UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA CARRERA DE INGENIERÍA MECÁNICA AUTOMOTRIZ

Trabajo de titulación previo a la obtención del título de Ingeniera Mecánica Automotriz

PROYECTO TÉCNICO:

"ANÁLISIS DE UN MOTOR CICLO OTTO ANTE DIFERENTES FACTORES ATMOSFÉRICOS MEDIANTE UN ESTUDIO COMPARATIVO DE PARÁMETROS DE IDENTIFICACIÓN PARA OBTENER EL RENDIMIENTO ENERGÉTICO"

AUTORA:

BELÉN ANAIS MOLINA PATIÑO

TUTOR:

ING. RAFAEL WILMER CONTRERAS URGILÉS, MSC

CUENCA - ECUADOR

2020

CESIÓN DE DERECHOS DE AUTOR

Yo, Belén Anais Molina Patiño con documento de identificación Nº 0150211951, manifiesto mi

voluntad y cedo a la Universidad Politécnica Salesiana la titularidad sobre los derechos

patrimoniales, en virtud de que soy autora del trabajo de titulación denominado: "ANÁLISIS DE

UN MOTOR CICLO OTTO ANTE DIFERENTES FACTORES ATMOSFÉRICOS

MEDIANTE UN ESTUDIO COMPARATIVO DE PARÁMETROS DE IDENTIFICACIÓN

PARA OBTENER EL RENDIMIENTO ENERGÉTICO", mismo que ha sido desarrollado

para optar el título de: Ingeniera Mecánica Automotriz, en la Universidad Politécnica Salesiana,

quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en mi condición de autora me

reservo los derechos morales de la obra antes citada. En concordancia, suscribo este documento en

el momento que hago entrega del trabajo final en formato digital a la Biblioteca de la Universidad

Politécnica Salesiana.

Cuenca, octubre del 2020

Belén Anais Molina Patiño

C.I. 0150211951

II

CERTIFICACIÓN

Yo, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: "ANÁLISIS DE UN MOTOR CICLO OTTO ANTE DIFERENTES FACTORES ATMOSFÉRICOS MEDIANTE UN ESTUDIO COMPARATIVO DE PARÁMETROS DE IDENTIFICACIÓN PARA OBTENER EL RENDIMIENTO ENERGÉTICO", realizado por Belén Anais Molina Patiño, obteniendo el *Proyecto Técnico* que cumple con todos los requisitos estipulados por la Universidad Politécnica Salesiana.

Cuenca, octubre del 2020

Ing. Rafael Wilmer Contreras Urgilés, MSc. C.I. 0104463328

Contractor (contractor)

DECLARATORIA DE RESPONSABILIDAD

Yo, Belén Anais Molina Patiño con documentación de identificación Nº 0150211951, autora del trabajo de titulación: "ANÁLISIS DE UN MOTOR CICLO OTTO ANTE DIFERENTES FACTORES ATMOSFÉRICOS MEDIANTE UN ESTUDIO COMPARATIVO DE PARÁMETROS DE IDENTIFICACIÓN PARA OBTENER EL RENDIMIENTO ENERGÉTICO", certifico que el total contenido del *Proyecto Técnico* es de mi exclusiva responsabilidad y autoría.

Cuenca, octubre del 2020

Belén Anais Molina Patiño

C.I. 0150211951

AGRADECIMIENTO

"La recompensa de nuestro trabajo no es lo que obtenemos, sino en quien nos convertimos"

A mis abuelitos Manuel y Rosana, que con su esfuerzo diario me ayudan a cumplir mis sueños, gracias por siempre creer en mí.

A mi papi Cesar, por cada una de las enseñanzas que dejaste en mí, por enseñarme el valor del trabajo, la lucha y la perseverancia, gracias por compartir conmigo el amor por mi carrera.

A mi mami María, por cada uno de tus consejos, por la fortaleza, por ser el mejor ejemplo de lucha y perseverancia, eres esa parte de mi vida tan bondadosa y llena de amor.

A mis hermanos, Raquelita, María del Cisne, Sebastián, Paula, Viviana por llenar mi vida de felicidad, por apoyarme y no dejarme vencer jamás; pero sobre todo a mi hermano Santiago, el ángel que me ha demostrado el amor y la bondad.

A Maricela y Camila, gracias por el amor, por cada uno de los momentos maravillosos que comparto con ustedes, por ser y por estar siempre.

A Belén, por todo lo que haces por mí, por la fortaleza en cada momento, gracias.

A Danilo, por no dejarme rendir nunca, por tu apoyo y cariño, gracias.

A mis familiares y amigos que me brindan su apoyo y me impulsan a ser mejor.

Quiero agradecer de manera muy especial al Ing. Wilmer Contreras, por compartir su gran conocimiento para la realización de este proyecto, por su disposición y por toda la entrega que ha sabido brindarme durante todo este tiempo.

Anais.

DEDICATORIA

Quiero dedicar este proyecto a mis abuelitos Manuel y Rosana, las personas más importantes en mi vida, quienes siempre han creído en mí y son mi ejemplo de esfuerzo y lucha diaria, quienes me impulsan a ser cada día mejor.

A mis padres Cesar y María, quienes han sido ejemplo de trabajo arduo y bondad, que con sus consejos han sabido guiar mi vida.

Para Andrés, quien siempre me saco una sonrisa, quien siempre tuvo un momento para un consejo, un chiste o una canción, gracias hermano por llenarme de tu energía y cuidarme desde las estrellas.

Anais.

ÍNDICE DE CONTENIDO

1	INTR	ODUCCIÓN	XV
2	PROB	LEMA	1
3	JUST	IFICACIÓN	1
4	OBJE	TIVOS	2
	4.1 Ol	ojetivo General	2
	4.2 Ol	ojetivos Específicos.	2
5	REVI	SIÓN BIBLIOGRÁFICA Y FUNDAMENTACIÓN TEÓRICA	3
	5.1 In	fluencia de diferentes factores atmosféricos en el rendimiento del motor Otto	3
	5.2 Es	timación del rendimiento energético.	3
	5.2.1	Dinámica de los vehículos como influencia en la demanda energética	3
	5.3 M	otores de combustión interna.	4
	5.4 Pa	rámetros del motor	5
	5.4.1	Cilindrada del motor	5
	5.4.2	Par motor.	6
	5.4.3	Potencia.	6
	5.5 Se	nsores Automotrices.	5
	5.5.1	Sensor de velocidad (VSS)	6
	5.5.2	Sensor de posición del cigüeñal (CKP).	7
	5.5.3	Sensor de posición del acelerador (TPS)	8
	5.5.4	Sensor de temperatura del refrigerante (ECT).	9
	5.5.5	Sensor de temperatura del aire de entrada (IAT).	10
	5.5.6	Sensor de presión absoluta (MAP).	10
	5.5.7	Sensor de oxígeno (O2).	11
	5.6 Er	nisiones contaminantes en motores de combustión interna.	12

	5.6	5.1	Factor Lambda	.12
	5.7	Fac	etores de emisión de gases contaminantes	.14
	5.8	Coı	mbustible	.15
	5.8	3.1	Gasolina	.15
	5.9	Sist	tema de diagnóstico OBD.	.15
Ó	MA	ARC	O METODOLÓGICO	.17
	6.1	Ana	álisis y selección de rutas	.17
	6.2	Det	terminación de los factores influyentes en el rendimiento energético del vehículo	.19
	6.3	Fac	etores del vehículo	.19
	6.3	.1	Características técnicas del vehículo	.20
	6.3	.2	Área frontal del vehículo	.20
	6.3	.3	Coeficiente de arrastre	.21
	6.3	.4	Coeficiente de resistencia a la rodadura	.21
	6.3	5.5	Masa del vehículo	.22
	6.3	.6	Radio dinámico	.22
	6.4	Fac	etores ambientales	.23
	6.4	.1	Densidad del aire	.23
	6.4	.2	Altitud	.24
	6.5	Fac	etores de operación del vehículo	.24
	6.6	Par	ámetros de obtención de datos	.24
	6.6	5.1	"Freematics One+" para adquisición y almacenamiento de datos provenientes	del
	OB	BD II	. 26	
	6.6		Dispositivo "Brain Bee AGS - 688" para adquisición y almacenamiento de datos	
	C		e escape	
	6.6	5.3	Medidor de revoluciones del motor.	.28
	6.6	.4	Tanque de combustible portátil.	.29

	6.6	6.5	Balanza digital.	30
	6.7	Prı	nebas estáticas del vehículo seleccionado	30
	6.8	Ins	trumentación del vehículo	31
	6.9	Prı	nebas en ruta del vehículo seleccionado	32
	6.9	9.1	Distribución de rutas	32
	6.10]	Lectura y visualización de datos	33
	6.11	(Cálculo del rendimiento energético del motor	36
	6.	11.1	Parámetros del vehículo	36
	6.	11.2	Prestaciones en rueda	36
	6.	11.3	Prestaciones requeridas por el motor en la ruta experimental	40
	6.	11.4	Determinación de factores de emisión	42
7	Al	NÁL	ISIS DE RESULTADOS	45
	7.1	An	álisis de cálculos de potencia calculada vs potencia obtenida en ruta	45
	7.2	An	álisis del Par motor calculado vs Par motor obtenido en ruta	48
	7.3	An	álisis del consumo de combustible	49
	7.4	An	álisis de emisión de gases obtenidos durante las pruebas dinámicas	50
	7.5	An	álisis de los datos obtenidos y estructurados por medio de métodos	estadísticos
	mult	ivari	ıbles	56
8	C	ONC	LUSIONES	60
q	RI	F F F 1	RENCIAS RIRI IOCRÁFICAS	61

ÍNDICE DE FIGURAS

Figura 1: Dinámica longitudinal del vehículo.	4
Figura 2: Esquema Motor de combustión interna.	5
Figura 3: Ubicación sensor VSS.	7
Figura 4: Principio de funcionamiento del sensor CKP.	8
Figura 5: Forma de onda del sensor CKP.	8
Figura 6: Curva de tensión de la señal de salida en función del ángulo de la mariposa de ac	eleración
y estructura del TPS.	9
Figura 7: Sensor ECT	9
Figura 8: Ubicación sensor IAT	10
Figura 9: Sensor MAP.	11
Figura 10: Señal oscilante del sensor de oxígeno.	11
Figura 11: Emisiones contaminantes en motores a gasolina.	12
Figura 12: Resumen de curvas de emisión de gases (Ventana Lambda).	13
Figura 13: Terminales conector OBDII	17
Figura 14: Ruta Cuenca - Guayaquil.	18
Figura 15: Perfil de altimetría ruta Cuenca - Guayaquil	18
Figura 16: Cálculo del área frontal de un vehículo.	21
Figura 17: Nomenclatura del neumático.	23
Figura 18: Vehículo utilizado para los recorridos	24
Figura 19: Freematics One+	26
Figura 20: Analizador de gases "Brain Bee AGS-688"	27
Figura 21: Medidor de revoluciones MGT-300 EVO.	28
Figura 22: Tanque de combustible.	29
Figura 23: Balanza digital.	30
Figura 24: Banco dinamométrico MAHA LPS 3000.	30
Figura 25: Adaptación del tanque de combustible externo.	31
Figura 26: Conexión de sonda en el escape del vehículo.	32
Figura 27: Toma de datos en Tres Cruces.	33
Figura 28: Fragmento de la lectura de datos obtenidos mediante Freematics One+	34
Figura 29: Menú de carga en software MATLAB.	34

Figura 30: Menú de carga en software MATLAB.	35
Figura 31: Pantalla de interfaz.	35
Figura 32: Fragmento de la programación de prestaciones en rueda del vehículo	39
Figura 33: Fragmento de la programación del cálculo de los Requerimientos de potenc	ia y par
motor del motor en ruta.	42
Figura 34: Fragmento de la programación para el cálculo del consumo de combustible	45
Figura 35: Fragmento de la programación de estimación de gases.	45
Figura 36: Comparación Potencia Calculada vs Potencia Obtenida, combustible 1	47
Figura 37: Comparación Potencia Calculada vs Potencia Obtenida, combustible 2	47
Figura 38: Comparación Par motor Calculado vs Par motor Obtenido, combustible 1	49
Figura 39: Comparación Par motor Calculado vs Par motor Obtenido, combustible 2	49
Figura 40: Variación del consumo de combustible.	50
Figura 41: Valores de CO ruta completa, Combustibles 1 y 2.	51
Figura 42: Valores de CO2 ruta completa, Combustibles 1 y 2.	51
Figura 43: Valores de O2 ruta completa, Combustibles 1 y 2	52
Figura 44: Valores de HC ruta completa, Combustibles 1 y 2	52
Figura 45: Valores de NOx ruta completa, Combustibles 1 y 2	53
Figura 46: Perfil de altimetría 3Cruces - Molleturo	53
Figura 47: Variación de potencia en el tramo Cuenca - 3 Cruces – Molleturo.	54
Figura 48: Consumo de combustible en el tramo Cuenca - 3 Cruces - Molleturo	54
Figura 49: Análisis de CO y CO2 en ruta Cuenca - 3 Cruces - Molleturo	54
Figura 50: Análisis de HC Y O2 en ruta Cuenca - 3 Cruces – Molleturo.	55
Figura 51: Análisis de NOx en ruta Cuenca - 3 Cruces – Molleturo.	55
Figura 52: Informe de construcción del modelo combustible 1.	56
Figura 53: Graficas de residuos combustible 1.	57
Figura 54: Informe de construcción de modelo.	58
Figura 55: Grafica de residuos combustible 2	59

ÍNDICE DE TABLAS

Tabla 1: Fórmulas aplicadas en dinámica de vehículos.	4
Tabla 2: Altitud de puntos geográficos.	19
Tabla 3: Características del vehículo	20
Tabla 4: Valores de coeficiente de resistencia a la rodadura en función del tipo de calzada	21
Tabla 5: Ficha técnica del vehículo.	25
Tabla 6: Especificaciones del dispositivo Freematics One+.	26
Tabla 7: Especificaciones de medición del dispositivo "BrainBee AGS-688"	27
Tabla 8: Características técnicas del equipo medidor de revoluciones.	29
Tabla 9: Características del tanque de combustible.	29
Tabla 10: Relaciones de transmisión Hyundai i30	40
Tabla 11: Valores obtenidos con el analizador de gases combustible Super.	43
Tabla 12: Valores de gases obtenidos en ruta, combustible super.	44
Tabla 13: Valores obtenidos con el analizador de gases combustible EcoPais.	44
Tabla 14: Valores de gases obtenidos en ruta, combustible Eco-País.	45
Tabla 15: Fracción de valores obtenidos con el combustible 1	46
Tabla 16: Fracción de valores obtenidos combustible 2.	46
Tabla 17: Fracción de valores obtenidos con el combustible 1.	48
Tabla 18: Fracción de valores obtenidos con el combustible 2	48

ÍNDICE DE ECUACIONES

Ecuación 1: Cilindrada unitaria del motor.	5
Ecuación 2: Cilindrada total del motor	6
Ecuación 3: Par motor.	6
Ecuación 4: Potencia motor.	6
Ecuación 5: Factor Lambda.	12
Ecuación 6: Factor de emisión para monóxido de carbono.	15
Ecuación 7: Factor de emisión para hidrocarburos.	15
Ecuación 8: Factor de emisión para óxidos de nitrógeno.	15
Ecuación 9: Área frontal del vehículo	20
Ecuación 10: Obtención de Radio Dinámico.	22
Ecuación 11: Ecuación gases ideales.	23
Ecuación 12: Densidad del aire.	23
Ecuación 13: Fuerza resistiva total	36
Ecuación 14: Fuerza de arrastre.	36
Ecuación 15: Resistencia a la pendiente.	37
Ecuación 16: Resistencia a la rodadura.	37
Ecuación 17: Resistencia a la inercia.	37
Ecuación 18: Par motor en rueda.	38
Ecuación 19: Potencia en rueda.	38
Ecuación 20: Energía producida en rueda.	39
Ecuación 21: Par motor requerido en ruta.	40
Ecuación 22: Potencia requerida en ruta.	41
Ecuación 23: Energía requerida en ruta.	41
Ecuación 24: Masa del aire.	42
Ecuación 25: Consumo de combustible.	43
Ecuación 26: Masa de combustible que se consume por segundo	43
Ecuación 27: Consumo de combustible en gramos por cada kilovatio hora	43

RESUMEN

Este proyecto analiza el funcionamiento de un motor ciclo Otto sometido a diferentes factores

atmosféricos, con la finalidad de obtener el rendimiento energético del motor en condiciones reales;

para tal efecto, previo al inicio de los ensayos, se examinan las condiciones geográficas de la ruta

Cuenca - Guayaquil, la cual es seleccionada por las notorias variaciones ambientales que presenta

para los vehículos automotores.

El vehículo utilizado para las pruebas en ruta, es equipado con los diferentes instrumentos de

adquisición de datos, tales como: Freematics One+, "Brain Bee AGS-688", tanque de combustible

externo, se considera utilizar dos tipos de combustibles, Super y Eco-país, para poder determinar

la influencia del combustible en la variación del rendimiento energético.

La información obtenida del motor en el recorrido, es filtrada y procesada con el software

MATLAB, de este modo, se obtienen los PIDs de cada uno de los sensores en su estado de

funcionamiento, lo que facilita su estudio, comparación y análisis.

Finalmente, se examina toda la información mencionada con anterioridad y se puede determinar

que la perdida de potencia del motor, al utilizar combustible el 1 (Eco-país), la pérdida de potencia

en relación a la altura es de 6.43% y con el combustible 2 (Super), la pérdida de potencia es de un

6,26 % cada 1000 m.s.n.m

Palabras Clave: Factores atmosféricos, rutas, gases de escape, combustible.

XIV

ABSTRACT

This project analyses the operation of the Otto cycle engine, subjected to different atmospheric

factors, in order to obtain the energy performance of the engine under real conditions; for this

purpose, prior to the start of the tests, the geographical conditions of the Cuenca - Guayaquil route

are examined, which is selected for the notorious environmental variations that presents for motor

vehicles.

The vehicle used for road testing, is equipped with the different data acquisition instruments, such

as: Freematics One+, gas analyzer "Brain Bee AGS-688", external fuel tank, is considered to use

two types of fuels, Super and Eco-country, to determine the influence of the fuel on the variation

in energy performance.

The information obtained from the engine in the route, is filtered and processed with the MATLAB

software, in this way, the PIDs of each of the sensors are obtained in their operating state, which

facilitates their study, comparison and analysis.

Finally, it is examined all the information mentioned above it can be determined that the loss of

engine power, when using fuel 1 (Eco-country), the loss of power relative to the height is 6.43%

and with fuel 2 (Super), the loss of power is 6.26% every 1000 m.s.n.m.

Keywords: Atmospheric factors, routes, exhaust gases, fuel.

