UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA CARRERA DE INGENIERÍA ELECTRÓNICA

Trabajo de titulación previo a la obtención del título de Ingeniero Electrónico

PROYECTO TÉCNICO: "DISEÑO E IMPLEMENTACIÓN DE GUÍAS DE PRÁCTICAS PARA EL MANEJO DE EQUIPOS ÓPTICOS DEL LABORATORIO DE TELECOMUNICACIONES DE LA

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA"

AUTORES:

ISMAEL SEBASTIÁN PESANTEZ ROMERO GABRIEL ESTEBAN PULLA LOJANO

TUTOR:

ING. EDWIN JOHNATAN CORONEL GONZÁLEZ

CO TUTOR:

ING. LUIS FERNANDO GUERRERO VÁSQUEZ

CUENCA - ECUADOR

2020

CESIÓN DE DERECHOS DE AUTOR

Nosotros, Ismael Sebastián Pesantez Romero con documento de identificación N° 0302222559 y Gabriel Esteban Pulla Lojano con documento de identificación N° 0105343198, manifestamos nuestra voluntad y cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores del trabajo de titulación: **"DISEÑO E IMPLEMENTACIÓN DE GUÍAS DE PRÁCTICAS PARA EL MANEJO DE EQUIPOS ÓPTICOS DEL LABORATORIO DE TELECOMUNICACIONES DE LA UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA"**, mismo que ha sido desarrollado para optar por el título de: *Ingeniero Electrónico*, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en nuestra condición de autores nos reservamos los derechos morales de la obra antes citada. En concordancia, suscribimos este documento en el momento que hacemos entrega del trabajo final en formato digital a la Biblioteca de la Universidad Politécnica Salesiana.

Cuenca, enero del 2020

Ismael Sebastián Pesantez Romero C.I.: 030222559

40146

Gabriel Esteban Pulla Lojano C.I.: 0105343198

CERTIFICACIÓN

Yo, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: "DISEÑO E IMPLEMENTACIÓN DE GUÍAS DE PRÁCTICAS PARA EL MANEJO DE EQUIPOS ÓPTICOS DEL LABORATORIO DE TELECOMUNICACIONES DE LA UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA", realizado por Ismael Sebastián Pesantez Romero y Gabriel Esteban Pulla Lojano, obteniendo el *Proyecto Técnico* que cumple con todos los requisitos estipulados por la Universidad Politécnica Salesiana.

Cuenca, enero del 2020

Ing. Edwin Johnatan Coronel González CI: 0301141222

DECLARATORIA DE RESPONSABILIDAD

Nosotros, Ismael Sebastián Pesantez Romero con documento de identificación N° 03022225599 y Gabriel Esteban Pulla Lojano con documento de identificación N° 0105343198, autores del trabajo de titulación: **"DISEÑO E IMPLEMENTACIÓN DE GUÍAS DE PRÁCTICAS PARA EL MANEJO DE EQUIPOS ÓPTICOS DEL LABORATORIO DE TELECOMUNICACIONES DE LA UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA"** certificamos que el total contenido del *Proyecto Técnico*, es de nuestra exclusiva responsabilidad y autoría.

Cuenca, enero del 2020

Ismael Sebastián Pesantez Romero C.I.: 0302222559

10.06

Gabriel Esteban Pulla Lojano C.I.: 0105343198

AGRADECIMIENTOS

A Johnatan Coronel, Fernando Guerrero y Juan Inga por su apoyo en este trabajo.

Ismael Sebastián Pesantez Romero

A Johnatan Coronel, Fernando Guerrero y Juan Inga por su apoyo en este trabajo.

Gabriel Esteban Pulla Lojano

DEDICATORIAS

A mi familia.

Ismael Sebastián Pesantez Romero

A mi familia.

Gabriel Esteban Pulla Lojano

ÍNDICE GENERAL

AGRADECIMIENTOSI
DEDICATORIAS II
Índice General
ÍNDICE DE FIGURAS
ÍNDICE DE TABLASIX
RESUMENXII
INTRODUCCIÓN
ANTECEDENTES DEL PROBLEMA DE ESTUDIOXIV
JUSTIFICACIÓN (IMPORTANCIA Y ALCANCES)
ObjetivosXVI
Objetivo GeneralXVI
Objetivos EspecíficoXVI
Capítulo 1: Fundamentación Teórica o Estado el Arte1
1.1 Componentes de un sistema de onda de luz1
1.1.1 Transmisor óptico
1.1.2 Fibra óptica como medio de transmisión
1.1.3 Receptor optico 5 1.2 Transmisión por fibra óptica 5
121 Técnicos de multiplexeción 5
1.2.1 Fechicas de Inditiplexación
1.3 Pérdidas de fibra 7
1.3.1 Coeficiente de atenuación
1.3.2 Absorción de materiales
1.3.3 Retrodispersión de Rayleigh
1.4 Redes ópticas pasivas10
1.3.4 Componentes generales de una red PON11
1.3.5 Estándares PON
1.4.3 Arquitectura de la red de acceso local
CAPITULO 2: DESCRIPCION DE EQUIPOS
2.1 FUSIOIIAUOLA
2.2 Medidor de potencia óptica
2.2.1 Operación del OPM
2.3 Fuente óptica

2.3.1	Módulo AQ2200-132	
2.3.2	Módulo AQ2200-342	
2.4 Aı	nalizador de espectros ópticos	
2.5 Re	eflectómetro óptico en el dominio del tiempo	
251	Operación del OTDP A07280	31
2.3.1	Horramiontos del OTDR AQ7280	
2.5.2	nenamentas del OTDR AQ7260	,
2.0 Oj		
2.6.2	Configuración de la UFiber OLT	
2.7 Oj	ptical Network Unit	
071		10
2.7.1	Pantalla led de la ONU NanoG	
2.7.2	Alimentación	
2.8 Ge	enerador de tráfico	
2.8.1	Panel de conectores de prueba	46
2.0.1	Modo de prueba	10
2.0.2	Pruehas de rendimeinto	
2.0.3 2.8.4	Modos de operación	
2.0.4	Configuración del conector	
2.8.5	Generación de tráfico	
2.0.0	Inserción de eventos	
2.0.7 29 At	cormentador de tráfico	
2.) Al		
2.9.1	Panel de conectores de prueba	
2.9.2	Interfaz gráfica de usuario	61
2.9.3	Conexión del Net.Storm	
2.9.4	Análisis de resultados	63
2.9.5	Inserción de eventos	64
2.10	Capturador de tráfico	67
0 10 1		(7
2.10.1	Modos de operación	
2.10.2	Analisis de resultados	
CAPITULO 3	5: DESARROLLO DE PRACTICAS	/1
3.1 Cá	ílculos de atenuación y nivel de potencia	71
211	Communication de los niverlos de notonois	74
3.1.1 2.2 Dr	Comprobación de los inveles de potencia	
3.2 Pr	uebas de reflectometría optica	
3.2.1	Modo simple	76
3.2.2	Modo detalle	
3.2.3	Modo PON	
3.2.4	Análsis de resultados de reflectometría óptica	
3.3 Ca	aracterización del coeficiente de atenuación respecto a la longitud	l de onda
83		
00		
3.4 Ca	aracterización del tipo de láser	
3.4.1	Distributed Feedback Laser Diode	
2		

3.4.2	Fabry Perot Laser Diode	
3.4.3 Análsis Espectral		
3.4.4	Wavelenght Division Multiplexing	
3.5 Ge	neración de tráfico	
3.5.1	Generación de tramas Ethernet	
3.5.2	Generación de paquetes IP	97
3.5.3	Análsis de resultados	
3.6 Pro	ovisión de QoS basado en la verificación de parámetros SLA	
3.6.1	Condiciones de evaluación	
3.6.2	Análsis de resultados	105
3.6.3	Degradación de tráfico	108
3.6.4	Análsis de resultados con degradación	109
3.7 Co	nfiguración de una red GPON	
3.7.1	Configuración de la OLT	111
3.7.2	Pruebas para el control de ancho de banda	116
CAPÍTULO 4	: CONCLUSIONES Y RECOMENDACIONES	119
REFERENCIA	AS BIBLIOGRÁFICAS	
ANEXOS		124

ÍNDICE DE FIGURAS

Figura 1.1 Componentes de un sistema de onda de luz	1
Figura 1.2 Componentes de un transmisor óptico	2
Figura 1.3 Estructura de la fibra óptica	3
Figura 1.4 Fibra de índice escalonado	4
Figura 1.5 Fibra de índice graduado	4
Figura 1.6 Componentes de un receptor óptico	5
Figura 1.7 Técnicas de multiplexación para incrementar la capacidad de transm	isión
de una fibra óptica (a) TDM y (b) WDM	6
Figura 1.8 Proceso de dispersión de la luz	8
Figura 1.9. Arquitectura estándar para redes PON	10
Figura 1.10 Técnicas TDM/ TDMA	11
Figura 1.11 Optical Line Terminal	12
Figura 1.12 Optical Network Unit	12
Figura 1.13 Módulo transceptor SFP	13
Figura 1.14 Fusión por alineación de núcleo	14
Figura 1.15 Esquema de un conector óptico	15
Figura 1.16 Esquema de un divisor óptico pasivo	15
Figura 1.17 Arquitecturas de redes de acceso	17
Figura 2.1 Fusionadora FiberFox Mini 5C	20
Figura 2.2 Medidor de potencia óptica Prolite-63B (a) interfaces (b) pantalla	22
Figura 2.3 Plataforma de prueba óptica Yokogawa AQ2200	24
Figura 2.4 Panel Frontal Anritsu MS9740A	27
Figura 2.5 Pantalla de marcador de forma de onda	28
Figura 2.6 Pantalla de marcador de nivel.	29
Figura 2.7 Rango de análisis limitado por marcadores de zona.	29
Figura 2.8 Descripción del teclado e interfaces del OTDR AQ7280 (a) Panel Fr	ontal
(b) Panel Superior	31
Figura 2.9 Forma de onda según el tipo de evento	32
Figura 2.10 Métodos de estimación de pérdidas (a) LSA y (b) TPA	33
Figura 2.11 Método de dos puntos	33
Figura 2.12 Método de cuatro puntos	34
Figura 2.13 Método de cinco puntos	34

Figura 2.14 Método de seis puntos	35
Figura 2.15 Pantalla de configuración en modo PON	38
Figura 2.16 <i>Íconos de la herramienta OTDR Smart Mapper (a) punto de inici</i>	o (b)
empalme (c) splitter (d) curvatura (e) conector (f) fin de fibra	39
Figura 2.17 UFiber OLT	40
Figura 2.18 Pantalla LED ONU Nano G	44
Figura 2.19 Alimentación PoE de la ONU Nano G	45
Figura 2.20 Descripción del panel frontal del xGenius	45
Figura 2.21 Interfaces de conexión del xGenius	46
Figura 2.22 Modos de operación (a) One-Way (b) Two-way	48
Figura 2.23 Algoritmo de control de admisión	51
Figura 2.24 Perfiles de tráfico (a) Continuo (b) Periódico (c) Rampa (d) Aleaton	rio54
Figura 2.25 Formato MPLS.	57
Figura 2.26 Equipo Net.Storm	60
Figura 2.27 Interfaces de conexión del equipo Net.Storm	61
Figura 2.28 Generación de deterioro bidireccional con Net.Storm	62
Figura 2.29 Equipo Net.Hunter	67
Figura 3.1 Topología de red	72
Figura 3.2 Estado de la férula (a) sucia (b) limpia	74
Figura 3.3 Diagrama de conexión en modo simple	76
Figura 3.4 Traza reflectométrica en modo simple	77
Figura 3.5 Diagrama de conexión en modo detalle	78
Figura 3.6 Traza reflectométrica en modo detalle	80
Figura 3.7 Diagrama de conexión en modo PON	81
Figura 3.8 Traza reflectométrica en modo PON	82
Figura 3.9 Pérdida de fibra dependiente de la longitud de onda	84
Figura 3.10 Diagrama de conexión para la caracterización del coeficient	e de
atenuación	85
Figura 3.11 Caracterización del coeficiente de atenuación respecto a la longitu	ıd de
onda	86
Figura 3.12 Funcionamiento del ITLA	87
Figura 3.13 Espectro del láser DFB con longitud de onda 1550 nm láser ITLA	en el
generador de fuente de luz	87
Figura 3.14 Espectro del láser DFB con longitud de onda 1490 nm de la OLT	88

Figura 3.15 Filtro Fabry-Perot
Figura 3.16 Espectro del láser Fabry Perot con longitud de onda 650 nm luz visible
del OTDR
Figura 3.17 Espectro del láser Fabry Perot con longitud de onda 1310 nm luz visible
del OTDR
Figura 3.18 Espectro del láser Fabry Perot con longitud de onda 1550 nm del OTDR
Figura 3.19 Espectro del láser Fabry Perot con longitud de onda 1310 nm del
ALBEDO xGenius
Figura 3.20 WDM test con la fuente generadora de luz
Figura 3.21 Diagrama de conexión para generación de tráfico94
Figura 3.22 Estructura de trama DIX
Figura 3.23 Estructura del paquete IP97
Figura 3.24 Clases de Tráfico según la ITU-T rec. Y.1541 100
Figura 3.25 ITU-T rec. Y.1541: requerimientos de QoS para nivel IP 101
Figura 3.26 Diagrama de conexión para pruebas de SLA y QoS 103
Figura 3.27 Paquetes capturados105
Figura 3.28 Cabecera de la capa física106
Figura 3.29 <i>Cabecera de la capa de enlace</i> 106
Figura 3.30 Cabecera de la capa de red (a) paquete con DSCP CS4 (b) paquete con
<i>DSCP EF</i>
Figura 3.31 Diagrama de conexión para degradación de tráfico 109
Figura 3.32 Topología de red GPON111
Figura 3.33 Acceder a la interfaz de configuración112
Figura 3.34 Configuración de IP de administración
Figura 3.35 Configuración de puertos uplink SFP+113
Figura 3.36 Configuración de un perfil en modo router114
Figura 3.37 Configuración de gestión en banda114
Figura 3.38 Configuración (a) Gateway (b) DNS115
Figura 3.39 Lista de ONUs
Figura 3.40 Perfil de operación asignado a la ONU116
Figura 3.41 Configuración del ancho de banda asimétrico (a) Configuración 10 Mbps
descendente y 5 Mbps ascendente (b) Comprobación en speed Test116

Figura 3.42 Configuración del ancho de banda simétrico (a) Configuración 10 Mb	ps
descendente y 10 Mbps ascendente (b) Comprobación en speed Test1	17
Figura 3.43 Configuración sin control de ancho de banda (a) Configuración de anch	ho
de banda deshabilitada (b) Comprobación en speed Test	18

ÍNDICE DE TABLAS

Tabla 1.1 Características de los estándar BPON y GPON	16
Tabla 1.2 Descripción de escenarios FTTx	17
Tabla 2.1 Inventario de equipos ópticos del laboratorio	19
Tabla 2.2 Especificaciones técnicas FiberFox Mini 5C	21
Tabla 2.3 Especificaciones técnicas Prolite-63B	22
Tabla 2.4 Operación del Prolite-63B	23
Tabla 2.5 Especificaciones módulo AQ2200-132	24
Tabla 2.6 Especificaciones módulo AQ2200-342	25
Tabla 2.7 Especificaciones del Analizador Espectros Ópticos MS9740A	26
Tabla 2.8 Especificaciones técnicas YOKOGAWA AQ7280	30
Tabla 2.9 Configuración en modo simple	35
Tabla 2.10 Configuración de medición en modo detallado	36
Tabla 2.11 Configuración de análisis en modo detallado	37
Tabla 2.12 Configuración en modo PON	38
Tabla 2.13 Especificaciones de la UFiber OLT	40
Tabla 2.14 Especificaciones de la Ufiber ONU Nano G	43
Tabla 2.15 Pantalla LED de la Ufiber ONU Nano G	44
Tabla 2.16 Descripción de los menús del xGenius	46
Tabla 2.17 Interfaces del xGenius	46
Tabla 2.18 Objetivos RFC-2544	49
Tabla 2.19 Objetivos eSAM	49
Tabla 2.20 Modos de operación global	52
Tabla 2.21 Modos de operación individual	52
Tabla 2.22 Tipos de carga útil	54
Tabla 2.23 Configuración de la capa de enlace	55
Tabla 2.24 Configuración de la capa de red	57

Tabla 2.25 Configuración MPLS	. 58
Tabla 2.26 Tipos de eventos	. 59
Tabla 2.27 Interfaces del Net. Storm	. 61
Tabla 2.28 Interfaz Gráfica del Net.Sotrm	. 62
Tabla 2.29 Análisis de tramas del Net. Storm	. 63
Tabla 2.30 Descripción de eventos del Net. Sotrm	. 64
Tabla 2.31 Control del Ancho de Banda	. 65
Tabla 2.32 Modos de Duplicación de tramas	. 65
Tabla 2.33 Inserción de error de tramas	. 66
Tabla 2.34 Modos de Configuración de Delay & Jitter	. 66
Tabla 2.35 Modo de Operación Net.Hunter	. 67
Tabla 2.36 Análisis de tramas Net.Hunter	. 68
Tabla 3.1 Fuentes de atenuación	.71
Tabla 3.2 Atenuación en sentido descendente	.73
Tabla 3.3 Atenuación en sentido ascendente	. 73
Tabla 3.4 Potencia de salida de la OLT y del OTDR	.75
Tabla 3.5 Niveles de potencia en sentido descendente	.75
Tabla 3.6 Niveles de potencia en sentido ascendente	.75
Tabla 3.7 Parámetros de configuración de medida modo simple	.76
Tabla 3.8 Parámetros de configuración de búsqueda de evento modo simple	.77
Tabla 3.9 Resultados modo simple	.77
Tabla 3.10 Resumen del enlace modo simple	. 78
Tabla 3.11 Parámetros de configuración de medida modo detalle	. 78
Tabla 3.12 Parámetros de configuración de búsqueda de evento modo detalle	. 79
Tabla 3.13 Parámetros de configuración pasa/ no pasa modo detalle	. 79
Tabla 3.14 Resultados modo detalle	. 80
Tabla 3.15 Resumen del enlace modo detalle	. 80
Tabla 3.16 Parámetros de configuración de medida modo PON	. 81
Tabla 3.17 Parámetros de configuración de búsqueda de evento modo PON	. 81
Tabla 3.18 Parámetros de configuración pasa/ no pasa modo PON	. 82
Tabla 3.19 Resultados modo PON	. 82
Tabla 3.20 Resumen del enlace modo PON	. 83
Tabla 3.21 Resultados obtenidos para el coeficiente de atenuación respecto a	ı la
longitud de onda	. 85

Tabla 3.22 Resultados del ancho espectral 9	1
Tabla 3.23 Resultados WDM 92	3
Tabla 3.24 Métricas BERT y SLA	4
Tabla 3.25 Descripción de la estructura de trama DIX	5
Tabla 3.26 Configuración de unidad y perfil local para generación de tramas Etherne	et
90	6
Tabla 3.27 Configuración de flujos para generación de tramas Ethernet90	6
Tabla 3.28 Descripción de la estructura de trama IPv4 97	7
Tabla 3.29 Configuración de unidad y perfil local para generación de tramas IP 98	8
Tabla 3.30 Configuración de flujos para generación de tramas IP99	9
Tabla 3.31 Resultados de las pruebas BERT y SLA99	9
Tabla 3.32 Servicios de marca de clase 102	2
Tabla 3.33 Configuración de unidad y perfil local 102	2
Tabla 3.34 Configuración de flujos 104	4
Tabla 3.35 Resultados de las pruebas de SLA y QoS 103	8
Tabla 3.36 Configuración del Net.Storm 109	9
Tabla 3.37 Resultados de las pruebas de SLA y QoS con degradación110	0

RESUMEN

El presente proyecto tiene como objetivo plantear y desarrollar guías de prácticas las cuales están orientadas en la evaluación del medio y servicios en de redes de comunicaciones por fibra óptica.

El primer capítulo está centrado en la fundamentación teórica sobre las características de los sistemas basados en onda de luz, se detallan los componentes, la transmisión y pérdida que existen en las comunicaciones por fibra óptica. Además, se realiza un análisis sobre las Redes Ópticas Pasivas (PON), se mencionan sus componentes generales, estándares y arquitecturas de acceso.

En el segundo capítulo se especifican los equipos ópticos que se encuentran en el laboratorio, se detallan las características y funcionamiento con el fin de familiarizar al usuario con una correcta operación y manipulación.

El tercer capítulo está enfocado en el desarrollo de prácticas, se realizan pruebas que permiten experimentar y obtener resultados de factores importantes en fibras ópticas como atenuación, niveles de potencia, transmisión, espectro óptico, reflectometría. Además, se lleva a cabo pruebas de networking orientadas en la evaluación de Calidad de Servicio (QoS) en redes IP basado en la verificación de parámetros de Acuerdo de Nivel de Servicio (SLA).

En el cuarto capítulo se presentan las conclusiones y recomendaciones del trabajo realizado.

Finalmente, en los anexos, se adjunta el módulo de guías de prácticas, en los que se incluyen puntos clave de conceptos, experimentación y análisis de resultados de las pruebas realizadas en el tercer capítulo.

INTRODUCCIÓN

Actualmente la gran cantidad de información que se demanda a través de internet es un factor importante para la implementación de tecnologías que permitan satisfacer los requerimientos de tener más capacidad en la red; para cumplir con este objetivo se han desarrollado las comunicaciones ópticas, las cuales prometen redes de alta velocidad pues tienen la posibilidad de transportar información a tasas de aproximadamente 1 Tb/s, por lo tanto, este enorme potencial de transferencia de datos es la fuerza impulsadora del desarrollo y despliegue mundial de los sistemas de comunicación basados en onda de luz [1].

Las redes ópticas ofrecen una infraestructura a través de la cual se pueden brindar una gran variedad de servicios, ofrecen muchas ventajas en comparación con las redes de cobre, debido a que las fibras de vidrio que se utilizan son inmunes a la interferencia electromagnética, presentan una pérdida de señal relativamente baja, alcanzan longitudes de enlace mucho mayores y pueden transportar una gran cantidad de tráfico de manera flexible, solucionando los problemas que existían con el cobre.

Las redes de acceso óptico de banda ancha son cruciales para el desarrollo actual y futuro de Internet, la continua evolución proporciona a los usuarios acceso a aplicaciones multimedia en tiempo real, esencial para tendencias emergentes como las comunicaciones de audio/video y computación en la nube que gradualmente invaden cada área de nuestras vidas, desde el hogar hasta el lugar de trabajo.

Las redes con arquitectura PON ahora son una tendencia generalizada, por lo que ha habido un cambio significativo en las redes de operadores de telecomunicaciones que migran a una infraestructura óptica, de hecho, ahora es una tecnología madura y en competencia directa con los cables de cobre.

Este trabajo presenta en un formato claro e ilustrativo los conceptos técnicos, científicos y prácticos que se necesitan para la comprensión de las comunicaciones por fibra óptica.

ANTECEDENTES DEL PROBLEMA DE ESTUDIO

Las comunicaciones ópticas son, sin duda, el origen de las modernas comunicaciones de banda ancha, sin ellas, no sería viable internet, ni las comunicaciones móviles e inalámbricas tal como las conocemos y utilizamos hoy en día. El creciente desarrollo de la tecnología en este campo ha llevado a que las universidades se actualicen implementando laboratorios con equipos de última generación, con la finalidad de brindar a sus estudiantes ambientes donde puedan desarrollar habilidades que ayuden a relacionarse con el campo laboral de las telecomunicaciones.

Debido a que el laboratorio de telecomunicaciones de la Universidad Politécnica Salesiana sede Cuenca no cuenta con un módulo didáctico para desarrollar prácticas basadas en el manejo de equipos ópticos, consideramos oportuno plantear una solución que permita al estudiante poner en práctica sus conocimientos teóricos adquiridos.

JUSTIFICACIÓN (IMPORTANCIA Y ALCANCES)

La Universidad Politécnica Salesiana sede Cuenca recientemente hizo una inversión destinada para equipar la carrera de Telecomunicaciones con un moderno laboratorio con equipos de última generación para comunicaciones ópticas. Para obtener el máximo potencial del nuevo laboratorio, es necesario que exista un correcto diseño para el manejo y aplicaciones con los equipos ópticos, por lo tanto, la finalidad de este estudio es realizar un módulo de guías de prácticas que contribuya a formar profesionales con una base amplia y sólidos conocimientos científicos, tecnológicos y prácticos en redes de fibra óptica.

El presente proyecto de titulación busca solventar una necesidad en el laboratorio de telecomunicaciones de la Universidad Politécnica Salesiana. Está dirigido a los estudiantes que, como herramienta, harán uso de las guías de prácticas documentadas como ayuda para el manejo de equipos ópticos.

OBJETIVOS

OBJETIVO GENERAL

 Diseñar e implementar guías de prácticas para el manejo de equipos ópticos del laboratorio de telecomunicaciones de la Universidad Politécnica Salesiana Sede Cuenca.

OBJETIVOS ESPECÍFICO

- Determinar el funcionamiento de los equipos ópticos.
- Diseñar prácticas para el uso de los equipos ópticos.
- Emplear las prácticas dentro del laboratorio de telecomunicaciones.
- Contrastar los resultados obtenidos con la teoría.
- Estructurar el módulo de guías de prácticas para el manejo de equipos ópticos.

CAPÍTULO 1: FUNDAMENTACIÓN TEÓRICA O Estado el Arte

Este capítulo está centrado en realizar una fundamentación teórica que se requiere para la comprensión de los sistemas basados en onda de luz, además se revisa las características generales de las redes PON.

1.1 COMPONENTES DE UN SISTEMA DE ONDA DE LUZ

El diagrama **Figura 1.1** muestra cómo está conformado un sistema de comunicación óptica. En esta sección se discute de manera general los problemas relacionados con el transmisor óptico, el canal y el receptor óptico. De manera de proporcionar una visión introductoria sobre los sistemas de comunicación por fibra óptica.

Figura 1.1 Componentes de un sistema de onda de luz Fuente: Fiber-Optic Communication System

1.1.1 TRANSMISOR ÓPTICO

Básicamente un transmisor óptico convierte la señal eléctrica a un formato óptico. La **Figura 1.2** muestra en un diagrama de bloques sobre cómo está conformado; consiste en una fuente óptica como diodos emisores o láseres semiconductores, un modulador, el cual genera la señal óptica modulando la señal eléctrica, un acoplador que generalmente es un microlente para dirigir la señal óptica en el plano de entrada de una fibra óptica con la máxima eficiencia posible [1].

Figura 1.2 Componentes de un transmisor óptico Fuente: Fiber-Optic Communication System

1.1.2 FIBRA ÓPTICA COMO MEDIO DE TRANSMISIÓN

La fibra óptica proporciona un medio por el cual se puede guiar señales de luz; consiste en una guía de onda cilíndrica hecha de materiales dieléctricos como el vidrio o el plástico, está formada por un material de núcleo interno, un material de revestimiento externo y una chaqueta de polímero para mejorar su resistencia mecánica. El núcleo y el revestimiento están diseñados para mantener la señal de luz dentro de la fibra, permitiendo que la luz se transmita a distancias considerables como extensas por lo que es ampliamente utilizada como medio de transmisión, además de su gran capacidad en ancho de banda y baja atenuación [2].

Figura 1.3 *Estructura de la fibra óptica* **Fuente:** *Broadband Optical Access Networks*

La función que cumple la fibra óptica es la del canal de comunicación, ya que actualmente las fibras de sílice pueden transmitir luz con pérdidas muy pequeñas aproximadamente de 0.2 dB/km, sin embargo, las pérdidas por fibra son un factor importante en el diseño pues determinan la distancia máxima de alcance ya sea en redes pasivas o activas [1].

1.1.2.1 FIBRA MULTIMODO

Se utiliza para transmisión a corta distancia, se emplean comúnmente en redes de área local (oficinas, ediciones, campus). Debido a que poseen un núcleo de diámetro grande (aproximadamente 50 μ m a 85 μ m), puede transportar muchos rayos de luz simultáneamente, cada uno propagándose en un ángulo diferente. La fibra óptica multimodo se clasifica por su índice de refracción, puede ser escalonado o graduado.

Las fibras ópticas de índice escalonado están constituidas por un material uniforme cuyo núcleo posee un índice de refracción constante. Un factor importante que considerar es el efecto de dispersión modal que se produce debido a que los rayos de luz viajan en diferentes caminos (zigzag o en línea recta) a lo largo de la fibra óptica, por lo que experimentan diferentes retardos en la propagación, lo que conduce a un ensanchamiento del pulso óptico provocando errores (interferencia entre símbolos) y, por lo tanto, limitando la tasa de transmisión. Este tipo de fibras pueden alcanzar velocidades de 100 Mb/s a una distancia de 1 km. Por lo tanto, las fibras multimodo de índice escalonado se utilizan para aplicaciones de baja velocidad y distancias cortas [3].

Figura 1.4 Fibra de índice escalonado Fuente: Broadband Optical Access Networks

Las fibras ópticas de índice graduado poseen un índice de refracción que disminuye de forma progresiva desde el centro del núcleo hasta el revestimiento. Como se observa en la **Figura 1.5**, cuando la señal de luz viaja en línea recta posee la velocidad de grupo más baja, mientras que cuando viaja en zigzag posee una velocidad de grupo mayor. Por lo tanto, todos los rayos de luz al final de la fibra llegarán al mismo tiempo, minimizando el efecto de dispersión modal. En la práctica, las fibras multimodo de índice graduado pueden alcanzar velocidades de 1 Gb/s a una distancia de 10 km [3].

Figura 1.5 Fibra de índice graduado Fuente: Broadband Optical Access Networks

1.1.2.2 FIBRA MONOMODO

Las fibras ópticas monomodo soportan la transmisión de un solo haz de luz, por lo que no existe el efecto de dispersión modal, debido a esto son ampliamente utilizadas en aplicaciones de alta velocidad y largas distancias; por ejemplo, las redes ópticas pasivas implementan este tipo de fibra para soportar tasas de transmisión superiores a 1Gb/s hasta 20 km de distancia [3].

1.1.3 RECEPTOR ÓPTICO

El receptor óptico convierte la señal óptica recibida a un formato eléctrico. La **Figura 1.6** muestra en un diagrama de bloques como está compuesto un receptor óptico; consiste en un acoplador de canal para enfocar la señal óptica hacia el fotodetector (generalmente fotodiodos), luego la señal pasa hacia el demodulador que mediante un circuito de decisión identifica los bits como 1 o 0, basándose generalmente en la amplitud de la señal eléctrica [1].

Figura 1.6 Componentes de un receptor óptico Fuente: Fiber-Optic Communication System

1.2 TRANSMISIÓN POR FIBRA ÓPTICA

1.2.1 TÉCNICAS DE MULTIPLEXACIÓN

La multiplexación se realiza para aumentar la capacidad de transmisión de una fibra óptica; actualmente se utiliza la Multiplexación por División de Longitud de Onda (WDM) y la Multiplexación por División de Tiempo. WDM es básicamente transmitir datos simultáneamente a través de múltiples longitudes de onda de portadora, siendo equivalente a la Multiplexación por División de Frecuencia (FDM). El concepto de TDM es que los suscriptores compartan la misma portadora en tiempos no sobrelapados (slots). Por lo tanto, la combinación de WDM con TDM proporcionan una manera de incrementar la capacidad de transmisión en las comunicaciones por fibra óptica.

