UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA

CARRERA DE INGENIERÍA MECÁNICA AUTOMOTRIZ

Trabajo de titulación previo a la obtención del título de Ingeniero Mecánico Automotriz

PROYECTO TÉCNICO:

"ANÁLISIS DEL COMPORTAMIENTO DE MOTORES DE COMBUSTIÓN INTERNA CICLO OTTO Y DIÉSEL DURANTE EL EFECTO PRODUCIDO POR AVERÍAS EN EL SISTEMA ELECTRÓNICO"

AUTORES:

JORGE LUIS MOROCHO MEDINA

JOHNY FABIAN NAGUA UYAGUARI

TUTOR:

ING. JUAN FERNANDO CHICA SEGOVIA, MSc.

CUENCA – ECUADOR

2019

CESIÓN DE DERECHOS DE AUTOR

Nosotros, Jorge Luis Morocho Medina con documento de identificación N° 0106398803 y Johny

Fabian Nagua Uyaguari con documento de identificación Nº 0106078637, manifestamos nuestra

voluntad y cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos

patrimoniales en virtud de que somos autores del trabajo de titulación: "ANÁLISIS DEL

COMPORTAMIENTO DE MOTORES DE COMBUSTIÓN INTERNA CICLO OTTO Y

DIÉSEL DURANTE EL EFECTO PRODUCIDO POR AVERÍAS EN EL SISTEMA

ELECTRÓNICO", mismo que ha sido desarrollado para optar por el título de: Ingeniero

Mecánico Automotriz, en la Universidad Politécnica Salesiana, quedando la Universidad

facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en nuestra condición de

autores nos reservamos los derechos morales de la obra antes citada. En concordancia,

suscribimos este documento en el momento que hacemos entrega del trabajo final en formato

impreso y digital a la Biblioteca de la Universidad Politécnica Salesiana.

Cuenca, septiembre del 2019

Jorge Luis Morocho Medina

C.I. 0106398803

Johny Fabian Nagua Uyaguari

C.I. 0106078637

II

CERTIFICACIÓN:

Yo, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: "ANÁLISIS DEL COMPORTAMIENTO DE MOTORES DE COMBUSTIÓN INTERNA CICLO OTTO Y DIÉSEL DURANTE EL EFECTO PRODUCIDO POR AVERÍAS EN EL SISTEMA ELECTRÓNICO", realizado por Jorge Luis Morocho Medina y Johny Fabian Nagua Uyaguari, obteniendo el *Proyecto Técnico*, que cumple con todos los requisitos estipulados por la Universidad Politécnica Salesiana.

Cuenca, septiembre del 2019

Ing. Juan Fernando Chica Segovia, MSc.

C.I. 0102220654

DECLARATORIA DE RESPONSABILIDAD.

Nosotros, Jorge Luis Morocho Medina con documento de identificación N° 0106398803 y Johny Fabian Nagua Uyaguari con documento de identificación 0106078637, autores del trabajo de titulación: "ANÁLISIS DEL COMPORTAMIENTO DE MOTORES DE COMBUSTIÓN INTERNA CICLO OTTO Y DIÉSEL DURANTE EL EFECTO PRODUCIDO POR AVERÍAS EN EL SISTEMA ELECTRÓNICO", certificamos que el total contenido del *Proyecto Técnico* es de nuestra exclusiva responsabilidad y autoría.

Cuenca, septiembre del 2019

Jorge Luis Morocho Medina

C.I. 0106398803

Johny Fabian Nagua Uyaguari

C.I. 0106078637

AGRADECIMIENTO

Agradezco a Dios por darme la posibilidad de llegar a este nivel académico, además de enriquecerme con el conocimiento necesario para poder desempéñame en el campo profesional.

Agradezco a mis padres, Hilda Medina y Klever Morocho por darme el ejemplo de

perseverancia, honestidad, dedicación, además de ser una fuente motivadora para seguir siempre adelante y cumplir mis objetivos.

Agradezco al Ing. Juan Fernando Chica por el tiempo que dispuso para la revisión en el proyecto.

Agradezco a mi familia que estuvo siempre presente apoyándome en mis decisiones y acciones.

Jorge

AGRADECIMIENTO.

En primer lugar agradezco a Dios y a la intercesión de la Santísima Virgen por todas las bendiciones que he recibido a lo largo de este camino de aprendizaje.

A mis padres Jorge y Lilia por todo su apoyo incondicional en lo económico y moral que me han sabido brindar, para que pueda conseguir este logro muy importante en mi vida, por lo cual, estoy y estaré eternamente agradecido.

A mis hermanos Bryan y Paola, por brindarme todo su cariño y apoyo en todo este proceso de aprendizaje; y al resto de mi familia que también me han apoyado de diferentes maneras.

A mis amigos con los que he compartido grandes momentos de mi vida, gracias por sus consejos y por su amistad incondicional, siempre cuenten conmigo.

Finalmente, pero no menos importantes a todos los maestros y colaboradores de la carrera; de manera especial al Ing. Juan Fernando Chica Segovia por su amistad, tiempo y entrega en la realización de este proyecto.

Johny

DEDICATORIA

Dedico este trabajo de titulación a las nuevas generaciones de estudiantes que ingresen a la Universidad Politécnica Salesiana, para que sirva de aprendizaje optimizando el tiempo en cada práctica.

El tiempo y el esfuerzo empleado en el trabajo de titulación es para mis padres Hilda Medina y Klever Morocho.

Dedico a la persona que quiera ampliar su conocimiento en el campo automotriz.

Jorge

DEDICATORIA

El esfuerzo de este proyecto de titulación lo dedico a mis padres que hace muchos años salieron de su tierra "El Cisne" parroquia de la provincia de Loja, en busca de mejores días y educación para sus hijos, siendo este logro uno de muchos que como hijos queremos brindarles para que tengan la certeza de que todo su esfuerzo y sacrificio ha valido la pena.

A mi abuelito Celso que desde el cielo me cuida y me guía en mi vida, gracias por esos consejos que hasta el día de hoy me sirven y motivan a seguir adelante; y en memoria de todos mis familiares que se nos adelantaron.

A mi abuelita Victoria que a pesar de sus años, es un modelo de amor, lucha y sacrificio.

A mis hermanos y demás familiares por sus consejos, su cariño y apoyo, que me han motivado a conseguir este logro muy importante en mi vida.

Johny

RESUMEN.

En este trabajo, se realiza un análisis del comportamiento de motores ciclo Otto y Diésel durante el efecto producido por averías en su sistema electrónico, en 6 equipos de prácticas disponibles en los laboratorios de Ingeniería Mecánica Automotriz de la Universidad Politécnica Salesiana; basado en una comparación de datos con escáner; cuando el motor se encuentra funcionando en buenas condiciones y cuando se aplica una falla de tipo "circuito abierto" en los sensores y actuadores de cada uno de los equipos analizados.

Se parte desde un breve estudio del estado de arte referente a investigaciones relacionadas al análisis de motores ciclo Otto o Diésel, cuando presentan fallas en algunos de sus sensores y actuadores; luego se presenta un sustento teórico, funcionamiento y componentes de los sistemas auxiliares que conforman los motores ciclo Otto y Diésel.

Seguidamente se plantea el procedimiento experimental usado en este trabajo, el cual inicia con la identificación de las condiciones geográficas del lugar de pruebas, características de los equipos a utilizar, equipos empleados, protocolo de pruebas preliminares y de adquisición de datos; así también la creación de formatos y tablas, que sirvieron para una mejor adquisición y análisis de datos. Para todo este ciclo experimental fue necesario establecerse un problema, hipótesis, pruebas y análisis de datos obtenidos.

Finalmente, se estudia cada uno de los datos obtenidos en estado de buen funcionamiento y con la generación de fallas en los sensores y actuadores de cada uno de los 6 equipos estudiados; para que luego con dichos datos se proceda a la creación de 6 guías de protocolo y una guía general, que podría servir como base para futuros estudios y para el diagnóstico de fallas en el sistema electrónico en motores ciclo Otto y Diésel. Adicionalmente se crearon 20 guías de prácticas en base a la malla curricular de la carrera, las cuales también pueden servir para que los

estudiantes de la carrera	adquieran destrezas en el d	iagnóstico, mantenimie	ento y reparación de
motores.			

ABSTRACT

In this work, an analysis of the behavior of Otto and Diesel cycle engines is carried out during the effect produced by failures in its electronic system, in 6 practice equipment available in the Automotive Mechanical Engineering laboratories of the Salesian Polytechnic University; based on a comparison of data with scanner; when the engine is running in good condition and when an "open circuit" type fault is applied to the sensors and actuators of each of the equipment analyzed.

It starts from a brief study of the state of the art regarding research related to the analysis of Otto or Diesel cycle engines, when they have failures in some of their sensors and actuators; Then there is a theoretical support, operation and components of the auxiliary systems that make up the Otto and Diesel cycle engines.

Next, the experimental procedure used in this work is presented, which begins with the identification of the geographical conditions of the test site, characteristics of the equipment to be used, equipment used, protocol of preliminary tests and data acquisition; as well as the creation of formats and tables, which served for better data acquisition and analysis. For all this experimental cycle it was necessary to establish a problem, hypothesis, tests and analysis of data obtained.

Finally, each of the data obtained in a state of good functioning and with the generation of failures in the sensors and actuators of each of the 6 equipment studied are studied; So that with these data, we proceed to the creation of 6 protocol guides and a general guide, which could serve as a basis for future studies and for the diagnosis of failures in the electronic system in Otto and Diesel cycle engines. Additionally, 20 practice guides were created based on the curricular

mesh of the race, which can also be used for the students of the race to acquire skills in the diagnosis, maintenance and repair of engines.

INDICE GENERAL

CESIÓN DE DERECHOS DE AUTOR	I
CERTIFICACIÓN:	II
DECLARATORIA DE RESPONSABILIDAD.	III
AGRADECIMIENTO	IV
DEDICATORIA	VI
RESUMEN.	1
ABSTRACT	3
INDICE GENERAL	5
INDICE DE FIGURAS	11
INDICE DE TABLAS	12
FASE I	15
ESTADO DEL ARTE DURANTE EL EFECTO PRODUCIDO POR AVERÍAS EN LOS MOTORES CICLO OTTO Y DIÉSEL.	15
1.1. ESTADO DEL ARTE	
1.2. FUNDAMENTOS TEORICOS	
1.2.1. Motor de Combustión Interna.	17
1.2.2. Motor Alternativo de Combustión Interna	17
1.2.2.1. Elementos Constructivos	18
1.2.2.2. Clasificación	19
1.2.2.2.1. Clasificación según su proceso de combustión.	19
1.2.2.2.2. Ciclo Operativo de los Motores MEP Y MEC	22
1.2.3. Sistemas auxiliares de un motor de combustión interna	23
1.2.3.1. Sistema de Alimentación de Combustible	23
1.2.3.2. Sistema de Encendido	25
1.2.3.2.1. Tipos de sistemas de encendido	26
1.2.3.3. Sistema de admisión de Aire.	29
1.2.4. Concepto de Falla.	29
FASE II.	31
MARCO METODOLÓGICO	31
2.1. DISEÑO DEL EXPERIMENTO.	31
2.1.1. Problema	31
2.1.2. Hipótesis	31
2.1.3. Pruebas de Experimentación.	31

2.1.3.1.	Motores de Pruebas.	32
2.1.3.2.	Lugar de Pruebas.	39
2.1.3.3.	Equipos de Medición.	39
2.1.3.	3.1. Scanner Automotriz	39
2.1.3.	3.2. Osciloscopio Automotriz	42
2.1.3.	3.3. Multímetro Automotriz	43
2.1.3.4.	Variables de la Experimentación	44
2.1.3.	4.1. Variables de Respuesta	45
2.1.3.	4.2. Variables de Estudio.	45
2.1.3.	4.3. Variables de Bloqueo	50
2.1.3.	4.4. Variables de Ruido.	51
2.1.4.	Protocolo de Pruebas.	51
2.1.4.1.	Pruebas preliminares	51
2.1.4.2.	Proceso de toma de datos	52
2.1.4.3.	Formatos y tablas.	53
2.1.5. durante el	Obtención de datos proporcionados por la ECU del motor para los 6 equiperes efecto producido por averías en su sistema electrónico	
2.1.5.1.	Identificación y descripción de las variables de estudio	55
2.1.5.2.	Tipo de falla propuesta para el análisis de las variables	57
2.1.5.	2.1. Circuito abierto	58
2.1.5.3. generaci	Proceso de toma de datos en estado normal de funcionamiento y con ión de fallos.	58
FASE III		65
ANÁLISIS Y (COMPARACIÓN DE LOS DATOS OBTENIDOS EN LOS EQUIPOS	65
	Comportamiento del equipo G- 160201 durante el efecto producido por fallas trónico.	
3.1.1.	Inyectores.	65
3.1.2.	Bobinas de encendido.	66
3.1.3.	Actuador de Control a Ralentí ISC.	67
3.1.4.	Control de la bomba de combustible	67
3.1.5.	Sensor de temperatura del refrigerante.	68
3.1.6.	Sensor de posición del cigüeñal CKP.	68
3.1.7.	Sensor de presión absoluta del múltiple MAP.	69
3.1.8.	Sensor de posición del árbol de levas CMP.	69
3.1.9.	Sensor de temperatura de aire ATS.	70

3.1.10). Sensor de posición de la mariposa de aceleración TPS	71
3.1.11	Otros sensores y actuadores	71
	Comportamiento del equipo G- 110401 durante el efecto producido por falla	
sistema elec	ctrónico	
3.2.1.		
3.2.2.	Control de tiempo variable continúo de la válvula.	74
3.2.3.		
3.2.4.	Sensor de posición del árbol de levas CMP (PHASE LH)	75
3.2.5.		
3.2.6.	Sensor de posición del árbol de levas CMP (PHASE RH).	
3.2.7.	Sensor de temperatura del aire de entrada IAT.	77
3.2.8.	Sensor de posición de la mariposa de aceleración TPS.	78
3.2.9.	Sensor de flujo de masa de aire MAFS.	79
3.2.10). Bobina de encendido.	80
3.2.11	. Sensor de temperatura del refrigerante ECT.	81
3.2.12	2. Sensor de pedal del acelerador APS	82
3.2.13	Relé del motor de control del acelerador	82
3.2.14	Relé de encendido general del motor.	83
3.2.15	S. Relé de la bomba de combustible	83
3.2.16	5. Otros sensores y actuadores	83
	Comportamiento del equipo G- 120201 durante el efecto producido por fall electrónico.	
3.3.1.		
3.3.2.	Relé de control de las bujías de precalentamiento.	84
3.3.3.		84
3.3.4.	Control del relé de la bomba de combustible	85
3.3.5.	Válvula de posición del acelerador TPV	85
3.3.6.	Geometría variable del turbo VGT	86
3.3.7.	Sensor de pedal del acelerador APS	86
3.3.8.	Sensor de temperatura del combustible FTS	87
3.3.9.	Sensor de temperatura del refrigerante WTS	87
3.3.10		
3.3.11		
3.3.12		
3.3.13		

3.3.14.	Sensor de posición del cigüeñal CKP	91
3.3.15.	Sensor de posición del árbol de levas CMP.	91
3.3.16.	Regulador de presión del riel de combustible.	92
3.3.17.	Inyectores	92
3.3.18.	Otros sensores y actuadores	93
	Comportamiento del equipo G- 150301 durante el efecto producido por falla trónico	
3.4.1.	Sensor de temperatura del combustible ECT.	93
3.4.2.	Sensor de oxígeno O2.	94
3.4.3.	Relé de control del motor.	95
3.4.4.	Solenoide de vapor de gas	95
3.4.5.	Solenoide de servicio principal de gas.	95
3.4.6.	Bobina de encendido.	96
3.4.7.	Sensor de temperatura de aire de entrada ATS.	97
3.4.8.	Sensor de posición de la mariposa del acelerador TPS	97
3.4.9.	Sensor de posición del árbol de levas CMP.	98
3.4.10.	Solenoide de corte lento de combustible.	99
3.4.11.	Actuador de control de velocidad de ralentí (IAC)	99
3.4.12.	Sensor de presión absoluta del múltiple MAP	100
3.4.13.	Sensor de posición del cigüeñal CKP.	100
3.4.14.	Solenoide de Liquido.	100
3.4.15.	Solenoide de servicio lento de combustible.	101
3.4.16.	Relé de control del motor.	101
3.4.17.	Otros sensores y actuadores	101
3.5. C	Comportamiento del equipo G- 111701 durante el efecto producido por falla trónico.	
3.5.1.	Sensor de posición del cigüeñal CKP.	102
3.5.2.	Sensor de posición del árbol de levas CMP.	102
3.5.3.	Inyectores.	102
3.5.4.	Actuador de control de velocidad de ralentí (IAC)	103
3.5.5.	Sensor de temperatura del combustible ECT.	104
3.5.6.	Sensor de posición de la mariposa del acelerador TPS	104
3.5.7.	Sensor de oxigeno O2.	105
3.5.8.	Bobina de encendido.	106

	Comportamiento del equipo G- 111703 durante el efecto producido por fall electrónico.	
3.6.1.		
3.6.2.	-	
3.6.3.	-	
3.6.4.	Actuador de control de velocidad de ralentí (IAC)	108
3.6.5.	Sensor de posición de la mariposa del acelerador TPS	108
3.6.6. IAT.	Sensor de flujo de masa de aire MAF y sensor de temperatura de aire de e 109	ntrada
3.6.7.	Sensor de golpeteo KS.	110
3.6.8.	Inyectores.	110
3.6.9.	Bobina de encendido.	111
FASE IV		112
	ON DE GUIAS DE PROTOCOLO DURANTE EL EFECTO PROUCIDO P EL SISTEMA ELECTRONICO EN MOTORES CICLO OTTO Y DIESEL	
4.1.	Guía de protocolo general.	112
4.2.	Guías de protocolo para los 6 equipos analizados.	116
4.2.1.	Guía de Protocolo para el equipo G-160201	116
4.2.2.	Guía de Protocolo para el equipo G-110401	147
4.2.3.	Guía de Protocolo para el equipo G-150301	179
4.2.4.	Guía de Protocolo para el equipo G-120212.	207
4.2.5.	Guía de Protocolo para el equipo G-111701	239
4.2.6.	Guía de Protocolo para el equipo G-111703	262
	Guías de protocolo para prácticas de laboratorios de motores de combustión 286	
FASE V		286
CONCLUSIO	NES Y RECOMENDACIONES	286
5.1.	Conclusiones	286
5.2.	Recomendaciones	288
REFERENCI	AS BIBLIOGRAFICAS	289
ANEXOS		291
ANEXC) A:	291
A.1.	Datos obtenidos del equipo G-160201.	291
A.2.	Datos obtenidos del equipo G-110401	293
A 3	Datos obtenidos del equipo G-150301	297

A.4.	Datos obtenidos del equipo G-120212.	300
A.5.	Datos obtenidos del equipo G-111701.	303
A.6.	Datos obtenidos del equipo G-111703	304
ANEXO B		305
B.1.	Motores de encendido Provocado.	305
B.2.	Motores de encendido por compresión.	308
ANEXO	O.C	311

INDICE DE FIGURAS

FASE I

Figura 1. 1 Elementos constructivos del motor	18
Figura 1. 2 Motor de encendido provocado MEP	
Figura 1. 3 Motor de encendido por compresión MEC	
Figura 1. 4 Esquema del circuito de alimentación de combustible	
Figura 1. 5 Circuitos de alta y baja presión	
Figura 1. 6 Sistema de encendido convencional	
Figura 1. 7 Sistema de encendido electrónico con distribuidor	
FASE II	
Figura 2. 1 Equipo G-160201	
Figura 2. 2 Equipo G-110401	
Figura 2. 3 Equipo G-150301	
Figura 2. 4 Equipo G-120212	
Figura 2. 5 Equipo G-111701	
Figura 2. 6 Equipo G-111703	
Figura 2. 7 Taller automotriz de la Universidad Politécnica Salesiana	
Figura 2. 8 Scanner CARMAN Lite.	
Figura 2. 9 Scanner Hanatech ULTRASCAN P1	
Figura 2. 10 Osciloscopio FINEST 1006	
Figura 2. 11 Multímetro Digital TRUPER MUT- 33	
Figura 2. 12 Variables que intervienen en el proceso	
Figura 2. 13 Variables de estudio del equipo G-160201	
Figura 2. 14 Variables de estudio del equipo G-110401	47
Figura 2. 15 Variables de estudio del equipo G-150301	
Figura 2. 16 Variables de estudio del equipo G-120212	
Figura 2. 17 Protocolo de pruebas preliminares	
Figura 2. 18 Formato para las pruebas preliminares	54
Figura 2. 19 Formato para el proceso de toma de datos	
Figura 2. 20 Esquema de un circuito abierto	58

INDICE DE TABLAS

FASE I

	Tabla 1. 1 Análisis de fallas, según las consecuencias en el servicio.	30
	Tabla 1. 2 Análisis de fallas, según sus consecuencias en el servicio, al ambiente y a las	20
-	ersonas	30
H' 2	ASE II	
	Tabla 2. 1 Especificaciones técnicas del equipo G-160201	30
	Tabla 2. 2 Especificaciones técnicas del equipo G-100201	
	Tabla 2. 3 Especificaciones técnicas del equipo G-110401	
	Tabla 2. 4 Especificaciones técnicas del equipo G-130301	
	Tabla 2. 5 Especificaciones técnicas del equipo G-111701	
	Tabla 2. 6 Especificaciones técnicas del equipo G-111701	
	Tabla 2. 7 Descripción de las variables de estudio del equipo G-160201.	
	Tabla 2. 8 Descripción de las variables de estudio del equipo G-110401	
	Tabla 2. 9 Descripción de las variables de estudio del equipo G-150301.	
	Tabla 2. 10 Descripción de las variables de estudio del equipo G-120212	
	Tabla 2. 11 Variables de estudio para los equipos G-111701 y G-111703	
	Tabla 2. 12 Descripción de algunas variables de estudio.	
	Tabla 2. 13 Pruebas preliminares del equipo G-160201.	
	Tabla 2. 14 Pruebas preliminares del equipo G-110401.	
	Tabla 2. 15 Pruebas preliminares para el equipo G-150301.	
	Tabla 2. 16 Pruebas preliminares para el equipo G- 120212.	
	Tabla 2. 17 Pruebas preliminares para el equipo G-111701	
	Tabla 2. 18 Pruebas preliminares del equipo G-111703.	
F_{λ}	ASE III	
	Tabla 3. 1 Variables de respuesta más significativas para falla en inyectores	65
	Tabla 3. 2 Variables de respuesta más significativas para falla en la bobina de un par de	
ci	lindros	
	Tabla 3. 3 Variables de respuesta más significativas para falla al actuador de control a rale	
••		
	Tabla 3. 4 Variables de respuesta más significativas para falla al sensor ECT	
	Tabla 3. 5 Variables de respuesta más significativas para falla al sensor MAP.	
	Tabla 3. 6 Variables de respuesta más significativas para falla al sensor CMP.	
	Tabla 3. 7 Variables de respuesta más significativas para falla al sensor ATS	
	Tabla 3. 8 Variables de respuesta más significativas para falla al sensor TPS	71
	Tabla 3. 9 Sensores y actuadores que al fallar, no generaron cambios significativos en el	
n	otor	
	Tabla 3. 10 Variables de respuesta más significativas para falla al actuador ETC MOTOR.	
	Tabla 3. 11 Variables de respuesta más significativas para falla al actuador CVTC	
	Tabla 3. 12 Variables de respuesta más significativas para falla al sensor CMPS (LH)	
	Tabla 3. 13 Variables de respuesta más significativas para falla a los inyectores	
	Tabla 3. 14 Variables de respuesta más significativas para falla al sensor CMPS (RH)	/ /

Tabla 3. 15 Variables de respuesta más significativas para falla al sensor IAT	78
Tabla 3. 16 Variables de respuesta más significativas para fallas en los sensores TPS #1 y	
TPS#2	78
Tabla 3. 17 Variables de respuesta más significativas para falla en el sensor MAFS	
Tabla 3. 18 Variables de respuesta más significativas para falla en la bobina de encendido	
Tabla 3. 19 Variables de respuesta más significativas para falla en el sensor ECT	
Tabla 3. 20 Variables de respuesta más significativas para falla en el sensor APS	
Tabla 3. 21 Sensores y actuadores que al fallar, no generaron cambios significativos en el	02
motor	83
Tabla 3. 22 Variables de respuesta más significativas para falla en el relé de control de las	05
bujías de precalentamiento	Q /1
Tabla 3. 23 Variables de respuesta más significativas para falla en el actuador EGR	
Tabla 3. 24 Variables de respuesta más significativas para falla en el TPV	
Tabla 3. 25 Variables de respuesta más significativas para falla en el VGT.	
Tabla 3. 26 Variables de respuesta más significativas para falla en el sensor APS	
Tabla 3. 27 Variables de respuesta más significativas para falla en el sensor FTS	
Tabla 3. 28 Variables de respuesta más significativas para falla en el sensor WTS	
Tabla 3. 29 Variables de respuesta más significativas para falla en el sensor ATS	
Tabla 3. 30 Variables de respuesta más significativas para falla en el sensor AFS	
Tabla 3. 31 Variables de respuesta más significativas para falla en el sensor RPS	
Tabla 3. 32 Variables de respuesta más significativas para falla en el sensor BPS	90
Tabla 3. 33 Variables de respuesta más significativas para falla en el sensor CKP	91
Tabla 3. 34 Variables de respuesta más significativas para falla en el sensor CMP	91
Tabla 3. 35 Variables de respuesta más significativas para falla en inyectores	92
Tabla 3. 36 Sensores y actuadores que al fallar, no generaron cambios significativos en el	
motor.	93
Tabla 3. 37 Variables de respuesta más significativas para falla en el sensor ECT	
Tabla 3. 38 Variables de respuesta más significativas para falla en el sensor O2.	
Tabla 3. 39 Variables de respuesta más significativas para falla en el solenoide de vapor de	
gas.	
Tabla 3. 40 Variables de respuesta más significativas para falla en el solenoide de servicio	
principal de gas.	
Tabla 3. 41 Variables de respuesta más significativas para falla en las bobinas de encendid	
Table 2 42 Variables de granusate más significativas non falle en el caraca ATC	
Tabla 3. 42 Variables de respuesta más significativas para falla en el sensor ATS	
Tabla 3. 43 Variables de respuesta más significativas para falla en el sensor TPS	
Tabla 3. 44 Variables de respuesta más significativas para falla en el sensor CMP	
Tabla 3. 45 Variables de respuesta más significativas para falla en el actuador ISCA	
Tabla 3. 46 Variables de respuesta más significativas para falla en el sensor MAP	100
Tabla 3. 47 Sensores y actuadores que al fallar, no generaron cambios significativos en el	
motor	
Tabla 3. 48 Variables de respuesta más significativas para falla en el sensor CMP	102
Tabla 3. 49 Variables de respuesta más significativas para falla en los inyectores	103
Tabla 3. 50 Variables de respuesta más significativas para falla en el actuador IAC	
Tabla 3. 51 Variables de respuesta más significativas para falla en el sensor ECT	
Tabla 3. 52 Variables de respuesta más significativas para falla en el sensor TPS	

05
06
07
07
80
08
09
10
10
11
() () ()

FASE I

ESTADO DEL ARTE DURANTE EL EFECTO PRODUCIDO POR AVERÍAS EN LOS MOTORES CICLO OTTO Y DIÉSEL.

En el presente capítulo se presenta una investigación referente al estado de arte durante el efecto producido por averías en los motores ciclo Otto y Diésel, con el fin de conocer los estudios e investigaciones que se han, realizado referente al análisis de los parámetros o valores propios que cada sensor presenta, cuando existe una falla en el sistema electrónico durante el funcionamiento del motor. Seguidamente se realiza una breve descripción teórica del funcionamiento de los motores ciclo Otto y Diésel.

1.1. ESTADO DEL ARTE.

En la actualidad los vehículos han sido incorporados con un sistema de diagnóstico abordo (OBD), con el fin de conseguir reducir y controlar los gases contaminantes producidos por los vehículos automotores y que son emanados al ambiente. El sistema de diagnóstico OBD está incorporado a la unidad de gestión electrónica del motor, además, vigila constantemente los componentes que intervienen en las emisiones contaminantes, detecta oportunamente algún mal funcionamiento y facilita la localización o eliminación de fallos.(Volkswagen, 1999).

Si la unidad de control del motor (ECM), determina un fallo significativo que afecte a las emisiones contaminantes automáticamente generara un código de avería y así mismo se encenderá la luz de Mil o Check para informar o advertir al conductor. Existe también el caso en que las señales de los sensores empiecen a dar síntomas de un comportamiento errado pero siguen trabajando dentro del rango de valores de funcionamiento permitido, lo que causaría que se empiece a presentar fallas que no puedan ser detectadas por la ECM y por ende no se genere un código de avería.

Existen investigaciones que muestran diversos análisis a las señales de los sensores con el fin de relacionarlas a alguna falla o mal funcionamiento en los motores, es el caso de la investigación de (Álvarez, D; Calle, 2018), en el cual se crea una base de datos con valores obtenidos de señales en buen y mal funcionamiento en distintas marcas de vehículos pertenecientes a nuestro medio, con el fin de ayudar con el diagnóstico de fallas incipientes que no presentan códigos de averías, llegando a la conclusión que al haber alteraciones en las señales de algunos sensores existe una alteración al tiempo de inyección, afectando directamente a las correcciones de corto (SFT) y correcciones de largo alcance (LFT); y en los gases emanados al ambiente.

En la investigación de (Palacios, E; Pesántez, 2016), también se elabora una base de datos para la variación de las señales de los sensores de un vehículo en específico, cuando se provocan fallas en las bujías de encendido, sistema de alimentación, entrada de aire al múltiple de admisión y en el calado del sistema de distribución; llegando a la conclusión que los valores obtenidos de los sensores en buen funcionamiento, varían mínimamente con respecto a los de mal funcionamiento, pero con dichos datos si es posible relacionarlos para la localización de fallas en el motor.

Finalmente, en la investigación de (Barros, L; Pulla, 2016), se presenta la elaboración de una guía de diagnóstico, a partir del estudio de las señales de algunos sensores y actuadores del sistema de inyección de un motor diésel Hyundai Santa Fe 2.0 CRDi, obtenidas mediante osciloscopio. La investigación se fija en el estudio de los elementos que más fallas presentan del sistema de alimentación, los cuales en base a una encuesta se determina que son: sensor de presión del riel de combustible y sensor de temperatura del combustible; para el caso de

actuadores del sistema los que más fallas presentan son: inyectores, regulador de presión del riel de combustible y la bomba eléctrica de combustible.

1.2. FUNDAMENTOS TEORICOS.

1.2.1. Motor de Combustión Interna.

"En general, un motor se lo puede definir como un dispositivo que permite transformar cualquier tipo de energía en energía mecánica. Dentro de ese amplio campo, se encuentra el motor térmico, que se puede definir como un dispositivo que permite obtener energía mecánica a partir de la energía térmica contenida en un fluido compresible". (Payri, F. & Desantes, 2011)

Según, (Escudero & Rivas, n.d.) En los motores de combustión interna el trabajo es realizado por un fluido que actúa sobre elementos móviles que ocupan un volumen variable, siempre acotado por un valor máximo y otro mínimo.

Existen dos grandes grupos:

- Motores alternativos. El pistón se desplaza linealmente en el interior de un cilindro,
 mediante un mecanismo biela-manivela y transforma su movimiento lineal en rotativo.
- Motores rotativos. Tienen órganos principales con movimiento rotatorio y sin cambio en el sentido del mismo

El motor de los automóviles es de combustión interna ya que todo el proceso de combustión se efectúa dentro del motor, para esto el motor deberá estar dotado de sistemas auxiliares de alimentación, distribución, refrigeración, lubricación y encendido.

1.2.2. Motor Alternativo de Combustión Interna.

Los motores alternativos son motores con alto rendimiento, con más aplicaciones debido a que son muy versátiles, abarcan diversas potencias de hasta 32 MW, y usan combustibles de alto poder calorífico.

Este tipo de motores son los más importantes en automoción, fundamentalmente porque usan combustibles líquidos con alto poder calorífico, lo que les brinda una gran autonomía. Su uso está muy generalizado. Aunque se usan en automoción, también se les da otros múltiples usos. (Escudero & Rivas, n.d.)

1.2.2.1. Elementos Constructivos.

El motor alternativo es un motor endotérmico volumétrico que funciona a partir del volumen variable que se genera en la cámara de combustión por el movimiento de un pistón guiado en el bloque motor y que está unido a la biela, articulada al cigüeñal, obteniéndose así un movimiento rotativo que nace a partir del movimiento lineal del pistón.

Se puede decir que los elementos básicos del motor son: el tren alternativo formado por pistón, biela y cigüeñal, como elementos móviles del mecanismo; y el bloque motor y la culata, que configuran, junto a la cabeza del pistón, la cámara de combustión.(Álvarez, J; Callejon, n.d.)

Actualmente, los elementos constructivos de los motores de los vehículos siguen siendo los mismos que de antaño, aunque se han dado modificaciones en sus formas constructivas, sus materiales, la tecnología de fabricación, etc. En la figura 1.1, podemos apreciar los elementos constructivos del motor, clasificados entre elementos fijos, móviles y mecanismos auxiliares.

Figura 1. 1 Elementos constructivos del motor.

1.2.2.2. Clasificación.

Considerando diferentes criterios como pueden ser: el proceso de combustión de la mezcla aire-combustible, el ciclo de trabajo, la forma de admisión de aire al cilindro, el tipo de combustible, el sistema de alimentación de combustible, el sistema de control utilizado, el tipo de sistema de refrigeración, el número y disposición de los cilindros del motor, etc. (Payri, F. & Desantes, 2011)

El objetivo de esta investigación es conocer más a fondo los motores de combustión interna ciclo Otto y Diésel, por lo tanto únicamente se analizara la clasificación del motor alternativo de combustión interna, según su proceso de combustión.

1.2.2.2.1. Clasificación según su proceso de combustión.

• Motores de Encendido Provocado (MEP).

Son también conocidos como: motor de explosión, motor de encendido por chispa y motor Otto; la característica de este motor es que se necesita un estímulo de energía externo al ciclo termodinámico para el inicio de la combustión, actualmente esto se consigue al hacer saltar una chispa entre los dos electrodos de una bujía de encendido. Para que el proceso de combustión sea eficiente, se adecua o calcula minuciosamente el instante en el que debe saltar la chispa destinada al encendido de la mezcla aire-combustible. (Payri, F. & Desantes, 2011)

La Figura 1.2, describe el proceso de combustión de un motor ciclo Otto de 4 tiempos. Al descender el pistón, aspira una mezcla de aire-combustible y cuando asciende el pistón comprime la mezcla en la cámara de combustión, la cual es inflamada mediante el salto de una chispa en la bujía, provocando así un aumento considerable de la presión que provoca un trabajo mecánico durante la carrera descendente del pistón, cuando asciende nuevamente el pistón realizara un barrido y expulsión de los gases producidos por la combustión.

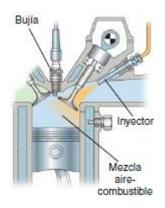


Figura 1. 2 Motor de encendido provocado MEP.

Fuente: (Sanz, 2007)

Como combustible se usa generalmente gasolina que se caracteriza por ser muy volátil lo que favorece la unión con el oxígeno dentro de la cámara de combustión. Otra característica importante de la gasolina es el índice de octano, que define su poder antidetonante, es decir, es la temperatura máxima que puede alcanzar durante la compresión de la mezcla aire-combustible sin que llegue a auto-encenderse. A medida que aumenta el índice de octano, disminuye el riesgo de autoencendido.

El autoencendido se produce cuando el combustible se inflama de forma espontánea, independientemente del encendido por chispa. Este fenómeno resulta perjudicial para el motor por producirse de forma incontrolada.(Sanz, 2007)

• Motores de Encendido por Compresión (MEC).

El nombre más extendido para el MEC es el de motor Diésel, en honor al ingeniero alemán que lo inventó. En estos motores la combustión se inicia mediante un proceso de autoencendido de la mezcla de combustible al conseguirse altas temperaturas en la cámara de combustión debido al proceso de compresión. Para controlar de modo aproximado el instante de encendido, durante el proceso de admisión se introduce solamente aire y el combustible se inyecta hacia el

final de la carrera de compresión, cuando el aire alcanza niveles de temperatura altos para producir el autoencendido.(Payri, F. & Desantes, 2011)

Dispone de un sistema de inyección que introduce el combustible pulverizado en la cámara de combustión (Figura 1.3) y al igual que el motor Otto, el ciclo de cuatro tiempos se desarrolla en dos vueltas de cigüeñal.

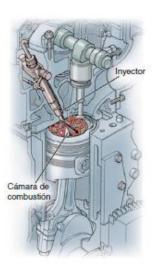


Figura 1. 3 Motor de encendido por compresión MEC.

Fuente: (Sanz, 2007)

El motor Diésel consume generalmente gasóleo, un carburante que se obtiene por destilación del petróleo, que tiene que inflamarse rápidamente al tomar contacto con el aire comprimido en el momento de ser inyectado. Su facilidad de inflamación se mide por el índice de Cetano, cuanto mayor es este, menor será la temperatura necesaria para inflamarlo. En algunos motores destinados a climas fríos, se dispone de un calentador en el filtro de combustible. En la actualidad se emplea también el biodiesel, un combustible que se obtiene de diferentes aceites vegetales.

Los motores Diésel disponen de un sistema de sobrealimentación ya que mejora el rendimiento y aumenta la potencia manteniendo la misma cilindrada. Este sistema consiste en forzar la entrada de aire en el cilindro, para lo cual se monta un dispositivo en el conducto de admisión que comprime el aire antes de introducirlo, con lo que se logra aumentar la masa de aire admitida para un mismo volumen, y por consiguiente puede aumentarse también la cantidad de combustible que es posible quemar en cada ciclo.(Sanz, 2007)

1.2.2.2.2. Ciclo Operativo de los Motores MEP Y MEC.

Un ciclo de trabajo requiere cuatro operaciones diferentes: admisión, compresión expansión y escape, cada una de ellas se realiza en una carrera del pistón, equivalente a media vuelta de cigüeñal. Por tanto, el ciclo se completa en dos revoluciones del motor.

En cada carrera el pistón se desplaza entre el PMS y el PMI alternativamente. Este movimiento lineal es transformado en rotación mediante el mecanismo de biela y cigüeñal.

- Fase de admisión (1ª carrera): con las válvulas de admisión abiertas y las de escape cerradas, el émbolo se desplaza desde el punto muerto superior (PMS) hacia el punto mu0erto inferior (PMI). Debido a esto se crea en el interior del cilindro una pequeña depresión, suficiente como para inducir la entrada de gases a través del conducto de admisión. Estos gases serán aire o una mezcla de aire y combustible, dependiendo del tipo de motor. Cuando el émbolo llega al PMI las válvulas de admisión se cierran y comienza la siguiente fase.
- Fase de compresión (2ª carrera): con las válvulas de admisión y escape cerradas el émbolo se desplaza desde el PMI hacia el PMS comprimiendo el fluido contenido en el cilindro. En las cercanías del PMS se produce el salto de chispa en el caso de un

- motor de encendido provocado (MEP) o se inyecta el combustible en el caso de un motor de encendido por compresión (MEC), produciéndose la combustión.
- <u>Fase de expansión (3ª carrera)</u>: la combustión, entre otros efectos, produce un aumento de presión de los gases contenidos en el cilindro, empujando al émbolo, que se desplaza desde el PMS hacia el PMI. Este desplazamiento es el único del que se obtiene trabajo.
- <u>Fase de escape (4ª carrera)</u>: en el PMI se abre la válvula de escape y el émbolo comienza a desplazarse hacia el PMS expulsando los gases quemados hacia el exterior del cilindro. Cuando el émbolo llega al PMS se cierra la válvula de escape y se inicia un nuevo ciclo.(Payri, F. & Desantes, 2011)

1.2.3. Sistemas auxiliares de un motor de combustión interna.

1.2.3.1. Sistema de Alimentación de Combustible.

El sistema de Alimentación de combustible posee la misión de proveer a cada cilindro el combustible necesario para las necesidades del motor en cada momento ya sea este de encendido MEP o MEC.

La Figura 1.4 detalla los elementos del sistema de alimentación para motores de encendido provocado MEP.

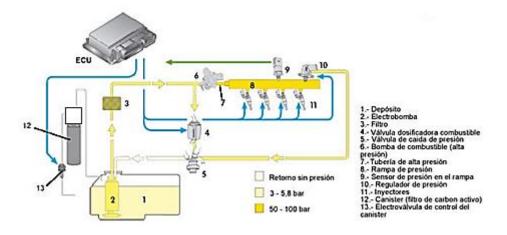


Figura 1. 4 Esquema del circuito de alimentación de combustible.

Fuente: aficionados.(Aficionados a la Mecánica., 2014)

En los motores de encendido por compresión MEC, el sistema de alimentación está conformado por dos circuitos de alta y baja presión.

- El circuito de baja presión tiene la función de entregar combustible libre de impurezas
 a la bomba de inyección de combustible, va desde el depósito de combustible, pasando
 por el separador de agua y filtros de combustible.
- El circuito de alta presión tiene la misión de elevar la presión del combustible a la necesaria para la pulverización o atomización en la cámara de combustión, va desde la bomba de inyección hasta los inyectores.

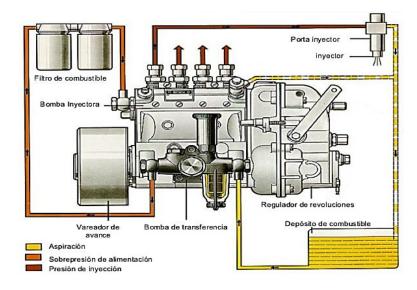


Figura 1. 5 Circuitos de alta y baja presión.

Fuente: (Reveco, n.d.)

1.2.3.2. Sistema de Encendido.

"En motores de encendido por compresión MEC, la combustión se inicia mediante un proceso de autoencendido de la mezcla de combustible, esto al conseguirse temperaturas suficientemente altas en la cámara de combustión debido al proceso de compresión. Para controlar de modo aproximado el instante de encendido, durante el proceso de admisión se introduce solamente aire y el combustible se inyecta hacia el final de la carrera de compresión, cuando el aire alcanza niveles de temperatura altos para producir el autoencendido." (Payri, F. & Desantes, 2011)

En el caso de motores de encendido provocado MEP, se requiere de un aporte de energía que actualmente se consigue al hacer saltar una chispa entre los dos electrodos de una bujía de encendido. Para que el proceso de combustión sea eficiente, se adecua o calcula minuciosamente el instante en el que debe saltar la chispa destinada al encendido de la mezcla aire-combustible, y dependerá de: la velocidad y carga del vehículo, con el fin de conseguir que el proceso sea eficiente. (Payri, F. & Desantes, 2011).

1.2.3.2.1. Tipos de sistemas de encendido.

• Sistema convencional.

La mayor parte de su funcionamiento es mecánico, por medio de un ruptor se interrumpe el flujo de corriente logrando que la bobina primaria cambie el flujo de corriente, lo cual, produce un flujo electromagnético elevando el voltaje por el bobinado secundario. Se eleva el voltaje con el objetivo de vencer la resistencia del aire y producir la chispa de encendido, además la distancia de los electrodos afecta el tiempo en que se produce la chispa, es decir, si los electrodos se encuentran muy separados la chispa será corta, pero si los electrodos se encuentran muy cerrados el tiempo de chispa será mayor.

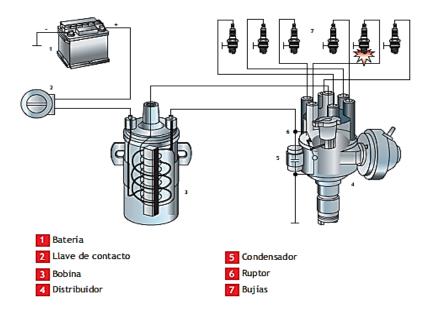


Figura 1. 6 Sistema de encendido convencional.

Fuente: (Sánchez, 2009)

Sistema transistorizado.

En este sistema se introduce más la parte eléctrica con el uso del transistor como switch para activar la bobina primaria y conseguir menor corriente posible por el ruptor.

En otros sistemas se elimina el ruptor y se utilizan sistemas por inducción, efecto hall y óptico que envían la señal al módulo de encendido (está localizado dentro del distribuidor o por fuera del mismo), produciendo una alimentación en la bobina primaria, que es elevada en la bobina secundaria generando un alto voltaje que pasa por el distribuidor y llega a las bujías.

• Sistema electrónico con distribuidor.

También llamado sistema de encendido integral, está constituido por sensores que monitorizan las variables de presión, revoluciones de giro del motor, temperatura del refrigerante del motor, picado y posición de la mariposa.

Las variables de presión y revoluciones del motor son las encargadas que definen el ángulo de encendido mientras que las demás sirven como correcciones.

Sensores

MAP: Es el sensor de presión del múltiple de admisión y se encarga de supervisar el aumento o disminución de la depresión de los conductos de admisión, el valor medido por este sensor afecta directamente al avance de encendido y así también, influye en el tiempo de inyección de combustible en las cámaras de combustión.

CKP: Este sensor se encarga de monitorizar las revoluciones de giro y el estado angular del cigüeñal, está constituido por un enrollamiento y una varilla metálica que crea un campo magnético generando un voltaje variable, semejante a una señal sinusoidal, el efecto es producto del giro y perforaciones presentes en la rueda fónica unida al volante motor. Su valor influye en la ECM para decidir el momento adecuado del salto de la chispa para la combustión y el momento de inyección de combustible.

ECT: Es el encargado de captar la temperatura del líquido refrigerante del motor; es un termistor o termo resistencia del tipo NTC, el cual varía de acuerdo a la temperatura que vaya

teniendo el refrigerante. Su valor sirve como un corrector del avance al encendido en la ECM para el arranque en frio, ya que, en este estado el motor necesitara mayor combustible para arrancar.

KS: El sensor de detonación es de tipo piezoeléctrico e informa a la ECM cuando existe detonación o autoencendido de la mezcla aire y combustible no se combustiona correctamente. En la unidad de control se encuentra memorizada el mapa de avance al encendido a diferentes velocidades y cargas. Con la información del sensor KS se corrige el avance del encendido evitando que la detonación se repita.

TPS: El sensor de posición del pedal del acelerador informa a la ECM el angulo de apertura del pedal del acelerador, con el fin de calcular el pulso de inyección y el avance al encendido. Este sensor por lo general es de tipo potenciómetro.

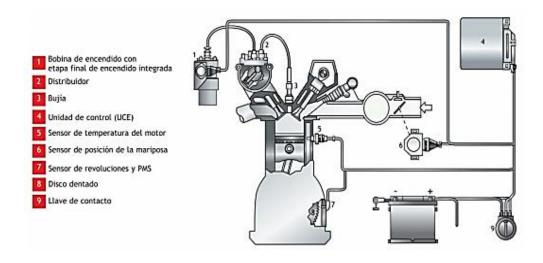


Figura 1. 7 Sistema de encendido electrónico con distribuidor.

Fuente: (Sánchez, 2009)

Módulo de potencia

Está constituido por un transistor de potencia el cual interrumpe la corriente en el circuito primario de la bobina de encendido para elevar el voltaje en el secundario y generar la chispa. El módulo de potencia puede estar incluida en la unidad de control o colocada en la carrocería.

Sistema de encendido totalmente electrónico DIS estático e integral

En el sistema de encendido totalmente electrónico se elimina completamente la parte mecánica, reduciendo considerablemente los fallos o averías de los componentes que se presentan, en sistemas analizados anteriormente. La ECM recepta señales del MAP, CKP y demás sensores que ayudan en la corrección del avance al encendido y en el recuento del tiempo de inyección del combustible.

En este tipo de sistema DIS integral, las bobinas de alta tensión van montadas con la bujía a diferencia del DIS estático que existe un par de bobinas que alimentan a un par de bujías al mismo tiempo.

1.2.3.3. Sistema de admisión de Aire.

"El sistema de admisión de aire está conformado por todos los elementos por donde circula el aire aspirado desde la atmosfera hasta la cámara de combustión del motor. Una correcta dosificación en la inyección de combustible, depende de la magnitud o caudal de aire aspirado." (Sánchez, 2009)

Para la inyección del combustible, la unidad de control electrónico (ECM), a través de la lectura de los sensores como el TPS (sensor de posición del pedal del acelerador), MAP el cual calcula la presión absoluta en el colector de admisión, IAT que determina la temperatura a la cual ingresa el aire y MAF que calcula el flujo de entrada de masa de aire.

1.2.4. Concepto de Falla.

Se puede definir a falla como una alteración, pérdida o interrupción de la capacidad y funcionalidad requerida en un elemento o equipo. La criticidad de una falla se la puede evaluar según lo trascendente de las secuelas que este puede provocar. La Tabla 1, presenta un análisis de fallas cuando únicamente se analiza las consecuencias en el servicio (en el propio equipo),

para este caso se puede decir que, a una o varias fallas se las puede clasificar en: significativas, importantes y menores.

Tabla 1. 1 Análisis de fallas, según las consecuencias en el servicio.

Categoría	Definición
Significativas	Falla que impide la prestación del servicio o que provoca un retraso.
Importantes	Falla que debe ser corregido para que el equipo logre el rendimiento especificado pero no provoca un retraso.
Menores	Falla que no impide que el equipo logre el rendimiento especificado.

Fuente: (Arques Paton, 2009)

Pero si en la evaluación se considera también las consecuencias que se pueden causar a las personas y al medio ambiente, entonces se las puede clasificar en catastrófico, critico, no crítico y menor.

Tabla 1. 2 Análisis de fallas, según sus consecuencias en el servicio, al ambiente y a las personas

Categoría	Función	Equipo	Ambiente	Personas
Catastrófico	Pérdida de una	Produce daños importantes.		Puede causar la muerte o daños corporales.
Critico	función.			Riesgos de daños personales.
No critico	Funcionamiento		usa daños ciables.	No presenta daños significativos.
Menor	degradado.		sa daños eciables.	No presenta ningún riesgo.

Fuente: (Arques Paton, 2009)

FASE II.

MARCO METODOLÓGICO

2.1. DISEÑO DEL EXPERIMENTO.

Para un adecuado diseño experimental, como primer paso se debe definir correctamente el problema o la necesidad a tomar en cuenta, luego se debe platear las hipótesis necesarias para luego en base a las pruebas realizadas, proceder al análisis de los resultados para corroborar o refutar dichas pruebas.

2.1.1. Problema.

En esta investigación el problema nace durante el funcionamiento de los motores de combustión interna ciclo Otto y Diésel, cuando se pueden presentar fallas inesperadas en el sistema electrónico que pueden causar un funcionamiento errático, además las fallas muestran ciertos patrones diferentes de mal funcionamiento para cada caso y pueden confundirse con otros fallos siendo difíciles de reconocer sin implementación de equipo electrónico, generando acciones correctivas innecesarias con técnicas comunes de diagnóstico.

2.1.2. Hipótesis.

Con el estudio de las señales de sensores y actuadores del sistema electrónico en buen y mal funcionamiento; y con el uso de equipos de diagnóstico como: el osciloscopio, scanner y multímetro. Se generará guías de protocolo que ayudaran de apoyo para la detección de fallas en el sistema electrónico de los motores ciclo Otto y Diésel de diversas marcas de motores.

2.1.3. Pruebas de Experimentación.

Para el proceso de experimentación o toma de datos se define en primera instancia el número de motores aptos y disponibles del laboratorio de prácticas de motores del taller automotriz de la Universidad Politécnica Salesiana Sede Cuenca, considerando que hay diversos motores de

combustión interna de ciclo Otto y Diésel. Una vez definido el número de motores se tendrá que

tomar en cuenta las características de cada uno.

Adicionalmente se tendrá que tomar en cuenta las características del lugar geográfico en

donde se va tomar los datos como presión atmosférica, humedad, temperatura ambiente, etc.

También se debe considerar las características y precisión de los elementos o equipos de

diagnóstico a utilizar.

Finalmente para el proceso de experimentación se tendrá que tener definido un protocolo de

pruebas o pasos a seguir, considerando que para tomar los datos el motor tendrá que estar en un

estado de funcionamiento óptimo, caso contrario se tendrá que realizar mantenimientos con el fin

de llevar al motor a dicho estado.

2.1.3.1. Motores de Pruebas.

El número de motores a utilizar en esta investigación son seis y pertenecen al laboratorio de

prácticas de motores de combustión interna de la carrera de Ingeniería Mecánica Automotriz.

Los seis motores son de la marca DAE SUNG, la cual fabrica equipos de capacitación educativa

como parte de la capacitación de los estudiantes del campo automotriz, es decir están diseñados

para que durante el funcionamiento puedan ser manipulados.

Las Tablas 2.1, 2.2, 2.3, 2.4, 2.5 y 2.6 describen las especificaciones técnicas de los motores

que van a ser utilizados en esta investigación:

Tabla 2. 1

Especificaciones técnicas del equipo G-160201.

EQUIPO DE PRACTICA DE MOTOR A GASOLINA Y

AIRE ACONDICIONADO. G-160201

(HYUNDAI NEW SONATA 2.0)

32

Figura 2. 1 Equipo G-160201.

Fuente:(DAESUNG, n.d.)

Motor- tipo	16 V - DOHC
Combustible	Gasolina
Número de cilindros:	4 en Línea
Relación de Compresión.	10:1
Cilindraje:	1997 cc
Carrera:	88 mm
Diámetro del cilindro:	85 mm
Potencia:	96 [KW]
Torque:	178 [N*m]
Orden de encendido:	1-3-4-2

Fuente: (Auto-data, n.d.)

Tabla 2. 2 Especificaciones técnicas del equipo G-110401.

EQUIPO DE PRACTICA DE MOTOR A GASOLINA G-110401. NISSAN V6

Figura 2. 2 Equipo G-110401.

Número de cilindros:	6 cilindros en V
Combustible	Gasolina
Relación de Compresión.	10.3:1
Cilindraje:	3498 cc
Carrera:	81.4 mm
Diámetro del cilindro:	95.5 mm
Potencia:	221 KW/6400
Torque:	353 Nm/4800
Sistema de Distribución:	DOHC
Sistema de Alimentación:	Inyección
Sistema de Affinentación.	multipunto

Fuente:(Auto-data, n.d.) y (DAESUNG, n.d.-d)

Tabla 2. 3 Especificaciones técnicas del equipo G-150301.

EQUIPO DE PRACTICA DE MOTOR A GLP G-150301 (HYUNDAI EF SONATA 2.0)

Figura 2. 3 Equipo G-150301.

Fuente:(DAESUNG, n.d)

Motor- tipo	16 V - DOHC
Combustible	GLP
Número de cilindros:	4 en línea
Relación de Compresión.	10:1
Cilindraje:	1975 cc
Carrera:	93.5 mm
Diámetro del cilindro:	82 mm
Potencia:	139 CV/6000 rpm
Torque:	182 Nm/4900rpm
Sistema de Distribución:	DOHC
Orden de encendido:	1-3-4-2

Fuente:(Auto-data, n.d.) y (Otoba.ru, n.d.)

Tabla 2. 4 Especificaciones técnicas del equipo G-120212.

EQUIPO DE PRACTICA DE MOTOR A DIESEL G-120212 (HYUNDAI SANTA FE 2.0)

Figura 2. 4 Equipo G-120212.

Fuente:(DAESUNG, n.d.)

Número de cilindros:	4
Combustible	Diésel
Relación de Compresión.	17.7:1
Cilindraje:	1991 cm3
Carrera:	92 mm
Diámetro del cilindro:	83 mm
Potencia:	110,45 kW
Torque:	421 Nm/1800
Orden de encendido	1 - 3 - 4 - 2
Sistema de CRDi:	Bosch

Fuente: (Barros, L; Pulla, 2016)

Tabla 2. 5 Especificaciones técnicas del equipo G-111701.

EQUIPO DE PRACTICA DE MOTOR A GASOLINA G-111701 (HYUNDAI AVANTE)

Figura 2. 5 Equipo G-111701.

Fuente:(DAESUNG, n.d.)