XV

1 INTRODUCCIÓN.

La industria automotriz avanza constantemente con el objetivo de realizar mejoras en el desempeño de los sistemas en favor de conseguir mayores y mejores prestaciones del vehículo, dichas mejoras están ligadas a calibraciones y configuraciones de los diferentes sistemas del vehículo automotor, las mismas que son realizadas al considerar el nivel del mar como referencia. (Rivera, Chica, Zambrano, & Garcia, 2017)

Al realizar un recorrido extendido, el motor de un automóvil presenta comportamientos variables, esto debido a diversos factores, tales como: tipo de combustible utilizado, tipo de conducción y ciertos factores atmosféricos (temperatura, altitud, densidad). Dado que la topografía de nuestro país es variable, los motores de combustión interna presentan diferente respuesta en zonas a nivel del mar, en donde la densidad y la composición del aire tienen un comportamiento diferente, que, en zonas más elevadas, las mismas que modifican las prestaciones del vehículo, tales como las condiciones de combustión, y por ende la formación de contaminantes. (Lapuerta, Armas, Agudelo, & Sanchez, 2006).

La contaminación proveniente de los motores de los automóviles es una de las fuentes más influyentes en la generación de gases de efecto invernadero y está ligada específicamente con la disminución de la capa de ozono. A causa de sus componentes químicos, los diferentes tipos de combustibles disponibles en el país como: Ecopais y Súper, influyen directamente en el rendimiento del motor en base al requerimiento del mismo. (Guzmán Alex, 2018)

2 PROBLEMA.

Existen varios factores que afectan el comportamiento del vehículo, algunos de ellos proceden de elementos mecánicos, también existen factores propios del funcionamiento del vehículo lo cual genera desgaste del motor, sin embargo, los factores ambientales, como la temperatura y la presión atmosférica, resultan ser factores que no se pueden controlar al momento de requerir las mayores prestaciones posibles del vehículo, por lo que el rendimiento va a disminuir con respecto a dichos factores, por lo tanto es necesario analizar cómo influyen los parámetros atmosféricos en el rendimiento del vehículo.

La altitud de la ciudad de Cuenca es de 2550 m.s.n.m., esto genera en el motor una disminución de la potencia causada por el descenso de la presión atmosférica, dado que los niveles de oxígeno en el aire son menores, de esta forma se genera un incremento en la

emisión de gases contaminantes, y a su vez aumento en el consumo de combustible. (Rivera, Chica, Zambrano, & Garcia, 2017)

3 JUSTIFICACIÓN.

Con el desarrollo de este proyecto se determinará el comportamiento de un motor Otto bajo diferentes condiciones atmosféricas mediante la obtención de PID's y su posterior análisis, por lo cual, se realizará el estudio de rutas en las que existan variaciones de altitud y temperatura, dado que las condiciones de presión y temperatura atmosféricas son diferentes en altitudes sobre el nivel del mar. De manera que, para analizar el efecto sobre las prestaciones del motor, es indispensable estudiar el efecto sobre las condiciones termodinámicas (Lapuerta, Armas, Agudelo, & Sanchez, 2006), se considera los PID's más influyentes para el desarrollo de este proyecto, los cuales son: Sensor de posición del acelerador (TPS), Sensor de presión absoluta (MAP), Sensor de temperatura de aire de entrada (IAT), Sensor de temperatura refrigerante (ECT), entre otros.

Con los datos obtenidos se podrá realizar una comparación del comportamiento del motor ante estas variables para abrir un campo de estudio amplio sobre la utilización del vehículo.

4 OBJETIVOS.

4.1 Objetivo General.

Analizar un motor ciclo Otto ante diferentes factores atmosféricos mediante un estudio comparativo de parámetros de identificación para obtener el rendimiento energético.

4.2 Objetivos Específicos.

- Realizar el estado del arte de los factores atmosféricos sobre el funcionamiento del motor ciclo Otto mediante análisis previos para la determinación de las variables de influencia.
- Establecer el área geográfica considerando las variaciones de los factores atmosféricos para la selección de rutas.
- Realizar recorridos en las rutas seleccionadas para la obtención de información mediante un dispositivo de adquisición de datos.
- Analizar los datos obtenidos mediante estructuración y métodos estadísticos multivariables para determinar el rendimiento del motor ciclo Otto.

5 REVISIÓN BIBLIOGRÁFICA Y FUNDAMENTACIÓN TEÓRICA.

5.1 Influencia de diferentes factores atmosféricos en el rendimiento del motor Otto.

Los MCI requieren una mezcla precisa de aire y combustible para ponerse en marcha, algo simple de lograr en alturas sobre el nivel del mar, pero que no es tan factible al transitar en altitudes elevadas o a temperaturas extremas. La combustión es un procedimiento químico en el cual un combustible, en este caso la gasolina, se oxida rápidamente, por lo cual requiere de un comburente, el oxígeno, que se encuentra en el aire, el cual, debido a un incremento en la temperatura genera una reacción con el carbono del combustible, lo que forma una explosión (Payri & Desantes, 2011). El descenso de la presión y la temperatura atmosférica altera la composición del aire, esto causa una variación en las prestaciones de las máquinas térmicas (Lapuerta, Armas, Agudelo, & Sanchez, 2006), es por esto que se genera una pérdida de potencia por la disminución de la densidad del aire en altitudes superiores (Rivera, Chica, Zambrano, & Garcia, 2017).

El rendimiento indicado desciende en altitudes superiores al nivel del mar, debido a que la presión en el cilindro es inferior durante todo el ciclo del motor, no obstante, existen diferentes comportamientos que también intervienen, son relacionados con la incorporación del combustible, lo que ocasiona una disminución en la potencia indicada, esto afecta directamente a la economía y al medio ambiente, producto de un mayor consumo de combustible, menor generación de potencia y mayor concentración de contaminantes. (Lapuerta, Armas, Agudelo, & Sanchez, 2006)

5.2 Estimación del rendimiento energético.

5.2.1 Dinámica de los vehículos como influencia en la demanda energética.

Un vehículo en movimiento experimenta en su comportamiento direccional, problemas con ciertas fuerzas que ejercen resistencia en su desplazamiento, como se puede apreciar en la Figura 1.

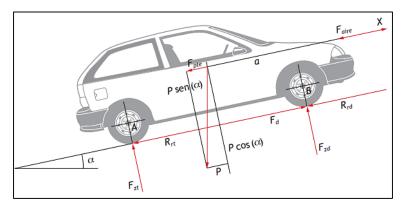


Figura 1: Dinámica longitudinal del vehículo. Fuente: (Fraija, 2006)

En la Tabla 1, se observan las fórmulas aplicadas en dinámica de vehículos:

Tabla 1: Fórmulas aplicadas en dinámica de vehículos. **Fuente**: (Aparicio, Vera, & Díaz, 1995)

Variable	Ecuación [Unidad]	Descripción de variables [Unidad]
		$C_d = ext{Coefficiente}$ de arrastre del vehículo [adimensional]
Fuerza de arrastre (Fd)	$F_d = \frac{1}{2}C_d * \rho * A * V^2$ [N]	ρ = Densidad del aire [Kg/m^3]
		A = Årea frontal del vehículo [m³]
		V = Velocidad lineal del vehículo [m/s]
		M = Masa del vehículo [Kg]
Resistencia a la pendiente [Rg]	$R_g = M * G * cos\theta [N]$	$g = Gravedad [m/s^2]$
		θ = Pendiente [rad]
		f_r =Coeficiente de resistencia a la rodadura [adimensional]
		M = Masa [kg]
Resistencia a la rodadura (Rx)	$R_x = f_r * M * g * cos\theta [N]$	$g = Gravedad [m/s^2]$
		θ = Pendiente [rad]
D 14 1 1 1 000	5 W BB	M = Masa del vehículo [kg]
Resistencia a la inercia (Ri)	$R_i = M * a [N]$	$a = aceleración [m/s^2]$
Fuerza en rueda (Fx) $F_x = F_d + R_g + R_x + R_i [N]$		$R_g + R_x + R_i$ [N]

5.3 Motores de combustión interna.

Los MCI son un mecanismo encargado de proporcionar energía mecánica a partir de energía térmica, la cual es contenida en un fluido compresible, Figura 2. La principal característica

de los MCI proviene del inicio de la combustión, el cual es producido gracias a que se genera una chispa entre los electrodos de una bujía. (Payri & Desantes, 2011)

En estos motores, el proceso de combustión se produce como consecuencia del avance de un frente de llama que produce un recorrido por la cámara de combustión, lo que separa en todo el tiempo dos zonas específicas, la de gases frescos y la de gases quemados. (Payri & Desantes, 2011)

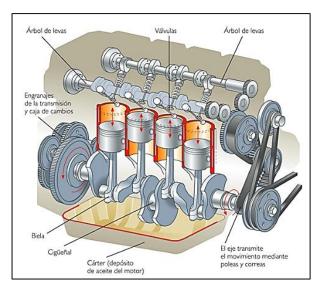


Figura 2: Esquema Motor de combustión interna. Fuente: (Yepes, 2016)

5.4 Parámetros del motor.

5.4.1 Cilindrada del motor.

La cilindrada unitaria del motor es el volumen generado por el desplazamiento del pistón en una carrera:

$$\mathbf{V_D} = \frac{\pi \mathbf{D^2}}{4} * \mathbf{S} \tag{1}$$

Ecuación 1: Cilindrada unitaria del motor.

En donde:

- V_D = Cilindrada del motor en m^3 .
- S = Carrera del pistón en m.
- **D** = Diámetro del cilindro en m.

Se considera como la cilindrada total, al resultado de la multiplicación de la cilindrada unitaria por el número de cilindros del motor:

$$\boldsymbol{V_T} = \boldsymbol{z} * \boldsymbol{V_D} \tag{2}$$

Ecuación 2: Cilindrada total del motor.

En donde:

- V_T = Cilindrada total del motor en m^3 .
- **z** = Número de cilindros.
- V_D = Cilindrada del motor en m^3 .

5.4.2 Par motor.

Es la fuerza con la que el pistón empuja a la muñequilla del cigüeñal mientras esta se encuentra a mitad de la carrera de trabajo. El par motor se mide multiplicado la fuerza que genera la presión en la carrera de trabajo por la distancia que tiene el brazo de la muñequilla. (Ferroil, 2018)

$$M_e = F * r \tag{3}$$

Ecuación 3: Par motor.

En donde:

- M_e= Par motor en Nm
- $\mathbf{F} = \text{Fuerza en N}$.
- $\mathbf{r} = \text{Radio de giro en m.}$

5.4.3 Potencia.

Se considera al trabajo desarrollado por unidad de tiempo. En un vehículo la potencia se desarrolla en el desplazamiento de la carga.

$$P = \frac{T}{t} \tag{4}$$

Ecuación 4: Potencia motor.

En donde:

- P = Potencia en KW.
- J = Trabajo en J.
- t = Tiempo en s.

5.5 Sensores Automotrices.

Los sensores automotrices pueden convertir una magnitud física en una magnitud eléctrica, para que sea comprendida por la ECU. Son los elementos encargados de monitorear el

funcionamiento variable del motor, envía esta información hacia el módulo de control para ser procesado y comparado con datos referenciales grabados en una memoria, lo que genera los parámetros adecuados de funcionamiento. (Vidal & Moreira, 2014)

A continuación, se detallan los sensores utilizados en este estudio:

5.5.1 Sensor de velocidad (VSS).

El sensor de velocidad o VSS por sus siglas en inglés (Vehicle Speed Sensor), es un dispositivo de captación magnética, generalmente de tipo Hall, envía a la ECM la información necesaria de velocidad para controlar el odómetro o el velocímetro, como se observa en la Figura 3; está compuesto de un imán, que gira y produce una onda senoidal de corriente alterna y proporciona la información sobre la velocidad del vehículo.

Cada una de las vueltas del eje generan 8 ciclos y la resistencia se encuentra entre 190 y 240 ohmios.

La ubicación de este sensor puede variar de acuerdo al fabricante, generalmente puede encontrarse en la transmisión, cable del velocímetro, en el tren trasero o en la rueda (Gárate, 2018).

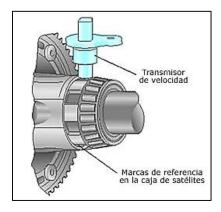


Figura 3: Ubicación sensor VSS. Fuente: (Gárate, 2018)

5.5.2 Sensor de posición del cigüeñal (CKP).

El sensor de posición del cigüeñal o CKP por sus siglas en inglés (Crankshaft Position Sensor) es un dispositivo que puede ser de tipo Hall o inductivo, está conformado por un imán al cual esta enrollado una espiral, como se observa en la Figura 4. Se encuentra cerca de una rueda fónica, misma que gira simultáneamente con el motor, esta tiene un número definido de dientes, que, al pasar por el entrehierro induce un voltaje. Por lo tanto, al existir

mayor velocidad en el cambio de flujo magnético, mayor será el voltaje generado en la bobina del sensor. (Laica, 2012).

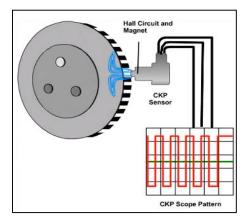


Figura 4: Principio de funcionamiento del sensor CKP Fuente: (Laica, 2012)

Se obtiene voltaje positivo al pasar un diente del rotor por el entrehierro, al estar alineados directamente el voltaje desciende a cero, es decir, se mantiene constante, como se aprecia en la Figura 5.

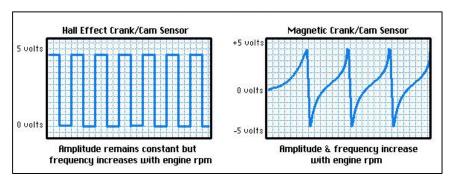
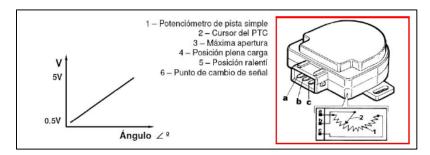


Figura 5: Forma de onda del sensor CKP. Fuente: (Laica, 2012)

Para que la ECM tenga una referencia del Punto Muerto Superior (PMS), existen dos diseños de ruedas fónicas principales:


- Mayor parte de los sistemas: 60 2 = 58 dientes.
- Ford: 36 1 = 35 dientes.

5.5.3 Sensor de posición del acelerador (TPS).

El sensor de posición del acelerador o TPS por sus siglas en inglés (Throtthle Position Sensor), funciona como un resistor variable que entrega una señal al módulo de control, Figura 6, cada vez que es accionado el acelerador lo que genera de esta forma una inyección

regulada de combustible. Gracias a la información obtenida por este sensor se adquiere información sobre la aceleración, marcha mínima, cargas parciales y plenas. Este sensor se encuentra ubicado en el cuerpo de aceleración del motor.

La información obtenida del sensor TPS está en función a la apertura de la mariposa de aceleración, por lo tanto, se considera de 0 a 100%. (Laica, 2012)

Figura 6: Curva de tensión de la señal de salida en función del ángulo de la mariposa de aceleración y estructura del TPS.

Fuente: (Denton, 2012)

5.5.4 Sensor de temperatura del refrigerante (ECT).

El sensor de temperatura del refrigerante o ECT por sus siglas en inglés (Engine Coolant Temperature), es un termistor de tipo NTC, computa la temperatura del refrigerante del motor; entrega una señal al módulo de control para adecuar la inyección de combustible y el tiempo de encendido, se puede apreciar en la Figura 7. Este sensor permite el accionamiento del electro ventilador.

Se encuentra dentro del bloque del motor o en la parte superior del cilindro, de esta forma provee contacto directo con el refrigerante. (Cangás & Yánes, 2015)

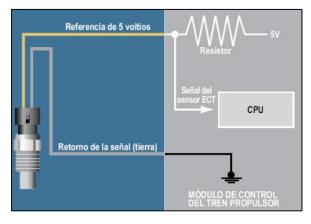


Figura 7: Sensor ECT. Fuente: (Denton, 2012)

5.5.5 Sensor de temperatura del aire de entrada (IAT).

El sensor de temperatura del aire de entrada IAT por sus siglas en inglés (Intake Air Temperature), Figura 8, es un termistor que monitorea la temperatura del aire que entra al motor, esta información es enviada hacia el módulo de control para corregir el tiempo de inyección ya que la densidad del aire que entra al motor, puede variar debido a la temperatura y a su vez ajusta la mezcla del carburante. (Correa, 2013)

Generalmente está ubicado en el acelerador, en el múltiple de admisión o en la parte posterior del filtro de aire.

- La señal frecuente de salida se traduce entre 90 y 160 hertzios.
- La tensión de alimentación en más de 5.0 voltios.
- La toma de masa no debe ser superior a los 0.08 voltios.

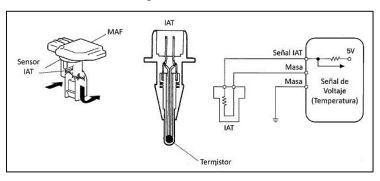


Figura 8: Ubicación sensor IAT. Fuente: (Laica, 2012)

5.5.6 Sensor de presión absoluta (MAP).

El sensor de presión absoluta del colector MAP por sus siglas en inglés (Manifold Absolute Pressure), es un sensor piezoeléctrico, es decir, es un dispositivo que contiene cristales de silicio los cuales varían su resistencia eléctrica a medida que es sometido a la presión del vacío del aire en el múltiple de admisión o colector, emite información para estimar el aire que entra al motor de manera indirecta, lo que detecta variables físicas, como se observa en la Figura 9. Sirve como barómetro, que mide la presión atmosférica, mientras que el motor está apagado y al encenderlo se acopla a la presión en ralentí.

Generalmente está ubicado en el múltiple de admisión o en ciertas ocasiones integrado directamente a la ECU. (Laica, 2012)

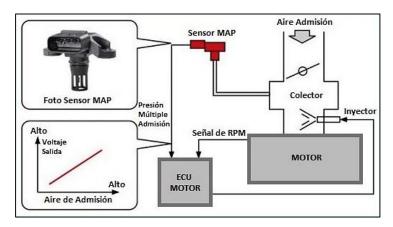


Figura 9: Sensor MAP. Fuente: (Gárate, 2018)

5.5.7 Sensor de oxígeno (O2).

El sensor de oxígeno o sonda lambda, computa el nivel de oxígeno que se encuentra en los gases de escape del vehículo. Emite una señal eléctrica, como se puede apreciar en la Figura 10, el valor de voltaje se envía a la ECU para establecer si la mezcla presenta mayor o menor cantidad de combustible, de esta forma se procede a realizar las correcciones necesarias para obtener una mezcla ideal de aire-combustible con niveles mínimos de emisión de gases.

Al existir menor cantidad de oxígeno en los gases de escape, se produce una señal de voltaje elevado, por lo contrario, al encontrar mayor cantidad de oxígeno en los gases de escape existe una diferencia pequeña y por consiguiente la señal del voltaje es bajo.

Suele ubicarse a la salida del múltiple de escape, en algunos casos, el fabricante coloca uno a la salida del múltiple de escape y otro en el catalizador, de esta forma mide la eficiencia total del sistema de emisiones. (Arízaga & Ordóñez, 2016)

Figura 10: Señal oscilante del sensor de oxígeno. Fuente: (Gárate, 2018)

5.6 Emisiones contaminantes en motores de combustión interna.

Las emisiones contaminantes de un vehículo, hacen referencia a la cantidad de sustancias que este emite hacia la atmosfera, como resultado de la combustión, Figura 11, lo que genera gases compuestos por sustancias como:

- **(CO):** Monóxido de carbono.
- (CO2): Dióxido de carbono.
- **(HC):** Hidrocarburos no combustionados.
- **(O2):** Oxigeno.
- (NOx): Óxido de nitrógeno.

