conservación y sistemas de producción pecuaria, áreas de fuentes de agua como sabanas y finalmente bosques y zonas protegidas, conforme se indica en la tabla 37 de forma resumida.

Tabla 37.Uso agrícola de la zona de estudio

Uso Agrícola	Área Parcial (%)
Tierra cultivada	22.164
Pradera o pastizales	43.866
Sábanas (vegas de ríos)	18.678
Bosques	14.481

Nota. Porcentaje de áreas parciales según el uso agrícola de la cuenca. Elaborado por: Los autores con el programa ArcGIS 10.5.

Condición Hidrológica de la cuenca

Durante un evento de precipitación la cobertura vegetal influye en varios parámetros como son la intercepción, evapotranspiración y escurrimiento, pero de manera principal en la infiltración. (Gutierrez, 2014)

El índice de cobertura vegetal nos permite establecer el estado de la cuenca para la infiltración y condición hidrológica. La tabla 38 nos ayuda a identificar su condición a partir de rangos de porcentajes.

Tabla 38.Rangos de condición hidrológica.

Condición	Cobertura Vegetal		
Buena	>75%		
Regular	50% - 75%		
Mala	<50%		

Nota. Porcentajes de cobertura vegetal. Elaborado por: Los autores con información tomada de (Gutierrez, 2014)

El porcentaje de la cobertura de la cuenca es de 99.19%, por lo tanto, se determina que la condición hidrológica es buena.

Numero de Curva

Es un numero adimensional, que se utiliza para estimar la infiltración.

$$I_a = 0.2 \times S$$

S se expresa en función del número de curva con la siguiente expresión:

$$S(mm) = 25.4 \left[\frac{1000}{CN} \right] - 10$$

Dónde:

 $I_a = abstracci\'on\ inicial$

S = infiltración potencial

CN = número de curva

Condición de humedad antecedente

Es necesario establecer la condición de humedad antecedente del suelo de la cuenca, existen tres condiciones:

Condición I: (Suelo seco; no aplicable a crecida de proyecto; caudales pequeños)

Los suelos en la cuenca están secos, pero no hasta el punto de marchitamiento, cuando se aran o se cultivan bien. Esta condición no se considera aplicable al cálculo para determinar la avenida de proyecto porque resulta caudales pequeños.

Condición II: (Suelo medio; asociado a crecidas anuales o promedios)

Los suelos en la cuenca, se encuentran en estado de humedad normal.

Condición III: (Suelo húmedo; crecidas máximas, caudales grandes)

Los suelos en la cuenca se encuentran en estado muy húmedo, esto se presenta cuando ha llovido mucho o poco y han ocurrido bajas temperaturas durante los cinco días anteriores a la tormenta, el suelo se encuentra casi saturado.

La estimación del número de curva depende de la cobertura y tipo de suelo y la condición de humedad antecedente. El Soil Conservation Service presenta tablas para seleccionar un valor representativo para cada escenario, a continuación, podemos apreciar en la tabla 39 características para asignar un numero de curva.

Tabla 39.Números de la curva para uso de tierra y grupo hidrológico

T	Hao do Tianno			Grupo Hidrológico				
Uso de Tierra			В	C	D			
Tierra cultivada	Sin tratamientos de conservación	72	81	88	91			
Herra cultivada	Con tratamientos de conservación	62	71	78	81			
Duo dono o montinolos	Condición mala	68	79	86	89			
Pradera o pastizales	Condición buena	39	61	74	80			
Sábanas (vegas de ríos) Condición buena		30	58	71	78			
D a a a a a a	Ralo, cobertura pobre	45	66	77	83			
Bosques	Cobertura buena	25	55	70	77			

Nota. Permite determinar el número de curva según el uso de tierra. Elaborado por: Los autores con información tomada de (Gutierrez, 2014).

En la tabla 40 se procede a determinar el valor del número de curva ponderada tomando en cuenta que la condición de humedad antecedente es normal y la abstracción inicial es el 20% de la infiltración potencial.

Tabla 40.Determinación de número de curva ponderada de la zona de estudio

Clasificación Hidrológica	% Área Parcial	Uso Agrícola	% Uso	CN	% Área parcial x %Uso x CN	CN ponderado
		Tierra cultivada	22.16	62	0.06	
Suelo Tipo A	0.412	Pradera o pastizales	43.87	39	0.07	0.17
Suelo Tipo A	0.412	Sábanas(vegas de ríos)	18.68	30	0.02	0.17
		Bosques	14.48	25	0.01	
	34.910	Tierra cultivada	22.16	71	5.49	21.40
Suelo Tipo B		Pradera o pastizales	43.87	61	9.34	
Suelo Tipo B		Sábanas(vegas de ríos)	18.68	58	3.78	
		Bosques	14.48	55	2.78	
		Tierra cultivada	22.16	78	9.77	
Suala Tina C	56.492	Pradera o pastizales	43.87	74	18.34	41.32
Suelo Tipo C	30.492	Sábanas(vegas de ríos)	18.68	71	7.49	41.52
		Bosques	14.48	70	5.73	
		Tierra cultivada	22.16	81	0.26	
Carala Tima D	1 425	Pradera o pastizales	43.87	80	0.50	1 10
Suelo Tipo D	1.425	Sábanas(vegas de ríos)	18.68	78	0.21	1.12
		Bosques	14.48	77	0.16	

Nota. Obtención del número de curva ponderado. Elaborado por: Los autores con el paquete computacional ArcGIS 10.5.

A continuación, se determina el valor total ponderado del número de curva de los 4 tipos de suelos que presenta la cuenca, además se considera que la condición antecedente de humedad es normal, por lo tanto:

$$C_{II} = CNponderado_{STA} + CNponderado_{STB} + CNponderado_{STC} + CNponderado_{STD}$$

$$C_{II} = 0.17 + 21.40 + 41.32 + 1.12$$

$$C_{II} = \mathbf{64.01}$$

Para determinar el número de curva que representa al caudal máximo de escorrentía es la perteneciente al estado de humedad antecedente tipo III, es decir el suelo se encuentra húmedo, por lo tanto, la curva correspondiente a la condición de humedad mencionada corresponde la siguiente ecuación:

$$CN_{III} = \frac{23 \times CN_{II}}{10 + (0.13 \times CN_{II})}$$

entonces:

$$CN_{III} = \frac{23 \times 64.01}{10 + (0.13 \times 64.01)}$$
$$CN_{III} = 80.36$$

El valor de numero de curva de la cuenca para determinar el caudal es de 80.36, a partir de esta valoración se calculará la infiltración total (S).

entonces:

$$S(mm) = 25.4 \left[\frac{1000}{80.36} \right] - 10$$

$$S(mm) = 306.07 mm/h$$

4.2. Estimación de caudales máximos, medios y mínimos del sistema de riego

4.2.1. Método racional

Este método permite determinar el caudal máximo de escurrimiento producido por una precipitación de intensidad constante y que cae homogéneamente sobre la superficie de una cuenca desde 300 a 500 hectáreas (Ha) (Gutierrez, 2014).

Dado que el área de la cuenca de estudio es mayor a la propuesta por este método para su aplicación, el caudal que se obtiene será orientado a modo comparativo, de tal forma que el caudal de escurrimiento producido por una determinada precipitación está en función de las siguientes variables presentes en la siguiente ecuación:

$$Q=\frac{C*I*A}{3.6}$$

Donde:

 $Q = Caudal (m^3/s)$

A=Área de la cuenca (km²)

I=Intensidad de lluvia (mm/h)

C=Coeficiente de escorrentía (adimensional)

4.2.1.1 Intensidad

La intensidad se obtiene basándose en las curvas de IDF (Intensidad-Duración-Frecuencia) las cuales son elaboradas por el INAMHI, se selecciona la ecuación para una intensidad de precipitación máxima diaria correspondiente a la estación más cercana a la zona de estudio. Para determinar la intensidad, se tomará la estación M0105 Otavalo.

Tabla 41. Ecuaciones de intensidad para estación M0105

Est	Estación		T	.	D4
Código	Nombre	(minutos)	tiempo Ecuaciones (minutos)	R	R2
		5 < 30	$I = 139.3508*T^{0.1925}*t^{-0.4694}$	0.9818	0.964
M0105	Otavalo	30 < 120	$I = 386.3558*T^{0.1757}*t^{-0.7396}$	0.9948	0.9897
		120 < 1440	$I = 860.1085 * T^{0.1672} * t^{-0.9004}$	0.9987	0.9975

Nota. Ecuaciones de intensidad para los diferentes intervalos de tiempo. Elaborado por: Los autores con información de (INAMHI, 2015).

Uno de los factores que intervienen en la ecuación son la intensidad para un periodo de retorno determinado, se trabajará con una intensidad de precipitación máxima diaria de 1440 minutos y un periodo de retorno de 25 años. En la tabla 42 se identifica el valor de acuerdo con los parámetros establecidos, como se muestra a continuación:

Tabla 42.Intensidades máximas estación M0105

Periodo de Retorno T (años)						
T	2	5	10	25	50	100
5	74.8	89.2	102	121.7	139	158.9
10	54	64.5	73.7	87.9	100	114.7
15	44.7	53.3	60.9	72.6	83	94.9
20	39	46.6	53.2	63.5	72.5	82.9
30	35.3	41.4	46.8	55	62.1	70.1
60	21.1	24.8	28	32.9	37.2	42
120	13	15.1	17	19.8	22.2	24.9
360	4.8	5.6	6.3	7.4	8.3	9.3
1440	1.4	1.6	1.8	2.1	2.4	2.7

Nota. Identificación del periodo de retorno. Elaborado por: Los autores con información de (INAMHI, 2015).

Tiempo de concentración

Es el tiempo que se demora una partícula de agua caída en el punto de la cuenca más alejado hasta el punto de estudio o desfogue (Gutierrez, 2014). Para dicho parámetro se tomará en cuenta las siguientes ecuaciones:

Fórmula de Kirpich

$$Tc = \frac{0.01947 \times L^{0.77}}{S^{0.385}}$$

Donde:

Tc = tiempo de concentración [min]

 $L = longitud \ del \ cauce \ principal \ [m]$

S = pendiente media del rio [m/m]

entonces:

$$Tc = \frac{0.01947 \times 76287.87^{0.77}}{0.033^{0.385}}$$

$$Tc = 416.13 \ min$$

Fórmula de Kirpich California (U.S Bureau of reclamation, 1973)

$$Tc = \left(\frac{0.870 \times L^3}{H}\right)^{0.385}$$

Donde:

Tc = tiempo de concentración [h]

L = longitud del cauce principal [km]

H = difencia entre las elevaciones extremas de la cuenca [m]

entonces:

$$Tc = \left(\frac{0.870 \times 76.29^3}{2500}\right)^{0.385}$$

Tc = 6.96 horas

Tc = 417.73.min

Fórmula de Kirpich California (U.S Bureau of reclamation, 1973)

$$Tc = 0.355 \times \left(\frac{L}{\sqrt{Ir}}\right)^{0.77}$$

Donde:

Tc = tiempo de concentración [horas]

 $L = lomgitud principal del cauce[km^2]$

Ir = pemdiente media del río [m/m]

entonces:

$$Tc = 0.066 \times \left(\frac{76.29}{\sqrt{3.27}}\right)^{0.77}$$

Tc = 6.93 horas

Tc = 416 min

Se cuenta con varias ecuaciones para determinar el tiempo de concentración, se realiza un promedio del resultado entre estas, obteniendo un valor de **416.62 min** para la cuenca río Chota.

Una vez obtenido ya los diferentes parámetros que intervienen en la intensidad, se procede a reemplazar los valores.

$$I = 860.1085 * T^{0.1672} * t^{-0.9004}$$

$$I = 860.1085 * 2.1^{0.1672} * 416.62^{-0.9004}$$

$$I = 4.26 mm/h$$

4.2.1.2.Coeficiente de escorrentía

Es la variable menos precisa dentro del método racional, existen diferentes factores que intervienen como son las características y condiciones del suelo. Este coeficiente puede variar entre 0 a 1; cero para terrenos impermeables y 1 para cuencas totalmente saturadas (Gutierrez, 2014).

Para la estimación del coeficiente de escorrentía nos basaremos en la siguiente tabla:

Tabla 43.Coeficientes de escorrentía para ser usados en el método racional

	Periodo de retorno (años)						
Característica de la superficie	2	5	10	25	50	100	500
Áreas desarrolladas							
Asfáltico	0.73	0.77	0.81	0.86	0.90	0.95	1.00
Concreto/Techo	0.75	0.80	0.83	0.88	0.92	0.97	1.00
Zonas verdes (Jardines, parqu	es, etc.)						
Condición Pobre (cubierta de	pasto menor	del 50% del d	área)				
Plano, 0-2%	0.32	0.34	0.37	0.40	0.44	0.47	0.58
Promedio. 2-7%	0.37	0.40	0.43	0.46	0.49	0.53	0.61
Pendiente, superior a 7%	0.40	0.43	0.45	0.49	0.52	0.55	0.62
Condición Promedio (cubierta d	e pasto del 50	0% al 75% de	el área)				
Plano, 0-2%	0.25	0.28	0.30	0.34	0.37	0.41	0.53
Promedio. 2-7%	0.33	0.36	0.38	0.42	0.45	0.49	0.58
Pendiente, superior a 7%	0.37	0.40	0.42	0.46	0.49	0.53	0.60
Condición Buena (cubierta de	pasto mayor	del 75% del	área)				
Plano, 0-2%	0.21	0.23	0.25	0.29	0.32	0.36	0.49
Promedio. 2-7%	0.29	0.32	0.35	0.39	0.42	0.46	0.56
Pendiente, superior a 7%	0.34	0.37	0.40	0.44	0.47	0.51	0.58
Áreas no desarrolladas							
Área de cultivo							
Plano, 0-2%	0.31	0.34	0.36	0.40	0.43	0.47	0.57
Promedio. 2-7%	0.35	0.38	0.41	0.44	0.48	0.51	0.60
Pendiente, superior a 7%	0.39	0.42	0.44	0.48	0.51	0.54	0.61
Pastizales							
Plano, 0-2%	0.25	0.28	0.30	0.34	0.37	0.41	0.53
Promedio. 2-7%	0.33	0.36	0.38	0.42	0.45	0.49	0.58
Pendiente, superior a 7%	0.37	0.40	0.42	0.46	0.49	0.53	0.60
Bosques							
Plano, 0-2%	0.22	0.25	0.28	0.31	0.35	0.39	0.48
Promedio. 2-7%	0.31	0.34	0.36	0.40	0.43	0.47	0.56
Pendiente, superior a 7%	0.35	0.39	0.41	0.45	0.48	0.52	0.58

Nota. Identificación del coeficiente de escorrentía en función a las características de la superficie. Elaborado por: Los autores con información procesada de (Gutierrez, 2014).

El valor de escorrentía adoptado es 0.42 este resulta del promedio de los coeficientes de áreas no desarrolladas (área de cultivo, pastizales y bosque), con pendientes que se encuentran en un rango de 2 a 7 % y para un tiempo de retorno de 25 años.

Reemplazando en la ecuación los valores de coeficiente de escorrentía, intensidad y área de la cuenca, se obtiene el siguiente caudal:

$$Q = \frac{0.42 \times 4.26 \times 1931.08}{3.6}$$

$$Q = 959.75 \, m^3/s$$

El caudal máximo determinado por el método racional es de 959.75 $\frac{m^3}{s}$.

4.2.2. Método del hidrograma unitario

El hidrograma unitario es la expresión gráfica de la escorrentía directa que se producirá en la salida de la cuenca si sobre ella se produjera una precipitación, la cual es distribuida homogéneamente en toda la superficie y con una intensidad constante a lo largo del periodo considerado (Sánchez, 2017).

El hietograma es la representación gráfica por lo general en forma de barras de la distribución de la precipitación en intervalos de tiempo de la misma duración previamente seleccionados (Gutierrez, 2014).

4.2.2.1. Determinación del hietograma de diseño

El hietograma será determinado según un evento de precipitación establecido en un lugar con una duración y periodo de retorno determinados. (Sánchez, 2017)

Para determinar la precipitación se utilizarán las ecuaciones de intensidad propuestas por el INAMHI "Determinación de Ecuaciones para el Cálculo de Intensidades Máximas de Precipitación" para la estación Otavalo, código M0105 esta es la más cercana a la zona de estudio, la lluvia será calculada para un periodo de retorno de 25 años.

Tabla 44.Ecuaciones para determinar la intensidad estación M0105

Intervalo de tiempo (minutos)	Ecuaciones
5 < 30	$I = 139.3508 * T^{0.1925} * t^{-0.4694}$
30 < 120	$I = 386.3558 * T^{0.1757} * t^{-0.7396}$
120 < 1440	$I = 860.1085 * T^{0.1672} * t^{-0.9004}$

Nota. Ecuaciones de intensidad para los diferentes intervalos de tiempo. Elaborado por: Los autores con información de (INAMHI, 2015).

Donde:

 $T = 25 \, a\tilde{n}os$

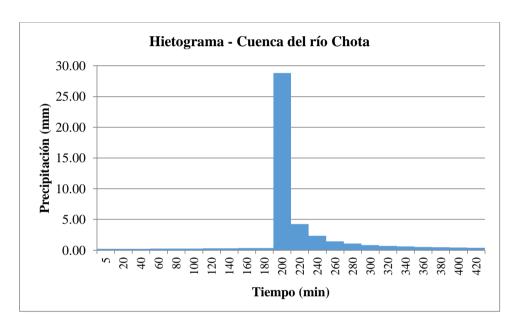
t = tiempo de intervalo [min]

Se realiza un análisis estadístico, determinando la intensidad para cada intervalo de tiempo, el mismo que se incrementara hasta igualarse al tiempo de duración; utilizando las diferentes ecuaciones, posteriormente se determina la precipitación para cada instante, como se muestra en la tabla 45.

Tabla 45. Precipitación total

Intervalo (min)	Intensidad (mm/h)	Precipitación acumulada (mm)	Variación de la precipitación (mm)
20	63.46	21.15	21.15
40	44.43	29.62	8.47
60	32.92	32.92	3.30
80	26.61	35.48	2.56
100	22.56	37.61	2.12
120	19.78	39.56	1.95
140	17.22	40.17	0.61
160	15.27	40.71	0.54
180	13.73	41.19	0.48
200	12.49	41.62	0.43
220	11.46	42.02	0.40
240	10.60	42.38	0.37
260	9.86	42.72	0.34
280	9.22	43.04	0.32
300	8.67	43.34	0.30
320	8.18	43.62	0.28
340	7.74	43.88	0.26
360	7.36	44.13	0.25
380	7.01	44.37	0.24
400	6.69	44.60	0.23
420	6.40	44.81	0.22

Nota. Determinación de la intensidad y precipitación en los diferentes intervalos de tiempo.


Elaborado por: Los autores

Este hietograma de diseño presenta una intensidad creciente desde su inicio hasta alcanzar la intensidad máxima, una vez alcanzada decrece gradualmente hasta el final de la tormenta.

En la figura 38 se puede apreciar el hietograma de precipitación neta determinada en la zona de estudio.

Figura 38.

Hietograma de la precipitación total

Nota. Precipitación máxima en un intervalo de tiempo de 200 minutos. Elaborado por: Los autores mediante el paquete computacional Excel

4.2.2.2.Precipitación Neta

Es la porción de precipitación neta resultante de la abstracción del terreno que generará la escorrentía superficial (Sánchez, 2017).

Para su cálculo se utiliza la siguiente ecuación:

$$P_n = \frac{(P - 0.2 \times S)^2}{(P + 0.8 \times S)}$$

Donde:

 $P_n = precipitación neta [mm]$

P = precipitación total [mm]

S = infiltración total [mm]

Los valores de precipitación total e infiltración ya fueron determinados, por lo que se reemplaza:

$$P_n = \frac{(44.81 - 0.2 \times 306.07)^2}{(44.81 + 0.8 \times 306.07)}$$
$$P_n = \mathbf{0.929} \ mm$$

4.2.2.3.Hidrograma triangular del SCS

El tiempo en el que se produce el caudal pico está determinado en función del gráfico del hidrograma sintético triangular

$$t_p = 0.5 \times D + t_r \approx 0.5 \times D + (0.6 \times t_c)$$

El valor del coeficiente 2.67 de la siguiente ecuación, se estableció posterior al análisis de varios hidrogramas el SCS, propone que promediamente el descenso de una crecida es 1.67 veces mayor que el tiempo en el que se produce la crecida, por lo que:

$$t_b = 2.67 \times t_p$$

La duración de la precipitación neta con el que se determinara el valor de caudal pico se puede calcular con la siguiente ecuación, para cuencas grandes:

$$D=2\sqrt{t_c}$$

Donde:

 $t_p = tiempo \ al \ pico \ del \ hidrograma \ unitario$

D = duracion de la lluvia efectiva en horas [h]

tr = tiempo de desfase de la cuenca en horas [h]

 t_c = tiempo de concentracion de la cuenca en horas [h]

Se conoce que el tiempo de concentración o retardo es 6.94 horas, este valor fue determinado al calcular el caudal de escorrentía por el método racional, entonces el tiempo en el que se produce el caudal pico (tp) es:

$$D = 2\sqrt{6.94}$$

$$D = 5.27 horas$$

Obtenemos el tiempo al pico del hidrograma unitario:

$$t_p = 0.5 \times 5.27 + (0.6 \times 6.94)$$

$$t_p = 6.799 \ horas$$

Una vez determinado el tiempo pico, se reemplaza y se obtiene el tiempo base del hidrograma unitario:

$$t_b = 2.67 \times t_p$$

$$t_b = 2.67 \times 6.799$$

$$t_b = 18.15 \ horas$$

Finamente se obtiene el caudal pico por milímetro de lluvia efectiva

$$Q_p = \frac{P_n \times A}{1.8 * t_h}$$

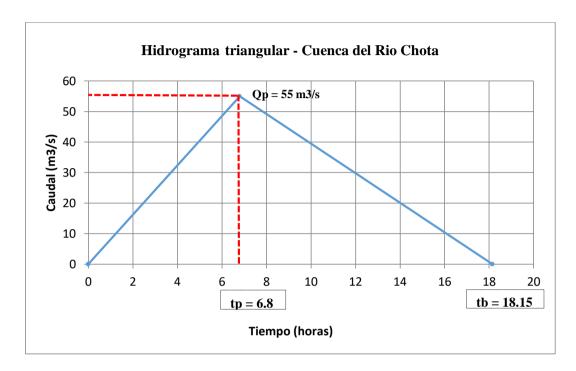
Donde:

 $Q_p = caudal \, pico \, [m^3/s]$

 $P_n = precipitac\'on neta [mm]$

A =área de la cuenca $[km^2]$

 $t_b = tiempo\ base\ [horas\]$

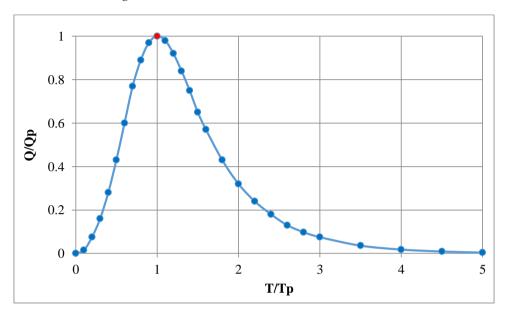

entonces:

$$Q_p = \frac{0.929 \times 1931.08}{1.8 \times 18.15}$$

$$Q_p = 54.97 \ m^3/s$$

Finalmente, obtenidos los diferentes parámetros se los representa gráficamente en la figura 39 como se presenta a continuación:

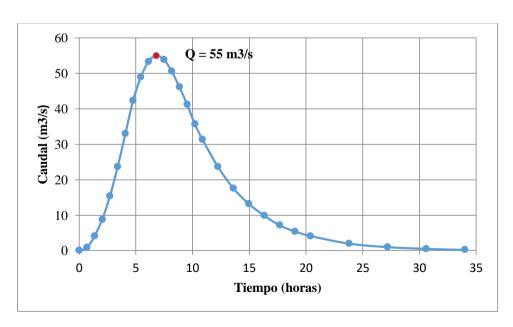
Figura 39.Hidrograma sintético triangular


Nota. Determinación del caudal pico. Elaborado por: Los autores mediante el paquete computacional Excel.

El caudal pico de crecida es 54.97m³/s, aproximadamente de 55.00m³/s.

4.2.2.4. Hidrograma unitario triangular del Soil Conservatiom Service (SCS)

Su denominación se describe a la forma del hidrograma, en el cual sus coordenadas se convierten al mismo tamaño, considerando que Qp=1 y Tp=1. Mediante el **anexo 2**, se grafica el hidrograma resultante en toda su extensión y con similar forma a una cuenca, en lugar de un triángulo geométrico (Sánchez, 2017).


Figura 40. Hidrograma unitario triangular

Nota. Interpretación del caudal unitario. Elaborado por: Los autores mediante la ayuda de paquete computacional Excel.

Figura 41.

Hidrograma de la cuenca

Nota. Caudal pico en función del hidrograma triangular. Elaborado por: Los autores mediante la ayuda de paquete computacional Excel.

4.2.3. Caudales de aprovechamiento

La determinación de estos caudales es de gran importancia, nos da a conocer las

variaciones que se producen en los caudales diarias, medios y mensuales para su

aprovechamiento, en una cuenca según su tamaño se procede a realizar diferentes estudios por

ejemplo en una pequeña se requieren estudios en sus caudales diarios, medios y anuales,

mientras que en cuencas grandes se requiere estudiar sequias o estiajes (Gutierrez, 2014).

4.2.3.1.Curva de duración general

Es una curva de frecuencias que nos indica el porcentaje de tiempo durante el cual los

caudales son iguales o excedidos, se puede construir con caudales anuales, medios o diarios.

Para su construcción se tomó los datos de la estación hidrológica H0015.

Los valores que se pueden determinar en esta curva de duración corresponden al caudal

máximo, medio y mínimo, cada uno con su porcentaje de excedencia como se indica a

continuación (Rojas, 2008):

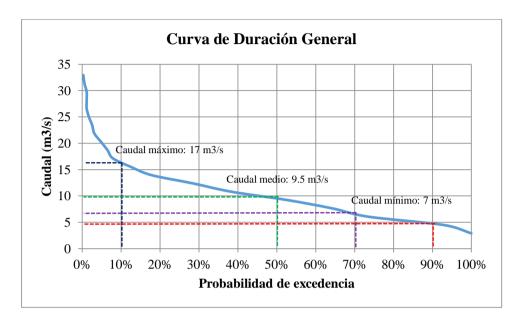
Probabilidad de excedencia de 10%: Caudal máximo

Probabilidad de excedencia de 50%: Caudal medio

Probabilidad de excedencia de 70%: Caudal mínimo

Probabilidad de excedencia de 90% a 95%: Caudal ecológico

La elaboración de la curva de duración general se realizó mediante los valores que se


indican en el anexo 3. En la figura 42 se presenta la curva de descarga que indica el caudal

máximo, medio y mínimo.

100

Figura 42.

Curva de duración general de la estación H0015

Nota. Se observa los caudales máximos, medios y mínimos. Elaborado por: Los autores mediante el paquete computacional Excel.

4.3. Relleno y validación de series de datos meteorológicos

En el Ecuador la precipitación es medida oficialmente por el INAMHI (Instituto Nacional de meteorología e hidrología) mediante pluviómetros estandarizados (convencionales y automáticos). Sin embargo, hay algunas estaciones que cuentan con registros hidrológicos y meteorológicos incompletos, por lo que es necesario estimar la precipitación, tomando en consideración valores de las estaciones cercanas (Gutierrez, 2014).

4.3.1. Relleno de datos

Para rellenar los datos faltantes de las estaciones que presentan registros incompletos, se utilizarán diferentes métodos como los siguientes

4.3.1.1. Proporción Normal

Consiste en ponderar los valores de lluvias de las estaciones identificadas las cuales cuenten con datos suficientes (mínimo 3), en proporción al valor normal de lluvia en la estación desconocida "x" con cada una de las estaciones índices, como se expresa en la siguiente ecuación (Gutierrez, 2014):

$$P_{x} = \frac{1}{3} * \left[\frac{N_{x}}{N_{A}} * P_{A} + \frac{N_{x}}{N_{B}} * P_{B} + \frac{N_{x}}{N_{C}} * P_{C} \right]$$

Donde:

 $P_x = Dato\ faltante\ a\ estimar$

 N_A , N_B , N_C = Precipitación anual normal de las estaciones índice.

 $P_A, P_B, P_C=$ precipitación de las estaciones índice considerada en el periodo de tiempo del dato a estimar

 $N_x = Precipitación anual normal de la estación <math>x$

A continuación, se presenta un ejemplo de relleno de datos por proporción normal para el año 2010 estableciendo como estación la M0324 en la que se va a estimar la precipitación en el mes de febrero y las estaciones índices son M0310, M0314 y M0315, por lo que todas cuentan con registros mensuales completos a lo largo del año, entonces:

$$P_{Febrero} = \frac{1}{3} * \left[\frac{70.23}{87.70} * 62.10 + \frac{70.23}{37.20} * 16.80 + \frac{70.23}{63.20} * 41.70 \right]$$

$$P_{Febrero} = 135.03 \ mm$$

En la tabla 46 se presenta los registros con los que se realizó el relleno de datos (en celda amarilla) para el actual ejemplo y de manera similar para los datos faltantes.

Tabla 46.Ejemplo de relleno de datos por proporción normal

Esta	ciones Mete	orológicas A	Año 2010	
	NA	NB	NC	NX
Mes	M0310	M0314	M0315	M0324
Enero	19.5	6.5	17.2	27.2
Febrero	62.1	16.8	41.7	42.58
Marzo	44.7	22.1	38.2	51.2
Abril	135.03	78.6	131.9	151.3
Mayo	87.4	69	99.2	116.3
Junio	94.1	41.1	29.4	84.4
Julio	96.2	30.4	48	97.6
Agosto	35.6	16.1	31.8	69.5
Septiembre	84	35.5	72.2	126.3
Octubre	120.7	27.2	49.5	80.8
Noviembre	208.1	55.2	116.4	146.2
Diciembre	112.8	48.2	82.9	109.4
				·
Promedio	87.75	37.23	63.20	96.38
Nx	70.23			

Nota. Resultado del relleno de datos de los meses de febrero y abril. Elaborado por: Los autores con el paquete computacional Excel.

El relleno de datos faltantes de precipitación media mensual dentro del periodo de análisis planteado (1999-2013) para el estudio se presenta en el **anexo 4**.

4.3.1.2.Regresión Lineal

Este método nos permite realizar un análisis entres dos o más variables, indicando la relación que entre estas dos se produce (Gutierrez, 2014).

La ecuación de regresión lineal es la siguiente

$$y = bx + a$$

Donde:

y = variable aleatoria dependiente.

 $a \ y \ b = coeficiente$ independientes obtenidos a traves de geometria analitica.

x = variable alatoria independiente.

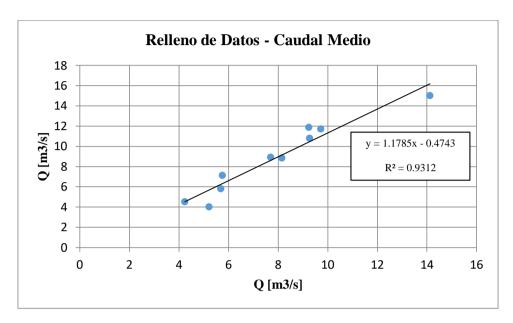
El coeficiente de correlación es un valor limitado entre -1 y +1, cuanto se acerque a 1 el grado de relación será más fuerte.

Este método se aplica para el relleno de datos de caudales medios mensuales, de las estaciones cercanas a la zona de estudio, los registros considerados por un periodo de 15 años (ver **anexo 5**), desde 1999 hasta 2013, cabe indicar que se consideró las series de datos continuas en las estaciones H016 y H017 que son a partir del 2007 al 2013.

Para determinar los coeficientes a y b de la recta se utilizó el paquete computacional Excel, nos proporciona la línea de tendencia con su ecuación correspondiente, además del coeficiente de correlación.

Como se indica en la tabla 47, según los criterios de CHADDOCK y APPOLOC se puede definir el grado de diferenciación de dos variables.

Tabla 47.Criterios de valoración del coeficiente de correlación según Chaddock y Appolov.


Rango Correlación R	Grado de correlación CHADDOCK	Rango Correlación R	Bondad de Pronóstico de APPOLOV
< 0.3	Muy bajo	-	
0.3 - 0.5	Bajo	-	
0.5 - 0.7	Medio	< 0.6	Insuficiente
0.7 - 0.9	Bueno	> 0.6	Bajo
0.9 -1.0	Muy bueno	>0.8	Suficiente
1	Funcional	>0.9	Buena

Nota. Rangos del coeficiente de correlación. Elaborado por: Los autores con información de (Gutierrez, 2014).

A continuación, se indica en la figura 43 y tabla 48, un ejemplo de relleno de datos utilizando el método de regresión lineal, en el grafico se observa la ecuación generada por las estaciones H016 y H017, para posteriormente completar los datos faltantes.

Figura 43.

Ecuación para el relleno de datos.

Nota. Se indica la ecuación lineal de las estaciones H016 y H017. Elaborado por: Los autores mediante el paquete computacional Excel.

Tabla 48.Ejemplo de relleno de datos con regresión lineal

Estaciones Hidrológicas Año 2010				
Mes	H016	H017		
Enero	4.239	4.502		
Febrero	5.137	5.58		
Marzo	5.215	4.011		
Abril	7.703	8.918		
Mayo	9.274	10.769		
Junio	9.726	11.693		
Julio	9.239	11.852		
Agosto	8.155	8.836		
Septiembre	5.759	7.117		
Octubre	5.691	5.804		
Noviembre	11.858	13.50		
Diciembre	14.128	15.01		

Nota. Resultado del relleno de datos en los meses de febrero y noviembre. Elaborado por: Los autores con el paquete computacional Excel.

Reemplazando los datos en la ecuación obtenida por la regresión lineal para obtener el dato faltante del mes de febrero de la estación H017, como se muestra continuación:

$$y = 1.1785x - 0.4743$$
$$y = 1.1785 * 5.137 - 0.4743$$
$$y = 5.58 \frac{m^3}{s}$$

4.3.2. Validación de información

Es necesario realizar una validación de los datos pluviométrico antes de iniciar un estudio hidrológico debido a la presencia de inconsistencia y heterogeneidades, las cuales se producen por múltiples razones tales como alteraciones naturales o inducidas por el hombre, por lo que deben ser corregidas con la finalidad de obtener resultados más precisos (Gutierrez, 2014).

Para llevar a cabo el análisis consistencia en el sistema de riego, se aplicará el método de dobles acumulaciones o también conocido como dobles masas.

4.3.2.1.Método de dobles acumulaciones (dobles masas)

Según (Gutierrez, 2014) es un método simple, el cual "consiste en graficar la precipitación acumulada de la estación cuya consistencia se desea establecer contra la precipitación media acumulada del grupo de estaciones cuyos datos se asumen consistentes".

Si la relación entre las dos series se mantienen estables, la representación gráfica presentará una tendencia lineal, caso contrario, presenta quiebres o saltos los cuales muestran inconsistencias sistemáticas y cambios en las condiciones de medición, instrumentación entre otros (Gutierrez, 2014).

Identificada la fuente de erros los datos deben ser corregidos mediante un factor de ajuste, el cual relaciona las pendientes de los dos segmentos de la línea recta (Gutierrez, 2014), con la siguiente ecuación:

$$P_C = \frac{\alpha_c}{\alpha_r} * P_r$$

Dónde:

 P_C : Precipitación ajustada o corregida

 α_c : Pendiente de la linea a la que se ajustarán los datos inconsistentes.

 α_r : Pendiente de la linea con datos incosistentes

 P_r : Precipitación observada

Para este método hemos seleccionado la M0310 como la estación de referencia (patrón) por lo que presenta mayor serie de registros y la M0314 estación destinada a realizar la homogenización de datos, debido a que es la más cercana nuestra zona de estudio.