Motor- tipo	16 V - DOHC
Combustible	Gasolina
Número de cilindros:	4 en línea
Relación de Compresión.	10:1
Cilindraje:	1975 cc
Carrera:	93.5 mm
Diámetro del cilindro:	82 mm
Potencia:	139 CV/6000 rpm
Torque:	182 Nm/4900rpm
Sistema de Distribución:	DOHC
Orden de encendido:	1-3-4-2

Fuente: (Auto-data, n.d.)

Tabla 2. 6 Especificaciones técnicas del equipo G-111703.

EQUIPO DE PRACTICA DE MOTOR A GASOLINA G-111703(HYUNDAI EF SONATA)

Figura 2. 6 Equipo G-111703.

Fuente:

Motor- tipo	16 V - DOHC
Combustible	Gasolina
Número de cilindros:	4 en Línea
Relación de Compresión.	10:1
Cilindraje:	1997 cc
Carrera:	88 mm
Diámetro del cilindro:	85 mm
Potencia:	96 [KW]
Torque:	178 [N*m]
Orden de encendido:	1- 3- 4- 2

Fuente: (Auto-data, n.d.)

Como ya se mencionó anteriormente todos los motores descritos permiten tomar los datos de señales de algunos sensores y actuadores, de la misma manera al ser equipos didácticos para la capacitación de estudiantes permite simular fallas en el funcionamiento con el fin de poder analizar las variaciones durante el efecto producido por fallas en cualquiera de sus sistemas.

2.1.3.2. Lugar de Pruebas.

El lugar geográfico en la que se va a desarrollar la toma de datos es muy importante, ya que existen factores que pueden influir en los datos que se obtengan, estos factores pueden ser la presión atmosférica, humedad, temperatura ambiente, etc.

Las pruebas se efectuaran en el Taller de Mecánica Automotriz de la Universidad Politécnica Salesiana de la sede Cuenca. Cuenca es una ciudad que está situada en la región interandina centro- sur del Ecuador y se encuentra a 2500 metros sobre el nivel del mar; por su ubicación geográfica posee de una temperatura promedio máxima durante el día de 20 °C y una presión atmosférica promedio de 750HPa.

Figura 2. 7 Taller automotriz de la Universidad Politécnica Salesiana.

Fuente: Autores

2.1.3.3. Equipos de Medición.

2.1.3.3.1. Scanner Automotriz.

Es un equipo de diagnóstico multimarca diseñado para enlazarse con el sistema a bordo del vehículo, permitiendo el diagnostico a través de la interpretación de los datos que presentan

algunos sensores y actuadores durante el funcionamiento del vehículo, además permite acceder a los códigos de avería DTC y realizar pruebas de funcionamiento de actuadores.

En esta investigación se utilizara el scanner automotriz CARMAN SCAN Lite y el scanner Hanatech ULTRASCAN P1, los cuales poseen las siguientes características:

CARMAN SCAN Lite

- Cobertura extensiva para vehículos Hyundai y Kia
- Diagnostico abordo
- Comunicación de diagnóstico con todos los sistemas de control electrónico Hyundai y
 Kia
- Comunicación de diagnóstico con vehículos japoneses, europeos, estadounidenses
- OBD-II protocolo de comunicación de apoyo, OBD-II (ISO 9142-2) y OBD-II (SAE-J1850 VPW PWM)
- Función de conducción del actuador con frecuencia predefinida y relación de servicio
- LCD de alta resolución de pantalla 320x240
- tecla táctil Fácil y suave
- Memoria principal integrada (32 MB)
- Diseño compacto
- Fácil de llevar.

Figura 2. 8 Scanner CARMAN Lite.

Fuente:(Alibaba, n.d.)

Hanatech ULTRASCAN P1:

- Soporta comunicación en vehículos con sistemas OBDI, OBDII, EOBD y CAN.
- Permite leer y borrar códigos de falla, lectura de datos, prueba de actuadores, reajuste de parámetros, codificación de llaves, grabación de datos y simulación de señales.
- Diagnostica Motor, Transmisión, ABS, Airbag, Suspensión, Inmovilizador, Monitoreo presión de llantas y todos los sistemas electrónicos del vehículo.
- Pantalla monocromo 320CH240, LCD gráfico con luz de fondo.
- Frecuencia de muestreo de 500 kHz a 2 canales.
- Memoria RAM de 1Mbit
- Teclado táctil
- Trabaja en vehículos de diversas marcas americanas, japonesas, coreanas, chinas, europeas, latinoamericanas y australianas.

Figura 2. 9 Scanner Hanatech ULTRASCAN P1.

Fuente:(autotools, n.d.)

2.1.3.3.2. Osciloscopio Automotriz.

El osciloscopio es un equipo de observación gráfica que permite visualizar diversa señales eléctricas que son variables en el tiempo. En este trabajo se utilizara un Osciloscopio FINEST 1006 que cuenta con las siguientes características:

- Cuerpo de plástico.
- Control por menú de simple manejo.
- Ancho de Banda de 25 MHz, (25 millones de muestras por segundo).
- Multímetro automotriz gráfico.
- Modo de prueba para componentes
- Modo de congelamiento de pantalla.
- Permite conexión a PC a través de su puerto USB
- Batería recargable.
- Estuche con set de accesorios.
- Aplicación especial para diagnostico automotriz.
- Configuraciones pregrabadas para el diagnóstico electrónico.

- Prueba incorporada de sistemas de encendido.
- Dispone de formas de onda de referencia para algunos sensores, actuadores y sistemas de encendido.
- Cuenta con lector de códigos OBD II.

Figura 2. 10 Osciloscopio FINEST 1006.

Fuente:(ELECTROCORP, n.d.)

2.1.3.3.3. Multímetro Automotriz.

También conocido como Tester, permite realizar mediciones en diferentes escalas, existen diversas marcas y modelos de multímetros que permiten medir voltajes, resistencias, revoluciones, frecuencias, temperaturas e incluso pueden poseer un osciloscopio. A continuación se detalla las características del multímetro TRUPER MUT – 33, disponible en el Taller automotriz:

- Velocidad de medición: se actualiza 2-3 veces/segundo.
- Temperatura: de operación = $0 40^{\circ}$ C y de almacenamiento = -10° C 50° C.
- Humedad relativa: < 75 % @ 0° C 30° C; < 50% @ 31° C 40° C.
- Tipo de pila: emplea 1 pila de 9V.
- Deficiencia de la pila: se muestra en pantalla.

- Lectura negativa: se muestra en pantalla "-"
- Sobrecarga: se muestra en pantalla "1"
- Dimensiones (H x W x L): 130 mm x 73.5 mm x 35 mm.
- Peso: aproximadamente 156 g (incluyendo pila)

Figura 2. 11 Multímetro Digital TRUPER MUT- 33.

Fuente: (TRUPER, 2012)

2.1.3.4. Variables de la Experimentación

Para la experimentación se toma en cuenta que se tendrá que identificar y clasificar las variables que predominaran en la toma de datos, dichas variables se tendrán que dividir en:

- Variables de Estudio.
- Variables de Bloqueo.
- Variables de Ruido.
- Variables de Respuesta.

En la siguiente Figura 2.12, se muestra la interacción entre todas estas variables dentro del proceso.

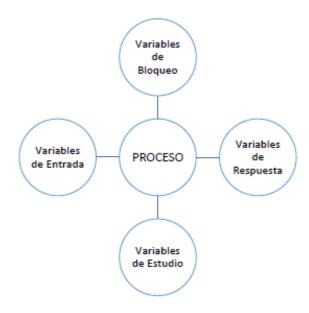


Figura 2. 12 Variables que intervienen en el proceso.

Fuente:(Rivera, N; Chica, 2017)

2.1.3.4.1. Variables de Respuesta.

Las variables de respuesta son las que se obtienen al finalizar el proceso, o en otras palabras son los datos de salida del sistema y son las variables que nos darán a conocer los cambios que se están produciendo por el efecto producido de averías en el sistema.

En esta investigación las variables de estudio serán obtenidas mediante el análisis de los datos obtenidos con el scanner, siendo considerados los factores que más varíen tras aplicación de una falla en el equipo.

2.1.3.4.2. Variables de Estudio.

Las variables de estudio son aquellas que afectan a las variables de respuesta y son independientes. Se debe tomar en cuenta que estas variables deben ser de fácil manipulación y deben afectar directamente a las variables de respuesta, por lo que, su identificación debe ser muy cuidadosa de acuerdo a lo que se quiere obtener y analizar.

En esta investigación las variables de estudio están definidas por el número y tipo de fallas que se puedan provocar en cada uno de los equipos, estos podrían variar entre 9 y 25 variables.

• Variables de estudio del Equipo G-160201.

Este equipo permite el análisis de 25 variables de estudio, que se las presenta en la Figura 2.13, la descripción de cada variable se la detalla en la Tabla 2.7.

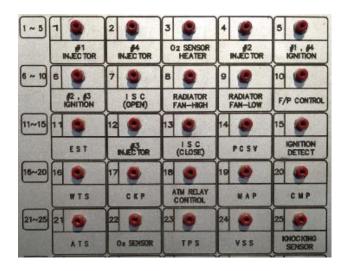


Figura 2. 13 Variables de estudio del equipo G-160201.

Tabla 2. 7 Descripción de las variables de estudio del equipo G-160201.

Variable	Fallas	Descripción
Injector	1, 2, 4, 12	Inyectores.
O2 Sensor Heater	3	Calentador del sensor de oxígeno.
Ignition	5, 6	Bobinas de encendido.
ISC	7, 13	Válvula de control de marcha mínima (IAC)
Radiator Fan	8, 9	Ventilador del Radiador.
F/P control	10	Control de la bomba de combustible.
PCSV	14	Control de purga de la válvula solenoide del cánister.
Ignition detect.	15	Detector de encendido.
WTS	16	Sensor de temperatura del refrigerante (ECT).
CKP	17	Sensor de posición del cigüeñal.
ATM Relay Control	18	Relé de control del módulo de transmisión automática.
MAP	19	Sensor de presión absoluta del múltiple.
CMP	20	Sensor de posición del árbol de levas.
ATS	21	Sensor de temperatura del aire de admisión (IAT).
O2 Sensor	22	Sensor de oxígeno.

TPS	23	Sensor de posición de la mariposa de aceleración.
VSS	24	Sensor de velocidad del vehículo.
Knocking Sensor	25	Sensor de detonación (KS).

• Variables de estudio del Equipo G-110401.

Este equipo permite el análisis de 25 variables de estudio, que se las presenta en la Figura

2.14, la descripción de cada variable se la detalla en la Tabla 2.8.

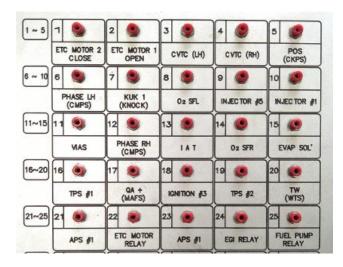


Figura 2. 14 Variables de estudio del equipo G-110401.

Tabla 2. 8 Descripción de las variables de estudio del equipo G-110401.

Variable	Fallas	Descripción
ETC motor 2 close	1	Motor del control electrónico del acelerador.
ETC motor 1 open	2	Motor del control electrónico del acelerador.
CVTC	3, 4	Control de tiempo variable continúo de la válvula.
Pos (CKPS)	5	Sensor de posición del cigüeñal.
Phase (CMPS)	6, 12	Sensor de posición del árbol de levas.
Kuk 1 (KNOCK)	7	Sensor de detonación (KS).
O2 SF	8, 14	Sensor de oxígeno.
Injector	9, 10	Inyector.
VIAS	11	Válvula solenoide de control.
IAT	13	Sensor de temperatura del aire de entrada.
EVAP SOL'	15	Solenoide de la válvula de purga del sistema de control
		de emisiones por evaporación (cánister).
TPS	16, 19	Sensor de posición de la mariposa de aceleración.
QA+(MAFS)	17	Sensor de flujo de masa de aire.
Ignition.	18	Bobina de encendido.
TW (WTS)	20	Sensor de temperatura del refrigerante (ECT).

APS	21, 23	Sensor del pedal del acelerador.
ETC motor relay.	22	Relé del motor de control del acelerador.
EGI relay.	24	Relé de encendido general del motor.
Fuel Pump Relay	25	Relé de la bomba de combustible.

• Variables de estudio del Equipo G-150301.

Este equipo permite el análisis de 25 variables de estudio, que se las presenta en la Figura

2.15, la descripción de cada variable se la detalla en la Tabla 2.9.

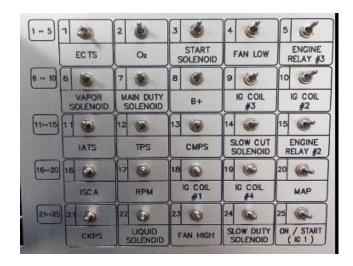


Figura 2. 15 Variables de estudio del equipo G-150301.

Tabla 2. 9 Descripción de las variables de estudio del equipo G-150301.

Variable	Fallas	Descripción
ECTS	1	Sensor de temperatura del refrigerante.
O2	2	Sensor de oxígeno.
Start Solenoid	3	Solenoide de arranque.
FAN	4, 23	Ventilador del Radiador.
Engine Relay	5, 15	Relé del motor.
Vapor solenoid	6	Solenoide de vapor.
Main Duty solenioid	7	Solenoide de servicio principal.
B+	8	
IG Coil	9, 10, 18, 19	Bobinas de encendido.
IATS	11	Sensor de temperatura del aire de entrada.
TPS	12	Sensor de posición de la mariposa de aceleración.
CMPS	13	Sensor de posición del árbol de levas.
Slow Cut Solenoid	14	Solenoide de corte lento de combustible.
ISCA	16	Actuador de control de velocidad de ralentí (IAC)

RPM	17	Sensor de revoluciones del motor.
MAP	20	Sensor de presión absoluta del múltiple.
CKPS.	21	Sensor de posición del cigüeñal.
Liquid Solenoid	22	Solenoide de Liquido.
Slow Duty Solenoid	24	Solenoide de servicio lento.
On/Start (IG 1)	25	Encendido general del motor.

• Variables de estudio del Equipo G-120212.

Este equipo permite el análisis de 25 variables de estudio, que se las presenta en la Figura

2.16, la descripción de cada variable se la detalla en la Tabla 2.10.

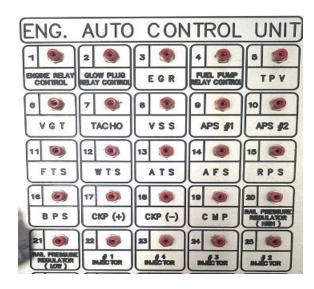


Figura 2. 16 Variables de estudio del equipo G-120212.

Tabla 2. 10 Descripción de las variables de estudio del equipo G-120212.

Variable	Fallas	Descripción
Engine Relay Control.	1	Relé de control del motor.
Glow Plug Relay Control	2	Relé de control de bujías incandescentes.
EGR	3	Válvula de recirculación de gases de escape.
Fuel Pump Relay Control	4	Relé de control de la bomba de combustible.
TPV	5	Válvula de posición del acelerador.
VGT	6	Válvula solenoide del turbocompresor de geometría variable.
TACHO	7	Tacómetro.
VSS	8	Sensor de velocidad del vehículo.
APS	9, 10	Sensor del pedal del acelerador.
FTS	11	Sensor de temperatura del combustible.
WTS	12	Sensor de temperatura del refrigerante (ECT).

ATS	13	Sensor de temperatura del aire de entrada.	
AFS	14	Sensor de flujo de masa de aire (MAF).	
RPS	15	Sensor de presión del riel de combustible.	
BPS	16	Sensor de presión de sobrealimentación.	
CKP	17, 18	Sensor de posición del cigüeñal.	
CMP.	19	Sensor de posición del árbol de levas.	
Rail pressure regulator	20, 21	Regulador de presión del riel de combustible.	
Injector	22, 23,	Investor	
Injector	24, 25	Inyector.	

• Variables de estudio de los equipos G-111701 y G-111703

Estos dos equipos no poseen un panel para la provocación de fallas pero se definió como variables a los sensores y actuadores que se detallan en la Tabla 2.11.

Tabla 2. 11 Variables de estudio para los equipos G-111701 y G-111703.

VARIABLES					
G-111701	G-111703				
Sensor CKP	Sensor CMP				
Sensor CMP	Sensor ECT				
Falla de un Inyector	Válvula IAC				
Falla de dos Inyectores	Sensor TPS				
Válvula IAC	Sensor MAF que incorpora sensor IAT				
Sensor ECT	Sensor KS				
Sensor TPS	Falla de un Inyector				
Sensor de oxigeno O2	Falla de dos Inyectores				
Bobina	Bobina				

Fuente: Autores.

2.1.3.4.3. Variables de Bloqueo.

Son variables controlables en el proceso y pueden ser fijadas en un solo punto o valor específico durante el experimento.

Las revoluciones por minuto (rpm) son la única variable de bloqueo, considerando que existe un gran número de variables de estudio a indagar, por lo cual se ejecutará el proceso de toma de datos únicamente en ralentí (entre 800 y 900 rpm)

2.1.3.4.4. Variables de Ruido.

Las Variables de Ruido a diferencia de las de bloqueo no se pueden controlar o es difícil controlarlas durante el proceso, estas variables pueden incidir en las variables de respuesta.

Para la ejecución del experimento se han identificado las siguientes variables de ruido:

- Temperatura del Ambiente [°C]
- Presión Atmosférica [Pa]
- Humedad Relativa del Ambiente [%]
- Temperatura del combustible [°C]

2.1.4. Protocolo de Pruebas.

Se plantea un protocolo de pruebas, con los diversos pasos que se van a seguir, con el fin de que este pueda ser aplicado y repetido para los 6 equipos en los que se va a trabajar. Así también para que sirva de ayuda a cualquier investigador que quiera realizar esta experimentación en las mismas condiciones ya descritas anteriormente.

2.1.4.1. Pruebas preliminares.

Este tipo de pruebas se dan con el fin de asegurarse que los equipos estén en óptimas condiciones de funcionamiento y así también para asegurarse que los datos que se obtengan sean de alta confiabilidad.

A continuación se presenta el protocolo de pruebas preliminares establecido:



Figura 2. 17 Protocolo de pruebas preliminares.

2.1.4.2. Proceso de toma de datos.

Si el equipo cumple con las pruebas preliminares, posteriormente tendrá que pasar a la fase de obtención de datos, cabe recalcar que el proceso de toma de datos de los 6 equipos se los efectuara únicamente en ralentí, para lo cual se ha establecido el siguiente orden:

- 1. Identificar las funciones del sensor o actuador al que se va a generar el fallo.
- Con el osciloscopio obtener la gráfica de la forma de onda, que se genera por el funcionamiento.
- 3. Opcionalmente, obtener los voltajes de funcionamiento con la ayuda del multímetro.

- Aplicar la falla al equipo, de acuerdo a la forma establecida en la guía de usuario del equipo.
- 5. Con el escáner obtener y guardar los "datos a bordo" durante el efecto producido en el equipo en ralentí, por la aplicación de dicha falla.
- Revisar con la ayuda del escáner si se genera algún código de avería en el sistema, a causa de la falla aplicada y guardarla.
- 7. Perceptivamente identificar y anotar si hay algún cambio en el funcionamiento del motor, como por ejemplo: "se acelera", "se apaga", "se cala", etc.
- 8. Finalmente si no existe ningún contra tiempo que cause la repetición del proceso, quite la falla aplicada y si se han generado códigos de avería bórrelos con el escáner.
- Repita el proceso de toma de datos para todas las fallas que el equipo permita efectuar en el sistema electrónico del motor.

2.1.4.3. Formatos y tablas.

Se indican los formatos de tablas que se crearon como apoyo en la toma de datos, con el fin de recopilar toda la información que se vaya obteniendo, de una manera más rápida y detallada.

Formato para las pruebas preliminares									
Nombre d	el equipo:								
Fecha:			Hora:						
Característic	as del lugar d	e la expe	rimenta	ción:					
Ciudad:									
Lugar de Pru	ebas:								
Presión atmo	osférica:								
Humedad Re	lativa:								
Temperatura	Ambiente:								
Inspec	ciones:	Cumple	No Cumple	Observaciones:					
Nivel de ace	ite.								
Nivel de refr	igerante.								
Existencia de	e fugas.								
Estado de fil	tros.								
Tensión de la	a batería.								
Comprob	oaciones:	Cumple	No Cumple	Observaciones:					
Conexiones	eléctricas de								
sensores y a	ctuadores								
Inexistencia	de Códigos								
de averías.									

Figura 2. 18 Formato para las pruebas preliminares.

Formato para el proceso de toma de datos														
Falla	Sin falla	Sin falla Falla 1 Falla 2 Falla 3												
Código de falla:	-	?	?	?										
PARAMETER DATA	Valores													
??? [unidad de Medida]	?	?	?	?										
??? [unidad de Medida]	? ? ? ?													
	•••	•••	•••	•••										

Figura 2. 19 Formato para el proceso de toma de datos.

2.1.5. Obtención de datos proporcionados por la ECU del motor para los 6 equipos durante el efecto producido por averías en su sistema electrónico.

En esta parte se pretende dar a conocer los datos obtenidos en buen funcionamiento y durante el efecto producido por fallas en el sistema electrónico de los 6 equipos estudiados.

El análisis de los datos y sus consecuencias se las analizara en el capítulo 3.

2.1.5.1. Identificación y descripción de las variables de estudio.

En esta sección se describe brevemente las variables de estudio de los seis equipos en los que se va a trabajar, además se identifica si la variable de un equipo se repite en otro.

Tabla 2. 12 Descripción de algunas variables de estudio.

	ti	po	Equ	uipos		que a able.	parec	e la			
Variable	Sensor	Actuador	G-160201	G-110401	G-150301	G-120212	G-111701	G-111703	Funcionamiento		
СМР	X		X	X	X	X	X	X	El sensor de posición del árbol de levas es de efecto hall y ayuda a la ECU a determinar si un cilindro está en fase de compresión o escape.		
СКР	X		X	X	X	X	X		El sensor de posición del cigüeñal se encuentra en el bloque de cilindros y ayuda a la ECU en determinar las rpm del motor y por sus "dientes perdidos" ayuda a determinar el avance al encendido. Pueden ser de tipo Inductivo o Hall.		
Inyector		X	X	X		X	X	X	Se compone de toberas de inyección con válvulas solenoides que son usados por la ECU para regular la cantidad de inyección de combustible, mediante el control de apertura y cierre de las válvulas.		
IAC		X	X		X		X	X	Es un dispositivo instalado en el cuerpo de aceleración y controla el flujo de entrada de aire, con el fin de ajustar la velocidad de ralentí del motor.		

ECT	X	X	X	X	X	X	X	Detecta la temperatura del refrigerante del motor, convirtiendo la variación de resistencia a una señal de voltaje, que servirá a la ECU para aumentar o disminuir la cantidad de combustible y a su vez para activar o desactivar los ventiladores del radiador, si se ha superado la temperatura normal de funcionamiento.
TPS	X	X	X	X		X	X	El sensor de posición de la mariposa del acelerador (TPS), está unido al cuerpo de la mariposa para medir el ángulo de apertura de la válvula de la mariposa. La ECU usa la señal del TPS para medir el ralentí, carga, estado de aceleración, cantidad de inyección y el tiempo de encendido.
Bobina de encendido	х	X X	X	X		X	X	Es la encargada de generar el alto voltaje que posteriormente llegara a las bujías para el encendido de la mezcla aire-combustible comprimido.
sensor de oxigeno O2	X	X	X	X		X		Determina la concentración de oxigeno de los gases de escape, con el fin de que la ECU determine si la mezcla es rica o pobre, e ir corrigiendo la cantidad de inyección de combustible.
VSS	X	X			X			Sensor de la velocidad del vehículo es de tipo hall montado en la caja de velocidades.
KS	X	X	X				X	Está ubicado en el bloque de cilindros y detecta vibraciones o golpeteos en cada cilindro, la ECU usa esta señal para corregir el tiempo o avance de encendido.
MAP	X	X		X				Sensor de presión absoluta del múltiple, es usado para medir la cantidad de aire entrante al motor detectando la presión dentro del múltiple.
MAF	X		X		X		X	El sensor de flujo de aire, es un sensor de película caliente y mide la cantidad de aire aspirado por el motor.

IAT	X		X	X	X	X	Sensor de temperatura de aire, usa un termistor X tipo NTC y mide la temperatura del aire entrante al motor.
Fuel pump		X	X	X		X	Cumple la función de bombear bajo presión negativa el combustible hacia los inyectores, comprende un rotor de accionamiento, una válvula de alivio, una válvula de retención y una cubierta.
EVAP(PCSV)		X	X	X	X		Es la válvula encargada de redireccionar los vapores recogidos por el canister provenientes del tanque del combustible y redistribuirlos al múltiple de admisión, para ser usados como combustible.
ATM relay control (Modulo de control de Transmision)		X	X				Es el cerebro de las transmisiones automáticas, controla el cambio de marchas en base a la información de diversos sensores, con el fin de garantizar condiciones de conducción óptimas.
APS	X			X		X	El sensor de posición del acelerador detecta la posición relativa del pedal de aceleración y es de tipo potenciómetro, la ECU usa esta señal para determinar el tiempo de inyección de combustible.
EGI relay/engine relay		X		X	X	X	Relé de encendido general del motor
Start soleniode		X			X		La bobina de arranque genera una corriente que forza al motor de arranque a girar.

Fuente: (DAESUNG, n.d.-f, n.d.-d, n.d.-e, n.d.-a, n.d.-b, n.d.-c)

2.1.5.2. Tipo de falla propuesta para el análisis de las variables.

Como ya se conoce, cuatro de los equipos en los que se va a trabajar disponen de un panel de fallas, con el fin de que la persona que trabaje en el mismo pueda analizar el comportamiento del mismo, mediante la aplicación de fallas tipo *circuito abierto*; en el caso de los dos equipos restantes que no poseen panel de fallas se generara el mismo tipo de falla (circuito abierto), en los principales sensores y actuadores mediante la desconexión de cada uno de ellos.

2.1.5.2.1. Circuito abierto.

Un circuito eléctrico es la unión de elementos conductores que permiten el flujo de corriente eléctrica. Un circuito eléctrico está abierto cuando el flujo de corriente eléctrica es interrumpido o en otras palabras el circuito eléctrico físicamente no está conectado.

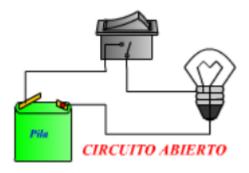


Figura 2. 20 Esquema de un circuito abierto.

Fuente:(Guillen Granado, n.d.)

2.1.5.3. Proceso de toma de datos en estado normal de funcionamiento y con generación de fallos.

Mediante el uso del protocolo de pruebas establecido previamente, y con el uso de los formatos y tablas se obtuvo los siguientes resultados para cada uno de los equipos.

• Datos obtenidos para el equipo G-160201

La Tabla 2.13, muestra la información previa a la obtención de los datos del equipo G-160201 y los datos obtenidos con el escáner CARMAN LTE, se muestran en el Anexo A.

Tabla 2. 13 *Pruebas preliminares del equipo G-160201.*

Formato para las pruebas preliminares									
Nombre del equipo:		G-1602	201						
Fecha:	10/04/2019	Hora:	16:00						
Características del lug	Características del lugar de la experimentación:								
Ciudad:		Cuen	ca						
Lugar de Pruebas:		Taller Auto	omotriz						

Presión atmosférica:	750 HPa	
Humedad Relativa:	80%	
Temperatura	20 °C	
Ambiente:	20 C	

Inspecciones:	Cumple	No Cumple	Observaciones:
Nivel de aceite.	X		
Nivel de refrigerante.	X		
Inexistencia de fugas.	X		
Estado de filtros.	X		
Tensión de la batería.	X		12 V
Comprobaciones:	Cumple	No Cumple	Observaciones:
Conexiones eléctricas de sensores y actuadores	X		
Inexistencia de Códigos de averías.	X		

Las comprobaciones en este equipo fueron exitosas ya que todas las inspecciones y comprobaciones realizadas fueron correctas.

• Datos obtenidos para el equipo G-110401

La Tabla 2.14, muestra la información previa a la obtención de los datos del equipo G-110401 y los datos obtenidos con el escáner CARMAN LTE, se muestran en el Anexo A.

Tabla 2. 14 Pruebas preliminares del equipo G-110401.

Formato para las pruebas preliminares				
Nombre del equipo:		G-110401		
Fecha:	29/05/2019 Hora: 15:00			
Características del lugar de la experimentación:				
Ciudad:		Cuenca		
Lugar de Pruebas:		Taller Automo	otriz	
Presión atmosférica:		750 HPa		

Humedad Relativa: Temperatura Ambiente:	80% 18 °C			
Inspecciones:	Cumple	No Cumple	Observaciones:	
Nivel de aceite.	X			
Nivel de refrigerante.	X			
Inexistencia de fugas.	X			
Estado de filtros.	X			
Tensión de la batería.	X			
Comprobaciones:	Cumple	No Cumple	Observaciones:	
Conexiones eléctricas de sensores y actuadores	X			
Inexistencia de Códigos de averías.		X	Aparecen 3 códigos de avería.	

En este equipo se encontró la existencia de 3 códigos de averías, que al ser borrados con el escáner desaparecieron, con lo cual nos da a conocer que los problemas referentes a los códigos no persisten.

• Datos obtenidos para el equipo G-150301.

La tabla 2.15, muestra la información previa a la obtención de los datos del equipo G-150301 y los datos obtenidos con el escáner ULTRA SCAN, se muestran en el Anexo A.

Tabla 2. 15 *Pruebas preliminares para el equipo G-150301.*

Formato para las pruebas preliminares				
Nombre del equipo: G-150301				
Fecha:	28/05/2019	Hora:	10:05	
Características del lugar de la experimentación:				
Ciudad:		Cuenca		

Lugar de Pruebas:	Taller Automotriz		
Presión atmosférica:	750 HPa		
Humedad Relativa:	80%		
Temperatura Ambiente:	18 °C		

Inspecciones:	Cumple	No Cumple	Observaciones:
Nivel de aceite.	X		
Nivel de refrigerante.	X		
Inexistencia de fugas.	X		
Estado de filtros.	X		
Tensión de la batería.	X		
GLP	X		Tanque casi lleno
Comprobaciones:	Cumple	No Cumple	Observaciones:
Conexiones eléctricas de sensores y actuadores		X	Se tuvo que reconectar el sensor MAP, por rotura en el cableado.
Inexistencia de Códigos de averías.		X	Aparecía el código referente al daño en el sensor MAP.

Las comprobaciones en este equipo fueron exitosas, a excepción del sensor MAP que tenía una rotura total en el cableado por lo cual se realizó el respectivo mantenimiento correctivo para solucionar dicho inconveniente y así también se logró eliminar el código de avería que aparecía en la lectura con el scanner.

• Datos obtenidos para el equipo G-120212

La Tabla 2.16, muestra la información previa a la obtención de los datos del equipo G-120212 y los datos obtenidos con el escáner CARMAN LTE, se muestran en el Anexo A.

Tabla 2. 16 *Pruebas preliminares para el equipo G- 120212.*

Formato para las pruebas preliminares

Nombre del equipo: G-120212 Fecha: 31/05/2019 Hora: 11:40 Características del lugar de la experimentación: Ciudad: Cuenca Lugar de Pruebas: Taller Automotriz Presión atmosférica: 750 HPa 80% **Humedad Relativa: Temperatura Ambiente:** 22 °C

Inspecciones:	Cumple	No Cumple	Observaciones:
Nivel de aceite.	X		
Nivel de refrigerante.	X		
Inexistencia de fugas.	X		
Estado de filtros.	X		
Tensión de la batería.	X		
Comprobaciones:	Cumple	No	Observaciones:

•	•	Cumple	
Conexiones eléctricas de sensores y actuadores		X	No existía señal del sensor CKP, por lo cual el equipo no se encendía.
Inexistencia de Códigos de averías.		X	Códigos referentes a los sensores CKP Y CMP.

Fuente: Autores.

El equipo presento inconvenientes en el sistema eléctrico, debido a que al momento de encenderlo no lo hacía y aunque visualmente el cableado eléctrico y electrónico parecía estar en buen estado, se requirió una revisión minuciosa para detectar que el cable de señal del sensor CKP estaba roto y que el sensor CMP estaba mal conectado. Se realizó el respectivo manteniendo logrando así que, el equipo se encienda y consecuentemente desaparezcan los códigos de falla que aparecían.

• Datos obtenidos para el equipo G-111701.

La Tabla 2.17, muestra la información previa a la obtención de los datos del equipo G-111701 y los datos obtenidos con el escáner ULTRA SCAN, se muestran en el Anexo A.

Tabla 2. 17
Pruebas preliminares para el equipo G-111701.

Formato para las pruebas preliminares				
Nombre del equipo:	G-111701			
Fecha:	18/04/2019	Hora:	12:07	
Características del lugar de	e la experime	ntación:		
Ciudad:		Cueno	ca	
Lugar de Pruebas:		Taller Auto	omotriz	
Presión atmosférica:		750 H	Pa	
Humedad Relativa:		80%		
Temperatura Ambiente:		20 °C	\mathbf{C}	
Inspecciones:	Cumple	No Cumple	Observaciones:	
Nivel de aceite.	X			
Nivel de refrigerante.		X	Nivel bajo	
Inexistencia de fugas.	X		J	
Estado de filtros.	X			
Tensión de la batería.	X			
Comprobaciones:	Cumple	No Cumple	Observaciones:	
Conexiones eléctricas de sensores y actuadores	X			
Inexistencia de Códigos de averías.	X			

Fuente: Autores.

Este equipo presento únicamente un bajo nivel de refrigerante el cual fue corregido.

• Datos obtenidos para el equipo G-111703.

La Tabla 2.18, muestra la información previa a la obtención de los datos del equipo G-111703 y los datos obtenidos con el escáner CARMAN LTE, se muestran en el Anexo A.

Tabla 2. 18 *Pruebas preliminares del equipo G-111703*.

Formato para las pruebas preliminares				
Nombre del equipo:	•	G-111		
Fecha:	23/04/2019 Hora: 11:20			
Características del lugar d	le la experime	ntación:		
Ciudad:		Cue	nca	
Lugar de Pruebas:		Taller Au	tomotriz	
Presión atmosférica:		750 I	HPa	
Humedad Relativa:		809	%	
Temperatura Ambiente:		22 °	$^{\circ}$ C	
Inspecciones:	Cumple	No Cumple	Observaciones:	
Nivel de aceite. Nivel de refrigerante. Inexistencia de fugas. Estado de filtros. Tensión de la batería.	X X X X		Nivel bajo	
Comprobaciones:	Cumple	No Cumple	Observaciones:	
Conexiones eléctricas de sensores y actuadores		X	Falla en conexión de bobinas	
Inexistencia de Códigos de averías.	X			

Al encender el equipo se percibió que tenía un funcionamiento irregular, al revisar las conexiones se encontró que un socket de conexión de una bobina correspondiente a los cilindros 1 y 4 estaba floja, a causa de que el cuerpo del socket estaba roto; se corrige con suelda. Luego se notó que el funcionamiento del equipo mejoro pero aún se percibe un funcionamiento irregular, por lo cual se procedió a cambiar las bujías de encendido, logrando así que el equipo funcione correctamente.

FASE III

ANÁLISIS Y COMPARACIÓN DE LOS DATOS OBTENIDOS EN LOS EQUIPOS.

En este punto se determina las consecuencias de las fallas aplicadas en cada uno de los equipos, mediante un análisis y comparación de cada una de las fallas aplicadas, con respecto a los datos en buen estado obtenidos previamente de los equipos analizados.

Se analizan únicamente a las fallas que más influyen en el funcionamiento del equipo.

3.1. Comportamiento del equipo G- 160201 durante el efecto producido por fallas en su sistema electrónico.

3.1.1. Inyectores.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en las fallas 1, 2, 3, 4 y 5, referentes a los inyectores de este equipo (Anexo A.1), se define que los valores más representativos durante el efecto producido por fallas en este actuador son:

Tabla 3. 1 Variables de respuesta más significativas para falla en inyectores.

	Variables más influyentes	% Porcentaje de cambio	
Falla		Un	Dos
		Inyector	Inyectores
	Tiempo de Inyección	27,5	56,67
	Avance al Encendido	-9,09	-9,09
	Revoluciones del Motor	-7,2	-28,57
	válvula IAC	0,48	-0,32
Inyectores	Estado de la Luz de Check o Mil	ON	ON
injectores		P0201	Aparece
	Códigos de falla	P0202	únicamente el
		P0203	código de
		P0204	falla de un inyector.

Fuente: Autores.

Como consecuencia se puede decir que al fallar un inyector primeramente se presenta una pérdida de potencia, aumenta el tiempo de inyección de combustible, con el fin de compensar al inyector inactivo y asegurar mantener las revoluciones (rpm) a ralentí.

La señal de accionamiento de la válvula IAC es variante, produciendo un funcionamiento inestable del motor (calado).

El avance al encendido tiende a disminuir con el objetivo de que la explosión de la mezcla se genere en unos grados (medidos desde el PMS con respecto al cigüeñal) más de lo normal.

Este equipo alerta este fallo a través de la Luz de Check o Mil y para el diagnóstico si se generan códigos de averías.

3.1.2. Bobinas de encendido.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 6, referente a la bobina de encendido de este equipo (Anexo A.1), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 2 Variables de respuesta más significativas para falla en la bobina de un par de cilindros.

Falla	Variables más influyentes	% Porcentaje de cambio
гана	variables mas influyentes	Bobina de un par de cilindros
Bobinas de encendido	Tiempo de Inyección	0
	Avance al Encendido	36,36
	Revoluciones del Motor	24,91
	Válvula IAC	0
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	NO

Fuente: Autores.

Como consecuencia se puede decir que al fallar un par de bobinas de encendido el motor va a estar ligeramente "acelerado", y perceptivamente se nota un funcionamiento inestable "calado", nótese también que el tiempo de inyección se mantiene por lo cual no se podría identificar la

falla por un aumento de consumo de combustible, pero se podrá notar al percibirse un olor fuerte a combustible, a través de los gases de escape.

3.1.3. Actuador de Control a Ralentí ISC.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 7, referente al actuador de control a ralentí, de este equipo (Anexo A.1), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 3 Variables de respuesta más significativas para falla al actuador de control a ralentí.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	-10
	Avance al Encendido	63,64
ICC	válvula IAC	-15,07
ISC	Revoluciones del Motor	14,29
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	NO

Fuente: Autores.

Como consecuencia se puede decir que al fallar el actuador ISC o también conocido como válvula IAC, el motor se acelera un poco y permanece de con ese comportamiento, haciendo que este sea un único síntoma de falla. Además, no se generan códigos de avería y no se enciende la luz de Check. En el diagnostico con scanner se puede visualizar un adelanto significativo en el avance al encendido y el porcentaje de control de la válvula IAC se reduce a un valor mínimo.

3.1.4. Control de la bomba de combustible.

Con la aplicación de la falla 8 referente al control de la bomba de combustible, el motor se apaga de una manera prolongada, es decir si se presenta esta falla y el motor está funcionando, la ECM aumenta el tiempo de inyección con el fin de mantenerlo encendido, pero a la larga se apagará y permanecerá así hasta que la falla se corrija.

3.1.5. Sensor de temperatura del refrigerante.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 9, referente al sensor de temperatura del refrigerante del motor de este equipo (Anexo A.1), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 4 Variables de respuesta más significativas para falla al sensor ECT.

Falla	Variables más influyentes	% Porcentaje de cambio
WTS	Tiempo de Inyección	15
	Avance al encendido	-130
	Revoluciones del Motor	10,63
	Ventiladores del radiador	ON
	Estado de la Luz de Check o Mil	ON
	Códigos de falla	P0115

Fuente: Autores.

Cuando el sensor de temperatura de refrigerante falla, el motor se acelera ligeramente por el aumento del tiempo de inyección provocada por las correcciones de la ECM en frio, además el avance al encendido disminuye dando la posibilidad de explosionar la mezcla en unos grados más de lo normal del PMS, debido a que en la cámara se encuentra una mezcla rica.

Con las variantes del tiempo de inyección y avance al encendido se alteran las rpm; así también el ventilador del radiador es activado con el propósito de evitar el sobrecalentamiento del motor.

Se genera un código de falla y la luz de Check o Mil permanece encendida, los datos relevantes para el diagnóstico con escáner son el aumento del tiempo de inyección y el retraso del encendido.

3.1.6. Sensor de posición del cigüeñal CKP.

Con la aplicación de la falla 10 referente al sensor de posición del cigüeñal, el motor se apaga de una manera súbita y permanece así hasta que se corrija la falla.

3.1.7. Sensor de presión absoluta del múltiple MAP.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 11, referente al sensor de presión absoluta del múltiple de admisión, de este equipo (Anexo A.1), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 5 Variables de respuesta más significativas para falla al sensor MAP.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	2950
	Avance al Encendido	-72,73
	válvula IAC	-6,46
MAP	Revoluciones del Motor	-39,31
	MAP o MAF	339,93
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0105

Fuente: Autores.

Cuando el sensor de presión del múltiple de admisión falla, la ECM recibe la señal del sensor como un valor máximo, en este caso, de flujo de masa de aire con lo cual aumenta excesivamente el tiempo de inyección, para supuestamente compensar la relación teórica airecombustible a la presión atmosférica a nivel del mar y a su vez las revoluciones de giro del motor descienden ligeramente; si se genera un código de avería y no se enciende la luz de check, además el motor no mantiene el aumento de revoluciones cuando se acelera.

Cuando se acelera el motor tiende a bajar las revoluciones (rpm) del motor debido al mal funcionamiento del sensor.

3.1.8. Sensor de posición del árbol de levas CMP.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 12, referente al sensor de posición del árbol de levas, de este equipo (Anexo A.1), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 6 Variables de respuesta más significativas para falla al sensor CMP.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	0
	Avance al Encendido	9,09
CMP	válvula IAC	-8,37
	Revoluciones del Motor	24,91
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0340

Al perder la señal del CMP se pierde la referencia del primer cilindro, perdiendo la exactitud del momento de la chispa; la computadora usa alternativas de cálculo con la utilización de la señal del CKP para determinar el momento de la chispa.

Cuando el sensor de posición del árbol de levas falla perceptivamente no existe un cambio en el desempeño del motor, con el scanner se puede ver que si se genera un código de avería y que las revoluciones del motor presentan un ligero aumento que no sería detectado fácilmente.

3.1.9. Sensor de temperatura de aire ATS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 13, referente al sensor de temperatura de aire de este equipo (Anexo A.1), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 7 Variables de respuesta más significativas para falla al sensor ATS.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	0
	Avance al encendido	18,18
	válvula IAC	0
ATS	Revoluciones del Motor	17,83
	Temperatura del aire de entrada	48,48
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0110

Fuente: Autores.

Una falla en el sensor de temperatura del aire de entrada no genera un cambio significativo en el funcionamiento del motor, ya que el motor automáticamente asume una temperatura ambiente promedio, tampoco se enciende la luz de check, pero si se genera un código de avería; el avance al encendido y revoluciones del motor aumentan ligeramente.

3.1.10. Sensor de posición de la mariposa de aceleración TPS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 15, referente al sensor de posición de la mariposa de aceleración de este equipo (Anexo A.1), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 8 Variables de respuesta más significativas para falla al sensor TPS.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	-10
	Avance al Encendido	36,36
	válvula IAC	-3,83
TPS	Revoluciones del Motor	49,94
	Temperatura del aire de entrada	-100,00
	Estado de la Luz de Check o Mil	ON
	Códigos de falla	P0120

Fuente: Autores.

Una falla en el sensor de posición de la mariposa del acelerador se manifiesta a través de un aumento de las revoluciones del motor en prácticamente un 50% del valor inicial, como dato para el diagnóstico es el valor del sensor de posición de la mariposa de aceleración que disminuye a cero y un retraso del avance al encendido, además del código que se genera y la luz de Check que se enciende indicando la presencia de esta falla.

3.1.11. Otros sensores y actuadores.

Los siguientes sensores y actuadores no generan variación en el funcionamiento del motor (Tabla 3.9), y a su vez no generan un código de avería o encendido de la luz de check.

Tabla 3. 9 Sensores y actuadores que al fallar, no generaron cambios significativos en el motor.

Falla	Descripción
O2 Sensor Heater	El calentador del sensor de oxigeno no presento influencia directa en el funcionamiento del motor.
Radiator Fan (high - low)	Fallas en los ventiladores prácticamente no influyeron directamente, a menos que permanezcan por un tiempo prolongado activados, ya que el motor trabajaría "frio".
PCSV	Control de purga de la válvula solenoide del cánister, no presento influencia directa en el desempeño del motor.
Ignition Detect	Al fallar este sensor de revoluciones del motor, únicamente el tacómetro del equipo se queda en cero.
ATM relay control	Relé de control del módulo de transmisión automática, no presento influencia directa en el desempeño del motor.
O2 Sensor	La falla en el sensor de oxígeno no genero cambios en el funcionamiento del motor, ni tampoco código de avería.
VSS	Al fallar este sensor de velocidad del vehículo, únicamente el velocímetro del equipo se queda en cero.
Knocking Sensor	En ralentí este sensor no presento influencia directa en el funcionamiento del motor.

3.2. Comportamiento del equipo G- 110401 durante el efecto producido por fallas en su sistema electrónico.

3.2.1. Motor del control electrónico del acelerador.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en las fallas 1, 2 y 3, referentes al mal funcionamiento del motor del control electrónico del acelerador del equipo G-110401 (Anexo A.2), se muestra que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 10 Variables de respuesta más significativas para falla al actuador ETC MOTOR.

Falla	Variables más influyentes	% Porcentaje de cambio		
rana		Cerrado	Abierto	Ambas fallas
	Avance al encendido	-118,75	-131,25	-118,75
TITLG:	Tiempo de inyección banco 1	30	30	30
	Tiempo de inyección banco 2	30	30	30
ETC MOTOR	Revoluciones del Motor	20,25	20,25	21,88
MOTOR	Sensor Flujo Masa de Aire	89,66	82,76	86,21
	Estado de la Luz de Check o Mil	OFF	OFF	OFF
	Códigos de Falla	P1122	P1122	P1136 y P1122

Fuente: Autores.

El momento de encendido del motor se ve afectado debido a la señal en el circuito del ETC se encuentra cerrado o abierto, por lo que la computadora asume que el motor no está siendo sometido a exigencias de carga.

El tiempo de inyección se ve aumentada para asegurar las revoluciones del motor a ralentí.

Una consecuencia propia de esta falla es que el motor no acelera en ninguno de los tres casos analizados.

Con la variación del tiempo de inyección y el momento de encendido se genera cambios en las rpm y flujo de aire.

Además, se presenta el código P1122 para los casos de falla cerrado o abierto y cuando se aplica ambas fallas aparece un código adicional P1136.

3.2.2. Control de tiempo variable continúo de la válvula.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 4 referentes al control de tiempo variable continuo de la válvula, de este equipo (Anexo A.2), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 11 Variables de respuesta más significativas para falla al actuador CVTC.

Falla	Variables más influyentes	% Porcentaje de cambio
	Avance al encendido	-6,25
	Tiempo de inyección banco 1	0
	Tiempo de inyección banco 2	0
CVTC	Revoluciones del motor	-1,625
CVTC	Sincronización Válvulas Admisión (B1)	-50
	Sincronización Válvulas Admisión (B2)	-150
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P1111, P1136 y P2122

Fuente: Autores.

El scanner se puede observar que hay un cambio importante en los grados de sincronización de las válvulas del bloque 1 y 2; así mismo muestra la generación de 3 códigos de averías.

Cuando no funciona este actuador no existiría un desfasamiento del ángulo de apertura de las válvulas cuando el motor aumenta las revoluciones.

Además de predecir que existiría una pérdida de potencia en altas rpm, ya que las variables de tiempo de inyección y avance al encendido tendrán otros valores diferentes en comparación con el motor funcionando correctamente.

3.2.3. Sensor de posición del cigüeñal CKP.

Con la aplicación de la falla 5, referente al sensor de posición del cigüeñal el motor se apaga de una manera súbita y permanece así hasta que se corrija la falla, aparece el código de falla P0335, que serviría para el diagnóstico.

3.2.4. Sensor de posición del árbol de levas CMP (PHASE LH).

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 6, referente al sensor de posición del árbol de levas, del bloque izquierdo (LH), de este equipo (Anexo A.2), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 12 Variables de respuesta más significativas para falla al sensor CMPS (LH).

Falla	Variables más influyentes	% Porcentaje de cambio
	Avance al encendido	0
	Tiempo de inyección banco 1	0
	Tiempo de inyección banco 2	0
PHASE	Revoluciones del motor	1,5
LH	Sincronización Válvulas Admisión (B1)	3075
(CMPS)	Sincronización Válvulas Admisión (B2)	-100
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P1136 y P2122

Fuente: Autores.

Cuando falla el sensor CMP del bloque LH, falla también la válvula CVTC, esto porque la ECM no puede calcular la cantidad de grados que tendrá que desfasar a las válvulas de admisión.

Además, cuando presenta falla el sensor de posición del árbol de levas del bloque 2 o LH mientras está funcionando el equipo, el motor se apaga, pero si se vuelve a prender y funciona bien como lo muestra los porcentajes de variación de la Tabla 3.12; mediante el uso del escáner

se puede observar únicamente que los grados de sincronización de las válvulas de admisión del banco 1 y 2 están trabajando con un desfase excesivo.

3.2.5. Inyectores.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos al aplicar las fallas 10 y 11, referentes a los inyectores de este equipo (Anexo A.2), se define que los valores más representativos durante el efecto producido por fallas en este actuador son:

Tabla 3. 13 Variables de respuesta más significativas para falla a los inyectores.

Falla	Variables más influyentes	% Porcentaje de cambio	
rana	variables mas influyentes	Iny. 5	Iny. 5 y 1
	Avance al encendido	-6,25	-6,25
Inyectores	Tiempo de inyección banco 1	5	20
	Tiempo de inyección banco 2	5	20
	Revoluciones del motor	-3,125	1,5
	Sensor flujo masa de aire	6,90	27,59
	Estado de la Luz de Check o Mil	OFF	OFF
	Códigos de falla	NO	NO

Fuente: Autores.

La computadora trata de compensar la falla o fallas de inyectores aumentado el tiempo de inyección de combustible pulverizado en la cámara y disminuyendo el avance al encendido con el objetivo de ganar mayor torque. Como es normal esperarse que con la variación del avance al encendido y tiempo de inyección de combustible las rpm y flujo de aire se vean afectadas.

Para ambos casos durante el efecto producido por falla en inyectores no se generan códigos de avería, ni tampoco se enciende la luz de Check.

3.2.6. Sensor de posición del árbol de levas CMP (PHASE RH).

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 13, referente al sensor de posición del árbol de levas, del bloque derecho (RH), de este equipo

(Anexo A.2), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 14 Variables de respuesta más significativas para falla al sensor CMPS (RH).

Falla	Variables más influyentes	% Porcentaje de cambio
	Avance al encendido	0
	Tiempo de inyección banco 1	0
DII A GE	Tiempo de inyección banco 2	0
PHASE RH (CMPS)	Revoluciones del motor	1,5
	Sincronización Válvulas Admisión (B1)	3075
	Sincronización Válvulas Admisión (B2)	-100
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0340 y P2122

Fuente: Autores.

Cuando falla el CMP falla también la válvula CVTC debido a que la computadora no puede calcular la cantidad de grados que tendrá que desfasar a las válvulas de admisión.

Perdida de precisión en el momento de encendido de la mescla; cuando presenta falla el sensor de posición del árbol de levas del bloque 1 o RH mientras está funcionando el equipo, el motor se apaga, pero si se vuelve a prender y funciona bien como lo muestra los porcentajes de variación de la Tabla 3.14; mediante el uso del escáner se puede observar únicamente que los grados de sincronización de las válvulas de admisión del banco 1 y 2 están trabajando con un desfase excesivo y se generan dos códigos de avería.

3.2.7. Sensor de temperatura del aire de entrada IAT.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 14, referente al sensor de temperatura del aire de entrada de este equipo (Anexo A.2), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 15 Variables de respuesta más significativas para falla al sensor IAT.

Falla	Variables más influyentes	% Porcentaje de cambio
	Temperatura aire de admisión	-240,63
	Avance al encendido	0
	Revoluciones del Motor	1,5
IATS	Flujo masa de aire	-3,45
IAIS	Tiempo de inyección banco 1	-5
	Tiempo de inyección banco 2	-5
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0113

Cuando se presenta una falla el sensor de temperatura del aire de entrada el equipo no presenta cambios representativos en su funcionamiento, así también la señal de temperatura que llega a la ECU es la más mínima (-45 °C), lo que provoca que exista una disminución del tiempo de inyección, y que se genere un código de avería. Para este caso la luz de check permanece apagada.

3.2.8. Sensor de posición de la mariposa de aceleración TPS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en las fallas 16 y 19, referente al sensor de posición de la mariposa de aceleración de este equipo (Anexo A.2), y considerando que el motor V6 posee dos sensores TPS; se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 16 Variables de respuesta más significativas para fallas en los sensores TPS #1 y TPS#2.

Falla	Variables más influyentes —	% Porcentaje de cambio		
ralla		TPS #1	TPS#2	Ambas fallas
	Avance al encendido	0	-6,25	-125
TPS	Tiempo de inyección banco 1	0	0	30
	Tiempo de inyección banco 2	-5	-5	30
	Revoluciones del motor	1,5	0	23,38
	Sensor Flujo Masa de Aire	-6,90	-3,45	82,76
	Sensor acel. Principal.	-1,35	-1,35	309,46

Sensor acel. Secundario.	0	0	325,97
Sensor 1 pos acelerador.	-85	0	720,97
Sensor 2 pos acelerador.	0	752	751,67
Estado de la Luz de Check o Mil	OFF	OFF	OFF
Códigos de falla	P0223 y P2135	P0123 y P2135	P0123 y P0223

Perceptivamente el motor no acelera para ninguno de los tres casos que se presentan en la tabla. Cuando se presenta una falla en uno de los dos sensores (TPS#2) y la combinación de fallo (TPS#2 y TPS#1) existe un ligero retraso en el avance del encendido.

Para cualquiera de los dos casos se puede observar que existe una ligera disminución del voltaje del sensor del acelerador principal, una variación del voltaje del sensor 1de posición del acelerador y la generación de dos códigos de avería, cuando falla el TPS #1; y una variación del voltaje del sensor 2 de posición del acelerador, cuando falla el TPS #2, con la generación de dos códigos de avería.

El flujo de aire en el motor se ve afectado debido al cambio del avance de encendido y tiempo de inyección.

Para el caso de falla ambos sensores se pueden observar cómo hay un cambio considerable de todos los valores analizados, en especial de los valores de voltaje de los sensores del acelerador; adicionalmente aparecen dos códigos de avería.

3.2.9. Sensor de flujo de masa de aire MAFS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 17, referente al sensor flujo de masa de aire en este equipo (Anexo A.2), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 17 Variables de respuesta más significativas para falla en el sensor MAFS.

Falla	Variables más influyentes	% Porcentaje de cambio
MAFS	Avance al encendido	0

Revoluciones del Motor	25
Tiempo de inyección banco 1	130
Tiempo de inyección banco 2	130
Sensor flujo de masa de aire	-100
Valor carga calculada	-100
Estado de la Luz de Check o Mil	OFF
Códigos de avería	P0102

Una falla en el sensor de flujo de masa de aire provoca que el equipo mientras está en funcionamiento se apague, pero al momento de encenderlo si lo hace, pero presenta un mal funcionamiento que hace que se acelere y desacelere.

Al fallar el MAF la computadora asume que está ingresando a la cámara de combustión una baja cantidad de aire, además de ajustar el tiempo de inyección para tal cantidad de masa de aire, por lo tanto, en altas rpm el motor no desarrollaría la potencia esperada.

Los datos relevantes para el diagnóstico son un elevado tiempo de inyección, provocando una disminución del flujo de aire del motor y el valor de carga en cero. Adicionalmente la creación de un código de avería, la cual no es manifestada a través del encendido de la luz de check.

3.2.10. Bobina de encendido.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 18, referente a la falla en la bobina de encendido de este equipo (Anexo A.2), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 18 Variables de respuesta más significativas para falla en la bobina de encendido.

