UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA

CARRERA DE INGENIERÍA MECÁNICA AUTOMOTRIZ

Trabajo de titulación previo a la obtención del título de Ingeniero Mecánico Automotriz

PROYECTO TÉCNICO:

"DISEÑO DE UNA CELDA DE COMBUSTIBLE UTILIZANDO MATERIALES ALTERNOS PARA UN VEHÍCULO MONOPLAZA DE KARTING"

AUTORES:

ALVARO ANDRÉS ESPINOZA VILLA

FRANCISCO EDUARDO UYAGUARI GUARTATANGA

TUTOR:

ING. ADRIÁN XAVIER SIGÜENZA REINOSO, M.Sc.

CUENCA - ECUADOR

2020

CESIÓN DE DERECHOS DE AUTOR

Nosotros, Alvaro Andrés Espinoza Villa con documento de identificación N° 0104455506 y Francisco Eduardo Uyaguari Guartatanga con documento de identificación N° 0105721005, manifestamos nuestra voluntad y cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores del trabajo de titulación: **"DISEÑO DE UNA CELDA DE COMBUSTIBLE UTILIZANDO MATERIALES ALTERNOS PARA UN VEHÍCULO MONOPLAZA DE KARTING"**, mismo que ha sido desarrollado para optar por el título de: *Ingeniero Mecánico Automotriz*, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en nuestra condición de autores nos reservamos los derechos morales de la obra antes citada. En concordancia, suscribimos este documento en el momento que hacemos la entrega del trabajo final en formato digital a la Biblioteca de la Universidad Politécnica Salesiana.

Cuenca, junio del 2020

Alvaro Andrés Espinoza Villa C.I. 0104455506

Monun

Francisco Eduardo Uyaguari Guartatanga C.I. 0105721005

CERTIFICACIÓN

Yo, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: "DISEÑO DE UNA CELDA DE COMBUSTIBLE UTILIZANDO MATERIALES ALTERNOS PARA UN VEHÍCULO MONOPLAZA DE KARTING", realizado por Alvaro Andres Espinoza Villa y Francisco Eduardo Uyaguari Guartatanga, obteniendo el *Proyecto Técnico*, que cumple con todos los requisitos estipulados por la Universidad Politécnica Salesiana.

Cuenca, junio del 2020

Ing. Adrián Xavier Sigüenza Reinoso, MSc.

C.I. 0103827366

DECLARATORIA DE RESPONSABILIDAD

Nosotros, Alvaro Andrés Espinoza Villa con documento de identificación Nº 0104455506 y Francisco Eduardo Uyaguari Guartatanga con documento de identificación Nº 0105721005, autores del trabajo de titulación: **"DISEÑO DE UNA CELDA DE COMBUSTIBLE UTILIZANDO MATERIALES ALTERNOS PARA UN VEHÍCULO MONOPLAZA DE KARTING"**, certificamos que el total contenido del *Proyecto Técnico*, es de nuestra exclusiva responsabilidad y autoría.

Cuenca, junio del 2020

Alvaro Andrés Espinoza Villa C.I. 0104455506

Fromeine

Francisco Eduardo Uyaguari Guartatanga C.I. 0105721005

AGRADECIMIENTO

Agradezco a Dios y a la Virgen María por ser mi guía y compañía en todo este trayecto de mi vida.

Agradezco a mis padres que me brindaron su apoyo incondicional en todo el transcurso de esta etapa para cumplir este gran sueño.

Agradezco también al Ing. Adrián Sigüenza que gracias a su ayuda y orientación logre encaminar y concluir con éste proyecto.

Alvaro Andrés Espinoza Villa

DEDICATORIA

Dedico este proyecto principalmente a mis padres, quienes han sido el apoyo y sustento fundamental para poder ascender cada escalón en el transcurso de mi carrera universitaria, de igual manera a mi hermana que me brindo siempre su confianza y aliento para la poder cumplir esta meta tan añorada.

Alvaro Andrés Espinoza Villa

AGRADECIMIENTO

Primeramente, agradezco a Dios y a la Virgen María por guiarme a lo largo de mi existencia y por brindarme esta gran oportunidad de alcanzar este objetivo.

Después a mi familia que confiaron siempre en mí y han sido mi fortaleza para alcanzar este objetivo mi eterno agradecimiento.

Al Ingeniero Adrían Sigüenza por brindarnos su apoyo, confianza y orientarnos durante todo este tiempo en el desarrollo del proyecto.

Francisco Eduardo Uyaguari Guartatanga

DEDICATORIA

Dedico este proyecto a mis padres y hermanos que han estado pendientes y de una u otra forma apoyándome, y a lo más hermoso que Dios me ha dado mi pequeña hija Amelie Isabella el impulso y motivación que necesite para lograr este objetivo tan anhelado.

Francisco Eduardo Uyaguari Guartatanga

RESUMEN

El presente proyecto: "DISEÑO DE UNA CELDA DE COMBUSTIBLE UTILIZANDO MATERIALES ALTERNOS PARA UN VEHÍCULO MONOPLAZA DE KARTING", básicamente consiste en el diseño de un modelo de celda de membrana intercambio protónico utilizando un software de ingeniería, fundamentado en la utilización de materiales alternos que se integrarán en sus partes internas.

Se aplica una técnica de prueba y error variando condiciones de operación que nos permitirá identificar y cuantificar cuales son los parámetros y materiales más óptimos de operación que utilizara nuestra celda de combustible, los cuales serán necesarios para la generación de potencia necesaria para un vehículo monoplaza de karting. Posteriormente se realizará un análisis en un software CAD- CAE con la finalidad de identificar directamente los parámetros de densidad de corriente y tensión que la celda puede generar con las variables definidas de tal manera que se pueda optimizar su trabajo y obtener su mejor diseño en la generación de dichos parámetros.

Palabras clave: Celda de combustible de membrana de intercambio protónico, diseño experimental, densidad corriente, tensión.

ABSTRACT

The present project: "DESIGN OF A FUEL CELL USING ALTERNATIVE MATERIALS FOR A SINGLE SEAT KARTING VEHICLE", basically consists in the design of a model of a proton exchange membrane cell using an engineering software, based on the use of alternative materials that will be integrated in its internal parts.

A trial and error technique is applied varying operating conditions that will allow us to identify and quantify which are the most optimal operating parameters and materials to be used by our fuel cell, which will be necessary for the generation of power required for a single-seater karting vehicle. Later, an analysis will be performed in a CAD- CAE software in order to directly identify the current density and voltage parameters that the cell can generate with the defined variables in such a way that its work can be optimized and its best design in the generation of these parameters can be obtained.

Keywords: Proton exchange membrane fuel cell, experimental design, current density, voltage.

INDICE

CERTIFICACIÓN	
AGRADECIMIENTO	V
DEDICATORIA	VI
AGRADECIMIENTO	VII
DEDICATORIA	
RESUMEN	IX
ABSTRACT	X
INDICE	XI
INDICE DE FIGURAS	XV
INDICE DE TABLAS	XVII
OBJETIVOS	XX

CAPÍTULO I: Estudio sobre el estado de arte de celdas de combustible de intercambio protónico aplicadas en el transporte para la determinación de sus parámetros de funcionamiento.

1.1 Fuentes de energía alternativas para la movilidad
1.2 Vehículos propulsados por hidrógeno1
1.3 Celda de combustible
1.4 Pila de combustible
1.4.1 Tipos de pilas de combustible
1.5 Celda de combustible de membrana de intercambio de protones (PEM) 5
1.5.1 Ventajas y desventajas de la celda PEM
1.6 Componentes de las celdas de combustible PEM7
1.6.1 Membrana de Intercambio Protónico7
1.6.2 Capa Activa
1.6.3 Catalizador
1.6.4 Capa Difusora de gas
1.6.5 Ensamble Membrana-Electrodo (MEA)
1.6.6 Placas Bipolares
1.6.7 Topología de canales
1.7 Funcionamiento de una celda de combustible con membrana de intercambio
protónico (PEM)14
1.7.1 Reacciones químicas originadas en el funcionamiento una celda PEM 15
1.8Sistemas Auxiliares15
1.8.1 Sellos
1.8.2 Humidificador de gases
1.8.3 Sistema de enfriamiento y control de temperatura
1.9El combustible: Hidrógeno17
1.10 Producción de hidrógeno

).1	Producción a partir de combustible fósiles	
0.2	Producción a partir de electricidad y agua	
0.3	Producción a partir de fuentes de energía renovables	
Alm	acenaje	
El o	xigeno	
Ecu	aciones que gobiernan el funcionamiento de la celda PEM	
3.1	Conservación de la masa	
3.2	Conservación de Momentum	
3.3	Conservación de la Energía	
3.4	Conservación de Especies	
3.5	Conservación de Carga	
3.6	Termodinámica de la celda de combustible	
3.7	Eficiencia teórica de la monocelda de combustible	
3.8	Celda de Combustible Reversible y Voltaje de Salida Neto	
3.9	Temperatura de la célula de combustible	
3.10	Presión en la celda de combustible	
3.11	Electroquímica de la celda de combustible	
3.12	Pérdidas de Voltaje	
3.13	Conductividad iónica de la membrana	
3.14	Transporte de masa	
3.15	Densidad de corriente límite	
3.16	Tasa de flujo de los reactantes	
3.17	Relación estequiométrica	
3.18	Humidificación de reactantes	
3.19	Humedad relativa	50
3.20	Balance de masa y energía de la celda de combustible	52
3.21	Transferencia de calor	55
3.22	Balance de energía	
() () () () () () () () () ()).1).2).3 Alm El o Ecua 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.6 3.7 3.8 3.9 3.10 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22	0.1 Producción a partir de combustible fósiles 0.2 Producción a partir de electricidad y agua 0.3 Producción a partir de fuentes de energía renovables Almacenaje

2.1 Vehículo monoplaza de karting	58
2.2 Vehículo monoplaza de karting propulsado por Hidrógeno	58
2.3 Modelo de un vehículo Monoplaza de karting	59
2.3.1 Motor Eléctrico	60
2.3.2 Pila de Combustible	60
2.3.3 Depósito de Hidrógeno	61
2.3.4 Ultra condensadores	61
2.4 Parámetros de Diseño	61
2.5 Condiciones principales de funcionamiento de la celda de combustible	63
2.5.1 Presión y Temperatura de operación	63
2.6 Parámetros de potencia y tensión para una celda de combustible	63

2.6.1	Selección del área activa de la membrana	65
2.6.2	Balance de masa	67
2.7 N	Aateriales utilizados en celdas de combustible de intercambio protónico	68
2.7.1	Requerimientos de diseño	69
2.7.2	Membrana	69
2.7.3	Catalizador	71
2.7.4	Capa Difusora de gas (GDL)	72
2.7.5	Canales de Flujo o placas bipolares	73
2.7.6	Colectores de corriente	75
2.7.7	Materiales de placas finales.	75
2.8 I	Dimensionamiento de la celda de combustible para un vehículo monoplaza	ı de
k	arting.	77
2.8.1	Membrana	77
2.8.2	Catalizador	77
2.8.3	Capa Difusora de Gas	78
2.8.4	Placa bipolar	79
2.9 H	Ensamble final celda de combustible	80

CAPITULO III: Análisis del modelo de celda de combustible de intercambio protónico a través del software de modelado físico, manipulando las variables de operación..... 83

3.1 N	Iodelado y simulación por computadora	83
3.2 N	Iódulo de celdas de combustible	84
3.2.1	Diagrama de procesos e interacción del software en la celda de tipo PE	M.85
3.2.2	Modelado de simulación por computadora	86
3.2.3	Mallado de la geometría de celda de combustible	86
3.3 E	Elección de materiales óptimos para una celda PEM.	86
3.3.1	Membrana	86
3.3.2	Catalizadores	88
3.3.3	Difusores de gas	89
3.3.4	Placas Bipolares	90
3.4 D	Diseño Experimental	91
3.4.1	Parámetros de estudio	92
3.4.2	Diseño experimental basado en estudio de la celda PEM	92
3.4.3	Sistemas auxiliares de control	94
3.4.4	Suministro de Oxigeno	94
3.4.5	Suministro de Hidrógeno	94
3.4.6	Control de temperatura	95

CAPITULO	IV:	Evaluación	de	resultados	del	análisis	del	modelo	de	celda	de
combustible p	ara s	u desarrollo e	en e	l transporte.							96

4.1 Conve	rgencia de resultados	
4.2 Efector	s principales para la obtención de densidad de corriente y te	ensión 97
4.3 Curvas	de Tendencia	
4.3.1 Proc vehí	ceso de validación de los parámetros necesarios para la op culo monoplaza de karting.	eración del
4.4 Evalua	ción de resultados de la celda de combustible PEM r	nediante el
softwa	re CAD-CAE	
4.4.1 Den	sidad de Corriente	
4.4.2 Tens	sión	
4.4.3 Tem	iperatura	
4.4.4 Frac	ción Molar de Hidrógeno	111
4.4.5 Frac	ción molar de Oxigeno	
4.4.6 Con	tenido de agua	
4.4.7 Con	ductividad Protónica	
CONCLUSIONES	S	
RECOMENDACI	ONES	
REFERENCIAS		
ANEXOS		

INDICE DE FIGURAS

Figura 1. Diagrama de un vehículo propulsado por hidrógeno.	2
Figura 2. Principio de una célula de combustible	3
Figura 3. Esquema de una monocleda de combustible	3
Figura 4. Estructura de una Pila de Combustible	4
Figura 5. Diagrama Principal de una Celda PEM	6
Figura 6. Circulación de los protones a través de la membrana Nafion.	8
Figura 7. Esquema de la adsorción del hidrógeno sobre el catalizador	8
Figura 8. Esquema de la Capa Difusora de Gases.	9
Figura 9. Esquema de los elementos que componen la MEA.	10
Figura 10.Placa bipolar de canales tipo aguja	. 11
Figura 11.Canales paralelos.	12
Figura 12. Canales en Serpentín.	12
Figura 13. Canales tipo caracol	12
Figura 14. Canales inter digitados.	13
Figura 15. Canales tipo cascada	13
Figura 16. Diagrama de funcionamiento de una celda PEM.	14
Figura 17. Gestión de calor en la celda de combustible.	16
Figura 18. Producción de Hidrógeno.	18
Figura 19. Procesos para la obtención de hidrógeno mediante combustibles fósiles	19
Figura 20. Fuentes de energía primaria en la producción de Hidrógeno	20
Figura 21. Parámetros que comandan el funcionamiento de una celda de combustible.	22
Figura 22. Calor de pila de combustible y balance de masa	32
Figura 23. Energía de activación de una celda PEM.	38
Figura 24. Curva de Polarización de una monocelda PEM	40
Figura 25. Balance de masa.	53
Figura 26. Vehículo monoplaza de karting	58
Figura 27. Esquema de Elementos para propulsión por hidrógeno	. 59
Figura 28. Vehículo monoplaza de karting propulsado por Hidrógeno.	. 59
Figura 29. Punto de Operación a Potencia Nominal en dos curvas de polarización p	ara
Pilas PEM.	65
Figura 30. Balance de masa.	67
Figura 31. Requerimientos de diseño para una celda PEM.	. 69
Figura 32. Dimensionamiento membrana.	. 77
Figura 33. Dimensionamiento catalizador.	78
Figura 34. Dimensionamiento de la capa difusora de gas.	. 79
Figura 35. Dimensionamiento de la placa bipolar del ánodo.	80
Figura 36. Modelo virtual del ensamble final de la Celda de Combustible	81
Figura 37. Geometría de la celda representada en un software de diseño	. 82
Figura 38. Elementos ensamblados de la celda PEM.	. 82
Figura 39. Diagrama de flujo del rol de modelado y diagnóstico en el proceso de desarro	ollo
de celdas de combustible	. 84

Figura 40. Diagrama de procesos e interacción del software CAD-CAE.	85
Figura 41. Mallado de la celda de combustible.	86
Figura 42. Diagrama del estudio de la forma de un diseño de experimental	91
Figura 43. Sistema de control oxígeno para una celda PEM.	94
Figura 44. Sistema de control oxígeno para una celda PEM.	95
Figura 45. Sistema de control de temperatura para pilas de combustible PEM	95
Figura 46. Grafica residual - Convergencia de resultados	96
Figura 47. Grafica de efectos principales para el modelo de celda PEM.	97
Figura 48. Parámetros de estudio vs densidad de corriente	98
Figura 49. Grafica Presión vs Densidad de corriente.	98
Figura 50. Grafica de Presión vs Tensión	99
Figura 51. Grafica de Temperatura vs Densidad de corriente.	99
Figura 52. Grafica de Temperatura vs Tensión.	. 100
Figura 53. Densidad de corriente máxima.	103
Figura 54. Densidad de corriente en el cátodo	103
Figura 55. Valor de la densidad de corriente obtenida en el software	. 104
Figura 56. Densidad de corriente máxima en el catalizador del ánodo.	104
Figura 57. Densidad de corriente mínima en el catalizador del ánodo	105
Figura 58. Densidad de corriente máxima en la capa difusora de gas del ánodo	105
Figura 59. Densidad de corriente mínima en la capa difusora de gas del ánodo	106
Figura 60. Densidad de corriente máxima en la capa difusora de gas del cátodo	106
Figura 61. Densidad de corriente mínima en la capa difusora de gas del cátodo	107
Figura 62. Densidad de corriente máxima en el catalizador del ánodo.	107
Figura 63. Densidad de corriente mínima en el catalizador del ánodo	108
Figura 64. Tensión en la celda.	109
Figura 65. Transición de voltaje del ánodo al cátodo.	109
Figura 66. Temperatura en la celda.	110
Figura 67. Temperatura máxima.	110
Figura 68. Fracción molar del hidrogeno en los canales de la placa bipolar(Anodo).	
Figura 69. Concentración máxima y mínima de la fracción molar hidrogeno a través	delos
canales del ánodo.	112
Figura 70. Fracción molar del oxígeno en los canales de la placa bipolar(Cátodo)	. 112
Figura 71. Concentración máxima y mínima la fracción molar de oxígeno a través o	le los
canales del cátodo.	113
Figura 72. Contenido de agua en la membrana por la superficie del cátodo	114
Figura 73. Conductividad Protónica en la membrana por la superficie del cátodo	114

INDICE DE TABLAS

Tabla 1. Diferencias Principales de los tipos de pilas de combustible.	5
Tabla 2. Modelos de canales de flujo.	11
Tabla 3. Propiedades del Hidrógeno frente a otros combustibles.	17
Tabla 4. Propiedades del Oxígeno.	21
Tabla 5. Modelos matemáticos presentes en una monocelda de combustible PEM	22
Tabla 6. Características del motor eléctrico modelo (HPM5000B).	60
Tabla 7. Características de la pila de combustible.	60
Tabla 8. Propiedades bombona de hidrogeno.	61
Tabla 9. Especificaciones del ultra condensador Maxwell.	61
Tabla 10. Parámetros de diseño.	62
Tabla 11. Condiciones de presión y temperatura para una celda PEM	63
Tabla 12. Ejemplos de uso de potencia para elementos de uso tecnológico	63
Tabla 13. Valores de voltaje e intensidad de los tipos de pilas	64
Tabla 14. Pesos moleculares de elementos entrantes y salientes en una celda	68
Tabla 15. Clasificación de los materiales de membrana de polímeros alternativos para	a las
pilas PEM	70
Tabla 16. Propiedades de las membranas comerciales de intercambio protónico	71
Tabla 17. Materiales alternos para catalizador	71
Tabla 18. Materiales catalizadores comerciales para celdas PEM	72
Tabla 19. Propiedades de los papeles de carbono disponibles comercialmente utilizad	os
en capas difusoras de gas para celdas PEM.	73
Tabla 20. Materiales alternos utilizados para placas bipolares en celdas tipo PEM	74
Tabla 21. Técnicas de recubrimiento para los tipos de material de placa bipolar	74
Tabla 22. Tipos de membranas Nafion.	87
Tabla 23. Propiedades de la membrana Nafion 115.	87
Tabla 24. Materiales Catalizadores para celdas de tipo PEM	88
Tabla 25. Materiales capa de difusión de gas para celdas PEM.	89
Tabla 26.Materiales de placas bipolares para celdas PEM.	90
Tabla 27. Extracción de una parte del diseño experimental con 4 variables de estudio.	93
Tabla 28. Resultados necesarios para la operación del vehículo monoplaza	100
Tabla 29. Superficies analizadas en la celda PEM para mostrar la solución de los	
resultados.	102

PROBLEMA

En la actualidad el intenso y creciente flujo del parque automotor en la ciudad de Cuenca aumenta progresivamente, según el informe de Calidad del aire del año 2016 y de acuerdo al último inventario de emisiones del Cantón Cuenca en el año 2017, el 94,5% de Monóxido de carbono (CO) se debe al tráfico vehicular. (EMOV, 2017). En Cuenca, según el estudio realizado en el 2016 por el Banco de Desarrollo de América Latina (CAF), la Agencia Francesa para el Desarrollo y Servicios Ambientales, reveló los índices de contaminación en la ciudad, donde cuyo estudio indicó que el transporte público produce un 70 % del total de emisiones de CO₂, mientras que el segundo y el tercer lugar lo ocupan los sectores residencial e industrial con un 15% y 16%, además reveló que los valores de la huella de carbono en Cuenca en ese año fueron de 1'500.000 toneladas de CO₂ equivalente al transporte. (Agencia Francesa para el Desarrollo; Servicios Ambientales; Banco de Desarrollo de America Latina, 2016).

El crecimiento vehicular, además de la contaminación lleva consigo un mayor consumo de las fuentes de energías fósiles, cuyas reservas se encuentran de forma limitada en nuestro país ya que su velocidad de consumo es mayor a la de su generación. Según cifras oficiales el Ecuador tiene reservas actuales para 20 años de producción de petróleo, teniendo el 61% del consumo energético soportado por los combustibles derivados del petróleo correspondiente al transporte (ARCH, 2017).

En relación a lo anterior las energías alternativas para el sector del transporte representan una aparente solución, que da paso a la utilización de vehículos eléctricos, sin embargo estas tienen varias limitaciones actuales, entre ellas su autonomía, su forma de carga ya que necesitan fuentes que le suministren energía, con la consideración del tiempo necesario para almacenar dicha energía, que varía de una carga rápida de 30 minutos, a una normal de 22 horas aproximadamente (Santamarta, 2009).

Otra de las energías alternativas que surge en relación a estos inconvenientes, es la migración a la utilización de las celdas de combustible cuyos costos de producción son muy elevados. (Gretel Farias, 2016).

JUSTIFICACIÓN

Dadas las problemáticas que se fomentan, existe el interés de generar un nuevo conocimiento debido a que, a nivel del Ecuador los estudios se ven limitados en el desarrollo de este tipo de tecnologías, produciendo beneficios medio ambientales para la sociedad que se desencadenan en el cuidado de la calidad del aire, partiendo del diseño de una celda de combustible de intercambio protónico para un vehículo de competencia de karting, donde se podrá medir de forma inicial cual será el impacto medio ambiental que se generaría, sabiendo que este tipo de tecnología a futuro pretende ser una de las más fuertes para la generación de fuentes de energía para la movilidad.

