UNIVERSIDAD POLITÉCNICA SALESIANA

SEDE QUITO

CARRERA:

INGENIERÍA MECÁNICA

Proyecto técnico previo a la obtención del título de

INGENIEROS MECÁNICOS

TEMA:

ANÁLISIS DE LA VARIACIÓN DE LA RESISTENCIA A LA TORSIÓN DEL ACERO AISI/SAE 4140 TRATADO TÉRMICAMENTE POR TEMPLE A 830°C – 860°C Y REVENIDO A 500°C

AUTORES:

HÉCTOR GONZALO ÑACATA SIMBAÑA

ANGEL ECZEQUIEL CHERRES RAMÍREZ

TUTORA:

NANCY VERÓNICA MORENO DIAGO

Quito, agosto del 2019

CESIÓN DE DERECHOS DE AUTOR

Nosotros, Héctor Gonzalo Ñacata Simbaña con documento de identificación N°1719698852 y Angel Eczequiel Cherres Ramírez con documento de identificación N°0202003463, manifestamos nuestra voluntad y cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores del trabajo de grado intitulado: ANÁLISIS DE LA VARIACIÓN DE LA RESISTENCIA A LA TORSIÓN DEL ACERO AISI/SAE 4140 TRATADO TÉRMICAMENTE POR TEMPLE A 830°C – 860°C Y REVENIDO A 500°C, mismo que ha sido desarrollado para optar por el título de Ingenieros Mecánicos, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en nuestra condición de autores nos reservamos los derechos morales de la obra antes citada. En concordancia, suscribo este documento en el momento que hago entrega del trabajo final en formato impreso y digital a la Biblioteca de la Universidad Politécnica Salesiana.

Héctor Gonzalo Ñacata Simbaña C.I. 1719698852

Cheres

Angel Eczequiel Cherres Ramírez C.I. 0202003463

Quito, agosto de 2019.

DECLARATORIA DE COAUTORÍA DEL DOCENTE TUTOR/A

Yo, Nancy Verónica Moreno Diago, declaro que bajo mi dirección y asesoría fue desarrollado el Trabajo de Titulación: ANÁLISIS DE LA VARIACIÓN DE LA RESISTENCIA A LA TORSIÓN DEL ACERO AISI/SAE 4140 TRATADO TÉRMICAMENTE POR TEMPLE A 830°C – 860°C Y REVENIDO A 500°C, realizado por Héctor Gonzalo Ñacata Simbaña y Angel Eczequiel Cherres Ramírez, obteniendo un producto que cumple con todos los requisitos estipulados por la Universidad Politécnica Salesiana, para ser considerados como trabajo final de titulación.

Quito, agosto del 2019

Carsforma.

Nancy √erónica Moreno Diago C.I.: 1758355307

DEDICATORIA

A Dios por siempre iluminar mi camino, darme la salud y fuerza para seguir cumpliendo mis metas. A mis queridos padres que me encaminaron desde mis primeros pasos, nunca dudaron de mí y el sacrificio de ellos se refleja en este logro. A mis hermanos que son mi fuerza y en cada paso que doy los tengo presentes. A mi familia y amigos que de alguna manera siempre se encuentran presentes con un buen consejo y apoyo.

Angel Cherres.

A Dios por siempre darme fortaleza para poder cumplir mis objetivos y siempre poder superar mis problemas. A mi madre Inés que me encamino y me guio por un buen camino con su excelente ejemplo y su amor incondicional desde el inicio de mi vida. A mis abuelitos Alfonso y Guadalupe que son mi fortaleza e inspiración para plantearme y cumplir mis metas. A mi tío Alfonso que con su apoyo, ejemplo y disciplina me enseñó a luchar por mis sueños y hacerlos realidad. A mi tío Arturo que me ayudo siempre con sus consejos emotivos en momentos difíciles. A toda mi familia que siempre se encuentran presentes con un buen consejo.

Héctor Ñacata.

AGRADECIMIENTO

Un agradecimiento muy especial a la Universidad Politécnica Salesiana que, con sus catedráticos y autoridades de la carrera de Ingeniería Mecánica, nos formaron como profesionales de bien para ser elementos que ayuden a crecer a nuestra sociedad. A nuestra directora de tesis MSc. Nancy Verónica Moreno Diago que con su dirección se llevó a cabo un buen proyecto.

ÍNDICE

CESIÓN DE DERECHOS DE AUTOR	II
DECLARATORIA DE COAUTORÍA DEL DOCENTE TUTOR/A	III
RESUMEN	XVI
ABSTRACT	XVII
INTRODUCCIÓN	1
OBJETIVOS	
CAPÍTULO I	4
1. MARCO TEÓRICO	4
1.1. Aleaciones férreas	4
1.1.1. Fundición	4
1.1.2. Aceros	4
1.1.3. Clasificación de los aceros	5
1.1.3.1. Aceros al carbono	5
1.1.3.2. Aceros Aleados	
1.2. Influencia de los elementos de aleación en los Aceros Aleados	9
1.3. Acero AISI/SAE 4140	9
1.3.1. Propiedades mecánicas	
1.3.2. Nomenclatura	
1.3.3. Aplicaciones del Acero AISI/SAE 4140	
1.4. Difusión	
1.5. Tratamientos térmicos	14
1.5.1. Temple	
1.5.1.1. Calentamiento para el recocido de temple	16
1.5.1.2. Temperaturas convenientes para el recocido de temple	
1.5.1.3. Crecimiento de cristales de austenita con el calentamiento	
1.5.1.4. Teoría del temple, enfriamiento	
1.5.2. Revenido	
1.5.2.1. Fragilidad del revenido	
1.5.2.2. Influencia del tiempo en el revenido	
1.5.2.3. Color en la pieza de acero según la temperatura del revenido	
1.5.3. Recocido	
1.5.4. Normalizado	
1.6. Ensayos	

1.6.1. Ensayo de espectrofotométrico	
1.6.2. Ensayo de dureza	27
1.6.2.1. Ensayo de Dureza Rockwell	
1.6.2.2. Cálculo de la dureza de Rockwell	
1.6.2.3. Diseño de probetas para ensayo	30
1.6.2.4. Espesor de la probeta	30
1.6.2.5. Soporte de muestra	30
1.6.3. Ensayo de tracción	30
1.6.3.1. Máquina de ensayo de tracción	31
1.6.3.2. Dispositivos de medición	32
1.6.3.3. Muestra de prueba	33
1.6.4. Ensayo de torsión	35
1.6.4.1. Torsión	35
1.6.4.2. Formula de torsión para esfuerzo cortante	36
1.6.4.3. Ley de Hooke en corte	36
1.6.4.4. Esfuerzo cortante (τ)	37
1.6.4.5. Deformación unitaria cortante o distorsión angular (γ)	37
1.6.4.6. Angulo de torsión	38
1.6.4.7. Momento polar de inercia	38
1.6.4.8. Módulo de corte o cizallamiento	38
1.6.4.9. Método de prueba	39
1.6.4.10. Máquinas de torsión	40
CAPÍTULO II	41
2. DISEÑO EXPERIMENTAL	41
2.1. Procedimientos para Ensayos	41
2.1.1. Procedimiento de ensayo para Identificación del material	41
2.1.2. Procedimiento ensayo de dureza	41
2.1.3. Diseño de tratamientos térmicos	42
2.1.3.1. Tratamiento de temple	42
2.1.3.2. Tratamiento de revenido	
2.1.4. Procedimiento ensayo de tracción	43
2.1.4.1. Deformaciones elásticas	43
2.1.4.2. Deformaciones plásticas	44
2.1.4.3. Fluencia o cadencia	44

2.1.4.4. Estricción	. 44
2.1.4.5. Porcentaje de elongación	. 44
2.1.4.6. Porcentaje de reducción de Área	. 44
2.1.5. Procedimiento ensayo de torsión	45
2.2. Diseño de probetas	. 46
2.2.1. Diseño de probeta para ensayo de tracción	. 46
2.2.2. Diseño de probeta para ensayo de torsión	. 47
CAPÍTULO III	. 49
3. ANÁLISIS DE RESULTADOS DE LOS ENSAYOS	. 49
3.1. Situación Actual del mejoramiento en propiedades del Material AISI/SAE 4	140
en Ecuador	. 49
3.2. Identificación de material	. 49
3.2.1. Ensayo espectrofotométrico en estado de suministro	. 49
3.2.2. Ensayo de dureza en estado de suministro	. 51
3.2.3. Ensayo de tracción en estado de suministro	. 52
3.2.4. Ensayo de torsión en estado de suministro	. 54
3.2.4.1. Análisis de resultados de las probetas en estado de suministro	. 58
3.3. Análisis de resultados	. 59
3.3.1. Análisis de tratamientos térmicos	. 59
3.3.1.1. Ensayo de temple	. 59
3.3.1.2. Ensayo de revenido	. 60
3.3.2. Análisis de ensayo de dureza en probetas tratadas por temple y revenido	. 60
3.3.2.1. Ensayo de dureza con temple a 830°C y revenido a 500°C	. 60
3.3.2.2. Ensayo de dureza con temple a 860°C y revenido a 500°C	. 62
3.3.3. Análisis de ensayo de torsión	. 64
3.3.3.1. Análisis de ensayo de torsión de probetas con tratamiento térmico de	
temple a 830°C y revenido a 500°C	. 64
3.3.3.2. Análisis de ensayo de torsión de probetas con tratamiento térmico de	
temple a 860°C y revenido a 500°C	. 72
3.3.3.3. Comparación de resistencia a la torsión.	. 79
3.4. Costos	. 80
CONCLUSIONES	. 81
RECOMENDACIONES	. 82
ANEXOS	. 86

ÍNDICE DE FIGURAS

Figura 1. Diagrama Hierro-Carbono [5]
Figura 2. Tratamiento térmico de alta temperatura por difusión
Figura 3. Esquema de difusión con ubicación de átomos de níquel y cobre13
Figura 4. Proceso de solidificación de diversas aleaciones hierro-carbono [4]13
Figura 5. Representación esquemática del recocido de un acero [4] 15
Figura 6. Proceso de calentamiento de un redondo de acero [4] 16
Figura 7. Tiempo aproximado que tarda en calentarse el centro de los redondos de
acero al carbono, al ser introducidos en un horno caliente [4]17
Figura 8. Temperaturas en el centro de un redondo de acero de 0,35% de carbono, de
30 mm de diámetro calentado desde 20° a 1100° [4]
Figura 9. Duración total del calentamiento de las piezas de acero en los hornos de sales
[4]
Figura 10. Crecimiento de grano de los aceros por aumento de la temperatura [4] 19
Figura 11. El efecto del aumento de temperatura y de tiempo de calentamiento es el
crecimiento del tamaño de grano [4]19
Figura 12. Constituyentes que se obtienen e influencia de enfriamiento en la austenita
[4]20
Figura 13. Influencia de los contenidos de carbono en los aceros [4]
Figura 14. Estructura sorbítica [4]
Figura 15. Nódulos negros de troostita sobre un fondo blanco de martensita [4] 21
Figura 16. Fondo blanco de austenita con agujas de martensita [4] 22
Figura 17. Esquema del temple y revenido en los aceros [4]22
Figura 18. Influencia del revenido en los aceros [4]23
Figura 19. Temperatura de revenido en función dilataciones y contracciones que
experimentan los aceros al carbono [4]
Figura 20. Intervención del revenido sobre la dureza y tenacidad de un acero al 45%
de carbono [4]
Figura 21. Influencia de la duración del revenido en la dureza [4]25
Figura 22. Penetradores [13]
Figura 23. Método de prueba de dureza Rockwell [12]
Figura 24. Grafica del principio de Rockwell [15]

Figura 25. Diagrama esfuerzo-deformación del acero en tensión [17]31
Figura 26. Máquina universal de ensayos de tracción [17]32
Figura 27. Micrómetro [18]
Figura 28. Extensómetro [17]
Figura 29. Espécimen estándar tipo placa
Figura 30. Espécimen estándar tipo redondo
Figura 31. Representación de un par de Torsión [20]
Figura 32. Barra circular en Torsion, representación de esfuerzos cortantes [17]37
Figura 33. Deformaciones de una barra circular en torsión pura [17]
Figura 34. Diagrama de tensión de esfuerzo cortante [21]
Figura 35. Espécimen redondo estándar para ensayo de tracción [16]46
Figura 36. Varios tipos de extremos para muestras de ensayo de tracción redondo
estándar [16]47
Figura 37. Gráfico comparativo de propiedades químicas del acero AISI/SAE 4140
obtenidos de la tabla 11
Figura 38. Diagrama de tensión-esfuerzo Probeta 1
Figura 39. Diagrama de tensión-esfuerzo Probeta 2
Figura 40. Diagrama de tensión-esfuerzo Probeta 3
Figura 41. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 1
Figura 42. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 2
Figura 43. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 3
Figura 44. Diagrama de dispersión de probetas en estado de suministro59
Figura 45. Gráfica del tratamiento térmico de temple a 830°C y 40 minutos 59
Figura 46. Gráfica del tratamiento térmico de temple a 860°C y 40 minutos 60
Figura 47. Gráfico de revenido a 500°C al pasar el tiempo en minutos60
Figura 48. Comparación de dureza de la probeta 1 al pasar de suministro a temple y
finalizar con revenido
Figura 49. Comparación de dureza de la probeta 2 al pasar de suministro a temple y
finalizar con revenido
Figura 50. Comparación de dureza de la probeta 3 al pasar de suministro a temple y
finalizar con revenido

Figura 51. Comparación de dureza de la probeta 4 al pasar de suministro a temple y
finalizar con revenido
Figura 52. Comparación de dureza de la probeta 5 al pasar de suministro a temple y
finalizar con revenido
Figura 53. Comparación de dureza de la probeta 6 al pasar de suministro a temple y
finalizar con revenido
Figura 54. Comparación de dureza de la probeta 1 al pasar de suministro a temple y
finalizar con revenido
Figura 55. Comparación de dureza de la probeta 2 al pasar de suministro a temple y
finalizar con revenido
Figura 56. Comparación de dureza de la probeta 3 al pasar de suministro a temple y
finalizar con revenido
Figura 57. Comparación de dureza de la probeta 4 al pasar de suministro a temple y
finalizar con revenido
Figura 58. Comparación de dureza de la probeta 5 al pasar de suministro a temple y
finalizar con revenido
Figura 59. Comparación de dureza de la probeta 6 al pasar de suministro a temple y
finalizar con revenido
Figura 60. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 1
Figura 61. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 2
Figura 62. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 3
Figura 63. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 4
Figura 64. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 5
Figura 65. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 6
Figura 66. Diagrama de dispersión de probetas con tratamiento térmico71
Figura 67. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 1

Figura 68. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 273
Figura 69. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 374
Figura 70. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 475
Figura 71. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 576
Figura 72. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en
probeta 677
Figura 73. Diagrama de dispersión de probetas con tratamiento térmico78
Figura 74. Horno NABERTHERM N7/H de temple aumentando la temperatura 96
Figura 75. Placa de especificaciones de horno de temple
Figura 76. Configuración del tiempo para temple
Figura 77. Estado de probetas al salir del temple96
Figura 78. Horno NABERTHERM N 15/65HA para tratamiento de temple96
Figura 79. Placa de especificaciones de horno de revenido96
Figura 80. Configuración de temperatura para realizar el revenido96
Figura 81. Estado de probetas al salir del revenido
Figura 82. Máquina FOUNDRY-MASTER Xpert para ensayo espectrofotométrico.
Figura 83. Placa técnica de la máquina Espectrofotométrica96
Figura 84. Probeta sujetada para ensayo96
Figura 85. Limpieza del lente después de cada toma de datos96
Figura 86. Estado de la probeta después del ensayo espectrofotométrico
Figura 87. Máquina de dureza 900-365 DIGITAL ROCKWELL HARDNESS
TESTER
Figura 88. Inicio de ensayo de dureza en material en estado de suministro
Figura 89. Muestra de resultado obtenido en máquina al realizar ensayo en probetas.
Figura 90. Probetas que se sometieron a ensayo de dureza
Figura 91. Máquina TEST RESOURCES para ensayo de tracción101
Figura 92. Placa técnica de la capacidad de la máquina
Figura 93. Probeta sujeta a máquina de tracción101

Figura 94. Medición al inicio del ensayo101
Figura 95. Ruptura de la probeta al finalizar el ensayo101
Figura 96. Máquina AVERY para ensayo de torsión102
Figura 97. Placa técnica de la máquina102
Figura 98. Uso del medidor del ángulo de torsión102
Figura 99. Probetas con tratamiento térmico muestran la ductilidad que adquirió con
el tratamiento térmico previo a la ruptura102
Figura 100. Ruptura de probeta con tratamiento térmico al llegar al límite 102
Figura 101. Ruptura de probeta en estado de suministro102
Figura 102. Probetas con temple de 830°C y revenido de 500°C después de ser
sometidas al ensayo de tracción
Figura 103. Probetas con temple de 860°C y revenido de 500°C después de ser
sometidas al ensayo de tracción102

ÍNDICE DE TABLAS

Tabla 1. Características mecánicas de aceros bajos en carbono [1]6
Tabla 2. Característica de aceros medios en carbono [1]7
Tabla 3. Aceros altos en carbono [1]. 8
Tabla 4. Porcentaje en peso de elementos principales en aceros [1]
Tabla 5. Características mecánicas en estado bonificado [6]10
Tabla 6. Temperaturas recomendadas. 22
Tabla 7. Colores del revenido [10]
Tabla 8. Ensayo Rockwell normalizado [14]
Tabla 9. Muestras del ensayo espectrofotométrico. 50
Tabla 10. Resultados obtenidos del ensayo espectrofotométrico 50
Tabla 11. Comparación de resultados entre ensayo espectrofotométrico y ficha técnica
entregada por proveedor Bohler
Tabla 12. Ensayo de dureza en probetas en estado de suministro
Tabla 13. Propiedades mecánicas en estado de suministro
Tabla 14. Propiedades mecánicas obtenidas en el ensayo de tracción53
Tabla 15. Probeta 1 en estado de suministro
Tabla 16. Probeta 2 en estado de suministro
Tabla 17. Probeta 3 en estado de suministro
Tabla 18. Resultados del ensayo de torsión en estado de suministro
Tabla 19. Ensayo de dureza para probetas después del temple a 830°C61
Tabla 20. Ensayo de dureza para probetas después del temple a 830°C y revenido a
500°C61
Tabla 21. Ensayo de dureza para probetas después del temple a 860°C63
Tabla 22. Ensayo de dureza para probetas después del temple a 860°C y revenido a
500°C
Tabla 23. Probeta 1 con temple a 830°C y revenido a 500°C65
Tabla 24. Probeta 2 con temple a 830°C y revenido a 500°C
Tabla 25. Probeta 3 con temple a 830°C y revenido a 500°C67
Tabla 26. Probeta 4 con temple a 830°C y revenido a 500°C
Tabla 27. Probeta 5 con temple a 830°C y revenido a 500°C
Tabla 28. Probeta 6 con temple a 830°C y revenido a 500°C70
Tabla 29. Resultados del ensayo de torsión con temple a 830°C y revenido a 500°C.

Tabla 30. Probeta 1 con temple a 860°C y revenido a 500°C	72
Tabla 31. Probeta 2 con temple a 860°C y revenido a 500°C	73
Tabla 32. Probeta 3 con temple a 860°C y revenido a 500°C	74
Tabla 33. Probeta 4 con temple a 860°C y revenido a 500°C	75
Tabla 34. Probeta 5 con temple a 860°C y revenido a 500°C	76
Tabla 35. Probeta 6 con temple a 860°C y revenido a 500°C	77
Tabla 36. Resultados del ensayo de torsión con temple a 860°C y rever	nido a 500°C.
	78
Tabla 37. Comparación de resultados.	79
Tabla 38. Costo del material AISI/SAE 4140	80
Tabla 38. Costo del material AISI/SAE 4140.Tabla 39. Costo de fabricación de probetas.	80 80
Tabla 38. Costo del material AISI/SAE 4140.Tabla 39. Costo de fabricación de probetas.Tabla 40. Costo de tratamiento térmico por probeta.	80 80 80
Tabla 38. Costo del material AISI/SAE 4140.Tabla 39. Costo de fabricación de probetas.Tabla 40. Costo de tratamiento térmico por probeta.Tabla 41. Costo de ensayo de torsión por probeta.	80

RESUMEN

El acero AISI/SAE 4140 es un acero muy utilizado en el sector industrial, donde existen empresas que emplean elementos mecánicos los cuales están sometidos a esfuerzos combinados y a cargas no muy altas, entre estos componentes se encuentran piezas de automotores, arboles de transmisión, ejes, bielas, cigüeñales, pernos grado 6, engranes de transmisión, émbolos que en estado de suministro se lo puede considerar para un diseño pero se vio la necesidad de mejorar la propiedad mecánica de dicho acero a la torsión, obteniendo una mejor resistencia.

En el siguiente trabajo se realiza el análisis de la variación de la resistencia a la torsión del acero AISI/SAE 4140 tratado térmicamente por temple a dos diferentes temperaturas de 830°C, 860°C y revenido a una temperatura de 500°C.

Para esto, primero, se realiza la especificación de material sometiendo al acero a ensayo espectrofotométrico, ensayo de dureza, ensayo de tracción y ensayo de torsión en estado de suministro para verificar las propiedades mecánicas y composición química expuesta por el proveedor.

Una vez realizada la especificación del acero las probetas son tratadas térmicamente por temple a 830°C, 860°C y revenido a 500°C. Luego, se realiza el ensayo de torsión a las probetas tratadas térmicamente, obteniendo datos para realizar el análisis y comparación con los datos obtenidos en estado de suministro.

Los resultados obtenidos mediante la elaboración de este trabajo perimirán apreciar que las probetas tratadas térmicamente, aumentan considerablemente su resistencia a la torsión en comparación a las probetas en estado de suministro.

ABSTRACT

The steel AISI / SAE 4140 is a steel very used in the industrial sector, where there are companies that use mechanical elements which are subjected to combined efforts and not very high loads, among these components are parts of automotive, transmission shafts, axles, cranks, crankshafts, bolts grade 6, transmission gears, pistons that in state of supply can be considered for a design but saw the need to improve the mechanical property of the steel to the torsion, obtaining better strength.

In the following work the analysis of the variation of the resistance to the torsion of the steel AISI / SAE 4140 heat treated by hardening at two different temperatures of $830 \degree C$, $860 \degree C$ and tempered at a temperature of $500 \degree C$ is performed.

For this, first, the specification of material is made by submitting the steel to spectrophotometric test, hardness test, tensile test and torsion test in the state of supply to verify the mechanical properties and chemical composition exposed by the supplier.

Once the steel specification has been made, the specimens are heat treated by quenching at 830 $^{\circ}$ C, 860 $^{\circ}$ C and tempering at 500 $^{\circ}$ C. Then, the torsion test is performed on the thermally treated specimens, obtaining data to perform the analysis and comparison with the data obtained in the state of supply.

The results obtained through the elaboration of this work will allow to appreciate that the heat treated specimens increase considerably their resistance to torsion in comparison to the specimens in the state of supply.

INTRODUCCIÓN

Hace mucho tiempo la industria busca mejorar las propiedades mecánicas de los aceros sometiéndolos a tratamientos térmicos, como temple y revenido. Muchos elementos cuando están en servicio están sujetas a fuerzas o cargas. Es necesario conocer las características del material para diseñar el elemento donde se va a usar de tal forma que los esfuerzos a los que va a estar sometido no sean excesivos y el material no falle.

Los aceros son aleaciones hierro-carbono, teniendo en cuenta que las propiedades mecánicas llegan a depender de los elementos de la aleación, se tiene presente la existencia de una gran variedad de aceros para el tipo de necesidad que se requiera, con diferentes tratamientos térmicos y composiciones, el acero de estudio por su importancia en la industria es el AISI/SAE 4140.

El AISI/SAE 4140 es un acero aleado de cromo, molibdeno y alrededor de un 40% de carbono, dichas propiedades le hacen a este material apto para esfuerzos de fatiga y torsión, siendo usado en la industria automotriz en piezas mecánicas importantes como por ejemplo pernos, cigüeñales, bielas, entre otros, y otros lugares de la industria como por ejemplo engranajes, piezas forjadas como herramientas y demás.

El estudio del acero AISI/SAE 4140 consiste en la obtención de información después de la aplicación de dos tipos de tratamientos térmicos que se encuentran entre los más usados, en el caso del temple para el endurecimiento y aumento de resistencia se realiza a una temperatura de 830° C – 860° C y con el revenido se mejora la tenacidad a una temperatura de 500° C, obteniendo como resultado un acero con mejores características, además de plasmar los datos reales logrados en cada proceso.

PROBLEMA

El acero AISI/SAE 4140 es un acero muy utilizado en el sector industrial donde existen empresas que emplean elementos mecánicos los cuales están sometidos a esfuerzos combinados y a cargas no muy altas entre estos componentes se encuentran ejes, cigüeñales, flechas de transmisión, pernos, engranes de transmisión, bielas, porta moldes.

JUSTIFICACIÓN

Se ha visto conveniente hacer un análisis de la variación y el comportamiento del acero AISI/SAE 4140 al ser sometido a un tratamiento térmico de temple a dos diferentes temperaturas de 830°C - 860°C, revenido a 500°C y de esta manera obtener datos reales y aportar con información al sector industrial de la resistencia a la torsión alcanzada por el material al ser sometido a los tratamientos térmico.

Los datos obtenidos serán de mucha utilidad para el sector industrial que emplean el acero AISI/SAE 4140 para fabricar elementos mecánicos sometidos a torsión.

OBJETIVOS

Objetivo General

Analizar la variación de la resistencia a la torsión del acero AISI/SAE 4140 tratado térmicamente por temple a 830° C – 860° C y revenido a 500° C.

Objetivo Específico

- Estudiar la situación actual del mejoramiento de la resistencia a la torsión en el material AISI/SAE 4140.
- Validar las especificaciones del material AISI/SAE 4140 en estado de suministro mediante ensayos destructivos y no destructivos.
- Diseñar la metodología para realizar el tratamiento térmico de temple y revenido cumpliendo con los criterios técnicos de la literatura.
- Analizar y comparar resultados de la resistencia a la torsión al variar la temperatura durante el tratamiento de temple y revenido.

CAPÍTULO I

1. Marco teórico

1.1.Aleaciones férreas

Las aleaciones férreas, tiene como elemento principal el hierro, son de gran producción y de alta tendencia como elementos para la construcción de máquinas. Esto se debe a tres factores:

- La tierra rebosa grandes constituyentes de hierro.
- La fabricación de los aceros es parcialmente económica debido al método de aleación, origen, ajuste y configuración.
- Las aleaciones férreas tienen diversidad en características mecánicas y físicas.
- La principal falla de las aleaciones férreas es ser sensibles a la corrosión [1].

Las aleaciones férreas se dividen en fundición y aceros.

1.1.1.Fundición

De acuerdo con Callister [1], las fundiciones se toman como clasificación de aleaciones férreas cuyo contenido en carbono es superior al 2,1%; en el trabajo real, la gran cantidad de fundiciones abarcan entre 3 y 4,5% de carbono. La temperatura de fundición oscila entre 1150 y 1300°C, haciendo fáciles de moldear, asimismo, varias de las fundiciones obtienen características de fragilidad y el método de conformación más eficaz llega a ser el moldeo.

1.1.2.Aceros

Callister [1], Rojas Estrada [2] y Askeland, Fulay y Wright [3], proponen que los aceros son aleaciones de hierro-carbono cuyas propiedades mecánicas comprenden de la cantidad de carbono, además añadiendo otros materiales se puede mejorar su dureza, maleabilidad u otro tipo de propiedades, que asimismo se logra con tratamientos térmicos adecuados.

De acuerdo con Rojas Estrada [2] y Apraiz Barreiro [4], sugieren que los aceros en su mayoría son una mezcla de ferrita, cementita y perlita. Donde la ferrita es hierro con pocas cantidades de carbono y otros elementos en disolución que lo hace blando y dúctil, el cementita es hierro compuesto con alrededor del 7% de carbono con características de alta dureza y fragilidad, la perlita es una combinación determinada de ferrita y cementita, sus propiedades llegan a tener un equilibrio entre las antes ya mencionadas. El acero al aumentar un 0,8% de carbono, se encuentra compuesto de

perlita, al aumentar el contenido de carbono se obtiene perlita y cementita como se puede evidenciar en la **figura 1**.

Figura 1. Diagrama Hierro-Carbono [5].

1.1.3.Clasificación de los aceros

Askeland et al. [3] propone una clasificación en base a su composición o proceso de fabricación. De esta manera se obtiene:

- Aceros al carbono incluyen hasta un 2% de carbono, al igual que puede contener: un máximo de 0.6% de silicio, 0.6% de cobre y 1.65% de manganeso.
- Aceros descarburados incluyen máximo 0.005% de carbono.
- Aceros ultra bajos al carbono obtienen un máximo de 0.03% de carbono, del mismo modo se tiene bajos niveles de silicio y manganeso.
- Aceros dulces tienen de 0.15 a 0.3% de carbono.
- Hierros colados son aleaciones de Fe-C los cuales incluyen de 2 a 4% de carbono.

De acuerdo con Callister [1], la clasificación es:

1.1.3.1. Aceros al carbono

Por el porcentaje de carbono se clasifica en:

- Bajo al carbono

El acero bajo al carbono contiene un tope del 0.25% de carbono, su propiedad principal es no formar martensítica debido a que no responde al debido tratamiento térmico y se puede endurecer por acritud, se encuentra ferrita y perlita en su microestructura lo cual concede características de ductilidad del 25%, tenacidad, fácil de mecanizar, soldar y se la puede conseguir a bajo costo, sin embargo, es blando y poco resistente. Esta clase de aceros tienen un límite elástico de 275 MPa y una resistencia a la tracción que oscila entre 415 y 550 MPa [1].

Otro tipo de acero bajo al carbono son aquellos de alta resistencia y baja aleación, cuya característica es tener aleación como cobre, vanadio, níquel y molibdeno en una igualdad cerca al 10% en peso. A diferencia de los aceros bajos en carbono, este tiene mayor resistencia mecánica por tratamiento térmico con un límite elástico que rebasa 480MPa, es dúctil, fácil de mecanizar y hechurable [1].

En la **tabla 1** se puede visualizar los dos tipos de aceros bajos en carbono indicados previamente con sus respectivas características y aplicaciones comúnmente dentro de la industria.

Características mecánicas de materiales laminados en caliente y aplicaciones típicas de aceros bajos en carbono y aceros de alta resistencia y baja aleación					
AISUSAE o número AISI	Resistencia a la tracción [Kpsi x10^3(Mpa)]	Limite elástico [Kpsi x10^3(Mpa)]	Ductilidad (% El en 2plg.)	Aplicaciones típicas	
Aceros bajos en carbono					
1010	47 (325)	26 (180)	28	Paneles de automóvil, clavos y alambre	
1020	55 (380)	30 (205)	25	Tubos, aceros laminados y estructurales	
A36	58 (400)	32 (220)	23	Estructurales (puentes y edificios)	
A 516 Grado 70	70 (485)	38 (260)	21	Recipientes a presión a baja temperatura	
Aceros de baja aleación y alta resistencia					
A 440	63 (435)	42 (290)	21	Estructuras atornilladas o remachadas	
A 633 Grado E	75 (520)	55 (380)	23	Estructuras utilizadas a bajas temperaturas	
A 656 Grado 1	95 (655)	80 (552)	15	Bastidores de camiones y vagones de tren	

Tabla 1. Características mecánicas de aceros bajos en carbono [1].