TDM or OTDM mux

(*a*)

(b)

Figura 1.7 Técnicas de multiplexación para incrementar la capacidad de transmisión de una fibra óptica (a) TDM y (b) WDM Fuente: Optical Networks a Practical Perspective

La Unión Internacional de Telecomunicaciones (ITU), en la recomendación ITU-T G.671 define tres categorías de sistemas WDM:

- WDM Grueso (CWDM).
- WDM Denso (DWDM).
- WDM Ancho (WWDM).

1.2.2 ESTÁNDARES DE LONGITUD DE ONDA

La longitud de onda está relacionada con la frecuencia mediante la ecuación

 $c = f\lambda$ Ecuación 1.1

donde *c* es la velocidad de la luz en el espacio libre $(3 \times 10^8 m/s)$. La velocidad de la luz en la fibra es menor que la del espacio libre (cercana a $2 \times 10^8 m/s$). Entonces

para caracterizar una señal WDM, se utiliza la frecuencia o la longitud de onda. La longitud de onda se mide en unidades de nanómetros (nm) o micrómetros (μ m). La frecuencia se mide en unidades de Hertz (Hz), en las comunicaciones ópticas están en el orden de los Terahertz.

Las longitudes de onda de interés en las comunicaciones por fibra óptica están centradas alrededor de 0.8, 1.3 y 1.55 μm . La elección del rango de longitud de onda de operación depende de varios factores como tipo de fibra, características del transmisor, el rango de atenuación y la dispersión óptica.

En las recomendaciones ITU-T G.957, las siguientes bandas están definidas para la operación de sistemas monomodo [4]:

- "Original" O-band, 1260 nm hasta 1360 nm.
- "Extended" E-band, 1530 nm hasta 1565 nm.
- "Short wavelength" S-band, 1460 nm hasta 1530 nm.
- "Long wavelength" L-band, 1565 nm hasta 1625 nm.
- "Ultra-long wavelength" U-band, 1625 nm hasta 1675 nm.

1.3 PÉRDIDAS DE FIBRA

Las pérdidas en la fibra óptica representan un factor limitante porque reducen la potencia de la señal que llega al receptor, ya que estos necesitan una cierta cantidad mínima de energía para recuperar la señal con precisión.

1.3.1 COEFICIENTE DE ATENUACIÓN

Los cambios en la potencia óptica promedio *P* de un flujo de bits que se propaga dentro de una fibra óptica, se rige por la ley de Beer:

$$\frac{dP}{dz} = -\alpha P \qquad \qquad \text{Ecuación 1.2}$$

Donde α es el coeficiente de atenuación. Si la potencia de ingreso P_{in} es la potencia lanzada en el extremo de la entrada de la fibra de longitud L, la potencia de salida P_{out} viene dado por:

$$P_{out} = P_{in}e^{(-\alpha L)}$$
 Ecuación 1.3

La unidad de α está dada por dB/km, utilizando la siguiente relación tenemos:

$$\alpha\left(\frac{dB}{km}\right) = -\frac{10}{L}\log_{10}\left(\frac{P_{out}}{P_{in}}\right) \approx 4.343\alpha$$
 Ecuación 1.4

1.3.2 ABSORCIÓN DE MATERIALES

Las pérdidas por absorción de materiales se pueden dividir en 2 categorías, en pérdidas por absorción intrínseca el cual corresponde a la absorción por la sílice fundida y las pérdidas por absorción extrínseca que está relacionada con las pérdidas causadas por las impurezas dentro de la sílice.

La fibra óptica comúnmente está formada por sílice, cualquier material absorbe a ciertas longitudes de onda correspondientes a las resonancias electrónicas y vibracionales asociadas con moléculas específicas. Para las moléculas de Sílice, las resonancias electrónicas ocurren en la región ultravioleta ($\lambda < 0.4 \ \mu m$), las resonancias vibracionales ocurren en la región infrarroja ($\lambda < 0.4 \ \mu m$).

Las pérdidas por la absorción extrínseca se deben a la presencia de impurezas, la principal fuente de absorción en las fibras sílice de vanguardia es la presencia de vapores de agua. Los tonos armónicos y combinados con sílice producen una absorción en las longitudes de onda de 1.39 μm , 1.24 μm y 0.95 μm .

1.3.3 RETRODISPERSIÓN DE RAYLEIGH

El fenómeno de retrodispersión de Rayleigh tiene lugar en los medios transparentes a causa de ciertas carencias puntuales de homogeneidad que se hallan distribuidas aleatoriamente; en estos puntos o centros dispersores, se produce una variación local del índice de refracción; cuando la luz propagándose a través del medio se encuentra con uno de estos centros, es dispersada en múltiples direcciones [5].

Figura 1.8 Proceso de dispersión de la luz Fuente: Comunicaciones Ópticas conceptos esenciales y resolución de ejercicios

En las fibras ópticas, los centros de dispersión se producen durante la fabricación y tienen dos importantes repercusiones:

• La señal es atenuada, siendo la constante de atenuación dependiente de la longitud de onda.

$$\alpha_d = \frac{A}{\lambda^4} \left[\frac{dB}{km} \right]$$
 Ecuación 5.5

Donde A es el coeficiente de dispersión de Rayleigh. Para un grupo de partículas es el número de partículas por unidad de volumen N veces la sección transversal.

• Parte de la potencia dispersada va en sentido inverso a la propagación de la señal, regresando por tanto hacia el transmisor; esta potencia retrodispersada (P_{rd}) , tiene la relación de proporcionalidad con respecto a la potencia dispersada (P_d) .

$$P_{rd} = P_d S$$
 Ecuación 6.6

La constante S se denomina fracción de captura y, si bien su valor depende de la geometría de la fibra y de longitud de onda de operación, para las fibras monomodo convencionales alcanza un valor muy reducido del orden de 10^{-3} .

1.3.4 IMPERFECCIONES DE LA GUÍA DE ONDA

Las imperfecciones se presentan en la interfaz de revestimiento que traen pérdidas adicionales a la pérdida neta de la fibra, el proceso físico detrás de estas pérdidas es la dispersión de Mie que se produce debido a la falta de homogeneidad de los índices en una escala más larga que la longitud de onda. Las variaciones del núcleo de la fibra deben mantenerse por debajo del 1% y la perdida de dispersión resultante es inferior a 0.03 dB/km.

Las curvas en la fibra constituyen otra fuente de perdida de dispersión, la razón se da un rayo guiado golpea la interfaz de revestimiento con un ángulo mayor al ángulo crítico para experimentar la reflexión interna local, sin embargo, el ángulo disminuye cerca de una curva y llega a ser más pequeño que el ángulo crítico para las curvas cerradas; una parte de la energía del modo se dispersa en la capa de revestimiento.

1.4 REDES ÓPTICAS PASIVAS

Las redes ópticas pasivas (PON) se han desarrollado en respuesta a la demanda cada vez de mayor ancho de banda con el propósito de proporcionar servicios multimedia (voz, datos, video) de una manera más rentable, flexible y de gran capacidad.

Las PON generalmente utilizan topologías tipo árbol, hacen uso de la tecnología WDM y TDM para transmitir y recibir las señales hacia y desde los suscriptores en diferentes longitudes de onda, y en tiempos no sobrelapados, optimizando la red. Los canales de subida y de bajada son transmitidos en distintas bandas: 1260 – 1310 nm para upstream y 1480 – 1500 nm para downstream [4].

Básicamente una red PON se caracteriza por el uso de componentes no activos, a excepción de los equipos a nivel de la central como la OLT (Optical Line Terminal) y a nivel de usuario ONU/ONT (Optical Network Unit/ Optical Network Terminal). Los demás componentes como divisores ópticos (splitters) y distribuidores de fibra son pasivos, la **Figura 1.9** muestra una arquitectura estándar para las redes PON.

Figura 1.9 Arquitectura estándar para redes PON Fuente: Broadband Optical Access Networks

La OLT y la ONU están conectadas directamente a través de un cable de fibra óptica, que pasa por una red de distribución óptica (ODN), que generalmente posee una configuración punto a multipunto haciendo uso de divisores ópticos. El canal de bajada (desde la OLT hasta el suscriptor), la transmisión se da desde la OLT hacia cada ONU usando TDM, funciona en modo continuo. El canal de subida (desde el suscriptor hasta la OLT), el acceso se da mediante TDMA, funciona en modo de ráfaga [4].

Figura 1.10 *Técnicas TDM/ TDMA* **Fuente:** *Optical fibres, cables and systems*

1.4.1 COMPONENTES GENERALES DE UNA RED PON

1.4.1.1 OPTICAL LINE TERMINAL

La OLT se utiliza en cualquiera de los extremos de un enlace punto a punto para multiplexar y demultiplexar longitudes de onda. Se presentan 3 elementos funcionales dentro de la OLT: transpondedores, multiplexores de longitud de onda y opcionalmente amplificadores ópticos [3].

Un transpondedor adapta la señal proveniente de un cliente de la red óptica a una señal adecuada para usar dentro de la red óptica e inversamente, adapta la señal de la red óptica a una señal adecuada para el cliente. La interfaz entre el cliente y el transpondedor puede variar según la velocidad de bits, distancia, pérdidas o según el cliente; la interfaz común es SONET y se utiliza en corto alcance [3].

Las longitudes de onda generadas por el transpondedor cumplen con los estándares de la ITU, en la ventana de longitud de onda 1.55 μm y la señal de entrada de 1.3 μm ; agrega corrección de errores hacia adelante (FEC) para velocidades de 10 Gb/s [3].

Figura 1.11 *Optical Line Terminal* **Fuente:** *Optical networks, A Practical Perspective*

1.4.1.2 OPTICAL NETWORK UNIT

En la red de telecomunicaciones de fibra óptica se proporciona la unidad de red óptica (ONU) al suscriptor para terminar la línea de transmisión de fibra óptica y para proporcionar señales eléctricas. La ONU tiene la función de convertir la señal óptica a eléctrica y demultiplexar la señal eléctrica para dividir las señales de telefonía de banda base, canales de video de banda ancha, datos, etc [3].

Figura 1.12 Optical Network Unit Fuente: Broadband Optical Access Network

1.4.1.3 OPTICAL DISTRIBUTION NETWORK

La conexión entre una OLT y una ONU se denomina red de distribución óptica (ODN), las señales se envían desde y hacia diferentes ONU con una identificación única de la ONU en el encabezado de trama. Estas señales se codifican y multiplexan en diferentes formatos y esquemas según el estándar PON. Para evitar colisiones por tramas que llegan a través de una OLT desde diferentes ONU, un protocolo de control multipunto permite que solo una ONU transmita en un momento dado [3].

1.4.1.4 TRANSCEPTORES SFP/ SFP+

Los módulos SFP son dispositivos que permiten el acoplamiento de los circuitos eléctricos con una interfaz óptica. Básicamente cumple la función de transmisor y receptor óptico, se utiliza para aplicaciones de telecomunicaciones de alta velocidad.

La diferencia entre SFP y SFP+ son las velocidades de operación, dado que SFP solo admite hasta 4.25 Gbps, se desarrolló el módulo plus que admite velocidades de datos de hasta 16 Gbps, por lo tanto, las aplicaciones y distancias de transmisión son diferentes [6].

Fuente: Cisco SFP and SFP+ Transceiver Module

1.4.1.5 EMPALMES POR FIBRA ÓPTICA

Los empalmes son puntos críticos en una red de fibra óptica, pues afectan directamente a la calidad del enlace y a la vida útil de la red; un empalme debe garantizar una alta calidad (baja pérdida) y estabilidad de rendimiento (resistencia). Existen dos tecnologías para empalmes de fibra óptica, la fusión y la mecánica, la elección de cual usar depende del rendimiento funcional esperado y las condiciones de instalación y mantenimiento [4].

En la actualidad existen dos tecnologías de fusión, por alineación de núcleo y por alineación de revestimiento. La alineación de núcleo es la más utilizada debido a

su baja pérdida de empalme y por ser más flexible a variaciones en las fibras, sin embargo, posee una tecnología más costosa y compleja; emplea una combinación de sistemas de movimiento y detección de imagen y luz que "ven" los núcleos de la fibra para medir y monitorear la posición del núcleo durante el proceso de alineación [7].

Figura 1.14 Fusión por alineación de núcleo Fuente: Understanding How the Appearance of Optical Fiber Splices Relates to Splice Quality

1.4.1.6 CONECTORES

Los conectores proporcionan un método para unir los extremos de dos fibras ópticas; se utilizan en aplicaciones en las cuales es necesario tener flexibilidad y acceso rápido en términos de configuración de red. Los principales efectos de la implementación de conectores en un enlace de fibra óptica es la atenuación de la señal transmitida, reflectancia y la reflexión de parte de la señal [4].

Los conectores se caracterizan por su tipo de pulido, los más comunes son de férula tipo APC (Angle Physical Contact), el cual está diseñado con un corte diagonal de 8 grados con la normal, lo que permite que la luz reflejada se desvía fuera del conector, evitando el efecto de reflexión; la férula tipo UPC (Ultra Physical Contact), tiene un diseño plano que elimina el espacio de aire y fuerza a las fibras a entrar en contacto [8].

Figura 1.15 Esquema de un conector óptico Fuente: AQ7280 OTDR User's Manual

1.4.1.7 DIVISORES ÓPTICOS

Los divisores ópticos pasivos, son componentes de ramificación óptica que posee tres o más puertos, que comparte la potencia óptica entre sus puertos de salida de una manera predeterminada, sin amplificación ni conmutación. En redes PON tienen una arquitectura punto – multipunto, son usados para conectar la OLT a varios usuarios; Generalmente poseen configuraciones de 1:4, 1:8, 1:16, 1:32, 1:64 y 1:128. Los divisores ópticos PON se caracterizan por varios efectos como inserción de pérdidas, reflectancia, directividad y uniformidad [4].

Figura 1.16 *Esquema de un divisor óptico pasivo* **Fuente:** *Optical fibres, cables and systems*

1.4.2 ESTÁNDARES PON

Las redes PON están categorizadas en función de su arquitectura definida básicamente por su capa física y capacidad de transmisión. La ITU ha definido en las recomendaciones ITU-T G.983 x series para el estándar de banda ancha PON (BPON) y las recomendaciones ITU-T G.984 x-series para el estándar gigabit PON (GPON) [4].

BPON y GPON son muy similares en la capa física, las diferencias más significativas son las velocidades de operación, la relación de divisores ópticos y el alcance.

	BPON		GP	ON
Velocidades de operación	Downstream	Upstream	Downstream	Upstream
	622 Mbps	155 Mbps	2.488 Gbps	1.244 Gbps
Relación de divisores ópticos	1:32		1:64, soport	e para 1:128
Máximo alcance	20 km			20 m

Tabla 1.1 Características de los estándar BPON y GPON [4]

1.4.3 ARQUITECTURA DE LA RED DE ACCESO LOCAL

Dependiendo de las demandas, existen diferentes arquitectas de redes de acceso local. La **Figura 1.17** muestra las recomendaciones mencionadas por la ITU-T, estas representan las redes llamadas FTTx (Fiber To The x), donde "x" representa el alcance de la fibra como fibra hasta la cabina (FTTCab), fibra hasta el borde (FTTC), fibra hasta el edificio (FTTB) y fibra hasta el hogar (FTTH).

Figura 1.17 Arquitecturas de redes de acceso **Fuente:** Optical fibres, cables and systems

Denominación	Descripción	Escenarios
FTTCab	La conexión entre la	Servicios asimétricos
FTTC	OLT y la ONU es mediante fibra óptica, mientras que la	Red xDSL
FTTB	nientras que la conexión entre la ONU y el suscriptor se hace utilizando cables de cobre existentes en las líneas de distribución	 Para múltiples viviendas: Servicios simétricos Servicios asimétricos Para negocios: Servicios simétricos Líneas privadas
FTTH	La conexión entre la OLT y la ONU es completamente realizada por un cable de fibra óptica	Servicios simétricos Servicios asimétricos

Tabla 1.2 Descripción de escenarios FTTx[4]

CAPÍTULO 2: DESCRIPCIÓN DE EQUIPOS

Este capítulo está centrado en detallar las características, funcionamiento y especificaciones de los equipos ópticos que se encuentran en el laboratorio con el fin de familiarizar al usuario con una correcta operación y manipulación.

Para mayor información técnica se incluyen referencias en las que se encontrará documentación proporcionada por los fabricantes. La **Tabla 2.1** muestra un inventario de los equipos ópticos existentes con los que se realizará las guías de laboratorio.

Cantidad	Equipo	Marca	Modelo	Referencia
1	Fusionadora	FiberFox	Mini 5C	9
2	OPM	PROMAX	Prolite-63B	10
2	OT W			10
1	Fuente Óptica	YOKOGAWA	AQ2200	11
1	OSA	Anritsu	MS9740A	12
1	OTDR	YOKOGAWA	AQ7280	14
1	OLT	UBIQUITI	Ufiber OLT	15

Tabla 2.1 Inventario de equipos ópticos del laboratorio

4	ONU	UBIQUITI	Nano G	16
2	Generador de Tráfico	ALBEDO	xGenius	17
1	Atormentador de Tráfico	ALBEDO	Net.Storm	20
1	Capturador de Tráfico	ALBEDO	Net.Hunter	21

2.1 FUSIONADORA

La fusionadora Mini 5C utiliza la tecnología de alineación por núcleo, posee LEDs, lentes, cámaras de detección de luz y motores que aseguran una fusión de alta calidad, además tiene incorporado un calentador tipo horno para mejorar la resistencia mecánica de la fusión garantizando un buen rendimiento. La **Tabla 2.2** muestra las características y especificaciones técnicas.

Figura 2.1 Fusionadora FiberFox Mini 5C Fuente: FiberFox Mini 5C User Manual

Cámara	Cámara dual de alta precisión		
Display	Pantalla LCD reforzada de 4.3" de ancho		
	x150:	X&Y eje de doble vista	
Microscopio	x30	00: X eje de una vista	
	x30	00: Y eje de una vista	
		AC 100 ~ 240 V	
Fuente de	Entrada	50 ~ 60 Hz	
anmentacion		DC 9 ~ 14 V	
	Batería de iones de litio	DC 11.1 V	
Velocidad de empalme	Rápido	7 sec	
	Automático	9 sec	
Calentador	Tubillo aplicable	Estandarizado: 20, 25, 30, 35, 40, 60 mm	
	Tiempo de calentado8 ~ 900 sec (Típicamente: 1		
	Tipo: Un solo núcleo		
Fibra aplicable	Tipos de fibra: SM (ITU-TG.652)/ DS(ITU-TG.653)/ NZDS(ITU- TG.652)/ ITU-TG.657 tipo A,B/ MM(ITU-TG.651)		
Diámetro aplicable	0.25 mm / 0.9 mm / 2.0 mm / 2.4 mm / 3.0 mm		
	SM: 0.02 dB		
	MM: 0.01 dB		
Perdidas por empalme	DS: 0.04 dB		
	NZDS: 0.04 dB		
	G.657: 0.02 dB		

Tabla 2.2 Especificaciones técnicas FiberFox Mini 5C [9]

2.2 MEDIDOR DE POTENCIA ÓPTICA

En un sistema de transmisión óptica medir la potencia es una forma ideal de determinar la conectividad y atenuación que se producen a lo largo del enlace. El OPM (Optical Power Meter) Prolite-63B es un medidor de potencia óptica funcional pues opera en un amplio rango de longitud de onda, la **Tabla 2.3** muestra las características técnicas del equipo.

Figura 2.2 Medidor de potencia óptica Prolite-63B (a) interfaces (b) pantalla Fuente: Guía de usuario del Prolite-63B

Rango de medición (dBm)	-70 ~ +10 a 1550 nm	
Rango de detección de frecuencia	-40 ~ +10 (dBm)	
Rango de detección de longitud de onda	-40 ~ +10 (dBm)	
Resolución	0.01	
Longitud de onda (nm)	850/1300/1310/1490/1550/1625	
Detector	InGaAs	
Precisión	±5%	
Longitud de onda operativa (nm)	800 ~ 1700	
Alimentación	baterías de 1.2 V; Adaptador de CA	

Tabla 2.3 Especificaciones técnicas Prolite-63B [10]

2.2.1 OPERACIÓN DEL OPM

El Prolite-63B posee un teclado con una amplia variedad de funciones, la **Tabla 2.4** muestra la operación que cumple cada botón del equipo. Para una correcta manipulación se describen las siguientes recomendaciones de uso del equipo.

- Configurar la longitud de onda de trabajo del enlace.
- Limpiar los conectores antes de su uso para evitar lecturas incorrectas.
- Luego del uso del equipo, cubrir el conector y guardar el equipo en su estuche.

Botón	Función
>2s PERM ON OFF	Enciende/apaga el instrumento. Pulsación larga de 2 sec mientras se enciende el instrumento. No cuenta con función de apagado automático.
λ	Selecciona la longitud de onda de medición en secuencia de 850/1300/1310/1490/1550/1625 nm y para activar el reconocimiento automático de longitud de onda
dBm/ dB/mw	Cambia la unidad de medida entre dBm, dB y mW
>2s SAVE	Pulsación larga durante 2 sec para almacenar el valor de prueba actual; pulsación corta de tecla para mostrar el registro.
>2s SET	Pulsación corta para mostrar el nivel de referencia de la longitud de onda de prueba actual. Pulsación más prolongada para establecer un nuevo nivel de referencia de la longitud de onda de prueba actual.
Ö	Enciende / apaga la retroiluminación

Tabla 2.4 Operación del Prolite-63B [10]

2.3 FUENTE ÓPTICA

La fuente de luz AQ2200 es una plataforma de prueba óptica conformada por dos módulos (fuente de luz y atenuadores) que permiten diseñar y experimentar mediciones con un rango dinámico de longitud de onda y potencia.

Figura 2.3 Plataforma de prueba óptica Yokogawa AQ2200 Fuente: AQ2200 Series Multi Application Test System Ideal Measurement Solution for Optical Devices and Optical Transmission Systems

2.3.1 MÓDULO AQ2200-132

Es un módulo que posee una fuente de luz sintonizable (TLS) con dos salidas que operan en la banda C y L, utiliza un láser de clase 1M tipo ITLA (Integrated Tunable Laser Assembly) lo que permite una transmisión digital óptica de elevada velocidad, la **Tabla 2.5** indica las especificaciones técnicas de este módulo.

Tabla 2.5	Especificaciones	módulo	AQ2200-13	2 [11]
-----------	------------------	--------	-----------	---------------

Modelo	AQ2200-132
Clase	1M
Tipo de laser	ITLA
Conector	FC/APC
	Banda C (Output 1): 1527.6 nm a 1565.5 nm

Longitud de onda de operación	Banda L (Output 2): 1570.01 nm a 1608.76 nm
Potencia de salida	+ 8.2 dBm a 14.5 dBm
Modulación	CW

2.3.1.2 SEGURIDAD DEL AQ2200-132

El AQ2200-132 tiene una etiqueta de advertencia en forma triangular que indica el peligro por radiación de luz; utiliza un láser clase 1M que según la norma europea IEC60825-1: 2007, son seguros en condiciones normales, pero peligrosos si se emplean instrumentos ópticos para visión directa (binoculares, telescopios, microscopios, lupas) ya que puede causar lesiones oculares [11].

2.3.2 MÓDULO AQ2200-342

Este módulo tiene dos atenuadores ópticos variables, además posee un medidor de potencia incorporado que sirve para monitorear la salida óptica asegurando una potencia óptica constante, la **Tabla 2.6** indica las especificaciones técnicas de este equipo.

Modelo	AQ2200-342
Conector	FC/APC
Número de canales	2
Longitud de onda de operación	1260 nm a 1640 nm
Rango de atenuación	0 dB a 41 dB
Perdidas por inserción	1.8 dB a 2.4 dB
Máxima potencia de entrada	+ 23 dBm

Tabla 2.6	Especificaciones	módulo	AQ2200-342	[11]
-----------	------------------	--------	------------	------

2.4 ANALIZADOR DE ESPECTROS ÓPTICOS

El MS9740A es un analizador de espectros ópticos que mide la distribución de potencia de las longitudes de onda, utiliza una rejilla de difracción para analizar la luz en el rango de longitud de onda desde 600 nm a 1750 nm, también examina y mide las pérdidas de elementos pasivos, como los aisladores ópticos, amplificadores ópticos y cifra de ruido; posee como sistema operativo Windows para la gestión de datos. La indica las **Tabla 2.7** características del equipo [12].

Modo de Fibras	Monomodo y Multimodo entre 50/125 μm
Medición de alta velocidad con tiempo de barrido	300 ms
Alta precisión de longitud de onda	± 20 pm
Rango dinámico	42 dB y 70 dB
Alta resolución	0.03 nm
Sensibilidad Rx	-90 nm
Entrada óptica máxima	200 mW
Alimentación	120 & 240 V/ 50-60 Hz

 Tabla 2.7 Especificaciones del Analizador Espectros Ópticos MS9740A [12]

Las aplicaciones del analizador de Espectros es la evaluación de dispositivos ópticos como diodo laser, diodos ópticos, transceptores ópticos; en dispositivos activos como los amplificadores ópticos; análisis en las perdidas en fibras ópticas, acopladores ópticos, aisladores ópticos, filtros ópticos y la monitorización del nivel de señal y longitud de onda de los circuitos de comunicaciones. Para la conexión se utiliza un patch cord de fibra óptica en la entrada, la característica de la fibra es utilizar un conector SC/UPC [12].

Figura 2.4 Panel Frontal Anritsu MS9740A Fuente: MS9740A Optical Spectrum Analyzer Operation Manual

Para la calibración se lo realiza utilizando una fuente de luz con calibración externa y se realiza la alineación con el equipo; la señal de ingreso debe poseer una potencia de 20 dBm o mayor con una longitud de onda entre 600 a 1700 *nm* y ser mono modo. En el teclado de función horizontal se coloca Calibración y automáticamente el equipo adopta esas características [12].

El equipo posee 3 tipos de medida, los procesos que se realizan durante la medición son longitud de onda de pico, nivel de pico, medio ancho del espectro de la

entrada óptica, rango de longitud de onda, resolución ajustada, escala de nivel ajustada [12].

- Medida automática: Establece automáticamente la longitud de onda, el nivel, la resolución con sus mediciones.
- Medida única: Realiza el barrido de onda una sola vez.
- Medición repetida: El barrido de la forma de onda se repite hasta que se presione la tecla Stop.

Los marcadores nos ayudan a leer la forma de onda, longitud de onda en picos y caídas de forma de onda, el ancho del espectro y la diferencia en la longitud de onda entre picos para formas de onda con varios picos [12].

Figura 2.5 *Pantalla de marcador de forma de onda.* **Fuente:** *MS9740A Optical Spectrum Analyzer Operation Manual*

El marcador de Nivel se utiliza para leer el nivel en picos y caídas de forma de onda, la diferencia de nivel entre picos para formas de onda con varios picos y la diferencia en el nivel de 2 formas de onda [12].

A Optical S	pectrum	Analyze	r								
fMkr LMkr	A C	111.906	uWu	E	3	37.068	uW		B-A C/D		3.018
Res: 0.1nm VBW: 10H	z	Sm : Of	Smp ff Intvl	olg: 50 : Off	D1pt	SwpA	/g :	1 [****]		
								1	MkrD=		Normal
100.00µW									37.068	μ VV	
							\rightarrow				
							\rightarrow				
50.000µ vv											
							\downarrow				
10.000μ₩ / Div							\rightarrow				
					, ,						
0.0							6.1				
152 AWri Dii B	7.00 nm Fix		5.00 nm/	Div	1	552.00 n	m		in Vacu	ım 1	577.00 nm

Figura 2.6 *Pantalla de marcador de nivel.* **Fuente:** *MS*9740A *Optical Spectrum Analyzer Operation Manual*

El marcador de Zona se usa para leer la diferencia en la longitud de onda y el nivel desde la posición del marcador de traza. El marcador de Zona se utiliza para limitar el rango de longitud de onda para el análisis, como la búsqueda del punto máximo y procesa la parte rodeada con el marco rojo. Ampliación de zona de visualización rodeado con el marco rojo [12].

<mark>∕</mark> Optical €	Spect	rum Analyze	r								_ 🗆
fMkr LMkr	A C	194.317 69 36.517	THz µW	E	3	193.7	72639 T 18.259 μ	∏Hz IW	B-A C/D	- 0.591 30 1.999	THz
Res: 0.1nm VBW: 10	ı Hz	Sm : 01	Sm ff Intv	plg: 50 l: Off	11pt		SwpAvg	: 1[· ·····]		
			R	MS S.L	И		20.0	dB	DMC	Norm	al
100.00µW				fc 2.3	34 a	19	4.0216 0.5913	THz THz	_ RmS = 2.34 σ		
				σ			0.252 6	THz			
50.000µVV											
10.000uW					-						
/ Div				┟┍╁╫╂							
0.0 15 <mark>A</mark> Wrion	27.00 <mark>3</mark> Fix	nm Fix	5.00 nm	/Div		1 55	2.00 nm		in Vacuum	1 577.0	00 nm

Figura 2.7 *Rango de análisis limitado por marcadores de zona.* **Fuente:** *MS9740A Optical Spectrum Analyzer Operation Manual*

2.5 REFLECTÓMETRO ÓPTICO EN EL DOMINIO DEL TIEMPO

El OTDR (Optical Time Domain Reflectometer) es un equipo que se utiliza para la caracterización de una red, tiene la capacidad de evaluar un enlace óptico por completo determinando los eventos (pérdidas, fallas y distancia) que suceden a través de este. Para el diagnóstico el OTDR se basa en la reflexión de Fresnel y la retrodispersión de Rayleigh, enviando un pulso de luz corto a través de la fibra y, a partir de la señal reflejada por eventos determina las pérdidas, fallas o rupturas en el medio de transmisión [13].

El YOKOGAWA AQ7280 cuenta con la unidad OTDR, un módulo medidor de potencia y una fuente de luz visible VLS (Visible Light Source), la **Tabla 2.8** muestra las especificaciones técnicas del equipo.

Pa	rámetro	Valores		
	Modo	Simple/ Detallado/ PON		
	Longitud de onda	SM 1310 nm/ SM 1550 nm/ SM 1625 nm		
Unidad OTDR	Rango de distancia	200 m hasta 512 km		
	Ancho de pulso	3 ns hasta 1 μ s		
	Modo de operación	Tiempo Real/ Promedio		
	Longitud de Onda	850 nm/ 1300 nm/ 1310 nm/ 1490 nm/ 1550 nm/		
Módulo OPM		1625 nm/ 1650 nm		
	Modulación	CW/ 270 Hz/ 1 kHz/ 2 kHz		
	Unidades	dB/ dBm/ W		
Módulo VLS	Longitud de onda	650 nm		
	Modulación	CW/ 2 Hz		

Tabla 2.8 Especificaciones técnicas YOKOGAWA AQ7280 [14]

2.5.1 OPERACIÓN DEL OTDR AQ7280

El OTDR AQ7280 posee un teclado con una amplia variedad de funciones, la **Figura 2.8** (a) muestra la operación que cumple cada botón del equipo y la **Figura 2.8** (b) indica las interfaces que posee.