Además, promover la utilización de energías alternativas en vehículos eléctricos realizando este estudio, para optimizar las baterías comúnmente utilizadas de Ión -Litio mediante la celda de combustible de intercambio protónico, ya que con este componente se podrá extender la autonomía de los mismos y a su vez reducir notablemente la contaminación ambiental, utilizando en el diseño materiales alternos que generen una reducción en el costo de producción de la misma.

OBJETIVOS

Objetivo general

• Diseñar una celda de combustible utilizando materiales alternos para un vehículo monoplaza de karting.

Objetivos específicos

- Desarrollar un estudio sobre el estado de arte de las celdas de combustible de intercambio protónico aplicadas en el transporte para la determinación de sus parámetros de funcionamiento.
- Diseñar mediante software un modelo de celda de combustible de intercambio protónico utilizando materiales alternos para su posterior análisis.
- Analizar el modelo de celda de combustible de intercambio protónico a través del software de modelado físico, manipulando las variables de operación.
- Evaluar los resultados del análisis del modelo de celda de combustible para su desarrollo en el transporte.

CAPÍTULO I: Estudio sobre el estado de arte de celdas de combustible de intercambio protónico aplicadas en el transporte terrestre para la determinación de sus parámetros de funcionamiento.

En cuanto al capítulo I se presenta una exploración bibliográfica a través del estado de arte sobre celdas de combustible de intercambio protónico y su conexión con los vehículos eléctricos, donde se expone distintos tipos, los elementos que la conforman y su funcionalidad. Además, se especifica los procesos hacia la producción de energía y cómo interactúa el hidrógeno y oxígeno como combustibles. Del mismo modo se enfatiza las ecuaciones que gobiernan su funcionamiento.

1.1 Fuentes de energía alternativas para la movilidad

Algunas de las alternativas energéticas a los combustibles convencionales existentes en el transporte terrestre, como el vehículo eléctrico de batería o el híbrido, el de gas natural, el de gases licuados del petróleo son identificadas en general como vehículos de energías alternativas (VEA), que presentan características propias y diferentes en términos de sobrecoste, inversión en infraestructuras, combustibles o emisiones contaminantes.

Como fuente de energía alternativa para la movilidad, con el fin de reemplazar a las fuentes comúnmente utilizadas, que implica la combustión de combustibles fósiles (carbón, gas y petróleo) la más empleada es la energía eléctrica, generada por las baterías comunes de los vehículos eléctricos, a partir de esto se incentiva en buscar fuentes externas renovables que promuevan la generación de energía a través del hidrogeno, con el propósito de aminorar los gases de efecto invernadero, promover el desarrollo y dar más oportunidades a las nuevas tecnologías como son los vehículos equipados con celdas de combustible.

1.2 Vehículos propulsados por hidrógeno

Son vehículos eléctricos que para la generación de energía utilizan un dispositivo llamado pila de combustible que emplean hidrógeno y oxígeno como fuente de propulsión, tienen la finalidad de generar una movilidad limpia con cero emisiones, ya que solo emiten vapor de agua como resultado de su proceso electroquímico, por tanto, son el inicio de una tecnología amigable con el medio ambiente. Estos vehículos almacenan el hidrógeno comprimido a alta presión en un tanque a bordo del vehículo para su posterior repostaje.

El Centro Nacional de Experimentación de Tecnologías de Hidrógeno y Pilas de Combustible España recalca que "La elevada eficiencia y densidad energética de las pilas de combustible permiten que los coches eléctricos tengan una elevada autonomía alcanzando actualmente los 500-650 km, además que la carga de hidrógeno se realiza en un tiempo próximo a la de otros combustibles líquidos o gaseosos, permitiendo llenar un depósito en unos 3-5 min"

Figura 1. Diagrama de un vehículo propulsado por hidrógeno. Fuente: (Centro Nacional de Experimentación de Tecnologías de Hidrógeno y Pilas de Combustible España, 2007)

El departamento de Vehículos con Energías Alternativas de España afirma: "El consumo de electricidad en un vehículo de pila de combustible es similar a un vehículo eléctrico, y equivalente a un consumo de hidrógeno de cerca de 0,9 kg/100 km. Actualmente el mercado de distribución de este elemento solo se comercializa en países europeos como Alemania, España entre otros, donde se ha fijado en 9,5 €/kg, lo que supone un coste de menos de 1 € por cada 1.000 km recorridos".

1.3 Celda de combustible

Es un dispositivo electroquímico llamando también como monocelda o célula de combustible similar a una batería convencional de tipo pila secundaria de 12 V de un automóvil, que posee un (ánodo, cátodo, electrolito) con la única diferencia, que está diseñada para producir una energía constante mientras se sustente la alimentación de combustible (hidrógeno y oxígeno). Durante su funcionamiento esta genera energía eléctrica, calor y agua a través del proceso electroquímico, produciendo energía de elevada eficiencia y cero emisiones contaminantes.

Figura 2. Principio de una célula de combustible. Fuente: (Larminie & Dicks, 2003).

Esto significa que, la configuración principal de una celda consiste en dos elementos llamados placas bipolares entre las cuales se dispone de subelementos químicos para su funcionamiento, el hidrógeno por el lado del cátodo, el oxígeno por el lado del ánodo y una membrana o electrolito, produciendo un potencial de aproximadamente 0,8V. (U.S. Department of Energy, 2004)

Las características comunes a tomar en cuenta para la celda son: el tipo de electrolito, temperatura de trabajo, el rango de potencia, entre otras. Para aplicaciones automotrices, tanto para vehículos de transporte ligeros y casi todo medio de transporte se utilizan generalmente celdas de polímero sólido, también llamadas de membrana de intercambio de protones PEM según sus siglas en inglés (Polymer Electrolyte Membrane).

1.4 Pila de combustible

Consiste en un apilamiento de varias monoceldas conectadas en serie o paralelo, formando un conjunto para producir la tensión y potencial necesario para realizar un trabajo. El número de celdas apiladas determina la tensión total y el área activa de cada celda determina la intensidad total. Además, la pila necesita una gestión adecuada del agua, del calor y de los gases sobrantes para su correcto funcionamiento. (Larminie & Dicks, 2003)

Figura 4. Estructura de una Pila de Combustible Fuente: (Iranzo Paricio, 2010)

1.4.1 Tipos de pilas de combustible

Actualmente intervienen varias tecnologías de pilas en el mercado clasificadas de acuerdo a su nivel de temperatura, a su combustible, a su electrolito, a la potencia que generan, a su aplicación, entre otras.

TIPOS	IÓN	RANGO DE	TEMPERATURA	EFICIENCIA	APLICACIÓN
	MOVIL	POTENCIA			
Alcalina (AFC)	OH-	5 – 150kW	65°C – 220°C	> 50%	Usado en vehículos
					espaciales.
Membrana	H^+	5 – 250kW			Vehículos y motocicletas,
Intercambio de			30°C − 100°C	50 - 60%	scooters.
protones (PEM)					
Ácido	H+	50kW – 11MW	~250°C	55%	Etapas
Fosfórico (PAFC)					de alta potencia
Carbonato	$C0_{3}^{2-}$	100kW – 2MW	~650°C	60 - 65%	Etapas
Fundido (MCFC)	3				de media potencia
,	-				
Oxido	0^{2-}	100 – 250kW	600°С — 1000°С	50 - 65%	Etapas
Sólido (SOFC)					desde 2 kW hasta MW
Metanol Directo	H+	5 - kW	20°C – 90°C		Dispositivos electrónicos
					de baja potencia.

Tabla 1. Diferencias Principales de los tipos de pilas de combustible.**Fuente:** (APPICE, 2002)

1.5 Celda de combustible de membrana de intercambio de protones (PEM)

Se trata de un modelo de celda que transforma de modo directo la energía química en energía eléctrica utilizando hidrógeno como combustible y oxígeno como carburante, dando como resultado de la reacción agua. Su estructura básica consiste en: un electrolito, una membrana polimérica, dos electrodos (ánodo y cátodo), catalizadores, placas bipolares y capas difusoras de gases.

La membrana es una excelente conductora de protones hecha por un material compuesto de ácidos perfluorosulfónicos a base de teflón, los electrodos son substratos porosos hechos con tela de carbón, el catalizador más común para la oxidación del hidrogeno y la reducción del oxígeno es el platino, las capas difusoras de gas contribuyen a la distribución del combustible de una manera uniforme sobre las superficies de las capas catalíticas.

El departamento de energía de EE. UU nos dice:

"Que la utilización del polímero sólido como electrolito le confiere características fundamentales de baja corrosión, que supone menor desgaste de los elementos y mayor durabilidad. Este tipo de celdas operan a temperaturas bajas de $30^{\circ}C - 100^{\circ}C$ aproximadamente en relación a otros tipos, además mantiene una relación favorable entre su dimensión y la energía que generan" (U.S. Department of Energy, 2004).

Fuente: (APPICE, 2002)

1.5.1 Ventajas y desventajas de la celda PEM

Ventajas

- Cero emisiones contaminantes, generando un impacto ambiental nulo debido a que durante su funcionamiento se origina solamente agua y calor.
- Arranque rápido debido a su temperatura de funcionamiento, más del 50 % de su producción de energía puede alcanzarse rápidamente y en un lapso breve de tiempo su energía total.
- Modularidad debido a que la potencia asciende con el tamaño de la pila y el aumento de celdas, interactuando eléctricamente entre ellas.
- Bajo mantenimiento ya que están diseñados para trabajar de manera química y no poseen partes móviles, por tanto, no existe desgaste.
- Bajo nivel de ruido, debido a que no posee partes móviles en su funcionamiento.

Desventajas

- Costo de producción elevado, debido a que sus elementos están formados por materiales, que en el mercado se encuentran a un elevado costo, como por ejemplo el platino que tiene propiedades aptas para su correcto funcionamiento.
- El agua que se genera puede ocasionar problemas en la operación, en caso de no tener un buen elemento de evacuación perderá eficiencia la celda.

1.6 Componentes de las celdas de combustible PEM

Se forma por varios elementos concatenados unos a otros con el propósito de regir un buen funcionamiento, estos son:

Membrana de intercambio de protones (PEM) (Membrana polimérica) Capa activa (Capa catalítica) Capa difusora de gases Placa bipolar, sellos y tapas Sistemas Auxiliares

1.6.1 Membrana de Intercambio Protónico

Esta trabaja como aislante eléctrico separando la celda en ánodo, cátodo y a su vez las reacciones que se dan en los mismos, esta membrana es una estructura basada en teflón en donde se incorpora ácidos perfluorosulfónicos.

Este tipo de membrana se caracteriza por tener buenas propiedades de conductividad protónica y proporcionar una barrera impermeable a los gases reactantes e aniones, este elemento dependiendo del tipo, posee buenas características químicas, térmicas, y además soportan la intervención de agentes oxidantes.

Figura 6. Circulación de los protones a través de la membrana Nafion. Fuente: (Almarza Cano, 2010)

SO3-

1.6.2 Capa Activa

Llamada también capa catalítica, es la base física donde se alojan las partículas de platino y es en donde se lleva a cabo el proceso de catálisis. Por lo general, está asociada a la capa difusora del ánodo y del cátodo, con el fin de reducir las pérdidas durante el transporte de iones.

1.6.3 Catalizador

Los catalizadores son sustancias en forma de películas delgadas formadas de platino con un soporte de carbón que participan en las reacciones cuando se mezclan con los reactantes (hidrogeno - oxígeno), por tanto, la función principal de este elemento es acelerar la velocidad de dichas reacciones sin sufrir ninguna alteración química ni ser consumidos en su funcionamiento.

Figura 7. Esquema de la adsorción del hidrógeno sobre el catalizador. Fuente: (Mayandía Aguirre, 2009).

1.6.4 Capa Difusora de gas

Esta una fina lámina que tiene la función de distribuir los reactantes (hidrógeno y oxígeno) sobre las capas catalizadoras del ánodo y cátodo para llevar a cabo el proceso de oxidación y reducción, están construidos de un material poroso por lo general tela de carbón o papel carbón. Posee características tales como:

- Buena conductividad eléctrica ya que conecta el catalizador con las placas bipolares
- Buena disipación de calor ya que de ésta depende la evacuación del agua después de producirse en la superficie de la membrana.
- La comprensibilidad, la porosidad, la permeabilidad aseguran el buen funcionamiento de este componente ya que debe tener un mínimo espesor para minimizar la resistencia al paso de los reactantes.

Figura 8. Esquema de la Capa Difusora de Gases. Fuente: (Mayandía Aguirre, 2009)

1.6.5 Ensamble Membrana-Electrodo (MEA)

Es la unión central y más importante de una celda, está constituida por la membrana en su en la parte central, las capas catalizadoras a cada lado y por sus extremos las capas difusoras de gas, estos elementos están diseñados indistintamente, pero se ensamblan en una sola unidad con elevadas presiones y temperaturas para facilitar su elaboración.

Figura 9. Esquema de los elementos que componen la MEA. Fuente: (Almarza Cano, 2010)

1.6.6 Placas Bipolares

Es parte fundamental de la celda de combustible y se encuentran ubicadas en los extremos de la misma, separadas del ánodo y del cátodo por las placas difusoras de gas, por lo general son construidas de grafito y otros metales. Tienen características importantes para su funcionamiento como: ser buenas conductoras eléctricas, permeables, mecánicamente y químicamente estables, además de ser resistentes a la corrosión para garantizar su vida útil.

Las funciones que cumple este elemento son las siguientes:

- Suministrar de una manera homogénea el hidrógeno y el oxígeno a través de sus canales de flujo al lugar activo del ánodo y el cátodo.
- Evacuar el agua producida en el proceso químico.
- Conducir corriente al momento de apilar varias celdas, siendo conector eléctrico entre ellas.

- Disipar el calor producido en las áreas activas durante el proceso de generación de corriente.
- Garantizar la impermeabilidad de los gases.

En las placas bipolares existen distintos modelos de los conductos internos por donde va a circular los gases reactivos, estos son conocidos como canales de flujo, por tanto, cada modelo tiene cierta incidencia en el funcionamiento de la celda.

1.6.7 Topología de canales.

La eficiencia de una célula de combustible depende mucho de que el gas sea suministrado continuamente y a cierta presión, a continuación, se presenta varias disposiciones de canales de las placas bipolares para el diseño.

Topología de canales	Características
Tipo aguja o de flujo cruzado Image: state of the state o	 Formado por bloques generalmente cúbicos a lo largo y ancho del perfil. Presenta caídas de presión en su entrada y salida. Irregularidad en la distribución del gas debido a estancas y recirculaciones dentro de la placa. Baja eficiencia energética.

Tabla 2. Modelos de canales de flujo.**Fuente:** (Larminie & Dicks, 2003)

1.7 Funcionamiento de una celda de combustible con membrana de intercambio protónico (PEM).

El hidrógeno y oxígeno como se muestra en la figura 16 ingresan y se distribuyen por los canales de flujo donde son homogenizadas en las capas difusoras hasta llegar al lugar de la reacción tanto en el ánodo como en el cátodo.

La membrana es la encargada de separar los reactantes, por el ánodo permite que atraviesen los protones (iones positivos) (H^+) y los electrones son conducidos por el circuito externo dándose la oxidación del hidrógeno, por el lado del ánodo el oxígeno se desasocia en sus iones.

Los protones que atraviesan la membrana se encuentran con los iones O^{2-} en el cátodo produciendo partículas de agua, los electrones que se dirigen por el exterior de la membrana cierran el circuito eléctrico produciendo corriente útil.

Figura 16. Diagrama de funcionamiento de una celda PEM. Fuente: (U.S. Department of Energy, 2004)

1.7.1 Reacciones químicas originadas en el funcionamiento una celda PEM

Reacción Anódica

El Hidrógeno viaja a través de la placa bipolar, atraviesa la capa difusora de gas y al llegar al ánodo se produce la oxidación del mismo descomponiéndose en H^+ y e^- donde los protones pasan al cátodo y los electrones por un circuito externo produciendo energía eléctrica.

$$H_2 \to 2H^+ + 2e^-$$
 (1.1)

Reacción Catódica

El oxígeno que se encuentra en el aire, llega al superficie del cátodo suministrado a través de los platos bipolares, atraviesa la capa difusora de gas donde reacciona con los H^+ y e^- del hidrógeno produciendo moléculas de agua.

$$\frac{1}{2}O_2 + 2H^+ + 2e^- \to H_2O \tag{1.2}$$

Reacción general

Por medio de la energía electroquímica del hidrógeno, oxígeno y el proceso tanto en el ánodo como en el cátodo es posible la obtención de energía eléctrica, teniendo calor y agua como productos de esta reacción.

$$H_2 + \frac{1}{2}O_2 \to H_2O$$
 (1.3)

1.8 Sistemas Auxiliares

Para un correcto desempeño de las pilas de combustible es imprescindible sistemas que complementen el desempeño de la misma, por tanto, a continuación, se detallan algunas partes necesarias.

1.8.1 Sellos

Utilizados para garantizar la estanquidad en las celdas. Se disponen entre la membrana y la placa colectora, en algunos casos juntos con la MEA. Están hechos generalmente de materiales como la silicona u otros polímeros elásticos que soporten altas temperaturas.

1.8.2 Humidificador de gases

La función de este elemento es mantener la humedad relativa de los demás componentes reactantes en la celda, está compuesto por un tanque de agua destilada que evita el ingreso de impurezas a la celda. Para el nivel de vapor que se genera en el proceso de humidificación gases, se tiene un control de temperatura, control del nivel del agua en el reservorio, control de presión y flujo.

1.8.3 Sistema de enfriamiento y control de temperatura.

Estos sistemas cumplen la misión de extraer y disipar el calor resultante producido en las reacciones electroquímicas de las celdas. También ayudan a elevar la temperatura durante su arranque. Están formados por materiales conductores eléctricos con un sistema de canales, los cuales permiten el paso gases o líquidos encargados de percibir el calor y llevarlo al exterior.

Figura 17.Gestión de calor en la celda de combustible. Fuente: (Hoogers, 2003)

Existen varios sistemas de enfriamiento para pilas de combustible que se pueden implementar según la necesidad de la misma:
- Enfriamiento por convección libre (flujo de aire)
- Enfriamiento usando un condensador
- Enfriamiento con disipadores de calor
- Enfriamiento usando placas de enfriamiento

1.9 El combustible: Hidrógeno

Es un elemento químico gaseoso, incoloro, inodoro, ligero formado por un protón y un electrón, tiene alta inflamabilidad y por su capacidad de reaccionar con el oxígeno liberando energía, se constituye como un excelente combustible.

Es considerado un combustible limpio, debido a que, en su combustión sólo produce energía y vapor de agua, aunque no es un recurso renovable, puede obtenerse a partir de varios recursos naturales y energías renovables utilizando diversos procesos.

Fabla 3. Propiedades del Hidrógeno frente a otros combustibles
Fuente: (Ariema Energía y Medioambiente, 2017)

	HIDRÓGENO	GASOLINA	PROPANO	METANO
Poder calorífico (kJ/gr)	120	43	46	50
Densidad gas (kg/Nm^3)	0,09	-	2,01	0,717
Densidad líquido (kg/l)	0,071	0,733	-	-
Rango de inflamabilidad (%)	4,0 - 75	1,0 - 7,6	2,1 - 9,5	5,3 - 15,0
Rango de detonación (%)	18,3 - 59	1,1 - 3,3	3,1 - 7	6,3 - 13,5
Mínima energía de activación (<i>mJ</i>)	0,02	0,24	0,26	0,29
Emisiones ($mg CO_2/kJ$)	0	80	65	55

La Dirección General de la Industria, Energía y Minas de la Comunidad Madrid define que: "Este elemento es un combustible capaz de proporcionar más energía por unidad de masa que cualquier otro conocido: mientras que con un 1kg de hidrogeno pueden generarse 33,3kWh de electricidad, con 1 kg de gas natural tan sólo se puede generar unos 14kWh y con uno de petróleo únicamente 12,4kWh"

1.10 Producción de hidrógeno

Actualmente se puede obtener a partir de varios métodos, llevando a cabo ciertos procesos de transformación, donde se aprovechan fuentes fósiles, fuentes renovables, y una amplia gama de tecnologías.

Figura 18.Producción de Hidrógeno. **Fuente:** (*Linares Hurtado & Moratilla Soria, 2007*)

1.10.1 Producción a partir de combustible fósiles

Existen varios procesos para la obtención de hidrógeno a través de combustibles fósiles (carbón, gasolina, gas natural, petróleo), entre ellos el reformado con vapor de agua, la oxidación parcial y la gasificación son los principales métodos a partir del gas natural. En la actualidad se estudian modelos innovadores como el reformado mediante plasma a altas temperaturas, la descomposición catalítica, la termólisis y la descomposición del gas natural por arco eléctrico.

Figura 19. Procesos para la obtención de hidrógeno mediante combustibles fósiles. Fuente: (Linares Hurtado & Moratilla Soria, 2007)

1.10.2 Producción a partir de electricidad y agua

Es un proceso llamado electrólisis que consiste en la ruptura de las moléculas de agua en H y O por acción de una corriente eléctrica generada por energías renovables viables. Este método no genera contaminantes, pero requiere una demanda elevada de energía eléctrica que da como resultado la generación de hidrógeno de elevada pureza ligada con un alto costo energético.

1.10.3 Producción a partir de fuentes de energía renovables

La obtención de hidrógeno mediante energías renovables presenta un gran beneficio y debido a su gran diversidad tienen diferentes niveles de desarrollo. Existen multitud de métodos de producción, aunque las más utilizadas se pueden desglosar en tres grupos:

- Electrolisis del agua, siempre y cuando el origen de la electricidad que se emplea sea de origen renovable (eólica, hidráulica, fotovoltaica, etc.).
- Sistemas de concentración de media y alta temperatura (ciclos termoquímicos 400-2000°C, y termólisis, 2.400°C).
- Procesamiento de la biomasa, generalmente realizando una purificación tras un proceso de gasificación previo.
- La foto electrólisis en la que se utiliza una célula fotovoltaica que aprovecha la energía solar para separar las moléculas de agua y obtener (H).

Figura 20. Fuentes de energía primaria en la producción de Hidrógeno. Fuente: (*Linares Hurtado & Moratilla Soria, 2007*)

1.11 Almacenaje

El almacenamiento es un factor fundamental del hidrogeno ya que tiene tendencia a filtrarse y fugarse debido a su baja densidad energética en razón a su volumen, lo que implica medidas de seguridad al momento de utilizarlo. Sin embargo, existen varias maneras de almacenamiento que se expondrán a continuación.