Una vez realizado el procedimiento para determinar el análisis de consistencias en las estaciones de trabajo vecinas con respecto a la estación de referencia (anexo 6), se determina que existen homogeneidad con todas las estaciones.

4.3.3. Polígono de Thiessen

Es un método que permite establecer la precipitación media, bajo la condición que en cualquier punto de la cuenca la precipitación es semejante a la que se registra en el pluviómetro más cercano. Se obtiene mediante una poligonación de la cuenca y de la ponderación de las precipitaciones con relación al área de influencia proporcionada por la poligonación de cada estación (Gutierrez, 2014).

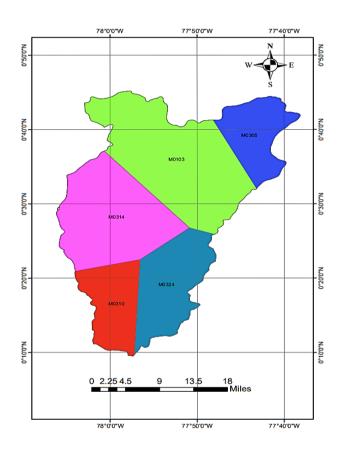
Una vez que se obtienen las áreas de los polígonos que se encuentra en el interior de la cuenca, se procede a determinar la precipitación media por medio de la siguiente expresión:

$$\bar{P} = \frac{\sum_{i=1}^{n} (a_i * P_i)}{A}$$

Donde:

 \bar{P} : Precipitación media (mm)

 a_i : Área de influencia del poligono de cada pluviómetro (km^2)


P_i: Precipitación correspondiente de cada pluviómetro dentro del área de influencia

A: Área total de la cuenca

En la figura 44 se presenta los polígonos generados en la cuenca que se determinó a través del programa ArcGIS versión 10.5, a partir de la disposición de las estaciones de la zona de estudio en su superficie.

Figura 44.

Polígonos de Thiessen de la cuenca

Nota. Poligonación de las estaciones dentro de la cuenca. Elaborado por: Los autores mediante el paquete computacional ArcGIS versión 10.5.

Posteriormente con la información obtenida en ArcGIS, se realiza una ponderación con cada una de las áreas de los polígonos generados, para determinar el valor de precipitación media anual, como se muestra en la tabla 49:

Tabla 49.Ponderado para determinar la precipitación media del sistema de riego.

Estación	Precipitación anual (mm)	Área (km2)	Lluvia ponderada (mm*km2)
M0103	858.2	668.85	574007.07
M0305	1139.19	219.9	250507.881
M0310	971.1	223.18	216730.098
M0314	461.9	505.2	233351.88
M0324	979	313.97	307376.63
	Total	1931.10	1581973.559

Nota. Precipitación anual y áreas de las estaciones. Elaborado por: Los autores con el paquete computacional Excel.

Aplicando la fórmula para obtener la precipitación media se tiene:

$$\bar{P} = \frac{1581973.56 \ mm * km^2}{1931.10 \ km^2}$$

$$\bar{P} = 819.21 \frac{mm}{a\tilde{n}o}$$

4.3.4. Método de las isoyetas

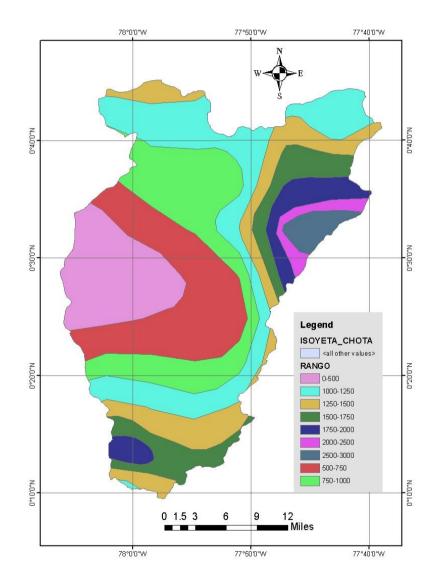
Las isoyetas son contornos de lluvias que se proyectan a partir de los datos de los pluviómetros y adquieren una forma parecida a las curvas de nivel, con lo cual representan un valor constante de lluvia. Estas líneas se trazan basándose en los diferentes valores de precipitaciones que presentan las estaciones ubicadas en la cuenca o cercanas a la misma, por lo que dividen una zona de precipitación superior de otra inferior (Gutierrez, 2014).

El valor de la precipitación media se obtiene mediante la siguiente ecuación:

$$\bar{P} = \frac{\sum_{i=1}^{n} (a_i * P_i)}{\sum_{i=1}^{n} a_i}$$

Donde:

 \bar{P} : Precipitación media (mm)


 a_i : Área entre isoyetas (km^2)

 P_i : Valor medio entre isoyetas (isomedia)

En la figura 45 se presentan las isoyetas generadas en el programa ArcGIS versión 10.5 mediante la herramienta "3D Analyst Tools" para un intervalo de 250 mm, a partir del dato de precipitación media anual de las estaciones de la zona de estudio.

Figura 45.

Mapa de isoyetas de la cuenca

Nota. Rango de las isoyetas en el área de la cuenca. Elaborado por: Los autores mediante el paquete computacional ArcGIS

Finalmente, con la información obtenida en ArcGIS, se realiza una ponderación con cada valor indicado entre isoyetas con su respectiva área, para determinar la precipitación media anual, como se muestra en la tabla 50:

Tabla 50.Ponderado para determinar la precipitación media del sistema de riego

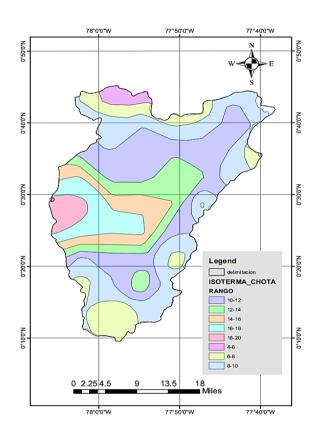
Rango Isoyetas (mm)	Isoyetas Media (mm)	Área entre Isoyetas (km2)	Isoyetas Medias * Área entre isoyetas (mm*km2)
0 - 500	250	249.23	62307.50
500-750	625	338.84	211775.00
750 - 1000	875	342.83	299976.25
1000 - 1250	1125	391.76	440730.00
1250 - 1500	1375	250.11	343901.25
1500 - 1750	1625	170.56	277160.00
1750 - 2000	1875	103.36	193800.00
2000 - 2500	2250	38.81	87322.50
2500 - 3000	2750	45.58	125345.00
,	Гotal	1931.08	2042317.50

Nota. Isoyetas con sus respectivas áreas. Elaborado por: Los autores con el paquete computacional Excel.

Reemplazando los datos en la ecuación, la precipitación media será:

$$\bar{P} = \frac{2042317.50 \ mm * km^2}{1931.08 \ km^2}$$

$$\bar{P} = 1057.60 \ \frac{mm}{a\tilde{n}a}$$


4.3.5. Isolíneas de temperatura

Con el mismo procedimiento para la determinación de la precipitación media en el método de las isoyetas, se obtiene el mapa de isolíneas de temperatura para posteriormente calcular la temperatura media anual.

Las isolíneas de temperatura media multianual se realizó por medio del programa ArcGIS versión 10.5 con la misma herramienta utilizada para la generación de isoyetas. En la figura 46 se presenta el mapa de isolíneas de temperatura desarrolladas para el sistema de riego, obteniendo como resultado la siguiente tabla:

Figura 46.

Mapa de isotermas de la cuenca

Nota. Rangos de isotermas dentro del área de la cuenca. Elaborado por: Los autores mediante el paquete computacional ArcGIS

Tabla 51.Ponderado para determinar la temperatura media del sistema de riego

Isotermas (mm)	Isoterma Media (°C)	Área entre Isotermas (km2)	Isotermas Medias * Área entre isotermas (°C*km2)
4 - 6	5	41.388	206.94
6 -8	7	220.158	1541.11
8 - 10	9	500.019	4500.17
10 - 12	11	538.232	5920.55
12 - 14	13	238.321	3098.17
14 - 16	15	167.433	2511.50
16 - 18	17	160.018	2720.31
18 - 20	19	65.507	1244.63
	Total	1931.076	21743.38

Nota. Isotermas con sus respectivas áreas. Elaborado por: Los autores con el paquete computacional Excel.

Por lo que se obtiene:

$$\bar{T} = \frac{21743.37 \, ^{\circ}C * km^2}{1931.08 \, km^2}$$

$$\bar{T} = 11.26 \, ^{\circ}C$$

4.4. Caracterización hidrológica de la fuente

La fuente se encuentra ubicada en el río Chota, en las coordenadas geográficas 6908.667 Norte y 724654.258 Este con una altitud de 732 msnm, perteneciente a la cuenca del "río Chota", los caudales característicos obtenidos para el sistema de riego son:

Qmax=
$$17.00 \text{ m}^3/\text{s}$$

Qmed= $9.50 \text{ m}^3/\text{s}$
Qmin= $7.00 \text{ m}^3/\text{s}$

4.5. Caracterización meteorológica de la zona de estudio

La zona de la cuenca de estudio presenta las siguientes características en sus componentes meteorológicos, los cuales se indica en la tabla 52:

Tabla 52.Caracterización climática de la zona de estudio

Precipitación media (mm)	1057.60	
Temperatura media (°C)	11.26	

Nota. Precipitación y temperatura media. Elaborado por: Los autores

CAPÍTULO V

DISEÑO HIDRÁULICO

5.1. Estimación de caudales de riego y humano

La información previa para la estimación de caudales, se obtuvo mediante el aforamiento en las compuertas de los márgenes izquierdo como derecho, las cuales se pueden observar en las tablas 24 y 25 del presente trabajo. Mientras que el caudal de consumo humano se encuentra en la tabla 9.

La dotación recomendado por la (Empresa Pública del Agua, 2016) es de 1 lt/s/Ha por lo que se procede a realizar una verificación en cada una de las compuertas, realizando una comparación de los caudales de aforamiento y el caudal real, el cual se determinó al multiplicar la dotación por el área de cada derivación. El área de riego que aporta las derivaciones se encuentra en el **anexo 7.**

Tabla 53.Caudal y apertura actual de las derivaciones margen izquierdo

Derivaciones Margen Izquierdo						
No	Apertura Compuerta	Área (Ha)	Dotación (lt/Ha/s)	Qriego real (lt/s)	Q Aforamiento Compuertas (lt/s)	
1	100	5.498	1.0	5.498	85.294	
2	100	10.464	1.0	10.464	77.568	
3	100	19.806	1.0	19.806	66.035	
4	100	33.686	1.0	33.686	83.577	
5	100	6.068	1.0	6.068	110.241	
6	100	4.929	1.0	4.929	92.432	
7	100	62.783	1.0	62.783	46.874	
8	100	67.610	1.0	67.610	31.650	
9	100	61.105	1.0	61.105	42.301	
10	100	65.497	1.0	65.497	48.614	
11	100	43.687	1.0	43.687	64.364	
12	100	124.020	1.0	124.020	54.195	
13	100	60.192	1.0	60.192	67.184	
14	100	27.999	1.0	27.999	50.150	
15	100	127.345	1.0	127.345	50.985	
16	100	24.089	1.0	24.089	33.885	
		Total		744.779	1005.35	

Nota. Caudal de riego y aforado de las derivaciones. Elaborado por: Los autores

Tabla 54.Caudal y estado actual de las derivaciones del margen derecho

Derivaciones Margen Derecho						
No	Apertura Compuerta	Área (Ha)	Dotación (lt/Ha/s)	Qriego real (lt/s)	Q Aforamiento Compuertas (lt/s)	
1	100	23.405	1.0	23.405	66.956	
2	100	51.053	1.0	51.053	62.589	
3	100	54.125	1.0	54.125	59.519	
4	50	21.585	1.0	21.585	27.123	
5	100	8.938	1.0	8.938	65.336	
6	100	60.013	1.0	60.013	67.242	
7	75	35.966	1.0	35.966	50.996	
8	50	32.861	1.0	32.861	40.590	
9	50	70.263	1.0	70.263	47.493	
10	50	33.177	1.0	33.177	46.974	
11	50	38.077	1.0	38.077	30.873	
12	50	22.184	1.0	22.184	40.412	
13	50	83.368	1.0	83.368	30.048	
14	50	76.189	1.0	76.189	41.641	
15	50	22.556	1.0	22.556	58.413	
16	50	48.102	1.0	48.102	11.566	
		Total		681.860	747.770	

Nota. Caudal de riego y aforado de las derivaciones. Elaborado por: Los autores

Como se puede observar en las tablas 53 y 54, en algunas derivaciones el caudal de aforamiento en comparación al de riego real es excesivo, por lo que se recomienda modificar las aperturas de las compuertas (aumentar o disminuir).

5.1.1. Optimización de caudal de las derivaciones del sistema de riego

La optimización de caudal de las diferentes derivaciones se realiza con el fin de lograr una distribución equitativa entre usuarios, para ello el caudal de aforamiento será igual o aproximado al real mediante las modificaciones de apertura y dimensiones de la compuerta.

Tomando en consideración que ciertas compuertas se encuentran trabajando al 100% de su apertura, pero no cumplen con el caudal requerido por los usuarios, este es el caso de las compuertas 7, 8, 9, 10, 12 y 15 del margen izquierdo y 13, 16 del derecho, por lo que se recomienda modificar las dimensiones de las compuertas.

Tabla 55.Valores recomendados de apertura para la optimización del margen izquierdo

	Optimización Caudal Derivación Margen Izquierdo					
No	Ancho compuerta (m)	Altura compuerta (m)	Apertura Compuerta (%)	Qriego real (lt/s)	Qizq optimizado (lt/s)	
1	0.30	0.05	25	5.498	21.056	
2	0.30	0.05	25	10.464	19.167	
3	0.30	0.10	50	19.806	32.717	
4	0.30	0.10	50	33.686	41.440	
5	0.30	0.05	25	6.068	27.248	
6	0.30	0.05	25	4.929	22.778	
7	0.30	0.30	100	62.783	71.380	
8	0.30	0.45	100	67.610	72.120	
9	0.30	0.35	100	61.105	75.007	
10	0.30	0.30	100	65.497	73.926	
11	0.30	0.15	75	43.687	47.962	
12	0.35	0.40	100	124.020	128.966	
13	0.30	0.20	100	60.192	67.184	
14	0.30	0.15	75	27.999	37.343	
15	0.40	0.40	100	127.345	140.822	
16	0.30	0.15	75	24.089	25.105	
		Total		744.779	904.221	

Nota. Comparación de caudal de riego real con el optimizado. Elaborado por: Los autores

Tabla 56.Valores recomendados de apertura para la optimización del margen derecho

Optimización Caudal Derivación Margen Derecho						
No	Ancho compuerta (m)	Altura compuerta (m)	Apertura Compuerta (%)	Qriego real (lt/s)	Qizq optimizado (lt/s)	
1	0.30	0.08	40	23.405	26.362	
2	0.30	0.18	90	51.053	56.179	
3	0.30	0.18	90	54.125	56.461	
4	0.30	0.08	40	21.585	21.650	
5	0.30	0.04	20	8.938	11.194	
6	0.30	0.18	90	60.013	60.347	
7	0.30	0.12	60	35.966	37.214	
8	0.30	0.10	50	32.861	36.492	
9	0.30	0.15	75	70.263	71.592	
10	0.30	0.08	40	33.177	37.509	
11	0.30	0.15	75	38.077	41.904	
12	0.30	0.08	40	22.184	28.191	
13	0.30	0.40	100	83.368	93.610	
14	0.30	0.20	100	76.189	79.878	
15	0.30	0.04	20	22.556	23.218	
16	0.30	0.30	100	48.102	54.635	
Total 681.860					736.436	

Nota. Comparación de caudal de riego real con el optimizado. Elaborado por: Los autores

En la tabla 53 y 54 la suma de los caudales de aforamiento del margen izquierdo y derecho es de 1753.12 lt/s. Una vez realizado las modificaciones de apertura y dimensiones en las compuertas, se obtiene un caudal optimizado de 1640.66 lt/s, como se puede apreciar en las tablas 55 y 56 respectivamente.

Concluyendo que entre estos dos márgenes disminuye el caudal en un 6.41%, es decir 112.46 lt/s, por esta razón se recomienda tomar en cuenta las modificaciones realizadas en las compuertas para dar una mejor distribución de agua a los usuarios.

5.1.2. Caudal optimizado total

Para obtener el caudal optimizado total del sistema se toma en consideración las plantas potabilizadoras (caudal para consumo humano) y el de riego optimizado.

$$Qopt = Qoptriego + Qhumano$$

 $Qopt = 1640.66 \frac{lt}{s} + 36 \frac{lt}{s}$
 $Qopt = 1676.66 \approx 1680 \frac{lt}{s}$

El caudal optimizado total del sistema de riego es de 1680 lt/s con el cual se procederá a diseñar las siguientes estructuras.

5.2. Condiciones geológicas y geotécnicas

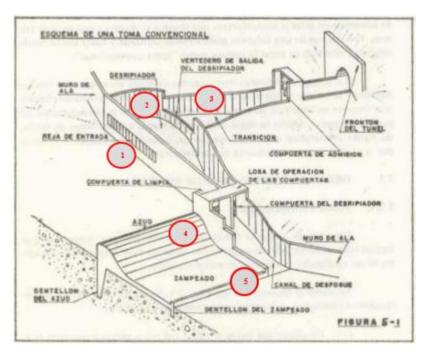
El estudio geotécnico que nos permite conocer las características geomecánicas del lugar del terreno a implantar, siempre teniendo en cuenta ciertas características como son corte, deformabilidad, permeabilidad, resistencia, comportamiento del suelo para los lugares de implantación de la captación y sifones

El sistema de riego Ambuquí se encuentra ubicado en la cuenca del Chota. "El trazado en las vertientes irregulares está cubierto parcialmente por piroclastos (tipo ceniza), subyacen rocas metasedimentarias y metamórficas. En los valles del río Chota y quebrada Seca se encuentran terrazas bajas y valles interandinos rellenos con estratos de conglomerados, microconglomerados, limos y arenas" (Empresa Pública del Agua, 2016).

De los resultados obtenidos se determina que el suelo predominante en la zona del sistema de riego Ambuquí corresponde, según la clasificación AASHTO – SUCS al tipo SM arenas que varían entre gruesa a limos de los tipos A-2-4 a A-1-b con grumos del mismo material y colores variados entre gris, amarillento y verdoso (ver en el **anexo 8**).

En la mayor parte de proyecto el suelo se presenta no plástico. Se concluye que la obra de captación es óptima para su implantación en el sitio. A su vez, es importante conocer que en el sitio de la captación aflora roca, de tal forma que se excluye los riesgos de erosión y socavación, lo cual no presenta riesgos para los componentes de la captación.

5.2.1. Características sísmicas de la zona


El sistema de riego biprovincial Ambuquí se encuentra ubicado en la zona V, Z=0.40 g la que representa el valor máximo de la aceleración sísmica y su caracterización de peligro sísmico es alta.

5.3.Diseño Captación

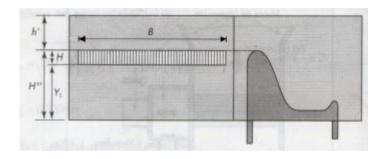
La toma convencional o lateral se caracteriza por tener una pequeña presa (azud), que no tiene la capacidad de almacenar agua, por tal motivo no posee regulación. (Ortiz, 2011). Para lo cual se tomará tres alternativas como son el concesionado, teórico y optimizado total, al finalizar se seleccionará el caudal de diseño de la captación.

En la figura 47 se indican las partes más importantes que constituyen la toma convencional o lateral:

Figura 47. Esquema de una toma convencional

Nota. Elementos principales de la obra de captación. Fuente: (Krochin, 1986).

Rejilla de entrada (1)


Es una ventana con rejilla, que impide el ingreso de material solido flotante grueso; el umbral de esta se coloca a cierta altura sobre el fondo del río con una separación entre barrotes de aproximadamente 20 centímetros (Krochin, 1986).

El agua se capta por medio de una ventana con una rejilla lateral, la cual en épocas de estiaje se comporta como un vertedero, debido a que entre el azud y la rejilla existe un desnivel que garantiza una pequeña cantidad de caudal en el canal de conducción, mientras que en las épocas de crecientes la rejilla actúa en función de un orificio al estar totalmente sumergida (Ortiz, 2011).

Los barrotes deber ser fuertes para resistir el impacto de troncos y otros materiales flotantes que ocasionalmente son traídos por las crecientes. Por lo general, son de hormigón armado o de rieles con un ancho no menor de 10 cm (Krochin, 1986).

Figura 48.

Toma de agua de una bocatoma lateral

Nota. Vista frontal de la rejilla. Fuente: (*Ortiz, 2011*)

Desripiador (2)

Después de la rejilla de entrada se acostumbra a dejar una cámara que se llama desripiador, el cual cumple la función de detener las piedras que lograron pasar entre los barrotes y no permiten el paso al canal. Por tal motivo la velocidad en el desripiador debe ser relativamente baja y el paso hacia el canal debe hacerse por medio de un vertedero sumergido (Ortiz, 2011).

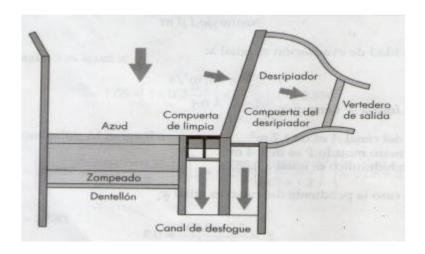
"Entre la rejilla de entrada y el vertedero de salida puede formarse un resalto sumergido y para que este último funcione en una forma normal es conveniente que el ancho del desripiador sea igual a la longitud del resalto" (Krochin, 1986).

Para poder eliminar las piedras y material flotante que ha sido pasado por la rejilla, se coloca una compuerta que conecta con el canal de desfogue, el cual debe tener una gradiente suficiente para conseguir una velocidad de lavado alta y que sea capaz de arrastrar todas las piedras.

Zona de transición (3)

El agua sale del desripiador por medio de un vertedero y con poco calado pasado a un túnel o canal que generalmente tiene una sección más estrecha y profunda. Por lo tanto, es aconsejable intercalar entre los dos una transición, es decir una estructura en la cual este cambio de sección se realice de forma gradual a fin de conseguir que la perdida de carga sea mínima (Krochin, 1986).

Azud (4)


En tiempos de crecidas, las aguas de exceso pasan por encima de este dique de tal forma que funciona como vertedero. Esta obra puede estar acompañada de un zampeado, el cual disminuye la velocidad del agua de exceso, con el fin de disminuir la erosión en el lugar de la toma lateral (Krochin, 1986).

Zampeado y colchón de aguas al pie del azud (5)

El agua que vierte por el azud en creciente, cae con gran energía que erosiona el cauce y puede socavar las obras causando su destrucción. El zampeado o colchón de aguas tienen la función de disipar la energía de tal forma que el agua pase al cauce no revestido con velocidades suficientemente bajas para no producir erosiones (Krochin, 1986).

Figura 49.

Vista superior de una bocatoma convencional o lateral.

Nota. Identificación de los elementos de la bocatoma. Fuente: (Ortiz, 2011)

5.3.1. Alternativa Caudal Concesionado

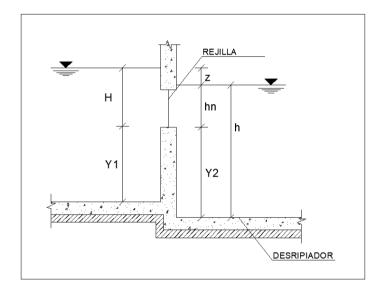
5.3.1.1. Cálculo Rejilla de Entrada

La rejilla tiene que soportar el impacto de troncos y otros materiales flotantes, los cuales son atraídos por las crecientes, por lo que los barrotes deben ser fuertes y por lo general son de hormigón armado o de rieles, el ancho de estos no debe ser menor a 10 cm, con el fin de facilitar la limpieza.

Datos:

Y1=2.70 m

H=1.80 m


Y2 = 2.90 m

hn = 1.20 m

Q= 1.80 m3/s (Caudal Concesionado)

Figura 50.

Dimensionamiento a la entrada y salida de la rejilla.

Nota. Niveles de entrada y salida de la rejilla. Elaborado por: Los autores con el paquete computacional AutoCAD.

Para obtener los valores de z y h, de la siguiente manera:

$$z = H - hn = 1.80 - 1.20 = 0.60 m$$

$$h = y2 + hn = 2.90 + 1.20 = 4.10 m$$

La toma de agua en épocas de estiaje se comporta como un vertedero sumergido con un desnivel muy pequeño entre las dos superficies de agua. Por lo tanto, para su cálculo se utilizará la siguiente formula:

$$Q = k * s * M * b * (H)^{\frac{3}{2}}$$

Donde:

s: Coeficiente de corrección de sumersión

M: Coeficiente de caudal

b: Ancho del vertedero

k: Coeficiente adicional por perdida en los barrotes

H: Carga

Según (Ortiz, 2011) "para considerar que un vertedero es sumergido debe cumplir las siguientes condiciones":

 $1ra\ condicion: h > Y2$

 $4.10 \ m > 2.90 \ m$:: Si cumple

2da condicion:
$$\frac{Z_o}{Y2} < 0.70$$

$$Z_o = z - \frac{v^2}{g} = 0.60 - \frac{0.40^2}{9.81} = 0.584$$

$$0.201 < 0.70 \therefore Sicumple$$

Un vertedero se considera de pared delgada, cuando la relación entre su espesor (e) y su carga (H), se mantiene en el siguiente rango.

$$\frac{e}{H} \le 0.50$$

Se asumirá un espesor de 0.35 m

$$\frac{0.35}{1.80} = 0.194 < 0.50$$
 \therefore *Si cumple*

Por lo tanto, al cumplir las condiciones de sumersión y clasificarlo por su espesor, se obtiene un vertedero sumergido de pared delgada.

Coeficiente de Caudal

El coeficiente **M** para un vertedero de cresta delgada según Konovalov, está dado por:

$$\mathbf{M} = \left[0.407 + \frac{0.045 * H}{H + Y1}\right] \left[1 + 0.285 * \left(\frac{H}{H + Y1}\right)^{2}\right]$$

$$\mathbf{M} = \left[0.407 + \frac{0.045 * 1.80}{1.80 + 2.70}\right] \left[1 + 0.285 * \left(\frac{1.80}{1.80 + 2.70}\right)^{2}\right] = \mathbf{0.4443}$$

Coeficiente de corrección de sumersión

El coeficiente de corrección de sumersión s según Bazin, es igual a:

$$s = 1.05 \left(1 + \frac{0.2 * hn}{Y2} \right) \left(\frac{Z}{H} \right)^{\frac{1}{3}}$$

$$s = 1.05 \left(1 + \frac{0.2 * 1.20}{2.90}\right) \left(\frac{0.60}{1.80}\right)^{\frac{1}{3}} = 0.7883$$

Coeficiente de Contracción

Este coeficiente (k) depende de la forma de los barrotes, de su cantidad y de las dos contracciones producidas por las paredes.

Tomamos el valor de **k=0.90**, recomendado por (Ortiz, 2011).

Ancho del vertedero

Con la ecuación de vertedero sumergido, se procederá a despejar el ancho (b), mediante la siguiente ecuación:

$$Q = k * s * M * b * (H)^{\frac{3}{2}}$$

$$b = \frac{Q}{k * s * M * (H)^{\frac{3}{2}}}$$

$$b = \frac{1.80}{0.90 * 0.7883 * 0.4443 * (1.80)^{\frac{3}{2}}}$$

$$b = 2.364 m \approx 2.40 m$$

Ancho Total de la Rejilla

Se colocará barrotes con un espesor de 5 cm y una separación entre ellos de 10 cm, los cuales soportarán el impacto de cuerpos flotantes.

El número de espacios n para los barrotes, se obtiene mediante la siguiente ecuación:

$$n = \frac{b}{s}$$

Donde:

b: Ancho del vertedero

s: Separación entre barrotes

$$n = \frac{2.40 \ m}{0.10 \ m} =$$
24 espacios

El número de barrotes N, está dado por:

$$N = n - 1$$

$$N = 24 - 1 = 23 barrotes$$

El ancho total de la rejilla B, está dado por:

$$\mathbf{B} = b + N * e$$

Donde:

e: Espesor de los barrotes.

$$B = 2.40 + 23 * 0.05$$

$$B=3.55\,m\approx3.60m$$

5.3.1.2. Cálculo del Desripiador

Ancho del desripiador

El ancho del desripiador tiene que ser por lo menos igual a la longitud del resalto hidráulico sumergido, el cual se produce entre la rejilla de entrada y el vertedero de salida, por consiguiente, su ancho se analiza en función del resalto hidráulico.

Altura contraída

$$hc = \frac{q}{\Phi\sqrt{2g(Y2 + H - hc)}}$$

Donde:

q: Caudal unitario

hc: Altura contraída

$$\Phi = 0.95$$

Para obtener el caudal unitario q se obtiene:

$$q = \frac{Q}{B}$$

Donde:

Q: Caudal de diseño

B: Ancho total de la rejilla

$$q = \frac{1.80}{3.60} = 0.507 \frac{m^3}{s * m}$$

Mediante iteraciones se obtendrá el valor de altura contraída hc (Calero, 2017).

$$hc = \frac{0.507}{0.95\sqrt{19.62(2.90 + 1.80 - hc)}}$$
$$hc = 0.0559$$

Altura critica

La altura critica *hcr* se determina mediante la siguiente ecuación:

$$hcr = \sqrt[3]{\frac{q^2}{g}}$$

$$hcr = \sqrt[3]{\frac{0.507^2}{9.81}}$$

$$hcr = 0.297 m$$

Para determinar el resalto hidráulico se asume que la altura contraída es igual a la primera conjugada hc = h' (Calero, 2017).

Segunda conjugada

$$\boldsymbol{h}^{\prime\prime} = \frac{h^{\prime}}{2} * \left\{ \sqrt{1 + 8 \left(\frac{hcr}{h^{\prime}}\right)^{3}} - 1 \right\}$$

$$\mathbf{h}'' = \frac{0.0559}{2} * \left\{ \sqrt{1 + 8 \left(\frac{0.297}{0.0559} \right)^3} - 1 \right\}$$

$$h'' = 0.943 m$$

Comprobación de Sumersión

Una vez obtenida la segunda conjugada h'' se compara con la profundidad normal del cauce h (Calero, 2017). Para que el resalto sea sumergido debe cumplir con la siguiente condición:

$$0.943 m < 4.10 m : El resalto es sumergido$$

Longitud de Resalto

Para determinar la longitud de resalto *Lr* no está definida una ecuación teórica, y en la práctica, para cálculos preliminares se utilizan ecuaciones empíricas como las siguientes:

Según Pavlovski:

$$Lr = 2.5(1.9 * h'' - h')$$
 $Lr = 2.5(1.9 * (0.943 - 0.0556))$
 $Lr = 4.217 m$

Según Barkhmetev-Mazke:

$$Lr = 5(h'' - h')$$
 $Lr = 5(0.943 - 0.0556)$
 $Lr = 4.439 m$

Otro criterio para calcular el ancho de la cámara es el dado por Bureau of Reclamation, en el cual la longitud del desripiador es aproximadamente igual a la longitud de una transición y está dada por la siguiente ecuación:

$$L = \frac{B - b}{2 * \tan 12.5^{\circ}}$$

Donde:

B: Ancho de la rejilla

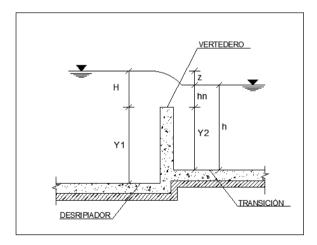
b: Ancho del vertedero

$$L = \frac{3.55 - 2.40}{2 * \tan 12.5^{\circ}}$$

$$L = 2.677 m$$

El ancho del desripiador no podrá tener un valor menor a la longitud del resalto.

Por razones constructivas se asumió un ancho del desripiador es de **4.50 metros**, con el fin de obtener espacio suficiente para colocar los vertederos de salida del desripiador.


5.3.1.3. Vertedero de salida del desripiador

El ancho del vertedero de salida del desripiador hacia la zona de transición, se calcula con la siguiente formula:

$$Q = k * s * M * b * (H)^{\frac{3}{2}}$$

Figura 51.

Dimensionamiento del desripiador

Nota. Identificación de los niveles del desripiador y zona de transición. Elaborado por: Los autores con el paquete computacional AutoCAD.

Datos:

H=1.75 m

Y2 = 2.65 m

hn = 1.20 m

Q = 1.85 m3/s

Para obtener los valores de z y h, de la siguiente manera:

$$z = H - hn = 1.75 - 1.20 = 0.55 m$$

$$h = y2 + hn = 2.65 + 1.20 = 3.85 m$$

Según (Ortiz, 2011) "para considerar que un vertedero es sumergido debe cumplir las siguientes condiciones":

 $1ra\ condicion: h > Y2$

 $3.85 \ m > 2.65 \ m$: *Si cumple*

2da condicion:
$$\frac{Z_o}{Y2}$$
 < 0.70

$$Z_o = z - \frac{v^2}{a} = 0.55 - \frac{0.40^2}{9.81} = 0.534$$

$$0.20 < 0.70 \therefore Si cumple$$

Un vertedero se considera de pared delgada, cuando la relación entre su espesor (e) y su carga (H), se mantiene en el siguiente rango.

$$\frac{e}{H} \le 0.50$$

Se asumirá un espesor de 0.35 m

$$\frac{0.35}{1.75} = 0.200 < 0.50 : Si cumple$$

Por lo tanto, al cumplir las condiciones de sumersión y clasificarlo por su espesor, se obtiene un vertedero sumergido de pared delgada.