- Medio en carbono

El acero medio en carbono está dentro de 0,25 y 0,6%, se le permite realizar tratamiento térmico de temple, revenido y austenización para mejorar las características mecánicas [1].

Los aceros de baja templabilidad se usan en condiciones de revenido en piezas de delgada sección y un temple rápido, con aleaciones de cromo, níquel y molibdeno los cuales aumentan la resistencia y ductilidad después del tratamiento térmico seleccionado. Se puede visualizar en la **tabla 2**, diferentes aceros con el porcentaje de aleación dependiendo a que clasificación corresponden [1].

Sistema de designación AISI/SAE y tramos de composición para aceros al carbono y aceros de baja aleación					
Designación AISI/SAE	Designación	Tramos de composición (% en peso de elementos aleantes distintos del C)			
Designation AISI/SAE	UNS	Ni	Cr	Мо	Otros
10XX, Al carbono	G10XX0				0,08-0,33S
11XX, Fácil mecanizado	G11XXO				0,10-0,35S
12XX, Fácil mecanizado	G12XXO				0,01-0,12P
13XX	G13XXO				1,60-1,90Mn
40XX	G40XXO			0,20-0,30	
41XX	G41XXO		0,80-1,10	0,15-0,25	
43XX	G43XXO	1,65-2,00	0,40-0,90	0,20-0,30	
46XX	G46XXO	0,70-2,00		0,15-0,30	
48XX	G48XXO	3,25-3,75		0,20-0,30	
51XX	G51XXO		0,70-1,10		
61XX	G61XXO		0,50-1,10		0,10-0,15V
86XX	G86XXO	0,40-0,70	0,40-0,60	0,15-0,25	
92XX	G92XXO				1,80-2,20Si

Tabla 2. Característica de aceros medios en carbono [1].

Entre las aplicaciones dentro de la industria se fabrica ruedas y rieles de trenes, engranajes, cigüeñales y otro tipo de elementos estructurales dentro de la construcción, los cuales requieren alta resistencia mecánica, al desgaste y buena tenacidad [1].

- Alto en carbono

Por lo general los aceros altos en carbono se encuentran en el rango entre 0,60 y 1,4% de carbono con propiedades de mayor dureza, resistencia y poca ductilidad como se evidencia en la **tabla 3** y su aplicación respectiva. Estos aceros tratados

adecuadamente por temple y revenido llegan a adquirir cualidades de resistencia al desgaste al punto de ser una herramienta de corte y hechura de materiales como se evidencia en la **tabla 4** con sus aplicaciones respectivamente. Este tipo de aceros contienen entre sus propiedades cromo, vanadio, tungsteno y molibdeno [1].

Aplicaciones típicas e intervalo de propiedades mecánicas de aceras al carbono y templados en aceite y revenidos										
		Intervalo de								
Numero AISI	Numero UNS	Resistencia a la tracción [Kpsi x10^3(Mpa)]	Limite elástico [Kpsi x10^3(Mpa)]	Ductilidad (% El en 2plg.)	Aplicaciones típicas					
Aceros al carbono										
1040	G10400	0.088-0.113 (605-780)	0.062-0.085 (430-585)	33-19	Cigüeñales, pernos					
1080	G10800	0.116-0.190 (800-1310)	0.070-0.142 (480-980)	24-13	Cinceles, martillos					
Aceros aleados										
4340	G43400	0.142-0.284 (980-1960)	0.130-0.228 (895-1570)	21-11	Casquillos, tubos para aviación					
6150	G61500	0.118-0.315 (815-2170)	0.108-0.270 (745-1860)	22-7	Ejes, pistones, engranes					

Tabla 3. Aceros altos en carbono [1].

Tabla 4. Porcentaje en peso de elementos principales en aceros [1].

Designaciones, composiciones y aplicaciones de seis aceros de herramientas									
Numero	Numero UNS	Composición (% en peso)					peso)	A plicagionas típicas	
AISI		С	W	Мо	Cr	V	Otros	Apricaciones upicas	
W1	T72301	0,6- 1,4						Herramientas de herrería y carpintería	
SI	T41901	0,5	2,5		1,5			Cortatubos, brocas para cemento	
OI	T31501	0,9	0,5		0,5		1,00 Mn	Hojas de corte, herramientas cortantes	
A1	T30102	1						Troqueles, matrices de estampado	
D2	T30402	1,5		1	5			Cuchillas, matrices de estiramiento	
MI	TI1301	0,85	1,5	1	12	1		Brocas, sierras, herramientas de torno y de acepillar	

1.1.3.2.Aceros Aleados

Los aceros aleados se denomina aquellos aceros los cuales tengan presencia de elementos aleados, entre los principales está el cromo que ofrece alta resistencia mecánica, níquel y molibdeno intervienen en la resistencia a la corrosión, tungsteno es aplicado para aumentar el trabajo en altas temperaturas, entre otros. De una forma

microscópica no se puede visualizar una diferencia microestructural ya que la estructura perlítica, sorbítica y demás, son exactamente iguales. Pero se tiene en cuenta que, posteriormente los aceros aleados al haber sido sometidos a tratamientos térmicos obtienen diferentes estructuras [4].

Se tiene como modelo, un acero de 0,30 % de carbono es perlítico, y en canje uno de 0,80% de carbono, 1,25% de cromo, 5% de níquel y 0,60% de molibdeno es martensítico; al calentar los dos aceros a 850° y dejando que se enfrié al aire, el acero al carbono muestra estructura perlítica y el aleado con estructura martensítica, pero analizada las estructuras, no se distinguen una de la otra [4].

1.2.Influencia de los elementos de aleación en los Aceros Aleados

La influencia de los elementos de aleación en aceros aleados se la puede considerar después de un tratamiento térmico como el temple, del cual se determina conclusiones de tal manera que:

Un acero aleado tiene correlación dentro de las características mecánicas y la velocidad con la que se llega a enfriar el material, cuya propiedad se denomina templabilidad, un acero aleado da la propiedad de endurecerse por martensita. Un acero aleado de alta templabilidad endurece no solo en la superficie sino en el interior [1].

La máxima dureza que se obtiene en el temple de los aceros es función del contenido en carbono, pero con la presencia de elementos de aleación en los aceros, permite obtener después del temple durezas más altas aun implementando bajas velocidades de enfriamiento.

Pequeñas cantidades de elementos aleados seleccionados de una manera conveniente, ejercen una influencia mucho mejor de templabilidad que al tener gran porcentaje de un solo elemento.

1.3.Acero AISI/SAE 4140

Es un acero que pertenece dentro de la clasificación de los aceros como acero medio en carbono, al momento que se encuentra bonificado por cromo y molibdeno lo hace un material de alta resistencia mecánica y tenacidad, además de una buena maquinabilidad. El molibdeno le provee de resistencia a la fragilidad después del revenido. A lo que se refiere a propiedades mecánicas es muy resistente a la tracción, torsión y cambios de flexión lo que origina que en muchas de las ocasiones se utilice sin que requiera un tratamiento térmico agregado [6], [7], [8].

1.3.1. Propiedades mecánicas.

El acero AISI/SAE 4140 es un acero aleado cuya característica principal es una alta templabilidad lo cual permite al material con un tratamiento térmico adquirir alta dureza hasta el interior del acero, una alta resistencia a la fatiga e impacto. Con un tratamiento térmico de nitrurado se le puede dar mayor resistencia a la abrasión.

A lo que se refiere una aleación promedio para llegar a un estado bonificado con carbono al 0,41%, cromo al 1,10%, molibdeno de 0,20%, silicio con 0,30% y manganeso de 0,7%. Dando como resultado un color blanco-café [6]. El estado bonificado del acero se refiere a un tratamiento completo de temple más revenido, en la **tabla 5** se puede revisar las propiedades mecánicas en estado bonificado según Bohler [6], para el acero AISI/SAE 4140.

Resistencia en estado de recocido		Características mecánicas en estado bonificado del Acero AISI/SAE 4140								
Max. N.mm2	Dureza Brinell máx.	Dián m	netro m.	Límite de	Resistencia a la	Elongación (Lo=5d) % min.	Estricción % min.	Resiliencia según		
		desde	hasta	N/mm2	tracción N/mm2			DVM Joule		
770	241	-	16	835	1030-1250	10	40	34		
		16	40	715	930-1130	11	45	41		
		40	100	595	830-1030	12	50	41		
		100	160	530	730-900	13	55	41		
		160	250	490	690-840	14	55	41		

Tabla 5. Características mecánicas en estado bonificado [6].

1.3.2.Nomenclatura

La norma AISI (American Iron and Steel Institute – EE.UU.) designa a los aceros con 4 dígitos y en ciertos casos con un prefijo literal el cual indica el tipo de manufactura, mientras que la norma SAE (Society of Automotive Engineers – EE.UU.) especifica de la misma manera con la diferencia que no se usa el prefijo literal en ningún caso [6] [9]. Entonces tenemos: Donde:

- **Z:** Tipo de acero o aleación.
- **Y:** En aceros simples, indica un aproximado del componente que prevalece en la aleación.

XX: %C x 100

Teniendo en cuenta que el valor de Z equivale a:

1: Acero al Carbono (corriente u ordinario).

- 2: Acero al Níquel
- **3:** Acero al Níquel-Cromo
- 4: Acero al Molibdeno, Cr-Mo, Ni-Mo, Ni-Cr-Mo
- 5: Acero al Cromo
- 6: Acero al Cromo-Vanadio
- 7: Acero Al Tungsteno-Cromo

8: Acero al Ni-Cr-Mo

En caso del prefijo literal:

E: Fusión en horno eléctrico básico.

H: Grados de acero con templabilidad garantizada.

C: Fusión en horno por arco eléctrico básico.

X: Desviación del análisis de norma.

TS: Norma tentativa.

B: Grados de acero con un probable contenido mayor de 0.0005% de boro.

LC: Grados de acero con extra- bajo carbono (0.03% máx.).

F: Grados de acero automático.

El porcentaje de cromo, molibdeno, silicio, entre otros. Aquellos que sirven de aleación en los aceros no llegan hacer exactos, pero se tiene un punto de flexibilidad en el cual se rigen las normas y catálogos [6].

Teniendo en cuenta lo predicho, al desglosar el acero AISI 4140 se puede determinar la siguiente estructura de aleación:

AISI 4140

4: Aleación aleada (Cr-Mo) 1: 1,1 %Cr y 0,2 %Mo 40: 0,40 %C La tolerancia en aceros AISI 4140 es: C: 0,38-0,43 % Mn: 0,75-1,00 % Cr: 0,80-1,10 % Mo: 0,15-0,25 % Si: 0,15-0,35 % P: \leq 0,035 % S: \leq 0,040 %

Donde:

1.3.3.Aplicaciones del Acero AISI/SAE 4140

De acuerdo con catálogos de Bohler [6] y Bluesteelcorp [7], evidencia que el acero 4140 se usa en partes de maquinaria, repuestos de medias y bajas dimensiones que sean sujeto a esfuerzos normales, elementos para la construcción de motores, ejes, barras de torsión, piñones, engranajes, pernos, tuercas, pines, émbolos, árboles de transmisión, ejes de bombas, cañones de armas para la cacería.

En el catálogo de Iván Bohman [8], las aplicaciones se dividen en el sector industrial automotriz con fabricación de bielas, árboles de transmisión, cigüeñales, entre otros. Mientras que en la industria petrolera tenemos taladros, brocas, barrenos y vástagos de pistón. En la parte de construcción de maquinaria se tiene engranajes de temple por llama, inducción o nitruración, partes de bombas, ejes reductores, árboles de turbinas a vapor, tornillería de alta resistencia.

1.4.Difusión

La difusión de manera atómica, consiste en la migración o movimiento de átomos de un sitio a otro. Este fenómeno se puede explicar con un par difusor el cual consiste en la unión de dos caras de metales por ejemplo cobre y níquel los cuales se proceden a elevar la temperatura por debajo de la temperatura de fusión durante un largo periodo de tiempo y enfriamiento a temperatura ambiente. En la **figura 2** y **figura 3** se puede evidenciar como los átomos de níquel se han difundido dentro de los átomos de cobre y viceversa [1].

Figura 2. Tratamiento térmico de alta temperatura por difusión.

Figura 3. Esquema de difusión con ubicación de átomos de níquel y cobre.

Figura 4. Proceso de solidificación de diversas aleaciones hierro-carbono [4].

En la **figura 4**, se puede visualizar el desarrollo de alteración y microconstituyentes que se manifiesta en diferentes aceros. El acero de 0,20% de carbono inicia la solidificación a 1495° aproximadamente, la precipitación al principio se obtiene cristal de austenita con contenido en carbono menor al del acero [4].

El volumen en carbono de estos cristales está dado por la ordenada del punto a. Al proseguir la solidificación se acelera cristales ricos en carbono, y su porcentaje en carbono se da en los puntos a a" de la línea Aa'a"E. Entretanto el líquido sobrante va subiendo en carbono y la combinación se da en los puntos b' b" de la línea Ab' b"C [4].

Dentro de este tiempo se efectúa la difusión del carbono en los cristales que se han ido precipitando, procurando a homogeneizarse la composición de todos y la estructura de los cristales se traslada según la línea a a' a" ... [4].

En el principio y final de la solidificación, la suma de cristales solidificados, es proporcional a la distancia horizontal en medio de la vertical que corresponde a la combinación del acero b c' a" y la línea A b b' b" y la cantidad de líquido sobrante es distributivo a la distancia de la misma vertical b c' a", a la línea A a' a" [4].

La difusión no es excelente ya que los cristales iniciales de austenita adquieren menos carbono que los del final [4].

La austenita precipitada es heterogénea, ya que el centro de la cristalización y los ejes de los cristales son zonas escazas de carburación. Entretanto el acero traspasa la región austenítica AESG la difusión sigue y si se deja pasar el tiempo para que se de la difusión, esa heterogeneidad inicial del metal desaparece. Sin embargo, la velocidad que generalmente se utiliza en el enfriamiento no autoriza la difusión [4].

Al llegar a los 768° toda la ferrita que aparece a costas de la austenita sufre una alteración alotrópica y se cambia su estructura cristalina. Para entonces la austenita ha incrementado su carbono hasta 0,35% de C punto O. Por fin, alrededor de 700°, el resto de la austenita tiene 0,90 % de C y se altera violentamente en perlita. con desunión de calor. Manifestándose componentes al final de cristales de ferrita y perlita [4].

1.5. Tratamientos térmicos

Los tratamientos térmicos se realizan para que los aceros adquieran mejoras en sus características y propiedades mecánicas. En si un tratamiento térmico consiste en aumentar la temperatura durante un cierto tiempo y después enfriar en condiciones que dependerán del tipo de acero, del requerimiento, el tiempo y la temperatura a la que se lleve el acero es la que determinara las mejoras en el material. Detalles que se deben

tomar en cuenta al momento de dar alguno de estos tratamientos es la composición, forma, dimensiones y características del acero [4].

Tipos de tratamientos térmicos:

Entre los tratamientos térmicos más usados dentro de la industria para el mejoramiento de características de un material tenemos recocido, temple, revenido, temple en baño de plomo, temple en baño de sales, normalizado, entre otros [4].

1.5.1.Temple

Es un tratamiento térmico que tiene como objetivo endurecer y aumentar la resistencia de los aceros, para llegar a estas características el acero es calentado a una temperatura sutilmente mejor a la crítica en el cual llega a un estado austenítico, seguido de un enfriamiento rápido o lento dependiendo de la composición y dimensiones de la pieza, aquí se genera la formación de austenita usualmente por debajo de 350°, empleando un medio de enfriamiento por agua o aceite [4].

La martensita es el resultante del temple el cual le hace al acero muy duro y muy frágil a la vez, esto dentro de la industria no sirve por lo que se da un tratamiento térmico adicional conocido como revenido, el cual ayuda a que las propiedades adquiridas, lleguen a ser útiles [1].

En el caso del acero AISI 4140 el temple se realiza en dos condiciones, en el caso de enfriado por aceite sugiere una temperatura de temple entre 830 – 860°C y al agua 820 – 850°C [6]. La variación de temple referente de otros tratamientos térmicos se visualiza en la **figura 5**.

Figura 5. Representación esquemática del recocido de un acero [4].

1.5.1.1.Calentamiento para el recocido de temple.

Al aumentar la temperatura se debe de hacer de una manera más uniforme posible a tal punto que llegue al centro de la pieza. Al realizar el proceso de una manera lenta se logra una menor diferencia entre la temperatura del interior y exterior de la pieza.

Cuando no se cumple los parámetros antes mencionados, se aprecia fuertes tensiones internas las cuales ocasionan grietas y roturas, las tensiones antes mencionadas se generan por la propagación de las zonas de alta temperatura (perímetro de la pieza) y frías (interior de la pieza), luego se produce la contracción que sucede cuando el acero comienza atravesar las zonas críticas [4].

Materiales fríos de más de 100 mm de diámetro no se recomienda hornos con una temperatura mayor a 350°C, se debe a que el acero es poco plástico cuando este frío por lo cual no admite deformación y se crean tensiones las que generan grietas [4].

Figura 6. Proceso de calentamiento de un redondo de acero [4].

La **figura 6** indica el cambio de temperatura de un redondo de 500 mm de diámetro ingresa en un horno frio y calentado a 860° , con una durabilidad de once horas, que representa a 0,55 de hora por pulgada de espesor, lo que se visualiza es que en la periferia cuando se encuentra a 400°, el centro se halla en 230°, lo que nos dice que la periferia y el centro tienen una diferencia de 170°. Se encuentra una diferencia de 17° entre puntos de 25 mm de longitud, cuando se toma como supuesto que la temperatura de la sección transversal es lineal en la variación de la pieza [4].

Figura 7. Tiempo aproximado que tarda en calentarse el centro de los redondos de acero al carbono, al ser introducidos en un horno caliente [4].

En la **figura 7**, se da tiempos aproximados que necesitan los redondos de acero dependiendo el diámetro, por ejemplo, se tiene un redondo de 10 mm, incluido en un horno que esté a 800°, demora doce minutos en lograr dicha temperatura, durante un horno a 1.000°, llega a tardar ocho minutos en alcanzar esa temperatura [4].

Al momento que el acero llega a una temperatura de 732°, la perlita comienza la transformación a austenita, y cambia las propiedades cristalinas del hierro de la perlita. En este punto el cambio es de hierro alfa a hierro gamma, cuya situación es que el acero que se está dilatando se estrecha mientras dura la modificación y vuelve a dilatarse después de ello [4].

Figura 8. Temperaturas en el centro de un redondo de acero de 0,35% de carbono, de 30 mm de diámetro calentado desde 20° a 1100° [4].

El calentamiento rápido es cada vez más peligroso cuando el contenido de carbono es alto y el porcentaje de perlita es grande. En los aceros dulces se puede realizar ya que este tipo de fenómenos no tienen importancia. Se visualiza en la **figura 8**.

Se recomienda que el calentamiento a 850°, debe ser superior a media hora por pulgada de diámetro y la duración debe de ser una hora por pulgada de diámetro [4].

1.5.1.2. Temperaturas convenientes para el recocido de temple

La velocidad de calentamiento en este tratamiento tiene que superar la temperatura crítica, 50° a 60° de aumento. La duración dependerá de la masa de la pieza, velocidad de calentamiento, clase de acero, estado inicial y final del acero [4].

El tiempo que debe permanecer fluctúa entre veinte minutos y una hora por pulgada de espesor. En el caso de una hora por pulgada de espesor, suelen utilizarse permanencias a temperatura de tratamiento de veinte minutos por pulgada, y para procesos cuya duración es de media hora por pulgada, permanencias de una hora por pulgada. En el caso de realizarlo en baños de sales, la duración total termina siendo más corta, debido a que la transmisión de calor se efectúa más rápido [4].

Figura 9. Duración total del calentamiento de las piezas de acero en los hornos de sales [4].

En la **figura 9**, una curva indica calentamiento a baja temperatura y otra a temperatura elevada. Los tiempos que se han considerado como necesarios para el calentamiento a

 1150° -1300°, corresponden a materiales que han sido precalentados previamente a 700°-850° [4].

1.5.1.3. Crecimiento de cristales de austenita con el calentamiento

Si los aceros aumentan la temperatura o se llegan a mantener en un tiempo considerable en la temperatura critica, los cristales de austenita tienden a desarrollarse y crecer. En las **figuras 10 y 11** se puede visualizar la microestructura en el crecimiento de grano.

Figura 10. Crecimiento de grano de los aceros por aumento de la temperatura [4].

Después del tratamiento térmico a elevadas temperaturas se obtiene una estructura gruesa y un acero de bajas características.

Figura 11. El efecto del aumento de temperatura y de tiempo de calentamiento es el crecimiento del tamaño de grano [4].
1.5.1.4. Teoría del temple, enfriamiento

Al enfriar el material en una alta velocidad, aumenta la dureza y la transformación de la austenita en general suele ocurrir cuando se encuentra debajo de 350°, al momento que se aumenta la velocidad de enfriamiento aparece una nueva propiedad el cual es oscuro y difuso que se denomina sorbita, aumentando más la velocidad manifiesta otro que es más oscuro organizando rosetas de apariencia nodular que se denomina troostita, al hacer un enfriamiento muy lento se transforma en martensita con nódulos blancos que se muestra en la **figura 12** [4].

Figura 12. Constituyentes que se obtienen e influencia de enfriamiento en la austenita [4].

En el punto de enfriamiento en el cual la temperatura del acero llega a la crítica, se la denomina con Ar, en este punto la austenita empieza a modificarse en otros constituyentes [4]. En la **figura 13**, se tiene la manera en el que influye el carbono en los aceros en el punto crítico Ar, con el cambio de velocidad que se realiza en el temple y los más importante que es dureza máxima que se puede obtener con la gráfica de Dureza Rockwell.

Figura 13. Influencia de los contenidos de carbono en los aceros [4].

Se tiene en la **figura** (**14-16**), la estructura de sorbita, troostita y martensita mencionadas anteriormente y expuesta en el gráfico de la **figura 12**.

Figura 14. Estructura sorbítica [4].

Figura 15. Nódulos negros de troostita sobre un fondo blanco de martensita [4].

Figura 16. Fondo blanco de austenita con agujas de martensita [4].

Se tiene una lista de temperaturas aconsejable para el temple de los aceros de 0,10 a 1,40 % de carbono los cuales se muestran en la **tabla 6** [4].

Composición % de Carbono	Temperatura °C
0,1	925°
0,2	900°
0,3	870°
0,4	840°
0,5	830°
0,6	810°
0,7	780°
0,8	770°
0,9	770°
1	760°
1,2	760°
1,4	760°

Tabla 6. Temperaturas recomendadas.

1.5.2.Revenido

El revenido es el tratamiento térmico que se da al acero después de haber sido templado, con la ayuda de este tratamiento el acero disminuye la dureza y resistencia, pero elimina la tensión que se genera después del temple, mejora la tenacidad y el acero llega a tener la dureza o resistencia deseada. La **figura 17** muestra la diferencia entre temple y revenido, con respecto a la temperatura critica.

Figura 17. Esquema del temple y revenido en los aceros [4].

Normalmente el revenido se realiza a una temperatura entre 250 y 650°C, pero se debe tener en cuenta que las tensiones internas se pueden quitar a una temperatura de 200°C [1].

En el caso del AISI 4140, Bohler [6], recomienda una temperatura entre 540° – 680°C mientras que Iván Bohman C.A. [8] aconseja una temperatura entre 500°–700°C.

Los aceros después de un temple se vuelven a calentar a través de la temperatura ambiente y 700°, luego se enfría al aire donde la resistencia a la tracción se reduce poco a poco mientras aumenta la temperatura del revenido, al mismo tiempo aumenta la ductilidad y tenacidad del acero. Aumentando la temperatura del revenido la cual es mayor a 450° se puede mejorar las propiedades de resistencia al choque o resiliencia. La influencia del aumento de dureza de los aceros al carbono después de la realización de un tratamiento térmico como es el temple se puede apreciar en la **figura 18**, se puede visualizar que en el caso de un acero que se encuentra a 45% de carbono, templado en agua posee una dureza de 550 Brinell y una resistencia de 190 Kg/mm², el mimo material después de un revenido a 300° queda con una aproximación de 150 Kg/mm² de resistencia, 7,5% de alargamiento y 3 Kg/mm² de resiliencia [4].

Figura 18. Influencia del revenido en los aceros [4].

En la **figura 19**, se puede visualizar lo que ocurre con diferentes aceros al carbono, en el cual se señala las temperaturas del revenido y como se producen las dilataciones o contracciones que el acero sufre con este tratamiento [4].

Figura 19. Temperatura de revenido en función dilataciones y contracciones que experimentan los aceros al carbono [4].

En algunos aceros se puede visualizar que dentro la temperatura de 225° a 350° aproximadamente se indica poca disminución de tenacidad, a pesar de un ablandamiento no se tiene un aumento de tenacidad como se espera, caso contrario se disminuye como se representa en la **figura 20**, la cual muestra un acero de cromo vanadio de 0,45% de carbono templado [4].

Figura 20. Intervención del revenido sobre la dureza y tenacidad de un acero al 45% de carbono [4].

1.5.2.1.Fragilidad del revenido

Este fenómeno sucede después del tratamiento de temple, el acero queda entre una temperatura de 450° y 550° por un tiempo, la fragilidad del revenido es también conocido como fragilidad Krupp. Este fenómeno es muy complejo el cual se debe a las partículas submicroscópicas en las uniones de los granos. La permanencia a esas temperaturas se debe evitar y en caso de usarse tener en cuenta que la durabilidad del revenido sea poca. Con la adición de molibdeno en un porcentaje de 0,15 a 0,50% ayuda a evitar la fragilidad [4].

1.5.2.2.Influencia del tiempo en el revenido

El tiempo recomendado para el revenido es de media hora a tres horas. La pérdida de dureza que experimenta un acero de 0,82% de carbono templado y revenido a 650° y la ablandadura en los tres primeros minutos es rápido y continua con la perdida de dureza al prolongarse el revenido, pero no a la velocidad de los primeros minutos como se puede visualizar en la **figura 21** [4].

Figura 21. Influencia de la duración del revenido en la dureza [4].

Se tiene que tomar en cuenta que el descenso progresivo se puede modificar por la presencia de austenita residual en la microestructura o la presencia de carburos de cromo, tungsteno, molibdeno, entre otros, consiguiendo que aumente la dureza después del temple.

1.5.2.3.Color en la pieza de acero según la temperatura del revenido

Se tiene tonalidades que se suelen dar en el material al momento de realizar el tratamiento térmico de revenido cuando se aumenta la temperatura. En la **tabla 7**, se puede visualizar los colores aproximados del acero.

Temperatura °C	Aceros al carbono y de baja aleación			
200	Amarillo pálido			
220	Amarillo paja			
230	Amarillo oro			
240	Marrón amarillo			
250	Marrón			
260	Marrón rojizo			
270	Purpura			
280	Violeta			
290	Azul obscuro			
300	Azul			
340	Gris azulado			
360	Gris			

Tabla 7.	Colores	del	revenido	[10].
----------	---------	-----	----------	-------

1.5.3.Recocido

El objetivo principal del recocido es ablandar el acero, pero se utiliza en otras ocasiones para regenerar su estructura y eliminar tensiones internas. Este tratamiento se basa en el calentamiento del material dependiendo la necesidad seguidos de enfriamientos lentos.

1.5.4.Normalizado

El tratamiento térmico normalizado trata de llegar a una temperatura veloz al punto crítico, seguido de un enfriamiento pacífico de aire. Las propiedades con las que queda el material se las toma como normales. Suele ser usado en trabajos cuyo material ha padecido trabajos en caliente, frio, con enfriamiento irregulares o sobrecalentamiento. Otro de los usos que se da a este tratamiento térmico es el de destruir los efectos de un tratamiento exterior defectuoso.

1.6.Ensayos

1.6.1.Ensayo de espectrofotométrico

La espectrofotometría es un método experimental más frecuentada para la identificación específica de moléculas, este procedimiento se caracteriza principalmente por su precisión, sensibilidad que puede ser aplicada a moléculas de

distinta naturaleza por ejemplo contaminantes, biomoléculas, entre otros, y aplicado también a estado de agregación como es sólido, líquido y gas. El principio de funcionamiento para el ensayo son las interacciones entre la radiación electromagnética y la materia [11].

El ensayo espectrofotométrico analiza la capacidad de las moléculas de absorber energía luminosa y almacenarla en forma de energía interna. Con la muestra de metal expuesta a el análisis espectrofotométrico, el cual se ubica sobre el apoyo de la chispa asegurándola con un mecanismo de sujeción en el centro de la chispa. La muestra es sometida al arco generado eléctricamente en la cara inferior de la muestra, donde la zona de la cara expuesta se funde y se evapora a causa de la chispa generada por el arco eléctrico. La chispa aporta mucha energía que se convierte en plasma. Este plasma emite luz que se examina y se calibra por medio de CCD (dispositivos de carga acoplada, chips semiconductores sensibles a la luz) espectralmente. Al área del espectro medido se puede atribuir a cada elemento. La máquina utilizada está directamente sincronizada a un software llamado (Analysis), que genera resultados del análisis espectrofotométrico los cuales pueden ser visualizados en la pantalla del computador. Los datos del ensayo pueden ser almacenado en un banco de datos interna o en una memoria USB. Haciendo la comparación de la serie de ensayos realizados se analiza, si, cumple con las especificaciones requeridas. La máquina especifica que la desviación estándar entre el muestreo total debe ser menor que 5.

1.6.2.Ensayo de dureza

Un aspecto importante a considerar de un material es la dureza, con esta propiedad del material se puede medir la resistencia a la deformación plástica localizada [1]. La prueba de dureza es un medio para determinar la resistencia a la penetración y ocasionalmente se emplea para obtener una aproximación rápida de la resistencia a la tracción de un material [12].

La dureza del material se la obtiene al realizar el ensayo de dureza a una probeta, los ensayos de dureza más utilizados con frecuencia son la prueba Rockwell y la prueba de Brinell. En la industria se realiza ensayos periódicamente para realizar un análisis estadístico. Utilizando un durómetro se realiza los ensayos de penetración utilizando un indentador, el ensayo consiste en la resistencia de un material a ser deformado por otro material llamado indentador. Los datos de dureza se obtienen de medir la

deformación hecha por el indentador sobre la superficie plana del material, siendo esta la deformación plástica. La dureza se obtiene aplicando la fórmula matemática entre la carga aplicada y la profundidad de la huella que dejó el indentador.

1.6.2.1.Ensayo de Dureza Rockwell

La prueba de dureza Rockwell es una prueba de dureza de indentación empírica que puede proveer de información útil sobre materiales metálicos. Esta información puede correlacionarse con la resistencia a la tracción, resistencia al desgaste, ductilidad y otras características físicas de los materiales metálicos, y pueden ser útiles en el control de calidad y la selección de materiales [12].