Falla	Variables más influyentes	% Porcentaje de cambio
	Avance al encendido	-6,25
	Tiempo de inyección banco 1	0
DODINA DE	Tiempo de inyección banco 2	-5
BOBINA DE ENCENDIDO	Revoluciones del motor	-1,625
	Sincronización Válvulas Admisión (B1)	-75
	Sincronización Válvulas Admisión (B2)	-125
	Estado de la Luz de Check o Mil	OFF

Códigos de avería	NO

Como consecuencia se puede decir que, al fallar una bobina de encendido, el motor casi mantiene sus revoluciones, se retrasa el avance al encendido y se reducen los grados de sincronización de las válvulas de admisión. Perceptivamente se nota un funcionamiento inestable "calado", nótese también que el tiempo de inyección se mantiene por lo cual no se podría identificar la falla por un aumento de consumo de combustible, pero se podrá notar al percibirse un olor fuerte a combustible, a través de los gases de escape.

3.2.11. Sensor de temperatura del refrigerante ECT.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 21, referente al sensor de temperatura del refrigerante, de este equipo (Anexo A.2), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 19 Variables de respuesta más significativas para falla en el sensor ECT.

Falla	Variables más influyentes	% Porcentaje de cambio
	Temperatura del refrigerante.	-3,41
	Avance al encendido	-6,25
	Revoluciones del Motor	-4,75
WTS	Flujo masa de aire	-4,55
(ECTS)	Tiempo de inyección banco 1	10,00
	Tiempo de inyección banco 2	5,00
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0115, P0102 y P0118

Fuente: Autores.

Cuando se presenta una falla en el sensor de temperatura del refrigerante, como datos para el diagnóstico tenemos una disminución de las rpm del motor, un retraso del avance al encendido y un aumento en el tiempo de inyección. En el caso de la temperatura del refrigerante, presenta únicamente una disminución a 85°C que provoca que se enciendan los ventiladores y que se generen 3 códigos de avería.

3.2.12. Sensor de pedal del acelerador APS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en las fallas 22 y 24, referente al sensor de pedal del acelerador, de este equipo (Anexo A.2), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 20 Variables de respuesta más significativas para falla en el sensor APS.

Felle	Variables más influerentes	% Porcentaje de cambio	
Falla	Variables más influyentes	APS #1	APS#2
	Sensor acelerador primario	-1	-98,65
	Sensor acelerador secundario	-100	0,00
	Avance al encendido	-13	-6,25
	Revoluciones del Motor	0	-3,13
APS	Flujo masa de aire	3	-6,90
	Tiempo de inyección banco 1	0	0
	Tiempo de inyección banco 2	0	0
	Estado de la Luz de Check o Mil	OFF	OFF
	Códigos de falla	P2127 y 2138	P1111, P2122 y P2138

Fuente: Autores.

Cuando se presenta una falla en el sensor de pedal del acelerador el motor si acelera y funciona normalmente, aunque dependiendo del bloque 1 o 2 la señal del sensor del acelerador varía a su valor más mínimo, adicionalmente se generan 2 códigos de avería para el caso de falla del APS #1 y 3 códigos de falla en caso de avería del APS #2.

3.2.13. Relé del motor de control del acelerador.

Cuando falla este relé (falla 23), el motor se apaga y no se vuelve a prender hasta que se corrija la falla, adicionalmente se generan 3 códigos de avería y se enciende el check.

Los códigos de avería que aparecen son: P1111, P1122 y P1126.

3.2.14. Relé de encendido general del motor.

Cuando se aplica la falla 25, no se genera código de avería, ni tampoco se enciende la luz de check y se pierde la comunicación con el escáner, se prende el testigo de temperatura y adicionalmente se encienden los ventiladores.

3.2.15. Relé de la bomba de combustible.

Con la aplicación de la falla 26 referente al control de la bomba de combustible, el motor se apaga de una manera prolongada, es decir, si se presenta esta falla y el motor está funcionando, la ECU aumenta el tiempo de inyección con el fin de mantenerlo encendido pero a la larga se apagara y permanecerá así hasta que la falla se corrija.

3.2.16. Otros sensores y actuadores.

Los siguientes sensores y actuadores no generan variación en el funcionamiento del motor (Tabla 3.21) y a su vez no generan un código de avería o encendido de la luz de check.

Tabla 3. 21 Sensores y actuadores que al fallar, no generaron cambios significativos en el motor.

Falla	Descripción
KUK 1 (KNOCK)	En ralentí este sensor no presento influencia directa en el funcionamiento del motor.
SENSOR O2	La falla en el sensor de oxigeno no genero cambios en el funcionamiento del motor, ni tampoco código de avería.

Fuente: Autores.

3.3. Comportamiento del equipo G- 120201 durante el efecto producido por fallas en su sistema electrónico.

3.3.1. Relé de control del motor.

Con la aplicación de la falla 1(Anexo A.4): no se genera código de avería, ni tampoco se enciende la luz de check y se pierde la comunicación con el escáner. El motor no se prende hasta que se solucione la avería.

3.3.2. Relé de control de las bujías de precalentamiento.

Con la aplicación de la falla 2 (Anexo A.4), referente a las bujías de precalentamiento; el motor aparentemente muestra un funcionamiento normal según se puede observar en la Tabla 3.22, únicamente se tiene un código de avería que puede ser usado para el diagnóstico.

Tabla 3. 22 Variables de respuesta más significativas para falla en el relé de control de las bujías de precalentamiento.

Falla	Variables más influyentes	% Porcentaje de cambio	
GLOW PLUG RELAY CONTROL	Revoluciones del motor	0	
	Presión de combustible	-0,59	
	Cantidad de combustible	1,49	
	Estado de la Luz de Check o Mil	OFF	
	Códigos de falla	P1325	

Fuente: Autores.

Cuando fallan las bujías de precalentamiento fallan, el arranque en frio del motor será complicado.

3.3.3. Recirculación de gases de escape EGR.

Con la aplicación de la falla 3 (Anexo A.4) referente a la válvula de recirculación de gases de escape, el motor aparentemente muestra un funcionamiento normal según se puede observar en la Tabla 3.23; únicamente se tiene un código de avería que puede ser usado para el diagnóstico.

Tabla 3. 23 Variables de respuesta más significativas para falla en el actuador EGR.

Falla	Variables más influyentes	% Porcentaje de cambio	
	Revoluciones del motor	0,12	
	Presión de combustible	-0,59	
EGR	Cantidad de combustible	1,49	
	Estado de la Luz de Check o Mil	OFF	
	Códigos de falla	P0403	

3.3.4. Control del relé de la bomba de combustible.

Con la aplicación de la falla 4, referente al control del relé de la bomba de combustible, el motor se apaga de una manera prolongada, es decir, si se presenta esta falla durante el funcionamiento del motor, la ECU aumenta el tiempo de inyección con el fin de mantenerlo encendido, pero a la larga se apagará y permanecerá así hasta que la falla se corrija.

3.3.5. Válvula de posición del acelerador TPV.

Con la aplicación de la falla 5 (Anexo A.4), referente a la válvula de posición del acelerador. El motor aparentemente muestra un funcionamiento normal según se puede observar en la Tabla 3.24; se tiene un código de avería y un valor reducido de la válvula de operación de servicio de la sobrealimentación, que pueden ser usados para el diagnóstico.

Tabla 3. 24 Variables de respuesta más significativas para falla en el TPV.

Falla	Variables más influyentes	% Porcentaje de cambio	
	Revoluciones del motor	0,12	
TPV	Presión de combustible	0,56	
	Cantidad de combustible	2,99	
	Booster valve operation	-64,38	
	Estado de la Luz de Check o Mil	OFF	
	Códigos de falla	P1190	

Fuente: Autores.

3.3.6. Geometría variable del turbo VGT.

Con la aplicación de la falla 6 (Anexo A.4), referente a la geometría variable del turbo. El motor aparentemente muestra un funcionamiento normal, según se puede observar en la Tabla 3.25; se tiene un código de avería y un valor reducido al mínimo de la geometría variable del turbo con lo que se presume que en altas revoluciones o en condiciones de carga elevadas el motor no va a brindar un rendimiento óptimo.

Tabla 3. 25 Variables de respuesta más significativas para falla en el VGT.

Falla	Variables más influyentes	% Porcentaje de cambio	
	Revoluciones del motor	0,00	
	Presión de combustible	0,56	
	Cantidad de combustible	0,00	
VGT	Booster valve operation	2,04	
	Variable geometry turbe	-61,09	
	Estado de la Luz de Check o Mil	OFF	
	Códigos de falla	P1112	

Fuente: Autores.

3.3.7. Sensor de pedal del acelerador APS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en las fallas 9 y 10, referente a la falla en el sensor de pedal del acelerador, de este equipo (Anexo A.4), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 26 Variables de respuesta más significativas para falla en el sensor APS.

Falla	Variables más influyentes	% Porcentaje de cambio	
r alla		APS 1	APS 2
APS	Revoluciones del motor	46,46	46,46
	Presión de combustible	10,28	10,84
	Cantidad de combustible	-1,49	1,49
	Flujo Masa de Aire	65,81	66,77
	Posición del pedal del Acelerador	-100,00	0,00
	Estado de la Luz de Check o Mil	O	FF
	Códigos de falla	P0220	P0220

Cuando se presenta una falla en el sensor de pedal del acelerador 1 o 2, el motor aparentemente funciona bien, pero al acelerarlo aumenta sus revoluciones máximo a un 46.46% del valor inicial, a pesar de tener presionado a fondo el pedal del acelerador. Como datos para el diagnóstico se tiene un valor reducido al mínimo cuando falla el sensor del pedal del acelerador 1 y cuando falla el 2 no hay cambio en su valor; para ambos casos se genera un solo código de avería.

3.3.8. Sensor de temperatura del combustible FTS.

Con la aplicación de la falla 11 (Anexo A.4), referente al sensor de temperatura del combustible; el motor aparentemente muestra un funcionamiento normal según se puede observar en la Tabla 3.27; se tiene un código de avería y un valor aumentado al máximo de la temperatura del combustible (90°C), lo que justifica que la ECU aumente ligeramente la cantidad de combustible inyectada.

Tabla 3. 27 Variables de respuesta más significativas para falla en el sensor FTS.

Falla	Variables más influyentes	% Porcentaje de cambio
FTS	Revoluciones del motor	-0,12
	Presión de combustible	-1,71
	Cantidad de combustible	2,99
	Sensor de temperatura del combustible	49,01
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0180

Fuente: Autores.

3.3.9. Sensor de temperatura del refrigerante WTS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 12, referente al sensor de temperatura del refrigerante, de este equipo (Anexo A.4), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 28 Variables de respuesta más significativas para falla en el sensor WTS.

Falla	Variables más influyentes	% Porcentaje de cambio	
	Revoluciones del motor	0,00	
	Presión de combustible	1,12	
WTS	Cantidad de combustible	22,39	
	sensor de temperatura del refrigerante	-6,65	
	Ventiladores	ON	
	Estado de la Luz de Check o Mil	OFF	
	Códigos de falla	P0115	

Cuando se presenta este tipo de falla en el sensor de temperatura del refrigerante, existe un aumento considerable de la cantidad de combustible inyectado y el sensor de temperatura presenta una ligera disminución a 80 °C que representa un 6.65% del valor inicial, funcionalmente el motor trabaja con los ventiladores encendidos y se aprecia un mayor flujo de humo negro por el tubo de escape. Adicionalmente se genera un código de avería.

3.3.10. Sensor de temperatura de aire de entrada ATS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 13, referente al sensor de temperatura de aire de entrada, de este equipo (Anexo A.4), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 29 Variables de respuesta más significativas para falla en el sensor ATS.

Falla	Variables más influyentes	% Porcentaje de cambio	
	Revoluciones del motor	0,12	
	Presión de combustible	-0,34	
A TEC	Cantidad de combustible	1,49	
ATS	sensor de temperatura de aire de entrada	136,22	
	Estado de la Luz de Check o Mil	OFF	
	Códigos de falla	P0110	

Fuente: Autores.

Cuando se presenta una falla en el sensor de temperatura de aire de entrada, las variaciones que presenta el motor durante el efecto de esta falla son mínimas, dando como únicos datos para

el diagnóstico: el valor de temperatura de aire que se eleva a un valor máximo (60 °C) y el código de avería que se genera.

3.3.11. Sensor de flujo de masa de aire AFS.

Con la aplicación de la falla 14 (Anexo A.4), referente al sensor de flujo de masa de aire; el motor aparentemente muestra un funcionamiento normal según se puede observar en la tabla....; se tiene un código de avería y un valor aumentado al máximo del valor de flujo de masa de aire (6512 kg/h), que representa un aumento del 20705.11% con respecto al valor en estado normal y que justifica que la ECU aumente ligeramente la cantidad de combustible inyectada.

Tabla 3. 30 Variables de respuesta más significativas para falla en el sensor AFS.

Falla	Variables más influyentes	% Porcentaje de cambio	
AFS	Revoluciones del motor	-0,49	
	Presión de combustible	1,71	
	Cantidad de combustible	2,99	
	sensor de flujo de masa de aire	20705,11	
	Estado de la Luz de Check o Mil	OFF	
	Códigos de falla	P0100	

Fuente: Autores.

3.3.12. Sensor de presión del riel de combustible RPS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 15, referente al sensor de presión del riel de combustible, de este equipo (Anexo A.4), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 31 Variables de respuesta más significativas para falla en el sensor RPS.

Falla	Variables más influyentes	% Porcentaje de cambio
	Revoluciones del motor	0,12
	Presión de combustible	40,23
RPS	Cantidad de combustible	80,60
	Regulador de presión de combustible	-53,49
	Estado de la Luz de Check o Mil	OFF

Cuando se presenta una falla en este sensor, la cantidad de combustible inyectado aumenta considerablemente, esto porque la presión de combustible aumenta a causa de que la señal de presión de combustible presenta un valor mínimo que hace que la ECU realice estas correcciones para mantener el motor encendido; adicionalmente se genera un código de avería,

3.3.13. Sensor de presión de sobrealimentación BPS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 16, referente al sensor de presión de sobrealimentación, de este equipo (Anexo A.4), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 32 Variables de respuesta más significativas para falla en el sensor BPS.

Falla	Variables más influyentes	% Porcentaje de cambio
	Revoluciones del motor	0,00
	Presión de combustible	-2,31
	Cantidad de combustible	-2,99
BPS	Flujo de masa de aire	-1,92
	Variable geometry turbe	-61,09
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P1116

Fuente: Autores.

Cuando se presenta una falla en este sensor, se genera un código de avería y la señal de la geometría variable del turbo disminuyen a un valor mínimo, lo que provoca una ligera disminución de la cantidad de combustible inyectado, presión de combustible y flujo de masa de aire; con lo que se presume que en altas revoluciones o en condiciones de carga elevadas el motor no va a brindar un rendimiento óptimo.

3.3.14. Sensor de posición del cigüeñal CKP.

Con la aplicación de las fallas 17 y 18, referentes al sensor de posición del cigüeñal, el motor presenta dos comportamientos diferentes. Para el caso de aplicación de la falla CKP+ el equipo se apaga de una manera súbita y permanece así hasta que se corrija la falla, así mismo aparece el código de falla P0335, que serviría para el diagnóstico. Para el caso de la falla CKP- el motor funciona normal, únicamente con un aumento ligero de la cantidad de combustible y no se genera ningún código de avería.

Tabla 3. 33 Variables de respuesta más significativas para falla en el sensor CKP.

Falla	Variables más influyentes	% Porcentaje de cambio	
		CKP +	CKP -
СКР	Revoluciones del motor	-	0
	Presión de combustible	-	-2,31
	Cantidad de combustible	-	5,97
	Estado de la Luz de Check o Mil	O	FF
	Códigos de falla	P0335	NO

Fuente: Autores.

3.3.15. Sensor de posición del árbol de levas CMP.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 19, referente al sensor de posición del árbol de levas, de este equipo (Anexo A.4), se define que los valores representativos durante el efecto producido por esta falla son:

Tabla 3. 34 Variables de respuesta más significativas para falla en el sensor CMP.

Revoluciones del motor 0,00 Presión de combustible -2,31 Cantidad de combustible 5,97 sensor de flujo de masa de aire -0,32 Estado de la Luz de Check o Mil OFF Códigos de falla P0340	Falla	Variables más influyentes	% Porcentaje de cambio
CMP Cantidad de combustible 5,97 sensor de flujo de masa de aire -0,32 Estado de la Luz de Check o Mil OFF		Revoluciones del motor	0,00
sensor de flujo de masa de aire -0,32 Estado de la Luz de Check o Mil OFF		Presión de combustible	-2,31
sensor de flujo de masa de aire -0,32 Estado de la Luz de Check o Mil OFF	CMD	Cantidad de combustible	5,97
	CMP	sensor de flujo de masa de aire	-0,32
Códigos de falla P0340		Estado de la Luz de Check o Mil	OFF
<u> </u>		Códigos de falla	P0340

Fuente: Autores.

Cuando presenta falla el sensor de posición del árbol de levas el equipo funciona correctamente; como datos para el diagnóstico se tiene un ligero aumento de la cantidad de combustible y la generación de un código de avería.

3.3.16. Regulador de presión del riel de combustible.

Al aplicar las fallas 20 y 21, referentes al regulador de presión del riel de combustible en los estados "HIGH" y "LOW", el motor se apaga y no se vuelve a encender hasta que se solucione el problema, adicionalmente se genera el código de avería P1180 para ambos casos.

3.3.17. Invectores.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en las fallas 22 y 23, referentes a los inyectores de este equipo (Anexo A.4), se define que los valores más representativos durante el efecto producido por fallas en este actuador son:

Tabla 3. 35 Variables de respuesta más significativas para falla en inyectores.

Falla	Variables más influyentes	% Porcentaje de cambio	
ralla		Un Inyector	Dos Inyectores
	Revoluciones del motor	0,37	-
	Presión de combustible	0,56	-
Inyectores	Cantidad de combustible	65,67	-
	Sensor de flujo de masa de aire	1,28	-
	Estado de la Luz de Check o Mil	OFF	-
	Códigos de falla	P0201	Aparecen los
		P0202	códigos de los
		P0203	inyectores que
		P0204	estén fallando.

Fuente: Autores.

Como consecuencia se puede decir que al fallar un inyector primeramente se presenta una pérdida de potencia, mayor consumo de combustible y perceptivamente se nota un funcionamiento inestable del motor (calado), además en el equipo no alerta este fallo a través de la Luz de Check o Mil y para el diagnóstico si se generan códigos de averías. Cuando fallan dos

o más inyectores el equipo se apaga y no se vuelve a encender hasta que se corrija dichas fallas; para el diagnóstico aparecen los códigos de avería de los inyectores que se encuentren fallando.

3.3.18. Otros sensores y actuadores.

Los siguientes sensores y actuadores no generan variación en el funcionamiento del motor (Tabla 3.36) y no generan un código de avería, ni tampoco provocan el encendido de la luz de check.

Tabla 3. 36 Sensores y actuadores que al fallar, no generaron cambios significativos en el motor.

Falla	Descripción	
ТАСНО	Al fallar este sensor de revoluciones del motor, únicamente el tacómetro del equipo se queda en cero.	
VSS	Al fallar este sensor de velocidad del vehículo, únicamente el velocímetro del equipo se queda en cero.	

Fuente: Autores.

3.4. Comportamiento del equipo G- 150301 durante el efecto producido por fallas en su sistema electrónico.

3.4.1. Sensor de temperatura del combustible ECT.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 1, referente al sensor de temperatura del refrigerante del motor, de este equipo (Anexo A.3), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 37 Variables de respuesta más significativas para falla en el sensor ECT.

Falla	Variables más influyentes	% Porcentaje de cambio
ECT	Temperatura del Refrigerante	-54,88
	Avance al encendido	140,00
ECT	Revoluciones del Motor	49,94
	Corrección Aire/Combustible	6837,50

IAC	13,61	
Ventilador del radiador	ON	
Estado de la Luz de Check o Mil	OFF	
Códigos de falla	P0115	

Cuando se presenta este tipo de falla en el sensor de temperatura del refrigerante, hay un aumento muy considerablemente en la corrección de aire/combustible, del avance al encendido y de las revoluciones del motor; como datos propios de esta falla se tiene una disminución a un valor mínimo (37°C), generación de un código de avería y la activación del ventilador del radiador.

3.4.2. Sensor de oxígeno O2.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 2, referente al sensor de oxígeno, de este equipo (Anexo A.3), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 38 Variables de respuesta más significativas para falla en el sensor O2.

Falla	Variables más influyentes	% Porcentaje de cambio
	Sensor MAP	66,67
	IAC	22,28
	Avance al encendido	-40,00
O2	Revoluciones del Motor	-3,67
	Corrección Aire/Combustible	-100,00
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	NO

Fuente: Autores.

Cuando se presenta una falla en el sensor de oxígeno, las revoluciones del motor casi se mantienen, los datos relevantes son un aumento del valor de la señal del sensor MAP y un retraso en el avance al encendido y de la corrección aire/combustible. En este caso no se genera ningún código de avería, ni tampoco se enciende la luz de check.

3.4.3. Relé de control del motor.

Con la aplicación de las fallas 5 y 15 (Anexo A.3) de este equipo, el motor se apaga y no se vuelve a prender hasta que se solucione la avería. Adicionalmente se genera el código de avería P1129 (solo para la falla 5) y no se enciende la luz de check.

3.4.4. Solenoide de vapor de gas.

Con la aplicación de la falla 6 (Anexo A.3), referente al solenoide de vapor de gas; el motor aparentemente muestra un funcionamiento normal según se puede observar en la Tabla 3.39; no se genera ningún código de avería y como dato relevante para el diagnóstico se tiene una reducción de un 1862.50 % de la corrección aire/combustible.

Tabla 3. 39 Variables de respuesta más significativas para falla en el solenoide de vapor de gas.

Falla	Variables más influyentes	% Porcentaje de cambio
	Avance al encendido	0,00
	Revoluciones del Motor	-0,73
Vapor	Corrección Aire/Combustible	-1862,50
Solenoid	IAC	0,99
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	NO

Fuente: Autores.

3.4.5. Solenoide de servicio principal de gas.

Con la aplicación de la falla 7 (Anexo A.3), referente al solenoide de servicio principal de gas; el motor aparentemente muestra un funcionamiento normal según se puede observar en la Tabla 3.40; se genera un código de avería y como dato relevante para el diagnóstico se tiene una reducción de un 1375 % de la corrección aire/combustible y un ligero retraso en el avance al encendido.

Tabla 3. 40 Variables de respuesta más significativas para falla en el solenoide de servicio principal de gas.

Falla	Variables más influyentes	% Porcentaje de cambio

	Avance al encendido	-20,00
Main Duty Solenoid	Revoluciones del Motor	-1,84
	Corrección Aire/Combustible	-1375,00
	IAC	0,99
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P1145

3.4.6. Bobina de encendido.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en las fallas 9 y 10, referente a las bobinas de encendido de este equipo (Anexo A.3), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 41 Variables de respuesta más significativas para falla en las bobinas de encendido.

Falla	Variables más influyentes	% Porcentaje de cambio	
rana		1 Bobina	2 Bobinas
	Sensor de oxigeno	-38,80	-96,17
	Sensor MAP	11,11	44,44
D . L	Avance al encendido	0,00	0,00
Bobinas de encendido	Revoluciones del Motor	0,12	-1,35
	IAC	0,99	12,62
	Corrección Aire/Combustible	487,50	12300,00
	Estado de la Luz de Check o Mil	OFF	
	Códigos de falla		NO

Fuente: Autores.

Como consecuencia se puede decir que al fallar una bobina de encendido el motor tiene un funcionamiento anormal (se cala), los datos relevantes en este caso es un aumento de la corrección aire/combustible, esto a causa de que la señal del sensor de oxigeno tiene una considerable disminución en su señal. Cuando fallan dos bobinas de encendido el funcionamiento anormal se empeora y los datos mencionados anteriormente varían sus valores aún más, si se provoca el fallo de una tercera bobina de encendido el motor se apaga y no se vuelve a prender.

Para ambos casos no se genera ningún código de avería, ni tampoco se enciende la luz de Check o Mil.

3.4.7. Sensor de temperatura de aire de entrada ATS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 11, referente a la falla en el sensor de temperatura de aire de entrada, de este equipo (Anexo A.3), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 42 Variables de respuesta más significativas para falla en el sensor ATS.

Falla	Variables más influyentes	% Porcentaje de cambio
	Temperatura del Aire	135,29
	Avance al encendido	60,00
	Revoluciones del Motor	-5,02
IATS	Corrección Aire/Combustible	-2350,00
	IAC	-11,63
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0110

Fuente: Autores.

Cuando se presenta una falla en el sensor de temperatura de aire de entrada, las variaciones que presenta el motor durante el efecto de esta falla son una disminución considerable en la corrección aire/combustible y un adelanto en el avance al encendido, además otros datos para el diagnóstico como: el valor de temperatura de aire que se eleva a un valor máximo (80 °C) y el código de avería que se genera.

3.4.8. Sensor de posición de la mariposa del acelerador TPS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 12, referente al sensor de posición de la mariposa del acelerador, de este equipo (Anexo A.3), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 43 Variables de respuesta más significativas para falla en el sensor TPS.

Falla	Variables más influyentes	% Porcentaje de cambio
	Posición del acelerador	44200,00
	Sensor TPS	-100,00
	IAC	-6,68
TPS	Revoluciones del Motor	-3,55
	Corrección Aire/Combustible	1262,50
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0120 y P0122

Cuando se presenta una falla en el sensor de posición del acelerador, el motor aparentemente funciona correctamente, pero al acelerarlo no lo hace. Para el diagnostico tenemos un valor de apertura de la mariposa del acelerador de 44.3% que no varía y así mismo la señal de voltaje del TPS se mantiene en cero; y hay un aumento de la corrección aire/combustible, adicionalmente presentan dos códigos de avería.

3.4.9. Sensor de posición del árbol de levas CMP.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 13, referente al sensor de posición del árbol de levas, de este equipo (Anexo A.3), se define que los valores representativos durante el efecto producido por esta falla son:

Tabla 3. 44 Variables de respuesta más significativas para falla en el sensor CMP.

Falla	Variables más influyentes	% Porcentaje de cambio
CMPS	Avance al encendido	60,00
	Revoluciones del Motor	-1,10
	Corrección Aire/Combustible	587,50
	IAC	-9,65
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0340

Fuente: Autores.

Cuando presenta falla el sensor de posición del árbol de levas el equipo funciona correctamente; como datos para el diagnóstico se tiene un aumento de la corrección aire/combustible, un adelanto del avance al encendido y la generación de un código de avería.

3.4.10. Solenoide de corte lento de combustible.

Con la aplicación de la falla 14 (Anexo A) de este equipo, el motor se apaga y no se vuelve a encender hasta que se solucione la avería. Adicionalmente se genera el código de avería P1144, no se enciende la luz de check.

3.4.11. Actuador de control de velocidad de ralentí (IAC)

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 16, referente al actuador de control de velocidad de ralentí, de este equipo (Anexo A.3), se define que los valores representativos durante el efecto producido por esta falla son:

Tabla 3. 45 Variables de respuesta más significativas para falla en el actuador ISCA.

Falla	Variables más influyentes	% Porcentaje de cambio	
	Avance al encendido	0,00	
	Revoluciones del Motor	75,52	
ICCA	Corrección Aire/Combustible	12300,00	
ISCA	IAC	-30,20	
	Estado de la Luz de Check o Mil	OFF	
	Códigos de falla	P0505	
Fuente: Autores.			

Cuando presenta falla el actuador de control de velocidad de ralentí, el equipo se acelera y permanece así, a causa de esto la corrección aire/combustible aumenta considerablemente y el valor de la señal de la válvula IAC permanece en un valor reducido. Adicionalmente se genera un código de avería que serviría para el diagnóstico.

3.4.12. Sensor de presión absoluta del múltiple MAP.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 18, referente al sensor de presión absoluta del múltiple de admisión, de este equipo (Anexo A.3), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 46 Variables de respuesta más significativas para falla en el sensor MAP.

Falla	Variables más influyentes	% Porcentaje de cambio
MAP	Avance al encendido	0,00
	Revoluciones del Motor	-0,12
	Corrección Aire/Combustible	-100,00
	Sensor MAP	-100,00
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0105

Fuente: Autores.

Cuando el sensor de presión del múltiple de admisión falla, la ECU recibe la señal del sensor como un valor mínimo de cero, con lo cual también se reduce la corrección aire/combustible y a su vez las revoluciones de giro del motor descienden ligeramente; si se genera un código de avería y no se enciende la luz de check.

3.4.13. Sensor de posición del cigüeñal CKP.

Con la aplicación de la falla 19 referente al sensor de posición del cigüeñal, el motor se apaga de una manera súbita y permanece así hasta que se corrija la falla, aparece el código de falla P0335, el cual serviría para el diagnóstico.

3.4.14. Solenoide de Liquido.

Con la aplicación de la falla 20 referente al solenoide de líquido del motor, es decir del solenoide de paso de GLP; el motor se apaga de una manera prolongada, es decir, si se presenta esta falla y el motor está funcionando, la ECU aumenta la corrección aire/combustible, con el fin

de mantenerlo encendido pero a la larga se apagara y permanecerá así hasta que la falla se corrija.

3.4.15. Solenoide de servicio lento de combustible.

Con la aplicación de la falla 22 (Anexo A.3) de este equipo, el motor se apaga y no se vuelve a prender hasta que se solucione la avería. Adicionalmente se genera el código de avería P1141 y no se enciende la luz de check.

3.4.16. Relé de control del motor.

Con la aplicación de la falla 23 (Anexo A.3): no se genera código de avería, ni tampoco se enciende la luz de check y se pierde la comunicación con el escáner. El motor no se prende hasta que se solucione la avería.

3.4.17. Otros sensores y actuadores.

Los siguientes sensores y actuadores no generan variación en el funcionamiento del motor (Tabla 3.47) y no generan códigos de avería, ni tampoco provocan el encendido de la luz de check.

Tabla 3. 47 Sensores y actuadores que al fallar, no generaron cambios significativos en el motor.

Falla	Descripción
	Esta falla está relacionada a inactivar el
START SOLENOID	solenoide del motor de arranque, el cual al falla
START SOLENOID	r únicamente no permite el encendido del
	motor.
	Fallas en los ventiladores prácticamente no
VENITH ADODES	influyeron directamente, a menos que
VENTILADORES	permanezcan por un tiempo prolongado
	activados, ya que el motor trabajaría "frio".
B+	
	Al fallar este sensor de revoluciones del motor,
RPM	únicamente el tacómetro del equipo se queda
	en cero.
Fuente: Autores	

Fuente: Autores.

3.5. Comportamiento del equipo G- 111701 durante el efecto producido por fallas en su sistema electrónico.

3.5.1. Sensor de posición del cigüeñal CKP.

Con la aplicación de la falla 1 referente al sensor de posición del cigüeñal, el motor se apaga de una manera súbita y permanece así hasta que se corrija la falla, aparece el código de falla P0335, el cual serviría para el diagnóstico.

3.5.2. Sensor de posición del árbol de levas CMP.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 2, referente al sensor de posición del árbol de levas, de este equipo (Anexo A.5), se define que los valores representativos durante el efecto producido por esta falla son:

Tabla 3. 48 Variables de respuesta más significativas para falla en el sensor CMP.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	0,00
	Avance al Encendido	1100,00
CMD	Revoluciones del Motor	0,00
CMP	Flujo de masa de aire	-2,56
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0340

Fuente: Autores.

Cuando presenta falla el sensor de posición del árbol de levas el equipo funciona correctamente; como datos para el diagnóstico se tiene un adelanto del avance al encendido y la generación de un código de avería.

3.5.3. Invectores.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en las fallas 3 y 4, referentes a los inyectores de este equipo (Anexo A.5), se define que los valores más representativos durante el efecto producido por fallas en este actuador son:

Tabla 3. 49 Variables de respuesta más significativas para falla en los inyectores.

	Variables más influyentes	% Porcentaje de cambio	
Falla		Un Inyector	Dos Inyectores
	Tiempo de Inyección	0,00	45,45
	Avance al Encendido	-21,74	0,00
Inyectores	Revoluciones del Motor	2,53	3,80
	Flujo de masa de aire	9,99	24,97
	Estado de la Luz de Check o Mil	OFF	OFF
	Códigos de falla	P0201	Aparecen los dos
		P0202	códigos de los
		P0203	inyectores que
		P0204	estén fallando.

Como consecuencia se puede decir que al fallar un inyector primeramente se presenta un retraso en el avance al encendido y perceptivamente se nota un funcionamiento inestable del motor (calado) y para el diagnóstico si se generan códigos de averías. Cuando fallan dos inyectores el equipo tiene un funcionamiento mucho más inestable y existe un aumento del tiempo de inyección. En este caso se generan los códigos de avería de acuerdo a los inyectores que se encuentran fallando.

3.5.4. Actuador de control de velocidad de ralentí (IAC)

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 5, referente al actuador de control de velocidad de ralentí, de este equipo (Anexo A.5), se define que los valores representativos durante el efecto producido por esta falla son:

Tabla 3. 50 Variables de respuesta más significativas para falla en el actuador IAC.

Falla	Variables más influyentes	% Porcentaje de cambio
IAC	Tiempo de Inyección	10,87
	Avance al Encendido	400,00
IAC	Revoluciones del Motor	1,27
	Flujo de masa de aire	12,42

Estado de la Luz de Check o Mil	OFF
Códigos de falla	P0505

Cuando presenta falla el actuador de control de velocidad de ralentí, el equipo funciona normalmente aunque hay un ligero aumento del tiempo de inyección, un adelanto del avance al encendido y se genera un código de avería.

3.5.5. Sensor de temperatura del combustible ECT.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 6, referente al sensor de temperatura del refrigerante, de este equipo (Anexo A.5), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 51 Variables de respuesta más significativas para falla en el sensor ECT.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	-21,74
	Avance al Encendido	500,00
	Revoluciones del Motor	20,25
ECT	Flujo de masa de aire	0,00
	Temperatura del Refrigerante	-26,83
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0115

Fuente: Autores.

Cuando se presenta una falla en el sensor de temperatura del refrigerante, hay una disminución del tiempo de inyección, un aumento del avance al encendido y las revoluciones del motor aumentan ligeramente; como datos propios de esta falla se tiene una disminución a un valor mínimo (60°C) del sensor ECT y la generación de un código de avería.

3.5.6. Sensor de posición de la mariposa del acelerador TPS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 7, referente al sensor de posición de la mariposa del acelerador, de este equipo (Anexo A.5), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 52 Variables de respuesta más significativas para falla en el sensor TPS.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	0,00
	Avance al Encendido	1100,00
	Revoluciones del Motor	3,80
TPS	Flujo de masa de aire	4,99
	Apertura del acelerador	275,00
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0120

Cuando se presenta este tipo de falla en el sensor de posición del acelerador, el motor aparentemente funciona correctamente, pero al acelerarlo no lo hace. Para el diagnostico tenemos un valor de apertura de la mariposa del acelerador a 30° que representa un 275% del valor inicial, la cual que no varía. Existe un aumento del adelanto del avance al encendido y se presentan un código de avería.

3.5.7. Sensor de oxigeno O2.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 8, referente al sensor de oxígeno, de este equipo (Anexo A.5), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 53 Variables de respuesta más significativas para falla en el sensor O2.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	-32,61
02	Avance al Encendido	800,00
	Revoluciones del Motor	0,00
O2	Flujo de masa de aire	2,43
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	NO

Fuente: Autores.

Cuando se presenta una falla en el sensor de oxígeno, las revoluciones del motor se mantienen, los datos relevantes son una reducción del tiempo de inyección y un retraso en el avance al encendido. En este caso no se genera ningún código de avería.

3.5.8. Bobina de encendido.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 9, referente a la bobina de encendido de este equipo (Anexo A.5), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 54 Variables de respuesta más significativas para falla en una bobina de un par de cilindros.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	10,87
D 1.	Avance al Encendido	200,00
Bobinas	Revoluciones del Motor	154,43
de encendido	Flujo de masa de aire	62,48
encential	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0350

Fuente: Autores.

Como consecuencia se puede decir que al fallar una bobina de encendido de dos cilindros del motor, este tiene un funcionamiento anormal (se cala), los datos relevantes en este caso es un aumento del tiempo de inyección, de las revoluciones del motor y un adelanto del avance al encendido. Para este caso se genera un código de avería.

3.6. Comportamiento del equipo G- 111703 durante el efecto producido por fallas en su sistema electrónico.

3.6.1. Sensor de posición del cigüeñal CKP.

Con la aplicación de la falla 1 referente al sensor de posición del cigüeñal, el motor se apaga de una manera súbita y permanece así hasta que se corrija la falla, aparece el código de falla P0335, el cual serviría para el diagnóstico.

3.6.2. Sensor de posición del árbol de levas CMP.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 2, referente al sensor de posición del árbol de levas, de este equipo (Anexo A.6), se define que los valores representativos durante el efecto producido por esta falla son:

Tabla 3. 55 Variables de respuesta más significativas para falla en el sensor CMP.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	0,00
CMD	Avance al Encendido	-9,09
	Revoluciones del Motor	3,82
CMP	Flujo de masa de aire	0,00
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0340

Fuente: Autores.

Cuando presenta falla el sensor de posición del árbol de levas el equipo funciona correctamente; como datos para el diagnóstico se tiene un ligero retraso del avance al encendido y la generación de un código de avería.

3.6.3. Sensor de temperatura del combustible ECT.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 3, referente al sensor de temperatura del refrigerante, de este equipo (Anexo A.6), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 56 Variables de respuesta más significativas para falla en el sensor ECT.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	0,00
	Avance al Encendido	-9,09
	Revoluciones del Motor	3,82
ECT	Flujo de masa de aire	-1,87
	Temperatura del Refrigerante	-145,45
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0115

Fuente: Autores.

Cuando se presenta una falla en el sensor de temperatura del refrigerante, el tiempo de inyección se mantiene, hay un retraso del avance al encendido y las revoluciones del motor aumentan ligeramente; como datos propios de esta falla se tiene una disminución a un valor mínimo (-40°C) del sensor ECT y la generación de un código de avería.

3.6.4. Actuador de control de velocidad de ralentí (IAC)

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 4, referente al actuador de control de velocidad de ralentí, de este equipo (Anexo A.6), se define que los valores representativos durante el efecto producido por esta falla son:

Tabla 3. 57 Variables de respuesta más significativas para falla en el actuador IAC.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	-25,00
	Avance al Encendido	127,27
TAC	Revoluciones del Motor	100,12
IAC	Flujo de masa de aire	-22,86
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	NO

Fuente: Autores.

Cuando presenta falla el actuador de control de velocidad de ralentí, el equipo se acelera, existe un adelanto del avance al encendido y una reducción ligera del tiempo de inyección. Para este caso no se generan códigos de avería.

3.6.5. Sensor de posición de la mariposa del acelerador TPS.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 5, referente al sensor de posición de la mariposa del acelerador, de este equipo (Anexo A.6), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 58 Variables de respuesta más significativas para falla en el sensor TPS.

Falla Variables más influyentes	% Porcentaje de cambio
---------------------------------	------------------------

	Tiempo de Inyección	0,00
	Avance al Encendido	0,00
	Revoluciones del Motor	3,82
TPS	Flujo de masa de aire	-7,68
	Apertura del acelerador	-95,13
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0120

Cuando se presenta una falla en el sensor de posición del acelerador, el motor aparentemente funciona correctamente, pero al acelerarlo no lo hace. Para el diagnostico tenemos un valor de señal de la mariposa del acelerador a 19 mV, que representa un -95,13% del valor inicial, la cual que no varía y se presentan un código de avería.

3.6.6. Sensor de flujo de masa de aire MAF y sensor de temperatura de aire de entrada IAT.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 6, referente a los sensores de masa de aire y de temperatura de aire de entrada, de este equipo (Anexo A.6), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 59 Variables de respuesta más significativas para falla en el sensor MAF e IAT.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	-
	Avance al Encendido	-54,55
MAE -	Revoluciones del Motor	-
MAF e IAT	Flujo de masa de aire	390,64
IAI	Temperatura aire entrada	-190,91
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0105 y P0110

Fuente: Autores.

Cuando se presenta una falla en los sensores de flujo de masa de aire y de temperatura de aire de entrada, el equipo se apaga y no se vuelve a encender hasta que se corrija la falla. Los valores

de señal de aire de entrada se mantiene en un valor mínimo (-40°C) y el valor de flujo de masa de aire se mantiene en un valor máximo (4980 mV); además se generan dos códigos de avería.

3.6.7. Sensor de golpeteo KS.

Con la aplicación de la falla 7 (Anexo A.6), referente al sensor de golpeteo; el motor aparentemente muestra un funcionamiento normal según se puede observar en la Tabla 3.60; no se genera ningún código de avería y como dato relevante para el diagnóstico se tiene un adelanto al avance de encendido de un 27.27% con respecto al valor en estado normal del motor.

Tabla 3. 60 Variables de respuesta más significativas para falla en el sensor KS.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	0,00
	Avance al Encendido	27,27
T/C	Revoluciones del Motor	0,00
KS	Flujo de masa de aire	-5,71
	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	NO

Fuente: Autores.

3.6.8. Inyectores.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en las fallas 8 y 9, referentes a los inyectores de este equipo (Anexo A.6), se define que los valores más representativos durante el efecto producido por fallas en este actuador son:

Tabla 3. 61 Variables de respuesta más significativas para fallas en inyectores.

		% Porcentaje de cambio	
Falla	Variables más influyentes	Un Inyector	Dos Inyectores
Inyectores	Tiempo de Inyección	-10,00	15,00
	Avance al Encendido	-36,36	-36,36
	Revoluciones del Motor	-3,82	30,79
	Flujo de masa de aire	-1,87	3,84
	Estado de la Luz de Check o Mil	OFF	OFF

	P0201	Aparece el código de
Cédigos do follo	P0202	uno de los dos
Códigos de falla	P0203	inyectores que están
	P0204	fallando.

Como consecuencia se puede decir que al fallar un inyector primeramente se presenta un retraso en el avance al encendido y perceptivamente se nota un funcionamiento inestable del motor (calado) y para el diagnóstico si se generan códigos de averías. Cuando fallan dos inyectores el equipo tiene un funcionamiento mucho más inestable y existe un aumento del tiempo de inyección. En este caso se generan los códigos de avería de acuerdo a los inyectores que se encuentran fallando.

3.6.9. Bobina de encendido.

Al realizar una comparación entre los datos en buen estado y los datos obtenidos en la falla 10, referente a la bobina de encendido de este equipo (Anexo A.6), se define que los valores más representativos durante el efecto producido por esta falla son:

Tabla 3. 62 Variables de respuesta más significativas para falla en una bobina de un par de cilindros.

Falla	Variables más influyentes	% Porcentaje de cambio
	Tiempo de Inyección	30,00
D.1.*	Avance al Encendido	0,00
Bobinas	Revoluciones del Motor	19,21
de encendido	Flujo de masa de aire	15,37
encentiatio	Estado de la Luz de Check o Mil	OFF
	Códigos de falla	P0350

Fuente: Autores.

Como consecuencia se puede decir que al fallar una bobina de encendido de dos cilindros del motor, este tiene un funcionamiento anormal (se cala), los datos relevantes en este caso es un aumento del tiempo de inyección, de las revoluciones del motor y un adelanto del avance al encendido. Para este caso se genera un código de avería

FASE IV

GENERACION DE GUIAS DE PROTOCOLO DURANTE EL EFECTO PROUCIDO POR FALLAS EN EL SISTEMA ELECTRONICO EN MOTORES CICLO OTTO Y DIESEL.

4.1. Guía de protocolo general.

En base a los datos analizados de cada uno de los sensores y actuadores de los 6 equipos, en la Fase III; se crea una guía de protocolo general que servirá para el proceso de diagnóstico de averías en el sistema electrónico de cualquier motor; además puede servir para posteriormente crear guías de protocolo para cada uno de los equipos analizados.

Falla	Valor de buen funcionamiento	Parámetros de cambio	Códigos de fallo
MAP	Ralentí/0,5 a 2 v	 Motor a gasolina La ECU asume la presión atmosférica para el cálculo del tiempo de inyección y avance al encendido. Revoluciones bajas e inestables a ralentí. Motor a Gas La ECU asume la presión máxima en múltiple de admisión de 390 bar. Pierde la referencia de la mezcla de combustible eliminando la corrección 0% realizada por el sistema para llegar a una mescla estequiométrica. 	P0105
MAF	Ralentí/0,7 a 1,1 v	 Motor a gasolina La ECU asume la presión atmosférica para el cálculo del tiempo de inyección y avance al encendido. Revoluciones bajas e inestables a ralentí. Motor a diésel La ECU asume la presión atmosférica para el cálculo del tiempo de inyección de diésel. 	L4 gasolina P0102 L4 diésel P0100
IAT	20°C/2,4 a 2,8v 80°C/0,5 a 0,9v	Motor a gasolina	L4 gasolina y diésel

		 El avance al encendido aumenta en 18,18% y el tiempo de inyección disminuye en 5%. Aumento en las revoluciones.	P0110 V6 P0113
ECT	NTC 20°C/3,44v 80°C/1,25v	Motor a gasolina. Motor de 4 cilindros. El tiempo de inyección aumento en un 15% Avance al encendido disminuye en un 130% Motor V6 El avance al encendido disminuyo en 6,25% El tiempo de inyección en el banco 1 aumento en 10%. El tiempo de inyección en el banco 2 aumento en 5% Motor a diésel El tiempo de inyección de combustible aumento en 22,39%. Motor a gas Corrección de la mescla aumenta en un 68,75% El avance al encendido aumento en 240%.	Diésel P0115
TPS	Ralentí 0,25 a 0,8v 100% abierto/4,25 a 4,28v	Motor a gasolina Motor L4. • El tiempo de inyección disminuye en - 10%. • El avance al encendido aumenta en 36,36%. Motor V6. • El avance al encendido disminuye	L4 P0120 V6 P1136 y P1122 P0123 y P0223

		 El tiempo de inyección del banco 1 y 2 aumenta en un 30%. Motor a diésel La cantidad de inyección de combustible disminuye. 	Diésel P0220
CMP	Tipo Inductivo o Hall 0 – 5 V	Motor a gasolina Motor L4. • El avance al encendido aumenta en 9,09%. • La válvula IAC disminuye su apertura en un 8,37%. Motor V6. • Cambio en la sincronización de válvulas. Motor a diésel. • Cantidad de combustible aumenta en 5,97%. Motor a gas. • El avance al encendido aumenta en un 60%. • Corrección aire/combustible aumenta en un 587,50%. • La IAC disminuye su apertura en un 9,65%.	L4 gasolina y diésel P0340 V6 P0340 y P2122
СКР	Tipo Inductivo o Hall 0 – 5 V	El motor se apaga y no se enciende hasta que se solucione la falla.	P0335
Inyector	12 V	Motor a gasolina. L4 Existe un aumento en el tiempo de inyección entre un 27.5% a 56,67%. EL avance al encendido disminuye en un -9,09%. Válvula IAC se abre una cantidad más entre -0,32 a 0,48%. V6 El avance al encendido disminuye en un -6,25%. El tiempo de inyección aumenta en un 5% a 20%. Motor a diésel El tiempo de inyección de combustible aumento en un 164.17%.	L4 gasolina y diésel P0201 P0202 P0203 P0204

		Motor a gasolina L4	
		• Aumento en el avance al encendido en 36,36%.	
Bobina de encendido	Señal periódica 0 a 12v.	 V6 Disminución del avance al encendido 6,25%. Desfasamiento en la sincronización de válvulas de admisión uno a -75% y otro a -125%. 	Motor gasolina P0350
		Motor a gas	
		 La corrección de la mescla aumenta en un 487,50% cuando falla una bobina y si fallan dos un 12300%. 	
		Motor a gasolinaL4	
IAC	Señal periódica 0 a 12V.	Disminuye el tiempo de inyección en un 10%. El avance al encendido aumenta en un 63,64. Motor a gas Aumento en la corrección de la mescla en un 12300%.	Motor a gas P0505
Control del relay de la bomba de combustible	12V	 Motor a gasolina La computadora trata de aumentar el tiempo de inyección para que funcione el motor pero el motor se apaga y no se vuelve a encender hasta que se soluciones la falla. Motor a diésel 	NO

La computadora trata de aumentar el	
tiempo de inyección para que funcione el	
motor, pero el motor se apaga y no se	
vuelve a encender hasta que se soluciones	
la falla.	

4.2.Guías de protocolo para los 6 equipos analizados.

Considerando que los equipos en los que se trabajó no poseen una guía de pruebas de funcionamiento y también usando un modelo de guía aprobada por el consejo académico de la Universidad Politécnica Salesiana; se procedió a crear 6 guías en base a la guía de protocolo general que se las presenta a continuación.

4.2.1. Guía de Protocolo para el equipo G-160201.

FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES

CARRERA: Ingenierí	ia Me	cánica Automotriz A	ASIGNATURA: M	Aotores de	Combustión II	iterna.		
NRO. PRÁCTICA:		TÍTULO PRÁCTICA : Mo Control de Aire Acondicionad			Entrenamiento	Educativo:	Sistema	de

OBJETIVOS.

- Entender el funcionamiento del Motor de Combustión Interna.
- Realizar la simulación de fallas en el funcionamiento del motor de combustión interna, transmisión y sistema de aire acondicionado.
- Realizar el diagnostico de fallas con el uso del escáner automotriz y osciloscopio.
- Describir las consecuencias en los sistemas durante el funcionamiento errático.

MARCO TEORICO.

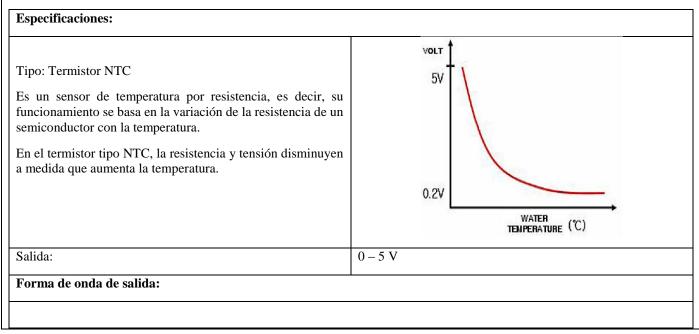
Sistema de Gestión Electrónica del motor.

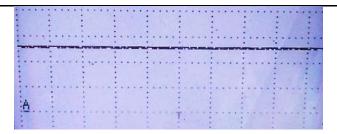
ECU (Unidad de Control Electrónico):

El sistema de gestión del motor es controlado por una computadora conocida como Unidad de Control Electrónico (ECU), la cual recibe información de una variedad de sensores de entrada, elementos y circuitos de salida para controlar el sistema de alimentación de combustible, el sistema de encendido, sistema de control de aire y mantener en óptimas condiciones el desempeño del motor. La ECU ajusta la mezcla aire-combustible más cercana a la relación teórica como sea posible para minimizar la producción de emisiones nocivas durante el funcionamiento del motor y el movimiento del vehículo.(DAESUNG, n.d.-f)

CMPS (Sensor de posición del árbol de levas):

El árbol de levas gira a la mitad de la velocidad del cigüeñal para controlar las válvulas de admisión y escape del motor. Un sensor detecta la posición del árbol de levas y determina si un cilindro está en la fase de compresión o fase de escape cuando el pistón se ha movido en la dirección del TDC. El sensor de posición del árbol de levas es de efecto Hall, con un sensor de nodo de materiales metálicos magnéticos unidos al árbol de levas y rotando juntos


Especificacio	nes:			
Tipo:		Efecto Hall		
Salida		0 – 5 V Digital.		
Forma de one	la de salida:	I		
			Ajuste del os	sciloscopio
	n n m n .c	i in in	Voltaje	2 V
			Tiempo	20 ms
			L	

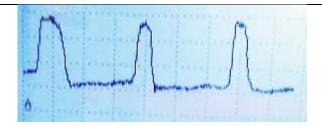

El sensor de posición del cigüeñal se encuentra en el bloque de cilindros, utilizando un método inductivo magnético que induce voltaje de CA cuando el nodo sensor de rueda gira a medida que el cigüeñal gira en sí. Este voltaje de CA se utiliza por la ECU para calcular las RPM del motor. Los agujeros de la rueda del sensor de un total de 60 nodos, con dos desaparecidos. Estas dos ranuras que faltan son llamadas los "dientes perdidos". El diente largo y la señal de CMP se utiliza para determinar el punto de vértice del ciclo de compresión del cilindro N ° 1.

Ajuste del osciloscopio
Voltaje 2 V
Tiempo 20 ms

ECTS (Sensor de temperatura del refrigerante del motor):

El sensor de temperatura de agua detecta la temperatura del refrigerante del motor, convirtiendo la variación de resistencia a una señal de voltaje para ingresarla en la ECU del motor, la cual usa esta señal para aumentar o disminuir la cantidad de combustible. La señal es usada también para controlar los ventiladores de refrigeración.

Ajuste del os	sciloscopio		
Voltaje	2 V		
Tiempo	20 ms		


La onda es lineal porque toma la temperatura en un instante determinado, si desea obtener la gráfica característica de un termistor NTC tendrá que tomar varias muestras de voltaje – resistencia, en diferentes temperaturas del refrigerante del motor.

MAPS (Sensor de Presión absoluta del colector):

La ECU requiere tener información exacta de la presión del aire que entra al motor para determinar la cantidad de inyección de combustible y rpm del motor, el sensor MAPS envía una señal analógica proporcional a la presión absoluta de salida a la ECU, la cual la procesa y determina los cambios de presión para hacer que el trabajo del motor sea el más óptimo posible.

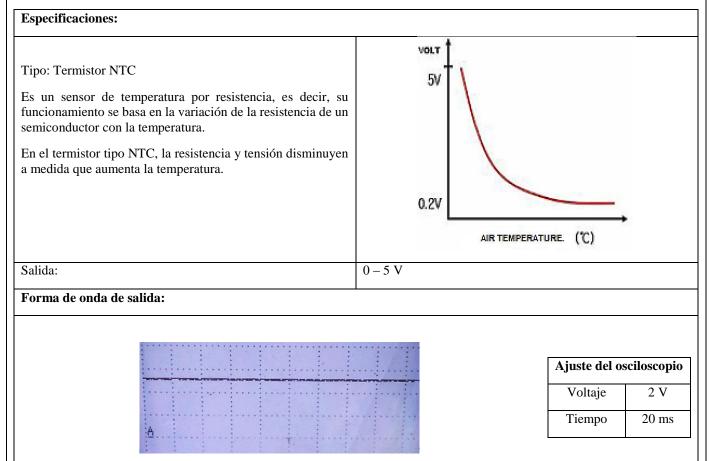
specificaciones:			
Presión	Voltaje		
200 mmHg	1 V		
400 mmHg	2.1 V		
600 mmHg	3.2 V		
760 mmHg	4 V		

Forma de onda de salida:

Ajuste del osci	loscopio
Voltaje	1 V
Tiempo	1 s

Onda obtenida al presionar tres veces seguidas el pedal del acelerador.

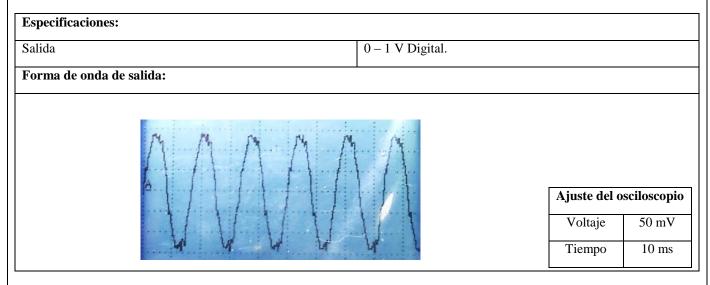
TPS (Sensor de posición de la mariposa):


El sensor de posición de la mariposa del acelerador (TPS), está unido al cuerpo de la mariposa para medir el ángulo de apertura de la válvula de la mariposa. El TPS es un potenciómetro que entrega una variación de tensión dependiendo de la posición de la válvula de la mariposa. La ECU usa la señal del TPS para medir el ralentí, carga baja y el estado de aceleración y desaceleración, para determinar la cantidad de inyección de combustible y el tiempo de encendido.