Figura 2.8 Descripción del teclado e interfaces del OTDR AQ7280 (a) Panel Frontal (b) Panel Superior Fuente: AQ7280 OTDR User's Manual

2.5.2 HERRAMIENTAS DEL OTDR AQ7280

2.5.2.1 UNIDAD OTDR

La unidad OTDR cumple la función principal del AQ7280, es decir, mediante un diodo láser emite un pulso óptico al cable de fibra óptica bajo medición, la luz reflejada que se produce por ciertos eventos es recibida por el detector de luz, la transforma a una señal digital mediante un conversor A/D, después los datos se procesan y promedian para ser desplegados en la pantalla mostrando las distancias a los eventos (pérdidas de transmisión, empalmes, conectores, splitters, fin de fibra, etc.) en el eje horizontal y el nivel de pérdida en el eje vertical del enlace óptico [14].

Figura 2.9 Forma de onda según el tipo de evento Fuente: AQ7280 OTDR User's Manual

Para medir la distancia el AQ7280 toma el tiempo que le toma al pulso incidente en ser reflejado y retornado al equipo; la **Ecuación 2.1** muestra cómo se calcula la distancia [14].

$$L = \frac{C \times T}{2 N} [m]$$
 Ecuación 2.1

C: velocidad de la luz en el vacío 2.99792 × $10^8 [m/s]$.

T: tiempo medido desde cuando se generó el pulso óptico hasta cuando recibió la luz reflejada [s].

N: índice de refracción.

Para estimar las pérdidas el AQ7280 utiliza métodos de extrapolación de líneas; existen dos métodos [14]:

- Aproximación por mínimos cuadrados (LSA), calcula la pérdida utilizando el método de mínimos cuadrados sobre todos los datos entre los dos puntos. Se recomienda utilizar este método si no hay eventos como pérdidas y reflexiones en la sección bajo prueba.
- Aproximación de dos puntos (TPA), calcula la pérdida utilizando la diferencia entre los niveles de los dos puntos. Se recomienda utilizar este método si existen eventos como pérdidas y reflexiones en la sección bajo prueba.

Figura 2.10 Métodos de estimación de pérdidas (a) LSA y (b) TPA **Fuente:** AQ7280 OTDR User's Manual

Para analizar la forma de onda se puede usar los cursores y marcadores con el fin de determinar lo valores de cada evento, el AQ7280 permite 4 métodos de usar marcadores que se describen a continuación:

• Método de 2 puntos: permite calcular la distancia y la pérdida entre dos puntos. Los marcadores se ubican al inicio y al final de la medida, dejando al evento en medio de los dos puntos como se observa en la **Figura 2.11**.

Figura 2.11 Método de dos puntos Fuente: AQ7280 OTDR User's Manual

Método de 4 puntos: permite calcular la pérdida (a) del evento mediante el uso de la línea aproximadas de los puntos (1) y (2) y de la línea aproximada de los puntos (3) y (4). El marcador (1) y (4) se ubican al inicio y fin de la medida, mientras que el marcador (2) y (3) se ubican al inicio y fin del evento como se observa en la Figura 2.12.

Figura 2.12 *Método de cuatro puntos* **Fuente:** AQ7280 OTDR User's Manual

Método de 5 puntos: se calcula la pérdida (a); el punto cercano (n), un punto (N) utilizado para calcular la línea aproximada del lado cercano, el punto (E) donde inicia el evento, un punto (F) utilizado para calcular la línea aproximada del lado lejano y el punto (f). Los marcadores se ubican como se muestra en la Figura 2.13.

Figura 2.13 Método de cinco puntos Fuente: AQ7280 OTDR User's Manual

Método de 6 puntos: se recomienda este método cuando hay dos eventos juntos, marcadores (1) y (2) para la pérdida (b) del primer evento, marcadores (Y1) y (Y2) para la pérdida (a) del segundo evento, los marcadores (Y3) y (3) se usan para la línea aproximada de cada perdida (ver la Figura 2.14).

Figura 2.14 Método de seis puntos Fuente: AQ7280 OTDR User's Manual

La unidad OTDR tiene tres modos de operación (simple, detallado y PON) los cuales se diferencian únicamente en las opciones de configuración para la medición y análisis de eventos [14].

 Modo simple, el usuario tiene acceso a ciertos parámetros de configuración de medida y análisis, mientras que el AQ7280 establece automáticamente el resto de los parámetros como rango de distancia, ancho de pulso, índice de refracción, etc. La Tabla 2.9 describe el modo de operación simple.

 Tabla 2.9 Configuración en modo simple [14]

Modo	Simple			
	Longitud de onda	1310 nm/ 1550 nm/ 1625 nm		
Condiciones de medida				
	Autoguardado	ON/ OFF		
	Fin de fibra	3 dB hasta 65 dB		
Condiciones de analisis	Método de			
	aproximación	LSA/ IPA		
	Ĩ			

Modo detallado, se permite al usuario el acceso a más parámetros de configuración de medición y análisis. Se recomienda este modo de operación cuando el usuario conoce varias características del enlace bajo prueba, la Tabla 2.10 y la Tabla 2.11 describe el modo de operación detallado.

Parámetro		Descripción
Longitud de	1310 nm/ 1550 nm/	-
onda	1625 nm	
Rango de distancia	200 m hasta 512 km	Seleccionar un rango de distancia que sea mayor a la longitud del cable de fibra óptica que se medirá. Si especifica un rango más corto el AQ7280 mostrará mediciones incorrectas.
Ancho de pulso	3 ns hasta 1 μ s	La selección del ancho de pulso depende de la distancia. Un ancho de pulso corto permite mayor resolución a distancias cortas; un ancho de pulso largo permite medir distancias largas con menor resolución.
Modo alto SNR	ON/ OFF	 Optimiza al equipo para medir eventos en redes PON que se encuentran más allá del splitter. ON: los pulsos ópticos del sistema PON se pueden medir. OFF: se excluye los eventos más allá del splitter.
Intervalo de muestreo	Normal/ Alta resolución	 Normal: utiliza un intervalo de muestra óptimo. Alta resolución: utiliza el máximo intervalos de muestra (256000 datos), permite un mayor detalle.
Atenuación	0 dB hasta 30 dB	Para evitar una medición incorrecta, especifique la atenuación que existe a lo largo del enlace bajo prueba.
Alarma de fibra en uso	ON/ OFF	Emite un mensaje de advertencia cuando existe transmisión de información por la fibra bajo prueba.
Chequear conexión	ON/ OFF	Verifica el estado de la conexión entre el puerto OTDR y el cable de fibra óptica, enviando una

Tabla 2.10 Configuración de medición en modo detallado [14]

		advertencia cuando no está conectado				
		correctamente.				
Búsqueda de eventos	Automático/ Manual	 Automático: muestra los eventos con su descripción en la traza reflectométrica. Manual: despliega la traza reflectométrica sin señalar los eventos. 				
Autoguardado	ON/ OFF	Guarda en un archivo las mediciones realizadas.				

Tabla 2.11 Configuración de análisis en modo detallado [14]

Pa	rámetro	Descripción
Índice de refracción	1.3 hasta 1.7999	Para una correcta medición, especificar el índice de refracción de la fibra en uso dado por el fabricante.
Retrodispersión	-10 dB hasta -94.99 dB	 El AQ7280 tiene los siguientes niveles de luz de retrodispersión preestablecidos que corresponde a cada longitud de onda: 1310 nm: -50 dB 1550 nm: -52 dB 1625 nm: -53 dB Estos niveles varían según el ancho de pulso utilizado.
Pérdida por fusión	0.01 dB hasta 9.99 dB	Determina los niveles de pérdida de potencia de
Pérdida de retorno	20 dB hasta 70 dB	referencia a partir del cual se clasificarán los eventos.
Fin de fibra	3 dB hasta 65 dB	
Parámetros pasa/ no pasa	Perdidas por conector Pérdidas por fusión	Determina las fallas en el enlace óptico si los valores medidos exceden el umbral establecido para cada evento. Si está activa la opción mostrar, se graficará en la traza reflectométrica los eventos que excedieron los umbrales con un asterisco
		execution for uniorates con un asterisco.

	Pérdidas por splitter	
	Pérdidas por dB/km	
	Pérdida total	
Macrocurvatura	ON/ OFF	Si está activa permite ver los eventos por curvaturas y compara las mediciones obtenidas con diferentes longitudes de onda.

 En el modo PON, se permite al usuario configurar las condiciones de medición y análisis en función del número de etapas de división óptica, los parámetros son similares al modo detallado, la Tabla 2.12 describe el modo de operación en modo PON.

Figura 2.15 Pantalla de configuración en modo PON Fuente: AQ7280 OTDR User's Manual

	Parámetro	Descripción
Nivel de divisor óptico	1/2	Establece el número de etapas en el enlace bajo prueba.

Tabla 2.12	Configuración	en modo	PON	[14	4]
------------	---------------	---------	-----	-----	----

	• Normal			
Dirección	• OLT -> Splitter	Configura la ruta, va sea en el canal de		
	• OLT -> Splitter> ONU	bajada (downlink) o subida (uplink).		
	• ONU -> Splitter.	5 () (1)		
	• ONU -> Splitter -> OLT			
Configuración		Establece la relación total de divisores		
de divisor óptico	2/ 4/ 8/ 16/ 32/ 64	ópticos.		

2.5.2.2 OTDR SMART MAPPER

Esta herramienta trabaja en modo PON, al utilizarla los eventos presentes en el enlace bajo prueba se muestran en forma de íconos.

Figura 2.16 *Íconos de la herramienta OTDR Smart Mapper (a) punto de inicio (b) empalme (c) splitter (d) curvatura (e) conector (f) fin de fibra* **Fuente:** AQ7280 OTDR User's Manual

Los resultados de la traza reflectométrica pueden presentarse en dos formatos Lista y Mapa, los cuales se describen a continuación [14]:

- Lista: esta opción presenta las condiciones de análisis y describe los parámetros de cada evento, sin embargo, no hay una representación gráfica del enlace.
- Mapa: esta opción despliega los resultados obtenidos del análisis de eventos, así como una representación gráfica del enlace.

2.5.2.3 MÓDULO OPM

El AQ7280 cuenta con un medidor de potencia óptica para medir pérdidas y potencia, la **Tabla 2.8** describe las características de esta herramienta.

2.5.2.4 MÓDULO VLS

Se puede producir luz visible para identificar visualmente las rupturas en la fibra óptica a prueba, la **Tabla 2.8** describe las características de esta herramienta.

2.5.2.5 LOCALIZADOR DE FALLAS

Esta función permite buscar fallas en un cable de fibra óptica y representar la distancia hasta la avería. Se puede especificar la longitud de onda de operación y el nivel de pérdida para determinar si una falla es el extremo de la fibra o no [14].

2.6 OPTICAL LINE TERMINAL

La UFiber OLT es un equipo de alto desempeño que opera bajo el estándar GPON, posee ocho puertos que pueden soportar hasta 128 usuarios cada uno, dando un total de 1024 clientes, además cuenta con dos puertos SFP+ que proporcionan hasta 10 Gbps de conectividad ascendente, la **Tabla 2.13** indica las especificaciones técnicas.

Figura 2.17 UFiber OLT Fuente: UFiber OLT 8-Port GPON Optical Line Terminal with SFP+ User Guide

Tabla 2.13	Especificaciones	de la	UFiber	OLT	[15]
------------	------------------	-------	--------	-----	------

Interfaz	Descripción	
Puertos GPON	Tipo SFP	UF-GP-8B+
	Conector	SC/UPC

	Longitud de onda de operación	Tx: 1490 nmRx: 1310 nm	
	Potencia de salida	1.5 dBm a 5 dBm	
	Sensibilidad	-8 dBm a -28 dBm	
	Velocidad	Downstream: 2.488 GbpsUpstream : 1.244 Gbps	
Puertos SFP+	Transceptor SFP+	Soporta conexiones de 1 Gbps o 10 Gbps	
	Conector	LC/UPC	
Puerto MGMT	Cable RJ45, utilizado para la configuración de la OLT.		
Puerto de Consola	Cable RJ45 a DB9, utilizado para la interfaz de línea de comandos (CLI) cuando se pierda la OLT.		
	 Existen dos formas de reiniciar la OLT a las configuraciones de fabrica: Runtime reset: mantener presionado el botón <i>Reset</i> 		
Botón de Reinicio	 alrededor de 10 segundos hasta que el LED MGMT parpadee e ilumine de forma continua, después de unos segundos, el LED se apagará y la UFiber OLT se reiniciaría automáticamente. Power-on reset: desconectar la OLT, presionar el botón <i>Reset</i> y volver a conectar hasta que el LED MGMT comience a parpadear y se apague. 		

2.6.2 CONFIGURACIÓN DE LA UFIBER OLT

La configuración de la UFiber OLT es mediante una interfaz gráfica (GUI) que la vuelve relativamente fácil e intuitiva de realizar, además cuenta con un sistema de gestión de red Ubiquiti (UNMS), que es un software de administración basado en Linux utilizado para gestionar de forma centralizada todos los equipos (router, OLT, switch, ONU) que operan en la red GPON.

2.6.2.1 ACCEDER A LA INTERFAZ DE ADMINISTRACIÓN

La Ufiber OLT se administra a través del puerto MGMT, para acceder al GUI de configuración siga los siguientes pasos:

- 1. Conectar el cable ethernet desde la computadora al puerto MGMT de la OLT.
- 2. Configurar la IP del computador dentro del rango de la red con la OLT.
- Abrir un navegador Web e introducir la dirección de la puerta de enlace (IP del puerto MGMT).
- 4. Introducir las credenciales:
 - Username: ubnt
 - Password: ubnt

2.6.2.2 CONFIGURACIÓN DE PUERTOS UPLINK SFP+

Los puertos de enlace ascendente SFP+ se utilizan para conectar la red GPON a internet, estos vienen configurados de forma predeterminada con la VLAN nativa 4063, esto permite que el tráfico se reenvié desde la WAN hacia las ONUs y viceversa.

En los puertos SFP+ se pueden incluir varias VLANs, las cuales pueden ser para proporcionar diferentes servicios como internet, VoIP o IPTV. Para la configuración de estos puertos siga los siguientes pasos:

- 1. Ir a: Dashboard > SFP+ > Actions > Config.
- 2. Introducir las VLANs que se desean incluir.
- 3. Aplicar los cambios.

2.6.2.3 PERFILES DE OPERACIÓN

Las ONUs operan bajo ciertos perfiles que se crean en la Ufiber OLT, en estos, se configura varios parámetros como modo (bridge o router), VLANs (aplicable solo en modo bridge), servicios (control remoto), firewall (aplicable solo en modo router) y control de ancho de banda. Para crear y asignar perfiles a las ONU siga los siguientes pasos:

- 1. Ir a: ONU Profiles > Add Profile.
- 2. Crear el perfil y configurar los parámetros necesarios.

- 3. Ir a: ONU List > Select ONU > Actions > Config.
- 4. Seleccionar el perfil de operación.

2.7 OPTICAL NETWORK UNIT

La Ufiber ONU Nano G es un equipo de alto rendimiento que posee una pantalla LED que brinda información del estado de la conexión (velocidad, potencia, dirección IP), dispone de un puerto WAN GPON y un puerto GE RJ45 tipo PoE (Power Over Ethernet) para la alimentación y transmisión de datos hacia la red interna, la **Tabla 2.14** muestra las especificaciones técnicas del equipo.

GPON WAN (SC/APC) Downstream: 2.488 Gbps • Upstream: 1.244 Gbps GbE LAN (RJ45) Interfaces 10/100/1000 Mbps • Reset (presionar y soltar), restaura el dispositivo la configuración а predeterminada de fábrica. Clase B+: 1.5 dBm a 5dBm Potencia de salida Sensibilidad -8 dBm a -28 dBm Tipo PoE: 24 V Alimentación

Tabla 2.14 Especificaciones de la Ufiber ONU Nano G [16]

2.7.1 PANTALLA LED DE LA ONU NANOG

El LED de cada interfaz indica el estado de conexión de red del dispositivo, la **Tabla 2.15** indica la descripción de la pantalla de la ONU [16].

Figura 2.18 Pantalla LED ONU Nano G Fuente: Nano G High Performance GPON CPE User Guide

Tabla 2.15 Pantalla	LED de la	Ufiber ONU	Nano G [16]
---------------------	-----------	------------	-------------

LED	Estado	Descripción
	Verde	GPON conectado y el dispositivo está
		integrado en una red y trabajando
		apropiadamente
		apropradamente
	Rojo	No hay conexión GPON.
	Rojo	El dispositivo es reconocido por la OLT y
	intermitente	esperando a ser integrado
	Apagado	No hay energía, el dispositivo está
		apagado
212		
U	Blanco	Encendido, el dispositivo está encendido.
	Apagado	No hay conexión ethernet
22		
	Verde	Hay conexión ethernet
	Intermitente	Actividad ethernet

2.7.2 ALIMENTACIÓN

Para encender el equipo siga los siguientes pasos [16]:

- Conectar el cable ethernet desde el Nano G hasta el puerto Gigabit PoE del adaptador.
- Conectar un cable ethernet de la LAN al puerto LAN en el adaptador Gigabit PoE.
- 3. Conectar el cable de alimentación al adaptador Gigabit PoE.

Figura 2.19 Alimentación PoE de la ONU Nano G Fuente: Nano G High Performance GPON CPE User Guide

2.8 GENERADOR DE TRÁFICO

El xGenius es una plataforma diseñada para el análisis de redes y servicios basadas en infraestructuras Ethernet/ IP, entre otras; posee varias interfaces (ópticas y eléctricas) de conexión que facilitan la prueba de varios dispositivos o sistemas (ver **Figura 2.20**), además tiene una interfaz gráfica de usuario la cual tiene varios menús en los que se configuran el equipo y se analiza los resultados de las pruebas realizadas (ver **Tabla 2.16**).

Figura 2.20 Descripción del panel frontal del xGenius Fuente: xGenius Ethernet & IP Testing Guide

Tabla 2.16 Descripción de los menús del xGenius	[17]
---	------

Menú	Descripción
	Esta ventana contiene diferentes ítems de configuración relacionados
TEST	con el modo de prueba, tipo de prueba, ping, traza de ruta, inserción de
	eventos y modo de inicio y paro.
	En esta ventana se configuran diferentes parámetros de los puertos del
SETUP	equipo relacionados con el modo de operación, capa física, capa de
	enlace, capa de red, velocidad de transmisión y carga útil.
	En esta ventana se despliegan los resultados de la prueba realizada
RESULTS	relacionados con las tramas enviadas y recibidas, tipo de prueba, ping,
	información del SFP/SFP+, etc.

2.8.1 PANEL DE CONECTORES DE PRUEBA

El xGenius se puede conectar al dispositivo o sistema bajo prueba (DUT/ SUT) a través del panel de conectores, la **Figura 2.21** indica y la **Tabla 2.17** describe las interfaces de conexión que posee el equipo.

Figura 2.21 Interfaces de conexión del xGenius Fuente: xGenius Ethernet & IP Testing Guide

Tabla 2.17 Interfaces del xGenius [17]

Interfaz	Descripción

Puertos A/B SFP/ SFP+ Puertos A/B RJ45	Se usan para conectar el equipo a la red a través de una interfaz óptica. Soporta velocidades de transmisión y recepción de hasta 10 Gbps. El puerto A y B son similares, a excepción de que el puerto B no posee las capacidades de transmisión del puerto A. Se usan para conectar el equipo a la red a través de una interfaz eléctrica. Soporta velocidades de transmisión y recepción de 10/100/1000 BASE-T. El puerto A y B son similares, a excepción de que el puerto B no posee las capacidades de transmisión del puerto A.
Puerto C RJ4 5 Tx/Rx	Tiene una resistencia de entrada/salida 120 Ω balanceada; usado para analizar señales de reloj (1544 kHz, 2048 kHz, 10 MHz, 1 PPS) y generar y analizar señales TDM (E1 y T1)
Puerto C BNC Tx	Tiene una resistencia de salida 75 Ω no balanceada; usado para generar señales TDM (E1 y T1) o como salida de reloj.
Puerto C BNC Rx	Tiene una resistencia de entrada 75 Ω no balanceada; usado para analizar TDM (E1 y T1) o como puerto de entrada de referencia de reloj.
GNSS	Es un conector SMA usado para conectar a una antena GNSS, funciona como sincronización para la unidad de prueba.
Puerto C SMA Rx	Este puerto se utiliza para el análisis de señales 1 PPS 50 Ω no balanceadas.
REF IN	Puede usarse como una entrada de referencia de reloj de 1 PPS utilizada en algunas pruebas de latencia y sincronización.
REF OUT	Salida 1 PPS de referencia; puede usarse como salida de referencia de reloj 1 PPS. La salida esta sincronizada con el oscilador local.

Como se menciona en la **Tabla 2.17**, el puerto A y el puerto B no tienen las mismas capacidades de generación y análisis, el puerto B se comporta de manera secundaria, es decir, puede funcionar como bucle llevando las tramas o paquetes hacia su origen, además de responder a ciertos protocolos como ping o ARP [17].

2.8.2 MODO DE PRUEBA

La conexión del xGenius depende del tipo de prueba que se desee realizar al DUT/SUT. Existen dos modos de operación, en el primero "One-way" el tráfico es generado en el puerto A y recibido en el puerto B, el segundo "Two-way", el tráfico se transmite y se recibe por el puerto A [17].

Figura 2.22 Modos de operación (a) One-Way (b) Two-way **Fuente:** xGenius Ethernet & IP Testing Guide

2.8.3 PRUEBAS DE RENDIMEINTO

El xGenius tiene la capacidad de medir el rendimiento del DUT/SUT sometiéndolo a pruebas de desempeño como la norma RFC-2544 y eSAM.

La RFC-2544 (Request For Comments) describe diferentes pruebas en las cuales se generará tramas específicas para evaluar el rendimiento, latencia, tasa de pérdidas de tramas, tolerancia, recuperación en condiciones de sobrecarga y de reinicio del DUT/SUT. Esta norma va dirigida a probar equipos y dispositivos de tal manera de ofrecer a los fabricantes una manera de certificar las prestaciones de sus productos [18].

Métrica	Descripción
Troughtput	Esta prueba determina el máximo número de tramas por segundo que el DUT/SUT puede procesar y reenviar sin perder ninguna trama.
Latency	Esta prueba determina la latencia relacionado con el dispositivo bajo prueba, marca el tiempo que tarda un paquete en viajar a través del DUT/SUT.
Frame Loss Ratio	El objetivo de esta prueba es determinar la tasa de pérdida de trama en todo el rango de velocidades de datos de entrada y tamaños de trama.
Back-to-Back Frames	Una prueba de trama consecutiva determina la capacidad de procesamiento del equipo para que la tasa de transmisión sea la máxima teórica.
System Recovery	Esta prueba determina la velocidad a la que el DUT se recupera de una condición de sobrecarga.

Tabla 2.18 Objetivos RFC-2544 [18]

La eSAM (Ethernet Service Activation Methodology) está enfocada a determinar los niveles de calidad de servicio (QoS) en la red con servicios convergentes (voz, video y datos) que dependen de varios parámetros como la arquitectura de red, medios de transmisión, administración de recursos, señalización de tráfico y otros factores; utiliza varias métricas (ver **Tabla 2.19**) para evaluar el retardo, variación y pérdida de trama como IR (Information Rate), FLR (Frame Lost Ratio), FTD (Frame Total Delay) y FDV (Frame Delay Variation) [19].

Tabla 2.19 Objetivos eSAM [19]

Métrica	Descripción

Load [Mbps]	Cantidad de tráfico de prueba; este siempre debe ser mayor o igual que el IR.
IR [Mbps]	Tasa de bits consumidos bajo la prueba.
FLR	Mide la cantidad de paquetes perdidos sobre el número de total de paquetes enviados.
FTD [ms]	Latencia entre la transmisión y recepción de la trama.
FDV [ms]	Latencia debido a la variación de entrega de paquetes, puede ser por encolamiento o asignación de prioridad.
Avail [%]	Se refiere al a disponibilidad expresada en porcentaje de tiempo a la que el DUT/SUT no ha estado disponible para transmitir/recibir datos durante la prueba.

El tráfico puede clasificarse en tres perfiles de ancho de banda (color) aplicando clase de servicio (CoS), cada perfil está basado en cuatro parámetros que clasifican la prioridad del tráfico [19]:

- Velocidad de Información Comprometida (CIR): tasa a la cual las tramas se entregan según los objetivos de rendimiento (bps).
- Tamaño de Ráfaga Comprometido (CBS): número máximo de paquetes que pueden ser enviados con una tasa menor al CIR (bytes).
- Tasa de Información de Exceso (EIR): tasa a la cual las tramas se entregan, pero no están sujetas a ningún objetivo de rendimiento (bps).
- Tamaño de Ráfaga en Exceso (EBS): número de paquetes sin objetivos de rendimiento que se envían con una tasa menor al EIR (bytes).

Figura 2.23 Algoritmo de control de admisión **Fuente:** eSAM – Performance Assessment

El algoritmo de control de admisión funciona de la siguiente manera:

- Cuando la trama llega, se determina si está habilitado el control de admisión (Color Mode).
- Las tramas de mayor prioridad pasan al CBS a una tasa CIR hasta alcanzar su capacidad. El tráfico verde se entrega con la QoS acordada por el proveedor del servicio, con loslimites de latencia y pérdida garantizados por el acuerdo SLA.
- 3. Las tramas secundarias (baja prioridad) pasan al EBS a una tasa EIR hasta alcanzar su capacidad. Todo el tráfico amarillo que pasa por el EBS se reclasifica y se entrega utilizando el mecanismo Best-effort delivery, sin aplicar los límites del acuerdo SLA.
- 4. El tráfico rojo es descartado.

2.8.4 MODOS DE OPERACIÓN

Se categoriza en dos modos, el primero define la operación global (ver **Tabla 2.20**) que comparten los puertos A y B, y el segundo establece el comportamiento individual (ver **Tabla 2.21**) de cada puerto, es decir, en cada modo se especifica a qué nivel (capa 1, capa 2 o capa 3) trabajará y comportará el xGenius, la elección del modo de operación global e individual dependerá de la aplicación o tipo de prueba que se desee realizar [17].

Tabla 2.20 Modos de operación global [17]

Modo	Descripción
Ethernet endpoint	En este modo el generador opera en capa 2 (enlace), envía y recibe señales de prueba compuesta por tramas Ethernet hacia y desde el DUT/SUT; se utiliza en pruebas de BER, transparencia/ continuidad y
	desempeño de la red.
IP endpoint	En este modo el generador opera en capa 3 (red), envía y recibe señales de prueba compuesta por tramas IPv4/ IPv6 hacia y desde el DUT/SUT; se utiliza en pruebas de BER, transparencia y desempeño de la red.
IP through	En este modo la señal es monitoreada, se recibe por el puerto A, pasa por el equipo para su análisis y se reenvía al puerto B para ser transmitida. Del mismo modo la operación puede realizarse de manera inversa.
L1 endpoint	Este modo opera específicamente en la capa 1 (física), el equipo no forma tramas, pero puede generar y analizar códigos requeridos para pruebas BER.

Tabla 2.21 Modos de operación individual [17]

Modo	Descripción
Tx/ Rx	Este modo de operación es solamente para el puerto A, se habilita la
	transmision y recepcion; generalmente se usa con el modo de operacion
	global endpoint
Monitor	En este modo de operación la transmisión esta deshabilita, funciona para
	monitorear la red captando el tráfico de manera transparente; se utiliza
	nora obtener estedísticos del trófico de la red
	para obtener estadísticas del tranco de la fed.
Loopback	El puerto receptor se conecta al transmisor enviando todas las tramas
	recibidas hacia el origen; se utiliza en modos de prueba two-way.
Disabled	Se deshabilita la transmisión y recención del nuerto
Disabled	se desnaorma la transmisión y recepción del puerto.
2.8.5 CONFIGURACIÓN DEL CONECTOR

El xGenius posee puertos eléctricos (RJ45) y ópticos (SFP/SFP+), la elección del cual usar dependerá de las características del DUT/SUT. Si se usan los puertos ópticos es posible obtener información del transceptor en el menú resultados como marca, modelo, potencia de transmisión, potencia de recepción y longitud de onda. Por razones de seguridad los puertos ópticos no se encuentran habilitados, para activarlos es necesario ir a la ventana de configuración del puerto y encender el láser [17].

2.8.5.1 PARÁMAETROS DE AUTO-NEGOCIACIÓN

La negociación es la velocidad a la cual el xGenius se comunica con el DUT/SUT. Si la auto-negociación está habilitada, el equipo negociará con el DUT/SUT la velocidad de comunicación, mientras que si se encuentra deshabilita, el usuario debe forzar la tasa de transmisión.

2.8.6 GENERACIÓN DE TRÁFICO

El xGenius tiene la capacidad de generar tráfico con perfiles deterministas y aleatorios de ancho de banda; esta función se usa para forzar la red, simulando cargas para medir criterios de rendimiento como errores de bits, pérdida de paquetes o latencia, se pueden generar hasta ocho flujos de tráfico (Puerto A) que se pueden configurar con parámetros específicos de encapsulación y direccionamiento, proporcionando versatilidad en las aplicaciones que requieran generación de tráfico Ethernet e IP [17].

2.8.6.1 PERFIL DE ANCHO DE BANDA

En esta ventana se establece la velocidad de transmisión y el perfil del flujo (ver **Figura 2.24**) de datos; se puede especificar las tramas por segundo, bits por segundo o el porcentaje de la capacidad de transmisión.

Figura 2.24 Perfiles de tráfico (a) Continuo (b) Periódico (c) Rampa (d) Aleatorio Fuente: xGenius Ethernet & IP Testing Guide

2.8.6.2 CARGA ÚTIL

Los datos generados por el xGenius son sintéticos, es decir, no contienen información real, por esta razón las tramas generadas se reemplazan por cargas útiles que simulan el tráfico de usuarios. Estas pueden contener marcas de tiempo o números de secuencia que determinan que métricas de resultados serán analizados [17].

Tabla 2.22	Tipos	de	carga	útil	[17]
-------------------	-------	----	-------	------	------

Carga útil	Descripción
BERT	Se establece un patrón de bits adecuado para medir la relación de errores de bits (BER). El xGenius incluye soporte para dos tipos

	diferentes de patrones BERT: secuencia binaria pseudoaleatoria (PRBS) o patrones configurables por el usurario de 32 bits.
SLA	Se utiliza para medir la latencia, jitter y la pérdida de paquetes.
All zeros	Se establece el patrón transmitido a ceros.

2.8.6.3 GENERACIÓN DE TRÁFICO ETHERNET

Primero se debe verificar el conector y la auto-negociación. La generación de tramas Ethernet está disponible para el puerto A en el modo Ethernet endponit; se debe configurar la capa física, campo de trama, perfil de ancho de banda y carga útil [17].