- El almacenamiento de hidrógeno gas comprimido, requiere de presiones superiores a la normal (350-750 bar en el sector de la automoción), donde sus depósitos difieren en su construcción que por lo general utilizan materiales metálicos. Esta forma de almacenar tiene un bajo coste energético y es una tecnología segura.
- El almacenamiento de hidrógeno líquido tiene una concentración energética superior a la que tiene en forma gaseosa, debido al uso de sistemas de almacenamiento de doble capa. Esta tecnología es más eficaz, pero tiene desventajas, presenta un mayor coste energético asociado al proceso de licuefacción y al estricto control necesario de la estabilidad de la temperatura del envase para evitar cualquier riesgo de sobrepresión.
- El almacenamiento en hidruros metálicos que son combinaciones de hidrógeno con ciertos metales (níquel, sodio, aluminio, magnesio, entre otros), obtenidas mediante la aplicación de temperatura y presión. Por otra parte, se aplica la tecnología a través de nanotubos de carbono que son estructuras con un diámetro en orden del nanómetro capaces de almacenar este elemento por medio de la absorción.

1.12 El oxigeno

Es un elemento gaseoso, incoloro, inodoro de gran interés por ser esencial en los procesos de combustión. Es un gran agente oxidante que tiene dos átomos por molécula (O_2) , y tiene la ventaja de sustraer electrones de otra sustancia (agente reductor) que los dona o pierde.

Las fuentes de oxígeno más abundantes son el aire y el agua, encontrado en altas concentraciones en la atmosfera en forma de gas, existe un gran interés en el uso de este estado ya que no existen problemas de adquisición, transporte, almacenamiento y mantenimiento. En una celda de combustible este elemento es muy necesario ya que se proporciona en la superficie del cátodo, en su estado gaseoso, a presión ambiente y en la mezcla homogénea que se encuentra en el aire, cumpliendo una función muy importante.

Propiedades				
Electronegatividad	3,5			
Masa Atómica (<i>g/mol</i>)	15,9994			
Densidad (kg/m^3)	1.429			
Punto de ebullición (°C)	-183			
Calor Especifico (J/K * kg)	920			

Tabla 4.Propiedades del Oxígeno.Fuente: (Ariema Energía y Medioambiente, 2017)

1.13 Ecuaciones que gobiernan el funcionamiento de la celda PEM

Mediante el modelado de las celdas se pude conducir a mejoras en el diseño, rendimiento, eficiencia, abaratar costos y también dar una rápida solución a los problemas en las mismas.

Figura 21. Parámetros que comandan el funcionamiento de una celda de combustible. **Fuente:** *(The McGraw-Hill Companies, 2007).*

La siguiente tabla presenta características de modelos matemáticos aplicados a celdas tipo PEM.

Tabla 5. Modelos matemáticos presentes en una monocelda de combustible PEM.				
Fuente: Autores				

i dente. A dubies				
Número de dimensiones	1,2, ó 3D	Se expone las dimensiones que tienen los modelos estudiados.		
Dinámico/ Estado estacionario	Dinámico, Estado estacionario	Varios modelos poseen propiedades de tensión de estado estacionario y perfiles de concentración.		
Cinética del ánodo y cátodo	Expresiones tipo Tafel, ecuación Butler-Volmer, ecuaciones cinéticas complejas	Buena parte de los modelos manejan expresiones simples tipo Tafel, ciertos artículos emplean expresiones tipo Butler- Volmer, y algunos modelos emplean una cinética de reacción multipaso más acertado y complejo para las reacciones electroquímicas.		

Fases en el ánodo y cátodo	Líquido, gas o combinación líquido-gas	Como se sabe has dos fases líquida y gaseosa que están expuestas a ciertas condiciones de operación.
Transporte de masa en el ánodo y cátodo	Modelo de difusión Fick efectivos, Nerst–Plank, Nerst–Plank + Schlogl o ecuación de Maxwell-Stefan	Los modelos de difusión Fick simples y Fick efectivos suelen utilizar coeficientes de transporte efectivos definidos experimentalmente, muchos modelos utilizan el modelo que utiliza expresiones de transporte masivo Nerst-Plank el cual junta la difusión de Fick con el flujo convectivo que se calcula partir de la ley de Darcy que utiliza varias formulaciones del coeficiente de permeabilidad hidráulica. Otros modelos emplean las formulaciones de Schlogl para el flujo convectivo en lugar de la ley de Darcy que toma en cuenta el flujo electro osmótico y pueden utilizarse para el transporte másico dentro de la celda.
Transporte de masa en el electrolito	Nerst–Plank + Schlogl, Nerst–Plank +Coeficiente de arrastre o ecuación de Maxwell-Stefan	Para la membrana se aplica el modelo de coeficiente de arrastre que añade el flujo electro osmótico y asume una proporción del flujo de agua e hidrógeno, otro modelo de transporte masivo es la formulación de Maxwell – Stefan para mezclas multicompontes que se utiliza para el transporte en fase gaseosa pero esta ecuación sería más adecuada para el transporte en fase líquida y vapor.
Hinchazón de la membrana	Modelos empíricos o termodinámicos	La hinchazón de las membranas poliméricas se modela mediante modelos empíricos o termodinámicos que en su mayoría asumen una membrana completamente hidratada en algunas ocasiones para la absorción del agua se emplea un modelo termodinámico basado en la energía libre de Gibbs en función del contenido de agua.

El proceso físico dentro de la celda se representa mediante la solución de ecuaciones descritas a continuación:

1.13.1 Conservación de la masa

Indistintamente de la forma de los canales de difusión de gases, la ecuación de conservación es la misma y aplica para todos los procesos en la celda tales como: flujo de fluido, la difusión, el cambio de fase y las reacciones electroquímicas.

$$\frac{\partial \rho}{\partial t} + \nabla . \left(\rho v \right) = S_m \tag{1.4}$$

Donde:

 ρ es la densidad $(\frac{Kg}{m^3})$. ν es la velocidad $(\frac{m}{s})$. ∇ es el operador $(\frac{d}{dx} + \frac{d}{dy} + \frac{d}{dz})$. S_m Fuente de masa adicionales.

1.13.2 Conservación de Momentum

No existe una ecuación de Navier-Stokes para celdas de combustible, pero se necesita el equilibrio de momento para modelar la velocidad del fluido y las presiones parciales de los reactantes, esta descrita por la ecuación:

$$\frac{\partial(\rho v)}{\partial t} + \nabla . (\rho v) = -\nabla p + \nabla . (u_{mix} \nabla v) + S_M$$
[1.5]

Donde:

p: presión del fluido (Pa).

 U_{mix} : viscosidad promedio de la mezcla $(\frac{kg}{m.s})$.

 S_M : fuerzas externas del cuerpo.

El término transitorio describe el impulso con el tiempo, para diferentes partes de la celda el término fuente es diferente. Para canales de gas:

$$S_M = 0 \tag{1.6}$$

Para capas de respaldo y agujeros de las capas de catalizador:

$$S_M = -\frac{u}{\kappa} \varepsilon_{DL} v \tag{1.7}$$

Donde:

K : permeabilidad de las capas difusoras de gas (m^2) . ε_{DL} : porosidad de las capas difusoras.

El término fuente representa una caída de presión de la fuerza de arrastre de Darcy impuesta por las paredes de los poros en el fluido. Para PEM un término fuente adicional es la permeabilidad electrocinética para el transporte de agua en la fase polimérica. (The McGraw-Hill Companies, 2007)

$$S_M = -\frac{u}{\kappa_p} \varepsilon_m x_m v + \frac{\kappa_{\phi}}{\kappa_p} c_f n_f F \nabla \phi_m$$
[1.8]

Donde:

- $\boldsymbol{\varepsilon}_{m}$: porosidad del agua de la membrana.
- x_m : fracción de volumen ionómero en la capa de catalizador.
- K_{\emptyset} : permeabilidad Electrocinética (m^2).
- K_p : permeabilidad hidráulica de la membrana (m^2) .
- c_f : concentración carga fija $(\frac{mol}{m^3})$.
- n_f : número de carga de los iones de ácido sulfúrico.
- $Ø_m$: potencial de la fase ionomérica.

"En la literatura, siempre se supone que los canales de flujo son laminares sin embargo el flujo para algunos diseños de campos de flujo de celdas de combustible puede ser turbulentos" (The McGraw-Hill Companies, 2007).

1.13.3 Conservación de la energía

Es esencial tomar en cuenta los cambios de temperatura internamente en la celda resolviendo la ecuación de conservación de energía.

$$(pc_p)_{eff} \frac{\partial T}{\partial t} + (pc_p)_{eff}(v, \nabla T) = \nabla \cdot (k_{eff} \nabla T) + S_e$$
[1.9]

Donde:

 c_p : capacidad calorífica específica promediada de la mezcla $(\frac{J}{Ka,k^{\circ}})$.

T : temperatura.

k : conductividad térmica $\left(\frac{W}{m, k}\right)$.

 S_e : término fuente de energía donde incluye el calor de las reacciones, el calentamiento óhmico y el calor que tenga que ver con cambios de fase.

 $(pc_p)_{eff}$ y k_{eff} se resuelve utilizando

$$(pc_p)_{eff} = (1 - \varepsilon)\rho_s C_{p,s} + \varepsilon \rho c_p$$
[1.10]

$$k_{eff} = -2k_s + \left[\frac{\varepsilon}{2k_s + k} + \frac{1 - \varepsilon}{3k_s}\right]^{-1}$$
[1.11]

Donde:

 ρ_s , $C_{p,s}$, k_s representan la densidad, la capacidad calorífica específica y la conductividad térmica de la matriz sólida, esta ecuación equilibra el almacenamiento de energía, la convección, conducción y energía debido a la difusión de especies y al termino fuente (S_e) el cual incluye el calor de las reacciones. (The McGraw-Hill Companies, 2007)

Las siguientes ecuaciones son aplicables para PEM y pueden adaptarse a otros tipos de celdas, en las capas de difusión de gas los posibles generadores de calor dan lugar a la resistencia óhmica por cambios sólidos y de fase en los poros y el gas no se encuentra saturado.

$$S_e = \frac{i^2}{k_s^{eff}} - \sigma A_{fg} (x_{sat} - x_{H_2O(g)}) (\Delta h_{fg})$$
[1.12]

Donde:

i : densidad de corriente $(\frac{A}{m^2})$. k_s^{eff} : conductividad eléctrica efectiva de la capa difusora de gas $(\frac{S}{cm})$.

En las capas de catalizador, el término fuente incluye el calor liberado por la reacción electroquímica, el calor producido por la resistencia iónica-electrónica y el calor de la evaporación del agua.

$$S_e = |i| \left[|\Delta Vact| - \frac{T\Delta S}{nf} \right] + \left(\frac{i_m^2}{k_m^{eff}} + \frac{i_e^2}{k_s^{eff}} \right) - \sigma A_{fg} (x_{sat} - x_{H_2O(g)}) (\Delta h_{fg}) \quad [1.13]$$

Donde:

i: densidad de corriente de transferencia $(\frac{A}{m^3})$. $\Delta Vact$: sobre potencial de activación (V). i_m : densidad de corriente iónica $(\frac{A}{cm^2})$. k_m^{eff} : conductividad iónica de la fase de ionómero en la capa catalizadora $(\frac{A}{cm})$.

En la membrana, la única fuente de calor se debe a la resistencia óhmica.

$$S_e \frac{i^2 m}{k_m} \tag{1.14}$$

1.13.4 Conservación de especies

La ecuación de equilibrio de especies representa la conservación de la masa de cada reactante, la conservación de las especies para la fase gaseosa es:

$$\frac{\partial \varepsilon \rho x_i}{\partial t} + \nabla . (\nu \varepsilon \rho x_i) = \left(\nabla . \rho \, D_i^{eff} \nabla x_i \right) + S_{s,i}$$
[1.15]

Donde:

 x_i es la fracción en masa de las especies gaseosas.

$$i = 1,2,3....N$$

 $N1 = Hidrogeno, N2 = oxígeno,$

 D_i^{eff} : una función de la porosidad. $S_{s,i}$: representa fuentes adicionales de especies.

El flujo difusivo sustituido por $\rho D_i^{eff} \nabla x_i$ con las unidades $(\frac{Kg}{m^2s})$. A menudo es más conveniente discutir esto en términos del flujo difusivo molar *Ni*.

El término fuente de conservación de especies $S_{s,i}$ es igual a cero en todas partes, excepto en las capas catalizadoras donde las especies se consumen en la reacción electroquímica. (The McGraw-Hill Companies, 2007)

$$S_{s,H_2} = -i_a \frac{M_{H_2}}{2F}$$
[1.16]

$$S_{s,O_2} = -i_c \frac{M_{O_2}}{4F}$$
[1.17]

Para celdas tipo PEM:

$$S_{sH_20(g)} = \sigma A_{fg}(x_{sat} - x_{H_20(g)})$$
[1.18]

$$S_{sH_2O(l)} = -i_c \frac{M_{H_2O}}{2F} - \sigma A_{fg}(x_{sat} - x_{H_2O(g)})$$
[1.19]

Esta ecuación puede ser resuelta para n - 1 especies donde n es el número total de especies presentes, la última especie se resuelve como una suma de fracciones de masa iguales a uno, el flujo en los canales es principalmente convectivo y la difusión muchas veces es despreciable para minimizar cálculos.

1.13.5 Conservación de carga

El transporte de corriente se describe mediante una ecuación que rige la conservación de la carga.

Para la corriente eléctrica

$$\nabla . \left(k_s^{eff} \nabla \phi_s \right) = S_{\phi s}$$
[1.20]

Para la corriente iónica

$$\nabla k_m^{eff} \nabla \phi_m = S_{ms} \tag{1.21}$$

Donde:

 k_s^{eff} : conductividad eléctrica fase sólida $(\frac{s}{cm})$. ϕ_s : representa el potencial fase sólida (V). k_m^{eff} : conductividad eléctrica fase electrolítica $(\frac{s}{cm})$. S_{ϕ} : término fuente que representa la corriente de transferencia volumétrica en el catalizador del ánodo $S_{\phi s} = -i_a$, $S_{ms} = -i_a$ en las capas catalizadoras de los cátodos $S_{\phi s} = -i_s$, $S_{\phi s} = -i_c$, $y S_{\phi} = 0$ en otra parte.

1.13.6 Termodinámica de la celda de combustible

Los conceptos y cálculos termodinámicos predicen el funcionamiento potencial eléctrico teórico, variaciones de presiones y temperaturas, a su vez facilita el análisis de las reacciones dentro de la celda como:

La entalpía de la formación: Confiere a la energía de los enlaces químicos al calor que se desprende o se absorbe durante la formación de 1 mol de la sustancia a partir de las sustancias elementales en el estado de referencia $T_{ref} = 25^{\circ}C$, $P_{ref} = 1 \text{ atm}$, se tiene para la formación de H_2O un valor de Hf = -285.826

Energía térmica sensible: Hace referencia a la diferencia de entalpía entre el estado dado y el de referencia, es una función que se calcula mediante el calor específico a temperatura constante.

$$\Delta hs(T,P) = \int_{Tref}^{T} Cp(T) dt \qquad [1.22]$$

Donde:

Cp(T): calor específico a una presión constante.

Se puede aproximar el calor específico promedio como una función lineal de la temperatura.

$$\overline{Cp} = Cp(\frac{T+T_{ref}}{2})$$
[1.23]

Donde:

 \overline{Cp} : calor específico medio a presión constante. T: temperatura, $Tref = 25^{\circ}C$.

La entalpía absoluta incluye la energía química y térmica sensible.

$$h_{H_2O(l)} = h_{f,H_2O}(l) + Cp, H_2O(l)(T - T_{ref})$$
[1.24]

$$h_{H_2O(g)} = h_{f,H_2O}(g) + Cp, H_2O(g)(T - T_{ref})$$
[1.25]

1.13.7 Eficiencia teórica de la monocelda de combustible

La eficiencia está dada por el contenido de calor *H* el cual se obtiene de dividir trabajo realizado, para la entrada de entalpía, por lo tanto la eficiencia está conferida por:

$$\eta_{fuell\ cel=\frac{\Delta G}{\Delta H}}$$
[1.26]

Dado la energía libre y la entalpía, la eficiencia de la celda bajo condiciones estándar es:

$$\eta = \frac{-237 \frac{KJ}{mol}}{-285.8 \frac{KJ}{mol}}$$
(1.27)

$$\eta = 83\%$$

Teniendo como máxima eficiencia teórica como:

$$\eta_{max} = 1 - T * \Delta s / \Delta H \tag{1.28}$$

Otra manera de determinar la eficiencia también se lo hace mediante los valores caloríficos que consisten en medir la cantidad de calor desprendido por una cantidad constante del combustible, entre temperaturas iniciales y finales siendo el valor calorífico más alto $(HHV) = -285.84 \frac{kJ}{mol}$, y el más bajo $(LHV) = -241.83 \frac{kJ}{mol}$, la diferencia entre éstos se conoce como entalpía molar de vaporización de agua. (The McGraw-Hill Companies, 2007).

La eficiencia no depende del tamaño de la monocelda, la energía consumida se mide en términos del mayor valor calorífico del combustible utilizado para el hidrógeno:

$$\eta = \frac{\text{energía de salida}}{\text{energía de entrada}} = \frac{\text{nelectrones FV salida}}{\text{nhidrógeno }\Delta H_{HHV}} = \frac{2\text{FV}_{\text{salida}}}{\Delta H_{HHV}}$$
[1.29]

Donde:

*n electrones y n hidr*ó*geno* : velocidades de flujo en $\left(\frac{mol}{sea}\right)$.

 V_{salida} : voltaje de salida de la celda. ΔH_{HHV} es $(-285.8 \frac{KJ}{mol})$ La entalpía de mayor poder calorífico equivale a una tensión de 1.481 V de forma que:

$$\eta = \frac{V \text{salida}}{1.481V}$$
[1.30]

La entalpía de menor poder calorífico equivale a una tensión de 1.253 V de forma que:

$$\eta = \frac{Vsalida}{1.253V}$$
[1.31]

Dicho concepto de voltaje equivalente facilita el cálculo de la eficiencia y el calor residual que es simplemente:

$$Q = n\Delta H_{HHV}(1 - \eta)$$
[1.32]

$$Q = n\Delta H_{LHV}(1 - \eta)$$
[1.33]

1.13.8 Celda de Combustible Reversible y Voltaje de Salida Neto.

La tensión máxima se obtiene cuando opera de una manera reversible, la tensión de salida neta a una cierta densidad de corriente es:

$$V(i) = Vrev - Virrev$$
[1.34]

El trabajo eléctrico máximo viene dado por el cambio de energía libre de Gibbs, ecuación válida para cualquier presión y temperatura constante, esta ecuación en cantidad molar es:

$$Welec = -\Delta G = \Delta H - T\Delta S$$
[1.35]

Donde:

 ΔH : entalpía de formación para el proceso químico se expresa a partir del balance de calor y masa tal que:

$$\Delta H = \sum_{i} m_i h_i - \sum_{i} m_j h_j \qquad [1.36]$$

Figura 22. Calor de pila de combustible y balance de masa. Fuente: (*The McGraw-Hill Companies, 2007*)

El trabajo eléctrico a partir de una carga y diferencia de potencial *E* en voltios es:

$$Welec = EQ$$
[1.37]

Donde:

$$Q = nF$$
[1.38]

Dado esto la tensión máxima reversible entregada por la celda puede ser calculada por:

$$\Delta G = -nFE_r \tag{1.39}$$

La relación entre temperatura y voltaje se logra tomando la energía libre, linealizando sobre las condiciones de 25° C y el cambio de entalpía *H* no varía con la temperatura.

$$E_r = \frac{-\Delta G_{rxn}}{nF} = -\frac{\Delta H - T\Delta S}{nF}$$
[1.40]

$$\Delta E_r = \left(\frac{dE}{dT}\right)(T - 25) = \frac{\Delta S}{nF}(T - 25)$$
[1.41]

$$\Delta S = Productos - Reactivos$$

$$\Delta S = 69.95 - 130.68 - \frac{1}{2}(205)$$
$$\Delta S = -0.1632 \frac{KJ}{mol * K}$$

$$\Delta H = Productos - Reactivos$$
$$\Delta H = -285.83 \frac{KJ}{mol}$$
$$\Delta G = -285.83 - (298.15 * -0.1632)$$
$$\Delta G = -237.3 \frac{KJ}{mol}$$

La celda de combustible obtiene su mayor eficiencia a bajas temperaturas, pero se sabe que a mayor temperatura se dé mayor transporte y conducción de masa e iones respectivamente compensando así más que la caída de tensión de circuito abierto. (The McGraw-Hill Companies, 2007)

$$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(l)$$
 [1.42]

$$E\frac{H_2}{O_2} = -\frac{-237.3\frac{KJ}{mol}}{2\ mol\ x\ 96.485\frac{C}{mol}} = 1.229\ V$$
[1.43]

Para condiciones no estándar, la tensión reversible puede calcularse mediante el balance energético entre los reactantes y los productos, el potencial teórico E_t para una reacción electroquímica se denota mediante la ecuación de Nernst. (The McGraw-Hill Companies, 2007).

$$E_t = E_r - \frac{RT}{nF} ln[\prod_i a_i^{\nu_i}]$$
[1.44]

La reacción de la celda PEM se describe utilizando la ecuación de Nerst como:

$$E = E_r - \frac{RT}{2F} \ln \frac{a_{H_2O}}{a_{H_2}a^{1/2}o_2}$$
[1.45]

El potencial a presión y temperatura stándard puede calcularse de la siguiente forma:

$$E = 1.229 - \frac{8.314 \left(\frac{J}{mol.K}\right)^{*298.15}}{2F} \ln \frac{1}{1^{*0.21^{1/2}}}$$
[1.46]

Si se asume que la actividad de los gases es igual a la de sus presiones parciales se obtiene la siguiente ecuación:

$$E_t = E_r - \frac{RT}{nF} ln \left[\prod_i \left(\frac{p_i}{p_0} \right)^{\nu_i} \right]$$
[1.47]

Donde:

 p_i : presión parcial de la especie p_0 : presión de referencia

Para gases ideales o una estimación de gas no ideal la presión parcial de la especie A se puede expresar como:

$$p_A = X_A P_A \tag{1.48}$$

Si se desconoce la fracción molar del combustible se puede estimar tomando el promedio de las condiciones de entrada y salida.

$$X_A = \frac{1 - x_{C,Anode}}{1 + \left(\frac{x_{Anode}}{2}\right)\left(1 + \left(\frac{\zeta_A}{\zeta_A - 1}\right)\right)}$$
[1.49]

Las fracciones molares son las proporciónes de la presión de saturación de la celda a cierta temperatura con respecto las presiones de ánodo y cátodo, siendo la presión de saturación la siguiente:

$$log_{10} P_{sat} = -2.1794 + 0.02953 * T - 9.1837 * 10^{-5} * T^{2} + 1.4454 * 10^{-7} * T^{3}$$
[1.50]