Cada una de las emisiones contaminantes del motor refieren al buen o mal funcionamiento del mismo, con la información proporcionada por cada uno de estos, se puede observar la variación existente en relación al funcionamiento del motor en una ruta con diferentes factores.

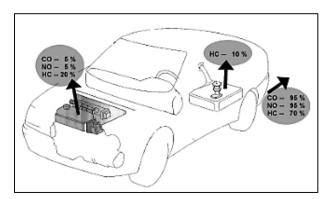


Figura 11: Emisiones contaminantes en motores a gasolina. Fuente: (Cives, 2011)

5.6.1 Factor Lambda

Relaciona la cantidad admitida de aire que entra al motor para su consumo, con la cantidad de aire que debería ingresar para conseguir una mezcla estequiométrica.

$$\lambda = \frac{Aire\ real\ admitido}{Aire\ teorico\ necesario} \tag{5}$$

Ecuación 5: Factor Lambda.

Al presentar una cantidad elevada de oxígeno en la mezcla y menor cantidad de combustible, se conoce como mezcla pobre, en este tipo de condiciones se facilita la aparición de oxidos de nitrógeno; si hay menor oxígeno en la mezcla y mayor cantidad de combustible, se conoce

como mezcla rica, en este tipo de condiciones se facilita la aparición de hidrocarburos no combustionados y monóxido de carbono. (Torres & Medina, 2017)

En la Figura 12 se aprecia la variación de los gases en función a la relación aire – combustible.

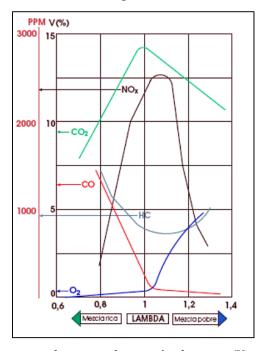


Figura 12: Resumen de curvas de emisión de gases (Ventana Lambda). Fuente: (Cives, 2011)

Monóxido de carbono (CO).

El monóxido de carbono es un gas producido por la insuficiente cantidad de oxígeno disponible en la combustión, por lo cual el carbono del combustible no es quemado en su totalidad. La homogeneidad de la mezcla es un factor influyente en los niveles de CO, es decir, al obtener una mezcla aire-combustible más homogénea menor será el porcentaje de CO encontrado en las emisiones contaminantes del motor.

Es un gas letal para los seres vivos, dado que el CO puede fijarse a la hemoglobina 5 veces mejor que el oxígeno, las altas concentraciones del mismo provocan la transformación irreparable de la hemoglobina en la sangre, esta transporta el oxígeno desde los pulmones a las células del organismo. (Sistemas auxiliares del motor, 2016)

• Dióxido de carbono (CO2).

Este gas es un buen indicador de la eficiencia del motor, se genera cuando el combustible que contiene carbono es quemado. A pesar de no ser un gas toxico, es un gas incoloro y no

combustible. Es el responsable de reducir el estrato de la atmosfera, la cual se encarga de proteger contra los rayos UV. (Sistemas auxiliares del motor, 2016)

• Hidrocarburos no combustionados (HC).

Los HC están presentes en los gases de escape, son producto del combustible que no ha sido quemado en su totalidad en el proceso de combustión, puede formarse por mezclas pobres en la combustión.

Depende de su estructura molecular, puede provocar irritaciones en la piel, ojos y conductos respiratorios debido a su contenido de benceno. Al tener una exposición prolongada con este gas puede causar efectos tales como mareos, dolores de cabeza, náuseas e incluso cáncer. (Sistemas auxiliares del motor, 2016)

Oxigeno (O2).

El O2 es el oxígeno que no fue utilizado durante la combustión. Al tener una mezcla ideal se debería consumir el combustible en su totalidad y al presentarse una combustión incompleta el oxígeno restante del proceso es expulsado por el sistema de escape.

• Óxido de nitrógeno (NOx).

Es el resultado de la combinación entre sí del oxígeno y el nitrógeno generado por las altas temperaturas que alcanza el motor durante el proceso de combustión. Es un gas altamente irritante y peligroso para la salud.

Este tipo de gas puede ser nocivo para la salud o causar afecciones al sistema respiratorio, los mismos que pueden generar daños permanentes en el ser humano. (Sistemas auxiliares del motor, 2016)

5.7 Factores de emisión de gases contaminantes

Los factores de emisión provienen de las fuentes móviles, los procesos industriales, la combustión de hidrocarburos, entre otros. Es muy importante evaluar el aporte realizado por el parque automotor en los inventarios de emisiones contaminantes, por lo tanto, para establecer los factores de emisión obtenidos, como lo dicta la normativa NTE INEN 2204 para pruebas dinámicas, los valores deben estar presentados en gramos de gas contaminante por cada kilómetro recorrido, por tal motivo se dispone de ecuaciones que relacionan la

densidad del combustible en (kg/m^3) y el consumo de combustible medido en (m^3/km) a través de las siguientes ecuaciones: (Jara & Pineda, 2019)

$$\frac{gCO}{km} = \frac{N * \frac{\%CO}{\%CO2}}{\frac{\%CO}{\%CO2} + \left(3 * \left(\frac{\%HC}{\%CO2}\right)\right) + 1} * \frac{\rho_{comb} * C_{comb}}{MW_{comb}}$$
(6)

Ecuación 6: Factor de emisión para monóxido de carbono.

$$\frac{\text{gHC}}{\text{km}} = \frac{N * \frac{\% \text{HC}}{\% \text{CO2}}}{\frac{\% \text{CO}}{\% \text{CO2}} + \left(3 * \left(\frac{\% \text{HC}}{\% \text{CO2}}\right)\right) + 1} * \frac{\rho_{\text{comb}} * C_{comb}}{\text{MW}_{\text{comb}}} \tag{7}$$

Ecuación 7: Factor de emisión para hidrocarburos.

$$\frac{gNO}{km} = \frac{N * \frac{\%NO}{\%CO2}}{\frac{\%CO}{\%CO2} + \left(3 * \left(\frac{\%HC}{\%CO2}\right)\right) + 1} * \frac{\rho_{comb} * C_{comb}}{MW_{comb}} \tag{8}$$

Ecuación 8: Factor de emisión para óxidos de nitrógeno.

En donde:

- N = Masa molar de cada reacción química.
- % = Valor porcentual de cada gas contaminante.
- ρ_{comb} =Densidad del combustible [kg/m³].
- C_{comb} = Consumo de combustible [m³/km].
- **MW**_{comb} = Peso molecular del combustible.

5.8 Combustible

Los combustibles son aquellos materiales que al ser encendidos liberan energía en forma de calor, se clasifican según su viscosidad o según su fluidez. La característica principal de un combustible es su poder calorífico. (Encalada & Ñauta, 2010)

5.8.1 Gasolina

La gasolina es una mezcla compleja de hidrocarburos que contiene propiedades de octanaje y volatilidad, es utilizada en motores de combustión interna con encendido provocado.

• El octanaje es una medida de la capacidad y calidad de la gasolina para auto encenderse, la escala para determinar su número de octanos se mide a partir de iso-octanos u n-heptanos y tiene un rango de medida que va de 0 heptanos a 100 octanos.

• La volatilidad es la capacidad del carburante a vaporizarse, está relacionado con las características ambientales como: temperatura, altitud, humedad.

Existen dos tipos de gasolinas disponibles en el país: Super y EcoPaís.

- La gasolina EcoPaís contiene un porcentaje de etanol proveniente de la caña de azúcar, de esta forma se intenta disminuir el impacto ambiental del combustible, tiene 85 octanos.
- La gasolina super es utilizada en vehículos que tienen una alta relación de compresión, resiste altas presiones y temperaturas, tiene 92 octanos. (Encalada & Ñauta, 2010)

5.9 Sistema de diagnóstico OBD.

El sistema de diagnóstico a bordo, generalmente conocido como OBD (On Board Diagnostics) nace como una solución para controlar la emisión de gases provocada por la combustión de los vehículos en los años 80's, se inició con la implementación de medios electrónicos capaces de controlar funciones y detectar fallos que puedan llegar a afectar tanto el sistema eléctrico como el sistema mecánico de los vehículos.

En el año 1991 se volvió obligatorio el uso del sistema OBD I el cual monitoreaba ciertos componentes que solo permitía que se controlaran las emisiones de gases contaminantes, debido a su limitada eficiencia, se presentó el sistema OBD II, el cual es utilizado en la actualidad. (Sánchez, 2017)

La introducción del sistema OBD II en los años 90's implicaba un control de los sistemas electrónicos del motor, el cual lee los códigos de avería (DTC's), obtiene información en tiempo real de sensores y de fallos electrónicos que están ligados directamente a los gases de escape, este sistema permite una inspección general del comportamiento del vehículo en tiempo real. (Arevalo & Ortega, 2016).

Para una comunicación eficaz entre el sistema OBD II y el módulo de control, se han diseñado cinco protocolos:

- ISO 9141-2.
- ISO 14230-4 (KWP 2000).
- SAE-J1850 VPW.
- SAE-J1850-PWM.
- KWP-1281 y KWP-2000.

En la Figura 13 se presentan los terminales del conector OBD II.

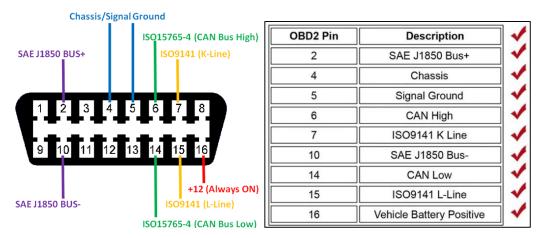


Figura 13: Terminales conector OBDII Fuente: (Sánchez, 2017)

6 MARCO METODOLÓGICO.

A continuación, se presentan los métodos utilizados para el desarrollo del presente trabajo, la descripción de los equipos utilizados, sus partes y cada una de sus funciones, la selección de rutas para realizar los recorridos correspondientes y de esta forma obtener cada uno de los datos que permitan establecer el objetivo de este proyecto técnico.

6.1 Análisis y selección de rutas.

El territorio ecuatoriano presenta una variedad notoria de altitud debido a su posición geográfica en la cordillera de los Andes, por esta razón existe una diversidad de climas y cambios considerables a cortas distancias, un ejemplo de ello es la ruta Cuenca - Guayaquil, la cual se utilizó en este estudio, en donde existen cambios de altura que van desde los 4200m.s.n.m hasta los 11m.s.n.m. cómo se observa en la Figura 14, en un recorrido de 3 horas con 20 minutos aproximadamente.

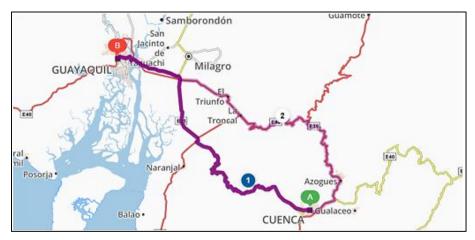


Figura 14: Ruta Cuenca - Guayaquil.
Fuente: Google Maps.

La variación en los factores atmosféricos y el tiempo de recorrido influyen en la selección de esta ruta para la ejecución de este estudio, en donde se analiza la diferencia existente en el rendimiento del motor cada 200 msnm, la alteración elevada de altitud que presenta esta ruta, como se observa en su perfil de altimetría, Figura 15, influye también en la diversificación de factores como presión atmosférica, temperatura y humedad, lo que genera zonas que reciben mayor influencia de masa de aire, menor temperatura o mayor presión atmosférica, debido a que, la temperatura desciende un grado Celsius (°C) por cada 200 metros de altitud sobre el nivel del mar. (Caiza & Portilla, 2010)

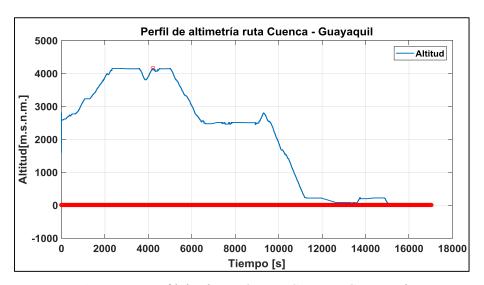


Figura 15: Perfil de altimetría ruta Cuenca - Guayaquil. Fuente: Autora.

Debido a que en esta ruta existe gran variedad geográfica, se puede dividir la misma en puntos claves, **Tabla 2:** Altitud de puntos geográficos.

Tabla 2: Altitud de puntos geográficos. **Fuente:** Autora.

Sector	Altitud
Mirador Tres cruces	4200 msnm
Cuenca	2550 msnm
Molleturo	2467 msnm
Tamarindo	170 msnm
Boliche (Yaguachi, Guayas)	11 msnm

Al llegar a cada uno de los lugares antes mencionados, se procede a obtener la información del consumo de combustible existente entre un lugar y otro, posterior a ello, se realiza un recorrido de 10 a 15 minutos en cada uno de los puntos, tiempo estimado en el que el vehículo se adapta a las diferentes condiciones atmosféricas en las que se encuentra cada una de las zonas especificadas y de esta forma se obtiene información real del comportamiento del motor en ese tramo.

Es importante mencionar que se utilizan dos tipos de combustible "EcoPais" y "Super", esto con el fin de analizar la influencia del combustible en la variación del rendimiento energético a lo largo de la ruta; para el recorrido "Tres cruces – Boliche" se utiliza el combustible 1 (EcoPais) y en el recorrido "Boliche – Tres cruces" se utiliza el combustible 2 (Super).

6.2 Determinación de los factores influyentes en el rendimiento energético del vehículo.

Se consideran los factores más importantes para que el vehículo pueda pasar de su estado de reposo a una fase de desplazamiento. Los factores a considerar se dividen en tres grupos diferentes:

- Factores del vehículo.
- Factores ambientales.
- Factores de operación del vehículo.

6.3 Factores del vehículo

Las características técnicas del vehículo son utilizadas para el cálculo del rendimiento energético del motor, se consideran los siguientes parámetros:

- Área frontal del vehículo.
- Masa del vehículo.
- Coeficiente de arrastre.
- Coeficiente de resistencia a la rodadura.
- Radio dinámico.

6.3.1 Características técnicas del vehículo

Las características del vehículo son significativas para el cálculo de la demanda energética, dichos valores se obtienen directamente del manual del fabricante del vehículo, presentados en la Tabla 3:

Tabla 3: Características del vehículo **Fuente:** (Hyundai, 2014)

Cilindraje [cc]	1800
Par motor [Nm] / RPM	178.48 / 4700
Potencia [KW] / RPM	110.36 / 6300
Área frontal $[m^2]$	$2.1075 m^2$
Peso en vació [kg]	1840

6.3.2 Área frontal del vehículo

El valor del area frontal del vehiculo se obtiene directamente del manual del fabricante o puede ser calculado mediante la fórmula matematica expresada en la ecuación 9, la cual emplea los valores de ancho y largo del vehiculo medidos como se aprecia en la Figura 16 y multilicados por el factor de aproximación, que en este caso es de f = 0.8.

$$A_f = f * b * h \tag{9}$$

Ecuación 9: Área frontal del vehículo.

En donde:

- **b** = Ancho del vehículo [m]
- **h** = Altura del vehículo [m]

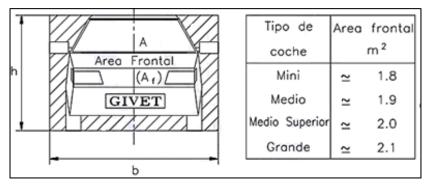


Figura 16: Cálculo del área frontal de un vehículo. Fuente: (Cives V, 2004)

6.3.3 Coeficiente de arrastre

Al encontrarse en movimiento, los vehículos están sometidos a diferentes fuerzas opuestas, mismas que pueden ser agua o aire, las que experimentan una fuerza de resistencia a su movimiento, denominada fuerza de arrastre el cual involucra un coeficiente C_d (Coeficiente de arrastre) (Orozco & López, 2018).

En este trabajo, el valor del coeficiente de arrastre viene dado por el manual del fabricante.

$$C_d = 0.31$$

6.3.4 Coeficiente de resistencia a la rodadura

Es una fuerza que se opone al movimiento del vehículo, se genera por la deformación de la rueda durante la rotación de esta. Depende de diferentes factores como lo son: el peso del vehículo, dimensiones y estructura de los neumáticos, presión de inflado, tipo de calzada y la velocidad en la que se encuentra el vehículo en su recorrido (Aparicio, Vera, & Díaz, 1995). El coeficiente de resistencia a la rodadura es un valor adimensional. Se puede apreciar en la Tabla 4, los diferentes valores obtenidos de la página 48 del libro "Teoría de los Vehículos Automóviles".

Tabla 4: Valores de coeficiente de resistencia a la rodadura en función del tipo de calzada. **Fuente:** (Aparicio, Vera, & Díaz, 1995).

Tipo de vehículo	Superficie		
Tipo de venicaio	Hormigón o Asfalto	Dureza Media	Arena
Turismos	0,015	0,08	0,30
Camiones	0,012	0,06	0,25
Tractores	0,020	0,04	0,20

6.3.5 Masa del vehículo

La masa del vehículo es un parámetro importante para la determinación del rendimiento energético, en este caso se utiliza la masa total del vehículo, adicional a ello la masa de cuatro pasajeros y un peso complementario que hace referencia al equipamiento del vehículo para la toma de datos en sus diversas pruebas.

6.3.6 Radio dinámico

Hace referencia al radio que se genera en el neumático al experimentar una deformación por el peso del vehículo. Para realizar el cálculo del mismo, se debe utilizar la formula expuesta en la ecuación 9, al considerar las características técnicas que brinda el neumático.

$$r_d = \frac{\left(A_{sección} * \left(\frac{R_{aspecto}}{100}\right) + \frac{R}{2}(25, 4mm)\right)}{1000} \tag{10}$$

Ecuación 10: Obtención de Radio Dinámico.

En donde:

- **r**_d= Radio dinámico [m].
- $A_{sección}$ = Ancho de sección del neumático [mm].
- R_{aspecto}= Relación de aspecto [%].
- **R**= Radio del neumático (Rin) en [pulgadas].

Para este estudio se utiliza un neumático 205 / 55 R16, para ello se debe conocer la nomenclatura del neumático, detallado en la Figura 17, en donde:

- Altura (%)
- Ancho (mm)
- Diámetro (pulgadas)

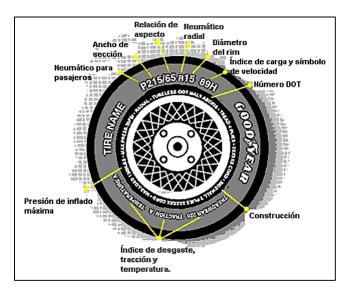


Figura 17: Nomenclatura del neumático. Fuente: ("CONAE", 2012)

6.4 Factores ambientales

La influencia de los parámetros ambientales en este estudio es muy importante, dado que las pruebas dinámicas se realizan, como se explica con anterioridad, en una ruta con una variación de altitud que va desde 11 a 4150 m.s.n.m. en estas condiciones, la densidad del aire y la temperatura ambiente varían notoriamente lo que provoca cambios en las prestaciones del motor.

6.4.1 Densidad del aire

La variación de la presión y la temperatura atmosférica influyen directamente a la densidad del aire y su composición, generando una variación en las prestaciones de toda máquina térmica. (Lapuerta, Armas, Agudelo, & Sanchez, 2006)

La densidad del aire se determina con la ecuación de estado de gas ideal:

$$\mathbf{P} * \mathbf{v} = \mathbf{R} * \mathbf{T} \tag{11}$$

Ecuación 11: Ecuación gases ideales.