Parámetro	Descripción		
	Es el tamaño de la trama Ethernet incluida MAC de destino, MAC		
Frame size	de origen, longitud, carga útil, FCS y etiquetas VLAN. Es posible		
	generar tramas entre 64 y 10000 bits.		
	Se configura la forma en que los datos se encapsulan en las tramas		
	Ethernet, las encapsulaciones permitidas son:		
Encapsulation	 VLAN: las tramas transmitidas son etiquetadas con la norma IEEE 802.1Q. Cualquier valor entre 0 a 4095 está permitido. Q-in-Q: las tramas transmitidas llevan dos etiquetas VLAN, una corresponde al proveedor de servicio (S-VLAN, etiqueta sin estándar) y la otra corresponde al cliente (C-VLAN, etiqueta IEEE 802.1Q). IEEE 802.1ad: similar a Q-in-Q, pero esta opción sigue la norma IEEE 802.1ad. Local Profile: se establece la prioridad de C-VID y C-VLAN. 		
Source MAC address	Se establece el origen de la dirección MAC; existen dos configuraciones posibles:		
from	• Local: la dirección MAC de origen se establece con la MAC de fábrica asignada al puerto.		
	• Manual: el usuario define la dirección MAC de origen.		
Source MAC address	Se establece la dirección MAC de origen si se ha seleccionado el modo manual.		

 Tabla 2.23 Configuración de la capa de enlace [17]

Destination MAC address from	 Se establece el destino de la dirección MAC; existen tres configuraciones posibles: Manual: el usuario define la dirección MAC de destino. ARP: usa el protocolo de resolución de direcciones (disponible solo en generación de tráfico IP). Range: el flujo es transmitido a un grupo de direcciones MAC.
Destination MAC address	Se establece la dirección MAC de destino si se ha seleccionado el modo manual.
Address range size	Se configura el rango de direcciones MAC de destino si se ha seleccionado el modo range.
Ethertype	Este campo es el encargado de codificar el tipo de carga útil en el campo de trama. Es un valor fijo y no puede ser establecido por el usuario.
C-VID	Este campo establece el identificador de la VLAN.
C-VLAN priority	Se establece al flujo de datos prioridades para asignar tratamientos específicos a las tramas. Es posible asignar un valor de 0 al 7.
S-VLAN TPID	El campo Ethertype se asociará a la etiqueta S-VLAN en Q-in-Q, son posibles cuatro valores diferentes: 0x8100, 0x9100, 0x9200, 0x9300. Si la encapsulación está configurada en IEEE 802.1ad, el tipo de E-VLAN se establece en 0x88a8.
S-VID	Se establece el identificador de la VLAN para el campo de doble etiqueta.
S-VLAN priority	Se establece al flujo de datos prioridades para asignar tratamientos específicos a las tramas. Es posible asignar un valor de 0 al 7.

2.8.6.4 GENERACIÓN DE TRÁFICO IP

Trabajar en el nivel de capa 3 permite abandonar la red local y llegar a redes remotas, la generación de tramas IP está disponible para el puerto A en el modo IP endponit. La configuración física (capa 1) y MAC (capa 2) es similar al modo Ethernet endpoint, con la diferencia de que se encuentra habilitado el protocolo ARP, es necesario configurar el paquete IPv4 (ver **Tabla 2.24**) y opcionalmente usar etiquetas MPLS (Multi-Protocol Label Switching) [17].

MPLS es una tecnología diseñada para acelerar la conmutación de paquetes IP en enrutadores al separar las funciones de selección de ruta y reenvió de paquetes en dos planos (control y reenvío), trabaja entre a capa 2 y capa 3. El plano de control gestiona las rutas con los protocolos de enrutamiento. El plano de reenvió cambia los paquetes IP haciendo uso de etiquetas (LSR) y circuitos virtuales (LSP) para optimizar el proceso de enrutamiento [17].

Figura 2.25 Formato MPLS. Fuente: xGenius Ethernet & IP Testing Guide

Tabla 2.24	Configuración	de la capa	de red	[17]
------------	---------------	------------	--------	------

Parámetro	Descripción
Source IPv4 address from	 Se establece el origen de la dirección IPv4; existen dos configuraciones posibles: Local: la dirección IPv4 de origen se establece con la dirección configurada en el perfil local. Manual: el usuario define la dirección IPv4 de origen.

Source IPv4 address	Se establece la dirección IPv4 de origen si se ha seleccionado el modo manual.		
Destination IPv4 address from	 Se establece la dirección IPv4 de destino; existen tres configuraciones posibles: Manual: el usuario define la dirección IPv4 de destino. Range: el flujo es transmitido a un grupo de direcciones IPv4. Host name: usa el Domain Name Service (DNS) para dar la dirección IPv4 de destino, es necesario un servidor DNS. 		
Destination IPv4 address	Se establece la dirección IPv4 de destino si se ha seleccionado el modo manual.		
Address range size	Se configura el rango de direcciones IPv4 de destino si se ha seleccionado el modo range.		
Destination host name	Se establece el nombre del destino si ha seleccionado el modo host name.		
DSCP	Differentiated Services Code Point, es un campo de Clase de Servicio (CoS) para asignar prioridades o tratamientos específicos a grupos de paquetes. Es posible asignar un valor de 0 a 63.		
TTL	Se establece el tiempo de vida de los paquetes transmitidos.		
UDP	Habilita el protocolo de transporte de datagramas de usuario, si está activo, el campo Transport protocol se establece en 17.		
Transport protocol	Se configura el protocolo de trasporte, 6 para TCP, 17 para UDP y 1 para ICMP.		
Source port	Puerto de la capa de transporte de origen transmitido en el encabezado UDP (habilitado solo para transmisiones UDP).		
Destination port	Puerto de la capa de transporte de destino transmitido en el encabezado UDP (habilitado solo para transmisiones UDP).		

Tabla 2.25 Configuración MPLS [17]

Parámetro	Descripción

Stack configuration	 Configura el tipo de etiqueta MPLS; se admiten dos tipos: Simple: se configura la etiqueta inferior, la clase de tráfico y el TTL para el encabezado MPLS. Doble: se configura la etiqueta superior e inferior, la clase de tráfico y el TTL para el encabezado MPLS.
Bottom label	Etiqueta usada para cambiar el encabezado MPLS inferior.
Bottom traffic class	Se define el identificador de clase de tráfico para el encabezado MPLS inferior.
Bottom TTL	Se define el tiempo de vida para el encabezado MPLS inferior.
Top label	Etiqueta usada para cambiar el encabezado MPLS superior.
Top traddic class	Se define el identificador de clase de tráfico para el encabezado MPLS superior.
Top TTL	Se define el tiempo de vida para el encabezado MPLS superior.

2.8.7 INSERCIÓN DE EVENTOS

El xGenius tiene la capacidad de insertar eventos en las señales generadas para someter al DUT/SUT a pruebas de estrés, estos pueden ser colocados en varios modos de operación como: simple, ráfaga, aleatorio o mediante una tasa [17].

Tabla 2.26 Tipos de eventos [17]

Tipo de Evento	Descripción
FCS	Frame Check Sequence es un código de detección de errores que se agrega a una trama; este campo genera errores en la verificación de tramas. En la práctica los errores FCS son causados por un enlace con un presupuesto de energía pobre.
IPv4 checksum	Es un algoritmo para proteger el encabezado IPv4 de los paquetes contra la corrupción de datos; este campo genera cuadros con una suma de comprobación IPv4 no válida (disponible en modo IP endpoint).

Undersized frames	Este evento genera tramas más cortas que el tamaño mínimo permitido (64 bytes)
TSE	Test Sequence Errors genera una diferencia entre el patrón de bits (PRBS) transmitido y el recibido (disponible en modos de prueba BER).

2.9 ATORMENTADOR DE TRÁFICO

Albedo Net.Storm es un comprobador portátil con la capacidad de emular diferentes degradaciones que se encuentras en las redes Ethernet e IP, una de sus aplicaciones es la de determinar si una aplicación o dispositivo de red es apropiado en operar en dichas redes [20].

Figura 2.26 *Equipo Net.Storm* **Fuente:** *SLA verifiaction* + *QoS control*

2.9.1 PANEL DE CONECTORES DE PRUEBA

El equipo Net.Storm se puede conectar al dispositivo o sistema a través del panel de conectores, la **Figura 2.27** indica y la **Tabla 2.27** describe las interfaces de conexión que posee el equipo [20].

Figura 2.27 Interfaces de conexión del equipo Net.Storm Fuente: Net.Storm Network Impairment Generator

Tabla 2.27 Interfaces del Net. Storm [20])]
---	----

Interfaz	Descripción
RJ-45 Puerto A	Primer puerto con 10/100/1000 BASE-T con todas las funciones para la transmisión y recepción de Ethernet.
RJ-45 Puerto B	Segundo puerto con 10/100/1000 BASE-T con todas las funciones para la transmisión y recepción de Ethernet.
Puerto SFP A	Primer puerto utilizado para conectar el comprobador a la red a través de una interfaz óptica con la ayuda del módulo SFP.
Puerto SFP B	Segundo puerto utilizado para conectar el comprobador a la red a través de una interfaz óptica con la ayuda del módulo SFP.
Tarjeta SD	Slot utilizado como dispositivo de almacenamiento externo.

2.9.2 INTERFAZ GRÁFICA DE USUARIO

La pantalla y el teclado permiten al usuario configurar los valores de pruebas y la visualización de resultados; los estados de la conexión se presentan en los Leds y contiene un encabezado con la información sobre el estado actual como fecha, hora, pruebas de ejecución, inserción de eventos e identificador activo del panel. En el panel de interfaz gráfica posee los siguientes elementos explicados en la **Tabla 2.28** [20].

Elementos	Descripción
Test	Contiene los elementos de configuración general, de prueba, prueba retrasada, los objetivos de rendimiento, la inserción de eventos y configuración de informes.
Setup	Proporciona el acceso a la configuración de recursos de prueba que contienen el puerto A y B.
Resultados	Permite al usuario examinar los resultados de las pruebas que previamente haya iniciado al capturar los datos.
File	Menú de gestión de archivos que incluye la configuración, resultados y gestión de archivos de informes, los archivos se pueden copiar, exportar, importar y eliminar.
System	Proporciona herramientas de gestión de plataforma.

Tabla 2.28 Interfaz Gráfica del Net.Sotrm [20]

2.9.3 CONEXIÓN DEL NET.STORM

La conexión del Net.Storm para la generación de degradación de Ethernet es en modo de paso, lo que permite que el tráfico pase a través del comprobador. La operación del equipo es bidireccional, lo que significa que ambas direcciones de transmisión son procesadas simultáneamente por el equipo, si la generación de deterioro está deshabilitada, Net.Storm no altera el tráfico [20].

Figura 2.28 Generación de deterioro bidireccional con Net.Storm Fuente: Net.Storm Network Impairment Generator

2.9.4 ANÁLISIS DE RESULTADOS

El equipo Net.Storm no elimina automáticamente las tramas con errores, si se configura en modo espejo las tramas con error se reenvían. Tenemos la **Tabla 2.29** en el análisis de tramas [20].

Métricas	Descripción
Frames	Número total de tramas recibidas por un puerto de prueba desde el inicio de prueba.
Bytes	Recuentro total de bytes recibido por el puerto de prueba desde el comienzo de la prueba.
Broadcast Frames	Número total de tramas de transmisión recibidas (FF:FF:FF:FF:FF) en el campo destino.
Multicast Frames	Recepción de tramas de multidifusión en su dirección MAC de destino establecido en 1.
Control Frames	Número total de tramas de supervisión y control de MAC recibidas, poseen un valor especial de Ethertype (0x8808).
Flow control frames	Número total de tramas de pausa, poseen como característica las tramas de pausa un código de operación 0x0001 y destino MAC 01:80:C2:00:00:01.
Tagged frames	Número total de tramas VLAN de Ethernet recibidas.
FCS errored Frames	Cuenta todos los errores FCS detectados desde el inicio de la prueba.
Oversized frames	Número total de tramas recibidas más grandes que la MTU configurada.
Undersized frames	Número total de tramas recibidas más pequeñas de 64 bytes.
Jabbers	Se define como una trama de más de 1518 bytes con un CRC incorrecto.

Tabla 2.29 Análisis de tramas del Net. Storm [20]

2.9.5 INSERCIÓN DE EVENTOS

2.9.5.1 PÉRDIDAS

El Net.Storm proporciona varios modos de inserción de pérdidas de trama explicados en la **Tabla 2.30**.

Modo	Descripción
Ninguna	Desactiva la inserción de perdida de trama.
Único	Se inserta una sola perdida de trama en la primera oportunidad de inserción.
Ráfaga temporizada	Elimina una secuencia de tramas consecutivos dentro de un periodo de tiempo.
Ráfaga de tramas	Suelta un numero configurable de tramas consecutivos.
Ráfaga periódica temporizada	Suelta ráfagas periódicas de tramas, los periodos de tiempo y tramas a transmitir son configurables.
Ráfaga periódica de trama	Suelta ráfagas de trama periódicas, la cantidad de tramas, la separación entre las ráfagas es configurables.
Aleatorio	Los paquetes se eliminan aleatoriamente con una probabilidad constante configurable.
Aleatorio de 2 estados	Simula un canal de transmisión con 2 probabilidades de perdida diferentes.
Longitud de ráfaga	Las tramas recibidas durante el intervalo de tiempo especificado en este campo se eliminan, en el caso de no recibir ninguna trama dentro del periodo especificado no se descarta ninguna trama.
Separación de ráfagas	Especifica la separación en unidades de tiempo entre ráfagas consecutivas de pérdida.

Tabla 2.30 Descripción de eventos del Net. Sotrm [20]

Probabilidad de perdida	Si el modo de inserción se establece en Aleatorio, esta es la probabilidad de un evento de pérdida de un solo paquete.
Longitud media	Configura la longitud promedio en número de tramas del primer estado en el modo de inserción de 2 estados.

2.9.5.2 ANCHO DE BANDA

Los filtros de control de ancho de banda son útiles en el caso que el usuario desee simular enlaces de ancho de banda más pequeño que la capacidad nominal del canal (10 Mbps, 100 Mbps, 1000 Mbps). La **Tabla 2.31** se describen los diferentes modos de control de ancho de banda.

Métrica	Descripción
Ninguna	Desactiva el control de ancho de banda.
Shaping	Simula un filtro de conformación, el filtro de configuración puede transmitir un token almacenado en su contenedor de token, el depósito se llena con nuevos tokens a una velocidad constante para reemplazar los gastados en las tramas transmitidas.
Policing	Simula un filtro de vigilancia, se permite que un filtro de vigilancia transmita una trama por cada token almacenado en búfer virtual conocido como token buket, el depósito se llena de nuevos tokens a una velocidad constante para reemplazar los gastados en las tramas transmitidas.

Tabla 2.31 Control del Ancho de Banda [20]

2.9.5.3 DUPLICACIÓN DE TRAMAS

Admite la duplicación de tramas del tráfico, posee los siguientes modos de trabajo explicados en la **Tabla 2.32**.

Tabla 2.32 Modos de Duplicación de trama	s [20]
--	--------

Modo	Descripción

Ninguno	Deshabilita la inserción de duplicados de tramas.
Único	Una sola trama es duplicada en la primera oportunidad en la inserción del evento.
Aleatorio	Los paquetes se duplican aleatoriamente con una probabilidad constante configurable.

2.9.5.4 ERROR DE TRAMAS

El Net.Storm admite la inserción de errores, modifica el campo de tramas seleccionadas y configurables descritas en la **Tabla 2.33**.

Modo	Descripción
Ninguno	Deshabilita la inserción de error de trama.
Único	Se agrega un error en la primera oportunidad en la inserción del evento.
Aleatorio	Las tramas con errores se insertan aleatoriamente con una probabilidad constante configurable.

Tabla 2.33 Inserción de error de tramas [20]

2.9.5.5 DELAY & JITTER

Los filtros de retardo y jitter generan retraso en las tramas de Ethernet/IP. La **Tabal 2.34** se describen los diferentes modos de inserción de retardo.

Modo	Descripción	
Ninguna	Desactiva la inserción de retardo & jitter.	
Determinista	Agrega un retardo configurable constante en ms o s las tramas de ingreso.	

Tabla 2.34 Modos de Configuración de Delay & Jitter [20]

Aleatorio (Uniforme)	Agrega un retraso aleatorio a cada trama de ingreso, la función de densidad de probabilidad en este modo de inserción de retardo es uniforme.
Aleatorio (Exponencial)	Agrega un retraso aleatorio a cada trama de ingreso, la función de densidad de probabilidad es exponencial.

2.10 CAPTURADOR DE TRÁFICO

Es un equipo que posee 2 puertos SFP de 1 Gbps y 2 puertos RJ-45 de 1 Gbps, los puertos SFP tiene las líneas de interfaces A y B, los puertos RJ-45 puede ser usado como interfaces espejo y pueden analizarse con otros equipos. El Net.Hunter tiene la función de capturar el tráfico con propiedades específicas que elija el usuario [21].

Figura 2.29 *Equipo Net.Hunter* **Fuente:** *Field Packet Capture*

2.10.1 MODOS DE OPERACIÓN

El tráfico se reenvía entre los puertos A y B sin modificaciones o retraso, el tráfico filtrado se reenvía hacia los puertos espejo o un dispositivo de almacenamiento. Puede configurarse para agregar tráfico desde las direcciones de transmisión hacia adelante y hacia atrás y presentarlas como una sola secuencia [21].

Tabla 2.35 Modo de Operación Net.Hunter [21]

Modo de Operación	Descripción
Mirror	El tráfico coincidente desde el puerto de línea A se reenvía al puerto duplicado A y el tráfico coincidente desde el puerto de línea B se reenvía al puerto duplicado B.
Mirror & aggregate	El tráfico coincidente de los puertos de línea A y B se reenvía al puerto duplicado B.
Store	El tráfico correspondiente de los puertos de línea A y B se reenvía a la tarjeta SD.

El equipo Net.Hunter posee 2 puertos SFP para el análisis, se puede utilizar la operación eléctrica y óptica estos son compatibles. En los resultados se muestras las características del SFP y sus características, se almacenan en el equipo e indican su compatibilidad, el vendedor y número del SFP [21].

2.10.2 ANÁLISIS DE RESULTADOS

Net.Hunter utiliza estadísticas de tráfico básicas sobre las redes Ethernet con velocidades hasta 1 Gbps, las estadísticas en el puerto A y B son idénticas, algunas estadísticas se refieren al tráfico detectado en los puertos de línea, otras a tramas monitoreadas incluida las caídas de trama en las interfaces espejo primarias o secundarias [21].

Métrica	Descripción
Frames	espejo desde que comenzó la acción de captura.
Bytes	Número total de bytes almacenados por el puerto espejo, 1 byte está definido por 8 bits.
Broadcast frames	Número total de tramas de transmitidas con dirección Ethernet (FF:FF:FF:FF:FF:FF) en el campo de destino.

Tabla 2.36 Análisis de tramas Net.Hunter [21]
--	-----

Multicast frames	Tramas de multidifusión tienen su bit en su dirección MAC de destino establecido en 1.	
Control frames	Número total de tramas de supervisión y control de MAC transmitidas a un puerto espejo.	
Tagged frames	Número total de tramas VLANs transmitidas a un puerto espejo, según IEEE 802.1Q las tramas VLANs contienen un valor de tipo Ethernet de longitud 0x8100.	
FCS errored frames	Recuento de todos los errores FCS transmitidos a un puerto espejo, los errores de FCS son causados por errores de transmisión.	

CAPÍTULO 3: DESARROLLO DE PRÁCTICAS

Este capítulo está enfocado en el desarrollo de prácticas utilizando los equipos descritos anteriormente. Se proponen varios diseños con la finalidad de brindar un ambiente práctico en un entorno de laboratorio, de tal manera que los usuarios de este módulo puedan formar una base amplia en conocimientos científicos y tecnológicos en redes de fibra óptica.

Considerando la funcionalidad y limitación del laboratorio, se ha planificado un rango entre 45 y 60 minutos para concretar cada práctica.

3.1 CÁLCULOS DE ATENUACIÓN Y NIVEL DE POTENCIA

Es importante contar con un diseño de red, pues hay que considerar ciertos parámetros como: capacidad, distancias y atenuaciones para garantizar un nivel de señal utilizable en la ONU. La atenuación es el factor más importante en el diseño de una red, los eventos que provocan pérdidas se indican en la **Tabla 3.1**.

Distancia	~ 0.5 dB por km en el sentido descendente 1490 nm
	~ 0.3 dB por km en el sentido ascendente 1310 nm
Conectores	Cada conector provoca una pérdida de ~ 0.6 dB
Empalmes	Cada fusión provoca una pérdida de ~ 0.1 dB

Tabla 3.1 Eventos de atenuación

	1:2	3.01 dB
	1:4	6.02 dB
Divisores	1:8	9.03 dB
opticos	1:16	12.04 dB
	1:32	15.05 dB
	1:64	18.06 dB

Usando la topología de red de la **Figura 3.1**, se determina los niveles de potencia óptica aceptable para la ONU y la OLT, estos valores deben estar dentro del rango de -8 dBm a -28 dBm tomando en cuenta que la potencia de transmisión de ambos equipos es de +3 dBm.

Figura 3.1 *Topología de red* **Fuente:** *El autor*

ONU	Evente	Cálculo do párdido do potonoio	Pérdida en
UNU	ruente	Calculo de perdida de potencia	dB
	Longitud	$0.3 \text{ dB} \times 4 \text{ km}$	1.2 dB
	Conectores	$0.6 \text{ dB} \times 4 \text{ conectores}$	2.4 dB
ONU 1	Divisor		
	Divisor	$9.03 \text{ dB} \times 1 \text{ splitter}$	9.03 dB
	óptico	1 I	
		Potencia recibida	-9.63 dBm
	Longitud	$0.3 \text{ dB} \times 14 \text{ km}$	4.2 dB
	Conectores	$0.6 \text{ dB} \times 6 \text{ conectores}$	3.6 dB
ONU 2			
0110 2	Divisor	$9.03 dB \times 2 snlitter$	18.06 dB
	óptico	7.05 th × 2 spinor	10.00 dD
		Potencia recibida	-22.86 dBm

Tabla 3.2 Atenuación en sentido descendente

Tabla 3.3	8 Atenuación	en sentido	ascendente
-----------	--------------	------------	------------

ONU	Fuente	Cálculo de pérdida de potencia	Pérdida en
0110	1 dente	Calculo de perdida de potencia	dB
	Longitud	$0.5 \text{ dB} \times 4 \text{ km}$	2 dB
ONU 1	Conectores	$0.6 \text{ dB} \times 4 \text{ conectores}$	2.4 dB
ONU I	Divisor óptico	9.03 dB × 1 splitter	9.03 dB
		Potencia recibida	-10.43 dBm
ONU 2	Longitud	$0.5 \text{ dB} \times 14 \text{ km}$	7 dB
	Conectores	$0.6 \mathrm{dB} \times 6 \mathrm{conectores}$	3.6 dB

Divisor óptico	9.03 dB × 2 splitter	18.06 dB
	Potencia recibida	-25.66 dBm

3.1.1 COMPROBACIÓN DE LOS NIVELES DE POTENCIA

Antes de iniciar las pruebas de potencia, es necesario revisar el estado de la férula del conector, para hacerlo se utiliza el microscopio óptico "Lightel" el cual mostrará una imagen del aspecto del pulido.

(a) (b) Figura 3.2 Estado de la férula (a) sucia (b) limpia Fuente: El autor

Un conector sucio se diferencia fácilmente de uno limpio por las partículas de polvo que este presenta en su férula. Un pulido nítido asegura una óptima transmisión pues se previene los efectos de reflexión interna. Para limpiarlo se utiliza el clicker "Fiber Connector Cleaner", el cual sirve tanto para cables y adaptadores de fibra óptica.

Para comprobar los cálculos de atenuación y nivel de potencia se utiliza el medidor de potencia óptica y se implementa la topología que se muestra en la **Figura 3.1**. Para el sentido descendente se utiliza como fuente la OLT y en el sentido ascendente se usa el OTDR como fuente empleando la herramienta "fuente de luz", no se ocupa la ONU como fuente en upstream debido a que al desconectar el puerto PON para medir la potencia óptica el dispositivo se desengancha, por lo que no es posible realizar la medición. Es necesario conocer la potencia de salida tanto de la OLT como del OTDR, los valores medidos se muestran en la **Tabla 3.4**.

Tabla 3.4 Potencia de salida de OLT y OTDR

	Potencia de salida	Longitud de onda
OLT	4.3 dBm	1490 nm
OTDR –2.68 dBm		1310 nm

OLT - ONU

Tabla 3.5 Niveles de potencia en sentido descendente

ONU	Potencia recibida	Atenuación calculada	Atenuación medida
1	-8.54 dBm	12.63 dB	12.84 dB
2	-24.21 dBm	25.86 dB	28.51 dB

ONU – OLT

Tabla 3.6 Niveles de potencia en sentido ascendente

ONU	Potencia recibida	Atenuación calculada	Atenuación medida
1	-16.11 dBm	13.43 dB	13.43 dB
2	-33.12 dBm	28.66 dB	30.44 dB

Es importante mencionar que la bobina de 10 km de fibra óptica presenta un evento que ocasiona una pérdida de 2.69 dB (ver **Figura 3.4** y **Tabla 3.9**), por lo que el valor calculado con el medido no concuerda para la ONU 2, sin embargo, si tomamos en cuenta esta falla los niveles de potencia son similares, lo que demuestra que el análisis de atenuación en los sentidos descendente y ascendente son correctos.

3.2 PRUEBAS DE REFLECTOMETRÍA ÓPTICA

Para familiarizar al usuario con el manejo del OTDR se realizan mediciones en los modos de operación simple, detalle y PON con el fin de verificar y evaluar el comportamiento de distintos eventos que se presentan en un enlace óptico.

3.2.1 MODO SIMPLE

La **Figura 3.3** indica el diagrama de conexión para operar en el modo simple, con esta opción el usuario tiene acceso limitado a los parámetros de configuración de medida y análisis ya que solo es posible establecer la longitud de onda de operación y el método de aproximación, mientras que el AQ7280 establece automáticamente el resto de los parámetros de configuración como rango de distancia, ancho de pulso, índice de refracción, etc.

Figura 3.3 *Diagrama de conexión en modo simple* Fuente: *El autor*

Τa	abla	3.'	7	Parámetros	de	configura	ción	de	medida	modo	simp	le

Condiciones de medida		
Longitud de onda	1310 nm	
Rango de distancia	Auto 20 km	
Ancho de pulso	Auto 100 ns	
Atenuación	Auto	
Intervalo de muestreo	1 m	

Condiciones de búsqueda de evento		
Pérdida de empalme	1 dB	
Pérdida de retorno	70 dB	
Final de fibra	Auto	
P. divisor óptico	13 dB	

Tabla 3.8 Parámetros de configuración de búsqueda de evento modo simple

Tabla 3.9	Resultados	modo	simple
-----------	------------	------	--------

N. Evento	Distancia (km)	Pérdida (dB)	P. Ret. (dB)	dB/km	Tipo Evento	Índice refrac.
1	8.05333	2.69	-	0.336	Fusión	1.46
Е	10.07385	-	56.464	0.312	Fin de fibra	1.46

Resumen del enlace		
Distancia	10.07385 km	
Pérdida total	5.861 dB	
Pérdida de retorno total	33.31 dB	
Número de eventos	2	

3.2.2 MODO DETALLE

La **Figura 3.5** indica el diagrama de conexión para operar en el modo detalle, esta opción permite al usuario el acceso a más parámetros de configuración de medición y análisis. Se recomienda este modo de operación cuando se conoce varias características del enlace bajo prueba.

Figura 3.6 *Diagrama de conexión en modo detalle* Fuente: *El autor*

Tabla 3.11 Parámetros	de configuración	de medida moo	lo detalle
Tabla 3.11 Talametros	ue configuración	ue meulua mot	io uctane

Condiciones de medida			
Longitud de onda	1310 nm		
Rango de distancia	20 km		
Ancho de pulso	Auto 100 ns		
Atenuación	Auto		
Intervalo de muestreo	Alta resolución (20 cm)		

Condiciones de búsqueda de evento			
Pérdida de empalme	1 dB		
Pérdida de retorno	55 dB		
Final de fibra	Auto		
P. divisor óptico	11 dB		

Tabla 3.12 Parámetros de configuración de búsqueda de evento modo detalle

Tabla 3.13 Parámetros de configuración pasa/ no pasa modo detalle

Condiciones pasa/ no pasa			
Pérdida por conector	0.6 dB		
Pérdida de empalme	0.1 dB		
Pérdida de retorno	55 dB		
P. divisor óptico	11 dB		
dB/km	1 dB		
Pérdida total	10 dB		

Figura 3.6 *Traza reflectométrica en modo detalle* **Fuente:** *El autor*

N.	Distancia	Pérdida	P. Ret.	dD/Irm	Tino Evento	Índice
Evento	(km)	(dB)	(dB)	UD/KIII		
1	8.05682	2.723	-	0.342	Fusión	1.46
2	10.07427	5.9	59.939	0.314	Splitter	1.46
Е	12.10669	17.337	-	0.306	Fin de fibra	1.46

Tabla 3.14 Resultados modo detalle

Tabla 3.15 Resumen del enlace modo detalle

Resumen del enlace			
Distancia	12.10669 km		
Pérdida total	17.337 dB		
Pérdida de retorno total	31.206 dB		
Número de eventos	3		

3.2.3 MODO PON

La **Figura 3.7** indica el diagrama de conexión para operar en el modo PON, esta opción es similar al modo detallado, permite al usuario configurar las condiciones de medición y análisis en función del número de etapas de división óptica.

Figura 3.7 *Diagrama de conexión en modo PON* **Fuente:** *El autor*

Condiciones de medida		
Longitud de onda	1310 nm	
Rango de distancia	20 km	
Ancho de pulso	Auto 500 ns	
Atenuación	Auto	
Intervalo de muestreo	1 m	

Tabla 3.16 Parámetros de configuración de medida modo PON

Tabla 3.17 Parámetros de configuración de búsqueda de evento modo PON

Condiciones de búsqueda de evento			
Pérdida de empalme	2.5 dB		
Pérdida de retorno	70 dB		
Final de fibra	Auto		
P. divisor óptico	12 dB		

Condiciones pasa/ no pasa			
Pérdida por conector	1 dB		
Pérdida de empalme	0.6 dB		
Pérdida de retorno	60 dB		
P. divisor óptico	10.5 dB		
dB/km	1 dB		
Pérdida total	-64.65 dB		

Tabla 3.18 Parámetros de configuración pasa/ no pasa modo PON

Tabla 3.19 Resultados modo PON

N. Evento	Distancia (km)	Pérdida (dB)	P. Ret. (dB)	dB/km	Tipo Evento	Índice refrac.
1	10.07282	5.646	60.074	0.565	Splitter	1.46

2	12.10053	14.901	72.674	0.326	Splitter	1.46
E	14.15496	24.402	-	0.330	Fin de fibra	1.46

Tabla 3.20 Resumen del enlace modo PON

Resumen del enlace			
Distancia	14.1596 km		
Pérdida total	24.2402 dB		
Pérdida de retorno total	50.162 dB		
Número de eventos	3		

3.2.4 ANÁLSIS DE RESULTADOS DE REFLECTOMETRÍA ÓPTICA

Los resultados de la **Tabla 3.**10, **Tabla 3.15** y **Tabla 3.20** indican que las pruebas realizadas en los tres modos de operación son correctas pues las distancias, nivel de perdida y eventos concuerdan con los diagramas planteados inicialmente. Cuando se opera en los modos detalle y PON es importante conocer las características del enlace bajo prueba para realizar una correcta configuración de medida, análisis, búsqueda de evento y condiciones de pasa/no pasa ya que, si estos parámetros se encuentran mal establecidos, el OTDR mostrará una medición errónea.

3.3 CARACTERIZACÍON DEL COEFICIENTE DE ATENUACIÓN RESPECTO A LA LONGITUD DE ONDA

Las pérdidas de fibra representan un factor limitante e importante porque reducen la potencia de la señal que llega al receptor, como estos necesitan una cierta cantidad mínima de energía para recuperar la señal con precisión, la distancia de transmisión está restringida por la atenuación que se da en las fibras ópticas (ver **Ecuación 1.4**), donde el coeficiente α representa la pérdida en unidades de dB/km.

Las pérdidas de fibra dependen de la longitud de onda (λ) de luz transmitida, la **Figura 3.9** muestra el espectro de pérdida α en función de λ .

Figura 3.9 Pérdida de fibra dependiente de la longitud de onda Fuente: Fiber-Optic Communication System

La **Figura 3.10** indica el diagrama de conexión para la obtención del coeficiente de atenuación respecto a la longitud de onda. Se utiliza el módulo AQ2200-132 como fuente de luz pues posee un láser sintonizable que opera en las bandas C y L, la bobina de 10 km y el módulo AQ2200-342 para medir la potencia óptica.

Se variará la longitud de onda transmitida cada 5 nm y se medirá la potencia óptica al final de la bobina de 10 km, para determinar el coeficiente de atenuación (ver **Tabla 3.21**) se utiliza la **Ecuación 1.4**. Es importante tomar en cuenta la pérdida por conectores que en la experimentación se determinó que es de 1.94 dB para la salida 1 y 1.92 dB para la salida 2, mientras que la bobina de 10 km presenta un evento que provoca una pérdida de 2.69 dB (ver **Figura 3.4** y **Tabla 3.9**).

Figura 3.10 Diagrama de conexión para la caracterización del coeficiente de atenuación Fuente: El autor

			I		I
Longitud de	Longitud de	Potencia de	Potencia de	Pérdida de	Pérdida por
	onda medida	transmisión	recepción	fibra	conectores
onda [nm]	[nm]	[dBm]	[dBm]	[dB/km]	[dB]
1527	1527.994	10	2.75	0.262	
1530	1530.334	10	2.71	0.266	
1535	1535.036	10	2.77	0.26	
1540	1539.766	10	2.79	0.258	
1545	1545 200	10	2.95	0.252	1.04
1545	1545.322	10	2.85	0.252	1.94
1550	1550 116	10	2.89	0.248	
1550	1550.110	10	2.07	0.240	
1555	1554.94	10	2.94	0.243	
		-			
1560	1559.794	10	2.95	0.242	•
1565	1564.679	10	2.98	0.239	
1570	1570.416	10	2.84	0.255	
					1.92
1575	1575.368	10	2.85	0.254	

Tabla 3.21 Resultados obtenidos para el coeficiente de atenuación res	pecto a la	longitud	de onda
---	------------	----------	---------

1580	1580.35	10	2.81	0.256	
1585	1585.365	10	2.75	0.264	
1590	1590.411	10	2.76	0.263	
1595	1594.641	10	2.81	0.258	
1600	1599.746	10	2.85	0.254	
1605	1604.885	10	2.84	0.255	
1608	1608.329	10	2.81	0.258	

La Figura 3.11 muestra el espectro de pérdida α en función de λ obtenido en el laboratorio, si comparamos los valores adquiridos tras la experimentación con los de la Figura 3.9 del coeficiente de atenuación en el rango de 1520 nm hasta 1610 nm se observa que son similares, presentando un valor máximo de 0.266 dB/km y un mínimo de 0.239 dB/km.

Caracterización del coeficiente de atenuacion respecto a la longitud de onda

Figura 3.11 Caracterización del coeficiente de atenuación respecto a la longitud de onda Fuente: El autor

3.4 CARACTERIZACIÓN DEL TIPO DE LÁSER

3.4.1 DISTRIBUTED FEEDBACK LASER DIODE

La fuente generadora de luz utiliza el láser ITLA, es sintonizable y ocupa un diodo laser de retroalimentación distribuida (DFB), este laser genera un solo espectro, cubre la banda C y L en longitud de onda lo que posee un control preciso de llegar a esas longitudes de onda. Posee un bloqueador que comprende por 2 fotodiodos y un filtro de etalon, los fotodiodos supervisan la salida óptica y el otro controla la luz que pasa a través de etalon, esto ayuda en que no se genere armónicos ni derivaciones en la longitud de onda [22].

Figura 3.12 *Functionamiento del ITLA* **Fuente:** *Development of ITLA using a full-band tunable laser*

Figura 3.13 Espectro del láser DFB con longitud de onda 1550 nm láser ITLA en el generador de fuente de luz Fuente: El autor

El OSA muestra el espectro del equipo generador de luz, se observa un solo espectro y su precisión con la longitud de onda varia por 0.3 nm. La OLT trabaja con una longitud de onda de 1490 nm y su tipo de laser es de retroalimentación distribuida (DFB).

Figura 3.14 Espectro del láser DFB con longitud de onda 1490 nm de la OLT Fuente: El autor

3.4.2 FABRY PEROT LASER DIODE

El equipo del OTDR genera luz visible a 650 nm y no visible de 1310, 1550 y 1625 nm, y el ALBEDO xGenius a 1310 nm utilizan el láser Fabry Perot que está compuesto por un LED y 2 espejos finales formando una cavidad resonante (ver **Figura 3.15**), que básicamente funcionan como un filtro atenuando las longitudes de onda que no son resonantes y dejando pasar la que sí lo son [23]. Para comprobar el tipo de laser del módulo VLS del OTDR se usa el analizador de espectros ópticos.

Figura 3.15 Filtro Fabry-Perot Fuente: Vertical Taper InGaAsP / InP Fabry-Perot Laser Diode for Injection-Locking Applications in WDM PON Systems

∕I Optical Sp	pectrum Ana	alyzer					5/14/2019 01:30:59
-Relative-Sig No. 1 2	nal Level WI(nm) 654.940 655.440	Point F Spacing(nm) 0.500	Ref 1 S.Lev WI-Ref(nm) L 0.000 0.500	rel 30.0 dB (- 5 evel(dBm) Le - 30.61 - 3.94	33.94 dBm)Pe evel-Ref(dB) 0.00 26.67	ak Count 2	Zone Center 655.000nm
Res: 0.1nm		Smpla :	501pt Sw	vpAvg: 1[****]		Zone Width 5.000nm
VBW : 1kH	z Sm	: Off Intvl :	Off	· · · · · · · · · · · · · · · · · · ·	1		Zone→Span
						Normal	<u> </u>
-3.7dBm	REF			Λ			Zoom Out <u>In</u>
-53.7dBm	~~~~~	\sim		\sim \vee		\sim	
10.0dB							
/ div							Erase
₋103.7dBm 652 <mark>A Wri</mark> Off	2.50 nm	0.50 nm/div	655.0	0 nm	in Vacuum	657.50 nm	Close
Wave- length	Level Scale	Res/VBW/ Ave	Peak/Dip Search	Analysis	Trace	Appli- cation	·->

Figura 3.16 Espectro del láser Fabry Perot con longitud de onda 650 nm luz visible del OTDR Fuente: El autor

Figura 3.16 Espectro del láser Fabry Perot con longitud de onda 1310 nm luz visible del OTDR Fuente: El autor

Figura 3.18 Espectro del láser Fabry Perot con longitud de onda 1550 nm del OTDR Fuente: El autor

Figura 3.19 *Espectro del láser Fabry Perot con longitud de onda 1310 nm del ALBEDO xGenius* **Fuente:** *El autor*

3.4.3 ANÁLSIS ESPECTRAL

El OSA muestra las frecuencias resonantes que poseen en las diferentes longitudes de Ondas, el equipo utiliza la siguiente ecuación para calcular la longitud central, y el ancho espectral (FWHM) que representa la anchura en nanómetros en el que es emitido la luz. La **Tabla 3.22** indica las longitudes y FWHM que trabajan los equipos ópticos y el tipo de láser.

$$\lambda_c = \frac{\sum (L_i * \lambda_i)}{\sum L_i}$$
 Ecuación 3.1

$$FWHM = \Delta \lambda = 2.35 \sqrt{\frac{\sum L_i (\lambda_i - \lambda_c)^2}{\sum L_i}}$$
 Ecuación 3.2

Equipo	Laser	$\lambda_c \text{ [nm]}$	FWHM [nm]
Fuente de luz	DFB	1550.3	1.26

Tabla 3.1	Resultados	del	ancho	espectral
-----------	------------	-----	-------	-----------

OLT		1490.37	0.92
		655.46	2.18
OTDR	FP-LD	1310.2	1.205
		1554.66	1.078
xGenius		1314.4	1.122

3.4.4 WAVELENGHT DIVISION MULTIPLEXING

La multiplexación por división de longitud de onda es un método para aumentar la capacidad de comunicación de una fibra óptica mediante el uso de múltiples longitudes de onda. GPON hace uso de la tecnología WDM para transmitir y recibir señales hacia y desde los suscriptores en diferentes longitudes de onda, optimizando la red, los canales de subida y de bajada son para upstream de 1310 nm y downstream de 1490 nm. Se emplea la fuente óptica para representar WDM utilizando el módulo AQ2200-132 con sus 2 salidas en la banda C y L que se conectan a un divisor óptico 2:1 para mandar las señales por un solo cable de fibra óptica.

La **Figura 3.20** muestra la tecnología WDM operando con 2 longitudes de onda que trabajan a 1565.7 nm y 1570.6 nm, la **Tabla 3.23** indica los parámetros del ancho espectral, los niveles de potencia y la relación señal a ruido.

Figura 3.20 *WDM test con la fuente generadora de luz* Fuente: *El autor*

Tabla 3.23 Resultados WDM

No	Longitud de Onda [nm]	FWHM [nm]	Potencia [dBm]	SNR [dB]
1	1565.7	1.26	5.64	67.23
2	1570.6	1.26	5.93	67.8

3.5 GENERACIÓN DE TRÁFICO

El xGenius tiene la capacidad de generar tráfico Ethernet e IP con perfiles deterministas y aleatorios de ancho de banda; la **Figura 3.21** indica el diagrama de conexión para realizar las pruebas.

Figura 3.21 Diagrama de conexión para generación de tráfico Fuente: El autor

Debido a que los datos generados por el equipo son sintéticos, es decir, no reales, se simulan dos flujos de tráfico con cargas útiles tipo BERT y SLA para medir criterios de rendimiento de errores de bits, pérdida de paquetes y latencia; para entender los resultados de la prueba es necesario conocer los campos que se analizan, la **Tabla 3.24** indica la descripción de cada métrica.

Carga	Métrica	Descripción			
	LSS	Lost of Sequence Synchronization, este campo representa que el patrón de prueba PRBS esperado no coincide con el recibido.			
BERT	TSE	Test Sequence Error, este campo es un contador acumulativo que representa errores de un 1 bit entre los patrones PRBS transmitidos y recibidos.			
	BER	Bit Error Rate, es la relación entre el TSE recibido y el total de bits transmitidos, este campo representa el número de bits recibidos de forma errónea respecto al total de bits enviados en un intervalo de tiempo.			
	FTD	Frame Total Delay, representa la latencia entre la transmisión y recepción de la trama.			
SLA	FDV	Frame Delay Variation, representa la latencia debido a la variación de entrega de paquetes, puede ser por encolamiento o asignación de prioridad.			

Tabla 3.24 Métricas BERT y SLA

Lost frames Es l	a cantidad total de tramas perdidas desde el inicio de la prueba.
---------------------	---

3.5.1 GENERACIÓN DE TRAMAS ETHERNET

La generación de tramas a nivel de capa 2 se basa en el estándar DIX (Digital/Intel/Xerox) también conocido como Ethernet II, este lleva la estructura que se muestra en la **Figura 3.22** y se encarga de codificar el tipo de carga útil en el campo de la trama.

Figura 3.22 *Estructura de trama DIX* **Fuente:** *xGenius Ethernet & IP Testing Guide*

Tabla 3.25	Descripción	de la	estructura	de trama	DIX
------------	-------------	-------	------------	----------	-----

Preámbulo	Secuencia de bits que indican el inicio de la trama.
Dirección de destino	Dirección MAC de destino.
Dirección de origen	Dirección MAC de origen.
Tipo	Este campo identifica el protocolo de capa superior encapsulado en la trama Ethernet. Los valores comunes son hexadecimales, "0x800" para IPv4, "0x86DD" para IPv6 y "0x806" para ARP.

Datos	Bits de información que contiene la trama.
Frame Checksum Secuence	Secuencia de bits para detección de errores.

Tabla 3.26 Configuración de unidad y perfil local para generación de tramas Ethernet

Campo	Parámetro	Configuración	
	Método	One-way	
Unidad	Modo de operación global	Ethernet endpoint	
	Puerto	А	В
	Modo del Puerto	TX/RX	Monitor
Perfil local	Conector	Óptico	Óptico
	MTU	1518	N/A
	MAC	00:DB:1E:00:13:98	00:DB:1E:00:13:99

Tabla 3.27 Configuración de flujos para generación de tramas Ethernet

Campo	Flujo 1	Flujo 2
Perfil de ancho de banda	Continuo	Continuo
Tasa (%)	50	50
Carga útil	BERT ITU PRBS 2^31	SLA
Tamaño de trama (bits)	1518	1518
MAC de origen	:00:13:98	:00:13:98
MAC de destino	:00:13:99	:00:13:99

3.5.2 GENERACIÓN DE PAQUETES IP

La generación de tráfico a nivel de capa 3 se basa en la estructura de datagrama IPv4 que se muestra en la **Figura 3.23**, trabajar en este nivel permite abandonar la red local y llegar a redes remotas; solo se encuentra disponible para el puerto A en el modo IP endpoint, la configuración de capa 1 y capa 2 es similar al modo Ethernet.

Figura 3.23 *Estructura del paquete IP* **Fuente:** *xGenius Ethernet & IP Testing Guide*

Tabla 3.28 Descripción de la estructura IPv4

Versión	Secuencia de bits que interpretan la versión del protocolo IP v4 o v6.
Longitud del encabezado	-
Tipo de servicio	Este campo está enfocado a calidad de servicio asignando prioridades según el tipo de tráfico.
Longitud total	Longitud total del datagrama incluido encabezado y datos.
Identificación, banderas y	Estos campos permiten que los datagramas se
desplazamiento de fragmentos	fragmenten y se vuelvan a ensamblar en el destino.
Tiempo de vida	Conteo de saltos que decrementa cada vez que pasa por en enrutador, si el valor llega a cero la trama se descarta.

Protocolo	Identificación del protocolo de transporte TCP o UDP.						
Checksum	Campo para detección de errores mediante la verificación del encabezado.						
Dirección de origen	Dirección IP de origen.						
Dirección de destino Dirección IP de destino.							
Opciones y relleno	Este campo está relacionado con la seguridad y la depuración.						
Datos	Bits de información que contiene la trama.						

Tabla 3.29 Configuración de unidad y perfil local para generación de paquetes IP

Campo	Parámetro	Configuración			
	Método	One-	-way		
Unidad	Modo de operación global	IP endpoint			
	Puerto	A	В		
	Modo del Puerto	TX/RX	Monitor		
	Conector	Óptico	Óptico		
Perfil local	MTU	1518	N/A		
	MAC	00:DB:1E:00:13:98	00:DB:1E:00:13:99		
	Dirección IP	192.168.1.2	192.168.1.5		
	Máscara	255.255.255.0	255.255.255.0		

Campo	Flujo 1	Flujo 2
Perfil de ancho de banda	Continuo	Continuo
Tasa (%)	50	50
Carga útil	BERT ITU PRBS 2^31	SLA
Tamaño de trama (bits)	1518	1518
MAC de origen	:00:13:98	:00:13:98
MAC de destino	:00:13:99	:00:13:99
IP de origen	192.168.1.2	192.168.1.2
IP de destino	192.168.1.5	192.168.1.5
DSCP	-	-

Tabla 3.30 Configuración de flujos para generación de paquetes IP

3.5.3 ANÁLSIS DE RESULTADOS

TIL 201 D 1/1

La **Tabla 3.31** muestra los resultados obtenidos en las pruebas, los valores indican un alto rendimiento del sistema de transmisión óptico ya que las métricas como tasa de error de bits, latencia y pérdida de paquetes son mínimas, esto se debe a que el enlace realizado es simple, sin equipos de procesamiento de capa 2 y 3 que degraden el tráfico. Comparando las métricas de BERT y SLA en los modos Ethernet endpoint e IP endpoint, se determina que a nivel de capa 2 se disminuyen los errores y latencia debido a la estructura propia de la trama (ver **Figura 3.22** y **Figura 3.23**) ya que esta posee menos bits de control.

1 adia 3.31	Resultados	de las	pruebas	BERT Y	SLA

. .

Parámetro	Métrica	Ethernet endpoint	IP endpoint
			-
	IPv4 TX	7,249,095,384 bytes	10,957,410,116 bytes
Trama			
	IPv4 RX	7,249,095,384 bytes	10,957,410,116 bytes

	LSS	0	0
BERT	TSE	0	16
	BER	0	1.8252e-10 bps
	ES	0	1
	FTD promedio	2.243 μs	51.36 μs
SLA	FDV promedio	0.019 µs	0.019 µs
	Perdida de tramas	0	0

3.6 PROVISIÓN DE QOS BASADO EN LA VERIFICACIÓN DE PARÁMETROS SLA

La ITU en la recomendación ITU-T rec. Y.1541 define ocho clases de calidad de servicio basadas en la aplicación para definir los objetivos de rendimiento en redes IP (ver **Figura 3.24**). Los servicios de telecomunicaciones se describen a través de los parámetros de ancho de banda y calidad de servicio [24].

				т	и-т с	lass			
Application	Sample	5	4	3	2	1	0	7	6
Live TV streaming	IPTV, Pay per View, Multi-					YES		YES	YES
Video streaming	VoD, PVS, time-shift TV					YES		YES	
Audio streaming	Music on demand					YES			
Control Protocols	Zapping, Stop/Start/Bwd/Fwd				YES				
Video downloads	VoD		YES						
Video uploads	Closed group of video user		YES						
Downloading	Images, books, etc.	YES							
Web access	Portals	YES							
Telephony	VoIP						YES		
Interactive / low	Videoconferences						YES		
Interactive	Instant Messages			YES					
Mainling	email	YES							
e-business	e-commerce			YES					

Figura 3.24 Clases de Tráfico según la ITU-T rec. Y.1541 Fuente: SLA verification + QoS control: the base for successful VoIP & IPTV deployments La ITU-T define las características de calidad de servicio en términos de retrasos de paquetes y errores (ver **Figura 3.25**), el conjunto de parámetros que definen la QoS a nivel de IP son [24]:

- Frame Delay (IPTD), latencia de extremo a extremo (ms).
- Delay Variation (IPDV), variación de retardo de paquetes (ms).
- Packet Loss (IPLR), relación entre las tramas enviadas y las tramas de respuesta pérdidas.
- Packages Error (IPER), relación de error de bits en la recepción.
- Disordered Packages (IPRR), relación de paquetes que llegan fueran de orden.

Class	IPTD	IPDV	IPLR	IPER	IPRR	Samples
0	100 ms	50 ms	1 x 10 ⁻³	1 x 10 ⁻⁴	-	Real-time, jitter sensitive, low delay, very interactive, ie VoIP
1	400 ms	50 ms	1 x 10 ⁻³	1 x 10 ⁻⁴	-	Real time, jitter sensitive, average delay, interactive
2	100 ms	U	1 x 10 ⁻³	1 x 10 ⁻⁴	-	Transactions, low delay, very interactive, ie Internet
3	400 ms	U	1 x 10 ⁻³	1 x 10 ⁻⁴	-	Transactions, average delay, interactive
4	1 s	U	1 x 10 ⁻³	1 x 10 ⁻⁴	-	Few missed, i.e. downloads
5	U	U	U	U	-	Best effort, i.e. email
6	100ms	50 ms	1 x 10 ⁻⁵	1 x 10 ⁻⁶	1 x 10 ⁻⁶	High speed, low loss, low delay, interactive, ie IPTV
7	400ms	50 ms	1 x 10 ⁻⁵	1 x 10 ⁻⁶	1 x 10 ⁻⁶	High speed, low loss, average delay, interactive

Figura 3.25 *ITU-T rec.* Y.1541: requerimientos de QoS para nivel IP **Fuente:** SLA verification + QoS control: the base for successful VoIP & IPTV deployments

Utilizando el xGenius se simulan ocho flujos, cada uno está asignado a una clase de servicio (CoS) definida en la ITU-T rec. Y.1541, emulando diferentes aplicaciones con distintas prioridades de tráfico. Para establecer los requerimientos de calidad de servicio se aplica la arquitectura de Servicios Diferenciados (DiffServ), está usa el campo DSCP de la estructura de la trama IP (ver **Figura 3.23**), este parámetro es un código de 6 bits que clasifica cada paquete que ingresa a la red de acuerdo con el tipo de servicio (ToS). La **Tabla 3.32** indica la clase de servicio y el valor DSCP recomendado para cada aplicación, la **Tabla 3.33** muestra la configuración del equipo.

Tabla 3.32	Servicios	de marca	de clase	[25]
------------	-----------	----------	----------	------

Clase	Descripción	DSCP	Código	Probabilidad de caída	Aplicaciones
0	Servicios en tiempo real	46	EF	No aplica	VoIP, videoconferencias
1	Multicast streaming	34	AF41	Baja	IPTV, VoD
2	Protocolos de control	48	CS6	-	Tablas de enrutamiento, señalización
3	Servicios interactivos	32	CS4	-	Mensajes instantáneos
4	Baja pérdida	36	AF42	Meda	VoD, videoconferencias
5	Aplicaciones tradicionales	0	Best Effort	No aplica	Descargas de baja prioridad (portales web, imágenes, libros, etc)
6	Multimedia	26	AF31	Baja	TV streaming
7	streaming	28	AF32	Media	Video streaming, audio streaming

Tabla 3.33 Configuración de unidad y perfil local

Campo	Parámetro	Configuración
	Método	One-way
Unidad	Modo de operación global	IP endpoint

	Puerto	А	В
	Modo del Puerto	TX/RX	Monitor
	Conector	Óptico	Óptico
Perfil local	MTU	1518	1518
	MAC	00:DB:1E:00:13:98	00:DB:1E:00:13:99
	Dirección IP	192.168.1.2	192.168.1.10
	Máscara	255.255.255.0	255.255.255.0

3.6.1 CONDICIONES DE EVALUACIÓN

Es importante establecer una adecuada dimensión de trama para la evaluación, lo conveniente es generar una serie de diferentes tamaños ya que muchos flujos tienen una variación de longitud considerable, sin embargo, se simplifica la prueba con flujos a velocidad constante, por lo que se recomienda un tamaño de campo de información fijo. Se sugieren campos de información de 160 o 1500 bytes para la estimación de calidad de funcionamiento a nivel IP [25]. La **Figura 3.26** muestra el diagrama de conexión y la **Tabla 3.34** indica la configuración de los ocho flujos generados.

Figura 3.26 *Diagrama de conexión para pruebas de SLA y QoS* Fuente: *El autor*

Tabla 3.34 Configuración de flujos

Campo	Flujo 1	Flujo 2	Flujo 3	Flujo 4
Perfil de ancho de banda	Continuo	Continuo	Continuo	Continuo
Tasa (Mbps)	10	10	10	10
Carga útil	SLA	SLA	SLA	SLA
Tamaño de trama (bytes)	256	256	256	256
MAC de origen	:00:13:98	:00:13:98	:00:13:98	:00:13:98
MAC de destino	:00:13:99	:00:13:99	:00:13:99	:00:13:99
C-VID	10	20	30	40
Prioridad C- VLAN	0	0	0	0
IP de origen	192.168.1.10	192.168.1.10	192.168.1.10	192.168.1.10
IP de destino	192.168.2.10	192.168.2.10	192.168.2.10	192.168.2.10
DSCP	46	34	48	32
	Flujo 5	Flujo 6	Flujo 7	Flujo 8
Perfil de ancho de banda	Continuo	Continuo	Continuo	Continuo
Tasa (Mbps)	10	10	10	10
Carga útil	SLA	SLA	SLA	SLA
Tamaño de trama (bytes)	256	256	256	256
MAC de origen	:00:13:98	:00:13:98	:00:13:98	:00:13:98

MAC de destino	:00:13:99	:00:13:99	:00:13:99	:00:13:99
S-VID	50	60	70	80
Prioridad S- VLAN	0	0	0	0
IP de origen	192.168.1.10	192.168.1.10	192.168.1.10	192.168.1.10
IP de destino	192.168.2.10	192.168.2.10	192.168.2.10	192.168.2.10
DSCP	36	0	26	28

3.6.2 ANÁLSIS DE RESULTADOS

Antes de analizar los resultados obtenidos tras la prueba, es necesario verificar los flujos generados. Se usa el software Wireshark para capturar los paquetes que pasan a través de la red y analizar la Unidad de Datos de Protocolo (PDU) asociada a los niveles de capa física, capa de enlace y capa de red.

La **Figura 3.27** muestra un resumen de los paquetes capturados en tiempo real durante la prueba, estos se seleccionan para desplegar las opciones de análisis por cabecera.

N	о.	Time	Source	Destination	Protocol	Length	Info
	1410	3.610838	192.168.1.10	192.168.2.10	UDP	248	1024 → 1024 Len=206
	1410	3.610838	192.168.1.10	192.168.2.10	UDP	248	1024 → 1024 Len=206
	1410	3.610838	192.168.1.10	192.168.2.10	UDP	248	1024 → 1024 Len=206
	1410	3.611026	192.168.1.10	192.168.2.10	UDP	248	1024 → 1024 Len=206
	1410	3.611026	192.168.1.10	192.168.2.10	UDP	248	1024 → 1024 Len=206
	1410	3.611026	192.168.1.10	192.168.2.10	UDP	248	1024 → 1024 Len=206
	1410	3.611027	192.168.1.10	192.168.2.10	UDP	248	1024 → 1024 Len=206
	1410	3.611027	192.168.1.10	192.168.2.10	UDP	248	1024 → 1024 Len=206
	1410	3.611027	192.168.1.10	192.168.2.10	UDP	248	1024 → 1024 Len=206
	1410	3.611027	192.168.1.10	192.168.2.10	UDP	248	1024 → 1024 Len=206
	1410	3.611027	192.168.1.10	192.168.2.10	UDP	248	1024 → 1024 Len=206
	1410	3.611214	192.168.1.10	192.168.2.10	UDP	248	$1024 \rightarrow 1024$ Len=206

Figura 3.27 Paquetes capturados Fuente: El autor

La **Figura 3.28** muestra la cabecera de la capa física de un paquete generado, esta codifica las tramas y crea las señales ópticas que representan los bits.

✓ Frame 1: 248 bytes on wire (1984 bits), 248 bytes captured (1984 bits) on interface 0 > Interface id: 0 (\Device\NPF {27030245-2811-4971-A168-D8B56500EC42}) Encapsulation type: Ethernet (1) Arrival Time: Jul 1, 2019 10:29:59.652245000 Hora est. Pacífico, Sudamérica [Time shift for this packet: 0.000000000 seconds] Epoch Time: 1561994999.652245000 seconds [Time delta from previous captured frame: 0.000000000 seconds] [Time delta from previous displayed frame: 0.000000000 seconds] [Time since reference or first frame: 0.00000000 seconds] Frame Number: 1 Frame Length: 248 bytes (1984 bits) Capture Length: 248 bytes (1984 bits) [Frame is marked: False] [Frame is ignored: False] [Protocols in frame: eth:ethertype:ip:udp:data] [Coloring Rule Name: UDP] [Coloring Rule String: udp]

Figura 3.28 *Cabecera de la capa física* **Fuente:** *El autor*

La **Figura 3.29** corresponde a la cabecera Ethernet, esta se divide en dos subcapas. La primera, Control de Acceso al Medio (MAC), proporciona direccionamiento de la capa de enlace, indica las direcciones MAC de origen y destino, estas pertenecen a los puertos A y B del xGenius. La segunda, Control de Enlace Lógico (LLC), esta se comunica con la capa de red, coloca información que identifica la versión del protocolo de capa 3 (IPv4 o IPv6) que se implementa.

```
v Ethernet II, Src: AlbedoTe_00:13:98 (00:db:1e:00:13:98), Dst: AlbedoTe_00:13:99 (00:db:1e:00:13:99)
> Destination: AlbedoTe_00:13:99 (00:db:1e:00:13:99)
> Source: AlbedoTe_00:13:98 (00:db:1e:00:13:98)
Type: IPv4 (0x0800)
```

Figura 3.29 *Cabecera de la capa de enlace* **Fuente:** *El autor*

La **Figura 3.30** muestra la estructura de la trama IP, aquí se describen protocolos que proporcionan servicios de direccionamiento, se verifica que el campo DSCP esté etiquetado con diferentes niveles de prioridad, basados en la arquitectura de DiffServ.

Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.2.10 0100 = Version: 4 0101 = Header Length: 20 bytes (5) > Differentiated Services Field: 0x80 (DSCP: CS4, ECN: Not-ECT) Total Length: 1482 Identification: 0x0000 (0) > Flags: 0x00 Fragment offset: 0 Time to live: 255 Protocol: UDP (17) Header checksum: 0x313e [validation disabled] [Header checksum status: Unverified] Source: 192.168.1.10 Destination: 192.168.2.10 [Source GeoIP: Unknown] [Destination GeoIP: Unknown] *(a)*

✓ Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.2.10 0100 = Version: 4 0101 = Header Length: 20 bytes (5) > Differentiated Services Field: 0xb8 (DSCP: EF PHB, ECN: Not-ECT) Total Length: 1482 Identification: 0x0000 (0) > Flags: 0x00 Fragment offset: 0 Time to live: 255 Protocol: UDP (17) Header checksum: 0x3106 [validation disabled] [Header checksum status: Unverified] Source: 192.168.1.10 Destination: 192.168.2.10 [Source GeoIP: Unknown] [Destination GeoIP: Unknown]

(b)

Figura 3.30 *Cabecera de la capa de red (a) paquete con DSCP CS4 (b) paquete con DSCP EF* **Fuente:** *El autor*

La **Tabla 3.35** muestra los resultados obtenidos tras la prueba, las métricas de SLA como FTD, FDV y FLR pueden ser comparadas con los objetivos de rendimiento IPTD, IPDV e IPLR respectivamente, definidos en la referencia de ITU-T rec. Y.1541 (el BER no puede ser medido por la limitación del equipo, este parámetro solo está disponible para el flujo 1). Tras analizar los valores de latencia y pérdida de paquetes se determina que cada flujo, correspondiente a la clase de servicio, se encuentran dentro del rango establecido, cumpliendo los requerimientos de QoS a nivel IP, esto se debe a que la prueba realizada es sencilla, más adelante se simulará una red WAN, en la cual es posible insertar eventos que degraden de cierta forma el tráfico generado.

Clase	Flujo	FTD [µs]	FDV [µs]	FLR	Lost Frames
0	1	25.104	0.921	0.000009	5
1	2	27.892	0.968	0.00001	6
2	3	30.587	0.995	0.000012	7
3	4	33.318	1.023	0.000012	7
4	5	36.063	1.046	0.000014	8
5	6	38.812	1.063	0.000014	8
6	7	41.554	1.080	0.000014	8
7	8	44.278	1.078	0.000014	8

Tabla 3.35 Resultados de las pruebas de SLA y QoS

3.6.3 DEGRADACIÓN DE TRÁFICO

Para corromper el tráfico se utiliza el Net.Storm, este equipo tiene la capacidad de emular diferentes degradaciones que se encuentran en las redes Ethernet/IP, simulando una red WAN, mediante la inserción de eventos que provocan latencia y errores en las tramas, de esta manera se puede determinar si una aplicación o dispositivo tiene las condiciones necesarias para operar en la red bajo ciertos requisitos de QoS.

La **Figura 3.31** indica el diagrama de conexión, la configuración del xGenius es similar a la prueba realizada anteriormente (ver **Tabla 3.34**), la configuración del Net.Storm se muestra en la Tabla , los valores de Packet Loss, Delay & Jitter y Bit errors se establecen de acuerdo a la recomendación ITU-T rec. Y.1541.

Figura 3.31 *Diagrama de conexión para degradación de tráfico* **Fuente:** *El autor*

Filtros	Packet Loss	Delay & Jitter [ms]	Bit Errors
1	0.1 %	100	0.01
2	0.1 %	400	0.01
3	0.1 %	100	0.01
4	0.1 %	400	0.01
5	0.1 %	1	0.01
6	N/A	N/A	N/A
7	0.001 %	100	0.0001
8	0.001 %	400	0.01

Tabla 3.36 Configuración del Net.Storm

3.6.4 ANÁLSIS DE RESULTADOS CON DEGRADACIÓN

La **Tabla 3.35** muestra los resultados obtenidos tras la prueba, el análisis es similar a los mencionado en el **Apartado 3.6.2**.

Es importante notar que cada flujo corresponde a una clase de servicio, estos poseen distintos valores de latencia y pérdida de paquetes debido a la clase de tráfico asignado a cada uno, ya que los parámetros de degradación están configurados y asignados en función de la recomendación ITU-T rec. Y.1541, los resultados obtenidos son los esperados y concuerdan con los valores establecidos en esta norma, cumpliendo los requerimientos de QoS a nivel IP.

		-		-	
Clase	Flujo	FTD [ms]	FDV [μs]	FLR	Lost Frames
0	1	100.073	0.591	0.001131	657
1	2	400.075	0.572	0.001093	635
2	3	100.073	0.614	0.001108	644
3	4	400.075	0.594	0.001179	685
4	5	1000	0.609	0.00144	665
5	6	0.07172	0.525	0	0
6	7	100.072	0.581	0.000014	8
7	8	400.074	0.565	0.000014	8

Tabla 3.37 Resultados de las pruebas de SLA y QoS con degradación

3.7 CONFIGURACIÓN DE UNA RED GPON

La **Figura 3.32** indica la topología de red, la OLT representa la cabecera de la red GPON que conecta cada puerto PON al dominio de enrutamiento y conmutación utilizando los puertos de enlace ascendente SFP+. En el lado PON se insertan los módulos GPON SFP UF-GP-B+, que soportarán hasta 128 usuarios por puerto, dependiendo de los divisores ópticos que se utilicen.

Figura 3.32 *Topología de red GPON* **Fuente:** *El autor*

3.7.1 CONFIGURACIÓN DE LA OLT

La configuración de la UFiber OLT es mediante una interfaz gráfica (GUI) que la vuelve relativamente fácil e intuitiva de realizar, además cuenta con un sistema de gestión de red Ubiquiti (UNMS), que es un software de administración basado en Linux utilizado para gestionar de forma centralizada todos los equipos (router, switch, OLT, ONU) que operan en la red GPON.

3.7.1.1 ACCEDER A LA INTERFAZ DE ADMINISTRACIÓN

Para acceder al GUI de configuración se debe conectar un computador al puerto MGMT de la OLT e introducir las credenciales de usuario y contraseña (Username: ubnt, Password: ubnt). Es importante verificar que ambos equipos se encuentren en la misma red.

ję.	J Fiber	
Ple	ase Login	
	Username	
	Password	
		Login

Figura 3.33 Acceder a la interfaz de configuración Fuente: El autor

Interface Configuration for br0				
Basic	Advanced	Bridge Interfac	es	
Description	Managemen	t		
Enable				
Address	Manually de	fine IP address v		
	172.17.	0.2/28	0	
	+ Add IP]		
		🖬 Save	X Cancel	

Figura 3.34 *Configuración de IP de administración.* **Fuente:** *El autor*

3.7.1.2 CONFIGURACIÓN DE PUERTOS UPLINK SFP+

Los puertos de enlace ascendente SFP+ se utilizan para conectar la red GPON a Internet, estos vienen configurados de forma predeterminada con la VLAN nativa 4063 (esta puede cambiarse o ser omitida sin problemas). Se incluyen las VLANs 5 y 15, las cuales corresponden a gestión y WAN respectivamente.

Interface Configuration for sfp+1
Link negotiation Auto
Native VLAN 4063
Include VLANs VLAN ID
5 ×
VLAN ID
15 ×
+ Add VLAN
🖬 Save 🗙 Cancel

Figura 3.35 Configuración de puertos uplink SFP+ Fuente: El autor

3.7.1.3 PERFILES DE OPERACIÓN

Las ONUs operan bajo ciertos perfiles que se crean en la Ufiber OLT, en estos, se configura varios parámetros como modo de operación (bridge o router), VLANs (aplicable solo en modo bridge), servicios (control remoto), firewall (aplicable solo en modo router) y control de ancho de banda. La **Figura 3.36** indica la creación de un perfil en modo router, aquí se incluye la VLAN 15 que pertenece a la WAN, esta permite el tráfico ascendente y descendente, la ONU podrá realizar servicios NAT y DHCP.

Configuration of	ONU Profile GPON	8
Basic Ports	Services Firewall	Bandwidth
Name		
Name •	GPON	
Admin password *	ubnt	
Mode	Router v	
WAN VLAN *	15	
WAN mode	DHCP client	
Primary DNS *	10.0.0.1	
Secondary DNS	172.16.1.157	
Provision LAN		
LAN address *	192.168.1.1/24	0
DHCP server	Enabled •	
DHCP pool start *	192.168.1.20	
DHCP pool end *	192.168.1.100	
Lease time *	600	
DNS proxy		
Enable UPnP		
		🗃 Save 🔭 Cancel

Figura 3.36 *Configuración de un perfil en modo router* **Fuente:** *El autor*

3.7.1.4 CONFIGURACIÓN DE GESTIÓN EN BANDA

Por defecto la OLT se administra a través del puerto MGMT, sin embargo, se puede habilitar la función de administración en banda, que permite que la dirección IP de administración sea accesible a través de una VLAN configurada en los puertos de uplink SFP+.

Inband management		
Access from SFP+ port(s):		
VLAN	5	0

3.7.1.5 CONFIGURACIÓN DE GATEWAY Y DNS

La puerta de enlace predeterminada (Gateway) se configura para tener acceso a redes externas, todos los paquetes que tienen como destino redes remotas se envían al Gateway.

Gateway		
System gateway address:	172.17.0.1	
	<i>(a)</i>	
Name Server		
System name server:	172.17.0.1	
	172.16.1.157	
	+ Add New	

(b)

Figura 3.38 Configuración (a) Gateway (b) DNS Fuente: El autor

3.7.1.6 ASIGNACIÓN DE PERFIL A LA ONU

Cuando la ONU se engancha a la OLT se muestra en el menú ONU List, aquí se puede verificar el estado, puerto asignado, perfil, niveles de potencia y dirección IP de WAN. Para asignar un perfil de operación se debe seleccionar la ONU y elegir el perfil GPON creado anteriormente como se indica la **Figura 3.40**.

	Stat	us	•	Seria	l Numt	per	*	Name	2	\$	Prof	le	\$	PON Port
	Con	nected	ł	UBN	T2073	e385		UBNT	2073e385		GPC	N		3
Mode	el .	Ŷ	Tx Powe	er	\$	Rx Pov	ver	\$	Connection	Time		\$	WAN	IP Address
Nano	G		2.44dBr	m		-6.72d	Bm		2h 49m 58s	5			10.0.	0.2

Figura 3.39 *Lista de ONUs* **Fuente:** *El autor*

Configur	ation of ONU UBNT2073e385	8
Basic	WiFi Port Forwarding	
Name *	UBNT2073e385	
Enable	✓	
Profile	GPON T	
	🖶 Save 🗶 Cancel	

Figura 3.40 *Perfil de operación asignado a la ONU* **Fuente:** *El autor*

3.7.2 PRUEBAS PARA EL CONTROL DE ANCHO DE BANDA

El control del ancho de banda permite gobernar los flujos de tráfico en una red, de tal manera que no se exceda la capacidad y provoque como resultado una congestión. En la OLT es posible configurar un control de admisión que limita la velocidad del flujo de tráfico enviado y recibido.

Configura	ation of ONL	l Profile GPC	N		8
Basic	Ports	Services	Firewall	Bandwidth	
Enable band Download M Upload Mbp	dwidth control Abps * os *	✓ 10 5			
				E Save	X Cancel
			(<i>a</i>)		
	⊜ ping 74	ms ⊛ DES 1	icarga mbps	CARGA Mbps 4.34	
	RED CEDI 45.235.140.			Speedtest, Miami, FL Cambiar serv	net vidor

(**b**)

Figura 3.41 Configuración del ancho de banda asimétrico (a) Configuración 10 Mbps descendente y 5 Mbps ascendente (b) Comprobación en speed Test Fuente: El autor

Configuration of ONU Profile GPON							
Basic	Ports	Services	Firewall	Bandwidth			
Enable ban Download I Upload Mb	dwidth control Vlbps * ps *	✓ 10 10					
				🖪 Save	X Cancel		

(a)

Figura 3.42 Configuración del ancho de banda simétrico (a) Configuración 10 Mbps descendente y 10 Mbps ascendente (b) Comprobación en speed Test Fuente: El autor

Configuration of ONU Profile GPON						
Basic	Ports	Services	Firewall	Bandwidth		
Enable ban	dwidth control					
				🖬 Save	X Cancel	

(a)

(**b**)

Figura 3.43 Configuración sin control de ancho de banda (a) Configuración de ancho de banda deshabilitada (b) Comprobación en speed Test Fuente: El autor

La **Figura 3.41** (b), **Figura 3.42** (b) y la **Figura 3.43** (b) indican las pruebas de rendimiento realizadas, este es un parámetro que mide la transferencia de bits en el en un determinado tiempo, los principales factores que influyen son la cantidad de tráfico, el tipo de tráfico y la latencia encontrada entre los dispositivos de origen al destino, las pruebas de velocidad efectuadas comprueban el control de ancho de banda de la OLT.

CAPÍTULO 4: CONCLUSIONES Y RECOMENDACIONES

Previo a manipular los equipos ópticos es importante conocer el funcionamiento de estos, el usuario debe estar familiarizado con el manejo y proceso de operación, con el fin de realizar las pruebas planteadas sin ningún problema y con la mayor seguridad posible.

En el presente proyecto se diseñan e implementan prácticas basadas en sistemas de comunicaciones por fibra óptica, las pruebas realizadas consideran conceptos técnicos y científicos que permiten evaluar parámetros importantes del medio de transmisión, tales como atenuación, niveles de potencia, espectro óptico, reflectometría y fuentes de luz en redes PON. Los resultados obtenidos corroboran los beneficios de flexibilidad de ancho de banda, alcance y capacidad que presentan las redes de pasivas.

El OPM es práctico implementado dentro de un sistema de transmisión óptica debido a su amplio rango de longitud de onda de operación, permite medir la potencia y determinar la conectividad y atenuación que se produce a lo largo del enlace.

El OTDR ofrece una solución viable para diagnosticar las fallas por desalineación, mal acoplamiento o roturas presentes en las redes PON, debido a que muestra en forma gráfica con una traza los eventos que suceden en la fibra, por lo que permite determinar el nivel de pérdida y la distancia a la que se encuentra.

Los resultados de la prueba para caracterizar el coeficiente de atenuación comprueban que la pérdida que presenta la fibra óptica depende de la longitud de onda de operación, presentando un máximo de 0.266 dB/km y un mínimo de 0.239 dB/km en el rango de 1520 nm hasta 1610 nm, por lo tanto, se constata las ventajas de baja pérdida de señal que presenta el canal óptico como medio de transmisión.

De acuerdo con los resultados obtenidos mediante el uso del OSA para la caracterización del láser se demuestra que Distributed Feedback (DFB) y Fabry Perot (FP) presentan sus diferencias principales en el tipo de espectro, DFB posee un solo pico exacto en la longitud de onda de operación mientras que FP emite varios armónicos de menor potencia.

El xGenius permite asegurar los parámetros de QoS en aplicaciones de video y voz sobre redes IP debido a su capacidad de generación y análisis de tráfico que proporciona los resultados de rendimiento de la red en términos de errores y latencia, estos pueden ser interpretados para determinar si la red cumple o no con los requerimientos de transmisión de video y audio.

El emulador de red WAN Ethernet/IP Net.Storm tiene la capacidad de generar efectos de degradación comunes en la red, por lo cual, simular las características de rendimiento impuestas por varias situaciones como packet loss, delay, jitter y bit error, y, analizarlas con el xGenius proporcionan la información para la verificación de la capacidad de red de brindar servicios VoD, VoIP y acceso Internet.

Determinar el FTD es una medida crítica para evaluar la calidad de una red utilizada para proporcionar servicios con aplicaciones sensibles al tiempo. El FTD es muy sensible a los efectos de congestión y otras deficiencias que afectan el rendimiento extremo a extremo de la red, por lo tanto, es un parámetro importante de caracterizar.

El módulo de guías de prácticas permite a los usuarios adquirir una base amplia y sólidos conocimientos científicos y tecnológicos en redes de fibra óptica debido a que se incluyen conceptos y pruebas claves que se presentan en un formato claro e ilustrativo.

Hay que considerar las fallas en el medio como un factor importante, ya que una terminación errónea, como el uso de conectores incorrectos o sucios produce una disminución en las distancias o una falla total en la transmisión. Por esta razón, es importante realizar pruebas rápidas y sencillas de verificación, como usar una luz visible para detectar una fibra deteriorada y un microscopio para evaluar el estado de la férula.

Al enlazar la OLT con el router se recomienda forzar los parámetros de negociación de las interfaces SFP a su máxima velocidad de comunicación que es de 1000 Mbps si se usan los módulos GP-3124-L2CD, ya que, si se encuentra configurada en automática, puede presentar problemas de incompatibilidad de dúplex.

REFERENCIAS BIBLIOGRÁFICAS

- [1] G. P. Agrawal, *Fiber-Optic Communications Systems, Third Edition.*, vol. 6. 2002.
- [2] R. Romaswami, K. Sivarajon, and G. Sasaki, *Optical Networks A Practical Perspective*, Thrid Edit. United States of America: Morgan Kaufmann.
- [3] L. Kazovsky, N. Cheng, W.-T. Shaw, D. Gutierrez, and S.-W. Wong, *Broadband Optical Access Networks*. John Wiley & Sons, Inc.
- [4] International Telecommunications Union, "Optical Fibres, Cables and Systems," pp. 144–147, 2012.
- [5] M. C. España Boquera, *COMUNICACIONES ÓPTICAS Conceptos escenciales y resolución de ejercicios*, Ediciones. Madrid, 2005.
- [6] C. Systems and S. Jose, "Cisco SFP and SFP + Transceiver Module Product Numbers :," *Notes*, 2010.
- [7] D. Duke and D. Mansperger, "Understanding How the Appearance of Optical Fiber Splices Relates to Splice Quality."
- [8] J. Calvache, "Diseño e Implementacion de un Sistema de Trafico Optico a 10 Gbps para la empresa Complementos Electronicos S.A.," 2016.
- [9] FiberFox, "Mini 5C User Manual."
- [10] PROMAX, "Guía de usuario del PROLITE-63B," 2016.
- [11] Yokogawa, "AQ2200 Series Multi Application Test System Ideal Measurement Solution for Optical Devices and Optical Transmission Systems."

- [12] Anritsu, "MS9740A Optical Spectrum Analyzer Operation Manual," pp. 1–16, 2011.
- [13] J. Shi *et al.*, "A low-cost, system-on-chip for Optical Time Domain Reflectometry (OTDR)," 2016 IEEE MTT-S Int. Wirel. Symp. IWS 2016, no. 1, pp. 4–7, 2016.
- [14] Yokogawa, "AQ7280 OTDR User's Manual," 2015.
- [15] Ubiquiti, "UFiber OLT 8-Port GPON Optical Line Terminal with SFP+ User Guide."
- [16] Ubiquiti, "Nano G High Performance GPON CPE User Guide."
- [17] ALBEDO, "xGenius Ethernet & IP Testing Guide," no. October, p. 300, 2017.
- [18] ALBEDO Telecom, "Ethernet RFC-2544 explained," pp. 1–9, 2013.
- [19] ALBEDO Telecom, "eSAM Performance Assessment," pp. 1–13, 2013.
- [20] ALBEDO, "Net.Storm Network Impairment Generator," p. 78, 2012.
- [21] ALBEDO, "Net . Shark Net . Hunter GbE Frame Capture and Analysis Guide," p. 84, 2013.
- [22] K. Horikawa, A. Yamamoto, T. Osada, H. Koshi, Y. Yafuso, and T. Kurobe, "Development of ITLA using a full-band tunable laser," *Furukawa Rev.*, no. 35, pp. 1–5, 2009.
- [23] J. W. Simatupang, "Vertical Taper InGaAsP / InP Fabry-Perot Laser Diode for Injection-Locking Applications in WDM-PON Systems," no. April, pp. 130– 148, 2019.
- [24] ALBEDO Telecom, "SLA verification + QoS control : the base for successful VoIP & IPTV deployments," 2011.
- [25] International Telecommunications Union, "UIT-T Rec. Y.1541 (02/2006) Objetivos de calidad de funcionamiento de red para servicios basados en el protocolo Internet," 2006.

ANEXOS

	D POLITÉCN		FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES		
CARRERA: TELECOMUNIC		S/	ASIGNATURA:		
NRO. PRÁCTICA:			RÁCTICA: CÁLCULOS DE ATENUACIÓN Y NIVEL DE		
		POTENCIA	A		
OBJETIVO GENERAL:			nu companio los nivelos de stanusción un stancio que os den		
en un enlace óptico	ebas que	permita analiza	ar y comprobar los niveles de atenuación y potencia que se dan		
OBJETIVOS ESPECÍFICOS	5:				
1. Operar y manejar el	OPM.				
2. Determinar los even	tos que o	eneran atenua	ción.		
 Implementar la topol Realizar los cálculos 	logia de	ed planteada.	la descendente v ascendente		
 Nedir la potencia óp 	tica en lo	s escenarios pl	anteados.		
6. Contrastar los result	ados me	, didos con los ca	alculados.		
	1. Verif	que las espec	ificaciones técnicas de los siguientes equipos:		
	a) b)	Uptical Power	Meter Prolite 63-B.		
	c) UFiber ONU				
	d) OTDR.				
	e) Convolución periódica.				
	2. Iden Ver Tat	ifique los ever la 1	itos que generar pérdidas en enlaces ópticos		
INSTRUCCIONES (Detallar las instrucciones	3. Impl La aten la Figur estos va la poter	emente la red d uación es el fac a 1 y determina alores deben es cia de transmis	le pruebas tor más importante en el diseño de una red. Usar la topología de r los niveles de potencia óptica aceptable para la ONU y la OLT, tar dentro del rango de -8 dBm a -28 dBm tomando en cuenta que ión de ambos equipos es de +3 dBm.		
que se dara al estudiante).	4. Oper Para co de pote sentido OTDR o fuente o óptica e necesa 5. Limp Antes o conecto	e el OPM, OLT mprobar los cál ncia óptica, im descendente se como fuente em en upstream de il dispositivo se io conocer la pe ieza de conect e iniciar las pru r, para hacerlo	y OTDR culos de atenuación y nivel de potencia se debe utilizar el medidor plementar la topología que se muestra en la Figura 1. Para el e utiliza como fuente la OLT y en el sentido ascendente se usa el pleando la herramienta "fuente de luz", no se ocupa la ONU como bido a que al desconectar el puerto PON para medir la potencia desengancha, por lo que no es posible realizar la medición. Es otencia de salida tanto de la OLT como del OTDR. cores y adaptadores ebas de potencia, es necesario revisar el estado de la férula del se debe utilizar el microscopio óptico "Lightel" el cual mostrará		
	una ima	igen del aspecto	o del pulido (ver Figura 2).		
	6. Meda los niveles de potencia y contraste los valores calculados con los obtenidos en las pruebas				
--	--	--	--		
	7. Genere conclusiones a partir de la comparación de los resultados obtenidos en los escenarios planteados				

ACTIVIDADES POR DESARROLLAR

(Anotar las actividades que deberá seguir el estudiante para el cumplimiento de la práctica)

1. LISTADO DE HERRAMIENTAS Y MATERIALES

Herramientas y Materiales

- OLT
- ONUs
- OTDR
- OPM
- SFP UF-GP-B +
- Patch Cord SC/UPC-SC/APC y SC/APC-SC/APC
- Bobinas de lanzamiento (2 km y 10 km)
- PLC Splitter (1:8)

2. MARCO TEÓRICO

De acuerdo con los puntos indicados en la instrucción 2, desarrolle el marco teórico.

2.1. Completar la tabla de eventos que provocan pérdidas

	Tabla 1 Evento	os de atenuacion		
Distancia	Downstream:			
	Upstream:			
Conectores	+			
Empalmes				
	1:2			
	1:4			
Divisores	1:8			
ópticos	1:16			
	1:32			
	1:64			

2.2. Completar las tablas de cálculos de atenuación en sentido descendente y ascendente.

a) Atenuación en sentido descendente:

	Tabla 2 Cálculos de atenuacion en sentido OLT - ONU					
ONU	Fuente	Cálculo de pérdida de potencia	Pérdida en dB			
	Longitud					
ONU 1	Conectores					
	Divisor óptico					
		Potencia recibida				
	Longitud					
ONU 2	Conectores					
	Divisor óptico					
	Potencia recibida					

b) Atenuación en sentido ascendente:

	Tabla 3 Cálculos de atenuacion en sentido ONU -OLT					
ONU	Fuente	Cálculo de pérdida de potencia	Pérdida en dB			
	Longitud					
ONU 1	Conectores					
	Divisor óptico					
	Potencia recibida					
	Longitud					
ONU 2	Conectores					
	Divisor óptico					
		Potencia recibida				

3. EXPERIMENTACIÓN

De acuerdo con los puntos indicados en la instrucción 3, 4, 5 y 6, desarrolle:

3.1. Limpieza de conectores y adaptadores

Figura 2 Estado de la férula (a) sucia (b) limpia

Un conector sucio se diferencia fácilmente de uno limpio por las partículas de polvo que este presenta en su férula, un pulido nítido asegura una óptima transmisión pues se previene los efectos de reflexión interna; para limpiarlo se utiliza el clicker "Fiber Connector Cleaner", el cual sirve tanto para cables y adaptadores de fibra óptica.

3.2. Comprobación de niveles de potencia

	Tabla 4 Medición de potencia óptica de salida			
	Potencia de salida	Longitud de onda		
OLT				
OTDR				

a) OLT – ONU

	Т	abla 5 Comparación	de resultados sentido	descendente
	ONU	Potencia recibida	Atenuación calculada	Atenuación medida
	1			
	2			
b) OTDR – C	DLT			
	Та	abla 6 Comparación	de resultados sentido	descendente
	ONU	Potencia recibida	Atenuación calculada	Atenuación medida
	1			
	2			
CONCLUSIONES	:			
RECOMMENDAC	IONES:			
DEFEDENCES				
REFERENCES:				

	AD POLITÉCNICA SIANA ECUADOR	FORMATO DE TALLERES	GUÍA DE PRÁCTICA DE LABO S / CENTROS DE SIMULACIÓN - DOCENTES	RATORIO / - PARA
CARRERA: TELECOMUNICACIONES /		ASIGNATURA:		
NRO. PRÁCTICA:		PRÁCTICA: PRUEB	AS DE REFLECTOMETRÍA ÓPT	ICA
OBJETIVO GENERAL:				
Implementar escenarios de	enlaces ópticos que per	mitan la familiarizad	ción y manejo del OTDR	
OBJETIVOS ESPECÍFICOS	S:			
1. Verificar las especifi	icaciones técnicas del C	TDR.		
2. Conocer la operació	on en modo simple, deta	ille y PON.		
3. Implementarios esc 4. Configurar el OTDR	cenarios planteados.	licie		
5. Obtener la traza refl	ectométrica.	1013.		
6. Contrastar los result	tados obtenidos con los	diagramas plantead	dos inicialmente.	
	1. Verifique las espe	cificaciones técnic	as de los siguientes equipos:	
	a) OTDR.			
	2. Describa las confi	guraciones de aná	lisis y medición del OTDR	
	Para familiarizar al usu	Jario con el manejo (del OIDR se realizan mediciones	en los modos
	distintos eventos que	se presentan en un	enlace óntico	Sitamiento de
		se presentari en un		
	4. Opere el OTDR e	n modos de prueb	a simple, detalle y PON	
usuario tiene acceso limitado a los parámetros de configuració análisis ya que solo es posible establecer la longitud de onda de método de aproximación, mientras que el AQ7280 establece a el resto de los parámetros de configuración como rango de dist pulso, índice de refracción, etc.				de medida y peración y el máticamente cia, ancho de
INSTRUCCIONES		Tabla 1 Condi	iciones de medida	
(Detallar las instrucciones	Lon	gitud de onda	1310 nm	
que se dará al estudiante):	Ran	go de distancia	Auto 20 km	
	An	icho de pulso	Auto 100 ns	
	/	Atenuación	Auto	
	Interv	alo de muestreo	1 m	
	 b) La Figura 3 ir opción permit medición y an varias caracte 	ndica el diagrama de le al usuario el aco álisis. Se recomieno rísticas del enlace b	e conexión para operar en modo ceso a más parámetros de con da este modo de operación cuano pajo prueba.	detalle, esta figuración de do se conoce
		Tabla 2 Cond	iciones de medida	
	Lon	gitud de onda	1310 nm	
	Ran	go de distancia	20 km	
	An	cho de pulso	Auto 100 ns	
		Atenuación	Auto	

				7
		Tabla 3 Condiciones	s de búsqueda de evento	
		Pérdida de empalme	1 dB	
		Pérdida de retorno	55 dB	
		Final de fibra	Auto	
		P. divisor óptico	11 dB]
				-
		Tabla 4 Condic	iones pasa/ no pasa	1
		Pérdida por conector	0.6 dB	1
		Pérdida de empalme	0.1 dB	1
		Pérdida de retorno	55 dB	1
		P divisor óptico	11 dB	1
		dB/km	1 dB	-
		Pérdida total	10 dB	-
			10 0.0	J
	C) La F opci de n	Figura 5 indica el diagrama ón es similar al modo detallac nedición y análisis en función	de conexión para operar en mo lo, permite al usuario configurar la del número de etapas de divisió	do PON, es as condicione n óptica.
				٦
		l abla 5 Cond	iciones de medida	4
		Longitud de onda	1310 nm	4
		Rango de distancia	20 km	4
		Ancho de pulso	Auto 500 ns	_
		Atenuación	Auto	1
		Intervalo de muestreo	1 m	
				-
		Tabla 6 Condicione	s de búsqueda de evento	
		Pérdida de empalme	2.5 dB	
		Pérdida de retorno	70 dB	
		Final de fibra	Auto]
		P. divisor óptico	12 dB]
				-
		Tabla 7 Condic	iones pasa/ no pasa	
		Pérdida por conector	1 dB	1
		Pérdida de empalme	0.6 dB	1
		Pérdida de retorno	60 dB	1
		P. divisor óptico	10.5 dB	1
		dB/km	1 dB	1
		Pérdida total	-64 65 dB	1
			04.00 00	7
	4. Obtenga	la traza reflectométrica de l	os esquemas propuestos	
	5 Gapara a	onclusiones a partir de la c	omparación de los resultados	obtonidos a
		ios nlanteados		obreminos e
	103 escendi	ivo planteauvo		
(Anotar las ac	tividades que c	leberá seguir el estudiante pa	ara el cumplimiento de la práctica	ι)
I. LISTADU DE HERRA	VIIENTASY M/	AICKIALES		
	5			
	0.00/455			
 Patch Cord SC/AP 	C-SC/APC			

- Bobinas de lanzamiento (2 km y 10 km)
- PLC Splitter (1:4 y 1:8)

2. MARCO TEÓRICO

De acuerdo con los puntos indicados en la instrucción1 y 2, desarrolle el marco teórico. **2.1.** Investigar sobre el funcionamiento del OTDR

2.2. Investigar el concepto de reflexión de Fresnel en fibras ópticas

2.3. Investigar el concepto de retrodispersión de Rayleigh en fibras ópticas

2.4. Investigar los tipos de eventos que ocurren en un enlace óptico

3. EXPERIMENTACIÓN

De acuerdo con los puntos indicados en la instrucción 3 y 4, desarrolle:

3.1. Obtener la traza reflectométrica en modo simple

Figura 1 Diagrama de conexión en modo simple

Figura 2 Traza reflectométrica usando modo simple

Tabla 8 Resultados modo simple						
N.DistanciaPérdidaP. Ret.dB/kmTipo EventoÍndiceEvento(km)(dB)(dB)dB/kmTipo Eventorefrac.					Índice refrac.	
1						
E						

Tabla 9 Resumen del enlace simple			
Distancia			
Pérdida total			
Pérdida de retorno total			
Número de eventos			

Figura 6 Traza reflectométrica usando modo PON

Tabla 12 Resultados modo PON						
Ν.	Distancia	Pérdida	P. Ret.	dB/km	Tipo Evento	Índice
Evento	(km)	(dB)	(dB)	UD/KIII		refrac.
1						
2						
E						

Tabla 13 Resumen del enlace PON					
Distancia					
Pérdida total					
Pérdida de retorno total					
Número de eventos					

CONCLUSIONES:

RECOMENDACIONES:

REFERENCES:

UNIVERSIDAD POLITÉCNICA SALESIANA			FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN - PARA DOCENTES	
ELECTRÓNICA Y AUTOMATIZACIÓN			ASIGNATURA	
NRO. PRÁCTICA:	3	TÍTULO PR	ACTICA: CARACTERIZACIÓN DEL COEFICIENTE DE ATENUACIÓN	
		RESPECTO	D A LA LONGITUD DE ONDA.	
OBJETIVO GENER	AL:			
Caracterizar el coet	iciente de a	atenuacion o	con respecto a la longitud de onda de la fuente de luz sintonizable.	
OBJETIVOS ESPE	CÍFICOS:			
1. Describir las	s bandas de	e operación	de longitud de onda de los equipos ópticos.	
2. Configurar I	a fuente de	e luz sintoni	zable.	
3. Generar y ta	abular los v	alores para	la generar el coeficiente de atenuación.	
	1. Verifiqu	ue los sigu	lientes conceptos teoricos:	
		ordida do fi	tericia de una serial oplica.	
	c) B	andas de n	peración en las comunicaciones ónticas	
	0) D			
	2. Emplee	e la fuente	de luz sintonizable	
 a) La Figura 1 atenuación fuente de la de 10 km y b) Variar la lo la bobina d en cuenta l atenuación c) Tabular los atenuación d) Caraficar la onda con la 		a Figura 1 in tenuación re uente de luz e 10 km y e fariar la long a bobina de n cuenta la tenuación d abular los v tenuación. (graficar la ca nda con los	ndica el diagrama de conexión para la obtención del coeficiente de especto a la longitud de onda. Utilizar el módulo AQ2200-132 como c (posee un láser sintonizable que opera en las bandas C y L), la bobina el módulo AQ2200-342 para medir la potencia óptica. gitud de onda transmitida cada 5 nm y medir la potencia óptica al final de 10 km, para determinar el coeficiente de atenuación. Es importante tomar pérdida de la bobina de 10 km, presenta un evento que provoca una le 2.69 dB. ralores en la Tabla 1 de la potencia recibida y calcular el coeficiente de (Tener en consideración las perdidas por los conectores). aracterización del coeficiente de atenuación con respecto a la longitud de resultados tabulados en el punto anterior.	
	escenario	AC [°]	TIVIDADES POR DESARROLLAR	
(Anotar 1. LISTADO DE H	las activida	AC ades que de NTAS Y M4	eberá seguir el estudiante para el cumplimiento de la práctica)	
Herramientas y Ma	teriales			
Fuente de la	uz.			
Bobina de 10 km.				
 MARCO TEÓRICO De acuerdo con los puntos indicados en la instrucción 1, desarrolle el marco teórico. 2.1. Energía y potencia de una señal óptica. 				
2.2. Perdidas en la fibra óptica.				
2 3 Perdida de fibra	dependien	nte a la long	itud de onda	

2.4. Bandas de operación en las comunicaciones ópticas.

3. Desarrollo Diagrama de configuración.

Figura 1 Diagrama de conexión para la caracterización del coeficiente de atenuación

Tabla 1 Tabu	Tabla 1 Tabulacion de valores para la caracterizacion del coeficiente de atenuacion				
Longitud do	Longitud de	Potencia de	Potencia de	Dárdida da	Pérdida por
	onda	transmisión	recepción	fibra [dB/km]	conectores
onua [mm]	medida [nm]	[dBm]	[dBm]		[dB]
1527		10			
1530		10			
1535		10			
1540		10			
1545		10			
1550		10			
1555		10			
1560		10			
1565		10			
1570		10			
1575		10			
1580		10			
1585		10			
1590		10			
1595		10			
1600		10			
1605		10			
1608		10			
USIONES:					

RECOMENDACIONES:

REFERENCES:

	FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES				
CARRERA: TELEC	OMUNICACIONES / ASIGNATURA:				
NRO. PRÁCTICA:	4 TÍTULO PRÁCTICA : CARACTERIZACIÓN DE LÁSER				
OBJETIVO GENERAL:					
Analizar y Caracteri	zar el tipo de laser de cada equipo óptico.				
OBJETIVOS ESPE	CÍFICOS:				
1. Establecer	y describir el funcionamiento de los tipos de laser de los equipos ópticos. Al Analizador de Espectro Ópticos				
3. Analizar cad	da espectro su longitud de onda central y FWHM.				
4. Analizar el e	espectro óptico de WDM.				
	1. Describa el funcionamiento del tipo de laser en los equipos ópticos:				
	2. Maneje y configure el Analizador de Espectros Ópticos a los equipos del laboratorio.				
	3. Analizar y Calcular la longitude de onda central y FWHM de cada equipo optico.				
	a) Con la fuente de luz utilizar la salida Banda C y programar con las siguientes				
	características para analizar el espectro óptico, obtener el ancho espectral de la				
	longitud de onda y su longitud de onda central. Figura 1.				
	Potencia 10 dBm.				
	Banda C: 1550 nm				
	b) Utilizar el OSA con la OLT, encontrar el rango de trabajo, su potencia y tipo de lase				
	que emite. Figura 2. c) Utilizar la fuente de luz del OTDR y configurar con las siguientes longitudes de Onda				
INSTRUCCIONES	al OSA. Figura 3.				
(Detallar las instrucciones que	 Longitud de Onda 650 nm. 				
se dará al	Longitud de Onda 1310 nm.				
estudiante):	Longitud de Onda 1550 nm.				
	d) Utilizar el xGenius y analizar su espectro con el equipo OSA. Figura 4				
	 e) Recibir los datos del analizador de espectros ópticos del punto c) y d); compararlos con los valores medidos y calculados de la onda central y el espectro medio ancho 				
	utilizando la siguiente ecuación:				
	$\sum_{i}(L_{i} * \lambda_{i})$				
	$\lambda_c = \frac{-\zeta_c L_i}{\sum L_i}$				
	$\sum L_i (\lambda_i - \lambda_c)^2$				
	$FWHM = \Delta \lambda = 2.35 \sqrt{\frac{\Sigma L_i}{\Sigma L_i}}$				
	f) Repita el proceso anterior para la respuesta al escalón teórica.				
	 g) Simule la respuesta al escalón usando algún software de simulación de circuitos eléctricos. 				

	4. Analice Wavelength Division Multiplexing.			
	 a) Emplear la fuente óptica para representar WDM utilizando el módulo AQ2200-132 con sus 2 salidas en la banda C y L y conectar a un divisor óptico 2:1 para mandar las señales por un solo cable de fibra óptica. Analizar la potencia de salida, relacion señal a ruido y FWHM y llenar la Tabla 2. Figuro 			
	5. Genere conclusiones a partir de la comparación de los resultados obtenidos en			
	los escenarios explicados.			
	ACTIVIDADES POR DESARROLLAR			
(Anotar	las actividades que deberá seguir el estudiante para el cumplimiento de la práctica)			
1. LISTADO DE H	ERRAMIENTAS Y MATERIALES			
Herramientas y Ma	iteriales			
Analizador	de Espectros Opticos			
 OTDR 				
OLT				
 xGenius 				
Fuente de l	uz			
Patch cord SC-UPC/ SC-APC				
Patch cord SC-UPC/ FC-APC				
 Patch cord 	SC-UPC/ SC-UPC			
 Patch cord 	SC-UPC/ LC-UPC			
2. MARCO TEÓR	ICO			
2 1 Investigar la generación del láser de retroalimentación distribuido y su funcionamiento				
	neración de laser de retroainnentación distribuido y su funcionalmento.			
2.2. Investigar la ge	neración del láser de Fabry Perot y su funcionamiento.			
2.3. Investigar el uso de FWHM para el análisis espectral óptico.				
2.4. Investigar las aplicaciones de WDM.				
3. Experimentaci	ón			
De acuerdo con las	instrucciones de la parte 2,3 y 4 de la práctica, desarrolle y explique los resultados que se			
solicitan.				

		Tabla 1	Resultados o	obtenidos de los	Espectros Ópticos		
	E	Equipo	Laser	λ_c [nm]	FWHM [[nm]	
	Fue	nte de luz					
		OLT					
		OTDD					
		UIDR					
	x	Genius					
					PLC Splitter 1:2		
		Figura 5.	Esquema de	Conexión OSA – F	Fuente de luz (WDM)		
_		Figura 5.	Esquema de	Conexión OSA – F	Fuente de luz (WDM)		
F		Figura 5.	Esquema de Tat	Conexión OSA – F Dia 2 Análisis WD	Fuente de luz (WDM)		
	No	Figura 5. Longitud	Esquema de Tat de Onda m]	Conexión OSA – F Dia 2 Análisis WD FWHM [nm]	Fuente de luz (WDM) M Potencia [dBm]	SNR [dB]	
	No 1	Figura 5. Longitud [n	Esquema de Tat de Onda m]	Conexión OSA – F Dia 2 Análisis WD FWHM [nm]	Fuente de luz (WDM) M Potencia [dBm]	SNR [dB]	
	No 1 2	Figura 5. Longitud [n	Esquema de Tat de Onda m]	Conexión OSA – F Dia 2 Análisis WD FWHM [nm]	Fuente de luz (WDM) M Potencia [dBm]	SNR [dB]	
	No 1 2 ES:	Figura 5. Longitud [n	Esquema de Tat de Onda m]	Conexión OSA – F Dia 2 Análisis WD FWHM [nm]	Fuente de luz (WDM) M Potencia [dBm]	SNR [dB]	

REFERENCES:

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR			FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES	
CARRERA: TELECOMUNICACIONES /			ASIGNATURA:	
ELECTRONICA Y AUTOMAT				
NRO. PRACTICA:	5	TITULO PI	RACTICA: GENERACION DE TRAFICO	
OBJETIVO GENERAL:				
Generar tráfico a nivel Ethern	et e IP que	permita la fa	amiliarización y manejo de equipos de Networking (ALBEDO	
xGenius) para el análisis de t	ramas DIX	y paquetes I	Pv4	
OBJETIVOS ESPECIFICOS:				
1. Verificar las especific	aciones tec	nicas del AL	BEDO xGenius.	
2. Configurar cargas util	ies para me	edir criterios	de errores de bits y latencia.	
3. Configurar el permide	e ancho de	obo plontoo	da	
 Implemental el escer Contrastar los resulta 	iano de pru	eba piantea los con los (uu. diagramas planteados inicialmente	
	1. Verifiqu d) AL	e las espec BEDO xGen	ificaciones técnicas de los siguientes equipos: ius.	
	2. Describa los tipos de carga útil que utiliza el xGenius para el análisis de			
	rendimiento en la red			
	Los datos generados por el xGenius son sintéticos, es decir, no contienen información			
(Detallar las instrucciones	real, por esta razon las tramas generadas se reemplazan por cargas utiles que simulan			
que se dará al estudiante).	aue determinan que métricas de resultados serán analizados			
	3 Analice la estructura de la trama DIX y la estructura del naquete IPv4			
	4. Config	ure el perfi	l de ancho de banda	
	En esta ve	ntana se est	ablece la velocidad de transmisión y el perfil del flujo (ver Figura	
	1) de dato	s; se pued	e especificar las tramas por segundo, bits por segundo o el	
	porcentaje	de la capaci	idad de transmisión.	

	(capa 2) es similar al modo Ethernet endpoint, con la diferencia de que se encuentra
	habilitado el protocolo ARP, es pecesario configurar el paquete IPvA
	habilitado el protocolo Alti, es necesario conigural el paquele n'vy
	6. Configure la carga útil
	Debido a que los datos generados por el equipo son sintéticos, es decir, no reales,
	simular 2 flujos de tráfico con cargas útiles tipo BERT y SLA para medir criterios de
	rendimiento de errores de bits, pérdida de paquetes y latencia.
	7 Genere conclusiones a partir de la comparación de los resultados obtenidos
	7. Genere conclusiones à partir de la comparación de los resultados obtenidos
	en los escenarios planteados
	ACTIVIDADES POR DESARROLLAR
(Anotar las acti	vidades que deberá seguir el estudiante para el cumplimiento de la práctica)
1. LISTADO DE HERRAM	IENTAS Y MATERIALES
Herramientas y Materiales	

- xGenius
- SFP GP-3124-L2CD
- Patch Cord LC/UPC-LC/UPC

2. MARCO TEÓRICO

De acuerdo con los puntos indicados en la instrucción 2 y 3, desarrolle el marco teórico. **2.1.** Complete la siguiente tabla con los tipos de carga útil que útil que posee el xGenius

	Tabla 1 Carga útil
Carga	Descripción
BERT	
SLA	
All zeros	

2.2. Completar la tabla de métricas BERT y SLA

Tabla 2 Métricas BERT y SLA				
Carga	Métrica	Descripción		
	LSS			
DEDT	TSE			
DENI	BER			
	ES			
	FTD			
SLA	FDV			
	Lost Frames			

2.3. Investigar el estándar Ethernet II y completar la tabla

Tabla	3 Estructura Ethernet II
Preámbulo	
Dirección de destino	

Dirección de origen	
Tipo	1
Datos	1
Frame Checksum Secuence	

2.4. Investigar la estructura del paquete IP y completar la tabla

Tabla 4 Estructura Paquete IP		
Versión		
Longitud del encabezado		
Tipo de servicio		
Longitud total		
Identificación, banderas y		
desplazamiento de fragmentos		
Tiempo de vida		
Protocolo		
Checksum		
Dirección de origen		
Dirección de destino		
Opciones y relleno		
Datos		

3. EXPERIMENTACIÓN

De acuerdo con los puntos indicados en la instrucción 4, 5 y 6, desarrolle:

3.1. Configurar el xGenius para la generación de tráfico Ethernet

Tabla 5 Configuración del equipo									
Campo	Parámetro	Configuración							
	Método	One	-way						
Unidad	Modo de operación	Ethornot	ondpoint						
	global	Ellenet							
	Puerto	A	В						
	Modo del Puerto	TX/RX	Monitor						
Perfil local	Conector	Óptico	Óptico						
	MTU	1518	1518						
	MAC	00:DB:1E:00:13:98	00:DB:1E:00:13:99						

a) Generar 2 flujos en el equipo con las siguientes características, capturar los resultados tras de 2 minutos de prueba.

Tabla 6 Configuración de flujos									
Campo	Flujo 1	Flujo 2							
Perfil de ancho de banda	Continuo	Continuo							
Tasa (%)	50	50							
Carga útil	BERT ITU PRBS 2^31	SLA							
Tamaño de trama (bits)	1518	1518							
MAC de origen	:00:13:98	:00:13:98							
MAC de destino	:00:13:99	:00:13:99							

3.2. Configurar el xGenius para la generación de tráfico IP

	Tabla 7 Configurad	ión del equipo		
Campo	Parámetro	Configuración		
	Método	One	-way	
Unidad	Modo de operación global	IP endpoint		
	Puerto	A	В	
	Modo del Puerto	TX/RX	Monitor	
	Conector	Óptico	Óptico	
Perfil local	MTU	1518	1518	
	MAC	00:DB:1E:00:13:98	00:DB:1E:00:13:99	
	Dirección IP	192.168.1.2	N/A	
	Máscara	255.255.255.0	N/A	

a) Generar 2 flujos en el equipo con las siguientes características, capturar los resultados tras de 2 minutos de prueba.

Tabla 8 Configuración de flujos									
Campo	Flujo 1	Flujo 2							
Perfil de ancho de banda	Continuo	Continuo							
Tasa (%)	50	50							
Carga útil	BERT ITU PRBS 2^31	SLA							
Tamaño de trama (bits)	1518	1518							
MAC de origen	:00:13:98	:00:13:98							
MAC de destino	:00:13:99	:00:13:99							
IP de origen	192.168.1.2	192.168.1.2							
IP de destino	192.168.1.5	192.168.1.5							
DSCP	N/A	N/A							

3.3. Completar la tabla de resultados

Tabla 9 Resultados									
Parámetro	Métrica	Ethernet endpoint	IP endpoint						
Trama	IPv4 TX								
Tama	IPv4 RX								
	LSS								
REDT	TSE								
DENT	BER								
	ES								
	FTD promedio								
SLA	FDV promedio								
	Perdida de tramas								

CONCLUSIONES:

RECOMENDACIONES:

REFERENCES:

	ESIAN		FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES									
CARRERA:			ASIGNATURA:									
TELECOMUNICAC												
ELECTRÓNICA Y											· · · · · ·	
NRO. PRACTICA:		6	TITULO PRACTICA: PR	OVISIC	N D	E Qo	SB	ASA	DA E	EN L	A VE	RIFICACION
	GENERAL: r una red que permita verificar Calidad de Servicio mediante el apólicie de perómetros SLA											
OBJETIVOS ESPE	la reu que permita vennicar Galidad de Servicio mediante el analisis de parametros SLA SPECÍFICOS:											
1. Verificar las	s especifica	ciones té	cnicas del ALBEDO xGeniu	us, Net.	Hunt	te y l	Net.S	Storn	n.			
2. Configurar	QoS basad	lo en la ar	quitectura de Servicios Dife	erencia	dos.							
 Capturar el 	tráfico y ar	nalizar el p	paquete IP.									
4. Degradar e	el tráfico ins	ertando e	ventos de latencia y errore	s de bit								
5. Contrastar	los resultad	dos obten	dos con los diagramas plai	nteados		ialm	ente					
	a)		Genius	le los	sigui	ente	es ec	quip	os:			
	b) A		Net.Hunter.									
	c) A		Net.Storm.									
	,											
	2. Calida	d de Serv	/icio									
	Marco Te	eorico sec	cion 2.1									
	3. Arquit	ectura de	Servicios Diferenciados									
	Marco I e	Marco Teorico seccion 2.2 y 2.3										
	4. ITU-T rec. Y.1541											
	4. ITU-	F rec. Y.1	541 endación ITU-T rec. Y 154	1 defin	och	o cla	9565	de c	alida	ad de	ser	ricio basadas
	4. ITU-1 La ITU er en la aplie	F rec. Y.1 n la recom cación par	541 endación ITU-T rec. Y.154 a definir los obietivos de re	1 define ndimier	e och nto ei	io cla n red	ases les II	de c P (ve	alida r Fic	ad de Iura	e ser 1). E	ricio basadas stos servicios
	4. ITU-1 La ITU er en la aplie de teleco	F rec. Y.1 n la recom cación pai municació	541 endación ITU-T rec. Y.154 a definir los objetivos de re ones se describen a través	1 define ndimiei de los	e och nto ei pará	io cla n red metr	ases les II ros d	de c P (ve le an	alida r Fig cho	ad de jura de b	e ser 1). E anda	vicio basadas stos servicios y calidad de
	4. ITU-1 La ITU er en la aplio de teleco servicio.	F rec. Y.1 n la recom cación pai municació	541 endación ITU-T rec. Y.154 a definir los objetivos de re ones se describen a través	1 define ndimier de los	e och nto ei pará	io cla n red metr	ases les II ros d	de c P (ve le an	alida r Fig cho	ad de jura de b	e ser 1). E anda	ricio basadas stos servicios y calidad de
	4. ITU-1 La ITU er en la aplie de teleco servicio.	Frec. Y.1 n la recom cación par municació	541 endación ITU-T rec. Y.154 a definir los objetivos de re ones se describen a través	1 define ndimier de los	e och nto ei pará	io cla n red metr	ases les II ros d	de c P (ve le an	alida r Fig cho	ad de jura de b	e ser 1). E anda	ricio basadas stos servicios y calidad de
INSTRUCCIONES	4. ITU-1 La ITU er en la aplie de teleco servicio.	Frec. Y.1 n la recom cación par municació	541 endación ITU-T rec. Y.154 ra definir los objetivos de re ones se describen a través	1 define ndimier de los	e och nto ei pará	n red metr	ases les II ros d	de c P (ve le an	alida er Fig cho	ad de jura de b	e ser 1). E anda	ricio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las	4. ITU-1 La ITU er en la aplie de teleco servicio.	rec. Y.1 n la recom cación pai municació	541 endación ITU-T rec. Y.154 ra definir los objetivos de re ones se describen a través Sample	1 define ndimier de los	e och nto ei pará	n red metr	ases les II ros d J-T C	de c P (ve le an	alida er Fig cho	ad de jura de b	e ser 1). E anda	ricio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que	4. ITU-1 La ITU er en la aplie de teleco servicio.	rec. Y.1 n la recom cación par municació ication	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample	1 define ndimier de los 5	e och nto ei pará	n red metr	uses les ll ros d J-T C 2	de c P (ve le an	alida er Fig cho	ad de jura de b 7	e ser 1). E anda	ricio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-1 La ITU er en la aplie de teleco servicio.	rec. Y.1 n la recom cación par municació ication	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample	1 define ndimier de los 5	e och nto ei pará	io cla n red metr	ases les II ros d U-T C 2	de c P (ve e an class 1 YES	alida er Fig cho	ad de jura de b 7 YES	e ser 1). E anda 6 YES	ricio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-7 La ITU er en la aplie de teleco servicio.	reaming	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample IPTV, Pay per View, Multi- VoD, PVS, time-shift TV	1 define ndimier de los 5	e och nto ei pará	In red metr	uses les li os d u-t c 2	de c P (ve e an lass 1 YES YES	alida er Fig cho	ad de jura de b 7 YES YES	e ser 1). E anda 6 YES	vicio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-T La ITU er en la aplie de teleco servicio. Appli Live TV s Video str Audio str	reaming	541 endación ITU-T rec. Y.154 ra definir los objetivos de re ones se describen a través Sample IPTV, Pay per View, Multi- VoD, PVS, time-shift TV Music on demand	1 define ndimier de los 5	e och nto ei pará	io cla metr ITT 3	ases les II os d J-T C 2	de c P (ve e an I I YES YES YES	alida er Fig cho	ad de jura de b 7 YES YES	e ser 1). E anda	ricio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-T La ITU er en la aplie de teleco servicio. Appli Live TV s Video str Audio str Control	reaming Protocols	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample IPTV, Pay per View, Multi- VoD, PVS, time-shift TV Music on demand Zapping, Stop/Start/Bwd/Fwd	1 define ndimier de los 5	e och nto ei pará	io cla n red metr	ases les II os d J-T C 2 YES	de c P (ve e an I YES YES YES	alida r Fig cho	ad de jura de b 7 YES YES	e ser 1). E anda 6 YES	ricio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-T La ITU er en la aplie de teleco servicio. Appli Live TV s Video str Audio str Control Video do	reaming Protocols	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample IPTV, Pay per View, Multi- VoD, PVS, time-shift TV Music on demand Zapping, Stop/Start/Bwd/Fwd VoD	1 define ndimier de los 5	e och hto ei pará	In red metr	ases les II os d J-T C 2 YES	de c P (ve e an I YES YES	alida r Fig cho	ad de jura de b 7 YES YES	e ser 1). E anda 6 YES	ricio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-T La ITU er en la aplie de teleco servicio. Appli Live TV s Video str Audio str Control Video do	reaming Protocols	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample IPTV, Pay per View, Multi- VoD, PVS, time-shift TV Music on demand Zapping, Stop/Start/Bwd/Fwd VoD	1 define ndimier de los 5	e och nto ei pará	io cla metr ITT 3	ases les II ros d J-T C 2 YES	de c P (ve e an I YES YES YES	alida rr Fig cho	ad de jura de b YES YES	e ser 1). E anda	<i>r</i> icio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-T La ITU er en la aplie de teleco servicio. Appli Live TV s Video str Audio str Control Video do Video up	reaming Protocols	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample IPTV, Pay per View, Multi- VoD, PVS, time-shift TV Music on demand Zapping, Stop/Start/Bwd/Fwd VoD Closed group of video user	1 define ndimier de los 5	e och hto ei pará 4 YES YES	In red metr	ases les II ros d J-T C 2 YES	de c P (ve e an I YES YES	o	ad de jura de b YES YES	e ser 1). E anda YES	ricio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-T La ITU er en la aplie de teleco servicio. Appli Live TV s Video str Audio str Control Video do Video up Downloa	reaming Protocols Protocols Protocols	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample IPTV, Pay per View, Multi- VoD, PVS, time-shift TV Music on demand Zapping, Stop/Start/Bwd/Fwd VoD Closed group of video user Images, books, etc. Portals	1 define ndimier de los 5	e och nto ei pará 4 YES YES	ITT	ases les II ros d J-T C 2 YES	de c P (ve e an I YES YES YES	alida rr Fig cho	ad de jura de b YES YES	e ser 1). E andz	<i>r</i> icio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-T La ITU er en la aplie de teleco servicio. Appli Live TV s Video str Audio str Control Video do Video up Downloa Web acc	reaming Protocols winloads oloads ading cess	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample IPTV, Pay per View, Multi- VoD, PVS, time-shift TV Music on demand Zapping, Stop/Start/Bwd/Fwd VoD Closed group of video user Images, books, etc. Portals	1 define ndimier de los 5 5 YES YES	e och hto ei pará 4 YES YES		ases les II ros d J-T C 2 YES	de c P (ve e an I YES YES	o	ad de jura de b YES YES	e ser 1). E anda YES	ricio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-T La ITU er en la aplie de teleco servicio. Appli Live TV s Video str Audio str Control Video do Video up Downloa Web acc Telephon	reaming Protocols Protocols Protocols Protocols	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample IPTV, Pay per View, Multi- VoD, PVS, time-shift TV Music on demand Zapping, Stop/Start/Bwd/Fwd VoD Closed group of video user Images, books, etc. Portals VoIP	1 define ndimier de los 5 5 YES YES	e och nto ei pará 4 YES YES		ases les II ros d 2 YES	de c P (ve e an YES YES YES	alida rr Fig cho 0	ad de jura de b YES YES	e ser 1). E anda	<i>r</i> icio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-T La ITU er en la aplie de teleco servicio. Appli Live TV s Video str Audio str Control Video do Video up Downloa Web acc Telephon Interactiv	reaming Protocols winloads oloads ading we / low	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample IPTV, Pay per View, Multi- VoD, PVS, time-shift TV Music on demand Zapping, Stop/Start/Bwd/Fwd VoD Closed group of video user Images, books, etc. Portals VoIP Videoconferences	1 define ndimier de los 5 7 YES YES	e och hto ei pará 4 YES YES		ASES les II ros d J-T C 2 YES	de c P (ve e an I YES YES	alida r Fig cho	ad de jura de b YES YES	e ser 1). E anda YES	vicio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-T La ITU er en la aplie de teleco servicio. Appli Live TV s Video str Audio str Control Video do Video up Downloa Web acc Telephon Interactiv	reaming Protocols wwnloads bloads bloads wy ve / low ve	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample IPTV, Pay per View, Multi- VoD, PVS, time-shift TV Music on demand Zapping, Stop/Start/Bwd/Fwd VoD Closed group of video user Images, books, etc. Portals VoIP Videoconferences Instant Messages	1 define ndimier de los 5 5 YES YES	e och nto ei pará 4 YES YES	ITT ITT ITT ITT ITT ITT ITT ITT ITT ITT	ASES les II ros d 2 YES	de c P (ve e an YES YES YES	alida rr Fig cho	ad de jura de b YES YES	e ser 1). E anda	<i>r</i> icio basadas stos servicios y calidad de
INSTRUCCIONES (Detallar las instrucciones que se dará al estudiante):	4. ITU-T La ITU er en la aplie de teleco servicio. Appli Live TV s Video str Audio str Audio str Control Video do Video up Downloa Web acc Telephon Interactiv Mainling	reaming reaming Protocols wwnloads bloads ding we / low ye	541 endación ITU-T rec. Y.154 ra definir los objetivos de re- ones se describen a través Sample IPTV, Pay per View, Multi- VoD, PVS, time-shift TV Music on demand Zapping, Stop/Start/Bwd/Fwd VoD Closed group of video user Images, books, etc. Portals VoIP Videoconferences Instant Messages email	1 define ndimier de los 5 7 YES YES YES	e och nto ei pará YES YES	ITTU 3	ASES les II os d yes yes	de c P (ve e an I YES YES YES	alida rr Fig cho	r yres Yes	e serritin s	<i>r</i> icio basadas stos servicios y calidad de

<u>т </u>				Figura	1 Class		ófico	sogún la ITLLT roc	V 15/1	
 Figura 1 Clases de Tráfico según la ITU-T rec. Y.1541 La ITU-T define las características de calidad de servicio en términos de retrasos de paquetes y errores (ver Figura 2), el conjunto de parámetros que definen la QoS a nivel de IP son: Frame Delay (IPTD), latencia de extremo a extremo (ms). Delay Variation (IPDV), variación de retardo de paquetes (ms). Packet Loss (IPLR), relación entre las tramas enviadas y las tramas de respuesta pérdidas. Packages Error (IPER), relación de error de bits en la recepción. Disordered Packages (IPRR), relación de paquetes que llegan fueran de orden. 										
С	lass	IPTD	IPDV	IPLR	IPER	IPRR		Sar	nples	
	0	100 ms	50 ms	1 x 10 ⁻³	1 x 10 ⁻⁴	-	Real-t	ime, jitter sensitive, low	/ delay, very interactive, ie VoIP	
	1	400 ms	50 ms	1 x 10 ⁻³	1 x 10 ⁻⁴	-	Real t	me, jitter sensitive, ave	erage delay, interactive	
	2	100 ms	U	1 x 10 ⁻³	1 x 10 ⁻⁴	-	Transa	actions, low delay, very	interactive, ie Internet	
	3	400 ms	U	1 x 10 ⁻³	1 x 10 ⁻⁴	-	Transa	actions, average delay,	interactive	
	4	1 s	U	1 x 10 ⁻³	1 x 10 ⁻⁴	-	Few m	nissed, i.e. downloads		
	5	U	U	U	U	-	Best e	ffort, i.e. email		
	6	100ms	50 ms	1 x 10 ⁻⁵	1 x 10 ⁻⁶	1 x 10 ⁻⁶	High s	peed, low loss, low del	ay, interactive, ie IPTV	
	7	400ms	50 ms	1 x 10 ⁻⁵	1 x 10 ⁻⁶	1 x 10 ⁻⁶	High s	peed, low loss, averag	e delay, interactive	
			Figu	ra 2 ITl	J-T rec.	Y.1541	: requ	erimientos de QoS	para nivel IP	
5. Genere tráfico IP Utilizar el xGenius, generar ocho flujos, cada uno debe estar asignado a una clase de servicio (CoS) definida en la ITU-T rec. Y.1541, emulando diferentes aplicaciones con distintas prioridades de tráfico. Para establecer los requerimientos de calidad de servicio, aplicar la arquitectura de Servicios Diferenciados (DiffServ), está usa el campo DSCP de la estructura del paquete IP, este parámetro es un código de 6 bits que clasifica cada paquete que ingresa a la red de acuerdo con el tipo de servicio (ToS). La Tabla 1 indica la clase de servicio y el valor DSCP recomendado para cada aplicación, la Tabla 2 muestra la configuración del equipo.										
				1	Tabla	1 Servi	cios d	de marca de clase		
	Cla	se [Descrip	oción	DSCP	Có	Código Probabilidad de Aplicaciones			
	0	5	Servicio tiempo	os en real	46	E	F	No aplica	VoIP, videoconferencias	
F										

AF41

CS6

Baja

-

IPTV, VoD

Tablas de enrutamiento,

señalización

34

48

Multicast

streaming

Protocolos

de control

1

	3	Servicios interactivos	32	CS4	-	Mensajes instantáneos
	4	Baja pérdida	36	AF42	Meda	VoD, videoconferencias
	5	Aplicaciones tradicionales	0	Best Effort	No aplica	Descargas de baja prioridad (portales web, imágenes, libros, etc)
	6	Multimedia	26	AF31	Baja	TV streaming
	7	streaming	28	AF32	Media	Video streaming, audio streaming

Tabla 2 Configuración de unidad y perfil local										
Campo	Parámetro	Parámetro Configuración								
	Método	One	-way							
Unidad	Modo de operación	IP on	dpoint							
	global		upoint							
	Puerto	A	В							
	Modo del Puerto	TX/RX	Monitor							
	Conector	Óptico	Óptico							
Perfil local	MTU	1518	1518							
	MAC	00:DB:1E:00:13:98	00:DB:1E:00:13:99							
	Dirección IP	192.168.1.2	192.168.1.10							
	Máscara	255.255.255.0	255.255.255.0							

6. Condiciones de evaluación

Es importante establecer una adecuada dimensión de trama para la evaluación, lo conveniente es generar una serie de diferentes tamaños ya que muchos flujos tienen una variación de longitud considerable, sin embargo, se simplifica la prueba con flujos a velocidad constante, por lo que se recomienda un tamaño de campo de información fijo. Se sugieren campos de información de 160 o 1500 bytes para la estimación de calidad de funcionamiento a nivel IP. La Figura 3 muestra el diagrama de conexión y la Tabla 3 indica la configuración de los ocho flujos generados.