El ensayo de dureza Rockwell tiene dos clasificaciones que son: La dureza de Rockwell y la prueba de dureza superficial de Rockwell. La fuerza de prueba que se utiliza es la gran diferencia entre las dos clasificaciones. La fuerza preliminar utilizada para el ensayo de dureza Rockwell es de 10 Kgf (98 N), para los ensayos totales son de 60 Kgf (589 N), 100 Kgf (981 N) y 150 Kgf (1471N). Las fuerzas preliminares utilizadas para el ensayo de dureza superficial de Rockwell son de 3 Kgf (29 N), para los ensayos totales son de 15 Kgf (147 N), 30 Kgf (294 N) y 45 Kgf (441 N). Los indentadores para la prueba de dureza Rockwell incluyen un indentador esférico de diamante y los indentadores de bola de carburo de tungsteno de diámetros específicos [12].

Figura 22. Penetradores [13].

El ensayo de dureza Rockwell utiliza esferas de acero como indentador para materiales blando y diamante cónico como indentador para materiales duros ver **figura 22**. La altura entre la superficie de la probeta y el fondo de penetración del indentador es calibrada de manera automática por el durómetro para convertirla en datos numéricos de dureza Rockwell (DR). El ensayo más utilizado en los medios es la dureza Rockwell, porque no es necesario realizar la calibración óptica de las medidas de la indentación. Ver **tabla 8**.

Escala	Carga (Kg)	Penetrador	Materiales típicos Probados
			Materiales duros en extremo, carburos de wolframio,
A	60	Cono de diamante	etc.
			Materiales de dureza media, aceros al carbono bajos y
В	100	Bola de 1/16"	medios, latón, bronce, etc.
С	150	Cono de diamante	Aceros endurecidos, aleaciones endurecidas y revenidas.
D	100	Cono de diamante	Acero superficialmente cementado.
Е	100	Bola de 1/8"	Hierro fundido, aleaciones de aluminio y magnesio.
F	60	Bola de 1/16"	Bronce y cobre recocido.
G	150	Bola de 1/16"	Cobre al berilio, bronce fosforoso, etc.
Н	60	Bola de 1/8"	Placa de aluminio.
K	150	Bola de 1/8"	Hierro fundido, aleaciones de aluminio.
L	60	Bola de 1/4"	Plásticos y metales suaves, como el plomo.

Tabla 8. Ensayo Rockwell normalizado [14]

1.6.2.2.Cálculo de la dureza de Rockwell

Durante una prueba de Rockwell, la fuerza en el indentador aumenta de una fuerza de prueba preliminar a una fuerza de prueba total, y luego retorna a la fuerza de prueba preliminar. La diferencia entre las dos medidas de profundidad de indentación y mientras se encuentra bajo la fuerza de prueba preliminar, se mide como h (ver **figura 23**) según ASTM E18 y (ver **figura 24**) según ISO6508.

Figura 23. Método de prueba de dureza Rockwell [12].

Figura 24. Grafica del principio de Rockwell [15].

1.6.2.3.Diseño de probetas para ensayo

Para obtener los mejores resultados, tanto la superficie de prueba como la superficie inferior de la pieza de prueba deben ser lisas, uniformes y sin escamas de óxido, sustancias extrañas ni lubricantes. Se hace una excepción para ciertos materiales como los metales reactivos que pueden adherirse al indentador. En tales situaciones, se puede usar un lubricante adecuado, como el queroseno. El uso de un lubricante se definirá en el informe de la prueba [12].

1.6.2.4.Espesor de la probeta.

Las probetas para el ensayo de dureza deben tener al menos diez veces la profundidad de la huella del indentador cónico y quince veces la profundidad de la huella del indentador esférico, salvo que se pueda demostrar que el uso de una probeta más fina no afecta al valor de dureza medido. (Ver anexo 16, 17, 18) [15].

1.6.2.5.Soporte de muestra

La muestra se debe apoyar sobre un soporte o un yunque, las superficies de los soportes deben estar limpios y libres de rasguños profundos y materiales extraños.

Los yunques de soporte de muestras comunes deben tener una dureza mínima de 58 HRC. Algunos yunques de soporte especializados requieren una menor dureza del material [12].

1.6.3. Ensayo de tracción

El ensayo de tensión o también conocida como ensayo de tracción se trata de estirar la probeta o espécimen de prueba por una fuerza axial de tracción proporcional a sus

dimensiones, utilizando una máquina para ensayo de tracción y determinar durante su deformación una o más características mecánicas.

Las pruebas de tensión proporcionan información sobre la resistencia y ductilidad de los materiales bajo esfuerzos de tracción uniaxial. Esta información puede ser útil en comparaciones de materiales, desarrollo de aleaciones, control de calidad y diseño bajo ciertas circunstancias [16].

A partir de realizar las pruebas de tensión se pueden obtener la resistencia a la fluencia, resistencia a la tensión, módulo de Young y la ductilidad del material [13].

Las propiedades de los materiales sometidos a tensión se las puede observar en un diagrama conocido como diagrama de esfuerzo-deformación unitaria de los aceros. Se puede visualizar en la **figura 25**.

Figura 25. Diagrama esfuerzo-deformación del acero en tensión [17].

1.6.3.1.Máquina de ensayo de tracción Máquina de pruebas de tracción

Las máquinas utilizadas para la prueba de tensión deben cumplir con los requerimientos técnicos para el ensayo según la norma ASTM E8/E8M. Los parámetros para utilizar las fuerzas y comprobar la resistencia a la tracción, la resistencia de elasticidad debe estar dentro del rango de fuerza de la máquina de tracción [16].

Con frecuencia se utiliza una maquia universal de pruebas donde se pueden realizar pruebas de tensión y de compresión. Se utiliza un extensómetro para medir la cantidad que se estira el espécimen entre las marcas calibradas cuando se aplica la fuerza. (ver la **figura 26**)

Figura 26. Máquina universal de ensayos de tracción [17].

Dispositivos de agarre

Los dispositivos de agarre deben conducir la fuerza aplicada por la máquina de tracción a la probeta garantizando que la fuerza de tensión axial este dentro de la longitud de calibre. La línea de eje de la probeta debe coincidir con la línea central del cabezal de la máquina de tracción. Si existe alguna desviación puede presentarse tensiones de flexión que no estaban dentro del cálculo de tensión habitual (la división de la fuerza por el área de la sección transversal). [16].

Las consecuencias de esta aplicación de fuerza excéntrica pueden aclararse calculando el momento de flexión y la tensión agregada. Para un espécimen estándar de 12.5 mm [0.500 in.] de diámetro, el aumento de tensión es de 1.5 puntos porcentuales por cada 0.025 mm [0.001 in.] de excentricidad. Este error aumenta a 2.5 puntos porcentuales/ 0.025 mm [0.001 in.] para una muestra de 9 mm [0.350 in.]. Y a 3.2 puntos porcentuales / 0.025 mm [0.001 in.] para un espécimen de 6 mm [0.250 in.] [16].

Tipos de agarre:

Empuñaduras de cuñas.

Agarres para muestras roscadas.

Empuñaduras para materiales en hojas.

Empuñaduras para alambres.

1.6.3.2.Dispositivos de medición

Los instrumentos y dispositivos de medición deben ser precisos y exactos, en el ensayo de tracción se utilizan los micrómetros y los extensómetros.

Micrómetro

El micrómetro es un instrumento de medida de alta precisión también conocido como "Calibrador Palmer", es un instrumento utilizado para medir longitudes exteriores o interiores con alta precisión, el principio de funcionamiento está basado en un tornillo micrométrico que al rotarlo el desplazamiento axial es proporcional a su desplazamiento angular como se ve en la **figura 27**. La precisión del micrómetro es de centésimas de milímetro (0.01mm) y de milésimas de milímetro (0.001mm) [18].

Figura 27. Micrómetro [18].

Extensómetro

Es un instrumento de precisión para medir la modificación que sufre una pieza en sus medidas al ser sometida a tensiones mecánicas. Por lo general está basado en la tecnología de indicador de deformación [19]. Revisar **figura 28**.

Figura 28. Extensómetro [17].

1.6.3.3.Muestra de prueba

Los especímenes o muestras de prueba para el ensayo de tensión deben cumplir con especificaciones que indica en la norma ASTM E8/E8M. Según la norma indica las dimensiones y la geometría estándar que debe cumplir los especímenes para hacer y obtener datos correctos del ensayo de tracción.

Tipos de muestras de prueba:

Espécimen tipo placa Espécimen tipo hoja

Espécimen tipo redondo

Espécimen tipo placa

El espécimen estándar de prueba tipo placa se muestra en la **figura 29**. Esta muestra se usa para probar materiales metálicos en forma de placa, formas y material plano con un grosor nominal de 5 mm [0.188 in.] o arriba [16].

Figura 29. Espécimen estándar tipo placa.

Espécimen tipo hoja

El espécimen de ensayo tipo hoja estándar se muestra en la **figura 29.** Esta muestra se usa para probar materiales metálicos en forma de hoja, placa, cable plano, tira, banda, aro, rectángulos y formas que varían en grosor nominal de 0.13 a 19 mm [0.005 a 0.750 in.] [16].

Espécimen tipo redondo

El espécimen de ensayo redondo estándar es de 12.5 mm [0.500 in.] de diámetro que se muestra en la **figura 30**, este espécimen redondo se utiliza de manera regular para probar materiales metálicos, tanto en fundición como en forjado [16].

	Standard Specimen	Small-Size Specimens Proportional to Standard			
-	Specimen 1	Specimen 2	Specimen 3	Specimen 4	Specimen 5
G-Gauge length	50.0 ± 0.1 [2.000 ± 0.005]	36.0 ± 0.1 [1.400 ± 0.005]	24.0 ± 0.1 [1.000 ± 0.005]	16.0 ± 0.1 [0.640 ± 0.005]	10.0 ±0.1 [0.450 ± 0.005]
D-Diameter (Note 1)	12.5 ± 0.2 10.500 ± 0.0101	9.0 ±0.1 [0.350 ± 0.007]	6.0 ± 0.1 [0.250 ± 0.005]	4.0 ± 0.1 [0.160 ± 0.003]	2.5 ± 0.1 [0.113 ± 0.002]
R-Radius of fillet, min	10 [0.375]	8 [0.25]	6 [0.188]	4 [0.156]	2 [0.094]
A-Length of reduced parallel section, min (Note 2)	56 [2.25]	45 [1.75]	30 [1.25]	20 [0.75]	16 [0.625]

For Test Specimens with Gauge Length Five times the Diameter [E8M]						
	Standard Specimen		Small-Size Specimens F	Proportional to Standard		
	Specimen 1	Specimen 2	Specimen 3	Specimen 4	Specimen 5	
G—Gauge length	62.5 ± 0.1	45.0 ± 0.1	30.0 ± 0.1	20.0 ± 0.1	12.5 ± 0.1	
D-Diameter (Note 1)	$[2.500 \pm 0.005]$ 12.5 ± 0.2	$[1.750 \pm 0.005]$ 9.0 \pm 0.1	$[1.250 \pm 0.005]$ 6.0 ± 0.1	$[0.800 \pm 0.005]$ 4.0 \pm 0.1	$[0.565 \pm 0.005]$ 2.5 ± 0.1	
	[0.500 ± 0.010]	[0.350 ± 0.007]	[0.250 ± 0.005]	[0.160 ± 0.003]	[0.113 ± 0.002]	
R—Radius of fillet, min	10 [0.375]	8 [0.25]	6 [0.188]	4 [0.156]	2 [0.094]	
A—Length of reduced parallel section, min (Note 2)	75 [3.0]	54 [2.0]	36 [1.4]	24 [1.0]	20 [0.75]	

Figura 30. Espécimen estándar tipo redondo.

1.6.4. Ensayo de torsión

El ensayo de torsión se aplica en el campo industrial para determinar constantes elásticas y propiedades de los materiales. También se puede aplicar este ensayo para medir la resistencia de soldaduras, uniones, adhesivos.

Este ensayo es una manera para determinar el comportamiento de materiales sometidos a momento torsor. Los datos del ensayo de torsión se usan para dibujar un diagrama de esfuerzo-deformación unitaria cortante y para determinar el límite elástico del módulo elástico de torsión, el módulo de rotura en torsión y la resistencia a la torsión. La norma que se utiliza para el ensayo de torsión es la (ASTM E-143) [19].

1.6.4.1.Torsión

Torsión hace referencia a un desplazamiento circular de una sección transversal de un elemento cuando es sometido a momento torsor o a una fuerza que produzca momento torsor alrededor del eje, véase en la **figura 31**.

Figura 31. Representación de un par de Torsión [20].

1.6.4.2. Formula de torsión para esfuerzo cortante

La ecuación de torsión indica que el esfuerzo cortante máximo es proporcional al par de torsión [17]. Se desglosa en la **ecuación 1**.

$$\tau_{max} = \frac{T * r}{I_P}$$

Ecuación 1. Formula de torsión [17].

Donde:

 τ_{max} : Esfuerzo cortante máximo ($\frac{N}{m^2} = Pa$)

T: Par de torsión (N.m)

r: Radio (m)

 I_P : Momento polar de Inercia (m^4)

1.6.4.3.Ley de Hooke en corte

La ley de Hooke se tiene con la **ecuación 2**, en la curva de esfuerzo deformación se presenta una región linealmente elástica donde el esfuerzo cortante es directamente proporcional a la deformación unitaria en corte, por lo que se utiliza la siguiente ecuación [17].

$$au = G * \gamma$$

Ecuación 2 Ley de Hooke en corte [17].

Donde:

- τ : Esfuerzo cortante
- G: Modulo de elasticidad de corte
- γ : Deformación unitaria por cortante en radianes

1.6.4.4.Esfuerzo cortante (τ)

Los esfuerzos cortantes son cargas paralelas que actúan de forma tangencial a la superficie del material. Visualizar en la **figura 32**.

Figura 32. Barra circular en Torsion, representación de esfuerzos cortantes [17].

1.6.4.5.Deformación unitaria cortante o distorsión angular (γ)

Es la deformación lateral ocasionada por un esfuerzo cortante, es la medida de la distorsión o cambio del ángulo entre sus caras laterales. En la **figura 33,** los grados y radianes son la unidad de medida de la deformación unitaria cortante, porque esta es un ángulo [20].

Figura 33. Deformaciones de una barra circular en torsión pura [17].

1.6.4.6.Angulo de torsión

Al aplicar un fuerza de torsión conocida como par de torsión T al extremo libre de un eje circular, unido a un soporte fijo en el otro extremo el eje experimentara un giro en su extremo libre y formara un agudo el cual se denomina ángulo de giro o de torsión, al ser la barra circular el ángulo es proporcional al par de torsión aplicado en el eje [17]. Se muestra la fórmula de ángulo de torsión total con la **ecuación 3.**

$$\phi = \frac{T * L}{G * J}$$

Ecuación 3. Angulo de torsión total, formula despejada [21].

Donde:

Ø: Angulo de torsión	G: Modulo de elasticidad de corte
T: Par de torsión	J: Momento de inercia polar

L: Longitud de la barra

1.6.4.7. Momento polar de inercia

La inercia es una propiedad de los materiales a cambiar su movimiento estos pueden ser dirección o velocidad. El momento polar de inercia es el momento de inercia de un área con relación a un eje perpendicular a su plano. También es la cantidad utilizada para pronosticar la resistencia de un elemento a la torsión y se puede obtener con ayuda de la **ecuación 4**.

$$J = \frac{\pi D^4}{32} = \frac{1}{2}\pi r^4$$

Ecuación 4. Momento polar de inercia para ejes circulares [17].

1.6.4.8. Módulo de corte o cizallamiento

El módulo de corte es la relación entre la tensión de corte y la tensión de corte correspondiente por debajo del límite proporcional, también llamado como módulo de torsión y módulo de rigidez. (Ver **figura 34**)

El módulo de cizallamiento es una propiedad de los materiales que se utiliza para calcular los requisitos necesarios de los materiales estructurales en torsión siempre que cumplan con la ley de Hooke, es decir, que el ángulo de giro es proporcional al par torsor aplicado [21].

Figura 34. Diagrama de tensión de esfuerzo cortante [21].

Cuyo diagrama de tensión de esfuerzo cortante corresponde al módulo de esfuerzo cortante, entre R, un esfuerzo pretorque y P, el límite proporcional Formula del módulo de corte para un espécimen de sección transversal circular. La **ecuación 5** muestra la manera de calcular el módulo de corte, con los datos que son necesarios.

$$G = \frac{T * L}{J * \theta}$$

Donde:

G: Modulo de corte o cizallamiento deJ: momento polar de inercia de lala muestra,sección sobre su centro.T: Torque,Θ: Angulo de giro, en radianes.

L: Longitud de calibre,

1.6.4.9. Método de prueba

El método de prueba para el ensayo de torsión se rige a la norma ATM-E143 donde indica que la muestra del ensayo se carga de forma incremental o continua mediante la ampliación de un par torsor externo para generar un giro uniforme en la longitud del medidor, los cambios en el par torsor y en los cambios correspondientes al ángulo de giro se determinan de forma incremental o continua. Luego, la pendiente apropiada se calcula a partir de la curva de esfuerzo cortante-cizallamiento, que se deduce del aumento o disminución del par de torsión. Aumentar del torque previo al máximo o que disminuya del torque máximo al pretorque.

1.6.4.10. Máquinas de torsión

Máquina de prueba de torsión

La máquina de prueba de torsión, que se utilizará para aplicar el par de torsión requerido a la muestra, debe calibrarse para el rango de pares de torsión utilizados en la determinación. Se pueden aplicar correcciones por errores sistemáticos demostrados. En la **ecuación 6** los pares de torsión deben elegirse de modo que traigan el error ΔG en el módulo de corte, debido a los errores en el torque ΔT , dentro de la precisión requerida, esta viene dada por la siguiente ecuación:

$$\frac{\Delta G}{G} = -\frac{\Delta T}{T}$$

Ecuación 6. Error en el módulo de corte G debido a errores en el torque ΔT [21].

Empuñaduras

Las empuñaduras o agarres se pueden cumplir con las especificaciones de la norma AST E8/E8M, los extremos de las muestras deben sujetarse firmemente entre las mordazas de la máquina de ensayos de torsión. Los agarres deben garantizar y mantener la alineación axial para evitar la aplicación de momentos de flexión. Una empuñadura debe estar libre para moverse axialmente y evitar generar fuerzas axiales.

CAPÍTULO II

2. Diseño Experimental

2.1. Procedimientos para Ensayos

2.1.1.Procedimiento de ensayo para Identificación del material

 Poner en marcha el espectrofotómetro de masa atómica y también encender la bomba de argón puro de grado 0.5, en caso de que la máquina no haya sido utilizada por mucho tiempo se la debe encender dos horas antes para que llegue al estado vacío.

Revisar que el soporte de la probeta y la mecha estén limpias para realizar el ensayo de especificación del material.

Colocar la muestra en el soporte de probeta.

Encender el computador, abrir el software y seleccionar el tipo de análisis (Fefreecutting Steel).

Asegurar la muestra para el ensayo.

Presionar el botón de iniciar y esperar que la máquina envié los datos al computador.

Exportar resultados

Revisar y comparar los datos con la ficha técnica del material.

Revisar que la desviación estándar sea menor que 5, esto debe cumplirse según la especificación de la máquina.

2.1.2.Procedimiento ensayo de dureza

El ensayo de dureza se realizó según las especificaciones de norma NTE INEN-ISO 6508-1.

- El ensayo se realizará a la temperatura ambiente entre los límites de 10°C a 35°C.
- Verificar que la máquina esté en condiciones adecuadas para comenzar a realizar una serie de ensayos, revisar que el indentador y el soporte estén correctamente montados en la máquina.
- Se coloca la probeta sobre el soporte rígido, de ser el caso utilizar el soporte tipo v garantizando que la superficie en la que se realizará la huella este completamente perpendicular al eje del indentador.
- Se coloca el indentador en contacto con la superficie de ensayo y se aplica la fuerza preliminar de ensayo *F*0 sin sacudidas, vibraciones u oscilaciones. La duración de la aplicación de la fuerza preliminar de ensayo, *F*0, no debe exceder de 3 s. [15]

NOTA Para las máquinas de ensayo con control electrónico, el tiempo de aplicación de la fuerza preliminar (Ta) y el tiempo de mantenimiento de la fuerza preliminar de ensayo (Tpm) se relacionan por la fórmula siguiente:

$$T_p = \frac{T_a}{2} + T_{pm} \le 3s$$

Ecuación 7. Tiempo total de aplicación de la fuerza preliminar [15].

Donde:

*T*p: Tiempo total de aplicación de la fuerza preliminar de ensayo;

*T*a: Tiempo de aplicación de la fuerza preliminar de ensayo;

*T*pm: Tiempo de mantenimiento de la fuerza preliminar de ensayo.

- En la practica la fuerza F0 tiene un valor de 0 Kgf y F tiene un valor de 50 Kgf
- La fuerza total F se debe mantener durante 5 segundos ± 2 segundos.
- Se registra el dato que proporciona la máquina.
- El valor de la dureza proporcionada por el durómetro está dado por la profundidad que deja el indentador en la superficie, esta profundidad es conocida como huella (h). El valor de dureza Rockwell se ilustra en la figura 23.
- Para realizar la siguiente medida de dureza, verificar que la separación entre huellas adyacentes debe ser mínimo de cuatro veces el diámetro de la huella, pero no menores de 2mm.
- Para la medición de dureza verificar que la distancia entre el borde de la probeta y el centro de la huella debe ser mínimo dos veces y medio el diámetro de la huella, pero no menor de 1mm [15].

2.1.3.Diseño de tratamientos térmicos

2.1.3.1.Tratamiento de temple

Con las probetas de acero AISI/SAE 4140 y el líquido de enfriamiento listo a utilizar se procede con el estudio [6]:

- Previo al inicio del temple se le hace una prueba de dureza al material en fase de suministro.
- Se tiene las probetas según las especificaciones ya establecidas por la máquina de torque que se va a utilizar y limpias antes de ingresar al horno.

- Numerar las probetas para distinguir los resultados a obtener ya que se puede identificar de una mejor manera y detallada el resultado final de cada probeta.
- Se calienta 6 probetas en el horno de una manera que inicie el calentamiento cuando el horno sube la temperatura.
- Cuando el horno alcance la temperatura de 830°C, comienza el tiempo de estabilización el cual será de 40 minutos según especificaciones.
- Después de cumplir el tiempo requerido, se procede a retirar y enfriar las probetas en aceite de una manera uniforme para todas las probetas.
- A cada probeta se procede a quitar el exceso de aceite y se le da una limpieza apropiada para el siguiente procedimiento.
- Se realiza la medición de dureza para identificar la variación de la dureza del material en estado de suministro.
- Se repite los pasos para el temple a 860° para las 6 probetas restantes.

2.1.3.2. Tratamiento de revenido

Con las probetas realizadas el previamente el temple se procede a realizar el revenido [8]:

- Se calienta la probeta dentro del horno de una manera paralela a la del horno.
- Cuando se llegue a una temperatura de 500° se procede a tomar el tiempo de una hora la cual será la duración del revenido.
- Cuando se cumple el tiempo se procede a dejar las probetas en enfriamiento dentro del horno.
- Ya fría la probeta se procede a darle una limpieza y prepararla para el siguiente proceso.
- Se mide la dureza del material y se procede a comparar resultados obtenidos.

2.1.4. Procedimiento ensayo de tracción

La máquina universal de ensayos se la debe calibrar y programar con el software según los parámetros establecidos. Para la correcta utilización de la máquina se debe tener claro los siguientes conceptos:

2.1.4.1.Deformaciones elásticas

En esta zona la deformación no es permanente y se reparten a lo largo de la probeta, al retirar la fuerza aplicada, la probeta recupera su forma original. La Ley de Hooke se puede visualizar en la **ecuación 8**, se aplica solamente a la zona elástica de los

materiales, donde resulta que el esfuerzo axial (σ) es directamente proporcional a la deformación unitaria axial (ϵ) y que la constante de proporcionalidad entre los dos es el módulo de elasticidad (E).

$$\sigma = E * \varepsilon$$

Ecuación 8. Ley Hooke [17].

2.1.4.2. Deformaciones plásticas

En esta zona la deformación es permanente, si se retira la carga aplicada en dicha zona, la probeta recupera sólo parcialmente su forma quedando deformada permanentemente.

2.1.4.3.Fluencia o cadencia

Es la deformación brusca de la probeta sin incremento en la fuerza de tensión aplicada.

2.1.4.4.Estricción

Zona donde se puede observar que la curva de tensión deformación comienza a descender, las deformaciones se centralizan en la probeta y esto provoca una visible reducción del área transversal de la probeta. Esto se mantiene hasta que la probeta llega a la rotura en esta zona. Véase en la **figura 25** [17].

2.1.4.5.Porcentaje de elongación

La diferencia entre la longitud final menos la longitud inicial dividido para la longitud inicial por el cien por ciento es el porcentaje de elongación de una probeta sometida a tensión, con este ensayo obtenemos el valor de la ductilidad de un material. ver **ecuación 9**.

% *de elongacion* =
$$\frac{lf - lo}{lo} * 100\%$$

Ecuación 9. Porcentaje de alargamiento o elongación [17].

2.1.4.6.Porcentaje de reducción de Área

El porcentaje de reducción de área igualmente da una idea sobre la ductilidad del material. La diferencia entre en área final y el área inicial dividido para el área inicial por el cien por ciento es el porcentaje de reducción de área. ver **ecuación 10**.

% de reduccion de area =
$$\frac{A_o - A_f}{A_o} * 100\%$$

Ecuación 10. porcentaje de reducción de área [17].

- Medir y comprobar las dimensiones del espécimen según las especificaciones del diseño de la probeta. Este procedimiento se debe hacer utilizando un calibrador pie de rey. Todas las medidas tomadas se expresarán en milímetros (mm) utilizando el sistema métrico.
- Marcar la longitud de calibre de la muestra de ensayo, la longitud del calibre debe cumplir con las especificaciones del producto para determinar el alargamiento.
- Colocar la máquina de prueba en cero de tal manera que la muestra y la máquina indiquen el mismo punto de inicio.
- La probeta debe ser agarrada debidamente en los dispositivos de agarre de la máquina universal.
- Ingresar el diámetro y la longitud de calibre de la probeta en software de la máquina de tracción.
- Colocar el extensómetro en la probeta.
- Iniciar el ensayo.
- Determinar el alargamiento.
- Determinar la reducción de área, esto debe ser la sección transversal mínima en la ubicación de la fractura.
- Recolección de datos suministrados por la máquina.
- Análisis de datos.

2.1.5.Procedimiento ensayo de torsión

- Medir las dimensiones de espécimen como diámetro y longitud de la sección reducida. Este procedimiento se debe hacer utilizando un calibrador pie de rey para medir el diámetro y una regla para medir la longitud de la probeta en caso de que no se pueda realizar la medición con el calibrador. Para tomar las medidas del espécimen de torsión se utilizará el sistema métrico internacional (SI) expresado en milímetros (mm).
- Trazar una línea a lo largo de la sección cilíndrica reducida.

- Fijar y alinear axialmente el espécimen en la máquina de torsión, asegurándose que la probeta quede bien sujeta en los mandriles.
- Calibrar la máquina en cero.
- Realizar mediciones simultaneas de torque y Angulo de giro registrando periódicamente los datos.
- Mantener la velocidad de prueba lo suficientemente alta para hacer que la fluctuación sea insignificante.
- Interpretar resultados.

2.2.Diseño de probetas

2.2.1.Diseño de probeta para ensayo de tracción

El espécimen de prueba será diseñado según las especificaciones de la norma ASTM E8/E8M.

El espécimen redondo estándar tiene un diámetro de 12.5mm (0.5 in), la longitud mínima de la sección paralela reducida es de 56mm (2.25 in), el radio mínimo de filete es de 10mm (0.375 in) y la longitud de calibre es de 50mm (2in).

El estrechamiento gradual de la probeta entre los extremos hacia el centro no puede exceder el 1% del diámetro que el centro, esto se conoce como sección paralela reducida.

Se puede aumentar la distancia de la sección paralela reducida, esto con el fin de acomodar el extensómetro del calibre que se tenga. Sin embargo, las marcas de referencia para calibrar la elongación deben cumplir con lo especificado en la norma.

Figura 35. Espécimen redondo estándar para ensayo de tracción [16].

La longitud del calibre y los filetes deben cumplir con las especificaciones que muestra en **figura 35**, pero los extremos pueden ser de cualquier forma para que se ajusten a los soportes de la máquina de prueba de tal manera que la fuerza sea axial (vea **figura 36**). Si los extremos se sostienen en agarres de cuña, es deseable, si es posible, hacer que la longitud de la sección de agarre sea lo suficientemente grande como para permitir que la muestra se extienda en los agarres una distancia igual a dos tercios o más de la longitud de los agarres [16].

For Test S	pecimens with Gaug	e Length Four times	the Diameter [E8]		
	Specimen 1	Specimen 2	Specimen 3	Specimen 4	Specimen 5
G-Gauge length	50 ± 0.1	50 ± 0.1	50 ± 0.1	50 ± 0.1	50 ± 0.1
	[2.000 ± 0.005]	[2.000 ± 0.005]	[2.000 ± 0.005]	[2.000 ± 0.005]	[2.000 ± 0.005]
D-Diameter (Note 1)	12.5 ± 0.2	12.5 ± 0.2	12.5 ± 0.2	12.5 ± 0.2	12.5 ± 0.2
	[0.500 ± 0.010]	[0.500 ± 0.010]	[0.500 ± 0.010]	[0.500 ± 0.010]	[0.500 ± 0.010]
R—Radius of fillet, min	10 [0.375]	10 [0.375]	2 [0.0625]	10 [0.375]	10 [0.375]
A-Length of reduced parallel section	56 [2.25]	56 [2.25]	100 [4]	56 [2.25]	56 [2.25]
	min	min	approximate	min	min
L-Overall length, approximate	145 [5]	155 [5.5]	155 [5.5]	140 [4.75]	255 [9.5]
B-Length of end section (Note 3)	35 [1.375]	25 [1]	20 [0.75]	15 [0.5]	75 [3]
о (, , ,	approximate	approximate	approximate	approximate	min
C-Diameter of end section	20 [0.75]	20 [0.75]	20 [0.75]	22 [0.875]	20 [0.75]
E-Length of shoulder and fillet section, approximate		15 [0.625]		20 [0.75]	15 [0.625]
F-Diameter of shoulder		15 [0.625]		15 [0.625]	15 [0.625]
For Test Sp	Dimer ecimens with Gaug	nsions, mm [in.] e Length Five times t	the Diameter [E8M]		
	Specimen 1	Specimen 2	Specimen 3	Specimen 4	Specimen 5
G-Gauge length	62.5 ± 0.1	62.5 ± 0.1	62.5 ± 0.1	62.5 ± 0.1	62.5 ± 0.1
	[2.500 ± 0.005]	[2.500 ± 0.005]	[2.500 ± 0.005]	[2.500 ± 0.005]	[2.500 ± 0.005]
D-Diameter (Note 1)	12.5 ± 0.2	12.5 ± 0.2	12.5 ± 0.2	12.5 ± 0.2	12.5 ± 0.2
	[0.500 ± 0.010]	[0.500 ± 0.010]	[0.500 ± 0.010]	[0.500 ± 0.010]	[0.500 ± 0.010]
R-Radius of fillet, min	10 [0.375]	10 [0.375]	2 [0.0625]	10 [0.375]	10 [0.375]
A—Length of reduced parallel section	75 [3]	75 [3]	75 [3]	75 [3]	75 [3]
	min	min	approximate	min	min
L—Overall length, approximate	145 [5]	155 [5.5]	155 [5.5]	140 [4.75]	255 [9.5]
B-Length of end section (Note 3)	35 [1.375]	25 [1]	20 [0.75]	15 [0.5]	75 [3]
	approximate	approximate	approximate	approximate	min
C-Diameter of end section	20 [0.75]	20 [0.75]	20 [0.75]	22 [0.875]	20 [0.75]
E-Length of shoulder and fillet section, approximate		15 [0.625]		20 [0.75]	15 [0.625]
E_Diameter of shoulder		15 [0 625]		15 [0 625]	15 [0 625]

Las dimensiones finales de la probeta se pueden visualizar en anexo 10.