O bien,

$$\rho = \frac{P}{R * T} \tag{12}$$

Ecuación 12: Densidad del aire.

En donde:

• **P** = Presión ambiental [kPa].

- $\mathbf{v} = \text{Volumen espec}$ ifico $[m^3]$.
- **T** = Temperatura grados Kelvin [K].
- **R** = Constante del gas $\left[\frac{kJ}{kg*K}\right]$.
- ρ = Densidad del aire [kg/ m^3].

6.4.2 Altitud

La variación de altitud en la ruta establecida representa cambios drásticos en la temperatura ambiente y en la presión atmosférica, influye directamente en la concentración de oxígeno que existe en el aire, en los motores, el rendimiento indicado disminuye debido a que la presión en el cilindro es menor. (Lapuerta, Armas, Agudelo, & Sanchez, 2006)

6.5 Factores de operación del vehículo

Los factores de operación considerados en este estudio son: la velocidad, la aceleración y designar un solo conductor para la toma de datos, de esta forma se mantiene un ritmo de conducción constante y así, la información obtenida durante el ciclo de prueba dinámico es eficaz.

6.6 Parámetros de obtención de datos

La obtención de datos se realiza mediante diferentes dispositivos presentados a continuación, los cuales permiten obtener datos en tiempo real, en sus diferentes condiciones, para ello se trabaja con el vehículo Hyundai i30, Figura 18, en la versión de 1,8 litros de 148 caballos, es uno de los modelos más ecológicos gracias a su bajo nivel de emisiones y alto rendimiento por galón. (Hyundai, 2014)

Figura 18: Vehículo utilizado para los recorridos. Fuente: Autora.

En la Tabla 5 se presenta la ficha técnica del vehículo.

Tabla 5: Ficha técnica del vehículo. **Fuente:** (Hyundai, 2014)

2014)			
2014, 1800 cm ³			
1.8 DOHC D-CVVT			
MPI			
16			
148 / 6,500			
18.2 / 4,700			
1,797			
Gasolina			
Mecánica de 6 velocidades			
cción			
McPherson Multi-link			
Eje de Torsión			
Asistida electrónicamente			
cidad			
4,300			
1,780			
1,470			
2,650			
1,328			
14			
14			
4/5			
378			
5.3			
cos			
D: 11 .:1 1			
Discos Ventilados			
Discos Ventilados Discos			

6.6.1 "Freematics One+" para adquisición y almacenamiento de datos provenientes del OBD II.

Es un dispositivo que se conecta al socket de 16 pines del vehículo, en este caso particularmente al puerto OBDII y obtiene datos en tiempo real de la ECU, Figura 19, los mismos que pueden ser almacenados en una memoria interna o en una tarjeta microSD. Consta de un sensor de movimiento 9-DOF (9 grados de libertad) y posiblemente algunos sensores externos. Es un hardware de código abierto, incorpora SDK (bibliotecas Arduino) y firmware (bocetos Arduino). (Gárate, 2018)

Figura 19: Freematics One+. Fuente: (Huang, 2013).

En la Tabla 6 se presentan las características generales del dispositivo "Freematics ONE +":

Tabla 6: Especificaciones del dispositivo Freematics One+. **Fuente:** (Huang, 2013)

Especificaciones del d	ispositivo Freematics ONE +
Controlador Principal	Espressif ESP32
Transceptor	Construido HT40
Red inalámbrica	Bluetooth, contiene modo dual
Suplemento	Co - procesador STM - 32
Rastreador de desplazamiento	Sensor MPU - 9250
Dispositivo GPS	M8030 10Hz
Comunicación inalámbrica	SIM800L o SIM5360 para red celular
	80 MHz: 20 mA (Wifi Inactivo)
Potencia nominal	80 MHz: 50 mA (Wifi Activo)
	80 Hz: 180 mA (3G Activo)

6.6.2 Dispositivo "Brain Bee AGS - 688" para adquisición y almacenamiento de datos de gases de escape.

Es un dispositivo Figura 20, equipado con una cámara de medición marca SENSORS la cual garantiza extremada precisión en la toma de datos, cuenta con las siguientes características:

- Función automática de calibración a CERO.
- Tiempo de calentamiento menor a 10 minutos.
- Sistema de filtrado reforzado y con trampa de agua.
- Pruebas automáticas para residuos de HC y vacío.
- Auto prueba y auto diagnóstico.
- Compensador de altura.
- Medición inalámbrica vía radio de RPM y temperatura de aceite con el accesorio MGT-300/R (opcional).
- Pantalla LCD con iluminación de fondo.
- Software para PC de múltiples aplicaciones.
- Conexión a PC vía Cable USB. Opcionalmente vía BLUETOOTH.
- Impresora térmica de alta velocidad.
- Mide: HC, CO, CO2, O2.
- Cálculo de Lambda y CO corregido.
- Habilitado para medición de NOx con sensor opcional.

Figura 20: Analizador de gases "Brain Bee AGS-688"
Fuente: (Automotive)

El equipo "Brain Bee AGS-688" funciona en modo estático y dinámico, obtiene directamente los valores de emisiones a través del tubo de escape mediante la sonda suministrada. Al

finalizar el análisis, los resultados de las pruebas pueden ser impresas o se pueden leer los datos obtenidos en el ordenador enlazado. (Automotive)

En la Tabla 7, se presentan los detalles de medición del dispositivo de medición de gases.

Tabla 7: Especificaciones de medición del dispositivo "BrainBee AGS-688".

	Fuente: (Aut	tomotive).	
Parámetro	Escala	Unidad	Resolución
CO	0 - 9.99	% vo1.	0.01
CO2	0 – 19.9	% vo1.	0.1
HC hexano	0 – 9999	PPM	1
O2	0 – 25	%	0.01
NOx	0 - 5000	PPM	10
Lambda	0.5 - 5.0		0.001
Revoluciones	300 – 9990	min-1	10
motor			
Temperatura	20 - 150	∘ <i>C</i>	1
aceite			

6.6.3 Medidor de revoluciones del motor.

El tacómetro de rpm y temperatura MGT-300 EVO, transmite los valores grabados al receptor a través de Bluetooth o USB, registra las revoluciones del por la onda de la señal de carga de la batería del automóvil o por el transmisor de vibración magnética, por otro lado, mide la temperatura del motor gracias la sonda de temperatura con la que cuenta el equipo para todos los vehículos a gasolina y diésel, mediante conexión Bluetooth.

En la Figura 21 se presenta el equipo utilizado.

Figura 21: Medidor de revoluciones MGT-300 EVO. Fuente: (Automotive).

A continuación, en la Tabla 8 se detallan las características técnicas del equipo.

Tabla 8: Características técnicas del equipo medidor de revoluciones. **Fuente**: (Automotive).

200 – 19990
0 – 20
Vía USB 2.0 o Bluetooth
200 x 100 x 30mm
385g

6.6.4 Tanque de combustible portátil.

La obtención y medida del consumo de combustible se obtiene mediante la adaptación de un tanque de combustible portátil, Figura 22, al cual se le incorpora la bomba de combustible del vehículo utilizado para las pruebas, de esta manera se puede medir el consumo de combustible, se pesa el tanque en cada una de las rutas que se seleccionaron previamente.

Figura 22: Tanque de combustible. Fuente: Autora.

En la Tabla 9, se presentan las características del tanque de combustible utilizado.

Tabla 9: Características del tanque de combustible. **Fuente:** (Jara & Pineda, 2019)

Características	Detalle	Unidad
Capacidad	1.58	ga1
Alto	250	mm
Ancho	170	mm
Largo	270	mm
Presión bomba de	3.1	bar
combustible		
Alimentación	12	V

6.6.5 Balanza digital.

La obtención del consumo de combustible en cada uno de los puntos seleccionados en las rutas se obtiene gracias a una balanza digital portátil como se muestra en la Figura 23, la cual cuenta con:

- Capacidad máxima de 30Kg.
- Batería interna recargable.
- Plataforma de acero inoxidable 33x24 cm.
- Pantalla digital LCD con doble visor.

Figura 23: Balanza digital.
Fuente: Autora.

6.7 Pruebas estáticas del vehículo seleccionado

Se realizan pruebas estáticas en el vehículo que permiten caracterizar el mismo previo a las pruebas dinámicas, las pruebas se realizan en el banco dinamométrico MAHA LPS 3000, como se indica en la Figura 24, el mismo que tiene un freno dinamométrico de corrientes parasitas que genera carga y así mide la fuerza tractora y la potencia simultáneamente.

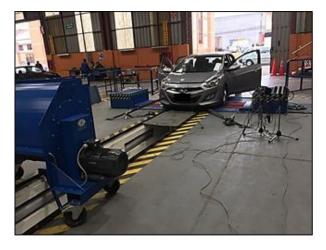


Figura 24: Banco dinamométrico MAHA LPS 3000. Fuente: Autora.

Este banco cuenta con una sección para realizar mediciones de potencia, par motor y consumo de combustible de vehículos pequeños y camiones hasta de dos ejes. Adicionalmente se pueden tomar medidas de emisiones para vehículos a gasolina y diésel. Las pruebas se ejecutan al montar el vehículo de manera que, las ruedas motrices tengan contacto con los rodillos del banco, posterior a ello, el vehículo debe ser anclado por medio de fajas para un mejor agarre entre ruedas y rodillo. Se acopla la velocidad del rodillo con la velocidad de las ruedas del vehículo. Sincronizadas estas velocidades, se desarrollan las pruebas de potencia y par motor. Conforme se acelera el motor del vehículo, se grafican los diferentes parámetros medidos en la pantalla del computador del banco de pruebas, así como sus resultados en función de la velocidad angular del motor.

6.8 Instrumentación del vehículo.

El vehículo es equipado previo al recorrido seleccionado, se utilizan los dispositivos antes descritos, como lo son: Freemathics One+, Analizador de gases "*Brain Bee AGS-688*", balanza digital y a su vez, se realiza la adaptación de un tanque de combustible externo como se aprecia en la Figura 25, para realizar la medición del consumo de combustible en cada una de los puntos fijados de la ruta. El tanque de combustible va adaptado al vehículo con mangueras, acoples y correas plásticas, de esta forma se adecua la bomba de combustible propia del vehículo al tanque de combustible portátil.



Figura 25: Adaptación del tanque de combustible externo. Fuente: Autora.

La información de los gases que emite el vehiculo deben ser tomados en tiempo real durante toda la ruta; se usa un "Powerstrip inverter Duracell" para proporcionar energía al analizador

de gases y al computador que recoge los datos que se obtienen mediante la sonda que va conectada al escape del vehículo, Figura 26.

Figura 26: Conexión de sonda en el escape del vehículo.

Fuente: Autora

6.9 Pruebas en ruta del vehículo seleccionado

Mediante las pruebas en ruta se obtiene la información de cada uno de los sensores del motor, el consumo de combustible y las emisiones contaminantes que este genera durante un ciclo de conducción real.

6.9.1 Distribución de rutas

La ruta Cuenca - Guayaquil cuenta con un recorrido aproximado de 196.3 km, al ser esta una ruta con notables cambios de altitud, temperatura y humedad, se dispone a fragmentar el recorrido para definir puntos específicos en donde las condiciones atmosféricas presenten cambios notables y de esta forma se puede realizar una toma de datos efectiva.

Los puntos seleccionados son distribuidos de la siguiente manera:

- Cuenca Tres Cruces.
- Recorrido Tres Cruces.
- Tres Cruces Molleturo.
- Recorrido Molleturo.
- Molleturo Tamarindo.
- Recorrido Tamarindo.
- Tamarindo Guayaquil.
- Recorrido Guayaquil.

Como se menciona con anterioridad se realiza una pausa en cada sector determinado, Figura 27, de esta forma, con la balanza digital se mide el peso del tanque de combustible externo para obtener el consumo de combustible generado en el recorrido.

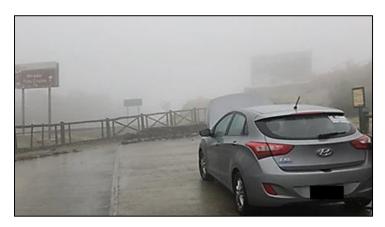


Figura 27: Toma de datos en Tres Cruces. Fuente: Autora.

Los datos de posicionamiento, hora y ubicación del vehículo durante el recorrido se obtienen mediante un sensor de posicionamiento global GPS – M8030, el cual permite obtener los datos de altitud, latitud y longitud del recorrido y a su vez los datos de hora y fecha.

La información que brinda el GPS es de considerable importancia, puesto que con dicha información se puede saber las condiciones en las que se encuentra el motor en cada una de sus variables de altitud, recorrido longitudinal, y de esta forma se pueden realizar los diversos cálculos para medir su rendimiento energético a lo largo de los recorridos.

6.10 Lectura y visualización de datos

• Freematics One+

Para que los datos obtenidos mediante el dispositivo Freematics One + sean importados al programa MATLAB, es necesaria la utilización de un algoritmo realizado por (Gárate, 2018), Figura 28, el cual permite apreciar la información entregada por los sensores en estado de funcionamiento.

```
%% LECTURA DE DATOS
3 -
       [filename, pathname] = uigetfile('*.*');
4 -
       filename = fullfile(pathname, filename); % Une toda la ruta de acceso al archivo, pathname y filename
       fid=xlsread(filename);
       %% DEMANDA ENERGETICA
       fid=fid(20:end-20.:);
       T=fid(:,1);
                               % Tiempo en [s]
       VSS=fid(:,2);
                               % Velocidad en [km/h]
       RPMS=fid(:,3);
                               % Rpms en [rev/min]
       TPS=fid(:,4);
                               % TPS [% apertura]
       ECT=fid(:,5);
                               % Temperatura del motor [C]
                               % Temperatura de aire de admision [C]
       IAT=fid(:,6);
       MAP=fid(:,7);
                               % Presion de admision [kPa]
       STFT=fid(:,8);
16 -
       LTFT=fid(:,9);
17 -
       02_F=fid(:,10);
18 -
       Ax=fid(:,11);
19 -
       Ay=fid(:,12);
       Az=fid(:,13);
       AR=fid(:,14);
       Latitud=fid(:.15);
       Longi=fid(:,16);
                               % Altitud [msnm]
       Alti=fid(:,17);
```

Figura 28: Fragmento de la lectura de datos obtenidos mediante Freematics One+.

Fuente: (Gárate, 2018)

El algoritmo define cada una de las señales provenientes de los sensores del motor y crea una interfaz en donde se pueden analizar cada una de ellas en función del tiempo, esta interfaz tiene un menú de carga que se puede apreciar en la Figura 29, al iniciar el programa este solicita seleccionar el archivo con la información relacionada a cada una de las rutas.

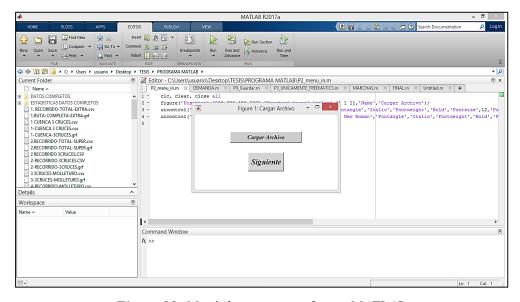


Figura 29: Menú de carga en software MATLAB. Fuente: (Gárate, 2018)

Al seleccionar y cargar el archivo necesario, se abre una ventana de opciones múltiples, en esta ventana se presenta 4 opciones de lectura de datos como se presenta en la Figura 30.

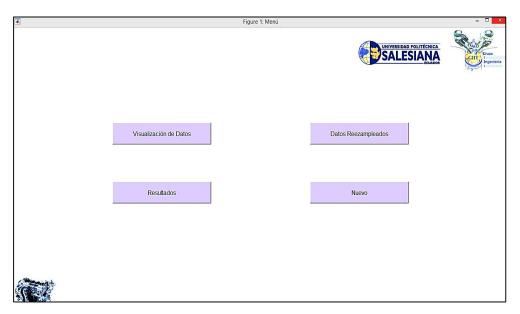


Figura 30: Menú de carga en software MATLAB. Fuente: (Gárate, 2018)

Al ingresar en "Visualización de datos", se puede apreciar la pantalla que se indica en la Figura 31, en esta ventana de trabajo se puede seleccionar cada uno de los sensores, gases o valores de altitud o longitud.

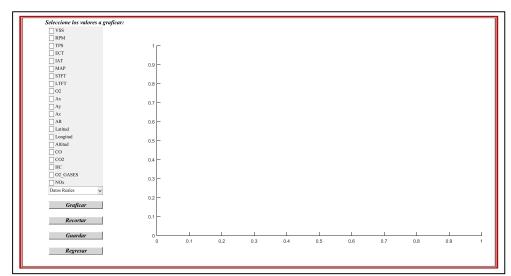


Figura 31: Pantalla de interfaz. Fuente: (Gárate, 2018)

Esta interfaz sirve para poder observar y analizar el comportamiento de cada uno de los sensores durante el recorrido experimental.

Analizador de gases "Brain Bee AGS - 688"

El analizador de gases "Brain Bee AGS-688" permite la lectura de los gases emanados por el tubo de escape y gracias a su interfaz, permite la lectura de datos en el computador. Esta entrega un archivo (.grf). Ofrece información de:

- **CO:** Monóxido de carbono (%Vol).
- **CO2:** Dióxido de carbono (%Vol).
- **HC:** Hidrocarburos no combustionados (ppm).
- O2: Oxigeno (%Vol).
- NO: Oxidos de nitrógeno (ppm).

6.11 Cálculo del rendimiento energético del motor

Con el propósito de demostrar el procedimiento realizado para la obtención del rendimiento energético, en esta sección, se realiza el desarrollo de cada una de las ecuaciones establecidas.

6.11.1 Parámetros del vehículo

Las características del vehículo son significativas para el cálculo de la demanda energética, dichos valores se obtienen directamente del manual del fabricante del vehículo, presentados en la tabla 10.

6.11.2 Prestaciones en rueda

Para el cálculo de las prestaciones en rueda del vehículo, se utiliza la ecuación 13, que es el resultado de la sumatoria de cada una de las fuerzas expuestas en la tabla 1.

$$\mathbf{F}_{\mathbf{x}} = \mathbf{F}_{\mathbf{d}} + \mathbf{R}_{\mathbf{g}} + \mathbf{R}_{\mathbf{x}} + \mathbf{R}_{\mathbf{i}} \tag{13}$$

Ecuación 13: Fuerza resistiva total

• Fuerza de arrastre [F_d]

Un vehículo en movimiento interactúa a lo largo de su trayectoria con diferentes fuerzas que se atraviesan en su movimiento, para el cálculo de F_d, ecuación 14, se relaciona el coeficiente de arrastre, la densidad del aire, el área frontal y la velocidad lineal del vehículo.

$$\mathbf{F_d} = \frac{1}{2} * \mathbf{C_d} * \mathbf{\rho} * \mathbf{A} * \mathbf{V^2} \quad [\mathbf{N}]$$
 (14)

Ecuación 14: Fuerza de arrastre.

Al desarrollar la ecuación se obtiene:

$$F_d = \frac{1}{2} * (0.31) * \left(1.13 \frac{\text{kg}}{\text{m}^3}\right) * (2.6 \text{ m}^2) * \left(22.56 \frac{\text{m}}{\text{s}}\right)^2 = 226.35 \text{ [N]}$$

• Resistencia a la pendiente [R_g]

Es la resistencia que se opone al movimiento del vehículo que atraviesa una pendiente, para el cálculo de R_g, ecuación 15, se relaciona la masa del vehículo, la gravedad y el valor de la pendiente.

$$R_{g} = M * g * \sin \theta \quad [N]$$
 (15)

Ecuación 15: Resistencia a la pendiente.

Al desarrollar la ecuación se obtiene:

$$R_g = (2105 \text{ kg}) * (9.81 \frac{\text{m}}{\text{s}^2}) * \sin(0.01502 \text{ rad}) = 310.07 [N]$$

• Resistencia a la rodadura [R_x]

Es una resistencia que se opone a la fuerza de empuje y está relacionada, ecuación 16, con el peso del vehículo, esta influye en la deformación que sufren los neumáticos, existe una variación que depende el tipo de calzada, tabla 4, para esto, se establece un coeficiente de resistencia a la rodadura $f_r = 0.015$.

$$\mathbf{R}_{\mathbf{x}} = \mathbf{f}_{\mathbf{r}} * \mathbf{M} * \mathbf{g} * \cos \theta \quad [\mathbf{N}]$$
 (16)

Ecuación 16: Resistencia a la rodadura.

Al desarrollar la ecuación se obtiene:

$$R_x = (0.015) * (2105 \text{ kg}) * (9.81 \frac{\text{m}}{\text{s}^2}) * \cos(0.01502 \text{ rad}) = 309.71 [N]$$

• Resistencia a la inercia [R_i]

Es una resistencia directamente proporcional a la masa del vehículo, se da por la variación de velocidad que presenta el automóvil durante su trayectoria.

$$\mathbf{R_i} = \mathbf{m} * \mathbf{a} \tag{17}$$

Ecuación 17: Resistencia a la inercia.

Al desarrollar la ecuación se obtiene:

$$R_i = (2105 \text{ kg}) * \left(0.1868 \frac{\text{m}}{\text{s}^2}\right) = 393.23 \text{ [N]}$$

• Fuerza en rueda [F_x]

Como se menciona con anterioridad la fuerza en rueda es la resultante de la suma de todas las fuerzas que se oponen al movimiento del vehículo en su trayectoria.

$$F_x = F_d + R_g + R_x + R_i$$

Al desarrollar la ecuación se obtiene:

$$F_x = 226.35 + 310.07 + 309.71 + 393.23 = 1239.37 [N]$$

• Par motor en rueda [T_{rueda}]

Con los valores obtenidos, se puede realizar el cálculo del par motor en rueda, Ecuación 18:

$$\mathbf{T_{rueda}} = \mathbf{F_x} * \mathbf{r_d} \tag{18}$$

Ecuación 18: Par motor en rueda.

En donde:

- T_{rueda} = Par motor en rueda [Nm]
- $\mathbf{F}_{\mathbf{x}}$ = Fuerza en rueda [N]
- r_d = Radio dinámico [m]

Al desarrollar la ecuación se tiene que $F_x = 1239.37$ [N] y el radio dinámico obtenido en la sección 6.3.6 $r_d = 0.31595$ [m]

$$T_{\text{rueda}} = (1239.37 \text{ N}) * (0.31595 m)$$

 $T_{\text{rueda}} = 391.57 \text{ [Nm]}$

Potencia en rueda [P_{rueda}]

A continuación, se calcula la potencia en rueda, con la siguiente formula:

$$\mathbf{P_{rueda}} = \mathbf{F_x} * \mathbf{V} \tag{19}$$

Ecuación 19: Potencia en rueda.

En donde:

- P_{rueda} = Potencia en rueda. [W]
- $\mathbf{F}_{\mathbf{x}}$ = Fuerza en rueda. [N]
- **V** = Velocidad del vehículo. [m/s]

Al desarrollar la ecuación de potencia en rueda:

$$P_{\text{rueda}} = (1239.37 \text{ N}) * \left(22.56 \frac{\text{m}}{\text{s}}\right) = 27963.98 \text{ [W]}$$

$$P_{\text{rueda}} = \frac{27963.98 \text{ [w]}}{1000}$$

$$P_{\text{rueda}} = 27.96 \text{[KW]}$$

Energía en rueda [E rueda]

El cálculo de la energía producida en las ruedas se consigue con la siguiente formula:

$$\mathbf{E_{rueda}} = \frac{\mathbf{P}_{rueda} * \Delta_{\mathsf{t}}}{\mathbf{1000} * \mathbf{3600}} \tag{20}$$

Ecuación 20: Energía producida en rueda.

En donde:

- **E** = Energía en rueda [KW/h]
- **P** = Potencia en rueda [W]
- $\Delta_t = \text{Variación de tiempo [s]}$

Al desarrollar la ecuación de energía producida en las ruedas se tiene:

$$\begin{split} E_{\text{rueda}} &= \frac{\left(27963.98\,\text{W}\,\right) * \left(0.4455\,\text{s}\right)}{1000 * 3600} \\ E_{\text{rueda}} &= \textbf{0,003460084 KWh} \end{split}$$

La creación de un script realizado en el software MATLAB, Figura 32, realiza cada uno de los procedimientos indicados con anterioridad, se facilita su digitación.

```
92 - F_d=0.5*C_din*A_Veh*den.*(VSS/3.6).^2; % Fuerza de arrastre en [N]
93 - R_g=masa*grav*sin(Pend); % Resistencia a la pendiente en [N]
94 - R_x=f_r*masa*grav*cos(Pend); % Resistencia a la rodadura en [N]
95 - R_i=masa*Acel; % Resistencia a la inercia en [N]
96
97 - F_x=F_d+R_g+R_x+R_i; % Fuerza en la rueda [N]
98 - T_rueda=F_x*r_din; % Torque en la rueda en [Nm]
99 - P_rueda=F_x.*(VSS/3.6); % Potencia en la rueda en [W]
100 - Enrg_r=(P_rueda.*delt_t); % Energia de la rueda en [W.s]
101 - Ener_r_h=Enrg_r/(1000*3600); % Energia de la rueda en [kW H]
```

Figura 32: Fragmento de la programación de prestaciones en rueda del vehículo. **Fuente:** Autora.

6.11.3 Prestaciones requeridas por el motor en la ruta experimental

Para obtener los valores de potencia y par motor del motor requerido en ruta, los cuales son necesarios para el cálculo del rendimiento energético, es necesario saber la información de la transmisión del vehículo utilizado, para ello se obtiene la información de la ficha técnica de automóvil, Tabla 10:

Tabla 10: Relaciones de transmisión Hyundai i30 **Fuente:** (Hyundai, 2014)

Marcha	Relación de transmisión
1°	3.308
2°	1.962
3°	1.257
4°	0.976
5°	0.778
6°	0.633
Reversa	3.583
Relación de final de	4.333
eje	

Par motor requerido del motor en ruta [T_{requerido}]

Al utilizar la información presentada con anterioridad, se procede a realizar el cálculo del par motor requerido del motor en ruta, con la siguiente formula:

$$T_{requerido} = \frac{T_{rueda}}{R_{total} * n_t} [Nm]$$
 (21)

Ecuación 21: Par motor requerido en ruta.

En donde:

- $\mathbf{T_{requerido}} = \text{Par motor requerido en ruta } [Nm]$
- T_{rueda} = Par motor en rueda [Nm]
- $\mathbf{n_t} = \text{Eficiencia del tren motriz}$

Al desarrollar la ecuación, se obtiene:

$$T_{\text{requerido}} = \frac{391.57}{(4.229)*(0.85)}$$

$$T_{\rm requerido} = 108.9056 \, [\rm Nm]$$

Potencia requerida del motor en ruta [P_{requerida}]

De la misma forma se realiza el cálculo de la potencia requerida por el motor en la realización del recorrido, con la siguiente expresión:

$$\mathbf{P_{requerida}} = \frac{\mathbf{P_{rueda}}}{\mathbf{n_t}} \ [\mathbf{KW}] \tag{22}$$

Ecuación 22: Potencia requerida en ruta.

En donde:

- $P_{requerida}$ = Potencia requerida en ruta. [KWh]
- P_{rueda} = Potencia en la rueda. [KW]
- $\mathbf{n_t}$ = Eficiencia del tren motriz.

Al desarrollar la ecuación, se obtiene:

$$\begin{aligned} P_{\text{requerida}} &= \frac{27963.98 \text{ [w]}}{0.85} \\ P_{\text{requerida}} &= \frac{31410.21}{1000} \\ P_{\text{requerida}} &= 31.41 \text{ [KW]} \end{aligned}$$

• Energía requerida por el motor en ruta [E_{requerida}]

Es indispensable obtener el cálculo de la energía requerida por el motor, con la siguiente expresión:

$$\mathbf{E_{requerida}} = \frac{\mathbf{P_{requerida}} * \Delta_{t}}{36000} \tag{23}$$

Ecuación 23: Energía requerida en ruta.

En donde:

- $\mathbf{E}_{requerida}$ = Energía requerida en ruta [KW/h]
- **P**_{requerida} = Potencia en requerida en ruta [W]
- Δ_t = Variación de tiempo [s]

Al desarrollar la ecuación se obtiene:

$$E_{\text{requerida}} = \frac{(31410.21) * (0.4455 s)}{36000}$$

$$E_{\text{requerida}} = 0.00478954 \text{ [KWh]}$$

Se desarrolla un script en el software MATLAB, de esta forma se puede realizar el cálculo de cada uno de los puntos del recorrido realizado, como se puede observar en la Figura 33.

Figura 33: Fragmento de la programación del cálculo de los Requerimientos de potencia y par motor del motor en ruta.

Fuente: Autora.

6.11.4 Determinación de factores de emisión

Es preciso, para el desarrollo de los cálculos, la obtención del consumo aproximado de combustible que se genera en cada una de las secciones de rutas, con la ecuación de los gases ideales:

$$P1 * V = m * R * T$$

Al despejar, se puede obtener el valor de la masa de aire:

$$m_a = \frac{P1[Pa] * V[m^3]}{R\left[\frac{j}{kg}k\right] * T[K]}$$
(24)

Ecuación 24: Masa del aire.

En donde:

- $\mathbf{m}_{\mathbf{a}} = \text{Masa del aire [kg]}$
- **P1** = Presión absoluta en el múltiple de admisión [Pa]
- $V = Volumen total (cilindraje) [m^3]$
- **R** = Constante del gas $\left[\frac{j}{kg}k\right]$

• **T** = Temperatura del aire de admisión [K]

Ecuación para evaluar el consumo de combustible en kg:

$$mtf = \frac{m_a}{AFR} \text{ [kg]}$$
 (25)

Ecuación 25: Consumo de combustible.

En donde:

- **mtf** = Consumo de combustible
- $\mathbf{m_a} = \text{Masa del aire}$
- **AFR** = Proporción de aire combustible 14.7:1.

Se realiza el cálculo de la masa del combustible que se consume en un segundo:

$$mf = mtf * \frac{1}{2} * \frac{rpm}{60} [kg/s]$$
 (26)

Ecuación 26: Masa de combustible que se consume por segundo.

Finalmente se calcula el consumo de combustible aproximado:

$$C_{comb} = \frac{mf\left[\frac{kg}{h}\right]}{P_{requerida}[KW]}[g/KWh] \tag{27}$$

Ecuación 27: Consumo de combustible en gramos por cada kilovatio hora.

Los valores obtenidos mediante el analizador de gases "Brain Bee AGS-688" el cual exporta valores en (v%) o en (ppm), se presentan en la Tabla 11.

Tabla 11: Valores obtenidos con el analizador de gases combustible Super.

CO[%Vol]	CO2[%Vol]	HC [ppm]	O2[%Vol]	NOx[ppm]
0,25	14,6	23	0,06	118

Para convertir los valores de (v%) o en (ppm) en gramos de gas por kilómetro recorrido (g/km), se aplican las fórmulas expresadas en la ecuación 6 de la sección 5.7.

Para esto es necesario saber el valor de la masa molar (N) de cada reacción (Jara & Pineda, 2019), como lo son:

- CO = 28 g/mol.
- CO2 = 30 g/mol.

- HC = 13 g/mol.
- $\mathbf{O2} = 32 \text{ g/mol.}$
- NOx = 30 g/mol.

Los valores de N deben ser remmplazados en cada una de las ecuaciones correspondietes a cada tipo de gas, posterior a ello se reemplazan la informacion conseguida con el analizador de gases, el peso molecular del combustible $MW_{comb} = 0.01425$. (Freire & Loza, 2013) y la densidad del combustible, al reemplazar los valores en la ecuación obtenemos la siguiente expresión:

$$\frac{\mathbf{gHC}}{\mathbf{km}} = \frac{28 * \frac{(23 * 0.0001)}{0.06}}{\frac{0.25}{0.06} + \left(3 * \frac{(23 * 0.0001)}{14.6}\right) + 1} * \frac{0.0017691 \left[\frac{kg}{s}\right]}{0.01425 \left[\frac{kg}{mol}\right]} = 0.00650381$$

Los valores obtenidos cada 1000 m.s.n.m. al utilizar el combustible 2 se presentan en la Tabla 12.

Tabla 12: Valores de gases obtenidos en ruta, combustible super.

Tramo	Altura	CO g/km	CO2 g/km	HC g/km	O2 g/km	NOX g/km
TAMARINDO-MOLLETURO	200	10,522631	139,734022	0,00650381	0,41763593	0,10780227
TAMARINDO-MOLLETURO	1200	12,0645672	119,832695	0,00871917	0,19511429	0,09389875
TAMARINDO-MOLLETURO	2200	1,14071089	99,8227939	0,00094453	8,47770941	0,09100056
MOLLETURO-3 CRUCES	3200	0,71133196	61,9093308	0,00152428	0,09380202	0,0279061
3CRUCES-CUENCA	3200	1,64439248	9,72215075	0,00357797	2,23283845	0,00081406
MOLLETURO-3 CRUCES	4150	4,59735014	58,8655415	0,00527033	0,12973122	0,07704818
3CRUCES-CUENCA	4150	1,35774842	31,4047428	0,00474558	2,30141627	0,0107552

De igual manera los valores obtenidos con el analizador de gases "Brain Bee AGS-688" combustible 1 se presentan en la Tabla 13.

Tabla 13: Valores obtenidos con el analizador de gases combustible EcoPais.

co%	CO2%	нс%	O2%	NO%
0,03	0,7	5	18,4	12

Al aplicar la ecuación 6 de la sección 5.7 como se presentó con anterioridad se obtienen los valores de los gases para el combustible 1 como se muestra en la Tabla 14.

Tramo	Altura	CO g/km	CO2 g/km	HC g/km	O2 g/km	NOX g/km
TAMARINDO-MOLLETURO	200	0,68704365	25,1916004	0,00531641	48,5848802	0,04122262
TAMARINDO-MOLLETURO	1200	0,45180087	22,4201934	0,00540972	29,6218313	0,01319734
TAMARINDO-MOLLETURO	2200	1,64564903	17,2401327	0,00091302	13,8394204	0,00263925
MOLLETURO-3 CRUCES	3200	0.51220643	11.2054123	0.00214495	2.53664135	0.00617661

65,8003171

6,45183158

23,6876194

0,00319388

0,00261284

0,00179964

0,13672793

0,46922412

0,12305257

0,04935024

0,02362554

0,0148586

0,38882006

1,42284123

0,1722736

3200

4150

4150

Tabla 14: Valores de gases obtenidos en ruta, combustible Eco-País.

De la misma forma se realiza el análisis en el software MATLAB, con la programación indicada en la Figura 34.

```
RV=0.7;
                                % Rendimiento Volumetrico
119 -
                           % Cilindraje en [m3]
       V cil=0.0018;
120 -
       R aire=286.9:
                          % Constante del gas en [J/(kg*K)]
121 -
       AFR=14.7;
122 -
       m_a=(MAP*10^3*V_cil)./(R_aire*(IAT+273.15));
                                                       % Masa del aire en [kg]
123 -
       mtf=m a/AFR;
                                                        % Masa del combustible en [kg]
       mf=mtf*0.5.*(RPMS/60);
                                                        % Consumo de combustible por segundo [kg/s]
        Ccomb=(mf*3600*1000)./(P_r_motor/1000);
                                                        % Consumo de combustible por kW [g/KWh]
```

Figura 34: Fragmento de la programación para el cálculo del consumo de combustible.

Al aplicar las fórmulas de la sección 5.7 se obtienen los valores de emisión de gases en gramos de gas sobre kilómetro recorrido, para esto se desarrolla un script que ejecute las ecuaciones, como se puede observar en la Figura 35.

```
for i=1:length(gCO)
134 -
           if gCO(i)
135 -
        gCOm=(mean(gCO));
        %gCO2=((pCO2*(CO2./CO2)./(CO./CO2)+((3*HC*0.0001)./CO2)+1).*(mf/MWCcomb));
136
                                                                                               % q/s
137 -
        gCO2=((pCO2*(CO2./CO2)./(CO./CO2)+((3*HC*0.0001)./CO2)+1));
                                                                                               % a/s
138 -
        gCO2m=(mean(gCO2));
139 -
        gHC=((pHC*(HC*0.0001./CO2)./(CO./CO2)+((3*HC*0.0001)./CO2)+1));
                                                                                               % g/s
```

Figura 35: Fragmento de la programación de estimación de gases.

7 ANÁLISIS DE RESULTADOS

3CRUCES-CUENCA

MOLLETURO-3 CRUCES

3CRUCES-CUENCA

Luego de llevar acabo dos recorridos en las pruebas dinámicas y en cada uno de ellos utilizar un combustible diferente se obtienen los valores de las prestaciones del vehículo tanto de forma teórica como experimental, se realiza una comparación de los mismos, al considerar que se realiza el estudio con una variación de 200 m.s.n.m, se analiza el comportamiento del motor y su rendimiento energético ante diferentes condiciones ambientales, combustibles y se los compara con los valores teóricos.

7.1 Análisis de cálculos de potencia calculada vs potencia obtenida en ruta

Mediante las ecuaciones presentadas en la sección 6.11.3 se obtienen los valores de potencia calculada para el combustible 1, estos valores se utilizan para comparar con los valores obtenidos experimentalmente, en la Tabla 15 se presenta una fracción de los datos obtenidos.

Tabla 15: Fracción de valores obtenidos con el combustible 1

Tramo	Altitud [m.s.n.m.]	Presión [atm]	IAT[K]	RMP [rev/min]	VSS [km/h]	TPS [% apertura]	MAP [kPa]	ECT [K]	Potencia Calculada	Potencia Obtenida
TAMARINDO-MOLLETURO	200	98945	321,1500026	3124,3429	67,04824032	16,065999	23,03737	306,342	52,63436	33,19198
TAMARINDO-MOLLETURO	1200	87716	306,1492462	3266,83166	84,52691508	15,999635	21,00456	363,148	50,64488	33,21443
TAMARINDO-MOLLETURO	2200	77541	305,1507309	3438,73545	88,58495818	17,60811	26,18863	363,152	46,37129	33,90034
MOLLETURO-3 CRUCES	3200	68344	296,150736	2966,40998	60,4655816	16,171727	26,12415	363,153	35,6924	24,10537
3CRUCES-CUENCA	3200	68344	297,1566915	2596,7829	63,71982033	87,470131	67,73949	366,15	31,11867	29,62175
MOLLETURO-3 CRUCES	4150	60445	315,149191	2805,2789	45,87312579	18,700554	23,78636	365,143	26,94573	21,78564
3CRUCES-CUENCA	4150	60445	290,1840404	2800,68671	49,27277249	40,06644	58,81221	298,06	29,77906	24,90967

En la Tabla 16 se presenta una fracción de los datos obtenidos para el combustible 2.