Especificaciones:			
Válvula de la mariposa	Voltaje de salida		
Ralentí: 0%	0.2 - 0.463 V		
50%	2.9 V		

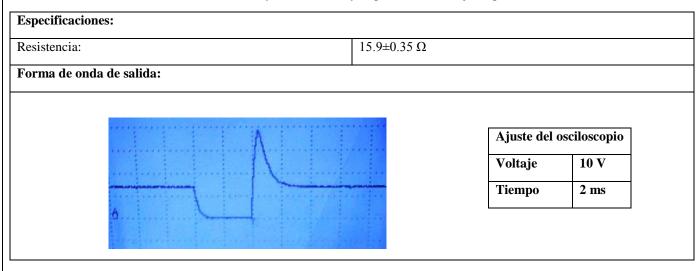
IATS (Sensor de temperatura del aire de entrada):

El sensor de temperatura del aire usa un termistor de coeficiente negativo de temperatura (NTC), la cual detecta la temperatura del aire que ingresa al motor, convirtiendo la variación de resistencia a una señal de voltaje para ingresarla en la ECU del motor.



La onda es lineal porque toma la temperatura en un instante determinado, si desea obtener la gráfica característica de un termistor NTC tendrá que tomar varias muestras de voltaje – resistencia, en diferentes temperaturas de aire de admisión.

Sensor O2


El sensor de oxígeno calentado (HO2S) está localizado antes del convertidor catalítico, y detecta la concentración de oxígeno en los gases de escape para controlar la cantidad de monóxido de carbono, hidrocarburos y óxidos nitrosos. El sensor O2 envía valores comprendidos entre 0V y 1V basado en la concentración de oxígeno, y la PCM usa esta información para determinar si la mezcla es rica o pobre.

El incremento de concentración de oxígeno en los gases de escape hace que el sensor de O2 envíe una señal de 0~0.1V si la mezcla es pobre. La PCM determina el estado del combustible usando la señal de salida del sensor O2, y ajusta la cantidad de combustible.

INJ(Inyector)

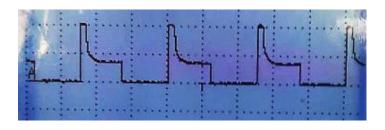
El inyector se compone de toberas de inyección con válvulas de solenoide que son utilizados por el módulo de control del motor para regular la cantidad de inyección de combustible mediante el control de la apertura y cierre de las válvulas. Cuando el módulo de control del motor activa el solenoide del inyector, el solenoide se magnetiza para abrir la válvula y se inyecta el combustible. Cuando el PCM libera el suelo, la válvula del inyector se cierra y se produce un voltaje de pico instantánea.

ISCA (Actuador de ralentí).

El actuador de velocidad de ralentí (ISCA) es un dispositivo instalado en el cuerpo del acelerador para controlar la cantidad de flujo de aire que pasa por alto de la placa del acelerador. En detalle, ISCA ajusta la velocidad de ralentí del motor correspondiente a las diferentes condiciones de cargas del motor y suministra aire adicional necesario cuando el motor arranca.

ISCA se compone de la bobina de apertura y cierre; y la bobina permanente magnética. Basado en información procedente de los sensores, la ECU controla las bobinas en una forma de puesta a tierra los circuitos.

Especificaciones:	
Resistencia:	15.9±0.35 Ω
Forma de onda de salida:	


Ajuste del osciloscopio		
Voltaje	2 V	
Tiempo	20 ms	

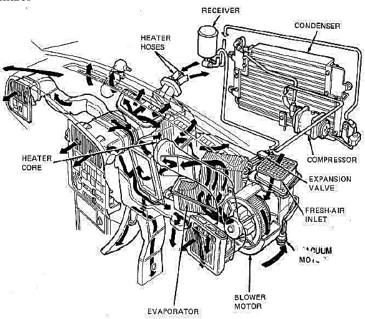
PCSV (Control de purga de la válvula solenoide)

El sistema de control de emisiones evaporativas impide hidrocarburo (HC) de vapor del depósito de combustible se cambie en la niebla fotoquímica. Mediante el control de la válvula solenoide de control aproximada (PCSV), ECM envía el combustible de gas de evaporación se reunieron en el Cánister en el motor para ser utilizado como combustible. La válvula, operado por la señal de control de módulo de control del motor, controla la evaporación de combustible de gas entre el recipiente y el colector de aspiración.

Especificaciones:	
Resistencia:	36 - 44 Ω (20°C)

Forma de onda de salida:

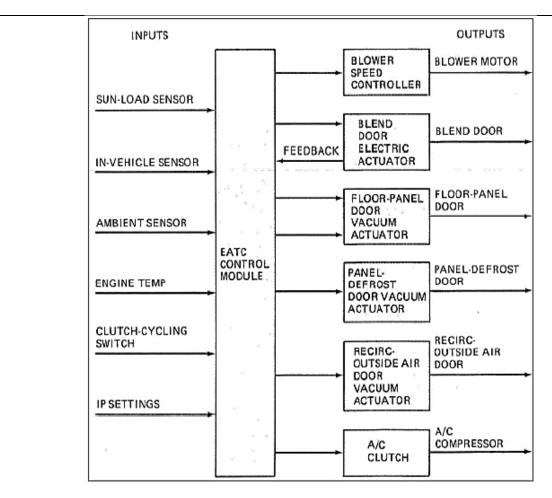
Ajuste del osciloscopio		
Voltaje	10 V	
Tiempo	2 ms	


SISTEMA DE AIRE ACONDICIONADO DEL VEHICULO.

El aire acondicionado es una parte importante de un sistema integrado, que proporciona enfriamiento, calentamiento, descongelación, eliminación de neblina, filtrado de aire y control de humedad para la comodidad del pasajero y seguridad del vehículo.

El circuito consta de los siguientes elementos fundamentales:

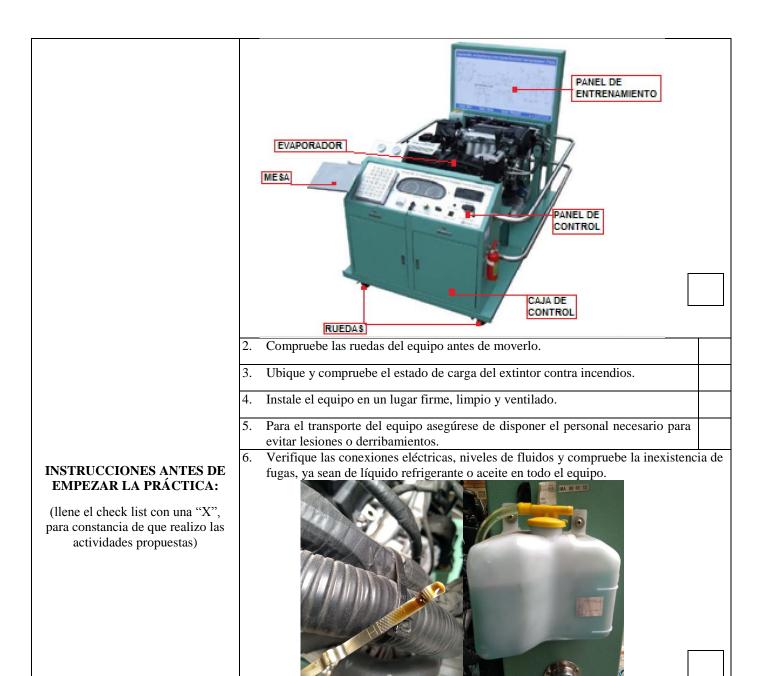
• Válvula de expansión (o de laminación)

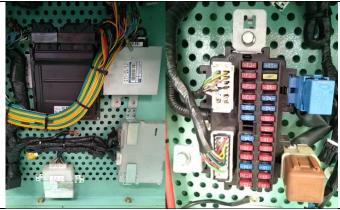

- Evaporador
- Compresor
- Condensador
- Otros elementos auxiliares

Aire acondicionado controlado automáticamente.

El sistema automático permite que el conductor seleccione el control automático y la temperatura deseada. El sistema entonces debe mantener esa temperatura al proporcionar calor o enfriamiento según sea necesario. Muchos sistemas también ajusta automáticamente la velocidad del ventilador. Los controles del panel de instrumentos, por lo general permiten al conductor cancelar la operación automáticamente.

En algunos vehículos, el cuerpo - control módulo (BCM) controla el sistema de climatización automática. Los demás vehículos tienen aire acondicionado independiente del módulo de control. El uso de un microprocesador permite al sistema mantener con mayor precisión la temperatura prestablecida. También permite que la temperatura se pueda ajustar de forma independiente para el conductor y para el pasajero del asiento delantero. Además, el sistema puede tener controles separados para cambiar la distribución de aire acondicionado para el área del asiento trasero. Esto no altera el flujo de aire para el asiento delantero.




En figura anterior se muestra un sistema electrónico de control automático de temperatura (EATC). El módulo de control EATC recibe entradas de seis fuentes principales. Estos son:

- El sensor solar que es una célula solar fotovoltaica. Se monta en el panel de instrumentos y mide el calor del sol.
- El sensor de temperatura en el vehículo que se monta detrás del panel de instrumentos y mide la temperatura del aire en el compartimiento de pasajeros.
- El sensor de temperatura ambiente.
- El sensor de temperatura del refrigerante del motor.
- El interruptor de presión del embrague de ciclismo.
- El instrumento de medida = (IP) para el modo, temperatura, y la velocidad del soplador.

Mediante estas entradas, el módulo de control EATC determina las condiciones correctas para las seis salidas. Estas son las cuatro puertas, el motor del ventilador, y el embrague del compresor. Un motor eléctrico o actuador operar las otras tres puertas, Además de controlar el sistema, El módulo de control puede ejecutar un autodiagnóstico y mostrar en la pantalla los códigos de falla. Muestra las entradas y salidas en un vehículo con un módulo de control de la carrocería (BCM). El BCM recibe una señal de solicitud de AC cuando el aire acondicionado está encendido. La señal se envía al módulo de control del tren potencia (ECM o PCM). A continuación, aumenta la velocidad de ralentí para evitar que la carga del compresor se cale el motor.

1. Visualice e identifique las diferentes partes del equipo.

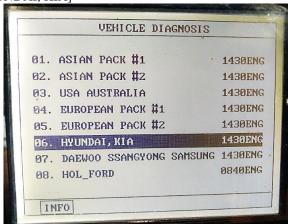
7. Instale una fuente de alimentación adecuada al equipo.(Batería de 12 V)

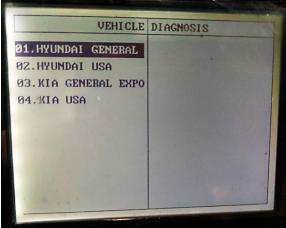
8. Identifique los diferentes elementos del panel de control del equipo y localice el socket DCL o Puerto OBDII.

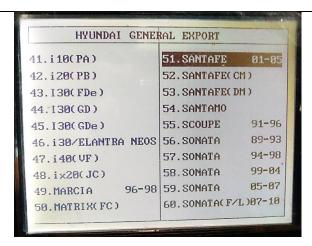
- 9. Encienda el equipo y espere hasta que llegue a la temperatura normal de funcionamiento. Entre 88°C 90°C
 - Si nota un sonido raro, vibración o sobrecarga, detenga la operación e inspeccione el equipo.
- 10. Conecte el escáner con el equipo a través del Puerto DCL y proceda a establecer la conexión.



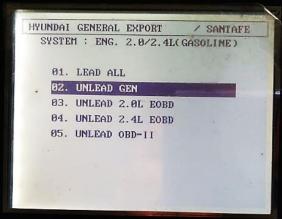
• Enciéndalo y presione el botón "ENTER".


INSTRUCCIONES PARA CONECTAR EL ESCANER CON LA ECU DEL EQUIPO.

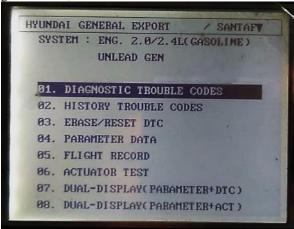

 Aparecerá una pantalla inicial en la cual seleccione la opción [01. VEHICLE DIAGNOSIS].


• Se visualizara un listado de marcas de vehículos de los cuales seleccione [06. HYUNDAI, KIA]


• Seleccione [01. HYUNDAI GENERAL].


• Se desplegara una lista de modelos de vehículos de la marca seleccionada, elija la opción [51. SANTA FE 01-05].

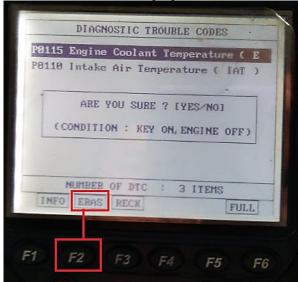
• Elija la opción [01. ENG. 2.0/2.4L (GASOLINE)].


Seleccione [02. UNLEAD GEN].

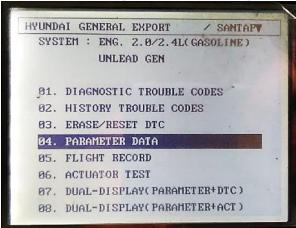
• Posteriormente la opción [01. OBD-II 16PIN CONNECTOR] y espere a que se establezca conexión:



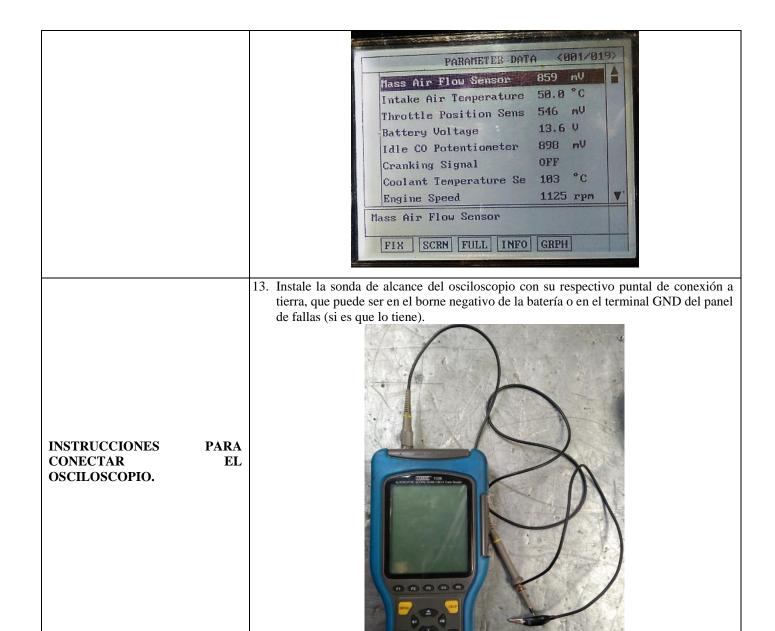
 Finalmente se desplegara un menú entre los cuales se podrá verificar los datos abordo de sensores y actuadores, realizar pruebas de actuadores, leer y borrar códigos de fallas, etc.


- 11. Para confirmar la existencia de códigos de falla, en el scanner presione la opción: [01. DIAGNOSTIC TROUBLE CODES] del menú.
 - En caso de que exista algunas fallas en el motor, el scanner le mostrara un listado de códigos de avería, acompañado de una breve descripción de cada una. Ejemplo:

INSTRUCCIONES PARA
COMPROBAR LA
EXISTENCIA O
INEXISTENCIA DE CODIGOS
DE FALLAS.

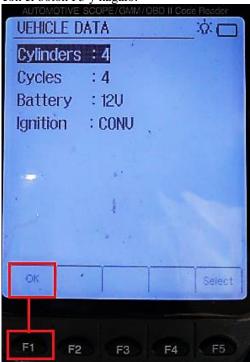

Para interpretar mejor un código de avería refiérase al anexo A.

• Para borrar los códigos seleccione el botón "F2" del scanner para seleccionar [ERAS], que hace referencia a, erase= borrar y se desplegará un mensaje de confirmación, en la cual tendrá que presionar el botón "SI".



- Si la falla persiste el código no se borrara y seguirá saliendo hasta que no se corrija la avería.
- Cuando ya no existen códigos de falla en el equipo se muestra el mensaje: [NO TROUBLE CODE], que le hará saber que ya no hay códigos de fallas grabadas.
- 12. Para conocer los datos a bordo de los sensores y actuadores del equipo que llegan a la ECU, en el scanner seleccione: [PARAMETER DATA].

INSTRUCCIONES PARA VISUALIZAR LOS DATOS A BORDO DEL SISTEMA ELECTRONICO DEL EQUIPO.



• Se desplegara un listado de variables que la ECU brinda al scanner para ser leídos, analizados y graficados en caso de que realice un Diagnostico.


• Enciéndalo y se presentara un menú en el cual puede ingresar los datos del motor en el que se encuentra trabajando, si los datos que se presentan son los correctos presione el botón F1, para proseguir, sino seleccione el ítem a cambiar con el botón F5 y hágalo.

- Luego se presenta un menú en el cual usted puede realizar:
- > pruebas de componentes,
- > pruebas con el osciloscopio
- b obtener gráficas,
- leer códigos de averías

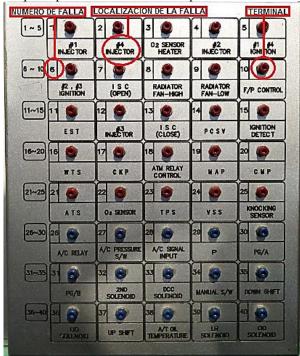
> cambiar los datos del vehículo

Configuración del equipo.

Desplácese y seleccione la opción [SCOPE], presionando el botón F5 para seleccionarlo.

 Aparecerá un osciloscopio de un canal, con sus respectivos ejes de tiempo y voltaje.

El instrumento está listo para usarse.


 Para obtener una señal, use directamente el panel de fallas, esto colocando la sonda directamente en el puerto del sensor o actuador que quiera analizar.

- Tenga en cuenta de regular el osciloscopio a un voltaje y tiempo adecuado mediante el uso de los botones de ajuste, si desea que el instrumento se autorregule presione el botón "AUTO".
- Para analizar una señal puede "congelar" la pantalla mediante el botón "HOLD".

INSTRUCCIONES DURANTE LA PRÁCTICA.

- **DURANTE** 14. Cuando los equipos necesarios se encuentran instalados (escáner y osciloscopio), el equipo se encuentra listo para efectuar las simulaciones de fallas para los que fue adecuado.
 - 15. Previamente lea las siguientes instrucciones para aplicar las fallas en el funcionamiento del equipo.
 - Identifique el panel de fallas con su respectiva numeración.

• Levante el panel de fallas y visualice el panel LED, el cual está compuesto por un teclado, pantalla LED, display y un botón de encendido al modo de aplicación de fallas.

16. El teclado consta de botones con la respectiva numeración del 0 − 9, adicionalmente consta de un botón [*] y un botón [#].

El botón [*] o SET ALL, permite <u>implantar</u> la o las fallas que se desee introducir en la unidad de control del equipo, para analizar su efecto.

El botón [#] o CLEAR ALL permite <u>borrar o quitar</u> la falla implantada en la unidad de control.

- 17. Para poner en efecto una falla en el equipo mientras está en funcionamiento, primero debe poner en posición [ON] al botón de encendido del panel de fallas.
 - Como muestra la figura, esto lo conseguirá al desplazar el interruptor de control del panel de fallas hacia arriba e inmediatamente el display se iluminara.

18. Para introducir una falla tenga presente el número de la falla, la cual debe introducirla mediante el teclado.

- En este punto la falla aún no se encuentra incidiendo en el funcionamiento sistema.
- Para enviarla al sistema, pulse el botón SEL ALL o [*], e inmediatamente se encenderá en el panel LED el número de falla que está ingresando a la unidad de control.

 Puede ingresar más de una falla al mismo tiempo en el funcionamiento del equipo, ya que está diseñado para este fin, pero considere que, por el uso prolongado bajo el efecto de las fallas a la larga puede desencadenarse fallas graves del equipo, por lo cual limítese en lo posible a ingresar máximo 3 fallas al mismo tiempo.

ACTIVIDADES POR DESARROLLAR

USO DEL OSCILOSCOPIO AUTOMOTRIZ.

- 1. Con el osciloscopio obtenga las ondas voltaje- tiempo de las señales de sensores y actuadores que componen el panel de fallas.
 - Para un mejor análisis obtenga las ondas a diferentes regímenes de giro del motor.(ralentí y 2000rpm)
 - Complementariamente puede usar el multímetro para determinar voltaje de funcionamiento, continuidad, etc.
- 2. Luego que haya practicado con todos los sensores y actuadores del panel de fallas, elija las señales que considere más representativas y llene la <u>tabla 1</u> de la sección de "RESULTADOS OBTENIDOS".

USO DEL SCANNER AUTOMOTRIZ.

- 3. Genere fallas en el equipo usando el panel de fallas y use el scanner para:
 - Verificar si la falla aplicada genera en la ECU algún código de avería.
 - Tomar los datos actuales de los sensores y actuadores mediante la opción del [CURRENT DATA].
 - Analizar la variación de los valores en buen funcionamiento respecto a los valores con fallas y compararlos.
 - Tome en cuenta que si se genera algún código de avería en la ECU por la aplicación de una falla, tendrá que posteriormente borrarla con el escáner para evitar que influya esa falla cuando introduzca otra.
 - Todos los valores obtenidos anótelos en las tablas del inciso 2 de la sección de "RESULTADOS OBTENIDOS".
 - Además visualmente observe si al aplicar una falla se enciende o no la luz de Mil o Check, anótelo dentro del área de conclusiones disponible en las tablas para cada falla.
- 4. Adicionalmente analice el funcionamiento del equipo cuando está funcionando el sistema de aire acondicionado y también identifique las partes de dicho sistema.
 - Analice los valores del [CURRENT DATA] cuando el aire acondicionado está funcionando en su mínima y máxima temperatura.
 - Llene el inciso 3 de la sección "RESULTADOS OBTENIDOS".
- 5. Finalmente compare sus respuestas con el ANEXO B, luego realice un análisis de las fallas que considere que más influyen en el funcionamiento del equipo y escriba una conclusión general de la práctica.
 - Llene el inciso 4 de la sección de "RESULTADOS OBTENIDOS".

RESULTADO(S) OBTENIDO(S):

1. Llene la siguiente tabla con al menos 5 ondas obtenidas con osciloscopio.

Nombre del sensor o actuador.	Onda a Ralentí	Onda a 2000 rpm	Observación (especifique el voltaje y tiempo en que fue calibrado el equipo)

2. Llene las siguientes tablas con los valores del CURRENT DATA del escáner, antes y durante el efecto producido por fallas en el sistema electrónico del motor.

En el área de observaciones (color amarillo), escriba la comparación del valor de la variable con falla con respecto a la misma variable en buen estado, use palabras como: "Aumenta", "Disminuye", "Se mantiene", etc. Finalmente escriba las conclusiones del experimento, no olvide incluir el estado de la luz de Mil o de Check durante el experimento.

	DATO	S INICIALES	S:		
	Variables		Va	alor	Unidad
	Tiempo de Inyección				[ms]
	Avance al Encendido				[°]
	Revoluciones del Motor				[rpm]
	IAC				[%]
	VALORES APLICANI	DO FALLA E	N INYECT	OR 1:	
	Variables	Valor	Unidad	Obser	vaciones
	Tiempo de Inyección		[ms]		
	Avance al Encendido		[°]		
	Revoluciones del Motor		[rpm]		
_	IAC		[%]		
Inyectores. (Fallas: 1,	VALORES APLICANI	DO FALLA E	N INYECT	OR 2:	
2, 4, 12)	Tiempo de Inyección		[ms]		
	Avance al Encendido		[°]		
	Revoluciones del Motor		[rpm]		
	IAC		[%]		
	VALORES APLICANI	DO FALLA E	N INYECT	OR 3:	
	Tiempo de Inyección		[ms]		
	Avance al Encendido		[°]		
	Revoluciones del Motor		[rpm]		
	IAC		[%]		
	VALORES APLICANI	DO FALLA E	N INYECT	OR 4:	
	Tiempo de Inyección		[ms]		
	Avance al Encendido		[°]		
	Revoluciones del Motor		[rpm]		

Avance al Encendido		[°]		
Revoluciones del Motor		[rpm]		
IAC		[%]		
VALORES APLICANDO DOS FALL	AS EN INYE :	CTORES A	L MISMO	TIEM
Tiempo de Inyección		[ms]		
Avance al Encendido		[°]		
Revoluciones del Motor		[rpm]		
IAC		[%]		
CODIGOS DE FA	ALLA QUE A	PARECEN	:	,
Inyector:	1	2	3	4
Código:				
Inyectores combinados:	Inyector	res y	Inyectore	s y .
Código(s):				
CONCLUSIONES:				

	DATOS IN	ICIALES:		
	Variables		Valor	Unidad
	Avance al encendido			[°]
	Revoluciones del Motor			[rpm]
	IAC			[%]
	Tiempo de inyección			[ms]
	DATOS CON FALLAS E	N LAS BC	BINAS 1 Y 4	
Bobinas de	Variables	Valor	Unidad	Observaciones
encendido.	Avance al encendido		[°]	
Fallas:(5 y 6)	Revoluciones del Motor		[rpm]	
	IAC		[%]	
	Tiempo de inyección		[ms]	
	DATOS CON FALLAS E	N LAS BO	BINAS 2 Y 3	
	Avance al encendido		[°]	
	Revoluciones del Motor		[rpm]	
	IAC		[%]	
	Tiempo de inyección		[ms]	

	CODIGOS DE FALL	A QUE APARECEN:	
Bobinas	s de encendido	1 y 4	2 y 3
Co	ódigo(s):		
CONCLUSIONES	:		

	DATOS	INICIAL	ES:	
	Variables		Valor	Unidad
	Avance al encendido			[°]
	Revoluciones del Motor			[rpm]
	IAC			[%]
	Tiempo de inyección.			[ms]
	DATOS CON FAL	LA EN IS	C (ABIERTO)	1
	Variables	Valor	Unidad	Observaciones
	Avance al encendido		[°]	
	Revoluciones del Motor		[rpm]	
	IAC		[%]	
- 0.0	Tiempo de inyección		[ms]	
ISC. Fallas:	DATOS CON FALI	LA EN ISC	C (CERRADO)	
7 y 13	Avance al encendido		[°]	
-	Revoluciones del Motor		[rpm]	
	IAC		[%]	
	Tiempo de inyección		[ms]	
	CODIGOS DE FA	LLA QUE	APARECEN:	1
	ISC	F	Abierto	Cerrado
	Código(s):			
	CONCLUSIONES:			

	D	ATOS INICIALES:	
Fuel Pump Control.	Variables	Valor	Unidad
Falla: 10	Tiempo de Inyección		[ms]
	Avance al Encendido		[°]

Variables	Valor	Unidad
Tiempo de Inyección máximo		[ms]
Avance al Encendido máximo		[°]
Revoluciones del Motor máximas		[rpm]
CODIGOS D	E FALLA QUE A	PARECEN:
Código:	_	
CONCLUSIONES:		

	DATOS II	NICIALES:		
	Variables		Valor	Unidad
	Avance al encendido			[°]
	Revoluciones del Motor			[rpm]
	Tiempo de Inyección			[ms]
	Ventiladores del radiador			[on/off]
	DATOS CON FAI	LA EN WT	S (ECT)	_
	Variables	Valor	Unidad	Observaciones
	Avance al encendido		[°]	
WTS. FALLA:	Revoluciones del Motor		[rpm]	
16	Tiempo de inyección		[ms]	
	Ventiladores del radiador		[on/off]	
	CODIGOS DE FALI	LA QUE AP	ARECEN:	
	Códigos:			
	CONCLUSIONES:			

MAP.	DATOS INICIALES:		
Falla:19	Variables	Valor	Unidad

Avance al Encendido Revoluciones del Motor Tiempo de Inyección IAC DATOS CON FALLA Variables Valo MAP o MAF Avance al Encendido Revoluciones del Motor	or Uni	dad	[°] [rpm] [ms] [%] Observacione
Tiempo de Inyección IAC DATOS CON FALLA Variables Valo MAP o MAF Avance al Encendido	or Uni	dad	[ms] [%]
IAC DATOS CON FALLA Variables MAP o MAF Avance al Encendido	or Uni	dad	[%]
DATOS CON FALLA Variables MAP o MAF Avance al Encendido	or Uni	dad	T
Variables Valo MAP o MAF Avance al Encendido	or Uni	dad	Observacione
MAP o MAF Avance al Encendido		dad	Observacione
Avance al Encendido			Cosci vacione
		[mV]	
Revoluciones del Motor		[°]	
Revoluciones del Motor		[rpm]	
Tiempo de Inyección		[ms]	
IAC		[%]	
CODIGOS DE FALLA QUE	E APAREC	EN:	
Códigos:			
ONCLUSIONES:			

	DATOS I	NICIALES:		
	Variables		Valor	Unidad
	Tiempo de Inyección		[ms]	
	Avance al Encendido		[°]	
	Revoluciones del Motor			[rpm]
	IAC			[%]
	DATOS CON	FALLA EN	CMP	
	Variables	Valor	Unidad	Observaciones
	Tiempo de Inyección		[ms]	
CMP.	Avance al Encendido		[°]	
Falla: 20	Revoluciones del Motor		[rpm]	
	IAC		[%]	
	CODIGOS DE FAL	LA QUE AF	PARECEN:	
	Códigos:			
	CONCLUSIONES:			
ı				

	DATOS IN	ICIALES:				
	Variables	Valor	Unidad			
	Avance al encendido			[°]		
	Revoluciones del Motor		[rpm]			
	Tiempo de Inyección		[ms]			
	IAC			[%]		
	DATOS CON FALLA					
	Para obtener los datos con falla, acelere duran del motor luego tome los datos.	te 5 segund	os y analice el f	funcionamiento		
	Variables	Valor	Unidad	Observaciones		
TPS. FALLA:	Avance al encendido		[°]			
23	Revoluciones del Motor		[rpm]			
	Tiempo de inyección		[ms]			
	IAC		[%]			
	CODIGOS DE FALLA QUE APARECEN:					
	códigos:					
	CONCLUSIONES:					

En la siguiente tabla se presentan algunos sensores y actuadores que no influyen considerablemente en el funcionamiento del motor, por lo tanto, analice la función de cada una en el equipo y concluya, ¿porque la provocación de una falla en ese sensor o actuador no provoca variaciones considerables en el motor?

# Falla	Descripción	Análisis de su función en el equipo.	Conclusión
3	O2 Sensor Heater		
8 y 9	Radiator Fan (high - low)		
11	EST		
14	PCSV		

15	Ignition Detect	
18	ATM relay control	
22	O2 Sensor	
24	VSS	
25	Knocking Sensor	

[•] Si desea comprobar de este listado de sensores y actuadores, la no influencia directa en el funcionamiento del motor y dispone de tiempo puede hacerlo. Adjunte sus datos tomados con su respectivo análisis en el informe de la práctica.

^{3.} Llene la siguiente tabla referente a la influencia del aire acondicionado A/C, en el funcionamiento del motor; luego, compare y analice el funcionamiento del equipo en buen estado, con respecto al funcionamiento del equipo cuando el aire acondicionado está funcionando en su mínima y máxima temperatura. Escriba la conclusión respectiva para los dos estados de funcionamiento.

	DATOS IN	NICIALES:		
	Variables	Valor	Unidad	
	Tiempo de Inyección		[ms]	
	Avance al Encendido		[°]	
	Revoluciones del Motor			[rpm]
	IAC			[%]
	Temperatura del aire de entrada			[°C]
	Relé de A/C			[on/off]
	DATOS CON A/C, EN SU MINIMA TEMPERATUI		EMPERATUR	A.
Aire	Temperatura mínima:			[°C]
Acondicionado.	Variables	Valor	Unidad	Observaciones
	Tiempo de Inyección		[ms]	
	Avance al Encendido		[°]	
	Revoluciones del Motor		[rpm]	
	IAC		[%]	
	Voltaje de la Batería		[V]	
	Relé de A/C		[on/off]	
	DATOS CON A/C, EN SU M	AXIMA T	EMPERATUR	RA.
	Temperatura máxima:			[°C]
	Tiempo de Inyección		[ms]	
	Avance al Encendido		[°]	

		T			
		Revoluciones del Motor	[rpm]		
		IAC	[%]		
		Voltaje de la Batería	[V]		
		Relé de A/C	[on/off]		
		CONCLUSIONES:	[Oll/Oll]		
		general de la práctica y además responda la			
		ble del sistema electrónico del motor?			
		los resultados obtenidos, además enumere cro	onológicamente los pasos seg	guidos para el desar	rrollo de
esta prác	etica.				
BIBLIO	GRAFIA:				
DAESUI	NG. (n.dd). Sister	ma de aire acondicionado Automotriz Equipo	de Capacitación Educativa.		
	,	1 1	1		
ANEXO	NS:				
ANEXO) A.				
Interpreta	ación de códigos d	e averías:			
•	_				
	Ľ	DESCRIPCION DE CODIGOS DIA			
	2	(X X X X	EJEMP: XXXXX P0421		
		DESCRIPCION DE FALLA	F 0 4 2 1		
		1 = CONTROL AIRE/GASOLINA 2 = CONTROL AIRE/GASOLINA			
		3 = SISTEMA DE ENCENDIDO -I 4 = CONTROL AUXILIAR DE EM	ISIONES		
		5 = CONTROL DE VELOCIDAD I DE RPM EN RALENTI			
		6 = CIRCUITO DE SALIDA DEL 0 7 = TRANSMISION	COMPUTADOR		
	4	8 = TRANSMISION			
		Ī			
		0 = CODIGOS GENERICOS OBE 1 = CODIGOS ESPECIFICOS DE	L FABRICANTE		
		B = CODIGO DE CARROCERIA [NOT LIVE AIC Y BOT SA DE AIDET		
		C = CODIGO DEL CHASIS [INCLU			
	1	y	ENCIA [MOTOR Y TRANSMISION]		
		U = CODIGO NETWORK [WIRIN	G BUSJ		

ANEXO B

En esta sección se colocara la guía de protocolo general, que se presentó en la sección 4.1 de este trabajo. Con el fin de realizar una comparación o corroboración de los datos obtenidos durante el efecto producido por fallas en el sistema electrónico.

4.2.2. Guía de Protocolo para el equipo G-110401.

FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES

CARRERA: Ingeniería Mecán		ASIGNATURA: Motores de Combustión Interna.
NRO. PRÁCTICA:	 TÍTULO PRÁCTICA: Motor a Gasolina V6 con control de A/T. G-110401	

OBJETIVOS.

- Entender el funcionamiento del Motor de Combustión Interna.
- Realizar la simulación de fallas en el funcionamiento del motor de combustión interna.
- Realizar el diagnostico de fallas con el uso del escáner automotriz y osciloscopio.
- Describir las consecuencias en los sistemas durante el funcionamiento errático.

MARCO TEORICO.

Sistema de Gestión Electrónica del motor.

ECU (Unidad de Control Electrónico):

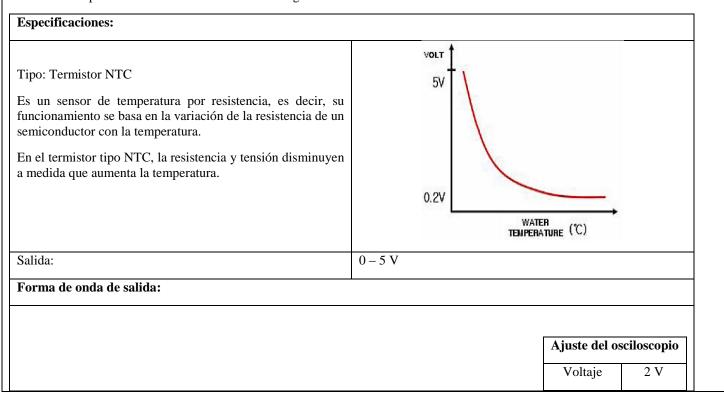
El sistema de gestión del motor es controlado por una computadora conocida como Unidad de Control Electrónico (ECU), la cual recibe información de una variedad de sensores de entrada, elementos y circuitos de salida para controlar el sistema de alimentación de combustible, el sistema de encendido, sistema de control de aire y mantener en óptimas condiciones el desempeño del motor. La ECU ajusta la mezcla aire-combustible más cercana a la relación teórica como sea posible para minimizar la producción de emisiones nocivas durante el funcionamiento del motor y el movimiento del vehículo.(DAESUNG, n.d.-f)

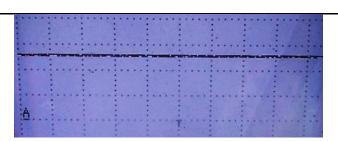
CMPS (Sensor de posición del árbol de levas):

El árbol de levas gira a la mitad de la velocidad del cigüeñal para controlar las válvulas de admisión y escape del motor. Un sensor detecta la posición del árbol de levas y determina si un cilindro está en la fase de compresión o fase de escape cuando el pistón se ha movido en la dirección del TDC. El sensor de posición del árbol de levas es de efecto Hall, con un sensor de nodo de materiales metálicos magnéticos unidos al árbol de levas y rotando juntos

Tipo:	Efecto Hall
Salida	0 – 5 V Digital.
Forma de onda de salida:	
	Ajuste del osciloscopio
	Ajuste del osciloscopio Voltaje 2 V
	recining and a second s
	Voltaje 2 V

CKPS (Sensor de posición del cigüeñal):


El sensor de posición del cigüeñal se encuentra en el bloque de cilindros, utilizando un método inductivo magnético que induce voltaje de CA cuando el nodo sensor de rueda gira a medida que el cigüeñal gira en sí. Este voltaje de CA se utiliza por la ECU para calcular las RPM del motor. Los agujeros de la rueda del sensor de un total de 60 nodos, con dos desaparecidos. Estas dos ranuras que faltan son


llamadas los "dientes perdidos". El diente largo y la señal de CMP se utiliza para determinar el punto de vértice del ciclo de compresión del cilindro N° 1.

Especificaciones:		
Tipo:	Efecto Hall	
Salida	0 – 5 V	
Forma de onda de salida:		
		Ajuste del osciloscopio
		Voltaje 2 V Tiempo 20 ms

ECTS (Sensor de temperatura del refrigerante del motor):

El sensor de temperatura de agua detecta la temperatura del refrigerante del motor, convirtiendo la variación de resistencia a una señal de voltaje para ingresarla en la ECU del motor, la cual usa esta señal para aumentar o disminuir la cantidad de combustible. La señal es usada también para controlar los ventiladores de refrigeración.

Tiempo 20 ms

La onda es lineal porque toma la temperatura en un instante determinado, si desea obtener la gráfica característica de un termistor NTC tendrá que tomar varias muestras de voltaje – resistencia, en diferentes temperaturas del refrigerante del motor.

MAFS (Sensor de masa de aire):

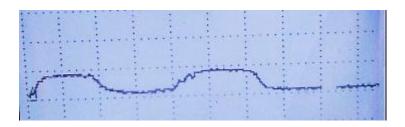
El sensor de masa de aire (MAFS), un sensor de tipo película, situado entre el filtro de aire y el cuerpo de aceleración, mide la cantidad de flujo de entrada de aire en el motor mediante el uso de las características únicas del sensor de tipo de película, que aumenta la transferencia de calor cuando aumenta el flujo de entrada de aire desde el exterior, y disminuye la transferencia de calor cuando el flujo de aire disminuye. La alta cantidad de flujo de aire significa que el motor está bajo aceleración o carga pesada, y el influjo de baja significa que el motor está en reposo o en la desaceleración.

Basándose en estas señales, el módulo de control del motor ajusta la cantidad de combustible a inyectar y controla el tiempo de encendido al mejorar la capacidad de respuesta del motor, ya que acelera o desacelera.

Especifica	ciones:
Ralentí	2.7 - 3.2 V
Estado del Motor.	Dato Estándar.
800 rpm	9.0 – 12.0 Kg/H
3000 rpm	32.0 – 40.0 Kg/H

Forma de onda de salida:

Ajuste del osciloscopio		
Voltaje	1 V	
Tiempo	1 s	

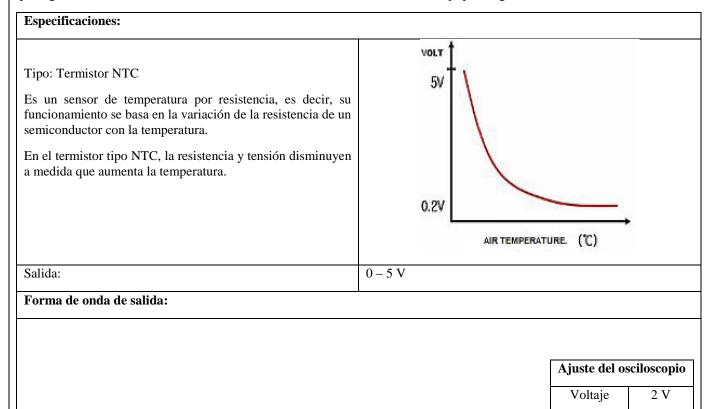

Onda obtenida al presionar tres veces seguidas el pedal del acelerador.

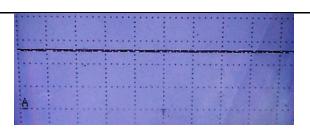
TPS (Sensor de posición de la mariposa):

El sensor de posición de la mariposa del acelerador (TPS), está unido al cuerpo de la mariposa para medir el ángulo de apertura de la válvula de la mariposa. El TPS es un potenciómetro que entrega una variación de tensión dependiendo de la posición de la válvula de la mariposa. La ECU usa la señal del TPS para medir el ralentí, carga baja y el estado de aceleración y desaceleración, para determinar la cantidad de inyección de combustible y el tiempo de encendido.

Especificaciones:		
Voltaje de salida		
0.2 - 0.463 V		
2.9 V		
5 V		
	0.2 - 0.463 V 2.9 V	

Forma de onda de salida:




Ajuste del osciloscopio	
Voltaje	1 V
Tiempo	0.5 s

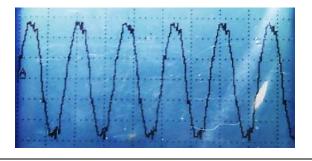
Onda obtenida al presionar dos veces seguidas el pedal del acelerador.

IATS (Sensor de temperatura del aire de entrada):

El sensor de temperatura del aire usa un termistor de coeficiente negativo de temperatura (NTC), la cual detecta la temperatura del aire que ingresa al motor, convirtiendo la variación de resistencia a una señal de voltaje para ingresarla en la ECU del motor.

Tiempo 20 ms

La onda es lineal porque toma la temperatura en un instante determinado, si desea obtener la gráfica característica de un termistor NTC tendrá que tomar varias muestras de voltaje – resistencia, en diferentes temperaturas de aire de admisión.

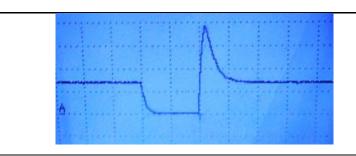

Sensor O2

El sensor de oxigeno calentado (HO2S) está localizado antes del convertidor catalítico, y detecta la concentración de oxígeno en los gases de escape para controlar la cantidad de monóxido de carbono, hidrocarburos y óxidos nitrosos. El sensor O2 envía valores comprendidos entre 0V y 1V basado en la concentración de oxígeno, y la PCM usa esta información para determinar si la mezcla es rica o pobre.

El incremento de concentración de oxígeno en los gases de escape hace que el sensor de O2 envíe una señal de 0~0.1V si la mezcla es pobre. La PCM determina el estado del combustible usando la señal de salida del sensor O2, y ajusta la cantidad de combustible.

Especificaciones:	
Salida	0 – 1 V Digital.

Forma de onda de salida:

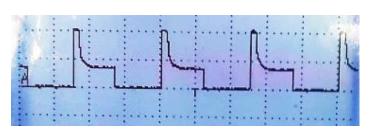


Ajuste del o	sciloscopio
Voltaje	50 mV
Tiempo	10 ms

INJ(Inyector)

El inyector se compone de toberas de inyección con válvulas de solenoide que son utilizados por el módulo de control del motor para regular la cantidad de inyección de combustible mediante el control de la apertura y cierre de las válvulas. Cuando el módulo de control del motor activa el solenoide del inyector, el solenoide se magnetiza para abrir la válvula y se inyecta el combustible. Cuando el PCM libera el suelo, la válvula del inyector se cierra y se produce un voltaje de pico instantánea.

Especificaciones:	
Resistencia:	15.9±0.35 Ω
Forma de onda de salida:	
	Ajuste del osciloscopio


Voltaje	10 V
Tiempo	2 ms

PCSV (Control de purga de la válvula solenoide)

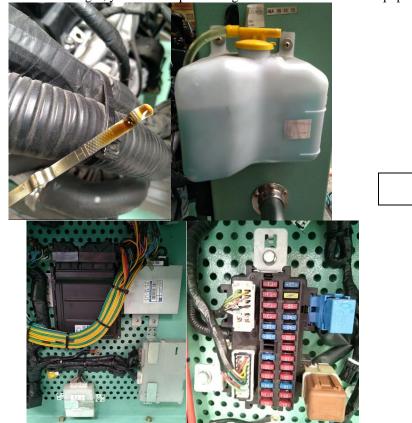
El sistema de control de emisiones evaporativas impide hidrocarburo (HC) de vapor del depósito de combustible se cambie en la niebla fotoquímica. Mediante el control de la válvula solenoide de control aproximada (PCSV), ECM envía el combustible de gas de evaporación se reunieron en el Cánister en el motor para ser utilizado como combustible. La válvula, operado por la señal de control de módulo de control del motor, controla la evaporación de combustible de gas entre el recipiente y el colector de aspiración.

Especificaciones:Resistencia: $36 - 44 \Omega (20^{\circ}C)$

Forma de onda de salida:

Ajuste del osciloscopio	
Voltaje	10 V
Tiempo	2 ms

19. Visualice e identifique las diferentes partes del equipo.



- 20. Compruebe las ruedas del equipo antes de moverlo.
- 21. Ubique y compruebe el estado de carga del extintor contra incendios.
- 22. Instale el equipo en un lugar firme, limpio y ventilado.

INSTRUCCIONES ANTES DE EMPEZAR LA PRÁCTICA:

(llene el "Check List" con una "X", para constancia de que realizo las actividades propuestas)

- 23. Para el transporte del equipo asegúrese de disponer el personal necesario para evitar lesiones o derribamientos.
- 24. Verifique las conexiones eléctricas, niveles de fluidos y compruebe la inexistencia de fugas, ya sean de líquido refrigerante o aceite en todo el equipo.

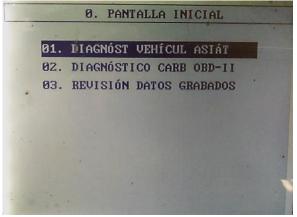
25. Instale una fuente de alimentación adecuada al equipo.(Batería de 12 V)

26. Identifique los diferentes elementos del panel de control del equipo y localice el socket DCL o Puerto OBDII.

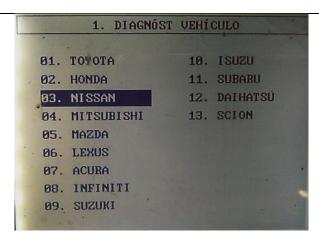
- 27. Encienda el equipo y espere hasta que llegue a la temperatura normal de funcionamiento. Entre 88°C 90°C
 - Si nota un sonido raro, vibración o sobrecarga, detenga la operación e inspeccione el equipo.
- 28. Conecte el escáner con el equipo a través del Puerto DCL y proceda a establecer la conexión.

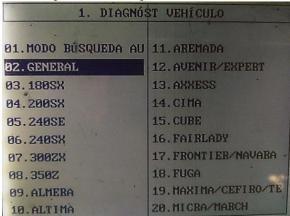
INSTRUCCIONES PARA CONECTAR EL ESCANER CON LA ECU DEL EQUIPO.

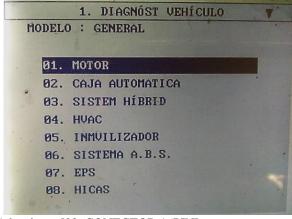
• Enciéndalo y presione el botón "ENTER".

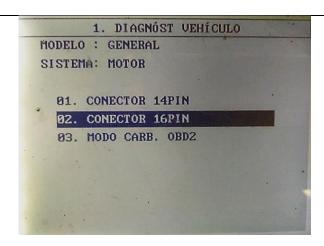

• Aparecerá una pantalla inicial en la cual seleccione la opción [01. VEHICLE DIAGNOSIS].

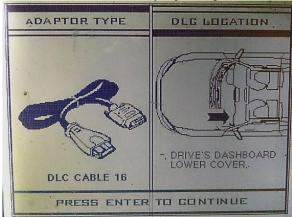
• Se visualizara un listado de marcas de vehículos de los cuales seleccione [11. JAPAN]

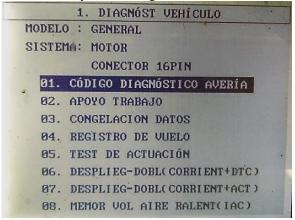

• Seleccione [01. DIAGNOST VEHÍCUL ASIÁT].


• Se desplegara una lista de países fabricantes de vehículos asiáticos, elija la opción [01. VEHÍCUL JAPONÉS].

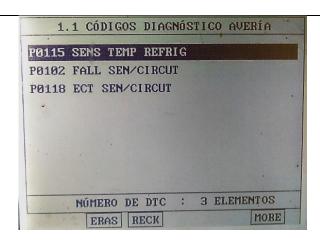

• Seguidamente aparece un listado de marcas de vehículos japoneses, elija la opción [03. NISSAN].


• Se desplegara un listado de modelos de vehículos marca Nissan, seleccione [02. GENERAL]

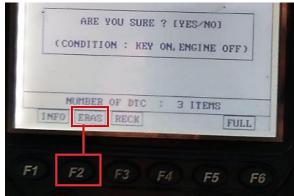

• Seleccione el sistema o el elemento del vehículo, que desea diagnosticar, elija [01. MOTOR].


Seleccione: [02. CONECTOR 16PIN].

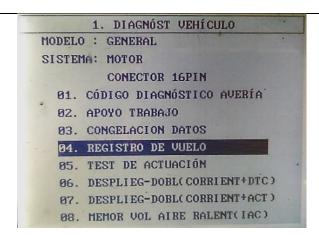
• Presione El botón "ENTER" y espere a que se establezca la conexión.



• Finalmente se desplegara un menú entre los cuales se podrá verificar los datos abordo de sensores y actuadores, realizar pruebas de actuadores, leer y borrar códigos de fallas, etc.


INSTRUCCIONES PARA COMPROBAR LA EXISTENCIA O INEXISTENCIA DE CODIGOS DE FALLAS.

- 29. Para confirmar la existencia de códigos de falla, en el scanner presione la opción: [01. CÓDIGO DIAGNÓSTICO AVERÍA] del menú.
 - En caso de que exista algunas fallas en el motor, el scanner le mostrara un listado de códigos de avería, acompañado de una breve descripción de cada una. Ejemplo:

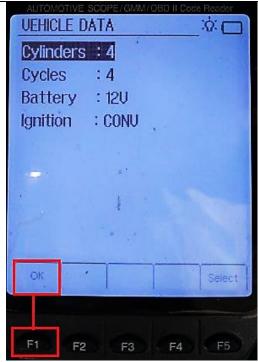

Para interpretar mejor un código de avería refiérase al anexo A.

• Para borrar los códigos seleccione el botón "F2" del scanner para seleccionar [ERAS], que hace referencia a, erase= borrar y se desplegará un mensaje de confirmación, en la cual tendrá que presionar el botón "SI".

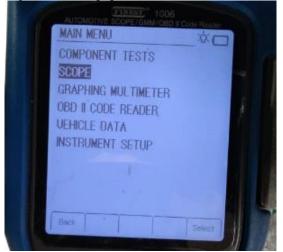
- Si la falla persiste el código no se borrara y seguirá saliendo hasta que no se corrija la avería.
- Cuando ya no existen códigos de falla en el equipo se muestra el mensaje: [NO TROUBLE CODE], que le hará saber que ya no hay códigos de fallas grabadas.

INSTRUCCIONES PARA VISUALIZAR LOS DATOS A BORDO DEL SISTEMA ELECTRONICO DEL EQUIPO. 30. Para conocer los datos a bordo de los sensores y actuadores del equipo que llegan a la ECU, en el scanner seleccione: [PARAMETER DATA].

Se desplegara un listado de variables que la ECU brinda al scanner para ser leídos, analizados y graficados en caso de que realice un Diagnostico.



OSCILOSCOPIO.


INSTRUCCIONES PARA CONECTAR EL 31. Instale la sonda de alcance del osciloscopio con su respectivo puntal de conexión a tierra, que puede ser en el borne negativo de la batería o en el terminal GND del panel de fallas (si es que lo tiene).

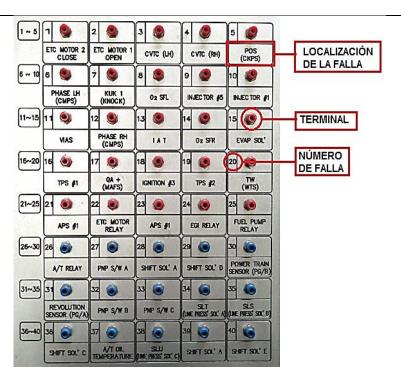
• Enciéndalo y se presentara un menú en el cual puede ingresar los datos del motor en el que se encuentra trabajando, si los datos que se presentan son los correctos presione el botón F1, para proseguir, sino seleccione el ítem a cambiar con el botón F5 y hágalo.

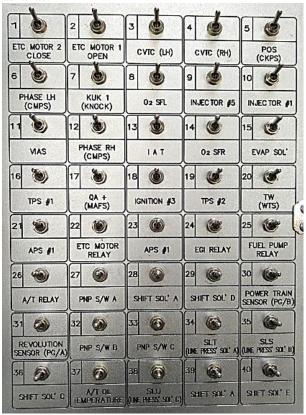
- Luego se presenta un menú en el cual usted puede realizar:
- > pruebas de componentes,
- > pruebas con el osciloscopio
- obtener gráficas,
- leer códigos de averías
- cambiar los datos del vehículo
- Configuración del equipo.

Desplácese y seleccione la opción [SCOPE], presionando el botón F5 para seleccionarlo.

• Aparecerá un osciloscopio de un canal, con sus respectivos ejes de tiempo y voltaje.

El instrumento está listo para usarse.


• Para obtener una señal, use directamente el panel de fallas, esto colocando la sonda directamente en el puerto del sensor o actuador que quiera analizar.


- Tenga en cuenta de regular el osciloscopio a un voltaje y tiempo adecuado mediante el uso de los botones de ajuste, si desea que el instrumento se autorregule presione el botón "AUTO".
- Para analizar una señal puede "congelar" la pantalla mediante el botón "HOLD".

PRÁCTICA. LA 32. Cuando los equipos necesarios se encuentran instalados (escáner y osciloscopio), el equipo se encuentra listo para efectuar las simulaciones de fallas para los que fue adecuado. 33. Previamente lea las siguientes instrucciones para aplicar las fallas en el funcionamiento del equipo.

• Identifique el panel de fallas con su respectiva numeración.

• Levante el panel de fallas y visualice el panel de aplicación de fallas, el cual está compuesto por un interruptor de palanca para cada una de las fallas.

34. Como se conoce el interruptor de palanca posee dos posiciones ON y OFF. Entonces para aplicar una falla en el motor considere que:

- Cuando la palanca del interruptor esta hacia arriba, se encuentra en el estado "OFF", estado en el cual la falla no está aplicada en el funcionamiento del motor.
- Cuando la palanca del interruptor esta hacia abajo, se encuentra en el estado "ON", estado en el cual la falla está influyendo en el funcionamiento del motor.

NOTA: Puede ingresar más de una falla al mismo tiempo en el funcionamiento del equipo, ya que está diseñado para este fin, pero considere que, por el uso prolongado bajo el efecto de las fallas a la larga puede desencadenarse fallas graves del equipo, por lo cual limítese en lo posible a ingresar máximo 3 fallas al mismo tiempo.

ACTIVIDADES POR DESARROLLAR

USO DEL OSCILOSCOPIO AUTOMOTRIZ.

- 1. Con el osciloscopio obtenga las ondas voltaje- tiempo de las señales de sensores y actuadores que componen el panel de fallas.
 - Para un mejor análisis obtenga las ondas a diferentes regímenes de giro del motor.(ralentí y 2000rpm)
 - Complementariamente puede usar el multímetro para determinar voltaje de funcionamiento, continuidad, etc.
- 2. Luego que haya practicado con todos los sensores y actuadores del panel de fallas, elija las señales que considere más representativas y llene la <u>tabla 1</u> de la sección de "RESULTADOS OBTENIDOS".