1.13.9 Temperatura de la célula de combustible

El potencial depende de la temperatura y su aumento significa la pérdida del mismo.

$$E = \frac{\Delta H}{nF} - \frac{T\Delta s}{nF}$$
[1.51]

Como se explicó anteriormente el calor específico es una función de la temperatura teniendo:

$$Cp = a + bT + cT^2 \tag{1.52}$$

Donde:

a, *b* y *c* : coeficientes especificados para un gas en particular sustituyendo esta ecuación en la ecuación 1.48 se obtiene una celda de hidrógeno y oxígeno operando a 25° C.

$$\Delta H_T = \Delta H_{298.15} + \Delta_a (T - 298.15) + \Delta_b \frac{(T - 298.15)^2}{2} + \Delta_c \frac{(T - 298.15)^3}{3}$$
[1.53]

$$\Delta S_T = \Delta S_{298.15} + \Delta_a ln \frac{T}{298.15} + \Delta_b (T - 298.15) + \Delta_c \frac{(T - 298.15)^2}{2}$$
[1.54]

 $\Delta_a, \Delta_b, \Delta_c$: diferencia entre los coeficientes *a*, *b*, *c* para los productos y reactivos

$$\Delta_a = aH_2O + aH_2 - \frac{1}{2}aO_2$$
 [1.55]

$$\Delta_b = bH_2O + bH_2 - \frac{1}{2}bO_2$$
 [1.56]

$$\Delta_c = cH_2 O + c H_2 - \frac{1}{2}c O_2$$
 [1.57]

1.13.10 Presión en la celda de combustible

La celda puede operar a cualquier presión por lo que es conveniente trabajar con presiones superiores a la atmosférica.

$$dG = V_m dP \tag{1.58}$$

Para un gas ideal se tiene:

$$PV_m = RT [1.59]$$

Por consiguiente:

$$dG = RT \frac{dP}{P}$$
[1.60]

Integrando:

$$G = G_o + RTln(\frac{P}{P_o})$$
[1.61]

Otra manera de expresar la ecuación de nernst para cualquier reacción química es:

$$jA + kB \to mC + nD \qquad [1.62]$$

El cambio de la energía entre los productos y reactantes queda de la siguiente manera:

$$\Delta G = mG_C + nG_D - jG_A - kG_B \qquad [1.63]$$

Sustituyendo en la ecuación

$$G = G_o + RT ln \frac{(\frac{P_C}{P_0})^m (\frac{P_C}{P_0})^n}{(\frac{P_A}{P_0})^j (\frac{P_C}{P_0})^k}$$
[1.64]

Para la celda PEM la ecuación de Nernst es la siguiente:

$$G = G_o + RT ln(\frac{P_{H_2} P_{O_2}^{0.5}}{P_{H_2O}})$$
[1.65]

El potencial en función de la temperatura y presión es:

$$E_{T,P} = \left(\frac{\Delta H}{nF} - \frac{T\Delta s}{nF}\right) + RTln(\frac{P_{H_2}P_{O_2}^{0.5}}{P_{H_2O}})$$
[1.66]

1.13.11 Electroquímica de la celda de combustible

Para obtener ciertas predicciones del diseño tales como la cinética de electrodos, potencial de activación, y corrientes se cubrirá mediante el estudio de la electroquímica básica de la celda donde también se abarca la velocidad con la que se produce la reacción y la perdida de energía que se da en ella. (The McGraw-Hill Companies, 2007). Con

Ley de Faraday

La tasa de transferencia de carga en un tiempo t según esta ley es:

$$i = \frac{dQ}{dt}$$
[1.67]

Donde:

Q: carga del electrón (C). t: tiempo (s).

Cada proceso electroquímico resulta la transferencia de "n" electrones por unidad de tiempo tenemos:

$$i = nF\frac{dN}{dt}$$
[1.68]

Donde:

 $\frac{dN}{dt}$: velocidad de la reacción electroquímica $\left(\frac{mol}{s}\right)$. **F**: constante de Faraday $\left(\frac{6400C}{mol}\right)$

Integrando tenemos:

$$\int_{0}^{l} i \, dt = Q = n \, F \, N \tag{1.69}$$

La reacción catódica que es:

$$j_f = k_f C_{ox} ag{1.70}$$

Donde:

k_f : coeficiente de reducción.
 C_{ox} : concentración especies reactantes.

Y para la reacción del flujo de reducción es:

$$j_f = k_b C_{rd} aga{1.71}$$

Donde:

 k_b : coeficiente de oxidación. C_{rd} : concentración especies reactantes. La corriente neta producida va a ser igual a la diferencia entre los electrones liberados y consumidos.

$$i = nF(\kappa_f C_{0x} - \kappa_b C_{Rd})$$
[1.72]

Cinética de electrodos

Según la teoría de transición, la energía de activación es la necesaria para llegar al estado de transición y formar el complejo activado dando lugar a la reacción química y es la diferencia de la energía de los reactantes y el estado de transición. (The McGraw-Hill Companies, 2007).

Figura 23. Energía de activación de una celda PEM. Fuente: (*The McGraw-Hill Companies, 2007*)

Cuando más pequeño es la energía de activación más fácil es alcanzar el estado de transición.

Para una reacción de reducción:

$$\Delta G = \Delta G_{AC} + \alpha_{Rd} F E \qquad [1.73]$$

Para una reacción de oxidación:

$$\Delta G = \Delta G_{AC} - \alpha_{Ox} FE \qquad [1.74]$$

Donde:

 ΔG_{AC} : complejo activado de la energía libre de Gibbs. α : coeficiente de transición.

La relaciónentre el coeficiente de transferencia para la reducción y oxidación es:

$$\alpha_{Rd} - \alpha_{Ox} = \frac{n}{\nu_{times}}$$
[1.75]

Para calcular los coeficeintes de velocidad en la reacción de oxidación hacia delante y atrás tenemos:

$$\kappa_f = k_{0,f} exp^{\left[\frac{-\alpha R_d FE}{RT}\right]}$$
[1.76]

$$\kappa_b = k_{0,b} exp^{\left[\frac{-\alpha O_X FE}{RT}\right]}$$
[1.77]

Reemplazando en la ecuación

$$i = nF\left\{k_{0,f} C_{Ox} \exp\left[\frac{-\alpha R_d FE}{RT}\right] - k_{0,b} C_{Rd} \exp\left[\frac{-\alpha O_X FE}{RT}\right]\right\}$$
[1.78]

$$i_{0} = nFk_{0,f} C_{0x} exp^{\left[\frac{-\alpha R_{d}FE}{RT}\right]} = k_{0,b}C_{Rd}exp^{\left[\frac{-\alpha O_{x}FE}{RT}\right]}$$
[1.79]

La ecuación butler-Volmer es la relación entre la densidad de corriente y el potencial.

$$i = i_0 \left\{ exp^{\left[\frac{-\alpha R_d F(E-E_r)}{RT}\right]} - exp^{\left[\frac{-\alpha O_X F(E-E_r)}{RT}\right]} \right\}$$
[1.80]

$$i_0 = i_0^{ref} a_c L_c \left(\frac{P_{reac}}{P_{reac}^{ref}}\right)^{\gamma} exp^{\left[-\frac{Ea}{RT}(1 - \frac{T}{T_{referencia}}\right]}$$
[1.81]

1.13.12 Pérdidas de Voltaje

La pérdida de voltaje se da debido a irrevesibilidades que se da dentro de la celda como se indica en la curva de polarización, la cual a su vez muestra como se comporta el voltaje de la celda respecto a la densidad de corriente. (The McGraw-Hill Companies, 2007)

Figura 24. Curva de Polarización de una monocelda PEM Fuente: (*The McGraw-Hill Companies*, 2007)

Las pérdidas de voltaje dentro de la celda son: la polarización de activación, óhmica, y constante, con lo que el volatje final de celda queda representado con la siguiete ecuación:

$$V(i) = v_r - v_{pact} - v_{p\acute{o}hmica} - v_{pconst}$$
[1.82]

La relación entre la tensión final y corriente se expresa como:

$$E = E_r - \frac{RT}{\alpha_c F} ln\left(\frac{i}{i_{0,c}}\right) - \frac{RT}{\alpha_a F} ln\left(\frac{i}{i_{0,a}}\right) - \frac{RT}{nF} ln\left(\frac{i_{L,c}}{i_{L,c}-i}\right) - \frac{RT}{nF} ln\left(\frac{i_{L,a}}{i_{L,a}-i}\right) - iR_i$$
[1.83]

Una simplificación de esta ecuación es:

$$E = E_r - \frac{RT}{\alpha F} ln\left(\frac{i_{ext} - i_{loss}}{i_0}\right) - \frac{RT}{nF} ln\left(\frac{i_L}{i_L - i}\right) - iR_i$$
[1.84]

Pérdidas por polarización de activación

Es la energía requerida para superar la energía de activación de la reacción electroquímica en el catalizador.

$$\Delta Va = E_r - E = \frac{RT}{\alpha F} ln(\frac{i}{i_o})$$
[1.85]

Donde:

i : densidad de corriente.

 i_o : densidad de corriente de intercambio de reacción.

Éstas pérdidas pueden ser expresadas simplemente con la ecuación de Tafel.

$$\Delta V_{act} = a + b \ln(i)$$
[1.86]

$$a = -\frac{RT}{\alpha F} ln(i_o)$$
 [1.87]

$$b = -\frac{RT}{\alpha F}$$
[1.88]

Para el anodo y el cátodo pueden representarse a través de:

$$Vac_{\acute{a}nodo} + Vac_{\acute{a}nodo} + \frac{RT}{n\alpha F}ln\left(\frac{i}{i_o}\right) + \frac{RT}{n\alpha F}ln(\frac{i}{i_o})$$

$$[1.89]$$

Pérdidas de tensión por transporte de carga

Se da por el contacto de los diferentes materiales de la celda, denominada también como pérdida óhmica a la cual contribuyen resistencias electrónicas. (The McGraw-Hill Companies, 2007).

Dicha pérdida se especifica mediante la ley de Ohm:

$$V_{(ohm)} = IR = (R_e + R_i)$$
[1.90]

Donde la resistencia se obtiene mediante la fórmula:

$$R = \frac{L}{\sigma A_{celda}} = \frac{L\rho}{A_{celda}}$$
[1.91]

Al disminuir las perdidas resistivas el rendimiento de la celda ascenderá. Estas pérdidas óhmicas pueden calcularse mediante la densidad de corriente lo cual nos sirve para comparar celdas de distintos tamaños.

$$V_{(ohm)} = i(A_{celda}.R)$$
[1.92]

Altas densidades de corriente producen caídas de tensión ya que los reactantes no se consumen como deberían y los productos no salen a la velocidad necesaria. Para el voltaje óhmico por perdidas iónicas se representa de la siguiente forma:

$$V_{(ohm)} = IR = iA_{celda}(\frac{\delta}{\sigma A_{celda}}) = \frac{i\delta}{\sigma}$$
[1.93]

1.13.13 Conductividad iónica de la membrana

Se debe tener un número determinado de sitios de carga y suficiente espacio para que los iones puedan trasladarse a través de la membrana, estos sitios tienen una carga inversa que proporciona descanso al ion, el aumento del espacio mejora considerablemente la conductividad iónica y a su vez una buena hidratación de la membrana ayuda de manera notable ya que iones se apegan a pequeñas moléculas de agua para ser conducidos.

La conductividad depende del contenido de agua, de la estructura y el pretratamiento de la membrana, la misma está correlacionada con la hidratación la cual depende de la temperatura ya que al aumentarla provocara deshidratación por lo que debe haber un equilibrio entre ambas.

Asumiendo el equilibrio la actividad del vapor de agua se define como:

$$a_{vapor\ de\ agua} = \frac{P_{w}}{P_{sat}}$$
[1.94]

La relación de la cantidad de agua y su actividad en las superficies de la membrana son descritos por:

$$\lambda = 0.043 + 17.18a_{vapor\ agua} - 39.85(a_{vapor\ agua})^2$$
[1.95]
$$0 < a_{vapor\ agua} \le 1$$

Debido a que los iones se apegan a moléculas de agua el contenido de esta varia a este proceso se lo denomina arrastre electro osmótico que viene a ser el número de moléculas de agua que acompaña a cada protón. (The McGraw-Hill Companies, 2007).

$$n_{arrastre = n \, arrastre}^{sat} \frac{\lambda}{22}$$
 [1.96]

 λ : contenido de agua.

 $n_{arrastre}^{sat}$: arrastre electromotico, se asume que es 2.5 pero estudios experimentales dan valores entre 2.3 y 3.7 en una membrana hidratada totalmente y λ de 0 a 22 moléculas de agua por grupo de sulfonato.

El arrastre del ánodo al cátodo y una corriente *i* se expresa como:

$$J_{H_2O\ arrastre=} 2n_{drag} \frac{i}{2F}$$
[1.97]

Donde:

 $J_{H_20 arrastre}$: flujo de agua $\frac{mol}{scm^2}$.

El agua por acumulación en el cátodo puede regresar al ánodo este proceso se conoce como retro difusión y se expresa como:

$$J_{H_2O}$$
 retro difusión: $\frac{\rho_{seca}}{P_m} D(\lambda) \frac{d\lambda}{dz}$ [1.98]

Donde:

 ρ_{seca} : densidad seca $\frac{kg}{m^3}$. P_m : peso equivalente Nafion $\frac{kg}{mol}$. $D\lambda$: difusividad del agua. z: vector espesor membrana.

El flujo total de agua es la suma del arrastre y la retrodifución y se expresa como:

$$2n_{drag} \frac{i}{2F} \frac{\lambda}{22} - \frac{\rho_{seca}}{P_m} D(\lambda) \frac{d\lambda}{dz}$$
[1.99]

La cantidad de agua se correlaciona con la conductividad iónica $\frac{s}{cm}$ mediante:

$$\sigma = (0.005139\lambda - 0.00326) e \left[1268(\frac{1}{303} - \frac{1}{T}) \right]$$
 [1.100]

Para la resistencia de la membrana R_m que también varía con el contenido de agua se tiene:

$$R_m = \int_0^s \frac{dz}{\sigma[\lambda(z)]}$$
[1.101]

s : espesor de la membrana λ .

1.13.14 Transporte de masa

La concentración de los reactantes en el catalizador debido a la perdida de velocidad y presión dentro de los canales de flujo, masas de especies sin carga, son factores que aportan a la pérdida de voltaje existen varias consideraciones que podrían reducir ésta pérdida que se mencionan a continuación:

- Aumentar la presión, pero hay que consideras que esto podría ser la causa de daños internos (ruptura membrana)
- Mantener alimentada constantemente de reactantes.
- Retirar los productos generados en la celda esto depende mucho del tipo de diseño que tengamos.

Transporte de masa por convección de los canales de flujo al electrodo

El flujo de masa transferido que se da desde los canales con una concentración C_o a la superficie del electrodo con una concentración C_s da por:

$$\dot{m} = A_e h_m (C_o - C_s)$$
[1.102]

 A_e : área del electrodo.

 h_m : coeficiente de transferencia de masa.

Donde h_m se encuentra de la siguiente manera

$$h_m = S_h \frac{D_{i,j}}{D_h} \tag{1.103}$$

*S*_{*h*} : número de sherwood.

D_{*h*} : diámetro hidráulico.

D_{*i*,*i*} : coeficiente de fisión binaria.

 S_h depende de la geometría del canal teniendo para flujo de masa continua $S_h = 5.39$ y $S_h = 4.86$ para concentración de masa continua.

 $D_{i,i}$ se puede calcular con la siguiente expresión:

$$D_{i,j}(T) = D_{i,j}(T_{rf}) * \left(\frac{T}{T_{rf}}\right)^{\frac{3}{2}}$$
[1.104]

Transporte de masa por difusión en los electrodos

La difusión depende de cómo se consuman los reactantes en el catalizador sino se alimenta continuamente el rendimiento de la celda decae. El porcentaje de difusión de los reactantes al catalizador se expresa de la siguiente forma:

$$\dot{m} = -D\frac{dC}{dx}$$
[1.105]

D : coeficiente de difusión.

C : concentración de reactivos.

Para el caso del electrodo se tiene:

$$\dot{m} = A_e D_{ef} \frac{c_s - c_i}{\delta}$$
[1.106]

 C_i : concentración de reactante en soporte del catalizador.

 C_s : concentración de reactante en soporte de electrodo.

 $\boldsymbol{\delta}$: espesor capa de soporte del electrodo.

 D_{ef} : coeficiente de difusión efectivo (gdl).

 D_{ef} se calcula al asumir que la porosidad es homogénea y su soporte está libre de agua con la siguiente ecuación:

$$D_{ef} = D\phi^{\frac{3}{2}}$$
 [1.107]

 \emptyset : porosidad del electrodo.

El transporte de masa por convección y difusión para las superficies de reacción se expresa de la siguiente manera:

$$\dot{m} = \frac{C_0 - C_i}{(\frac{1}{h_m A_e} + \frac{\delta}{D_e A_e})}$$
[1.108]

Al momento de operar la celda el combustible empezara a consumirse al producirse la reacción química en el catalizador este flujo de reactantes y productos se expresa de la siguiente manera:

$$i = \frac{nF\dot{m}}{A_e}$$
[1.109]

i : densidad de corriente.

n : número de electrones por mol de reactante consumido.

m : flujo másico.

F constante de Faraday.

Reemplazando en la ecuación queda de la siguiente manera:

$$i = -nF \frac{C_o - C_i}{(\frac{1}{h_m} + \frac{\delta}{D_e})}$$
[1.110]

Los reactantes tienen mayor concentración en los canales de distribución que en la superficie del catalizador esto depende de:

- Densidad de corriente (*i*)
- Espesor de la GDL (δ)
- Difusión efectiva (D_e)

1.13.15 Densidad de corriente límite

Se da cuando la concentración del reactante en la superficie de interfaz del catalizador es 0 y está dada de la siguiente manera:

$$i_L = -nF \frac{C_o}{\left(\frac{1}{h_m} + \frac{\delta}{D_e}\right)}$$
[1.111]

EL voltaje debido a la pérdida de concentración decae lo cual la pérdida se la puede aproximar mediante la ecuación de Nernst:

$$V_{c.e} = \left(\frac{RT}{nF}\right) \frac{i_L}{i_L - i}$$
[1.112]

Caída de presión en canales de flujo

La mayoría de celdas utilizan canales paralelos donde la velocidad de ingreso va a depender de la diferencia entre la presión de ingreso y salida, el tipo de flujo que utiliza en las celdas es comúnmente laminar. (The McGraw-Hill Companies, 2007)

La caída de presión puede ser determinada por:

$$\Delta P = f \frac{L}{D_h} \rho \frac{v^2}{2} + \sum K_l \rho \frac{v^2}{2}$$
[1.113]

- *f* : factor de fricción.
- *L* : longitud del canal
- **D**_h : diámetro hidráulico.
- ρ : densidad del fluido.
- \boldsymbol{v} : velocidad media.
- K_l : resistencia local.

El campo de flujo rectangular D_h se puede expresar como:

$$D_h = \frac{2(a*l)}{a+l}$$
[1.114]

a : ancho del canal.

l : largo del canal.

El factor de fricción se puede definir por:

$$f = \frac{56}{Re} \tag{1.115}$$

La velocidad de entrada en el canal es:

$$v = \frac{Q}{N_{celdas} * N_c * A t_c}$$
[1.116]

Q : tasa de flujo del aire.

At_c : área transversal canal.

N_{celdas} : número de celdas en la pila.

La tasa de flujo de aire se puede calcular de la siguiente manera:

$$Q = \frac{I}{4F} \frac{S_{O_2}}{x_{O_2}} \frac{RT_{in}}{P_{in} - \emptyset P_{sat}} N_{celdas}$$
[1.117]

I : corriente de la celda.

F constantes de Faraday.

 S_{0_2} : relación estequiometrica del oxígeno.

 x_{0_2} : contenido de oxígeno en el aire.

R : constante real de los gases.

 T_{in} : temperatura de entrada.

Ø : humedad relativa.

P_{sat} : presión de saturación.

P_{in} : presión en la entrada de la celda.

1.13.16 Tasa de flujo de los reactantes

La velocidad de flujo depende del tamaño y la forma de los canales, para que el mismo obtenga cierta velocidad se necesita una cierta presión por encima de la atmosférica 0.1-2.0 Psi. (The McGraw-Hill Companies, 2007).

Características en la entrada de los reactantes

Velocidad mínima de 0,35 m/sRelación flujo aire a 0,35 m/s Velocidades de consumo de los reactantes y generación de agua

$$N_{H2=\frac{l}{2F}}$$
 [1.118]

$$N_{O2=}\frac{I}{4F}$$
 [1.119]

$$N_{H_2O} = \frac{I}{2F}$$
[1.120]

N : velocidad de consumo de los reactantes *mol/s*. *I* : corriente en (*A*).

Flujo de masa consumida de lo reactantes y agua

$$m_{H2=}\frac{I}{2F}M_{H2}$$
[1.121]

$$m_{O2} = \frac{I}{2F} M_{O2}$$
[1.122]

$$m_{H_2O} = \frac{I}{2F} M_{H_2O}$$
[1.123]

1.13.17 Relación estequiométrica

Es la relación entre el flujo de entrada y el consumo del reactante.

$$S = \frac{N_{in}}{N_{consm}} = \frac{m_{in}}{m_{consm}}$$
[1.124]

Teniendo el consumo de combustible a la inversa de la relación estequiometrica.

$$\eta Comb_{consm} = \frac{1}{s}$$
 [1.125]

1.13.18 Humidificación de reactantes

La humidificación de reactantes mantiene humectada la membrana mejorando la conductividad iónica.

Relación másica de humedad

$$x = \frac{Gv}{Gs}$$
[1.126]

Gv: vapor de agua en el flujo de gas. Gs: gas seco en el flujo de gas.

Relación molar de humedad.

$$x = \frac{Nv}{Na}$$
[1.127]

Relación molar de presiones parciales.

$$x = \frac{Pv}{Pa} = \frac{Pv}{P - Pv}$$
[1.128]

1.13.19 Humedad relativa

El porcentaje de vapor de agua que el aire puede contener, es la relación entre la presión parcial del vapor de agua y la presión de saturación. (The McGraw-Hill Companies, 2007).

$$\varphi = \frac{Pv}{Pvs}$$
[1.129]

Pv : presión parcial de vapor. Pvs : presión de saturación.

La entalpía del gas seco:

$$h_g = C_{pg}t \tag{1.130}$$

 h_g : entalpía del gas seco $\frac{J}{g}$. C_{pg} : calor especifico del gas $\frac{J}{gK}$. T : temperatura Entalpía del vapor de agua:

$$h_{\nu} = C_{p\nu}t + h_{fg}$$
[1.131]

 h_{fg} : calor de evaporación.