Tabla 16: Fracción de valores obtenidos combustible 2.

Tramo	Altitud [m.s.n.m.]	Presión [atm]	IAT[K]	RMP [rev/min]	VSS [km/h]	TPS [% apertura]	MAP [kPa]	ECT [K]	Potencia Calculada	Potencia Obtenida
TAMARINDO-MOLLETURO	200	98945	313,1487898	3019,17374	77,57163029	43,189705	95,13367	369,149	52,34247	31,41022
TAMARINDO-MOLLETURO	1200	87716	307,1459508	3102,55435	80,43933728	86,714858	86,99209	369,149	47,91853	34,02733
TAMARINDO-MOLLETURO	2200	77541	307,1502218	3078,50164	79,81446695	87,611259	85,43737	366,142	41,19647	32,73436
MOLLETURO-3 CRUCES	3200	68344	305,1445051	3028,3013	60,19583003	41,149885	67,37352	372,15	35,15458	23,56442
3CRUCES-CUENCA	3200	68344	291,1498854	2621,84412	85,04895248	15,999898	19,99987	361,942	32,1936	29,50354
MOLLETURO-3 CRUCES	4150	60445	295,1785459	2939,31657	58,51644792	18,006913	20,3198	362,145	30,60805	22,83347
3CRUCES-CUENCA	4150	60445	298,1383757	2944,64862	58,92951835	17,000544	19,00061	297,969	30,29085	24,81864

Con los valores obtenidos con anterioridad se realizan gráficas comparativas presentadas en la Figura 36 y Figura 37, la línea roja representa los valores de la "Potencia calculada" y la línea azul los valores de la "Potencia obtenida", en donde se puede observar que existe una pérdida de potencia a mayor altitud, debido al bajo nivel de oxígeno que se encuentra en el aire, esto conlleva a menor presión de admisión en el motor y por lo tanto a menor presión de combustión.

Se puede observar que existen valores de altitud para los cuales se tienen diferentes valores de potencia, esto se debe a que en la ejecución de las pruebas dinámicas existen ubicaciones que se encuentran a la misma altura.

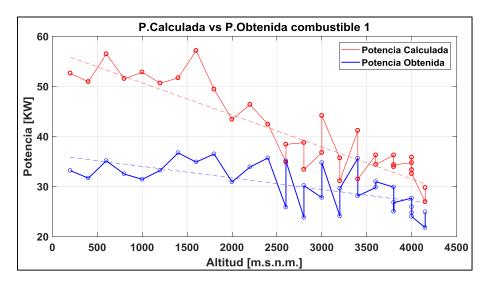


Figura 36: Comparación Potencia Calculada vs Potencia Obtenida, combustible 1.

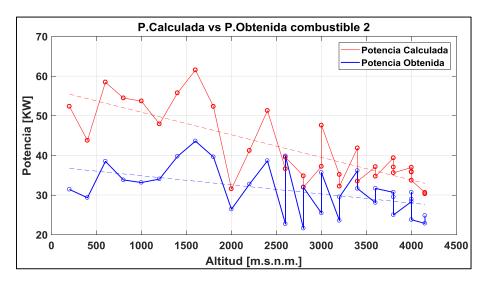


Figura 37: Comparación Potencia Calculada vs Potencia Obtenida, combustible 2.

Para valores similares de altitud el combustible 2 ayuda a obtener mayor potencia en el motor debido a su nivel de octanaje, lo que evita detonaciones prematuras y que el rendimiento del motor no disminuya drásticamente.

Al desarrollar un análisis matemático se utiliza la ecuación de comportamiento de los gráficos se ha calculado una pérdida de potencia del 6.26% cada 1000 m.s.n.m para los valores reales al utilizar el combustible 2 y en el caso de los valores teóricos se tiene una pérdida del 10.27% en las mismas condiciones, mientras que para el combustible 1 se calcula una pérdida de potencia de 6.46% para los valores reales y una pérdida del 11.34% para los valores teóricos cada 1000 m.s.n.m.

En "Anexo 1" se presentan los cálculos realizados cada 200 m.s.n.m.

Se observa que existe una perdida menor de potencia en la ruta experimental, para tal efecto, se debe considerar que el sistema electrónico del vehículo gestiona en todo momento que exista una combustión adecuada según las condiciones de su trayectoria.

7.2 Análisis del Par motor calculado vs Par motor obtenido en ruta.

De manera similar que para el cálculo de la potencia se obtienen los valores del par motor para el combustible 1, estos valores se utilizan para comparar con los valores obtenidos experimentalmente, en la Tabla 17 se presenta una fracción de los datos obtenidos para el combustible 1 y en la Tabla 18 se presentan los datos obtenidos para el combustible 2.

Tabla 17: Fracción de valores obtenidos con el combustible 1.

Tramo	Altitud [m.s.n.m.]	Presión [atm]	IAT[K]	RMP [rev/min]	VSS [km/h]	TPS [% apertura]	MAP [kPa]	ECT [K]	Torque Calculado	Torque Obtenido
TAMARINDO-MOLLETURO		98945	321.1500026	3124.3429	67.04824032	16.065999		380,761	160.87259	107.6108
			- '	-	-	-	-		- '	- '
TAMARINDO-MOLLETURO	1200	87716	306,1492462	3266,83166	84,52691508	15,999635	21,00456	363,148	148,04039	109,049
TAMARINDO-MOLLETURO	2200	77541	305,1507309	3438,73545	88,58495818	17,60811	26,18863	363,152	128,77212	109,0348
MOLLETURO-3 CRUCES	3200	68344	296,150736	2966,40998	60,4655816	16,171727	26,12415	363,153	114,89894	104,223
3CRUCES-CUENCA	3200	68344	297,1566915	2596,7829	63,71982033	87,470131	67,73949	366,15	114,43443	100,3581
MOLLETURO-3 CRUCES	4150	60445	315,149191	2805,2789	45,87312579	18,700554	23,78636	365,143	91,724485	106,2813
3CRUCES-CUENCA	4150	60445	290,1840404	2800,68671	49,27277249	40,06644	58,81221	384,201	101,53549	111,0508

Tabla 18: Fracción de valores obtenidos con el combustible 2

Tramo	Altitud [m.s.n.m.]	Presión [atm]	IAT[K]	RMP [rev/min]	VSS [km/h]	TPS [% apertura]	MAP [kPa]	ECT [K]	Torque Calculado	Torque Obtenido
TAMARINDO-MOLLETURO	200	98945	313,1487898	3019,17374	77,57163029	43,189705	95,13367	369,149	165,55317	108,9056
TAMARINDO-MOLLETURO	1200	87716	307,1459508	3102,55435	80,43933728	86,714858	86,99209	369,149	147,48758	113,7737
TAMARINDO-MOLLETURO	2200	77541	307,1502218	3078,50164	79,81446695	87,611259	85,43737	366,142	127,78857	110,3074
MOLLETURO-3 CRUCES	3200	68344	305,1445051	3028,3013	60,19583003	41,149885	67,37352	372,15	110,85474	105,2865
3CRUCES-CUENCA	3200	68344	291,1498854	2621,84412	85,04895248	15,999898	19,99987	361,942	117,25574	103,3013
MOLLETURO-3 CRUCES	4150	60445	295,1785459	2939,31657	58,51644792	18,006913	20,3198	362,145	99,439914	107,9485
3CRUCES-CUENCA	4150	60445	298,1383757	2944,64862	58,92951835	17,000544	19,00061	386,423	98,231173	113,2733

En la Figura 38 y Figura 39 se muestra la comparación entre el par motor calculado y el obtenido con los combustibles 1 y 2, en donde se puede apreciar que la pérdida del par motor obtenido, es prácticamente nula en comparación con el par motor calculado, esto es debido a que a nivel del mar el recorrido generado se realiza en carretera planas en las cuales se puede producir una mayor potencia del motor a menor esfuerzo, a medida que se eleva en altitud el trayecto, las condiciones de ruta varían de manera que se necesita más esfuerzo del motor y por lo tanto se genera mayor par a su vez que disminuye la potencia.

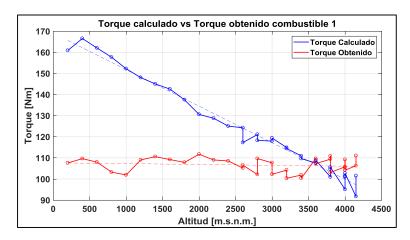


Figura 38: Comparación Par motor Calculado vs Par motor Obtenido, combustible 1

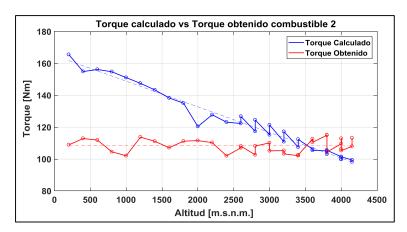


Figura 39: Comparación Par motor Calculado vs Par motor Obtenido, combustible 2.

7.3 Análisis del consumo de combustible

En la Figura 40 se presenta la variación del consumo del combustible 1 y del combustible 2, en donde se puede apreciar que con el combustible 1 existe un menor consumo a menores altitudes, este valor se eleva en función a la altura, al analizar la direccionalidad de la ruta con este combustible (3 Cruces – Boliche) es decir, una ruta que presenta en su mayoría el descenso del vehículo de un punto a otro, por lo tanto el consumo de combustible es menor en el trayecto de la ruta que presenta las características antes mencionadas, como se aprecia en la gráfica de color azul, mientras que para el combustible 2 la direccionalidad de la trayectoria va de (Boliche – 3 Cruces) que presenta un mayor esfuerzo para el vehículo dado que debe recorrer una pendiente positiva en la mayor parte de su trayectoria, como se aprecia en la línea de color rojo, los valores de consumo de combustible son mayores a menor altitud, debido a que, en este tramo la carretera presenta una pendiente nula y una mayor presión

atmosférica lo que genera un aumento en las prestaciones del motor por lo cual es necesario un mayor nivel de octanaje para que se cumplan las necesidades del vehículo bajo esas condiciones, es por esto que este combustible presenta un mayor consumo a menores altitudes.

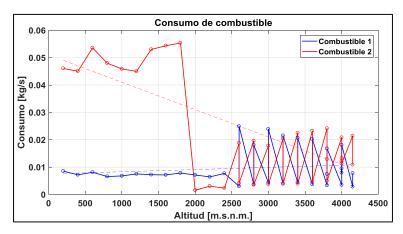


Figura 40: Variación del consumo de combustible.

Se puede apreciar un comportamiento similar entre el combustible 1 y 2 en alturas superiores a los 2500 m.s.n.m, esto se debe a que a mayores altitudes la presión atmosférica desciende y la cantidad de oxígeno en el aire que ingresa al motor es menor, es por esto que las prestaciones del motor disminuyen y la mayor cantidad de octanaje del combustible 2 no influye directamente en el rendimiento del motor.

7.4 Análisis de emisión de gases obtenidos durante las pruebas dinámicas

Se presenta un análisis comparativo de los gases emitidos por los combustibles 1 y 2 en función de la altura. En el análisis comparativo se aprecia que el combustible 1 presenta mayor concentración de gases en alturas superiores a los 2500 m.s.n.m aproximadamente y se puede observar que a menores altitudes existe una mayor concentración de gases al utilizar el combustible 2. Las emisiones de gases contaminantes van de la mano con el consumo de combustible presentado en la Figura 40, a menores alturas el combustible 2 permite mayores prestaciones del motor, lo que genera mayor consumo y por lo tanto mayores emisiones contaminantes. La emisión del monóxido de carbono se produce en el momento que una parte del combustible entra al motor no es combustionada y por lo tanto produce contaminación, en la Figura 41 se puede apreciar que a menores alturas existe una mayor emisión de CO para el combustible 2 debido a que las prestaciones del motor son mayores, mientras que, a mayores alturas, la emisión de CO es muy similar en ambos combustibles.

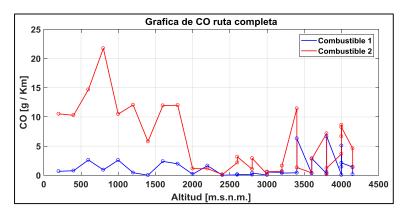


Figura 41: Valores de CO ruta completa, Combustibles 1 y 2.

Al realizar el cálculo de porcentaje de variación de los gases, se obtiene que el CO emitido con el combustible 1 presenta un incremento del 23.94% y a su vez el CO emitido con el combustible 2 presenta un descenso del 21.86% cada 1000m.s.n.m.

Las emisiones del CO2 son producidas por la oxidación del carbono de los combustibles durante la combustión, en la Figura 42, se presenta el comportamiento de las emisiones de CO2 producidas en función a la altura, se aprecia que a mayores altitudes se genera un comportamiento similar con los combustibles 1 y 2, mientras que para altitudes menores a los 2500 m.s.n.m existe una alta concentración de gases al utilizar el combustible 2.

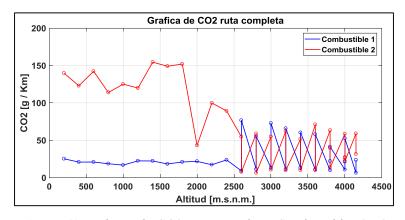


Figura 42: Valores de CO2 ruta completa, Combustibles 1 y 2.

Los valores de CO2 para el combustible 1 presentan un incremento del 9.87% y para el combustible 2 un descenso de 21.89%.

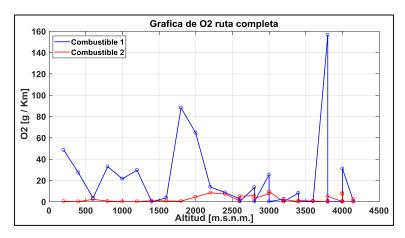


Figura 43: Valores de O2 ruta completa, Combustibles 1 y 2

Se analizan los valores de O2 para el combustible 1 que presentan un porcentaje de incremento de 16.37% y un valor de 16.37% de perdida, como se observa en la Figura 43. El uso de los convertidores catalíticos se da para el control de emisiones contaminantes, por medio de reacciones químicas y gracias a la influencia de la temperatura, presión y materiales que intervengan en los gases de escape, se puede llevar a cabo un control de emisiones, sin embargo, el vehículo de prueba ya ha superado su vida útil, por lo que el convertidor catalítico no se encuentra en las mejores condiciones para controlar las emisiones contaminantes, es por esto que en la Figura 44 y Figura 45 se pueden apreciar valores elevados de Hidrocarburos no combustionados (HC) y de Oxidos de nitrógeno (NOx).

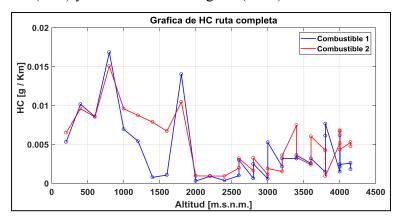


Figura 44: Valores de HC ruta completa, Combustibles 1 y 2

Para los valores de HC con el combustible 1 se tiene un aumento del 13.15 % en comparación con los valores obtenidos con HC para el combustible 2 que tiene un octanaje mayor y genera una pérdida de 11.62% cada 1000 m.s.n.m.

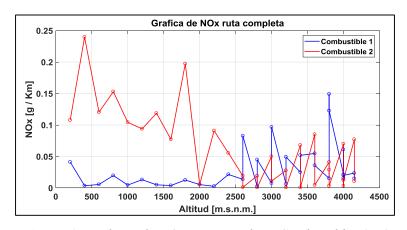


Figura 45: Valores de NOx ruta completa, Combustibles 1 y 2

• Análisis de la estimación de gases con diferentes combustibles a mismas altitudes

Es importante realizar una comparación del comportamiento de los gases en una sección de la ruta conformada por una parte por el recorrido Cuenca – 3 Cruces y por otra por el tramo Molleturo – 3 Cruces, en donde se puede obtener información en las mismas condiciones de altitud al utilizar los diferentes combustibles.

El perfil de altimetría para la ruta Cuenca - 3 Cruces – Molleturo se presenta en la Figura 46.

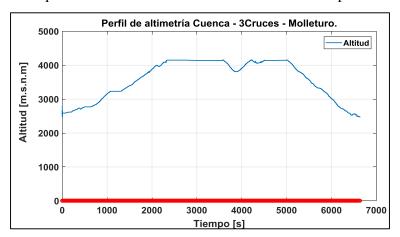


Figura 46: Perfil de altimetría 3Cruces - Molleturo.

En la Figura 47 se puede observar el comportamiento de la potencia que se genera en un recorrido que va desde los 2600 hasta los 4150 m.s.n.m, el comportamiento de la potencia con los dos tipos de combustibles utilizados presenta un comportamiento similar, existe una disminución de potencia en mayores altitudes, como se menciona con anterioridad, la influencia de la presión atmosférica en los puntos más altos de la ruta y la baja cantidad de oxígeno en el aire que ingresa al motor provoca menores prestaciones en el vehículo, lo que

indica la baja existente en la potencia, de esta forma la calidad del combustible a mayor altitud no presenta mayor diferencia en comparación con un combustible de menor octanaje.

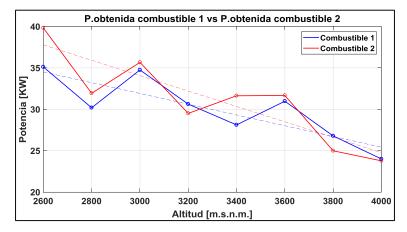


Figura 47: Variación de potencia en el tramo Cuenca - 3 Cruces – Molleturo.

Se puede apreciar la comparación entre el consumo que se genera al utilizar el combustible 1 y 2, como se puede apreciar en la Figura 48, la variación del consumo de es mínima.

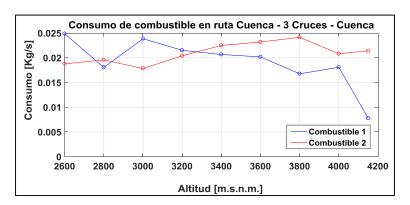


Figura 48: Consumo de combustible en el tramo Cuenca - 3 Cruces - Molleturo.

• Comportamiento de los gases en el tramo Cuenca – 3 Cruces – Molleturo.

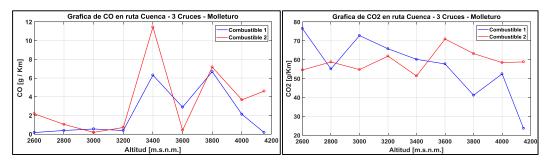


Figura 49: Análisis de CO y CO2 en ruta Cuenca - 3 Cruces - Molleturo

Al analizar las comparaciones realizadas, los valores de CO obtenidos con el combustible 1, como se observa en la Figura 49, se presenta un aumento de emisión de un 45.49% y en el caso de los valores de CO obtenidos con el combustible 2 se tiene un aumento de 21.41% cada 1000 m.s.n.m.

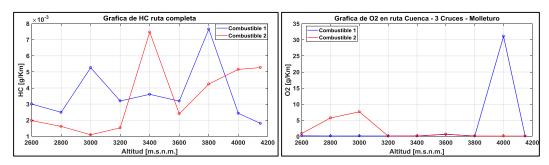


Figura 50: Análisis de HC Y O2 en ruta Cuenca - 3 Cruces – Molleturo.

Como se aprecia en Figura 51, los valores obtenidos de HC con el combustible 1 presentan un incremento de gas del 5.41% en comparación con los valores de HC obtenidos con el combustible 2 que presenta un incremento del 17.14%.

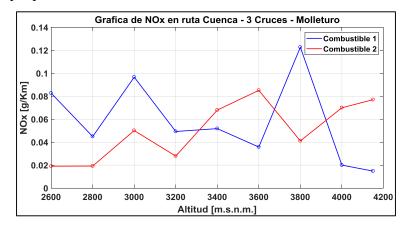


Figura 51: Análisis de NOx en ruta Cuenca - 3 Cruces – Molleturo.

Los valores obtenidos de NOx con el combustible 1 presentan un incremento de gas del 2.55% en comparación con los valores de NOx obtenidos con el combustible 2 que presenta un incremento del 16.33%.

7.5 Análisis de los datos obtenidos y estructurados por medio de métodos estadísticos multivariables.

Se realiza un análisis con métodos estadísticos multivariables, para lo cual se utiliza el método de regresión lineal múltiple, el cual toma a la variable dependiente o los valores de respuesta que son determinadas a partir de un conjunto de variables independientes, de esta forma esta técnica ayuda a establecer las variables más importantes para el cálculo del rendimiento energético, al considerar los valores obtenidos en función del comportamiento de cada uno de los sistemas que implican en el funcionamiento del motor, para tal efecto se utilizan los valores de potencia obtenidos en el recorrido y comparados con cada una de las variables de entrada que se tienen, de esta forma se realiza un análisis estadístico que permite obtener una ecuación desarrollada para así calcular el valor de la potencia requerida por el motor en ruta, a su vez, demuestra las variables más influyentes para el cálculo del rendimiento energético.

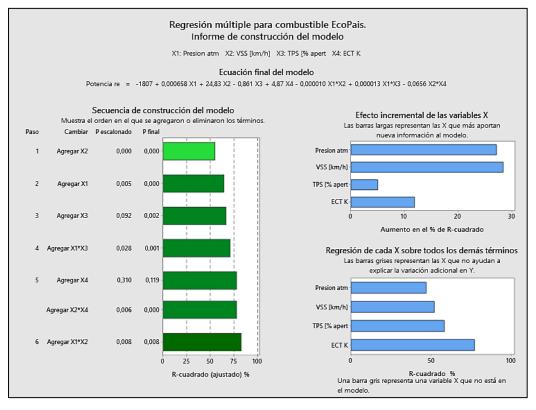


Figura 52: Informe de construcción del modelo combustible 1.

En la Figura 52, se aprecia la ecuación obtenida al realizar el análisis de regresión múltiple y también la influencia de cada una de las variables al realizar el estudio del rendimiento

energético al utilizar combustible 1, en este caso se puede apreciar que las variables como VSS y Altitud brindan mayor información al estudio y también se observa la importancia de los sensores ECT Y TPS.

Se realiza un análisis ANOVA, este método determina si existen diferencias significativas entre los grupos a prueba, de esta forma se puede determinar si los valores obtenidos están dentro del grupo analizado al realizar pruebas de comparación múltiple, de esta manera es más eficiente encontrar si las variables obtenidas están dentro del grupo que influencia el estudio.

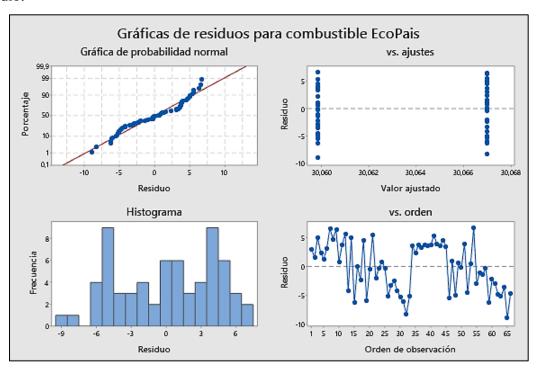


Figura 53: Graficas de residuos combustible 1.

En la Figura 53 se presenta la gráfica de Residuo vs. Porcentaje, se observa que los valores están siguen una tendencia lineal, es decir que los valores presentados van dentro de la normalidad de aproximación, en el histograma se confirma una representación de distribución normal de resultados. En la gráfica de orden de Observación vs Residuo se puede observar el comportamiento aleatorio de datos entorno a la línea de 0, lo que demuestra la independencia de los datos y el error admisible en la toma de datos.

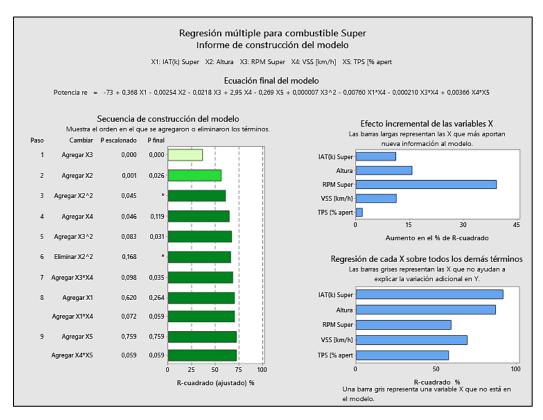


Figura 54: Informe de construcción de modelo.

En la Figura 54, se aprecia la ecuación obtenida al realizar el análisis de regresión múltiple y también la influencia de cada una de las variables al realizar el estudio del rendimiento energético al usar combustible 2, en este caso se puede apreciar que las RPMS brindan mayor información al estudio y también se observa la importancia de la altitud en el análisis.

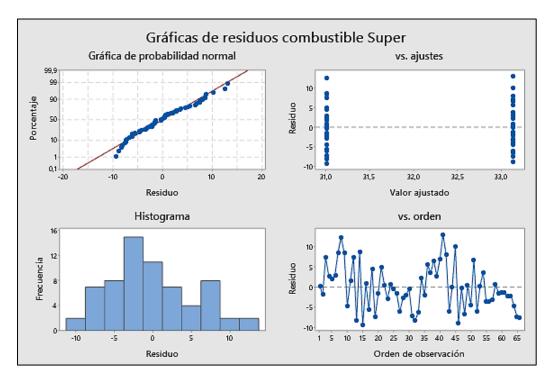


Figura 55: Grafica de residuos combustible 2.

En la Figura 55 se presenta la gráfica de Residuo vs. Porcentaje, se observa que los valores siguen una tendencia lineal, es decir que los valores presentados van dentro de la normalidad de aproximación, en el histograma se confirma una representación de distribución normal de resultados.

En la gráfica de orden de Observación vs Residuo se puede observar el comportamiento aleatorio de datos entorno a la línea de 0, lo que muestra la independencia de los datos y el error admisible en la obtención.

8 CONCLUSIONES

- El comportamiento del motor en las diferentes variaciones que percibe el motor tanto como la cantidad de oxígeno que ingresa al motor, la variación existente en la temperatura, el consumo de combustible que genera cambios en las prestaciones del motor y en las emisiones que este genera, el receptar de manera adecuada toda esta información, permite que el análisis sea eficaz y en este caso los datos expuestos son de un recorrido real en la ruta Cuenca Guayaquil.
- Las variables de influencia presentadas con los análisis estadísticos y con los cálculos realizados en el software MATLAB, permite destacar la variación existente en la altitud como uno de los parámetros más importantes para este estudio, con la variación de altitud se obtiene poca cantidad de oxígeno en el aire, además, la variación en la temperatura ambiente, la pendiente que se genera en el trayecto, son las variables que directamente presentan una influencia en el rendimiento del motor, dado a que por la poca cantidad de oxígeno en el aire, la calidad de la combustión producida es menor, por lo tanto el par motor y las prestaciones del mismo se ven afectadas.
- La ruta seleccionada permite que el estudio se desarrolle de forma eficaz, dado que, con los datos presentados se puede observar que cada 1000 m.s.n.m. existe una variación del 6% de la potencia requerida en el motor y el consumo de combustible se ve afectado por la calidad del mismo a diferentes alturas, para altitudes superiores a 3000 m.s.n.m. la variación existente entre un combustible de mayor octanaje con uno de menor, es mínima, pero en altitudes más cercanas al nivel del mar, la calidad del combustible debe ser mayor, puesto que las prestaciones del motor son mayores y necesita un combustible que cumpla con las condiciones que el motor requiere en ese momento.

.

9 REFERENCIAS BIBLIOGRÁFICAS

Álvarez, D., & Calle, P. (2018). Creación de una base de datos a partir del análisis de las señales de los sensores del sistema de inyección para la localización de averías en motores de combustión interna. Cuenca: Universidad Politécnica Salesiana.

Arévalo, F., & Ortega, A. (2016). Desarrollo de un interfaz para la visualización y adquisición de datos provenientes de la ECU a través de OBD-II mediante un dispositivo de comunicación serial y del analizador de gases QROTECH 6000. Cuenca: Universidad Politécnica Salesiana.

AutoDaewooSpark. (03 de 10 de 2018). *AutoDaewooSpark*. Obtenido de https://www.autodaewoospark.com/sensor-temperatura-refrigerante-motor-engine-coolant-temperature-sensor-ECTS-kia-sportage.php

Ávila, D. (1 de Febrero de 2017). *ACTUALIDADMOTOR*. Obtenido de https://www.actualidadmotor.com/sensor-maf-o-sensor-de-flujo-de-aire/

Blasco, V. (2013). Sistema de diagnóstico a bordo OBD.

Calderón, A. (2012). Optimización de la potencia en un motor de combustión interna gasolina mediante el control de ajustes de combustible y el monitoreo del sensor de oxígeno. Latacunga: Escuela Politécnica del Ejercito.

Castro, T. (12 de Junio de 2013). *Auto Avance*. Obtenido de https://www.autoavance.co/blog-tecnico-automotriz/149-que-es-un-sensor-de-posicion-del-ciguenal-sensor-ckp-y-cmp

Chen, S. H., & Wei, Y. R. (2010). A Study on Speech Control Interface for Vehicle On-Board Diagnostic System. Taiwan: Computer Society.

Guarella, J., Heredia, J., Rodríguez, L., & Bagatto, I. (2011). *Sensores y actuadores automotores*. La Plata: Universidad Nacional de la Plata.

HELLA. (s.f.). Wheel speed sensors in motor vehicles. HELLA, 12.

HEM. (11)de Junio de 2009). Obtenido de www.ecnmag.com. https://www.ecnmag.com/product-release/2009/11/data-logger-acquires-obd-can-bus-data S. Obtenido Huang, (2013).Freematics. de https://freematics.com/pages/products/freematics-one-plus/

Industry, N. T. (16 de Septiembre de 2015). *CompaniesandMarkets.com:Global automotive on-board diagnostics (OBD) market: New insights (2015)*. *Chatham: Newstex*. Obtenido de https://bibliotecavirtual.ups.edu.ec:2598/docview/1712471139?accountid=32861

InvenSense, T. (25 de Junio de 2018). *TDK InvenSense*. Obtenido de https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/

Montero, W., & Abril, J. (2012). Software y Hardware para monitorear parámetros de movilidad y consumo de combustible en vehículos OBD2. Riobamba : Escuela Politécnica de Chimborazo.

Palacios, E., & Pesántez, J. (2016). 1 Creación de una base de datos a partir del análisis de las señales de los sensores del motor para la localización de averías que no generan código. Cuenca: Universidad Politécnica Salesiana.

SAE. (11 de Agosto de 2014). *SAE International*. Obtenido de https://www.sae.org/standards/content/j1979 201408/

Soul, J. (3 de 10 de 2018). *JDM Soul*. Obtenido de https://jdmsoul.wordpress.com/2011/10/13/hablemos-de-sensores/

TODOAutos. (26 de 05 de 2017). *TODOAutos*. Obtenido de http://www.todoautos.com.pe/portal/hyundai/i30/4917-autos

UPS. (2017). Banco de diagnóstico de sensores automotrices. Cuenca.

Xie, Y., Su, X., Chen, X., Cai, G., Xu, B., & Ye, W. (2017). STM32 - based Vehicle Data Acquisition System for Internet - of - Vehicles. Wuhan: ICIS.

ANEXOS

Anexo 1. Valores obtenidos para combustible 1.

Tramo	Cortes Extra	Altitud(msn m)	Torque requerido Motor Extra(Nm)	Potencia requerida motor Extra (w)	Energia requerida Motor Extra (kWh)	GCO	GCO2	GHC	GO2	GNO	Marchas extra	RMP Extra [rev/min]	VSS [km/h]	TPS [% apertura]		IAT (K)Extra	ECT	02	Ma	mtf	MF
TAM-MOLL	11090-11200	200	107,6107771	33191,98365	0,004209629	0,68704365	25,1916004	0,00531641	48,5848802	0,04122262	3	3124,3429	67,0482403	16,0659994	23,0373723	321,150003	89,9972998	0,02781404	0,00063824	0,00026418	0,00852578
TAM-MOLL	10960-11090	400	109,6559108	31663,62368	0,004223408	0,7900922	20,789137	0,01015177	27,2988667	0,00358298	3	2919,95125	64,5605853	15,76467	20,9003764	304,150708	89,0693544	0,72953249	0,00041851	0,00024923	0,00716833
TAM-MOLL	10830-10960	600	107,9886586	35134,26147	0,004154961	2,62644381	.,	0,00857405	3,51755868	0,00554015	4	3326,88563	80,0336328	16,0177198	23,3570336	304,149292	88,9994295	0,07031695	0,00051816	0,00025601	0,00811785
TAM-MOLL	10700-10830	800	103,2542572	32507,60298	0,004073934	0,93409121	-,	0,01683719	32,9679251	0,01978076	4	3121,22987	80,511524	15,9976085	21,9015795	304,137037	89,9927437	0,00611701	0,00045232	0,00025153	0,00654299
TAM-MOLL	10580-10700	1000	101,9388937	31429,81627	0,004063877	2,60402582	16,7548118	0,00694944	21,5820723	0,00461343	4	3314,44439	+	16,8928589	23,0513464	306,145503	90,0020558	0,86079725	0,0004724	0,0002529	0,00677439
TAM-MOLL	10460-10580	1200	109,049007	33214,43116	0,004553227	0,45180087	,	0,00540972	29,6218313	0,01319734	4	3266,83166	. ,	15,9996345	21,0045608	306,149246	89,9979442	0,00050207	0,0007075	0,00026889	0,00750881
TAM-MOLL	10250-10460	1400	110,5964059	36725,76184	0,004360742	0,01954355	22,2656846	0,00077127	0,07817419	0,0049836	4	3403,45618		19,5580836	30,995811	304,150708	90,0444324	0,47556191	0,00056256	0,00025903	0,00722353
TAM-MOLL	10050-10250	1600	109,214732	34882,02511	0,004251647	2,3938762	18,2581353	0,00106959	3,69741548	0,00390633	3	3827,11851	61,7437682	38,0920684	77,996745	301,145443	91,0043891	0,41032003	0,00041353	0,00024889	0,00713498
TAM-MOLL	9942-10050	1800	107,8669536	36497,04336	0,004331169	1,96531165		0,01401287	88,2384823	0,01263415	4	3432,46222	,-	16,0003655	16,9440517	303,153633	,	0,04317612	0,00040467	0,00024829	0,00783338
TAM-MOLL	9808-9942	2000	111,7279225	30908,41305	0,004384359	0,19690645	21,6597096	0,00030474	64,510304	0,00541493	4	3173,79249		20,6500294	32,1959701	309,150822	90,0089049	0,57084811	0,00101319	0,00028969	0,00711601
TAM-MOLL	9704-9808	2200	109,0347581	33900,34373	0,004771216	1,64564903	17,2401327	0,00091302	13,8394204	0,00263925	4	3438,73545	88,5849582	17,6081099	26,1886346	305,150731	90,0020558	0,55960749	0,00042253	0,00024951	0,00642397
TAM-MOLL	9475-9704	2400	108,5489923	35710,9414	0,004358826	0,02284927	23,6979612	0,0003713	8,63049718	0,02142119	4	3240,24995	83,5271067	19,2665851	25,3268684	305,150731	90,1417331	0,07122695	0,00057073	0,00025959	0,00768776
MOLL-3CRU	6143-6365	2600	105,1989053	25845,63358	0,003147308	0,08122972	9,06963411		2,79967695		3	2678,68281	53,3345042	22,3113455	41,0413218	299,149834	89,2428788	0,09691585	0,00048255	0,00014985	0,00298193
3CR-CUE	16-131	2600	106,5495692	35109,00576	0,004493904	0,17026357	76,5213108	0,00300394	0,19458693	0,08274809	3	3128,68503	60,9721244	21,5876602	41,5864231	314,174165	94	0,62171735	0,00142385	0,00080733	0,024879
MOLL-3CRU	6018-6143	2800	102,1216673	23792,68625	0,00350618	0,09657653	11,230471	0,00062775	13,4655279	0,0024627	3	3056,63924	58,8791026	16,8625604	19,8556747	298,149841	88,9994332	0,01284266	0,00054324	0,00015398	0,00368836
3CR-CUE	184-513	2800	109,6725235	30184,63306	0,004360372	0,38971976	55,1175083	0,00248794	0,13918563	0,04493956	4	2697,03366	72,0526957	21,8588452	45,764677	304,126642	94,0002179	0,76138922	0,0009441	0,0007747	0,01805708
MOLL-3CRU	5863-6018	3000	107,685989	27767,49797	0,003775264	0,04828468	13,1518267	0,00059781	25,3839452	0,00748413	4	2975,95012	73,4442814	16,0132281		297,150768	90,0028799	0,02208159	0,0009858	0,00018408	0,00428594
3CR-CUE	681-879	3000	102,2175572	34746,4298	0,005019354	0,55064383	72,7867854		0,14807229	0,09668658	3	3532,6594	70,9874512	87,740242	69,1829844	294,151666	96	0,52989424	0,0014756	0,00081085	0,02387054
MOLL-3CRU	5622-5863	3200	104,223004	24105,37272	0,00386926	0,51220643	11,2054123	0,00214495	2,53664135	0,00617661	4	2966,40998	60,4655816	16,1717271	26,1241489	296,150736	90,0028799	0,83642495	0,00120538	0,00019902	0,00389676
3CR-CUE	879-1047	3200	100,3580872	29621,75122	0,004423517	0,38882006	65,8003171	0,00319388	0,13672793	0,04935024	3	2596,7829	63,7198203	87,4701305	67,7394911	297,156691	93	0,86367114	0,00143021	0,00080776	0,02151871
MOLL-3CRU	5469-5622	3400	101,8676744	35635,3629	0,004571856	0,43267646	12,8547404	0,00317022	8,26721098	0,0249465	4	3544,06702	91,3948875	15,9998981	17,7094607	297,149847	88,8993561	0,05255088	0,00037878	0,00014279	0,00439381
3CR-CUE	1303-1514	3400	100,3842597	28111,30591	0,003916409	6,30401313	60,2028679	0,0036072	0,12247246	0,0518403	3	2742,1732	56,4003385	16,3913597	24,7880854	300,15	93	0,65138981	0,0013657	0,00080338	0,02068196
MOLL-3CRU	5298-5469	3600	109,6979305	29809,46842	0,003629997	0,2982619	10,8038692	0,00255834	0,40442291	0,05482458	4	3219,40501	73,0866659	15,5732833	16,0284793	297,149538	88,9933385	0,39412838	0,00071755	0,00016583	0,00365919
3CR-CUE	1514-1720	3600	107,297634	30971,89816	0,004474098	2,88093938	57,7755734	0,00318471	0,65850043	0,03580596	4	3015,80793	77,6354421	86,1666026	63,9756576	294,172428	94	0,83700409	0,00136444	0,00080329	0,02018807
MOLL-3CRU	5140-5298	3800	109,4173901	29876,67514	0,005127257	0,31118963	9,78024558	0,00144481	156,483929	0,01517049	4	3430,72566	75,4155617	17,000544	18,9879462	305,148161	88,9801555	0,36154855	0,00041228	0,00014507	0,00333059
R3CR	3714-3868	3800	110,8614786	25006,85205	0,00469021	0,54490093	21,9722853	0,00610994	0,8694915	0,14928229	3	3096,07872	47,9713223	39,0185686	61,0029115	296,158386	92,9944097	0,47386281	0,00129089	0,00038782	0,00741343
3CR-CUE	1720-1940	3800	103,04661	26780,44335	0,004157527	6,68165353	41,2015163	0,00765732	0,12082556	0,12274367	4	3106,10978	75,1183646	53,1038712	63,5057002	294,15	96,4155619	0,3300444	0,00132662	0,00080072	0,01676934
MOLL-3CRU	5001-5140	4000	105,7977415	27683,54635	0,003828411	0,06225272	10,6103255	0,00148962	0,05472766	0,02140536	3	3488,75549	69,7852923	17,0029653	17,9726629	312,154674	88,9994332	0,00066105	0,00037819	0,00014275	0,00347288
R3CR	3880-4066	4000	109,2084864	25938,71131	0,003775772	5,07700995	21,2874299	0,00618009	0,05384962	0,06095946	3	3150,77352	49,0356212	87,0500713	60,5898086	297,141186	96,1379784	0,80009138	0,00130687	0,00038891	0,00949838
R3CR	3570-3714	4000	105,3692728	24769,57176	0,003141841	1,44888136	22,1081897	0,00214482	0,57595284	0,01559122	3	3372,37578	51,0728522	36,5527244	58,5247506	296,150736	94,0070701	0,76219717	0,00127932	0,00038704	0,00790447
3CR-CUE	1940-2205	4000	104,1779866	23992,69344	0,003899275	2,12113151	52,5094201	0,0024283	31,0822559	0,02004905	3	3025,59994	54,1087071	40,1136983	59,1546907	293,141696	95,0028849	0,61300783	0,00126606	0,0007966	0,01809338
MOLL-3CRU	4066-4219	4150	106,2812878	21785,6406	0,00352433	1,42284123	6,45183158	0,00261284	0,46922412	0,02362554	3	2805,2789	45,8731258	18,7005535	23,7863599	315,149191	91,9926637	0,00134964	0,00056264	0,0001553	0,00282223
R3CR	2205-2352	4150	111,0507941	24909,67296	0,004137898	0,1722736	23,6876194	0,00179964	0,12305257	0,0148586	3	2800,68671	49,2727725	40,0664402	58,81221	290,18404	94,9984135	0,45931176	0,00126682	0,00038619	0,00776515

Anexo 2. Valores obtenidos para combustible 2

Tramo	Cortes super	Altitud(msn m)	Torque requerido Motor Super (Nm)	Potencia requerida motor Super (w)	Energia requerida Motor Super(kWh)	GCO	GCO2	GHC	G02	GNO	Marchas super	RPM Super [rev/min]	VSS [km/h]	TPS [% apertura]	MAP [kPa]	IAT(k) Super	ECT	02	Ma	mtf	MF
TAM-MOLL	6371-6883	200	108,9056396	31410,21689	0,004789254	10,522631	139,7340222	0,00650381	0,417635932	0,107802275	4	3019,17374	77,5716303	43,18970529	95,1336712	313,14879	95,9991563	0,83469965	0,001741267	0,00176905	0,04605107
TAM-MOLL	8091-8217	400	112,9016876	29321,17693	0,003628015	10,28555857	122,8028381	0,00960423	0,197009901	0,239613292	4	2697,76032	69,8495028	44,93720362	95,6002359	324,139148	94,9987608	0,49960746	0,001829426	0,001775047	0,04503757
TAM-MOLL	8217-8335	600	111,8977816	38494,56037	0,00476307	14,69763354	142,2132134	0,00852988	2,255192447	0,120438941	3	3574,01776	71,8413991	48,78876838	91,5538273	314,150267	94,0130399	0,75657166	0,001845263	0,001776124	0,05356578
TAM-MOLL	8335-8461	800	104,5466011	33804,02204	0,004182693	21,73895023	113,8706917	0,01507234	0,662520388	0,15304221	4	,	86,9642613	27,63025357	,-	309,150235	96,0006261	0,45670278	0,001829251	0,001775035	0,04799171
TAM-MOLL	8461-8582	1000	102,0691084	33158,44788	0,004102814	10,4929531	125,0564636	0,00957924	0,202111456	0,104340039	4		87,3740015	89,15958928	- ,	308,150228	,	0,86439156	0,001790932	0,001772428	0,04587291
TAM-MOLL	8582-8707	1200	113,7736684	34027,33143	0,004210324	12,06456715	119,8326953	0,00871917	0,195114294	0,093898754	4	3102,55435	80,4393373	86,71485799	86,9920854	307,145951	95,9987477	0,8349097	0,001753377	0,001769873	0,04497813
TAM-MOLL	8707-8819	1400	111,1132264	39726,28987	0,004915477	5,79768578	154,4366125	.,	0,969647796	0,118781855	3	3712,36081	74,6636372	90,14593899	85,0596987	307,150222	95,0006196	0,69285577	0,001689963	0,001765559	0,05299292
TAM-MOLL	8819-8996	1600	107,1108242	43602,32784	0,005395073	11,95308759	148,9719784	.,	0,785096065	0,077282894	3	4247,68229	85,0106249	17,19144058	26,6060279	309,150235	97,3266457	0,56666728	0,001653829	0,001763101	0,0543519
TAM-MOLL	8996-10200	1800	111,2250706	39607,29068	0,004900753	11,99685453	151,9601573	-	0,581665674	0,197402788	4	3699,29266	95,7755819	78,09054839	81,155704	307,87213	99,0006457	0,61356327	0,000930619	0,001713903	0,05535432
TAM-MOLL	1245-1352	2000	111,5870297	26410,88168	0,000652121	1,14072155	43,06893608	-	4,536636595	0,005543782	2	2501,33333	31,6666667	20	56,3333333	331,150378	93,012611	0,84776577	0,001067289	7,26047E-05	0,0015134
TAM-MOLL	1352-1474	2200	110,3073907	32734,36157	0,00405034	1,140710887	99,82279392	-	8,477709413	0,091000557	4	3078,50164	79,8144669	87,61125905	85,437372	307,150222	- ,	0,75864011	0,001745175	0,000118719	0,00304565
TAM-MOLL	1474-1583	2400	102,0421974	38642,83381	0,001073412	0,140710796	,	0,00093261	7,304102246	0,055407901	2		50,6666667	41	50,6666667	309,14842		0,20804621	0,001028247	6,99487E-05	0,00231822
MOLL-3CRU	13340-13650	2600	107,0560629	22702,48758	0,003327694	2,173828881	54,57773989	0,00197215	0,913793421	0,019114702	4		57,0354054	86,72015025	. ,	303,188104	- ,	0,59889189	0,00122915	0,00081754	0,01878855
3CR-CUE	19230-19580	2600	108,1023927	39827,28229	0,00485408	3,174624873	7,628762275	.,	5,280132092	0,001063663	3	2977,127	76,9382422	23,09097995		294,150672		0,32526547	0,00042634	0,000187171	0,00409691
MOLL-3CRU	13650-13860	2800	102,6538306	21594,83156	0,003165335	1,042655443	58,81646086	.,	5,744153061	0,019249024	4	_	56,5792276	32,71466497	67,1757955	306,15		0,46197565	0,001444537	0,000832192	0,01958446
3CR-CUE	19010-19230	2800	108,2106941	31931,15022	0,003891713	2,915125114	6,246696672	.,	2,935886373	0,000705272	4	2450,92573	79,3645821	15,97461679	22,0655878	291,149653	94,0058543	0,09528603	0,00052253	0,000193714	0,00351737
MOLL-3CRU	13860-14050	3000	110,1346102	25445,43907	0,003729751	0,188436089	54,78106311		7,647411155	0,050171109	4	3082,88164	62,1396044	33,72696915	64,6572151	303,15	93,9999184	0,49474013	0,001383144	0,000828015	0,01784109
3CR-CUE	18860-19010	3000	105,1609908	35664,36398	0,004346711	0,610386115	10,55095999	.,	9,47239128	0,01098695	3	. ,	96,5236156	15,94862679	,	290,149892	94,0036543	.,	0,000399928	0,000185374	0,00379015
MOLL-3CRU	14050-14250	3200	105,2865246	23564,42483	0,003454035	0,711331958	61,90933084	.,	0,093802016	0,0279061	4	3028,3013	60,19583	41,14988542	. ,	305,144505	99	0,4252523	0,001219209	0,000816863	0,02041721
3CR-CUE	18620-18860	3200	103,3012563	29503,53854	0,00359584	1,644392484	9,722150754		2,232838451	0,000814056	4		85,0489525	15,9998981		291,149885	88,7923404	0,05638167	0,000430801	0,000187474	0,0039973
MOLL-3CRU	14250-14540	3400	102,1066316	36124,87031	0,005295124	11,45200045	51,41714488	-,	0,153255275	0,067987872	2	3716,91441	47,3353416	24,25101023	42,6727334	305,150835	96	0,83840458	0,001339453	0,000825043	0,02250496
3CR-CUE	18410-18620	3400	102,5824706	31628,80249	0,003854864	1,330533272	9,886908369	.,	1,178767019	0,000773566	3	2845,65266	72,1219213	28,6953573	54,3681286	294,16323	93	0,2132024	0,000497155	0,000191988	0,0038901
MOLL-3CRU	14540-14740	3600	112,6563764	28077,13986	0,004115501	0,419388845	70,9734969	.,	0,700517632	0,085168196	4	3334,26467	67,0315777	69,70539925	64,9525365	300,143049	93,9994013	0,86435148	0,001161058	0,000812908	0,02320705
3CR-CUE	18230-18410	3600	110,5382595	31668,8177	0,003859741	2,820369375	9,828685298	-,	0,655245687	0,004690963	3	3143,30717	81,1086751	28,71922616	51,0614926	302,088329	89,9982664	0,20124487	0,000723805	0,000207406	0,00463833
MOLL-3CRU	14740-14950	3800	115,0066604	30672,7049	0,004495955	7,165156874	63,2450321	.,	0,139382991	0,041161539	4	-	71,7317519	51,01062508	62,7616	295,15	93	0,45213202	0,001110503	0,000809468	0,02414328
R3CR	16690-16800	3800	115,0327378	29521,12037	0,00358857	0,140710796	39,52465755	.,	0,120609254	0,029021602	4	3432,37052	69,0229844	16,99989173	18,0659146	300,149828	88,9307526	0,08467789	0,001263429	0,00049361	0,01288618
3CR-CUE	17950-18230	3800	104,4267396	24984,05727	0,003037047	1,233908811	13,31602108	.,	5,1140317	0,003344934	5		83,1118742	16,99967255		294,149595	88,6603364	0,17073683	0,001236984	0,000242317	0,00494361
MOLL-3CRU R3CR	14950-15110	4000	109,5949129	28336,25856	0,004153482 0.003518564	3,666870001	58,49530716	-,	0,126991169	0,070003882	4		69,5399645 68,9686673	47,2192344 17.00054399		296,220899 300,150864	93,1392483 89.0028479	0,32526547	0,001323038	0,000823927	0,02082764
	16560-16690	4000	112,8775221	28945,22616	.,	8,633568613	27,19883191	.,	8,084379322	0,003399854	4			,	18,033147		,		0,000374612	0,000433146	
R3CR 3CR-CUE	16910-17080	4000	106,3071098 105,304125	30664,87275 23769,59006	0,003727604	6,682569891	26,58526901	.,	7,241287191	0,012688424	4	3423,01524 3170,89068	77,5820426 63,10691	16,99989173 17,22433207	17,984749 19,2339328	300,149828 296.149854	88,2138253 89,9982664	0,06363268	0,000376358 0.001317098	0,000433265 0.00049726	0,01203291
MOLL-3CRU	17830-17950	4000		22833.46777	0.002889417	8,229654664	21,88854468	.,	0,160649869	0,012842862	4	2939.31657	58.5164479	18.00691275	20.3197994	295,149854	88,9952268	0,02248143	0.001317098	0,00049726	0,01129145
	16320-16560	4150	107,9485088	,	-,	4,597350145	58,86554154	-,	0,129731221	0,077048183	4	,	,-	-,	.,	,	,	-,	-,	.,	-
R3CR	17080-17210	4150	113,2732873	24818,64356	0,003016939	1,357748422	31,40474279	0,00474558	2,301416266	0,010755198	4	2944,64862	58,9295184	17,00054399	19,000608	298,138376	89,0028479	0,047/839	0,001267981	0,000493919	0,01087746

Anexo 3. Valores obtenidos para gases de emisión combustible 1.

Altura	CO g/km	CO2 g/km	HC g/km	O2 g/km	NOX g/km
200	0,687043647	25,19160039	0,005316409	48,58488023	0,041222619
400	0,790092201	20,78913698	0,010151766	27,29886675	0,003582976
600	2,626443813	20,85130616	0,008574049	3,517558678	0,005540155
800	0,93409121	18,56408161	0,01683719	32,96792507	0,019780755
1000	2,604025822	16,75481181	0,006949439	21,58207228	0,004613432
1200	0,451800868	22,42019343	0,005409721	29,62183132	0,013197341
1400	0,019543548	22,26568457	0,000771272	0,07817419	0,004983605
1600	2,3938762	18,25813528	0,001069589	3,697415482	0,003906325
1800	1,965311652	20,95663955	0,014012873	88,23848232	0,012634146
2000	0,196906451	21,65970964	0,000304736	64,51030403	0,005414927
2200	1,645649031	17,2401327	0,000913017	13,83942042	0,002639248
2400	0,022849274	23,69796124	0,000371301	8,630497179	0,021421194
2600	0,08122972	9,069634108	0,000992468	2,799676953	0,013787676
2600	0,170263565	76,52131085	0,003003936	0,194586932	0,082748093
2800	0,096576532	11,23047101	0,000627747	13,46552789	0,002462702
2800	0,389719755	55,11750825	0,002487943	0,139185627	0,044939559
3000	0,048284678	13,15182667	0,00059781	25,38394518	0,007484125
3000	0,550643831	72,78678545	0,005263507	0,148072291	0,096686579
3200	0,512206426	11,20541228	0,002144954	2,536641346	0,006176607
3200	0,388820055	65,80031706	0,003193879	0,136727932	0,049350238
3400	0,432676463	12,85474044	0,003170224	8,267210983	0,024946502
3400	6,304013128	60,20286794	0,003607197	0,122472459	0,051840295
3600	0,298261897	10,80386921	0,002558336	0,404422912	0,054824581
3600	2,88093938	57,77557342	0,003184712	0,65850043	0,035805961
3800	0,311189632	9,780245575	0,001444809	156,4839292	0,015170495
3800	0,544900925	21,97228528	0,00610994	0,869491503	0,149282291
3800	6,68165353	41,20151634	0,00765732	0,120825561	0,122743667
4000	0,062252716	10,61032548	0,001489619	0,054727662	0,021405357
4000	5,077009953	21,28742987	0,006180086	0,053849625	0,060959458
4000	1,448881362	22,10818973	0,002144824	0,57595284	0,015591223
4000	2,121131514	52,50942007	0,002428301	31,08225593	0,020049051
4150	1,422841228	6,451831582	0,00261284	0,469224115	0,023625535
4150	0,172273595	23,68761935	0,001799644	0,123052568	0,014858598

Anexo 4. Valores obtenidos para gases de emisión combustible 2.

Altura	CO g/km	CO2 g/km	HC g/km	O2 g/km	NOX g/km
200	10,522631	139,734022	0,00650381	0,41763593	0,10780227
400	10,2855586	122,802838	0,00960423	0,1970099	0,23961329
600	14,6976335	142,213213	0,00852988	2,25519245	0,12043894
800	21,7389502	113,870692	0,01507234	0,66252039	0,15304221
1000	10,4929531	125,056464	0,00957924	0,20211146	0,10434004
1200	12,0645672	119,832695	0,00871917	0,19511429	0,09389875
1400	5,79768578	154,436612	0,00787839	0,9696478	0,11878185
1600	11,9530876	148,971978	0,00669785	0,78509607	0,07728289
1800	11,9968545	151,960157	0,01046479	0,58166567	0,19740279
2000	1,14072155	43,0689361	0,00095518	4,5366366	0,00554378
2200	1,14071089	99,8227939	0,00094453	8,47770941	0,09100056
2400	0,1407108	89,1222769	0,00093261	7,30410225	0,0554079
2600	2,17382888	54,5777399	0,00197215	0,91379342	0,0191147
2600	3,17462487	7,62876228	0,00321631	5,28013209	0,00106366
2800	1,04265544	58,8164609	0,00161363	5,74415306	0,01924902
2800	2,91512511	6,24669667	0,00325463	2,93588637	0,00070527
3000	0,18843609	54,7810631	0,0010936	7,64741115	0,05017111
3000	0,61038612	10,55096	0,00189874	9,47239128	0,01098695
3200	0,71133196	61,9093308	0,00152428	0,09380202	0,0279061
3200	1,64439248	9,72215075	0,00357797	2,23283845	0,00081406
3400	11,4520005	51,4171449	0,00747119	0,15325528	0,06798787
3400	1,33053327	9,88690837	0,00332818	1,17876702	0,00077357
3600	0,41938885	70,9734969	0,00239651	0,70051763	0,0851682
3600	2,82036938	9,8286853	0,00602297	0,65524569	0,00469096
3800	7,16515687	63,2450321	0,00424683	0,13938299	0,04116154
3800	0,1407108	39,5246576	0,00424645	0,12060925	0,0290216
3800	1,23390881	13,3160211	0,0009318	5,1140317	0,00334493
4000	3,66687	58,4953072	0,00515902	0,12699117	0,07000388
4000	8,63356861	27,1988319	0,00679235	8,08437932	0,00339985
4000	6,68256989	26,585269	0,00667653	7,24128719	0,01268842
4000	8,22965466	21,8885447	0,00433116	0,16064987	0,01284286
4150	4,59735014	58,8655415	0,00527033	0,12973122	0,07704818
4150	1,35774842	31,4047428	0,00474558	2,30141627	0,0107552