USO DEL SCANNER AUTOMOTRIZ.

- 3. Genere fallas en el equipo usando el panel de fallas y use el scanner para:
 - Verificar si la falla aplicada genera en la ECU algún código de avería.
 - Tomar los datos actuales de los sensores y actuadores mediante la opción del [CURRENT DATA].
 - Analizar la variación de los valores en buen funcionamiento respecto a los valores con fallas y compararlos.
 - Tome en cuenta que si se genera algún código de avería en la ECU por la aplicación de una falla, tendrá que posteriormente borrarla con el escáner para evitar que influya esa falla cuando introduzca otra.
 - Todos los valores obtenidos anótelos en las tablas del inciso 2 de la sección de "RESULTADOS OBTENIDOS".
 - Además visualmente observe si al aplicar una falla se enciende o no la luz de Mil o Check, anótelo dentro del área de conclusiones disponible en las tablas para cada falla.
- 4. Finalmente compare sus respuestas con el ANEXO B, luego realice un análisis de las fallas que considere que más influyen en el funcionamiento del equipo y escriba una conclusión general de la práctica.
 - Llene el inciso 4 de la sección de "RESULTADOS OBTENIDOS".

RESULTADO(S) OBTENIDO(S):

1. Llene la siguiente tabla con al menos 5 ondas obtenidas con osciloscopio.

Nombre del sensor o actuador.	Onda a Ralentí	Onda a 2000 rpm	Observación (especifique el voltaje y tiempo en que fue calibrado el equipo)

2. Llene las siguientes tablas con los valores del CURRENT DATA del escáner, antes y durante el efecto producido por fallas en el sistema electrónico del motor.

En el área de observaciones escriba la comparación del valor de la variable con falla con respecto a la misma variable en buen estado, use palabras como: "Aumenta", "Disminuye", "Se mantiene", etc. Finalmente escriba las conclusiones del experimento, no olvide incluir el estado de la luz de Mil o de Check durante el experimento.

	DATOS INI	CIALES:	
	Variables	Valor	Unidad
	Avance al encendido		[°]
	Tiempo de inyección banco 1		[ms]
	Tiempo de inyección banco 2		[ms]
EEC	revoluciones del motor		[rpm]
ETC MOTOR.	sensor flujo masa de aire		[V]
Falla: 1 y			
2			
	Aplique la falla 1 o 2 en el equipo y acelere a fo comportamiento del motor. (verifique si existe previamente)		

Aplique la falla 1 y 2 en el equipo y acel comportamiento del motor. (verifique si previamente)		
CODIGOS DE F	ALLA QUE APAREC	CEN:
	FALLA QUE APAREO	
ETC MOTOR	Falla 1 o	CEN: Falla 1 y 2
	Falla 1 o	
ETC MOTOR Código(s):	Falla 1 o	
ETC MOTOR Código(s):	Falla 1 o	

	DATOS	INICIALE	S:	
	Variables		Valor	Unidad
	Avance al encendido			[°]
	Revoluciones del Motor			[rpm]
	Tiempo de inyección banco 1			[ms]
	Tiempo de inyección banco 2			[ms]
	DATOS CON FALLA EN CVTC			
CVTC.	Variables	Valor	Unidad	Observaciones
FALLA:	Avance al encendido		[°]	
3 Y 4	Revoluciones del Motor		[rpm]	
	Tiempo de inyección banco 1		[ms]	
	Tiempo de inyección banco 2		[ms]	
	CODIGOS DE FALLA QUE APARECEN:			
	Códigos:			
	CONCLUSIONES:			

1	
POS (CKP). Falla: 5	DESCRIBA EL FUNCIONAMIENTO DEL SENSOR Y ¿QUE PASA EN EL MOTOR CUANDO FALLA?:
	CODIGOS DE FALLA QUE APARECEN:
	Códigos:

	DATOS INICIALES:					
	Variables		Valor	Unidad		
	Avance al encendido			[°]		
	Revoluciones del Motor			[rpm]		
	tiempo de inyección banco 1			[ms]		
	tiempo de inyección banco 2			[ms]		
	Sincronización Válvulas Admisión (B1)		[degCA]		
	Sincronización Válvulas Admisión (B2)		[degCA]		
	DATOS CON FALLA EN	PHASE 1	LH (CMPS)	_		
	Variables	Valor	Unidad	Observaciones		
PHASE	Avance al encendido		[°]			
LH	Revoluciones del Motor		[rpm]			
(CMPS).	tiempo de inyección banco 1		[ms]			
Falla: 6	tiempo de inyección banco 2		[ms]			
	Sincr. Valv. Adm. (B1)		[degCA]			
	Sincr. Valv. Adm. (B2)		[degCA]			
	CODIGOS DE FALLA QUE APARECEN:					
	Códigos:					
	CONCLUSIONES:					
		<u> </u>				

DATOS INICIALES:

	Variables		Valor	Unidad	
	Avance al Encendido			[°]	
	Tiempo de inyección banco 1			[ms]	
	Tiempo de inyección banco 2			[ms]	
	Revoluciones del Motor			[rpm]	
	sensor flujo masa de aire			[V]	
	VALORES APLICANDO UNA FALLA EN INYECTOR 5				
	Variables	Valor	Unidad	Observaciones	
	Avance al Encendido		[°]		
	Tiempo de inyección banco 1		[ms]		
	Tiempo de inyección banco 2		[ms]		
	Revoluciones del Motor		[rpm]		
	sensor flujo masa de aire		[V]		
	VALORES APLICAND	O UNA FAI	LA EN INY	ECTOR 1	
	Variables	Valor	Unidad	Observaciones	
			[°]		
	Avance al Encendido		L J		
	Avance al Encendido Tiempo de inyección banco 1		[ms]		
Invastavas					
	Tiempo de inyección banco 1		[ms]		
	Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire		[ms] [ms] [rpm] [V]		
(Fallas: 9 y	Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor		[ms] [ms] [rpm] [V]	1 AL MISMO TIEMPO	
Inyectores. (Fallas: 9 y 10)	Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire VALORES APLICANDO FALLAS EN	LOS INYE	[ms] [ms] [rpm] [V] CTORES 5 Y	7 1 AL MISMO TIEMPO	
(Fallas: 9 y	Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire VALORES APLICANDO FALLAS EN Avance al Encendido		[ms] [ms] [rpm] [V] CTORES 5 Y	7 1 AL MISMO TIEMPO	
(Fallas: 9 y	Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire VALORES APLICANDO FALLAS EN Avance al Encendido Tiempo de inyección banco 1		[ms] [ms] [rpm] [V] CTORES 5 Y	7 1 AL MISMO TIEMPO	
(Fallas: 9 y	Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire VALORES APLICANDO FALLAS EN Avance al Encendido Tiempo de inyección banco 1 Tiempo de inyección banco 2		[ms] [ms] [rpm] [V] CTORES 5 Y [°] [ms] [ms]	7 1 AL MISMO TIEMPO	
(Fallas: 9 y	Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire VALORES APLICANDO FALLAS EN Avance al Encendido Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor		[ms] [ms] [rpm] [V] CTORES 5 Y [°] [ms] [ms] [rpm]	7 1 AL MISMO TIEMPO	
(Fallas: 9 y	Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire VALORES APLICANDO FALLAS EN Avance al Encendido Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire	:	[ms] [ms] [rpm] [V] CTORES 5 Y [°] [ms] [ms] [rpm] [V]		
(Fallas: 9 y	Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire VALORES APLICANDO FALLAS EN Avance al Encendido Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire CODIGOS DE I	:	[ms] [ms] [rpm] [V] CTORES 5 Y [°] [ms] [ms] [rpm] [V] CAPARECEN	N:	
(Fallas: 9 y	Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire VALORES APLICANDO FALLAS EN Avance al Encendido Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire CODIGOS DE I	:	[ms] [ms] [rpm] [V] CTORES 5 Y [°] [ms] [ms] [rpm] [V]		
(Fallas: 9 y	Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire VALORES APLICANDO FALLAS EN Avance al Encendido Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire CODIGOS DE I Inyector: Códigos:	:	[ms] [ms] [rpm] [V] CTORES 5 Y [°] [ms] [ms] [rpm] [V] E APARECEN	N: 1	
(Fallas: 9 y	Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire VALORES APLICANDO FALLAS EN Avance al Encendido Tiempo de inyección banco 1 Tiempo de inyección banco 2 Revoluciones del Motor sensor flujo masa de aire CODIGOS DE I	:	[ms] [ms] [rpm] [V] CTORES 5 Y [°] [ms] [ms] [rpm] [V] E APARECEN	N:	

	CTUADOR Y ¿QUE PASA EN EL			
	MOTOR CUANDO FALLA?:			
VIAS.				
Falla: 11	alla: 11			
	CODICOS DE EALLA OUE ADADECEN.			
	CODIGOS DE FALLA QUE APARECEN:			
	Codigos:			

	DATOS INICIALES:				
	Variables		Valor	Unidad	
	Avance al encendido			[°]	
	Revoluciones del Motor			[rpm]	
	Tiempo de inyección banco 1			[ms]	
	Tiempo de inyección banco 2			[ms]	
	Sincronización Válvulas Admisión (B1))		[degCA]	
	Sincronización Válvulas Admisión (B2))		[degCA]	
	DATOS CON FALLA EN	PHASE I	H (CMPS)		
	Variables	Valor	Unidad	Observaciones	
PHASE	Avance al encendido		[°]		
RH	Revoluciones del Motor		[rpm]		
(CMPS).	Tiempo de inyección banco 1		[ms]		
Falla: 12	Tiempo de inyección banco 2		[ms]		
	Sincr. Valv. Adm. (B1)		[degCA]		
	Sincr. Valv. Adm. (B2)		[degCA]		
	CODIGOS DE FALLA QUE APARECEN:				
	Códigos:				
	CONCLUSIONES:				

	DATOS INICIALES:		
	Variables	Valor	Unidad
IATS.	Temperatura aire de admisión		[°C]
FALLA:	Avance al encendido		[°]
13	Revoluciones del Motor		[rpm]
	Flujo masa de aire		[V]
	Tiempo de inyección banco 1		[ms]

Tiempo de inyección banco 2			[ms]
DATOS CON FALLA EN IATS			
Variables	Valor	Unidad	Observaciones
Temperatura aire de admisión		[°C]	
Avance al encendido		[°]	
Revoluciones del Motor		[rpm]	
Flujo masa de aire		[V]	
Tiempo de inyección banco 1		[ms]	
Tiempo de inyección banco 2		[ms]	
CODIGOS DE FA	ALLA QUE	APARECEN	•
Códigos:			
ONCLUSIONES:			

	DESCRIBA EL FUNCIONAMIENTO DEL ACTUADOR Y MOTOR CUANDO FALLA?:	Y ¿QUE PASA EN EL
EVAP. Falla: 15		
	CODIGOS DE FALLA QUE APARECI	EN:
	Códigos:	

	DATO	OS INICIALES:	
	Variables	Valor	Unidad
	Avance al encendido		[°]
	Tiempo de inyección banco 1		[ms]
	Tiempo de inyección banco 2		[ms]
TPS. Falla:	Revoluciones del motor		[rpm]
16 y 19	Sensor Flujo Masa de Aire		[V]
	Sensor acelerador principal		[V]
	Sensor acelerador secundario.		[V]
	Sensor 1 posición acelerador.		[V]
	Sensor 2 posición acelerador.		[V]

tomados previament	te)	
	n el equipo y acelere a fondo. ¿(lel motor. (verifique si existen ca te)	
•		
ı		
	19 al mismo tiempo y acelere a	
	amiento del motor. (verifique si	
describa el comporta	amiento del motor. (verifique si	
describa el comporta	amiento del motor. (verifique si	
describa el comporta	amiento del motor. (verifique si	
describa el comporta	amiento del motor. (verifique si	
describa el comporta	amiento del motor. (verifique si	
describa el comporta iniciales tomados pro	amiento del motor. (verifique si eviamente) CODIGOS DE FALLA QUE AI	existen cambios en los datos
describa el comporta iniciales tomados pro C ETC MOTO	amiento del motor. (verifique si eviamente) CODIGOS DE FALLA QUE AI OR Falla 16	existen cambios en los datos
describa el comporta iniciales tomados pro ETC MOTO Código(s)	CODIGOS DE FALLA QUE AF OR Falla 16):	PARECEN: Falla 19
describa el comporta iniciales tomados pro ETC MOTO	CODIGOS DE FALLA QUE AI OR Falla 16): OR Falla 16	existen cambios en los datos

	DATOS II	NICIALE	ZS:		
	Variables		Valor	Unidad	
	Avance al encendido		[°]		
	Revoluciones del Motor			[rpm]	
	Tiempo de inyección banco 1			[ms]	
	Tiempo de inyección banco 2			[ms]	
	Sensor flujo de masa de aire			[V]	
	Valor carga calculada			[%]	
	DATOS CON FALLA	EN PHA	ASE LH (CMPS)		
	Variables	Valor	Unidad	Observaciones	
	Avance al encendido		[°]		
QA+ (MAFS).	Revoluciones del Motor		[rpm]		
Falla: 17	Tiempo de inyección banco 1		[ms]		
	Tiempo de inyección banco 2		[ms]		
	Sensor flujo de masa de aire		[V]		
	Valor carga calculada		[%]		
	CODIGOS DE FALI	A QUE	APARECEN	•	
	Códigos:				
	CONCLUSIONES:				

	DATO	S INICIA	LES:		
_	Variables	Valor	Unidad		
_	Avance al encendido		[°]		
_	Revoluciones del Motor		[rpm]		
	Tiempo de inyección banco 1		[ms]		
	Tiempo de inyección banco 2			[ms]	
TONITON	Sincronización Válvulas Admisión (E	31)		[degCA]	
IGNITION. Falla: 18	Sincronización Válvulas Admisión (E		[degCA]		
1 41141 10	DATOS CON FALI	A EN PH	HASE LH (CMPS)		
	Variables	Valor	Unidad	Observaciones	
	Avance al encendido		[°]		
	Revoluciones del Motor		[rpm]		
	tiempo de inyección banco 1		[ms]		
	tiempo de inyección banco 2		[ms]		
	Sincr. Valv. Adm. (B1)		[degCA]		

Sincr. Valv. Adm. (B2)		[degCA]	
CODIGOS DE FAI	LA QUI	E APARECE	N:
Códigos:			
CONCLUSIONES:			

Flujo masa de aire	[°C] [°] [rpm] [V]	Valor		Temperatura del Refrigerante. Avance al encendido		
Avance al encendido [°] Revoluciones del Motor [rpm] Flujo masa de aire [V] Tiempo de inyección banco 1 [ms] Tiempo de inyección banco 2 [ms] DATOS CON FALLA EN IATS Variables Valor Unidad Observac Temperatura del Refrigerante. [°C] Avance al encendido [°] Revoluciones del Motor [rpm]	[°] [rpm] [V]			Avance al encendido		
Revoluciones del Motor	[rpm]					
Flujo masa de aire [V]	[V]			Revoluciones del Motor		
Tiempo de inyección banco 1				Revoluciones del Motor		
Tiempo de inyección banco 2	[ms]			Flujo masa de aire		
TW WTS),(ECT). FALLA: 20 DATOS CON FALLA EN IATS Valor Unidad Observac [°C] Avance al encendido [°] Revoluciones del Motor [rpm]	. ,		Tiempo de inyección banco 1			
Variables Valor Unidad Observace Temperatura del Refrigerante. [°C] TW Avance al encendido [°] WTS),(ECT). Revoluciones del Motor [rpm]	[ms]		Tiempo de inyección banco 2			
Temperatura del Refrigerante. [°C] TW WTS),(ECT). FALLA: 20 Revoluciones del Motor [rpm]		IATS	DATOS CON FALLA EN			
TW WTS),(ECT). FALLA: 20 Avance al encendido [°] Revoluciones del Motor [rpm]	servaciones	Unidad	Valor	Variables		
WTS),(ECT). FALLA: 20 Revoluciones del Motor [rpm]		[°C]		Temperatura del Refrigerante.		
FALLA: 20 Revoluciones del Motor [rpm]		[°]		Avance al encendido		
		[rpm]		Revoluciones del Motor		
Flujo masa de aire [V]		[V]		Flujo masa de aire		
Tiempo de inyección banco 1 [ms]		[ms]		Tiempo de inyección banco 1		
Tiempo de inyección banco 2 [ms]		[ms]		Tiempo de inyección banco 2		
CODIGOS DE FALLA QUE APARECEN:		PARECEN:	LLA QUE A	CODIGOS DE FA		
Códigos: CONCLUSIONES:						

	DATO	S INICIALES:	
	Variables	Valor	Unidad
APS.	Sensor acelerador primario		[V]
FALLA: 21 y 23	Sensor acelerador secundario		[V]
ľ	Avance al encendido		[°]
	Revoluciones del Motor		[rpm]

Flujo masa de	aire		[V]
Tiempo de inyección	n banco 1		[ms]
Tiempo de inyección	n banco 2		[ms]
	l equipo y acelere el equi otor. (verifique si existen previamen	cambios en los dato	
	l equipo y acelere el equi		
comportamiento del mo	otor. (verifique si existen previamen		s iniciales tomados
Compare el comportam y 2), con el comportami	niento del equipo cuando iento al aplicar las fallas es la diferen	en el sensor APS (fa	sensor TPS (falla 1 ılla 21 y 23); ¿Cuál
Compare el comportam y 2), con el comportami	iento al aplicar las fallas	en el sensor APS (fa	sensor TPS (falla 1 ılla 21 y 23); ¿Cuál
y 2), con el comportami	iento al aplicar las fallas	en el sensor APS (fa cia?	sensor TPS (falla 1 ılla 21 y 23); ¿Cuál
y 2), con el comportami	iento al aplicar las fallas es la diferen	en el sensor APS (facia? UE APARECEN:	sensor TPS (falla 1 ılla 21 y 23); ¿Cuál

ETC	APLIQUE Y DESC PASA EN EL MOT	RIBA EL FUNCIONAMIEN OR CUANDO FALLA?:	TO DEL ACTUADOR, ¿QUE
MOTOR RELAY. Falla: 22			
		CODIGOS DE FALLA QUE	APARECEN:
	Códigos:	V	
EGI RELAY. Falla: 24		CODIGOS DE FALLA QUE Códigos:	APARECEN:
FUEL PUMP RELAY. Falla: 25		RIBA EL FUNCIONAMIEN OR CUANDO FALLA?:	TO DEL ACTUADOR, ¿QUE
rana: 25			
rana: 25		CODIGOS DE FALLA QUE	APARECEN:

	7	KUK 1 (KNOCK)			
	8 y 14	SENSOR O2			
	datos tomad iba una conclus	os con su respecti	uencia directa en el funcionamiento del moto vo análisis en el informe de la práctica. práctica y además responda la siguiente pregr co del motor?		
4. Rea		ne con los resultad	dos obtenidos, además enumere cronológicar	mente los pasos seguidos para el desarrollo c	le esta
BIBL	OGRAFIA:				
DAES	UNG. (n.dd).	Equipo de practic	a de motor a gasolina V6, G-110401.		
ANEX	XOS:				
ANEX	XO A.				
Interp	etación de cód	igos de averías:			

4.2.3. Guía de Protocolo para el equipo G-150301.

FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES

CARRERA: Ingeniería	Mec	ánica Automotriz	ASIGNATURA: Motores de Combustión Interna.
NRO. PRÁCTICA:		TÍTULO PRÁCTICA : Mo 150301.	tor GLP. Equipo de Diagnostico para ensayos de control del motor G –

OBJETIVOS.

- Entender el funcionamiento del Motor de Combustión Interna, ciclo Otto de GLP.
- Realizar la simulación de fallas en el funcionamiento del motor de combustión interna.
- Realizar el diagnostico de fallas con el uso del escáner automotriz y osciloscopio.
- Describir las consecuencias en los sistemas durante el funcionamiento errático.

MARCO TEORICO.

Sistema de Gestión Electrónica del motor.

ECU (Unidad de Control Electrónico):

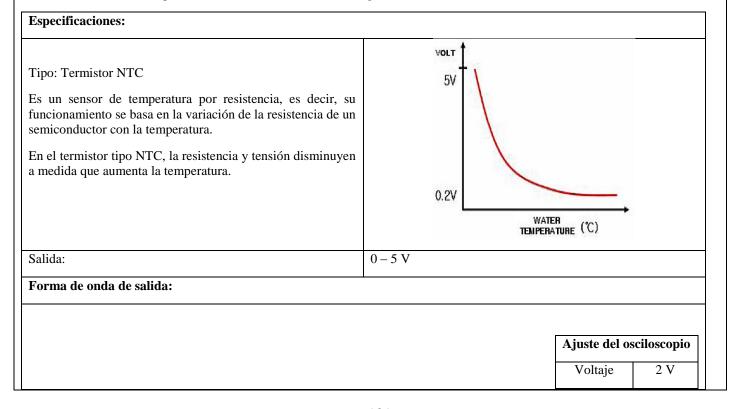
El sistema de gestión del motor es controlado por una computadora conocida como Unidad de Control Electrónico (ECU), la cual recibe información de una variedad de sensores de entrada, elementos y circuitos de salida para controlar el sistema de alimentación de combustible, el sistema de encendido, sistema de control de aire y mantener en óptimas condiciones el desempeño del motor. La ECU ajusta la mezcla aire-combustible más cercana a la relación teórica como sea posible para minimizar la producción de emisiones nocivas durante el funcionamiento del motor y el movimiento del vehículo.(DAESUNG, n.d.-e)

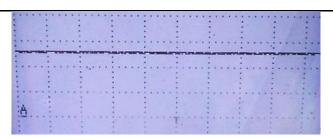
CMPS (Sensor de posición del árbol de levas):

El árbol de levas gira a la mitad de la velocidad del cigüeñal para controlar las válvulas de admisión y escape del motor. Un sensor detecta la posición del árbol de levas y determina si un cilindro está en la fase de compresión o fase de escape cuando el pistón se ha movido en la dirección del TDC. El sensor de posición del árbol de levas es de efecto Hall, con un sensor de nodo de materiales metálicos magnéticos unidos al árbol de levas y rotando juntos

Tipo:	Efecto Hall	
Salida	0 – 5 V Digital.	
Forma de onda de salida:		
	Ajuste del oscilo	loscopio
	Ajuste del oscilo Voltaje	loscopio 2 V
	Voltaje	
A	Voltaje	2 V

CKPS (Sensor de posición del cigüeñal):


El sensor de posición del cigüeñal se encuentra en el bloque de cilindros, utilizando un método inductivo magnético que induce voltaje de CA cuando el nodo sensor de rueda gira a medida que el cigüeñal gira en sí. Este voltaje de CA se utiliza por la ECU para

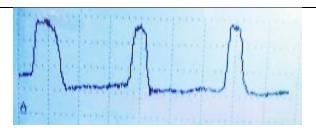

calcular las RPM del motor. Los agujeros de la rueda del sensor de un total de 60 nodos, con dos desaparecidos. Estas dos ranuras que faltan son llamadas los "dientes perdidos". El diente largo y la señal de CMP se utiliza para determinar el punto de vértice del ciclo de compresión del cilindro N º 1.

Especificaciones:	
Tipo:	Efecto Hall
Salida	0 – 5 V
Forma de onda de salida:	
Idones B 6 hd po 6x a s	THE ATT DAGGED OF THE ATT
	Ajuste del osciloscopio
	Voltaje 2 V
	Tiempo 20 ms
<u> </u>	······································

ECTS (Sensor de temperatura del refrigerante del motor):

El sensor de temperatura de agua detecta la temperatura del refrigerante del motor, convirtiendo la variación de resistencia a una señal de voltaje para ingresarla en la ECU del motor, la cual usa esta señal para aumentar o disminuir la cantidad de combustible. La señal es usada también para controlar los ventiladores de refrigeración.

Tiempo 20 ms

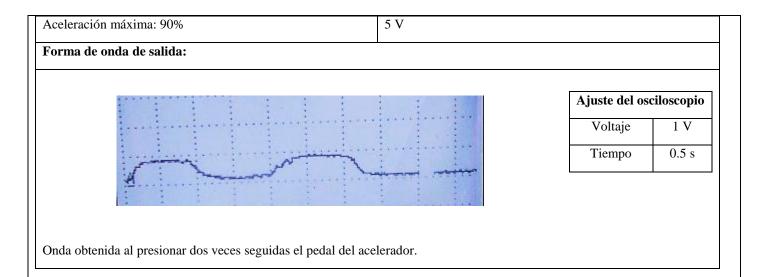

La onda es lineal porque toma la temperatura en un instante determinado, si desea obtener la gráfica característica de un termistor NTC tendrá que tomar varias muestras de voltaje – resistencia, en diferentes temperaturas del refrigerante del motor.

MAPS (Sensor de Presión absoluta del colector):

La ECU requiere tener información exacta de la presión del aire que entra al motor para determinar la cantidad de inyección de combustible y rpm del motor, el sensor MAPS envía una señal analógica proporcional a la presión absoluta de salida a la ECU, la cual la procesa y determina los cambios de presión para hacer que el trabajo del motor sea el más óptimo posible.

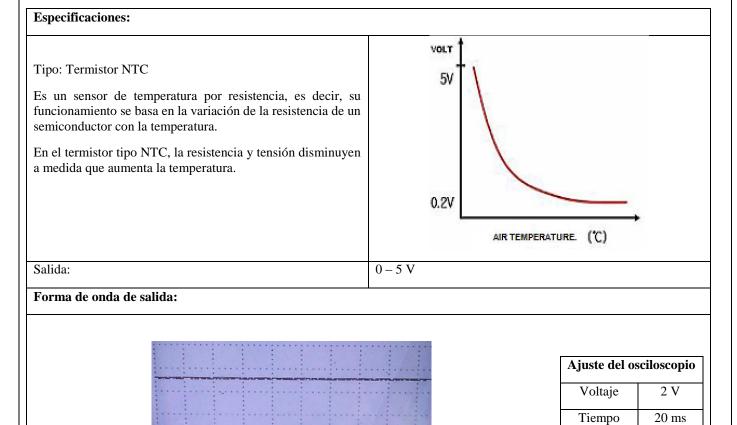
Especificaciones:			
Presión	Voltaje		
200 mmHg	1 V		
400 mmHg	2.1 V		
600 mmHg	3.2 V		
760 mmHg	4 V		

Forma de onda de salida:


A	juste del osci	loscopio
	Voltaje	1 V
	Tiempo	1 s

Onda obtenida al presionar tres veces seguidas el pedal del acelerador.

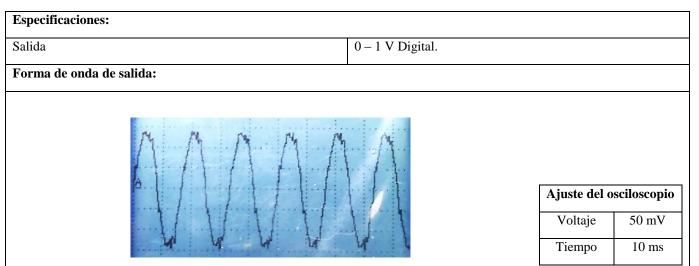
TPS (Sensor de posición de la mariposa):


El sensor de posición de la mariposa del acelerador (TPS), está unido al cuerpo de la mariposa para medir el ángulo de apertura de la válvula de la mariposa. El TPS es un potenciómetro que entrega una variación de tensión dependiendo de la posición de la válvula de la mariposa. La ECU usa la señal del TPS para medir el ralentí, carga baja y el estado de aceleración y desaceleración, para determinar la cantidad de inyección de combustible y el tiempo de encendido.

Especificaciones:		
Válvula de la mariposa	Voltaje de salida	
Ralentí: 0%	0.2 - 0.463 V	
50%	2.9 V	

IATS (Sensor de temperatura del aire de entrada):

El sensor de temperatura del aire usa un termistor de coeficiente negativo de temperatura (NTC), la cual detecta la temperatura del aire que ingresa al motor, convirtiendo la variación de resistencia a una señal de voltaje para ingresarla en la ECU del motor.



La onda es lineal porque toma la temperatura en un instante determinado, si desea obtener la gráfica característica de un termistor NTC tendrá que tomar varias muestras de voltaje – resistencia, en diferentes temperaturas de aire de admisión.

Sensor O2

El sensor de oxigeno calentado (HO2S) está localizado antes del convertidor catalítico, y detecta la concentración de oxígeno en los gases de escape para controlar la cantidad de monóxido de carbono, hidrocarburos y óxidos nitrosos. El sensor O2 envía valores comprendidos entre 0V y 1V basado en la concentración de oxígeno, y la PCM usa esta información para determinar si la mezcla es rica o pobre.

El incremento de concentración de oxígeno en los gases de escape hace que el sensor de O2 envíe una señal de 0~0.1V si la mezcla es pobre. La PCM determina el estado del combustible usando la señal de salida del sensor O2, y ajusta la cantidad de combustible.

ISCA (Actuador de ralentí).

El actuador de velocidad de ralentí (ISCA) es un dispositivo instalado en el cuerpo del acelerador para controlar la cantidad de flujo de aire que pasa por alto de la placa del acelerador. En detalle, ISCA ajusta la velocidad de ralentí del motor correspondiente a las diferentes condiciones de cargas del motor y suministra aire adicional necesario cuando el motor arranca.

ISCA se compone de la bobina de apertura y cierre; y la bobina permanente magnética. Basado en información procedente de los sensores, la ECU controla las bobinas en una forma de puesta a tierra los circuitos.

Resistencia:	15.9±0.35 Ω
Forma de onda de salida:	
Inna	Ajuste del osciloscopio
	Ajuste del osciloscopio Voltaje 2 V

Válvula Solenoide.

Se encuentra paralela a la línea del mezclador de combustible, esta válvula se activa y desactiva de acuerdo a la señal que emita la ECU, la cual determina la cantidad de aire del combustible a través del sensor de oxigeno con el fin de mantener la mezcla estequiometria en base al aire determinado por el promedio del valor de la duración de encendido. Cuando en la válvula es baja la duración del encendido, el encendido de la válvula principal solenoide es más corta, reduciendo así el radio de inyección de aire. Cuando en la válvula es alta la duración de encendido, en la válvula principal solenoide es más larga incrementando el tiempo de inyección.

Voltaje estándar	12 V		
Forma de onda de salida:	I		
		Ajuste del o	osciloscopio
		Ajuste del o	osciloscopio

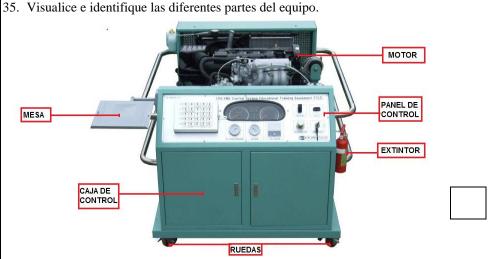
Válvula Solenoide inicial.

La válvula solenoide inicial actúa bajo la señal de la ECU durante: la inyección que se realiza al motor, desaceleración y durante las condiciones de carga alta; manteniendo la cantidad de inyección, previniendo así el "apagado" del motor durante su operación.

Especificaciones:	
Vacuómetro en vacío	-100-250 mmHg
Rod Stroke (Carrera)	6.5 mm

Válvula Solenoide de corte lento.

Se instala en la cámara primaria del vaporizador y se activa simultáneamente con el cierre secundario de la válvula solenoide a través de la señal de la ECU, para proporcionar el combustible lento a la línea de combustible. La cantidad de combustible lento puede ser ajustado mediante el tornillo (S.A.S)


Especificaciones:	
Voltaje estándar	12 V
Resistencia	20 Ω

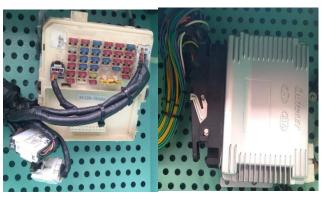
Válvula Solenoide secundaria de cierre.

La válvula solenoide de bloque, abre la válvula secundaria durante la operación del motor para suministrar combustible y cierra la válvula cuando el motor ha parado, para detener el abastecimiento del combustible.

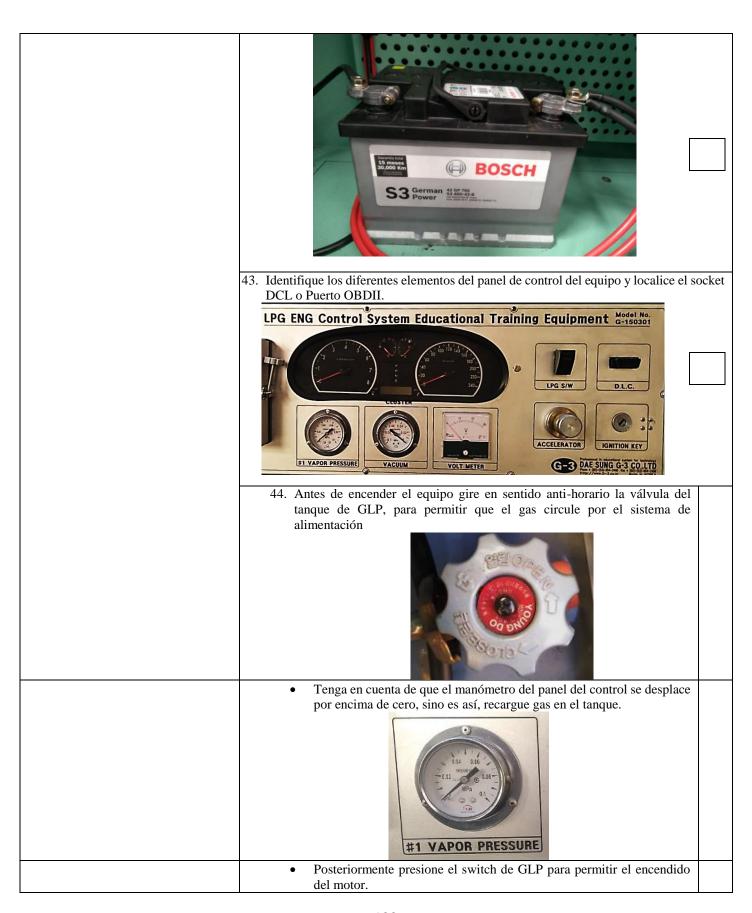
Especificaciones:	
Voltaje estándar	12 V

Resistencia 20Ω				
Válvula solenoide de GLP (LPG).	Válvula solenoide de GLP (LPG).			
La ECU recibe la señal de las rpm del motor y la señal de la temperatura del refrigerante para activar el líquido y el vapor de la válvula solenoide; cuando la temperatura del refrigerante es baja, el GLP líquido activo desde el tanque de combustible puede tener dificultad de vaporización. Para contrastar esto, el vapor de la válvula solenoide es activo para ser subministrado como gas vaporizado.				
El líquido de la válvula solenoide puede ser activado cuando la temperatura del refrigerante es demasiada alta, también funciona como un filtro para remover impurezas en el combustible.				
Especificaciones:				
Voltaje estándar 12 V				
Fluidez 3.5 l/min (0.5 kgf/cm ²)				
25 Viscolias a identif	1 dif			

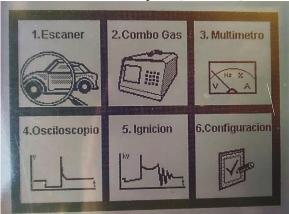
- 36. Compruebe las ruedas del equipo antes de moverlo.
- 37. Ubique y compruebe el estado de carga del extintor contra incendios.
- 38. Ubique el tanque de GLP y analice cada uno de los elementos que conforman el circuito de alimentación de gas.


INSTRUCCIONES ANTES DE EMPEZAR LA PRÁCTICA:

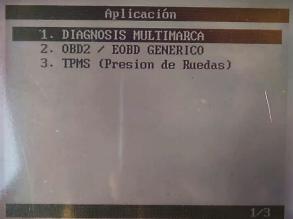
(llene el check list con una "X", para constancia de que realizo las actividades propuestas)



- 39. Instale el equipo en un lugar firme, limpio y ventilado.
- 40. Para el transporte del equipo asegúrese de disponer el personal necesario para evitar lesiones o derribamientos.
- 41. Verifique las conexiones eléctricas, niveles de fluidos y compruebe la inexistencia de fugas, ya sean de líquido refrigerante o aceite en todo el equipo.



42. Instale una fuente de alimentación adecuada al equipo.(Batería de 12 V)

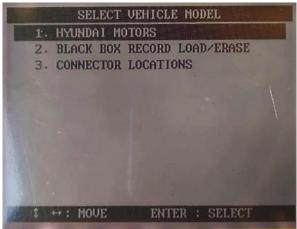


	LPG S/W
	 45. Encienda el equipo y espere hasta que llegue a la temperatura normal de funcionamiento. Entre 88°C - 90°C Si nota un sonido raro, vibración o sobrecarga en el funcionamiento del motor detengo la operación e inspeccione el equipo.
	motor, detenga la operación e inspeccione el equipo. 46. Conecte el escáner con el equipo a través del Puerto DCL y proceda a establecer la
	conexión.
	Presione el botón "POWER" para encenderlo. ULTRASCAN P1
INSTRUCCIONES PARA CONECTAR EL ESCANER CON LA ECU DEL EQUIPO.	1 2 3 MELP 4 5 6 PRINT 7 8 9 ERASE VES 0 NO ESC POWER RESET ## ENTER

• Aparecerá un menú inicial en el cual se mostrara las diversas funciones que posee el scanner, seleccione la opción [1. Escáner].

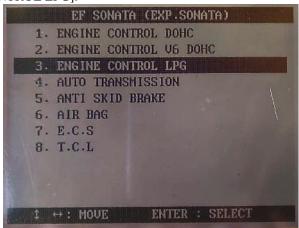
• Seleccione la opción [1. DIAGNOSIS MULTIMARCA].

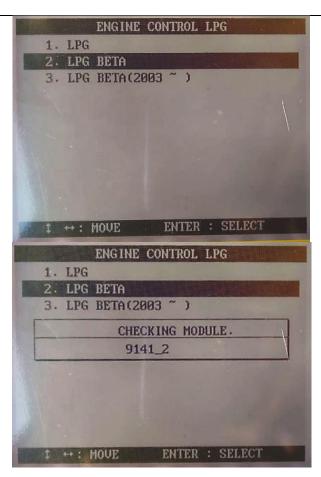
• Se despliega un listado de países y regiones en el cual elegimos la opción [1. COREANO], considerando que el motor del equipo es marca HYUNDAI.

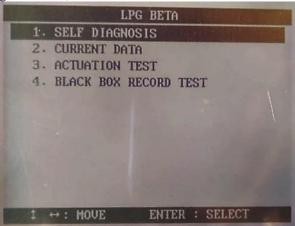


• Se desplegara una lista de marcas de vehículos coreanos, en la cual elija la opción [1. HYUNDAI Ver 6.15]. Luego espere un momento a que se cargue la aplicación.

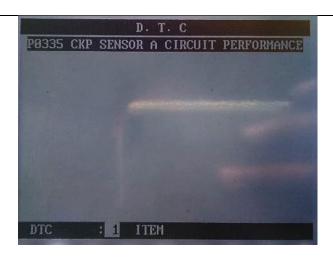



 Elija la opción [1. HYUNDAI MOTORS] para pasar a la selección del modelo de vehículo.


 Se desplegar una lista de modelos de vehículos de la marca seleccionada, busque y seleccione: [18. EF SONATA (EXP. SONATA)].


 Como sabemos que el equipo es a GLP seleccionamos la opción [3. ENGINE CONTROL LPG].

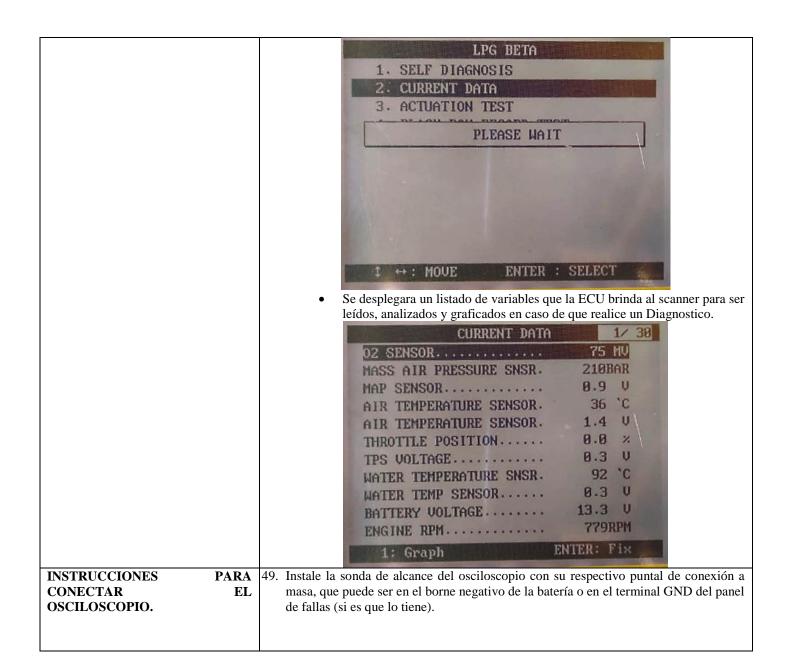
• Seleccione: [3. ENGINE CONTROL LPG] y espere a que se establezca la comunicación:



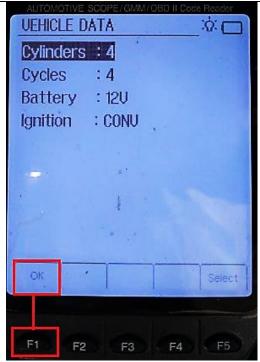
• Finalmente se desplegara un menú entre los cuales se podrá verificar los datos abordo de sensores y actuadores, realizar pruebas de actuadores, leer y borrar códigos de fallas, etc.


INSTRUCCIONES PARA COMPROBAR LA EXISTENCIA O INEXISTENCIA DE CODIGOS DE FALLAS.

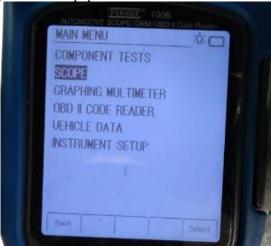
- 47. Para confirmar la existencia de códigos de falla, en el scanner presione la opción: [1.SELF DIAGNOSIS] del menú.
 - En caso de que exista algunas fallas en el motor, el scanner le mostrara un listado de códigos de avería, acompañado de una breve descripción de cada una. Ejemplo:


Para interpretar mejor un código de avería refiérase al anexo A.

- Para borrar los códigos seleccione el botón "ERASE" del scanner que hace referencia a, erase= borrar y se desplegará un mensaje de confirmación, en la cual tendrá que presionar el botón "YES".
- Si la falla persiste el código no se borrara y seguirá saliendo hasta que no se corrija la avería.
- Cuando ya no existen códigos de falla en el equipo se muestra el mensaje: [NO TROUBLE CODE], que le hará saber que ya no hay códigos de fallas grabadas.


INSTRUCCIONES PARA VISUALIZAR LOS DATOS A BORDO DEL SISTEMA ELECTRONICO DEL EQUIPO.

48. Para conocer los datos a bordo de los sensores y actuadores del equipo que llegan a la ECU, en el scanner seleccione: [2. CURRENT DATA] del menú.



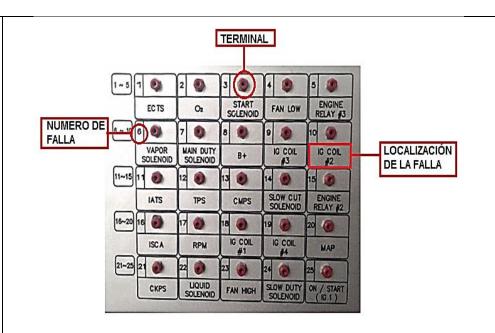
• Enciéndalo y se presentara un menú en el cual puede ingresar los datos del motor en el que se encuentra trabajando, si los datos que se presentan son los correctos presione el botón F1, para proseguir, sino seleccione el ítem a cambiar con el botón F5 y hágalo.

- Luego se presenta un menú en el cual usted puede realizar:
- > pruebas de componentes,
- > pruebas con el osciloscopio
- b obtener gráficas,
- leer códigos de averías
- > cambiar los datos del vehículo
- Configuración del equipo.

Desplácese y seleccione la opción [SCOPE], presionando el botón F5 para seleccionarlo.

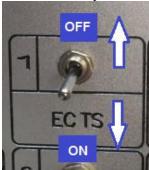
• Aparecerá un osciloscopio de un canal, con sus respectivos ejes de tiempo y voltaje.

El instrumento está listo para usarse.


• Para obtener una señal, use directamente el panel de fallas, esto colocando la sonda directamente en el puerto del sensor o actuador que quiera analizar.

- Tenga en cuenta de regular el osciloscopio a un voltaje y tiempo adecuado mediante el uso de los botones de ajuste, si desea que el instrumento se autorregule presione el botón "AUTO".
- Para analizar una señal puede "congelar" la pantalla mediante el botón "HOLD".

INSTRUCCIONES DURANTE LA PRÁCTICA.


- 50. Cuando los equipos necesarios se encuentran instalados (escáner y osciloscopio), el equipo se encuentra listo para efectuar las simulaciones de fallas para los que fue adecuado.
- 51. Previamente lea las siguientes instrucciones para aplicar las fallas en el funcionamiento del equipo.
 - Identifique el panel de fallas con su respectiva numeración.

• Levante el panel de fallas y visualice el panel de aplicación de fallas, el cual está compuesto por un interruptor de palanca para cada una de las fallas.

52. Como se conoce el interruptor de palanca posee dos posiciones ON y OFF. Entonces para aplicar una falla en el motor considere que:

- Cuando la palanca del interruptor esta hacia arriba, se encuentra en el estado "OFF", estado en el cual la falla no está aplicada en el funcionamiento del motor.
- Cuando la palanca del interruptor esta hacia abajo, se encuentra en el estado "ON", estado en el cual la falla está influyendo en el funcionamiento del motor.

NOTA: Puede ingresar más de una falla al mismo tiempo en el funcionamiento del equipo, ya que está diseñado para este fin, pero considere que, por el uso prolongado bajo el efecto de las fallas a la larga puede desencadenarse fallas graves del equipo, <u>por lo cual limítese en lo posible a ingresar máximo 3 fallas al mismo tiempo.</u>

ACTIVIDADES POR DESARROLLAR

USO DEL OSCILOSCOPIO AUTOMOTRIZ.

- 1. Con el osciloscopio obtenga las ondas voltaje- tiempo de las señales de sensores y actuadores que componen el panel de fallas.
 - Para un mejor análisis obtenga las ondas a diferentes regímenes de giro del motor.(ralentí y 2000rpm)
 - Complementariamente puede usar el multímetro para determinar voltaje de funcionamiento, continuidad, etc.
- 2. Luego que haya practicado con todos los sensores y actuadores del panel de fallas, elija las señales que considere más representativas y llene la **tabla 1** de la sección de "RESULTADOS OBTENIDOS".

USO DEL SCANNER AUTOMOTRIZ.

- 3. Genere fallas en el equipo usando el panel de fallas y use el scanner para:
 - Verificar si la falla aplicada genera en la ECU algún código de avería.
 - Tomar los datos actuales de los sensores y actuadores mediante la opción del [CURRENT DATA].
 - Analizar la variación de los valores en buen funcionamiento respecto a los valores con fallas y compararlos.
 - Tome en cuenta que si se genera algún código de avería en la ECU por la aplicación de una falla, tendrá que posteriormente borrarla con el escáner para evitar que influya esa falla cuando introduzca otra.
 - Todos los valores obtenidos anótelos en las tablas del inciso 2 de la sección de "RESULTADOS OBTENIDOS".
 - Además visualmente observe si al aplicar una falla se enciende o no la luz de Mil o Check, anótelo dentro del área de conclusiones disponible en las tablas para cada falla.
- 5. Finalmente compare sus respuestas con el ANEXO B, luego realice un análisis de las fallas que considere que más influyen en el funcionamiento del equipo y escriba una conclusión general de la práctica.
 - Llene el inciso 3 de la sección de "RESULTADOS OBTENIDOS".

RESULTADO(S) OBTENIDO(S):

1. Llene la siguiente tabla con al menos 5 ondas obtenidas con osciloscopio.

Nombre del sensor o actuador.	Onda a Ralentí	Onda a 2000 rpm	Observación (especifique el voltaje y tiempo en que fue calibrado el equipo)

2. Llene las siguientes tablas con los valores del CURRENT DATA del escáner, antes y durante el efecto producido por fallas en el sistema electrónico del motor.

En el área de observaciones escriba la comparación del valor de la variable con falla con respecto a la misma variable en buen estado, use palabras como: "Aumenta", "Disminuye", "Se mantiene", etc. Finalmente escriba las conclusiones del experimento, no olvide incluir el estado de la luz de Mil o de Check durante el experimento.

	DATOS INIC	IALES:					
	Variables		Valor	Unidad			
	Temperatura del Refrigerante		[°C]				
	Temperatura del Refrigerante		[V]				
	Avance al encendido			[°]			
	Revoluciones del Motor			[rpm]			
	Corrección Aire/Combustible			[%]			
	IAC			[%]			
	Ventiladores del radiador			[on/off]			
	DATOS CON FALLA EN WTS (ECT)						
E C/EC	Variables	Valor	Unidad	Observaciones			
ECTS. FALLA:	Temperatura del Refrigerante		[°C]				
1	Temperatura del Refrigerante		[V]				
	Avance al encendido		[°]				
	Revoluciones del Motor		[rpm]				
	Corrección Aire/Combustible		[%]				
	IAC		[%]				
	Ventiladores del radiador		[on/off]				
	CODIGOS DE FALLA QUE APARECEN:						
	Códigos:						
	CONCLUSIONES:						

	DATOS INICIALES:				
O2. Falla:	Variables	Valor	Unidad		
2	sensor MAP		[V]		
	IAC		[%]		

Avance al encendido	Avance al encendido		[°]
Revoluciones del Motor			[rpm]
Corrección Aire/Combustible			[%]
DATOS CON	N FALLA EN	O2	
Variables	Valor	Unidad	Observaciones
Sensor MAP		[V]	
IAC		[%]	
Avance al encendido		[°]	
Revoluciones del Motor		[rpm]	
Corrección Aire/Combustible		[%]	
CODIGOS DE FAI	LA QUE AP	ARECEN:	
Códigos:			
CONCLUSIONES:			

	DATOS	INICIALES:					
	Variables		Valor	Unidad			
	Sensor de oxigeno			[mV]			
	Sensor MAP			[v]			
	Revoluciones del Motor			[rpm]			
	IAC			[%]			
	Corrección Aire/Combustible			[%]			
	DATOS CON FALLA EN	UNA DE LA	S BOBINAS	2 ó 3			
	Variables	Valor	Unidad	Observaciones			
	Sensor de oxigeno		[mV]				
IG	Sensor MAP		[v]				
COIL.	Revoluciones del Motor	ones del Motor [rpm]					
Fallas:	IAC		[%]				
7 1 10	Corrección Aire/Combustible		[%]				
	DATOS CON FALLAS EN LAS DOS BOBINAS 2 Y 3						
	Sensor de oxigeno		[mV]				
	Sensor MAP		[v]				
	Revoluciones del Motor		[rpm]				
	IAC		[%]				
	Correccion Aire/Combustible		[%]				
	CODIGOS DE FALLA QUE APARECEN:						
	Bobinas de encendido		2 ó 3	2 y 3			
	Codigo(s):						

	DATOS INICIALES:						
	Variables	Valor	Unidad				
	Temperatura del Aire			[°C]			
	Temperatura del Aire			[V]			
	Avance al encendido			[°]			
	Revoluciones del Motor			[rpm]			
	Corrección Aire/Combustible			[%]			
	IAC			[%]			
	DATOS CON FALLA EN IATS						
	Variables	Valor	Unidad	Observaciones			
IATS. FALLA:	Temperatura del Aire		[°C]				
11	Temperatura del Aire		[V]				
	Avance al encendido		[°]				
	Revoluciones del Motor		[rpm]				
	Corrección Aire/Combustible		[%]				
	IAC		[%]				
	CODIGOS DE FALLA QUE APARECEN:						
	Códigos:						
	CONCLUSIONES:						

	DATOS	INICIALES:		
	Variables			Unidad
	Posición del acelerador			[%]
	Sensor TPS			[V]
	IAC			[%]
	Revoluciones del Motor			[rpm]
TPS. FALLA:	Corrección Aire/Combustible			[%]
12	DATOS CON			
	Variables	Valor	Unidad	Observaciones
	Posición del acelerador		[%]	
	Sensor TPS		[V]	
	IAC		[%]	
	Revoluciones del Motor		[rpm]	
	Corrección Aire/Combustible		[%]	

CODIGOS DE FA	CODIGOS DE FALLA QUE APARECEN:					
Códigos:						
CONCLUSIONES:						

	DATOS	INICIALES	:	
	Corrección Aire/Combustible		[%]	
	Avance al Encendido			[°]
	Revoluciones del Motor			[rpm]
	IAC			[%]
	DATOS CON	FALLA EN	CMP	
	Variables	Valor	Unidad	Observaciones
CMP.	Corrección Aire/Combustible		[%]	
Falla:	Avance al Encendido		[°]	
13	Revoluciones del Motor		[rpm]	
	IAC		[%]	
	CODIGOS DE FAL			
	Códigos:			
	CONCLUSIONES:			

	DATOS INICL	ALES:			
	Variables	Valor	Unidad		
	IAC		[%]		
	Revoluciones del Motor			[rpm]	
	Corrección Aire/Combustible			[%]	
	DATOS CON FALL	A EN IAT	r <u>s</u>		
	Variables	Valor	Unidad	Observaciones	
ISCA. FALLA:	IAC		[%]		
16	Revoluciones del Motor		[rpm]		
	Corrección Aire/Combustible		[%]		
	CODIGOS DE FALLA QUE APARECEN:				
	Códigos:				
	CONCLUSIONES:				

	DATOS			
	DATOS	INICIALES:		
	Sensor MAP			[V]
	Avance al Encendido			[°]
	Presión de masa de aire			[bar]
	Corrección Aire/Combustible			[%]
	DATOS CON	FALLA EN M	IAP	1
MAP	Variables	Valor	Unidad	Observaciones
	Sensor MAP		[V]	
Falla:	Avance al Encendido		[°]	
20	Presión de masa de aire		[bar]	
	Corrección Aire/Combustible		[%]	
	CODIGOS DE FAI	LA QUE APA	RECEN:	
	Códigos:			
ENGINE RELAY. Fallas: 5 y	DESCRIBA EL FUNCIONAMIENTO MOTOR CUANDO FALLA?: CODIGOS DE F		·	PASA EN EL
ENGINE RELAY. Fallas: 5 y			·	PASA EN EL
ENGINE RELAY. Fallas: 5 y 15 MAIN DUTY SOLENOID.	MOTOR CUANDO FALLA?: CODIGOS DE F	FALLA QUE A	APARECEN:	
ENGINE RELAY. Fallas: 5 y 15	MOTOR CUANDO FALLA?: CODIGOS DE F Códigos: DESCRIBA EL FUNCIONAMIENTO	FALLA QUE A	APARECEN: DOR Y ¿QUE	

	Códigos:	
	DESCRIBA EL FUNCIONAMIENTO DEL MOTOR CUANDO FALLA?:	SENSOR Y ¿QUE PASA EN EL
CKP. Falla: 21		
	CODIGOS DE FALLA	QUE APARECEN:
	Códigos:	
	,	
SLOW DUTY SOLENOID. Falla: 24	DESCRIBA EL FUNCIONAMIENTO DEL MOTOR CUANDO FALLA?:	ACTUADOR Y ¿QUE PASA EN EL
DUTY SOLENOID.		

En la siguiente tabla se presentan algunos sensores y actuadores que no influyen considerablemente en el funcionamiento del motor, por lo tanto, analice la función de cada una en el equipo y concluya, ¿porque la provocación de una falla en ese sensor o actuador no provoca variaciones considerables en el motor?