Coeficiente de Caudal

El coeficiente **M** para un vertedero de cresta delgada según Konovalov, está dado por:

$$\mathbf{Mdesrip} = \left[0.407 + \frac{0.045 * H}{H + Y1}\right] \left[1 + 0.285 * \left(\frac{H}{H + Y1}\right)^{2}\right]$$

$$\mathbf{Mdesrip} = \left[0.407 + \frac{0.045 * 1.75}{1.75 + 2.85}\right] \left[1 + 0.285 * \left(\frac{1.75}{1.75 + 2.85}\right)^{2}\right] = \mathbf{0.4416}$$

Coeficiente de corrección de sumersión

El coeficiente de corrección de sumersión s según Bazin, es igual a:

$$sdesrip = 1.05 \left(1 + \frac{0.2 * hn}{Y2} \right) \left(\frac{Z}{H} \right)^{\frac{1}{3}}$$

$$sdesrip = 1.05 \left(1 + \frac{0.2 * 1.20}{2.65} \right) \left(\frac{0.55}{1.75} \right)^{\frac{1}{3}} = \mathbf{0.7785}$$

Coeficiente de Contracción

Este coeficiente (k) depende de la forma de los barrotes, de su cantidad y de las dos contracciones producidas por las paredes

Tomamos el valor de **k=0.90**, recomendado por (Ortiz, 2011)

Ancho del vertedero

Con la ecuación de vertedero sumergido, se procederá a despejar el ancho (b), mediante la siguiente ecuación:

$$Q = k * s * M * b * (H)^{\frac{3}{2}}$$

$$bdesrip = \frac{Q}{k * s * M * (H)^{\frac{3}{2}}}$$

$$bdesrip = \frac{1.85}{0.90 * 0.7785 * 0.4416 * (1.75)^{\frac{3}{2}}}$$

$$b = 2.583 m \approx 2.60 m$$

5.3.1.4.Cálculo de la compuerta de lavado del desripiador

Para poder evacuar las piedras y sedimentos alojados en el desripiador al pasar por la rejilla se requiere de una velocidad de fluido $v = 3 \frac{m}{s}$ y una pendiente jc, que se calcula por medio de la siguiente ecuación:

$$jc = \frac{v^2 * n^2}{R^{\frac{4}{3}}}$$

Donde:

v: Asumimos velocidad de agua de 3 m/s

n: Coeficiente de rugosidad y su valor es de 0.025

R: Radio Hidráulico

Para determinar el área y perímetro se lo hace mediante las siguientes ecuaciones:

$$A = Ldesrip * (Y1 + H)$$
 $A = 4.50 * (2.65 + 1.75)$
 $A = 19.80 m^2$
 $P = Ldesrip + 2 * (Y1 + H)$
 $P = 4.50 + 2 * (2.65 + 1.75)$
 $P = 13.30$

Una vez obtenido el área y perímetro del desripiador se procede a calcular los parámetros de velocidad v y radio hidráulico R.

$$R = \frac{A}{P} = \frac{19.80}{13.30} = 1.489 m$$

$$jc = \frac{3^2 * 0.025^2}{1.489^{\frac{4}{3}}} = 3.3082x10^{-3}$$

$$\propto_{ic} = \tan^{-1}(3.3082x10^{-3}) = 0.189^{\circ}$$

Según (Ortiz, 2011) "si la gradiente del río es superior al valor de la pendiente del canal, no presenta dificultades para la evacuación de los elementos sólidos"

$gradiente\ del\ rio>jc$

$$3.27 > 3.3082x10^{-3}$$
 : Si cumple

La compuerta de lavado debe ser capaz de evacuar todo el caudal cuando se requiera lavar el desripiador, por lo tanto, este caudal tiene que ser mayor al de diseño y se calcula de la siguiente manera:

$$Q' = k * e * a * bc * \sqrt{2g * \left(H + \frac{v^2}{2g} - e * a\right)}$$

Donde:

Q': Caudal que pasa por la compuerta

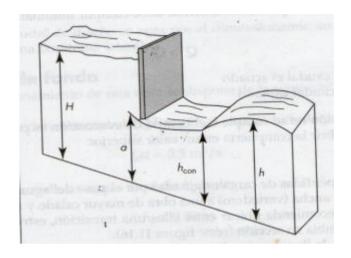
K: Constante entre 0.95-0.97

a: Apertura de la compuerta

bc: Ancho de la compuerta

e: Coeficiente dado en función (a/H)

H: Altura del nivel en el desripiador


v: Velocidad del caudal

g: Gravedad

Suponemos una apertura de la compuerta de 0.50 m y un ancho de 0.30 m.

Figura 52.

Esquema de la compuerta de lavado

Nota. Identificación de los niveles de la compuerta de lavado. Fuente: (Ortiz, 2011)

Para obtener el valor de coeficiente e que está en función de la apertura de la compuerta y la altura del nivel del desripiador, y se obtiene de la siguiente tabla:

$$\frac{a}{H} = \frac{0.50 \ m}{1.75 \ m} = 0.286$$

Tabla 57.

Valores coeficientes "e"

a/H	e	a/H	e	a/H	e	a/H	e
0.00	0.611	0.30	0.625	0.55	0.650	0.80	0.720
0.10	0.615	0.35	0.628	0.60	0.660	0.85	0.745
0.15	0.618	0.40	0.630	0.65	0.675	0.90	0.780
0.20	0.620	0.45	0.638	0.70	0.690	0.95	0.835
0.25	0.622	0.50	0.645	0.75	0.705	1.00	1.000

Nota. Determinación del coeficiente "e" en función de la altura y nivel de agua. Elaborado por: Los autores con información tomada de (Ortiz, 2011).

Interpolando se obtiene el valor de e = 0.6242

$$Q' = 0.95 * 0.6242 * 0.50 * 0.30 * \sqrt{19.62 * \left(1.75 + \frac{3^2}{19.62} - 0.6242 * 0.50\right)}$$

$$Q' = 0.54 \frac{m3}{s}$$

$$Q' > Q$$

$$0.54 \frac{m^3}{s} < 1.85 \frac{m^3}{s} \therefore \text{No cumple}$$

Al no cumplirse con la condición, se procede a cambiar el ancho de la compuerta a 1.20 m y la apertura de la compuerta será la misma.

$$Q' = 0.95 * 0.6242 * 0.50 * 1.20 * \sqrt{19.62 * \left(1.75 + \frac{3^2}{19.62} - 0.6242 * 0.50\right)}$$

$$Q' = 1.90 \frac{m^3}{s}$$

$$Q' > Q$$

$$1.90 \frac{m^3}{s} > 1.85 \frac{m^3}{s} \therefore Si cumple$$

Por lo tanto, las dimensiones de la compuerta y la pendiente del canal son aceptables.

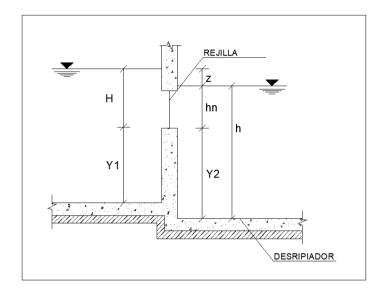
5.3.2. Alternativa Caudal Teórico

5.3.2.1.Cálculo Rejilla de Entrada

Datos:

Y1=2.70 m

H=1.80 m


Y2 = 2.90 m

hn = 1.20 m

Q= 1.15 m3/s (Caudal teórico)

Figura 53.

Dimensionamiento a la entrada y salida de la rejilla

Nota. Identificación de los niveles de la rejilla y desripiador. Elaborado por: Los autores mediante el paquete computacional AutoCAD.

Para obtener los valores de z y h, de la siguiente manera:

$$z = H - hn = 1.80 - 1.20 = \mathbf{0.60} \, \mathbf{m}$$

 $h = y2 + hn = 2.90 + 1.20 = \mathbf{4.10} \, \mathbf{m}$

La toma de agua en épocas de estiaje se comporta como un vertedero sumergido con un desnivel muy pequeño entre las dos superficies de agua. Por lo tanto, para su cálculo se utilizará la siguiente formula:

$$Q = s * M * b * (H)^{\frac{3}{2}}$$

Según (Ortiz, 2011) "para considerar que un vertedero es sumergido debe cumplir las siguientes condiciones":

$$1ra\ condicion: h > Y2$$

$$4.10 \ m > 2.90 \ m$$
 : Si cumple

2da condicion:
$$\frac{Z_o}{Y2} < 0.70$$

$$Z_o = z - \frac{v^2}{g} = 0.60 - \frac{0.40^2}{9.81} = 0.584$$

$$0.201 < 0.70 \therefore Si cumple$$

Un vertedero se considera de pared delgada, cuando la relación entre su espesor (e) y su carga (H), se mantiene en el siguiente rango.

$$\frac{e}{H} \le 0.50$$

Se asumirá un espesor de 0.35 m

$$\frac{0.35}{1.80} = 0.194 < 0.50$$
 \therefore *Si cumple*

Por lo tanto, al cumplir las condiciones de sumersión y clasificarlo por su espesor, se obtiene un vertedero sumergido de pared delgada.

Coeficiente de Caudal

El coeficiente **M** para un vertedero de cresta delgada según Konovalov, está dado por:

$$\mathbf{M} = \left[0.407 + \frac{0.045 * H}{H + Y1}\right] \left[1 + 0.285 * \left(\frac{H}{H + Y1}\right)^{2}\right]$$

$$\mathbf{M} = \left[0.407 + \frac{0.045 * 1.80}{1.80 + 2.70}\right] \left[1 + 0.285 * \left(\frac{1.80}{1.80 + 2.70}\right)^{2}\right] = \mathbf{0.4443}$$

Coeficiente de corrección de sumersión

El coeficiente de corrección de sumersión s según Bazin, es igual a:

$$s = 1.05 \left(1 + \frac{0.2 * hn}{Y2} \right) \left(\frac{Z}{H} \right)^{\frac{1}{3}}$$
$$s = 1.05 \left(1 + \frac{0.2 * 1.20}{2.90} \right) \left(\frac{0.60}{1.80} \right)^{\frac{1}{3}} = \mathbf{0}.7883$$

Coeficiente de Contracción

Este coeficiente (k) depende de la forma de los barrotes, de su cantidad y de las dos contracciones producidas por las paredes

Tomamos el valor de **k=0.90**, recomendado por (Ortiz, 2011)

Ancho del vertedero

$$\mathbf{b} = \frac{Q}{k * s * M * (H)^{\frac{3}{2}}}$$

$$\mathbf{b} = \frac{1.15}{0.90 * 0.7883 * 0.4443 * (1.80)^{\frac{3}{2}}}$$

$$\mathbf{b} = 1.510 \ m \approx 1.60 \ m$$

Ancho Total de la Rejilla

Se colocará barrotes con un espesor de 5 cm y una separación entre ellos de 10 cm, los cuales soportarán el impacto de cuerpos flotantes.

El número de espacios n para los barrotes, se obtiene mediante la siguiente ecuación:

$$m{n} = rac{b}{s}$$
 $m{n} = rac{1.60\ m}{0.10\ m} = m{16\ espacios}$

El número de barrotes N, está dado por:

$$N = n - 1$$

 $N = 16 - 1 = 15 barrotes$

El ancho total de la rejilla B, está dado por:

$$B = b + N * e$$
 $B = 1.60 + 15 * 0.05$
 $B = 2.35 m$

5.3.2.2. Cálculo del Desripiador

Ancho del desripiador

El ancho del desripiador tiene que ser por lo menos igual a la longitud del resalto hidráulico sumergido, el cual se produce entre la rejilla de entrada y el vertedero de salida, por consiguiente, su ancho se analiza en función del resalto hidráulico.

Altura contraída

$$hc = \frac{q}{\Phi\sqrt{2g(Y2 + H - hc)}}$$
$$q = \frac{Q}{B}$$
$$q = \frac{1.15}{2.35} = 0.489 \frac{m^3}{5 * m}$$

Mediante iteraciones se obtendrá el valor de altura contraída hc (Calero, 2017).

$$hc = \frac{0.489}{0.95\sqrt{19.62(2.90 + 1.80 - hc)}}$$
$$hc = 0.0539$$

Altura critica

$$hcr = \sqrt[3]{\frac{q^2}{g}} = \sqrt[3]{\frac{0.489^2}{9.81}}$$

$$hcr = 0.290 m$$

Para determinar el resalto hidráulico se asume que la altura contraída es igual a la primera conjugada hc = h' (Calero, 2017).

Segunda conjugada

$$\mathbf{h}^{"} = \frac{h'}{2} * \left\{ \sqrt{1 + 8\left(\frac{hcr}{h'}\right)^3} - 1 \right\} = \frac{0.0539}{2} * \left\{ \sqrt{1 + 8\left(\frac{0.290}{0.0539}\right)^3} - 1 \right\}$$

$$h'' = 0.925 m$$

Comprobación de Sumersión

Una vez obtenida la segunda conjugada h'' se compara con la profundidad normal del cauce h (Calero, 2017). Para que el resalto sea sumergido debe cumplir con la siguiente condición:

0.925 m < 4.10 m : El resalto es sumergido

Longitud de Resalto

Para determinar la longitud de resalto Lr no está definida una ecuación teórica, y en la práctica, para cálculos preliminares se utilizan ecuaciones empíricas como las siguientes:

Según Pavlovski:

$$Lr = 2.5(1.9 * h'' - h') = 2.5(1.9 * 0.919 - 0.0539)$$

 $Lr = 4.136 m$

Según Barkhmetev-Mazke:

$$Lr = 5(h'' - h') = 5(0.919 - 0.0539)$$

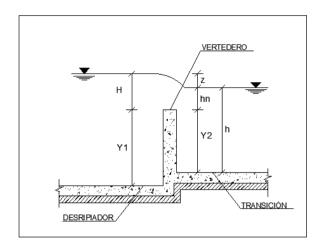
 $Lr = 4.354m$

Otro criterio para calcular el ancho de la cámara es el dado por Bureau of Reclamation, en el cual la longitud del desripiador es aproximadamente igual a la longitud de una transición y está dada por la siguiente ecuación:

$$L = \frac{B - b}{2 * \tan 12.5^{\circ}} = \frac{2.35 - 1.60}{2 * \tan 12.5^{\circ}}$$
$$L = 1.746 m$$

El ancho del desripiador no podrá tener un valor menor a la longitud del resalto.

Por razones constructivas se asumió un ancho del desripiador es de **4.40 metros**, con el fin de obtener espacio suficiente para colocar los vertederos de salida del desripiador.


5.3.2.3. Vertedero de salida del desripiador

El ancho del vertedero de salida del desripiador hacia la zona de transición, se calcula con la siguiente formula:

$$Q = k * s * M * b * (H)^{\frac{3}{2}}$$

Figura 54.

Dimensionamiento del desripiador

Nota. Identificación de los niveles del desripiador y zona de transición. Elaborado por: Los autores con el paquete computacional AutoCAD.

Datos:

Y1=2.85 m

H=1.75 m

Y2 = 2.65 m

hn = 1.20 m

Q = 1.15 m3/s

Para obtener los valores de z y h, de la siguiente manera:

$$z = H - hn = 1.75 - 1.20 = 0.55 m$$

$$h = y2 + hn = 2.65 + 1.20 = 3.85 m$$

Según (Ortiz, 2011) "para considerar que un vertedero es sumergido debe cumplir las siguientes condiciones":

 $1ra\ condicion: h > Y2$

3.85 m > 2.65 m :: Si cumple

2da condicion: $\frac{Z_o}{Y2} < 0.70$

$$Z_o = z - \frac{v^2}{g} = 0.55 - \frac{0.40^2}{9.81} = 0.534$$

Un vertedero se considera de pared delgada, cuando la relación entre su espesor (e) y su carga (H), se mantiene en el siguiente rango.

$$\frac{e}{H} \le 0.50$$

Se asumirá un espesor de 0.35 m

$$\frac{0.35}{1.75} = 0.200 < 0.50$$
 \therefore *Si cumple*

Por lo tanto, al cumplir las condiciones de sumersión y al clasificarlo por su espesor, se obtiene un vertedero sumergido de pared delgada.

Coeficiente de Caudal

El coeficiente M para un vertedero de cresta delgada según Konovalov, está dado por:

$$Mdesrip = \left[0.407 + \frac{0.045 * H}{H + Y1}\right] \left[1 + 0.285 * \left(\frac{H}{H + Y1}\right)^{2}\right]$$

$$Mdesrip = \left[0.407 + \frac{0.045 * 1.75}{1.75 + 2.85}\right] \left[1 + 0.285 * \left(\frac{1.75}{1.75 + 2.85}\right)^{2}\right] = 0.4416$$

Coeficiente de corrección de sumersión

El coeficiente de corrección de sumersión s según Bazin, es igual a:

$$sdesrip = 1.05 \left(1 + \frac{0.2 * hn}{Y2}\right) \left(\frac{Z}{H}\right)^{\frac{1}{3}}$$

$$sdesrip = 1.05 \left(1 + \frac{0.2 * 1.20}{2.65}\right) \left(\frac{0.55}{1.75}\right)^{\frac{1}{3}} = 0.7785$$

Coeficiente de Contracción

Tomamos el valor de **k=0.90**, recomendado por (Ortiz, 2011)

Ancho del vertedero

Con la ecuación de vertedero sumergido, se procederá a despejar el ancho (b), mediante la siguiente ecuación:

$$bdesrip = \frac{Q}{k * s * M * (H)^{\frac{3}{2}}} = \frac{1.15}{0.90 * 0.7785 * 0.4416 * (1.75)^{\frac{3}{2}}}$$
$$b = 1.605 m \approx 1.60 m$$

5.3.2.4.Cálculo de la compuerta de lavado del desripiador

Para poder evacuar las piedras y sedimentos alojados en el desripiador al pasar por la rejilla se requiere de una velocidad de fluido $v = 3 \frac{m}{s}$ y una pendiente jc, que se calcula por medio de la siguiente ecuación:

$$jc = \frac{v^2 * n^2}{R^{\frac{4}{3}}}$$

$$A = Ldesrip * (Y1 + H) = 4.40 * (2.65 + 1.75) = 19.36 m^2$$

$$P = Ldesrip + 2 * (Y1 + H) = 4.40 + 2 * (2.65 + 1.75) = 13.20 m$$

Una vez obtenido el área y perímetro del desripiador se procede a calcular los parámetros de velocidad v y radio hidráulico R.

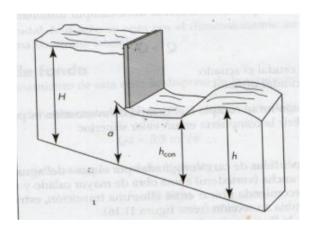
$$R = \frac{A}{P} = \frac{19.36}{13.20} = 1.467 m$$

$$jc = \frac{3^2 * 0.025^2}{0.712^{\frac{4}{3}}} = 3.375 \times 10^{-3}$$

$$\propto_{ic} = \tan^{-1}(3.375 \times 10^{-3}) = 0.193^{\circ}$$

Según (Ortiz, 2011) "si la gradiente del río es superior al valor de la pendiente del canal, no presenta dificultades para la evacuación de los elementos sólidos"

$$3.27 > 3.375 \times 10^{-3}$$
 : Si cumple


La compuerta de lavado debe ser capaz de evacuar todo el caudal cuando se requiera lavar el desripiador, por lo tanto, este caudal debe ser mayor al caudal de diseño y se calcula de la siguiente manera:

$$Q' = k * e * a * bc * \sqrt{2g * \left(H + \frac{v^2}{2g} - e * a\right)}$$

Suponemos una apertura de la compuerta de $0.50~\mathrm{m}$ y un ancho de $1.00~\mathrm{m}$.

Figura 55.

Esquema de la compuerta de lavado

Nota. Identificación de los niveles de la compuerta de lavado. Fuente: (Ortiz, 2011)

Para obtener el valor de coeficiente *e* que está en función de la apertura de la compuerta y la altura del nivel del desripiador, y se obtiene de la siguiente tabla:

$$\frac{a}{H} = \frac{0.50 \ m}{1.75 \ m} = 0.286$$

Tabla 58.

Valores coeficiente "e"

a/H	e	a/H	e	a/H	e	a/H	e
0.00	0.611	0.30	0.625	0.55	0.650	0.80	0.720
0.10	0.615	0.35	0.628	0.60	0.660	0.85	0.745
0.15	0.618	0.40	0.630	0.65	0.675	0.90	0.780
0.20	0.620	0.45	0.638	0.70	0.690	0.95	0.835
0.25	0.622	0.50	0.645	0.75	0.705	1.00	1.000

Nota. Determinación del coeficiente "e" en función de la altura y nivel de agua. Elaborado por: Los autores con información de (Ortiz, 2011).

Interpolando se obtiene el valor de e = 0.6242

$$Q' = 0.95 * 0.6242 * 0.50 * 1.00 * \sqrt{19.62 * \left(1.75 + \frac{3^2}{19.62} - 0.6242 * 0.50\right)}$$

$$Q' = 1.81 \frac{m^3}{s}$$

$$Q' > Q$$

$$1.81 \frac{m^3}{s} > 1.15 \frac{m^3}{s} \therefore Si cumple$$

Por lo tanto, las dimensiones de la compuerta y la pendiente del canal son aceptables.

Debido a que el canal concesionado se encuentra abasteciendo las diferentes áreas de riego de las derivaciones, se procede a quedarse con los valores de la compuerta de lavado del desripiador a las obtenidas con dicho caudal.

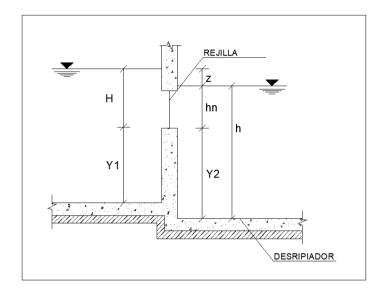
5.3.3. Alternativa Caudal Optimizado Total

5.3.3.1.Cálculo Rejilla de Entrada

Datos:

Y1=2.70 m

H=1.80 m


Y2 = 2.90 m

hn = 1.20 m

Q = 1.68 m3/s

Figura 56.

Dimensionamiento a la entrada y salida de la rejilla

Nota. Identificación de los niveles de la rejilla. Elaborado por: Los autores con el paquete computacional AutoCAD.

Para obtener los valores de z y h, de la siguiente manera:

$$z = H - hn = 1.80 - 1.20 = \mathbf{0.60} \, \mathbf{m}$$

 $h = y2 + hn = 2.90 + 1.20 = \mathbf{4.10} \, \mathbf{m}$

La toma de agua en épocas de estiaje se comporta como un vertedero sumergido con un desnivel muy pequeño entre las dos superficies de agua. Por lo tanto, para su cálculo se utilizará la siguiente formula:

$$Q = s * M * b * (H)^{\frac{3}{2}}$$

Según (Ortiz, 2011) "para considerar que un vertedero es sumergido debe cumplir las siguientes condiciones":

$$1ra\ condicion: h > Y2$$

$$4.10 m > 2.90 m$$
 :: Si cumple

2da condicion:
$$\frac{Z_o}{Y2} < 0.70$$

$$Z_o = z - \frac{v^2}{g} = 0.60 - \frac{0.40^2}{9.81} = 0.584$$

$$0.201 < 0.70 \therefore Si cumple$$

Un vertedero se considera de pared delgada, cuando la relación entre su espesor (e) y su carga (H), se mantiene en el siguiente rango.

$$\frac{e}{H} \le 0.50$$

Se asumirá un espesor de 0.35 m

$$\frac{0.35}{1.80} = 0.194 < 0.50$$
 \therefore *Si cumple*

Por lo tanto, al cumplir las condiciones de sumersión y clasificarlo por su espesor, se obtiene un vertedero sumergido de pared delgada.

Coeficiente de Caudal

El coeficiente **M** para un vertedero de cresta delgada según Konovalov, está dado por:

$$\mathbf{M} = \left[0.407 + \frac{0.045 * H}{H + Y1}\right] \left[1 + 0.285 * \left(\frac{H}{H + Y1}\right)^{2}\right]$$

$$\mathbf{M} = \left[0.407 + \frac{0.045 * 1.80}{1.80 + 2.70}\right] \left[1 + 0.285 * \left(\frac{1.80}{1.80 + 2.70}\right)^{2}\right] = \mathbf{0.4443}$$

Coeficiente de corrección de sumersión

El coeficiente de corrección de sumersión s según Bazin, es igual a:

$$s = 1.05 \left(1 + \frac{0.2 * hn}{Y2} \right) \left(\frac{Z}{H} \right)^{\frac{1}{3}}$$

$$s = 1.05 \left(1 + \frac{0.2 * 1.20}{2.90} \right) \left(\frac{0.60}{1.80} \right)^{\frac{1}{3}} = \mathbf{0}.7883$$

Coeficiente de Contracción

Este coeficiente (k) depende de la forma de los barrotes, de su cantidad y de las dos contracciones producidas por las paredes

Tomamos el valor de **k=0.90**, recomendado por (Ortiz, 2011)

Ancho del vertedero

$$\mathbf{b} = \frac{Q}{k * s * M * (H)^{\frac{3}{2}}}$$

$$\mathbf{b} = \frac{1.68}{0.90 * 0.7883 * 0.4443 * (1.80)^{\frac{3}{2}}}$$

$$\mathbf{b} = 2.21 \ m \approx \mathbf{2.30} \ m$$

Ancho Total de la Rejilla

Se colocará barrotes con un espesor de 5 cm y una separación entre ellos de 10 cm, los cuales soportarán el impacto de cuerpos flotantes.

El número de espacios n para los barrotes, se obtiene mediante la siguiente ecuación:

$$m{n} = rac{b}{s}$$
 $m{n} = rac{2.30 \ m}{0.10 \ m} = m{23 \ espacios}$

El número de barrotes N, está dado por:

$$N = n - 1$$

 $N = 23 - 1 = 22 \text{ barrotes}$

El ancho total de la rejilla B, está dado por:

$$B = b + N * e$$

$$B = 2.30 + 22 * 0.05$$

$$B = 3.40 m$$

5.3.3.2. Cálculo del Desripiador

Ancho del desripiador

El ancho del desripiador tiene que ser por lo menos igual a la longitud del resalto hidráulico sumergido, el cual se produce entre la rejilla de entrada y el vertedero de salida, por consiguiente, su ancho se analiza en función del resalto hidráulico.

Altura contraída

$$hc = \frac{q}{\Phi\sqrt{2g(Y2 + H - hc)}}$$
$$q = \frac{Q}{B}$$
$$q = \frac{1.65}{3.40} = 0.494 \frac{m^3}{5 * m}$$

Mediante iteraciones se obtendrá el valor de altura contraída hc (Calero, 2017).

$$hc = \frac{0.494}{0.95\sqrt{19.62(2.90 + 1.80 - hc)}}$$
$$hc = 0.0545$$

Altura critica

$$hcr = \sqrt[3]{\frac{q^2}{g}} = \sqrt[3]{\frac{0.494^2}{9.81}}$$

$$hcr = 0.292 m$$

Para determinar el resalto hidráulico se asume que la altura contraída es igual a la primera conjugada hc = h' (Calero, 2017).

Segunda conjugada

$$\mathbf{h}'' = \frac{h'}{2} * \left\{ \sqrt{1 + 8\left(\frac{hcr}{h'}\right)^3} - 1 \right\} = \frac{0.0545}{2} * \left\{ \sqrt{1 + 8\left(\frac{0.292}{0.0545}\right)^3} - 1 \right\}$$

$$h'' = 0.929 m$$

Comprobación de Sumersión

Una vez obtenida la segunda conjugada h'' se compara con la profundidad normal del cauce h (Calero, 2017). Para que el resalto sea sumergido debe cumplir con la siguiente condición:

0.929 m < 4.10 m : El resalto es sumergido

Longitud de Resalto

Para determinar la longitud de resalto Lr no está definida una ecuación teórica, y en la práctica, para cálculos preliminares se utilizan ecuaciones empíricas como las siguientes:

Según Pavlovski:

$$Lr = 2.5(1.9 * h'' - h') = 2.5(1.9 * 0.929 - 0.0545)$$

 $Lr = 4.154m$

Según Barkhmetev-Mazke:

$$Lr = 5(h'' - h') = 5(0.929 - 0.0545)$$

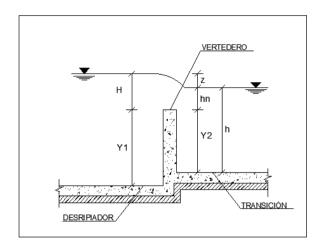
 $Lr = 4.373m$

Otro criterio para calcular el ancho de la cámara es el dado por Bureau of Reclamation, en el cual la longitud del desripiador es aproximadamente igual a la longitud de una transición y está dada por la siguiente ecuación:

$$L = \frac{B - b}{2 * \tan 12.5^{\circ}} = \frac{3.40 - 2.30}{2 * \tan 12.5^{\circ}}$$
$$L = 2.561 m$$

El ancho del desripiador no podrá tener un valor menor a la longitud del resalto.

Por razones constructivas se asumió un ancho del desripiador es de **4.40 metros**, con el fin de obtener espacio suficiente para colocar los vertederos de salida del desripiador.


5.3.3. Vertedero de salida del desripiador

El ancho del vertedero de salida del desripiador hacia la zona de transición, se calcula con la siguiente formula:

$$Q = k * s * M * b * (H)^{\frac{3}{2}}$$

Figura 57.

Dimensionamiento del desripiador

Nota. Identificación de los niveles del desripiador y zona de transición. Elaborado por: Los autores con el paquete computacional AutoCAD.

Datos:

Y1=2.85 m

H=1.75 m

Y2 = 2.65 m

hn = 1.20 m

Q = 1.68 m 3/s

Para obtener los valores de z y h, de la siguiente manera:

$$z = H - hn = 1.75 - 1.20 = 0.55 m$$

$$h = y2 + hn = 2.65 + 1.20 = 3.85 m$$

Según (Ortiz, 2011) "para considerar que un vertedero es sumergido debe cumplir las siguientes condiciones":

 $1ra\ condicion: h > Y2$

3.85 m > 2.65 m :: Si cumple

2da condicion:
$$\frac{Z_o}{Y2} < 0.70$$

$$Z_o = z - \frac{v^2}{g} = 0.55 - \frac{0.40^2}{9.81} = 0.534$$

$$0.201 < 0.70 \quad \therefore \textbf{Si cumple}$$

Un vertedero se considera de pared delgada, cuando la relación entre su espesor (e) y su carga (H), se mantiene en el siguiente rango.

$$\frac{e}{H} \le 0.50$$

Se asumirá un espesor de 0.35 m

$$\frac{0.35}{1.75} = 0.200 < 0.50$$
 \therefore *Si cumple*

Por lo tanto, al cumplir las condiciones de sumersión y clasificarlo por su espesor, se obtiene un vertedero sumergido de pared delgada.

Coeficiente de Caudal

El coeficiente M para un vertedero de cresta delgada según Konovalov, está dado por:

$$\mathbf{Mdesrip} = \left[0.407 + \frac{0.045 * H}{H + Y1}\right] \left[1 + 0.285 * \left(\frac{H}{H + Y1}\right)^{2}\right]$$

$$\mathbf{Mdesrip} = \left[0.407 + \frac{0.045 * 1.75}{1.75 + 2.85}\right] \left[1 + 0.285 * \left(\frac{1.75}{1.75 + 2.85}\right)^{2}\right] = \mathbf{0.4416}$$

Coeficiente de corrección de sumersión

El coeficiente de corrección de sumersión s según Bazin, es igual a:

$$sdesrip = 1.05 \left(1 + \frac{0.2 * hn}{Y2}\right) \left(\frac{Z}{H}\right)^{\frac{1}{3}}$$
$$sdesrip = 1.05 \left(1 + \frac{0.2 * 1.20}{2.65}\right) \left(\frac{0.55}{1.75}\right)^{\frac{1}{3}} = \mathbf{0}.7785$$

Coeficiente de Contracción

Tomamos el valor de **k=0.90**, recomendado por (Ortiz, 2011)

Ancho del vertedero

Con la ecuación de vertedero sumergido, se procederá a despejar el ancho (b), mediante la siguiente ecuación:

$$bdesrip = \frac{Q}{k * s * M * (H)^{\frac{3}{2}}} = \frac{1.68}{0.90 * 0.7785 * 0.4416 * (1.75)^{\frac{3}{2}}}$$
$$b = 2.34 \ m \approx 2.40 \ m$$

5.3.3.4.Cálculo de la compuerta de lavado del desripiador

Para poder evacuar las piedras y sedimentos alojados en el desripiador al pasar por la rejilla se requiere de una velocidad de fluido $v = 3\frac{m}{s}$ y una pendiente jc, que se calcula por medio de la siguiente ecuación:

$$jc = \frac{v^2 * n^2}{R^{\frac{4}{3}}}$$

$$A = Ldesrip * (Y1 + H) = 4.40 * (2.65 + 1.75) = 19.36 m^2$$

$$P = Ldesrip + 2 * (Y1 + H) = 4.40 + 2 * (2.65 + 1.75) = 13.20 m$$

Una vez obtenido el área y perímetro del desripiador se procede a calcular los parámetros de velocidad v y radio hidráulico R.

$$R = \frac{A}{P} = \frac{19.36}{13.20} = 1.467 m$$

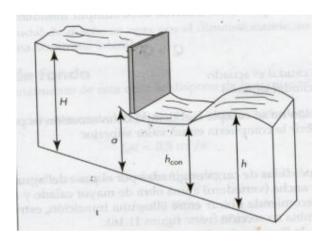
$$jc = \frac{3^2 * 0.025^2}{0.712^{\frac{4}{3}}} = 3.375 \times 10^{-3}$$

$$\propto_{ic} = \tan^{-1}(3.375 \times 10^{-3}) = 0.193^{\circ}$$

Según (Ortiz, 2011) "si la gradiente del río es superior al valor de la pendiente del canal, no presenta dificultades para la evacuación de los elementos sólidos"

gradiente del rio > jc

$$3.27 > 3.375x10^{-3} \therefore Si \ cumple$$


La compuerta de lavado debe ser capaz de evacuar todo el caudal cuando se requiera lavar el desripiador, por lo tanto, este caudal debe ser mayor al caudal de diseño y se calcula de la siguiente manera:

$$Q' = k * e * a * bc * \sqrt{2g * \left(H + \frac{v^2}{2g} - e * a\right)}$$

Suponemos una apertura de la compuerta de 0.50 m y un ancho de 1.00 m.

Figura 58.

Esquema de la compuerta de lavado

Nota. Identificación de los niveles de la compuerta de lavado. Fuente: (Ortiz, 2011)

Para obtener el valor de coeficiente e que está en función de la apertura de la compuerta y la altura del nivel del desripiador, y se obtiene de la siguiente tabla:

$$\frac{a}{H} = \frac{0.50 \ m}{1.75 \ m} = 0.286$$

Tabla 59. Valores coeficiente "e".

a/H	e	a/H	e	a/H	e	a/H	e
0.00	0.611	0.30	0.625	0.55	0.650	0.80	0.720
0.10	0.615	0.35	0.628	0.60	0.660	0.85	0.745
0.15	0.618	0.40	0.630	0.65	0.675	0.90	0.780
0.20	0.620	0.45	0.638	0.70	0.690	0.95	0.835
0.25	0.622	0.50	0.645	0.75	0.705	1.00	1.000

Nota. Determinación del coeficiente "e" en función de su altura y nivel de agua.

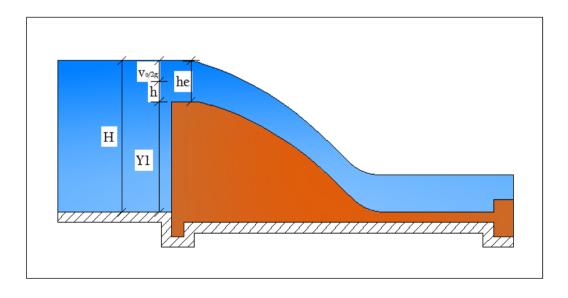
Elaborado por: Los autores con información de Fuente: (Ortiz, 2011)

Interpolando se obtiene el valor de e = 0.6242

$$Q' = 0.95 * 0.6242 * 0.50 * 1.00 * \sqrt{19.62 * \left(1.75 + \frac{3^2}{19.62} - 0.6242 * 0.50\right)}$$

$$Q' = 1.81 \frac{m^3}{s}$$

$$Q' > Q$$


$$1.81 \frac{m^3}{s} > 1.68 \frac{m^3}{s} \therefore Si cumple$$

Por lo tanto, las dimensiones de la compuerta y la pendiente del canal son aceptables.

Tomando en consideración los resultados de las tres alternativas, se determinó que el caudal de diseño es igual al concesionado, con la que se procederá a diseñar y realizar los planos, los cuales se presenta en el **anexo 10**.

5.3.4. Diseño del Azud

Figura 59.
Esquema del perfil Creager

Nota. Niveles del perfil Creager. Elaborado por: Los autores con el paquete computacional AutoCAD.

El cálculo para el dimensionamiento del azud, tiene en cuenta la máxima altura alcanzada por el agua antes de la descarga, esto se logra mediante la siguiente ecuación:

$$Q_{max} = \frac{2}{3} \left(\mu * b * \sqrt{2g} \right) * \left(\left(h + \frac{v^2}{2g} \right)^{\frac{3}{2}} - \left(\frac{v^2}{2g} \right)^{\frac{3}{2}} \right)$$

Donde:

 $Q_{max} = 55.00 \frac{m^3}{s}$: Caudal maximo de crecida del río Chota

 $\mu=0.75$: Coeficiente del vertedero recomendado para cresta tipo Creager

b = 32.70m: Ancho del rio en el sitio del proyecto

 $v = 0.40 \frac{m}{s}$: Velocidad de acercamiento

h = Altura de la carga

$$55.00 = \frac{2}{3} \left(0.75 * 32.70 * \sqrt{19.62} \right) * \left(\left(\mathbf{h} + \frac{0.40^2}{19.62} \right)^{\frac{3}{2}} - \left(\frac{0.40^2}{19.62} \right)^{\frac{3}{2}} \right)$$

$$h = 0.82 m \approx 0.90 m$$

Se debe calcular la velocidad del agua sobre la cresta del azud, ya que esta permitirá establecer la cantidad de energía con el fin de disipar.

La velocidad sobre la cresta se calcula con la siguiente ecuación:

$$\mathbf{Q}_{max} = v_o * A = v_{azud} * h * b$$

$$v_o = \frac{Q_{max}}{h * b} = \frac{55}{0.90 * 32.70} = 1.869 \frac{m}{s}$$

La carga energética sobre el azud se calcula sumando la carga por elevación con la dinámica.

$$he = h + \frac{{v_o}^2}{2g}$$

Donde

he: Carga energetica sobre la cresta del azud

 $\frac{{v_o}^2}{2g}$: Carga dinamica sobre la cresta del azud

$$\frac{{v_o}^2}{2g} = \frac{1.869^2}{19.62} = \mathbf{0}.\,\mathbf{18}\,\mathbf{m}$$

$$he = 0.90 + \frac{1.869^2}{19.62} = 1.078 \, m \approx 1.10 m$$

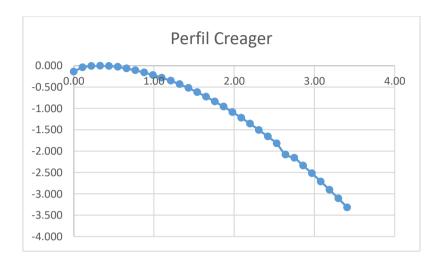
$$H = he + Y1 = 1.10m + 2.70m = 3.80 m$$

5.3.4.1. Dimensionamiento del Azud

Para dimensionar el azud se hace con el perfil de Creager, mediante las coordenadas reales (x-y), a partir de las coordenadas Creager-Ofizyerov (x'-y'), también conocidas como coordenadas unitarias (ver **anexo 9**).

Coordenadas unitarias

$$x' = \frac{x}{H} \; ; \; y' = \frac{y}{H}$$


Coordenadas reales

$$x = x' * H : y = y' * H$$

Con la tabulación de las coordenadas reales del perfil Creager, se puede obtiene la siguiente figura.

Figura 60.

Construcción del perfil Creager

Nota. Elaborado por: Los autores mediante el paquete computacional Excel.

5.3.4.2. Dimensionamiento del zampeado

Para el dimensionamiento del zampeado se guiará en los apuntes de (Calero, 2017).

Al tener como incógnita la altura de salida aguas abajo, y conociendo los diferentes parámetros de la siguiente ecuación mediante un despeje se obtendrá dicho valor:

$$v = \frac{1}{n} * R^{\frac{2}{3}} * S^{\frac{1}{2}}(Ec. 1)$$

Donde:

v: Velocidad

n: Coeficiente de rugosidad empirica. Se asume un valor de 0.028

R: Radio hidráulico

S: Pendiente del río, y su valor de es de 3.27%

$$v = \frac{Q}{W} (Ec. 2)$$

Donde:

Q: Caudal maxima de crecidas

W: sección del flujo

Reemplazando la ecuación 2 en 1, y despejando el caudal se obtiene la siguiente formula:

$$Q = \frac{W}{n} * R^{\frac{2}{3}} * S^{\frac{1}{2}} (Ec. 3)$$

Una vez obtenida la ecuación 3 y conociendo los diferentes parámetros que intervienen, para obtener la altura aguas abajo, se deja en función de dicha variable.

$$Q = \frac{b * \mathbf{h}}{n} * \left(\frac{b * \mathbf{h}}{b + 2\mathbf{h}}\right)^{\frac{2}{3}} * S^{\frac{1}{2}}$$

Reemplazando los datos, se obtiene:

$$55 = \frac{32 * \mathbf{h}}{0.028} * \left(\frac{32 * \mathbf{h}}{32 + 2\mathbf{h}}\right)^{\frac{2}{3}} * (0.0327)^{\frac{1}{2}}$$

$$h = 0.4570 m$$

La velocidad (v) se obtiene:

$$v = \frac{Q}{b*h} = \frac{55}{32*0.45} = 3.81 \frac{m}{s}$$

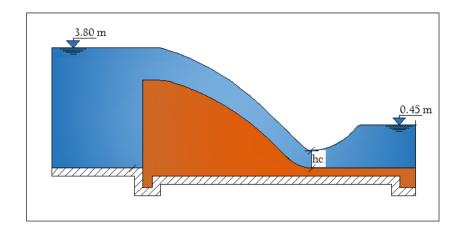
El número de Freud (FR) es un criterio presentado como un para empírico para determinar si un flujo es crítico, subcrítico o supercrítico (Calero, 2017), y se obtiene mediante la siguiente ecuación:

$$FR = \frac{v^2}{g * h}$$

Donde:

v: Velocidad

g: Gravedad


h: Profundidad de agua

$$FR = \frac{3.81^2}{9.81 * 0.45} = 3.28$$

Al tener un número de Freud FR mayor que 1, se tiene un flujo supercrítico.

Figura 61.

Esquema de la captación con niveles aguas arriba y aguas abajo

Nota. Niveles de agua de entrada y salida. Elaborado por: Los autores mediante el programa AutoCAD.

Una vez determinado, se procede a realizar el análisis del resalto hidráulico para lo cual lo primero es determinar el caudal unitario (q) se obtiene mediante la siguiente ecuación:

$$q = \frac{Qmax}{b} = \frac{55.00 \frac{m^3}{s}}{32.70 m} = 1.6820 \frac{m^3}{s * m}$$

Para la profundidad contraída se hace con la siguiente ecuación mediante un proceso de iteraciones (Calero, 2017).

$$Eo = hc + \frac{q^2}{hc^2 * 2q * \varphi^2}$$

Donde:

Eo: Energia total

q: Caudal unitario

 $hc: Profudidad\ contraida$

g: Gravedad

 φ : Coeficiente de velocidad

$$Eo = E + \frac{{v_o}^2}{2a} = 3.80 + \frac{1.869^2}{19.62} = 3.98m$$

$$3.98 = hc + \frac{1.682^2}{hc^2 * 19.62 * 0.95^2}$$
$$hc = 0.205 m$$

Se procede a calcular la profundidad critica

$$hcr = \sqrt[3]{\frac{q^2}{g}} = \sqrt[3]{\frac{1.682^2}{9.81}} = \mathbf{0.660} \ m$$

Para determinar el análisis hidráulico se asume que el resalto se inicia en la sección contraída (Calero, 2017), es decir:

$$h' = hc = 0.20 m$$

Conociendo la primera conjugada, con la ayuda de la ecuación correspondiente se determina la segunda conjugada:

$$\mathbf{h}^{"} = \frac{h'}{2} * \left\{ \sqrt{1 + 8\left(\frac{hcr}{h'}\right)^3} - 1 \right\}$$

$$\mathbf{h}^{"} = \frac{0.20}{2} * \left\{ \sqrt{1 + 8\left(\frac{0.66}{0.20}\right)^3} - 1 \right\}$$

$$\mathbf{h}^{"} = 1.598 m$$

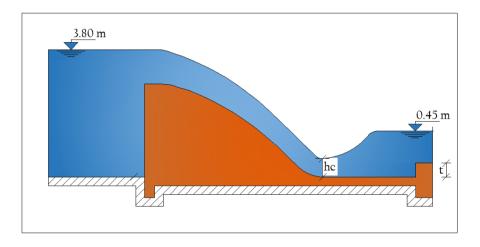
Una vez que se conoce la segunda conjugada se compara con la profundidad normal en el cauce aguas abajo:

h'' > ho :: Resalto desplazado

h'' < ho : Resalto sumergido

1.60m > 0.45m : Resalto desplazado

En vista de que se ha obtenido un resalto desplazado es necesario adoptar una medida constructiva para evitar el desplazamiento del resalto. Esta medida puede ser el pozo de disipación.


Pozo de disipación

Esta medida consiste en profundizar el fondo al pie del dique en una magnitud **t** suficiente para que el nivel de agua que corresponde a la segunda conjugada, no supere la profundidad normal del aguas abajo (Calero, 2017), es decir:

$$h'' < ho + t$$

La profundidad del pozo de disipación **t** se determina mediante por aproximaciones.

Figura 62.
Esquema del pozo de disipación

Nota. Profundización al fondo del pie del dique "t". Elaborado por: Los autores mediante el programa AutoCAD.

Asumimos un valor de: t = 1.35m

$$Eo_{1} = hc_{1} + \frac{q^{2}}{hc_{1}^{2} * 2g * \varphi^{2}}$$

$$Eo_{1} = Eo + t = 3.98m + 1.35m = 5.33m$$

$$5.33 = hc_{1} + \frac{1.682^{2}}{hc_{1}^{2} * 19.62 * 0.95^{2}}$$

$$hc_{1} = 0.176 m$$

Se asume que el resalto se inicia en la sección contraída:

$$h' = hc_1 = 0.18 m$$

Conocido la primera conjugada con la ayuda de la ecuación correspondiente se determina la segunda conjugada:

$$\mathbf{h}^{\prime\prime} = \frac{0.18}{2} * \left\{ \sqrt{1 + 8 \left(\frac{0.66}{0.18}\right)^3} - 1 \right\}$$
$$\mathbf{h}^{\prime\prime} = 1.699 \ m$$

Una vez que se conoce la segunda conjugada se compara con la profundidad normal en el cauce aguas abajo:

$$h'' < ho + t$$

 $1.70m < 0.45m + 1.35$

1.70m < 1.80m : Resalto sumergido

El valor de profundización del pozo t es aceptable cuando presenta una sumersión del resalto hasta el 10% (Calero, 2017), es decir:

$$\frac{ho + t}{h''} = (1 \div 1.10)$$

$$\frac{0.45 + 1.35}{1.70} = 1.06 \therefore La \ profundidad \ del \ pozo \ es \ aceptable$$

Una vez que los valores asumidos cumplieron la condición, se procede a calcular la longitud del pozo que es igual a la del resalto hidráulico.

$$L_{Pozo} = 5 * (h'' - h')$$

 $L_{Pozo} = 5 * (1.70m - 0.18m) = 7.60 m$

La construcción del azud puede llegar a tener un costo elevado si se realiza con hormigón armado, sin embargo, para economizar el costo de esta estructura se recomienda aprovechar el suelo rocoso que caracteriza el río Chota lo cual tendría una gran ventaja al utilizar estas rocas ya que no genera impactos ambientales y representaría una disminución en los costos por concepto de materia prima y transporte.

5.4.Diseño de Sifones Invertidos

Los sifones son tuberías que bajan hasta el fondo de la depresión siguiendo los taludes de la misma, dependiendo de la altura entre la cota inicial (parte alta) y la final (fondo del sifón), y por lo tanto de la presión que soporta. Se pueden diseñar con un solo diámetro de tubería o

tener diámetros decrecientes hacia abajo, esto se realiza con el fin de disminuir el presupuesto

(Krochin, 1986).

5.4.1. Sifón río Chota

El sifón del río Chota se encuentra a la salida del canal de repartición en el margen

derecho, por lo que el caudal de diseño es de 750 lt/s. Además, la cota inicial es de 1692.00

msnm y la final de 1660 msnm, con una longitud de 800 m.

5.4.1.1. Tuberías a presión

De acuerdo al catálogo de tuberías se asumen un diámetro de hierro fundido, el cual

presenta los siguientes datos:

Diámetro nominal: 630 mm

Presión nominal: 1.6 MPa

Espesor nominal: 12.6 mm

Diámetro interior: 595.8 mm

Hazen Williams: 130

Módulo de Elasticidad: 3920000 KN/m2

Coeficiente de Poisson: 0.41

5.4.1.2.Velocidad

Una vez asumido el diámetro de la tubería, se procede a calcular el área y con la ecuación

de continuidad, se calculará la velocidad.

 $A = \frac{\pi * D^2}{4}$

Donde:

A: Área de la tubería

D: Diametro de la tubería

 $A = \frac{\pi * 0.63^2}{4}$

163

$$A = 0.2788 m^2$$

Q = v * A Ecuación de Continuidad

$$v = \frac{Q}{A}$$

Donde:

A: Área de la tubería

Q: Caudal de diseño

v: Velocidad de flujo

$$v = \frac{0.75}{0.2788}$$

$$v = 2.690 \, m/s$$

5.4.1.3. Perdida de carga por fricción.

Los sistemas de riego contienen tuberías y accesorios, cada uno de los cuales causa perdida de carga en el sistema. Para determinar las pérdidas de carga en tubería, se utilizará la ecuación de Hazen-Williams:

$$hf = 10.674 * \left(\frac{Q}{C}\right)^{1.852} * \frac{1}{D^{4.871}} * L$$

Donde:

hf: Perdidas de carga por fricción

Q: Caudal de diseño

C: Coeficiente de Hazen – Williams

D: Diametro interior de la tubería

L: Longitud del sifón

$$hf = 10.674 * \left(\frac{0.75}{130}\right)^{1.852} * \frac{1}{(0.5958)^{4.871}} * 800$$

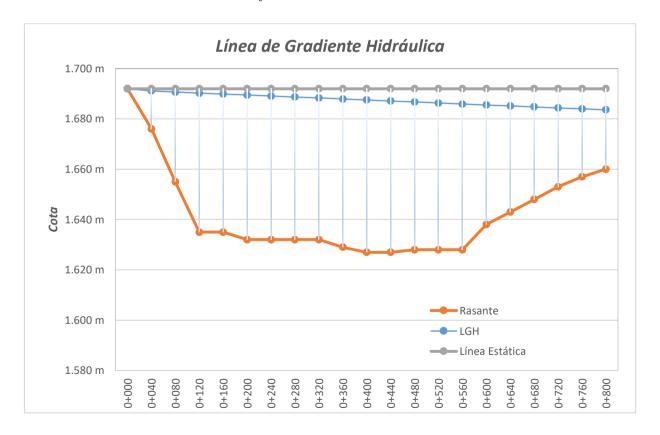
$$hf = 7.59 m$$

5.4.1.4. Carga disponible

Para obtener la carga disponible, es la diferencia entre la cota inicial menos la final del sifón, como se indica:

$$cota\ inicial - cota\ final = 1692 - 1662 = 32.00\ m$$

Debe cumplir que la carga disponible sea mayor a las pérdidas por fricción:


Carga disponible > Perdidas de carga por fricción

32 m > 7.59 m : Cumple carga hidraúlica

La construcción de la línea de gradiente hidráulica se realizó por medio de una tabla mediante el paquete computacional determinado los diferentes parámetros que intervienen en el diseño, los cuales se encuentran en el **anexo 11**.

Figura 63.

Línea de Gradiente Hidráulica del sifón del río Chota

Nota. Rasante y línea de la gradiente hidráulica del sifón. Elaborado por: Los autores con el paquete computacional Excel.

Cabe recalcar que al final del tramo en la cota 0+800 se encuentra un tanque rompe

presiones con el fin de evitar perdida de energía.

Tanque rompe presiones

Es el encargado de regular la presión del agua con el fin de evitar que la tubería se rompa

y sus uniones se despeguen. La dimensión es de sección cuadrada de 1.30m*1.30m.

En el anexo 12 se encuentra el plano de diseño.

5.4.2. Sifón Espadillas

El sifón espadillas se encuentra al final del canal de conducción en el margen izquierdo,

presenta un caudal de diseño de 239.63 lt/s. Además, la cota inicial es de 1675.00 msnm y la

final es de 1671 msnm, con una longitud de 380 m.

5.4.2.1. Tuberías a presión

De acuerdo al catálogo de tuberías se asume un diámetro de tubería de cemento asbesto,

el cual presenta los siguientes datos:

Diámetro nominal: 400 mm

Presión nominal: 1.6MPa

Espesor nominal: 13.8 mm

Diámetro interior: 378.4 mm

Hazen Williams: 135

Módulo de Elasticidad: 3920000 KN/m2

Coeficiente de Poisson: 0.41

5.4.2.2.Velocidad

Una vez asumido el diámetro de la tubería, se procede a calcular el área y con la ecuación

de continuidad, se calculará la velocidad.

 $A = \frac{\pi * D^2}{4}$

Donde:

166

A: Área de la tubería

D: Diametro de la tubería

$$A = \frac{\pi * 0.3784^2}{4}$$

$$A = 0.1125 m^2$$

Q = v * A Ecuación de Continuidad

$$v = \frac{Q}{A}$$

Donde:

A: Área de la tubería

Q: Caudal de diseño

v: Velocidad de flujo

$$v = \frac{0.2396}{0.1125}$$

$$v=2.13\ m/s$$

5.4.2.3. Perdida de carga por fricción.

Los sistemas de riego contienen tuberías y accesorios, cada uno de los cuales causa perdida de carga en el sistema. Para determinar las pérdidas de carga en tubería, se utilizará la ecuación de Hazen-Williams:

$$hf = 10.674 * \left(\frac{Q}{C}\right)^{1.852} * \frac{1}{D^{4.871}} * L$$

Donde:

hf: Perdidas de carga por fricción

Q: Caudal de diseño

C: Coeficiente de Hazen – Williams

D: Diametro interior de la tubería

L: Longitud del sifón

$$hf = 10.674 * \left(\frac{0.2396}{130}\right)^{1.852} * \frac{1}{(0.3784)^{4.871}} * 380$$

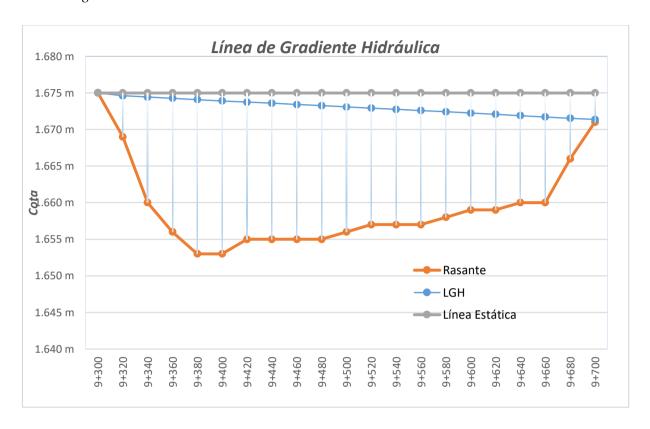
$$hf = 3.71 m$$

5.4.2.4.Carga disponible

Para obtener la carga disponible, es la diferencia entre la cota inicial menos la cota final, como se indica:

$$cota\ inicial - cota\ final = 1675 - 1671 = 4.00\ m$$

Debe cumplir que la carga disponible sea mayor a las pérdidas por fricción:


Carga disponible > Perdidas de carga por fricción

$$4 m > 3.71 m$$
 : Cumple carga hidraúlica

La construcción de la línea de gradiente hidráulica se realizó por medio de una tabla mediante el paquete computacional determinado los diferentes parámetros que intervienen en el diseño, los cuales se encuentran en el **anexo 13.**

Figura 64.

Línea de gradiente hidráulica

Nota. Rasante y línea de la gradiente hidráulica del sifón. Elaborado por: Los autores con el paquete computacional Excel.

En el anexo 14 se encuentra el plano de diseño.

CAPÍTULO VI

VIABILIDAD TÉCNICA, ECONÓMICA Y FINANCIERA

6.1.Presupuesto referencial

El presupuesto de obra consiste en la elaboración de una tabla de cantidades en el que se incluyen todos los rubros necesarios para su ejecución y culminación, además es un instrumento que permite direccionar los gastos durante la fase de construcción. La valoración estimada debe ser lo más próxima a la realidad, pero sin embargo el costo final puede ser o no el valor estimado al principio inicialmente.

6.1.1. Costos directos

Son aquellos que están relacionados directamente en la ejecución del proyecto, tales como son: materiales, servicios básicos, herramientas, equipos, maquinaria, personal técnico y mano de obra.

6.1.2. Costos indirectos

Son aquellos que dependiendo el tipo de obra se puede omitir o no los mismos y están relacionados con los gastos técnico – administrativos necesarios para la correcta ejecución. Estos incluyen: dirección y administración técnica del proyecto, imprevistos, publicidad y comunicación, transporte de personal y maquinaria, los cuales representan el 20 % del presupuesto total.

6.1.3. Análisis de Precios Unitarios (APUs)

El análisis de precios unitarios es un estudio a profundidad de cada rubro que se ejecutará en el proyecto, para estimar su costo unitario se considera los siguientes elementos: equipos, maquinaria, herramientas y personal insustituible para su desarrollo.

Los distintos factores que pueden influir en cada uno de los elementos del APU son: rendimiento de personal técnico, tarifas de alquiler de maquinarias y equipos, cantidad de materiales necesarios para ejecutar la unidad (m, m2, m3, global, etcétera) del rubro.

6.1.4. Volúmenes de obra.

Es el cálculo de las cantidades de obra a ejecutar durante la fase de construcción del proyecto, para obtener los volúmenes de cada componente del sistema de riego biprovincial Ambuquí (captación y sifones), con la ayuda de los planos que se encuentran en los anexos.

El presupuesto que se muestra a continuación, solo se usará como referencia ya que la empresa EPA-EP trabaja con sus propios precios unitarios.

Tabla 60.

Presupuesto referencial

Código	Descripción	Unidad	Cantidad	P.U.	C. Total
	TOMA DE CAPTACION				
1001	Excavación a mano en fango inc. bomba en el cauce de embalse de toma	m3	220.1	20.91	4,601.87
1002	Alquiler de maquinaria excavadora tipo oruga	hora	180	60.61	10,910.16
1003	Desalojo de material ≤ 50m en el cauce de embalse de toma el cauce de embalse	m3	220.1	2.84	624.6
1004	Desvío de cauce de río	glb	1	1,380.00	1,380.00
1005	Excavación a mano en fango inc. bomba FANGO INC. bomba en la zona de azud	m3	120.57	20.91	2,520.89
1006	Retiro de material rocoso de $\phi > 10$ cm a mano en la zona del azud	m3	80.95	21.46	1,737.43
1007	Encofrado y desencofrado muros con madera de monte (1 uso)	m2	142.78	31.85	4,547.54
1008	Hormigón simple, f'c= 210 kg/cm2, no inc. encofrado	m3	93.26	169.12	15,771.50
1009	Acero de refuerzo f´y= 4200 kg/cm2	Kg	302.55	2.46	744.43
1010	Reja metálica de protección	m2	2.4	139.91	335.78
1011	Desalojo de material ≤ 50m en la bocatoma	m3	116.57	2.84	330.8
1012	Compuerta bocatoma $1.00 \times 0.50 \text{ m}$, e= 6 mm	u	1	551.28	551.28
1013	Excavación a mano en fango inc. bomba para muro de bocatoma	m3	16.38	20.91	342.47
1014	Retiro de material rocoso de $\phi > 10$ cm a mano para muro de bocatoma	m3	9.46	21.46	203.04
1015	Hormigón simple f´c= 180 kg/cm2. para muro de bocatoma	m3	3.5	163.97	573.89
1016	Hormigón simple, f'c= 210 kg/cm2, no inc. encofrado para muro de bocatoma	m3	8.65	169.12	1,462.89
1017	Acero de refuerzo f´y= 4200 kg/cm2. para muro de bocatoma	Kg	291	2.46	716.01
1018	Encofrado y desencofrado muros con madera de monte (1 uso). para muro de boca toma	m2	65	31.85	2,070.25
1019	Desalojo de material ≤ 50m. para muro de bocatoma	m3	22.85	2.84	64.84

			SUBTOTA	L	49,489.66
	SIFONES				
	SIFÓN CHOTA				
1020	Excavación a mano en fango inc. bomba	m3	249.57	20.91	5,218.03
1021	Alquiler de maquinaria excavadora tipo oruga	hora	20	60.61	1,212.24
1022	Hormigón ciclópeo 60% hs f´c= 140 kg/cm2 y 40% piedra, sin encofrado	m3	36	95.5	3,438.12
1023	Hormigón simple, f´c= 210 kg/cm2, no inc. encofrado	m3	86.45	169.12	14,620.46
1024	Acero de refuerzo f´y= 4200 kg/cm2	Kg	120	2.46	295.26
1025	Tubería u-PVC u/z d=500 mm 1.25 MPa (mat/trans/inst.)	m	135	451.92	61,009.20
1026	Codo cruz 500 mm x 45° (mat/trans/inst.)	u	4	1,728.19	6,912.76
1027	Desalojo de material ≤ 50m	m3	224.64	2.84	637.48
1028	Desvío de cauce río	glb	1	1,380.00	1,380.00
	RECONSTRUCCIÓN DE CAJÓN DE SAL	IDA A	BS 0+800 M	ID	
1029	Limpieza y desbroce manual	m2	100	1.98	198
1030	Excavación a mano en suelo conglomerado	m3	19.2	17.81	341.94
1031	Derrocamiento de hormigón	m3	0.1	127.3	12.73
1032	Hormigón simple, f'c= 210 kg/cm2, no inc. encofrado	m3	11.84	169.12	2,002.39
1033	Acero de refuerzo f´y= 4200 kg/cm2	Kg 178.5 2.46		2.46	439.2
1034	Encofrado y desencofrado muros con madera de monte (1 uso)	m2	76.62	31.85	2,440.35
1035	Tubería u-PVC u/z D= 630 mm 1.25 MPa (mat/trans/inst.)	m	4	13.5	54
1036	Válvula de compuerta 3"	u	1	148.29	148.29
1037	Desalojo de material ≤ 50m	m3	19.3	2.84	54.77
			SUBTOTA	L	100,415.22
	SIFÓN ESPADILLAS				
1038	Replanteo y nivelación con equipo topográfico	m2	25.43	1.81	45.99
1039	Derrocamiento de hormigón	m3	12	127.3	1,527.57
1040	Excavación a mano en suelo conglomerado	m3	2.5	20.91	52.27
1041	Tubería PVC alcantarillado D=500 mm (mat/trans/inst.)	m	24	53.51	1,284.24
1042	Hormigón simple, f'c= 210 kg/cm2, no inc. encofrado	m3	15.65	169.12	2,646.73
1043	Acero de refuerzo f'y= 4200 kg/cm2	Kg	153.6	2.46	377.94
1044	Encofrado y desencofrado muros con madera de monte (1 uso)	m2	101.89	31.85	3,245.20
1045	Desalojo de material ≤ 50m	m3	16.5	2.84	46.82
1046	Desalojo de material transporte 10 km cargada manual	m3	16.5	22.39	369.36
			SUBTOTA	AL .	9,596.12
			TOTAL		159,501.00

Nota. Presupuesto total. Elaborado por: Los autores

El presupuesto total con costos indirectos al 20% es de \$ 159,501.00 ciento cincuenta y nueve mil quinientos un dólar con cero centavos. En el **anexo 15** se encuentran los análisis de precios unitarios de cada rubro.

6.2. Cronograma valorado

El cronograma es un calendario de trabajo programado basándose en los tiempos de ejecución de los rubros. Es fundamental en el desarrollo de la obra ya que nos ayuda en la planificación y cumplimiento de las actividades a realizar de inicio a final.

Para cumplir con el cronograma planificado el encargado de la obra deberá controlar que los tiempos establecidos se cumplan para obtener un resultado óptimo en la ejecución del proyecto.

A continuación, se presenta el cronograma valorado en la figura 65, el cual puede estar sujeto a modificaciones de tiempo correspondientes a la ejecución de actividades, por lo que se utilizará como referencia.

Figura 65.
Cronograma valorado

	CRO	NOGRAMA	DE A	ACTI	VIDA	DES																
	PROYECTO: "EVALUACIÓN Y MEJORAMIENTO HIDRAÚLIO	CO DE LA I	NFR	AEST	RUC	TUR	A DE	EL SI	STEN	ИA D	E RII	EGO	BIPI	ROVI	INCL	AL A	мви	QUI				
	-			Mes					es 2				s 3			Me				Me		
	DES CRIPCION	C. TOTAL	S. 1	S. 2	S. 3	S. 4	S. 1	S. 2	S. 3	S. 4	S. 1	S. 2	S. 3	S. 4	S. 1	S. 2	S. 3	S. 4	S. 1	S. 2	S. 3	S. 4
	Excavación a mano en fango inc. bomba en el cauce de embalse de toma	4601.87							1													—
	Alquiler de maquinaria excavadora tipo oruga	10910.16																				├
	Desalojo de material ≤ 50m en el cauce de embalse de toma el cauce de embalse	624.60 1380.00						-	1	-						-						├─
	Desvío de cauce de río								_	-						-						├
	Excavación a mano en fango inc. bomba FANGO INC. boma en la zona de azud Retiro de material rocoso de φ > 10 cm a mano en la zona del azud	2520.89 1737.43		1					_	-						-						⊢
	Encofrado y desencofrado muros con madera de monte (1 uso)	4547.54		1												-						\vdash
~	Hormigón simple, f´c= 210 kg/cm2, no inc. encofrado	15771.50																				!
CAPTACIÓN	Acero de refuerzo f´y= 4200 kg/cm2	744.43																				
JĄ.	Reja metálica de protección	335.78		1																		
4	Desalojo de material ≤ 50m en la bocatoma	330.80																				
3	Compuerta bocatoma 1.00 x 0.50 m , e= 6 mm	551.28																				
	Excavación a mano en fango inc. bomba para muro de bocatoma	342.47																				
	Retiro de material rocoso de φ > 10 cm a mano para muro de bocatoma	203.04							i e													
	Hormigón simple f'c= 180 kg/cm2, para muro de bocatoma	573.89																				
	Hormigón simple, f´c= 210 kg/cm2, no inc. encofrado para muro de bocatoma	1462.89																				
	Acero de refuerzo f'y= 4200 kg/cm2. para muro de bocatoma	716.01																				
	Encofrado y desencofrado muros con madera de monte (1 uso), para muro de boca	2070.25																				
	Desalojo de material ≤ 50m. para muro de bocatoma	64.84																				
	Excavación a mano en fango inc. bomba	5218.03																				<u> </u>
	Alquiler de maquinaria excavadora tipo oruga	1212.24																				<u> </u>
	Hormigon ciclopeo 60% hs f'c= 140 kg/cm2 y 40% piedra, sin encofrado	3438.12																				
	Hormigon simple, f'c= 210 kg/cm2, no inc. encofrado	14620.46							<u> </u>													<u> </u>
	Acero de refuerzo f´y= 4200 kg/cm2	295.26							ļ													ـــــ
	Tuberia u-pvc u/z d=500 mm 1.25 mpa (mat/trans / inst.)	61009.20																				Ь—
I.	Codo cr uz 500 mm x 45° (mat/trans / inst.)	6912.76							<u> </u>							_						—
SIFÓN CHOTA	Desalojo de material ≤ 50m	637.48							ļ													1
ō	Desvío de cauce rio	1380.00							-													├
Ş	Limpieza y desbroce manual	198 341.94		-																		├
豈	Excavación a mano en suelo conglomerado Derrocamiento de hormigón	12.73							-	-	-											-
	Hormigon simple, f'c= 210 kg/cm2, no inc. encofrado	2002.39		1																		
	Acero de refuerzo f'y= 4200 kg/cm2	439.20		1					1													
	Encofrado y desencofrado muros con madera de monte (1 uso)	2440.35																				
	Tuberia u-pvc u/z d= 630 mm 1.25 mpa (mat/trans / inst.)	54.90																				
	Válvula de compuerta 3"	148.29		1					1													
	Desalojo de material ≤ 50m	54.77		1																		
	Replanteo y nivelación con equipo topográfico	45.99																				
S.	Derrocamiento de hormigón	1,527.57																				
=	Excavación a mano en suelo conglomerado	52.27																				
<u> </u>	Tuberia pvc alcantarillado d=500 mm (mat/trans / inst.)	1,284.24																				
SIFÓNESPADILLAS	Hormigon simple, f'c= 210 kg/cm2, no inc. encofrado	2,646.73																				
NE	Acero de refuerzo f´y= 4200 kg/cm2	377.04																				
FÓ	Encofrado y desencofrado muros con madera de monte (1 uso)	3,245.20																				
S	Desalojo de material ≤ 50m	46.82																				
	Desalojo de material transporte 10 km cargada manual	369.36							<u> </u>	<u> </u>				<u> </u>		<u> </u>	<u> </u>	<u> </u>				
	Valor total parcial			1751	6.62			2653	39.64			6858	2.43			372€	57.08			959	5.22	
	Valor total acumulado			1751	6.62			4405	56.27			1126	38.70			1499	05.78			15950	00.10	

Nota. Tiempo de ejecución para la captación y sifones. Elaborado por: Los autores.

6.3. Especificaciones técnicas

Las especificaciones son un conjunto de información que un rubro debe cumplir en cuanto a la normativa que rige para el mismo, su objetivo es ejecutar de forma óptima mediante la descripción de materiales, maquinarias o equipo y mano de obra que se requiera. De esta manera indica las actividades que se deben realizar antes, durante y después a la ejecución del rubro.

Finalmente, establece la forma de medir el rubro para su pago, en el respaldo digital se indica las especificaciones técnicas para cada rubro del proyecto de acuerdo con los procedimientos implementados por la empresa.

6.4. Operación y mantenimiento de las estructuras del sistema de riego

Un manejo adecuado de las diferentes estructuras que intervienen en el sistema de riego biprovincial Ambuquí como son: captación, canales, pasos elevados, sifones y derivaciones, para los cuales se deben realizar operación de mantenimiento y tratamiento para conservar y mantenerlas en un correcto estado y apropiado funcionamiento mediante una revisión de forma rutinaria y sistemática.

Se presentan diferentes problemas en el sistema de riego, empezando por la captación debido a que surgen inconvenientes tales como taponamiento de la rejilla, ingreso de sedimentos o materiales solidos hacia el canal principal por falta de mantenimiento, además de una crecida que acarrea diversos elementos flotantes causando el deterioro de la estructura.

En los diferentes tramos de la conducción principal se puede evidenciar la crecida de maleza y arbustos en los bordes originando fisuras y agrietamientos en las partes revestidas de hormigón y acumulación de basuras en las rejillas del canal revestido en forma de túnel causando un taponamiento parcial disminuyendo el caudal.

Por último, los problemas que se presentan en las derivaciones es el aprovechamiento del usuario para beneficiarse de una mayor cantidad de agua, la cual se realiza obstruyendo el canal modificando los niveles del caudal y en el peor de los casos dañando o forzando la compuerta derivadora.

Operación

Una vez descrito los problemas que se presentan en las estructuras de captación, canal principal y derivaciones, se sugiere las siguientes medidas para mantener el sistema de riego en un óptimo funcionamiento:

- Realizar un registro de los trabajos efectuados para facilitar la programación y evaluación.
- Dar a conocer las leyes y ordenanzas respectivas a través de la empresa EPA-EP.
- Capacitar a los usuarios sobre el debido manejo del recurso hídrico y su aprovechamiento en el riego.
- Revisión y monitoreo del funcionamiento de las diferentes estructuras del sistema con una frecuencia minino una vez por mes.
- Controlar la apertura de las compuertas en cada una de las derivaciones y registrar su caudal.

Mantenimiento preventivo

Las estructuras de riego deben tener un programa de mantenimiento para su operación eficiente, por lo que tanto las tareas se realizan de forma rutinaria como preventiva, se planificarán y coordinarán por el administrador de la empresa y en obra contarán con el apoyo de los beneficiarios mediante mingas comunitarias.

Los trabajos de mantenimientos de las obras civiles a efectuarse son los siguientes:

- Inspección, limpieza de la captación y las demás obras hidráulicas como son: rejillas, compuertas de lavado y desripiador para detectar las posibles causas de taponamiento y disminución de caudal.
- Limpieza de material flotante.
- Limpieza de los sedimentos y material de acarreo en las compuertas y tramos de túneles embaulados.
- Reforzamiento de bordes y relleno de roturas con material adecuado en el caso de grietas.

- Mantenimiento de las vías de acceso, los cuales consisten en la limpieza, nivelación y relleno en los tramos necesarios.
- Mantenimiento de las estructuras metálicas como es el caso de las compuertas en las que se debe engrasar el izaje y reparar el volante mecánico el cual modifica de la apertura.

Cada vez que la situación lo amerite se realizará el mantenimiento correctivo de acuerdo con los daños producidos.

Mantenimiento correctivo

Comprende las sustituciones y mejoramiento de las características del funcionamiento, tratando de mejorar los defectos constructivos, incrementando la eficiencia operacional. Debido a los problemas que se presenten se realizarán el mantenimiento correctivo al sistema.

Los principales problemas en el sistema de riego ocurren en la captación, canal principal y derivaciones, los cuales consisten en obstrucciones, taponamientos y fisuras en los canales.

Las obstrucciones se presentan debido a las siguientes causas:

- Introducción de objetos extraños al sistema que provocan una obstrucción repentina o total.
- Por el bloqueo progresivo del sistema de riego ocasionados por los usuarios, por la falta de limpieza y control de los operadores (obstrucción parcial).
- Por el crecimiento de raíces cerca del canal principal, causando obstrucciones las cuales provocan fisuras y en el peor de los casos rupturas.
- Desgaste progresivo de los canales provocado por el material arrastrado causando la erosión.
- Aperturas en las compuertas, causadas por un forzado manejo en el volante mecánico de los usuarios.

Las dos acciones de operación y mantenimiento del sistema es primordial, ya que de la correcta aplicación de las recomendaciones dadas dependerá el éxito o fracaso, la duración y la vida útil, satisfaciendo la expectativa de los usuarios al contar con un servicio de riego eficiente que funciona en la forma adecuada.

6.4.1. Equipo básico para el mantenimiento

6.4.1.1.Personal mínimo

El equipo técnico requerido apara las tareas de operación y mantenimiento del sistema está en función de su magnitud, sin embargo, se deberá contar con al menos el siguiente personal mínimo:

- 1 Administrador
- 1 Asistente técnico
- 2 Operadores
- Usuarios (Según el tipo de mantenimiento, daño y zona)

Este personal reportará sus actividades de forma regular a la gerencia de operación y mantenimiento y se realizarán según las programaciones previstas.

6.4.1.2. Equipo y herramientas

El operario que realiza labores control del sistema de riego debe usar implementos de protección personal acordes con el tipo de actividad y uso de herramientas que faciliten el mantenimiento de los canales, según el detalle a continuación:

Equipos de protección personal:

- Botas de cuero con punta de acero
- Botas de caucho
- Chaleco reflectivo
- Gorra
- Casco
- Mascarilla
- Gafas de protección
- Pantalón y camiseta de manga larga, tipo jean
- Guantes

Herramienta manual de trabajo:

Balde Carretilla Equipos de mantenimiento: Motosierra Guadaña Bomba de agua Generador eléctrico Taladro eléctrico Amoladora Equipos de medición y control: Camioneta de movilización de la empresa GPS y radios de comunicación. Moliente Flexómetro Cámara de fotos Linternas Libreta de registro de actividades.

Machete

Pala

Pico

Barra

Rastrillo

CAPÍTULO VII

ESTUDIOS DE IMPACTO AMBIENTAL

7.1. Metodología de estudio

Es de importancia llevar a cabo un análisis ambiental de la zona de implantación del proyecto para identificar las actividades que van a afectar el medio ambiente. Para ello se desarrolla la línea base del sistema de riego Ambuquí, con el fin de precisar las condiciones ambientales en las que se encuentra la zona, posteriormente se realizará un diagrama de flujo para de describir las actividades que se van a efectuar en el proyecto y por último se aplicara la matriz de Leopold con el fin de evaluar los impactos ambientales.

7.2.Línea base

Para realizar la línea base del sistema de riego Ambuquí, se llevará a cabo una revisión bibliográfica del plan de ordenamiento territorial y de varias fuentes de estudios de impacto ambiental de la zona de implantación del proyecto. Por lo cual se tomará en cuenta los factores físicos y bióticos.

7.2.1. Factores Físicos.

Dentro de ellos intervienen factores como relieve, estudios hidrológicos, suelos, clima, temperatura y precipitación, de los cuales se encuentra información detallada en el capítulo II del presente trabajo. Además, se tomará en consideración los siguientes factores:

Cobertura Vegetal

Tabla 61.

Uso y cobertura vegetal.

Cobertura	Uso	Área (ha)	Porcentaje (%)
	Agrícola	1932.64	15.38
Agropecuaria	Agropecuario mixto	1363.98	10.86
	Pecuario	2580.67	20.54
Vegetación arbustiva herbácea	y Conservación y protección	3438.31	27.37

Tierras improductivas	Áreas erosionadas	3246.85	25.85	
TOTAL		12578.47	100	

Nota. Porcentaje en función del uso y área. Elaborado por: Los autores con información de (Cevallos, 2015).

La cobertura vegetal de la zona se agrupa en diversas categorías, presentando un mayor porcentaje la vegetación arbustiva y herbácea con el 27.37% y para el uso agropecuario mixto el menor valor siendo este 10.86%.

Agua

Tabla 62.

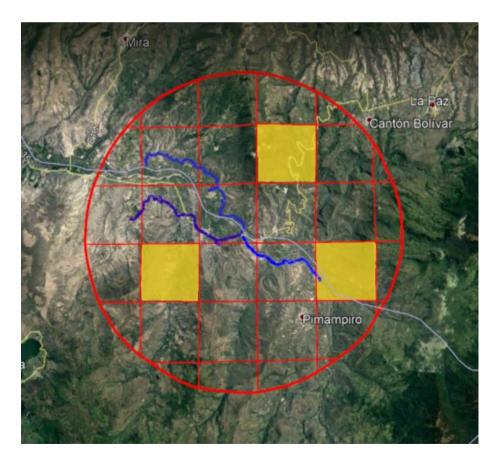
Red Hídrica o Cobertura de ríos.

Clasificación	Red Hídrica
Río	Chota
	Bermejal
	Cachiyacu
	Carbón Juchu
	Chalguayacu
	Chaquishca
	Chorrera
	Cocha Pinto
	Cochapamba
	Cungapito
	Ambuquí
	Del Tambo
Quebrada	Micito
Quebrada	Pacaypaicu
	El Prado
	Cuchicorral
	Pinto
	Misito
	San Basilio en Carpuela
	sector Complejo
	Cunranga en San Clemente
	Honda en Peñaherrera
	Ananbuela
	Del Murciélago
	Pilón

Nota. Identificación de los ríos y quebradas. Elaborado por: Los autores con información de (Cevallos, 2015).

7.2.2. Factores Bióticos

Para la identificación de los factores bióticos (flora y fauna) se realizará a través de observación directa y recorridos.


Flora

Para la determinación de este factor se empleará la metodología de transectos la cual permite conocer de forma rápida la diversidad vegetal, composición florística y especies dominantes.

Un transecto es un método de muestreo el cual nos ayuda a estimar la densidad y especies dominantes de flora y fauna.

Figura 66.

Ubicación de transectos de interés en el área de influencia

Nota. Selección aleatoria de transectos. Elaborado por: Los autores con ayuda de programa Google Earth

En cada transecto se determinará:

- Nombre común y científico de las especies identificadas
- Coordenadas UTM y WGS87 en cada punto de muestreo

Los transectos siendo un total de 3, se ubicaron en las siguientes coordenadas geográficas:

Transecto 1: Zona 18N, 171392.58 Este, 53469.49 Norte.

Transecto 2: Zona 17N, 832166.44 Este, 45885.28 Norte.

Transecto 3: Zona 18N, 175407.23 Este, 46014.90 Norte.

Las especies encontradas en la zona se detallan en la siguiente tabla.

Tabla 63.
Especies encontradas

N°	Nombre científico	Nombre común
1	Opuntia feroz	Tuna
2	Cereus sapiun	Espadilla
3	Acacia macracantha	Espino
4	Sida rombipholia	Escubillo
5	Baccharis latifolia	Chilca
6	Tecoma stans	Cholán
7	Caesalpinea spinosa	Guarango
8	Fourcroya andina	Cabuya blanca
9	Pennisetum clandestinum	Kikuyo
10	Cortón wagneri	Mosquera

Nota. Elaborado por: Los autores

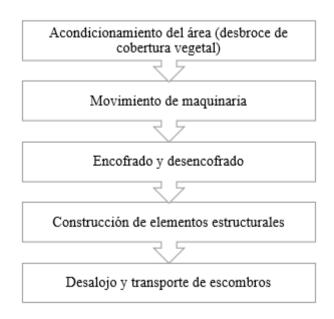
Fauna

Para determinar la fauna se aplicará el método de observación directa, la cual consiste en realizar recorridos en los sitios de muestreo establecido y entrevistas a los moradores de la zona.

A continuación, se muestra un listado de las especies encontradas en la zona.

*Tabla 64.*Especies encontradas en la zona

N°	Nombre científico	Nombre común
1	Buteo ventralis	Gavilán
2	Columbia minuta	Cuturpilla
		Gllinazo cabeza
3	Coragyps atratus	negra
4	Falco sparverius	Quilico
5	Tangara rufigeres	Guayabero
6	Tyto alba	Lechuza
7	Zeneida auriculata	Tórtola
8	Zonotrichia capensis	Gorrión


Nota. Nombre común y científico de las especies en la zona de estudio. Elaborado por: Los autores

7.3. Aspectos ambientales.

Para identificar los aspectos ambientales en la ejecución del sistema de riego biprovincial Ambuquí, se empleará la elaboración de un diagrama de flujo, ya que representa las actividades que se llevarán a cabo en este proyecto.

Figura 67.

Diagrama de flujo de actividades.

Nota. Actividades que se llevarán a cabo en el proyecto. Elaborado por: Los autores

A continuación, se presenta un matriz que contiene los aspectos ambientales producidos en cada una de las actividades mencionadas en el diagrama de flujo anterior.

Tabla 65.

Matriz de impactos ambientales

Proceso	Entradas	Salidas	Aspectos ambientales
Acondicionamiento del área	Material de trabajo (pala, pico)	Material particulado	Emisiones a la atmósfera (material particulado) Desbroce de la cobertura vegetal
Movimiento de maquinaria	Ruido Combustible Smog	Material particulado Ruido	Emisiones a la atmósfera Generación de ruido y vibraciones Aturdimiento de especies Derrame de combustible
Encofrado y desencofrado	Tablas de madera Hormigón	Residuos sólidos	Afectación superficial del suelo
Construcción de elementos estructurales	Materiales de construcción	Material particulado Residuos sólidos	Emisiones a la atmósfera (material particulado) Alteración del paisaje Generación de residuos sólidos
Desalojo y transporte de escombros	Smog Vehículo de transporte	Residuos sólidos Material particulado	Emisiones a la atmósfera Emisiones a la atmósfera (material particulado) Generación de residuos sólidos

Nota. Identificación de los aspectos ambientales en base a los procesos. Elaborado por: Los autores

7.4. Análisis y evaluación de impactos ambientales

Para la identificación de los impactos ambientales generados por el proyecto, se determinará las acciones de este, las cuales puedan generar alguna modificación o alteración en los componentes: físico, biótico y sociocultural de las distintas fases del proyecto.

Teniendo como punto de partida nuestra línea base y descripción de las actividades a través del diagrama de flujo se procede a identificar, cuantificar, describir y valorar los

potenciales impactos ambientales positivos y negativos que puedan ser generados por el proyecto. Para ello se empleará la siguiente metodología:

Método de Leopold

Consiste en una matriz diseñada para la evaluación de impactos asociados casi con cualquier tipo de proyectos de construcción. La base del sistema es una matriz, en la cual las columnas son las acciones del hombre que pueden alterar el medio y las filas son los factores ambientales susceptibles de alterarse, con estas entradas en columnas y filas se definen las interacciones existentes (Ramos, 2004).

Las estimaciones con respecto a los parámetros de "magnitud" e "importancia" del impacto están valoradas desde un punto de vista subjetivo por parte del equipo evaluador y se determinan de la siguiente manera según (Pinto, 2007).

- *Magnitud:* asignando un número de 1 a 10, en el que 10 corresponde la alteración máxima provocada y 1 la mínima alteración. Estos valores van precedidos por el signo positivo (+) o negativo (-), según sea impacto sobre el ambiente.
- *Importancia*: de igual forma se valora de 1 a 10, da el peso relativo que el factor ambiental considerado tiene dentro del proyecto, o la posibilidad de que se presenten las alteraciones.

Posteriormente para identificar la significancia del impacto del producto de la magnitud por la intensidad se aprecia la calificación en la siguiente tabla:

Tabla 66.

Rango y calificación del impacto

Danas	Calificación							
Rango	Impacto negativo	Impacto positivo						
< 25	Irrelevante	Leve						
25 - 50	Moderado	Moderado						
50 - 75	Severo	Alto						
> 75	Crítico	Muy Alto						

Nota. Impactos positivos y negativos según su rango. Elaborado por: Los autores

Basándose en la metodología mencionada se presenta las siguientes matrices, elaborada de acuerdo con las actividades que se desarrollan en nuestro proyecto en la fase captación y sifones, con la respectiva valoración de los impactos.

Tabla 67. *Matriz de Leopold*

Factores am	pientales	Acciones	Remoción de la cobertura vegetal	Movimiento de maquinaria	Encofrado y desencofrado	Costrucción de elementos estructurales	Desalojo y transporte de escombros
	Suelo	Calidad del suelo	(-) 2	(-) 2	(-) 2	(-) 2	
	Suelo	Geología y geomorfología	9	7	(-) 2	(-) 2	
		Emisiones de NOx		(-) 5			(-) 7
		Emisiones de SOx		(-) 5			(-) 7
Físico	Aire	Material particulado	(-) 4	(-) 4		(-) 2	(-) 2
		Ruido	(-) 4	(-) 4		(-) 6	(-) 7
		Vibraciones	(-) 2	(-) 2		(-) 6	(-) 7
	Agua	Calidad del agua superficial				(-) 8	
	Paisaje	Alteración del paisaje	(-) 1	(-) 1	(-) 1	(-) 1	
	Flora	Cobertura vegetal	(-) 2			(-) 2	
	Piora	Vegetación endémica y nativa	(-) 2				
Biótico		Mastofauna	(-) 2	(-) 2		(-) 1	(-) 1
	Fauna	Ornitofauno	5	(-) 2		(-) 1	(-) 1
		Invertebrados (insectos)	(-) 2	(-) 2		(-) 1	
		Empleo	5 7	4 6	4 6	1 6	1 6
Sociocultural	Socioeco nómico	Salud y seguridad	(-) 1	(-) 1	(-) 1	(-) 1	(-) 1
		Percepción ciudadana	5 8				

Nota. Factores ambientales y acciones a tomar en la ejecución del proyecto. Elaborado por: Los autores

7.4.1. Identificación de impactos negativos

Se presenta la significancia de los impactos producidos en la fase de captación del proyecto mediante de la matriz de Leopold.

Tabla 68.Determinación de las significaciones de los impactos negativos producidos.

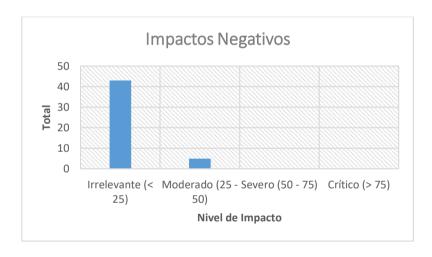
Factores ambi	entales	Acciones	Remoción de la cobertura vegetal	Movimiento de maquinaria	Encofrado y desencofrado	Costrucción de elementos estructurales	Desalojo y transporte de escombros	Sumatoria
	Suelo	Calidad del suelo	-16	-12	-8	-14		-50
	Suelo	Geología y geomorfología	-18	-14	-8	-14		-54
		Emisiones de NOx		-30			-42	-72
		Emisiones de SOx		-30			-42	-72
Físico	Aire	Material particulado	-20	-20		-4	-4	-48
		Ruido	-8	-8		-12	-14	-42
		Vibraciones	-2	-2		-12	-14	-30
	Agua	Calidad de agua superficial				-48		-48
	Paisaje	Alteración del paisaje	-3	-1	-2	-3		-9
	Flora	Cobertura vegetal	-16			-10		-26
	riora	Vegetación endémica y nativa	-16					-16
Biótico		Mastofauna	-10	-12		-1	-1	-24
	Fauna	Ornitofauno	-10	-12		-1	-1	-24
		Invertebrados (insectos)	-6	-12		-1		-19
	Socioeco	Empleo					·	0
Sociocultural	nómico	Salud y seguridad	-1	-2	-2	-2	-3	-10
	nomico	Percepción ciudadana						0
		Sumatoria	-126	-155	-20	-122	-121	-544

Nota. Resultados de los impactos negativos del proyecto. Elaborado por: Los autores

Con lo antes mostrado se puede evidenciar que los impactos negativos generados por el proyecto se encuentran:

- Contaminación del suelo o subsuelo por la generación de desechos y materiales que se emplean en la ejecución del proyecto.
- Contaminación del aire debido a la emisión de ruido y vibraciones, emisiones de SOx y NOx producto de la maquinaria y de material particulado.
- Alteración del paisaje
- Alteración de la capa de vegetación natural que cubre la superficie terrestre
- Posible desplazamiento o aturdimiento de las especies (fauna) del lugar.

Para una mejor comprensión se expone los siguientes datos de los impactos negativos generados en todo el proyecto.


Tabla 69.Resumen y nivel de los impactos negativos

Nivel de Impacto	Total	%
Irrelevante (< 25)	43	89,58
Moderado (25 - 50)	5	10,42
Severo (50 - 75)	0	0
Crítico (> 75)	0	0
Total	48	100

Nota. Porcentajes de impactos negativos. Elaborado por: Los autores

Figura 68.

Resumen y nivel de los impactos negativos.

Nota. Impactos negativos generados en el proyecto. Elaborado por: Los autores

Los impactos negativos generados por el proyecto suman un total de 48 interacciones negativas correspondiente a la fase de captación y construcción de sifones, de ellas el 89,58% corresponde a los impactos "irrelevantes" con 43 interacciones seguido de 5 correspondientes a los impactos "moderados".

7.4.2. Impactos de impactos positivos

De igual forma se presenta la significancia de los impactos producidos en la fase de captación del proyecto mediante de la matriz de Leopold.

Tabla 70.

Determinación de las significaciones de los impactos positivos producidos.

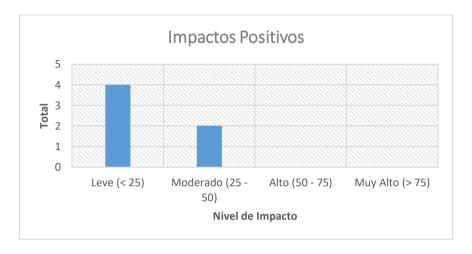
Factores ambi	entales	Acciones	Remoción de la cobertura vegetal	Movimiento de mquinaria	Encofrado y desencofrado	Costrucción de elementos estructurales	Desalojo y transporte de escombros	Sumatoria
6	Suelo	Calidad del suelo						
	Suelo	Geología y geomorfología						
		Emisiones de NOx						
		Emisiones de SOx						
Físico		Material particulado						
FISICO		Ruido						
		Vibraciones						
	Agua F	Calidad de agua superficial						
		Uso del agua						
	Paisaje	Alteración del paisaje						
	Flora	Cobertura vegetal						
	1,1014	Vegetación endémica y nativa						
Biótico	Fauna	Mastofauna						
		Ornitofauno						
		Invertebrados (insectos)						
		Empleo	35	24	24	6	6	95
Sociocultural	nómico	Salud y seguridad					·	
	HOMEO	Percepción ciudadana	40					40
	·	Sumatoria	75	24	24	6	6	135

Nota. Factores ambientales y acciones a tomar en los impactos positivos. Elaborado por: Los autores

Dentro de los impactos positivos originados por el proyecto podemos mencionar los siguientes:

- Contratación de servicios y/o mano de obra de la comunidad del área de implantación del proyecto.
- Mejora de las condiciones sanitarias locales
- Mejora de la calidad de la producción agrícola y ganadera del sector.

De igual forma, se expone un análisis de los impactos positivos generados por el proyecto:


Tabla 71.Resumen y nivel de los impactos positivos

Nivel de Impacto	Total	%
Leve (< 25)	4	66,67
Moderado (25 - 50)	2	33,33
Alto (50 - 75)	0	0
Muy Alto (> 75)	0	0
Total	6	100

Nota. Porcentaje de impactos positivos. Elaborado por: Los autores

Figura 69.

Resumen y nivel de los impactos positivos

Nota. Impactos positivos generados en el proyecto Elaborado por: Autores

Los impactos positivos generados por el proyecto suman una cantidad de 6 interacciones positivas de las cuales el 66,67% corresponden a impactos "leves" y el resto a "moderados".

7.4.3. Identificación de riesgos del proyecto

El análisis de evaluación consiste en la identificación de los riesgos naturales y antrópicos que puedan afectar al proyecto y su área de influencia. Se elaboró basándose en las fuentes bibliográficas y a la metodología de matriz de riesgo.

Figura 70.

Matriz para la valoración de riesgos

			CONSECUENCIA				
			Insignificante A	Menor B	Moderado C	Peligroso D	Catastrófico E
	Frecuente	5					
IDAC	Probable	4					
PROBABILIDAD	Ocasional	3			3C		
	Posible	2					
	Improbable	1					

Nota. Elaborado por: Los autores con información de (Ramos, 2004)

- Riesgos naturales

Tabla 72.
Riesgos naturales identificados en el proyecto

Riesgo	Descripción	Valoración
Riesgo sísmico	De acuerdo al Plan de Ordenamiento Territorial de la parroquia de Ambuquí es considerada de muy alta intensidad sísmica	3D
Riesgo de erosión	La parroquia de Ambuquí es una zona susceptible a la erosión.	3B
Riesgo de heladas	La parte alta de la parroquia sufre heladas de forma frecuente.	5A
Riesgo de sequía	La parte media y alta de la parroquia es propensa a sufrir sequias.	5B
Riesg0 volcánico	Ambuquí presenta un riesgo volcánico relativamente bajo, ya que no presenta erupciones históricas y recientes.	2D
Riesgo de inundación	Ambuquí se encuentra en un área con susceptibilidad baja a inundaciones.	2C

Nota. Valoración de los riesgos naturales. Elaborado por: Los autores con información de (Cevallos, 2015).

- Riesgos antrópicos

Tabla 73. Riesgos antrópicos identificados en el proyecto

Riesgo	Descripción	Valoración
Riesgo de Incendios	Quema de la vegetación por el hombre.	4D
	Toda la parroquia es susceptible a la	
Tala de árboles	tala legal e ilegal de bosques y	2C
	vegetación.	
	Debido a las distintas actividades que	
	se realizan, la parroquia se encuentra	
Contaminación	expuesta a sufrir contaminación de	5C
	diversos tipos y a diferentes	
	componentes.	

Nota. Valoración de los riesgos antrópicos. Elaborado por: Los autores con información de (Cevallos, 2015).

7.5. Medidas de mitigación de impactos ambientales

Las medidas de mitigación se presentarán basándose en los aspectos ambientales identificados para de esta manera disminuir la magnitud de los mismos.

Tabla 74. *Medidas de mitigación*

Aspecto Ambiental	Medidas de Mitigación
Emisión de material particulado a la atmósfera por movimiento de tierra	 Reducir la altura desde la que se descarga el material particulado Lavar los neumáticos de los vehículos para que cuando se encuentre en movimiento no levante polvo Disminuir la velocidad con la cual la maquinaria se desplaza
Desbroce de la cobertura vegetal	- Aplicar planes de compensación para recuperar la vegetación
Emisión de gases de combustión por el uso de maquinaria	 Realizar el mantenimiento de los vehículos y maquinaria que se usará en el proyecto Mantener apagados los equipos que no se esten utilizando
Derrame de combustible	 Contar con materiales absorbentes para utilizarlos en el caso que se provoque un derrame de combustible El almacenamiento de los combustibles se lo realizará solo en los recipientes adecuados siguiendo los lineamientos del art 25 del RAOHE
Alteración del paisaje	- Evitar el vertido de escombros, residuos, etc en la zona de influencia directa del e indirecta del proyecto
Generación de residuos sólidos	- Gestionar y clasificar los diferentes tipos de residuos sólidos que se generan durante la ejecución del proyecto de tal manera que su disposición final sea la adecuada para cada uno de ellos

Nota. Aspecto ambiental con su respectiva medida de mitigación. Elaborado por: Los autores

CONCLUSIONES

El aforamiento realizado a 300 metros de la obra de captación permitió determinar el caudal de 1775 lt/s y en comparación con el concesionado de 1800 lt/s, presenta una diferencia de 1.40%, por lo que cumple con captar el caudal establecido para el sistema.

El sistema de riego en el año 2020 abastece un caudal combinado entre consumo humano y riego de 1430 lt/s y para la proyección a 15 años solo se considera el incremento de caudal en las plantas potabilizadoras debido a que el área de riego no puede extenderse más de lo actual, por lo tanto, al año 2035 el caudal será de 1466 lt/s. Es decir, no presenta problemas en abastecer hasta dicho año de proyección en relación al caudal concesionado

Se verificó en el inventario que las estructuras a pesar de su larga vida útil tienen un funcionamiento deficiente, los problemas que se presentan son debido al desgaste en su material y falta de mantenimiento.

Las características físicas de la cuenca del río Chota presentan un área de 1931.08 Ha, perímetro de 237.1 km, su índice de compacidad 1.51, su factor de forma de 0.80, con una pendiente media de 16.30% y la pendiente del río de 3.27%.

En la estimación de caudales máximos según el método racional el caudal estimado es de 959.75 m3/s mientras que en el hidrograma unitario se obtuvo un caudal pico de crecida de 55 m3/s, la diferencia entre estos dos métodos es debido que el método del hidrograma unitario depende de la cobertura y tipo de suelo, condición de humedad, infiltración, profundidad efectiva y drenaje, en cambio el método racional considera el área de la cuenca, la intensidad de precipitación y un coeficiente de escorrentía representativa a la superficie de estudio.

Mediante la curva de duración general de la estación H0015 Apaqui AJ Chota se determinó el caudal máximo 17 m3/s, medio 9.5 m3/s y mínimo 7 m3/s, si se presenta la necesidad de captar mas no existirá problema en realizarlo, se tendrá que modificar las medidas constructivas de la obra de toma y los diferentes componentes del sistema.

Por medio de una regulación sistemática en la apertura de las compuertas derivadoras se logró optimizar el caudal en un 6.41%, es decir 112.46 lt/s, consiguiendo un sistema de riego optimo e igualitario para los diferentes usuarios.

En la obra de captación se realizó un mejoramiento y un nuevo diseño de la rejilla, desripiador y compuerta de lavado para las diferentes alternativas de caudales concesionado, teórico y de diseño, las que se presentan a continuación:

Alternativa	O (m2/a)	Dim. l	Rejilla	Desripiador	Compuert	ta Lavado
Alternativa	Q (m3/s)	Ancho (m)	Altura (m)	Ancho (m)	Ancho (m)	Altura (m)
Caudal Concesionado	1.80	3.70	0.50	4.50	1.20	0.50
Caudal Teórico	1.15	2.35	0.50	4.40	1.00	0.50
Caudal Optimizado tot.	1.68	3.40	0.50	4.40	1.00	0.50

Con el fin de mejorar el funcionamiento de la obra de toma y la eficiencia del sistema, se tomará en cuenta las dimensiones de la alternativa de caudal concesionado.

Se realizó un análisis hidráulico aguas abajo del azud en el que se determinó un resalto desplazado, por lo tanto, se tomó una medida constructiva en este caso el pozo de disipación el cual tiene una profundización de 1.15, un espesor de losa de 0.20m y con una longitud de 7.60m, reemplazando así a un resalto sumergido.

En el sifón río chota se ocupará una tubería de hierro fundido de 630mm de diámetro teniendo una velocidad de 2.69 m/s, la cual tiene un rango aceptable de velocidades admisible de 0.45 a 4 m/s según la SENAGUA y una presión de 1.6 MPa, al finalizar la tubería en la abscisa 0+800 se ubica un tanque rompe presiones con dimensiones de sección cuadrada de 1.30m*1.30m.

La tubería que se va a ocupar en el sifón Espadillas es de cemento asbesto de 400mm de diámetro con una velocidad de 2.13 m/s, y se encuentra en el rango de 0.45 a 5 m/s según la SENAGUA y una presión de 1.6 MPa.

El presupuesto referencial para el mejoramiento del sistema de riego biprovincial Ambuquí será de \$ 159,501.00, los cuales deberán ser gestionado por la Empresa Pública del Agua (EPA-EP) de manera óptima para que el proyecto resulte lo más viable posible.

Basándose en los resultados del estudio de impacto ambiental realizado, se puede concluir que el proyecto genera interacciones tanto positivas como negativas dentro de la fase de captación y construcción de sifones, sin embargo, según los aspectos ambientales identificados se proponen medidas de mitigación que logran disminuir la magnitud de los impactos negativos identificados.

RECOMENDACIONES

Para un mejor aprovechamiento y distribución de caudal equitativo se recomienda el control de las aperturas de las compuertas con las medidas indicadas en la optimización del sistema.

En el caso de las compuertas 7, 8, 9, 10, 12 y 15 del margen izquierdo y las 13 y 16 del derecho, se encuentran trabajando al 100% de su apertura por lo que se sugiere modificar las dimensiones de acuerdo con las tablas 55 y 56.

Se recomienda realizar un mantenimiento mensual en la captación con el fin de evitar taponamiento en la rejilla, ocasionando daños en la estructura y por ende la disminución del caudal de ingreso al sistema de riego.

Control y mantenimiento semanal de las compuertas para verificar que se cumplan las aperturas recomendadas y los usuarios de cada derivación reciban el caudal necesario acorde a su área de riego.

Para reducir los costos de mano de obra no calificada se recomienda incluir en el proyecto a los usuarios del sistema y realizar un reajuste de precios unitarios de acuerdo al año de ejecución.

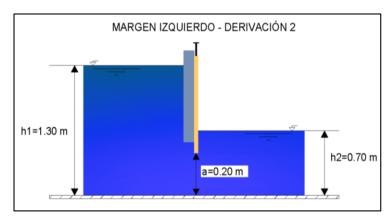
REFERENCIAS

- Apollin, F., & Eberhart, C. (1998). *Metodologías de análisis y diagnóstico de sistemas de riego campesino*. ISBN.
- Asamblena Nacional. (2014). Ley Orgánica de Recursos Hídricos Usos y Aprovechamiento del Agua. Nacional.
- Autoridad Nacional del Agua. (2010). Criterios de diseño de obras hidraulicas para la formulación de proyectos hidraulicos multisectoriales y de afianzamiento hídrico. ANA.
- Bohórquez, C. (2013). Diseño de los sistemas de abastecimiento de agua potable para los barrios: Anita Lucia y Novilleros de la parroquia de Aloasí, cantón Mejía [Tesis de Ingeniería Civil, Universidad Politécnica Salesiana]. http://dspace.ups.edu.ec/handle/123456789/4168.
- Bustamante, A. (2019). Diseño Hidraúlico para el mejoramiento y rehabilitación del sistema de riego ubicado en la acequia "La Maria San Ramón", parroquia Chavezpamba, cantón Quito [tesis de pregrado, Universidad Politécnica Salesiana]. http://dspace.ups.edu.ec/handle/123456789/17766.
- Cadena, V. (2016). Hablemos de Riego. El Telegrafo EP.
- Cadena, V. H. (2011). Mejoramiento de la capacidad de organización y gestión de los usuarios del sistema de riego en el valle del Chota [Tesis de maestria, Universidad Técnica del Norte]. http://repositorio.utn.edu.ec/handle/123456789/1237.
- Calero, I. (2017). Apuntes Mecánica de Fluidos II.
- Cevallos, M. (2015). Plan de desarollo y ordenamiento territorial PDOT, de la parroquia de "Ambuquí".
- Coz, F., Sánchez, T., Viani, B., Segura, J., Rodríguez, L., Miranda, H., . . . Muñoz, I. (1995). Manual de Mini y Microcentrales Hidráulicas: una guía para el desarrollo de proyectos. Intermediate Technology Development Group.

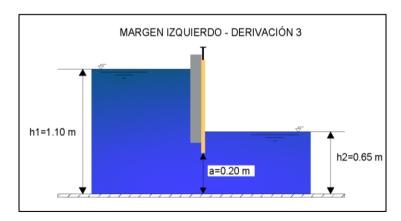
- Empresa Pública del Agua. (2016). *Memoria técnica de los estudios del Sistema de Riego Ambuquí*. Ibarra.
- García, I., & Briones, G. (2015). Sistema de riego. Editorial Cedisa.
- Gaspari, F., Vagaría, A., Delgado, M., Besteiro, S., Senisterra, G., & Denegri, G. (2012). Caracterización morfométrica de la cuenca alta del río Sauce Grande, Buenos Aires, Argentina. *AUGM*, 144-158. Vol 4.
- Gutierrez, C. (2014). Hidrología básica y aplicada. Universitaria Abya Yala.
- INAMHI. (2015). Determinación de ecuaciones para el cálculo de intensidades máximas de precipitación. Quito.
- Krochin, S. (1986). Diseño Hidraulico. (Tercera ed.). Escuela Politecnica Nacional.
- Larrea, D., & Sosa, B. (2014). La tecnificación de la agricultura familiar bajo riego en Ecuador. CAMAREN.
- Marbello Perez, R. (1997). Fundamentos para las prácticas de Laboratorio de Hidráulica.

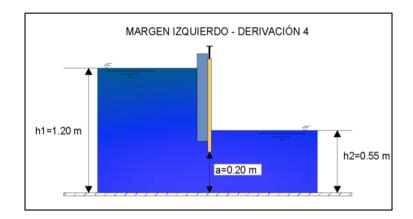
 Medellin: Universidad Nacional de Colombia. Obtenido de https://repositorio.unal.edu.co/handle/unal/21612
- Negrete, H. (2016). Estación Meteorológica. Riobamba.
- Nuñez, A., & Rosales, A. (2015). *Medición de Agua*. Dirección General de Infraestructura Agraria y Riego –DGIAR.
- Ortiz, R. (2011). Pequeñas Centrales Hidroeléctricas. Ediciones de la U.
- Pinto, S. (2007). Valoración de impactos ambientales. INERCO.
- Ramos, A. (2004). Metodología matriciales de evaluación ambiental para paises en desarrollo:

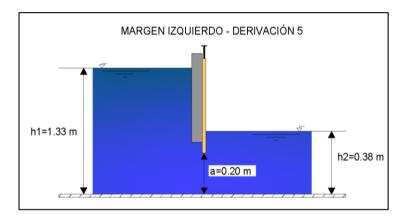
 Matriz de Leopold y método Mel-Enel [Tesis de grado, Universidad de San Carlos de Guatemala].
- Reyes, A., Ulises, F., & Carvajal, Y. (2014). Guía básica para la caracterización morfométricas de cuencas hidrográficas. G&G Editores.

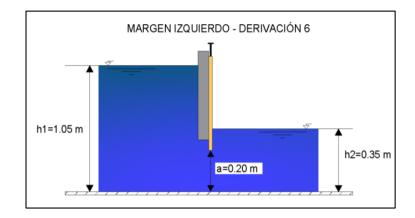

- Rojas, D. (2008). Estudios de los requerimientos hidráulicos de las especies de macro invertebrados bentónicos existentes en los micro habitat de ríos de paramo, caso de estudio: río Jantunhuayco, [Previo a la obtención del grado de Master en Recursos Hídricos]. http://bibdigital.epn.edu.ec/handle/15000/19495.
- Sánchez, J. (2017). Hidrología superficial y subterránea. Createspace.
- Senagua. (2003). Normas para estudio y diseño de sistemas de Agua Potable y disposición de Aguas Residuales para poblaciones mayores a 1000 habitantes. Quito.
- Sheng, T. (1992). Manual de campo para la ordenación de cuencas hidrográficas. Terme.
- Sotelo, G. (1997). Hidráulica General (Vol. I). México DF: Limusa.
- Vásconez, M., Mancheno, A., Álvarez, C., Prehm, C., Cevallos, C., & Ortiz, L. (2019). *Cuencas Hidrógraficas*. Abya-Yala.

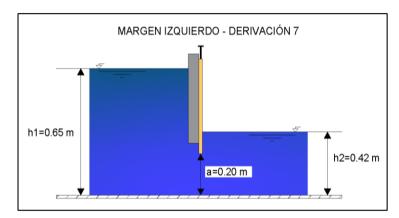
ANEXOS

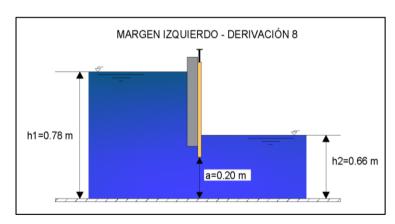

Anexo 1. Aforamiento en compuertas y caudal

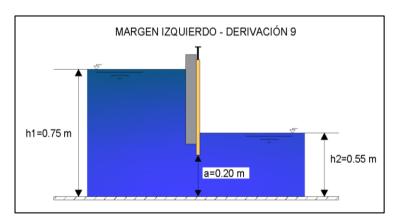

COMPUERTA 1		
Cd	0.4143	
a	0.20	m
b	0.30	m
g	9.81	m/s2
h1	1.20	m
h2	0.60	m
Н	0.60	m
Cv	0.9763	
Cc	0.67	Sumergida
V	2.2988	m/s
QC1	0.08529	m3/S
QC1	85.294	l/s

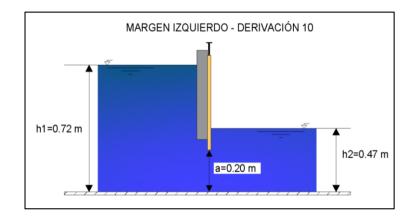

COMPUERTA 2				
Cd	0.3768			
a	0.20	m		
b	0.30	m		
g	9.81	m/s2		
h1	1.30	m		
h2	0.70	m		
Н	0.60	m		
Cv	0.9751			
Сс	0.67	Sumergida		
V	2.2988	m/s		
QC2	0.07757	m3/S		
QC2	77.568	l/s		

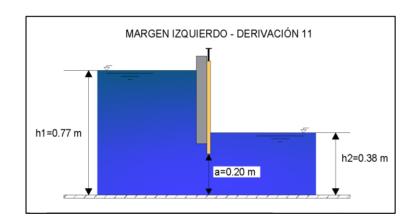

COMPUERTA 3			
Cd	0.3704		
a	0.20	m	
b	0.30	m	
g	9.81	m/s2	
h1	1.10	m	
h2	0.65	m	
Н	0.45	m	
Cv	0.9778		
C	0.67	Sumergida	
V	1.9908	m/s	
QC3	0.06604	m3/S	
QC3	66.035	l/s	

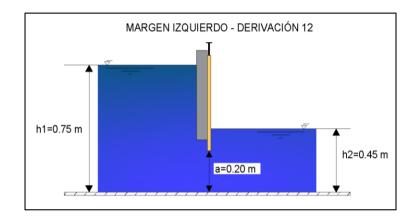

COMPUERTA 4			
Cd	0.3901		
a	0.20	m	
b	0.30	m	
g	9.81	m/s2	
h1	1.20	m	
h2	0.55	m	
Н	0.65	m	
Cv	0.9763		
С	0.67	Sumergida	
V	2.3927	m/s	
QC4	0.08358	m3/S	
QC4	83.577	l/s	

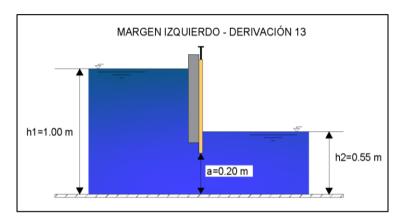

COMPUERTA 5			
Cd	0.4256		
a	0.20	m	
b	0.30	m	
g	9.81	m/s2	
h1	1.33	m	
h2	0.38	m	
Н	0.95	m	
Cv	0.9747		
С	0.67	Sumergida	
V	2.8926	m/s	
QC5	0.11024	m3/S	
QC5	110.24	l/s	

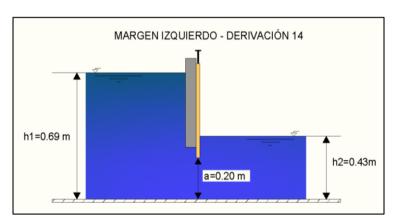

COMPUERTA 6			
Cd	0.4157		
a	0.20	m	
b	0.30	m	
gg	9.81	m/s2	
h1	1.05	m	
h2	0.35	m	
Н	0.70	m	
Cv	0.9786		
C	0.67	Sumergida	
V	2.4830	m/s	
QC6	0.09243	m3/S	
QC6	92.432	l/s	

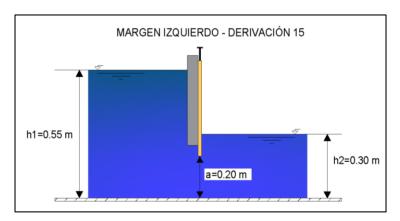

COMPUERTA 7		
Cd	0.3678	
a	0.20	m
b	0.30	m
g	9.81	m/s2
h1	0.65	m
h2	0.42	m
Н	0.23	m
Cv	0.9901	
С	0.67	Sumergida
V	1.4233	m/s
QC7	0.04687	m3/S
QC7	46.874	l/s

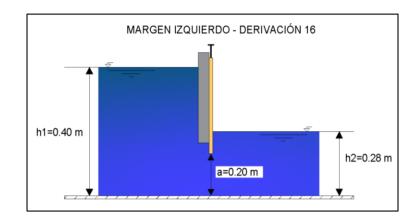

COMPUERTA 8		
Cd	0.3438	
a	0.20	m
b	0.30	m
gg	9.81	m/s2
h1	0.78	m
h2	0.66	m
Н	0.12	m
Cv	0.9851	
С	0.67	Sumergida
V	1.0281	m/s
QC8	0.03165	m3/S
QC8	31.650	l/s

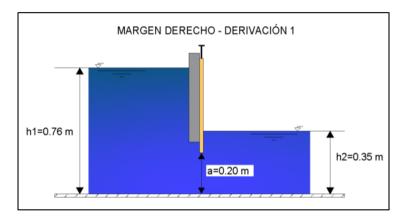

COMPUERTA 9		
Cd	0.3559	
a	0.20	m
b	0.30	m
g	9.81	m/s2
h1	0.75	m
h2	0.55	m
Н	0.20	m
Cv	0.9861	
Cc	0.67	Sumergida
V	1.3272	m/s
QC9	0.04230	m3/S
QC9	42.301	l/s

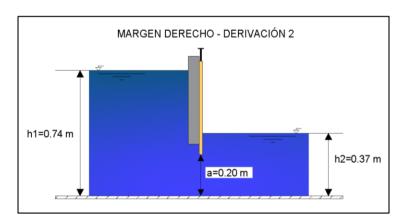

COMPUERTA 10			
Cd	0.3658		
a	0.20	m	
b	0.30	m	
δū	9.81	m/s2	
h1	0.72	m	
h2	0.47	m	
Н	0.25	m	
Cv	0.9872		
Cc	0.67	Sumergida	
V	1.4839	m/s	
QC10	0.04861	m3/S	
QC10	48.614	l/s	

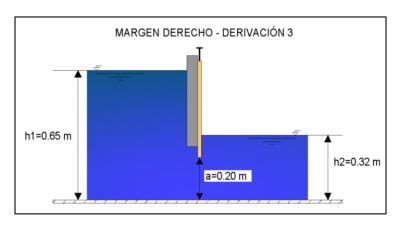

COMPUERTA 11			
Cd	0.3878		
a	0.20	m	
b	0.30	m	
g	9.81	m/s2	
h1	0.77	m	
h2	0.38	m	
Н	0.39	m	
Cv	0.9854		
С	0.67	Sumergida	
V	1.8533	m/s	
QC11	0.06436	m3/S	
QC11	64.364	l/s	

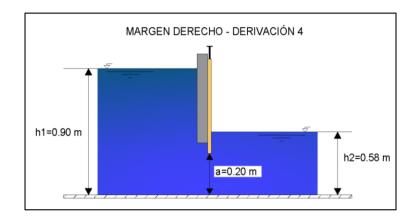

COMPUERTA 12		
Cd	0.3723	
a	0.20	m
b	0.30	m
g	9.81	m/s2
h1	0.75	m
h2	0.45	m
Н	0.30	m
Cv	0.9861	
C	0.67	Sumergida
V	1.6255	m/s
QC12	0.05420	m3/S
QC12	54.195	l/s

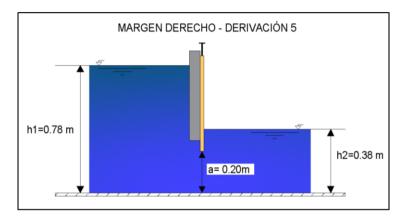

COMPUERTA 13		
Cd	0.3768	
a	0.20	m
b	0.30	m
g	9.81	m/s2
h1	1.00	m
h2	0.55	m
Н	0.45	m
Cv	0.9796	
Cc	0.67	Sumergida
V	1.9908	m/s
QC13	0.06718	m3/S
QC13	67.184	l/s

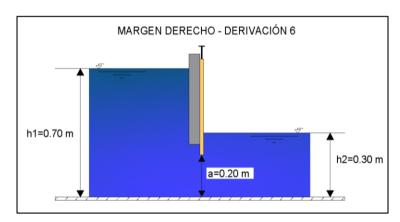

COMPUERTA 14		
Cd	0.3701	
a	0.20	m
b	0.30	m
g	9.81	m/s2
h1	0.69	m
h2	0.43	m
Н	0.26	m
Cv	0.9884	
Cc	0.67	Sumergida
V	1.5133	m/s
QC14	0.05015	m3/S
QC14	50.150	l/s

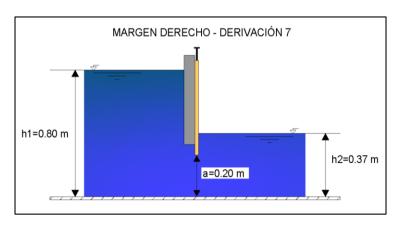

COMPUERTA 15		
Cd	0.3837	
a	0.20	m
b	0.30	m
g	9.81	m/s2
h1	0.55	m
h2	0.30	m
Н	0.25	m
Cv	0.9956	
C	0.67	Sumergida
V	1.4839	m/s
QC15	0.05099	m3/S
QC15	50.985	l/s

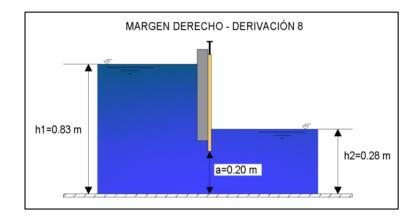

COMPUERTA 16		
Cd	0.3681	
a	0.20	m
b	0.30	m
g	9.81	m/s2
h1	0.40	m
h2	0.28	m
Н	0.12	m
Cv	1.0090	
С	0.67	Sumergida
V	1.0281	m/s
QC16	0.03388	m3/S
QC16	33.885	l/s

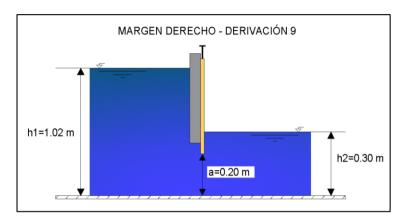

COMPUERTA 1		
Cd	0.3935	
a	0.20	m
b	0.30	m
g	9.81	m/s2
h1	0.76	m
h2	0.35	m
Н	0.41	m
Cv	0.9858	
Cc	0.67	Sumergida
V	1.9003	m/s
QC1	0.06696	m3/s
QC1	66.956	1/s

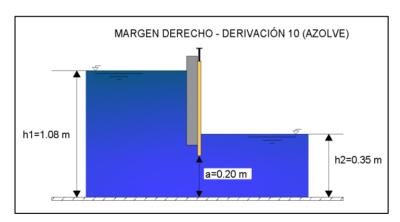

COMPUERTA 2		
Cd	0.3872	
a	0.20	m
b	0.30	
g	9.81	m/s2
h1	0.74	m
h2	0.37	m
Н	0.37	m
Cv	0.9865	
Cc	0.67	Sumergida
V	1.8052	m/s
QC2	0.06259	m3/s
QC2	62.589	1/s

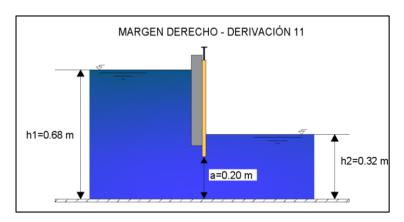

COMPUERTA 3		
Cd	0.3898	
a	0.20	m
b	0.30	m
g	9.81	m/s2
h1	0.65	m
h2	0.32	m
Н	0.33	m
Cv	0.9901	
С	0.67	Sumergida
V	1.7048	m/s
QC3	0.05952	m3/s
QC3	59.519	l/s

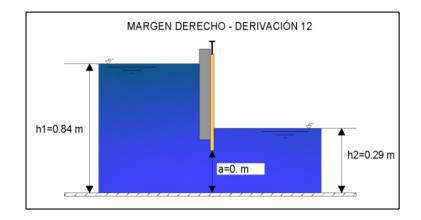

COMPUERTA 4		
Cd	0.3608	
a	0.10	m
b	0.30	m
g	9.81	m/s2
h1	0.90	m
h2	0.58	m
Н	0.32	m
Cv	0.9709	
C	0.67	Sumergida
V	1.6788	m/s
QC4	0.02712	m3/s
QC4	27.123	l/s

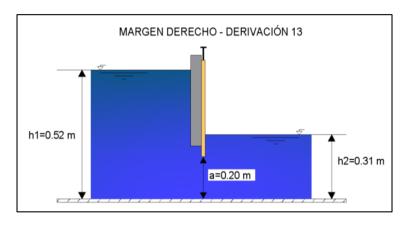

COMPUERTA 5		
Cd	0.3887	
a	0.20	m
b	0.30	m
g	9.81	m/s2
h1	0.78	m
h2	0.38	m
Н	0.40	m
Cv	0.9851	
C	0.67	Sumergida
V	1.8770	m/s
QC5	0.06534	m3/s
QC5	65.336	1/s


COMPUERTA 6		
Cd	0.4000	
a	0.20	m
b	0.30	m
g	9.81	m/s2
h1	0.70	m
h2	0.30	m
Н	0.40	m
Cv	0.9880	
Cc	0.67	Sumergida
V	1.8770	m/s
QC6	0.06724	m3/s
QC6	67.242	l/s
QC6	67.242	I/s

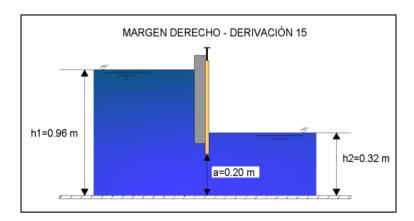

COMPUERTA 7		
Cd	0.3902	
a	0.15	m
b	0.30	m
g	9.81	m/s2
h1	0.80	m
h2	0.37	m
Н	0.43	m
Cv	0.9784	
Сс	0.67	Sumergida
V	1.9461	m/s
QC7	0.05100	m3/s
QC7	50.996	l/s

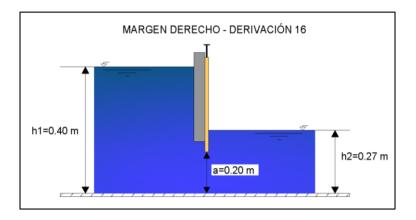

COMPUERTA 8			
Cd	0.4119		
a	0.10	m	
b	0.30	m	
g	9.81	m/s2	
h1	0.83	m	
h2	0.28	m	
Н	0.55	m	
Cv	0.9718		
C	0.67	Sumergida	
V	2.2009	m/s	
QC8	0.04059	m3/s	
QC8	40.590	l/s	


COMPUERTA 9			
Cd	0.4212		
a	0.10	m	
b	0.30	m	
g	9.81	m/s2	
h1	1.02	m	
h2	0.30	m	
Н	0.72	m	
Cv	0.9696		
C	0.67	Sumergida	
V	2.5182	m/s	
QC9	0.04749	m3/s	
QC9	47.493	l/s	


COMPUERTA 10			
Cd	0.4137		
a	0.10	m	
b	0.30	m	
g	9.81	m/s2	
hl	1.08	m	
h2	0.35	m	
Н	0.73	m	
Cv	0.9691		
С	0.67	Sumergida	
V	2.5356	m/s	
QC10	0.04697	m3/s	
QC10	46.974	1/s	

COMPUERTA 11		
Cd	0.3872	
a	0.10	m
b	0.30	m
g	9.81	m/s2
h1	0.68	m
h2	0.32	m
Н	0.36	m
Cv	0.9744	
Cc	0.67	Sumergida
V	1.7806	m/s
QC11	0.03087	m3/s
QC11	30.873	l/s


COMPUERTA 12			
Cd	0.4101		
a	0.10	m	
b	0.30	m	
g	9.81	m/s2	
h1	0.84	m	
h2	0.29	m	
Н	0.55	m	
Cv	0.9717		
Cc	0.67	Sumergida	
V	2.2009	m/s	
QC12	0.04041	m3/s	
QC12	40.412	l/s	


COMPUERTA 13			
Cd	0.3701		
a	0.10	m	
b	0.40	m	
g	9.81	m/s2	
h1	0.52	m	
h2	0.31	m	
Н	0.21	m	
Cv	0.9788		
С	0.67	Sumergida	
V	1.3600	m/s	
QC13	0.03005	m3/s	
QC13	30.048	l/s	

COMPUERTA 14			
Cd	0.4046		
a	0.10	m	
b	0.30	m	
g	9.81	m/s2	
h1	0.95	m	
h2	0.35	m	
Н	0.60	m	
Cv	0.9703		
С	0.67	Sumergida	
V	2.2988	m/s	
QC14	0.04164	m3/s	
QC14	41.641	1/s	

COMPUERTA 15			
Cd	0.4121		
a	0.10	m	
b	0.40	m	
g	9.81	m/s2	
h1	0.96	m	
h2	0.32	m	
Н	0.64	m	
Cv	0.9702		
Сс	0.67	Sumergida	
V	2.3742	m/s	
QC15	0.05841	m3/s	
QC15	58.413	l/s	

C	COMPUERTA 16		
Cd	0.3621		
a	0.10	m	
b	0.20	m	
g	9.81	m/s2	
h1	0.40	m	
h2	0.27	m	
Н	0.13	m	
Cv	0.9845		
Cc	0.67	Sumergida	
V	1.0700	m/s	
QC16	0.01157	m3/s	
QC16	11.566	l/s	

Anexo 2. Coordenadas para la construcción del Hidrograma unitario

	nadas del	
	grama	
Adimensional SCS		
T/Ţp	Q/Qn	
0	0	
0.1	0.015	
0.2	0.075	
0.3	0.16	
0.4	0.28	
0.5	0.43	
0.6	0.6	
0.7	0.77	
0.8	0.89	
0.9	0.97	
1	1	
1.1	0.98	
1.2	0.92	
1.3	0.84	
1.4	0.75	
1.5	0.65	
1.6	0.57	
1.8	0.43	
2	0.32	
2.2	0.24	
2.4	0.18	
2.6	0.13	
2.8	0.098	
3	0.075	
3.5	0.036	
4	0.018	
4.5	0.009	
5	0.004	

Coordenadas del Hidrograma Unitario SCS		
t (horas) Q (m3/s)		
0	0	
0.680	0.825	
1.360	4.123	
2.040	8.795	
2.720	15.392	
3.400	23.638	
4.079	32.983	
4.759	42.328	
5.439	48.924	
6.119	53.322	
6.799	54.971	
7.479	53.872	
8.159	50.573	
8.839	46.176	
9.519	41.228	
10.199	35.731	
10.878	31.333	
12.238	23.638	
13.598	17.591	
14.958	13.193	
16.318	9.895	
17.677	7.146	
19.037	5.387	
20.397	4.123	
23.797	1.979	
27.196	0.989	
30.596	0.495	
33.995	0.220	

Anexo 3. Construcción curva de duración general

Caudal (m ³ /s)	Frecuencia	Porcentaje parcial (%)	Probabilidad de excedencia (%)
32.921	1	0.28	0.28
31.34	1	0.28	0.56
29.76	2	0.56	1.13
28.18	0	0.00	1.13
26.60	0	0.00	1.13
25.01	2	0.56	1.69
23.43	3	0.85	2.54
21.85	2	0.56	3.10
20.27	6	1.69	4.79
18.69	6	1.69	6.48
17.11	5	1.41	7.89
15.53	16	4.51	12.39
13.95	19	5.35	17.75
12.36	38	10.70	28.45
10.78	35	9.86	38.31
9.20	51	14.37	52.68
7.62	41	11.55	64.23
6.04	33	9.30	73.52
4.46	69	19.44	92.96
2.88	25	7.04	100

Anexo 4. Información existente de los anuarios meteorológicos y relleno de datos por proporción normal

Nombre: Mariano Acosta Precipitación Total Mensual (mm)

 Periodo:
 1999 - 2013
 Latitud
 0°29'39" N
 Longitud
 78°2'29" W
 Elevación
 1891 msnm

Código M0310

					Preci	ipitación Me	nsual (mm)					
Año	Ene ro	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Se ptie mbre	Octubre	Novie mbre	Dicie mbre
1999	177.3	169.8	182.3	218.7	107.3	72.7	26.2	37.2	89.5	74.0	161.9	195.3
2000	191.7	165.7	X	154.1	195.7	84.7	33.6	40.8	82.5	33.1	12.7	111.3
2001	85.6	67.2	22.8	91.2	31.8	64.3	72.1	16.2	14.8	11.1	69.3	76.8
2002	78.7	40.2	59.3	129.1	43.5	66.5	24.6	21.7	25.4	134.7	95.0	114.8
2003	12.7	66.2	117.6	87.0	66.1	35.8	78.2	0.0	60.4	177.5	126.7	85.5
2004	19.2	30.5	68.3	109.7	71.5	41.5	42.4	4.3	15.2	59.6	80.6	43.9
2005	21.8	127.1	100.0	142.0	53.1	42.7	24.1	X	37.9	77.7	93.6	187.0
2006	89.4	39.0	207.6	145.4	66.6	60.4	21.4	39.2	39.4	128.3	158.5	179.2
2007	50.2	67.2	112.0	158.0	74.6	95.9	38.6	79.0	26.8	161.3	118.0	X
2008	105.1	176.2	186.3	177.8	184.6	89.8	32.3	47.9	43.9	155.6	144.3	129.1
2009	84.0	110.8	95.9	50.2	39.8	46.6	40.9	41.1	15.5	123.6	57.5	94.7
2010	19.5	62.1	44.7	X	87.4	94.1	96.2	35.6	84.0	120.7	208.1	112.8
2011	76.8	191.5	124.9	303.1	181.5	77.7	81.0	74.5	72.8	104.3	86.0	249.5
2012	195.0	196.3	52.4	169.3	109.3	54.3	27.3	29.3	16.6	79.0	95.1	53.5
2013	51.1	274.3	75.1	78.2	105.2	28.8	82.6	26.2	14.1	47.1	131.7	56.7

·	D 11	
Dates	Rellenos	

Datos Faltantes

					Preci	ipitación Me	nsual (mm)					
Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
1999	177.3	169.8	182.3	218.7	107.3	72.7	26.2	37.2	89.5	74.0	161.9	195.3
2000	191.7	165.7		154.1	195.7	84.7	33.6	40.8	82.5	33.1	12.7	111.3
2001	85.6	67.2	22.8	91.2	31.8	64.3	72.1	16.2	14.8	11.1	69.3	76.8
2002	78.7	40.2	59.3	129.1	43.5	66.5	24.6	21.7	25.4	134.7	95.0	114.8
2003	12.7	66.2	117.6	87.0	66.1	35.8	78.2	0.0	60.4	177.5	126.7	85.5
2004	19.2	30.5	68.3	109.7	71.5	41.5	42.4	4.3	15.2	59.6	80.6	43.9
2005	21.8	127.1	100.0	142.0	53.1	42.7	24.1	10.8	37.9	77.7	93.6	187.0
2006	89.4	39.0	207.6	145.4	66.6	60.4	21.4	39.2	39.4	128.3	158.5	179.2
2007	50.2	67.2	112.0	158.0	74.6	95.9	38.6	79.0	26.8	161.3	118.0	
2008	105.1	176.2	186.3	177.8	184.6	89.8	32.3	47.9	43.9	155.6	144.3	129.1
2009	84.0	110.8	95.9	50.2	39.8	46.6	40.9	41.1	15.5	123.6	57.5	94.7
2010	19.5	62.1	44.7	135.0	87.4	94.1	96.2	35.6	84.0	120.7	208.1	112.8
2011	76.8	191.5	124.9	303.1	181.5	77.7	81.0	74.5	72.8	104.3	86.0	249.5
2012	195.0	196.3	52.4	169.3	109.3	54.3	27.3	29.3	16.6	79.0	95.1	53.5
2013	51.1	274.3	75.1	78.2	105.2	28.8	82.6	26.2	14.1	47.1	131.7	56.7

Nombre: Ambuqui

Precipitación Total Mensual (mm)

 Periodo: 1999 - 2013
 Latitud
 0°25'34" N
 Longitud
 78°0'28" W
 Elevación
 1880 msnm

Código M314

	Precipitación Mensual (mm)													
Año	Ene ro	Febre ro	Marzo	Abril	Mayo	Junio	Julio	Agosto	Se ptie mbre	Octubre	Noviembre	Diciembre 1		
1999	40.9	88.2	93.7	77.9	18.2	80.4	15.6	7.3	38.6	11.2	35.6	119.8		
2000	103.8	154.4	144.8	94.8	126.3	X	0.0	2.3	62.6	6.2	X	44.9		
2001	11.6	8.4	45.8	20.6	13.1	X	3.5	0.0	0.0	0.0	24.0	48.2		
2002	21.2	15.1	41.2	75.6	10.4	42.7	1.4	0.0	6.4	65.6	54.2	49.0		
2003	0.0	19.0	38.5	30.4	22.7	8.3	55.0	0.0	21.1	72.1	64.3	21.4		
2004	2.9	27.3	22.9	87.3	24.5	2.6	8.7	0.0	13.7	19.6	58.9	52.1		
2005	34.2	24.9	49.6	51.4	19.5	10.8	7.3	4.6	11.7	18.5	17.0	53.9		
2006	24.7	37.8	87.4	81.5	22.2	51.2	6.9	16.3	4.8	18.5	110.4	81.9		
2007	30.0	11.4	63.4	124.3	50.1	46.5	9.5	48.7	1.4	109.1	68.1	36.3		
2008	X	37.3	128.0	99.9	87.1	31.7	6.8	11.1	21.1	116.6	31.4	87.9		
2009	31.5	29.0	41.8	23.1	8.7	17.9	4.5	X	7.6	30.1	43.8	35.5		
2010	6.5	16.8	22.1	78.6	69.0	41.1	30.4	16.1	35.5	27.2	55.2	48.2		
2011	31.7	56.5	41.0	108.1	62.6	28.1	32.6	32.9	20.5	68.2	40.6	100.5		
2012	77.3	110.3	25.5	71.4	0.0	2.5	1.5	15.8	3.5	54.6	54.8	9.6		
2013	25.6	96.7	X	47.0	130.3	0.1	35.4	20.2	6.8	45.2	33.4	21.2		

					Precip	itación Men	sual (mm)					
Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
1999	40.9	88.2	93.7	77.9	18.2	80.4	15.6	7.3	38.6	11.2	35.6	119.8
2000	103.8	154.4	144.8	94.8	126.3	68.5	0.0	2.3	62.6	6.2	16.0	44.9
2001	11.6	8.4	45.8	20.6	13.1	70.8	3.5	0.0	0.0	0.0	24.0	48.2
2002	21.2	15.1	41.2	75.6	10.4	42.7	1.4	0.0	6.4	65.6	54.2	49.0
2003	0.0	19.0	38.5	30.4	22.7	8.3	55.0	0.0	21.1	72.1	64.3	21.4
2004	2.9	27.3	22.9	87.3	24.5	2.6	8.7	0.0	13.7	19.6	58.9	52.1
2005	34.2	24.9	49.6	51.4	19.5	10.8	7.3	4.6	11.7	18.5	17.0	53.9
2006	24.7	37.8	87.4	81.5	22.2	51.2	6.9	16.3	4.8	18.5	110.4	81.9
2007	30.0	11.4	63.4	124.3	50.1	46.5	9.5	48.7	1.4	109.1	68.1	36.3
2008	76.5	37.3	128.0	99.9	87.1	31.7	6.8	11.1	21.1	116.6	31.4	87.9
2009	31.5	29.0	41.8	23.1	8.7	17.9	4.5	33.6	7.6	30.1	43.8	35.5
2010	6.5	16.8	22.1	78.6	69.0	41.1	30.4	16.1	35.5	27.2	55.2	48.2
2011	31.7	56.5	41.0	108.1	62.6	28.1	32.6	32.9	20.5	68.2	40.6	100.5
2012	77.3	110.3	25.5	71.4	0.0	2.5	1.5	15.8	3.5	54.6	54.8	9.6
2013	25.6	96.7	40.7	47.0	130.3	0.1	35.4	20.2	6.8	45.2	33.4	21.2

Datos Rellenos

Datos Rellenos

Nombre: Pimampiro

Precipitación Total Mensual (mm)

 Periodo: 1999 - 2013
 Latitud
 0°23'23" N
 Longitud
 78°56'28" W
 Elevación
 2090 msnm

Código M315

					Precip	itación Men	sual (mm)					
Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Dicie mbre
1999	61.6	175.6	106.2	106.4	58.2	34.1	27.5	31.6	X	34.1	71.0	100.0
2000	68.7	99.5	X	81.0	172.9	45.4	19.0	21.2	44.9	23.3	9.0	56.8
2001	34.8	8.0	21.2	38.1	34.9	50.1	12.8	16.1	7.8	0.0	39.0	36.9
2002	43.3	9.3	27.0	71.0	15.6	55.4	9.3	13.0	20.0	44.6	94.2	47.1
2003	4.2	19.2	10.4	36.0	30.9	18.3	31.6	0.0	31.3	48.0	64.7	18.3
2004	5.2	24.8	31.7	55.1	42.9	41.5	26.6	0.0	X	35.6	58.4	81.0
2005	22.5	21.0	76.5	80.4	31.3	23.0	5.3	2.0	7.5	42.4	14.2	X
2006	37.6	34.8	97.2	99.6	34.4	30.3	21.2	18.8	13.9	24.0	75.2	153.2
2007	26.3	14.4	60.6	73.6	22.0	34.5	15.2	72.9	15.7	97.1	48.4	X
2008	48.4	42.1	77.6	86.7	125.5	X	6.4	9.8	23.1	X	44.1	56.8
2009	314.8	49.7	60.5	42.4	X	34.0	18.8	14.7	0.0	33.1	10.6	87.1
2010	17.2	41.7	38.2	131.9	99.2	29.4	48.0	31.8	72.2	49.5	116.4	82.9
2011	39.7	22.5	69.3	129.3	78.0	38.2	66.9	30.7	49.2	66.2	68.7	73.7
2012	85.6	87.8	28.0	76.4	8.4	13.8	12.9	31.9	Х	47.5	38.9	41.0
2013	21.8	145.9	24.4	51.1	93.7	18.4	48.3	11.6	15.0	41.7	37.1	31.2

					Precip	itación Men	sual (mm)					
Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Dicie mbre
1999	61.6	175.6	106.2	106.4	58.2	34.1	27.5	31.6	69.1	34.1	71.0	100.0
2000	68.7	99.5		81.0	172.9	45.4	19.0	21.2	44.9	23.3	9.0	56.8
2001	34.8	8.0	21.2	38.1	34.9	50.1	12.8	16.1	7.8	0.0	39.0	36.9
2002	43.3	9.3	27.0	71.0	15.6	55.4	9.3	13.0	20.0	44.6	94.2	47.1
2003	4.2	19.2	10.4	36.0	30.9	18.3	31.6	0.0	31.3	48.0	64.7	18.3
2004	5.2	24.8	31.7	55.1	42.9	41.5	26.6	0.0	16.0	35.6	58.4	81.0
2005	22.5	21.0	76.5	80.4	31.3	23.0	5.3	2.0	7.5	42.4	14.2	132.0
2006	37.6	34.8	97.2	99.6	34.4	30.3	21.2	18.8	13.9	24.0	75.2	153.2
2007	26.3	14.4	60.6	73.6	22.0	34.5	15.2	72.9	15.7	97.1	48.4	
2008	48.4	42.1	77.6	86.7	125.5	62.7	6.4	9.8	23.1	136.7	44.1	56.8
2009	314.8	49.7	60.5	42.4	27.6	34.0	18.8	14.7	0.0	33.1	10.6	87.1
2010	17.2	41.7	38.2	131.9	99.2	29.4	48.0	31.8	72.2	49.5	116.4	82.9
2011	39.7	22.5	69.3	129.3	78.0	38.2	66.9	30.7	49.2	66.2	68.7	73.7
2012	85.6	87.8	28.0	76.4	8.4	13.8	12.9	31.9	15.3	47.5	38.9	41.0
2013	21.8	145.9	24.4	51.1	93.7	18.4	48.3	11.6	15.0	41.7	37.1	31.2

Datos Faltantes

Datos Rellenos

Nombre: San Francisco de Sigsipamba

Precipitación Total Mensual (mm)

Periodo: 1999 - 2013 **Latitud** 0°17'53" N **Longitud** 77°54'42" W **Elevación** 2230 msnm

Código M324

					Precipit	ación Mensu	ıal (mm)					
Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
1999	137.1	97.3	91.0	238.2	75.7	68.2	98.8	74.1	92.1	65.7	108.7	179.1
2000	127.7	104.4	X	115.5	256.0	83.9	56.6	71.0	72.7	57.4	29.1	89.8
2001	80.0	50.4	13.5	107.7	x	172.3	132.0	69.2	x	x	x	X
2002	х	Х	X	X	X	71.6	55.9	24.7	46.7	74.0	104.2	90.0
2003	32.7	51.6	95.2	42.9	113.7	129.3	132.8	3.0	56.7	103.1	110.5	85.3
2004	11.5	35.7	109.6	106.1	73.4	89.4	97.3	59.8	17.2	43.5	40.6	60.7
2005	30.8	77.6	82.3	186.9	59.8	74.1	41.2	28.5	39.6	108.1	54.8	231.7
2006	102.8	44.9	180.1	124.7	79.2	80.6	96.7	38.5	30.0	124.1	89.7	160.0
2007	37.0	50.4	97.3	112.5	78.5	167.4	39.8	120.7	56.6	168.6	64.3	X
2008	89.7	113.5	123.7	113.7	173.8	94.4	78.0	46.5	51.4	157.7	115.6	76.3
2009	69.6	126.5	57.4	88.5	X	120.2	95.2	70.1	15.3	134.2	41.4	70.2
2010	27.2	X	51.2	151.3	116.3	84.4	97.6	69.5	126.3	80.8	146.2	109.4
2011	92.7	88.2	163.0	206.3	210.9	122.0	278.9	127.5	85.7	86.9	187.8	184.9
2012	149.0	98.0	60.1	153.1	61.8	62.1	81.2	89.9	37.6	51.9	134.0	63.3
2013	45.5	186.8	38.5	70.4	148.0	38.2	146.0	53.0	40.2	69.7	102.1	40.6

					Precipit	ación Mensu	ıal (mm)					
Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
1999	137.1	97.3	91.0	238.2	75.7	68.2	98.8	74.1	92.1	65.7	108.7	179.1
2000	127.7	104.4		115.5	256.0	83.9	56.6	71.0	72.7	57.4	29.1	89.8
2001	80.0	50.4	13.5	107.7	38.7	172.3	132.0	69.2	8.2	2.9	60.2	81.8
2002	48.8	21.5	47.4	101.2	22.6	71.6	55.9	24.7	46.7	74.0	104.2	90.0
2003	32.7	51.6	95.2	42.9	113.7	129.3	132.8	3.0	56.7	103.1	110.5	85.3
2004	11.5	35.7	109.6	106.1	73.4	89.4	97.3	59.8	17.2	43.5	40.6	60.7
2005	30.8	77.6	82.3	186.9	59.8	74.1	41.2	28.5	39.6	108.1	54.8	231.7
2006	102.8	44.9	180.1	124.7	79.2	80.6	96.7	38.5	30.0	124.1	89.7	160.0
2007	37.0	50.4	97.3	112.5	78.5	167.4	39.8	120.7	56.6	168.6	64.3	
2008	89.7	113.5	123.7	113.7	173.8	94.4	78.0	46.5	51.4	157.7	115.6	76.3
2009	69.6	126.5	57.4	88.5	27.3	120.2	95.2	70.1	15.3	134.2	41.4	70.2
2010	27.2	42.6	51.2	151.3	116.3	84.4	97.6	69.5	126.3	80.8	146.2	109.4
2011	92.7	88.2	163.0	206.3	210.9	122.0	278.9	127.5	85.7	86.9	187.8	184.9
2012	149.0	98.0	60.1	153.1	61.8	62.1	81.2	89.9	37.6	51.9	134.0	63.3
2013	45.5	186.8	38.5	70.4	148.0	38.2	146.0	53.0	40.2	69.7	102.1	40.6

Datos Faltantes

Datos Rellenos

Anexo 5. Información existente de los anuarios hidrológicos y relleno de datos por regresión lineal

Nombre Apaqui Aj Chota Caudal Medio Mensual (m3/s)

 Periodo
 1999-2013
 Latitud
 0° 26' 51" N
 Longitud
 77° 56' 5" W
 Elevación
 1715 m.s.n.m

Código H016

		•	•		Caudal I	Medio Mensu	ıal (m3/s)		•			
Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembr	Octubre	Noviembre	Diciembre
1999	7.8	9.9	10.8	15.8	10.1	8.4	9.4	10.9	7.4	5.7	6.3	16.6
2000	X	X	X	X	X	X	X	X	X	X	X	X
2001	X	Х	X	X	X	X	X	X	X	X	X	X
2002	Х	Х	X	X	X	X	X	X	Х	X	X	X
2003	X	Х	X	X	X	X	X	X	X	X	X	X
2004	X	Х	X	X	X	X	X	X	X	X	X	X
2005	X	Х	X	X	X	X	X	X	Х	X	X	X
2006	Х	Х	X	X	X	X	X	Х	Х	X	X	Х
2007	7.7	6.5	8.9	12.7	11.2	19.1	10.1	14.4	11.9	11.0	12.0	13.7
2008	11.8	14.7	13.8	13.6	14.3	15.2	15.3	9.7	10.1	12.6	12.1	13.0
2009	13.2	13.9	9.2	11.3	8.2	12.5	12.8	10.0	6.5	5.8	4.5	6.1
2010	4.2	5.1	5.2	7.7	9.3	9.7	9.2	8.2	5.8	5.7	11.9	14.1
2011	9.3	9.6	11.5	13.3	19.5	20.3	25.3	15.2	15.1	13.2	12.9	20.5
2012	15.3	18.1	17.0	15.5	12.5	15.5	16.5	X	11.9	7.5	7.9	9.0
2013	8.0	13.7	10.8	9.9	11.5	13.0	12.9	7.1	4.4	3.9	3.6	2.9

Caudal Medio (m3/s)													
Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	
2007	7.7	6.5	8.9	12.7	11.2	19.1	10.1	14.4	11.9	11.0	12.0	13.7	
2008	11.8	14.7	13.8	13.6	14.3	15.2	15.3	9.7	10.1	12.6	12.1	13.0	
2009	13.2	13.9	9.2	11.3	8.2	12.5	12.8	10.0	6.5	5.8	4.5	6.1	
2010	4.2	5.1	5.2	7.7	9.3	9.7	9.2	8.2	5.8	5.7	11.9	14.1	
2011	9.3	9.6	11.5	13.3	19.5	20.3	25.3	15.2	15.1	13.2	12.9	20.5	
2012	15.3	18.1	17.0	15.5	12.5	15.5	16.5	19.6	11.9	7.5	7.9	9.0	
2013	8.0	13.7	10.8	9.9	11.5	13.0	12.9	7.1	4.4	3.9	3.6	2.9	

Datos faltantes

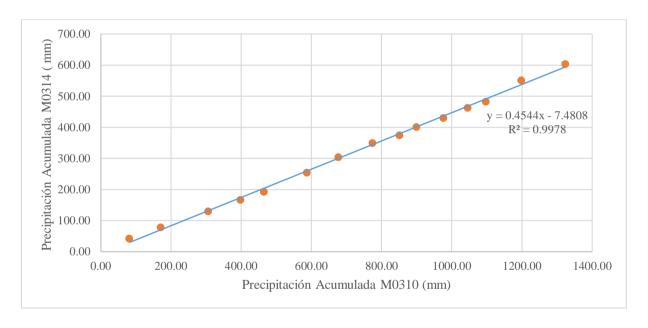
Datos rellenos

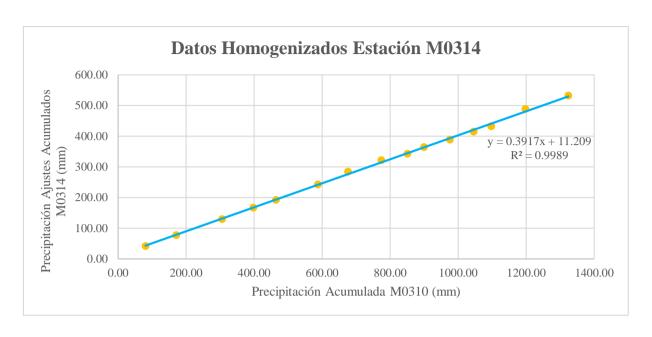
Nombre Apaqui D Gruta La Paz #3 Caudal Medio Mensual (m3/s)

Código H017

					Caudal I	Medio Mensu	ıal (m3/s)					
Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembr	Octubre	Noviembre	Diciembre
1999	13.0	15.9	18.0	23.2	17.1	15.9	18.5	15.9	10.9	10.7	10.3	21.8
2000	16.8	18.5	16.3	16.4	22.2	12.7	Х	Х	Х	X	Х	3.5
2001	2.7	5.0	2.4	4.9	5.7	14.1	8.1	16.0	3.2	2.4	X	5.5
2002	3.5	2.5	2.0	5.2	8.2	11.3	Х	15.6	11.7	3.4	6.0	7.6
2003	2.1	X	5.7	3.9	11.3	7.2	16.0	8.4	6.5	5.7	2.8	4.6
2004	3.1	X	5.2	4.8	7.3	15.8	9.6	10.2	7.3	3.5	4.4	4.2
2005	2.8	6.4	4.7	11.5	8.4	9.6	7.4	6.0	5.0	1.8	3.4	5.1
2006	5.9	5.4	5.7	6.5	8.7	19.9	16.6	12.0	9.9	7.0	9.5	11.4
2007	7.7	6.2	7.9	13.3	11.3	21.7	11.1	18.6	13.6	10.3	12.4	14.0
2008	12.9	16.3	14.9	14.9	14.6	16.6	17.4	10.5	13.3	12.0	11.8	13.7
2009	15.4	14.4	10.2	14.0	10.0	16.5	16.7	12.2	7.0	5.2	3.4	4.4
2010	4.5	X	4.0	8.9	10.8	11.7	11.9	8.8	7.1	5.8	Х	15.0
2011	9.0	8.6	10.7	11.6	15.4	17.0	17.9	10.4	10.2	6.9	6.3	13.6
2012	8.7	12.6	11.8	11.5	9.3	9.1	10.0	14.0	7.1	4.1	3.9	3.8
2013	4.2	7.5	5.5	5.3	7.0	7.6	12.8	10.1	5.1	6.3	7.4	5.7

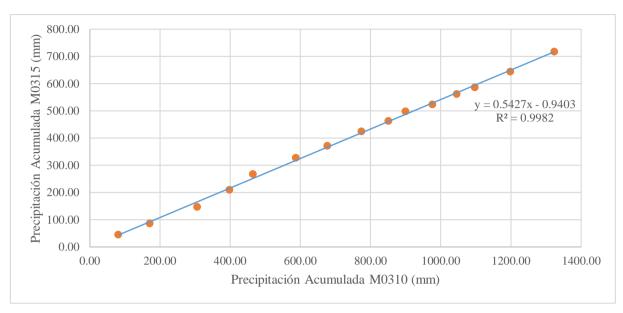
	Caudal Medio (m3/s)													
Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre		
2007	7.7	6.2	7.9	13.3	11.3	21.7	11.1	18.6	13.6	10.3	12.4	14.0		
2008	12.9	16.3	14.9	14.9	14.6	16.6	17.4	10.5	13.3	12.0	11.8	13.7		
2009	15.4	14.4	10.2	14.0	10.0	16.5	16.7	12.2	7.0	5.2	3.4	4.4		
2010	4.5	5.6	4.0	8.9	10.8	11.7	11.9	8.8	7.1	5.8	13.5	15.0		
2011	9.0	8.6	10.7	11.6	15.4	17.0	17.9	10.4	10.2	6.9	6.3	13.6		
2012	8.7	12.6	11.8	11.5	9.3	9.1	10.0	14.0	7.1	4.1	3.9	3.8		
2013	4.2	7.5	5.5	5.3	7.0	7.6	12.8	10.1	5.1	6.3	7.4	5.7		

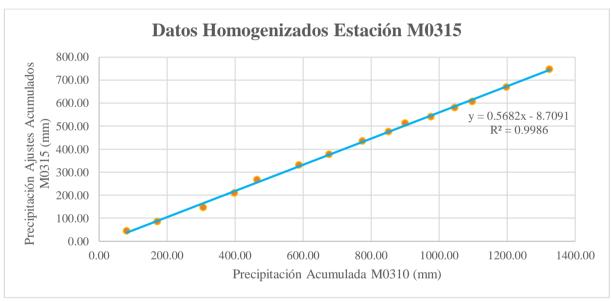

Datos faltantes


Datos rellenos

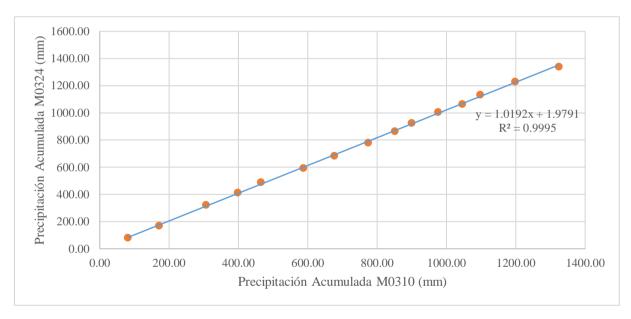
Anexo 6. Análisis de consistencia y validación de datos (Método Dobles Masas)

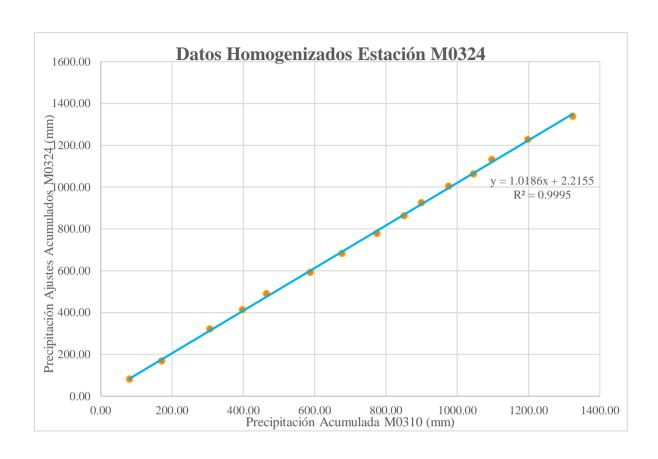
Estación M0314 Ambuquí


		Da	tos homogenizado	s de la estación M	10314 Ambuquí			
		Estación	M0314	Estación Pa	trón M0310	Valor ajustado de	Ajustes	
Orden	Año	Pre cipitación Anual	Precipitación Acumulada	Precipitación Anual	Precipitación Acumulada	Precipitación	Acumulados	
1	2013	41.88	41.88	80.93	80.93	41.88	41.88	
2	2012	35.57	77.45	89.78	170.71	35.57	77.45	
3	2011	51.94	129.39	135.30	306.01	51.94	129.39	
4	2010	37.23	166.61	91.69	397.69	37.23	166.61	
5	2009	25.59	192.21	66.72	464.41	25.59	192.21	
6	2008	61.29	253.49	122.74	587.15	50.56	242.77	
7	2007	49.90	303.39	89.24	676.39	41.17	283.93	
8	2006	45.30	348.69	97.87	774.26	37.37	321.30	
9	2005	25.28	373.98	76.49	850.74	20.86	342.16	
10	2004	26.71	400.68	48.89	899.63	22.03	364.20	
11	2003	29.40	430.08	76.14	975.78	24.25	388.45	
12	2002	31.90	461.98	69.46	1045.23	26.32	414.77	
13	2001	20.50	482.48	51.93	1097.17	16.91	431.68	
14	2000	68.72	551.20	100.54	1197.70	56.69	488.37	
15	1999	52.28	603.48	126.02	1323.72	43.13	531.50	



Estación M0315 Pimampiro


		Dat	os homogenizados	de la estación M0.	315 Pimampiro			
		Estación	M0315	Estación Pat	trón M0310	Volor oinstado	Ainstos	
Orden	Año	Precipitación Anual	Precipitación Acumulada	Precipitación Anual	Precipitación Acumulada	Valor ajustado de Precipitación	Ajustes Acumulados	
1	2013	45.02	45.02	80.93	80.93	45.02	45.02	
2	2012	40.63	85.64	89.78	170.71	40.63	85.64	
3	2011	61.03	146.68	135.30	306.01	61.03	146.68	
4	2010	63.20	209.88	91.69	397.69	63.20	209.88	
5	2009	57.78	267.66	66.72	464.41	57.78	267.66	
6	2008	59.99	327.65	122.74	587.15	63.93	331.59	
7	2007	43.70	371.35	89.24	676.39	46.57	378.16	
8	2006	53.35	424.70	97.87	774.26	56.86	435.02	
9	2005	38.17	462.87	76.49	850.74	40.68	475.70	
10	2004	34.90	497.78	48.89	899.63	37.20	512.90	
11	2003	26.08	523.85	76.14	975.78	27.79	540.69	
12	2002	37.48	561.33	69.46	1045.23	39.95	580.64	
13	2001	24.98	586.31	51.93	1097.17	26.62	607.26	
14	2000	58.34	644.65	100.54	1197.70	62.17	669.43	
15	1999	72.95	717.60	126.02	1323.72	77.75	747.18	



Estación M0324 San Francisco de Sigsipamba

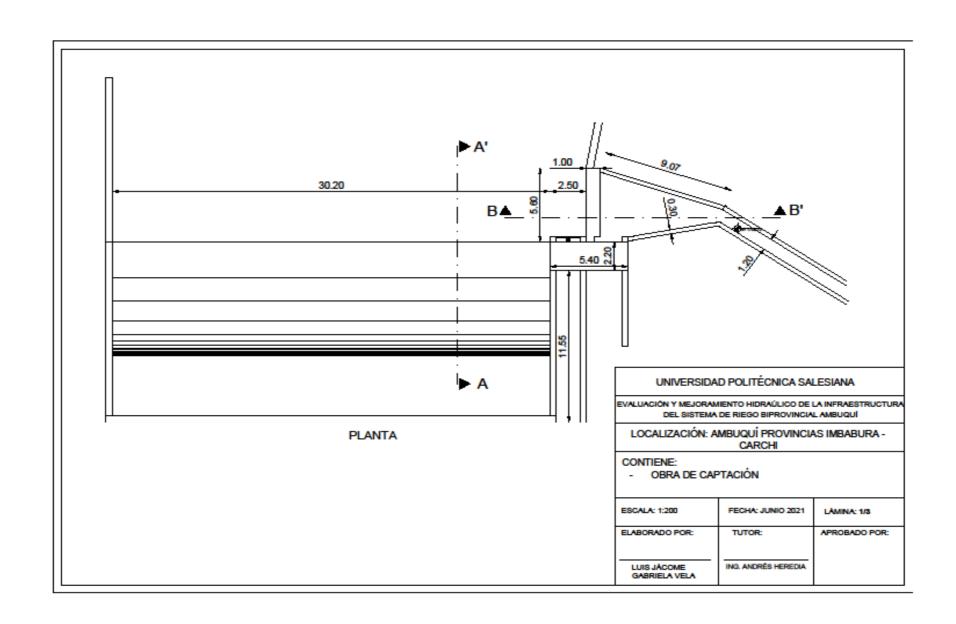
		Datos homog	enizados de la esta	ación M0324 San F	rancisco de Sigsip	oamba		
		Estación	M0324	Estación Pa	trón M0310	Valor ajustado de	Ainataa	
Orden	Año	Precipitación Precipitación Anual Acumulada		Pre cipitación Anual	Precipitación Acumulada	Pre cipitación	Ajustes Acumulados	
1	2013	81.58	81.58	80.93	80.93	81.58	81.58	
2	2012	86.83	168.42	89.78	170.71	86.83	168.42	
3	2011	152.90	321.32	135.30	306.01	152.90	321.32	
4	2010	91.90	91.90 413.21		397.69	91.90	413.21	
5	2009	76.33	489.54	66.72	464.41	76.33	489.54	
6	2008	102.86	592.40	122.74	587.15	102.86	592.40	
7	2007	90.28	682.68	89.24	676.39	90.28	682.68	
8	2006	95.94	778.62	97.87	774.26	95.94	778.62	
9	2005	84.62	863.24	76.49	850.74	84.50	863.12	
10	2004	62.07	925.31	48.89	899.63	61.98	925.10	
11	2003	79.73	1005.04	76.14	975.78	79.62	1004.72	
12	2002	59.06	1064.10	69.46	1045.23	58.98	1063.70	
13	2001	68.08	1132.18	51.93	1097.17	67.98	1131.68	
14	2000	96.74	1228.91	100.54	1197.70	96.60	1228.28	
15	1999	110.50	1339.41	126.02	1323.72	110.35	1338.63	

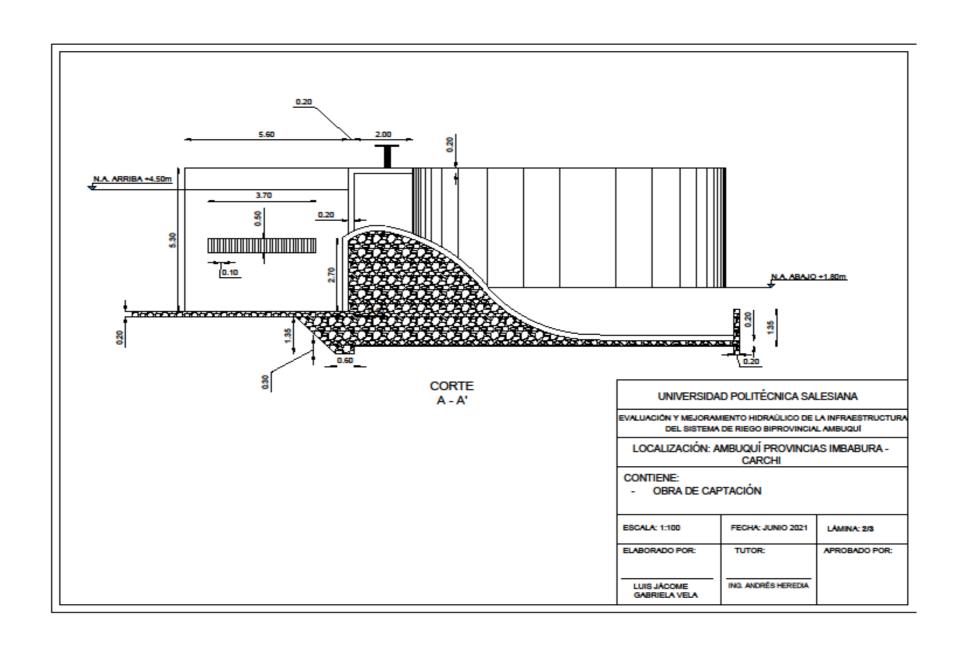
Anexo 7. Áreas de riego de las derivaciones

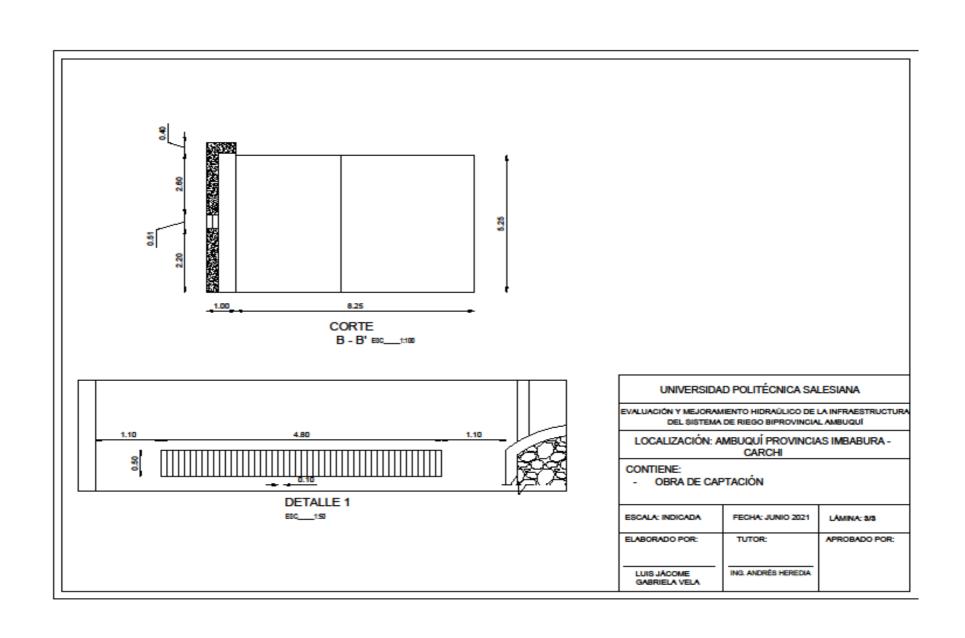
Nota. Las áreas de las derivaciones se encuentran en hectáreas.

Anexo 8. Estudio de suelos

						1				ac 22	555	51 - 07	arle De PNASZE: PC29ar	4 - 22	4641			
			_	ANALISIS MATERIALE	0				The same			_	_			Anexo	Na.5	R-0
				REHABILITACIÓN SISTEMA DE									SER.	Α				
			_								_			_			Heja	I de
37.37	19042406	¥153	_	DATOS ESPECIFICOS DE LA							AS:	130	33		25.18	2000	910	ud iii
(IERL)		1905.	le Gal	DESCRIPCION	OFFE	PERA	_	PLANC. Parthol		_	u	Lt.	z.	ĸ.	bullet hade		- (1	Ī
24.	9.5	M/s	L		R3	5	4	н	id.	260	4	8	9		Real*	χ.	Tro	Ma
÷	umnu	000 000	30.66	Contrigit A vera limina, perlan menta amantiar ha, aun grumas premiana persua" opidal misma metodalia so ar pomo sinta describe engranyado.	AQA. SH	N.	**	39	95	20	-	-	x.a.					Г
:	спрадач	nae frae	S	Catalità de mallimente, polos coli mendione, con prumos co mismo malarial protoco.	64 91	3.74	к	н	a	22		7.	w.	٠				Γ
ı	teir	000 050	2000	Saidijo Atmingsaya, sala gris, syn pides op galer sieres, 2019 wein del nive o mysrid o solot.	AGA Pri	430	22	æ	4	H	-	-	XX.	۰				
•	Sarrejd	240	Access	Censija. Arwie Broos, celor pila sentico, con pilata za rakor etertojenia.	A64 38	285	20	23	21	п	-	-	62.	,				
,	Seed beguilde	111		Brana kalibra, as ar orbit, con phistode es orbito er estaface a gra.	×	3.75	221		11	47	.71	;=	12	,				
6	Ovente	5.00 5.00	200000	As real interspective graphs and protection through pay province field where makened years.	24 24	130	ø	20	60	Alt	-		×λ	ι		Å		
																VA	M	

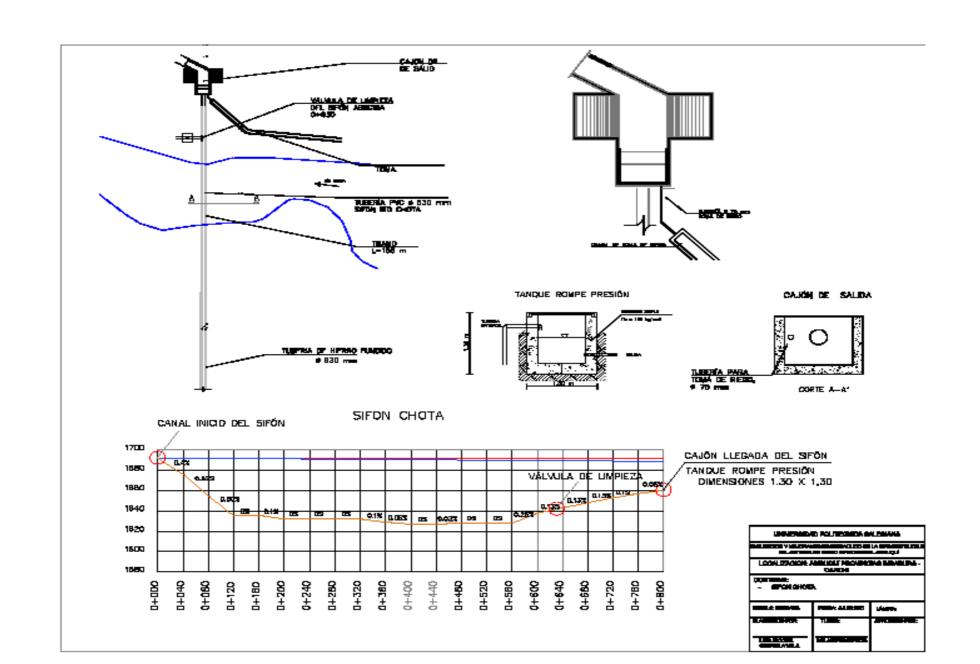

Nota. Análisis de materiales existentes en los tramos de Caldera, Chalguayacu, Pusir y Bermejal. Datos obtenidos por la (Empresa Pública del Agua, 2016).


.


Anexo 9. Coordenadas unitarias y reales para la construcción del perfil tipo Cregaer

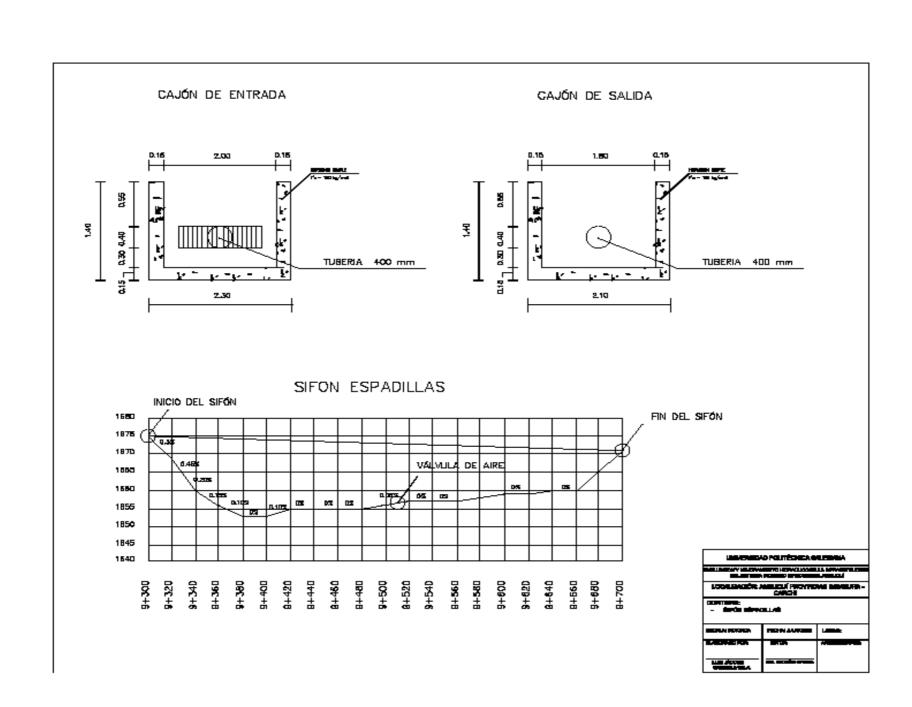
Coord. C	re age r-O fizye rov	Coord.	Reales
x'=x/H	y'=y/H	x=x'H	у=у Н
0.00	0.126	0.00	0.139
0.10	0.036	0.11	0.040
0.20	0.007	0.22	0.008
0.30	0.000	0.33	0.000
0.40	0.006	0.44	0.007
0.50	0.027	0.55	0.030
0.60	0.060	0.66	0.066
0.70	0.100	0.77	0.110
0.80	0.146	0.88	0.161
0.90	0.198	0.99	0.218
1.00	0.256	1.10	0.282
1.10	0.321	1.21	0.353
1.20	0.394	1.32	0.433
1.30	0.475	1.43	0.523
1.40	0.564	1.54	0.620
1.50	0.661	1.65	0.727
1.60	0.764	1.76	0.840
1.70	0.873	1.87	0.960
1.80	0.987	1.98	1.086
1.90	1.108	2.09	1.219
2.00	1.235	2.20	1.359
2.10	1.369	2.31	1.506
2.20	1.508	2.42	1.659
2.30	1.653	2.53	1.818
2.40	1.894	2.64	2.083
2.5	1.96	2.75	2.156
2.6	2.122	2.86	2.334
2.7	2.289	2.97	2.518
2.8	2.462	3.08	2.708
2.9	2.64	3.19	2.904
3	2.824	3.3	3.106
3.1	3.013	3.41	3.314

Anexo 10. Planos obra de captación



Anexo 11. Hoja de cálculo sifón Chota

									SIF	ÓN CHO	TA										
		Progr	esiva					Datos Tubería						Perdidas				ométrica	Diferencia (m H2O)		
Inicial	Final			Dif. Cotas		Cota	Caudal	Diámetro	Diámetro	Presion		Velocidad		Fric	ción						
(km)	(km)	Cota 1	Cota 2	(m)	Pendiente	Rasante	(m3/s)	Nominal (mm)	Interior (mm)	Noninal (Mpa)		(m/s)	Hazen	Codos	Parcial	Acum	Dinámica	Estática	Dinámica	Estática	
0+000.00	0+040.00	1,692	1,676	16.00	-0.4000	1676.00	0.750	630	595.8	1.60	130	2.69	0.314	0.024	0.34	0.34	1692.00	1692	16.00	16.00	
0+040.00	0+080.00	1,676	1,655	21.00	-0.5250	1655.00	0.750	630	595.8	1.60	130	2.69	0.329	0.010	0.34	0.68	1691.13	1692	36.13	37.00	
0+080.00	0+120.00	1,655	1,635	20.00	-0.5000	1635.00	0.750	630	595.8	1.60	130	2.69	0.326	0.050	0.38	1.05	1690.65	1692	55.65	57.00	
0+120.00	0+160.00	1,635	1,635	0.00	0.0000	1635.00	0.750	630	595.8	1.60	130	2.69	0.291	0.020	0.31	1.36	1690.25	1692	55.25	57.00	
0+160.00	0+200.00	1,635	1,632	3.00	-0.0750	1632.00	0.750	630	595.8	1.60	130	2.69	0.292	0.020	0.31	1.68	1689.85	1692	57.85	60.00	
0+200.00	0+240.00	1,632	1,632	0.00	0.0000	1632.00	0.750	630	595.8	1.60	130	2.69	0.291	0.000	0.29	1.97	1689.47	1692	57.47	60.00	
0+240.00	0+280.00	1,632	1,632	0.00	0.0000	1632.00	0.750	630	595.8	1.60	130	2.69	0.291	0.000	0.29	2.26	1689.09	1692	57.09	60.00	
0+280.00	0+320.00	1,632	1,632	0.00	0.0000	1632.00	0.750	630	595.8	1.60	130	2.69	0.291	0.020	0.31	2.57	1688.69	1692	56.69	60.00	
0+320.00	0+360.00	1,632	1,629	3.00	-0.0750	1629.00	0.750	630	595.8	1.60	130	2.69	0.292	0.012	0.30	2.87	1688.30	1692	59.30	63.00	
0+360.00	0+400.00	1,629	1,627	2.00	-0.0500	1627.00	0.750	630	595.8	1.60	130	2.69	0.292	0.016	0.31	3.18	1687.90	1692	60.90	65.00	
0+400.00	0+440.00	1,627	1,627	0.00	0.0000	1627.00	0.750	630	595.8	1.60	130	2.69	0.291	0.012	0.30	3.48	1687.51	1692	60.51	65.00	
0+440.00	0+480.00	1,627	1,628	-1.00	0.0250	1628.00	0.750	630	595.8	1.60	130	2.69	0.291	0.012	0.30	3.79	1687.12	1692	59.12	64.00	
0+480.00	0+520.00	1,628	1,628	0.00	0.0000	1628.00	0.750	630	595.8	1.60	130	2.69	0.291	0.000	0.29	4.08	1686.74	1692	58.74	64.00	
0+520.00	0+560.00	1,628	1,628	0.00	0.0000	1628.00	0.750	630	595.8	1.60	130	2.69	0.291	0.036	0.33	4.41	1686.33	1692	58.33	64.00	
0+560.00	0+600.00	1,628	1,638	-10.00	0.2500	1638.00	0.750	630	595.8	1.60	130	2.69	0.300	0.026	0.33	4.73	1685.91	1692	47.91	54.00	
0+600.00	0+640.00	1,638	1,643	-5.00	0.1250	1643.00	0.750	630	595.8	1.60	130	2.69	0.294	0.000	0.29	5.03	1685.53	1692	42.53	49.00	
0+640.00	0+680.00	1,643	1,648	-5.00	0.1250	1648.00	0.750	630	595.8	1.60	130	2.69	0.294	0.000	0.29	5.32	1685.14	1692	37.14	44.00	
0+680.00	0+720.00	1,648	1,653	-5.00	0.1250	1653.00	0.750	630	595.8	1.60	130	2.69	0.294	0.012	0.31	5.63	1684.75	1692	31.75	39.00	
0+720.00	0+760.00	1,653	1,657	-4.00	0.1000	1657.00	0.750	630	595.8	1.60	130	2.69	0.293	0.012	0.30	5.93	1684.36	1692	27.36	35.00	
0+760.00	0+800.00	1,657	1,660	-3.00	0.0750	1660.00	0.750	630	595.8	1.60	130	2.69	0.292	0.012	0.30	6.23	1683.96	1692	23.96	32.00	
0+800.00	0+840.00	1,660	1,662	-2.00	0.0500	1662.00	0.750	630	595.8	1.60	130	2.69	0.292	0.016	0.31	6.54	1683.58	1692	21.58	30.00	


Anexo 12. Plano sifón río Chota

Anexo 13. Hoja de cálculo sifón Espadillas

	SIFÓN ESPADILLAS																		
	P	rogresiva					Datos Tubería					Per	didas		Cota Piezométrica		Diferencia (m H2O)		
Inicial	nicial Final			Cota Caudal		Diámetro	Diámetro	Presion		Velocidad	Fricción								
(km)	(km)	Cota 1	Cota 2	Pendiente	Rasante	(m3/s)	Nominal (mm)	Interior (mm)	Noninal (Mpa)	С	(m/s)	Hazen	Codos	Parcial	Acum	Dinámica	Estática	Dinámica	Estática
9+300.00	9+320.00	1,675	1,669	-0.3000	1669.00	0.2396	400	378.4	1.6	135	2.131	0.168	0.017	0.18	0.18	1675.00	1675	6.00	6.00
9+320.00	9+340.00	1,669	1,660	-0.4500	1660.00	0.2396	400	378.4	1.6	135	2.131	0.176	0.022	0.20	0.38	1674.62	1675	14.62	15.00
9+340.00	9+360.00	1,660	1,656	-0.2000	1656.00	0.2396	400	378.4	1.6	135	2.131	0.164	0.010	0.17	0.56	1674.44	1675	18.44	19.00
9+360.00	9+380.00	1,656	1,653	-0.1500	1653.00	0.2396	400	378.4	1.6	135	2.131	0.162	0.018	0.18	0.74	1674.26	1675	21.26	22.00
9+380.00	9+400.00	1,653	1,653	0.0000	1653.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.015	0.18	0.91	1674.09	1675	21.09	22.00
9+400.00	9+420.00	1,653	1,655	0.1000	1655.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.015	0.18	1.09	1673.91	1675	18.91	20.00
9+420.00	9+440.00	1,655	1,655	0.0000	1655.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.000	0.16	1.25	1673.75	1675	18.75	20.00
9+440.00	9+460.00	1,655	1,655	0.0000	1655.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.000	0.16	1.41	1673.59	1675	18.59	20.00
9+460.00	9+480.00	1,655	1,655	0.0000	1655.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.010	0.17	1.58	1673.42	1675	18.42	20.00
9+480.00	9+500.00	1,655	1,656	0.0500	1656.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.000	0.16	1.74	1673.26	1675	17.26	19.00
9+500.00	9+520.00	1,656	1,657	0.0500	1657.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.010	0.17	1.91	1673.09	1675	16.09	18.00
9+520.00	9+540.00	1,657	1,657	0.0000	1657.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.000	0.16	2.07	1672.93	1675	15.93	18.00
9+540.00	9+560.00	1,657	1,657	0.0000	1657.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.010	0.17	2.24	1672.76	1675	15.76	18.00
9+560.00	9+580.00	1,657	1,658	0.0500	1658.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.000	0.16	2.40	1672.60	1675	14.60	17.00
9+580.00	9+600.00	1,658	1,659	0.0500	1659.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.010	0.17	2.58	1672.42	1675	13.42	16.00
9+600.00	9+620.00	1,659	1,659	0.0000	1659.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.010	0.17	2.75	1672.25	1675	13.25	16.00
9+620.00	9+640.00	1,659	1,660	0.0500	1660.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.010	0.17	2.92	1672.08	1675	12.08	15.00
9+640.00	9+660.00	1,660	1,660	0.0000	1660.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.025	0.19	3.10	1671.90	1675	11.90	15.00
9+660.00	9+680.00	1,660	1,666	0.3000	1666.00	0.2396	400	378.4	1.6	135	2.131	0.168	0.010	0.18	3.28	1671.72	1675	5.72	9.00
9+680.00	9+700.00	1,666	1,671	0.2500	1671.00	0.2396	400	378.4	1.6	135	2.131	0.166	0.020	0.19	3.47	1671.53	1675	0.53	4.00
9+700.00	9+720.00	1,671	1,672	0.0500	1672.00	0.2396	400	378.4	1.6	135	2.131	0.161	0.010	0.17	3.64	1671.36	1675	-0.64	3.00

Anexo 14. Plano sifón Espadillas

Anexo 15. Análisis de precios unitarios (APUs)

	AN	ÁLISIS DE PRE	CIOS UNITARIO	os					
Nombre del proy	vecto:	"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema de Riego Biprovincial Ambuqui"							
Nombre del ejec	utor:		0 1	Vela Gabriela					
Rubro:		refuerzo f´y= 420		Hoja:	1				
DETALLE:	110010 40	1010012519 120	o ng eniz	Unidad:	Kg				
MATERIALES									
Descr	ipción	Unidad	Cantidad	P. Unitario	Costo				
			A	В	$C = A \times B$				
Alambre de ama No.		Kg	0.05	2.54	0.13				
Acero de refu kg/o	erzo Fy=4200 cm2	Kg	1.05	1.38	1.45				
SUBTOTAL M					1.58				
	a	MANO D		5 11 1					
Descripción	Cantidad A	Jornal - Hora B	Costo- Hora $C = A \times B$	Rendimiento R	Costo $D = C \times R$				
Fierrero	1.00	3.66	3.66	0.0500	0.18				
Peón	1.00	3.62	3.62	0.0500	0.18				
Maestro mayor en ejecución de obras civiles	0.10	4.06	0.41	0.0500	0.02				
SUBTOTAL N		FOU	IPOS		0.38				
Descripción	Cantidad	Tarifa	Costo - Hora	Rendimiento	Costo				
	A	В	$C = A \times B$	R	$D = C \times R$				
Herramienta menor (5% M.O.)					0.02				
Cortadora / Dobladora	1.00	1.43	1.43	0.0500	0.07				
SUBTOTAL O					0.09				
	** ** *		PORTE						
Descripción	Unidad	Distancia	Cantidad A	Tarifa B	$Costo$ $C = A \times B$				
SUBTOTAL P					0.00				
		Costo Directo Costo Indirecto			2.05 0.41				
		COSTO TOTAL VALOR PROP	L DEL RUBRO: UESTO:		2.46 2.46				

	AN	ÁLISIS DE PRE	CIOS UNITARIO	OS			
Nombre del proy		"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema					
				vincial Ambuqui" Vela Gabriela			
Nombre del ejec	cutor:		2				
Rubro:	Alquiler de m	aquinaria excavado	2 hora				
DETALLE:	l			Unidad:	11074		
			RIALES	ı	<u> </u>		
Descr	ipción	Unidad	Cantidad A	P. Unitario B	Costo C = A x B		
			A	ь	CEAXB		
SUBTOTAL M				I	0.00		
		MANO E					
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo		
Chofer	A	В	$C = A \times B$	R	$D = C \times R$		
Licencia "E"	1.00	5.31	5.31	1.0000	5.31		
SUBTOTAL N				L	5.31		
			IPOS				
Descripción	Cantidad A	Tarifa B	Costo - Hora $C = A \times B$	Rendimiento R	$Costo$ $D = C \times R$		
Excavadora	A	Ь	C=AXB	K	DECXK		
de orugas 150	1.00	45.20	45.20	1.0000	45.20		
HP							
OLID=G=							
SUBTOTAL O		TDANG	PORTE		45.20		
Descripción	Unidad	Distancia	Cantidad	Tarifa	Costo		
	-		A	В	C = A x B		
SUBTOTAL P					0.00		
		Costo Directo	(M+N+O+P)		50.51		
		Costo Indirecto	20%		10.10		
		COSTO TOTAL	I DEI DIBBO		60.64		
		VALOR PROP	L DEL RUBRO: UESTO:		60.61 60.61		
		VALOR PROP	OESTO:		00.01		

	AN	ÁLISIS DE PRE	CIOS UNITARIO	os	
Nombre del proy	vecto:	'Evaluación y Me	joramiento Hidrau		ıctura del Sistema
Nombre del ejec	· 		de Riego Biprov	vincial Ambuqui" Vela Gabriela	
				Hoja:	3
Rubro:	Compuerta Bo	ocatoma 1.00 x 0.5	50 m, e = 6mm	Unidad:	u
DETALLE:		MATE	RIALES		
Descr	ipción	Unidad	Cantidad	P. Unitario	Costo
	*		Α	В	$C = A \times B$
Compuerta	Metálica con				
volante y tuer	ca de Croncw	u	1.00	350.34	350.34
1.00x0.50	0x0.06 cm				
Hormigón sim	nple, f'c= 210	m3	0.04	126.93	5.08
Kg/cm2, no ir	nc. Encofrado	1113	0.04	120.93	5.06
Emantina da ta	bla de monte	0	4.00	40.05	04.04
Encorrado ta	bia de monte	m2	1.30	16.85	21.91
SUBTOTAL M					377.32
COBTOTALIM		MANO I		377.52	
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo
D - f -	Α	В	$C = A \times B$	R	D = C x R
Peón Soldador	2.00 1.00	3.62 3.72	7.24 3.72	4.0000 4.0000	28.96 14.88
Albañil	1.00	3.66	3.66	4.0000	14.64
Técnico de	1.00	3.86	3.86	4.0000	15.44
obras civiles Maestro					
mayor en	0.10	4.06	0.41	4.0000	4.60
ejecución de	0.10	4.06	0.41	4.0000	1.62
obras civiles					
SUBTOTAL N					75.54
			IPOS		
Descripción	Cantidad	Tarifa B	Costo - Hora	Rendimiento R	Costo
Herramienta	A	D	$C = A \times B$	ĸ	$D = C \times R$
menor (5%					0.52
M.O.)					
Equipo pintura (COMPRESO	0.20	2.55	0.51	4.0000	2.04
R 2HP-SOPL)	0.20	2.50	3.51		2.54
Soldadora	0.00	0.04	0.00	4.0000	0.67
eléctrica 300 A	0.30	3.31	0.99	4.0000	3.97
[`					
SUBTOTAL O			1		6.53
			PORTE		
Descripción	Unidad	Distancia	Cantidad	Tarifa	Costo
			A	В	$C = A \times B$
CURTOTAL					0.00
SUBTOTAL P		Costo Directo	(M+N+O+P)		0.00 459.40
		Costo Indirecto			91.87964
			L DEL RUBRO:		551.28
		VALOR PROP	UESTO:		551.28

AN	ÁLISIS DE PRE	CIOS UNITARIO	OS				
ecto:	"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema						
				4			
Derr	ocamiento de horr	nigón	Unidad:	m3			
		DIA E EG					
oción			P. Unitario	Costo			
•		А	В	$C = A \times B$			
	m3	0.10	0.69	0.07			
	MANO	DE OBRA		0.07			
Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo			
Α	В	$C = A \times B$	R	$D = C \times R$			
4.00	3.62	14.48	2.0000	28.96			
	3.66		2.0000	7.32			
1.00	3.86	3.86	2.0000	7.72			
0.40	4.00	0.44	0.0000	0.04			
0.10	4.06	0.41	2.0000	0.81			
				44.04			
	EQU	IPOS		44.81			
Cantidad	Tarifa	Costo - Hora	Rendimiento	Costo			
A	В	$C = A \times B$	R	$D = C \times R$			
1.00	15.07	15.07	2.0000	30.14			
	10.07			30.14			
	10.01			30.14			
	10.01						
	10.01			0.26			
1.00	15.40	15.40	2.0000				
1.00			2.0000	0.26			
1.00			2.0000	0.26			
1.00			2.0000	0.26			
1.00			2.0000	0.26			
1.00			2.0000	0.26			
1.00			2.0000	0.26			
1.00	15.40	15.40	2.0000	0.26			
1.00 Unidad	15.40		2.0000 Tarifa	0.26 30.80			
	15.40 TRANS	15.40 PORTE		0.26 30.80 61.20			
	15.40 TRANS	15.40 15.40 PORTE Cantidad	Tarifa	0.26 30.80 61.20			
	15.40 TRANS	15.40 15.40 PORTE Cantidad	Tarifa	0.26 30.80 61.20 Costo C = A x B			
	15.40 TRANS Distancia	15.40 PORTE Cantidad A	Tarifa	0.26 30.80 61.20 Costo C = A x B			
	15.40 TRANS	PORTE Cantidad A (M+N+O+P)	Tarifa	0.26 30.80 61.20 Costo C = A x B			
	TRANS Distancia Costo Directo Costo Indirecto	PORTE Cantidad A (M+N+O+P)	Tarifa B	0.26 30.80 61.20 Costo C = A x B			
	Cantidad A 4.00 1.00 0.10 Cantidad A	Tevaluación y Me Tevaluación y Me	## Tevaluación y Mejoramiento Hidrau de Riego Biprovation: Derrocamiento de hormigón	MATERIALES Derrocamiento de hormigón Hoja: Unidad:			

	AN	ÁLISIS DE PRE	CIOS UNITARIO	OS			
Nombre del proy	vecto:	"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema					
			de Riego Biprov				
Nombre del ejec	utor:		Jácome Luis -	Vela Gabriela	1		
Rubro:	Desa	lojo de material≤	50 m	Hoja:	5		
DETALLE:			Unidad:	m3			
DETALLE.		MATE	RIALES				
Descr	ipción	Unidad	Cantidad	P. Unitario	Costo		
			А	В	$C = A \times B$		
SUBTOTAL M					0.00		
Б	G		DE OBRA	D 11			
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo		
Peón	1.00	B 3.62	$C = A \times B$ 3.62	R 0.5700	$D = C \times R$ 2.06		
Maestro mayor en							
ejecución de obras civiles	0.10	4.06	0.41	0.5700	0.23		
SUBTOTAL N					2.29		
		EQU	IPOS				
Descripción	Cantidad	Tarifa	Costo - Hora	Rendimiento	Costo		
	Α	В	$C = A \times B$	R	$D = C \times R$		
Herramienta menor (5% M.O.)					0.07		
SUBTOTAL O			DODATE		0.07		
Descripción	Unidad	Distancia Distancia	PORTE Cantidad	Tarifa	Costo		
Descripcion	Unidad	Distalicia	A	В	C = A x B		
				ر	0 - // / /		
SUBTOTAL P					0.00		
		Costo Directo Costo Indirecto			2.36 0.47		
		COSTO TOTAL VALOR PROP	L DEL RUBRO: UESTO:		2.84 2.84		

	AN	ÁLISIS DE PRE	CIOS UNITARIO	OS				
Nombre del proy	vecto:	"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema						
			<u> </u>	vincial Ambuqui"				
Nombre del ejec				Vela Gabriela Hoja:	6			
Rubro:	Desalojo de mate	rial con volqueta (transporte 10 km)	Unidad:	m3			
DETALLE:								
Descr	inción	Unidad	Cantidad	P. Unitario	Costo			
Descr	рски	Cilidad	A	В	C = A x B			
SUBTOTAL M					0.00			
		MANO I						
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo			
Maestro	A	В	$C = A \times B$	R	$D = C \times R$			
mayor en ejecución de obras civiles	0.10	4.06	0.41	0.1600	0.06			
Chofer Licencia "E" Operador	1.00	5.31	5.31	0.1600	0.85			
equipo pesado	1.00	4.06	4.06	0.1600	0.65			
Engrasador	1.00	3.66	3.66	0.1600	0.59			
SUBTOTAL N			JPO G		2.15			
Descripción	Cantidad	Tarifa	IPOS Costo - Hora	Rendimiento	Costo			
Безепревоп	A	В	$C = A \times B$	R	D = C x R			
Herramienta menor (5% M.O.)					0.02			
Cargadora Volqueta 9 m3	0.05 1.00	39.31 27.54	1.97 27.54	0.1600 0.1600	0.31 4.41			
SUBTOTAL O			DODEE		4.74			
Descripción	Unidad	TRANS Distancia	PORTE Cantidad	Tarifa	Costo			
Безепреюн	Cindad	Distilled	A	В	$C = A \times B$			
SUBTOTAL P		Costo Directo Costo Indirecto			0.00 6.89 1.38			
		COSTO TOTAL	L DEL RUBRO: UESTO:		8.27 8.27			

	AN	NÁLISIS DE PRE	CIOS UNITARIO	OS			
Nombre del proy	vecto:	"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema					
Nombre del ejec			de Riego Biprov	vincial Ambuqui" Vela Gabriela			
		naterial transporte		Hoja:	7		
Rubro:		manual		Unidad:	m3		
DETALLE:		MATERI	DIALEC				
Descri	ipción	Unidad	Cantidad	P. Unitario	Costo		
	•		А	В	$C = A \times B$		
SUBTOTAL M		MANO D	DE OBRA		0.00		
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo		
	А	В	$C = A \times B$	R	D = C x R		
Maestro mayor							
en ejecución de obras civiles	0.10	4.06	0.41	0.7200	0.29		
Chofer Licencia "E"	1.00	5.31	5.31	0.7200	3.82		
Peon	4.00	3.62	14.48	0.7200	10.43		
CHRTOTAL N					14.54		
SUBTOTAL N		EQU	IPOS		14.54		
Descripción	Cantidad	Tarifa	Costo - Hora	Rendimiento	Costo		
	Α	В	$C = A \times B$	R	$D = C \times R$		
Herramienta menor (5%					0.09		
M.O.)					0.05		
Volqueta 9 m3	0.20	27.94	5.59	0.7200	4.02		
SUBTOTAL O					4.11		
Decemination	TT:.1. 1	1	PORTE	T::C	Ct		
Descripción	Unidad	Distancia	Cantidad A	Tarifa B	$Costo$ $C = A \times B$		
			73		U = // ND		
SUBTOTAL P					0.00		
COBTOTAL		Costo	Directo (M+N-	+O+P)	18.65		
			osto Indirecto 20		3.73		
) TOTAL DEL R LOR PROPUES		22.39 22.39		

	AN	ÁLISIS DE PRE	CIOS UNITARIO	OS			
Nombre del proy		"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema					
		de Riego Biprovincial Ambuqui" Jácome Luis - Vela Gabriela					
Nombre del ejec	utor:		0				
Rubro:	I	Desvio de cauce rio)	Hoja: Unidad:	8 glb		
DETALLE:				Cinuau.	gio		
		MATE	RIALES				
Descri	pción	Unidad	Cantidad	P. Unitario	Costo		
Desvío de cauce		-1-1	A	B	C = A x B		
Desvio de cauce		gbl	1.00	1,150.00	1,150.00		
0115=6=11							
SUBTOTAL M		MANOR	DE OBRA		1,150.00		
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo		
	А	В	$C = A \times B$	R	$D = C \times R$		
SUBTOTAL N					0.00		
			IPOS				
Descripción	Cantidad	Tarifa	Costo - Hora	Rendimiento	Costo		
	A	В	$C = A \times B$	R	$D = C \times R$		
SUBTOTAL O					0.00		
		TRANS	PORTE				
Descripción	Unidad	Distancia	Cantidad	Tarifa	Costo		
			A	В	$C = A \times B$		
SUBTOTAL P					0.00		
			Directo (M+N-		1,150.00		
		C	osto Indirecto 20	%	230.00		
		COSTO) TOTAL DEL R	RUBRO:	1,380.00		
			LOR PROPUES		1,380.00		

	AN	ÁLISIS DE PRE	CIOS UNITARIO	os	
Nombre del proy	vecto.	'Evaluación y Me	joramiento Hidrau		uctura del Sistema
				incial Ambuqui"	
Nombre del ejec				Vela Gabriela	
Rubro:	Encofrado y de	sencofrado muros	con madera de	Ноја:	9
DETALLE:		monte (1 uso)		Unidad:	m2
DETALLE:		MATEI	RIALES		
Descr	ipción	Unidad	Cantidad	P. Unitario	Costo
			Α	В	$C = A \times B$
	•				
Alfajia de eucali	pto 7x7x250cm	u	5.18	1.83	9.48
Clavos (2"- 2 1/	2 ~ - 3 ~ - 3 1/2	Kg	0.40	2.13	0.85
)				
Puntal de madera	de eucalipto 3m	m	1.67	1.46	2.44
	ncofrado 25cm x	u	1.74	3.05	5.31
2.3	0m				
Aceite o	juemado	gl	0.06	0.45	0.03
	-				
SUBTOTAL M		MANOR	E OBBA		18.10
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo
Везепрекоп	A	В	$C = A \times B$	R	D = C x R
Peon	1.00	3.62	3.62	0.9000	3.26
Carpintero	2.00	3.66	7.32	0.9000	6.59
Maestro mayor					
en ejecución de	0.10	4.06	0.41	0.9000	0.37
obras civiles					
SUBTOTAL N					10.01
SUBTUTALN		EOU	IPOS		10.21
Descripción	Cantidad	Tarifa	Costo - Hora	Rendimiento	Costo
	А	В	$C = A \times B$	R	$D = C \times R$
HERRAMIENT					
A MENOR (5%					0.12
M.O.)					
SUBTOTAL O					0.12
	T		PORTE		
Descripción	Unidad	Distancia	Cantidad	Tarifa	Costo
			A	В	$C = A \times B$
SUBTOTAL P					0.00
		Costo Directo			28.44
		Costo Indirecto	20%		5.69
		COSTO TOTAL	L DEL RUBRO:		34.12
		VALOR PROP			34.12

	AN	ÁLISIS DE PRE	CIOS UNITARIO	OS				
Nombre del proy	vecto:	"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema						
				vincial Ambuqui"				
Nombre del ejec	cutor:		Jácome Luis -	Vela Gabriela	10			
Rubro:	Excavació	n a mano en fango	Hoja: Unidad:	10 m3				
DETALLE:				Ollidad.	ШЭ			
		MATE	MATERIALES					
Descr	ipción	Unidad	Cantidad	P. Unitario	Costo			
			A	В	$C = A \times B$			
CLIDTOTAL M					0.00			
SUBTOTAL M		MANO	DE OBRA		0.00			
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo			
	А	В	$C = A \times B$	R	$D = C \times R$			
Peon	2.00	3.62	7.24	0.9000	6.52			
Operador de	1.00	3.86	3.86	0.9000	3.47			
equipo liviano Engrasador	1.00	3.66	3.66	0.9000	3.29			
Maestro mayor	1.00	3.00	3.00	0.5000	3.27			
en ejecución de	0.10	4.06	0.41	0.9000	0.37			
obras civiles								
SUBTOTAL N		FOL	IPOS		13.65			
Descripción	Cantidad	Tarifa	Costo - Hora	Rendimiento	Costo			
	А	В	$C = A \times B$	R	$D = C \times R$			
Herramienta								
menor (5%					0.12			
M.O.) Bomba de agua	1.00	4.06	4.06	0.9000	3.65			
Bomba de agua	1.00	4.00	4.00	0.5000	3.03			
SUBTOTAL O		(F) 1 3 4 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	DODTE		3.77			
Descripción	Unidad	Distancia Distancia	PORTE Cantidad	Tarifa	Costo			
Descripcion	Omuau	Distancia	A	В	$C = A \times B$			
SUBTOTAL P					0.00			
GOBTOTALP		Costo Directo	(M+N+O+P)		17.42			
		Costo Indirecto			3.48			
		GOGTE TOT	, per press		00.51			
			L DEL RUBRO:		20.91			
		VALOR PROP	OESTO:		20.91			

	AN	NÁLISIS DE PRE	CIOS UNITARIO	os		
Nombre del pro	vecto:	"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema				
			0 1	vincial Ambuqui"		
Nombre del ejec	cutor:		Jácome Luis -	Vela Gabriela		
Rubro:	Excavación	a mano en suelo co	onglomerado	Hoja: Unidad:	11 m3	
DETALLE:				Unidad:	IIIS	
		MATE	RIALES			
Descr	ipción	Unidad	Cantidad	P. Unitario	Costo	
			Α	В	$C = A \times B$	
SUBTOTAL M					0.00	
CODICIALIW		MANO D	DE OBRA		0.00	
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo	
	A	В	$C = A \times B$	R	D = C x R	
Peon Maestro mayor	2.00	3.62	7.24	1.7700	12.81	
en ejecución de	0.25	4.06	1.02	1.7700	1.80	
obras civiles	0.23	1.00	1.02	1.7700	1.00	
SUBTOTAL N		FOU	IPOS		14.61	
Descripción	Cantidad	Tarifa	Costo - Hora	Rendimiento	Costo	
Везепрекоп	A	В	$C = A \times B$	R	D = C x R	
Herramienta						
menor (5%					0.23	
M.O.)						
		ļ				
SUBTOTAL O		TENN A NYCO	DODTE		0.23	
Descripción	Unidad	Distancia	PORTE Cantidad	Tarifa	Costo	
2 competon	Cindud	DEMINER	A	В	C = A x B	
SUBTOTAL P					0.00	
CODIOTALF		Costo Directo	(M+N+O+P)		14.84	
		Costo Indirecto			2.97	
			L DEL RUBRO:		17.81	
		VALOR PROP	UESTO:		17.81	

	AN	ÁLISIS DE PRE	CIOS UNITARIO	os			
Nombre del proyecto:		"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema de Riego Biprovincial Ambuqui"					
Nombre del ejec	Nombre del ejecutor: Jácome Luis - Vela Gabriela						
		Hoia			12		
Rubro:	Hormigo	So simple $fc = 180$	Kg/cm2	Unidad:	m3		
DETALLE:		MATE	DIALEC				
Descri	MATERIALES Descripción Unidad Cantidad P. Unitario						
			A	В	$Costo$ $C = A \times B$		
Cemento		SACO	6.70	8.42	56.41		
Ripio		m3	0.95	19.64	18.66		
Arena Agua		m3 m3	0.65 0.25	14.46 0.69	9.40 0.17		
Agua		IID	0.23	0.09	0.17		
SUBTOTAL M					84.64		
		MANO D	DE OBRA		31.01		
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo		
D	A	B	C = A x B	R	D = C x R		
Peon Albañil	10.00 2.00	3.62 3.66	36.20 7.32	1.0000 1.0000	36.20 7.32		
Maestro mayor	2.00	3.00	7.32	1.0000	7.32		
en ejeecución de	0.10	4.06	0.41	1.0000	0.41		
obras civiles							
Operador de	1.00	3.86	3.86	1.0000	3.86		
equipo liviano	1.00	3.00	3.00	1.0000	3.00		
GLIDWOTH LA					47.70		
SUBTOTAL N		EOU	IPOS		47.79		
Descripción	Cantidad	Tarifa	Costo - Hora	Rendimiento	Costo		
	A	В	$C = A \times B$	R	$D = C \times R$		
Herramienta							
menor (5%					0.13		
M.O.) Concretera 1							
saco	1.00	4.08	4.08	1.0000	4.08		
SUBTOTAL O	4.21						
Descripción	Unidad	Distancia	PORTE Cantidad	Tarifa	Costo		
P 200.00			A	В	C = A x B		
SUBTOTAL P					0.00		
		Costo Directo	(M+N+O+P)		136.64		
		Costo Indirecto	20%		27.33		
		COSTO TOTAL	I DEI DIMPO		400.07		
		VALOR PROP	L DEL RUBRO: UESTO:		163.97 163.97		
	103.37						

	AN	NÁLISIS DE PRE	CIOS UNITARIO	OS		
Nombre del proyecto: Nombre del ejecutor:		"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema de Riego Biprovincial Ambuqui"				
		Rubro: Hormigón ciclope				Ноја:
	F	iedra, sin encofrado Unidad:			m3	
DETALLE:		MATE	RIALES			
Descr	ipción	Unidad	Cantidad	P. Unitario	Costo	
	•		A	В	$C = A \times B$	
Cemento		SACO	3.60	8.42	30.31	
Ripio		m3	0.57	19.75	11.26	
Piedra bola		m3	0.50	10.00	5.00	
Agua		m3	0.14	0.69	0.10	
SUBTOTAL M		MANOF	DE OBRA		46.29	
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo	
	A	В	$C = A \times B$	R	$D = C \times R$	
Peon	5.00	3.62	18.10	1.0000	18.10	
Albañil	2.00	3.66	7.32	1.0000	7.32	
Maestro mayor	0.10	4.05	0.11	1.0000	0.11	
en ejecución de	0.10	4.06	0.41	1.0000	0.41	
obras civiles Operador de						
equipo liviano	1.00	3.86	3.86	1.0000	3.86	
ечиро пукию						
SUBTOTAL N					29.69	
SUBTUTALN		EOU	IPOS		29.09	
Descripción	Cantidad	Tarifa	Costo - Hora	Rendimiento	Costo	
	А	В	$C = A \times B$	R	$D = C \times R$	
Herramienta						
menor (5%					0.13	
M.O.) Concretera 1						
saco	1.00	3.48	3.48	1.0000	3.48	
saco						
SUBTOTAL O	3.61					
Descripción	Unidad	TRANS Distancia	PORTE Cantidad	Tarifa	Costo	
Descripcion	Unidad	Distalicia	A	В	$C = A \times B$	
			- 11	2	CHAD	
SUBTOTAL P		Costo Dimost-	(M N O D)		0.00	
		Costo Directo Costo Indirecto			79.59 15.92	
		Josep Huntetto	/-		10.92	
		COSTO TOTA	L DEL RUBRO:		95.50	
VALOR PROPUESTO:					95.50	

	AN	NÁLISIS DE PRE	CIOS UNITARIO	os				
N				lico de la Infraestru	ıctura del Sistema			
Nombre del proy	ecto:		de Riego Biprov	vincial Ambuqui"				
Nombre del ejec				Vela Gabriela				
Rubro:	Hormigón si	imple, $fc = 210 \text{ kg}$	/cm2, no incl	Ноја:	14			
		encofrado		Unidad:	m3			
DETALLE: MATERIALES								
Descri	Costo							
			Cantidad A	В	$C = A \times B$			
Cemento		SACO	7.21	8.42	60.71			
Ripio		m3	0.95	19.64	18.66			
Arena		m3	0.65	14.46	9.40			
Agua		m3	0.25	0.69	0.17			
		<u> </u>						
SUBTOTAL M					88.94			
D	0 .:: 1	MANO D		D 11 1 1	G :			
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo			
Peon	A 10.00	B 3.62	$C = A \times B$ 36.20	1.0000	$D = C \times R$ 36.20			
Albañil	2.00	3.66	7.32	1.0000	7.32			
Maestro mayor	2.00	3.00	7.32	1.0000	,.32			
en ejecución de	0.10	4.06	0.41	1.0000	0.41			
obras civiles		1						
Operador de	1.00	3.86	3.86	1.0000	3.86			
equipo liviano	1.00	3.80	3.80	1.0000	3.60			
SUBTOTAL N					47.79			
SUBTOTALIV		EQU	IPOS		47.79			
Descripción	Cantidad	Tarifa	Costo - Hora	Rendimiento	Costo			
	A	В	$C = A \times B$	R	$D = C \times R$			
Herramienta								
menor (5%					0.13			
M.O.)								
Concretera 1 saco	1.00	4.08	4.08	1.0000	4.08			
saco								
		1						
		1						
SUBTOTAL O		<u> </u>		<u> </u>	4.21			
SUBTUTALU	4.41							
Descripción	Unidad	Distancia	PORTE Cantidad	Tarifa	Costo			
^			A	В	$C = A \times B$			
		1						
OLIDTOT:: 5					0.55			
SUBTOTAL P		Costo Directo	(M + N + O + D)		0.00			
	140.93 28.19							
		Costo Indirecto	2070		20.19			
		COSTO TOTAL	L DEL RUBRO:		169.12			
		VALOR PROP			169.12			

AN Nombre del proyecto:			LISIS DE PRECIOS UNITARIOS Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema de Riego Biprovincial Ambuqui"				
Nombre del ejec	utor:			Vela Gabriela			
		metálica de protec		Hoja:	15		
Rubro:	Reja	metanea de protec	Cion	Unidad:	m2		
DETALLE: MATERIALES							
Descri	pción	Unidad	Cantidad	P. Unitario	Costo		
			A	В	$C = A \times B$		
Varilla cuadra		u	2.20	5.74	12.63		
Ángulo 30x3mn	nx6m (8.04 kg)	u	0.50	13.62	6.81		
Electrodos s	uelda 60-11	Kg	1.00	5.67	5.67		
SUBTOTAL M					25.11		
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo		
Descripcion	A	Jornal - Hora B	$C = A \times B$	Rendimiento	$D = C \times R$		
Peón	1.00	3.62	3.62	6.3500	22.99		
Maestro mayor en ejecución de obras civiles	0.10	4.06	0.41	6.3500	2.58		
Soldador	1.00	3.72	3.72	6.3500	23.62		
Técnico de obras	1.00	3.82	3.82	6.3500	24.26		
SUBTOTAL N					73.44		
D : ::	G :1.1		IPOS	D 11 1 1	G 1		
Descripción	Cantidad A	Tarifa B	Costo - Hora C = A x B	Rendimiento R	Costo $D = C \times R$		
Herramienta menor (5% M.O.)					0.83		
Soldadora eléctrica 300A	1.00	2.71	2.71	6.3500	17.21		
SUBTOTAL O	18.04						
Descripción	Unidad	Distancia	PORTE Cantidad	Tarifa	Costo		
			A	В	$C = A \times B$		
SUBTOTAL P		Costo Directo (0.00 116.59 23.32		
			L DEL RUBRO:		139.91 139.91		

	AN	ÁLISIS DE PRE	CIOS UNITARIO	os		
Nombre del proy	yecto:	"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema de Riego Biprovincial Ambuqui"				
Nombre del ejec	Vela Gabriela					
	Replanteo y n	ivelación con equip	oo topográfico	Hoja:	16	
Rubro: DETALLE:	1 3	- 1 1	1 0	Unidad:	m2	
			RIALES			
Descr	ipción	Unidad	Cantidad A	P. Unitario B	$Costo$ $C = A \times B$	
Tira de eucalipte	o 2.5*2*240cm	u	0.20	0.90	0.18	
SUBTOTAL M					0.18	
JOBIOTAL W		MANO D			0.16	
Descripción	Cantidad	Jornal - Hora	Costo- Hora	Rendimiento	Costo	
	A	В	$C = A \times B$	R	$D = C \times R$	
Cadenero	3.00	3.66	10.98	0.0700	0.77	
Maestro mayor en ejecución de obras civiles	0.10	4.06	0.41	0.0700	0.03	
Topografo	1.00	4.06	4.06	0.0700	0.28	
SUBTOTAL N					1.08	
			IPOS		I -	
Descripción	Cantidad A	Tarifa B	Costo - Hora $C = A \times B$	Rendimiento R	Costo $D = C \times R$	
Herramienta menor (5% M.O.)		2			0.01	
Equipo de topografía	1.00	3.37	3.37	0.0700	0.24	
SUBTOTAL O	0.25					
Descripción	Costs					
Descripción	Unidad	Distancia	Cantidad A	Tarifa B	$Costo$ $C = A \times B$	
SUBTOTAL P	<u> </u>	<u> </u>			0.00	
		Costo Directo (Costo Indirecto			1.51 0.30	
		COSTO TOTAL VALOR PROP	L DEL RUBRO: UESTO:		1.81 1.81	

	Al	NÁLISIS DE PRE	CIOS UNITARIO	os			
Nombre del proyecto:		"Evaluación y Mejoramiento Hidraulico de la Infraestructura del Sistema de Riego Biprovincial Ambuqui"					
Nombre del ejec	Nombre del ejecutor: Jácome Luis - Vela Gabriela						
Trombre der ejee				Hoja:	17		
Rubro:	кериптео у	nivelación con equip	po topogranco	Unidad:	m		
DETALLE:		MATE	RIALES				
Descri	pción	Unidad	Cantidad	P. Unitario	Costo		
			A	В	$C = A \times B$		
Tira de eucalipto	o 2.5*2*240cm	u	0.20	0.90	0.18		
SUBTOTAL M					0.18		
			DE OBRA				
Descripción	Cantidad _A	Jornal - Hora B	Costo- Hora $C = A \times B$	Rendimiento	Costo $D = C \times R$		
G 1	A 2.00			R			
Cadenero	3.00	3.66	10.98	0.1000	1.10		
Topografo	1.00	4.06	4.06	0.1000	0.41		
Maestro mayor en ejecución de obras civiles	0.10	4.06	0.41	0.1000	0.04		
SUBTOTAL N		EOU	IPOS		1.54		
Descripción	Cantidad	Tarifa	Costo - Hora	Rendimiento	Costo		
	A	В	$C = A \times B$	R	$D = C \times R$		
Herramienta menor (5% M.O.)					0.01		
Equipo de topografía	1.00	3.37	3.37	0.1000	0.34		
SUBTOTAL O	0.35						
Descripción	Unidad	TRANS Distancia	PORTE Cantidad	Tarifa	Costo		
Descripcion	Umuau	Distallela	A	В	$C = A \times B$		
SUBTOTAL P					0.00		
		Costo Directo Costo Indirecto			2.07 0.41		
	2.49 2.49						