	192.168.1	.0/24 .1	eth5 .1 10.0.0.0/3	eth5 .2 SFP .1
C/UPC a LC/UPC	ura 3 Diagrama d	Tx Rx -10 	192.1 pruebas SLA y Qo	68.2.0/24 S
	Tabla 3	Configuración de	e flujos	
Campo	Flujo 1	Flujo 2	Flujo 3	Flujo 4
Perfil de ancho de banda	Continuo	Continuo	Continuo	Continuo
Tasa (Mbps)	10	10	10	10
Carga útil	SLA	SLA	SLA	SLA
Tamaño de trama (bytes)	256	256	256	256
MAC de origen	:00:13:98	:00:13:98	:00:13:98	:00:13:98
MAC de destino	:00:13:99	:00:13:99	:00:13:99	:00:13:99
C-VID	10	20	30	40
Prioridad C- VLAN	0	0	0	0
IP de origen	192.168.1.10	192.168.1.10	192.168.1.10	192.168.1.10
IP de destino	192.168.2.10	192.168.2.10	192.168.2.10	192.168.2.10
DSCP	46	34	48	32
	Flujo 5	Flujo 6	Flujo 7	Flujo 8
Perfil de ancho de banda	Continuo	Continuo	Continuo	Continuo
Tasa (Mbps)	10	10	10	10
Carga útil	SLA	SLA	SLA	SLA
Tamaño de trama (bytes)	256	256	256	256
MAC de origen	:00:13:98	:00:13:98	:00:13:98	:00:13:98
MAC de destino	:00:13:99	:00:13:99	:00:13:99	:00:13:99
S-VID	50	60	70	80
Prioridad S- VLAN	0	0	0	0
IP de origen	192.168.1.10	192.168.1.10	192.168.1.10	192.168.1.10
IP de destino	192.168.2.10	192.168.2.10	192.168.2.10	192.168.2.10

Herramientas y Materiales

- xGenius
- Net.Hunter
- Net.Storm
- Routers
- SFP GP-3124-L2CD
- Patch Cord LC/UPC-LC/UPC
- Patch Cord Cat 6a
- WireShark

2. MARCO TEÓRICO

De acuerdo con los puntos indicados en la instrucción 2 y 3, desarrolle el marco teórico.

2.1. Investigar Calidad de Servicio

- 2.2. Investigar la arquitectura de Servicios Diferenciados
- 2.3. Investigar el campo DSCP de la estructura del paquete IP

3. EXPERIMENTACIÓN

De acuerdo con los puntos indicados en la instrucción 5, 6, 7 y 8, desarrolle:

- **3.1.** Generar ocho flujos, asignar a cada uno a una Clase de Tráfico (CT) definida en la ITU-T rec. Y.1541, y encapsularlos en una VLAN, emulando diferentes aplicaciones con distintas prioridades de tráfico.
- **3.2.** Realizar la prueba por 5 minutos, capturar el tráfico y analizar las métricas de SLA para cada flujo.

	Tabla 5 Resultados de pruebas SLA y QoS										
Clase	Flujo	FTD [µs]	FDV [µs]	FLR	Lost Frames						
0	1										
1	2										
2	3										
3	4										
4	5										
5	6										
6	7										
7	8										

3.3. Capturar el tráfico

3.4. Corromper el tráfico, realizar la prueba por 5 minutos, capturar el tráfico y analizar las métricas de SLA para cada flujo

	Tabla 6 Resultados de pruebas SLA y QoS con degradación										
Clase	Flujo	FTD [µs]	FDV [µs]	FLR	Lost Frames						
0	1										
1	2										
2	3										
3	4										
4	5										
5	6										
6	7										
7	8										

CONCLUSIONES:

•

٠

RECOMENDACIONES:

REFERENCES:

	UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES		
CARRERA: TELEC ELECTRÓNICA Y A		ACIONES / FIZACIÓN	ASIGNATURA:		
NRO. PRÁCTICA:	7	TÍTULO PF	RÁCTICA: CONFIGURACIÓN DE UNA RED GPON		
OBJETIVO GENER	AL:				
Configurar la OLT pa	ara prove	er servicio de	e Internet y VoIP en una arquitectura GPON.		
1. Conocer los	estánda	res PON			
2. Configurar l	a OLT.				
3. Proveer serv	vicios de	Internet y Vo	IP.		
	1. Verifi	ique los sigu	uientes conceptos teóricos:		
	a) b)		-UN.		
	(U ()	Investigar co	mo brindar servicios Triple-Play usando VI ANs		
	(0 d)	Describir los	perfiles de operación Bridge y Router.		
	e)	Control de a	ncho de Banda		
	-				
	2. Conf	iguración de	a OLT		
	a)	La Figura 1 i	ndica la topología de red, la OLT representa la cabecera de la red GPON		
		que conecta	cada puerto PON al dominio de enrutamiento y conmutación utilizando		
		los puertos d GPON SEP I	le enlace ascendente SFP+. En el lado PON se insertan los módulos		
	b) La configuración de la UFiber OLT es mediante una interfaz gráfica (GUI) que				
	,	vuelve relativ	vamente fácil e intuitiva de realizar. Para acceder al GUI de configuración		
		se debe con	ectar un computador al puerto MGMT de la OLT e introducir las		
INSTRUCCIONES		credenciales	de usuario y contraseña (Username: ubnt, Password: ubnt). Es		
(Detallar las		importante v	erificar que los equipos se encuentren en la misma red. Figura 2 y 3.		
instrucciones que	c)	Los puertos	de enlace ascendente SFP+ se utilizan para conectar la red GPON a		
se dará al		Internet, esto	os vienen configurados de forma predeterminada con la VLAN nativa 4063		
estudiante):	d)	Las ONUs or	peran baio ciertos perfiles que se crean en la Ufiber OLT en estos se		
	α,	configura va	rios parámetros como modo de operación (bridge o router). VLANs		
		(aplicable so	lo en modo bridge), servicios (control remoto), firewall (aplicable solo en		
		modo router)) y control de ancho de banda. Configurar una VLAN que pertenece a la		
		WAN y el pe	rfil en modo router con DHCP.		
	e)	Por defecto I	a OLT se administra a través del puerto MGMT, sin embargo, se puede		
		habilitar la fu	inción de administración en banda, que permite que la dirección IP de		
			En sea accesible a traves de una VLAN configurada en los puertos de		
	f)	La nuerta de	enlace predeterminada (Gateway) se configura para tener acceso a		
	''	redes extern	as, todos los paquetes que tienen como destino redes remotas se envían		
		al Gateway.	Figura 6.		
	g)	Cuando una	ONU se engancha a la OLT se muestra en el menú ONU List, aquí se		
		puede verific	car el estado, puerto asignado, perfil, niveles de potencia y dirección IP de		
		WAN. Para a	asignar un perfil de operación se debe seleccionar la ONU y elegir el perfil		
		GPON creac	lo anteriormente. Figura 7 y 8.		
	h)	Aplicar y ver	ificar un control de ancho de banda simétrico, asimétrico y sin control.		

	3. Implemente de un servidor VoIP.
	a) Implementar un servidor de VoIP, realizar una llamada entre dos terminales, capturar
	y analizar el tráfico utilizando el Net.Hunter y Wireshark.
	ACTIVIDADES POR DESARROLLAR
(Anotar I	as actividades que deberá seguir el estudiante para el cumplimiento de la práctica)
1. LISTADO DE HE	
Herramientas y Mat	eriales
OLT	
 2 ONU 	
 Routers 	
 2 Splitters 1: 	8
 Bobinas (2 k 	m y 10 km)
 Conectores \$ 	SC/UPC SC/APC
 Conectores \$ 	SC/APC SC/APC
 Conectores I 	LC/UPC LC/UPC
	<u> </u>
Z. WARCO LEORI	SU supras indicadas on la instrucción 1, desarrollo el marco teórico.
21 Ecténdoros PON	
Z.I. EStanuales PON	
2.2. Componentes de	enerales de una red PON
2.3. Investigar como	brindar servicios Triple-Play usando VLANs.
Č	
2.4. Describir los per	files de operación Bridge y Router.
2.5. Control de ancho	o de Banda.
3. DESAROLLO	
Esquema	

Figure 1 Topologia de red GPON.
Figura 2 Acceder a la interfaz de configuración

Ir	terface Configuration for br0 8										
	Basic Advanced Bridge Interfaces										
De	Scription Management										
Er	able 🕑										
Ac	dress Manually define IP address V										
	172.17.0.2/28										
	+ Add IP										
	🖬 Save 🗶 Cancel										
F	igura 3 Configuración de IP de administrador										
In	terface Configuration for stp+1										
Lin	k negotiation Auto										
Na	tive VLAN 4063										
Inc	lude VLANs VLAN ID										
	5 ×										
	VLAN ID										
	15 ×										
	+ Add VLAN										
	R Save Cancel										
Fi	gura 4 Configuración de puertos uplink SFP+.										
Inband management											
Access from SFP+ port(s)	6										
V L/ (I											
I	Figura 5 Configuración de gestión en banda.										
Gateway											
System gateway address	172.17.0.1										
Name Server											
System name server	: 172.17.0.1										
	172.16.1.157										
	+ Add New										
	St	atus		Serial Nur	nber 🔺	Nam	ne	\$	Profile	\$	PON Port
---------	---------	---------	---------	------------------	-------------	------------------	------------	----------	---------	------	------------
		onnecte	d	UBNT207	'3e385	UBN	VT2073e385	;	GPON		3
	Model	\$	Tx Powe	er 🗘	Rx Power	\$	Connectio	on Time	\$	WAN	IP Address
	NanoG		2.44dB	m	-6.72dBm		2h 49m 5	58s		10.0	0.0.2
					Figura 7	7 Lista d	le ONU's.				
			C	onfigur <u>a</u>	tion of ON	U UBNT	2073e385	ō	8		
				Basic	WiFi	Port Fo	rwarding				
			N	ame *	UBNT20	73e385					
			Er	nable							
			Pi	rofile	GPON	•					
							🖪 Save	×	Cancel		
				Figura 8	Perfil de o	peraciór	n asignad	o a la C	ONU.		
CONCLUS											
•	IUNES.										
DECOMEN											
•	IDACION	IES:									
REFEREN	CIAS:										

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		FORMATC	FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES			
CARRERA : TELE ELECTRÓNICA Y	COMUNICA AUTOMAT	ACIONES / ASIGNATI	ASIGNATURA:			
NRO. PRÁCTICA:		TÍTULO PRÁCTICA: M	ÁCTICA: MANEJO DE EQUIPOS OPTICOS			
OBJETIVO GENE	RAL:					
Descripción y Con	figuración d	le los equipos en el Labo	oratorio de Telecomunica	ciones.		
	1. Descr	ipción y Configuraciór	n de los equipos Óptico	S		
INSTRUCCIONES	;					
(Detallar las						
instrucciones que						
estudiante).						
condiantoj.						
		ACTIVIDADES	POR DESARROLLAR			
(Anota	ar las activio	dades que deberá seguir	· el estudiante para el cur	nplimiento de la práctio	ca)	
		NTAS V MATERIALES	•	· · ·	-	
2. LISTADO DE II						
		Inventario o	de Equipos Ópticos			
-	Cantidad	Equipo	Marca	Modelo		
-	1	Fusionadora	FiberFox	Mini 5C		
_	2	ОРМ	PROMAX	Prolite-63B		
-	1	Fuente Óptica	YOKOGAWA	AQ2200		
-	1	OSA	Anritsu	MS9740A		
-	1	OTDR	YOKOGAWA	AQ7280		
	1	OLT	UBIQUITI	Ufiber OLT		
-	4	ONU	UBIQUITI	Nano G		
	2	Generador de Tráfico	ALBEDO	xGenius		
-	1	Atormentador de Tráfic	co ALBEDO	Net.Storm		
	1	Capturador de Tráfico	ALBEDO	Net.Hunter		
L			1	1]		

4. Equipos

En esta parte está centrado en detallar las características, funcionamiento y especificaciones de los equipos ópticos que se encuentran en el laboratorio con el fin de familiarizar al usuario con una correcta operación y manipulación.

Fusionadora

La fusionadora Mini 5C (figura 1) utiliza la tecnología de alineación por núcleo, posee LEDs, lentes, cámaras de detección de luz y motores que aseguran una fusión de alta calidad, además tiene incorporado un calentador tipo horno para mejorar la resistencia mecánica de la fusión garantizando un buen rendimiento. La Tabla 1 muestra las características y especificaciones técnicas.

Figura 1 Fusionadora FiberFox Mini 5C

Tabla 1 Especificaciones técnicas FiberFox Mini 5C			
Cámara	Cámara dual de alta precisión		
Display	Pantalla LCD reforzada de 4.3'' de ancho		
	x150:	X&Y eje de doble vista	
Microscopio	x300: X eje de una vista		
	x300: Y eje de una vista		
		AC 100 ~ 240 V	
Fuente de	Entrada	50 ~ 60 Hz	
annenacion		DC 9 ~ 14 V	
	Batería de iones de litio	DC 11.1 V	
Velocidad de empalme	Rápido	7 sec	
	Automático	9 sec	

Calentador	Tubillo aplicable	Estandarizado: 20, 25, 30, 35, 40, 60 mm	
	Tiempo de calentado	8 ~ 900 sec (Típicamente: 15 sec)	
	Tipo: Un solo núcleo		
Fibra aplicable	Tipos de fibra: SM (ITU-TG.652)/ DS(ITU-TG.653)/ NZDS(ITU- TG.652)/ ITU-TG.657 tipo A,B/ MM(ITU-TG.651)		
Diámetro aplicable	0.25 mm / 0.9 mm / 2.0 mm / 2.4 mm / 3.0 mm		
	SM: 0.02 dB		
	MM: 0.01 dB		
Perdidas por empalme	DS: 0.04 dB		
	NZDS: 0.04 dB		
	G.657: 0.02 dB		

Medidor de Potencia Óptica

En un sistema de transmisión óptica medir la potencia es una forma ideal de determinar la conectividad y atenuación que se producen a lo largo del enlace. El OPM (Optical Power Meter) Prolite-63B es un medidor de potencia óptica funcional pues opera en un amplio rango de longitud de onda, la Tabla 2 muestra las características técnicas del equipo.

Figura 22 Medidor de potencia óptica Prolite-63B

Tabla 2 Especificacio	nes tecnicas Prolite 63 B
Rango de medición (dBm)	-70 ~ +10 a 1550 nm
Rango de detección de frecuencia	-40 ~ +10 (dBm)
Rango de detección de longitud de onda	-40 ~ +10 (dBm)

Resolución	0.01
Longitud de onda (nm)	850/1300/1310/1490/1550/1625
Detector	InGaAs
Precisión	±5%
Longitud de onda operativa (nm)	800 ~ 1700
Alimentación	1 baterías de 1.2 V; Adaptador de CA

El Prolite-63B posee un teclado con una amplia variedad de funciones, la **¡Error! No se encuentra el origen de la referencia.** muestra la operación que cumple cada botón del equipo. Para una correcta manipulación se describen las siguientes recomendaciones de uso del equipo.

- Configurar la longitud de onda de trabajo del enlace.
- Limpiar los conectores antes de su uso para evitar lecturas incorrectas.
- Luego del uso del equipo, cubrir el conector y guardar el equipo en su estuche.

Fuente Óptica

La fuente de luz AQ2200 es una plataforma de prueba óptica conformada por dos módulos (fuente de luz y atenuadores) que permiten diseñar y experimentar mediciones con un rango dinámico de longitud de onda y potencia.

Figura 3 Plataforma de prueba óptica Yokogawa AQ2200

Es un módulo AQ2200-132 que posee una fuente de luz sintonizable (TLS) con dos salidas que operan en la banda C y L, utiliza un láser de clase 1M tipo ITLA (Integrated Tunable Laser Assembly) lo que permite una transmisión digital óptica de elevada velocidad, la indica las especificaciones técnicas de este módulo.

Tabla 3 Espec	ificaciones modulo AQ2200-132
Modelo	AQ2200-132

Clase	1M
Tipo de laser	ITLA
Conector	FC/APC
Longitud de onda de	Banda C (Output 1): 1527.6 nm a 1565.5 nm
operación	Banda L (Output 2): 1570.01 nm a 1608.76 nm
Potencia de salida	+ 8.2 dBm a 14.5 dBm
Modulación	CW

El AQ2200-132 tiene una etiqueta de advertencia en forma triangular que indica el peligro por radiación de luz; utiliza un láser clase 1M que según la norma europea IEC60825-1: 2007, son seguros en condiciones normales, pero peligrosos si se emplean instrumentos ópticos para visión directa (binoculares, telescopios, microscopios, lupas) ya que puede causar lesiones oculares.

EL módulo AQ2200-342 tiene dos atenuadores ópticos variables, además posee un medidor de potencia incorporado que sirve para monitorear la salida óptica asegurando una potencia óptica constante, la Tabla 4 indica las especificaciones técnicas de este equipo.

Tabla 4 Especificaciones modulo AQ2200-342			
Modelo	AQ2200-342		
Conector	FC/APC		
Número de canales	2		
Longitud de onda de operación	1260 nm a 1640 nm		
Rango de atenuación	0 dB a 41 dB		
Perdidas por inserción	1.8 dB a 2.4 dB		
Máxima potencia de entrada	+ 23 dBm		

Analizador de Espectros Ópticos

El MS9740A es un analizador de espectros ópticos que mide la distribución de potencia de las longitudes de onda, utiliza una rejilla de difracción para analizar la luz en el rango de longitud de onda desde 600 nm a 1750 nm, también examina y mide las pérdidas de elementos pasivos, como los aisladores ópticos, amplificadores ópticos y cifra de ruido; posee como sistema operativo Windows para la gestión de datos. La indica las **¡Error! No se encuentra el origen de la referencia.**5 características del equipo.

Tabla 5 Especificaciones del	Analizador Espectros Opticos MS9740A
Modo de Fibras	Monomodo y Multimodo entre 50/125 μm
Medición de alta velocidad con tiempo de barrido	300 ms

Alta precisión de longitud de onda	± 20 pm	
Rango dinámico	42 dB y 70 dB	
Alta resolución	0.03 nm	
Sensibilidad Rx	-90 nm	
Entrada óptica máxima	200 mW	
Alimentación	120 & 240 V/ 50-60 Hz	

Las aplicaciones del analizador de Espectros es la evaluación de dispositivos ópticos como diodo laser, diodos ópticos, transceptores ópticos; en dispositivos activos como los amplificadores ópticos; análisis en las perdidas en fibras ópticas, acopladores ópticos, aisladores ópticos, filtros ópticos y la monitorización del nivel de señal y longitud de onda de los circuitos de comunicaciones. Para la conexión se utiliza un patch cord de fibra óptica en la entrada, la característica de la fibra es utilizar un conector SC/UPC. Figura 4.

Figura 44 Panel Frontal Anritsu MS9740A

Para la calibración se lo realiza utilizando una fuente de luz con calibración externa y se realiza la alineación con el equipo; la señal de ingreso debe poseer una potencia de 20 dBm o mayor con una longitud de onda entre 600 a 1700 *nm* y ser mono modo. En el teclado de función horizontal se coloca Calibración y automáticamente el equipo adopta esas características.

El equipo posee 3 tipos de medida, los procesos que se realizan durante la medición son longitud de onda de pico, nivel de pico, medio ancho del espectro de la entrada óptica, rango de longitud de onda, resolución ajustada, escala de nivel ajustada.

- Medida automática: Establece automáticamente la longitud de onda, el nivel, la resolución con sus mediciones.
- Medida única: Realiza el barrido de onda una sola vez.
- Medición repetida: El barrido de la forma de onda se repite hasta que se presione la tecla Stop. **Reflectometro óptico en el dominio del tiempo**

El OTDR (Optical Time Domain Reflectometer) es un equipo que se utiliza para la caracterización de una red, tiene la capacidad de evaluar un enlace óptico por completo determinando los eventos (perdidas, fallas y distancia) que suceden a través de este. Para el diagnóstico el OTDR se basa en la reflexión de Fresnel y la retrodispersión de Rayleigh, enviando un pulso de luz corto a través de la fibra y, a partir de la señal reflejada por eventos determina las pérdidas, fallas o rupturas en el medio de transmisión.

El YOKOGAWA AQ7280 cuenta con la unidad OTDR, un módulo medidor de potencia y una fuente de luz visible VLS (Visible Light Source), la Tabla 6 muestra las especificaciones técnicas del equipo.

Tabla 6 Especificaciones tecnicas YOKOGAWA AQ7280				
Pa	rámetro	Valores		
	Modo	Simple/ Detallado/ PON		
	Longitud de onda	SM 1310 nm/ SM 1550 nm/ SM 1625 nm		
Unidad OTDR	Rango de distancia	200 m hasta 512 km		
	Ancho de pulso	3 ns hasta 1 μ s		
	Modo de operación	Tiempo Real/ Promedio		
	Longitud de Onda	850 nm/ 1300 nm/ 1310 nm/ 1490 nm/ 1550 nm/		
		1625 nm/ 1650 nm		
	Modulación	CW/ 270 Hz/ 1 kHz/ 2 kHz		
	Unidades	dB/ dBm/ W		
Módulo VLS	Longitud de onda	650 nm		
	Modulación	CW/ 2 Hz		

Optical Line Terminal

La UFiber OLT es un equipo de alto desempeño que opera bajo el estándar GPON, posee ocho puertos que pueden soportar hasta 128 usuarios cada uno, dando un total de 1024 clientes, además cuenta con dos puertos SFP+ que proporcionan hasta 10 Gbps de conectividad ascendente, la Tabla 7 indica las especificaciones técnicas. Figura 5.

Interfaz		Descripción
	Tipo SFP	UF-GP-8B+
	Conector	SC/UPC
Puertos GPON	Longitud de onda de operación	Tx: 1490 nmRx: 1310 nm
	Potencia de salida	1.5 dBm a 5 dBm
	Sensibilidad	-8 dBm a -28 dBm
	Velocidad	Downstream: 2.488 GbpsUpstream : 1.244 Gbps
Puertos SFP+	Transceptor SFP+	Soporta conexiones de 1 Gbps o 10 Gbps
	Conector	LC/UPC
Puerto MGMT	Cable RJ45, utilizado	o para la configuración de la OLT.
Puerto de	Cable RJ45 a DB9,	utilizado para la interfaz de línea de
Consola	comandos (CLI) cua	ndo se pierda la OLT.
Botón de Reinicio	 Existen dos formas o configuraciones de fa Runtime reset: n alrededor de 10 parpadee e ilum unos segundos, se reiniciaría aut Power-on reset: botón <i>Reset</i> y v MGMT comience 	de reiniciar la OLT a las abrica: nantener presionado el botón <i>Reset</i> segundos hasta que el LED MGMT ine de forma continua, después de el LED se apagará y la UFiber OLT omáticamente. desconectar la OLT, presionar el olver a conectar hasta que el LED e a parpadear y se apague.

Optical Network Unit

La Ufiber ONU Nano G es un equipo de alto rendimiento que posee una pantalla LED que brinda información del estado de la conexión (velocidad, potencia, dirección IP), dispone de un puerto WAN GPON y un puerto GE RJ45 tipo PoE (Power Over Ethernet) para la alimentación y transmisión de datos hacia la red interna, la Tabla 8 muestra las especificaciones técnicas del equipo.

Tabla 8 Espe	cificaciones de la Ufiber ONU Nano G
	GPON WAN (SC/APC)
	Downstream: 2.488 Gbps
Interfaces	Upstream: 1.244 Gbps
	GbE LAN (RJ45)
	• 10/ 100/ 1000 Mbps

	Reset (presionar y soltar), restaura el dispositivo a la configuración predeterminada de fábrica.
Potencia de salida	Clase B+: 1.5 dBm a 5dBm
Sensibilidad	-8 dBm a -28 dBm
Alimentación	Tipo PoE: 24 V

Para encender el equipo siga los siguientes pasos: (Figura 7)

- 4. Conectar el cable ethernet desde el Nano G hasta el puerto Gigabit PoE del adaptador.
- 5. Conectar un cable ethernet de la LAN al puerto LAN en el adaptador Gigabit PoE.
- 6. Conectar el cable de alimentación al adaptador Gigabit PoE.

Figura 7 Alimentación PoE de la ONU Nano G

Generador de Trafico

El xGenius es una plataforma diseñada para el análisis de redes y servicios basadas en infraestructuras Ethernet/ IP, entre otras; posee varias interfaces (ópticas y eléctricas) de conexión que facilitan la prueba de varios dispositivos o sistemas, además tiene una interfaz gráfica de usuario la cual tiene varios menús en los que se configuran el equipo y se analiza los resultados de las pruebas realizadas (ver **¡Error! No se encuentra el origen de la referencia.** 9).

Tabla 9 Descripcion de los menus del xGenius			
Menú	Descripción		
TEST	Esta ventana contiene diferentes ítems de configuración relacionados con el modo de prueba, tipo de prueba, ping, traza de ruta, inserción de eventos y modo de inicio y paro.		
SETUP	En esta ventana se configuran diferentes parámetros de los puertos del equipo relacionados con el modo de operación, capa física, capa de enlace, capa de red, velocidad de transmisión y carga útil.		
RESULTS	En esta ventana se despliegan los resultados de la prueba realizada relacionados con las tramas enviadas y recibidas, tipo de prueba, ping, información del SFP/SFP+, etc.		

El xGenius se puede conectar al dispositivo o sistema bajo prueba (DUT/ SUT) a través del panel de conectores, la **¡Error! No se encuentra el origen de la referencia.** indica y la Tabla 10 describe las interfaces de conexión que posee el equipo.

Figura 10 Interfaces de conexión del xGenius

Tabla 10 Interfaces del xGenius			
Interfaz	Descripción		
Puertos A/B SFP/ SFP+	Se usan para conectar el equipo a la red a través de una interfaz óptica. Soporta velocidades de transmisión y recepción de hasta 10 Gbps. El puerto A y B son similares, a excepción de que el puerto B no posee las capacidades de transmisión del puerto A.		
Puertos A/B RJ45	Se usan para conectar el equipo a la red a través de una interfaz eléctrica. Soporta velocidades de transmisión y recepción de 10/100/1000 BASE-T. El puerto A y B son similares, a excepción de que el puerto B no posee las capacidades de transmisión del puerto A.		
Puerto C RJ4 5 Tx/Rx	Tiene una resistencia de entrada/salida 120 Ω balanceada; usado para analizar señales de reloj (1544 kHz, 2048 kHz, 10 MHz, 1 PPS) y generar y analizar señales TDM (E1 y T1)		
Puerto C BNC Tx	Tiene una resistencia de salida 75 Ω no balanceada; usado para generar señales TDM (E1 y T1) o como salida de reloj.		
Puerto C BNC Rx	Tiene una resistencia de entrada 75 Ω no balanceada; usado para analizar TDM (E1 y T1) o como puerto de entrada de referencia de reloj.		
GNSS	Es un conector SMA usado para conectar a una antena GNSS, funciona como sincronización para la unidad de prueba.		
Puerto C SMA Rx	Este puerto se utiliza para el análisis de señales 1 PPS 50 Ω no balanceadas.		

REF IN	Puede usarse como una entrada de referencia de reloj de 1 PPS utilizada en algunas pruebas de latencia y sincronización.
REF OUT	Salida 1 PPS de referencia; puede usarse como salida de referencia de reloj 1 PPS. La salida esta sincronizada con el oscilador local.

Atormentador de Trafico

Albedo Net.Storm es un comprobador portátil con la capacidad de emular diferentes degradaciones que se encuentras en las redes Ethernet e IP, una de sus aplicaciones es la de determinar si una aplicación o dispositivo de red es apropiado en operar en dichas redes.

Figura 11 Equipo Net.Storm

El equipo Net.Storm se puede conectar al dispositivo o sistema a través del panel de conectores, la Figura 12 indica y la Tabla 11**¡Error! No se encuentra el origen de la referencia.** describe las interfaces de conexión que posee el equipo.

Tabla 11 Interfaces del Net. Storm			
Interfaz	Descripción		
RJ-45 Puerto A	Primer puerto con 10/100/1000 BASE-T con todas las funciones para la transmisión y recepción de Ethernet.		
RJ-45 Puerto B	Segundo puerto con 10/100/1000 BASE-T con todas las funciones para la transmisión y recepción de Ethernet.		
Puerto SFP A	Primer puerto utilizado para conectar el comprobador a la red a través de una interfaz óptica con la ayuda del módulo SFP.		
Puerto SFP B	Segundo puerto utilizado para conectar el comprobador a la red a través de una interfaz óptica con la ayuda del módulo SFP.		
Tarjeta SD	Slot utilizado como dispositivo de almacenamiento externo.		

Capturador de Trafico

Es un equipo que posee 2 puertos SFP de 1 Gbps y 2 puertos RJ-45 de 1 Gbps, los puertos SFP tiene las líneas de interfaces A y B, los puertos RJ-45 puede ser usado como interfaces espejo y pueden analizarse con otros equipos. El Net.Hunter tiene la función de capturar el tráfico con propiedades específicas que elija el usuario. Figura 13.

Figura 13 Equipo Net.Hunter

El tráfico se reenvía entre los puertos A y B sin modificaciones o retraso, el tráfico filtrado se reenvía hacia los puertos espejo o un dispositivo de almacenamiento. Puede configurarse para agregar tráfico desde las direcciones de transmisión hacia adelante y hacia atrás y presentarlas como una sola secuencia. Tabla 12.

Tabla 12 Modo de Operacion Net. Hunter		
Modo de Operación	Descripción	
Mirror	El tráfico coincidente desde el puerto de línea A se reenvía al puerto duplicado A y el tráfico coincidente desde el puerto de línea B se reenvía al puerto duplicado B.	

	Mirror & aggregate	El tráfico coincidente de los puertos de línea A y B se reenvía al puerto duplicado B.		
	Store	El tráfico correspondiente de los puertos de línea A y B se reenvía a la tarjeta SD.		
CONCLUS	ONS:			
•				
RECOMMENDATIONS:				
•				
REFERENC	CES:			
[1]				