Entalpía de gas húmedo:

$$h_{vg} = C_{pg}t + x(C_{pv}t + h_{fg})$$
[1.132]

La entalpia del agua líquida es:

$$h_w = C_{pw}t \tag{1.133}$$

La entalpía del gas humidificado y su contenido de gua es:

$$h_{vg} = C_{pg}t + x(C_{pv}t + h_{fg}) + x_w C_{pw}t$$
 [1.134]

El contenido total de agua:

$$x = x_v + x_w \tag{1.135}$$

Flujo de masa de entrada hidrógeno.

$$m_{H_2entrada} = S_{H_2} \frac{M_{H_2}}{2F} I. n_{celdas}$$
[1.136]

Flujo de masa entrada oxígeno.

$$m_{O_2entrada} = S_{O_2} \frac{M_{O_2}}{4F} I.n_{celdas}$$
[1.137]

Flujo de masa entrada aire.

$$m_{aire-entrada} = \frac{S_{O_2}}{x_{O_2}} \frac{M_{aire}}{4F} I. n_{celdas}$$
[1.138]

Flujo de masa de salida hidrógeno.

$$m_{H_2 salida} = (S_{H_2} - 1) \frac{M_{H_2}}{2F} I. n_{celdas}$$
[1.139]

Flujo de masa de salida de oxígeno.

$$m_{O_2 salida} = (S_{O_2} - 1) \frac{M_{O_2}}{4F} I. n_{celdas}$$
[1.140]

El contenido de agua que puede ser en forma de vapor o agua a la salida del ánodo es la siguiente:

$$m_{H_2O} salidaH_2 = \left[(S_{H_2} - 1) \ \frac{M_{H_2O}}{2F} \frac{P_{vs}T_{(out_anodo)}}{P_{ca} - \Delta P_{ca} - P_{vs}} I. n_{celdas} \right]$$
[1.141]

La cantidad de agua líquida en caso de estar presente es la diferencia entre el agua líquida y vapor de agua.

$$H_2 O(l) \text{ ánodo} = m_{H_2 O}(l) - m_{H_2 O}(g)$$
[1.142]

La suma de la porción de agua en la masa de aire más la porción generada en la celda y transportada en la membrana menos el agua que por difusión inversa es arrastrada.

$$H_20(l) cánodo = m_{H_20 entrada} + m_{H_20 generada} + m_{H_20 Membrana} + m_{H_20 D.I}$$
 [1.143]

1.13.20 Balance de masa y energía de la celda de combustible.

Balance de masa

En la figura 26 se muestra el balance de masa donde en su entrada el combustible hidrogeno ingresa a cierta temperatura, presión y con cierto flujo de masa al igual, que el oxidante (oxígeno) al reaccionar estos generan agua que sale a cierta temperatura, presión y cierto flujo másico.

Figura 25. Balance de masa. **Fuente:** (*The McGraw-Hill Companies, 2007*)

Con el propósito de establecer los flujos de masa de los reactantes se debe contabilizar la masa de entrada y salida del sistema de celda de combustible formulando un balance de masa en donde consta una ecuación adecuada que describa el proceso.

$$\sum (m_a)_{entra} = \sum (m_c)_{sale}$$
[1.144]

Donde m_c es la suma de todas las masas de entrada y que son iguales a las masas que salen de la celda de combustible.

Flujo de Masa Entrante

La masa de hidrogeno (g/s) que ingresa en la pila se calcula con de la siguiente manera:

$$m_{H_2entrada} = S_{H_2} \frac{M_{H_2}}{2F} I. n_{celdas}$$
[1.145]

Donde:

 S_{H_2} : razón estequiometrica de ingreso de hidrógeno. M_{H_2} : peso molecular de hidrogeno (g/mol). F constante de Faraday (96585.34 C/mol de electrones). n_{celdas} : número de celdas que constituyen el apilamiento. I: corriente que atraviesa una monocelda.

La masa entrante de oxigeno se obtiene:

$$m_{O_2 entrada} = S_{O_2} \frac{M_{O_2}}{4F} I. n_{celdas}$$
 [1.146]

Donde:

 S_{O_2} : razón estequiometrica del oxígeno a la entrada. M_{O_2} : peso molecular de oxígeno (g/mol). F es la constante de Faraday (96585.34 C/mol de electrones). n_{celdas} : número de celdas que constituyen el apilamiento. I: corriente que atraviesa una monocelda.

En el caso de proveer oxígeno puro la estequiometría ideal sería cercana a uno, pero en este caso al tener aire utilizamos una estequiometría de 2.0 para mantener una elevada concentración del oxidante en el cátodo. (The McGraw-Hill Companies, 2007)

$$m_{aire-entrada} = \frac{S_{aire}}{x_{O_2}} \frac{M_{aire}}{4F} I. n_{celdas}$$
[1.147]

Donde:

 S_{aire} : razón estequiometrica del aire a la entrada. M_{aire} : peso molecular de aire (g/mol). F es la constante de Faraday (96585.34 C/mol de electrones). n_{celdas} : número de celdas que constituyen el apilamiento.

Reactantes salida

Para el hidrógeno la salida del mismo será aquel que no se consumió dentro de la celda de combustible

$$m_{H_2 salida} = (S_{H_2} - 1) \frac{M_{H_2}}{2F} I. n_{celdas}$$
[1.148]

Para el oxígeno la salida del mismo será aquel que no se consumió dentro de la celda de combustible.

$$m_{O_2 salida} = (S_{O_2} - 1) \frac{M_{O_2}}{4F} I. n_{celdas}$$
[1.149]

Para el aire la salida del mismo será aquel que no se consumió dentro de la celda de combustible y será la suma de los flujos de oxígeno y nitrógeno que son los dos elementos por los cuales está formado el aire considerado para el análisis, y se calcula como se muestra a continuación.

$$m_{aire-salida} = \left[(S_{O_2} - 1)M_{O_2} + S_{O_2} \frac{1 - x_{O_2entrada}}{x_{O_2entrada}} M_{N_2} \right] \frac{I.n_{celdas}}{4F}$$
[1.150]

$$M_{N_{2}(salida)} = S_{O_{2}} \frac{M_{N_{2}}}{4F} \frac{1 - x_{O_{2}entrada}}{x_{O_{2}entrada}} I * n_{celdas}$$
[1.151]

Donde:

 $x_{O_2entrada}$: fracción molar del oxigeno 0.21 M_{N2} : peso molecular de nitrógeno (g/mol).

1.13.21 Transferencia de calor

Se da por convección entre flujo y las superficies de los canales y por conducción debido al contacto entre las superficies sólidas y porosas de la celda, para determinar el calor generado y perdido se debe establecer un balance de energía donde la entalpía de los reactantes sea igual a la entalpía de los productos, potencia, calor generado y calor disipado al exterior. (The McGraw-Hill Companies, 2007).

La reacción dentro de la celda se puede describir por:

$$C_a H_b + \left(a + \frac{b}{4}\right) O_2 \to a C O_2 + \frac{b}{2} H_2 O$$
 [1.152]

El trabajo y calor generado por la reacción química en la celda el balance energético se puede escribir de la siguiente manera:

$$\frac{W}{m_{combustible}} + \frac{Q}{m_{combustible}} = h_{combustible} + \left(a + \frac{b}{4}\right)h_{O_2} - ah_{CO_2} - \frac{b}{2}h_{H_2O} \qquad [1.153]$$

1.13.22 Balance de energía

La cantidad de energía de entrada es igual a la cantidad de energía de salida.

$$\sum Q_{entrada} - \sum Q_{salida} = W_{electrico} + Q_{disipado} + Q_{retirado}$$
[1.154]

La celda intercambia calor con el entorno debido a los reactantes, productos existen sistemas auxiliares que aportan al enfriamiento, el exceso calor se relaciona con la pérdida de voltaje.

Igualando la energía del hidrógeno a la electricidad generada y al calor se puede tener una mejor estimación del balance de energía:

$$\frac{I}{nF}H_{HHV}n_{celdas} = Q_{generado} + IV_{celda}n_{celdas}$$
[1.155]

El calor generado si el agua de la celda es líquida con una temperatura ambiente es:

$$Q_{generado} = (1.482 - V_{celdas})In_{celdas}$$
[1.156]

 $Q_{generado}$: calor generado en W.

El calor generado si el agua de la celda es vapor se define con la siguiente ecuación:

$$Q_{generado} = (1.254 - V_{celdas})In_{celdas}$$
[1.157]

Balance energético general de un apilamiento de monoceldas.

El balance de energía en función de la entalpía de los reactantes y productos es:

$$\sum Q_{entrada} = W_{electrico} + Q + \sum Q_{salida}$$
[1.158]

Las entradas son las entalpías del reactante, vapor de agua y oxidante, las salidas son la energía eléctrica generada, las entalpías de los productos y el calor que sale de la celda por refrigeración, convección o radiación.

La entalpía del gas seco o mezcla de gases secos es:

$$h = \dot{m}c_p T \tag{1.159}$$

Si el gas tiene un elevado valor calorífico, su entalpía es:

$$h = \dot{m}c_p T + h_{HHV}^0 \tag{1.160}$$

Para los productos.

La entalpía del agua líquida es:

$$h = \dot{m}H_2 O c_p T \tag{1.161}$$

La entalpía del vapor de agua es:

$$h = \dot{m}H_2 O c_p T + h_{fg}^0$$
 [1.162]

CAPÍTULO II: Diseño mediante software el modelo de celda de combustible de intercambio protónico utilizando materiales alternos para su posterior análisis.

En el presente capitulo se explica la metodología de diseño basado en un modelo de celda PEM, tomando en cuenta los parámetros de funcionamiento vistos en el capítulo anterior, además de las características de dimensionamiento y los diversos materiales alternos que reemplazarán a los que generalmente se utilizan en una celda para un vehículo monoplaza de karting, para posteriormente realizar un análisis mediante un software de tipo (CAD - CAE).

2.1 Vehículo monoplaza de karting

Es un vehículo que posee un solo espacio para soportar al ocupante (piloto), y se caracteriza por estar en una disciplina del automovilismo que se practica en kartódromos.

Figura 26. Vehículo monoplaza de karting. **Fuente:** (*Federación Internacional de Automovilismo, 2019*)

2.2 Vehículo monoplaza de karting propulsado por Hidrógeno

Con la finalidad de promover tecnologías automovilísticas ecológicas de cero contaminantes y alternativas de competición, existen varios prototipos de vehículos de karting que utilizan celdas de combustible puestos en funcionamiento en países europeos, que ya participan en campeonatos y circuitos de karts impulsados por hidrógeno. Está constituido por los siguientes elementos: Pila de Combustible, Motor Eléctrico, Ultra condensadores, Tanque de Hidrógeno, entre los más importantes.

Figura 27. Esquema de Elementos para propulsión por hidrógeno **Fuente:** (Fundación para el Desarrollo de las Nuevas Tecnologías del Hidrógeno en Aragón, 2003)

2.3 Modelo de un vehículo Monoplaza de karting

Para poder regir un diseño de un kart, hemos decidido optar por un diseño ya propuesto en el mercado, adaptado al reglamento de la Real Federación Española de Automovilismo, conjuntamente con la Comisión Internacional de Karting (CIK- FIA), siendo el tipo de chasis base (Tony Kart Extreme), para tomar información del mismo y proponer un modelo que abarca los espacios suficientes para sus respectivos sistemas, en la figura 28 se presenta la disposición de elementos principales. (Real Federación Española de Automovilismo & Comisión Internacional de Karting, 2016).

Figura 28.Vehículo monoplaza de karting propulsado por Hidrógeno. **Fuente:** (Fundación para el Desarrollo de las Nuevas Tecnologías del Hidrógeno en Aragón, 2003)

En cuanto a los componentes de propulsión se tomó información de kart de hidrógeno analizado por la por la Universidad Pontificia Comillas de Madrid, el cual usaremos como referencia, que considera una potencia para el prototipo de 5,9 kW. Por lo tanto, los elementos más relevantes van desde el motor eléctrico que genera la potencia mencionada mediante el suministro de tensión y corriente por parte de la pila, el depósito de hidrógeno que sustenta la pila y los ultra condensadores que almacenan energía.

2.3.1 Motor Eléctrico

Este será un motor sin escobillas de corriente continua, que en la siguiente tabla se especifica las características generales.

Tabla 6. Características del motor eléctrico modelo (HPM5000B).**Fuente:** (Real Federación Española de Automovilismo & Comisión Internacional de

Unidades
36V
5,9 <i>kW</i>
91%
5000 <i>rpm</i>
11kg(Carcasa)
126mm(Altura)

Karting, 2016)

2.3.2 Pila de Combustible

Es la encargada de alimentar al motor eléctrico de una forma eficaz, esta será una pila utilizadas en la automoción cuyo modelo es HyPM HD 8.

Tabla 7. Características de la pila de combustible.

Fuente: (*Real Federación Española de Automovilismo & Comisión Internacional de Karting, 2016*).

Características	Unidades
Potencia Máxima	8.5 <i>kW</i>
Voltaje	$36 - 79V_{DC}$
Corriente máxima	180 <i>A</i>
Eficiencia Pico	50%
Vida útil	> 3000 horas
Dimensiones	85x36x25 cm

2.3.3 Depósito de Hidrógeno

Almacena el combustible (Hidrógeno) en estado gaseoso y lo administrará para abastecer la pila, la bombona de hidrógeno es una botella de CompositeDrager económica y viable, cuyas propiedades son:

 Tabla 8. Propiedades bombona de hidrogeno.

Fuente: (*Real Federación Española de Automovilismo & Comisión Internacional de Karting, 2016*)

Características	Unidades
Presión de funcionamiento	30 bar
Capacidad	8 litros
Autonomía	30 min
Tiempo de Vida útil	30 años
Homologación	EN 12245

2.3.4 Ultra condensadores

Almacenan energía eléctrica generada durante la frenada del vehículo, estos son módulos de 56 *V* de Maxwell Technologies.

Tabla 9. Especificaciones del ultra condensador Maxwell.Fuente: (Real Federación Española de Automovilismo & Comisión Internacional deKarting 2016)

Características	Unidades	
Régimen de voltaje	56 <i>VDC</i>	
Capacitancia	130 F	
Temperatura de trabajo	−40°C a 40°C	
Peso	19.88 kg	
Corriente Máxima Absoluta	1,900 A	

2.4 Parámetros de diseño

El diseño de la celda PEM es complejo, ya que intervienen parámetros de entrada en el rendimiento de la misma. Existen varios criterios que colaboran y ayudan al diseñador a pensar en los detalles más importantes para emprender un buen diseño de la celda. La siguiente tabla presenta un resumen de muchos de los parámetros y requisitos básicos de diseño.

Requisitos	 Densidad de tensión/potencia Eficiencia Puesta en marcha Respuesta transitoria Tamaño peso / Forma
Condiciones de funcionamiento	 Temperatura Presión Humedad Caudal
Capa difusora de gas	 Espesor Propiedades de los materiales Conductividad Porosidad Resistencia a la temperatura Resistencia Química
Capa del electrolito	 Espesor Propiedades de los materiales Conductividad Porosidad Resistencia a la temperatura Resistencia Química
Capa catalizadora	Grosor/CargaComposición
Diseño de la celda de combustible	 Material de la placa bipolar Diseño/diseño del canal Tamaño del canal Tamaño de las costillas Material de la placa final

Tabla 10. Parámetros de diseño.Fuente: (The McGraw-Hill Companies, 2007)

2.5 Condiciones principales de funcionamiento para una celda de combustible

2.5.1 Presión y temperatura de operación

La presión y temperatura influyen el rendimiento de la celda de combustible, teniendo en cuenta que esto también depende del diseño de la celda a continuación se detalla características al variar presiones y temperaturas.

Fuence: (<i>The McGraw-Hut Companies</i> , 2007)			
	Presiones altas	Presiones bajas	
	Mejor rendimiento	Menor rendimiento	
Presión	Mejora la gestión del agua		
	Fracción molar del oxígeno		
	aumenta.		
	Temperaturas altas	Temperaturas bajas	
	Mejor rendimiento	Menores tensiones termo	
Cinética acelerada		mecánicas	
Temperatura Mejor difusión de gas		Corrosión disminuye	
	Reduce la capacidad de	Menor difusión de gas con	
	conductividad protónica de	el riesgo de inundarse la	
	la membrana.	celda	

 Tabla 11. Condiciones de presión y temperatura para una celda PEM.

 Fuente: (The McGraw-Hill Companies 2007)

2.6 Parámetros de potencia y tensión para una celda de combustible

Para diseñar una celda se tiene en cuenta múltiples factores, entre ellos su potencia máxima de salida, tensión y corriente que la atraviesa. En la siguiente tabla se detallan algunas aplicaciones en base a la potencia requerida.

 Tabla 12. Ejemplos de uso de potencia para elementos de uso tecnológico.

 Fuente: (The McGraw-Hill Companies, 2007)

ESTUDIO	TENSION NECESARIA	POTENCIA MÁXIMA NECESARIA
Motocicleta	36 a 48 V	5.9 a 7.7 kW
eléctrica-Karts		
Automóvil-Bus	255 a 284 V	120 kW
Generadores de	24 a 30 V	5 kW
emergencia		
Generación	12 a 480 V	10 a 500 kW
estacionaria		

La potencia y el voltaje necesario dependen de la aplicación, en nuestro caso un vehículo monoplaza de karting, como primera parte para realizar un excelente diseño consiste en analizar cuáles son las exigencias de potencia que debemos cubrir para nuestro sistema, por lo tanto, se tomará como referencia un vehículo de karting propulsado por hidrogeno, analizado por la Universidad Pontificia Comillas de Madrid para extraer cierta información necesaria.

La Tabla 13 expone los valores típicos de voltaje y densidad de corriente para distintos tipos de pilas existentes hasta la actualidad.

CELDA	VOLTAJE (V)	CORRIENTE (mA/cm ²)
PEMFC	0.60 a 0.70	300 a 1000
DMFC	0.35 a 0.40	200 a 600
AFC	0.70 a 0.80	300 a 800
PAFC	0.60 a 0.70	300 a 600
SOFC	0.70 a 0.80	300 a 1200

Tabla 13. Valores de voltaje e intensidad de los tipos de pilas.**Fuente:** (*The McGraw-Hill Companies, 2007*)

En nuestro caso partiremos por la elección de una celda de tipo PEM, que son las más utilizadas en la automoción, donde su tensión a plena carga varía de 0.60 a 0.70 V aproximadamente, obteniendo así una densidad de corriente de $300 a 350 (\frac{mA}{cm^2})$, estos valores serán influyentes directamente en su comportamiento y su rendimiento, por tanto, es muy importante tomar en cuenta su rango de trabajo. La figura 29 representa la curva típica de polarización de la celda, donde el punto que convergen la tensión con su densidad de corriente se conoce como "Punto de Operación a Potencia Nominal", la selección de este punto nos ayuda a dimensionar la celda para obtener la densidad de potencia a la que las celdas deben funcionar. (Hoogers, 2003)

Figura 29. Punto de Operación a Potencia Nominal en dos curvas de polarización para Pilas PEM. Fuente: (The McGraw-Hill Companies, 2007)

Sistemas de generación electroquímica de potencia y desarrolladores de celdas usan voltajes nominales que se encuentran entre 0.6 y 0.7 V a potencia nominal como se muestra en la figura 29. (The McGraw-Hill Companies, 2007).

2.6.1 Selección del área activa de la membrana

Para el tamaño de la membrana se determina el área activa que va a poseer la celda, la misma que se obtiene respecto a la cantidad de corriente $0.37 \ {}^{A}/_{cm^2}$, potencia y tensión de 5.9 kW y 36 V respectivamente, que necesita generar considerando el voltaje nominal de celda que es de 0.7 V, valor tomado de la curva de polarización y partiendo de algunos parámetros principales de la pila a desarrollar tomados de la (Real Federación Española de Automovilismo & Comisión Internacional de Karting, 2016).

Para obtener el número de celdas y el área activa necesaria para el funcionamiento de la pila se realiza el siguiente calculo utilizando las ecuaciones de electricidad elementales. La potencia que es capaz de suministrar la pila es directamente proporcional a la tensión del apilamiento y a la corriente que lo atraviesa.

$$P = V_{celda} * I_{total}$$
 [2.1]

Donde: P es la potencia V_{celda} es el voltaje de la celda, I_{total} es la corriente

$$I_{total} = \frac{P}{V_{celda}}$$

$$I_{total} = \frac{5900 W}{0.7 V}$$

$$I_{total} = 8428.5 A$$
[2.2]

El número de celdas que componen una pila que se diseña, se encuentra con la siguiente ecuación.

$$N = \frac{V_{pila}}{V_{celda}}$$
[2.3]

$$N = \frac{36 V}{0.7 V}$$

$$N = 51.428 \approx 51 celdas$$

El área activa de la pila se calcula con la siguiente formula:

$$A_{pila} = \frac{I_{total}}{J}$$
[2.4]

Donde J es la densidad de corriente de la celda

$$A_{pila} = \frac{8428.5 A}{0.374 A/cm^2}$$
$$A_{pila} = 22536.09 cm^2$$

Para determinar el área activa de una celda se divide el área activa del apilamiento para el número de celdas calculadas.

$$A_{celda} = \frac{A_{pila}}{N}$$

$$A_{celda} = \frac{22536.09 cm^2}{51}$$

$$A_{celda} = 441.8 cm^2$$
[2.5]

El área activa necesaria para una membrana polimérica de cada celda es de $441.8cm^2$, se necesitan de 51 celdas para alcanzar el voltaje a circuito abierto y potencia necesaria.

2.6.2 Balance de masa

La suma de masa de las especies entrantes debe ser a la suma de masa de las de salida, en una celda PEM las especies entrantes son el hidrogeno, el oxígeno con ciertos parámetros de temperatura y presión, mientras que las salientes los reactantes no utilizados y el agua, de igual forma con ciertos parámetros de temperatura y presión.

$$Trabajo, W_{el}$$

$$H_2(g), T, P, mH_2 \longrightarrow CELDA DE$$

$$O_2(g), T, P, mO_2 \longrightarrow COMBUSTIBLE \longrightarrow H_2O(l), T, P, mH_2O(l)$$

Figura 30. Balance de masa. **Fuente:** *(The McGraw-Hill Companies, 2007).*

El suministro de los reactantes en cuanto a su velocidad debe ser igual o mayor al de su consumo dicho suministro o razón estequiométrica depende de la cantidad de corriente a generar Si el valor estequiométrico es alto se desperdiciará combustible y generará corrientes internas provocando pérdidas, y si es pequeño es posible que los gases no cuenten con la velocidad para responder a las necesidades de la celda, dicho suministro depende del tamaño del diseño y su apilamiento si se utilizan más celdas va a ser necesario más suministro, la configuración estequiométrica recomendada es de 1.2 (ánodo) y 2 (cátodo). A continuación, se expone los pesos moleculares de las especies de entrada y salida que interactúan en la celda. (The McGraw-Hill Companies, 2007)

Elemento	Pesos moleculares $(\frac{g}{mol})$
Oxígeno	31.9980
Hidrógeno	2.015680
Aire	28.84
Agua	18.01528
Nitrógeno	28.0134

Tabla 14. Pesos moleculares de elementos entrantes y salientes en una celda.Fuente: (The McGraw-Hill Companies, 2007).

2.7 Materiales utilizados en celdas de combustible de intercambio protónico.

Actualmente se cuenta con gran variedad de materiales para cada elemento que integra una celda de combustible, por ello se busca integrar materiales alternos que posean características y cumplan funciones semejantes como parte de su operatividad.

2.7.1 Requerimientos de diseño.

Figura 31. Requerimientos de diseño para una celda PEM. Fuente: Autores

2.7.2 Membrana

Es el componente central de la celda y para lograr altas eficiencias debe poseer ciertas propiedades importantes como: la alta conductividad iónica, buena estabilidad química y electroquímica, entre otras. Existen diferentes clases que se han desarrollado durante los últimos años, a continuación, se describen algunas matrices protónicas más conocidas en sistemas de celdas de combustible de tipo PEM.

Tabla 15. Clasificación de los materiales de membrana de polímeros alternativos para las pilas PEM.

Categoría	Estructura	Propiedades Físicas	Características
Perfluoradas(PF)	 Columna vertebral a base de teflón. Cadena lateral de fluorocarbono. Grupos iónicos que consisten en iones de ácido sulfónico unidos a cadenas laterales. 	Las membranas son fuertes y estables tanto en ambientes oxidativos como reductores.	Tiempo estimado de uso 60,000 h. (Smitha, Sridhar, & Khan, 2005)
Parcialmente fluoradas	Base de fluorocarbonoHidrocarburo	Las membranas son relativamente fuertes encomparación con PF, pero se degrada rápidamente.	 Menos duradero que los perfluorados. Bajo rendimiento.
Hidrocarburos no fluorados	Base de hidrocarburos, típicamente modificada con grupos polares.	 Poseen buena fuerza mecánica. Mala estabilidad química y térmica. 	 Conductores pobres de protones. Exhibe baja durabilidad.
Aromáticas no fluoradas	Base aromática, típicamente modificada con grupos de ácido polar / sulfónico.	 Buena resistencia mecánica. Química y térmicamente estable. 	 Buena absorción de agua. Conductividad de protones relativamente alta.
Membranas de mezcla ácido- base	Incorporación de un componente ácido en una base de polímero alcalino.	 Estable en ambientes oxidantes, reductores y ácidos. Alta estabilidad 	Buena estabilidad dimensional.

Fuente: (Smitha, Sridhar, & Khan, 2005)

El material estándar mas utilizado actualmente en la membrana de celdas tipo PEM es un material a base de teflón totalmente fluorado, la tabla que se muestra a continuacion proporciona una comparacion de algunos tipos de membranas comerciales de intercambio protónico.

térmica.

ruche. (Smitha, Srianar, & Khan, 2005)			
Designación Material	Tipo de membrana	Espesor (mm)	Conductividad
			$\left(\frac{3}{cm}\right)$ @ 30°C
DuPont Nafion 117	Perfluorado	0.2	0.0133
DuPont Nafion-901	Perfluorado	0.4	0.0105
Asahi Chemical K-101	Poliarileno sulfonado	0.24	0.0114
Asahi Glass CMV	Poliarileno sulfonado	0.15	0.0051
Asahi Glass DMV	Poliarileno sulfonado	0.15	0.0071
Ionic 61AZL386		0.5	0.0081
Ionic 61CZL386		0.6	0.0067
Pall RAI R-1010	Perfluorado	0.1	mm 0.0333

Tabla 16. Propiedades de las membranas comerciales de intercambio protónico.**Fuente:** (Smitha, Sridhar, & Khan, 2005)

2.7.3 Catalizador

El platino (Pt) y las aleaciones de platino soportados en una estructura conductora de carbón son los materiales catalíticos más eficientes para acelerar las reacciones químicas en celdas de combustible PEM. Este material es el único metal que puede resistir las condiciones ácidas en el interior de la celda, pero el valor de adquisición es elevado, por tanto, se busca reducir las cantidades de platino, aleándolo con diferentes materiales alternativos de transición que provoquen un aumento de la actividad electrocatalítica y que en el mercado podemos encontrar tales como: cromo, níquel, hiero, cobalto, rutenio, paladio, iridio, entre otros. Reduciendo de esa manera el costo de adquisición de una pila de combustible.

Catalizador	Catalizadores Binarios	Catalizadores Terciarios
Metal Común		
	Pt - Co/C	Pt - Ru - Mo/C
	Pt - Cr/C	Pt - Ru - Cr/C
	Pt - Fe/C	Pt - Ru - Ir/C
	Pt - Ir/C	Pt - Ru - Mn/C
Pt/C	Pt - Mn/C	Pt - Ru - Ni/C
	Pt - Mo/C	Pt - Ru - Pd/C
	Pt - Ni/C	Pt - Ru - Zr/C
	Pt - Pd/C	Pt - Ru - W/C
	Pt - Rh/C	
	Pt - Ru/C	
	Pt - V/C	

Tabla 17. Materiales alternos para catalizador.**Fuente:** (The McGraw-Hill Companies, 2007)

Existe varias proporciones equivalentes a los distintos metales que se pueden alear con el platino para formar electrocatalizadores con distintas reacciones útiles en el funcionamiento de este tipo de celda, la característica fundamental de este componente es tener alta eficiencia al momento de separas los electrones y protones de las moléculas de los reactantes. En la siguiente tabla se expone algunos materiales comerciales alternos combinados con el (*Pt*), formando catalizadores para el ánodo como para el cátodo que se usan particularmente en este tipo de celda.

Material	Soporte	Espesor				
		Partícula (µm)				
20% Co-Pt	Vulcan XC72 (Carbono)	3-5				
	Relación (3:1)					
10% Pd-Pt	Vulcan XC72 (Carbono)	2-3				
	Relación (1:1)					
30% Ni-Pt	Vulcan XC72 (Carbono)	3-5				
	Relación (3:1)					
20% Fe-Pt	Vulcan XC72 (Carbono)	1-2				
	Relación (1:1)					
40% Ru-Pt	Vulcan XC72 (Carbono)	2-3				
	Relación (1:1)					
20% Sn-Pt	Vulcan XC72 (Carbono)	2-3				
	Relación (1:1)					
30% Cu-Pt	Vulcan XC72 (Carbono)	2-3				
	Relación (1:1)					
20% Ir-Pt	Vulcan XC72 (Carbono)	2-3				
	Relación (1:1)					
40% Cr-Pt	Vulcan XC72 (Carbono)	3-5				
	Relación (3:1)					

 Tabla 18. Materiales catalizadores comerciales para celdas PEM.

 Fuente:
 (Eucl Cell Store, 2018)

2.7.4 Capa Difusora de gas (GDL)

Es una lámina apegada al catalizador en contacto con las placas bipolares, esta, debe proporcionar buena conductividad eléctrica, resistencia a la corrosión, además de controlar el flujo adecuado de reactivos (hidrógeno - oxígeno) y gestionar el transporte de agua. El material que conforma una GDL es un tejido de carbón o de papel carbón poroso, que es tratado con politetrafluoroetileno (Teflón) haciéndolo hidrofóbico, mejorado el transporte de agua.

Estas características son muy esenciales al momento de elegirlas para realizar un diseño y modelando de una celda. En la tabla 19 se exhibe las características de algunos de los papeles de carbón, telas de carbono comerciales.

Tabla 19. Propiedades de los papeles de carbono disponibles comercialmente utilizados
en capas difusoras de gas para celdas PEM.

Material	Tratamiento	Espesor	Porosidad	Densidad
		(mm)	(%)	$\left(\frac{g}{cm^3}\right)$
Papel de carbono Toray TGPH-090	Fluoropolímero y papel de fibra de carbono	0.28	78	0.44
Papel de carbono Kureha E-715	Fluoropolímero y fibra de carbono	0.35	60-80	0.35-0.40
Papel de carbono Spectracarb 2050-1041	Fluoropolímero y lámina de carbón grafito poroso	0.25	60-90	0.50
Papel de carbono AvCarb MGL190	Estructura de carbono y grafito laminado moldeado	0.19	78	0.44
Tela de carbón	Carbono o grafito mezcladas con aglutinante de Teflón (PTFE)		70-80	

Fuente: (Fuel Cell Store, 2018)

2.7.5 Canales de Flujo o placas bipolares

Las placas bipolares deben cumplir con varios requerimientos en su funcionamiento como resistencia a la corrosión, densidad, conductividad eléctrica, impermeabilidad del gas, resistencia y conductividad térmica del material, representan el mayor peso y volumen de la celda por lo que deben ser lo más pequeñas posibles $\leq 3mm$, además desempeñan muchos roles en las celdas de combustible como: distribuir combustible y oxidante, recoger la corriente, evacuar el agua, humidificar gases y mantener las celdas frescas. (The McGraw-Hill Companies, 2007).

Estos elementos comúnmente están fabricados de grafito impregnado de resina, ya que es un material altamente conductor, químicamente inerte y resistente a la corrosión, pero con un elevado costo. En la actualidad existen varios materiales alternos de los cuales pueden fabricarse las placas bipolares a continuación en la siguiente tabla se mostrará algunos de ellos.

Material	Relleno/ Fibra
Acero inoxidable	-
Grafito	-
Aluminio	-
Titanio	-
Níquel	-
Polifluoruro de vinilideno	Partículas de carbono / grafito
Polipropileno	Polvo de grafito negro de humo
Resina Fenólica	Polvo de grafito / fibras de carbono
Éster de vinilo	Polvo de grafito / bandada de algodón

Tabla 20. N	Materiales alternos utilizados para placas bipolares en celdas tipo PEM.
	Fuente: (The McGraw-Hill Companies, 2007)

Las placas bipolares están expuestas a un ambiente corrosivo, y los iones metálicos disueltos pueden difundirse en el electrolito, lo que reduce la conductividad iónica y disminuye la vida útil de la celda. Para evitar estos problemas se necesita de recubrimientos por tanto los de uso común son grafito, oro, plata, paladio, platino, carbono, polímero conductor y otros tipos. En la tabla 21 se puede encontrar un resumen de las técnicas de recubrimiento para los tipos de material de placa bipolar.

 Tabla 21. Técnicas de recubrimiento para los tipos de material de placa bipolar. Fuente:

 (The McGraw-Hill Companies, 2007)

Tipo de recubrimiento	Proceso de recubrimiento	Materiales placas bipolares
Oro (generalmente necesita una capa intermedia, tal como Ni)	Electrodeposición de corriente de pulso	Aluminio, Titanio, Níquel, Acero inoxidable.
Capa de lámina de grafito (generalmente necesita una capa intermedia, como partículas de grafito en un solvente orgánico)	Pintar o presionar	Aluminio, Titanio, Níquel

Capa superior de grafito (generalmente necesita una capa intermedia, como titanio, Cr o una combinación de varias capas)	Deposición física de vapor (PVD) o un recubrimiento químico de anodización/ oxidación	Aluminio, Titanio, Níquel Acero inoxidable.
Óxido de estaño e indio	Evaporación de haz de electrones	Acero inoxidable
Óxido de plomo (generalmente necesita una capa intermedia, como plomo)	Deposición de vapor y pulverización catódica	Acero inoxidable
Acero inoxidable (generalmente necesita una capa intermedia, como fósforo de níquel o nitruro de titanio)	Deposición física de vapor o deposición química de vapor Deposición sin electrodo	Aluminio, Titanio, Acero inoxidable

2.7.6 Colectores de corriente

Estos elementos pueden estar hechos de cualquier tipo de metal conductor, y están asentados en las placas finales para recoger los electrones. Los materiales de uso común incluyen estaño, latón, aluminio, entre otros tipos de metales.

- Plata
- Cobre
- Oro
- Latón
- Aluminio
- Acero inoxidable
- Níquel
- Hierro

2.7.7 Materiales de placas finales.

Deben ser altamente resistentes para transmitir de manera uniforme la fuerza de compresión a las partes principales de la celda, hay que tener en cuenta que debido al número de celdas puede haber un no paralelismo entre los componentes, además el material a utilizar debe facilitar su mecanizado para realizar la entrada y salida de combustible, aire, agua a la celda. Al momento de escoger el material consideramos lo siguiente:

- ✓ Alta resistencia a la compresión
- ✓ Resistencia a vibraciones y choques
- ✓ Estabilidad en el rango de temperatura requerido
- ✓ Bajo coste
- ✓ Estabilidad mecánica (soporte de la pila)

Tenemos los siguientes materiales como opción a utilizar:

- Grafito
- Acero inoxidable
- Aluminio
- Titanio
- Níquel
- Espumas de metal
- PVC
- Policarbonato
- Polietileno

2.8 Dimensionamiento de la celda de combustible para un vehículo monoplaza de karting.

2.8.1 Membrana

Este elemento tiene una área activa de $449.4cm^2$ según los cálculos realizados, lo que implica una altura de 210mm, un ancho de 210mm y un espesor de 0.127mm en nuestro diseño de la membrana protónica, que cubriría a los canales para cumplir su respectivo funcionamiento. El ánodo y el cátodo en el diseño poseen los mismos tamaños.

Figura 32. Dimensionamiento membrana. Fuente: Autores

2.8.2 Catalizador

Este elemento es una fina capa micrométrica de 30*um* de espesor, una altura de 210*mm* y un ancho de 210*mm*, que va conjuntamente anclado a la membrana para cumplir con su misión, las medidas son similares en el ánodo como en el cátodo.

Fuente: Autores

2.8.3 Capa Difusora de Gas

Este elemento tiene una altura de 210*mm*, un ancho de 210*mm* y un espesor de 0.110*mm*, este conjunto conforma la parte central de la celda. Este elemento dispone de las mismas dimensiones tanto para el ánodo como para el cátodo.

Figura 34. Dimensionamiento de la capa difusora de gas. Fuente: Autores

2.8.4 Placa bipolar

Este componente es el distribuidor de gases reactantes a través de los canales de flujo, elegimos los de tipo paralelos de sección rectangular tanto para el ánodo como para el cátodo ya que poseen mejores características en relación al consumo de combustible, una mejor distribución en el flujo de gases por gran parte del área activa sin existir considerables pérdidas de presión.Fuente especificada no válida.

La longitud de la placa es de $210mm \ x \ 210mm$ con un espesor del área activa de la membrana, con una distribución uniforme tanto del hidrógeno como del oxígeno. Las dimensiones típicas de los canales de una placa bipolar son alrededor de 1mm pero pueden variar desde 0.4mm hasta 4mm, al igual que el espacio entre los mismos.Fuente especificada no válida.. Para nuestro diseño se definió un ancho de 8mm con una profundidad de 2mm para cada canal y el espaciamiento entre estos de 1.9mm, esta dimensiones proporcionan un área más amplia para la eliminación de agua de la capa de difusión y un contacto más directo del gas reactivo con la misma capa.

Figura 35. Dimensionamiento de la placa bipolar del ánodo. Fuente: Autores

2.9 Ensamble final celda de combustible

Para la creación de toda la geometría de la celda se utilizó el programa de diseño asistido por computadora. El conjunto final está constituido por la membrana que es el centro de la celda, una capa catalítica, una capa difusora de gases y una placa bipolar, tanto para el ánodo como para el cátodo los mismos elementos.

Figura 36. Modelo virtual del ensamble final de la Celda de Combustible. Fuente: Autores

Se considera únicamente los elementos necesarios para obtener los resultados deseado. De este modo la placa colectora de nuestro diseño tiene las medidas mínimas para cubrir completamente los canales de flujo. En la siguiente figura se especifican cada una de las partes que integran la celda unitaria de combustible.

Figura 37. Geometría de la celda representada en un software de diseño. Fuente: Autores

Figura 38. Elementos ensamblados de la celda PEM. Fuente: Autores

CAPITULO III: Análisis del modelo de celda de combustible de intercambio protónico a través del software de modelado físico, manipulando las variables de operación.

Para este capítulo se presenta un análisis del modelo de celda de combustible de tipo PEM diseñadas, utilizando un software computacional de dinámica de fluido, que permiten verificar cómo se comportan los distintos materiales alternos en la arquitectura de las celdas, con la finalidad de definir la densidad de corriente y la tensión, en base a la variación de parámetros como la presión, temperatura y las concentraciones de oxígeno e hidrógeno utilizando el diseño de experimentos. En términos generales se da a conocer las mejores prestaciones de la celda en función a su optimización a través de los parámetros que la gobiernan.

3.1 Modelado y simulación por computadora

El diseño de una celda de combustible es complejo, debido a muchos parámetros que influyen en su rendimiento, además de los principales fenómenos físicos y electroquímicos que se producen en su funcionamiento, todos requieren ecuaciones para describirlos teóricamente. Estas ecuaciones se pueden resolver utilizando métodos numéricos, por lo tanto, es crucial tener un modelo de simulación por computadora, que integre todas las ecuaciones teóricas necesarias para modelar el rendimiento de la celda PEM bajo ciertas condiciones de entrada.

El modelado ayuda al diseñador a elegir diseños para fabricar y probar, obteniendo resultados en iteraciones de diseños existentes para la mejora, que pueden ser usados en el desarrollo tecnológico de la industria automotriz satisfaciendo requisitos estrictos.

El presente proyecto contribuye a completar diseños con materiales alternos de celdas de combustible PEM de modo que es necesario simular estas y obtener resultados. Utilizamos un software de tipo (CAD - CAE) en forma de modelo de celda de combustible, que incorpora programas de elementos finitos para la dinámica de fluidos computacional, con el fin de modelar el flujo de dichos fluidos en las fases liquidas, gaseosas y un conjunto de programas electromagnéticos, a través de diversos materiales.

Para el proceso de simulación se respeta el siguiente diagrama de procesos, que nos ayudará a llevar una forma ordenada en el desarrollo del modelando de la celda.

Figura 39. Diagrama de flujo del rol de modelado y diagnóstico en el proceso de desarrollo de celdas de combustible.

Fuente: Autores

3.2 Módulo de celdas de combustible

Un módulo de celdas de combustible PEM general ha sido elegido para su uso en el presente proyecto por las siguientes razones:

Los softwares de tipo (CAD - CAE) aceptan modelos espaciales 3D de modo que la geometría de las celdas experimentales en el diseño puede representarse completamente si tratamos términos de espesor de catalizadores, capas difusoras de gas, membranas y canales de flujo. El módulo indica la formación y conducción de agua, calcula la densidad de corriente, el calentamiento óhmico en las regiones conductoras sólidas, nos muestra las distribuciones y concentraciones de gas, flujos de gas y temperaturas a lo largo de la celda. Además, puede representar variaciones en el suministro de gas y condiciones ambientales de operación, materiales, entre otras.

3.2.1 Diagrama de procesos e interacción del software en la celda de tipo PEM.

Figura 40. Diagrama de procesos e interacción del software CAD-CAE.

Fuente: Autores

3.2.2 Modelado de simulación por computadora

Se utilizó un software asistido por computadora en donde se creó la geometría de las celdas de combustible, con todas sus regiones y partes que la conforman, a través de un dibujo tridimensional que abarca medidas y características definidas en los capítulos anteriores.

3.2.3 Mallado de la geometría de celda de combustible

La malla generada tiene 934920 elementos y 1373610 nodos en las partes internas (capas difusoras de gas, catalizadores, membrana), con un tamaño de borde de 3 divisiones para cada parte, valores necesarios para obtener resultados óptimos.

Fuente: Autores.

3.3 Elección de materiales óptimos para una celda PEM.

La elección está basada en ciertas características que hacen de la celda un componente capaz de fabricarse, que sus elementos sean aptos para mecanizarse, con materiales alternos asequibles en el mercado a costos económicos, con la finalidad de aportar una energía limpia y ahorrativa en industria automotriz para el sector del transporte con la tecnología de hidrogeno.

3.3.1 Membrana

Es la parte central y principal de la celda por tanto debe cumplir importantes funciones dentro de ella, las más comunes para el empleo en celdas de combustible de intercambio de protones son las membranas Nafion [™] de Chemours, están disponibles comercialmente en nuestro entorno.

Constituye una fina lamina basadas en polímero de ácido perfluorosulfónico (PFSA), químicamente estabilizado de politetrafluoroetileno (PTFE) o teflón. Existen diferentes tipos que se pueden identificar según sus espesores y aplicaciones, en la tabla se muestra los tipos de membrana Nafion. (Fuel Cell Store, 2018)

Tipo de Nafion	Espesor (um)	Resistencia a la tracción máx.	Capacidad de intercambio	Precio	Precio Total para el diseño
		(MFU)	ionico (minoi/g)		
N1110	254 um	25	0.90	\$49	\$216
				(10 <i>cmx</i> 10 <i>cm</i>)	
N115	127 um	43	0.90	\$28	\$123
				(10 <i>cmx</i> 10 <i>cm</i>)	
N117	183 um	34	0.90	\$33	\$145
				(10 <i>cmx</i> 10 <i>cm</i>)	
NR211	25 um	23	0.95	\$22	\$97
				(10 <i>cmx</i> 10 <i>cm</i>)	
N XL	27 um	45	-	\$34	\$150
				(10 <i>cmx</i> 10 <i>cm</i>)	

Tabla 22. Tipos de membranas Nafion.**Fuente:** (Fuel Cell Store, 2018).

La membrana, es el componente imprescindible en las celdas de intercambio protónico necesarias para la producción de energía. Sin embargo, la membrana N 115 Nafion es el modelo que posee la ventaja de ser uno de los más comerciales y económicos en nuestro entorno con respecto a los demás tipos que se encuentra disponibles en el mercado para su obtención, además de poseer las propiedades protónicas más ajustadas como uno de los objetivos para el estudio, en la tabla 23 se detalla sus características.

Componente	Material	Espesor mm	Densidad $\frac{g}{cm^3}$	Capacidad de intercambio iónico (mmol/g)	Conductividad protónica ^S /cm	Resistencia a la tracción máx. (<i>MPa</i>)
Membrana Nafion 115	Teflón -ácido perfluorosulfó nico	0.127	1.92	0.90	0.00779	43

Tabla 23. Propiedades de la membrana Nafion 115.**Fuente:** (Fuel Cell Store, 2018)

3.3.2 Catalizadores

El platino adherido al carbono es el elemento más común que forma parte del catalizador, en la actualidad el valor comercial de este material es un tanto elevado, aunque en el mercado existen materiales que en ciertos porcentajes se enlazan con el platino formando aleaciones alternas con ciertas características necesarias para cumplir con su funcionamiento, con el propósito de disminuir el aporte de (*Pt*), debido a su alto costo.

Las aleaciones de platino-rutenio, paladio, iridio y otros materiales catalíticos similares han sido los catalizadores alternos más utilizados hoy en día para diversos dispositivos electroquímicos y especialmente células de combustible.

Material	Tamaño de	Área de	Precio	Precio
Catalizador	Partícula	superficie	(gr)	total
				para el diseño
Base de Platino	9 – 10 um	25 a 34 m^2/g	\$ 185	\$ 185
Base de Iridio	4 – 6 nm	55 a 64 m^2/g	\$ 316	\$ 316
Base de Paladio	6 – 10 nm	40 a 48 m ² /g	\$ 322	\$ 322
Aleación de Paladio de Platino en Carbono	2 – 3 nm	120 m²/g	\$ 289	\$ 289
Aleación de Cobalto de Platino en Carbono	2 – 3 nm	90 m ² /g	\$ 282	\$ 282
Aleación de Rutenio de Platino en Carbono	1 – 2 nm	140 m²/g	\$ 129	\$ 129

Tabla 24. Materiales Catalizadores para celdas de tipo PEM.Fuente: (Fuel Cell Store, 2018)

En la tabla 24 se muestra algunas alternativas que convergen a una buena elección para esta capa de catalizador, considerada como un material compósito, por lo tanto, se optó por las aleaciones de platino rutenio ya que el valor comercial es significativo con respecto al área de superficie, además de que las propiedades tanto del (Pt) como del (Ru) pueden proveer la suficiente conductividad iónica dentro de esta capa.
Según Larminie James & Dicks Andrew, "el rutenio tiene una tolerancia mejorada a las corrientes de combustible de hidrógeno en comparación con el platino (Pt) en el ánodo de las celdas de combustible PEM". Existen varios análisis donde las caracterizaciones de los estos catalizadores se realiza mediante voltametría cíclica, mientras que las pruebas del desempeño de las celdas se realizaran mediante pruebas de polarización potencial, dándoles mejores actividades catalíticas con mayores valores de potencial eléctrico los procesos de oxidación y reducción de ahí nace la confianza de elegir dicho material (FuelCellsEtc, 2018).

3.3.3 Difusores de gas

Son componentes clave dentro de la celda, por tanto, el material que incorpora este elemento debe cumplir ciertas características y ejecutar funciones predilectas para obtener un trabajo óptimo y eficiente por parte de la pila. En la actualidad, en el mercado existen diversos tipos de difusores de gas siendo el carbono el material principal y fundamental que lo conforma.

Material	Tratamiento	Porosidad	Costo	Costo	Resistividad	Conductividad	Resistencia
		70		totai	$m\Omega cm$	W/mk	a la fiexion MPa
Papel de fibra carbón Toray TGPH- 030	Fluoropolíme ro y papel de fibra de carbón con aglutinante de teflón (PTFE).	80	\$12 (10cmx10 cm)	\$53	65	21	40
AvCarb MGL190	Tejido de tela de carbono liso.	78	\$15 (10cmx10 cm)	\$66	75	-	45
ELAT LT1400	Fibra de carbono tejida con capa micro porosa hidrofóbica.	63	\$25 (10cmx10 cm)	\$110	17	-	-
CeTech GDS090	Papel de fibra de carbono.	68	\$26 (10 <i>cmx</i> 10 <i>cm</i>)	\$115	83	-	4.7

Tabla 25. Materiales capa de difusión de gas para ce	ldas PEM.
Fuente: (FuelCellsEtc, 2018)	

Como una alternativa de bajo costo con respecto a los distintos materiales de capa de difusión de gas (GDL) de tela de carbón tejida y papel carbón convencionales y sus propiedades de resistencia mecánica, conductividad térmica y porosidad que debe ser la suficiente para conservar en cierto punto la humedad en la membrana y de esa manera mantener su máxima conductividad iónica. Por estas y otras razones se selecciona el papel carbón Toray 0.30 ya que además de tener características adecuadas para el uso en las celdas de tipo PEM y su permeabilidad al gas. Es importante destacar que debido al tratamiento hidrofóbico con material de teflón el papel carbón funciona como refuerzo para los electrodos impidiendo el excesivo nivel de agua que se puede acumular e inundar la membrana, reforzando los niveles de tensión. Así mismo la baja resistencia eléctrica en comparación a los demás tipos que es un punto favorable para su elección.

3.3.4 Placas Bipolares

Se ha buscado alternativas de materiales de bajo costo en el mercado nacional, de tal manera que representen valores ahorrativos en su fabricación e ingeniería de mecanización. Comúnmente las placas bipolares o de flujo se construyen de grafito debido a su estabilidad química, sin embargo, las propiedades mecánicas de este no son suficientemente buenas para su elaboración. Para la selección del material no solo es importante sus características corrosivas sino también sus propiedades eléctricas y térmicas. A continuación, en la tabla 26 se detallarán la propiedad de algunos materiales alternos para palcas bipolares en celdas tipo PEM.

Material	Descripción	Conductividad Eléctrica <i>S/m</i>	Conductividad térmica W/m * K	Densidad $\frac{g}{cm^3}$
Grafito			120	2,3
Aluminio	Materiales	37.8	209.3	2.70
Titanio	disponibles en	2.38	21.9	4.50
Níquel	el mercado	14.3	52.3	8.75

Fabla 26. Materiales de	placas b	ipolares	para ce	eldas	PEM
Fuente: (FuelCel	lsEtc, 20	18)		

Como alternativa, el níquel (Ni) es un material apto las placas bipolares que se utiliza en el diseño, además de ser un material comercial en el mercado y tener buenas propiedades tanto eléctricas, mecánicas, y corrosivas que dan autenticidad para formar parte de la celda.

La conductividad eléctrica es un rasgo que se debe tener en cuenta para la elección del material por lo tanto el (Ni) es un componente altamente conductor que refuerza la compilación de la corriente generada en todos los nudos de reacción a ambos extremos de la membrana, además de ser resistente a la corrosión y a las altas temperaturas con respecto a los demás casos, sin excluir la versatilidad y manofacturabilidad que tiene como particularidad.

3.4 Diseño Experimental

El diseño de experimentos ayuda a investigar los efectos de las variables de estudio (factores entrada) sobre las variables de salida (respuesta). Estos experimentos consisten en una serie de pruebas, en las que se realizan cambios intencionales en las variables de entrada, recolectando datos en cada prueba para de esta manera poder identificar las condiciones que influyen en un proceso, para luego determinar la configuración de factores de entrada que optimizan los resultados.

Figura 42. Diagrama del estudio de la forma de un diseño de experimental. Fuente: Autores

Por lo tanto, se considera cuatro variables de estudio definidas de carácter continuo, las cuales se pueden modificar e influyen directamente en el funcionamiento de la celda y son: temperatura, presión, concentración de hidrogeno y oxígeno. En relación a dichas variables existen sistemas auxiliares de control, que asisten a las pilas para un mejor desempeño y funcionamiento.

3.4.1 Parámetros de estudio

Los parámetros de estudio están directamente relacionados al requerimiento de potencia que la celda PEM debe proporcionar para el motor del vehículo monoplaza de karting, por lo tanto, se delimitan los valores para su funcionamiento.

Según McGraw-Hill una celda de combustible PEM, trabaja con un rango de temperatura que varía de 338°K hasta 358°K (65°C a 85°C), debido a que para cada diseño de pila de combustible existen temperaturas óptimas para obtener las mejores prestaciones en el funcionamiento de la misma. Este tipo de celdas operan a presiones ambiente, por lo tanto, existen variaciones con ciertos límites de valores, que se encuentran desde 1atm a 4 atm, rango en el cual se puede mejorar rendimiento de la celda. En consecuencia, a estos factores, el flujo de los reactivos es un punto muy importante de tratar ya que tanto el oxígeno como el hidrogeno se introducen en el sistema de celdas a diferentes velocidades y cantidades necesarias para generación de corriente en cualquier momento dado. Según la literatura se requiere un sistema de flujo variable si la estequiometría debe mantenerse constante o en ciertas relaciones.

Debido al hecho de que la reacción del cátodo es mucho más lenta que la reacción del ánodo tanto que el oxígeno a menudo se suministrará a un caudal estequimetrico mayor por tanto, así como la presión y temperatura, la estequiometría de los reactivos también tiene rangos de variación que se estudian para obtener las mejores prestaciones y menos consumo en el funcionamiento de una celda, la concentración del hidrogeno varía entre 1.2 - 2.4 veces mientras que la del oxígeno entre 2 - 3. (The McGraw-Hill Companies, 2007)

3.4.2 Diseño experimental basado en estudio de la celda PEM.

Para el diseño de experimentos se utiliza 3 réplicas, por lo tanto, con las 4 variables de estudio y las réplicas mencionadas se obtiene un total de 93 corridas experimentales, sin embargo, estas ayudan a definir donde se están dando las mejores prestaciones de la celda de combustible.

En la siguiente tabla se observa la configuración del diseño experimental con las variables de estudio dispuestos en los límites mencionado anteriormente, donde se muestra 24 de las 93 corridas experimentales.

OrdenEst	Orden	Tipo	Bloques	Temperatura	Presión	Hidrógeno	Oxígeno	Densidad de	Tensión
	Corrida	Pt						Corriente	
42	1	1	1	343	3,2500	1,5000	2,7500	0,4063	0,70400
68	2	1	1	353	1,7500	2,1000	2,2500	0,1640	0,68200
2	3	1	1	353	1,7500	1,5000	2,2500	0,1640	0,68200
84	4	-1	1	348	2,5000	2,4000	2,5000	0,2790	0,69050
11	5	1	1	343	3,2500	1,5000	2,7500	0,4063	0,70400
10	6	1	1	353	1,7500	1,5000	2,7500	0,1665	0,68200
81	7	-1	1	348	1,0000	1,8000	2,5000	0,1220	0,67800
14	8	1	1	353	1,7500	2,1000	2,7500	0,1645	0,68190
8	9	1	1	353	3,2500	2,1000	2,2500	0,3104	0,69320
9	10	1	1	343	1,7500	1,5000	2,7500	0,2304	0,68630
83	11	-1	1	348	2,5000	1,2000	2,5000	0,2842	0,69060
61	12	0	1	348	2,5000	1,8000	2,5000	0,2809	0,69070
38	13	1	1	343	3,2500	2,1000	2,2500	0,3999	0,70315
73	14	1	1	343	3,2500	1,5000	2,7500	0,4063	0,70400
57	15	0	1	348	2,5000	1,8000	2,5000	0,2809	0,69070
44	16	1	1	343	1,7500	2,1000	2,7500	0,2263	0,68639
26	17	0	1	348	2,5000	1,8000	2,5000	0,2809	0,69070
53	18	-1	1	348	2,5000	2,4000	2,5000	0,2790	0,69050
21	19	-1	1	348	2,5000	1,2000	2,5000	0,2842	0,69060
4	20	1	1	353	3,2500	1,5000	2,2500	0,3152	0,69310
85	21	-1	1	348	2,5000	1,8000	2,0000	0,2787	0,69070
63	22	1	1	343	1,7500	1,5000	2,2500	0,2297	0,68633
37	23	1	1	353	1,7500	2,1000	2,2500	0,1640	0,68200
25	24	0	1	348	2,5000	1,8000	2,5000	0,2809	0,69070

Tabla 27. Extracción de una parte del diseño experimental con 4 variables de estudio.**Fuente:** Autores

93

3.4.3 Sistemas auxiliares de control

Una pila de combustible para su óptimo funcionamiento y mejorar su eficiencia utiliza subsistemas de control que manipulan a los factores de estudios tanto variables de entrada como de salida de la pila, teniendo varias configuraciones de los sistemas a adaptarse desde los más simples a sistemas más complejos. A continuación, se presenta las configuraciones auxiliares de control para una celda PEM.

3.4.4 Suministro de Oxigeno

Para el suministro de oxígeno, el flujo de aire se filtra en forma de partículas a medida que se bombea a la celda de combustible desde la atmosfera a cierta presión antes mencionada. Poseen transductores de presión de aire que reciben señales para trabajar conjuntamente con la válvula de apertura variable controlada por pulsos en un sistema PWM para el ingreso de cierta cantidad de oxígeno necesario hacia a celda.

Figura 43. Sistema de control oxígeno para una celda PEM. Fuente: (*The McGraw-Hill Companies, 2007*)

3.4.5 Suministro de Hidrógeno

Este combustible se almacena en un tanque como gas comprimido, comandado por un sistema de válvulas, una reguladora de presión y una de suministro electrónico controlado por un solenoide comando por un sistema de pulsos PWM que controla el flujo másico al recibir señales eléctricas. De esta manera se controla la cantidad de hidrogeno que ingresa a la celda, el sistema es similar al que usa el oxígeno y se visualiza en figura 44.

Figura 44. Sistema de control oxígeno para una celda PEM. Fuente: (*The McGraw-Hill Companies, 2007*)

3.4.6 Control de temperatura

Para el control de temperatura, el principal componente es el módulo de control basado en señales de modulación de ancho de pulso que actúa en base a los valores que nos da un sensor de temperatura, comandando un electro ventilador con el fin de eliminar el exceso de calor en la celda, manteniendo el equilibrio de temperatura en la pila. En resumen, se detalla en el siguiente esquema de lazo cerrado el sistema de control para la temperatura.

Figura 45. Sistema de control de temperatura para pilas de combustible PEM. Fuente: (*The McGraw-Hill Companies, 2007*)

CAPITULO IV: Evaluación de resultados del análisis del modelo de celda de combustible para su desarrollo en el transporte.

Los resultados y su análisis e interpretación se exponen a continuación en el presente capitulo. Para el estudio, se simula el comportamiento en estado estable de las celdas de combustible donde se extrae las mejores condiciones de operación, obteniendo las mejores prestaciones en cuento al voltaje y densidad de corriente pese a las pérdidas que se generan teóricamente.

4.1 Convergencia de resultados

Durante el proceso de iteración para obtener las soluciones del modelado, es necesario controlar que el algoritmo de cálculo converge hasta la solución final. En términos generales se debe obtener cada vez soluciones más aproximadas a la solución final al incrementar el número de iteraciones como se muestra la gráfica residual en las componentes tanto de x como de y del oxígeno, hidrógeno, agua, energía, voltaje, conductividad protónica, contenido de agua, tienen tendencia a cero con el fin de estabilizar el resultado y al final de las mismas se observa un comportamiento lineal, lo que demuestra que el análisis llega a una convergencia en 200 iteraciones.

Figura 46. Grafica residual - Convergencia de resultados. Fuente: Autores

4.2 Efectos principales para la obtención de densidad de corriente y tensión.

El análisis de efectos principales nos muestra como cada una de las variables de estudio afectan directamente a la respuesta de manera diferente, es indispensable considerarlo como un factor importante ya que a través de ellos podemos observar cuál de estas variables generan cambios significativos.

La presión es la variable de estudio que más cambios significativos produce en la producción de densidad de corriente con un 76% en base a las demás variables, como se puede observar en la figura. Sin embargo, la temperatura en cierto modo influye con menos relevancia con 23%, pero de cierta forma radica una variación no tan significante como lo hace la presión. Las mezclas estequiometricas del hidrogeno y del oxígeno son variables que no tienen un grado de peso en la producción de corriente, pero son muy necesarias para identificar la cantidad de reactantes que va a necesitar la celda para conjuntamente con la presión y temperatura llegar a las prestaciones necesarias para el vehículo monoplaza de karting.

Figura 47.Grafica de efectos principales para el modelo de celda PEM. Fuente: Autores

En el modelo de estudio mientras exista cambios en los valores de presión se obtiene mejores densidades de corriente, como se puede ver en la figura 48, con 4atm de presión se genera $0.422 A/m^2$ siendo esta la mayor densidad de corriente para nuestro estudio. Así mismo mientras los valores de temperatura van disminuyendo en el rango de funcionamiento de la celda que varían desde los 338°K hasta los 358°K, los valores de corriente crecen, lo que demuestra que estas dos variables son las que más valor da a nuestro diseño de celda de combustible.

4.3 Curvas de Tendencia

No obstante, las curvas de tendencia de las variables de estudio más relevantes del análisis, indican cómo estas influyen con respecto a los resultados. En la figura 49 podemos ver la curva roja que posee una tendencia ascendente de la presión con respecto a la densidad de corriente.

Figura 49. Grafica Presión vs Densidad de corriente. Fuente: Autor.

La misma trayectoria va a ocurrir en la generación de tensión de la celda, ya que tanto la intensidad como el voltaje tiende a crecer en relación al aumento de presión.

Sin embargo, en las soluciones de estado estacionario la trayectoria que tiene la corriente y la tensión es descendente en relación a los valores de temperatura, aunque estos aumentan la curva decrece, esto indica su comportamiento dentro de la producción de potencia necesaria para la celda de combustible PEM que integraría el vehículo karting.

Figura 51. Grafica de Temperatura vs Densidad de corriente. Fuente: Autor.

Fuente: Autor

4.3.1 Proceso de validación de los parámetros necesarios para la operación del vehículo monoplaza de karting.

Sin embargo, mediante las corridas experimentales que se observan en la tabla 28 se obtiene las valoraciones de respuesta más óptimas, tanto de la densidad de corriente como de la tensión, cuyos valores abastecen lo necesario para la operación del vehículo monoplaza. Es importante destacar que valores excesivos de presión y temperatura pueden ser incontrolables en la generación de energía por lo que el propósito del presente estudio es adoptarse a las necesidades del vehículo de karting que utiliza una potencia para el motor de 5.9 kW, tomando en cuenta un sobredimensionamiento de potencia del 8% con más potencia de la requerida. A continuación, se detallan los valores de los resultados óptimos para la generación de energía necesaria para el karting, obtenida mediante el diseño experimental.

Tabla 28. Resultados necesarios para la operación del venículo monoplaza.
Fuente: Autor

Temperatura <i>K</i>	Presión atm	Estequiometría hidrógeno	Estequiometría oxígeno	Densidad de Corriente A/m^2	Tensión V
343	3,2500	1,5000	2,7500	0,4063	0,70400

Con estos valores óptimos necesarios para producir la potencia necesaria para el motor del vehículo, se corrobora realizando el siguiente calculo:

Para un valor de corriente de 0,4063 A/cm^2 se genera un valor de tensión de 0,704 V, lo cual con la siguiente ecuación podemos calcular la potencia de acuerdo al área activa y el número de celdas que conforman la pila.

$$P_{celda} = V_{celda} * I_{celda}$$
$$P_{celda} = 0.704V * 0.4063A/cm^{2}$$
$$P_{celda} = 0.2860 W/cm^{2}$$

El producto del área activa de la pila calculada anteriormente en la ecuación 2.4 y la potencia calculada de la celda nos da como resultado final la potencia que necesita la pila de combustible, para cubrir la necesidad del motor del vehículo, y se determina con la siguiente ecuación:

 $P_{Total Pila} = A_{pila} * P_{celda}$ $P_{Total Pila} = 22536.09 \ cm^2 * 0.2860 \ W/cm^2$ $P_{Total Pila} = 6445.32$ $P_{Total Pila} = 6.5kW$

4.4 Evaluación de resultados de la celda de combustible PEM mediante el software CAD-CAE.

La solución muestra sus respectivas gráficas donde se observará un mapa de contornos que integra diferentes colores de un parámetro especificado en cualquier plano de la celda. En la siguiente tabla se detalla cada componente de la celda con su respectiva solución para mostrar su resultado.

Tabla 29. Superficies analizadas en la celda PEM para mostrar la solución de los resultados. Fuente: Autor.

	I	Espec	ies					
				Densidad de	Conductividad	Contenido		
Región	H2	02	H2O	corriente	protónica	de agua	Voltaje	Temperatura
Placa Bipolar (A)				X			X	X
Canales de flujo								
(A)	X							
Capa difusora (A)	X			X				X
Catalizador (A)	x			X				X
Membrana					X	X		X
Catalizador (C)		x	X	X				X
Capa difusora (C)		x	X	X				X
Canales de								
Flujo (C)		X						
Placa Bipolar (C)				X			X	X

Luego de que todas las iteraciones han llegado a su fin por medio de post-procesamiento, es decir que la solución haya finalizado se muestra los resultados y son los siguientes:

4.4.1 Densidad de Corriente

La máxima densidad de corriente se encuentra en las superficies de los catalizadores y la capa difusora $60650 \frac{A}{m^2}$ debido a que ahí se da la separación de los electrones del gas reactante hidrógeno produciendo la corriente de la celda que va a dirigirse a capa difusora hasta llegar a las placas bipolares como se indica en la figura 53.

Figura 53. Densidad de corriente máxima. Fuente: Autores

La figura 54 presenta la densidad de corriente en las placas bipolares, donde el valor máximo se tiene en las costillas de la misma debido al contacto con la capa difusora de gas $17850\frac{A}{m^2}$.

Fuente: Autores

El valor de la densidad de corriente en el cátodo se muestra en la siguiente pantalla obteniendo el valor de 0,4065 $\frac{A}{cm^2}$.

Console		
adapt/	file/	solve/
adjoint/	mesh/	surface/
close-fluent	parallel/	views/
define/	plot/	
display/	report/	
> ssc		
cathode Cell curre	ent density in A/cm2 [0.	.406599199256296]
gura 55. Valor de la	densidad de corriente obt	tenida en el softwa
0	Fuente: Autor	

La figura 56 destaca la densidad de corriente en la superficie del catalizador, la mayor densidad 67750 $\frac{A}{m^2}$ se da en la parte donde el catalizador tiene contacto con las costillas de la placa bipolar debido a que la corriente va a fluir por esa parte debido a la conductividad eléctrica del material.

Figura 56. Densidad de corriente máxima en el catalizador del ánodo. Fuente: Autores.

El resultado proporcionado se muestra en la figura 57 donde la densidad mínima de corriente en la superficie del catalizador es $10715 \frac{A}{m^2}$ se da en la parte donde este tiene contacto con los canales de flujo pertenecientes al plato bipolar.

Figura 57. Densidad de corriente mínima en el catalizador del ánodo. Fuente: Autores

La densidad de corriente máxima $60650 \frac{A}{m^2}$ se da en la superficie de contacto entre la gdl y las costillas de la placa bipolar.

Figura 58. Densidad de corriente máxima en la capa difusora de gas del ánodo. Fuente: Autores

El valor mínimo de la densidad de corriente $10715 \frac{A}{m^2}$ se da en la superficie donde la capa difusora hace contacto con el gas reactante para esta parte el ánodo con el gas reactante (Hidrógeno)

Figura 59. Densidad de corriente mínima en la capa difusora de gas del ánodo. Fuente: Autores

La densidad de corriente máxima $60650 \frac{A}{m^2}$ se da en la superficie de contacto entre la gdl y las costillas de la placa bipolar

Figura 60. Densidad de corriente máxima en la capa difusora de gas del cátodo. Fuente: Autores

El valor mínimo de la densidad de corriente $10715 \frac{A}{m^2}$ se genera en la superficie donde la capa difusora hace contacto con el gas reactante para esta parte el cátodo con el gas reactante (Oxígeno)

Figura 61. Densidad de corriente mínima en la capa difusora de gas del cátodo. Fuente: Autores

La figura 62 evidencia la densidad de corriente en la superficie del catalizador, obteniendo como resultado $67750 \frac{A}{m^2}$ en la parte donde el catalizador tiene contacto con las costillas de la placa bipolar, ya que en estas áreas la corriente va a fluir a causa de la conductividad eléctrica del material.

Figura 62. Densidad de corriente máxima en el catalizador del ánodo. Fuente: Autores.

La figura 63 detalla la densidad de corriente en la superficie del catalizador, teniendo como resultado una densidad de $10715 \frac{A}{m^2}$, produciendo este valor debido a que tiene contacto con los canales de flujo de la plato bipolar.

Figura 63. Densidad de corriente mínima en el catalizador del ánodo. Fuente: Autores

4.4.2 Tensión

Así mismo mediante el post-procesamiento se obtiene el voltaje en el cátodo, como observa en la figura 64, el valor máximo de color rojo 0,704 V y mínimo de voltaje de 0.0436 Ven el ánodo de color azul

La diferencia de potencial eléctrico entre cada pared de las partes de la celda va mostrando colores diferentes al ir aumentando esta diferencia hasta llegar al cátodo de la celda.

Figura 65. Transición de voltaje del ánodo al cátodo. Fuente: Autores

4.4.3 Temperatura

La mejor configuración de la temperatura tal como se presenta la gráfica con un valor mínimo de temperatura 348 K en los exteriores de la celda, esta temperatura se mantiene constante durante el funcionamiento por medio de un sistema auxiliar de control de temperatura.

Fuente: Autores.

La figura 67 presenta el resultado que debido a las reacciones químicas que se dan en las partes interiores tales como catalizadores donde se separan los electrones y protones, membrana lugar donde atraviesan los protones y se concentran cierta cantidad de calor que es disipado por medio del agua que se genera en la misma, la capa difusora de gas y catalizadores tienen un máximo de temperatura en ciertas áreas de esas partes, alcanzando los 350.5°K.

Figura 67. Temperatura máxima. Fuente: Autores.

4.4.4 Fracción Molar de Hidrógeno

Se obtiene la fracción molar del hidrógeno a lo largo de los canales de distribución del reactante como se muestra en la figura 68.

Figura 68. Fracción molar del hidrogeno en los canales de la placa bipolar(Ánodo). **Fuente:** Autores.

Se presenta la fracción de masa del hidrógeno en los canales de flujo teniendo como concentración máxima 0,75 y una concentración mínima 0,59 en la parte inferior de los canales, la concentración disminuye de forma gradual a lo largo de los canales debido a la difusión del hidrógeno por la capa difusora a los catalizadores, los valores de concentración pueden mejorar con dimensiones menores pero debido a la maquinabilidad y el costo de la mano de obra, el costo de la pila de combustible aumentaría notablemente, la celda consta de un diseño rectangular que es el más comúnmente usado.

4.4.5 Fracción molar de Oxigeno

Se obtiene la fracción molar del Oxígeno a lo largo de los canales de distribución del reactante en el cátodo como se muestra en la figura 70.

Figura 70. Fracción molar del oxígeno en los canales de la placa bipolar(Cátodo). Fuente: Autores.

Se presenta la fracción de masa del Oxígeno en los canales de flujo teniendo como concentración máxima 0,19 y una concentración mínima 0,11 la concentración disminuye de forma gradual a lo largo de los canales debido a la dispersión del Oxígeno por la capa difusora a los catalizadores, los valores de concentración pueden mejorar con dimensiones menores pero debido a la maquinabilidad y valor de la mano de obra el costo aumentaría notablemente, la celda consta de un diseño rectangular que es el más comúnmente usado.

Fuente: Autores.

4.4.6 Contenido de agua

Se observa la cantidad de agua la membrana por la parte del cátodo donde se unen los protones del hidrogeno y electrones, con las moléculas del oxígeno generando el agua, esto hace que se mantenga correctamente hidratada la membrana aportando a la conductividad protónica y al enfriamiento de la celda, donde la mayor concentración de la misma se da en los canales y en la parte inferior de la misma debido a la gravedad.

Figura 72. Contenido de agua en la membrana por la superficie del cátodo. Fuente: Autores.

4.4.7 Conductividad Protónica

En la figura 73 se muestra la conductividad protónica en la superficie de la membrana ya que es la encargada de permitir el paso de los protones que posteriormente se disocian en el catalizador.

Figura 73. Conductividad Protónica en la membrana por la superficie del cátodo. Fuente: Autores

CONCLUSIONES

- Existen varias configuraciones de las celdas de combustible en el transporte, esto depende de la exigencia en cuanto a la densidad de corriente, tensión y potencia a generar, por lo tanto, con el estudio teórico se eligió la celda con membrana de intercambio protónico siendo un modelo apto para ser usados en el campo automotriz, destacando la forma de manipular sus variables de operación.
- En base a las características eléctricas, térmicas y económicas se estableció los materiales óptimos que forman las partes de la celda de combustible de intercambio protónico, tomando en cuenta el costo de adquisición de los mismo y sus propiedades mecánicas para su manufactura.
- A través del software CAD-CAE se determinó una solución numérica y gráfica, al manipular las variables de operación para obtener los resultados y poder direccionar nuestro diseño en base a las necesidades en cuanto a la producción de corriente y tensión requeridas para el vehículo monoplaza.
- Mediante la validación y procesamiento de los resultados, estos satisfacen los requerimientos de producción de corriente y tensión obteniendo un sobredimensionamiento de 8% más de potencia de lo requerido por el motor del vehículo monoplaza de karting que es 5,9 KW teniendo una potencia de celda de 6,5 KW.

- Según el análisis post procesamiento la presión es la variable más relevante en cuanto a la producción de corriente, esta variable de estudio produce cambios significativos en un 76% en base a las demás variables, y se estableció en 32500 Pa evidenciando el rendimiento requerido en la producción de densidad de corriente de 0,4063 A/cm² y una tensión de 0,704 V.
- Al aplicar la técnica de experimentación, variando la condición de temperatura se estableció la más óptima de 343 *K* con el propósito de que la cantidad de agua sea lo suficiente para mantener hidratada la membrana y que su dominio ante las variables de respuestas sean las suficientes para generar la potencia necesaria para el karting.
- Finalmente se logró determinar que, por medio de nuestro diseño con canales de flujo paralelos de 8 mm de ancho, se obtuvo en esta área las densidades de corriente más elevadas en toda la celda, pues esto repercute al tener una mayor superficie de contacto específicamente en las costillas de los canales con la capa difusora de gas.

RECOMENDACIONES

- Se debe tener en cuenta que es indispensable los sistemas de control de temperatura en estas celdas de combustible, pues los aumentos notables de la temperatura de operación harán que se generen densidades de corriente relativamente bajas a las necesarias.
- Es recomendable elegir correctamente el tamaño de los canales de flujo enfatizando el transporte de hidrógeno y oxígeno en cierta masa para realizar su proceso químico y generar la energía correspondiente.
- Por otra parte, es imprescindible considerar una buena elección del área activa y los materiales que componen la membrana intercambiadora de protones, fundamentalmente de ella depende la generación del voltaje a circuito abierto y potencia según sea la necesidad, pero sin dejar de lado los rangos de tensión que genera una celda PEM.
- Los cambios significativos de presión influyen de manera directa en la producción de corriente por lo tanto se recomienda elegir un sistema de control de presión que ayude a verificar los limites, con el fin de evitar el desborde de presiones elevadas que se puede volver incontrolable, produciendo daños en las partes interna de la celda.

REFERENCIAS

Agencia Francesa para el Desarrollo; Servicios Ambientales; Banco de Desarrollo de America Latina. (2016). Cuenca.

Almarza Cano, J. (2010). *Diseño y Fabricación de una Pila de Hidrógeno de Baja Potencia*. Cataluña: Escuela Técnica Superior de Ingenierías Industrial y Aeronáutica de Terrassa.

Álvarez Pelegry, E., & Menéndez Sánchez, J. (2017). *Energías alternativas para el transporte de pasajeros*. Bilbao: Orkestra.

APPICE. (Junio de 2002). Asociación Española de Pilas de Combustible. Recuperado el Julio de 2019, de https://appice.es/

ARCH. (2017). Agencia de Regulación y Control Hidrocarburífero. Quito.

Ariema Energía y Medioambiente. (2017). *ARIEMA*. Recuperado el 27 de Julio de 2019, de ARIEMA: http://www.ariema.com/index.php/es/

Centro Nacional de Experimentación de Tecnologías de Hidrógeno y Pilas de Combustible España. (2007). *Centro Nacional del Hidrógeno*. Obtenido de Centro Nacional del Hidrógeno: https://www.cnh2.es/

Dirección General de la Industria, Energía y Minas de la Comunidad Madrid. (2015). *Guía de la Energía en el sector del Automóvil.* Madrid: Fundación de la Energía de la Comidad de Madrid.

- Federación Internacional de Automovilismo. (2019). *Federación Internacional de Automovilismo*. Obtenido de https://www.fia.com/fia
- Fuel Cell Store. (2018). *Fuel Cell Store*. Obtenido de Fuel Cell Store: https://www.fuelcellstore.com
- FuelCellsEtc. (2018). *Fuel Cells Etc*. Obtenido de Fuel Cells Etc: https://www.fuelcellsetc.com
- Fundación para el Desarrollo de las Nuevas Tecnologías del Hidrógeno en Aragón. (2003). *Fundación para el Desarrollo de las Nuevas Tecnologías del Hidrógeno en Aragón*. Obtenido de www.hidrogenoaragon.org

Gretel Farias, N. (2016). *Análisis técnico económico de la tecnologia de celdas de combustible para la producción de energias alternas*. Querétaro: Posgrado Institucional Ciencia y Tecnología.

Hoogers, G. (2003). FUEL CELL TECHNOLOGY HANDBOOK. U.S.A: CRC PRESS.

Iranzo Paricio, J. (2010). *Desarrollo y Validación Experimental de un Modelo Computacional de Pila de Combustible PEM*. Sevilla: Departamento de Ingeniería Energética.

- Larminie, J., & Dicks, A. (2003). Fuel Cell Systems Explained Second Edition. England: Wiley & Sons Ltd.
- Linares Hurtado, J. I., & Moratilla Soria, B. Y. (2007). *El hidrógeno y la energía*. Madrid: Asociación Nacional de Ingenieros del ICAI.
- Mayandía Aguirre, A. (2009). Descripción y Modelado de una Pila de Combustible de Membrana de Intercambio Protónico. Madrid: Universidad Carlos III de Madrid.

- Real Federación Española de Automovilismo & Comisión Internacional de Karting. (2016). Competición Fórmula Zero. Argón, España: Universidad Pontificia Comillas.
- Santamarta, J. (2009). *El futuro del automovil es electrico*. Tecnica Industriak. Obtenido de Eco Inventos: https://ecoinventos.com/recarga-de-coches-electricos/
- Smitha, B., Sridhar, S., & Khan, A. (2005). Solid polymer electrolyte membranes for fuel cell. *Journal of Membrane Science*.
- The McGraw-Hill Companies. (2007). *Designing and Building Fuel Cells*. United States of America: McGraw-Hill.
- U.S. Department of Energy. (2004). Fuel Cell Handbook Seventh Edition. USA: EG&G Technical Services Inc.
- VEA. (2016). *Vehiculos con energias alternativas*. Recuperado el 18 de Julio de 2019, de Vehiculos con energias alternativas: http://www.vea.gob.es/

ANEXOS

Anexo A

Tabla de Diseño Experimental

Orden Corrida	Temperatura	Presión	Hidrógeno	Oxígeno	Densidad de Corriente	Tensión
1	343	3,25	1,5	2,75	0,4063	0,704
2	353	1,75	2,1	2,25	0,164	0,682
3	353	1,75	1,5	2,25	0,164	0,682
4	348	2,5	2,4	2,5	0,279	0,6905
5	343	3,25	1,5	2,75	0,4063	0,704
6	353	1,75	1,5	2,75	0,1665	0,682
7	348	1	1,8	2,5	0,122	0,678
8	353	1,75	2,1	2,75	0,1645	0,6819
9	353	3,25	2,1	2,25	0,3104	0,6932
10	343	1,75	1,5	2,75	0,2304	0,6863
11	348	2,5	1,2	2,5	0,2842	0,6906
12	348	2,5	1,8	2,5	0,2809	0,6907
13	343	3,25	2,1	2,25	0,3999	0,70315
14	343	3,25	1,5	2,75	0,4063	0,704
15	348	2,5	1,8	2,5	0,2809	0,6907
16	343	1,75	2,1	2,75	0,2263	0,68639
17	348	2,5	1,8	2,5	0,2809	0,6907
18	348	2,5	2,4	2,5	0,279	0,6905
19	348	2,5	1,2	2,5	0,2842	0,6906
20	353	3,25	1,5	2,25	0,3152	0,6931
21	348	2,5	1,8	2	0,2787	0,6907
22	343	1,75	1,5	2,25	0,2297	0,68633
23	353	1,75	2,1	2,25	0,164	0,682
24	348	2,5	1,8	2,5	0,2809	0,6907
25	358	2,5	1,8	2,5	0,1931	0,6845
26	343	1,75	2,1	2,25	0,2292	0,68638
27	348	4	1,8	2,5	0,4222	0,7045
28	348	2,5	1,8	2,5	0,2809	0,6907
29	348	2,5	1,8	2,5	0,2809	0,6907
30	348	2,5	1,8	2	0,2787	0,6907
31	343	3,25	1,5	2,25	0,4067	0,704
32	358	2,5	1,8	2,5	0,1931	0,6845

33	348	1	1,8	2,5	0,122	0,678
34	353	1,75	2,1	2,75	0,1645	0,6819
35	353	3,25	1,5	2,75	0,313	0,693
36	348	4	1,8	2,5	0,4222	0,7045
37	348	2,5	1,8	2,5	0,2809	0,6907
38	343	1,75	1,5	2,25	0,2297	0,68633
39	348	2,5	1,8	2,5	0,2809	0,6907
40	348	4	1,8	2,5	0,4222	0,7045
41	353	3,25	1,5	2,75	0,313	0,693
42	343	1,75	2,1	2,25	0,2292	0,68638
43	353	3,25	1,5	2,25	0,3152	0,6931
44	338	2,5	1,8	2,5	0,371	0,701
45	343	3,25	2,1	2,75	0,401	0,703
46	348	2,5	1,8	3	0,2827	0,6905
47	348	2,5	1,8	2,5	0,2809	0,6907
48	353	1,75	2,1	2,75	0,1645	0,6819
49	353	3,25	1,5	2,75	0,313	0,693
50	348	2,5	1,8	2,5	0,2809	0,6907
51	348	1	1,8	2,5	0,122	0,678
52	348	2,5	1,8	2,5	0,2809	0,6907
53	353	3,25	2,1	2,75	0,312	0,693
54	343	3,25	2,1	2,75	0,401	0,703
55	343	1,75	2,1	2,75	0,2263	0,68639
56	343	3,25	1,5	2,25	0,4067	0,704
57	348	2,5	1,8	2,5	0,2809	0,6907
58	343	1,75	1,5	2,25	0,2297	0,68633
59	348	2,5	1,8	2,5	0,2809	0,6907
60	343	1,75	2,1	2,25	0,2292	0,68638
61	348	2,5	1,8	3	0,2827	0,6905
62	348	2,5	1,8	2,5	0,2809	0,6907
63	343	1,75	1,5	2,75	0,2304	0,6863
64	358	2,5	1,8	2,5	0,1931	0,6845
65	338	2,5	1,8	2,5	0,371	0,701
66	343	3,25	1,5	2,25	0,4067	0,704
67	338	2,5	1,8	2,5	0,371	0,701
68	348	2,5	1,8	2	0,2787	0,6907
69	353	1,75	1,5	2,75	0,1665	0,682
70	343	3,25	2,1	2,25	0,3999	0,70315
71	353	1,75	1,5	2,25	0,164	0,682
72	353	1,75	2,1	2,25	0,164	0,682

73	348	2,5	2,4	2,5	0,279	0,6905
74	348	2,5	1,8	2,5	0,2809	0,6907
75	343	1,75	2,1	2,75	0,2263	0,68639
76	353	3,25	2,1	2,25	0,3104	0,6932
77	348	2,5	1,2	2,5	0,2842	0,6906
78	348	2,5	1,8	3	0,2827	0,6905
79	343	1,75	1,5	2,75	0,2304	0,6863
80	348	2,5	1,8	2,5	0,2809	0,6907
81	348	2,5	1,8	2,5	0,2809	0,6907
82	353	3,25	2,1	2,75	0,312	0,693
83	348	2,5	1,8	2,5	0,2809	0,6907
84	353	1,75	1,5	2,25	0,164	0,682
85	348	2,5	1,8	2,5	0,2809	0,6907
86	343	3,25	2,1	2,25	0,3999	0,70315
87	348	2,5	1,8	2,5	0,2809	0,6907
88	343	3,25	2,1	2,75	0,401	0,703
89	353	3,25	2,1	2,75	0,312	0,693
90	353	3,25	2,1	2,25	0,3104	0,6932
91	353	1,75	1,5	2,75	0,1665	0,682
92	348	2,5	1,8	2,5	0,2809	0,6907
93	353	3,25	1,5	2,25	0,3152	0,6931

Anexo **B**

Obtención de Densidad de Corriente y Tensión mediante el análisis del software CAD – CAE en base al diseño de experimental.

Análisis 1: Densidad Corriente = $0.406 \ A/cm^2$, Tensión = 0.704V

Análisis 2: Densidad Corriente = $0.164 \ A/cm^2$, Tensión = 0.682V

Console		
close-fluent define/ display/	parallel/ plot/ report/	views/
> ssc cathode Cell curren	t density in A/cm2	[0.1647554353236496]

Análisis 3: Densidad Corriente = $0.164 \ A/cm^2$, Tensión = 0.682V

Collable		
close-fluent define/ display/	parallel/ plot/ report/	views/
> <mark>ssc</mark> cathode Cell curr	ent density in A/cm2 [0	.1647554353236496]

Análisis 4: Densidad Corriente = 0.279 A/cm^2 , Tensión = 0.6905V

> ssc						
cathode	Cell	current	density	in	A/cm2	[0.2790482419454559]

Análisis 6: Densidad Corriente = $0.165 A/cm^2$, Tensión = 0.682V

Console		
aajoine,	100.0117	Surrace,
close-fluent	parallel/	views/
define/	plot/	
display/	report/	
> ssc		
cathode Cell curre	nt density in A/cm2 [1653114000917481

Análisis 7: Densidad Corriente = 0.122 A/cm^2 , Tensión = 0.678V

Calculation complete. ssc cathode Cell current density in A/cm2 [0.1220069708695213]

Análisis 8: Densidad de Corriente = $0.1645 A/cm^2$, Tensión = 0.71892V

Console		
> adapt/ adjoint/ close-fluent define/ display/	file/ mesh/ parallel/ plot/ report/	solve/ surface/ views/
> ssc cathode Cell current o	lensity in A/cm2	[0.164504653769933]

Análisis 9: Densidad de Corriente = $0.3104 A/cm^2$, Tensión = 0.7314 V

Console		
adapt/ adjoint/ close-fluent define/ display/	file/ mesh/ parallel/ plot/ report/	solve/ surface/ views/
> <mark>ssc</mark> cathode Cell curre	nt density in A/cm2	[0.3104749350969924]

Análisis 10: Densidad de Corriente = $0.2304 A/cm^2$, Tensión = 0.7237 V

Console		
adapt/ adjoint/ close-fluent define/ display/	file/ mesh/ parallel/ plot/ report/	solve/ surface/ views/
> ssc cathode Cell	current density in A/cm2	[0.230438190810334]

Análisis 11: Densidad de Corriente = $0.28344 A/cm^2$, Tensión = 0.72834 V

Análisis 12: Densidad de Corriente = $0.2809 A/cm^2$, Tensión = 0.72846 V

cathode Cell current density in A/cm2 [0.2809859123736151]

Análisis 13: Densidad de Corriente = $0.39954 A/cm^2$, Tensión = 0.74231 V

Contours of		
User Defined Scalars		
Electric Potential		
Min (v)	Max (v)	
-0.04252016	0.7423131	

Console		
adapt/	file/	solve/
adjoint/	mesh/	surface/
close-fluent	parallel/	views/
define/	plot/	
display/	report/	
> ssc		
	and democratic in a long to	0005400046154000

cathode Cell current density in A/cm2 [0.3995433246154882]

Análisis 16: Densidad de Corriente = $0.2263 A/cm^2$, Tensión = 0.72379 V

Contours of			
User Defined Scalars			
Electric Potential			
Min (v)	Max (v)		
-0.02617348	0.723794		

Console		
>		
adapt/	file/	solve/
adjoint/	mesh/	surface/
close-fluent	parallel/	views/
define/	plot/	
display/	report/	
> ssc		
cathode Cell	current density in A/cm2	[0.2263457310311031]

Análisis 20: Densidad de Corriente = $0.3152 A/cm^2$, Tensión = 0.7313 V

Análisis 21: Densidad de Corriente = $0.2787 A/cm^2$, Tensión = 0.7284 V

Contours of		
User Defined Scalars		
Electric Potential		
Min (v)	Max (v)	
-0.02986135	0.7284108	

Console		
adapt/ adjoint/	file/ mesh/	solve/ surface/
close-fluent define/ display/	parallel/ plot/ report/	views/
> ssc cathode Cell c	current density in A/cm2	[0.2787693650300261]

report/

cathode Cell current density in A/cm2 [0.406599199256296]

display/

> ssc

Análisis 35: Densidad Corriente = 0.313 A/cm^2 , Tensión = 0.693V

Console		
aajoine	100 0117	Surrace,
close-fluent	parallel/	views/
define/	plot/	
display/	report/	
> ssc		
cathode Cell currer	nt density in A/cm2 [0.3136538951493656]

Análisis 44: Densidad Corriente = $0.373 \ A/cm^2 Tensión = 0.701V$

Console		
nyp_init-1		
Done.		
Calculation complete.		
SSC		
cathode Cell current density in A/cm2 [0.3734363117657835]		

Análisis 45: Densidad Corriente = 0.401 A/cm^2 , Tensión = 0.703 V

close-fluent parallel/ views/
close-fluent parallel/ views/
define (
derine/ prot/
display/ report/
> ssc
cathode Cell current density in A/cm2 [0.4018996723873583]

Console		
aujoint,	me only	Surrace/
close-fluent	parallel/	views/
define/	plot/	
display/	report/	
	-	
> ssc		
cathode Cell current	density in A/cm2	[0.2954752504374111]

Análisis 53: Densidad Corriente = 0.3136 A/cm^2 , Tensión = 0.693V

Console		
aujoine,	Inc 311/	Julluoc/
close-fluent	parallel/	views/
define/	plot/	
display/	report/	
> ssc		
cathode Cell cu	rrent density in A/cm2	[0.3136538951493656]