# Falla	Descripción	Análisis de su funcionamiento en el equipo.	Conclusión
3	START SOLENOID		
4 y 23	FAN LOW		
6	VAPOR SOLENOID		
8	B+		
17	RPM		
22	LIQUID SOLENOID		
25	ON/START (IG 1)		

• Si desea comprobar de este listado de sensores y actuadores, la no influencia directa en el funcionamiento del motor y dispone de tiempo puede hacerlo. Adjunte sus datos tomados con su respectivo análisis en el informe de la práctica.

3. Escriba una conclusión general de la prá de averías confiable del sistema electrónic	ctica y además responda la siguiente pregunta: ¿La Luz de Mil o de Check es un indicador co del motor?
4. Realizar un informe con los resultados esta práctica.	obtenidos, además enumere cronológicamente los pasos seguidos para el desarrollo de
BIBLIOGRAFIA:	
DAESUNG. (n.dc). Manual del equipo d	le diagnóstico para ensayos de control del motor. Modelo G-150301.
ANEXOS: ANEXO A. Interpretación de códigos de averías:	ON DE CODIGOS DIAGNOSTICO OBD II
XXXXX	DESCRIPCION DE FALLA 1 = CONTROL AIRE/GASOLINA 2 = CONTROL AIRE/GASOLINA; CIRCUITO DE INJECCION 3 = SISTEMA DE ENCENDIDO -MISFIRE 4 = CONTROL AUXILIAR DE EMISIONES 5 = CONTROL DE VELOCIDAD DEL VEHICULO; Y CONTROL DE RPM EN RALENTI 6 = CIRCUITO DE SALIDA DEL COMPUTADOR 7 = TRANSMISION 8 = TRANSMISION 0 = CODIGOS GENERICOS OBD - II 1 = CODIGOS ESPECIFICOS DEL FABRICANTE B = CODIGO DE CARROCERIA [INCLUYE A/C Y BOLSA DE AIRE]

ANEXO B

En esta sección se colocara la guía de protocolo general, que se presentó en la sección 4.1 de este trabajo. Con el fin de realizar una comparación o corroboración de los datos obtenidos durante el efecto producido por fallas en el sistema electrónico.

P = CODIGO DEL TREN DE POTENCIA [MOTOR Y TRANSMISION]

4.2.4. Guía de Protocolo para el equipo G-120212.

FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES

CARRERA: Ingeniería Mecáni	ica Aut	omotriz		ASIG	NATURA	A: Motor	res d	e Combustión	Interna.	
NRO. PRÁCTICA:		TÍTULO Modelo: G	PRÁCTICA : 1-120212	Motor	Diésel.	Banco	de	Diagnóstico	CRDi	Diésel.

OBJETIVOS.

- Entender el funcionamiento del Motor de Combustión Interna, ciclo Diésel.
- Conocer los elementos que componen el sistema de inyección CRDi.
- Realizar la simulación de fallas en el funcionamiento del motor de combustión interna.
- Realizar el diagnostico de fallas con el uso del escáner automotriz y osciloscopio.
- Describir las consecuencias en los sistemas durante el funcionamiento errático.

MARCO TEORICO.

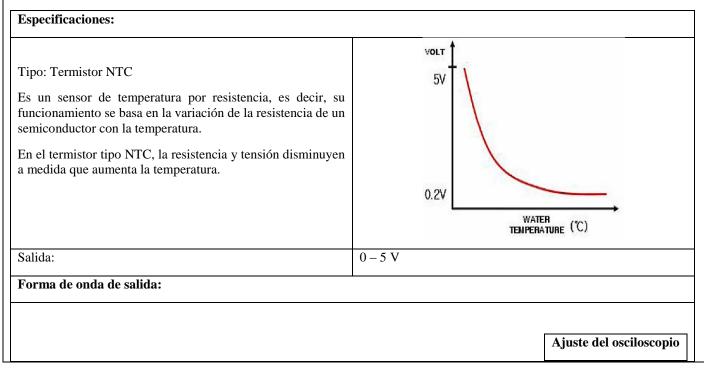
Sistema de Gestión Electrónica del motor.

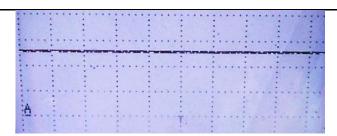
ECU (Unidad de Control Electrónico):

El sistema de gestión del motor es controlado por una computadora conocida como Unidad de Control Electrónico (ECU), la cual recibe información de una variedad de sensores de entrada, elementos y circuitos de salida para controlar el sistema de alimentación de combustible, sistema de control de aire y mantener en óptimas condiciones el desempeño del motor. La ECU ajusta la mezcla airecombustible más cercana a la relación teórica como sea posible para minimizar la producción de emisiones nocivas durante el funcionamiento del motor.

CMPS (Sensor de posición del árbol de levas):

El árbol de levas gira a la mitad de la velocidad del cigüeñal para controlar las válvulas de admisión y escape del motor. Un sensor detecta la posición del árbol de levas y determina si un cilindro está en la fase de compresión o fase de escape cuando el pistón se está moviendo en la dirección del PMS. El sensor de posición del árbol de levas es de efecto Hall, con un sensor de nodo de materiales metálicos magnéticos unidos al árbol de levas y rotando juntos


Tipo:	Efecto Hall
Salida	0 – 5 V Digital.
Forma de onda de salida:	_
	Ajuste del osciloscopi
	Voltaje 2 V
	TD: 20
	Tiempo 20 ms
	Tiempo 20 ms
	Tiempo 20 ms


El sensor de posición del cigüeñal se encuentra en el bloque de cilindros, utilizando un método inductivo magnético que induce voltaje de CA cuando el nodo sensor de rueda gira a medida que el cigüeñal gira en sí. Este voltaje de CA se utiliza por la ECU para calcular las RPM del motor. Los agujeros de la rueda del sensor de un total de 60 nodos, con dos desaparecidos. Estas dos ranuras que faltan son llamadas los "dientes perdidos". El diente largo y la señal de CMP se utiliza para determinar el punto de vértice del ciclo de compresión del cilindro N ° 1.

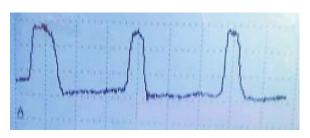
Especificaciones: Tipo:	Magnético	
Salida	0 – 5 V analógica	
Forma de onda de salida:	<u> </u>	
ΛΛΛΛ	MANAMANA	Ajuste del osciloscopio
AAAA	AAIN AAAAAAA	Voltaje 2 V
		Tiempo 2 ms

ECTS (Sensor de temperatura del refrigerante del motor):

El sensor de temperatura de agua detecta la temperatura del refrigerante del motor, convirtiendo la variación de resistencia a una señal de voltaje para ingresarla en la ECU del motor, la cual usa esta señal para aumentar o disminuir la cantidad de combustible. La señal es usada también para controlar los ventiladores de refrigeración.

Voltaje	2 V
Tiempo	20 ms

La onda es lineal porque toma la temperatura en un instante determinado, si desea obtener la gráfica característica de un termistor NTC tendrá que tomar varias muestras de voltaje – resistencia, en diferentes temperaturas del refrigerante del motor.


MAFS (Sensor de masa de aire):

El sensor de masa de aire (MAFS), un sensor de tipo película, situado entre el filtro de aire y el cuerpo de aceleración, mide la cantidad de flujo de entrada de aire en el motor mediante el uso de las características únicas del sensor de tipo de película, que aumenta la transferencia de calor cuando aumenta el flujo de entrada de aire desde el exterior, y disminuye la transferencia de calor cuando el flujo de aire disminuye. La alta cantidad de flujo de aire significa que el motor está bajo aceleración o carga pesada, y el influjo de baja significa que el motor está en reposo o en la desaceleración.

Basándose en estas señales, el módulo de control del motor ajusta la cantidad de combustible a inyectar y controla el tiempo de encendido al mejorar la capacidad de respuesta del motor, ya que acelera o desacelera.

Especificaciones:		
Ralentí	2.7 - 3.2 V	
Estado del Motor.	Dato Estándar.	
800 rpm	9.0 – 12.0 Kg/H	
3000 rpm	32.0 – 40.0 Kg/H	

Forma de onda de salida:

Ajuste del oscilo	oscopio
Voltaje	1 V
Tiempo	1 s

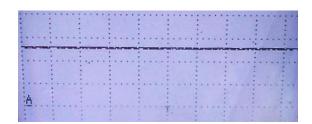
Onda obtenida al presionar tres veces seguidas el pedal del acelerador.

IATS (Sensor de temperatura del aire de entrada):

El sensor de temperatura del aire usa un termistor de coeficiente negativo de temperatura (NTC), la cual detecta la temperatura del aire que ingresa al motor, convirtiendo la variación de resistencia a una señal de voltaje para ingresarla en la ECU del motor.

Especificaciones:

Tipo: Termistor NTC


Es un sensor de temperatura por resistencia, es decir, su funcionamiento se basa en la variación de la resistencia de un semiconductor con la temperatura.

En el termistor tipo NTC, la resistencia y tensión disminuyen a medida que aumenta la temperatura.

O.2V

AIR TEMPERATURE. (*C)

Forma de onda de salida:

Ajuste del os	sciloscopio
Voltaje	2 V
Tiempo	20 ms

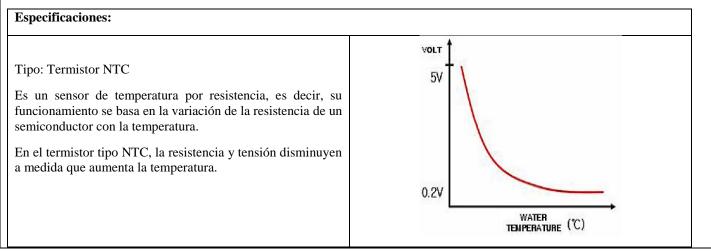
La onda es lineal porque toma la temperatura en un instante determinado, si desea obtener la gráfica característica de un termistor NTC tendrá que tomar varias muestras de voltaje – resistencia, en diferentes temperaturas de aire de admisión.

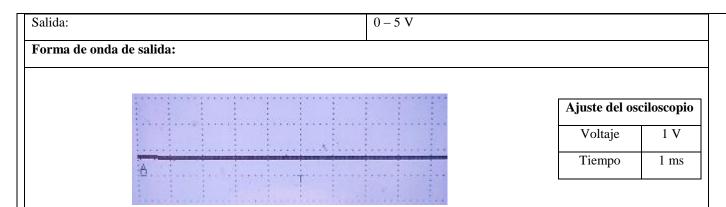
INJ(Inyector)

El inyector se compone de toberas de inyección con válvulas de solenoide que son utilizados por el módulo de control del motor para regular la cantidad de inyección de combustible mediante el control de la apertura y cierre de las válvulas. Cuando el módulo de control del motor activa el solenoide del inyector, el solenoide se magnetiza para abrir la válvula y se inyecta el combustible. Cuando el PCM libera el suelo, la válvula del inyector se cierra y se produce un voltaje de pico instantánea.

Forma de onda de salida: Ajuste del osciloscopio Voltaje 10 V Tiempo 2 ms	Resistencia:	15.9±0.35 Ω		
Voltaje 10 V	Forma de onda de salida:	l .		
Voltaje 10 V				
	The state of the s		Ajuste del o	osciloscopio
Tiempo 2 ms			Voltaje	10 V
			Tiempo	2 ms

Sensor de posición de aceleración APS.


El sensor de posición del acelerador detecta la posición relativa del pedal de aceleración, y está integrado en el acelerador. La ECU usa esta señal para determinar el tiempo y cantidad de inyección de combustible.


El Common rail con control electrónico usa la señal del APS para detectar los cambios en la posición del pedal del acelerador, dando una señal de entrada a la ECU, a diferencia de los sistemas tradicionales que usan cables y uniones para enviar los datos de aceleración a la bomba de inyección.

Especificaciones:	
Tipo:	Potenciómetro
Salida	0 – 5 V digital
Condición a Ralentí.	APS1: 0.7 – 0.8 V y APS2: 0.27 – 0.47 v
Condición a Plena carga.	APS1: 3.8 – 4.4 V y APS2: 1.75 – 2.35 v
Forma de onda de salida:	
	Ajuste del osciloscopio

FTS (Sensor de temperatura del combustible):

El sensor de temperatura de combustible está ubicado en la línea del retorno del combustible, para medir la temperatura del combustible. El sensor internamente tiene una resistencia que varía de acuerdo a la temperatura del combustible que retorna a través del Common Rail. La señal es convertida en voltaje de entrada para informar a la ECU.

La onda es lineal porque toma la temperatura en un instante determinado, si desea obtener la gráfica característica de un termistor NTC tendrá que tomar varias muestras de voltaje – resistencia, en diferentes temperaturas del combustible.

Sensor de Presión del Riel RPS.

El sensor de presión de riel se compone de un piezoeléctrico, es un elemento que detecta la presión del combustible dentro del common rail, esta señal es muy importante para calcular el tiempo y cantidad de combustible para la inyección dentro de la ECU, actuando como retroalimentación para el control de presión del sistema, y que actúa, para lograr la presión del combustible determinado por la ECU.

Гіро:	Piezoeléctrico
Salida	0 – 5 V digital
Presión 0 bar	Voltaje de salida: 0.5 V
Presión 1500 bares	Voltaje de salida: 4.5 V
	Ajuste del osciloscopio
	Ajuste del osciloscopie Voltaje 1 V

Sensor de Presión de refuerzo BPS.

El sensor de presión de refuerzo instalado a la entrada del colector, detecta la presión del colector que es sobrealimentada por el turbo. La información de esta señal es usada por la ECU para calcular con mayor precisión el volumen de aire que ingresa al motor, y compensa la operación de la EGR. También protege al motor de un exceso de presión que puede causar el turbo cargador. Reduciendo la potencia del motor cuando es excesiva, la presión que se detecta en el colector.

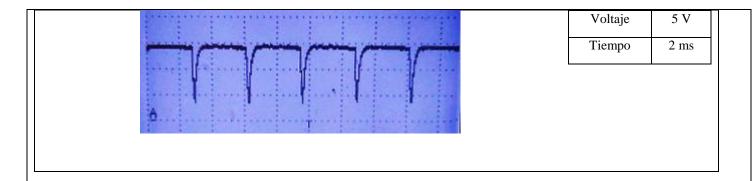
Especificaciones:			
Гіро:	Piezoeléctrico		
Salida	0 – 5 V digital		
Presión 20 kPa	Voltaje de salida: 0.4 ± 0.07 V		
Presión 250 kPa	Voltaje de salida: 5.6 ± 0.07 V		
Forma de onda de salida:			
		Ajuste del os Voltaje Tiempo	sciloscopio 0.5 V 20 ms

Regulador de presión del riel DVR.

El regulador de presión del riel, está instalado en el extremo del riel común, para ajustar la presión del combustible, controlando la alta presión del combustible mediante un retorno a la bomba de alta presión. Una tensión del resorte de aproximadamente 100 bares bloquea una placa con una válvula de bola, como el combustible de retorno supera la tensión del resorte de la válvula, el solenoide de control mueve la placa de la válvula para reducir el retorno del combustible y aumentar la presión del combustible en el riel común.

Especificaciones:				
Гіро:		Electrónico		
Resistencia del regulador a 2	20°C	2.07 – 2.53 Ω		
recuencia de operación		1 KHz		
orma de onda de salida:				
	1			
ļ				
	· · · · · · · · · · · · · · · · · · ·		A irrete del e	
	للأفائلة والسائلة فيتشفيد والمتناوة والمتناوة	AMERICAN A SHAPE AND	Ajuste dei os	sciloscopio
			Voltaje	sciloscopio
A			Voltaje	2 V

Electroválvula EGR (recirculación de gases de escape).

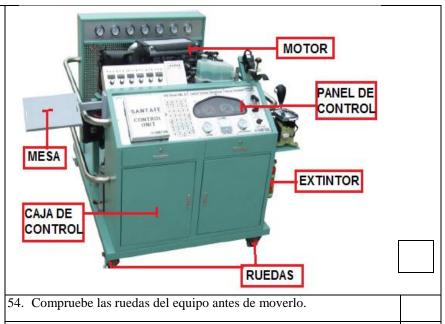

La electroválvula EGR conecta o desconecta el vacío creado por el motor, esta electroválvula alterna la operación de la EGR. En motores diésel con control electrónico el control de la EGR es estrechamente relacionado con el sensor de admisión de aire. La ECU utiliza los datos de la entrada de aire para el control de la válvula solenoide de retroalimentación EGR.

Гіро:	Solenoide
Resistencia a 20°C	14.7 – 16.1 Ω
Frecuencia de operación	300 Hz
% de servicio	5% - 95%
EGR Operacion 5%	FGR Operacion, 95%

Válvula Solenoide del Turbocompresor de Geometría Variable VGT.

El turbocompresor de geometría variable VGT controla la sección transversal variable de los gases de escape a través de la turbina del turbocompresor, mejorando la eficiencia del turbocompresor a bajas revoluciones por minuto (RPM), también mantiene una eficiencia optima a media y altas RPM. Para lograr una eficiencia adecuada se mitiga el retraso del turbo a bajas revoluciones, lo que aumenta la potencia del motor. La ECU al recibir la información sobre las revoluciones del motor y las señales del APS, MAFS y BPS; realiza el control del trabajo para el actuador VGT para mantener una óptima condición en el sobre alimentador. También opera un diafragma de vacío que controla la ruta de los gases de escape.

Especificaciones:	
Tipo:	Solenoide
Resistencia a 20°C	14.7 – 16.1 Ω
Frecuencia de operación	300 Hz
% de servicio	50%
Forma de onda de salida:	
	Ajuste del osciloscopio

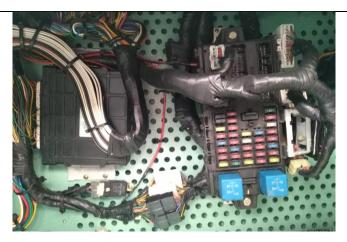

Válvula Solenoide de la Mariposa del Acelerador TPV.

El actuador de la mariposa del acelerador controla a la válvula de mariposa del acelerador cuando el motor se apaga, al conectar o desconectar el vacío, generado por la bomba de vacío instalada en el alternador.

La válvula de mariposa del acelerador se cierra a la entrada del aire cuando el motor está apagado para evitar la saturación del motor diésel. (Saturación de un fenómeno que ocurre cuando el motor es maniobrado por segundos debido a la inercia, así como fugas de combustible de la boquilla del inyector, incluso si el motor está apagado.)

Esto se puede confirmar, mediante la operación de la válvula de mariposa del gas, sólo cuando el motor está apagado.

Especificaciones:	
Гіро:	Solenoide
Resistencia a 20°C	14.7 – 16.1 Ω
Frecuencia de operación	300 Hz
% de servicio	5% - 95%
Forma de onda de salida:	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ajuste del osciloscopio Voltaje 5 V
$ \qquad \forall \qquad \qquad \forall$	Ajuste del osciloscopio
Α	
	53. Visualice e identifique las diferentes partes del equipo.



- 55. Ubique y compruebe el estado de carga del extintor contra incendios.
- 56. Instale el equipo en un lugar firme, limpio y ventilado.
- 57. Para el transporte del equipo asegúrese de disponer el personal necesario para evitar lesiones o derribamientos.
- 78. Verifique las conexiones eléctricas, niveles de fluidos y compruebe la inexistencia de fugas, ya sean de líquido refrigerante o aceite en todo el equipo.

INSTRUCCIONES ANTES DE EMPEZAR LA PRÁCTICA:

(llene el check list con una "X", para constancia de que realizo las actividades propuestas)

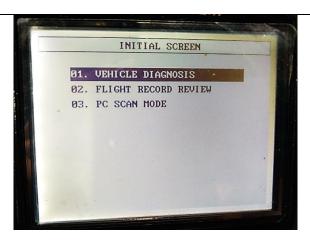
59. Instale una fuente de alimentación adecuada al equipo.(Batería de 12 V)

60. Identifique los diferentes elementos del panel de control del equipo y localice el socket DCL o Puerto OBDII.

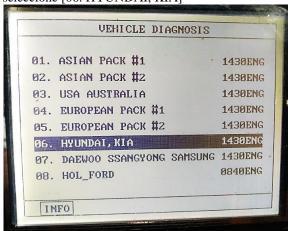
61. Encienda el equipo y espere hasta que llegue a la temperatura normal de funcionamiento. Entre 88°C - 90°C

• Si nota un sonido raro, vibración o sobrecarga, detenga la operación e inspeccione el equipo.

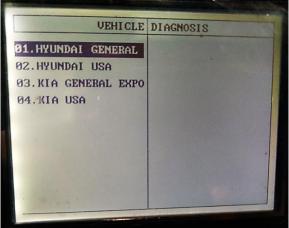
62. Conecte el escáner con el equipo a través del Puerto DCL y proceda a establecer la conexión.

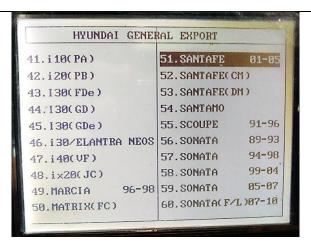


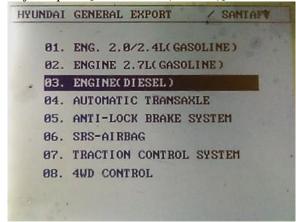
• Enciéndalo y presione el botón "ENTER".

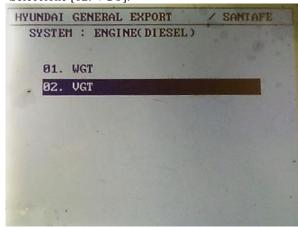


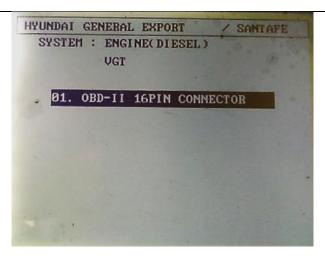
INSTRUCCIONES PARA CONECTAR EL ESCANER CON LA ECU DEL EQUIPO.


Aparecerá una pantalla inicial en la cual seleccione la opción [01. VEHICLE DIAGNOSIS].

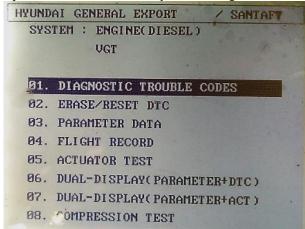

• Se visualizara un listado de marcas de vehículos de los cuales seleccione [06. HYUNDAI, KIA]

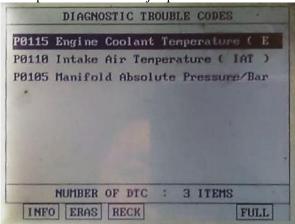

• Seleccione [01. HYUNDAI GENERAL].


• Se desplegara una lista de modelos de vehículos de la marca seleccionada, elija la opción [51. SANTA FE 01-05].

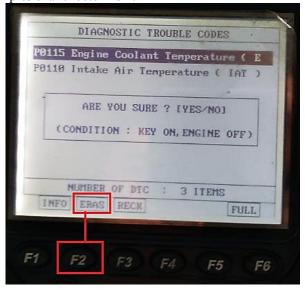

• Elija la opción [03. ENGINE (DIESEL)].

• Seleccione [02. VGT].


Posteriormente la opción [01. OBD-II 16PIN CONNECTOR]:


• Presione el botón ENTER y espere a que se establezca conexión:

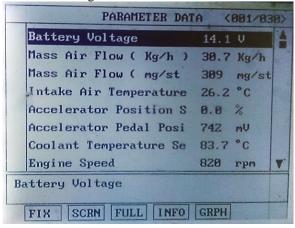
• Finalmente se desplegara un menú entre los cuales se podrá verificar los datos abordo de sensores y actuadores, realizar pruebas de actuadores, leer y borrar códigos de fallas, etc.


- 63. Para confirmar la existencia de códigos de falla, en el scanner presione la opción: [01. DIAGNOSTIC TROUBLE CODES] del menú.
 - En caso de que exista algunas fallas en el motor, el scanner le mostrara un listado de códigos de avería, acompañado de una breve descripción de cada una. Ejemplo:

Para interpretar mejor un código de avería refiérase al anexo A.

INSTRUCCIONES PARA COMPROBAR LA EXISTENCIA O INEXISTENCIA DE CODIGOS DE FALLAS.

• Para borrar los códigos seleccione el botón "F2" del scanner para seleccionar [ERAS], que hace referencia a, erase= borrar y se desplegará un mensaje de confirmación, en la cual tendrá que presionar el botón "SI".

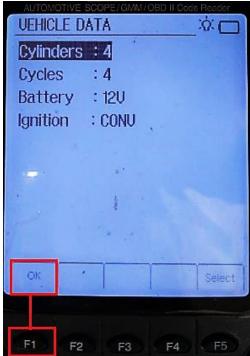


- Si la falla persiste el código no se borrara y seguirá saliendo hasta que no se corrija la avería.
- Cuando ya no existen códigos de falla en el equipo se muestra el mensaje: [NO TROUBLE CODE], que le hará saber que ya no hay códigos de fallas grabadas.

INSTRUCCIONES PARA VISUALIZAR LOS DATOS A BORDO DEL SISTEMA ELECTRONICO DEL EQUIPO.

64. Para conocer los datos a bordo de los sensores y actuadores del equipo que llegan a la ECU, en el scanner seleccione: [04.PARAMETER DATA].

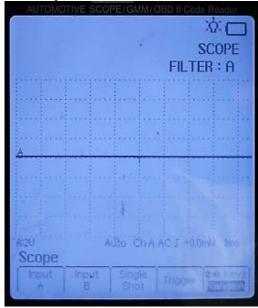
• Se desplegara un listado de variables que la ECU brinda al scanner para ser leídos, analizados y graficados en caso de que realice un Diagnostico.

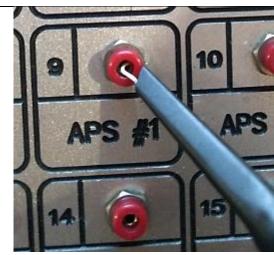

65. Instale la sonda de alcance del osciloscopio con su respectivo puntal de conexión a tierra, que puede ser en el borne negativo de la batería o en el terminal GND del panel de fallas (si es que lo tiene).

• Enciéndalo y se presentara un menú en el cual puede ingresar los datos del motor en el que se encuentra trabajando, si los datos que se presentan son los correctos presione el botón F1, para proseguir, sino seleccione el ítem a cambiar con el botón F5 y hágalo.

- Luego se presenta un menú en el cual usted puede realizar:
- > pruebas de componentes,
- > pruebas con el osciloscopio
- obtener gráficas,
- leer códigos de averías

cambiar los datos del vehículo


Configuración del equipo.


Desplácese y seleccione la opción [SCOPE], presionando el botón F5 para seleccionarlo.

• Aparecerá un osciloscopio de un canal, con sus respectivos ejes de tiempo y voltaje.

El instrumento está listo para usarse.

 Para obtener una señal, use directamente el panel de fallas, esto colocando la sonda directamente en el puerto del sensor o actuador que quiera analizar.

- Tenga en cuenta de regular el osciloscopio a un voltaje y tiempo adecuado mediante el uso de los botones de ajuste, si desea que el instrumento se autorregule presione el botón "AUTO".
- Para analizar una señal puede "congelar" la pantalla mediante el botón "HOLD".

INSTRUCCIONES PRÁCTICA.

DURANTE

LA

- 66. Cuando los equipos necesarios se encuentran instalados (escáner y osciloscopio), el equipo se encuentra listo para efectuar las simulaciones de fallas para los que fue adecuado.
- 67. Previamente lea las siguientes instrucciones para aplicar las fallas en el funcionamiento del equipo.
 - Identifique el panel de fallas con su respectiva numeración.

• Levante el panel de fallas y visualice el panel de aplicación de fallas, el cual está compuesto por un interruptor de palanca para cada una de las fallas.

68. Como se conoce el interruptor de palanca posee dos posiciones ON y OFF. Entonces para aplicar una falla en el motor considere que:

- Cuando la palanca del interruptor esta hacia arriba, se encuentra en el estado "OFF", estado en el cual la falla no está aplicada en el funcionamiento del motor.
- Cuando la palanca del interruptor esta hacia abajo, se encuentra en el estado "ON", estado en el cual la falla está influyendo en el funcionamiento del motor.

NOTA: Puede ingresar más de una falla al mismo tiempo en el funcionamiento del equipo, ya que está diseñado para este fin, pero considere que, por el uso prolongado bajo el efecto de las fallas a la larga puede desencadenarse fallas graves del equipo, por lo cual limítese en lo posible a ingresar máximo 3 fallas al mismo tiempo.

ACTIVIDADES POR DESARROLLAR

USO DEL OSCILOSCOPIO AUTOMOTRIZ.

- 1. Realice un reconocimiento de los elementos que componen el sistema de inyección CRDi.
- 2. Con el osciloscopio obtenga las ondas voltaje- tiempo de las señales de sensores y actuadores que componen el panel de fallas.
 - Para un mejor análisis obtenga las ondas a diferentes regímenes de giro del motor.(ralentí y 2000rpm)
 - Complementariamente puede usar el multímetro para determinar voltaje de funcionamiento, continuidad, etc.
- 3. Luego que haya practicado con todos los sensores y actuadores del panel de fallas, elija las señales que considere más representativas y llene el <u>inciso 1</u> de la sección de "RESULTADOS OBTENIDOS".

USO DEL SCANNER AUTOMOTRIZ.

- 4. Genere fallas en el equipo usando el panel de fallas y use el scanner para:
 - Verificar si la falla aplicada genera en la ECU algún código de avería.
 - Tomar los datos actuales de los sensores y actuadores mediante la opción del [CURRENT DATA].
 - Analizar la variación de los valores en buen funcionamiento respecto a los valores con fallas y compararlos.
 - Tome en cuenta que si se genera algún código de avería en la ECU por la aplicación de una falla, tendrá que posteriormente borrarla con el escáner para evitar que influya esa falla cuando introduzca otra.
 - Todos los valores obtenidos anótelos en las tablas del inciso 2 de la sección de "RESULTADOS OBTENIDOS".
 - Además visualmente observe si al aplicar una falla se enciende o no la luz de Mil o Check, anótelo dentro del área de conclusiones disponible en las tablas para cada falla.
- 5. Finalmente compare sus respuestas con el ANEXO B, luego realice un análisis de las fallas que considere que más influyen en el funcionamiento del equipo y escriba una conclusión general de la práctica.
 - Llene el <u>inciso 3</u> de la sección de "RESULTADOS OBTENIDOS".

RESULTADO(S) OBTENIDO(S):

1. Llene la siguiente tabla con al menos 5 ondas obtenidas con osciloscopio.

Nombre del sensor o actuador.	Onda a Ralentí	Onda a 2000 rpm	Observación (especifique el voltaje y tiempo en que fue calibrado el equipo)

2. Llene las siguientes tablas con los valores del CURRENT DATA del escáner, antes y durante el efecto producido por fallas en el sistema electrónico del motor.

En el área de observaciones escriba la comparación del valor de la variable con falla con respecto a la misma variable en buen estado, use palabras como: "Aumenta", "Disminuye", "Se mantiene", etc. Finalmente escriba las conclusiones del experimento, no olvide incluir el estado de la luz de Mil o de Check durante el experimento.

Engine	APLIQUE Y DESCRIBA EL FUNCIONAMIENTO DEL ACTUADOR, ¿QUE PASA EN EL MOTOR CUANDO FALLA?:
Relay Control. Falla: 1	
	CODIGOS DE FALLA QUE APARECEN:
	Códigos:

FUEL PUMP RELAY CONTROL. Falla: 4	APLIQUE Y DESCRIBA EL FUNCIONAMIE PASA EN EL MOTOR CUANDO FALLA?:	NTO DEL ACTUADOR, ¿QUE
	CODIGOS DE FALLA QU	E APARECEN:
	Códigos:	

	DATOS INIC			
	Variables		Valor	Unidad
	Revoluciones del Motor			[rpm]
	Booster valve operation			[V]
	cantidad de combustible			[mcc]
	Variable geometry turbe			[%]
	DATOS CON FALLA EN SENSOR TPS			
VGT. FALLA:	Para obtener los datos con falla, acelere durante 5 segundos y analice el funcionamien del motor luego tome los datos.			
6	Variables	Valor	Unidad	Observaciones
	Revoluciones del Motor		[rpm]	
	Booster valve operation		[V]	
	cantidad de combustible		[mcc]	
	Variable geometry turbe		[%]	
	CODIGOS DE FALLA	QUE APA	RECEN:	
	Códigos:			
	CONCLUSIONES:			

	DATOS INICI		T .
	Variables	Valor	Unidad
	revoluciones del motor		[rpm]
	Flujo Masa de Aire		[kg/h]
	Posición del pedal del Acelerador Presión de combustible		[mV]
	Cantidad de Combustible		[bar] [mcc]
APS. Falla: 9 y 10	Aplique la falla 10 en el equipo y acelere a fondo. ¿comportamiento del motor. (verifique si existen ca previamente)		
Falla:	comportamiento del motor. (verifique si existen ca	mbios en l	os datos iniciales tomados

	DATOS IN	CIALES:			
	Variables		Valor	Unidad	
	Temperatura del combustible			[°C]	
	Revoluciones del Motor			[rpm]	
	Cantidad de combustible			[mcc]	
	Presión de Combustible			[bar]	
	DATOS CON FA	LLA EN C	A EN CVTC		
	Variables	Valor	Unidad	Observaciones	
	Temperatura del combustible		[°C]		
FTS. FALLA:	Revoluciones del Motor		[rpm]		
11	Cantidad de combustible		[mcc]		
	Presión de Combustible		[bar]		
	CODIGOS DE FALLA QUE APARECEN:				
	Códigos:				
	CONCLUSIONES:				

	DATOS INICIA	LES:				
	Variables		Valor	Unidad		
	Temperatura del Refrigerante			[°C]		
	Revoluciones del Motor			[rpm]		
	Cantidad de combustible			[mcc]		
	Ventiladores del Radiador			[on/off]		
	DATOS CON FALLA	EN CV	ГС			
WTS.	Variables	Valor	Unidad	Observaciones		
FALLA:	Temperatura del Refrigerante		[°C]			
12	Revoluciones del Motor		[rpm]			
	Cantidad de combustible		[mcc]			
	Ventiladores del Radiador		[on/off]			
	CODIGOS DE FALLA QU	CODIGOS DE FALLA QUE APARECEN:				
	Códigos:					
	CONCLUSIONES:					

Revoluciones del Motor [rpi Cantidad de combustible [mc Presión de Combustible [ba DATOS CON FALLA EN CVTC	[°C] [rpm] [mcc] [bar]				
Revoluciones del Motor [rpn] Cantidad de combustible [mc] Presión de Combustible [ba] DATOS CON FALLA EN CVTC Variables Valor Unidad Observa Temperatura del Aire de entrada [°C] ATS. Revoluciones del Motor [rpm] FALLA: 13 Cantidad de combustible [mcc]	[rpm] [mcc] [bar]				
Cantidad de combustible Presión de Combustible DATOS CON FALLA EN CVTC Variables Valor Unidad Observa Temperatura del Aire de entrada [°C] ATS. Revoluciones del Motor [rpm] Cantidad de combustible [mcc]	[mcc]				
Presión de Combustible DATOS CON FALLA EN CVTC Variables Valor Unidad Observa Temperatura del Aire de entrada [°C] ATS. Revoluciones del Motor [rpm] CALLA: 13 Cantidad de combustible [mcc]	[bar]				
DATOS CON FALLA EN CVTC Variables Temperatura del Aire de entrada Temperatura del Motor Revoluciones del Motor Cantidad de combustible Cantidad de combustible					
ATS. ATS. CALLA: 13 Variables Valor Valor Unidad Observation [°C] [rpm] Cantidad de combustible [mcc]	EN CVTC				
ATS. PALLA: 13 Temperatura del Aire de entrada [°C] Revoluciones del Motor [rpm] Cantidad de combustible [mcc]					
ATS. FALLA: 13 Revoluciones del Motor [rpm] [mcc]	alor Unidad Observaciones				
FALLA: 13 Cantidad de combustible [mcc]	[°C]				
Cantidad de combustible [mcc]	[rpm]				
Presión de Combustible [bar]	[mcc]				
	[bar]				
CODIGOS DE FALLA QUE APARECEN:	CODIGOS DE FALLA QUE APARECEN:				
Códigos: CONCLUSIONES:					

	DAT	OS INICIAI	LES:	
	Variables		Valor	Unidad
	Flujo de masa de aire			[kg/h]
	Revoluciones del Motor			[rpm]
	Cantidad de combustible			[mcc]
l	Presión de Combustible		[bar]	
AFS.	DATOS CO	EN CVTC		
FALLA:	Variables	Unidad	Observaciones	
14	Flujo de masa de aire		[kg/h]	
	Revoluciones del Motor	[rpm]		
	Cantidad de combustible		[mcc]	
	Presión de Combustible		[bar]	
	CODIGOS DE I	FALLA QUI	E APARECEN	·
	Códigos:			
	CONCLUSIONES:			

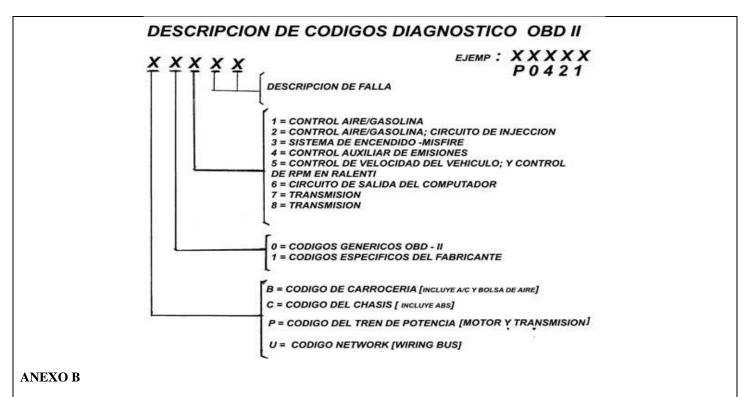
	DATOS INICIA	LES:			
	Variables		Valor	Unidad	
	Presión de Combustible			[bar]	
	regulador de presión de combustible			[%]	
	Revoluciones del Motor			[rpm]	
	Cantidad de combustible		[mcc]		
	DATOS CON FALLA	EN CV	ГС		
	Variables	Valor	Unidad	Observaciones	
	Presión de Combustible		[bar]		
RPS. FALLA:	regulador de presión de combustible		[%]		
15	Revoluciones del Motor		[rpm]		
	Cantidad de combustible		[mcc]		
	CODIGOS DE FALLA QUE APARECEN:				
	Códigos:				
	CONCLUSIONES:				

	DATOS IN	ICIALES	S:	
	Variables		Valor	Unidad
	Flujo de masa de aire			[kg/h]
	Revoluciones del Motor			[rpm]
	Cantidad de combustible		[mcc]	
	turbo de geometría variable			[%]
BPS. FALLA:	DATOS CON FA	LLA EN	CVTC	
16	Variables	Valor	Unidad	Observaciones
	Flujo de masa de aire		[kg/h]	
	Revoluciones del Motor		[rpm]	
	Cantidad de combustible		[mcc]	
	turbo de geometría variable		[%]	
	CODIGOS DE FALL	A QUE A	PARECEN:	
	Códigos:			

CONC	CLUSIONES:	
	APLIQUE LA FALLA 17 Y DESCRIBA EL FUNCIONAMIENTO I	DEL
	SENSOR, ¿QUE PASA EN EL MOTOR CUANDO FALLA?:	
	GODYGOG DE FAVA A GVE ADADEGEV	
CIZD E-II	CODIGOS DE FALLA QUE APARECEN:	
CKP. Falla: 17 y 18	Códigos:	
·	APLIQUE LA FALLA 18 Y DESCRIBA EL FUNCIONAMIENTO I	DEL
	TERNSOR GOVERNMENT MATTER AND ALL AND	PARECO
	SENSOR, ¿QUE PASA EN EL MOTOR CUANDO FALLA?. COMI	11112
	LA FALLA 17	

	DATOS IN	ICIALES:					
	Variables		Valor	Unidad			
	Flujo de masa de aire			[kg/h]			
	Revoluciones del Motor	Revoluciones del Motor					
	Cantidad de combustible			[mcc]			
CMP.	Presión de combustible	Presión de combustible					
FALLA:	DATOS CON FA	DATOS CON FALLA EN CVTC					
19	Variables	Valor	Unidad	Observaciones			
	Flujo de masa de aire		[kg/h]				
	Revoluciones del Motor		[rpm]				
	Cantidad de combustible		[mcc]				
	Presión de combustible		[bar]				
	CODIGOS DE FALLA	A QUE AP.	ARECEN:				

	Códigos:		
C	CONCLUSIONES:		
	APLIQUE LA FALLA 20 Y DESCRIBA EL FU SENSOR, ¿QUE PASA EN EL MOTOR CUAN		EL
	SENSOR, ¿QUE I ASA EN EL MOTOR CUAN	(DO FALLA	
Regulador de presión	CODIGOS DE FALLA QUE	E APARECEN:	
de presion de	Códigos:		
combustible.	-		
Falla: 20 y 21	APLIQUE LA FALLA 21 Y DESCRIBA EL FU SENSOR, ¿QUE PASA EN EL MOTOR CUAN		
21	LA FALLA 20	DO FALLA: COMP	AKE CON
	CODIGOS DE FALLA QUI	E APARECEN:	
	Códigos:		
	Q		
	D. Magazawayayay	· Fig	
	DATOS INICIAI		
	Variables	Valor	Unidad
		1	
	Cantidad de combustible		[mcc]


	DATOS IN	ICIALES:	<u> </u>		
	Variables		Val	or	Unidad
	Cantidad de combustible				[mcc]
	Presión de combustible				[bar]
Invectores.	Revoluciones del Motor				[rpm]
(Fallas:	sensor de flujo de masa de aire				[kg/h]
22,23, 24 y	VALORES APLICANDO F	ALLA EN	N INYECTOR 1:		
25)	Variables	Valor	Unidad	Obser	vaciones
	Cantidad de combustible		[mcc]		
	Presión de combustible		[bar]		
	Revoluciones del Motor		[rpm]		
	sensor de flujo de masa de aire		[kg/h]		

VALORES APLICANDO I	FALLA EN	INYECTO	OR 2:	
Cantidad de combustible		[mcc]		
Presión de combustible		[bar]		
Revoluciones del Motor		[rpm]		
sensor de flujo de masa de aire		[kg/h]		
VALORES APLICANDO I	FALLA EN	INYECTO	OR 3:	
Cantidad de combustible		[mcc]		
Presión de combustible		[bar]		
Revoluciones del Motor		[rpm]		
sensor de flujo de masa de aire		[kg/h]		
VALORES APLICANDO I	FALLA EN	INYECTO	OR 4:	
Cantidad de combustible		[mcc]		
Presión de combustible		[bar]		
Revoluciones del Motor		[rpm]		
110 / 0100101102 001 1/10101		[rpiii]		
sensor de flujo de masa de aire VALORES APLICANDO DOS FALLAS FIEMPO, ¿QUE SUCEDE?	EN INYEO	[kg/h]	L MISM	0
sensor de flujo de masa de aire VALORES APLICANDO DOS FALLAS	EN INYEO	[kg/h]	L MISM	0
sensor de flujo de masa de aire VALORES APLICANDO DOS FALLAS FIEMPO, ¿QUE SUCEDE?		[kg/h]		0
sensor de flujo de masa de aire VALORES APLICANDO DOS FALLAS		[kg/h]		O 4
sensor de flujo de masa de aire VALORES APLICANDO DOS FALLAS TIEMPO, ¿QUE SUCEDE? CODIGOS DE FALLA	A QUE AP	[kg/h] CTORES A ARECEN:		
sensor de flujo de masa de aire VALORES APLICANDO DOS FALLAS FIEMPO, ¿QUE SUCEDE? CODIGOS DE FALL Inyector: Código:	A QUE AP	[kg/h] CTORES A ARECEN: 2	3	
Sensor de flujo de masa de aire VALORES APLICANDO DOS FALLAS FIEMPO, ¿QUE SUCEDE? CODIGOS DE FALL Inyector: Código: Inyectores combinados:	A QUE AP	[kg/h] CTORES A ARECEN: 2		
sensor de flujo de masa de aire VALORES APLICANDO DOS FALLAS FIEMPO, ¿QUE SUCEDE? CODIGOS DE FALL Inyector: Código:	A QUE AP	[kg/h] CTORES A ARECEN: 2	3	
sensor de flujo de masa de aire VALORES APLICANDO DOS FALLAS FIEMPO, ¿QUE SUCEDE? CODIGOS DE FALL Inyector: Código: Inyectores combinados: Código(s):	A QUE AP	[kg/h] CTORES A ARECEN: 2	3	
sensor de flujo de masa de aire VALORES APLICANDO DOS FALLAS FIEMPO, ¿QUE SUCEDE? CODIGOS DE FALL Inyector: Código: Inyectores combinados: Código(s):	A QUE AP	[kg/h] CTORES A ARECEN: 2	3	
sensor de flujo de masa de aire VALORES APLICANDO DOS FALLAS FIEMPO, ¿QUE SUCEDE? CODIGOS DE FALL Inyector: Código: Inyectores combinados: Código(s):	A QUE AP	[kg/h] CTORES A ARECEN: 2	3	

En la siguiente tabla se presentan algunos sensores y actuadores que no influyen considerablemente en el funcionamiento del motor, por lo tanto, analice la función de cada una en el equipo y concluya, ¿porque la provocación de una falla en ese sensor o actuador no provoca variaciones considerables en el motor?

# Falla	Descripción	Análisis de su efecto en el equipo.	Conclusión
2	Glow Plug Relay Control	P1325	

3	EGR	P0403	
5	TPV	P1190	
7	ТАСНО	n o	
8	VSS	NO	
de tier 3. Escriba una o de averías conf 4. Realizar un i práctica.	npo puede hacerlo. Adjunte conclusión general de la práciable del sistema electrónico able del sistema electrónico enforme con los resultados o	sus datos tomados con su respectivo análisis ctica y además responda la siguiente pregunta o del motor?	ecta en el funcionamiento del motor y dispone en el informe de la práctica. a: ¿La Luz de Mil o de Check es un indicador
BIBLIOGRAI DAESUNG. (n		ÓSTICO CRDI DIESEL ENG , Y SISTEMA	A DE CONTROL A / T. Modelo G-120212.
ANEXOS:			
ANEXO A.			
Interpretación o	de códigos de averías:		

En esta sección se colocara la guía de protocolo general, que se presentó en la sección 4.1 de este trabajo. Con el fin de realizar una comparación o corroboración de los datos obtenidos durante el efecto producido por fallas en el sistema electrónico.

4.2.5. Guía de Protocolo para el equipo G-111701.

FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO A TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES

CARRERA: Ingeniería Mecánio	ca Auto	motriz	ASIGNATURA: Motores de Combustión Inter	rna.
NRO. PRÁCTICA:		TÍTULO PRÁCTICA : Eq G-111701	uipo de practica de Motor Gasolina. AVANTE,	Modelo

OBJETIVOS.

- Entender el funcionamiento del Motor de Combustión Interna, ciclo Otto.
- Conocer los elementos que componen el sistema de alimentación de combustible.
- Realizar la simulación de fallas en el funcionamiento del motor de combustión interna.
- Realizar el diagnostico de fallas con el uso del escáner automotriz y osciloscopio.
- Describir las consecuencias en los sistemas durante el funcionamiento errático.

MARCO TEORICO.

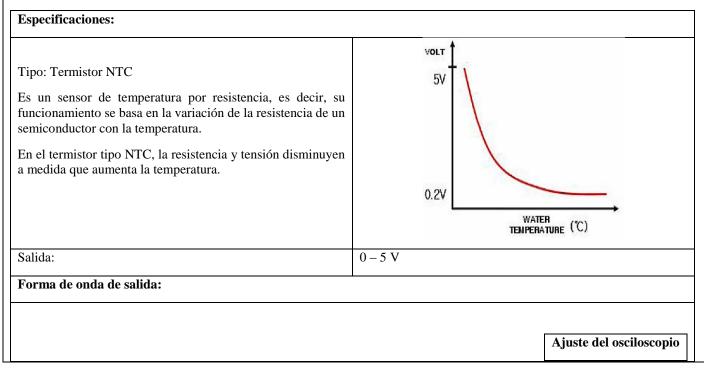
Sistema de Gestión Electrónica del motor.

ECU (Unidad de Control Electrónico):

El sistema de gestión del motor es controlado por una computadora conocida como Unidad de Control Electrónico (ECU), la cual recibe información de una variedad de sensores de entrada, elementos y circuitos de salida para controlar el sistema de alimentación de combustible, sistema de control de aire y mantener en óptimas condiciones el desempeño del motor. La ECU ajusta la mezcla airecombustible más cercana a la relación teórica como sea posible para minimizar la producción de emisiones nocivas durante el funcionamiento del motor.

CMPS (Sensor de posición del árbol de levas):

El árbol de levas gira a la mitad de la velocidad del cigüeñal para controlar las válvulas de admisión y escape del motor. Un sensor detecta la posición del árbol de levas y determina si un cilindro está en la fase de compresión o fase de escape cuando el pistón se está moviendo en la dirección del PMS. El sensor de posición del árbol de levas es de efecto Hall, con un sensor de nodo de materiales metálicos magnéticos unidos al árbol de levas y rotando juntos

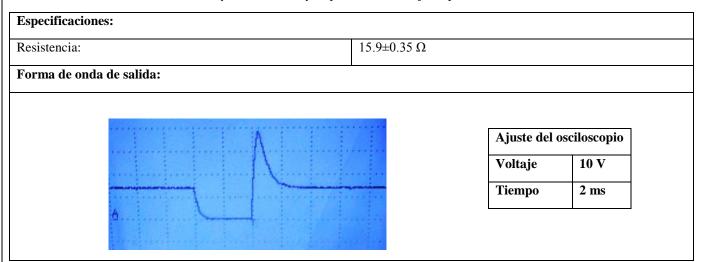

Especificaciones:		
Tipo:	Efecto Hall	
Salida	0 – 5 V Digital	
Forma de onda de salida:	I	
		Ajuste del osciloscop
		Voltaje 2 V
		Tiempo 20 ms
41		<u> </u>

El sensor de posición del cigüeñal se encuentra en el bloque de cilindros, utilizando un método inductivo magnético que induce voltaje de CA cuando el nodo sensor de rueda gira a medida que el cigüeñal gira en sí. Este voltaje de CA se utiliza por la ECU para calcular las RPM del motor. Los agujeros de la rueda del sensor de un total de 60 nodos, con dos desaparecidos. Estas dos ranuras que faltan son llamadas los "dientes perdidos". El diente largo y la señal de CMP se utiliza para determinar el punto de vértice del ciclo de compresión del cilindro N ° 1.

Especificaciones:			
Tipo:	Magnético		
Salida	0 – 5 V analógica		
Forma de onda de salida:	I		
	Λ		
AAAAA	INA ZINANANA	Ajuste del os	ciloscopio
A A A A	AAAAAAAA	Voltaje	2 V
	I I I I I I I I I I I I I I I I I I I	Tiempo	2 ms
	American American St. St. 4		1

ECTS (Sensor de temperatura del refrigerante del motor):

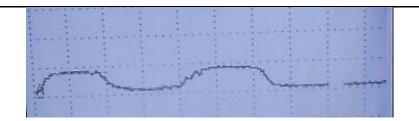
El sensor de temperatura de agua detecta la temperatura del refrigerante del motor, convirtiendo la variación de resistencia a una señal de voltaje para ingresarla en la ECU del motor, la cual usa esta señal para aumentar o disminuir la cantidad de combustible. La señal es usada también para controlar los ventiladores de refrigeración.



Voltaje	2 V
Tiempo	20 ms

La onda es lineal porque toma la temperatura en un instante determinado, si desea obtener la gráfica característica de un termistor NTC tendrá que tomar varias muestras de voltaje – resistencia, en diferentes temperaturas del refrigerante del motor.

INJ(Inyector)

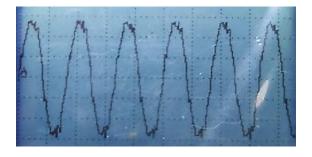

El inyector se compone de toberas de inyección con válvulas de solenoide que son utilizados por el módulo de control del motor para regular la cantidad de inyección de combustible mediante el control de la apertura y cierre de las válvulas. Cuando el módulo de control del motor activa el solenoide del inyector, el solenoide se magnetiza para abrir la válvula y se inyecta el combustible. Cuando el PCM libera el suelo, la válvula del inyector se cierra y se produce un voltaje de pico instantánea.

TPS (Sensor de posición de la mariposa):

El sensor de posición de la mariposa del acelerador (TPS), está unido al cuerpo de la mariposa para medir el ángulo de apertura de la válvula de la mariposa. El TPS es un potenciómetro que entrega una variación de tensión dependiendo de la posición de la válvula de la mariposa. La ECU usa la señal del TPS para medir el ralentí, carga baja y el estado de aceleración y desaceleración, para determinar la cantidad de inyección de combustible y el tiempo de encendido.

Válvula de la mariposa	Voltaje de salida	
Ralentí: 0%	0.2 - 0.463 V	
50%	2.9 V	
Aceleración máxima: 90%	5 V	

Ajuste del osciloscopio		
Voltaje	1 V	
Tiempo	0.5 s	

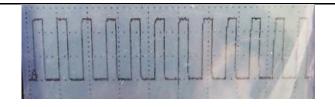

Onda obtenida al presionar dos veces seguidas el pedal del acelerador.

Sensor O2

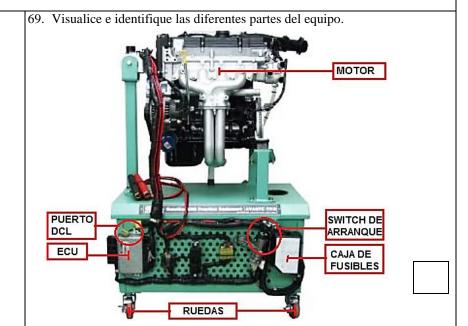
El sensor de oxigeno calentado (HO2S) está localizado antes del convertidor catalítico, y detecta la concentración de oxígeno en los gases de escape para controlar la cantidad de monóxido de carbono, hidrocarburos y óxidos nitrosos. El sensor O2 envía valores comprendidos entre 0V y 1V basado en la concentración de oxígeno, y la PCM usa esta información para determinar si la mezcla es rica o pobre.

El incremento de concentración de oxígeno en los gases de escape hace que el sensor de O2 envíe una señal de 0~0.1V si la mezcla es pobre. La PCM determina el estado del combustible usando la señal de salida del sensor O2, y ajusta la cantidad de combustible.

Especificaciones:	
Salida	0 – 1 V Digital.
Forma de onda de salida:	

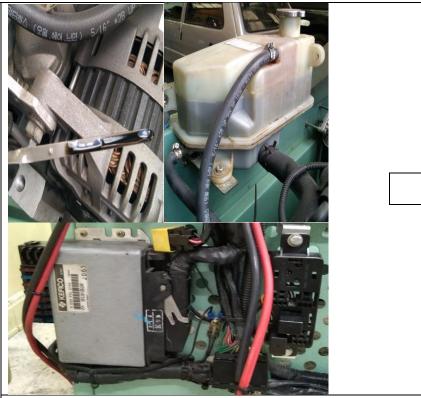

Ajuste del osciloscopio		
Voltaje	50 mV	
Tiempo	10 ms	

ISCA (Actuador de ralentí).


El actuador de velocidad de ralentí (ISCA) es un dispositivo instalado en el cuerpo del acelerador para controlar la cantidad de flujo de aire que pasa por alto de la placa del acelerador. En detalle, ISCA ajusta la velocidad de ralentí del motor correspondiente a las diferentes condiciones de cargas del motor y suministra aire adicional necesario cuando el motor arranca.