2.2.2.Diseño de probeta para ensayo de torsión

El espécimen de prueba se debe diseñar según las especificaciones de la norma ASTM E143 y según requerimientos de la máquina a utilizar.

La muestra será de forma cilíndrica solidas deben ser rectas y de diámetro uniforme para una longitud igual a la longitud del calibre más al menos cuatro diámetros exteriores.

La longitud de calibre debe ser de al menos cuatro diámetros. La longitud de la muestra debe ser suficiente para una longitud libre entre los agarres igual a la longitud del calibre más dos a cuatro diámetros, a menos que se especifique lo contrario en la

especificación del producto. Sin embargo, la relación entre la longitud libre y el diámetro no debe ser tan grande que la torsión helicoidal del eje de la muestra tenga lugar antes de que se complete la determinación [21].

Las dimensiones de la probeta también deben regirse a las especificaciones de la máquina de ensayo que se utilizara ver **anexo 10**.

CAPÍTULO III

3. Análisis de resultados de los ensayos

3.1.Situación Actual del mejoramiento en propiedades del Material AISI/SAE 4140 en Ecuador.

En Ecuador el acero AISI/SAE 4140 se lo encuentra en la construcción de partes y piezas automotrices, motorreductores, árbol de transmisión, ejes, bielas, pernos, pines, émbolos, ejes de bombas, cigüeñales, entre otros. Como se tiene en cuenta, este acero se lo usa de manera amplia en la industria gracias a sus buenas propiedades mecánicas [6].

Se tiene empresas que destacan por la distribución del acero AISI/SAE 4140 como es Bluesteelcorp. S.A., Iván Bohman, Bohler, entre otros. Bohler indica que no hace un seguimiento a las piezas que son tratadas, pero garantiza los requerimientos del cliente con certificado ISO 9001:2000 a excepción de aceros de origen desconocido [22], en el país Bohler es el que ofrece una amplia variedad de tratamientos térmicos como es el forjado, recocido, normalizado, distensionado, temple, revenido y nitruración, mientras que Bluesteelcorp e Iván Bohman indican que para este acero hacen recocido, temple y revenido, teniendo en cuenta que cada empresa tiene su rango de temperaturas específico para cada tratamiento térmico. Ver **Anexo 1, 2 y 3.**

Para ensayos de torsión se utiliza la norma ASTM E143 (Standard Test Methods for Torsion testing of Metalic Materials), el acero AISI/SAE 4140 es un acero especial que se suministra en estado bonificado cuya aleación cromo – molibdeno obtiene alta resistencia a la tracción y a la torsión [23].

En un ensayo del acero AISI/SAE 4140 sometido a tracción y torsión con tratamiento térmico de temple se llegó a la conclusión bajo la Ley de Hooke y el coeficiente de Poisson que tuvo un comportamiento de material frágil, además que en el ensayo de torsión las probetas fallaron en el extremo debido al mecanizado ya que la zona que ingresa en la máquina y el eje central era muy pronunciado [23].

3.2. Identificación de material

3.2.1. Ensayo espectrofotométrico en estado de suministro

Para el ensayo de espectrofotometría se usó el espectrofotómetro FOUNDRY-MASTER Xpert la cual permite identificar la composición química que contiene el material de estudio, con este ensayo se puede verificar si el acero cumple con las características de la ficha técnica suministrada por el proveedor que en este caso es Bohler.

Como se puede observar en la **tabla 9**, los datos obtenidos por el ensayo espectrofotométrico son los mismos según la ficha técnica, con el fin de tener los mismos elementos de comparación. Del mismo modo en la **tabla 10** se puede visualizar el resultado promedio de cada elemento químico, la desviación estándar (S.D.) que se encuentra menor al 5% de cada elemento lo cual resulta ser fiable dentro del ensayo y también se tiene un error residual de la desviación estándar.

Ensayo Espectrofotométrico							
Elementos químicos de las pobretas previo al tratamiento térmico							
Elemento		Probeta: AISI/SAE 4140					
Químico:	c: Carbono (C) Silicio (Si) Manganeso (Mn) Cromo (Cr) Molibder						
Ensayo 1	0,417	0,235	1,020	0,971	0,209		
Ensayo 2	0,413	0,230	1,010	0,975	0,208		
Ensayo 3	0,408	0,232	1,020	0,972	0,207		
Ensayo 4	0,410	0,231	1,030	0,985	0,211		
Ensayo 5	o 5 0,413 0,226 1,040 0,984 0						
Promedio:	0,412	0,231	1,020	0,977	0,208		

Tabla 9. Muestras del ensayo espectrofotométrico.

Tabla 10. Resultados obtenidos del ensayo espectrofotométrico.

Resultados de Ensayo Espectrofotométrico						
Elementos químicos de las pobretas previo al tratamiento térmico						
Probeta: AISI/SAE 4140						
Elemento Químico Promedio S.D. R.S.D.						
Carbono (C)	0,412	0,0035	0,9			
Silicio (Si)	0,231	0,0035	1,5			
Manganeso (Mn)	1,020	0,0110	1,1			
Cromo (Cr)	0,977	0,0066	0,7			
Molibdeno (Mo)	0,208	0,0017	0,8			

Con la identificación del material después de realizar el ensayo de espectrofotometría se puede visualizar en la **tabla 11** que la diferencia entre los resultados adquiridos en el ensayo y los obtenidos por el proveedor no tienen una variación significativa, lo cual permite decir que el material es el acero AISI/SAE 4140.

 Tabla 11. Comparación de resultados entre ensayo espectrofotométrico y ficha técnica entregada por proveedor Bohler.

Ficha técnica del materi	al suministrado por BOHLEF	comparado con Ensavo
	Espectrofotométrico	I man i j
	Probeta: AISI/SAE 4140	
Elemento Químico	Especificación del proveedor (%)	Ensayo Espectrofotométrico (%)
Carbono (C)	0,41	0,412
Silicio (Si)	0,30	0,231
Manganeso (Mn)	0,70	1,020
Cromo (Cr)	1,10	0,977
Molibdeno (Mo)	0,20	0,208

En la **figura 37** se marca la serie 1 como los elementos químicos que entrega el proveedor en la ficha técnica, mientras en la serie 2 muestra los resultados obtenidos en el ensayo de espectrofotometría.

Figura 37. Gráfico comparativo de propiedades químicas del acero AISI/SAE 4140 obtenidos de la tabla 11.

3.2.2.Ensayo de dureza en estado de suministro

El ensayo de dureza se realizó a las 12 probetas en estado de suministro para lo cual se tomó 5 datos de cada probeta en la escala Rockwell (HRC), obteniendo un valor promedio resultante. Ver en **tabla 12**.

Dureza: En estado de suministro previo al temple de 830°C y 860°C						
Carga: 150 Kgf						
		Tiempo por	probeta: 5 s			Valor
	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5	Promedio
Probeta 1	28,6	30,1	29,2	29,9	30,2	29,6
Probeta 2	29,6	29,8	29,6	30,2	29,9	29,8
Probeta 3	29,7	29,6	30,1	30,2	29,6	29,8
Probeta 4	29,8	30,1	30,2	29,8	30,2	30,0
Probeta 5	30,8	31,2	30,5	30,4	31,1	30,8
Probeta 6	30,4	31,5	31,2	30,4	32,1	31,1
Probeta 7	28,6	29,5	29,6	30,3	30,6	29,7
Probeta 8	30,1	31,7	31,2	30,1	30,9	30,8
Probeta 9	29,1	30,6	31,5	30,9	30,7	30,6
Probeta 10	30,7	32,2	31,3	31,8	32,3	31,7
Probeta 11	28,7	32,3	30,5	30,6	30,4	30,5
Probeta 12	30,5	29,8	30,3	30,7	31,4	30,5
					Promedio total:	30,4

Tabla 12. Ensayo de dureza en probetas en estado de suministro.

La ficha técnica del acero AISI/SAE 4140 indica que la dureza del material en estado de suministro se encuentra en un rango de 250 a 350 HB (dureza Brinell), lo cual en HRC es un rango entre 24 a 38 HRC. Los resultados obtenidos en las probetas se encuentran dentro del rango que indica el proveedor por lo que se identifica a las probetas como AISI/SAE 4140.

3.2.3. Ensayo de tracción en estado de suministro

Para la ejecución del ensayo se empleó la máquina universal de ensayos de tensión (TESTRESOURCES) perteneciente a la Universidad Politécnica Salesiana, a las probetas de sección circular diseñadas según la norma ASTM E8/E8M, mediante el cual se obtiene los siguientes datos, el esfuerzo máximo, módulo de elasticidad y el esfuerzo de fluencia. Ver **tabla 14** de datos obtenidos.

PROPIEDADES MECÁNICAS							
	Límite de	Resistencia a	Elengosión	Reducción			
Diámetro (mm)	fluencia	iencia la tracción N/mm2 min		de área			
	N/mm2 min	N/mm2	N/IIIIIZ IIIII.	N/mm2			
≤ 16	900	1100-1300	10	40			
$\leq 16 \leq 40$	750	1100-1200	11	45			
$\leq 40 \leq 100$	650	900-1100	12	50			
$\leq 100 \leq 160$	$\leq 100 \leq 160$ 550		13	60			
$\leq 160 \leq 250$	500	750-900	14	55			

Tabla 13. Propiedades mecánicas en estado de suministro.

PROPIEDADES MECÁNICAS								
	Carga	Límite de	Resistencia	Elongación	Reducción			
Probeta	máxima	fluencia a la tracción		N/mm2	de área			
	Ν	N/mm2 min	N/mm2	min.	N/mm2			
1	123695,63	694,93	1074,84	10,89	30,33			
2	119483,77	725,08	1039,08	10,89	30,33			
3	125450,36	736,15	1022,26	7,69	33,41			
Promedio	122876,59	718,72	1045,39	9,82	31,36			

Tabla 14. Propiedades mecánicas obtenidas en el ensayo de tracción.

En la **tabla 14** se puede observar los valores obtenidos en el ensayo de tracción y como resultado se obtuvieron valores que están mínimamente por debajo de las especificaciones del proveedor, ver **tabla 13**. Al realizar la comparación de los resultados obtenidos de la prueba de tensión se puede observar que el límite de fluencia, las resistencias a la tracción son aceptables.

Figura 38. Diagrama de tensión-esfuerzo Probeta 1.

Figura 39. Diagrama de tensión-esfuerzo Probeta 2.

Figura 40. Diagrama de tensión-esfuerzo Probeta 3.

3.2.4. Ensayo de torsión en estado de suministro

En las **tablas** (**15-17**) se puede observar los valores obtenidos en el ensayo que son el ángulo de torsión y el torque con estos valores se calcula el esfuerzo cortante debido a la torsión, la deformación unitaria por corte y la deformación unitaria porcentual para las probetas en estado de suministro. Con los valores del esfuerzo cortante debido a la torsión y la deformación unitaria por corte se obtiene la gráfica de esfuerzo-deformación por torsión. Los datos obtenidos del ensayo fueron tomados periódicamente hasta que la probeta llegue a la falla o rotura.

Probeta 1

Probeta: 1			CALCULO						
Suministro			Momento polar	Esfuerzo cortante	Deformasión	Modulo de	Lev de hooke	Deformasión	
Rango de torque 1500 N*m			de inercia	debido a torsión	unitaria por cortante	cizallamiento	Ley de nooke	unitaria porcentual	
Número de dato	Angulo θ (°)	Angulo θ (rad)	Torsión (N*m)	$J = \frac{\pi * d^4}{32} (m^4)$	$\tau = \frac{T * r}{J} (MPa)$	$\gamma = \frac{\theta * r}{L} \ (rad)$	$G = \frac{T*L}{J^*\theta} \ (\frac{Pa}{rad})$	$\tau = G * \gamma \ (Mpa)$	$\%\gamma=\gamma^*100\%$
1	0,2	0,003	84	6,43E-09	104,445	0,0002	561026475832,085	104,445	0,019
2	0,4	0,007	156	6,43E-09	193,970	0,0004	520953156129,793	193,970	0,037
3	0,6	0,010	192	6,43E-09	238,732	0,001	427448743491,112	238,732	0,056
4	0,8	0,014	228	6,43E-09	283,495	0,001	380696537171,772	283,495	0,074
5	1	0,017	270	6,43E-09	335,717	0,001	360659877320,626	335,717	0,093
6	1,2	0,021	350	6,43E-09	435,189	0,001	389601719327,837	435,189	0,112
7	1,4	0,024	422	6,43E-09	524,714	0,001	402641450342,075	524,714	0,130
8	1,6	0,028	500	6,43E-09	621,699	0,001	417430413565,540	621,699	0,149
9	1,8	0,031	580	6,43E-09	721,171	0,002	430417137543,134	721,171	0,168
10	2	0,035	584	6,43E-09	726,144	0,002	390046978435,640	726,144	0,186
11	2,2	0,038	585	6,43E-09	727,388	0,002	355195333724,859	727,388	0,205
12	2,4	0,042	586	6,43E-09	728,631	0,002	326152296465,875	728,631	0,223
13	2,6	0,045	586	6,43E-09	728,631	0,002	301063658276,192	728,631	0,242
14	3	0,052	588	6,43E-09	731,118	0,003	261812355388,306	731,118	0,279
15	4	0,070	588	6,43E-09	731,118	0,004	196359266541,230	731,118	0,372
16	5	0,087	590	6,43E-09	733,605	0,005	157621724162,348	733,605	0,465
17	6	0,105	592	6,43E-09	736,092	0,006	131796695909,760	736,092	0,559
18	7	0,122	594	6,43E-09	738,578	0,007	113350247157,911	738,578	0,652
19	8	0,140	595	6,43E-09	739,822	0,007	99348438428,598	739,822	0,745
20	10	0,175	596	6,43E-09	741,065	0,009	79612328475,220	741,065	0,931
21	12	0,209	597	6,43E-09	742,309	0,011	66454921839,634	742,309	1,117
22	14	0,244	598	6,43E-09	743,552	0,013	57056774242,787	743,552	1,303
23	16	0,279	598	6,43E-09	743,552	0,015	49924677462,439	743,552	1,489
24	18	0,314	598	6,43E-09	743,552	0,017	44377491077,723	743,552	1,676
25	20	0,349	598	6,43E-09	743,552	0,019	39939741969,951	743,552	1,862
26	25	0,436	599	6,43E-09	744,795	0,023	32005224668,89/	744,795	2,327
2/	30	0,524	599	6,43E-09	744,795	0,028	266/102055/,414	744,795	2,793
28	50	0,611	600	6,43E-09	/46,039	0,033	22899039829,881	/46,039	3,238
29	40	0,098	000	0,43E-09	740,039	0,037	20030039831,140	740,039	3,/23
30	50	0,8/3	601	0,43E-09	740,039	0,047	1002952/880,91/	740,039	4,004
21	00	1,04/	601	0,43E-09	747,282	0,030	11469602449,122	747,282	2,282
22	/0	1,222	601	0,43E-09	747,282	0,005	10025007140,152	747,282	0,010
24	80	1,590	601	0,43E-09	747,282	0,074	002002/142,110	747,282	/,44/
25	90	1,071	601	0,43E-09	747,282	0,084	720024120,523	747,282	0,5/0
20	110	1,920	602	6.43E-09	747,282	0,102	7210244000 115	747,282	10,239
20	110	1,920	602	6.43E-09	748,320	0,102	6701140573 420	746,320	10,239
20	120	2,094	602	6.43E-09	748,520	0,112	57/38/12/00 663	748,320	11,1/0
20	140	2,443	602	6.43E-09	748,520	0,130	5025862170 220	748,520	13,032
39	100	2,/95	602	6 43E-09	748,520	0,149	1467432049 202	740,520	14,095
40	200	3,142	602	6 43E-09	748,520	0,108	4407433048,293	740,520	10,/33
41	200	3,491	602	6.43E-09	748,520	0,180	3655172404.059	740,520	20,470
1 74	440	5,040	002	0,4512-02	/=0,J20	0,205	5055112454,050	/=0,520	20,417

Tabla 15. Probeta 1 en estado de suministro.

Figura 41. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en probeta 1.
	Prob	eta: 2		CALCULO							
	Sumi	nistro		Momento polar	Esfuerzo	Deformasión	Modulo de	Leu de booke	Deformasión		
	Rango de to	rque 1500 N°m)	de inercia	cortante debido	unitaria por	cizallamiento	Ley de nooke	unitaria		
Número de dato	Angulo 8 (1)	Angulo 8 (rad)	Torsión (N°m)	$J = \frac{\pi * d^4}{32} (m^4)$	$\tau = \frac{T * r}{J} (MPa)$	$\gamma = \frac{\theta + r}{L}$ (rad)	$G = \frac{T * L}{J * \theta} \left(\frac{MP \alpha}{rad} \right)$	$\tau = G * \gamma \ (Mpa)$	$\%\gamma=\gamma^*100\%$		
1	0,2	0,003	20	6,43E-03	24,868	0,0002	133577732340,973	24,868	0,019		
2	0,4	0,007	35	6,43E-03	43,519	0,0004	116880515798,351	43,519	0,037		
3	0,6	0,010	50	6,43E-09	62,170	0,001	111314776950,811	62,170	0,056		
4	0,8	0,014	70	6,43E-03	87,038	0,001	116880515798,351	87,038	0,074		
6	12	0,011	105	6,43E-03	130 557	0,001	116880515798.351	130 557	0,033		
7	1.4	0.024	120	6,43E-03	149,208	0.001	114495199149.405	149,208	0,130		
8	1,6	0,028	137	6,43E-03	170,346	0,001	114375933316,958	170,346	0,143		
9	1,8	0,031	155	6,43E-09	192,727	0,002	115025269515,838	192,727	0,168		
10	2	0,035	170	6,43E-09	211,378	0,002	113541072489,827	211,378	0,186		
11	2,2	0,038	185	6,43E-03	230,029	0,002	112326729468,545	230,029	0,205		
12	2,4	0,042	200	6,43E-09	248,680	0,002	111314776950,811	248,680	0,223		
13	2,6	0,045	210	6,43E-09	261,114	0,002	107889706890,786	261,114	0,242		
14	2,0	0,043	222	6,43E-03	210,034	0,003	105306053213,200	210,034	0,201		
16	3.2	0,052	250	6.43E-03	310.843	0,003	104357603391.385	310.843	0,210		
17	3,4	0,059	260	6,43E-03	323,283	0,003	102147677672,508	323,283	0,316		
18	5	0,087	315	6,43E-09	391,670	0,005	84153971374,813	391,670	0,465		
19	6	0,105	365	6,43E-09	453,840	0,006	81259787174,092	453,840	0,559		
20	7	0,122	400	6,43E-09	497,359	0,007	76330132766,270	497,359	0,652		
21	8	0,140	430	6,43E-09	534,661	0,007	71798031133,273	534,661	0,745		
22	10	0,175	470	6,43E-03	584,397	0,009	62781534200,257	584,337	0,931		
23	12	0,203	430	6,43E-03 6,43E-09	610,402	0,011	00100014000,001 48660459638497	610,402	1,111		
24	16	0,244	520	6.43E-03	646 567	0,015	43412763010 816	646 567	1,000		
26	18	0,210	530	6,43E-03	659.001	0,015	39331221189,286	659.001	1.676		
27	20	0,349	535	6,43E-09	665,218	0,019	35732043401,210	665,218	1,862		
28	25	0,436	555	6,43E-03	690,086	0,023	23654256573,636	630,086	2,327		
29	30	0,524	565	6,43E-09	702,520	0,028	25157139590,883	702,520	2,793		
30	35	0,611	575	6,43E-09	714,954	0,033	21944913170,303	714,954	3,258		
31	40	0,698	582	6,43E-03	723,658	0,037	19435560055,612	723,658	3,723		
32	45	0,005	590	6,43E-03	733,605	0,042	1/513524306,328	733,605	4,183		
34	50	0,013	600	6,43E-03	746.033	0,041	14572116255.379	746.039	4,034		
35	60	1.047	604	6.43E-03	751.012	0,056	13446825055.658	751.012	5,585		
36	65	1,134	617	6,43E-03	767,177	0,061	12679609362,212	767,177	6,050		
37	70	1,222	622	6,43E-09	773,394	0,065	11869335645,155	773,394	6,516		
38	75	1,303	628	6,43E-09	780,854	0,070	11184908788,017	780,854	6,981		
39	80	1,396	632	6,43E-09	785,828	0,074	10552640854,937	785,828	7,447		
40	90	1,571	637	6,43E-03	792,045	0,084	9454335055,689	792,045	8,378		
41	100	1,745	640	6,43E-03	735,775	0,093	3548374853,822	735,775	9,308		
42	110	1,320	640	6,43E-03 6,43E-09	803,505	0,102	7190934591.022	803,235	10,233		
40	140	2,004	643	6.43E-03	806,365	0,120	6192282020.664	806,365	13.032		
45	160	2,793	652	6,43E-03	810,695	0,149	5443292592,895	810,635	14,893		
46	180	3,142	654	6,43E-09	813,182	0,168	4853324275,055	813,182	16,755		
47	200	3,491	660	6,43E-03	820,643	0,186	4408065167,252	820,643	18,617		
48	220	3,840	663	6,43E-09	824,373	0,205	4025547115,548	824,373	20,479		
49	260	4,538	670	6,43E-09	833,077	0,242	3442195410,325	833,077	24,202		
50	280	4,887	673	6,43E-03	836,807	0,261	3210636209,481	836,807	26,064		
51	300	5,235	670 670	6,43E-03	840,531	0,213	3003351568,750	840,531	21,325		
53	340	5,934	685	6.43E-03	851728	0,230	2631138430 987	045,024	20,101		
54	360	6.283	687	6.43E-03	854.214	0,315	2549108392.174	854.214	33,510		
55	40	0.698	690	6.43E-03	857,945	0.037	23042158828.818	857,945	3,723		
56	80	1,396	693	6,43E-03	861,675	0,074	11571171064,037	861,675	7,447		
57	120	2,094	698	6,43E-03	867,832	0,112	7769771431,167	867,832	11,170		
58	160	2,793	700	6.43E-03	870.379	0.143	5844025783,918	870.379	14,893		

Tabla 16. Probeta 2 en estado de suministro.

Figura 42. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en probeta 2.

	Prob	eta: 3		CALCULO							
	Sum	inistro		Momento polar	Esfuerzo	Deformasión	Modulo de		Deformasión		
	Rango de tor	que 1500 N°m		de inercia	cortante debido	unitaria por	cizallamiento	Ley de hooke	unitaria		
Número de	A	Angulo	Torsión	$\pi * d^4$	T * r	0 * r	$c = \frac{T+L}{C} (MPa)$		N		
dato	Angulo e ()	(rad)	(N°m)	$J = \frac{1}{32} (m^*)$	$\tau = - J$ (MPa)	$\gamma = \frac{1}{L}$ (rad)	G - J+B (rad)	$\tau = u * \gamma (Mpa)$	$96y = y^{+100}$		
1	0,2	0,003	20	6,43E-09	24,868	0,0002	133577732340,973	24,868	0,019		
2	0,4	0,007	35	6,43E-09	43,519	0,0004	116880515798,351	43,519	0,037		
3	0,6	0,010	54	6,43E-09	67,143	0,001	120219959106,875	67,143	0,056		
4	0,8	0,014	70	6,43E-09	87,038	0,001	116880515798,351	87,038	0,074		
5	1	0,017	88	6,43E-09	109,419	0,001	117548404460,056	109,419	0,093		
6	1,2	0,021	105	6,43E-09	130,557	0,001	116880515798,351	130,557	0,112		
7	1,4	0,024	122	6,43E-09	151,695	0,001	116403452468,562	151,695	0,130		
8	1,6	0,028	138	6,43E-09	171,589	0,001	115210794144,089	171,589	0,149		
9	1,8	0,031	157	6,43E-09	195,213	0,002	116509466541,848	195,213	0,168		
10	2	0,035	1/4	6,43E-09	216,351	0,002	116212627136,646	216,351	0,186		
10	2,2	0,038	190	6,43E-09	236,246	0,002	115362587021,749	236,246	0,205		
12	2,4	0,042	205	6,43E-03	204,031	0,002	114037040374,301	254,037	0,223		
13	2,0	0,045	21/	6,43E-03	203,017	0,002	109724565051 512	203,017	0,242		
14	2,0	0,043	230	6,43E-03	200,302	0,003	103124303031,313	200,302	0,201		
15	32	0,052	243	6.43E-09	325 770	0,003	109366769354 171	325 770	0,213		
10	3,2	0,050	202	6.43E-09	323,110	0,003	111969569756 404	354 369	0,230		
18	5	0,000	325	6.43E-03	404.104	0,005	86825526021632	404 104	0,510		
10	6	0,001	375	6.43E-09	466 274	300,0	83486082713 108	466 274	0,403		
20	7	0,103	415	6.43E-09	516 010	0,000	79192512745 005	516 010	0,000		
21	8	0,122	445	6.43E-09	553,312	0,007	74302613614.666	553 312	0,002		
22	10	0,175	485	6.43E-09	603.048	0,009	64785200185.372	603.048	0,148		
23	12	0,209	515	6.43E-09	640,350	0.011	57327110129.667	640,350	1 117		
24	14	0.244	530	6.43E-09	659.001	0.013	50568712957.654	659.001	1.303		
25	16	0,279	540	6.43E-09	671,435	0.015	45082484665.078	671,435	1,489		
26	18	0,314	552	6,43E-09	686,356	0,017	40963837917,898	686,356	1,676		
27	20	0,349	558	6,43E-09	693,816	0,019	37268187323,131	693,816	1,862		
28	25	0,436	573	6,43E-09	712,467	0,023	30616016252,551	712,467	2,327		
29	30	0,524	590	6,43E-09	733,605	0,028	26270287360,391	733,605	2,793		
30	35	0,611	602	6,43E-09	748,526	0,033	22975369962,647	748,526	3,258		
31	40	0,698	606	6,43E-09	753,499	0,037	20237026449,657	753,499	3,723		
32	45	0,785	612	6,43E-09	760,960	0,042	18166571598,372	760,960	4,189		
33	50	0,873	616	6,43E-09	765,933	0,047	16456776624,408	765,933	4,654		
34	55	0,960	622	6,43E-09	773,394	0,051	15106427184,743	773,394	5,120		
35	60	1,047	625	6,43E-09	777,124	0,056	13914347118,851	777,124	5,585		
36	65	1,134	629	6,43E-09	782,097	0,061	12926214406,534	782,097	6,050		
37	70	1,222	633	6,43E-09	787,071	0,065	12079243510,262	787,071	6,516		
38	75	1,309	636	6,43E-09	790,801	0,070	11327391702,515	790,801	6,981		
39	80	1,396	639	6,43E-09	794,531	0,074	10669521370,735	794,531	7,447		
40	90	1,571	643	6,43E-09	799,505	0,084	9543386877,249	799,505	8,378		
41	100	1,745	649	6,43E-09	806,965	0,093	8669194828,929	806,965	9,308		
42	100	1,320	002	6,43E-03	010,035	0,102	1311310430,130	010,035	10,233		
43	120	2,034	600	6,43E-03	014,420	0,112	1231111030,210	014,420	11,170		
44	140	2,443	600	6,43E-03	024,313	0,130	6323033133,003 EE7697022E 226	024,313	13,032		
45	190	2,133	672	6,43E-03 6,43E-09	030,530	0,143	4996902007 296	030,530	14,033		
40	200	3 /142	682	6.43E-03	847 997	0,100	4555000672 827	847 997	10,100		
41	200	3,840	684	6.43E-09	850 484	0,100	4153053132 783	850 484	20 479		
49	240	4 189	685	6 43F-09	851 728	0,203	3812531110 565	851 728	22 340		
50	260	4 538	688	6 43F-09	855 458	0,223	3534672301 946	855 458	24 202		
51	280	4,887	692	6.43E-09	860 431	0.261	3301278242 141	860 431	26,064		
52	300	5,236	694	6,43E-09	862.918	0,279	3090098208.155	862.918	27,925		
53	320	5,585	695	6,43E-09	864.162	0,298	2901141374.281	864.162	29,787		
54	340	5.934	698	6.43E-09	867.892	0.316	2742272269.824	867.892	31.649		
55	360	6,283	700	6,43E-09	870,379	0.335	2597344795,519	870,379	33.510		

Tabla 17. Probeta 3 en estado de suministro.

Figura 43. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en probeta 3.

3.2.4.1. Análisis de resultados de las probetas en estado de suministro

De las **tablas** (**15-17**) del ensayo de torsión se obtiene y se calcula los siguientes resultados, torque máximo, un esfuerzo máximo de corte y una deformación unitaria máxima que puede observarse en la **tabla 18**. De la misma manera se analiza los valores máximos de torsión, utilizando la desviación estándar para ratificar que los ensayos realizados son válidos. Ver **figura 44**.

Res	sultados del	ensayo de torsió	n en estado de sumin	istro
PROBETA	Angulo de torsión (°)	Torque máximo (N*m)	Esfuerzo cortante máximo debido a torsión (Mpa)	Deformación unitaria máxima por cortante (rad)
1	220	602	748,53	0,21
2	520	700	870,38	0,15
3	360	700	870,38	0,34
Media	366,67	667,33	829,76	0,23
Desviación estándar	150,11	56,58	70,35	0,10
Mínimo	216,56	610,75	759,41	0,13
Máximo	516,78	723,91	900,11	0,33

Tabla 18. Resultados del ensayo de torsión en estado de suministro.

Figura 44. Diagrama de dispersión de probetas en estado de suministro.

En el diagrama de dispersión de la **figura 44** se puede observar que los valores dentro de los límites de control son más del cincuenta por ciento.

3.3.Análisis de resultados

3.3.1. Análisis de tratamientos térmicos

3.3.1.1.Ensayo de temple

El ensayo de temple se realiza a 830°C llego a tener una duración de 85 minutos los cuales se dividieron en 40 minutos en calentamiento del horno, 40 minutos de permanencia en temple y al ser enfriada en aceite la duración fue de 5 minutos, esto se puede ver en la gráfica de la **figura 45**.

Figura 45. Gráfica del tratamiento térmico de temple a 830°C y 40 minutos.

Con un temple a 860°C el tiempo del ensayo aumenta a diferencia del temple anterior, este tiene una duración de 94 minutos en lo cual 47 minutos se demora en llegar a 860°C, el tiempo de permanencia del temple 40 minutos y el enfriamiento en aceite con un tiempo de 7 minutos como se visualiza en la **figura 46**.

Figura 46. Gráfica del tratamiento térmico de temple a 860°C y 40 minutos.

3.3.1.2.Ensayo de revenido

El ensayo de revenido se realiza a la temperatura de 500°C para las probetas templadas a 830°C y 860°C, como indica la gráfica de la **figura 47**, el tiempo de estabilización de temperatura es 25 minutos llegar a 500°C para iniciar el revenido con un tiempo de permanencia de 60 minutos, como se puede visualizar, el enfriamiento es al aire libre por lo que no se tiene un tiempo determinado en el cual las probetas hayan llegado a la temperatura ambiente.

Figura 47. Gráfico de revenido a 500°C al pasar el tiempo en minutos.

3.3.2.Análisis de ensayo de dureza en probetas tratadas por temple y revenido 3.3.2.1.Ensayo de dureza con temple a 830°C y revenido a 500°C

Con los datos tomados en estado de suministro y después del tratamiento térmico de temple a una temperatura de 830°C con un tiempo de calentamiento de 40 minutos, tiempo de temple de 40 minutos y tiempo de enfriamiento de 5 minutos se procede a realizar el ensayo de dureza con una carga de 150 Kgf y utilizando un indentador tipo

v, con toma de datos de la misma forma que se hizo con las probetas en estado de suministro. Los datos se verifican en la **tabla 19**.

Ensayo de dureza HRC después del Temple a 830°C												
	Ensayo 1	Ensayo 2	Ensayo 3	Ensayo 4	Ensayo 5	Valor Promedio						
Probeta 1 44,0 45,6 46,4 47,0 43,7 45,3												
Probeta 2	45,2	45,7	43,8	43,7	44,4	44,6						
Probeta 3	44,4	43,9	43,8	43,1	44,0	43,8						
Probeta 4	44,1	46,9	46,4	45,2	46,4	45,8						
Probeta 5 46,0 44,2 47,0 46,8 46,7 46												
Probeta 6	40,0	42,4	42,3	42,8	40,0	41,5						

Tabla 19. Ensayo de dureza para probetas después del temple a 830°C.

Las probetas seleccionadas se las vuelven a realizar los ensayos de dureza después de haber recibido el temple a 830°C y revenido a 500°C con un tiempo de calentamiento de 25 minutos y tiempo de revenido de 60 minutos obteniendo como resultado final los valores que se muestran en la **tabla 20**.

Tabla 20. Ensayo de dureza para probetas después del temple a 830°C y revenido a 500°C.

Ensayo de dureza HRC después del Temple a 830°C y revenido a 500°C												
	Ensayo 1	Ensayo 2	Ensayo 3	Ensayo 4	Ensayo 5	Valor Promedio						
Probeta 1 32,1 32,3 31,3 32,3 33,1 32,2												
Probeta 2	32,5	34,5	34,5	35,1	35,5	34,4						
Probeta 3	32,5	36,1	34,6	34,6	34,4	34,4						
Probeta 4	35,4	35,5	36,8	34,4	35,9	35,6						
Probeta 5	35,1	35,9	34,6	34,7	37,0	35,5						
Probeta 6	35,0	36,3	34,4	34,5	36,2	35,3						

En las 6 probetas se puede visualizar que al realizar el temple la dureza aumenta considerablemente, pero con el revenido que ayuda a mantener las propiedades obtenidas en el temple, la dureza desciende, recuperando la ductilidad del material. Se puede ver en las **figuras (48-53)** las cuales corresponden a cada probeta individualmente.

Figura 48. Comparación de dureza de la probeta 1 al pasar de suministro a temple y finalizar con revenido.

Figura 49. Comparación de dureza de la probeta 2 al pasar de suministro a temple y finalizar con revenido.

Figura 50. Comparación de dureza de la probeta 3 al pasar de suministro a temple y finalizar con revenido.

Figura 51. Comparación de dureza de la probeta 4 al pasar de suministro a temple y finalizar con revenido.

Figura 52. Comparación de dureza de la probeta 5 al pasar de suministro a temple y finalizar con revenido.

Figura 53. Comparación de dureza de la probeta 6 al pasar de suministro a temple y finalizar con revenido.

3.3.2.2.Ensayo de dureza con temple a 860°C y revenido a 500°C

En la **tabla 21** se presenta los datos del ensayo de dureza después del temple a 860°C en el cual se ve un aumento considerable de dureza en cada probeta con una similitud considerable a las probetas tratadas con temple a 830°C, revisar en **tabla 19**.

	Ensayo de dureza HRC después del Temple a 860°C											
	Ensayo 1	Ensayo 2	Ensayo 3	Ensayo 4	Ensayo 5	Valor Promedio						
Probeta 1 46,6 44,6 45,9 44,2 40,1 44,												
Probeta 2	44,7	46,9	45,3	45,7	45,2	45,6						
Probeta 3	45,3	48,2	43,2	39,2	44,2	44,0						
Probeta 4	42,9	46,5	43,6	47,7	48,5	45,8						
Probeta 5	45,6	43,3	43,3	46,2	45,8	44,8						
Probeta 6	46,2	45,0	45,6	45,8	46,9	45,9						

Tabla 21. Ensayo de dureza para probetas después del temple a 860°C.

A diferencia del ensayo con temple a 830°C se puede observar en la **tabla 22** que la dureza después del temple a 860°C y revenido a 500°C, se obtiene una dureza promedio de 45,07 HRC similar a la de estado de suministro, pero con diferentes propiedades mecánicas.

Tabla 22. Ensayo de dureza para probetas después del temple a 860°C y revenido a 500°C.

En	Ensayo de dureza HRC después del Temple a 860°C y revenido a 500°C											
	Ensayo 1	Ensayo 2	Ensayo 3	Ensayo 4	Ensayo 5	Valor Promedio						
Probeta 1	27,1	26,6	30,6	31,2	30,4	29,2						
Probeta 2	29,7	31,0	30,0	31,2	30,5	30,5						
Probeta 3	33,2	31,3	30,8	29,8	29,6	30,9						
Probeta 4	30,6	31,3	31,4	32,3	31,2	31,4						
Probeta 5	31,4	31,9	31,6	31,6	31,5	31,6						
Probeta 6	31,4	31,6	31,7	31,9	31,5	31,6						

En el caso de las 6 probetas tratadas con un temple a 860°C y revenido a 500°C se puede verificar en cada una de las gráficas que la dureza promedio obtenida es de 30.87 HRC. Visualizar en las **figuras (54-59).**

Figura 54. Comparación de dureza de la probeta 1 al pasar de suministro a temple y finalizar con revenido.

Figura 55. Comparación de dureza de la probeta 2 al pasar de suministro a temple y finalizar con revenido.

Figura 56. Comparación de dureza de la probeta 3 al pasar de suministro a temple y finalizar con revenido.

Figura 57. Comparación de dureza de la probeta 4 al pasar de suministro a temple y finalizar con revenido.

3.3.3.Análisis de ensayo de torsión

Figura 58. Comparación de dureza de la probeta 5 al pasar de suministro a temple y finalizar con revenido.

Figura 59. Comparación de dureza de la probeta 6 al pasar de suministro a temple y finalizar con revenido.

Para la ejecución del ensayo se emplea la máquina de torsión (AVERY -6609 CHG) perteneciente a la Universidad de la Fuerzas Armadas ESPE, que posibilito ejecutar los ensayos de torque, mediante el cual se obtiene los siguientes datos de torque y ángulo de torsión para las diferentes probetas sometidas al ensayo. Ver tablas de datos obtenidos.

3.3.3.1.Análisis de ensayo de torsión de probetas con tratamiento térmico de temple a 830°C y revenido a 500°C

Del ensayo de torsión se obtiene los valores del ángulo de torsión y el torque con estos datos se calcula el esfuerzo cortante debido a la torsión, la deformación unitaria por corte y la deformación unitaria porcentual de las seis probetas. La velocidad de prueba se varió desde 3 1/3° por minuto hasta 90° por minuto, ver tabla de resultados.

		Probeta: 1				CALCULO							
	Т	emple: 830	°C		Momento polar de	Esfuerzo cortante	Deformasión	Modulo de	Larr de hooke	Deformasión			
	Re	venido: 500)°C		inercia	debido a torsión	unitaria por	cizallamiento	Ley de nooke	unitaria			
Velocidad de prueba (° x min)	Tiempo (segundos)	Angulo θ (°)	Angulo θ (rad)	Torsión (N*m)	$J = \frac{\pi * d^4}{32} (m^4)$	$\tau = \frac{T * r}{l} (MPa)$	$\gamma = \frac{\theta * r}{L} \ (rad)$	$G = \frac{T*L}{J*\theta} \ (\frac{Pa}{rad})$	$\tau = G * \gamma \ (Mpa)$	$\%\gamma = \gamma^{\bullet}100\%$			
	20	1,1	0,019	45	6,43E-09	55,953	0,001	54645435957,671	55,953	0,102			
	40	2,2	0,038	85	6,43E-09	105,689	0,002	51609578404,467	105,689	0,205			
	60	3,3	0,058	135	6,43E-09	167,859	0,003	54645435957,671	167,859	0,307			
	80	4,4	0,077	180	6,43E-09	223,812	0,004	54645435957,671	223,812	0,410			
	100	5,5	0,096	225	6,43E-09	279,765	0,005	54645435957,671	279,765	0,512			
	120	6,6	0,115	275	6,43E-09	341,934	0,006	55657388475,405	341,934	0,614			
	140	7,7	0,134	325	6,43E-09	404,104	0,007	56380211702,359	404,104	0,717			
3 1/3 x min	160	8,8	0,154	370	6,43E-09	460,057	0,008	56163364734,273	460,057	0,819			
	180	9,9	0,173	410	6,43E-09	509,793	0,009	55320070969,494	509,793	0,922			
	200	10	0,175	460	6,43E-09	571,963	0,009	61445756876,847	571,963	0,931			
	220	11,1	0,194	505	6,43E-09	627,916	0,010	60771851200,172	627,916	1,033			
	240	12,2	0,213	535	6,43E-09	665,218	0,011	58577120329,853	665,218	1,136			
	260	13,3	0,232	565	6,43E-09	702,520	0,012	56745427648,609	702,520	1,238			
	280	14,4	0,251	585	6,43E-09	727,388	0,013	54265953763,520	727,388	1,340			
	300	15,5	0,271	595	6,43E-09	739,822	0,014	51276613382,502	739,822	1,443			
	360	45,5	0,794	693	6,43E-09	861,675	0,042	20344916156,548	861,675	4,235			
30° x min	420	75,5	1,318	712	6,43E-09	885,299	0,070	12596999394,275	885,299	7,028			
	480	105,5	1,841	725	6,43E-09	901,464	0,098	9179512412,057	901,464	9,820			
	540	195,5	3,412	739	6,43E-09	918,871	0,182	5049306608,695	918,871	18,198			
	600	285,5	4,983	740	6,43E-09	920,115	0,266	3462259962,603	920,115	26,576			
	660	375,5	6,554	741	6,43E-09	921,358	0,350	2635981349,259	921,358	34,953			
	720	465,5	8,125	743	6,43E-09	923,845	0,433	2132078520,501	923,845	43,331			
	780	555,5	9,695	745	6,43E-09	926,332	0,517	1791456536,346	926,332	51,708			
	840	645,5	11,266	749	6,43E-09	931,305	0,601	1549956956,211	931,305	60,086			
	900	735,5	12,837	749	6,43E-09	931,305	0,685	1360295330,026	931,305	68,463			
	960	825,5	14,408	749	6,43E-09	931,305	0,768	1211989358,248	931,305	76,841			
	1020	915,5	15,978	749	6,43E-09	931,305	0,852	1092842397,852	931,305	85,219			
	1080	1005,5	17,549	760	6,43E-09	944,982	0,936	1009637758,122	944,982	93,596			
90° x min	1140	1095,5	19,120	763	6,43E-09	948,713	1,020	930349701,289	948,713	101,974			
	1200	1185,5	20,691	769	6,43E-09	956,173	1,104	866480608,774	956,173	110,351			
	1260	1275,5	22,262	775	6,43E-09	963,633	1,187	811624794,702	963,633	118,729			
	1320	1365,5	23,832	773	6,43E-09	961,147	1,271	756174200,656	961,147	127,107			
	1380	1455,5	25,403	772	6,43E-09	959,903	1,355	708498862,022	959,903	135,484			
	1440	1545,5	26,974	770	6,43E-09	957,416	1,439	665511833,727	957,416	143,862			
	1500	1635,5	28,545	775	6,43E-09	963,633	1,522	632973051,448	963,633	152,239			
	1560	1725,5	30,116	770	6,43E-09	957,416	1,606	596087243,712	957,416	160,617			
	1620	1815,5	31,686	768	6,43E-09	954,930	1,690	565065813,483	954,930	168,994			
	1680	1905,5	33,257	767	6,43E-09	953,686	1,774	537675784,338	953,686	177,372			
	1740	1995,5	34,828	768	6,43E-09	954,930	1,857	514095206,404	954,930	185,750			

Tabla 23. Probeta 1 con temple a 830°C y revenido a 500°C.

		Probeta: 2			CALCULO							
	Т	emple: 830	°C		Momento polar de	Esfuerzo cortante	Deformasión	Modulo de	Lorr de heelre	Deformasión		
	Re	venido: 500)°C		inercia	debido a torsión	unitaria por	cizallamiento	Ley de nooke	unitaria		
Velocidad de prueba (° x min)	Tiempo (segundos)	Angulo θ (°)	Angulo θ (rad)	Torsión (N*m)	$J = \frac{\pi * d^4}{32} (m^4)$	$\tau = \frac{T * r}{l} (MPa)$	$\gamma = \frac{\theta * r}{L} \ (rad)$	$G = \frac{T*L}{J*\theta} \ (\frac{Pa}{rad})$	$\tau = G * \gamma \ (Mpa)$	$\%\gamma = \gamma^{\bullet}100\%$		
<u> </u>	20	1.1	0,019	55	6,43E-09	68.387	0,001	66788866170,486	68,387	0,102		
1	40	2,2	0,038	105	6,43E-09	130,557	0,002	63753008617,282	130,557	0,205		
1	60	3,3	0,058	155	6,43E-09	192,727	0,003	62741056099,548	192,727	0,307		
1	80	4,4	0,077	210	6,43E-09	261,114	0,004	63753008617,282	261,114	0,410		
]	100	5,5	0,096	260	6,43E-09	323,283	0,005	63145837106,642	323,283	0,512		
1	120	6,6	0,115	310	6,43E-09	385,453	0,006	62741056099,548	385,453	0,614		
	140	7,7	0,134	365	6,43E-09	453,840	0,007	63319314681,110	453,840	0,717		
3 1/3 x min	160	8,8	0,154	415	6,43E-09	516,010	0,008	62994044228,981	516,010	0,819		
	180	9,9	0,173	465	6,43E-09	578,180	0,009	62741056099,548	578,180	0,922		
	200	10	0,175	515	6,43E-09	640,350	0,009	68792532155,601	640,350	0,931		
	220	11,1	0,194	557	6,43E-09	692,573	0,010	67029546769,299	692,573	1,033		
	240	12,2	0,213	595	6,43E-09	739,822	0,011	65146517002,360	739,822	1,136		
]	260	13,3	0,232	625	6,43E-09	777,124	0,012	62771490761,735	777,124	1,238		
	280	14,4	0,251	645	6,43E-09	801,992	0,013	59831692611,061	801,992	1,340		
	300	15,5	0,271	660	6,43E-09	820,643	0,014	56878260222,608	820,643	1,443		
	360	45,5	0,794	765	6,43E-09	951,199	0,042	22458673679,306	951,199	4,235		
30° x min	420	75,5	1,318	789	6,43E-09	981,041	0,070	13959315340,004	981,041	7,028		
	480	105,5	1,841	801	6,43E-09	995,962	0,098	10141778540,770	995,962	9,820		
	540	195,5	3,412	816	6,43E-09	1014,613	0,182	5575418393,362	1014,613	18,198		
	<u>600</u>	285,5	4,983	817	6,43E-09	1015,856	0,266	3822522147,901	1015,856	26,576		
	660	375,5	6,554	818	6,43E-09	1017,100	0,350	2909895740,477	1017,100	34,953		
	720	465,5	8,125	819	6,43E-09	1018,343	0,433	2350164614,119	1018,343	43,331		
	780	555,5	9,695	820	6,43E-09	1019,586	0,517	1971804509,804	1019,586	51,708		
	840	645,5	11,266	825	6,43E-09	1025,803	0,601	1707228957,108	1025,803	60,086		
	900	735,5	12,837	825	6,43E-09	1025,803	0,685	1498322626,530	1025,803	68,463		
	960	825,5	14,408	829	6,43E-09	1030,777	0,768	1341440825,084	1030,777	76,841		
	1020	915,5	15,978	830	6,43E-09	1032,020	0,852	1211026956,232	1032,020	85,219		
	1080	1005,5	17,549	834	6,43E-09	1036,994	0,936	1107944592,465	1036,994	93,596		
90° x min	1140	1095,5	19,120	838	6,43E-09	1041,968	1,020	1021799540,865	1041,968	101,974		
	1200	1185,5	20,691	845	6,43E-09	1050,671	1,104	952114583,114	1050,671	110,351		
	1260	1275,5	22,262	845	6,43E-09	1050,671	1,187	884932840,675	1050,671	118,729		
	1320	1365,5	23,832	853	6,43E-09	1060,618	1,271	834432850,142	1060,618	127,107		
	1380	1455,5	25,403	853	6,43E-09	1060,618	1,355	782836177,855	1060,618	135,484		
	1440	1545,5	26,974	853	6,43E-09	1060,618	1,439	737248823,597	1060,618	143,862		
	1500	1635,5	28,545	855	6,43E-09	1063,105	1,522	698312205,145	1063,105	152,239		
	1560	1725,5	30,116	852	6,43E-09	1059,375	1,606	659566664,471	1059,375	160,617		
	1620	1815,5	31,686	853	6,43E-09	1060,618	1,690	627605649,611	1060,618	168,994		
	1680	1905,5	33,257	852	6,43E-09	1059,375	1,774	597261757,830	1059,375	177,372		
	1740	1995,5	34,828	855	6,43E-09	1063,105	1,857	572332554,004	1063,105	185,750		
	1800	2085.5	36.399	868	6.43E-09	1079.269	1.941	555960065.557	1079.269	194.127		

Tabla 24. Probeta 2 con temple a 830°C y revenido a 500°C.

		Probeta: 3			CALCULO						
	Т	emple: 830	°C		Momento polar de	Esfuerzo cortante	Deformasión	Modulo de	T and a baselos	Deformasión	
	Re	evenido: 500)°C		inercia	debido a torsión	unitaria por	cizallamiento	Ley de nooke	unitaria	
Velocidad	T:	America O	America O	Tamién	$\pi * d^4$	$T = \frac{T * r}{(MPa)}$	$\theta * r$	$C = \frac{T+L}{T+L} \left(\frac{Pa}{T} \right)$	- C (Marc)	0/	
de prueba	1 tempo	Angulo 0	Angulo 0	(Nišm)	$J = \frac{m^2}{32}$ (m ²)	I = I	$\gamma = \frac{L}{L}$ (raa)	$G = \frac{1}{J+\theta} (rad)$	$\tau = G * \gamma (Mpa)$	$%\gamma = \gamma^{-100\%}$	
(° x min)	(segundos)	0	(rad)	(IN*m)							
	20	1,1	0,019	55	6,43E-09	68,387	0,001	66788866170,486	68,387	0,102	
	40	2,2	0,038	110	6,43E-09	136,774	0,002	66788866170,486	136,774	0,205	
	60	3,3	0,058	170	6,43E-09	211,378	0,003	68812771205,956	211,378	0,307	
	80	4,4	0,077	220	6,43E-09	273,548	0,004	66788866170,486	273,548	0,410	
	100	5,5	0,096	275	6,43E-09	341,934	0,005	66788866170,486	341,934	0,512	
	120	6,6	0,115	335	6,43E-09	416,538	0,006	67800818688,221	416,538	0,614	
	140	7,7	0,134	390	6,43E-09	484,925	0,007	67656254042,830	484,925	0,717	
3 1/3 x min	160	8,8	0,154	445	6,43E-09	553,312	0,008	67547830558,787	553,312	0,819	
	180	9,9	0,173	500	6,43E-09	621,699	0,009	67463501182,309	621,699	0,922	
	200	10	0,175	550	6,43E-09	683,869	0,009	73467752787,535	683,869	0,931	
	220	11,1	0,194	590	6,43E-09	733,605	0,010	71000776649,706	733,605	1,033	
1	240	12,2	0,213	620	6,43E-09	770,907	0,011	67883765615,904	770,907	1,136	
	260	13,3	0,232	640	6,43E-09	795,775	0,012	64278006540,017	795,775	1,238	
	280	14,4	0,251	658	6,43E-09	818,156	0,013	61037602694,695	818,156	1,340	
1	300	15,5	0,271	670	6,43E-09	833,077	0,014	57740052044,162	833,077	1,443	
	360	45,5	0,794	760	6,43E-09	944,982	0,042	22311884962,448	944,982	4,235	
30° x min	420	75,5	1,318	783	6,43E-09	973,581	0,070	13853160850,726	973,581	7,028	
	480	105,5	1,841	795	6,43E-09	988,501	0,098	10065810162,187	988,501	9,820	
	540	195,5	3,412	808	6,43E-09	1004,666	0,182	5520757428,722	1004,666	18,198	
	600	285,5	4,983	810	6,43E-09	1007,152	0,266	3789771040,147	1007,152	26,576	
	660	375,5	6,554	812	6,43E-09	1009,639	0,350	2888551761,941	1009,639	34,953	
	720	465,5	8,125	814	6,43E-09	1012,126	0,433	2335816844,802	1012,126	43,331	
	780	555,5	9,695	816	6,43E-09	1014,613	0,517	1962185951,219	1014,613	51,708	
	840	645,5	11,266	820	6,43E-09	1019,586	0,601	1696882114,943	1019,586	60,086	
1	900	735,5	12,837	820	6,43E-09	1019,586	0,685	1489241883,339	1019,586	68,463	
000	960	825,5	14,408	825	6,43E-09	1025,803	0,768	1334968251,742	1025,803	76,841	
90° x min	1020	915,5	15,978	826	6,43E-09	1027,047	0,852	1205190681,744	1027,047	85,219	
1	1080	1005,5	17,549	830	6,43E-09	1032,020	0,936	1102630709,528	1032,020	93,596	
1	1140	1095,5	19,120	835	6,43E-09	1038,237	1,020	1018141547,282	1038,237	101,974	
	1200	1185,5	20,691	840	6,43E-09	1044,454	1,104	946480769,012	1044,454	110,351	
	1260	1275,5	22,262	850	6,43E-09	1056,888	1,187	890169129,673	1056,888	118,729	
	1320	1365,5	23,832	852	6,43E-09	1059,375	1,271	833454617,023	1059,375	127,107	
	1380	1455,5	25,403	853	6,43E-09	1060,618	1,355	782836177,855	1060,618	135,484	
	1440	1545,5	26,974	880	6,43E-09	1094,190	1,439	760584952,831	1094,190	143,862	

Tabla 25. Probeta 3 con temple a 830°C y revenido a 500°C.

Figura 62. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en probeta 3.

		Probeta: 4			CALCULO						
	Т	emple: 830	°C		Momento polar de	Esfuerzo cortante	Deformasión	Modulo de	Lorr de heelre	Deformasión	
	Re	venido: 500	°C		inercia	debido a torsión	unitaria por	cizallamiento	Ley de nooke	unitaria	
Velocidad de prueba (° x min)	Tiempo (segundos)	Angulo θ (°)	Angulo θ (rad)	Torsión (N*m)	$J = \frac{\pi * d^4}{32} \ (m^4)$	$\tau = \frac{T * r}{l} (MPa)$	$\gamma = \frac{\theta * r}{L} \ (rad)$	$G = \frac{T*L}{J*\theta} \ (\frac{Pa}{rad})$	$\tau = G * \gamma \ (Mpa)$	$\%\gamma = \gamma^{\bullet}100\%$	
	20	1,1	0,019	20	6,43E-09	24,868	0,001	24286860425,631	24,868	0,102	
	40	2,2	0,038	30	6,43E-09	37,302	0,002	18215145319,224	37,302	0,205	
	60	3,3	0,058	45	6,43E-09	55,953	0,003	18215145319,224	55,953	0,307	
	80	4,4	0,077	63	6,43E-09	78,334	0,004	19125902585,185	78,334	0,410	
	100	5,5	0,096	100	6,43E-09	124,340	0,005	24286860425,631	124,340	0,512	
	120	6,6	0,115	150	6,43E-09	186,510	0,006	30358575532,039	186,510	0,614	
	140	7,7	0,134	195	6,43E-09	242,463	0,007	33828127021,415	242,463	0,717	
3 1/3 x min	160	8,8	0,154	240	6,43E-09	298,416	0,008	36430290638,447	298,416	0,819	
	180	9,9	0,173	305	6,43E-09	379,236	0,009	41152735721,209	379,236	0,922	
	200	10	0,175	360	6,43E-09	447,623	0,009	48087983642,750	447,623	0,931	
	220	11,1	0,194	410	6,43E-09	509,793	0,010	49339522756,576	509,793	1,033	
	240	12,2	0,213	465	6,43E-09	578,180	0,011	50912824211,928	578,180	1,136	
	260	13,3	0,232	520	6,43E-09	646,567	0,012	52225880313,764	646,567	1,238	
	280	14,4	0,251	560	6,43E-09	696,303	0,013	51946895910,378	696,303	1,340	
	300	15,5	0,271	600	6,43E-09	746,039	0,014	51707509293,280	746,039	1,443	
	360	45,5	0,794	765	6,43E-09	951,199	0,042	22458673679,306	951,199	4,235	
30° x min	420	75,5	1,318	790	6,43E-09	982,284	0,070	13977007754,883	982,284	7,028	
	480	105,5	1,841	803	6,43E-09	998,449	0,098	10167101333,630	998,449	9,820	
	540	195,5	3,412	819	6,43E-09	1018,343	0,182	5595916255,103	1018,343	18,198	
	<u>600</u>	285,5	4,983	820	6,43E-09	1019,586	0,266	3836558336,939	1019,586	26,576	
	660	375,5	6,554	821	6,43E-09	1020,830	0,350	2920567729,745	1020,830	34,953	
	720	465,5	8,125	822	6,43E-09	1022,073	0,433	2358773275,710	1022,073	43,331	
	780	555,5	9,695	824	6,43E-09	1024,560	0,517	1981423068,388	1024,560	51,708	
	840	645,5	11,266	826	6,43E-09	1027,047	0,601	1709298325,541	1027,047	60,086	
	900	735,5	12,837	827	6,43E-09	1028,290	0,685	1501954923,807	1028,290	68,463	
90° x min	960	825,5	14,408	827	6,43E-09	1028,290	0,768	1338204538,413	1028,290	76,841	
	1020	915,5	15,978	835	6,43E-09	1038,237	0,852	1218322299,341	1038,237	85,219	
	1080	1005,5	17,549	836	6,43E-09	1039,481	0,936	1110601533,934	1039,481	93,596	
	1140	1095,5	19,120	846	6,43E-09	1051,915	1,020	1031554190,420	1051,915	101,974	
	1200	1185,5	20,691	846	6,43E-09	1051,915	1,104	953241345,934	1051,915	110,351	
	1260	1275,5	22,262	850	6,43E-09	1056,888	1,187	890169129,673	1056,888	118,729	
	1320	1365,5	23,832	851	6,43E-09	1058,132	1,271	832476383,905	1058,132	127,107	
	1380	1455.5	25,403	850	6.43E-09	1056.888	1.355	780082943,936	1056,888	135,484	

Tabla 26. Probeta 4 con temple a 830°C y revenido a 500°C.

		Probeta: 5			CALCULO						
	Т	emple: 830	°C		Momento polar de	Esfuerzo cortante	Deformasión	Modulo de	Lorr de hoeles	Deformasión	
	Re	venido: 500)°C		inercia	debido a torsión	unitaria por	cizallamiento	Ley de nooke	unitaria	
Velocidad	Tiempo	Angulo A	Angulo A	Torsión	$I = \frac{\pi * d^4}{(m^4)}$	$\tau = \frac{T * r}{MPa}$	$v = \frac{\theta * r}{(rad)}$	$G = \frac{T+L}{T+L} \left(\frac{Pa}{T+L}\right)$	$\tau = G * \gamma (Mng)$	$%y = y^{*}100\%$	
de prueba	(segundos)	(°)	(rad)	(N*m)	$J = \frac{32}{32} (m)$	1	r = L (ruu)	J+θ `rad'	1 = 0 + y (Mpa)	/0/ = / 100/0	
(°x min)	(segundes)	0	(100)	(.,)							
	20	1,1	0,019	45	6,43E-09	55,953	0,001	54645435957,671	55,953	0,102	
	40	2,2	0,038	95	6,43E-09	118,123	0,002	57681293510,875	118,123	0,205	
	60	3,3	0,058	145	6,43E-09	180,293	0,003	58693246028,609	180,293	0,307	
	80	4,4	0,077	200	6,43E-09	248,680	0,004	60717151064,079	248,680	0,410	
	100	5,5	0,096	245	6,43E-09	304,633	0,005	59502808042,797	304,633	0,512	
	120	6,6	0,115	290	6,43E-09	360,585	0,006	58693246028,609	360,585	0,614	
	140	7,7	0,134	345	6,43E-09	428,972	0,007	59849763191,735	428,972	0,717	
3 1/3 x min	160	8,8	0,154	390	6,43E-09	484,925	0,008	59199222287,477	484,925	0,819	
	180	9,9	0,173	440	6,43E-09	547,095	0,009	59367881040,432	547,095	0,922	
	200	10	0,175	490	6,43E-09	609,265	0,009	65453088847,077	609,265	0,931	
	220	11,1	0,194	530	6,43E-09	659,001	0,010	63780358685,329	659,001	1,033	
	240	12,2	0,213	565	6,43E-09	702,520	0,011	61861818666,106	702,520	1,136	
	260	13,3	0,232	595	6,43E-09	739,822	0,012	59758459205,172	739,822	1,238	
	280	14,4	0,251	620	6,43E-09	770,907	0,013	57512634757,919	770,907	1,340	
-	300	15,5	0,271	635	6,43E-09	789,558	0,014	54723780668,721	789,558	1,443	
	360	45,5	0,794	753	6,43E-09	936,279	0,042	22106380758,847	936,279	4,235	
30° x min	420	75,5	1,318	775	6,43E-09	963,633	0,070	13711621531,689	963,633	7,028	
1	480	105,5	1,841	787	6,43E-09	978,554	0,098	9964518990,744	978,554	9,820	
	540	195,5	3,412	804	6,43E-09	999,692	0,182	5493426946,401	999,692	18,198	
1	600	285,5	4,983	805	6,43E-09	1000,935	0,266	3766377391,751	1000,935	26,576	
	660	375,5	6,554	806	6,43E-09	1002,179	0,350	2867207783,404	1002,179	34,953	
1	720	465,5	8,125	806	6,43E-09	1002,179	0,433	2312860413,895	1002,179	43,331	
1	780	555,5	9,695	808	6,43E-09	1004,666	0,517	1942948834,051	1004,666	51,708	
1	840	645,5	11,266	812	6,43E-09	1009,639	0,601	1680327167,481	1009,639	60,086	
1	900	735,5	12,837	814	6,43E-09	1012,126	0,685	1478344991,510	1012,126	68,463	
1	960	825,5	14,408	815	6,43E-09	1013,369	0,768	1318786818,388	1013,369	76,841	
90° x min	1020	915,5	15,978	820	6,43E-09	1019,586	0,852	1196436270,012	1019,586	85,219	
1	1080	1005.5	17,549	820	6.43E-09	1019,586	0.936	1089346002,184	1019,586	93,596	
1	1140	1095,5	19,120	825	6.43E-09	1025,803	1.020	1005948235,338	1025,803	101,974	
1	1200	1185,5	20,691	830	6,43E-09	1032.020	1,104	935213140,810	1032,020	110,351	
1	1260	1275,5	22,262	835	6,43E-09	1038,237	1,187	874460262,679	1038,237	118,729	
	1320	1365.5	23,832	835	6,43E-09	1038.237	1.271	816824654.007	1038.237	127,107	
	1380	1455.5	25,403	841	6,43E-09	1045.698	1.355	771823242.176	1045.698	135,484	
	1440	1545.5	26,974	843	6.43E-09	1048,185	1,439	728605812,769	1048,185	143.862	
1	1500	1635,5	28,545	890	6,43E-09	1106,624	1,522	726898084,888	1106,624	152,239	

Tabla 27. Probeta 5 con temple a 830°C y revenido a 500°C.

Figura 64. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en probeta 5.

		Probeta: 6					CALC	ULO		
	Т	emple: 830	°C		Momento polar de	Esfuerzo cortante	Deformasión	Modulo de	Lorr de heetre	Deformasión
	Re	venido: 500)°C		inercia	debido a torsión	unitaria por	cizallamiento	Ley de nooke	unitaria
Velocidad	Tiampo	Annulo A	Angulo A	Torsión	$\pi * d^4$	$\pi = \frac{T * r}{(MPa)}$	$v = \frac{\theta * r}{r}$ (red)	$G = \frac{T+L}{T+L} \left(\frac{Pa}{T+L}\right)$	$\tau = C + \gamma (Mng)$	$94x = x^{+}100\%$
de prueba	(segundos)	Aliguio V	(rad)	(N*m)	$J = \frac{1}{32} (m^2)$	- ₁ (u)	$r = \frac{L}{L}$ (ruu)	J+θ (rad)	$i = 0 + \gamma (mpu)$	70 y = y 100 %
(° x min)	(segundos)	0	(140)	(iv iii)						
	20	1,1	0,019	45	6,43E-09	55,953	0,001	54645435957,671	55,953	0,102
	40	2,2	0,038	100	6,43E-09	124,340	0,002	60717151064,079	124,340	0,205
	60	3,3	0,058	150	6,43E-09	186,510	0,003	60717151064,079	186,510	0,307
	80	4,4	0,077	205	6,43E-09	254,897	0,004	62235079840,680	254,897	0,410
	100	5,5	0,096	250	6,43E-09	310,849	0,005	60717151064,079	310,849	0,512
	120	6,6	0,115	300	6,43E-09	373,019	0,006	60717151064,079	373,019	0,614
	140	7,7	0,134	350	6,43E-09	435,189	0,007	60717151064,079	435,189	0,717
3 1/3 x min	160	8,8	0,154	395	6,43E-09	491,142	0,008	59958186675,778	491,142	0,819
	180	9,9	0,173	445	6,43E-09	553,312	0,009	60042516052,255	553,312	0,922
	200	10	0,175	495	6,43E-09	615,482	0,009	66120977508,782	615,482	0,931
	220	11,1	0,194	535	6,43E-09	665,218	0,010	64382060182,361	665,218	1,033
	240	12,2	0,213	565	6,43E-09	702,520	0,011	61861818666,106	702,520	1,136
	260	13,3	0,232	590	6,43E-09	733,605	0,012	59256287279,078	733,605	1,238
	280	14,4	0,251	607	6,43E-09	754,743	0,013	56306724674,285	754,743	1,340
	300	15,5	0,271	620	6,43E-09	770,907	0,014	53431092936,389	770,907	1,443
	360	45,5	0,794	713	6,43E-09	886,543	0,042	20932071023,981	886,543	4,235
30° x min	420	75,5	1,318	734	6,43E-09	912,654	0,070	12986232521,626	912,654	7,028
	480	105,5	1,841	746	6,43E-09	927,575	0,098	9445401737,096	927,575	9,820
	540	195,5	3,412	760	6,43E-09	944,982	0,182	5192791640,877	944,982	18,198
	600	285,5	4,983	763	6,43E-09	948,713	0,266	3569870745,225	948,713	26,576
	660	375,5	6,554	763	6,43E-09	948,713	0,350	2714242603,892	948,713	34,953
	720	465,5	8,125	763	6,43E-09	948,713	0,433	2189469597,769	948,713	43,331
	780	555,5	9,695	765	6,43E-09	951,199	0,517	1839549329,268	951,199	51,708
	840	645,5	11,266	768	6,43E-09	954,930	0,601	1589274956,435	954,930	60,086
	900	735,5	12,837	769	6,43E-09	956,173	0,685	1396618302,790	956,173	68,463
	960	825,5	14,408	769	6,43E-09	956,173	0,768	1244352224,957	956,173	76,841
	1020	915,5	15,978	772	6,43E-09	959,903	0,852	1126400976,158	959,903	85,219
	1080	1005,5	17,549	778	6,43E-09	967,364	0,936	1033550231,340	967,364	93,596
90° x min	1140	1095,5	19,120	779	6,43E-09	968,607	1,020	949859000,398	968,607	101,974
	1200	1185,5	20,691	785	6,43E-09	976,067	1,104	884508813,898	976,067	110,351
	1260	1275,5	22,262	790	6,43E-09	982,284	1,187	827333661,696	982,284	118,729
	1320	1365,5	23,832	791	6,43E-09	983,528	1,271	773782396,790	983,528	127,107
	1380	1455,5	25,403	792	6,43E-09	984,771	1,355	726853754,820	984,771	135,484
	1440	1545,5	26,974	795	6,43E-09	988,501	1,439	687119360,796	988,501	143,862
	1500	1635,5	28,545	786	6,43E-09	977,311	1,522	641957185,081	977,311	152,239
	1560	1725,5	30,116	795	6,43E-09	988,501	1,606	615440725,651	988,501	160,617
	1620	1815,5	31,686	800	6,43E-09	994,718	1,690	588610222,378	994,718	168,994
	1680	1905,5	33,257	795	6,43E-09	988,501	1,774	557304105,017	988,501	177,372
	1740	1995,5	34,828	800	6,43E-09	994,718	1,857	535515840,004	994,718	185,750

Tabla 28. Probeta 6 con temple a 830°C y revenido a 500°C.

Análisis de resultados de probetas con tratamiento térmico de temple a 830°C y

revenido a 500°C

De las **tablas (23-28)** del ensayo de torsión realizadas a las probetas con tratamiento térmico de temple a 830°C y revenido a 500°C se obtiene los siguientes resultados de torque máximo, esfuerzo máximo de corte y la deformación unitaria máxima que se puede observar en la **tabla 29.**

Resultados del	ensayo de	e torsión con to	emple a 830°C y re	evenido a 500°C
PROBETA	Angulo de torsión (°)	Torque máximo (N*m)	Esfuerzo cortante máximo debido a torsión (Mpa)	Deformación unitaria máxima por cortante (rad)
1	1995,5	768	954,93	1,86
2	2085,5	868	1079,27	1,94
3	1545,5	880	1094,19	1,44
4	1455,5	850	1056,88	1,35
5	1635,5	890	1106,62	1,52
6	1995,5	800	997,72	1,86
Media	1785,50	842,67	1048,27	1,66
Desviación estándar	271,00	48,43	59,69	0,25
Mínimo	1514,50	794,24	988,57	1,41
Máximo	2056,50	891,09	1107,96	1,91

Tabla 29. Resultados del ensayo de torsión con temple a 830°C y revenido a 500°C.

De la **tabla 29** se analiza los valores máximos de torsión, utilizando un análisis estadístico mediante la desviación estándar para ratificar que los ensayos realizados son válidos. Ver **figura 66**.

Figura 66. Diagrama de dispersión de probetas con tratamiento térmico.

En el diagrama de dispersión de la **figura 66** se puede observar que los valores dentro de los límites de control son más del cincuenta por ciento.

3.3.3.2.Análisis de ensayo de torsión de probetas con tratamiento térmico de temple a 860°C y revenido a 500°C

Del ensayo de torsión se obtiene los valores del ángulo de torsión y el torque con estos datos se calcula el esfuerzo cortante debido a la torsión, la deformación unitaria por corte y la deformación unitaria porcentual de las seis probetas. La velocidad de prueba varía desde 3 1/3° por minuto hasta 90° por minuto, ver tablas y graficas de resultados obtenidos.

Probeta 1

		Probeta: 1					CALC	ULO		
		Temple: 860°	С		Momento polar de	Esfuerzo cortante	Deformasión	Modulo de	Lou de beste	Deformasión
		Revenido: 500	°C		inercia	debido a torsión	unitaria por cortante	cizallamiento	Ley de nooke	unitaria porcentual
Velocidad de prueba (° x min)	Tiempo (segundos)	Angulo θ (°)	Angulo θ (rad)	Torsión (N*m)	$J = \frac{\pi * d^4}{32} (m^4)$	$\tau = \frac{T * r}{J} (MPa)$	$\gamma = \frac{\theta * r}{L} \ (rad)$	$\mathbf{G}{=}\frac{T{*}L}{J{*}\theta}~\left(\frac{Pa}{rad}\right)$	$\tau = G * \gamma \ (Mpa)$	$\%\gamma=\gamma^*100\%$
	20	1,1	0,019	50	6,43E-09	62,170	0,001	60717151064,079	62,170	0,102
1	40	2,2	0,038	100	6,43E-09	124,340	0,002	60717151064,079	124,340	0,205
1	60	3,3	0,058	175	6,43E-09	217,595	0,003	70836676241,425	217,595	0,307
1	80	4,4	0,077	205	6,43E-09	254,897	0,004	62235079840,680	254,897	0,410
1	100	5,5	0,096	250	6,43E-09	310,849	0,005	60717151064,079	310,849	0,512
1	120	6,6	0,115	315	6,43E-09	391,670	0,006	63753008617,282	391,670	0,614
1	140	7,7	0,134	370	6,43E-09	460,057	0,007	64186702553,454	460,057	0,717
3 1/3 x min	160	8,8	0,154	430	6,43E-09	534,661	0,008	65270937393,884	534,661	0,819
1	180	9,9	0,173	480	6,43E-09	596,831	0,009	64764961135,017	596,831	0,922
1	200	10	0,175	530	6,43E-09	659,001	0,009	70796198140,716	659,001	0,931
1	220	11,1	0,194	575	6,43E-09	714,954	0,010	69195672158,612	714,954	1,033
1	240	12,2	0,213	610	6,43E-09	758,473	0,011	66788866170,486	758,473	1,136
1	260	13,3	0,232	635	6,43E-09	789,558	0,012	63775834613,923	789,558	1,238
1	280	14,4	0,251	657	6,43E-09	816,912	0,013	60944840380,569	816,912	1,340
1	300	15,5	0,271	675	6,43E-09	839,294	0,014	58170947954,940	839,294	1,443
	360	45,5	0,794	770	6,43E-09	957,416	0,042	22605462396,165	957,416	4,235
30° x min	420	75,5	1,318	793	6,43E-09	986,015	0,070	14030084999,522	986,015	7,028
1	480	105,5	1,841	806	6,43E-09	1002,179	0,098	10205085522,922	1002,179	9,820
	540	195,5	3,412	812	6,43E-09	1009,639	0,182	5548087911,042	1009,639	18,198
1	600	285,5	4,983	820	6,43E-09	1019,586	0,266	3836558336,939	1019,586	26,576
	660	375,5	6,554	821	6,43E-09	1020,830	0,350	2920567729,745	1020,830	34,953
	720	465,5	8,125	823	6,43E-09	1023,317	0,433	2361642829,573	1023,317	43,331
	780	555,5	9,695	824	6,43E-09	1024,560	0,517	1981423068,388	1024,560	51,708
	840	645,5	11,266	829	6,43E-09	1030,777	0,601	1715506430,839	1030,777	60,086
	900	735,5	12,837	829	6,43E-09	1030,777	0,685	1505587221,083	1030,777	68,463
90° x min	960	825,5	14,408	830	6,43E-09	1032,020	0,768	1343058968,419	1032,020	76,841
	1020	915,5	15,978	835	6,43E-09	1038,237	0,852	1218322299,341	1038,237	85,219
	1080	1005,5	17,549	840	6,43E-09	1044,454	0,936	1115915416,871	1044,454	93,596
	1140	1095,5	19,120	841	6,43E-09	1045,698	1,020	1025457534,448	1045,698	101,974
	1200	1185,5	20,691	848	6,43E-09	1054,401	1,104	955494871,574	1054,401	110,351
	1260	1275,5	22,262	856	6,43E-09	1064,349	1,187	896452676,471	1064,349	118,729
	1320	1365,5	23,832	856	6,43E-09	1064,349	1,271	837367549,497	1064,349	127,107
1	1380	1455.5	25 403	855	6.43E-09	1063 105	1 355	784671667135	1063 105	135 484

Tabla 30. Probeta 1 con temple a 860°C y revenido a 500°C.

Figura 67. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en probeta 1.

		Probeta: 2					CALC	ULO		
		Temple: 860°	С		Momento polar de	Esfuerzo cortante	Deformasión	Modulo de	Lev de hooke	Deformasión
	I	Revenido: 500	°C		inercia	debido a torsión	unitaria por cortante	cizallamiento	Ley de nooke	unitaria porcentual
Velocidad	Tiemno		Δησυίο θ	Torsión	$I = \frac{\pi * d^4}{(m^4)}$	$\tau = \frac{T * r}{T} (MPa)$	$v = \frac{\theta * r}{q} (rad)$	$G = \frac{T * L}{T} \left(\frac{Pa}{T} \right)$	$\tau = G * v (Mna)$	$%v = v^{*}100\%$
de prueba	(segundos)	Angulo θ (°)	(rad)	(N*m)	32 (11)		L	- J*θ `rad'	t = 0 + / (Mpu)	707 - 7 10070
(° x min)	(segundos)		(rau)	(1, 11)						
	20	1,1	0,019	45	6,43E-09	55,953	0,001	54645435957,671	55,953	0,102
	40	2,2	0,038	90	6,43E-09	111,906	0,002	54645435957,671	111,906	0,205
	60	3,3	0,058	145	6,43E-09	180,293	0,003	58693246028,609	180,293	0,307
	80	4,4	0,077	200	6,43E-09	248,680	0,004	60717151064,079	248,680	0,410
	100	5,5	0,096	245	6,43E-09	304,633	0,005	59502808042,797	304,633	0,512
	120	6,6	0,115	290	6,43E-09	360,585	0,006	58693246028,609	360,585	0,614
	140	7,7	0,134	345	6,43E-09	428,972	0,007	59849763191,735	428,972	0,717
3 1/3 x min	160	8,8	0,154	395	6,43E-09	491,142	0,008	59958186675,778	491,142	0,819
	180	9,9	0,173	445	6,43E-09	553,312	0,009	60042516052,255	553,312	0,922
	200	10	0,175	495	6,43E-09	615,482	0,009	66120977508,782	615,482	0,931
	220	11,1	0,194	535	6,43E-09	665,218	0,010	64382060182,361	665,218	1,033
-	240	12,2	0,213	565	6,43E-09	702,520	0,011	61861818666,106	702,520	1,136
	260	13,3	0,232	590	6,43E-09	733,605	0,012	59256287279,078	733,605	1,238
	280	14,4	0,251	608	6,43E-09	755,986	0,013	56399486988,411	755,986	1,340
	300	15,5	0,271	622	6,43E-09	773,394	0,014	53603451300,700	773,394	1,443
	360	45,5	0,794	713	6,43E-09	886,543	0,042	20932071023,981	886,543	4,235
30° x min	420	75,5	1,318	734	6,43E-09	912,654	0,070	12986232521,626	912,654	7,028
	480	105,5	1,841	745	6,43E-09	926,332	0,098	9432740340,666	926,332	9,820
	540	195,5	3,412	755	6,43E-09	938,765	0,182	5158628537,976	938,765	18,198
	600	285,5	4,983	760	6,43E-09	944,982	0,266	3555834556,187	944,982	26,576
	660	375,5	6,554	760	6,43E-09	944,982	0,350	2703570614,624	944,982	34,953
	720	465,5	8,125	761	6,43E-09	946,226	0,433	2183730490,043	946,226	43,331
	780	555,5	9,695	761	6,43E-09	946,226	0,517	1829930770,684	946,226	51,708
	840	645,5	11,266	765	6,43E-09	951,199	0,601	1583066851,136	951,199	60,086
	900	735,5	12,837	765	6,43E-09	951,199	0,685	1389353708,237	951,199	68,463
90° x min	960	825,5	14,408	767	6,43E-09	953,686	0,768	1241115938,286	953,686	76,841
	1020	915,5	15,978	770	6,43E-09	957,416	0,852	1123482838,914	957,416	85,219
-	1080	1005,5	17,549	775	6,43E-09	963,633	0,936	1029564819,137	963,633	93,596
	1140	1095,5	19,120	775	6,43E-09	963,633	1,020	944981675,621	963,633	101,974
	1200	1185,5	20,691	780	6,43E-09	969,850	1,104	878874999,797	969,850	110,351
	1260	1275,5	22,262	784	6,43E-09	974,824	1,187	821050114,899	974,824	118,729
	1320	1365,5	23,832	790	6,43E-09	982,284	1,271	772804163,672	982,284	127,107
-	1380	1455,5	25,403	792	6,43E-09	984,771	1,355	726853754,820	984,771	135,484

Tabla 31. Probeta 2 con temple a 860°C y revenido a 500°C.

		Probeta: 3					CALC	ULO		
		Temple: 860°	С		Momento polar de	Esfuerzo cortante	Deformasión	Modulo de	Lou do boolro	Deformasión
	I	Revenido: 500	°C		inercia	debido a torsión	unitaria por cortante	cizallamiento	Ley de nooke	unitaria porcentual
Velocidad de prueba (° x min)	Tiempo (segundos)	Angulo θ (°)	Angulo θ (rad)	Torsión (N*m)	$J = \frac{\pi * d^4}{32} \ (m^4)$	$\tau = \frac{T * r}{J} (MPa)$	$\gamma = \frac{\theta * r}{L} \ (rad)$	$G = \frac{T * L}{J * \theta} \left(\frac{Pa}{rad} \right)$	$\tau = G * \gamma \ (Mpa)$	$\%\gamma = \gamma^*100\%$
	20	1,1	0,019	50	6,43E-09	62,170	0,001	60717151064,079	62,170	0,102
	40	2,2	0,038	110	6,43E-09	136,774	0,002	66788866170,486	136,774	0,205
	60	3,3	0,058	165	6,43E-09	205,161	0,003	66788866170,486	205,161	0,307
	80	4,4	0,077	225	6,43E-09	279,765	0,004	68306794947,088	279,765	0,410
	100	5,5	0,096	280	6,43E-09	348,151	0,005	68003209191,768	348,151	0,512
	120	6,6	0,115	335	6,43E-09	416,538	0,006	67800818688,221	416,538	0,614
	140	7,7	0,134	395	6,43E-09	491,142	0,007	68523641915,174	491,142	0,717
3 1/3 x min	160	8,8	0,154	450	6,43E-09	559,529	0,008	68306794947,088	559,529	0,819
	180	9,9	0,173	505	6,43E-09	627,916	0,009	68138136194,133	627,916	0,922
	200	10	0,175	555	6,43E-09	690,086	0,009	74135641449,240	690,086	0,931
	220	11,1	0,194	595	6,43E-09	739,822	0,010	71602478146,738	739,822	1,033
	240	12,2	0,213	609	6,43E-09	757,229	0,011	66679376225,945	757,229	1,136
	260	13,3	0,232	615	6,43E-09	764,690	0,012	61767146909,548	764,690	1,238
	280	14,4	0,251	621	6,43E-09	772,150	0,013	57605397072,045	772,150	1,340
	300	15,5	0,271	630	6,43E-09	783,341	0,014	54292884757,944	783,341	1,443
	360	45,5	0,794	773	6,43E-09	961,147	0,042	22693535626,280	961,147	4,235
30° x min	420	75,5	1,318	798	6,43E-09	992,232	0,070	14118547073,920	992,232	7,028
	480	105,5	1,841	810	6,43E-09	1007,152	0,098	10255731108,643	1007,152	9,820
	540	195,5	3,412	825	6,43E-09	1025,803	0,182	5636911978,583	1025,803	18,198
	600	285,5	4,983	825	6,43E-09	1025,803	0,266	3859951985,335	1025,803	26,576
	660	375,5	6 ,554	825	6,43E-09	1025,803	0,350	2934797048,770	1025,803	34,953
	720	465,5	8,125	826	6,43E-09	1027,047	0,433	2370251491,163	1027,047	43,331
	780	555,5	9,695	827	6,43E-09	1028,290	0,517	1988636987,326	1028,290	51,708
	840	645,5	11,266	831	6,43E-09	1033,264	0,601	1719645167,705	1033,264	60,086
	900	735,5	12,837	831	6,43E-09	1033,264	0,685	1509219518,360	1033,264	68,463
	960	825,5	14,408	831	6,43E-09	1033,264	0,768	1344677111,755	1033,264	76,841
	1020	915,5	15,978	837	6,43E-09	1040,724	0,852	1221240436,585	1040,724	85,219
90° x min	1080	1005,5	17,549	842	6,43E-09	1046,941	0,936	1118572358,340	1046,941	93,596
	1140	1095,5	19,120	846	6,43E-09	1051,915	1,020	1031554190,420	1051,915	101,974
	1200	1185,5	20,691	850	6,43E-09	1056,888	1,104	957748397,215	1056,888	110,351
	1260	1275,5	22,262	860	6,43E-09	1069,322	1,187	900641707,669	1069,322	118,729
	1320	1365,5	23,832	860	6,43E-09	1069,322	1,271	841280481,972	1069,322	127,107
	1380	1455,5	25,403	863	6,43E-09	1073,052	1,355	792013624,255	1073,052	135,484
	1440	1545,5	26,974	865	6,43E-09	1075,539	1,439	747620436,590	1075,539	143,862
	1500	1635,5	28,545	860	6,43E-09	1069,322	1,522	702395902,252	1069,322	152,239
	1560	1725,5	30,116	855	6,43E-09	1063,105	1,606	661889082,304	1063,105	160,617
	1620	1815,5	31,686	853	6,43E-09	1060,618	1,690	627605649,611	1060,618	168,994

Tabla 32. Probeta 3 con temple a 860°C y revenido a 500°C.

		Probeta: 4					CALC	ULO		
		Temple: 860°	С		Momento polar de	Esfuerzo cortante	Deformasión	Modulo de	Lev de booke	Deformasión
	1	Revenido: 500	[₽] C		inercia	debido a torsión	unitaria por cortante	cizallamiento	Ley de noure	unitaria porcentual
Velocidad	Tiempo		Απαυίο θ	Torsión	$I = \frac{\pi * d^4}{(m^4)}$	$\tau = \frac{T * r}{T}$ (MPa)	$v = \frac{\theta * r}{\theta} (rad)$	$G = \frac{T * L}{T} \left(\frac{Pa}{T} \right)$	$\tau = G * v (Mna)$	$\frac{0}{2} v = v^{*} 100\%$
de prueba	(segundos)	Angulo θ (°)	(rad)	(N*m)	32 (11)			J×θ `rad'	t = 0 + j (pu)	707 - 7 10070
(°x min)	(Segundos)		(rau)	(1, 11)	<u> </u>					
	20	1,1	0,019	55	6,43E-09	68,387	0,001	66788866170,486	68,387	0,102
	40	2,2	0,038	110	6,43E-09	136,774	0,002	66788866170,486	136,774	0,205
	60	3,3	0,058	165	6,43E-09	205,161	0,003	66788866170,486	205,161	0,307
	80	4,4	0,077	220	6,43E-09	273,548	0,004	66788866170,486	273,548	0,410
	100	5,5	0,096	280	6,43E-09	348,151	0,005	68003209191,768	348,151	0,512
	120	6,6	0,115	330	6,43E-09	410,321	0,006	66788866170,486	410,321	0,614
	140	7,7	0,134	390	6,43E-09	484,925	0,007	67656254042,830	484,925	0,717
3 1/3 x min	. 160	8,8	0,154	440	6,43E-09	547,095	0,008	66788866170,486	547,095	0,819
	180	9,9	0,173	500	6,43E-09	621,699	0,009	67463501182,309	621,699	0,922
	200	10	0,175	545	6,43E-09	677,652	0,009	72799864125,830	677,652	0,931
	220	11,1	0,194	582	6,43E-09	723,658	0,010	70038054254,456	723,658	1,033
-	240	12,2	0,213	608	6,43E-09	755,986	0,011	66569886281,403	755,986	1,136
	260	13,3	0,232	624	6,43E-09	775,880	0,012	62671056376,517	775,880	1,238
	280	14,4	0,251	658	6,43E-09	818,156	0,013	61037602694,695	818,156	1,340
	300	15,5	0,271	662	6,43E-09	823,129	0,014	57050618586,919	823,129	1,443
	360	45,5	0,794	765	6,43E-09	951,199	0,042	22458673679,306	951,199	4,235
30° x min	420	75,5	1,318	790	6,43E-09	982,284	0,070	13977007754,883	982,284	7,028
	480	105,5	1,841	804	6,43E-09	999,692	0,098	10179762730,061	999,692	9,820
	540	195,5	3,412	818	6,43E-09	1017,100	0,182	5589083634,523	1017,100	18,198
	600	285,5	4,983	819	6,43E-09	1018,343	0,266	3831879607,259	1018,343	26,576
	660	375,5	6,554	819	6,43E-09	1018,343	0,350	2913453070,233	1018,343	34,953
	720	465,5	8,125	820	6,43E-09	1019,586	0,433	2353034167,983	1019,586	43,331
	780	555,5	9,695	821	6,43E-09	1020,830	0,517	1974209149,450	1020,830	51,708
	840	645,5	11,266	825	6,43E-09	1025,803	0,601	1707228957,108	1025,803	60,086
	900	735,5	12,837	825	6,43E-09	1025,803	0,685	1498322626,530	1025,803	68,463
90° x min	960	825,5	14,408	827	6,43E-09	1028,290	0,768	1338204538,413	1028,290	76,841
	1020	915.5	15,978	830	6,43E-09	1032,020	0.852	1211026956,232	1032.020	85,219
	1080	1005.5	17,549	830	6.43E-09	1032.020	0.936	1102630709,528	1032.020	93,596
	1140	1095.5	19,120	842	6.43E-09	1046,941	1.020	1026676865.642	1046.941	101,974
	1200	1185.5	20.691	849	6.43E-09	1055.645	1.104	956621634,395	1055.645	110.351
	1260	1275.5	22,262	850	6.43E-09	1056.888	1.187	890169129.673	1056.888	118,729
	1320	1365.5	23.832	851	6.43E-09	1058.132	1.271	832476383.905	1058.132	127,107

Tabla 33. Probeta 4 con temple a 860°C y revenido a 500°C.

Figura 70. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en probeta 4.

		Probeta: 5					CALC	ULO		
		Temple: 860°	С		Momento polar de	Esfuerzo cortante	Deformasión	Modulo de	Lev de hooke	Deformasión
	I	Revenido: 500	°C		inercia	debido a torsión	unitaria por cortante	cizallamiento	Ley de nooke	unitaria porcentual
Velocidad	Tiemno		Angulo A	Torsión	$I = \frac{\pi * d^4}{(m^4)}$	$\tau = \frac{T * r}{T} (MPa)$	$v = \frac{\theta * r}{\theta}$ (rad)	$G = \frac{T * L}{T} \left(\frac{Pa}{T} \right)$	$\tau = G * v (Mna)$	$\%\nu = \nu^* 100\%$
de prueba	(segundos)	Angulo θ (°)	(rad)	(N*m)	32 (117)	J	L	_ J∗θ `rad'	<i>t</i> = 0 + <i>f</i> (<i>inpu</i>)	707 - 7 10070
(°x min)	(Segundos)		(144)	(.,)						
	20	1	0,019	45	6,43E-09	55,953	0,001	54645435957,671	55,953	0,102
	40	2	0,038	95	6,43E-09	118,123	0,002	57681293510,875	118,123	0,205
	60	3	0,058	155	6,43E-09	192,727	0,003	62741056099,548	192,727	0,307
	80	4	0,077	205	6,43E-09	254,897	0,004	62235079840,680	254,897	0,410
3 1/3 x min	100	6	0,096	252	6,43E-09	313,336	0,005	61202888272,591	313,336	0,512
	120	7	0,115	320	6,43E-09	397,887	0,006	64764961135,017	397,887	0,614
	140	8	0,134	380	6,43E-09	472,491	0,007	65921478298,142	472,491	0,717
	160	9	0,154	430	6,43E-09	534,661	0,008	65270937393,884	534,661	0,819
	180	10	0,173	485	6,43E-09	603,048	0,009	65439596146,840	603,048	0,922
	200	10	0,175	540	6,43E-09	671,435	0,009	72131975464,125	671,435	0,931
	260	20	0,349	725	6,43E-09	901,464	0,019	48421927973,603	901,464	1,862
	320	30	0,524	753	6,43E-09	936,279	0,028	33528010817,584	936,279	2,793
10° x min	380	40	0,698	766	6,43E-09	952,443	0,037	25580135743,296	952,443	3,723
	440	50	0,873	777	6,43E-09	966,120	0,047	20757979605,787	966,120	4,654
	500	<u>60</u>	1,047	782	6,43E-09	972,337	0,056	17409631115,107	972,337	5,585
	560	<mark>9</mark> 0	1,571	806	6,43E-09	1002,179	0,084	11962628029,647	1002,179	8,378
	620	120	2,094	814	6,43E-09	1012,126	0,112	9061022843,796	1012,126	11,170
	680	150	2,618	818	6,43E-09	1017,100	0,140	7284439003,661	1017,100	13,963
	740	180	3,142	821	6,43E-09	1020,830	0,168	6092628791,774	1020,830	16,755
30° x min	800	210	3,665	822	6,43E-09	1022,073	0,195	5228614094,490	1022,073	19,548
	860	300	5,236	828	6,43E-09	1029,534	0,279	3686745412,611	1029,534	27,925
	920	390	6,807	828	6,43E-09	1029,534	0,363	2835958009,701	1029,534	36,303
	980	480	8,378	828	6,43E-09	1029,534	0,447	2304215882,882	1029,534	44,680
	1040	570	9,948	829	6,43E-09	1030,777	0,531	1942735791,415	1030,777	53,058
	1100	660	11,519	832	6,43E-09	1034,507	0,614	1683888989,510	1034,507	61,436
	1160	750	13,090	835	6,43E-09	1038,237	0,698	1487165420,063	1038,237	69,813
	1220	840	14,661	830	6,43E-09	1032,020	0,782	1319875212,417	1032,020	78,191
	1280	9 30	16,232	832	6,43E-09	1034,507	0,866	1195017992,556	1034,507	86,568
90° x min	1340	1020	17,802	843	6,43E-09	1048,185	0,949	1103980670,230	1048,185	94,946
50 A.	1400	1110	19,373	846	6,43E-09	1051,915	1,033	1018078932,977	1051,915	103,323
	1460	1200	20,944	851	6,43E-09	1058,132	1,117	947288751,851	1058,132	111,701
	1520	1290	22,515	860	6,43E-09	1069,322	1,201	890518215,606	1069,322	120,079
	1580	1380	24,086	856	6,43E-09	1064,349	1,285	828569122,347	1064,349	128,456
	1640	1470	25,656	856	6,43E-09	1064,349	1,368	777840400,571	1064,349	136,834
	1700	1560	27,227	856	6,43E-09	1064,349	1,452	732964992,845	1064,349	145,211
	1760	1650	28,798	853	6,43E-09	1060,618	1,536	690556398,102	1060,618	153,589
	1820	1740	30,369	853	6,43E-09	1060,618	1,620	654837963,718	1060,618	161,967
	1880	1830	31,940	853	6,43E-09	1060,618	1,703	622632817,961	1060,618	170,344

Tabla 34. Probeta 5 con temple a 860°C y revenido a 500°C.

		Probeta: 6									
		Temple: 860°	С		Momento polar	Esfuerzo cortante	Deformasión unitaria	Modulo de		Deformasión	
	R	evenido: 500)°C		de inercia	debido a torsión	por cortante	cizallamiento	Ley de hooke	unitaria	
Velocidad	Tiempo				$\pi * d^4$	Ter	$\theta * r$	T+L , Pa			
de prueba	íseaundos	Angulo 8 (*)	Anguloe	Torsión	$J = \frac{m^{4}}{32} (m^{4})$	$\tau = \frac{1 + r}{T}$ (MPa)	$\gamma = \frac{1}{L}$ (rad)	$G = \frac{1}{1+\theta} \left(\frac{1}{rad}\right)$	$\tau = G * \gamma \ (Mpa)$	$\%\gamma = \gamma^{*100\%}$	
('xmin)	1		(rad)	(N'm)		1					
1	, í	0.2	0.003	22	6.43E-09	27 355	0.000	146935505575.070	27 355	0.019	
2		0.4	0,000	38	6,43E-09	47.249	0.000 126898845723 92		47,249	0,010	
		0,4	0,001	50	6.43E-03	41,243	0,000	120030043123,324	41,243 60 207	0,051	
3		0,0	0,010	33	6,43E-03	00,301	0,001	122440234043,032	92.201	0,030	
4		0,0	0,014	10	0,43E-03	6,43E-03 33,255 0,001 125223124063,662		33,233	0,014		
		10	0,017	33	6,43E-03	10,030	0,001	124221231011,103	100,000	0,033	
<u> </u>		1,2	0,021	100	6,43E-03	135,774	0,001	122946254645,832	135,774	0,112	
		1,4	0,024	123	6,43E-09	152,338	0,001	117357579128,140	152,938	0,130	
8		1,6	0,028	145	6,43E-09	180,293	0,001	121054819934,006	180,293	0,149	
9		2	0,035	162	6,43E-09	201,430	0,002	108197963196,188	201,430	0,186	
10		2,2	0,038	180	6,43E-09	223,812	0,002	109290871915,341	223,812	0,205	
11		2,4	0,042	198	6,43E-09	246,193	0,002	110201629181,302	246,193	0,223	
12		2,6	0,045	210	6,43E-09	261,114	0,002	107889706890,786	261,114	0,242	
13		2,8	0,049	224	6,43E-09	278,521	0,003	106862185872,778	278,521	0,261	
14		3	0,052	235	6,43E-09	292,199	0,003	104635890333,762	292,199	0,279	
15		3,2	0,056	252	6,43E-09	313,336	0,003	105192464218,516	313,336	0,298	
16		3,4	0,059	274	6,43E-09	340,691	0,003	107647937239,490	340,691	0,316	
17		5	0,087	285	6,43E-09	354,368	0,005	76139307434,354	354,368	0,465	
18		6	0,105	408	6,43E-09	507,306	0,006	90832857991,861	507,306	0,559	
19		7	0,122	495	6,43E-09	615,482	0,007	94458539298,259	615,482	0,652	
20		8	0,140	545	6,43E-09	677,652	0.007	90999830157,288	677,652	0,745	
21		10	0.175	625	6.43E-09	777.124	0.009	83486082713.108	777.124	0.931	
22		12	0.209	683	6.43E-09	849.241	0.011	76027992657 404	849 241	1 117	
23		14	0,200	705	6,13E-09	876 596	0.013	67265929500.276	876 596	1303	
20		16	0,244	718	6,43E-09	892,760	0,015	59943007388.012	892,760	1,000	
25		18	0,210	728	6.43E-09	905 194	0,013	54024771746 793	905 194	1,405	
23		20	0,014	727	0,43E-03 6.43E-09	916 204	0,011	4922294267 649	916 204	1,010	
20		20	0,343	750	0,43E-03 6.43E-09	310,304 922 E40	0,013	40072219702.292	922 E40	1,002	
21		20	0,430	700	0,43E-03	332,340	0,023	40013313102,232	332,340	2,321	
20		30	0,524	700	6,43E-03	331,133	0,020	34062321146,346	331,133	2,133	
23		35	0,611	770	6,43E-03	356,660	0,033	23425266161,337	356,660	3,258	
30		40	0,638	776	6,43E-03	364,877	0,037	25314080074,143	364,877	3,123	
31		45	0,785	780	6,43E-09	969,850	0,042	23153473605,769	969,850	4,189	
32		50	0,873	/84	6,43E-09	974,824	0,047	20944988431,065	974,824	4,654	
33		55	0,960	788	6,43E-09	979,798	0,051	19138046015,398	979,798	5,120	
34		60	1,047	791	6,43E-09	983,528	0,056	17609997713,618	983,528	5,585	
35		65	1,134	795	6,43E-09	988,501	0,061	16337584186,319	988,501	6,050	
36		70	1,222	798	6,43E-09	992,232	0,065	15227861486,871	992,232	6,516	
37		75	1,309	800	6,43E-09	994,718	0,070	14248291449,704	994,718	6,981	
38		80	1,396	802	6,43E-09	997,205	0,074	13391167667,183	997,205	7,447	
39		90	1,571	806	6,43E-09	1002,179	0,084	11962628029,647	1002,179	8,378	
40		100	1,745	815	6,43E-09	1013,369	0,093	10886585185,789	1013,369	9,308	
41		110	1,920	817	6,43E-09	1015,856	0,102	9921182483,870	1015,856	10,239	
42		120	2,094	818	6,43E-09	1017,100	0,112	9105548754,576	1017,100	11,170	
43		140	2,443	820	6,43E-09	1019,586	0,130	7823838608,543	1019,586	13,032	
44		160	2,793	821	6,43E-09	1020,830	0,149	6854207390,746	1020,830	14,893	
45		180	3,142	822	6,43E-09	1022,073	0,168	6100049776,904	1022,073	16,755	
46		200	3,491	822	6,43E-09	1022,073	0,186	5490044799,214	1022,073	18,617	
47		220	3.840	823	6.43E-09	1023,317	0.205	4997021532.574	1023.317	20,479	
48		240	4,189	823	6.43E-09	1023.317	0.223	4580603071.526	1023.317	22,340	
49		260	4.538	823	6.43E-09	1023,317	0.242	4228248989 101	1023.317	24,202	
50		280	4 887	823	6.43E-09	1023,317	0.261	3926231204 165	1023 317	26 064	
50		300	5 236	823	6,13E-00	1023 317	0.279	3664482457 221	1023 317	27,925	
52		320	5,200	823	6.43E-09	1023,317	0,213	3435452303 644	1023,317	21,323	
52		3/0	5,505	823	6.43E-00	1023,017	0,230	3233366974 010	1023,311	20,101	
53		340	0,004	023	0,402-03	1023,317	0,310	3233300014,010	1023,317	31,043	
54		1 360	0,283	623	0,43E-09	1023,317	0,335	L 3023732381,017	1023,317	33,510	

Tabla 35. Probeta 6 con temple a 860°C y revenido a 500°C.

Figura 72. Diagrama de esfuerzo cortante vs deformación unitaria por cortante en probeta 6.

Análisis de resultados de probetas con tratamiento térmico de temple a 860°C y

revenido a 500°C

De las **tablas (30-35)** del ensayo de torsión realizadas a las probetas con tratamiento térmico de temple a 860°C y revenido a 500°C se obtiene los siguientes resultados de torque máximo, esfuerzo máximo de corte y la deformación unitaria máxima que se pueden observar en la **tabla 36**.

Resultados del	ensayo do	e torsión con to	emple a 860°C y re	evenido a 500°C
PROBETA	Angulo de torsión (°)	Torque máximo (N*m)	Esfuerzo cortante máximo debido a torsión (Mpa)	Deformación unitaria máxima por cortante (rad)
1	1455,5	855	1063,11	1,36
2	1455,5	792	984,77	1,36
3	1815,5	853	1060,62	1,69
4	1365,5	851	1058,13	1,27
5	1830	853	1060,62	1,70
6	360	823	1023,32	0,34
Media	1380,33	837,83	1041,76	1,28
Desviación estándar	537,433	25,491	31,695	0,500
Mínimo	842,90	794,24	1010,06	0,78
Máximo	1917,77	891,09	1073,46	1,79

Tabla 36. Resultados del ensayo de torsión con temple a 860°C y revenido a 500°C.

De la **tabla 36** se analiza los valores máximos de torsión, utilizando un análisis estadístico mediante la desviación estándar para validar que los ensayos realizados son válidos. Ver **figura 73**.

En el diagrama de dispersión de la **figura 73** se puede observar que los valores dentro de los límites de control son más del cincuenta por ciento.

3.3.3.3.Comparación de resistencia a la torsión.

De las tablas de resultados se toma los valores resultantes del cálculo de la media entre los datos obtenidos en el ensayo, ver **tabla 37**.

COMPA	ARACION	N DE RESULT	ΓADOS
PROBETA	Torque máximo (N*m)	Esfuerzo cortante máximo debido a torsión (Mpa)	Deformación unitaria máxima por cortante (rad)
SUMINISTRO	667,33	829,76	0,23
TEMPLE 830°C Y REVENIDO A 500°C	842,67	1048,27	1,66
TEMPLE 860°C Y REVENIDO A 500°C	837,83	1041,76	1,28

 Tabla 37. Comparación de resultados.

- En base a los resultados obtenidos se observa que el acero AISI/SAE 4140 en estado de suministro resiste una torsión máxima de 667.33 N*m, un esfuerzo cortante máximo debido a torsión de 829.76 Mpa y una deformación unitaria de 0.23 rad.
- También, se puede apreciar que las probetas tratadas térmicamente por temple a 830°C y revenido a 500°C presentan un mejor comportamiento a la torsión que las probetas en estado de suministro obteniendo un torque máximo de 842.67 N*m, un esfuerzo cortante máximo debido a la torsión de 1048.27 Mpa y una deformación unitaria máxima por corte de 1.66 rad.
- También se puede apreciar que las probetas tratadas térmicamente por temple 860°C y revenido a 500°C presentan un mejor comportamiento a la torsión que las probetas en estado de suministro obteniendo un torque máximo de 837.83N*m, un esfuerzo cortante máximo debido a la torsión de 10.41.76 Mpa y una deformación unitaria máxima de 1.28 rad.
- En base a los resultados de la **tabla 37** se puede apreciar que con el tratamiento térmico realizado a las probetas se alcanzó una mayor resistencia a la torsión.

3.4.Costos

COSTO DE BARRA DE ACERO AISI/SAE 4140							
	Cant.	Cant. costo/unidad costo total					
Barra de Ø1" x 5000mm	1	\$	75,00	\$	75,00		

 Tabla 38. Costo del material AISI/SAE 4140.

Tabla 39. Costo de fabricación de probetas.

FABRICACION DE PROBETAS								
	Cant.	cost	o/unidad	cos	to total			
Probetas para torsión	15	\$	15,00	\$	225,00			
Probetas para tracción	3	\$	10,00	\$	30,00			

Tabla 40. Costo de tratamiento térmico por probeta.

COSTO TI	RATAM	IEN	FO TERMICO)	
	Cant.	coste	o/unidad	cos	to total
Temple y Revenido	12	\$	4,00	\$	48,00

Tabla 41. Costo de ensayo de torsión por probeta.

CO	OSTO DE ENSAYO DE]	FORSION	
	Cantidad de probetas	С	costo/unidad	costo total
Ensayo de torsión	15		\$ 25,00	\$ 375,00

 Tabla 42. Costo total del proyecto.

COSTO TOTAL DE PRO	OYECTO
	costo total
Material	\$ 75,00
Fabricación de probetas	\$ 255,00
Tratamiento térmico	\$ 48,00
Ensayo de torsión	\$ 375,00
Total:	\$ 753,00

Conclusiones

- Los elementos mecánicos como piezas de automotores, arboles de transmisión, ejes, bielas, cigüeñales, pernos grado 6, engranes de transmisión, émbolos donde son sometidos a tratamientos térmicos como temple y revenido para mejorar la resistencia a la torsión en el material AISI/SAE 4140.
- El acero AISI/SAE 4140 en estado de suministro contiene 0,412% de C, 0,231% de Si, 1,020% de Mn, 0,977% de Cr y 0,208 de Mo, comparados con las especificaciones del proveedor difiere en manganeso y cromo un 45.71% más y 11.82% menos respectivamente. El valor de dureza promedio obtenido corresponde a 30.4 HRC el cual se encuentra dentro de los límites especificados por el proveedor del material que es 24–33 HRC.
- El diseño de las probetas se realizó considerando las especificaciones establecidos en la Norma ASTM-E8/E8M para probetas de tracción y la Norma ASTM-E143 para las probetas de torsión, más, sin embargo, se ajustó el dimensionamiento de esta probeta a las especificaciones de la máquina de torsión utilizada.
- El diseño de tratamiento por temple se basó en una temperatura de temple de 830°C y 860°C por un tiempo de 40 minutos y el revenido a una temperatura de 500 °C por un tiempo de 1 hora basado en el espesor de la probeta.
- Las probetas tratadas térmicamente por temple a 830°C y revenido a 500°C arrojo un valor de esfuerzo cortante debido a la torsión de 1048.27Mpa que comparado con las propiedades en estado de suministro el cual corresponde a 829.76Mpa, se evidencia un aumento del 26.27%.
- Las probetas tratadas térmicamente por temple a 860°C y revenido a 500°C dieron como resultado un valor de esfuerzo debido a la torsión de 1041.76Mpa que comparado con las propiedades en estado de suministro el cual corresponde a 829.76Mpa, se evidencia un aumento del 25.55%.
- Al acero AISI/SAE 4140 es recomendable realizar el tratamiento térmico de temple a 830°C y revenido a 500°C en lugar de realizar el temple a 860°C y revenido a 500°C, porque se evidencia que tratado térmicamente a 830°C tiene un mejor comportamiento a la torsión.

Recomendaciones

- Se recomienda realizar la validación de las propiedades mecánicas y químicas del material AISI/SAE 4140 en estado de suministro para validar las mismas antes de que el material sea utilizado en cualquier aplicación.
- Se recomiendo utilizar las Normas ASTM o cualquier otro para el diseño adecuado de las probetas para los diferentes ensayos, y en caso de que el estándar utilizado no contemple los criterios suficientes para este el dimensionamiento de la probeta regirse según las especificaciones del fabricante de la máquina de ensayo a utilizar.
- Considerar la literatura técnica de tratamiento térmico para realizar el diseño del proceso para garantizar de que se produzca la transformación estructural en el material ensayado logrando obtener las características deseadas desde el punto de vista de resistencia.
- Se recomienda tener en cuenta que las características en el ensayo espectrofotométrico de un material específico suelen variar, pero no puede pasar del 5% de la desviación estándar en comparación de los valores especificados según fabricante

Referencias

- W. D. Callister, Introducción a la Ciencia e Ingeniería de los Materiales, Barcelona: REVERTÉ, 2002.
- [2] D. I. Rojas Estrada, «SCRIBD,» [En línea]. Available: https://es.scribd.com/document/174645097/Caracteristicas-Del-Acero-4140.
 [Último acceso: 06 octubre 2013].
- [3] D. R. Askeland, P. p. Fulay y W. J. Wright, Ciencia e ingeniería de materiales, México: Cengage Learning, 2012.
- [4] Benigar y J. Apraiz Barreiro, «SCRIBD,» 1949. [En línea]. Available: https://es.scribd.com/doc/219606882/Tratamientos-Termicos-de-Los-Aceros-Apraiz-Barreiro.
- [5] Tecnología I.E.S. Vega del Turia de Teruel, «Diagrama de fases del sistema hierro-carbono,»
 [En línea]. Available: http://tecno.iesvegadelturia.es/apuntes/tecind2/Tema_1/diagrama.html.
- [6] Bohler, «AISI 4140,» de *Bohler Aceros Especiales*, Perú, 2012, p. 27.
- BLUESTEELCORP S.A., «Acero AISI 4140,» de Aceros Bonificados, Ecuador, 2017, p. 13.
- [8] IVAN BOHMAN C.A., «Aceros bonificados para maquinaria,» de *Catálogo de productos*, Ecuador, 2009, pp. 28-29.
- [9] O. Cavazos, «SCRIBD,» [En línea]. Available: https://es.scribd.com/presentation/194424275/Clasificacion-AISI-y-SAE.
- [10] TECNOLÓGICO NACIONAL DE MÉXICO, «ITESCAM,» 2015. [En línea]. Available: https://itescam.edu.mx/principal/docentes/formatos/34eb4834465e263ef07431f 78101cad7.pdf.

- [11] COLEGIO MEXICANO DE CIENCIAS FORENSES A.C., [En línea].Available: www.mexicoforense.org. [Último acceso: 29 mayo 2019].
- [12] ASTM, «E18-19 Sandard test methods for Rockwell hardness of metallic materials,» Esrados Unidos, 2019.
- [13] Askeland y Donald R, Ciencia e Ingenieria de materiales, México: Impresos Vacha, S.A., 2013.
- [14] STRUERS, «Ensuring Certainty,» 2019. [En línea]. Available: https://www.struers.com/es-ES/Knowledge/Hardnesstesting/Rockwell#findoutmore. [Último acceso: 19 05 2019].
- [15] ISO, «ISO 6508 Ensayo de dureza Rockwell,» Quito, 2014.
- [16] ASTM, «E8/E8M Standard test methods for tension testing of metallic material,» Estados Unidos, 2019.
- [17] B. J. G. James M. Gere, Mécanica de Materiales, México: Cengage Learning Editores S.A., 2009, p. 38.
- [18] Eured, «Eured,» [En línea]. Available: https://www.ecured.cu/Micr%C3%B3metro_(instrumento). [Último acceso: 01 05 2019].
- [19] «INSTRON,» [En línea]. Available: https://www.instron.es/es-es/ourcompany/library/glossary/e/extensometer. [Último acceso: 01 05 2019].
- [20] F. P. Beer, Mecanica de Materiales, México: McGRAW-HILL/INTERAMERICANA, 2010.
- [21] ASTM, «E143-13 Standard Test Method for Shear Modulus at Room Temperature,» ASTM, Estados Unidos, 2013.
- [22] L. X. Herrera Luzón, «Repositorio de Espol,» 2008. [En línea]. Available: https://www.dspace.espol.edu.ec/retrieve/94635/D-65659.pdf.
- [23] A. Remache Coyago, F. Jácome Mancheno, J. Molina Osejos y S. F. Celi, «Análisis de la Microestructura del Acero V320 Sometido a Tracción y Torsión

luego de un Tratamiento Térmico de Temple Subcero,» *Revista Infociencia*, vol. 10, pp. 55-62, Diciembre 2016.

Anexos

							-					
	BÖł	HLER \	/ 320		i.							
Tipo de aleación:	C 0.41	Si 0.30	Mn 0.1	70	C	r 1.10		Mo 0	.20	%		
Color de Identificación: Estado de suministro: Acabado:	Blanco - Bonificao Laminad	café lo 850 - 1 o en calie	050 N/mm nte	n² (2	250 - 3	310 H	B)				Equivalencia	AISI: ~ 4140 DIN: 42CrMo4 No. Mat 1 7225
PROPIEDADES:												
un tratamiento térmico.	La adición de	molibden	io previene	e la	fragil	idad o	le re	venido	en e	l acero.		
EMPLEO: Para la construcción de pernos grado 6, tuercas,	partes y pieza pines, émbol	as de auto los, ejes d	omotores, le bombas	mot s, ca	oredu añone	ictore s para	s, ár a arr	boles (nas de	de tra cace	nsmisió ería.	on, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIC	partes y pieza , pines, émbol CO: Forjado:	as de auto los, ejes d	omotores, le bombas	mot s, ca	añone	uctore s para	s, ár a arr	boles on as de	de tra cace	nsmisić ría.	on, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIO	partes y piezz pines, émbol CO: Forjado: Recocido: enfriamiento ie Normalizado: Distensionad Temple:	as de auto los, ejes d ento en el horm o:	omotores, le bombas o (217 HB máx	mot ;, ca	añone	uctore s para	s, ár a arr	boles (nas de 1050 - 8 680 - 7 840 - 8	de tra cace 350 °C 720 °C 380 °C 500 °C	nsmisió ría.	on, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIO	partes y pieza pines, émbol CO: Forjado: Recocido: enfriamiento le Normalizado: Distensionad Temple: al aqua al acete baño	as de auto los, ejes d ento en el horm o: o de sel (180 - 1	omotores, le bombas o (217 HB máx 220 °Cl	mot ;, ca	toredu	uctore s para	s, ár	boles (nas de 1050 - 8 680 - 7 840 - 8 5 820 - 8	de tra cace	nsmisić ría.	òn, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIO	partes y pieza pines, émbol CO: Forjado: Recocido: enframiento le Normalizado: Distensionad Temple: al agua al acele, baño Dureza obten	as de auto los, ejes d anto en el hom o: o de sal (180 -) ibile:	omotores, le bombas o (217 HB máx 220 °C)	mot 3, ca	toredu	uctore s para	s, ár	boles (nas de 1050 - 8 680 - 7 840 - 8 820 - 8 830 - 8 830 - 8 54 - 56	de tra cace 350 °C 720 °C 380 °C 360 °C 360 °C 360 °C 360 °C	nsmisić rria.	ón, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIO	partes y piezz pines, émbol CO: Forjado: Recocido: enframiento Normalizado: Distensionad Temple: al agua al acete, baño Durezo obten Revenido: ve Nitruración: d	as de auto los, ejes d anto en el horm o: b de sal (180 - : i ble : r en el diagran en baño de sal	ornotores, le bombas o (217 HB máx 220 °C) na de revenido ((tenifer)	mot ;, ca :-)	coredu añone	uctore is para	s, ár	1050 - 8 680 - 7 840 - 8 820 - 8 540 - 6 540 - 6 540 - 6	de tra cace 350 °C 720 °C 380 °C 380 °C 380 °C 360 °C	nsmisió ría.	ón, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIO	partes y piezz pines, émbol CO: Forjado: Recocido: Distensionad Temple: al agua al acete, baño Dureza obre, baño Dureza obre: Nitruración: e	as de auto los, ejes d anto en el horn o: bible: r en el diagran en baño de sal	ornotores, i le bombas o (217 HB máx 220 °C) na de revenido (tenifer)	mot ;, Ca	oredu ñone	uctore s para	s, ár a arr	1050 - 8 680 - 7 840 - 8 820 - 8 830 - 8 54 - 56 540 - 6	de tra cace 350 °C 720 °C 360 °C 360 °C 6 HRC 380 °C	nsmisió ría.	ón, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIO	partes y piezz pines, émbol CO: Porjado: Recocido: enfiramiento le Normalizado: Distensionad Temple: al agua al acelle, baño Dureza obten Revenido: ve Nitruración: r	as de auto los, ejes d anto en el horm o: bible: r en el diagran en baño de sal	ornotores, i le bombas o (217 HB máx 220 °C) na de revenido (tenifer)	mot ;, ca	oredu añone	uctore s para	s, ár	1050 - 8 680 - 7 840 - 8 820 - 8 830 - 8 54 - 56 540 - 6	de tra cace	nsmisić ría.	on, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIO	partes y piezz pines, émbol CO: Forjado: Recocido: Distensionad a la coelle, baño Dureza obten Revenido: ve Nitruración: « NICAS	as de auto los, ejes d ento en el horn o: de sal (180 - ; ible: r en el diagran en baño de sal	e bombas o (217 HB máx 220 °C) na de revenido (tenifer)	mot s, Ca las d	urezas o ngación	Ictore s para btenible	s, ár a arr sción rea	boles c mas de 1050 680 - 7 840 - 5 830 - 6 830 - 6 830 - 6 544 - 5 540 - 6 544 - 5 540 - 6 8 830 - 8 830 - 8 840 - 8 830 - 8 830 - 8 830 - 8 830 - 8 830 - 8 840 - 8 830 - 8 840 - 8 830 - 8 840	de tra cace 350 °C 720 °C 360 °C 360 °C 360 °C 360 °C 360 °C 360 °C 360 °C 360 °C	nsmisić ría.	on, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIO	partes y piezz pines, émbol CO: Forjado: Recocido: Distensionad al acette baño Dureza obten Revenido: ve Nitruración: «	as de auto los, ejes d ento en el horm e: de sal (180 - : ible: r en el diagran en baño de sal Limite de fluencia Nimm' min	o (217 HB máx o (217 HB máx 220 °C) na de revenido (tenifer) Resistencia a la tracción Nimm?	mot s, ca las d	urezas o ngación m ² min. Q T	btenible	s, ár a arr s s s	boles de 1050 - (680 - 7 840 - (830 - (830 - (540 - 5 540 - (540 - 6 540 - (540 - 6 2 8 8 8 8 8 8 8 8 8 8 8 8 9 8 9 8 9 8 9	de tra cace 350 °C 720 °C 380 °C 380 °C 380 °C 380 °C 380 °C 380 °C 180 °C 180 °C	nsmisić ria.	yn, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIO	partes y piezz pines, émbol CO: Forjado: Recocido: enframiento Distensionad Temple: al agua al aceite, baño Dureza obten Revenido: ve Nitruración: d	as de auto los, ejes d ento en el horm o: tel sal (180 - ; tible: r en el diagran en baño de sal Vimm? min 900	o (217 HB máx o (217 HB máx 220 °C) na de revenido (tenifer) Resistencia a la tranción Nmm ²	Elon N/m L 10	urezas o urezas o Q T 	btenible	s, ár a arr rea im? a T	boles de 1050 - (680 - 7 840 - 8 840 - 8	de tra cace 350 °C 720 °C 360 °C 360 °C 360 °C 360 °C 360 °C 360 °C 360 °C 360 °C 360 °C 70 °C 360 °C 720 °C	nsmisić ria.	òn, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIO	partes y piezz pines, émbol CO: Forjado: Recocido: enfinarieto le Normalizado: Distensionad Temple: al agua al acelte, baño Dureza obten Revenido: ve Nitruración: d NICAS	as de auto los, ejes d anto en el horn o: c: c de sal (180 - ; bible: r en el diagran en baño de sal bible: de fluencia N/mm ² min 900 750 650	e bombas o (217 HB máx 220 °C) na de revenido (tenifer) 1100 - 1300 1100 - 1200 900 - 1100	Elon N/m L 10 11 12	urezas o ngación m ² min.	btenible	s, árr	boles de nas de 1050 - (- 680 - 7 840 - 6 840 - 6 540 - 6 540 - 6 540 - 6 540 - 6 540 - 6 540 - 1 1 1 1 1 1 1 1 1 1 1 1 2 30 30 35 35	de tra cace 350 °C 720 °C 3880 °C 3880 °C 3880 °C 880 °C min. T 	nsmisić	on, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIO	partes y piezz pines, émbol CO: Forjado: Recocido: enfiramiento le Normalizado: Distensionad Temple: al agua al acelle, baño Dureza obten Revenido: ve Nitruración: r NICAS	as de auto los, ejes d anto en el horn o: r en el diagran en baño de sal Nmm² min 900 750 650 550	e bombas o (217 HB máx 220 °C) na de revenido (tenifer) 100 - 1300 1100 - 1200 900 - 1100 800 - 950	Elon N/m L 10 11 12 13	urezas o mgación m² min. Q T 	btenible Redu de n N/m 45 - 50 - 60 -	s, ár a arr sción rrea m ² t T 	boles c mas de 1050 - 4 680 - 7 840 - 6 9 830 - 6 540 - 6 540 - 6 5 40 - 6 9 100 - 10 100 - 100 100 - 10 100 - 10 100 100 - 10 100 - 10 100 100 100 - 10 100 100 100	de tra cace 350 °C 720 °C 380 °C 380 °C 380 °C 380 °C 880 °C 720 °C 380 °C 380 °C 720 °C 380 °C 720 °C 380 °C 720 °C 380 °C 720 °C	nsmisić	on, ejes	, bielas,
EMPLEO: Para la construcción de pernos grado 6, tuercas, TRATAMIENTO TÉRMIO	partes y piezz pines, émbol CO: Porjado: Recocido: enfriamiento is Normalizado: Distensionad a la coette, baño Dureza obres. Nitruración: r NICAS	Limite de fluencia N/mm ² min 900 750 650 550 500	contores, le bombas contract contract cont contract <td>Elon N/m L 10 11 12 13 14</td> <td>urezas o ngación m² min. Q T </td> <td>Redu Redu Red Redu Redu <thr< td=""><td>s, ár a arr rea * * * * *</td><td>boles c mas de 1050 - 4 660 - 7 840 - 6 830 - 7 830 - 7 835 -</td><td>de tra cace 350 °C 720 °C 380 °C 360 °C 360</td><td>nsmisić</td><td>yn, ejes</td><td>, bielas,</td></thr<></td>	Elon N/m L 10 11 12 13 14	urezas o ngación m² min. Q T 	Redu Red Redu Redu <thr< td=""><td>s, ár a arr rea * * * * *</td><td>boles c mas de 1050 - 4 660 - 7 840 - 6 830 - 7 830 - 7 835 -</td><td>de tra cace 350 °C 720 °C 380 °C 360 °C 360</td><td>nsmisić</td><td>yn, ejes</td><td>, bielas,</td></thr<>	s, ár a arr rea * * * * *	boles c mas de 1050 - 4 660 - 7 840 - 6 830 - 7 830 - 7 835 -	de tra cace 350 °C 720 °C 380 °C 360	nsmisić	yn, ejes	, bielas,

Anexo 1. Catálogo de Bohler, especificación del material.

BÖHLER MANUAL DE ACEROS ESPECIALES - 2007

DIAGRAMA DE BONIFICACIÓN

1.- Resistencia a la tracción 2.- Límite de fluencia

- 3.- Reducción de área
- 4.- Elongación
- 5.- Resistencia al impacto

Temperatura de temple: 840°C Sección: ø60 mm

SOLDADURA DE REPARACIÓN

Electrodo recomendado: UTP 641 ó UTP 63

Precauciones:

Con UTP 641 Precalentamiento: 250-300°C de acuerdo al espesor Post-calentamiento: recocido a 690°C Calentamiento: recocido a 690°C

Con UTP 63 Precalentamiento: a 120 °C Después de soldar, dejar enfriar lentamente.

MEDIDAS EN STOCK:

ACERO	GEOMETRÍA	DIMENSIONES (mm)	PESO / METRO (kg)
V 320	redondo	19.10	2.26
V 320	redondo	20.00	2.48
V 320	redondo	22.20	3.06
V 320	redondo	25.00	3.88
V 320	redondo	25.40	4.00
V 320	redondo	28.00	4.86
V 320	redondo	28.60	5.08
V 320	redondo	29.00	5.22
V 320	redondo	30.00	5.58
V 320	redondo .	31.80	6.27
V 320	redondo	32.00	6.35
V 320	redondo	34.90	7.56
V 320	redondo	35.00	7.60
V 320	redondo	38.00	8.96
V 320	redondo	38.10	9.01
V 320	redondo	40.00	9.93
V 320	redondo	41.30	10.58
V 320	redondo	44.50	12.29
V 320	redondo	45.00	12.56
V 320	redondo	51.00	16.14
V 320	redondo	55.00	18.77
V 320	redondo	57.15	20.27
V 320	redondo	60.00	22.34
V 320	redondo	65.00	26.21
V 320	redondo	70.00	30.40
V 320	redondo	75.00	34.90
V 320	redondo	80.00	39.71
V 320	redondo	90.00	50.26
V 320	redondo	102.40	65.06
V 320	redondo	110.00	75.08
V 320	redondo	120.00	89.35
V 320	redondo	127.00	100.07
V 320	redondo	130.00	104.86
V 320	redondo	140.00	121.61
V 320	redondo	150.00	139.60
V 320	redondo	155.00	149.07
V 320	redondo	210.00	273.63
V 320	redondo	230.00	328.23
V 320	redondo	240.00	357.39
V 320	redondo	250.00	387.79

Anexo 2. Catálogo de BLUESTEELCORP.

	ACEROS BONIFICADOS	BLUESTEELCORP.
Acero AISI 4	140	
EQUIVALENCIAS:		States of the second
BÖHLER	V320	The second se
IBCA	709	
UDDEHOLM		ALC: NO DECEMBER OF A DECEMBER OF
DIN:	42C/Mo4	
No. Mat.	1.725	
Tipo de aleación:		
C 0.40 Si 0.30 Mr	0.80 Cr1.00 Me 0.18 Ni- %	
Estado de suministro	Bonificado 29 - 34 HRC	

PROPIEDADES – APLICACIONES

Acero bonificado al crumo – molibdeno, de alta resistencia mecánica y tenacidad en estado bonificado, buena maquinabilidad. Resistente a la fragilidad de revenido por su aleación de molibdeno. En presentación de ejes macizos y planchas.

Utilizado en la fabricación de partes de maquinaria de mediana y pequeña sección sometidas a esfuerzos normales, como ejes, cigüeñales, barras de torsión, piñones, pernos, etc.

En láminas lo puede utilizar para placas portamoldes, sufrideras, soportes pisadores, partes estructurales de maquinaria.

TRAJAMIENTO TÉRMICO	
Forjado	1050 - 850°C
Recocida	680 ~ 720°C (241 HB)
Temple.	640-860°C al aceite
Durens Recenter	54 - 50 MPC
nevenido	550-500°C

-				-
-	1.00		_	
	-	-	-	
			-	-
	-		_	-
	111/25	B		
-	-	-		_

Diámetro	Limite de fluencia N/mm²	Resistencia a la tracción N/mm²
≤ 16	900	1100 - 1300
≤16 ≤40	750	1100 - 1200
≤ 40 ≤100	650	900 - 1100
≤100 ≤180	550	800 - 950
<160 <250	500	750 - 900

Anexo 3. Catálogo de Iván Bohman.

Cód. IBCA: 709 ≡ 42 CrMo4 ≡ AISI 4140

Información general

709 es un acero aleado para construcción de maquinaria, que posee una alta resistencia especialmente en medidas pequeñas y medionas. Como norma, el 709 es suministrado templodo y revenido (temple tenaz bonificado), por lo que no se requertiría un tratamiento térmico posterior, o no ser que así lo exiljo la aplicación y en ese caso, se templaría en aceite para obtener propiedades mecánicas más elevadas.

709 es apropiado para templase por flama e inducción y susceptible de nitrurar.

Análsis fípico %	c	51	Mo	P	5	Cr	Mo
42CrMo4	0,38 - 0.45	< 0.30	0.60 - 0.90	0,005	0,025	0,90 - 1,20	0.15+0.30
AEI 4140	0,38-0,43	0.15-0.35	0,75+1,00	0,030	0.040	0,80 - 1,10	0.15-0.25
Código de color	Dorado /	Verde			-		
Equivalencias	AISI / SAE	(4140) (o4)	W.Nr (1.7225) SCM40		ARNOR (4	9004)

	Aplicacio	nes	Tratamiento térmico
Ŀ	industria Automohiz	la cisiodalar ata	Recocido blando
2.1	Maquinaria ngranajes de temple por llama artes de bombas, ejes de redu	i inducción o nitrutación, chares, árboles de turbinas	(680 - 720 °C): Mantener a la temperatura por 2 horas. Entirar en el homo con una velocidad de 15 °C(h hasta los 600 °C y luego libremente al alte.
	vapor, tomiliería de alta resiste	incia.	Alivio de tensiones
31 1 V	industria petrolera aladras, brocas, barrenas, cue astagos de pistón. Propiedades me	pos de escañadores. Cânicas	(450 · 650 °C): El acero templado tenaz deberá ser celentado hasta aproximadamente 50 °C por debajo de la temperatura usada paro el revenido (como standard el 709 es suministrado reverido o 600 °C). Manteneiro o esta temperatura durante 1/2 o 2 horas. Entitor en el homo hasta los 450 °C y luego libremente al alia.
	En condición de s	uministan.	Temple
			(830 - 850 °C). Con entriamiento en aceite: El tiempo de
	Resistencia a la tracción	90 - 105 kg/mm ²	montenimiento en minutos cuando ha alcanzado la temperatura de temple es 0.7 x espesor o diámetro en
	Esluerzo de cedencio	70 kg/mm ²	milimetros, interumpir el entriomiento o los 125 °C y luego revenir inmediatomente.
	Elongoción, A5	min 12%	
	Reducción de área, Z	# 00 nim	HRC
	Resistencia al impacto, KU	Oprox. 25 J	70
	Dureza	275 - 320 HB	60
Ma	Az Estas propiedodes mecóni odidas mayores, favor consulta	cai se dan hasta e 180 mm. r	50 40 50 50 50 50 50 50 50 50 50 5

www.ivanbohman.com.ec

Cód. IBCA: 709 ≡ 42 CrMo4 ≡ AISI 4140

	Propiedodes		1	Tratamiento t	émico
	Revenido			Nhuroció	ón
0 - 700 °C): B 1 revenido podí podo a la temp HBC 70 60 40 30 40 30 20 10	empo de montenimi o ser de 1 - 2 horos lus enchuro escogido:	ento a la temperatu ego de que la pieza t	59 pueden logro 53 - 55 HRC.	or durazos, con est	e proceso de altededo
0					
	200 300 400 Temperatura del reve	500 600 °C nido °C Medido	s en slock		
0 4	2 200 300 400 1 Temperatura del reve	500 600 °C nido °C Medido Re Peso (kg/m)	s en slock dondo Diômeho (mm)	Peso (kg/m)	
0 L	2 200 300 400 1 Temperatura del reve Diámetro (mm) 25	500 600 °C nido °C Medido Re Peso (kg/m) 3.9	s en slock dondo Diômetro (mm) 85	Peso (kg/m) 45.5	
e 🖵	D 200 300 400 Temperatura del reve Diámetro (mm) 25 28	500 600 °C nido °C Medido Reso (kg/m) 3.9 4.9	s en stock donde Diômetro (mm) 85 90	Peso (kg/m) 45.5 51.0	
	2 200 300 400 Temperatura del reve Diámetro (mm) 25 28 32	500 600 °C nido °C Medido Peso (kg/m) 3.9 4.9 6.5	s en stock dondo Diómetro (mm) 85 90 95	Peso (kg/m) 45,5 51,0 56,9	
	2 200 300 400 Temperatura del reve Diámeito (mm) 25 28 32 35	500 600 °C nido °C <u>Medido</u> Re Peso (kg/m) 3.9 4.9 6.5 7.7	a en stock aondo Diómetro (mm) 85 90 95 100	Peso (kg/m) 45.5 51.0 56.9 63.0	
	2 200 300 400 1 Temperatura del reve Didmetro (mm) 25 28 32 35 38	500 600 °C nido °C Mecfido Reso (kg/m) 3.9 4.9 6.5 7.7 9.1	a en stock dondo Diómetro (mm) 85 90 95 100 105	Peso (kg/m) 45,5 51,0 56,9 63,0 69,5	
	2 200 300 400 1 Temperatura del reve Diámetro (mm) 25 28 32 35 38 40	500 600 °C redo °C Medido Rec Peso (kg/m) 3.9 4.9 6.5 7.7 9,1 10,1	s en stock dondo Diómetro (mm) 85 90 95 100 105 120	Peso (kg/m) 45.5 51.0 56.9 63.0 09.5 90.7	
	2 200 300 400 1 Temperatura del reve 26 28 32 35 38 40 45	500 600 °C nido °C Medido Reso (kg/m) 3.9 4.9 6.5 7.7 9.1 10.1 12.8	s en stock donde Diômetro (mm) 85 90 95 100 105 120 125	Peso (kg/m) 45.5 51.0 56.9 63.0 69.5 90.7 96.4	
	200 300 400 Temperatura del reve Diàmetro (mim) 25 32 35 38 40 40 60	500 600 °C nido °C Medido Peso (kg/m) 3.9 4.9 6.5 7.7 9.1 10.1 10.1 10.1 10.5 5.5	s en stock donde Diômetro (mm) 05 00 05 100 105 120 125 130	Peso (kg/m) 45.5 51.0 56.9 63.0 69.5 90.7 98.4 106.5	
	2 200 300 400 Temperatura del reve Diámetro (mm) 25 28 32 35 38 40 45 50 55	500 600 °C nido °C Medido Peso (kg/m) 3.9 6.5 7.7 9,1 10,1 12,8 15,8 19,1	s en stock dondo Diómetro (mm) 95 90 95 100 105 120 125 130 140	Peso (kg/m) 45.5 51.0 56.9 63.0 69.5 90.7 98.4 106.5 123.5	
	2 200 300 400 Temperatura del reve Diámetro (mm) 25 28 32 35 38 40 40 40 55 60	500 600 °C nido °C Medido Peso (kg/m) 3.9 4.9 6.5 7.7 9,1 10,1 12,8 15,8 15,8 19,1 22,7	s en stock: dondo Diómetro (mm) 95 90 95 100 105 120 125 130 140 155	Peso (kg/m) 45,5 51,0 56,9 63,0 69,5 90,7 96,4 106,5 123,5 151,4	
	2 200 300 400 Temperatura del reve Temperatura del reve 25 28 32 35 38 40 45 55 55 55 60 65	500 600 °C nido °C Medido Peso (kg/m) 3.9 4.9 6.5 7.7 9,1 10,1 12,8 15,8 15,8 15,8 19,1 22,7 26,6	s en stock: donde Diómetro (mm) 85 90 95 100 105 120 125 130 145 140 165 160	Peso (kg/m) 45,5 51,0 56,9 63,0 69,5 90,7 98,4 106,5 123,5 123,5 151,4 161,3	
	2 200 300 400 1 Temperatura del reve 25 28 32 35 38 40 45 50 56 60 65 57	500 600 °C reido °C Medido Reso (kg/m) 3.9 4.9 6.5 7.7 9,1 10,1 12,8 15,8 19,1 10,1 12,8 15,8 19,1 22,7 26,6 30,9	s en stock dondo Diómetro (mm) 85 90 95 100 105 120 125 130 140 155 150 150 170	Paso (kg/m) 45.5 51.0 56.9 63.0 69.5 90.7 98.4 106.5 123.6 151.4 161.3 182.1	

* Medidas y pesos son teóricos IVAN BCHMANI C.A. fachurará al peso del material una vez efectuado el corte

40,3

60

252.0

200

www.ivanbohman.com.ec

Anexo 4. Ficha técnica de horno NABERTHERM N7/H para temple.

Horno de templado/endurecimiento N7/H NABERTHERM®

CARACTERISTICAS

Horno de templado/endurecimiento N7/H NABERTHERM® Los hornos N 7/H - N 61/H se han diseñado con un aislamiento robusto con ladrillos refractarios ligeros para soportar el uso agresivo en el laboratorio, por ejemplo, cuando se tratan los metales con calor. También son ideales para el uso en aplicaciones de alto rendimiento, como recocido de tilanio en aplicaciones médicas. Los hornos se pueden ampliar con diversos accesorios opcionales: cajas de recocido para operar bajo gas protector, guías de rodillo, una estación de refrigeración con un baño de enfriamiento, puerta oscilante paralela que se abre hacia abajo o hacia arriba y un sistema de gaseado manual o automático

- Se pueden ajustar sin el uso de sistemas de recocido caros y complicados

- Calentamiento en tres lados, desde ambos lados y el suelo - Consimulation of in the shore of the shore of a solid of a solid of a solid of the solid of th

Los hornos N 7/H - N 61/H se han diseñado con un aislamiento robusto con ladrillos refractarios ligeros para soportar el uso agresivo en el laboratorio, por ejemplo, cuando se tratan los metales con calor. También son ideales para el uso en aplicaciones de alto rendimiento, como recocido de titanio en aplicaciones médicas. Los hornos se pueden ampliar con diversos accesorios opcionales: cajas de recocido para operar bajo gas protector, guías de rodillo, una estación de refrigeración con un baño de enfriamiento, puerta oscilante paralela que se abre hacia abajo o hacia arriba y un sistema de gaseado manual o automático.

 Se pueden ajustar sin el uso de sistemas de recocido caros y complicados
 Calentamiento en tres lados, desde ambos lados y el suelo
 Los elementos calefactores en los tubos de soporte garantizan la radiación libre de calor y una larga vida útil; el calentamiento del suelo está protegido por una placa de SiC resistente al calor Aislamiento multicapa con ladrillos refractarios ligeros en la cámara del horno

- Abertura de salida en el lateral del horno o en la pared posterior del horno en el modelo N 31/H y en los modelos más grandes

Los modelos N 7/H - N 17/HR son unidades de sobremesa; se incluye un soporte con el modelo N 31/H y los modelos más grandes. Se suministran con la opción de controlador B 150, que incorpora 1 rampa y 1 liempo de permanencia, o con el controlador P 300 con 9 programas ajustables y 40 segmentos con interfaz RS422 opcional. Los modelos N 7/H y N 11/H son de fase única; todos los demás modelos requieren 3 fases de 400 V.

Los modelos N 7/H - N 17/HR son unidades de sobremesa; se incluye un soporte con el modelo N 31/H y los modelos más grandes. Los modelos N 7/H y N 11/H son monofásicos; todos los demás modelos son trifásicos de 380 V. Modelos disponibles con un controlador B 150 o un controlador P 300 (este último con posibilidad de añadir una interfaz RS422).

Código	Descripción	Temperatura Máx. (ºC)	Potencia Máx. (W)	Capacidad (Litros)	Alto/Ancho/Fondo Int. (mm)	Alto/Ancho/Fondo Ext. (mm)
20444550211	N 7/H	1280	3000	7	120/250/250	510/720/640
Anexo 5. Ficha técnica de horno NABERTHERM N 15/65HA para revenido.

Los hornos de cámara con circulación de aire se caracterizan particularmente por su buena homogeneidad de la temperatura. Como resultado, son adecuados para procesos como la calcinación y el secado p. ej. de materiales cerámicos. También se puede diseñar como horno de debinding (desaglomerado) para un proceso seguro bajo atmósfera de aire o de gas inerte. Cuando se usa para la desaglomeración en atmósfera de aire, los gases de escape se diluyen mediante aire fresco para impedir de forma segura una atmósfera inflamable dentro de la cámara del horno. Para los procesos de desaglomeración bajo atmósfera de gas inerte, se recomienda el concepto de seguridad pasiva IDB con un contenido de oxígeno residual del 3 %, como máximo.

- Tmáx 450 °C, 650 °C ó 850 °C
- Deflector de acero inoxidable para una óptima circulación de aire en el horno
- Puerta con apertura hacia la derecha
- Soporte incluido en el suministro, el modelo N 15/65 HA está disponible como modelo de sobremesa
- Circulación horizontal de aire
- Homogeneidad de la temperatura en base a la norma DIN 17052-1 de hasta +/- 5 °C (modelo N 15/65 HA de hasta +/- 7 °C) véase página 75
- Distribución óptima del aire debido a altas velocidades de caudal
- El suministro incluye una bandeja insertable y guías para 2 bandejas adicionales (el modelo N 15/65 HA no dispone de bandeja insertable)
- Uso conforme al destino en el marco de las instrucciones de servicio
- NTLog básico para controladores Nabertherm: registro de datos de proceso sobre memoria USB (NA 30/45 -N 675/85 HA)
- Descripción de la regulación véase página 76

Equipamiento opcional (no disponible para el modelo N 15/65HA)

- Optimización de l'homogeneidad de la temperatura en base a la norma DIN 17052-1 hasta +/- 3 °C véase página 75
- Enfriamiento por ventilador para acelerar el proceso

Válvula de aire de escape accionada por motor

Modelo	Tmáx	Dimensiones internas en			Volumen en 1	Dimensiones externas en mm Anch. Prof. Alt.			Potencia calórica en kW ²	Conexión eléctrica*	Peso in kg
	°C	mm anch. prof. alt.									
N 15/65 HA	650	295	340	170	15	470	845	460	2,4	monotásica	55

Anexo 6. Ficha técnica de máquina FOUNDRY-MASTER Xpert para ensayo espectrofotométrico.

Technical specifications

Height / width / depth	380 mm / 15.0"	740 mm / 29.1 "	880 mm / 34.6"				
Weight	100 kg / 220 lbs						
Power	90 - 250 V AC, 50 / 60 Hz						
Operating / standby	600 W / 70 W						
Optical System							
Multi-CCD	In Paschen-Runge mounting, optimized pixel resolution						
Wavelength range	130 - 780 nm						
Focal length	350 mm						
Holographic grating	3000 grooves / mm	1					
Solid state source							
	Computer controlled parameters, DSP 160 MHz 16 bit						
Frequency	50 - 500 Hz						
Voltage	250 - 500 V						
	High energy pre spark (HEPS)						
Readout system							
Extenal PC workstation	Microsoft® Window	vs® user interface					
	18 inputs for CCDs						
	DSP controller 600 MHz / High speed 16 bit ADC						
Environmental conditions							
Temperature	0 - 40 °C / 50 - 104 °F						
Humidity	10 - 90 % not condensating						
Options							
Wire adapter set	Sample preparation devices						
Spare parts kit	All-in-one computer system with wireless desktop						
Consumables kit							

OiService

Our global network of service hubs provides a full range of technical support:

- Telephone help-desk
- On-line diagnostic
- Rental instrument
- Maintenance
- Training
- Extended warranty
- Consumables and accessories
- Repair service

Please ask about details of our comprehensive range of products or visit our website at:

www.oxford-instruments.com/ ia-customerservice

on is the copyright of Oxford Instruments pic and provides outline information only, which (unless agreed by the company in not be used, applied or reproduced for any purpose or form part of any order or contract or regarded as the representation products or services concerned. Oxford instruments policy is one of continued improvement. The company reserves the without notice the specification, design or conditions of supply of any product or service. Oxford Instruments a and registrations. Or Oxford Instruments of a light service Part no 53713.05

Anexo 7. Máquina de ensayo de dureza 900-365 DIGITAL ROCKWELL HARDNESS TESTER.

 Major Load
 10 Kgf

 Major Load
 60 Kgf, 100 Kgf, 150 KGF

 Test Force Application
 Dead Weight

 Test Force Control
 Motorized

 Results Display
 Hi-Def, LCD Digital Readout

 Resolution
 0.1HR

 Memory/Output
 500 Tests/USB

 Vertical Capacity
 7.87 in.

 Throat Depth
 6.50 in.

 Height
 28.34 in.

 Width
 7 ere

 Dereth
 0.01

900-365 DIGITAL ROCKWELL HARDNESS TESTER 21.60 in.

Anexo 8. Ficha técnica de máquina TEST RESOURCES de ensayo de tensión.

Depth

TEST RESOURCES								
SYSTEM CAPACITY RATING								
STATIC FORCE	33,750 lb	(150 kN)						
SPEED MIN.	0,01 in/min	(0,25 mm/min)						
SPEED MAX.	12,0 in/min	(300,0 mm/min)						
STROKE LENGTH	49 in	(1220 mm)						

Anexo 9. Máquina de ensayo de torsión.

INSTR	UCTIVO
EQUIPO: MAQUINA DE TORSION CODIGO: MM – 24 MANUAL: MMM – 24	MARCA: AVERY MODELO: 6609 CHG
CARACTERISTICAS TECNICAS:	
VOLTAJE: 220 [V]	REFRIGERANTE: N/A
FASES: 3	TIPO DE MOTOR: 952 CT
CICLOS: 50 [Hz]	POTENCIA MOTOR: ½ [HP]
PESO: 700 [Kg]	SLOCIDAD MAXIMA MOTOR: 420 [rpm]
CAPACIDAD MAXIMA: 1500 [Nm]	COMBUSTIBLES: N/A
NORMAS PARA SU FUNCIONALMEN	mo
Para su funcionamiento regirse estrictamente	al manual MMM - 24.
PRECAUCIONES	
No sobrepasar el 90% de la capacidad Avir	
NOMBRE DE ENSAYOS	
Ensayo de torsión.	
TIEMPO DE DURACION	
De acuerdo a las condiciones del ensayo	
PRESTACION DE SERVICIOS	
Torsión en barras cilíndricas – RM1524T	V

Anexo 10. Plano de la probeta.

Plano de Ensayo de Tracción

Plano de Ensayo de Torsión

Anexo 11. Imágenes de temple.

Figura 74. Horno NABERTHERM N7/H de temple aumentando la temperatura.

Figura 75. Placa de especificaciones de horno de temple.

Figura 76. Configuración del tiempo para temple.

Figura 77. Estado de probetas al salir del temple.

Figura 78. Horno NABERTHERM N 15/65HA para tratamiento de temple.

Figura 79. Placa de especificaciones de horno de revenido.

Anexo 12. Imágenes de revenido.

Figura 80. Configuración de temperatura para realizar el revenido.

Figura 81. Estado de probetas al salir del revenido.

Anexo 13. Imágenes de ensayo espectrofotométrico.

Figura 82. Máquina FOUNDRY-MASTER Xpert para ensayo espectrofotométrico.

Figura 83. Placa técnica de la máquina Espectrofotométrica.

Figura 84. Probeta sujetada para ensayo.

Figura 85. Limpieza del lente después de cada toma de datos.

Figura 86. Estado de la probeta después del ensayo espectrofotométrico.

Anexo 14. Resultados obtenidos en ensayo espectrofotométrico.

FMX 52U0	016 Opt	ik 52U0017					
Sample	:	NO. 21					
Alloy	: FE_150	Mode	: PA 22/05	/2019 12:4	3:00		
	Fe	С	Si	Mn	Р	S	Pb
1	97.0	0.417	0.235	1.02	0.0137	0.0160	0.0020
4	97.0	0.413	0.230	1.01	0.0132	0.0180	0.0024
10	97.0	0.408	0.232	1.02	0.0138	0.0167	0.0025
18	97.0	0.410	0.231	1.03	0.0150	0.0167	0.0029
20	97.0	0.413	0.226	1.04	0.0148	0.0171	0.0022
Average	97.0	0.412	0.231	1.02	0.0141	0.0169	0.0024
	Cr	Мо	Ni	٦٦	Co	Cu	Nb
1	0.971	0.200	0.0206	0 0130	0.0010	0 0101	< 0.0005
1	0.975	0.209	0.0200	0.0131	0.0019	0.0199	< 0.0005
10	0.973	0.203	0.0212	0.0131	0.0019	0.0198	< 0.0005
18	0.972	0.207	0.0219	0.0122	0.0020	0.0190	< 0.0005
20	0.903	0.211	0.0203	0.0131	0.0000	0.0194	< 0.0005
Auerage	0.904	0.207	0.0205	0.0132	0.0019	0.0190	< 0.0005
Average	0.377	0.200	0.0208	0.0132	0.0022	0.0194	< 0.0005
	Ti	V	W	Sn	В	Ca	Zr
1	0.0072	0.0055	< 0.0100	0.0015	0.0010	0.0005	0.0038
4	0.0071	0.0056	< 0.0100	< 0.0010	0.0008	0.0006	0.0042
10	0.0068	0.0052	< 0.0100	0.0016	0.0011	0.0002	0.0039
18	0.0072	0.0057	< 0.0100	0.0013	0.0009	0.0004	0.0045
20	0.0078	0.0055	< 0.0100	0.0019	0.0008	0.0003	0.0043
Average	0.0072	0.0055	< 0.0100	0.0014	0.0009	0.0004	0.0041
	R	D :	2 -	Q -	ch		
1	20	BI 0 0144	AS	5e			
1	0.0014	0.0144	0.0033	0.0101	< 0.0030		
4	0.0014	0.0146	0.0039	0.0121	< 0.0030		
10	0.0015	0.0150	0.0035	0.0118	< 0.0030		
70 TR	0.0016	0.0140	0.0042	0.0133	< 0.0030		
20	0.0016	0.0149	0.0046	0.0129	< 0.0030		
Average	0.0015	0.0149	0.0039	0.0120	< 0.0030		

FMX	52U0016 Op	tik	52U0017						
Sam	ple :								
A11	.oy : FE_150	Мо	de :	PA 22/05/2019	9 12:43:00				
Num	ber of burns :	5							
Ele	ement	A	verage	S.D.	R.S.D.	M	linimum	Μ	laximum
Fe	olo		97.0	0.0177	0.0		97.0		97.0
С	olo		0.412	0.0035	0.9		0.408		0.417
Si	olo		0.231	0.0035	1.5		0.226		0.235
Mn	olo		1.02	0.0110	1.1		1.01		1.04
Ρ	olo		0.0141	0.0007	5.5		0.0132		0.0150
S	olo		0.0169	0.0007	4.4		0.0160		0.0180
Pb	90		0.0024	0.0003	13.8		0.0020		0.0029
Cr	90		0.977	0.0066	0.7		0.971		0.985
Мо	90		0.208	0.0017	0.8		0.207		0.211
Ni	olo		0.0208	0.0004	2.0		0.0203		0.0213
Al	olo		0.0132	0.0003	2.5		0.0129		0.0138
Co	00		0.0022	0.0006	27.6		0.0019		0.0033
Cu	8		0.0194	0.0003	1.9		0.0189		0.0198
Nb	90	<	0.0005	0.0000	0.0	<	0.0005	<	0.0005
Ti	00		0.0072	0.0003	4.8		0.0068		0.0078
V	90		0.0055	0.0001	3.3		0.0052		0.0057
W	90	<	0.0100	0.0000	0.0	<	0.0100	<	0.0100
Sn	olo		0.0014	0.0004	28.0	<	0.0010		0.0019
В	90		0.0009	0.0001	10.3		0.0008		0.0011
Ca	olo		0.0004	0.0001	33.3		0.0002		0.0006
Zr	90		0.0041	0.0002	6.5		0.0038		0.0045
Zn	90		0.0015	0.0000	5.5		0.0014		0.0016
Bi	90		0.0149	0.0005	3.5		0.0144		0.0157
As	90		0.0039	0.0005	13.3		0.0033		0.0046
Se	90		0.0120	0.0012	10.5		0.0101		0.0133
Sb	olo	<	0.0030	0.0000	0.0	<	0.0030	<	0.0030

Anexo 15. Imágenes de ensayo de dureza.

Figura 87. Máquina de dureza 900-365 DIGITAL ROCKWELL HARDNESS TESTER.

Figura 88. Inicio de ensayo de dureza en material en estado de suministro.

Figura 90. Probetas que se sometieron a ensayo de dureza.

Figura 89. Muestra de resultado obtenido en máquina al realizar ensayo en probetas.

Anexo 16. Espesor mínimo de la probeta de ensayo en relación con la dureza Rockwell.

Espesor mínimo de la probeta de ensayo en relación con la dureza Rockwell

Leyenda

X Dureza Rockwell

Y Espesor mínimo de la probeta, en mm

Anexo 17. Ensayo de indentador cónico de diamante (escala A, C y D).

Anexo 18. Ensayo Rockwell de dureza superficial (escalas N y T).

Anexo 19. Imágenes de ensayo de tracción.

Figura 91. Máquina TEST RESOURCES para ensayo de tracción.

Figura 92. Placa técnica de la capacidad de la máquina.

Figura 93. Probeta sujeta a máquina de tracción.

Figura 94. Medición al inicio del ensayo.

Figura 95. Ruptura de la probeta al finalizar el ensayo.

Anexo 20. Imágenes de ensayo de torsión.

Figura 96. Máquina AVERY para ensayo de torsión.

Figura 97. Placa técnica de la máquina.

Figura 98. Uso del medidor del ángulo de torsión.

Figura 99. Probetas con tratamiento térmico muestran la ductilidad que adquirió con el tratamiento térmico previo a la ruptura.

Figura 100. Ruptura de probeta con tratamiento térmico al llegar al límite.

Figura 101. Ruptura de probeta en estado de suministro.

Figura 102. Probetas con temple de 830°C y revenido de 500°C después de ser sometidas al ensayo de tracción.

Figura 103. Probetas con temple de 860°C y revenido de 500°C después de ser sometidas al ensayo de tracción.

Anexo 21. Documento de cálculos a realizar para el análisis de ensayo de torsión entregado por el laboratorio.

Deformación unitaria porcentual

 $\gamma\% = \gamma * 100\%$

Diagrama Esfuerzo cortante vs deformación unitaria por cortante

 τ_p límite de proporcionalidad, esfuerzo donde termina el comportamiento lineal $\tau_{\rm fl}$ límite de fluencia, el esfuerzo permanece constante aunque existe deformación unitaria τ_u Esfuerzo último, esfuerzo en el punto máximo del diagrama

EQUIPO:

Calibrador pie de rey
 Máquina para ensayos de torsión Avery con medidor del ángulo de torsión

PROCEDIMIENTO:

- 3.
- Medir el diámetro de la barra circular Determinar la longitud inicial entre marcas L Dibujar una línea longitudinal sobre la superficie de la barra Colocar el medidor de ángulo de torsión Aplicar torque con la máquina de torsión Avery, tomando lecturas de torque y 5.
- ángulo de torsión, hasta que se rompa el elementoObservar el plano inclinado de falla y la línea longitudinal dibujada al inicio de la
- práctica 7. Hacer firmar las hojas de registro

PREGUNTAS PARA EL INFORME:

- 1.
 - 2. 3.
 - Dibujar el diagrama τ vs. γ . Obtener el módulo de elasticidad por cortante G. El esfuerzo cortante en la fluencia (en el material dúctil).
 - 4 El esfuerzo cortante último
 - Describir la observación del plano de falla de la barra y la línea longitudinal Conclusiones 5. 6.

OBSERVACIONES Trabajar en unidades de MPa, radianes

Material a utilizar: Una probeta de acero por grupo