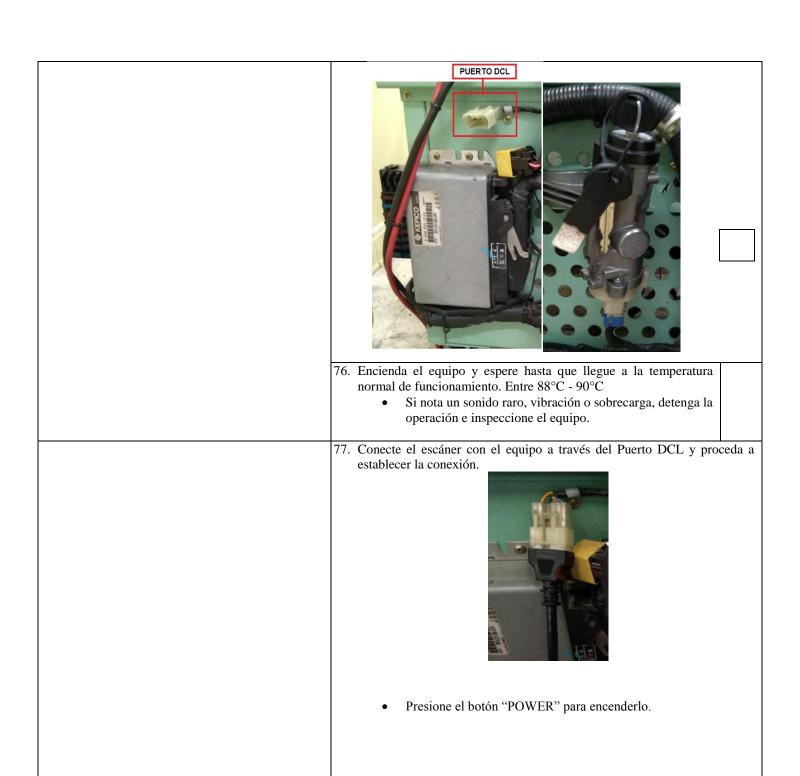
ISCA se compone de la bobina de apertura y cierre; y la bobina permanente magnética. Basado en información procedente de los sensores, la ECU controla las bobinas en una forma de puesta a tierra los circuitos.

Especificaciones:				
Resistencia:	15.9±0.35 Ω			
Forma de onda de salida:				


Ajuste del osciloscopio		
Voltaje	2 V	
Tiempo	20 ms	

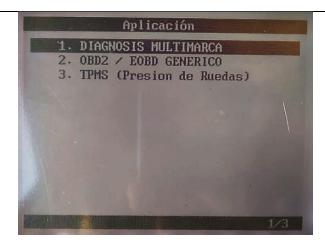
INSTRUCCIONES ANTES DE EMPEZAR LA PRÁCTICA:

(llene el check list con una "X", para constancia de que realizo las actividades propuestas)


- 70. Compruebe las ruedas del equipo antes de moverlo.
- 71. Instale el equipo en un lugar firme, limpio y ventilado.
- 72. Para el transporte del equipo asegúrese de disponer el personal necesario para evitar lesiones o derribamientos.
- 73. Verifique las conexiones eléctricas, niveles de fluidos y compruebe la inexistencia de fugas, ya sean de líquido refrigerante o aceite en todo el equipo.

74. Instale una fuente de alimentación adecuada al equipo.(Batería de 12 V)

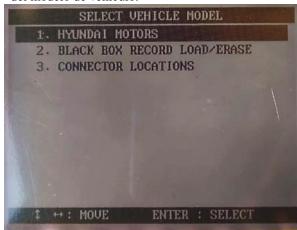

75. Ubique y localice el socket DCL o Puerto OBDII y el switch de encendido.


INSTRUCCIONES PARA CONECTAR EL ESCANER CON LA ECU DEL EQUIPO.

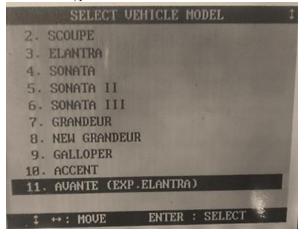
• Aparecerá un menú inicial en el cual se mostrara las diversas funciones que posee el scanner, seleccione la opción [1. Escáner].

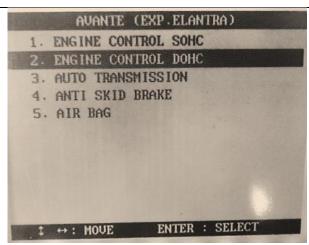
• Seleccione la opción [1. DIAGNOSIS MULTIMARCA].

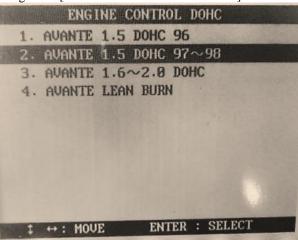
 Se despliega un listado de países y regiones en el cual elegimos la opción [1. COREANO], considerando que el motor del equipo es marca HYUNDAI.

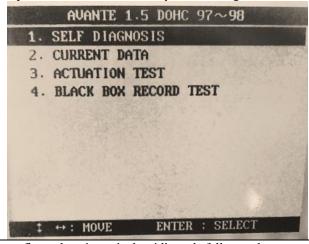


• Se desplegara una lista de marcas de vehículos coreanos, en la cual elija la opción [1. HYUNDAI Ver 6.15]. Luego espere un momento a que se cargue la aplicación.

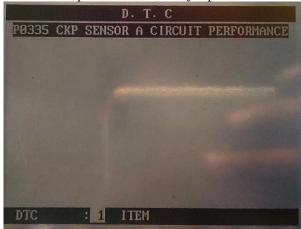



• Elija la opción [1. HYUNDAI MOTORS] para pasar a la selección del modelo de vehículo.


• Se desplegar una lista de modelos de vehículos de la marca seleccionada, busque y seleccione: [11. AVANTE (EXP. ELANTRA)].


• Seleccione la opción: [2. ENGINE CONTROL DOHC].

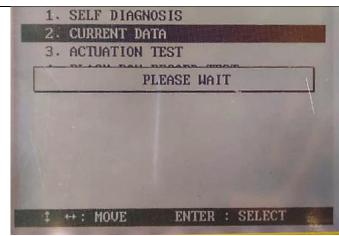
• Ingrese a [2. AVANTE 1.5 DOCH 97 – 98].


• Finalmente se desplegara un menú entre los cuales se podrá verificar los datos abordo de sensores y actuadores, realizar pruebas de actuadores, leer y borrar códigos de fallas, etc.

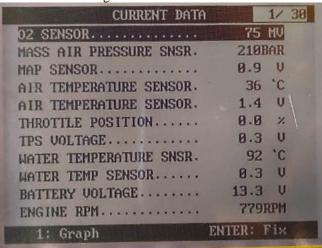
INSTRUCCIONES PARA COMPROBAR LA EXISTENCIA O INEXISTENCIA DE CODIGOS DE FALLAS.

78. Para confirmar la existencia de códigos de falla, en el scanner presione la opción: [1.SELF DIAGNOSIS] del menú.

• En caso de que exista algunas fallas en el motor, el scanner le mostrara un listado de códigos de avería, acompañado de una breve descripción de cada una. Ejemplo:


Para interpretar mejor un código de avería refiérase al anexo A.

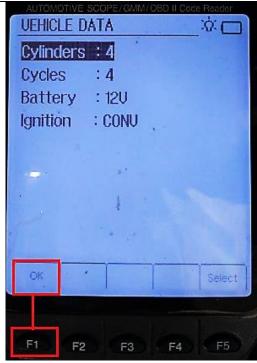
- Para borrar los códigos seleccione el botón "ERASE" del scanner que hace referencia a, erase= borrar y se desplegará un mensaje de confirmación, en la cual tendrá que presionar el botón "YES".
- Si la falla persiste el código no se borrara y seguirá saliendo hasta que no se corrija la avería.
- Cuando ya no existen códigos de falla en el equipo se muestra el mensaje: [NO TROUBLE CODE], que le hará saber que ya no hay códigos de fallas grabadas.



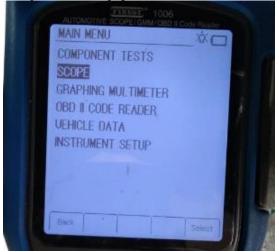
INSTRUCCIONES PARA VISUALIZAR LOS DATOS A BORDO DEL SISTEMA ELECTRONICO DEL EQUIPO.

79. Para conocer los datos a bordo de los sensores y actuadores del equipo que llegan a la ECU, en el scanner seleccione: [2. CURRENT DATA] del menú.

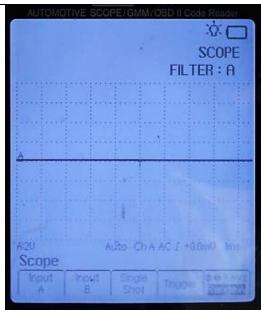
• Se desplegara un listado de variables que la ECU brinda al scanner para ser leídos, analizados y graficados en caso de que realice un Diagnostico.



INSTRUCCIONES PARA CONECTAR EL OSCILOSCOPIO.


80. Instale la sonda de alcance del osciloscopio con su respectivo puntal de conexión a tierra, que puede ser en el borne negativo de la batería o en el terminal GND del panel de fallas (si es que lo tiene).

• Enciéndalo y se presentara un menú en el cual puede ingresar los datos del motor en el que se encuentra trabajando, si los datos que se presentan son los correctos presione el botón F1, para proseguir, sino seleccione el ítem a cambiar con el botón F5 y hágalo.


- Luego se presenta un menú en el cual usted puede realizar:
- > pruebas de componentes,
- > pruebas con el osciloscopio
- b obtener gráficas,
- leer códigos de averías
- > cambiar los datos del vehículo
- Configuración del equipo.

Desplácese y seleccione la opción [SCOPE], presionando el botón F5 para seleccionarlo.

• Aparecerá un osciloscopio de un canal, con sus respectivos ejes de tiempo y voltaje.

El instrumento está listo para usarse.

- Para obtener una señal, tendrá que identificar y medir directamente en el sensor o actuador que quiera analizar.
- Tenga en cuenta de regular el osciloscopio a un voltaje y tiempo adecuado mediante el uso de los botones de ajuste, si desea que el instrumento se autorregule presione el botón "AUTO".
- Para analizar una señal puede "congelar" la pantalla mediante el botón "HOLD".

- INSTRUCCIONES DURANTE LA PRÁCTICA. 81. Cuando los equipos necesarios se encuentran instalados (escáner y osciloscopio), el equipo se encuentra listo para efectuar las simulaciones de fallas para los que fue adecuado.
 - 82. Para crear una falla en el equipo desconecte directamente el socket de conexión del sensor o actuador y analice sus efectos en el equipo con ayuda del scanner.

NOTA: Evite el uso prolongado del equipo bajo el efecto de fallas, ya que a la larga puede desencadenarse fallas graves del equipo.

ACTIVIDADES POR DESARROLLAR

USO DEL OSCILOSCOPIO AUTOMOTRIZ.

- 1. Realice un reconocimiento de los elementos que componen el sistema de inyección de combustible.
- 2. Con el osciloscopio obtenga las ondas voltaje- tiempo de las señales de sensores y actuadores.
 - Para un mejor análisis obtenga las ondas a diferentes regímenes de giro del motor.(ralentí y 2000rpm)
 - Complementariamente puede usar el multímetro para determinar voltaje de funcionamiento, continuidad, etc.
- 3. Luego que haya practicado con los sensores y actuadores, elija las señales que considere más representativas y llene el <u>inciso 1</u> de la sección de "RESULTADOS OBTENIDOS".

USO DEL SCANNER AUTOMOTRIZ.

- 4. Genere las fallas propuestas en el inciso 2 de la sección de "RESULTADOS OBTENIDOS "en el equipo y use el scanner para:
 - Verificar si la falla aplicada genera en la ECU algún código de avería.
 - Tomar los datos actuales de los sensores y actuadores mediante la opción del [CURRENT DATA].
 - Analizar la variación de los valores en buen funcionamiento respecto a los valores con fallas y compararlos.
 - Tome en cuenta que si se genera algún código de avería en la ECU por la aplicación de una falla, tendrá que posteriormente borrarla con el escáner para evitar que influya esa falla cuando introduzca otra.
- 5. Finalmente compare sus respuestas con el ANEXO B, luego realice un análisis de las fallas que considere que más influyen en el funcionamiento del equipo y escriba una conclusión general de la práctica.
 - Llene el **inciso 3** de la sección de "RESULTADOS OBTENIDOS".

RESULTADO(S) OBTENIDO(S):

1. Llene la siguiente tabla con al menos 5 ondas obtenidas con osciloscopio.

Nombre del sensor o actuador.	Onda a Ralentí	Onda a 2000 rpm	Observación (especifique el voltaje y tiempo en que fue calibrado el equipo)

2. Llene las siguientes tablas con los valores del CURRENT DATA del escáner, antes y durante el efecto producido por fallas en el sistema electrónico del motor.

En el área de observaciones escriba la comparación del valor de la variable con falla con respecto a la misma variable en buen estado, use palabras como: "Aumenta", "Disminuye", "Se mantiene", etc. Finalmente escriba las conclusiones del experimento, no olvide incluir el estado de la luz de Mil o de Check durante el experimento.

	DESCRIBA EL FUNCIONAMIENTO DEL SE MOTOR CUANDO FALLA?:	NSOR Y ¿QUE PASA EN EL
СКР.		
	CODIGOS DE FALLA QUI	E APARECEN:
	Códigos:	

	DAT	OS INICIAL	ES:	
	Tiempo de Inyección			[ms]
	Avance al Encendido			[°]
	Revoluciones del Motor			[rpm]
	Flujo de masa de aire			[mV]
	DATOS C	ON FALLA	EN CMP	
	Variables	Valor	Unidad	Observaciones
	Tiempo de Inyección		[ms]	
CMP	Avance al Encendido		[°]	
	Revoluciones del Motor		[rpm]	
	Flujo de masa de aire		[mV]	
	CODIGOS DE I	FALLA QUE	APARECEN:	
	Códigos:			
	CONCLUSIONES:			

	DATOS	INICIALES:		
	Tiempo de Inyección		[ms]	
	Avance al Encendido			[°]
	Revoluciones del Motor			[rpm]
	Flujo de masa de aire			[mV]
IAC	DATOS CON	FALLA EN O	CMP	
IAC	Variables	Valor	Unidad	Observaciones
	Tiempo de Inyección		[ms]	
	Avance al Encendido		[°]	
	Revoluciones del Motor		[rpm]	
	Flujo de masa de aire		[mV]	
	CODIGOS DE FAI	LLA QUE AP	ARECEN:	

Códigos:	
CONCLUSIONES:	

	DATOS	SINICIAL	ES:	
	Variables		Valor	Unidad
	apertura del acelerador			[°]
	Revoluciones del Motor			[rpm]
	Avance al Encendido			[°]
	Tiempo de Inyección			[ms]
	Flujo de masa de aire			[mV]
	DATOS CON	FALLA E	EN CVTC	
	Variables	Valor	Unidad	Observaciones
TPS	apertura del acelerador		[°]	
113	Revoluciones del Motor		[rpm]	
	Avance al Encendido		[°]	
	Tiempo de Inyección		[ms]	
	Flujo de masa de aire		[mV]	
	CODIGOS DE FA	LLA QUE	APARECEN:	
	Códigos:			
	CONCLUSIONES:			

	DATOS INICIALES:				
	Tiempo de Inyección		[ms]		
	Avance al Encendido			[°]	
	Revoluciones del Motor			[rpm]	
	Flujo de masa de aire			[mV]	
	DATOS CON FA	ALLA EN (СМР		
02	Variables Valor		Unidad	Observaciones	
02	Tiempo de Inyección		[ms]		
	Avance al Encendido		[°]		
	Revoluciones del Motor		[rpm]		
	Flujo de masa de aire		[mV]		
	CODIGOS DE FALLA QUE APARECEN:				
	Códigos:				
	CONCLUSIONES:				

Г					
		S INICIAI			
<u> </u>	Variables		Val	or	Unidad
<u> </u>	Tiempo de Inyección				
<u> </u>	Avance al Encendido				[°]
_	Revoluciones del Motor				[rpm]
_	Flujo de masa de aire				[mV]
_	VALORES APLICANI	DO FALLA	A EN INYEC	TOR 1:	
_	Variables	Valor	Unidad	Obser	vaciones
<u> </u>	Tiempo de Inyección		[ms]		
	Avance al Encendido		[°]		
	Revoluciones del Motor		[rpm]		
	Flujo de masa de aire		[mV]		
_	VALORES APLICANI	OO FALLA	A EN INYEC	TOR 2:	
	Tiempo de Inyección		[ms]		
_	Avance al Encendido		[°]		
	Revoluciones del Motor		[rpm]		
	Flujo de masa de aire		[mV]		
	VALORES APLICANI	O FALL	A EN INYEC	TOR 3:	
Inyectores	Tiempo de Inyección		[ms]		
	Avance al Encendido		[°]		
	Revoluciones del Motor		[rpm]		
	Flujo de masa de aire		[mV]		
	VALORES APLICANDO FALLA EN INYECTOR 4:				
	Tiempo de Inyección		[ms]		
	Avance al Encendido		[°]		
	Revoluciones del Motor		[rpm]		
	Flujo de masa de aire		[mV]		
	VALORES APLICANDO DOS F T	'ALLAS E IEMPO :	N INYECTO	RES AL N	MISMO
	Tiempo de Inyección		[ms]		
	Avance al Encendido		[°]		
	Revoluciones del Motor		[rpm]		
	Flujo de masa de aire		[mV]		
	CODIGOS DE FA	LLA QUI		N:	
	Inyector:	1	2	3	4
	Código:				
	Inyectores combinados:		Iny	e Iny	

Código(s):	
CONCLUSIONES:	

	DATOS INICIALES:						
	Variables		Valor	Unidad			
	Temperatura del Refrigerante			[°C]			
	Revoluciones del Motor			[rpm]			
	Avance al Encendido			[°]			
	Tiempo de Inyección			[ms]			
	Flujo de masa de aire			[mV]			
	DATOS CON FAL	LA EN CV	ΓC				
	Variables	Valor	Unidad	Observaciones			
ECT	Temperatura del Refrigerante		[°C]				
ECI	Revoluciones del Motor		[rpm]				
	Avance al Encendido		[°]				
	Tiempo de Inyección		[ms]				
	Flujo de masa de aire		[mV]				
	CODIGOS DE FALLA	CODIGOS DE FALLA QUE APARECEN:					
	Códigos:						
	CONCLUSIONES:						

	DATOS INICIALES:				
	Tiempo de Inyección		[ms]		
	Avance al Encendido			[°]	
	Revoluciones del Motor			[rpm]	
	Flujo de masa de aire			[mV]	
	DATOS COM				
Bobina	Variables Valor		Unidad	Observaciones	
Dobina	Tiempo de Inyección		[ms]		
	Avance al Encendido		[°]		
	Revoluciones del Motor		[rpm]		
	Flujo de masa de aire		[mV]		
	CODIGOS DE FALLA QUE APARECEN:				
	Códigos:				
	CONCLUSIONES:				

3. Escriba una conclusión general de la práctica.
4. Realizar un informe con los resultados obtenidos, además enumere cronológicamente los pasos seguidos para el desarrollo de es práctica.
BIBLIOGRAFIA:
DAESUNG. (n.db). EQUIPO DE PRACTICA DE MOTOR A GASOLINA (AVANTE). Modelo G-111701.

ANEXOS:

ANEXO A.

Interpretación de códigos de averías:

DESCRIPCION DE CODIGOS DIAGNOSTICO OBD II

ANEXO B

En esta sección se colocara la guía de protocolo general, que se presentó en la sección 4.1 de este trabajo. Con el fin de realizar una comparación o corroboración de los datos obtenidos durante el efecto producido por fallas en el sistema electrónico.

l		
l		

4.2.6. Guía de Protocolo para el equipo G-111703.

FORMATO DE GUÍA DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA DOCENTES

CARRERA: Ingeniería Mecánica Auto	motriz	ASIGNATURA: Motores de Combustión Interna.
NRO. PRÁCTICA:		TÍTULO PRÁCTICA : Equipo de practica de Motor Gasolina. EF SONATA,
		Modelo G-111703

OBJETIVOS.

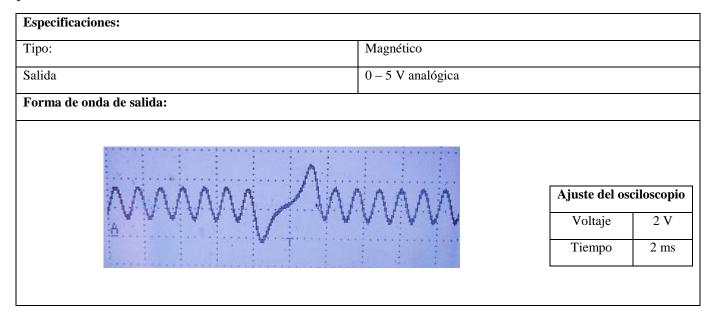
- Entender el funcionamiento del MCI, ciclo Otto.
- Conocer los elementos que componen el sistema de alimentación de combustible.
- Realizar la simulación de fallas en el funcionamiento del motor de combustión interna.
- Realizar el diagnóstico de fallas con el uso del escáner automotriz y osciloscopio.
- Describir las consecuencias en los sistemas durante el funcionamiento errático.

MARCO TEORICO.

Sistema de Gestión Electrónica del motor.

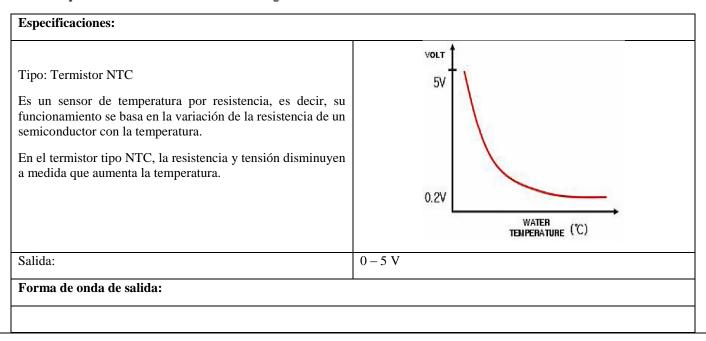
ECU (Unidad de Control Electrónico):

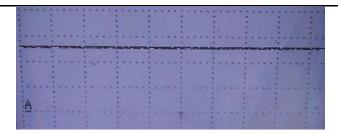
El sistema de gestión del motor es controlado por una computadora conocida como Unidad de Control Electrónico (ECU), la cual recibe información de una variedad de sensores de entrada, elementos y circuitos de salida para controlar el sistema de alimentación de combustible, sistema de control de aire y mantener en óptimas condiciones el desempeño del motor. La ECU ajusta la mezcla airecombustible más cercana a la relación teórica como sea posible para minimizar la producción de emisiones nocivas durante el funcionamiento del motor.


CMPS (Sensor de posición del árbol de levas):

El árbol de levas gira a la mitad de la velocidad del cigüeñal para controlar las válvulas de admisión y escape del motor. Un sensor detecta la posición del árbol de levas y determina si un cilindro está en la fase de compresión o fase de escape cuando el pistón se está moviendo en la dirección del PMS. El sensor de posición del árbol de levas es de efecto Hall, con un sensor de nodo de materiales metálicos magnéticos unidos al árbol de levas y rotando juntos

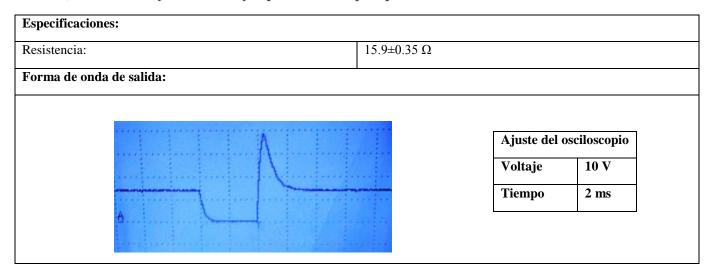
Especificaciones:			
Tipo:	Efecto Hall	-	
Salida	0 – 5 V Digital.		
Forma de onda de salida:			
	*****	Ajuste del os	ciloscopio
	7	Voltaje	2 V
		Tiempo	20 ms
	.1		
	erose ² as		


CKPS (Sensor de posición del cigüeñal):


El sensor de posición del cigüeñal se encuentra en el bloque de cilindros, utilizando un método inductivo magnético que induce voltaje de CA cuando el nodo sensor de rueda gira a medida que el cigüeñal gira en sí. Este voltaje de CA se utiliza por la ECU para calcular las RPM del motor. Los agujeros de la rueda del sensor de un total de 60 nodos, con dos desaparecidos. Estas dos ranuras que faltan son llamadas los "dientes perdidos". El diente largo y la señal de CMP se utiliza para determinar el punto de vértice del ciclo de compresión del cilindro N ° 1.

ECTS (Sensor de temperatura del refrigerante del motor):

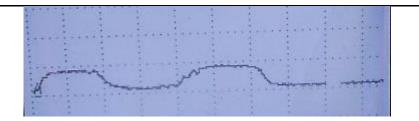
El sensor de temperatura de agua detecta la temperatura del refrigerante del motor, convirtiendo la variación de resistencia a una señal de voltaje para ingresarla en la ECU del motor, la cual usa esta señal para aumentar o disminuir la cantidad de combustible. La señal es usada también para controlar los ventiladores de refrigeración.



Ajuste del os	sciloscopio
Voltaje	2 V
Tiempo	20 ms

La onda es lineal porque toma la temperatura en un instante determinado, si desea obtener la gráfica característica de un termistor NTC tendrá que tomar varias muestras de voltaje – resistencia, en diferentes temperaturas del refrigerante del motor.

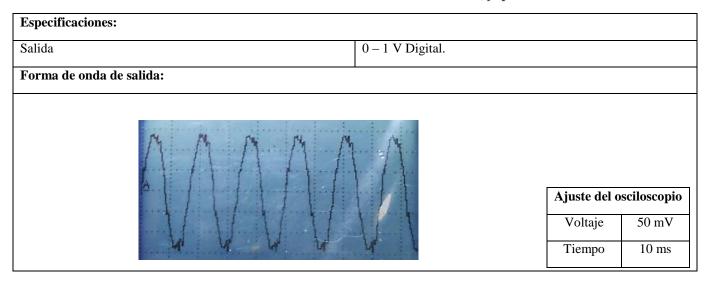
INJ(Inyector)


El inyector se compone de toberas de inyección con válvulas de solenoide que son utilizados por el módulo de control del motor para regular la cantidad de inyección de combustible mediante el control de la apertura y cierre de las válvulas. Cuando el módulo de control del motor activa el solenoide del inyector, el solenoide se magnetiza para abrir la válvula y se inyecta el combustible. Cuando el PCM libera el suelo, la válvula del inyector se cierra y se produce un voltaje de pico instantánea.

TPS (Sensor de posición de la mariposa):

El sensor de posición de la mariposa del acelerador (TPS), está unido al cuerpo de la mariposa para medir el ángulo de apertura de la válvula de la mariposa. El TPS es un potenciómetro que entrega una variación de tensión dependiendo de la posición de la válvula de la mariposa. La ECU usa la señal del TPS para medir el ralentí, carga baja y el estado de aceleración y desaceleración, para determinar la cantidad de inyección de combustible y el tiempo de encendido.

Válvula de la mariposa	Voltaje de salida	
Ralentí: 0%	0.2 - 0.463 V	
50%	2.9 V	
Aceleración máxima: 90%	5 V	
Forma de onda de salida:		

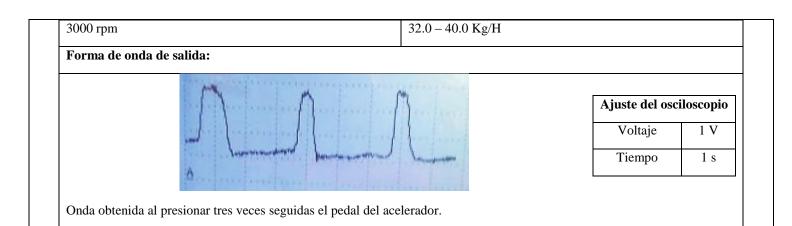

Ajuste del osciloscopio				
Voltaje	1 V			
Tiempo	0.5 s			

Onda obtenida al presionar dos veces seguidas el pedal del acelerador.

Sensor O2

El sensor de oxígeno calentado (HO2S) está localizado antes del convertidor catalítico, y detecta la concentración de oxígeno en los gases de escape para controlar la cantidad de monóxido de carbono, hidrocarburos y óxidos nitrosos. El sensor O2 envía valores comprendidos entre 0V y 1V basado en la concentración de oxígeno, y la PCM usa esta información para determinar si la mezcla es rica o pobre.

El incremento de concentración de oxígeno en los gases de escape hace que el sensor de O2 envíe una señal de 0~0.1V si la mezcla es pobre. La PCM determina el estado del combustible usando la señal de salida del sensor O2, y ajusta la cantidad de combustible.

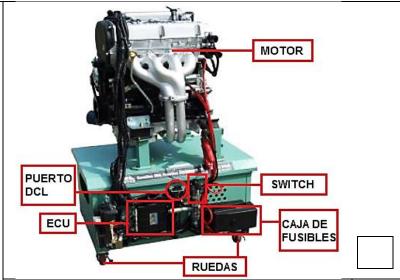


MAFS (Sensor de masa de aire):

El sensor de masa de aire (MAFS), un sensor de tipo película, situado entre el filtro de aire y el cuerpo de aceleración, mide la cantidad de flujo de entrada de aire en el motor mediante el uso de las características únicas del sensor de tipo de película, que aumenta la transferencia de calor cuando aumenta el flujo de entrada de aire desde el exterior, y disminuye la transferencia de calor cuando el flujo de aire disminuye. La alta cantidad de flujo de aire significa que el motor está bajo aceleración o carga pesada, y el influjo de baja significa que el motor está en reposo o en la desaceleración.

Basándose en estas señales, el módulo de control del motor ajusta la cantidad de combustible a inyectar y controla el tiempo de encendido al mejorar la capacidad de respuesta del motor, ya que acelera o desacelera.

Especificaciones:	
Estado del Motor.	Dato Estándar.
800 rpm	9.0 – 12.0 Kg/H

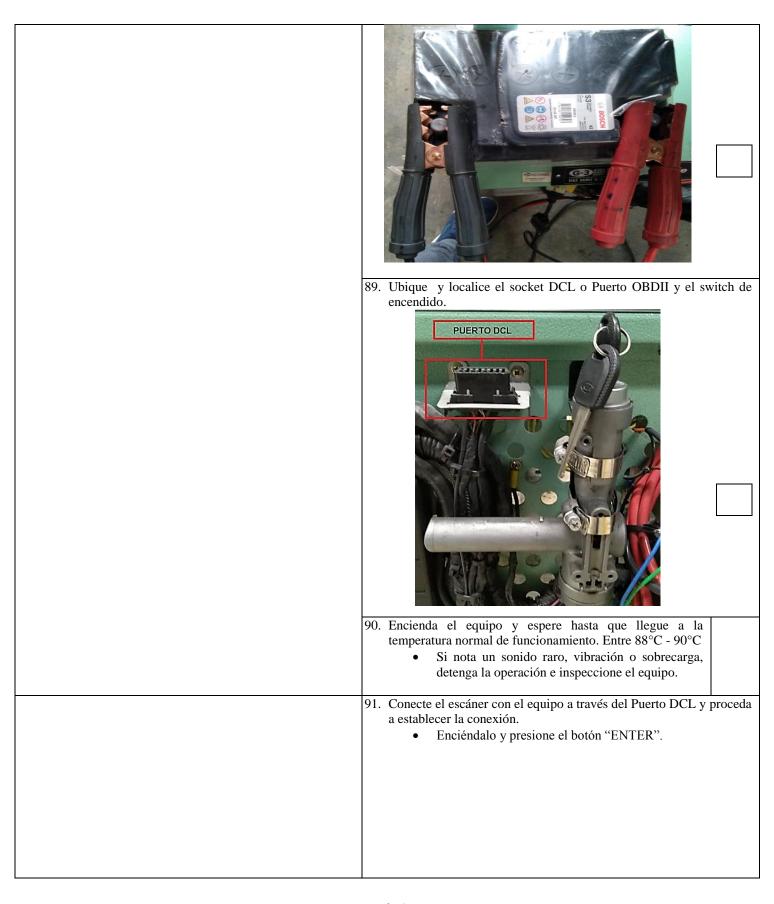

ISCA (Actuador de ralentí).

El actuador de velocidad de ralentí (ISCA) es un dispositivo instalado en el cuerpo del acelerador para controlar la cantidad de flujo de aire que pasa por alto de la placa del acelerador. En detalle, ISCA ajusta la velocidad de ralentí del motor correspondiente a las diferentes condiciones de cargas del motor y suministra aire adicional necesario cuando el motor arranca.

ISCA se compone de la bobina de apertura y cierre; y la bobina permanente magnética. Basado en información procedente de los sensores, la ECU controla las bobinas en una forma de puesta a tierra los circuitos.

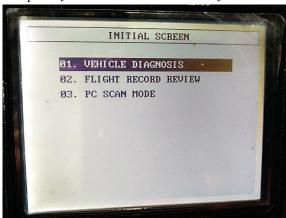
Especificaciones:	
Resistencia:	15.9±0.35 Ω
Forma de onda de salida:	
nna	Ajuste del osciloscopio

83. Visualice e identifique las diferentes partes del equipo.

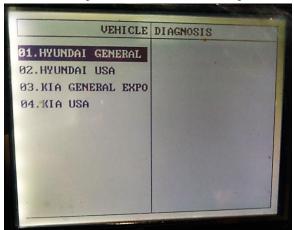

- 84. Compruebe las ruedas del equipo antes de moverlo.
- 85. Instale el equipo en un lugar firme, limpio y ventilado.
- 86. Para el transporte del equipo asegúrese de disponer el personal necesario para evitar lesiones o derribamientos.
- 87. Verifique las conexiones eléctricas, niveles de fluidos y compruebe la inexistencia de fugas, ya sean de líquido refrigerante o aceite en todo el equipo.

88. Instale una fuente de alimentación adecuada al equipo.(Batería de 12 V)

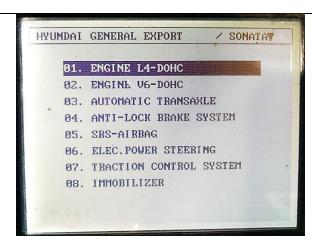
INSTRUCCIONES ANTES DE EMPEZAR LA PRÁCTICA:

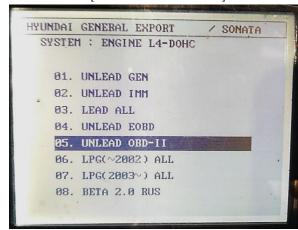

(llene el check list con una "X", para constancia de que realizo las actividades propuestas)

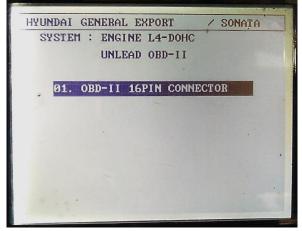
INSTRUCCIONES PARA CONECTAR EL ESCANER CON LA ECU DEL EQUIPO.

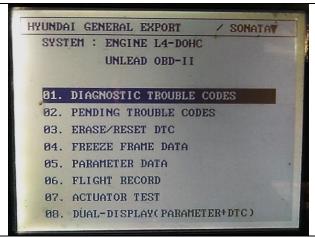

• Aparecerá una pantalla inicial en la cual seleccione la opción [01. VEHICLE DIAGNOSIS].

• Se visualizara un listado de marcas de vehículos de los cuales seleccione [06. HYUNDAI, KIA]


• Seleccione [01. HYUNDAI GENERAL].

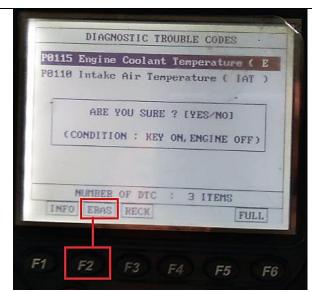

• Se desplegara una lista de modelos de vehículos de la marca seleccionada, elija la opción [58. SONATA 99-04].


• Elija la opción [01. ENGINE L4 - DOHC].


• Seleccione [05. UNLEAD OBD - II].

 Posteriormente la opción [01. OBD-II 16PIN CONNECTOR] y espere a que se establezca conexión:

 Finalmente se desplegara un menú entre los cuales se podrá verificar los datos abordo de sensores y actuadores, realizar pruebas de actuadores, leer y borrar códigos de fallas, etc.


- 92. Para confirmar la existencia de códigos de falla, en el scanner presione la opción: [01. DIAGNOSTIC TROUBLE CODES] del menú.
 - En caso de que exista algunas fallas en el motor, el scanner le mostrara un listado de códigos de avería, acompañado de una breve descripción de cada una. Ejemplo:

INSTRUCCIONES PARA COMPROBAR LA EXISTENCIA O INEXISTENCIA DE CODIGOS DE FALLAS.

Para interpretar mejor un código de avería refiérase al anexo A.

• Para borrar los códigos seleccione el botón "F2" del scanner para seleccionar [ERAS], que hace referencia a, erase=borrar y se desplegará un mensaje de confirmación, en la cual tendrá que presionar el botón "SI".

- Si la falla persiste el código no se borrara y seguirá saliendo hasta que no se corrija la avería.
- Cuando ya no existen códigos de falla en el equipo se muestra el mensaje: [NO TROUBLE CODE], que le hará saber que ya no hay códigos de fallas grabadas.

/ SONATAY

93. Para conocer los datos a bordo de los sensores y actuadores del equipo que llegan a la ECU, en el scanner seleccione: [PARAMETER DATA].

UNLEAD OBD-II

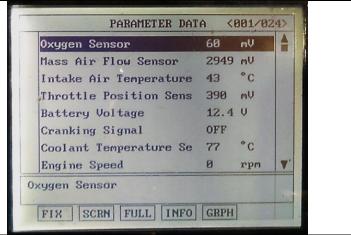
01. DIAGNOSTIC TROUBLE CODES

02. PENDING TROUBLE CODES

HYUNDAI GENERAL EXPORT

SYSTEM: ENGINE L4-DOHC

03. ERASE/RESET DTC 04. FREEZE FRAME DATA

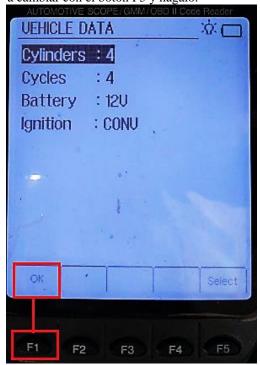

05. PARAMETER DATA 06. FLIGHT RECORD

07. ACTUATOR TEST

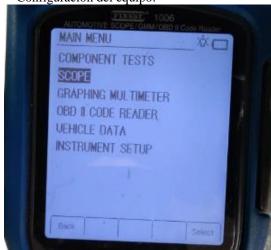
08. DUAL-DISPLAY(PARAMETER+DTC)

Se desplegara un listado de variables que la ECU brinda al scanner para ser leídos, analizados y graficados en caso de que realice un Diagnostico.

INSTRUCCIONES PARA VISUALIZAR LOS DATOS A BORDO DEL SISTEMA ELECTRONICO DEL EQUIPO.


94. Instale la sonda de alcance del osciloscopio con su respectivo puntal de conexión a tierra, que puede ser en el borne negativo de la batería o en el terminal GND del panel de fallas (si es que lo tiene).

INSTRUCCIONES PARA CONECTAR EL OSCILOSCOPIO.



 Enciéndalo y se presentara un menú en el cual puede ingresar los datos del motor en el que se encuentra trabajando, si los datos que se presentan son los correctos presione el botón F1, para proseguir, sino seleccione el ítem a cambiar con el botón F5 y hágalo.

- Luego se presenta un menú en el cual usted puede realizar:
- > pruebas de componentes,
- > pruebas con el osciloscopio
- obtener gráficas,

- leer códigos de averías
- > cambiar los datos del vehículo
- > Configuración del equipo.

Desplácese y seleccione la opción [SCOPE], presionando el botón F5 para seleccionarlo.

• Aparecerá un osciloscopio de un canal, con sus respectivos ejes de tiempo y voltaje.

El instrumento está listo para usarse.

- Para obtener una señal, tendrá que identificar y medir directamente en el sensor o actuador que quiera analizar.
- Tenga en cuenta de regular el osciloscopio a un voltaje y tiempo adecuado mediante el uso de los botones de ajuste, si desea que el instrumento se autorregule presione el botón "AUTO".
- Para analizar una señal puede "congelar" la pantalla mediante el botón "HOLD".

INSTRUCCIONES DURANTE LA PRÁCTICA.

- 95. Cuando los equipos necesarios se encuentran instalados (escáner y osciloscopio), el equipo se encuentra listo para efectuar las simulaciones de fallas para los que fue adecuado.
- 96. Para crear una falla en el equipo desconecte directamente el socket de conexión del sensor o actuador y analice sus efectos en el equipo con ayuda del scanner.

NOTA: Evite el uso prolongado del equipo bajo el efecto de fallas, ya que a la larga puede desencadenarse fallas graves del equipo.

ACTIVIDADES POR DESARROLLAR

USO DEL OSCILOSCOPIO AUTOMOTRIZ.

- 1. Realice un reconocimiento de los elementos que componen el sistema de inyección de combustible.
- 2. Con el osciloscopio obtenga las ondas voltaje- tiempo de las señales de sensores y actuadores.
 - Para un mejor análisis obtenga las ondas a diferentes regímenes de giro del motor.(ralentí y 2000rpm)
 - Complementariamente puede usar el multímetro para determinar voltaje de funcionamiento, continuidad, etc.
- 3. Luego que haya practicado con los sensores y actuadores, elija las señales que considere más representativas y llene el <u>inciso 1</u> de la sección de "RESULTADOS OBTENIDOS".

USO DEL SCANNER AUTOMOTRIZ.

- 4. Genere las fallas propuestas en el inciso 2 de la sección de "RESULTADOS OBTENIDOS "en el equipo y use el scanner para:
 - Verificar si la falla aplicada genera en la ECU algún código de avería.
 - Tomar los datos actuales de los sensores y actuadores mediante la opción del [CURRENT DATA].
 - Analizar la variación de los valores en buen funcionamiento respecto a los valores con fallas y compararlos.
 - Tome en cuenta que si se genera algún código de avería en la ECU por la aplicación de una falla, tendrá que posteriormente borrarla con el escáner para evitar que influya esa falla cuando introduzca otra.
- 5. Finalmente compare sus respuestas con el ANEXO B, luego realice un análisis de las fallas que considere que más influyen en el funcionamiento del equipo y escriba una conclusión general de la práctica.
 - Llene el <u>inciso 3</u> de la sección de "RESULTADOS OBTENIDOS".

RESULTADO(S) OBTENIDO(S):

1. Llene la siguiente tabla con al menos 5 ondas obtenidas con osciloscopio.

Nombre del sensor o actuador.	Onda a Ralentí	Onda a 2000 rpm	Observación
----------------------------------	----------------	-----------------	-------------

								tiempo ei	fique el von que fue c el equipo)	
										_
				s dei Corre	MI DAIA U	er escurier,			•	
sistema ele 1 el área de tado, use pa	ectrónico d e observac oalabras co	lel mot ciones c omo: ".	or. escriba la com Aumenta", "D la luz de Mil o	nparación del Disminuye", " o de Check du	l valor de la 'Se mantiene urante el exp	variable co ", etc. Fina erimento.	n falla con Imente esc	respecto a criba las co	la misma nclusiones	e en bu
sistema ele n el área de tado, use pa	ectrónico d e observac oalabras co	lel mot ciones c omo: ".	or. escriba la com Aumenta", "D	paración del Disminuye", " o de Check du EL FUNCIO	l valor de la s'Se mantiene urante el expe	variable co ", etc. Fina erimento.	n falla con Imente esc	respecto a criba las co	la misma nclusiones	e en bu
sistema ele n el área de tado, use p	ectrónico d e observac oalabras co	ciones of the ci	or. escriba la com Aumenta", "D la luz de Mil o DESCRIBA I	paración del Disminuye", " o de Check du EL FUNCIO	l valor de la s'Se mantiene urante el expe	variable co ", etc. Fina erimento.	n falla con Imente esc	respecto a criba las co	la misma nclusiones	e en bu
sistema ele n el área de stado, use p	ectrónico d e observac palabras co duir el esta	ciones of the ci	or. escriba la com Aumenta", "D la luz de Mil o DESCRIBA I	nparación del Disminuye", " o de Check du EL FUNCIO ANDO FALI	l valor de la s'Se mantiene urante el expo NAMIENTO LA?:	variable co ", etc. Fina erimento. DEL SENS	n falla con lmente esc SOR Y ¿Q	respecto a criba las con	la misma nclusiones	e en bu
sistema ele n el área de tado, use pa	ectrónico d e observac palabras co duir el esta	ciones of the ci	or. escriba la com Aumenta", "D la luz de Mil o DESCRIBA I	iparación del Disminuye", " De Check du EL FUNCIO! ANDO FALI	l valor de la s'Se mantiene urante el expensante el expens	variable co ", etc. Fina erimento. DEL SENS	n falla con lmente esc SOR Y ¿Q	respecto a criba las con	la misma nclusiones	e en bu
sistema ele n el área de tado, use pa	ectrónico d e observac palabras co duir el esta	ciones of the ci	or. escriba la com Aumenta", "D la luz de Mil o DESCRIBA I	nparación del Disminuye", " o de Check du EL FUNCIO ANDO FALI	l valor de la s'Se mantiene urante el expensante el expens	variable co ", etc. Fina erimento. DEL SENS	n falla con lmente esc SOR Y ¿Q	respecto a criba las con	la misma nclusiones	e en bu
sistema ele n el área de tado, use pa	ectrónico d e observac palabras co duir el esta	ciones of the ci	or. escriba la com Aumenta", "D la luz de Mil o DESCRIBA I	iparación del Disminuye", " De Check du EL FUNCIO! ANDO FALI	l valor de la s'Se mantiene urante el exponente el expone	variable comments. DEL SENS	n falla con lmente esc SOR Y ¿Q	respecto a criba las con	la misma nclusiones	e en bu
sistema ele n el área de tado, use pa	ectrónico d e observac palabras co duir el esta	ciones of the ci	or. escriba la com Aumenta", "D la luz de Mil o DESCRIBA I MOTOR CU	paración del Disminuye", " de Check du EL FUNCIO ANDO FALI CODI	I valor de la s'Se mantiene urante el expensante el expens	variable co ", etc. Fina erimento. DEL SENS	n falla con lmente esc SOR Y ¿Q	respecto a criba las con	la misma nclusiones	e en bu
sistema ele n el área de tado, use pa	ectrónico d e observac palabras co duir el esta	ciones of the ci	or. escriba la com Aumenta", "D la luz de Mil o DESCRIBA I MOTOR CU.	iparación del Disminuye", " De Check du EL FUNCIO! ANDO FALI	Valor de la sesse mantiene urante el expensar de la sesse mantiene urante el expensar de la sesse mantiene de la s	variable comments. DEL SENS	n falla con lmente esc SOR Y ¿Q	respecto a criba las con	la misma nclusiones	e en bu
tado, use p	ectrónico d e observac palabras co duir el esta	ciones of the ci	or. escriba la com Aumenta", "D la luz de Mil o DESCRIBA I MOTOR CU	paración del Disminuye", " de Check du EL FUNCIO ANDO FALI Código	Valor de la sese mantiene urante el expensar de la	variable comments. DEL SENS	n falla con lmente esc SOR Y ¿Q	respecto a criba las con	la misma nclusiones EN EL [ms] [°]	e en bu
sistema ele n el área de stado, use p	ectrónico d e observac palabras co duir el esta	ciones of the ci	or. escriba la com Aumenta", "D la luz de Mil o DESCRIBA I MOTOR CU.	paración del Disminuye", " de Check du EL FUNCIO ANDO FALI Código	NAMIENTO LA?: DATOS I ección endido el Motor	variable comments. DEL SENS	n falla con lmente esc SOR Y ¿Q	respecto a criba las con	la misma nclusiones EN EL [ms]	e en bu

Variables

Tiempo de Inyección

Avance al Encendido

Valor

Unidad

[ms] [°] Observaciones

	Revoluciones del Motor		[rpm]	
	Flujo de masa de aire		[mV]	
	CODIGOS DE FALI	A QUE AP	PARECEN:	
	Códigos:			
	CONCLUSIONES:			

	DATO	S INICIAL	ES:	
	Variables		Valor	Unidad
	Temperatura del Refrigerante	.		[°C]
	Revoluciones del Motor			[rpm]
	Avance al Encendido			[°]
	Tiempo de Inyección			[ms]
	Flujo de masa de aire			[mV]
	DATOS CON	N FALLA	EN CVTC	
	Variables	Valor	Unidad	Observaciones
	Temperatura del Refrigerante		[°C]	
ECT	Revoluciones del Motor		[rpm]	
LCI	Avance al Encendido		[°]	
	Tiempo de Inyección		[ms]	
	Flujo de masa de aire		[mV]	
	CODIGOS DE FA	LLA QUI	E APARECE	N:
	Códigos: CONCLUSIONES:			

	DATOS INICIALES:			
	Tiempo de Inyección			[ms]
	Avance al Encendido			[°]
IAC	Revoluciones del Motor			[rpm]
	Flujo de masa de aire	Flujo de masa de aire		[mV]
	DATOS CON FALLA EN CMP			
	Variables	Valor	Unidad	Observaciones

Tiempo de Inyección		[ms]	
Avance al Encendido		[°]	
Revoluciones del Motor		[rpm]	
Flujo de masa de aire		[mV]	
CODIGOS DE FALLA	QUE APAI	RECEN:	
Códigos:			
CONCLUSIONES:			

	DATO	S INICIA	LES:					
	Variables		Valor	Unidad				
	Sensor posición del acelerador	•		[mV]				
	Revoluciones del Motor			[rpm]				
	Avance al Encendido			[°]				
	Tiempo de Inyección			[ms]				
	Flujo de masa de aire			[mV]				
	DATOS CO	N FALLA	EN CVTC	_				
	Variables	Valor	Unidad	Observaciones				
	Sensor posición del acelerador		[mV]					
TPS	Revoluciones del Motor		[rpm]					
115	Avance al Encendido		[°]					
	Tiempo de Inyección		[ms]					
	Flujo de masa de aire		[mV]					
	CODIGOS DE FALLA QUE APARECEN:							
	Códigos:							
	CONCLUSIONES:							

	DATOS INICIALES:						
	Variables Valor Un						
MAF e IAT	Flujo de masa de aire		[mV]				
	Temperatura aire entrada		[°C]				
	Avance al Encendido		[°]				

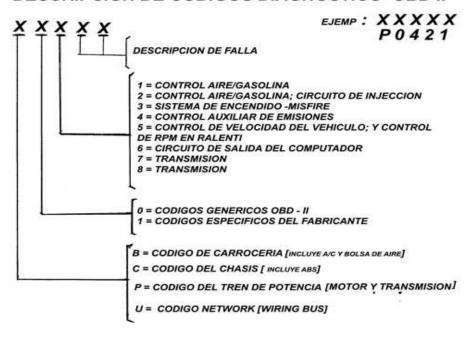
Revoluciones del Motor			[rpm]
DATOS CO	N FALLA EN	CVTC	•
Variables	Valor	Unidad	Observacion
Flujo de masa de aire		[mV]	
Temperatura aire entrada		[°C]	
Avance al Encendido		[°]	
Tiempo de Inyección		[ms]	
Revoluciones del Motor		[rpm]	
CODIGOS DE FA	ALLA QUE A	PARECEN:	
Códigos:			
CONCLUSIONES:			

KS	DESCRIBA EL FUNCIONAMIENTO DEL SENSOR Y ¿QUE PASA EN I MOTOR CUANDO FALLA?:	EL
	CODIGOS DE FALLA QUE APARECEN:	
	Códigos:	

	DAT	OS INICIA	LES:					
	Variables	Val	Unidad					
	Tiempo de Inyección				[ms]			
	Avance al Encendido				[°]			
	Revoluciones del Motor			[rpm]				
Inyectores	Flujo de masa de aire			[mV]				
inyectores	VALORES APLICANDO FALLA EN INYECTOR 1:							
	Variables	Valor	Unidad	Obser	vaciones			
	Tiempo de Inyección		[ms]					
	Avance al Encendido		[°]					
	Revoluciones del Motor		[rpm]					
	Flujo de masa de aire		[mV]					

VALORES APLICANDO	O FALL	A EN INYE	CTOR 2:				
Tiempo de Inyección		[ms]					
Avance al Encendido		[°]					
Revoluciones del Motor		[rpm]					
Flujo de masa de aire		[mV]					
VALORES APLICANDO	O FALL	A EN INYE	CTOR 3:				
Tiempo de Inyección		[ms]					
Avance al Encendido		[°]					
Revoluciones del Motor		[rpm]					
Flujo de masa de aire		[mV]					
VALORES APLICANDO	O FALL	A EN INYE	CTOR 4:				
Tiempo de Inyección		[ms]					
Avance al Encendido		[°]					
Revoluciones del Motor		[rpm]					
Flujo de masa de aire		[mV]					
VALORES APLICANDO DOS FA		EN INYECT	ORES AL N	MISMO			
	EMPO :	[max]					
Tiempo de Inyección		[ms]					
Avance al Encendido Revoluciones del Motor		[°]					
		[rpm]					
Flujo de masa de aire		[mV]	CNI				
CODIGOS DE FAI							
Inyector:	1	2	3	4			
Código:		т.	T .				
Inyectores combinados:		Iny	e Iny				
Código(s): CONCLUSIONES:							
OTTOBOOTO TED							

	DATOS	INICIALES:		_			
	Tiempo de Inyección			[ms]			
	Avance al Encendido			[°]			
Bobina	Revoluciones del Motor		[rpm]				
Domia	Flujo de masa de aire	Flujo de masa de aire					
	DATOS CON FALLA EN CMP						
	Variables	Valor	Unidad	Observaciones			
	Tiempo de Inyección		[ms]				


		Avance al Encendido	[°]	
		Revoluciones del Motor	[rpm]	
		Flujo de masa de aire	[mV]	
		CODIGOS DE FALLA	QUE APARECEN:	
		Códigos:		
		CONCLUSIONES:		
3. Escriba un	na conclusión gen	eral de la práctica.		
				_
				_
				_
4. Realizar práctica.	un informe con lo	os resultados obtenidos, además enumere cronolo	ógicamente los pasos seguidos p	ara el desarrollo de esta
BIBLIOGR	RAFIA:			
		O DE PRACTICA DE MOTOR A GASOLINA (FF SONATA) Modelo G-11170	3
DILLUCINO.	. (a. <i>o)</i> . EQUII (DETRICTION DE MOTOR A GASOLINA (Li 5011/11/1/100000 0-111/0.	J•

ANEXOS:

ANEXO A.

Interpretación de códigos de averías:

DESCRIPCION DE CODIGOS DIAGNOSTICO OBD II

ANEXO B

En esta sección se colocara la guía de protocolo general, que se presentó en la sección 4.1 de este trabajo. Con el fin de realizar una comparación o corroboración de los datos obtenidos durante el efecto producido por fallas en el sistema electrónico.

4.3. Guías de protocolo para prácticas de laboratorios de motores de combustión interna.

El Anexo C disponible en el CD adjunto, presenta las 20 guías de protocolo para prácticas de laboratorio de la materia de Motores de Combustión Interna, con el fin de servir en el mantenimiento y reparación de motores de combustión interna ciclo Otto y Diésel, así como también de sus sistemas auxiliares.

Para la creación de las guías se basó en los contenidos de la malla curricular de dicha materia, los cuales se las adjunta en el ANEXO B.

FASE V

CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

- Existen diversos estudios realizados en el área de análisis de fallas electrónicas en motores ciclo Otto y Diésel, haciendo de este un tema de interés y de gran importancia en el área automotriz, considerando que cada vez se tiene más sistemas complejos de control electrónico para motores y que también en la actualidad se dispone de herramientas tecnológicas que facilitan el diagnostico de dichos sistemas, entre estas herramientas se puede nombrar al scanner automotriz, osciloscopio, multímetros, analizador de gases, etc.
- Para el diagnostico de un motor ciclo Otto a gasolina de forma general, se puede consultar los parámetros de corrección de la mezcla, avance al encendido, revoluciones por minuto (rpm), el tiempo de inyección y los valores propios del sensor o actuador al que se cree que esta fallando; que según este estudio fueron las variables que más muestran un cambio, cuando hay presente una falla de sensores y actuadores. Para el caso del motor ciclo Otto a GLP, las variables son las mismas que para el caso de gasolina a

- excepción del tiempo de inyección que, para este caso es nombrado como porcentaje de corrección de aire/combustible.
- En el caso de un motor ciclo Diésel CRDi, los parámetros que más muestran un cambio en el funcionamiento del sistema de inyección son similares a las variables en un motor a gasolina, como por ejemplo: las revoluciones del motor, cantidad de combustible inyectado y los valores propios del sensor o actuador que está fallando; adicionalmente para este tipo de motor la variable que también mostro cambios cuando existe una falla en el sistema electrónico, fue la presión de combustible.
- Para la mayoría de fallas provocadas en los equipos si se generaron los códigos de avería, los cuales a la hora de un diagnostico pueden ser de gran ayuda en la localización de una avería; para el caso de la luz de Check o Mil se concluye que no es un indicador confiable en el diagnostico o identificación de una falla en el sistema electrónico del motor, porque fueron muy pocas veces en la que se encendió para "alertar" sobre la falla que se estaba aplicando al sistema.
- Se creó una guía de protocolo general que puede servir de ayuda en el diagnóstico de fallas de un motor; posteriormente en base a esta guía se creó 6 guías de protocolo de prácticas para los equipos que fueron analizados en esta investigación y finalmente se creó 20 guías de protocolo de prácticas para la materia de Motores de Combustión Interna de la carrera de Ingeniería Mecánica Automotriz de la Universidad Politécnica Salesiana.

 Todas las guías mencionadas se las creo en un formato de guía aprobado por el consejo académico de la universidad.
- Para las 27 guías de protocolo creadas en total se consideró que deben ser creadas de una manera muy descriptiva y con pasos detallados que faciliten su desarrollo considerando

que estas van a ser utilizadas por estudiantes de la carrera, que tendrán que ser capaces de realizar las guías en tiempos cortos pero de una manera técnica que aporte en su proceso de aprendizaje.

5.2. Recomendaciones

- La realización de este tipo de pruebas se las debe realizar en un espacio amplio y
 ventilado, para evitar intoxicaciones por las emisiones contaminantes de los equipos, y
 más aún cuando están bajo el efecto de una falla, ya que al alterarse la relación
 aire/combustible, las emisiones contaminantes también lo harían.
- Se sugiere realizar nuevas investigaciones de este tipo, pero adicionando el análisis de gases, ya que sería interesante analizar el efecto producido de averías en el sistema electrónico en la composición de los gases de escape.
- Para el éxito de la investigación hay que asegurarse que los equipos estén en buen estado, porque de ello depende que los datos que se adquieran tengan una alta confiabilidad.
- Se sugiere seguir adquiriendo por parte de la Universidad este tipo de equipos de prácticas, por estar diseñados para la manipulación de variables durante su funcionamiento y así hacer más fácil el aprendizaje y análisis del funcionamiento de los diferentes sistemas del motor en buen y mal estado.

REFERENCIAS BIBLIOGRAFICAS

- Aficionados a la Mecánica. (2014). Inyeccion directa de gasolina. Retrieved from http://www.aficionadosalamecanica.net/inyeccion_directa1.htm
- Alibaba. (n.d.). Caracteristicas del scanner CARMAN LTE. Retrieved from spanish.alibaba.com/product-detail
- Álvarez, D; Calle, P. (2018). Creación de una base de datos a partir del análisis de las señales de los sensores del sistema de inyección para la localización de averías en motores de combustión interna. Retrieved from https://dspace.ups.edu.ec
- Arques Paton, J. (2009). Ingeniería y gestión del mantenimiento en el sector ferroviario. Retrieved from https://books.google.com
- Auto-data. (n.d.). Fichas tecnicas. Retrieved from https://www.auto-data.net/es/hyundai-brand-147
- autotools. (n.d.). *Escáner Automotriz Hanatech Ultrascan P1*. Retrieved from https://www.autotools.co/productos/multimarca-dieselgasolina/escaner-automotriz-hanatech-ultrascan-p1
- Barros, L; Pulla, C. (2016). Análisis de fallas del sistema de alimentación de combustible de un motor Hyundai Santa Fe 2.0 CRDi basado en curvas de osciloscopio. Escuela Politécnica Nacional.
- DAESUNG. (n.d.-a). BANCO DE DIAGNÓSTICO CRDI DIESEL ENG, Y SISTEMA DE CONTROL A / T. Modelo G-120212.
- DAESUNG. (n.d.-b). EQUIPO DE PRACTICA DE MOTOR A GASOLINA (AVANTE). Modelo G-111701.
- DAESUNG. (n.d.-c). EQUIPO DE PRACTICA DE MOTOR A GASOLINA (EF SONATA). Modelo G-111703.
- DAESUNG. (n.d.-d). EQUIPO DE PRACTICA DE MOTOR A GASOLINA V6. Modelo G-110401.
- DAESUNG. (n.d.-e). Manual del equipo de diagnóstico para ensayos de control del motor. *Modelo G-150301*.
- DAESUNG. (n.d.-f). Sistema de aire acondicionado Automotriz Equipo de Capacitación Educativa.
- ELECTROCORP. (n.d.). Osciloscopio FINEST 1006 automotriz. Retrieved from https://electrocorp.com.bo/product/osciloscopio-finest-1006-automotriz/
- Escudero, S., & Rivas, J. L. (n.d.). *Motores*. MACMILLAN.
- Guillen Granado, J. (n.d.). Electricidad Básica. Retrieved from http://www.juntadeandalucia.es/averroes/centrostic/21700290/helvia/sitio/upload/electricidad_basica.pdf

- Otoba.ru. (n.d.). Motores Hyundai Kia. Retrieved from https://otoba.ru/dvigatel/hyundai.html
- Palacios, E; Pesántez, J. (2016). Creación de una base de datos a partir del análisis de las señales de los sensores del motor para la localización de averías que no generan código. Retrieved from https://dspace.ups.edu.ec
- Payri, F. & Desantes, J. (2011). *Motores de combustión interna* (Vol. 33). https://doi.org/10.1017/CBO9781107415324.004
- Reveco, L. (n.d.). Sistema de Alimentación de Combustible Diésel. Retrieved from https://es.slideshare.net/Luis_Reveco/sistema-de-alimentacion-de-combustible
- Rivera, N; Chica, J. (2017). Estudio Del Comportamiento De Un Motor Ciclo Otto De Inyección Electrónica Respecto De La Estequiometría De La Mezcla Y Del Adelanto Al Encendido Para La Ciudad De Cuenca . Study Of The Behavior Of An Otto Engine Of Electronic Injection In Relation To The. *Revista Politécnica*, 40(1). Retrieved from http://scielo.senescyt.gob.ec/
- Sánchez, E. (2009). Sistemas Auxiliares del Motor.
- Sanz, S. (2007). *Motores*. Madrid España: EDITEX.
- TRUPER. (2012). TRUPER: Instructivo de Multimetro Digital MUT 33. Retrieved from https://www.truper.com
- Volkswagen. (1999). Diagnóstico de a bordo OBD II en el New Beetle (USA). *Programa Autodidáctico 175*.

ANEXOS

ANEXO A:

A.1. Datos obtenidos del equipo G-160201.

Falla	Sin falla	Falla 1	Falla 2	Falla 3	Falla 4	Falla 5	Falla 6	Falla 7	Falla 8	Falla 9	Falla 10	Falla 11	Falla 12	Falla 13	Falla 14	Falla 15	Falla 16	Evento 17	Evento 18
Codigo de falla:	-	P0201	P0202	P0201	P0203	NO	NO	NO	NO	P0115	P0335	P0105	P0340	P0110	NO	P0120	NO	NO	NO
PARAMETER DATA										Valores									
mass air flow sensor [mV]	1132	1250	1210	1582	1679	1445	898	898	-	957	-	4980	937	976		507		1699	1015
Intake Air Temperature [°C]	33,0	33,0	39,0	42,0	43,0	45,0	44,0	46,0	-	48,0	-	50,0	49,0	49,0		49,0		52,0	53,0
Throttle Position Sensor [mV]	546	546	546	546	546	546	546	546	-	546	-	546	546	546		0		546	546
Battery Voltage [V]	13,6	13,6	13,6	13,6	13,7	13,6	13,8	13,7	-	13,7	-	13,2	13,6	13,6		13,6		12,5	12,7
Idle CO potenciometer [mV]	898	878	820	39,0	19	78,0	390,0	878	-	585	-	937		898		957		800	898
Cranking signal	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF	-	OFF	OFF	OFF		OFF		OFF	OFF
coolant temperature sensor [°C]	89	88	88	88	88	95	92	98	-	93	-	90	94	99		104		95	88
engine speed [rpm]	875	812	812	625	625	656	1093	1000	-	968	-	531	1093	1031		1312		937	625
vehicle speed sensor[km/h]	0	0	0	0	0	0	0	0	-	0	-	0	0	0		0		0	0
Closed Throttle position	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF	-	OFF	OFF	OFF		OFF		OFF	OFF
Power steering switch	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF	-	OFF	OFF	OFF		OFF		OFF	OFF
A/C Switch	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF	-	OFF	OFF	OFF		OFF		ON	ON
Transmission range switch	P/N	P/N	P/N	P/N	P/N	P/N	P/N	P/N	-	P/N	-	P/N	P/N	P/N		P/N		P/N	P/N
IG adjustment terminal	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF	-	OFF	OFF	OFF		OFF		OFF	OFF
Engine Speed -2 [rpm]	882	804	804	640	617	664	1125	1092	-	968	-	500	976	1046		1125		968	656
Injection duration [mS]	2,0	2,3	2,8	3,3	3	3,1	2,0	1,8	-	2,3	-	61,0	2,0	2,0		1,8		3,3	3,1
IG timing [°]	-11,0	-10,0	-10,0	-10,0	-10,0	-10,0	-15,0	-18,0	-	3,3	-	-3,0	-12,0	-13,0		-15,0		-10,0	-10,0
Idle speed control actuator [%]	41,8	42,2	41,8	41,8	41,4	41,8	41,8	35,5	-	43,8	-	39,1	38,3	41,8		40,2		48,8	48,8
A/C Relay	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF	-	OFF	OFF	OFF		OFF		ON	ON

# de	Variable de Estudio	Efectos Percibidos
Falla		
Falla 1	Inyector 1	Se genera código y se enciende el check
Falla 2	Inyector 4	Se genera código y se enciende el check
	Inyector 2 Falla (4)	Se genera código y se enciende el check
	Inyector 3 Falla (12)	Se genera código y se enciende el check
Falla 3	Iny 1 e Iny 4	Se genera código solamente del iny 1 y se enciende el check.
Falla 4	Iny 1 y Iny3	Se genera código solamente del iny 3 y se enciende el check. IG timing varía entre -10 y -5
Falla 5	iny 4 e iny 2	No se genera código de avería y no check
Falla 6	Bobina 1-4	No se genera código y no check, además se empieza a percibir un olor a combustible y el
(5-6)		motor se cala.
Falla 7	ISC (open)	No se genera código de avería y no hay luz de check, motor aparentemente funciona normal.
Falla 8	F/P CONTROL	Aparentemente el motor se apaga, no check y no código.
Falla 9	WTS	Se encienden los ventiladores y se genera código y se enciende el check
(16)		
Falla 10	СКР	El motor se apaga y se genera código y se genera código de falla.
(17)		
Falla 11	MAP	Aparentemente el motor pierde revoluciones y se genera código y no se enciende el check.
(19)		
Falla 12	CMP	El motor no se apaga y se se vuelve a prender, se genera código y no check.
(20)		

Falla 13	ATS	El motor aparentemente funciona bien, se genera código y no check.
(21)		
Falla 14	O2 Sensor	Aparentemente no a pasado nada
(22)		
Falla 15	TPS	Se enciende el check y se genera código.
(23)		
Falla 16	Knock sensor	Aparentemente no a pasado nada
(25)		
Evento	AC en mínima temperatura. (17°C)	el motor se acelera un poco
17		
Evento	AC en máxima temperatura. (32°C)	El motor se acelera un poco
18		

A.2. Datos obtenidos del equipo G-110401.

Falla	Sin falla	Falla 1	Falla 2	Falla 3	Falla 4	Falla 5	Falla 6	Falla 7	Falla 8	Falla 9	Falla 10	Falla 11	Falla 12	Falla 13	Falla 14	Falla 15	Falla 16	Falla 17	Falla 18	Falla 19	Falla 20	Falla 21	falla 22	falla 23	falla 24
					P1111																	P0115		P1111	P1111
Codigo de falla:		P1122	P1122	P1136	P1136	P0335	P1136	NO	NO	NO	NO	NO	P1800	P0340	P0113	NO	P0223	P0102	NO	P0123	P0223	P0102	P2127	P1122	P2122
				P1122	P2122		P2122							P2122			P2135			P2135	P0123	P0118	P2138	P1126	P2138
PARAMETER DATA													Valores												
Sensor temp. Refrig. [°C]	88,0	91,0	91,0	93,0	93,0	-	93,0	92,0	97,0	95,0	94,0	96,0	92,0	93,0	91,0	91,0	94,0	92,0	92,0	96,0	93,0	85,0	85,0	-	96,0
Velocidad del vehiculo [km/h]	0	0	0	0	0	-	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0
Voltaje bateria [V]	13,8	13,8	13,8	13,8	13,7	-	13,7	13,8	13,7	13,8	13,4	13,6	13,8	13,7	13,8	13,7	13,4	13,8	13,8	13,8	13,4	13,5	14	-	13,7
temp. Aire admision [°C]	32,0	32,0	39,0	37,0	36,0	-	34,0	34,0	36,0	38,0	41,0	35,0	36,0	34,0	-45,0	37,0	36,0	33,0	31,0	35,0	39,0	31,0	31,0	-	30,0
tiempo encendido [°]	16,0	-3,0	-5,0	-3,0	15,0	-	16,0	16,0	16,0	15,0	15,0	15,0	16,0	16,0	16,0	16,0	16,0	16,0	15,0	15,0	-4,0	15,0	14,0	-	15,0
Valv. Duty solen Purga [%]	0,0	0,0	0,0	0,0	0,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		0,0
Sensor temp tanque combust. [°C]	38,0	40,0	41,0	42,0	43,0	-	45,0	46,0	47,0	48,0	49,0	51,0	51,0	45,0	52,0	52,0	53,0	53,0	45,0	51,0	51,0	47,0	47,0	-	42,0
sensor nivel combustible [V]	2,7	2,8	2,5	2,6	2,6		2,6	2,7	2,8	2,8	2,9	2,8	2,8	2,6	3,0	2,9	3,0	3,0	3,0	3,0	2,9	3,0	2,9		2,8
sensor sist evap [V]	1,9	1,9	1,9	1,9	1,9	-	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	-	1,9
valor carga calculada [%]	20,4	28,2	27,8	27,8	18,4	-	18,4	18,4	17,6	18,8	20,0	23,1	18,4	18,4	17,6	17,3	18,8	0,0	20,0	18,8	29,0	20,4	18,8	-	18,4
volt sensor O2 (B1/S1) [V]	0,04	0,03	0,06	0,04	0,66	-	0,60	0,75	0,05	0,28	0,01	0,01	0,65	0,60	0,04	0,18	0,65	0,93	0,84	0,06	0,84	0,67	0,05	-	0,24
volt sensor O2 (B2/S1) [V]	0,04	0,04	0,09	0,05	0,72	-	0,79	0,76	0,28	0,28	0,05	0,06	0,41	0,79	0,03	0,75	0,34	0,93	0,85	0,06	0,83	0,58	0,05	-	0,10
volt sensor O2 (B1/S2) [V]	0,3	0,25	0,14	0,13	0,74	-	0,41	0,79	0,06	0,04	0,02	0,02	0,27	0,41	0,05	0,38	0,07	0,88	0,37	0,07	0,85	0,26	0,23	-	0,16
volt sensor O2 (B2/S2) [V]	0,3	0,26	0,18	0,18	0,67	-	0,41	0,75	0,05	0,06	0,29	0,69	0,11	0,41	0,04	0,41	0,49	0,82	0,33	0,76	0,78	0,32	0,31	-	0,61
A/F Alfa-B1 [%]	104,0	100,0	100,0	100,0	105,0	-	105,0	98,0	106,0	100,0	106,0	110,0	99,0	105,0	104,0	105,0	96,0	75,0	95,0	102,0	102,0	101,0	100,0	-	103,0
A/F Alfa-B2 [%]	103,0	100,0	100,0	100,0	106,0	-	103,0	96,0	100,0	100,0	96,0	102,0	98,0	103,0	103,0	103,0	95,0	75,0	94,0	102,0	100,0	99,0	101,0	-	99,0
sincr. Valv. Adm (B1) [degCA]	2,0	1,0	-0,5	0,0	1,0	-	63,5	1,0	0,5	0,5	1,0	1,0	0,5	63,5	1,5	1,5	0,5	0,5	0,5	0,0	-0,5	0,5	-0,5	-	0,0
Valv 1 admision [%]	0,0	0,0	0,0	0,0	0,0	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-	0,0
Valv 2 admision [%]	0,0	0,0	0,0	0,0	0,0	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-	0,0
Sincronizacion valv admison (B2) [degCA]	-2,0	63,5	-0,5	0,0	1,0	-	0,0	-0,5	0,5	0,5	0,5	0,0	1,0	0,0	1,0	1,0	1,0	0,0	0,5	1,0	1,0	0,0	0,0	-	1,0
velocidad motor [rpm]	800	962	962	975	787	-	812	825	800	825	775	812	800	812	812	800	812	1000	787	800	987	762	800	-	775
sensor flujo masa aire [V]	1,1	1,37	1,37	1,33	1,05	-	1,08	1,06	1,07	1,11	1,10	1,15	1,05	1,08	1,04	1,03	1,07	0,13	1,09	1,05	1,35	1,10	1,11	-	1,08
Ancho pulso iny banc uno [ms]	2,0	2,6	2,6	2,6	2,0	-	2,0	1,9	2,0	2,1	2,1	2,4	2,0	2,0	1,9	2,0	2,0	4,6	2,0	2,0	2,6	2,2	2,0	-	2,0
Ancho pulso iny banc dos [ms]	2,0	2,6	2,6	2,6	2,0	-	2,0	1,9	2,0	2,0	2,1	2,4	2,0	2,0	1,9	2,0	1,9	4,6	1,9	1,9	2,6	2,1	2,0	-	2,0
Progr B/comb. [ms]	2,2	3,4	3,4	3,3	2,0	-	2,1	2,1	2,0	2,0	2,2	2,6	2,0	2,1	2,0	2,0	2,1	6,7	2,2	2,0	2,5	2,1	2,2	-	2,0
flujo masa aire [gm/s]	2,9	5,5	5,3	5,4	2,8	-	2,9	2,7	2,7	2,7	3,1	3,7	2,8	2,9	2,8	2,7	2,7	1,0	3,0	2,8	5,3	3,0	3,0	-	2,7
sensor acel principal [V]	0,74	0,74	0,73	0,73	0,73	-	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	3,03	0,73	0,73	-	0,01
sensor acel secund. [V]	0,77	0,77	0,77	0,77	0,77	-	0,77	0,77	0,77	0,77	0,77	0,77	0,77	0,77	0,77	0,77	0,77	0,77	0,77	0,77	3,28	0,77	0,00	-	0,77
sensor 1 pos acelerador [V]	0,62	0,70	0,70	0,70	0,62	-	0,62	0,61	0,62	0,61	0,63	0,64	0,61	0,62	0,61	0,60	0,09	0,65	0,62	0,62	5,09	0,63	0,62	-	0,62
sensor 2 pos acelerador [V]	0,60	0,69	0,69	0,69	0,60	-	0,60	0,59	0,60	0,60	0,62	0,63	0,60	0,60	0,59	0,59	0,60	0,64	0,60	5,11	5,11	0,62	0,60	-	0,60
sensor presion A/C [V]	0,00	0,00	0,00	0,00	0,00	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-	0,00
Señal Carga	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF
señal aire acond	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF
servodirection	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF
SW posion P/N	ON	ON	ON	ON	ON	-	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	-	ON
Señal arranque	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF
pos. Acelerador cerrado	ON	ON	ON	ON	ON	-	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	-	ON
O2S B1 S1	RICH	LEAN	LEAN	LEAN	LEAN	-	RICH	RICH	LEAN	LEAN	LEAN	LEAN	LEAN	RICH	RICH	LEAN	LEAN	LEAN	LEAN	LEAN	RICH	LEAN	LEAN	-	RICH
O2S B2 S1	LEAN	LEAN	LEAN	LEAN	LEAN	-	RICH	LEAN	LEAN	LEAN	LEAN	RICH	LEAN	RICH	RICH	LEAN	LEAN	LEAN	RICH	RICH	RICH	LEAN	RICH	-	LEAN
O2S B1 S2	LEAN	LEAN	LEAN	LEAN	LEAN	-	LEAN	LEAN	LEAN	LEAN	LEAN	LEAN	LEAN	LEAN	RICH	LEAN	-	LEAN							
O2S B2 S2	LEAN	LEAN	LEAN	LEAN	LEAN	-	LEAN	LEAN	RICH	RICH	LEAN	LEAN	LEAN	LEAN	LEAN	RICH	RICH	LEAN	LEAN	RICH	LEAN	LEAN	LEAN	-	RICH
Interrump. De encendido	ON	ON	ON	ON	ON	-	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	-	ON
Interrump. Freno	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF
Rele aire acond.	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF
Rele bomba combustible	ON	ON	ON	ON	ON	-	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	OFF	ON	ON	ON	ON	ON	-	ON

# de Falla	Variable de Estudio	Efectos Percibidos
Falla 1	ETC motor 2 Close	Se genera código de falla y no hay check. El motor no acelera por nada así se presione el pedal a fondo.
Falla 2	ETC motor 1 Open	Se genera código de falla y no hay check. El motor no acelera por nada así se presione el pedal a fondo.
Falla 3	Falla 1 y falla 2	Se generan 2 códigos de falla y no hay check. El motor no acelera por nada así se presione el pedal a fondo.
Falla 4 (3 -	CVTC (LH)(RH)	Se generan 3 códigos de falla y no hay check.
Falla 5	POS (CKP)	Se genera código de falla y si hay check. El motor se apaga y no se vuelve a prender.
Falla 6	Phase LH (CMPS)	Al aplicar la falla el motor se apaga pero si se vuelve a encender, no se enciende el check y se genera 2 códigos de falla.
Falla 7	KUK 1 (KNOCK)	Aparentemente el motor funciona bien y no se genera código ni tampoco se enciende el check.
falla 8 (8 -	O2 SFL Y O2 SFR	Aparentemente el motor funciona bien y no se genera código ni tampoco se enciende el check.
Falla 9	falla 8 y falla 14(Del panel de fallas)	Aparentemente el motor funciona bien y no se genera código ni tampoco se enciende el check.
Falla 10 (9)	Inyector 5	No se genera código de avería y no hay check
Falla 11	Falla 9 y 10 (Del panel de fallas)	No se genera código de avería y no hay check y el motor falla.
Falla 12 (11)	VIAS	Si se genera código de avería y no hay check
Falla 13 (12)	Phase RH (CMPS)	Al aplicar la falla el motor se apaga pero si se vuelve a encender, no se enciende el check y se genera 2 códigos de falla.
Falla 14 (13)	IAT	Si se genera código de avería y no hay check

Falla 15	EVAP SOL	Aparentemente el motor funciona bien y no se genera código ni tampoco se enciende el check.
Falla 16	TPS #1	No se enciende la luz del check y se generan dos códigos de avería, síntomas en motor iguales a falla 1 aunque si se acelera un poco
Falla 17	QA + (MAFS)	Cuando se la aplica el motor se apaga pero si se vuelve a encender, en ralentí el motor esta inestable (acelera y desacelera), si hay código y no check.
Falla 18	IGNITION #3	No se genera código de falla ni tampoco el check, el motor se cala un poco y hay un olor apreciable a combustible.
Falla 19	TPS #2	Se subieron un poco las rpm pero luego no acelera, no se enciende el check y si se generan 2 códigos de falla.
Falla 20	Falla 16 y falla 19 (Del panel de fallas)	No acelera el motor con el pedal a fondo sube maximo a unas 1500 rpm, no check y se generan 2 códigos.
Falla 21 (20)	TW (WTS)	Si se enciende el check y se generan 3 códigos de falla, además los ventiladores se encienden.
Falla 22 (21)	APS #1	Aparentemente el motor funciona bien pero si se generan 2 códigos de falla aunque el check no se haya encendido.
Falla 23 (22)	ETC MOTOR RELAY	Se apaga el motor y se generan 3 códigos de fallas y se enciende el check.
Falla 24 (23)	APS #2	Aparentemente el motor funciona bien pero si se generan 3 códigos de falla aunque el check no se haya encendido.
Falla 25 (24)	EGI RELAY	No código no check y se pierde la comunicación con el escáner, se prende el testigo de la temperatura y se encienden los ventiladores.
Falla 26 (25)	FUEL PUMP RELAY	El motor se apaga progresivamente, no check y no código.

A.3. Datos obtenidos del equipo G-150301.

Falla	Sin falla	Falla 1	Falla2	Falla 3	Falla 4	Falla 5	Falla 6	Falla 7	Falla 8	Falla 9	Falla 10	Falla 11	Falla 12	Falla 13	Falla 14	Falla 15	Falla 16	Falla 17	Falla 18	Falla 19	Falla 20	Falla 21	Falla 22	Falla 23
													P0120											
Codigo de falla:		P0115	NO	NO	NO	P1129	NO	P1145	NO	NO	NO	P0110	P0122	P0340	P1144	NO	P0505	NO	P0105	P0335	NO	NO	P1141	NO
PARAMETER DATA												Valor	es											
O2 sensor [mV]	915	450	450	915	75	-	230	75	840	560	35	665	75	840	-	-	75	130	935	-	-	620	-	-
mass air pressure sensor [bar]	210	210	350	210	210		210	210	210	240	310	210	200	200	-		220	210	390	-	-	210	-	-
MAP sensor [V]	0,9	0,9	1,5	0,9	0,9	-	0,9	0,9	0,9	1,0	1,3	0,9	0,9	0,8	-	-	0,9	0,9	0,0	-	-	0,9	-	-
Air temperature sensor [°C]	34	33	33	32	32	-	32	33	33	34	34	80	31	32	-	-	34	36	37	-	-	37	-	-
Air temperature sensor [V]	1,4	1,5	1,5	1,5	1,5	-	1,5	1,5	1,5	1,4	1,4	5,0	1,6	1,5	-	-	1,4	1,4	1,3	-	-	1,3	-	-
Throttle Position [%]	0,1	0,0	0,0	0,0	0,0	-	0,0	0,0	0,0	0,0	0,0	1,2	44,3	1,2	-	-	0,0	0,0	0,0	-	-	0,0	-	-
TPS voltage [V]	0,3	0,3	0,3	0,3	0,3	-	0,3	0,3	0,3	0,3	0,3	0,4	0,0	0,4	-	-	0,3	0,3	0,3	-	-	0,3	-	-
Water Temperature Sensor [°C]	82	37	84	90	93	-	84	93	92	90	88	84	90	93	-	-	92	92	93	-	-	90	-	-
Water Temperature Sensor [V]	0,4	5,0	0,4	0,3	0,3		0,4	0,3	0,3	0,3	0,4	0,4	0,3	0,3	-		0,3	0,3	0,3	-	•	0,3	-	-
Battery voltage [V]	13,3	13,2	13,3	13,2	13,3	-	N/A	13,3	13,2	13,2	13,2	13,3	13,4	13,4	-	-	13,4	13,2	13,3	-	-	13,2	-	-
Engine RPM [rpm]	817	1225	787	807	801	-	811	802	821	818	806	776	788	808	-	-	1434	776	816	-	•	784	-	-
ignition timing adjust [°]	5	12	3	5	5		5	4	5	5	5	8	5	8	-		5	5	5		•	4	-	-
vehicle speed sensor [m/h]	0	0	0	0	0	-	0	0	0	0	0	0	0	0		-	0	0	0	-	•	0	-	-
I.S.A. Duty [%]	40,4	45,9	49,4	40,8	41,2		40,8	40,8	40,8	40,8	45,5	35,7	37,7	36,5	-		28,2	37,3	40,0	-	•	39,6	-	-
main duty solenoid [%]	62,0	93,0	63,1	58,8	59,6		N/A	62,8	N/A	N/A	99,2	51,0	54,5	51,8	-		99,2	55,3	59,2		•	56,5	-	-
slow Duty solenoid [%]	61,8	93,7	63,1	58,0	62,8		60,4	63,1	60,0	60,0	99,2	50,2	55,3	51,0	-		99,2	54,5	59,2	-	•	55,7	-	-
2nd lock solenoid	ON	ON	ON	ON	N/A		ON	ON	ON	ON	ON	ON	ON	ON	-		ON	ON	ON		•	ON	-	-
slow cut solenoid	ON	ON	ON	ON	ON		ON	ON	ON	ON	ON	ON	ON	ON	-		ON	ON	ON	-	٠	ON	-	-
Liquid	ON	ON	ON	ON	ON	-	ON	ON	ON	ON	ON	ON	ON	ON	-	-	ON	ON	ON	-	-	ON	-	-
vapor	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	-	OFF	OFF	OFF	-	-	OFF	-	-
main relay	ON	ON	ON	ON	ON	-	ON	ON	ON	ON	ON	ON	ON	ON	-	-	ON	ON	ON	-	-	ON	-	-
air conditioner switch	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	-	OFF	OFF	OFF	-	-	OFF	-	-
air conditioner relay	OFF	OFF	N/A	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	-	OFF	OFF	N/A	-	-	OFF	-	-
low speed fan	OFF	ON	OFF	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	-	OFF	OFF	ON	-	-	OFF	-	-
high speed fan	OFF	ON	OFF	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	-	OFF	OFF	OFF	-	-	OFF	-	-
T/M lever switch	RD2L	RD2L	RD2L	RD2L	RD2L	-	RD2L	RD2L	RD2L	RD2L	RD2L	RD2L	RD2L	RD2L	-	-	RD2L	RD2L	RD2L	-	-	RD2L	-	-
air/fuel close	CLOSE	CLOSE	OPEN	CLOSE	CLOSE	-	CLOSE	CLOSE	CLOSE	CLOSE	CLOSE	CLOSE	CLOSE	CLOSE	-	-	CLOSE	CLOSE	OPEN	-	-	CLOSE	-	-
Air/fuel correction[%]	0,8	55,5	0,0	2,3	2,3		-14,1	-10,2	-0,8	4,7	99,2	-18,0	10,9	5,5	-	-	99,2	0,0	0,0	-	-	-2,3	-	-
Air/ fuel study [%]	31,2	31,2	34,4	34,4	31,2	-	34,4	31,2	28,1	68,7	50,0	15,6	0,0	15,6	-	-	0,0	21,9	25,0	-	-	18,7	-	-
I.S.A. adapt. [%]	17,2	17,2	18,7	17,2	17,2		17,2	17,2	17,2	19,5	26,6	0,8	3,1	3,1	-	-	100,1	10,1	15,6	-	-	14,8	-	-

Falla 1 ECTS SI se genera código de avería y no se enciende el check. Los ventiladores se encienden. Falla 2 O2 El motor empieza a calar hasta que se apaga pero si se vuelve a prender y ya no se cala. No check y no có Falla 3 START SOLENOID Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 4 FAN LOW Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 5 ENGINE RELAY #3 El motor se apaga y no se vuelve a prender, no se prende el check y se genera un código. Falla 6 VAPOR SOLENOID Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 7 MAIN DUTY SOLENOID Aparentemente todo bien no hay check y si hay código, si se lo apaga si se vuelve a prender. Falla 8 B+ Aparentemente funciona bien, no check, no código y si se lo apaga si se vuelve a prender.	
Falla 2 O2 El motor empieza a calar hasta que se apaga pero si se vuelve a prender y ya no se cala. No check y no co Falla 3 START SOLENOID Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 4 FAN LOW Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 5 ENGINE RELAY #3 El motor se apaga y no se vuelve a prender, no se prende el check y se genera un código. Falla 6 VAPOR SOLENOID Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 7 MAIN DUTY SOLENOID Aparentemente todo bien no hay check y si hay código, si se lo apaga si se vuelve a prender.	
Falla 3 START SOLENOID Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 4 FAN LOW Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 5 ENGINE RELAY #3 El motor se apaga y no se vuelve a prender, no se prende el check y se genera un código. Falla 6 VAPOR SOLENOID Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 7 MAIN DUTY SOLENOID Aparentemente todo bien no hay check y si hay código, si se lo apaga si se vuelve a prender.	
Falla 4 FAN LOW Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 5 ENGINE RELAY #3 El motor se apaga y no se vuelve a prender, no se prende el check y se genera un código. Falla 6 VAPOR SOLENOID Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 7 MAIN DUTY SOLENOID Aparentemente todo bien no hay check y si hay código, si se lo apaga si se vuelve a prender.	ódigo
Falla 5 ENGINE RELAY #3 El motor se apaga y no se vuelve a prender, no se prende el check y se genera un código. Falla 6 VAPOR SOLENOID Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 7 MAIN DUTY SOLENOID Aparentemente todo bien no hay check y si hay código, si se lo apaga si se vuelve a prender.	
Falla 6 VAPOR SOLENOID Aparentemente el motor funciona normalmente, no hay check ni tampoco código de falla. Falla 7 MAIN DUTY SOLENOID Aparentemente todo bien no hay check y si hay código, si se lo apaga si se vuelve a prender.	
Falla 7 MAIN DUTY SOLENOID Aparentemente todo bien no hay check y si hay código, si se lo apaga si se vuelve a prender.	
Falla 8 B+ Aparentemente funciona bien, no check, no código y si se lo apaga si se vuelve a prender.	
Falla 9 IG COIL #3 El motor empieza a calarse y no check y no código	
falla 9 y falla 10 (Del panel de Falla 10 El motor se cala aún más, no check y no código. Con falla 18 o 19 adicional el motor se apaga porque ya fallas)	ı fallan 3 cilindros.
Falla 11 IATS Aparentemente funciona bien, no check y si hay código	
Aparentemente funciona bien pero en datos del parameter data los valores de voltaje es 0 y apertura de 44 Falla 12 TPS códigos.	4 y no cambian, no check y 2
Falla 13 CMP El motor funciona aparentemente bien, no check y si hay un código	
Falla 14 SLOW CUT SOLENOID El motor se apaga y no se vuelve a prender, no check y si hay un código.	
Falla 15 ENGINE RELAY #2 El motor se apaga y no se vuelve a encender, no genera código y no check como en falla 5	
Falla 16 ISCA El motor se acelera un poco, no check y si hay un código.	
Falla 17 RPM Motor funciona normal pero el tacómetro se va a cero no check y no código	

Falla 18 (20)	MAP	Funciona normal no check y si hay un código.
Falla 19 (21)	СКР	El motor se apaga y no se vuelve a prender, no check y si hay un código.
Falla 20 (22)	LIQUID SOLENOID	Cuando se aplica funciona normal pero poco a poco se va acelerando hasta que se apaga y no se vuelve a encender, no check y no código.
Falla 21 (23)	FAN HIGH	El motor funciona aparentemente bien, no check y no código
Falla 22(24)	SLOW DUTY SOLENOID	El motor se apaga y no se vuelve a prender, no check y si hay un código.
Falla 23 (25)	ON/START (IG 1)	Se apaga y no se vuelve a prender y además se pierde la señal con el escáner, no check y después de quitar la falla no queda ningún código guardado.

A.4. Datos obtenidos del equipo G-120212.

Falla	Sin falla	Falla 1	Falla 2	Falla 3	Falla 4	Falla 5	Falla 6	Falla 7	Falla 8	Falla 9	Falla 10	Falla 11	Falla 12	Falla 13	Falla 14	Falla 15	Falla 16	Falla 17	Falla 18	Falla 19	Falla 20	Falla 21	Falla 22	Falla 23
																								P0201
Codigo de falla:	-	NO	P1325	P0403	P0230	P1190	P1112	NO	NO	P0220	P0220	P0180	P0115	P0110	P0100	P0190	P1116	P0335	NO	P0340	P1180	P1180	P0201	P0203
PARAMETER DATA												Valo	ores											
battery voltage [V]	14,2	-	14,0	14,0	-	14,0	14,0	14,1	14,0	14,1	14,1	14,1	13,8	14,1	14,1	14,1	14,1	-	14,0	14,0	-	-	14,0	-
mass air flow (kg/h)	31,3	-	31,3	31,8	-	31,0	31,0	30,9	31,3	51,9	52,2	32,0	31,4	31,6	6512	31,8	30,7	-	31,2	31,2	-	-	31,7	-
mass air flow (mg/st)	318	-	319	322	-	315	314	317	318	362	364	321	321	314	1200	321	309	-	318	318	-	-	328	-
Intake Air Temperature [°C]	25,4	-	27,1	26,9	-	28,1	27,8	28,2	28,8	27,5	28,8	34,3	34,2	60,0	29,7	28,2	26,2	-	25,9	25,9	-	-	27,7	-
Accelerator Position Sensor [%]	0,0	-	0,0	0,0	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-	0,0	0,0	-	-	0,0	-
Accelerator Pedal Position [mV]	742	-	742	742	-	742	742	742	742	0	742	742	742	747	742	742	742	-	742	742	-	-	742	-
coolant temperature sensor [°C]	85,7	-	86,5	87,8	-	87,8	89,0	90,0	91,4	92,7	91,8	86,2	80,0	84,1	85,7	87,9	83,7	-	84,1	84,1	-	-	83,4	-
engine speed [rpm]	820	-	820	821	-	821	820	819	821	1201	1201	819	820	821	816	821	820	-	820	820	-	-	823	-
vehicle speed sensor[km/h]	0	-	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	-	-	0	-
Fuel Pressure [bar]	320,9	-	319,0	319,0	-	322,7	322,7	319,0	324,5	353,9	355,7	315,4	324,5	319,8	326,4	450,0	313,5	-	313,5	313,5	-	-	322,7	-
Fuel Pressure regulator [%]	21,5	-	21,5	21,4	-	20,6	21,3	21,2	21,2	23,0	22,4	22,0	21,0	21,9	21,9	10,0	21,4	-	21,7	21,7	-	-	20,6	-
Fuel temperature sensor [°C]	60,4	-	61,6	63,3	-	63,5	64,9	66,5	67,7	68,8	71,5	90,0	68,0	66,6	67,2	68,0	58,7	-	58,4	58,4	-	-	58,4	-
Exhaust Gas Recirculation [%]	5,0	-	5,0	5,0	-	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	-	5,0	5,0	-	-	5,0	-
Inlet Throttle Actuator [%]	5,0	-	5,0	5,0	-	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	-	5,0	5,0	-	-	5,0	-
Barometric Pressure Sensor [kPa]	65535	-	65535	65535	-	65535	65535	65535	65535	65535	65535	65535	65535	65535	65535	65535	65535	-	65535	65535	-	-	65535	-
Clutch Switch (M/T on)	ON	-	ON	ON	-	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	-	ON	ON	-	-	ON	-
1st gear switch (M/T)	OFF	-	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	-	-	OFF	-
Brake Switch	OFF	-	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	-	-	OFF	-
booster valve operation [V]	78,6	-	77,4	77,8	0,4	28,0	80,2	79,3	80,0	78,7	77,4	80,1	79,6	77,2	77,4	80,3	78,9	-	80,2	80,2	-	-	79,6	-
Malfuntion indicator	OFF	-	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	-	-	OFF	-
Glow Relay	OFF	-	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	-	OFF	OFF		-	OFF	-
Fuel Quantity[mcc]	6,7	-	6,8	6,8	25,0	6,9	6,7	6,9	6,7	6,6	6,8	6,9	8,2	6,8	6,9	12,1	6,5	•	7,1	7,1	•	-	11,1	-
fuel Pump Relay	ON	-	ON	ON	-	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	-	ON	ON	•	-	ON	-
fan-low Speed	OFF	-	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	-	OFF	OFF	-	-	OFF	-
fan-high Speed	OFF	-	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	-	OFF	OFF	•	-	OFF	-
A/C Switch	OFF	-	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF		-	OFF	-
A/C Relay	OFF	-	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	-	-	OFF	-
A/C Pressure Switch	OFF	-	OFF	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	-	OFF	OFF	-	-	OFF	-
Variable Geometry Turb [%]	80,7	-	80,7	80,7	-	80,7	31,4	80,7	80,7	61,6	61,5	80,7	80,7	80,7	80,7	80,5	31,4	-	80,7	80,7	-	-	80,7	-
Booster Pressure Sensor [kPa]	65535	-	65535	65535	-	65535	65535	65535	65535	65535	65535	65535	65535	65535	65535	65535	65535	-	65535	65535	-	-	65535	-

# de	Variable de Estudio	Efectos Percibidos
Falla		
D. II. 1		El motor se apaga y no se vuelve a encender, no se enciende la luz de check y no se genera un código de falla en el escáner ya qu
Falla 1	Engine Relay Control	este también perder su comunicación con el motor
Falla 2	Glow Plug Relay Control	Aparentemente el motor funciona bien, no check y si se genera un código.
Falla 3	EGR	Motor funciona aparentemente normal, no check y si se genera un código de avería.
falla 4	Fuel Pump Relay Control	El motor se apaga y no se vuelve a prender. No check y si se genera un código de avería.
Falla 5	TPV	El motor aparentemente funciona normal, no check y si se genera un código de avería.
Falla 6	VGT	El motor aparentemente funciona normal, no check y si se genera un código de avería.
Falla 7	ТАСНО	El motor funciona aparentemente bien aunque el tacómetro del tablero se va a cero, no se genera código de avería y no hay check
rana /	meno	Si se lo apaga si se vuelve a prender; y acelera y desacelera normalmente.
Falla 8	VSS	El motor funciona aparentemente bien aunque el velocímetro del tablero se va a cero, no se genera código de avería y no hay
rana o	V 33	check, Si se lo apaga si se vuelve a prender.
Falla 9	APS 1	El motor aparentemente funciona bien pero al acelerarlo no lo hace, a pesar de presionar el acelerador a fondo éste acelera
r ana y	Alsi	máximo hasta 1200 rpm aprox. No se enciende el check y si se genera código de avería.
Falla 10	APS 2	El motor aparentemente funciona bien pero al acelerarlo no lo hace, a pesar de presionar el acelerador a fondo éste acelera
rana 10	Al 3 2	máximo hasta 1200 rpm aprox. No se enciende el check y si se genera código de avería.
Falla 11	FTS	Motor funciona aparentemente normal, no check y si se genera un código de avería. Display del sensor se va a cero.
Falla 12	WTS	El motor se acelera un poco y el ventilador se activa, si hay código de avería y no check. Si se lo apaga si se prende pero con las
Falla 12	W 12	características descritas y humo negro.
Falla 13	ATS	El motor aparentemente funciona normal, no check y si se genera un código de avería.

Falla 14	AFS	El motor aparentemente funciona normal, no check y si se genera un código de avería.
Falla 15	RPS	El motor aparentemente funciona normal, no check y si se genera un código de avería. Display trabaja normalmente y si se lo
		apaga se vuelve a prender normalmente
Falla 16	BPS	El motor aparentemente funciona normal, no check y si se genera un código de avería.
Falla 17	CKP+	El motor se apaga, se genera un código de avería y no se enciende la luz de check
Falla 18	CKP -	El motor no se apaga, no se genera código y no hay luz de check
Falla 19	CMP	El motor aparentemente funciona normal, no check y si se genera un código de avería.
Falla 20	Rail Pressure Regulator (High)	El motor se apaga y no se vuelve a prender: <u>no check y</u> si hay código.
Falla 21	Rail Pressure Regulator(low)	El motor se apaga y no se vuelve a prender: <u>no check y</u> si hay código.
Falla 22	inyector 1	el motor se cala, si hay código y no check
Falla 23	Inyector 1 e Inyector 3	Si falla un inyector más el motor se apaga y no se vuelve a prender, si código, no check.

A.5. Datos obtenidos del equipo G-111701.

Falla	Sin falla	СКР	СМР	Investor 2	lmir 2 a lmir 1	IAC	ECT	TPS	02	Bobina
Codigo de falla:	Sin falla	SI	SI	Inyector 2	Iny. 2 e Iny. 1	SI	SI	SI	NO NO	SI
		31	31	31			31	31	NO	31
PARAMETER DATA	202		207	225	Valo		670	207	450	207
O2 sensor [mV]	292	-	297	336	351	302	678	287	453	307
Air flow sensor [mV]	781	-	761	859	976	878	781	820	800	1269
ir temperature sensor [°C		-	20	20	20	20	20	20	20	20
throttle angle [°]	8	-	8	8	8	8	8	30	8	12
Idle duty [%]	28	-	28	28	32,0	28	28	28	28	36
Battery voltage [V]	13,7	-	13,7	13,8	13,7	13,8	13,8	13,9	13,8	13,8
Crank signal	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ater temperature sensor [°	82	-	89	90	87	90	60	87	89	92
engine RPM (f) [rpm]	790	-	790	810	820	800	950	820	790	2010
ehicle speed sensor [m/h	0	-	0	0	0	0	0	0	0	0
idle switch	ON	-	ON	ON	ON	ON	ON	ON	ON	OFF
Air conditioner switch	OFF	ı	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Engine RPM (c) [rpm]	760	-	800	800	760	920	920	800	800	1760
Engine load [ms]	1,1	-	1,1	1,1	1,6	1,3	1,0	1,1	1,0	1,3
injector time [ms]	4,6	1	4,6	3,6	4,6	5,1	3,6	4,6	3,1	5,1
BTDC [°]	1	ı	12	0	2	5	6	12	9	3
Purge Duty[%]	2	-	2	0	0	3	0	2	0	4
A/C compressor	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Air flow sensor (f) [g/h]	8,0	-	7,6	8,2	10,2	9,6	8,0	7,4	6,6	18,0
Air flow sensor (c) [g/h]	8,0	-	6,4	8,0	9,6	8,0	8,0	8,0	6,4	17,6
Full load	OFF	-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
air/ fuel feedback ctrl.	OFF	-	OFF	OFF	OFF	OFF	ON/OFF	OFF	OFF	OFF
air/fuel correction [%]	124	-	124	99	99	124	111	124	99	124
Mid load study [%]	99	-	99	99	99	99	99	99	99	99
low load study [US]	0	-	0	0	0	0	0	0	0	0
purge duty stdy [%]	110	-	110	99	99	110	99	110	99	110

A.6. Datos obtenidos del equipo G-111703

Falla	Sin falla	CMP	ECT	IAC	TPS	MAF e IAT	KS	Iny. (3)	Iny. (3) y (4)	Bobina
Codigo de falla:		P 0340	P0115	NO	P0120	P0105 y P0110	NO	P0203	P0203	P0350
PARAMETER DATA					Valo	ores				
Oxigeno sensor [mV]	160	140	60	140	160	60	100	100	100	100
mass air flow sensor[mV]	1015	1015	996	783	937	4980	957	996	1054	1171
intake air temperature[°C]	44	41	43	45	48	-40	51	51	54	44
throttle position sensor[mV]	390	390	390	390	19	390	390	390	390	390
battery voltage [V]	14,3	13,9	13,9	14,1	14,0	12,5	13,8	13,8	13,8	14,0
Cranking signal	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
coolant temperature sensor [°C]	88	88	-40	102	108	108	97	102	111	87
engine speed [rpm]	812	843	843	1625	843	0	812	781	1062	968
vehicle speed [km/h]	0	0	0	0	0	0	0	0	0	0
Closed throttle position	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON
power Steering Switch	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
A/C Switch	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Transmission RangeSwitch	P/N	P/N	P/N	P/N	P/N	P/N	P/N	P/N	P/N	P/N
Engine load [%]	33,1	31,9	30,6	22,5	30,0	159,4	32,5	32,5	41,3	37,5
injection duration [ms]	2,0	2,0	2,0	1,5	2,0	0,0	2,0	1,8	2,3	2,6
IG Timing [°]	-11,0	-10,0	-10,0	-25,0	-11,0	-5,0	-14,0	-7,0	-7,0	-11,0
idle speed control act. [%]	37,9	37,9	37,1	35,5	36,3	37,5	36,3	37,1	40,6	43,8
A/C relay	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
rear oxygen sensor - b [mV]	20	20	20	20	20	20	20	20	20	20
Air Fuel Close loop	OPEN LOOP	OPEN LOOP	OPEN LOOP	OPEN LOOP	OPEN LOOP	0,L (FLT)	OPEN LOOP	OPEN LOOP	OPEN LOOP	0,L (FLT)
long term fuel trim. [%]	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
short term fuel trim. [%]	4,7	4,7	4,7	0	0	0,0	0,0	0,0	0,0	0,0
MDP sensor [mV]	0	0	0	0	0	0	0	0	0	0
tank Pressure sensor [kPa]	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

ANEXO B.

Contenidos de la Malla Curricular de Motores de combustión interna de la carrera de Ingeniería Mecánica Automotriz.

B.1. Motores de encendido Provocado.

Unidades temáticas	Contenidos de la Unidad	Resultados de Aprendizaje de la Asignatura correspondientes a cada unidad	Indicadores de logro	TOTAL DE HORAS POR UNIDAD
Unidad 1: El motor de combustión interna alternativo de encendido provocado (MEP) de cuatro tiempos.	1.1 Introducción a los motores alternativos de encendido provocado. 1.2 Metrología aplicada a los motores de encendido provocado. 1.3 Constitución, Funcionamiento, Proceso de combustión y ciclos operativos del MEP de cuatro tiempos. 1.4 Diagramas y cálculos del MEP de cuatro tiempos.	Analiza el funcionamiento del motor de combustión interna alternativo de encendido provocado (MEP) de cuatro tiempos.	Comprende el funcionamiento del motor de combustión interna alternativo de encendido provocado (MEP) de cuatro tiempos. Determina los ciclos operativos y el proceso de combustión en los motores MEP de cuatro tiempos. Resuelve problemas y realiza tareas de análisis	60H

			comparativo sobre el	
			funcionamiento del MEP.	
Unidad 2:	2.1 Constitución,	Desarrolla procesos de	Describe el	60H
Sistemas auxiliares del	funcionamiento,	diagnóstico y reparación	funcionamiento de los	
motor de combustión	diagnóstico y reparación del	de los sistemas auxiliares	sistemas auxiliares del	
interna de encendido	Sistema de Distribución	del motor de combustión	motor de combustión	
provocado (MEP).	2.2 Constitución,	interna alternativo de	interna de cuatro tiempos	
	funcionamiento,	encendido provocado	MEP.	
	diagnóstico y reparación del	(MEP) de cuatro tiempos.		
	Sistema de Alimentación.	-	Reconoce los elementos	
	2.3 Constitución,		constitutivos de los	
	funcionamiento,		sistemas auxiliares del	
	diagnóstico y reparación del		MEP.	
	Sistema de Encendido.			
	2.4 Constitución,			
	funcionamiento,		Diagnostica y repara las	
	diagnóstico y reparación del		averías presentadas en los	
	Sistema de Lubricación.		sistemas auxiliares del	
	2.5 Constitución,		motor de encendido	
	funcionamiento,		provocado.	
	diagnóstico y reparación del			
	Sistema de Refrigeración.			
Unidad 3:	3.1 Puesta a punto del	Desarrolla procesos de	Describe la importancia	40H
Puesta a punto del motor	motor Otto a carburador y	puesta a punto del motor	de la puesta a punto de los	
Otto y control de	el control de emisiones	Otto y control de	motores de encendido	
emisiones contaminantes.	contaminantes.	emisiones contaminantes.	provocado, en función de	
			la potencia y el control de	
	3.2 Puesta a punto del		las emisiones	
	motor Otto a Inyección y el		contaminantes.	
	control de emisiones			
	contaminantes.		Ejecuta procesos de	
			diagnóstico y puesta a	

Unidad 4: El motor de combustión interna de encendido provocado (MEP) de dos tiempos y rotativo.	4.1 Constitución, funcionamiento y diagnóstico del motor encendido provocado de dos tiempos. 4.2 Constitución y funcionamiento del motor de encendido provocado rotativo.	Analiza el funcionamiento del motor combustión interna de encendido provocado (MEP) de dos tiempos y rotativo.	punto de motores de encendido provocado a carburador e inyección electrónica. Resuelve casos prácticos en base al diagnóstico de las averías presentadas en el MEP. Comprende el funcionamiento del motor de combustión interna de encendido provocado (MEP) de dos tiempos y rotativo. Reconoce los elementos constitutivos del motor de combustión interna de encendido provocado (MEP) de dos tiempos y rotativo.	40H
			(MEP) de dos tiempos y	
			Explica la funcionalidad de cada componente del motor de encendido provocado de dos tiempos	

B.2. Motores de encendido por compresión.

Unidades temáticas	Contenidos de la Unidad	Resultados de Aprendizaje de la Asignatura correspondientes a cada unidad	Indicadores de logro	TOTAL DE HORAS POR UNIDAD
Unidad 1:	1.1 Generalidades,	Analiza el funcionamiento	Reconoce los elementos	40H
El motor de encendido	Constitución,	del motor de combustión	constitutivos del MEC de	
por compresión de cuatro	Funcionamiento y	interna alternativo de	dos y cuatro tiempos.	
y de dos tiempos.	Combustión en MEC. 1.2 Ciclo operativo del MEC de cuatro tiempos 1.3 Diagramas y cálculos del MEC de cuatro tiempos. 1.4 Ciclo operativo del MEC de dos tiempos 1.5 Diagramas, cálculos y sistemas de barrido del MEC de dos tiempos. 1.6 Comparaciones entre MEC y MEP.	encendido por compresión.	Explica la funcionalidad de cada componente y sistemas mecánicos, del MEC de dos y cuatro tiempos. Resuelve problemas y realiza tareas de análisis comparativo sobre el funcionamiento del MEC de dos y cuatro tiempos.	
Unidad 2:	2.1 Las cámaras de	Analiza el diseño,	Diferencia las cámaras de	40H
Cámaras de combustión	combustión y sus	características y el	combustión de un MEC,	
en los motores de	características.	funcionamiento de las	en función a sus	
encendido por	2.2 Cámaras de combustión	cámaras de combustión del motor de combustión	características	
compresión.	de inyección indirecta. 2.3 Cámaras de combustión	interna alternativo de	geométricas.	
	de inyección directa.	encendido por compresión.	Describe el funcionamiento de los	

Unidad 3: Sistemas auxiliares del motor de encendido por compresión.	2.4 Comparaciones entre los diversos tipos de cámaras. 3.1 El combustible diésel 3.2 Constitución, funcionamiento, diagnóstico del Sistema de Alimentación. 3.3 Sistemas de inyección mecánicos lineales y rotativos. 3.5 Sistemas de inyección electrónicos CRDI. 3.6 Sistemas de control y sobrealimentación en MEC. 3.7 Intercooler, aftercooler. 3.8 Diagnóstico del MEC en función al análisis de	Analiza y desarrolla procesos de diagnóstico y reparación de los sistemas auxiliares de motor de encendido por compresión.	diversos tipos de cámaras de combustión aplicados en el MEC. Reconoce los elementos constitutivos del sistema de alimentación del MEC. Explica la funcionalidad de cada componente del sistema de alimentación del MEC. Desarrolla prácticas sobre procesos de diagnóstico y reparación de los sistemas auxiliares del MEC. Describe de manera	60H
	aceite.	December	técnica los sistemas de control y sobrealimentación de MEC. Resuelve casos prácticos en base al análisis del aceite usado del motor.	COLL
Unidad 4: Reacondicionamiento y reconstrucción del motor de combustión interna.	4.1 Diagnóstico previo a la reconstrucción del motor.4.2 Procedimientos para el desmontaje, despiece,	Desarrolla procesos de diagnóstico, reacondicionamiento y reconstrucción del motor	Aplica procesos de diagnóstico para determinar el estado de los componentes internos	60H
	verificación y	de combustión interna.	y externos motor, con la	

comprobación de los	finalidad de proceder a su
elementos y sistemas del	reconstrucción.
motor.	
4.3 Procedimientos para el	Evalúa los parámetros de
montaje, ensamble,	desgaste de los
verificación y	componentes y sistemas
comprobación de los	de MCIA utilizando las
elementos y sistemas del	herramientas y equipos de
motor.	metrología.
4.4 Pruebas de	
funcionamiento y control	Desarrolla prácticas sobre
del motor reconstruido en	procesos de
banco y carretera.	comprobación del
	reacondicionamiento de
	motores de combustión
	interna alternativos.

ANEXO C.

Las guías de protocolo de prácticas para motores de combustión interna se las presenta dentro del CD adjunto: