UNIVERSIDAD POLITÉCNICA SALESIANA

SEDE CUENCA

CARRERA DE INGENIERÍA ELÉCTRICA

Trabajo de titulación previo a la obtención del título de Ingeniero Eléctrico

PROYECTO TÉCNICO CON ENFOQUE GENERAL:

"INTERCONEXIÓN DE REDES ELÉCTRICAS EN BAJO VOLTAJE APLICADO A LA EMPRESA ELÉCTRICA REGIONAL CENTRO SUR C.A"

AUTORES:

DANIEL HERNÁN ARÉVALO CAMACHO

JONATHAN ABIMAEL GUZMÁN SICHA

TUTOR:

ING. PABLO DANIEL ROBLES LOVATO, MSC.

CUENCA - ECUADOR

2019

CESIÓN DE DERECHOS DE AUTOR

Nosotros, Daniel Hernán Arévalo Camacho con documento de identificación número 0705438125 y Jonathan Abimael Guzmán Sicha con documento de identificación número 0105457287, manifestamos nuestra voluntad y cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos los autores del trabajo de titulación: **"INTERCONEXIÓN DE REDES ELÉCTRI-CAS EN BAJO VOLTAJE APLICADO A LA EMPRESA ELÉCTRICA REGIO-NAL CENTRO SUR C.A"**, mismo que ha sido desarrollado para optar el título de: *Ingeniero Eléctrico*, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en nuestra condición de autores nos reservamos los derechos morales de la obra antes citada. En concordancia, subscribimos este documento en el momento que hacemos la entrega del trabajo final en formato impreso y digital a la Biblioteca de la Universidad Politécnica Salesiana.

Cuenca, abril de 2019

Daniel H. Arévalo C. C.I: 0705438125

Jonathan A. Guzmán S. C.I: 0105457287

CERTIFICACIÓN

Yo declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: **"INTERCO-NEXIÓN DE REDES ELÉCTRICAS EN BAJO VOLTAJE APLICADO A LA EMPRESA ELÉCTRICA REGIONAL CENTRO SUR C.A.**" realizado por Daniel Hernán Arévalo Camacho y Jonathan Abimael Guzmán Sicha, obteniendo el *Proyecto Técnico con enfoque general*, que cumple con todos los requisitos estipulados por la Universidad Politécnica Salesiana.

Cuenca, abril de 2019

TROTORIES

Ing. Pablo Daniel Robles Lovato MsC. C.I: 0101663342

DECLARATORIA DE RESPONSABILIDAD

Nosotros, Daniel Hernán Arévalo Camacho con documento de identificación número 0705438125 y Jonathan Abimael Guzmán Sicha con documento de identificación número 0105457287, autores del trabajo de titulación: **"INTERCONEXIÓN DE RE-DES ELÉCTRICAS EN BAJO VOLTAJE APLICADO A LA EMPRESA ELÉC-TRICA REGIONAL CENTRO SUR C.A."** certificamos que el contenido total del *Proyecto Técnico con enfoque general*, son de nuestra exclusiva responsabilidad y autoría.

Cuenca, abril de 2019

Daniel H. Arévalo C. C.I: 0705438125

1 uaman

Jonathan A. Guzmán S. C.I: 0105457287

IV

CERTIFICACIÓN

Los tutores de la Empresa Eléctrica Regional Centrosur C.A., certifican que el trabajo de titulación: "INTERCONEXIÓN DE REDES ELÉCTRICAS EN BAJO VOL-TAJE APLICADO A LA EMPRESA ELÉCTRICA REGIONAL CENTRO SUR C.A" ha sido realizado por Daniel Hernán Arévalo Camacho y Jonathan Abimael Guzmán Sicha y cumple con los objetivos propuestos.

Cuenca, abril de 2019

enso

Ing. Silvio Patricio Quituisaca Astudillo, MSc. Jefe Dpto. de Estudios Técnicos

Ing. Jorge Eduardo Idrovo Idrovo. Superint. de Distribución Zona 2

V

AGRADECIMIENTOS Y DEDICATORIA

Agradecimientos:

Primero quisiera agradecer a Dios, que me ha dado la vida y fortaleza para lograr esta meta sin su ayuda divina no hubiera sido posible superar los diferentes retos que se presentaron a lo largo de mi carrera universitaria, luego quisiera agradecer a mi madre Astrid y a mi padre Hernan por su apoyo incondicional a lo largo de estos años de estudio; además agradezco a mi esposa Helen por darme su apoyo en las buenas y en las malas motivándome a seguir luchando por este logro; también quisiera a gradecer al director de este proyecto de titulación el Ing. Pablo Robles Lovato que más que un director ha sido un amigo, me guio de la mejor forma en el ámbito profesional y personal; al director de carrera Ing. Marco Carpio que siempre estuvo dispuesto a ayudarme y su labor en pro de los estudiantes es digna de admirar y agradecer, a la Universidad Politécnica Salesiana por brindarme una educación de calidad.

Agradezco a la Empresa Eléctrica Regional Centrosur C.A conjuntamente con el Ing. Miguel Arévalo, Ing. Patricio Quituisaca, Ing. Jorge Idrovo y al Ing. Giovanny Pedroza por abrirnos las puertas para desarrollar este proyecto; le agradezco a mi compañero de tesis Jonathan por que han sido meses de duro trabajo y sin su esfuerzo y apoyo este logro no sería una realidad.

Por último agradezco a mis hermanas Anabel, Anny, Romina y a mis amigos que si los nombro tal vez me olvide de alguien pero hago referencia a esos amigos que estuvieron en las buenas y en las malas.

Dedicatoria:

Le dedico este logro a Dios, a mi hijo Sebastián, a mis padres Astrid y Hernan, y a mis tres angelitos: mi abuelita Isabel Maza, mi tía Fanny Camacho y mi segunda madre Patricia Martínez que me cuidan desde el cielo, esto se los dedico a ustedes, gracias.

Daniel H. Arévalo C.

VI

AGRADECIMIENTOS Y DEDICATORIA

Agradecimientos:

Quiero dejar constancia de mi gratitud y agradecimiento al Ing. Pablo Daniel Robles Lovato que en calidad de director ha brindado su incondicional apoyo y respaldo para la realización del presente proyecto de titulación.

Hago extensivo mi gratitud y agradecimiento a los funcionarios de la Empresa Eléctrica Regional Centrosur C.A, de manera especial a los ingenieros Silvio Patricio Quituisaca Astudillo y Jorge Eduardo Idrovo Idrovo que en calidad de tutores brindaron su apoyo y tiempo para la realización del presente proyecto de titulación.

Un agradecimiento especial al Ing. Giovanny Rolando Pedroza Astudillo y por supuesto al Ing. Miguel Angel Arévalo Merchán, administrador del convenio Empresa Eléctrica Regional Centrosur C.A - Universidad Politécnica Salesiana.

Además quiero agradecer al Ing. Marco Alexander Carpio Alemán por su excelente desempeño como Director de la Carrera de Ingeniería Eléctrica de la Universidad Politécnica Salesiana Sede Cuenca, y al Ing. Jorge Luis Rojas Espinoza por su excelente desempeño como docente.

Dedicatoria:

A mi padre Luis y a mi querida madre Susana, por sus consejos, por su apoyo y sobre todo por su incondicional e infinito amor desde siempre.

A mis hermanos Fabián, Ariel y a mi hermana Monique por su apoyo brindado.

Jonathan Abimael Guzmán.

VII

RESUMEN

En el presente trabajo se realiza un estudio técnico para la interconexión de redes eléctricas en bajo voltaje con el objetivo de mantener la continuidad del servicio, evitando de esta manera pérdidas económicas a la empresa distribuidora y a todos los involucrados. El estudio contempla: la optimización del despliegue de la red eléctrica de distribución para minimizar el costo de pérdidas de potencia activa considerando las restricciones técnicas del sistema; la coordinación de protecciones para garantizar la seguridad tanto de los usuarios como de los equipos y por último el análisis económico para evaluar la viabilidad de la maniobra. La metodología desarrollada se implementa en un lenguaje de programación orientado a objetos (Csharp).

Para los casos de estudio, la metodología desarrollada es aplicada a las redes eléctricas propiedad de la Empresa Eléctrica Regional Centrosur C.A ubicadas en el Sector de Totoracocha comprendido entre las calles: Los Andes, Altar, Sarahurco.

ABSTRACT

In the present work a technical study is carried out for the interconnection of low voltage electrical networks in order to maintain the continuity of the service, thus avoiding economic losses to the distributing company and all those involved. The study contemplates: the optimization of the deployment of the electrical distribution network to minimize the cost of active power losses considering the technical restrictions of the system; the coordination of protections to ensure the safety of both users and equipment and finally the economic analysis to evaluate the feasibility of the manoeuvre. The developed methodology is implemented in an object-oriented programming language (Csharp).

For the case studies, the methodology developed is applied to the electrical networks owned by Empresa Eléctrica Regional Centrosur C.A. located in the Totoracocha Sector between the streets: Los Andes, Altar, Sarahurco.

IX

Índice general

Página

1	Dese	cripciór	1 del proyecto	1
	1.1	Proble	ema de estudio	1
	1.2	Justifie	cación	1
	1.3	Alcano	ce	2
	1.4	Grupo	objetivo	2
	1.5	Objeti	VOS	3
		1.5.1	Objetivo general	3
		1.5.2	Objetivos específicos	3
2	Fun	dament	to teórico referencial	4
	2.1	Algor	ritmo Dijkstra	5
	2.2	Mode	elo matemático de sistemas de distribución	6
		2.2.1	Ecuaciones de Carson	6
		2.2.2	Modificación de las ecuaciones de Carson	7
	2.3	Estruc	turas en redes aéreas	7
	2.4	Imped	lancias de secuencia	8
	2.5	Cálcul	lo de corrientes de cortocircuito	10
		2.5.1	Falla simple de línea a tierra	10
		2.5.2	Falla doble línea a tierra	11
		2.5.3	Falla doble línea	12
	2.6	Flujos	de potencia, cálculos de caídas de voltaje y pérdidas de potencia	12
		2.6.1	Cálculo de impedancias y establecimiento de los tipos de cir-	
			cuitos	12
		2.6.2	Caída de voltaje ramal trifásico	13
		2.6.3	Caída de voltaje en ramales bifásicos	14
		2.6.4	Caída de voltaje en ramales monofásicos	15
		2.6.5	Perdidas de potencia circuitos trifásicos de 3 y 4 hilos	17
		2.6.6	Pérdidas de potencia en ramales bifásicos	18
		2.6.7	Pérdidas de potencia en ramales monofásicos	18
		2.6.8	Flujos de potencia Arvidson	19
		2.6.9	Cargabilidad del trasformador o factor de capacidad	19
	2.7	Anális	sis Económico	20
		2.7.1	Introducción	20
		2.7.2	Costos	20
		2.7.3	Amortización de fondos	21
	2.8	Eleme	entos de costos en redes de Distribución Eléctrica:	22
		2.8.1	Costo de pérdidas en las líneas eléctricas	22

	2.9	Interco	nexión de rede	es eléctricas	23
	2.10	Protecc	iones		24
		2.10.1	Estructura de	l sistema de protecciones en la red de distribución	
			eléctrica en b	pajo voltaje	24
	2.11	Ajuste	del sistema de	protecciones	26
		2.11.1	Relés de sobi	recorriente	27
	2.12	Estado	del arte de los	dispositivos de protección e interconexión	29
		2.12.1	DEEP SEA n	nódulo de control y transferencia	29
		2.12.2	Interruptor C	onmutados Motorizados- conmutación de red (Mar-	
			ca ABB) .		29
		2.12.3	Interruptores	automáticos en caja moldeada de Schneider-Electric	30
			2.12.3.1 Co	mpact NS >630 A	30
			2.12.3.2 Co	mpact NS <630A	31
3	Meto	odología	de optimizad	ción	32
	3.1	Constru	cción de graf	os orientado a los sistemas eléctricos de distribución	32
	3.2	Funció	n objetivo .		33
	3.3	Algorit	mo para el en	rutamiento mínimo por pérdidas de potencia	34
	3.4	Interco	nexión de rede	es eléctricas	35
	3.5	Análisi	s de cargabilio	lad de transformadores	36
	3.6	Coordi	nación de prot	ecciones	36
	3.7	Análisi	s económico		37
4	Prim	er caso	de estudio		38
	4.1	Selecci	ón de las zona	as de estudio.	38
	4.2	Optimi	zación del des	pliegue de la red de la zona 1	39
	4.3	Optimi	zación del des	pliegue de la red de la zona 2	42
	4.4	Interco	nexión entre la	a zona 1 y zona 2	46
		4.4.1	Primer escen	ario: Sistema de la zona 1 recibe carga y sistema	
			de la zona 2 e	envía carga	47
		4.4.2	Segundo esce	enario: sistema de la zona 2 recibe carga y sistema	
			de la zona 1 e	envía carga	50
		4.4.3	Análisis de fl	ujos de potencia de los sistemas interconectados	52
5	Segu	ndo cas	o de estudio		54
	5.1	Selecci	ón de las zona	as de estudio	54
	5.2	Optimi	zación del des	pliegue de la red para la subzona A	55
	5.3	Optimi	zación del des	pliegue de la red para la subzona B	57
	5.4	Análisi	s de intercone	xión	60
		5.4.1	Subzona A re	ecibe la carga de la Subzona B	60
		5.4.2	Subzona B re	cibe la carga de la Subzona A	62
	5.5	Factor	le cargabilida	d y capacidad de los transformadores	64
	5.6	Coordi	nación de prot	ecciones:	64
		5.6.1	Interconexió	n Subzona A-B	64
			5.6.1.1 Co	ordinación entre las protecciones $R_4 - R_i$	65
			5.6.1.2 Co	ordinación entre las protecciones $R_5 - R_1$	65
			5.6.1.3 Co	ordinación entre las protecciones $R_i - R_{T1}$	66
		5.6.2	Coordinaciór	n de protecciones: Interconexión Subzona B-A	67
			5.6.2.1 Co	ordinación entre las protecciones $R_3 - R_i$	67
			5.6.2.2 Co	ordinación entre las protecciones $R_2 - R_i$	68

X

	5.7 5.8	5.6.2.3Coordinación entre las protecciones $R_1 - R_i$ 5.6.2.4Coordinación entre las protecciones $R_i - R_{T2}$ Protocolo de maniobras para la transferencia de carga5.7.1Secuencia de eventos caso 1- falla T25.7.2Secuencia de eventos caso 2- falla T1Análisis económico5.8.1Escenario A-B5.8.2Escenario B-A	69 70 71 71 71 72 72 72	XI
6	Terc	er caso de estudio	74	
	6.1	Selección de las zonas de estudio	74	
	6.2	Optimización del despliegue de la red para la subzona C	75	
	6.3	Optimización del despliegue de la red para la subzona D	77	
	6.4	Análisis de interconexión	80	
		6.4.1 Subzona C recibe la carga de la Subzona D	80	
		6.4.2 Subzona D recibe la carga de la Subzona C	82	
	6.5	Factor de cargabilidad y capacidad de los transformadores	85	
	6.6	Coordinación de protecciones:	86	
		6.6.1 Interconexión Subzona C-D	86	
		6.6.1.1 Coordinación entre las protecciones $R_1 - R_i$	86	
		6.6.1.2 Coordinación entre las protecciones $R_2 - R_i$	87	
		6.6.1.3 Coordinación entre las protecciones $R_i - R_{T1} \dots$	88	
		6.6.2 Interconexión Subzona D-C	89	
		6.6.2.1 Coordinación entre las protecciones $R_3 - R_i$	89	
		6.6.2.2 Coordinación entre las protecciones $R_4 - R_i$	90	
		6.6.2.3 Coordinación entre las protecciones $R_5 - R_i$	91	
		6.6.2.4 Coordinación entre las protecciones $R_i - R_{T2}$	92	
	6.7	Protocolo de maniobras para la transferencia de carga	92	
		6.7.1 Secuencia de eventos caso 1- falla T4	92	
		6.7.2 Secuencia de eventos caso 2- falla T3	93	
	6.8	Análisis económico	94	
		6.8.1 Escenario C-D	94	
		6.8.2 Escenario D-C	94	
7	A mái	licia da magnitadas	06	
1	7 1	Análisis de los resultados del primer caso de estudio	90	
	/.1	7 1 1 Análisis de los fluios de potencia	90	
	72	Análisis de los resultados del segundo caso de estudio	90	
	1.2	7.2.1 Análisis de los fluios de potencia	90	
	73	Análisis de los resultados del tercer caso de estudio	100	
	1.5	7 3 1 Análisis de los fluios de potencia	100	
	74	Análisis Económico	100	
	/		102	
8	Con	clusiones y Recomendaciones	104	
	8.1	Conclusiones	104	
	8.2	Recomendaciones	105	
Bi	bliogr	afía.	108	
A	ANE	XOS	109	

XII

A.1	Determinación de la demanda por el tipo de estrato	109
Dete	rminación de la demanda por el tipo de estrato.	109
A.2	Flujograma para flujos de potencia	113
A.3	Código del algoritmo Dijkstra	115
A.4	Código para determinar la demanda según el número de clientes	117
A.5	Código para calcular flujos de potencia	118
A.6	Plano de los subsistemas A-B	124
A.7	Plano de los subsistemas C-D	125
A.8	Renumeración del sistema B para interconectar los sistemas A-B	126
A.9	Renumeración del sistema A para interconectar los sistemas B-A	127
A.10	Diagrama de protecciones al fallar el transformador del sistema de la	
	subzona B	128
A.11	Diagrama de protecciones al fallar el transformador del sistema de la	
	subzona A	129
A.12	Renumeración del sistema D para interconectar los sistemas C-D	130
A.13	Renumeración del sistema C para interconectar los sistemas D-C	131
A.14	Diagrama de protecciones al fallar el transformador del sistema de la	
	subzona D	132
A.15	Diagrama de protecciones al fallar el transformador del sistema de la	
	subzona C	133
A.16	Catalogo de conductores ACSR (Electrocables)	134

Índice de figuras

Figura 2.1	Conductores y sus imágenes en la tierra, fórmula de Carson.		
Fuent	te: [25]	7	
Figura 2.2	Estructuras de redes aéreas en distribución.		
Fuent	te: [17]	8	
Figura 2.3	Falla simple de línea a tierra.		
Fuent	te: [11]	10	
Figura 2.4	Falla doble línea a tierra.		
Fuent	te: [11]	11	
Figura 2.5	Falla doble línea a tierra.		
Fuent	te: [11]	12	
Figura 2.6	Caída de voltaje para ramal trifásico.		
Fuente: [16]			
Figura 2.7	Caída de voltaje para ramal trifásico.		
Fuent	te: [16]	15	
Figura 2.8	Caída de voltaje para ramal monofásico.		
Fuent	te: [16]	16	
Figura 2.9	Esquema de la Interconexión de redes eléctricas.		
Fuent	te: autores	23	

 Figura 2.10 Esquema de dos sistemas interconectados. Fuente: [20]. Figura 2.11 Estructura del sistema de protecciones en la red de distribución eléctrica en bajo voltaje. Figura 2.12 Características de tiempo-corriente de la protección de sobrecorriente. (a) Protección en corriente; (b) Protección en tiempo; (c) Protección en tiempo inverso. Fuente: [10]. 	25 26 27	XIII
Figura 2.13 Características típicas de tiempo-corriente del relé. (A) Inverso;(B) muy inverso; (C) extremadamente inverso; (D) Instantánea. TD = ajuste del dial de tiempo del relé.		
Fuente: [10]	28	
Fuente: [9]	29	
Fuente: [4] <th[4]< th=""> [4] <th[4]< th=""> <th[4]< t<="" td=""><td>30</td><td></td></th[4]<></th[4]<></th[4]<>	30	
Fuente: [21]. <	31	
Fuente: [19]	31	
Figura 3.1 Grafo del posible despliegue de la red de distribución.	22	
Figura 3.2 Grafo dirigido ponderado.	33	
Fuente: autores	34	
Figura 4.1Zonas de estudio propuestasFigura 4.2Grafo del sistema de distribución de la zona 1.	39	
Fuente: autores	39	
Fuente: autores. Image: State and S	42	
Figura 4.4 Grato del sistema de distribución de la zona 2. Fuente: autores.	42	
Figura 4.5 Sistema optimizado de la zona 2. Fuente: autores	46	
Figura 4.0 Resultado de interconexión caso 1. Fuente: autores	49	
Figura 4.7 Resultado de interconexión caso 2. Fuente: autores	52	
Figura 5.1 Subzonas de estudio.Figura 5.2 Grafo con las posibles trayectorias para el despliegue de la red de distribución en la subzona A.	55	
Fuente: autores	55	
Fuente: autores. Fuente: autores. Figura 5.4 Grafo con las posibles trayectorias para el despliegue de la red de distribución en la subzona B	57	
Fuente: autores	58	

Figura 5.5 Grafo optimizado resultante para el despliegue de la red de dis- tribución en la subzona B.	
Fuente: autores	59
Figura 5.6 Coordinación entre $R_4 - R_i$.	07
Fuente: autores.	65
Figura 5.7 Coordinación entre $R_5 - R_i$.	
Fuente: autores	66
Figure 5.8 Coordinación entre $R_{\rm c} = R_{\rm T1}$	00
Fuenta: autores	67
Figure 5.0 Coordinación entre $P_2 = R_1$	07
Figure 5.9 Coordination churc $K_3 - K_i$.	69
Fuence: $autores$	00
Figura 5.10 Coordinación entre $K_2 - K_i$.	60
	08
Figura 5.11 Coordinacion entre $R_1 - R_i$.	60
Fuente: autores	69
Figura 5.12 Coordinación entre $R_i - R_{T2}$.	
Fuente: autores	70
Figura 6.1 Grafo con las posibles trayectorias para el despliegue de la red	
de distribución en la subzona C.	
Fuente: autores	75
Figura 6.2 Grafo optimizado resultante para el despliegue de la red de dis-	
tribución en la subzona C.	
Fuente: autores	77
Figura 6.3 Grafo con las posibles travectorias para el despliegue de la red	
de distribución en la subzona D	
Fuente: autores	77
Figure 6.4 Grafo optimizado para el despliegue de la red en la subzona D	,,
Fuente: eutores	70
Fuence, autores	19
Figura 0.5 Cooldinación enue $K_1 - K_i$.	07
	87
Figura 6.6 Coordinacion entre $R_2 - R_i$.	0.0
Fuente: autores	88
Figura 6.7 Coordinación entre $R_i - R_{T1}$.	
Fuente: autores	88
Figura 6.8 Coordinación entre $R_3 - R_i$.	
Fuente: autores	89
Figura 6.9 Coordinación entre $R_4 - R_i$.	
Fuente: autores	90
Figura 6.10 Coordinación entre $R_5 - R_i$.	
Fuente: autores	91
Figura 6.11 Coordinación entre $R_i - R_{T2}$.	
Fuente: autores.	92
Figura 7.1 Perfil de voltaje hacia el nodo más lejano del transformador de	
la zona 1.	
Fuente: autores.	97
Figura 7.2 Perfil de voltaie hacia el nodo más leiano del transformador de	-
la zona ?	97
	~ '

XIV

X	V
	V

Figura 7.3 Perfil de voltaje hacia el nodo más lejano del transformador al			
interconectar la zona 1-2.	0.0		
Fuente: autores.	98		
Figura 7.4 Perfil de voltaje hacia el nodo más lejano del transformador al			
interconectar la zona 2-1.	0.0		
Fuente: autores.	98		
Figura 7.5 Perfil de voltaje hacia el nodo más lejano del transformador de			
la subzona A.			
Fuente: autores	99		
Figura 7.6 Perfil de voltaje hacia el nodo más lejano del transformador de			
la subzona B.			
Fuente: autores	99		
Figura 7.7 Perfil de voltaje hacia el nodo más lejano del transformador al			
interconectar la subzona A-B.			
Fuente: autores	100		
Figura 7.8 Perfil de voltaje hacia el nodo más lejano del transformador al			
interconectar la subzona B-A.			
Fuente: autores	100		
Figura 7.9 Perfil de voltaje hacia el nodo más lejano del transformador de			
la subzona C.			
Fuente: autores	101		
Figura 7.10 Perfil de voltaje hacia el nodo más lejano del transformador de			
la subzona D.			
Fuente: autores	101		
Figura 7.11 Perfil de voltaje hacia el nodo más lejano del transformador al			
interconectar la subzona C-D.			
Fuente: autores	102		
Figura 7.12 Perfil de voltaje hacia el nodo más lejano del transformador al			
interconectar la subzona D-C.			
Fuente: autores	102		

Índice de tablas

Tabla 2.1	Expresiones para calcular las caídas de voltaje en voltios	17
Tabla 2.2	Expresiones para calcular las caídas de voltaje en tanto por ciento.	17
Tabla 2.3	Expresiones para determinar las pérdidas de potencia	19
Tabla 2.4	Posibles escenarios en una maniobra de interconexión	25
Tabla 2.5	Curvas para relés de sobrecorriente según la norma IEEE C37	28
Tabla 4.1	Data inicial del sistema de la zona 1	40
Tabla 4.2	Resultado óptimo para el enrutamiento del sistema 1	41
Tabla 4.3	Data inicial del sistema de la zona 2	44

49 51

Tabla 4.4	Resultado de la optimización del sistema 2	45	
Tabla 4.5	Resultado de flujos de potencia para la interconexión caso 1	49	X
Tabla 4.6	Resultado de flujos de potencia para la interconexión caso 2	51	
Table 5 1	Data inicial dal sistema A	56	
Table 5.1 $T_{able} = 5.2$	Data inicial del sistema A.	50	
Tabla 5.2	Resultado de la optimización del sistema de la subzona A	30 50	
Tabla 5.3	Data inicial del sistema de la subzona B.	58	
	Resultado de la optimización del sistema de la subzona B.	59	
	Resultado de flujos de potencia para la interconexión entre la	(0)	
subzo	ma A-B.	60	
Tabla 5.6	Resultado de flujos de potencia para la interconexión entre la	(1	
subzo	na A-B.	61	
Tabla 5.7	Resultado de flujos de potencia para la interconexión entre la	()	
subzo	na B-A	62	
Tabla 5.8	Resultado de flujos de potencia para la interconexión entre la		
subzo	ona B-A	63	
Tabla 5.9	Factor de cargabilidad y capacidad del transformador de la sub-		
zona	A	64	
Tabla 5.10	Factor de cargabilidad y capacidad del transformador de la sub-		
zona	B	64	
Tabla 5.11	Corriente nominal y corrientes de falla en el nodo $P_{27}(P_{11})$	65	
Tabla 5.12	Corriente nominal y corrientes de falla en el nodo $P_{30}(P_{14})$.		
Fuen	te: autores	66	
Tabla 5.13	Corriente nominal y corrientes de falla en el nodo $P_{16}(P_1)$	66	
Tabla 5.14	Corriente nominal y corrientes de falla en el nodo $P_{19}(P_4)$	67	
Tabla 5.15	Corriente nominal y corrientes de falla en el nodo $P_{22}(P_7)$.		
Fuen	te: autores.	69	
Tabla 5 16	Corriente nominal y corrientes de falla en el nodo $P_{20}(P_{14})$	70	
Tabla 5.17	Corriente nominal y corrientes de falla en el nodo $P_{15}(P_0)$	70	
Fuen	te• autores	70	
Tabla 5 18	Análisis económico de la interconexión de los subsistemas A-B	72	
Tabla 5.10	Análisis económico de la interconexión de los subsistemas $R - \Delta$	73	
14014 5.17	Analisis economico de la interconexión de los subsistentas D-A.	15	
Tabla 6.1	Data inicial del sistema de la subzona C	76	
Tabla 6.2	Resultado de la optimización del sistema de la subzona C	76	
Tabla 6.3	Data inicial del sistema de la subzona D.	78	
Tabla 6.4	Resultado de la optimización del sistema de la subzona D	79	
Tabla 6.5	Flujos de potencia para la interconexión entre la subzona C-D.	81	
Tabla 6.6	Resultado de fluios de potencia para la interconexión entre la		
subzo	na C-D.	82	
Tabla 67	Resultado de fluios de potencia para la interconexión entre la		
subzo	ma D-C	84	
Tabla 6.8	Resultado de fluios de notencia para la interconexión entre la	01	
subzc	nesonado de hujos de potencia para la interconexión cinte la	85	
Tabla 6.9	Factor de cargabilidad y canacidad del transformador de la sub-	05	
7000	r actor de cargaonidad y capacidad der transformador de la sub-	85	
Tabla 6 10	Easter de eargehilided y especided del transformeder de le sub	85	
14014 0.10	ración de cargaonidad y capacidad del transformador de la SUD-	96	
Zona		00 07	
Table (12	Corriente nominal y corrientes de falla en el nodo $P_{23}(P_{43})$.	80 07	
radia 6.12	Corriente nominar y corrientes de falla en el nodo $P_{15}(P_{35})$	ð/	

XVII

89 90 91 91
90 91 91
91 91
91
92
94
95
07
97
99
01
03
09
10
11
11
12
13
9 9 9 0 0 0 1 1 1 1

XVIII

Glosario

- ΔP : *Pérdidas de potencia activa expresada en kW*.
- ΔQ : Pérdidas de potencia reactiva expresada en kVAR.
- ΔV : Caída de voltaje expresada en voltios o en tanto por ciento.
- CGBV: Cuadro General Bajo Voltaje.
- Cp: Costo de la energía en USD/kWh.
- EEE: Institute of Electrical and Electronics Engineers (Instituto de Ingenieros Eléctricos y Electrónicos).
- Fcap: Factor de capacidad del transformador.
- Fo: Costo de inversión inicial en USD.
- KΔP: Costo total de pérdidas de potencia activa en USD.
- ka: Costo de inversión amortizado en USD.
- ki: Costo total de inversión inicial en USD.
- kl: Costo de liquidación en USD.
- km: Costo de mantenimeinto en USD.
- kr: Costo de reparación en USD.
- P: Potencia activa expresada en kW.
- Q: Potencia reactiva expresada en kVAR.
- SE: Subestación.
- SEP: Sistema Eléctrico de Potencia.
- Ta: Tiempo de análisis el proyecto en años.
- Te: Tiempo de horas al año que funciona el transformador.

"Este planeta, con toda su esplendida inmensidad, es para la corriente eléctrica no más que una pequeña bola de metal." Nikola Tesla (1856 – 1943)

Descripción del proyecto

Índice

1.1	Problema de estudio	1
1.2	Justificación	1
1.3	Alcance	2
1.4	Grupo objetivo	2
1.5	Objetivos	3
	1.5.1 Objetivo general	3
	1.5.2 Objetivos específicos	3

1.1. Problema de estudio

Una falla en un transformador de distribución es un problema y en la actualidad los tiempos de reposición del suministro eléctrico son exagerados, en consecuencia, el estado de falla deja sin suministro eléctrico a los usuarios, los cuales en parte podrían ser servidos de energía eléctrica desde un trasformador cercano, esto se puede resolver con la interconexión de redes eléctricas en bajo voltaje. De esta manera se impedirá tener molestos cortes de energía eléctrica y evitará pérdidas económicas a la empresa distribuidora y a todos los involucrados.

1.2. Justificación

Actualmente la Empresa Eléctrica Regional Centro Sur busca metodologías de optimización del sistema de distribución de bajo voltaje, por ejemplo, la sub-utilización de algunos transformadores en el área de concesión han ocasionado un incremento de las pérdidas técnicas lo que ha generado buscar el óptimo despliegue de la red y el uso eficiente de los diferentes recursos de la empresa eléctrica.

El estudio de interconexión en redes de bajo voltaje tiene por objeto realizar transferencia de carga cuando un transformador se encuentre en estado de falla o mantenimiento, para que otro transformador cercano asuma parte de la carga, teniendo en cuenta que al momento de hacer la transferencia de un sistema a otro, ambos sistemas deben estar optimizados y cumplir con restricciones técnicas, con el fin de garantizar una operación segura.

Es primordial que se utilice los últimos recursos otorgados por la tecnología y la investigación para dotar de servicio eléctrico al cliente en bajo voltaje la mayor cantidad de horas al año, esto aumenta los beneficios económicos y la confiabilidad en el sistema eléctrico de distribución; si bien es cierto el cliente en bajo voltaje es el último eslabón de sistema eléctrico de potencia (SEP), pero no por eso deja de ser menos importante.

Por otro lado, es necesario la planificación de la interconexión eléctrica desde el diseño de la red. Los profesionales involucrados en diseñar proyectos de electrificación necesitan disponer de recursos y estudios con el objetivo de optimizar el diseño de la red de distribución de bajo voltaje evitando que el estudio de interconexión de redes en bajo voltaje se haga como un estudio independiente al finalizar la obra.

1.3. Alcance

El desarrollo de este proyecto de titulación comprende el diseño de un programa ejecutable en el entorno de desarrollo integrado Microsoft Visual Studio, que permita optimizar sistemas de distribución de bajo voltaje mediante el uso de un algoritmo de rutas mínimas, considerando el parámetro de caída de voltaje permitida por la regulación vigente e interconectar los sistemas optimizados teniendo en cuenta que cuando falle un trasformador este quedará fuera de servicio y un transformador cercano asumirá parte de la carga del mismo. Los parámetros a considerar en la interconexión serán: cargabilidad, corrientes de cortocircuito, coordinación de protecciones, análisis económico.

Para el desarrollo se tomaran dos sistemas de distribución de bajo voltaje optimizados y adyacentes en la zona urbana concentrada de la ciudad.

1.4. Grupo objetivo

El estudio será de mucha utilidad para los ingenieros que planifican y diseñan el sistema de distribución y para las empresas eléctricas de distribución.

1.5. Objetivos

1.5.1. Objetivo general

Realizar un estudio técnico para la interconexión aplicable a redes eléctricas de distribución de bajo voltaje, utilizando un algoritmo de rutas mínimas para optimizar el despliegue de la red en función del análisis de costo de pérdidas, considerando las restricciones técnicas del sistema.

1.5.2. Objetivos específicos

- 1. Definir el modelo matemático para el óptimo despliegue de redes eléctricas de distribución en bajo voltaje.
- 2. Realizar el análisis de las características de interconexión para la reconfiguración del sistema.
- 3. Aplicar la metodología desarrollada a diferentes sistemas de bajo voltaje de la Empresa Eléctrica Regional Centro Sur C.A.
- 4. Realizar la coordinación de protecciones.
- 5. Realizar el análisis económico.
- 6. Implementar la metodología desarrollada en un lenguaje de programación orientado a objetos (Csharp).
- 7. Analizar los resultados obtenidos.

"Nuestras escuelas no están enseñando a los estudiantes a pensar. Es sorprendente cómo muchos jóvenes tienen dificultades para poner sus cerebros definitivamente y sistemáticamente a trabajar"

Thomas Alva Edison (1847 - 1931)

2

Fundamento teórico referencial

Índice

2.1	Algorit	mo Dijkstra	5
2.2	Modelo	o matemático de sistemas de distribución	6
	2.2.1	Ecuaciones de Carson	6
	2.2.2	Modificación de las ecuaciones de Carson	7
2.3	Estructu	ıras en redes aéreas	7
2.4	Impeda	ncias de secuencia	8
2.5	Cálculo	de corrientes de cortocircuito	10
	2.5.1	Falla simple de línea a tierra	10
	2.5.2	Falla doble línea a tierra	11
	2.5.3	Falla doble línea	12
2.6	Flujos d	de potencia, cálculos de caídas de voltaje y pérdidas de	
	potencia	a	12
	2.6.1	Cálculo de impedancias y establecimiento de los tipos de	
		circuitos	12
	2.6.2	Caída de voltaje ramal trifásico	13
	2.6.3	Caída de voltaje en ramales bifásicos	14
	2.6.4	Caída de voltaje en ramales monofásicos	15
	2.6.5	Perdidas de potencia circuitos trifásicos de 3 y 4 hilos .	17
	2.6.6	Pérdidas de potencia en ramales bifásicos	18
	2.6.7	Pérdidas de potencia en ramales monofásicos	18
	2.6.8	Flujos de potencia Arvidson	19
	2.6.9	Cargabilidad del trasformador o factor de capacidad	19
2.7	Análisis	Económico	20
	2.7.1	Introducción	20
	2.7.2	Costos	20
	2.7.3	Amortización de fondos	21

2.8	Elemen	tos de costos en redes de Distribución Eléctrica:	22
	2.8.1	Costo de pérdidas en las líneas eléctricas	22
2.9	Interco	nexión de redes eléctricas	23
2.10	Protecc	iones	24
	2.10.1	Estructura del sistema de protecciones en la red de distri- bución eléctrica en bajo voltaje	24
2.11	Ajuste	del sistema de protecciones	26
	2.11.1	Relés de sobrecorriente	27
2.12	Estado	del arte de los dispositivos de protección e interconexión .	29
	2.12.1	DEEP SEA módulo de control y transferencia	29
	2.12.2	Interruptor Conmutados Motorizados- conmutación de red (Marca ABB)	29
	2.12.3	Interruptores automáticos en caja moldeada de Schneider- Electric	30

2.1. Algoritmo Dijkstra^[7, 18]

Es conocido como algoritmo de ruta más corta y fué propuesto en 1959 por Edsger Dijkstra. Es un algoritmo que se emplea para determinar el camino más corto, desde un nodo fuente, hacia los nodos restantes de un grafo que posee pesos en cada arista. El algoritmo a sido aplicado a tareas prácticas, como enrutar llamadas telefónicas, encontrar los mejores vuelos entre aeropuertos para una hora de salida determinada.

También se puede utilizar para encontrar los costos de las rutas más cortas desde un solo vértice de partida a un solo vértice de destino, deteniendo el algoritmo una vez que se haya recorrido el camino más corto al vértice de destino determinado. Por ejemplo, si los vértices del gráfico representan ciudades y los costos de la trayectoria de borde representan distancias de conducción entre pares de ciudades conectadas por una carretera directa, el algoritmo de Dijkstra se puede usar para encontrar la ruta más corta entre una ciudad y todas las demás ciudades.

Algoritmo Dijkstra[18]

- 1. Inicializar todas las distancias en D con un valor infinito relativo, ya que son desconocidas al principio, exceptuando la de x, que se debe colocar en 0, debido a que la distancia de x a x sería 0.
- 2. Sea a = x (Se toma a como nodo actual).
- 3. Se recorren todos los nodos adyacentes de a, excepto los nodos marcados. Se les llamará nodos no marcados *v_i*.

El algoritmo continúa en la siguiente página.

Algoritmo Dijkstra[18]

- 4. Para el nodo actual, se calcula la distancia tentativa desde dicho nodo hasta sus vecinos con la siguiente fórmula: dt(vi) = Da + d(a,vi). Es decir, la distancia tentativa del nodo 'vi' es la distancia que actualmente tiene el nodo en el vector D más la distancia desde dicho nodo 'a' (el actual) hasta el nodo vi. Si la distancia tentativa es menor que la distancia almacenada en el vector, se actualiza entonces el vector con esta distancia tentativa. Es decir, si $dt(vi) < Dvi \rightarrow Dvi = dt(vi)$.
- 5. Se marca como completo el nodo a.
- 6. Se toma como próximo nodo actual el de menor valor en D (puede hacerse almacenando los valores en una cola de prioridad) y se regresa al paso 3, mientras existan nodos no marcados

2.2. Modelo matemático de sistemas de distribución [5, 16, 24]

2.2.1. Ecuaciones de Carson

En los sistemas de potencia, las ecuaciones de Carson (1926) son importantes para calcular la impedancia de los cables aéreos en condiciones de falla que involucran caminos de retorno a tierra.

$$Z_{ii} = R_i + 4\omega P_{ii}G + j \left[X_i + 2\omega GIn \frac{S_{ii}}{RMG_i} + 4\omega Q_{ii}G \right] \Omega / km$$
(2.1)

$$Z_{ij} = 4\omega P_{ij}G + j \left[2\omega GIn \frac{S_{ij}}{D_{ij}} + 4\omega Q_{ij}G \right] \Omega / km$$
(2.2)

donde:

 Z_{ii} = es la impedancia propia del conductor *i* con retorno de tierra en ohmios por kilómetro.

 Z_{ij} =es la impedancia mutua entre los conductores *i* y *j* en ohmios por kilómetro. R_i =es la resistencia AC del conductor en ohmios por kilómetro.

 S_{ii} =distancia del conductor i a su imagen en metros.

 S_{ij} =distancia del conductor *i* a la imagen del conductor *j* en metros.

 D_{ij} =distancia entre el conductor *i* y *j* en metros.

 RMG_i = es el radio medio geométrico del conductor *i* en metros.

 $\omega = 2\pi f$ = frecuencia angular del sistema en radianes por segundo.

f =frecuencia del sistema en hercios.

 $G = 1 \cdot 10^{-4} \Omega / km$.

los términos P y Q representan los términos de unas series infinitas procedentes de la resolución de una ecuación diferencial.

Figura 2.1: Conductores y sus imágenes en la tierra, fórmula de Carson. Fuente: [25].

2.2.2. Modificación de las ecuaciones de Carson

Se pueden hacer aproximaciones que involucran a los términos P_{ii} , P_{ij} , Q_{ii} y Q_{ij} para encontrar las ecuaciones modificadas de Carson. Con las aproximaciones descritas en [24] y considerando la frecuencia dela red es 60 Hz y que la resistividad de la tierra es 100 $\Omega \cdot m$ las ecuaciones de Carson son:

$$Z_{ii} = R_i + 0.05922 + j \left[0.07541 \left(ln \frac{1}{RMG_i} + 6.746 \right) \right] \Omega / km$$
 (2.3)

$$Z_{ij} = 0.05922 + j \left[0.07541 \left(ln \frac{1}{D_{ij}} + 6.746 \right) \right] \Omega / km$$
 (2.4)

2.3. Estructuras en redes aéreas

La información de las estructuras aéreas en sistemas de distribución fue obtenida de la página web de las unidades de propiedad del Ministerio de Electricidad y Energía Renovable, dichas estructuras se muestran en la Fig. 2.2.

Figura 2.2: Estructuras de redes aéreas en distribución. Fuente: [17].

2.4. Impedancias de secuencia^[24, 16, 5]

Para obtener las impedancias de secuencia positiva, negativa y cero se utiliza las ecuaciones de Carson y la reducción de Kron. La definición de los voltajes de la fase línea a tierra en función de los voltajes de la secuencia línea a tierra viene dada por:

$$\begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a_s^2 & a_s \\ 1 & a_s & a_s^2 \end{bmatrix} \cdot \begin{bmatrix} VLG_0 \\ VLG_1 \\ VLG_2 \end{bmatrix}$$
(2.5)

$$a_s = 1 \angle 120^o, \ a_s^2 = 1 \angle 240^o$$

En forma condensada, la ecuación 2.5 se convierte en:

$$[VLG_{abc}] = [A_s] \cdot [VLG_{012}] \tag{2.6}$$

donde

$$[A_s] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a_s^2 & a_s \\ 1 & a_s & a_s^2 \end{bmatrix}$$
(2.7)

Las corrientes de línea de fase se definen de la misma manera:

$$[I_{abc}] = [A_s] \cdot [I_{012}] \tag{2.8}$$

La ecuación 2.6 se puede utilizar para resolver los voltajes de línea a tierra de la secuencia como una función de los voltajes de línea a tierra de fase:

$$[VLG_{012}] = [A_s]^{-1} \cdot [VLG_{abc}]$$
(2.9)

donde

$$[A_s]^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a_s & a_s^2 \\ 1 & a_s^2 & a_s \end{bmatrix}$$
(2.10)

La ecuación 2.11 puede transformarse al dominio de secuencia multiplicando ambos lados por $[A_s]^{-1}$ y sustituyendo en la definición de las corrientes de fase como se indica en la ecuación 2.8.

$$[VLG_{abc}]_n = [VLG_{abc}]_m + [Z_{abc}] \cdot [I_{abc}]$$

$$(2.11)$$

$$[VLG_{012}]_n = [A_s]^{-1} \cdot [VLG_{abc}]_n$$

$$[VLG_{012}]_n = [A_s]^{-1} \cdot [VLG_{abc}]_n + [A_s]^{-1} \cdot [Z_{abc}] \cdot [A_s] \cdot [I_{012}]$$
(2.12)

$$[VLG_{012}]_n = [VLG_{abc}]_m + [Z_{012}] \cdot [I_{012}]$$

donde

$$[Z_{012}] = [A_s]^{-1} \cdot [Z_{abc}] \cdot [A_s] = \begin{bmatrix} Z_{00} & Z_{01} & Z_{02} \\ Z_{10} & Z_{11} & Z_{12} \\ Z_{20} & Z_{21} & Z_{22} \end{bmatrix}$$
(2.13)

La ecuación 2.12 en forma expandida está dada por:

$$\begin{bmatrix} VLG_{0} \\ VLG_{1} \\ VLG_{2} \end{bmatrix}_{n} = \begin{bmatrix} VLG_{a} \\ VLG_{b} \\ VLG_{c} \end{bmatrix}_{m} + \begin{bmatrix} Z_{00} & Z_{01} & Z_{02} \\ Z_{10} & Z_{11} & Z_{12} \\ Z_{20} & Z_{21} & Z_{22} \end{bmatrix} \cdot \begin{bmatrix} I_{0} \\ I_{1} \\ I_{2} \end{bmatrix}$$
(2.14)

La ecuación 2.13 es la ecuación de definición para convertir las impedancias de fase a Impedancias de secuencia. En la ecuación 2.13 los términos diagonales de la matriz son las impedancias de secuencia de la línea de tal manera que:

 $Z_{00} = impedancia de secuencia cero,$

 $Z_{11} = impedancia de secuencia positiva, y$

 $Z_{22} = impedancia de secuencia negativa.$

2.5. Cálculo de corrientes de cortocircuito^[11, 12, 2]

Las corrientes de cortocircuito en los conductores del sistema ocasiona un calentamiento adicional, que el sistema generalmente no está diseñado para sostenerse continuamente. Estas corrientes también introducen fuerzas mecánicas severas en los conductores, que pueden romper los aisladores, distorsionar el transformador devanados, o causar otro daño físico.

2.5.1. Falla simple de línea a tierra

(b) Redes de secuencia interconectadas.

Figura 2.3: Falla simple de línea a tierra. Fuente: [11].

Es el cortocircuito más frecuente y violento, produciéndose con mayor frecuencia en redes rígidamente puestas a tierra o de baja impedancia.

$$Ifa_1 = \frac{V_f}{Z_1 + Z_2 + Z_0 + 3Z_f}$$
$$Ifa_2 = Ifa_1$$

 $Ifa_0 = Ifa_1$

2.5.2. Falla doble línea a tierra

(b) Redes de secuencia interconectadas.

Figura 2.4: Falla doble línea a tierra. Fuente: [11].

En la Fig. 2.4a se muestra una falla de la fase b a la fase c a travéz de la impedancia de falla Z_f a tierra.

$$Ifa_{1} = \frac{V_{f}}{Z_{1} + Z_{2} ||(Z_{0} + Z_{f})}$$
$$Ifa_{2} = -Ifa_{1} \cdot \frac{Z_{0} + 3Z_{f}}{Z_{2} + Z_{0} + 3Z_{f}}$$
$$Ifa_{0} = -Ifa_{1} \cdot \frac{Z_{2}}{Z_{2} + Z_{0} + 3Z_{f}}$$

11

2.5.3. Falla doble línea

Generalmente las corrientes iniciales simétricas de cortocircuito son menores que las de fallo trifásico, aunque si el cortocircuito se produce en las inmediaciones de máquinas síncronas o asíncronas de cierta potencia, las corrientes de esta falla pueden llegar a presentar valores incluso mayores a las de cortocircuito trifásico.

$$Ifa_1 = \frac{3V_a}{Z_1 + Z_2 + Z_f}$$
$$Ifa_2 = -Ifa_1$$

 $Ifa_0 = 0$

(b) Redes de secuencia interconectadas.

Figura 2.5: Falla doble línea a tierra. Fuente: [11].

2.6. Flujos de potencia, cálculos de caídas de voltaje y pérdidas de potencia [15, 6, 11, 12]

2.6.1. Cálculo de impedancias y establecimiento de los tipos de circuitos

La caída de voltaje y las pérdidas de potencias se producen debido a que el conductor que une el par de nodos n_i (nodo de envio) y n_j (nodo de recibo) tiene un valor de

impedancia además que existe una carga a la que se alimenta, esto produce un flujo de corriente y debido a la impedancia del conductor se produce una caída de voltaje. Por ello la potencia enviada desde el nodo n_i es diferente a la potencia que llega al nodo n_j , debido a que una parte de la potencia enviada se pierde en el transporte por los efectos de la impedancia del conductor y otros fenómenos.

El estudio de estos dos parámetros sirven para detallar el funcionamiento de la red de distribución, por ejemplo: la caída de voltaje da información de calidad de la energía pues niveles no adecuados podrían dañar aparatos eléctricos residenciales e industriales; y las pérdidas de potencia activa describen como está el sistema económicamente partiendo de los costos de operación y es una parte fundamental en el negocio de la electricidad por que, con el valor de este costo se puede hacer un balance y saber si se está ganando o perdiendo dinero, una estadística de la OCDE (Organización para la Cooperación y el Desarrollo Económico) establecen que en América Latina existe en promedio de pérdidas técnicas y no técnicas de entre 11 al 25% lo cual es un valor alto con el fin de mejorar estas estadísticas se están desarrollando diferentes trabajos de optimización, como lo es este proyecto.

A continuación se desarrollan las expresiones para el cálculo de la caída de voltaje y pérdidas activas de algunos tipos de circuitos.

2.6.2. Caída de voltaje ramal trifásico

En la Fig. 2.6 se observa la representación de la impedancia de un ramal trifásico, considerando que el sistema es balanceado y que se desprecia el valor de la capacitancia para líneas de hasta 15 km.

donde:

 Z_{ij} : es la impedancia de secuencia positiva del ramal en Ω/Km y es igual a: $Z_{ij} = rcos(\phi) + xsin(\phi)$

 I_{ij} : es la corriente que circula por el ramal.

 l_{ij} : es la longitud en km

Por lo tanto:

$$\Delta U = l_{ij} \cdot Z_{ij} \cdot I_{ij} = l_{ij} \cdot (r_{ij} + jx_{ij}) \cdot I \cdot (\cos\phi - jsen\phi)$$

$$(2.15)$$

Reduciendo la expresión 2.15 se obtiene:

$$\Delta U = l_{ij} \cdot I \cdot \left[(r_{ij} \cdot \cos\phi + x_{ij} \cdot \sin\phi) + j(x_{ij} \cdot \cos\phi - r_{ij} \cdot \sin\phi) \right]$$
(2.16)

Esta expresión es general y puede usarse como una expresión exacta; considerando que hasta un determinado nivel de voltaje el ángulo de desfase entre el voltaje de envío y recibo varia poco, se puede despreciar la parte imaginaria.

$$\Delta U = l_{ij} \cdot I \cdot [(r_{ij} \cdot \cos\phi + x_{ij} \cdot \sin\phi) \qquad (2.17)$$

Además se puede expresar la corriente en función de la demanda máxima.

 $M_{ij} = r_{ij} \cdot \cos\phi + x_{ij} \cdot \sin\phi \tag{2.18}$

$$I_{ij} = \frac{Demanda\,en\,KVA\,trif\,\acute{a}sicos}{\sqrt{3} \cdot U\,en\,kV\,de\,la\,l(nea)}\,[A] \tag{2.19}$$

Se obtiene una expresión para la caída de voltaje entre dos nodos para un ramal trifásico de 3 o 4 hilos

$$\Delta U = \frac{DM}{\sqrt{3} \cdot U} \cdot l_{ij} \cdot M_{ij} \tag{2.20}$$

Figura 2.6: Caída de voltaje para ramal trifásico. Fuente: [16].

La impedancia para este tipo de configuración ya está definida y se sabe que:

 $Z_A = Z_B = Z$

De la figura 2.6 se describe:

 $U_{BC-e} = volta je de envío(i)$

 $U_{BC-r} = volta je de recibo(k)$

$$\Delta U = 2 \cdot l_{ij} \cdot M_{ij} \cdot I \tag{2.21}$$

Se expresa la corriente en función de la demanda máxima monofásica:

2.6.3. Caída de voltaje en ramales bifásicos

Cuando existen transformadores conectados en Delta en las redes urbanas un ramal puede formarse por dos fases pudiendo ser una combinación cualquiera de estas (A-B, A-C, BC) en la Fig. 2.7 se observa un combinación B-C.

14

Figura 2.7: Caída de voltaje para ramal trifásico. Fuente: [16].

La impedancia para este tipo de configuración ya está definida y se sabe que

$$Z_A = Z_B = Z$$

De la Fig. 2.7 se describe

$$U_{BC-e} = volta je \, de \, envio(i)$$
$$U_{BC-r} = volta je \, de \, recibo(k)$$
$$\triangle U = 2 \cdot l_{ij} \cdot M_{ij} \cdot I \qquad (2.22)$$

Se expresa la corriente en función de la demanda máxima monofásica:

$$I_{ij} = \frac{Demandaen\,KVA\,mono\,fásicos}{U\,en\,kV\,de\,la\,línea} \left[A\right]$$
(2.23)

Y se obtiene la expresión para la caída de voltaje

$$\Delta U = 2 \cdot \frac{DM}{U} \cdot l_{ij} \cdot M_{ij} \tag{2.24}$$

2.6.4. Caída de voltaje en ramales monofásicos

Cuando existen ramales monofásicos que se originan en un transformador conectado en estrella con neutro conectado a tierra se pueden tener combinaciones de fase A, B, C con el neutro, en la figura se representa un circuito B-Neutro.

En la Fig. 2.8 se muestra un circuito de un ramal con el efecto de neutro ficticio suponiendo que la resistencia a tierra es cero pero con influencia de este. 15

Figura 2.8: Caída de voltaje para ramal monofásico. Fuente: [16].

La caída de voltaje del circuito, despreciando la componente transversal, es:

$$\Delta U = l_{ij} \cdot M_{ij} \cdot I \tag{2.25}$$

6

donde

$$l_{ij}$$
: Longitud línea – neutro en kilómetros. $M_{ij} = r_{equi} \cdot cos\phi + x_{equi} \cdot sen\phi$ $Z_{eq} = r_{eq} + j \cdot x_{eq}$

Expresando la corriente en función de la demanda máxima monofásica que circula por el ramal "i-j" y del voltaje nominal de línea a línea del circuito:

$$I_{ij} = \frac{\sqrt{3DM}}{U} \left[A \right] \tag{2.26}$$

Sustituyendo en la expresión anterior

$$\Delta U = l_{ij} \cdot M_{ij} \cdot \frac{\sqrt{3}DM}{U} \left[V \right]$$
(2.27)

El procedimiento para encontrar las demás expresiones matemáticas de caída de voltaje para circuitos bifásicos en estrella con carga balanceada monofásica y con trifásica se detalla en la referencia (folleto de redes radiales). En las Tablas 2.1 y 2.2 se presenta el resumen de todas las expresiones.

17

Circuito tipo	Expresiones para calcular las caídas de voltaje $[\%]$		
3F de 3 y 4 hilos	$\%\Delta U_{ij} = rac{DM_{ij}}{10U_{nom}^2} \cdot l_{ij} \cdot M_{ij}$		
1 FL-L (\triangle)	$\%\Delta U_{AB-ij} = rac{DM_{ij}}{10U_{nom}^2} \cdot l_{ij} \cdot M_{ij}$		
1F L-n (Y)	$\% \Delta U_{Fn-ij} = 3 \cdot \frac{DM_{ij}}{10U_{nom}^2} \cdot l_{ij} \cdot M_{ij}$		
2F-n	3 · DM.:		
(Carga 1F	$\%\Delta U_{Fn-ij} = \frac{\sigma DM_{ij}}{2 \cdot 10U^2} \cdot l_{ij} \cdot M_{2Fn-ij}$		
balan.)	2 100 nom		
(2F-n	DM::		
Carga 3F	$\%\Delta U_{Fn-ij} = \frac{DM_{ij}}{10U^2} \cdot l_{ij} \cdot M_{2F-n}$		
balanc.)	100 _{nom}		

Tabla 2.1: Expresiones para calcular las caídas de voltaje en voltios.[15].

Circuito tipo	Expresiones para calcular las caídas de voltaje $\left[V \right]$
3F de 3 y 4 hilos	$\Delta U_{ij} = \frac{DM_{ij}}{\sqrt{3}U_{nom}} \cdot l_{ij} \cdot M_{ij}$
1 FL-L (\triangle)	$\triangle U_{AB-ij} = 2 \cdot \frac{DM_{ij}}{U_{AB-Nom}} \cdot I_{ij} \cdot M_{ij}$
1FL- $n(Y)$	$\triangle U_{Fn-ij} = \sqrt{3} \cdot \frac{DM_{ij}}{U_{Nom}} \cdot I_{ij} \cdot M_{ij}$
2F-n (Carga 1F balan.)	$\triangle U_{Fn-ij} = \frac{\sqrt{3} \cdot DM_{ij}}{2 \cdot U_{Nom}} \cdot I_{ij} \cdot M_{2Fn-ij}$
(2F-n Carga 3F balanc.)	$\triangle U_{Fn-ij} = \frac{DM_{ij}}{\sqrt{3} \cdot U_{Nom}} \cdot I_{ij} \cdot M_{2Fn-ij}$

 Tabla 2.2: Expresiones para calcular las caídas de voltaje en tanto por ciento.[15].

2.6.5. Perdidas de potencia circuitos trifásicos de 3 y 4 hilos

La expresión general para calcular las pérdidas en sistemas trifásicos de 3 y 4 hilos se deduce de la Fig. 2.6 y es:

$$\triangle P = 3 \cdot I^2 \cdot L_{ij} \cdot r_{ij} \cdot 10^{-3} \left[kW \right]$$
$$I_{ij} = \left(\frac{DM}{U}\right)^2$$

Sustituyendo esta expresión en la anterior y generalizando para cualquier ramal se tiene:

$$\Delta P = \left(\frac{DM}{U}\right)^2 \cdot L_{ij} \cdot r_{ij} \cdot 10^{-3} \left[kW\right]$$
(2.28)

donde:

DM : demanda máxima en kVA

- U: voltaje de línea en kV
- l_{ij} : longitud del nodo *i* al *j* en *km*
- R_{ij} : resistencia de fases en Ω/km
- $\triangle P$: pérdidas de potencia en kW

2.6.6. Pérdidas de potencia en ramales bifásicos

Partiendo de la Fig. 2.7.

$$\triangle P = \left(I_a^2 \cdot r_a + I_b^2 \cdot r_b\right) \cdot L_{ij} \cdot r_{ij} \cdot 10^{-3} \left[kW\right]$$

Sabiendo los valores de I_a e I_b la expresión anterior se reduce a:

$$\triangle P = 2 \cdot I^2 \cdot r \cdot l \cdot 10^{-3}$$

Sustituyendo los valores de demanda máxima:

$$\Delta P = 2 \cdot \left(\frac{DM}{U}\right)^2 \cdot L_{ij} \cdot r_{ij} \cdot 10^{-3} \left[kW\right]$$
(2.29)

2.6.7. Pérdidas de potencia en ramales monofásicos

Haciendo referencia a la Fig. 2.8 donde se observa la relación del ramal entre una fase y el neutro, la expresión matemática de las pérdidas para este tipo de circuito será:

$$\Delta P = I^2 \cdot r_{eq} \cdot l \cdot 10^{-3}$$
$$\Delta P = 3 \cdot \left(\frac{DM}{U}\right)^2 \cdot L_{ij} \cdot r_{eq} \cdot 10^{-3} \left[kW\right]$$
(2.30)

Para el resto de expresiones se presentan de forma detallada en la referencia (redes de distribución urbanas), a continuación se presenta un resumen.

Circuito Tipo	Expresiones para calcular las pérdidas en kW
3F de 3 y 4 hilos	$\Delta P = \left(\frac{DM_{ij}}{U_{nom}}\right)^2 \cdot l_{ij} \cdot r_{ij} \cdot 10^{-3}$
1F L-L (△)	$\Delta P = 2 \cdot \left(\frac{DM_{1F-ij}}{U_{nom}}\right)^2 \cdot l_{ij} \cdot r_{ij} \cdot 10^{-3}$
1FL-n (Y)	$\Delta P = 3 \cdot \left(\frac{DM_{1F-ij}}{U_{nom}}\right)^2 \cdot l_{ij} \cdot r_{eq-ij} \cdot 10^{-3}$
2F-n carga monofásica total	$\Delta P = \frac{3}{4} \cdot \left(\frac{DM_{1F-ij-Total}}{U_{nom}}\right)^2 \cdot l_{ij} \cdot (r_A + r_B + r_n) \cdot 10^{-3}$
2F-n carga monofásica de una fase	$\Delta P = 3 \cdot \left(\frac{DM_{ij-Fn}}{U_{nom}}\right)^2 \cdot l_{ij} \cdot (r_A + r_B + r_n) \cdot 10^{-3}$
2F-n carga Trifásica	$\Delta P = \frac{1}{3} \cdot \left(\frac{DM_{ij-3F}}{U_{nom}}\right)^2 \cdot l_{ij} \cdot \left(2r_f + r_n\right) \cdot 10^{-3}$

 Tabla 2.3: Expressiones para determinar las pérdidas de potencia.[15].

2.6.8. Flujos de potencia Arvidson^[15]

Es un método mediante el cual se obtiene los parámetros de caída de voltaje y pérdidas de potencia por tramo, partiendo de los valores de medición (en kW, kVAR) totales en cabecera del transformador, y asume las siguientes suposiciones:

- El factor de potencia es uniforme para todo el circuito.
- El factor de capacidad es uniforme en todos los transformadores.
- Las cargas máximas y mínimas son coincidentes en todo el circuito.
- Las cargas están balanceadas en las tres fases.

2.6.9. Cargabilidad del trasformador o factor de capacidad

Este factor es un valor que determina una relación del grado de aprovechamiento de la capacidad instalada del transformador en función de la demanda máxima del sistema, esta determinado por:

$$F cap = \frac{Demanda - max}{Capacidad instalada} = \frac{Dmax}{CIT}$$
(2.31)

Se aplica en este estudio para poder dimensionar los transformadores del sistema de distribución de tal manera que puedan asumir la carga trasferida sin sufrir sobrecargas que terminen por averiar al transformador en buen estado debido a una transferencia excesiva de un sistema a otro.

En función de la demanda máxima y de que nodos se quedan fuera de la maniobra de interconexión utilizando esta fórmula se podrá recomendar la capacidad de cada trasformador en los diferentes sistemas.

2.7. Análisis Económico

2.7.1. Introducción

El análisis económico involucra cálculos económicos en los que intervienen algunas variables; existen dos grupos que intervienen en el análisis, los elementos que producen y elementos que significan un costo. Se utiliza una relación entre estos para medir la eficiencia económica, cuando la relación es positiva se podría decir que el sistema es rentable y cuando es negativa se estaría perdiendo activos. A continuación se presentara un análisis de los actores que intervienen en el análisis económico en el negocio de la distribución eléctrica.

2.7.2. Costos

Como en todo mercado el costo significa los gastos que intervienen al distribuir algún producto o servicio entre ellos están: salario del personal, materias primas, transporte del producto o servicio, posibles pérdidas, amortización de los fondos, etc.

Se pueden generalizar en:

- Costos variables: son gastos que varían de acuerdo a la producción o al desarrollo de la actividad, por ejemplo: la materia prima en algún proceso, debido a que el costo aumenta o reduce en función del volumen.
- Costos fijos: son gastos que independiente del volumen de producción no cambian, por ejemplo el salario de un empleado.
- Costos directos: costos que se producen por el mismo echo de la actividad por ejemplo el costo de pérdidas en una red de distribución siempre existirán por que las pérdidas están relacionadas directamente con la operación y funcionamiento del sistema.
- Costos indirectos: son costos que si bien es cierto surgen relacionados con la actividad no se producen siempre, por ejemplo un desperfecto en un transformador generará un costo de reparación, este costo está relacionado con la actividad pero no sucede siempre.

2.7.3. Amortización de fondos

Un bien o un fondo que adquiere la empresa para volverlo productivo y rentable en las actividades diarias, pero este bien (fondo) con el pasar de los días sufre desgaste de su vida útil, se deberá hacer algún mantenimiento cada cierto tiempo, incluso puede quedar inoperante por alguna mala maniobra, estos puntos se deben analizar en la inversión de este fondo, para la valoración económica intervienen los siguientes elementos:

- Costo de inversión inicial (Fo)
- Costo de mantenimiento (*Km*)
- Costo de reparación, costo en caso de que el fondo se pierda por completo (Kr).
- Costo de liquidación, costo que se obtiene al vender alguna parte servible del fondo (*Kl*).
- Costo total de inversión inicial (*Ki*)

La valorización de estos elementos para nuestro país y mercado se haría en dólares de los Estados Unidos de Norteamérica (*USD*).

$$Ki = Fo + Km + Kr - Kl \tag{2.32}$$

Como estos fondos se deprecian a lo largo de los años se puede valorar económicamente esta depreciación con el indicador de amortización que por lo general es un análisis anual; y para calcular esto se puede utilizar el método de saldos decrecientes:

$$r = 1 - \sqrt[Ta]{Kl(Fo + Km + Kr)}$$

En el primer año se amortiza a:

$$Ka_{(a)} = r \cdot (Fo + Km + Kr - Kl) = r \cdot Ki$$

Donde:

Ka : es el costo de inversión amortizado.

Ta : tiempo de análisis en años.

y el resto de años en adelante se amortiza a:

$$Vr_{i} = Ki - \sum_{j=1}^{i-1} Ka(j) - Kl$$
(2.33)

$$Ka_{(i)} = r \cdot V_{ri}$$

O se puede realizar esta operación con una amortización lineal para ciertos casos donde el sistema ofrece garantías de explotación durante toda la vida útil del fondo:

$$Ka = \frac{Ki}{Ta} \left[USD/km \right]$$

2.8. Elementos de costos en redes de Distribución Eléctrica:

22

En el sistema de distribución existen elementos como transformadores que son los encargados de cambiar los niveles de voltaje, subir o bajar dependiendo el caso, y el resto de elementos por lo general están asociados a este equipo, como las líneas eléctricas, protecciones, equipos de medición, etc.

- Los costos directos son aquellos que depende de la inversión de los elementos antes descritos, comprende las pérdidas de energía, la amortización de las líneas, transformadores, etc.
- Los costos indirectos se involucran a los costos administrativos que se requieren para poder realizar la gestión del sistema.

2.8.1. Costo de pérdidas en las líneas eléctricas

La acción de transportar energía eléctrica por conductores de un nodo a otro, genera pérdidas de potencia debido a la cantidad de carga en el nodo final, y a la impedancia del conductor. El valor de estas pérdidas se calcula con lo descrito en la sección 2.6, y el costo de las pérdidas de las líneas se analiza con el costo amortizado de los fondos del sistema eléctrico de potencia.

$$K\Delta P = \triangle P \cdot Ka_{sep} \left[USD \right]$$
$$Ka_{sep} = Ka \cdot l \left[USD \right]$$

Si se toma en cuenta el costo de energía y el tiempo de operación del sistema:

$$K\Delta P = \Delta P \cdot (cp \cdot Te + Ka_{sep}) \left[USD \right]$$
(2.34)

donde:

 $K\Delta P$: costo total de pérdidas de potencia en la línea (USD).

 $\triangle P$: pérdidas de potencia en la línea (*kW*).

cp: costo de la energía (Usd/kWh).

Te : tiempo de horas al año que funciona el transformador (*Horas*).

Ka: costo de inversión amortizado del SEP (USD/km).

l: longitud de la línea (km).

 Ka_{sep} : costo amortizado total del SEP (USD).

2.9. Interconexión de redes eléctricas^[3, 22]

La idea de interconexión aparece por la necesidad de volver el sistema de transmisión o distribución más confiable, se plantea unir eléctricamente dos sistemas independientes, para poder tener éxito en esta maniobra, los diferentes parámetros eléctricos deben tener un control y supervisión para que la interconexión sea estable, algunos de los parámetros a tener en cuenta son: caída de voltaje, frecuencia, demanda máxima, entre otros.

Figura 2.9: Esquema de la Interconexión de redes eléctricas. Fuente: autores.

Además que el mercado eléctrico fortalece la economía entre dos países cuando existe una interconexión, un ejemplo es la interconexión entre Ecuador y Colombia. La interconexión de redes en bajo voltaje es una solución que intenta mejorar el suministro eléctrico cuando un transformador de distribución falla, como se muestra en la figura 2.9 lo que se intenta hacer es transferir carga a un transformador cercano, la idea es que ante una falla en el transformador se pueda seguir otorgando servicio eléctrico a una carga sensible o simplemente no dejar sin servicio a todos los usuarios del transformador en falla, para que la maniobra tenga éxito se establece en el estudio límites de caída de voltaje, cargabilidad del transformador, el punto óptimo de interconexión, coordinación de protecciones, etc.

La norma IEEE std 1547 establece criterios para realizar una interconexión en el sistema de distribución, por ejemplo el valor de la caída de voltaje bajo condiciones normales (categoría A) no deben superar el 105 % y no deben estar por debajo del 95 % del voltaje nominal, y también establece que la caída de voltaje bajo condiciones anormales, o de maniobra condicionales (categoría B), pueden llegar hasta el 105.8 % como máximo y 91.6% como mínimo del voltaje nominal, estos y demás valores referidos a esta norma son los que se toman como referencia para realizar el estudio.

2.10. Protecciones^[1]

Las redes de distribución en bajo voltaje deben ser proveídas de protecciones contra sobrecargas, cortocircuitos y defectos de aislamiento. El objetivo de la coordinación de protecciones es gestionar la seguridad, alargar la vida de la instalación y asegurar la disponibilidad eliminando la falla inmediatamente aguas arriba.

2.10.1. Estructura del sistema de protecciones en la red de distribución eléctrica en bajo voltaje

En la figura 2.11 se muestra el esquema simplificado de una instalación tipo que globaliza la mayoría de las instaladas.

Nivel A: Cuadro General Bajo Voltaje (CGBV).

El CGBV es la llave de entrada de toda la distribución eléctrica y la disponibilidad de la energía es primordial en esta parte de la instalación. Las corrientes de cortocircuito son elevadas debido a la proximidad de las fuentes de bajo voltaje.

Este nivel es el dominio de los disyuntores de potencia. Estos disyuntores son diseñados para la distribución eléctrica de altas intensidades, se instalan generalmente en los CGBV como protección de entradas y salidas de altas intensidades y deben permanecer cerrrados en caso de cortocircuito, a fin de que el disyuntor aguas abajo elimine el defecto.

Nivel B : Cuadros Secundarios

Los cuadros secundarios aparecen en la parte intermedia de la instalación y las fuentes están todavía muy cercanas.

Este nivel es el dominio de los interruptores de caja moldeada. Los interruptores de caja moldeada deben actuar lo más rápido posible. El principal objetivo es evitar al máximo los esfuerzos al nivel de los cables e incluso al nivel de la carga.

• Nivel C : Distribución Terminal

Las protecciones están situadas directamente sobre los receptores; una débil intensidad de cortocircuito (algunos kA) caracteriza este nivel.

Este nivel es el dominio de los mini interruptores. Estos interruptores están diseñados para proteger la distribución terminal. El objetivo es limitar esfuerzos en los cables, en los contactos y en los receptores.

En la Fig. 2.10 se muestra dos sistemas interconectados, QS_1 representa la protección del transformador TR_1 , QS_2 representa la protección del transformador TR_2 y QC es el dispositivo mediante el cual se realiza la interconexión.

Posibles escenarios:

- En caso de que el transformador TR_2 se encuentre fuera de servicio, el estado de la protección QS_2 debe ser 0, el estado de la protección QS_1 debe ser 1 y el dispositivo de interconexión QC debe cerrar, es decir, su estado será 1.
- En caso de que el transformador TR_1 se encuentre fuera de servicio, el estado de la protección QS_1 debe ser 0, el estado de la protección QS_2 debe ser 1 y el dispositivo de interconexión QC debe cerrar, es decir, su estado será 1.
- En caso de que los transformadores TR_1 y TR_2 se encuentren fuera de servicio, el estado de las protecciones QS_1 y QS_2 será 0 y el dispositivo de interconexión QC permanecerá abierto, es decir, su estado será 0.
- En caso de que los transformadores TR_1 y TR_2 se encuentren en servicio, el estado de las protecciones QS_1 y QS_2 será 1 y el dispositivo de interconexión QC permanecerá abierto , es decir, su estado será 0.

Los escenarios descritos anteriormente se puede apreciar en la Tabla. 2.4. .

Figura 2.10: Esquema de dos sistemas interconectados. Fuente: [20].

QS_1	QC	QS_2
0	0	0
1	0	1
1	1	0
0	1	1

Tabla 2.4: Posibles escenarios en una maniobra de interconexión.

Figura 2.11: Estructura de distribución eléctrica en bajo voltaje. Fuente: [1].

2.11. Ajuste del sistema de protecciones^[8, 23, 14]

Los sistemas de distribución están expuestos a un flujo de sobrecorriente en sus elementos. La sobrecorriente pueden deberse a condiciones anormales del sistema, como sobrecarga y fallas de cortocircuito, o debido a condiciones normales del sistema, como la corriente de arranque del transformador. Los sistemas de distribución están equipados con relés de protección que inician la acción para permitir que los equipos de conmutación respondan solo a condiciones anormales del sistema.

27

Los relés necesitan ser energizados para operar. Esta energía puede ser proporcionada por el circuito monitoreado en sí mismo o mediante el uso de un sistema de almacenamiento de energía, como los dispositivos de disparo de capacitores (para pequeños interruptores de bajo voltaje).

2.11.1. Relés de sobrecorriente

La corriente de operación para todos los relés de sobrecorriente es fija o ajustable. Hay tres tipos de características de operación de los relés de sobrecorriente:

Figura 2.12: *Características de tiempo-corriente de la protección de sobrecorriente.* (*a) Protección en corriente; (b) Protección en tiempo; (c) Protección en tiempo inver-*

so. Fuente: [10].

- 1. **Protección en corriente:** cuando la corriente alcanza o supera el umbral de configuración, el relé opera instantáneamente como se muestra en la curva característica de la Figura 2.12a.
- 2. **Protección en tiempo:** los relés de sobrecorriente de tiempo definido, tienen un tiempo de operación que es independiente de la magnitud de la corriente después de que se alcanza un cierto valor de corriente (Fig. 2.12b).
- 3. Protección en tiempo inverso: los relés de sobrecorriente de tiempo inverso operan más rápido a medida que aumenta la corriente. Están disponibles con características de tiempo inverso, moderadamente inverso, muy inverso y extremadamente inverso para cumplir con los requisitos de la aplicación particular (Fig. 2.12c).

Figura 2.13: Características típicas de tiempo-corriente del relé. (A) Inverso; (B) muy inverso; (C) extremadamente inverso; (D) Instantánea. TD = ajuste del dial de tiempo del relé. Fuente: [10].

En la Tabla 2.5 se presenta los tipos de curva de disparo para relés de sobrecorriente.

Tipo de curva	Tiempo de funcionamiento	Tiempo de reinicio		
Moderadamente Inversa	$t_p = TD \cdot \left(0,0226 + \frac{0,0104}{M^{0,02} - 1}\right)$	$t_r = TD \cdot \left(\frac{1.08}{1 - M^2}\right)$		
Inversa	$t_p = TD \cdot \left(0,180 + \frac{5,95}{M^2 - 1}\right)^2$	$t_r = TD \cdot \left(\frac{5.95}{1-M^2}\right)$		
Muy Inversa	$t_p = TD \cdot \left(0.0963 + \frac{3.88}{M^2 - 1} \right)$	$t_r = TD \cdot \left(\frac{3,88}{1-M^2}\right)$		
Extremadamente Inversa	$t_p = TD \cdot \left(0,03526 + \frac{5,67}{M^2 - 1}\right)$	$t_r = TD \cdot \left(\frac{5.67}{1-M^2}\right)$		

 Tabla 2.5: Curvas para relés de sobrecorriente según la norma IEEE C37. [14]

donde:

M =corriente de arranque.

$$TD =$$
time dial.

2.12. Estado del arte de los dispositivos de protección e interconexión ^[21, 19, 4, 9]

2.12.1. DEEP SEA módulo de control y transferencia

Los módulos Deep Sea son módulos de control de arranque automático inteligente con funciones y características de alto nivel. Ciertos modelos incluyen un sistema de monitoreo integrado, cuenta con un servidor web incorporado. Estos módulos de control cuentan con procesador lo cual permite ofrecer una rápida respuesta según la aplicación, necesidad y programación de la aplicación.

Figura 2.14: Módulo Deep Sea 7420. Fuente: [9].

Este módulo puede supervisar el estado de la red y tomar acción si el uno u otro sistema falla, si bien es cierto son módulos diseñados para transferencia de carga entre transformador y generador, no existe ningún problema al modificar la aplicación para monitorear dos transformadores y que realice las operaciones necesarias si uno u otro transformador fallara, porque tiene salidas digitales para control y se pueden programar para la aplicación necesaria, este tipo de modulo de control va conjuntamente con dispositivos conmutadores de carga automáticos y dispositivos de protección secundaria de ser necesario.

2.12.2. Interruptor Conmutados Motorizados- conmutación de red (Marca ABB)

Estos dispositivos ABB pueden ser utilizados sin el modulo de control y acoplados para que funcionen con el modulo Deep Sea y se pueden encontrar con el modulo de control para vigilancia, de control de red-red y supervisar cuando alguna tenga fallos y actuar.

Estos dispositivos existen en un rango variado de voltaje y corriente nominal, poder de corte de corriente de cortocircuito, etc.

Características:

Voltaje nominal hasta 690 V.

- Corriente nominal 32 a 2500 Amp.
- Configuración de 3 y 4 polos.

(b) Interruptor motorizado-conmutación de red automática.

Figura 2.15: Interruptores conmutados para transferencia de carga. Fuente:[4].

2.12.3. Interruptores automáticos en caja moldeada de Schneider-Electric

La gama Compact NS de Schneider-Electric es la referencia internacional en el mercado de interruptores de caja moldeada. Sus principales aplicaciones son: protección de la red eléctrica, motores, red de cc, etc.

2.12.3.1. Compact NS >630 A

Características:

- Corriente nominal de 630 a 3.200 A.
- Límite de voltaje nominal: hasta 690 V.
- Versiones con 3 y 4 polos.
- Aislamiento con indicación de ruptura positiva.

 Conformidad con las normas internacionales IEC 60947-1 y 2, IEC 68230 para la tropicalización de tipo 2.

Figura 2.16: Compact NS1600H. Fuente:[21].

2.12.3.2. Compact NS <630A

Características:

- Corriente nominal: de 15 a 630 A.
- Límite de voltaje nominal: hasta 690 V.
- Versiones con 1, 2, 3 y 4 polos.
- Aislamiento con indicación de ruptura positiva.
- Conformidad con las normas internacionales IEC 60947-1 y 2, IEC 68230 para la tropicalización de tipo 2.

Figura 2.17: Compact NS1600H. *Fuente:*[19].

"El esfuerzo de utilizar las máquinas para emular el pensamiento humano siempre me ha parecido bastante estúpido. Preferiría usarlas para emular algo mejor." Edsger Wybe Dijkstra (1930 – 2002) 32

3

Metodología de optimización

Índice

3.1	Construcción de grafos orientado a los sistemas eléctricos de dis- tribución	32
3.2	Función objetivo	33
3.3	Algoritmo para el enrutamiento mínimo por pérdidas de potencia	34
3.4	Interconexión de redes eléctricas	35
3.5	Análisis de cargabilidad de transformadores	36
3.6	Coordinación de protecciones	36
3.7	Análisis económico	37

3.1. Construcción de grafos orientado a los sistemas eléctricos de distribución

En la Fig. 3.1 se muestra las posibles trayectorias para el despliegue de la red de distribución, los vértices denotados como p representan los postes, DM es la demanda total (usuarios e iluminación) expresada en kVA y l es la distancia entre los postes expresada en metros.

Para la construcción del grafo de la red eléctrica de distribucion se debe tener en cuenta:

- El transformador estará ubicado en p₀.
- La demanda se determinará según el número de clientes y del estrato de la zona (ver Anexo A.1).

Figura 3.1: Grafo del posible despliegue de la red de distribución. Fuente: autores.

3.2. Función objetivo

Se considera un grafo dirigido ponderado (Fig. 3.2) $\mathbf{G} = (\mathbf{P}, \mathbf{T}, \mathbf{k} \triangle \mathbf{P})$, donde \mathbf{P} es el conjunto de postes no aislados, \mathbf{T} es el conjunto de tramos que está formado por pares ordenados de elementos del conjunto \mathbf{P} , y $\mathbf{k} \triangle \mathbf{P}$ es el peso asignado a cada uno de los tramos del conjunto \mathbf{T} .

P representa los puntos de consumo a los que se debe brindar el servicio de energía eléctrica, $k \triangle P$ (variable a optimizar) es el costo anual de pérdidas de energía activa en la línea de distribución de energía eléctrica.

El peso de cada tramo estará denotado por $k \triangle P(\{n_i, n_j\}) = k \triangle P_{i \rightarrow j}$.

La ecuación 2.34 representa el costo total de pérdidas de potencia en la línea de distribución de energía eléctrica, y a partir de esta se plantea la función objetivo a minimizar (ecuación 3.1).

$$K\Delta P = \min\sum_{(i,j)\in A} \Delta P_{i\to j} \left(cp \cdot Te + K_{asep} \right)$$
(3.1)

donde:

 $\triangle P_{i \rightarrow j}$: es la pérdida de potencia en el tramo $i \rightarrow j$ expresada en kW.

cp: es el costo de la energía en USD/kWh.

Te : es el tiempo de horas al año que funciona el transformador (Horas).

 Ka_{sep} : es el costo amortizado del SEP en USD.

La restricción para la función objetivo que se presenta en la ecuación 3.1 se muestra en 3.2, y asegura la dirección del flujo de potencia.

$$i < j \tag{3.2}$$

Las pérdidas de potencia en los tramos $(\triangle P_{i \rightarrow j})$ deberán ser calculadas de acuerdo al tipo de circuito, las expresiones para determinarlas se muestran en la Tabla 2.1.

Figura 3.2: Grafo dirigido ponderado. Fuente: autores.

3.3. Algoritmo para el enrutamiento mínimo por pérdidas de potencia

Se detalla el algoritmo que permite realizar el despliegue de la red eléctrica de distribución, minimizando el costo anual de pérdidas de energía activa.

Algoritmo 3.1. Pasos para realizar el enrutamiento óptimo.
Paso 1: Ingresar la data del sistema a optimizar.
Paso 2: Determinar la demanda en los puntos de consumo.
Paso 3: Determinar las caídas de voltaje parcial en los tramos (flujos de potencia), en función del tipo de configuración.
Paso 4: Determinar las pérdidas de energía activa en los tramos.
Paso 5: Determinar el costo de las pérdidas que se determinaron en el paso anterior.

Algoritmo 3.1. Pasos para realizar el enrutamiento óptimo.

- Paso 6: Determinar la ruta mínima mediante el algoritmo e Dijkstra.
- Paso 7: Calcular los flujos de potencia del sistema optimizado (radial)..

Algoritmo 3.2. Pseudocódigo del algoritmo Dijkstra.

```
función Dijkstra (G = (P, T, k \triangle P), nodo_fuente = 0)
//La variable nodo_fuente representa la ubicación
//del transformador. En el vector costo se guarda el
//costo anual de pérdidas de energía activa del nodo
//fuente al resto de nodos.
double costo[n];
//Inicializar el vector con costos iniciales.
booleano visto[n];
//vector de booleanos para controlar los nodos de
//los que ya se cuenta con el costo mínimo.
para cada w \in V[G] hacer
Si (no existe arista entre nodo_fuente y w) entonces costos[w] =
Infinito
Si_no costos [w] = peso (nodo_fuente, w)
fin si
fin para
costos[s] = 0;
visto[s] = cierto;
//n es el número de nodos que tiene el Grafo.
mientras que (no_estén_vistos_todos) hacer
vértice = tomar el mínimo del vector costos y que no esté
visto;
visto[vértice] = cierto;
para cada w \in sucesores (G, vértice) hacer
si costos[w]>costos[vértice]+peso (vértice, w) entonces
costos[w] =costos[vértice]+peso (vértice, w);
fin si
fin para
fin mientras
fin función
```

Luego de haber obtenido el despliegue óptimo de la red mediante el algoritmo 3.2, se procede a realizar el cálculo de flujos de potencia para verificar que las caídas de voltaje no supere el 5%.

3.4. Interconexión de redes eléctricas

Al realizar el estudio de interconexión se debe contar con dos sistemas optimizados, es decir, se debe repetir el procedimiento descrito en la sección 3.3.

Los escenarios posibles son los siguientes:

- El transformador del primer sistema está fuera de servicio, por lo tanto el transformador del segundo sistema absorberá parte de su carga.
- El transformador del segundo sistema está fuera de servicio, por lo tanto el transformador del primer sistema absorberá parte de su carga.

Una vez determinado el nodo de interconexión en cada uno de los sistemas, se debe renumerar los nodos de los sistemas.

Posteriormente se debe correr flujos de potencia combinando los dos sistemas como uno solo, con los resultados obtenidos se debe definir los nodos de interconexión y los puntos de apertura.

3.5. Análisis de cargabilidad de transformadores

Cuando se realiza la interconexión en redes de bajo voltaje un factor importante a tener en cuenta es la cargabilidad de los transformadores para que puedan soportar las cargas de los sistemas en falla, esta decisión se toma sumando la carga del sistema propio más la carga del sistema en falla, sin contar la carga que no cumple sus restricciones. Partiendo de lo expuesto el transformador que recibe la carga va a tener dos indicadores de cargabilidad: uno cuando está trabajando en condiciones normales que por las características del sistema se asume que va a estar sobre-dimensionado, y otro indicador que permita saber cuál es su nivel de cargabilidad cuando se hace la maniobra de transferencia.

- *fc-local:* factor de cargabilidad bajo condiciones normales.
- *fc-total:* factor de cargabilidad bajo condiciones de maniobra (transferencia de carga).

3.6. Coordinación de protecciones

Para las protecciones del sistema de bajo voltaje se utiliza la modelación de las curvas en base a la norma C37. 112 de la IEEE "*Inverse-time characteristic equations for overcurrent relays*", esta modelación se realiza para cada nodo en el que se ubica la protección, en dicho nodo se debe conocer la corriente nominal (I_{n-rms}) la cual se utiliza para modelar las curvas necesarias de protección primaria y de respaldo.

Para el nodo de interconexión se utiliza curvas muy inversas o extremadamente inversas; la elección depende de los datos del sistema, las protecciones primarias deberán funcionar sobre los 0,1*seg* garantizando que la curva de disparo sea más rápida que las curvas de daño de conductores y demás equipos.

Se establece las corrientes de cortocircuito (I_{cc-rms}) de los nodos en donde se ubica la protección primaria y en función del rango de actuación de 200*mseg* a 300*mseg* entre curva y curva se encuentra el TimeDial (TD) para cada caso que garanticen la selectividad de todos los dispositivos involucrados, esta coordinación permite que los dispositivos más alejados actúen antes, aislando la falla y evitando que la trasferencia de carga falle y quede sin servicio una porción de red más grande.

3.7. Análisis económico

Una vez hecho el análisis de la carga que va a ser transferida y que carga se quedará fuera de la maniobra. Con las fórmulas descritas en el capítulo dos se procede a realizar el análisis económico para determinar si es factible realizar la maniobra, el indicador económico que se utiliza para el análisis es conocido como razón beneficio costo (RBC), donde el beneficio será por las pérdidas técnicas de transporte del suministro eléctrico de los tramos que se asumen del sistema fallado, y el costo será la inversión que se hace en el despliegue de las líneas, todo esto evaluado a los años de vida de la red o a criterio del diseñador, para los casos de estudio de este proyecto de tesis el periodo de evaluación será 15 años.

"Temo el día en que la tecnología sobrepase nuestra humanidad; el mundo solo tendrá una generación de idiotas." Albert Einstein (1879 – 1955)

38

4 Primer caso de estudio

Índice

4.1	Selecc	Selección de las zonas de estudio						
4.2	Optimi	zación del despliegue de la red de la zona 1	39					
4.3	Optimi	zación del despliegue de la red de la zona 2	42					
4.4	Interco	nexión entre la zona 1 y zona 2	46					
	4.4.1	Primer escenario: Sistema de la zona 1 recibe carga y sistema de la zona 2 envía carga	47					
	4.4.2	Segundo escenario: sistema de la zona 2 recibe carga y sistema de la zona 1 envía carga	50					
	4.4.3	Análisis de flujos de potencia de los sistemas interconec- tados	52					

4.1. Selección de las zonas de estudio.

Las zonas de estudio se escogieron basados en el Proyecto de Titulación "Ubicación óptima de transformadores", que toma como sector urbano unas cuadras de Totoracocha comprendido entre las calles: Los Andes, Altar, Sarahurco (ver figura 4.1).

Se establecen dos zonas con el fin de optimizar el despliegue de la red de bajo voltaje de ambas zonas por separado, luego de optimizar el despliegue de la red se procede a analizar los resultados de los flujos de potencia con el objetivo de determinar los nodos idóneos para la interconexión de los sistemas.

Figura 4.1: Zonas de estudio propuestas.

4.2. Optimización del despliegue de la red de la zona 1

En la Fig. 4.2 se presentan los posibles caminos para el despliegue de la red de la denominada zona 1, conjuntamente en la Tabla 4.1 se presentan los datos técnicos de todos los posibles caminos que pudiera tomar el despliegue de la red.

Figura 4.2: Grafo del sistema de distribución de la zona 1. Fuente: autores.

Nodo i	Nodo j	L [m]	Usuarios	Alum. P [W]	Configuración	Calibre
0.00	1.00	37.00	12.00	150.00	3F de 3 y 4 hilos	2/0
1.00	2.00	41.00	6.00	150.00	3F de 3 y 4 hilos	2/0
2.00	3.00	28.00	8.00	150.00	3F de 3 y 4 hilos	2/0
3.00	4.00	32.00	12.00	150.00	3F de 3 y 4 hilos	2/0
4.00	5.00	33.00	4.00	150.00	3F de 3 y 4 hilos	2/0
5.00	21.00	41.00	7.00	150.00	3F de 3 y 4 hilos	2/0
1.00	6.00	63.00	0.00	150.00	3F de 3 y 4 hilos	2/0
6.00	20.00	42.00	7.00	150.00	3F de 3 y 4 hilos	2/0
20.00	21.00	36.00	7.00	150.00	3F de 3 y 4 hilos	2/0
6.00	19.00	45.00	9.00	150.00	3F de 3 y 4 hilos	2/0
1.00	9.00	39.00	0.00	150.00	3F de 3 y 4 hilos	2/0
9.00	10.00	32.00	0.00	150	3F de 3 y 4 hilos	2/0
10.00	11.00	8.00	4.00	150.00	3F de 3 y 4 hilos	2/0
11.00	12.00	36.00	5.00	315.00	3F de 3 y 4 hilos	2/0
12.00	13.00	29.00	8.00	150.00	3F de 3 y 4 hilos	2/0
11.00	23.00	31.00	8.00	150.00	3F de 3 y 4 hilos	2/0
4.00	13.00	33.00	8.00	150.00	3F de 3 y 4 hilos	2/0
0.00	14.00	33.00	4.00	150.00	3F de 3 y 4 hilos	2/0
14.00	15.00	21.00	11.00	150.00	3F de 3 y 4 hilos	2/0
15.00	16.00	29.00	3.00	150.00	3F de 3 y 4 hilos	2/0
16.00	17.00	16.00	0.00	0.00	3F de 3 y 4 hilos	2/0
17.00	18.00	26.00	10.00	150.00	3F de 3 y 4 hilos	2/0
18.00	19.00	49.00	9.00	150.00	3F de 3 y 4 hilos	2/0
19.00	20.00	45.00	7.00	150.00	3F de 3 y 4 hilos	2/0
20.00	21.00	36.00	7.00	150.00	3F de 3 y 4 hilos	2/0
14.00	22.00	32.00	1.00	150.00	3F de 3 y 4 hilos	2/0
22.00	24.00	33.00	12.00	150.00	3F de 3 y 4 hilos	2/0
22.00	25.00	48.00	3.00	150	3F de 3 y 4 hilos	2/0
0.00	7.00	23.00	0.00	150.00	3F de 3 y 4 hilos	2/0
7.00	23.00	37.00	8.00	150	3F de 3 y 4 hilos	2/0
23.00	24.00	36.00	12.00	150	3F de 3 y 4 hilos	2/0
24.00	25.00	41.00	3.00	0.00	3F de 3 y 4 hilos	2/0
25.00	26.00	22.00	1.00	150	3F de 3 y 4 hilos	2/0
26.00	27.00	13.00	3.00	150	3F de 3 y 4 hilos	2/0
26.00	27.00	44.00	9.00	150	3F de 3 y 4 hilos	2/0
27.00	30.00	34.00	12.00	150	3F de 3 y 4 hilos	2/0
16.00	28.00	26.00	8.00	150	3F de 3 y 4 hilos	2/0
28.00	29.00	44.00	9.00	150	3F de 3 y 4 hilos	2/0
29.00	30.00	43.00	12.00	150	3F de 3 y 4 hilos	2/0
0.00	31.00	31.00	0.00	150	3F de 3 y 4 hilos	2/0
7.00	8.00	55.00	6.00	150	3F de 3 y 4 hilos	2/0
8.00	11.00	31.00	4.00	150	3F de 3 y 4 hilos	2/0

 Tabla 4.1: Data inicial del sistema de la zona 1.
 Inicial del sistema de la zona 1.

Una vez ingresada esta información en el programa de optimización y luego de haber

corrido 19 iteraciones los resultados son los siguientes:

Ni	Nj	$\mathbf{l_{ij}}[\mathbf{m}]$	$l_j[m]$	$k\Delta P[USD/año]$	$\Delta \mathbf{P}[\mathbf{kW}]$	$\Delta V_{nj}[V]$	ΔV_{nj}
0	1	37	37	3330,63	4,7098	5,8398	2,6545
1	2	41	78	806,87	1,1374	8,8608	4,0276
2	3	28	106	345,09	0,4858	10,4924	4,7693
3	4	32	138	177,66	0,2463	11,7345	5,3339
4	5	33	171	16,06	0,0225	12,1157	5,5072
1	6	63	100	730,84	1,0267	9,3977	4,2717
0	7	23	23	530,33	0,7557	1,8443	0,8384
7	8	55	78	733,47	1,0295	5,1732	2,3515
1	9	39	76	0,02	3,42E-05	5,8559	2,6618
9	10	32	108	0,00	7,01E-06	5,8625	2,6648
8	11	31	109	228,41	0,3224	6,5718	2,9872
11	12	36	145	147,93	0,2072	7,7803	3,5364
12	13	29	174	40,22	0,0561	8,3443	3,7929
0	14	33	33	4929,96	7,0101	6,7285	3,0584
14	15	21	54	738,17	1,0462	8,8021	4,0009
15	16	29	83	563,63	0,7986	10,9310	4,9686
16	17	16	99	31,47	0,0447	11,3053	5,1388
17	18	26	125	51,85	0,0726	11,9135	5,4152
6	19	45	145	76,53	0,1056	10,3625	4,7102
6	20	42	142	187,02	0,2603	10,8606	4,9366
20	21	36	178	40,14	0,0557	11,4875	5,2216
14	22	32	65	1009,22	1,4323	9,7235	4,4198
7	23	37	60	50,68	0,071	2,5644	1,1656
22	24	33	98	89,69	0,1253	10,6231	4,8287
22	25	48	113	673,04	0,9451	12,7032	5,7742
25	26	22	135	222,62	0,3152	13,8682	6,3037
26	27	44	179	388,68	0,5332	16,0110	7,2777
16	28	26	109	157,73	0,2222	11,9943	5,4520
28	29	44	153	74,90	0,1033	12,9376	5,8807
27	30	34	213	94,81	0,1291	16,9379	7,6990
0	31	31	31	0,00	6,79E-06	0,0064	0,0029

 Tabla 4.2: Resultado óptimo para el enrutamiento del sistema 1.

Los resultados de haber corrido flujos se muestran en la Tabla 4.2 y se puede apreciar que tres nodos (P_{26}, P_{27}, P_{30}) exceden el límite de caída de voltaje permitida del 5% para sistemas urbanos, por lo que estos nodos quedarían fuera del sistema optimizado, en la Fig. 4.3 se puede observar el sistema radial y que caminos fueron tomados por el algoritmo para optimizar el costo de pérdidas del sistema.

Figura 4.3: Sistema optimizado de la zona 1. Fuente: autores.

4.3. Optimización del despliegue de la red de la zona 2

En la zona 2 se determinan los posibles caminos del despliegue de la red denominado como construcción del grafo de la zona 2, como se aprecia en la Fig. 4.4. En la Tabla 4.3 se observa la data inicial del grafo de la zona 2.

Figura 4.4: Grafo del sistema de distribución de la zona 2. Fuente: autores.

Nodo i	Nodo j	Peso [m]	Usuarios	Alum. P [W]	Configuración	Calibre
0.00	1.00	39.00	12.00	150.00	3F de 3 y 4 hilos	2/0
1.00	2.00	31.00	10.00	150.00	3F de 3 y 4 hilos	2/0
2.00	8.00	49.00	10.00	0.00	3F de 3 y 4 hilos	2/0
0.00	3.00	38.00	6.00	150.00	3F de 3 y 4 hilos	2/0
3.00	4.00	23.00	3.00	150.00	3F de 3 y 4 hilos	2/0
4.00	5.00	23.00	4.00	150.00	3F de 3 y 4 hilos	2/0
5.00	6.00	21.00	8.00	150.00	3F de 3 y 4 hilos	2/0
6.00	7.00	58.00	2.00	150.00	3F de 3 y 4 hilos	2/0
7.00	8.00	36.00	10.00	150.00	3F de 3 y 4 hilos	2/0
8.00	20.00	33.00	3.00	150.00	3F de 3 y 4 hilos	2/0
0.00	9.00	33.00	2.00	150.00	3F de 3 y 4 hilos	2/0
1.00	10.00	10.00	0.00	150.00	3F de 3 y 4 hilos	2/0
10.00	11.00	41.00	0.00	150.00	3F de 3 y 4 hilos	2/0
11.00	12.00	15.00	7.00	150.00	3F de 3 y 4 hilos	2/0
12.00	13.00	32.00	1.00	150.00	3F de 3 y 4 hilos	2/0
9.00	12.00	27.00	2.00	150.00	3F de 3 y 4 hilos	2/0
9.00	13.00	27.00	1.00	150.00	3F de 3 y 4 hilos	2/0
13.00	14.00	27.00	3.00	150.00	3F de 3 y 4 hilos	2/0
14.00	15.00	17.00	0.00	150.00	3F de 3 y 4 hilos	2/0
15.00	16.00	40.00	0.00	150.00	3F de 3 y 4 hilos	2/0
16.00	17.00	49.00	4.00	150.00	3F de 3 y 4 hilos	2/0
17.00	18.00	3	0	150	3F de 3 y 4 hilos	2/0
18.00	19.00	27.00	0.00	150.00	3F de 3 y 4 hilos	2/0
19.00	20.00	15.00	3.00	150.00	3F de 3 y 4 hilos	2/0
9.00	21.00	37.00	0.00	0.00	3F de 3 y 4 hilos	2/0
21.00	22.00	21.00	5.00	0.00	3F de 3 y 4 hilos	2/0
22.00	23.00	33.00	6.00	150.00	3F de 3 y 4 hilos	2/0
23.00	24.00	36.00	9.00	150.00	3F de 3 y 4 hilos	2/0
24.00	25.00	37.00	6.00	150.00	3F de 3 y 4 hilos	2/0
24.00	26.00	38.00	2.00	150.00	3F de 3 y 4 hilos	2/0
24.00	27.00	58.00	0.00	150.00	3F de 3 y 4 hilos	2/0
21.00	28.00	4.00	1.00	150.00	3F de 3 y 4 hilos	2/0
28.00	29.00	35.00	4.00	150.00	3F de 3 y 4 hilos	2/0
29.00	30.00	23.00	7.00	150.00	3F de 3 y 4 hilos	2/0
28.00	31.00	24.00	4.00	150.00	3F de 3 y 4 hilos	2/0
28.00	32.00	38.00	7.00	150.00	3F de 3 y 4 hilos	2/0
32.00	33.00	25.00	2.00	150.00	3F de 3 y 4 hilos	2/0
33.00	41.00	25.00	9.00	150.00	3F de 3 y 4 hilos	2/0
33.00	42.00	35.00	0.00	150.00	3F de 3 y 4 hilos	2/0
0.00	34.00	27.00	3.00	150.00	3F de 3 y 4 hilos	2/0
34.00	35.00	20.00	7.00	150.00	3F de 3 y 4 hilos	2/0
35.00	36.00	32.00	8.00	150.00	3F de 3 y 4 hilos	2/0
36.00	39.00	24.00	0.00	150.00	3F de 3 y 4 hilos	2/0
36.00	43.00	28.00	0.00	150.00	3F de 3 v 4 hilos	2/0

_ Continúa en la siguiente página

2/0

Nodo i	Nodo j	Peso [m]	Usuarios	Alum. P [W]	Configuración	Calibre
36.00	40.00	51.00	3.00	150.00	3F de 3 y 4 hilos	2/0
40.00	41.00	33.00	9.00	150.00	3F de 3 y 4 hilos	2/0
40.00	42.00	42.00	0.00	150.00	3F de 3 y 4 hilos	2/0
4.00	37.00	27.00	3.00	150.00	3F de 3 y 4 hilos	2/0
37.00	38.00	13.00	2.00	150.00	3F de 3 y 4 hilos	2/0
38.00	39.00	29.00	0.00	150.00	3F de 3 y 4 hilos	2/0
39.00	40.00	37.00	3.00	150.00	3F de 3 y 4 hilos	2/0
39.00	43.00	15.00	0.00	150.00	3F de 3 y 4 hilos	2/0
37.00	44.00	20.00	3.00	0.00	3F de 3 y 4 hilos	2/0
37.00	45.00	30.00	7.00	150.00	3F de 3 y 4 hilos	2/0
45.00	46.00	28.00	3.00	150.00	3F de 3 y 4 hilos	2/0
46.00	47.00	36.00	5.00	150.00	3F de 3 y 4 hilos	2/0
46.00	48.00	28.00	1.00	150.00	3F de 3 y 4 hilos	2/0
46.00	49.00	43.00	2.00	0.00	3F de 3 y 4 hilos	2/0
47.00	49.00	37.00	2.00	0.00	3F de 3 y 4 hilos	2/0
47.00	48.00	22.00	1.00	0.00	3F de 3 y 4 hilos	2/0

 Tabla 4.3: Data inicial del sistema de la zona 2.

Una vez ingresada esta información en el programa de optimización y luego de haber corrido flujos de potencia con 19 iteraciones, los resultados de la optimización y flujo de potencia son los que se presentan en la Tabla 4.4.

ni	nj	$\mathbf{l_{ij}}[\mathbf{m}]$	$l_j[m]$	$k\Delta P[USD]$	$\Delta \mathbf{P}[\mathbf{kW}]$	$\Delta V_{nj}[V]$	ΔV_{nj}
0	1	39	39	777,79	1,0987	2,8958	1,3163
1	2	31	70	243,71	0,3437	4,3397	1,9726
0	3	38	38	2610,09	3,7040	5,2484	2,3856
3	4	23	61	1245,22	1,7696	8,0706	3,6685
4	5	23	84	117,80	0,1671	8,9377	4,0626
5	6	21	105	51,93	0,0734	9,4868	4,3122
6	7	58	163	9,53	0,0133	9,8748	4,4885
2	8	49	119	97,39	0,1346	5,4758	2,4890
0	9	33	33	5307,74	7,5513	6,9833	3,1742
1	10	10	49	0,01	0,0000	2,9000	1,3182
10	11	41	90	0,01	0,0000	2,9085	1,3220
9	12	27	60	4,35	0,0062	7,1640	3,2563
9	13	27	60	118,13	0,1679	7,9251	3,6023
13	14	27	87	91,31	0,1294	8,7520	3,9782
14	15	17	104	28,27	0,0402	9,1176	4,1443
15	16	40	144	65,90	0,0927	9,9694	4,5315
16	17	49	193	80,44	0,1114	11,0028	5,0013
17	18	3	196	0,98	0,0014	11,0314	5,0143

Continúa en la siguiente página

ni	nj	$\mathbf{l_{ij}}[\mathbf{m}]$	$l_j[m]$	$k\Delta P[USD]$	$\Delta \mathbf{P}[\mathbf{kW}]$	$\Delta V_{nj}[V]$	ΔV_{nj}
18	19	27	223	8,54	0,0120	11,2833	5,1288
19	20	15	238	4,52	0,0064	11,4201	5,1909
9	21	37	70	3558,57	5,0453	13,0276	5,9216
21	22	21	91	401,53	0,5692	14,5570	6,6168
22	23	33	124	419,94	0,5900	16,5090	7,5041
23	24	36	160	253,86	0,3520	18,0838	8,2199
24	25	37	197	32,34	0,0449	18,6540	8,4791
24	26	38	198	6,21	0,0087	18,3380	8,3355
24	27	58	218	0,01	0,0000	18,0958	8,2254
21	28	4	74	117,48	0,1675	13,3897	6,0862
28	29	35	109	106,48	0,1501	14,4036	6,5471
29	30	23	132	25,29	0,0356	14,8041	6,7291
28	31	24	98	11,56	0,0164	13,6670	6,2123
28	32	38	112	289,89	0,4064	15,1282	6,8764
32	33	25	137	72,55	0,1026	15,8365	7,1984
0	34	27	27	298,79	0,4254	1,4993	0,6815
34	35	20	47	154,85	0,2201	2,4275	1,1034
35	36	32	79	97,45	0,1375	3,3553	1,5252
4	37	27	88	560,63	0,7944	10,1194	4,5997
37	38	13	101	2,09	0,0030	10,2064	4,6393
36	39	24	103	0,00	0,0000	3,3603	1,5274
36	40	51	130	15,49	0,0217	3,8205	1,7366
33	41	25	162	41,98	0,0587	16,3725	7,4420
33	42	35	172	0,01	0,0000	15,8438	7,2017
36	43	28	107	0,00	0,0000	3,3611	1,5278
37	44	20	108	5,73	0,0081	10,2977	4,6808
37	45	30	118	285,29	0,4012	11,6541	5,2973
45	46	28	146	115,54	0,1629	12,5989	5,7268
46	47	36	182	25,43	0,0355	13,0987	5,9540
46	48	28	174	1,84	0,0026	12,7181	5,7810
46	49	43	189	6,61	0,0092	12,8777	5,8535

 Tabla 4.4: Resultado de la optimización del sistema 2.

Los resultados de haber corrido flujos se muestran en la Tabla 4.4 y se puede apreciar que los nodos del P_{22} al P_{33} y P_{41} , P_{42} exceden el límite de caída de voltaje permitida del 5 % para sistemas urbanos, en este caso debido a la gran cantidad de nodos que se quedarían fuera del sistema optimizado, lo ideal es elevar el calibre del conductor para mejorar esas caídas de voltaje, análisis que se realizará en el estudio de interconexión de ambos sistemas más adelante en la sección 4.4.3.

El sistema presentado en la figura 4.4 se convierte en un sistema radial como se aprecia en la Fig. 4.5.

Figura 4.5: Sistema optimizado de la zona 2. Fuente: autores.

4.4. Interconexión entre la zona 1 y zona 2

Se observa en la Fig. 4.3 y Fig. 4.5 que ambos sistemas son radiales y los posibles puntos de interconexión serían aquellos que físicamente puedan tener conexión entre si, estos posibles nodos para el sistema de la zona 1 son: P_3 , P_{13} , P_{23} , P_{24} , P_{25} , P_{26} ; y los posibles nodos de interconexión para el sistema de la zona 2 son: P_{27} , P_{15} , P_{16} , P_{17} , P_{18} , P_{19} .

Para seleccionar el punto de interconexión se debe tomar en cuenta que el sistema eléctrico tiene una restricción que es la caída de voltaje por lo tanto se debe buscar nodos que tengan la menor caída de voltaje para que el sistema fallado o en mantenimiento pueda transferir la mayor cantidad de carga al sistema funcional.

Con los posibles nodos descritos anteriormente, el de menor caída de voltaje del sistema de la zona 1 es P_{23} ; así mismo con el sistema de la zona 2 de los posibles puntos de interconexión el que menor caída de voltaje tiene es el nodo P_{15} , pero el nodo P_{16} se encuentra más cerca.

Para el análisis de flujos de potencia se recurre al software y se procede analizar los dos posibles casos cuando el sistema de la zona 1 es el receptor y el sistema de la zona 2 es el que envía carga (transformador en falla o mantenimiento), en el otro caso cuando el sistema de la zona 2 es el receptor y el sistema de la zona 1 es el que envía carga (transformador en falla o mantenimiento).

Se deben ingresar ambos sistemas, se pasa a la pestaña de interconexión y se especifican los parámetros requeridos: sistema receptor, nodos de interconexión, longitud del tramo, carga en el nodo en el que se encuentra el transformador fuera de servicio, verificando la dirección del flujo de corriente.

Una vez con todos los datos el software procede a renumerar automáticamente los nodos del sistema en falla y correrá flujos de potencia.

4.4.1. Primer escenario: Sistema de la zona 1 recibe carga y sistema de la zona 2 envía carga

En la Tabla 4.5 se presenta el resultado de los flujos de potencia, se puede apreciar que en los nodos P_{77} , P_{78} , P_{79} , P_{80} y P_{81} la caída de voltaje supera el 50% y el nodo P_{81} es el más alejado del transformador. El excesivo valor de caída de voltaje pone en evidencia que por el tamaño de la zona y la cantidad de demanda no es factible realizar la interconexión porque no respeta las restricciones técnicas del sistema. En la reconfiguración del sistema para reducir el elevado valor de caída de voltaje una posible solución es hacer un cambio de calibre de conductor por un calibre mayor, pero no sería factible principalmente debido a la inversión elevada para su implementación, otra solución es dejar carga fuera del sistema de la zona 2 al que se daría cobertura.

Ni	Nj	Li-j	Demanda	Ln-j	$k\Delta P[USD/año]$	$\Delta \mathbf{P}[\mathbf{kW}]$	$\Delta V_{nj}[V]$	ΔV_{nj}
0	1	37	21,07	37	3330,64	4,7098	5,8398	2,6545
1	2	41	11,91	78	806,87	1,1374	8,8608	4,0276
2	3	28	15,04	106	345,10	0,4859	10,4925	4,7693
3	4	32	21,07	138	177,67	0,2463	11,7345	5,3339
4	5	33	8,93	171	16,06	0,0225	12,1158	5,5072
1	6	63	0,16	100	730,84	1,0267	9,3977	4,2717
0	7	23	0,16	23	26873,14	38,2959	13,1291	5,9678
7	8	55	11,91	78	733,47	1,0295	16,4580	7,4809
1	9	39	0,16	76	0,02	0,0000	5,8560	2,6618
9	10	32	0,16	108	0,00	0,0000	5,8626	2,6648
8	11	31	8,93	109	228,41	0,3224	17,8566	8,1166
11	12	36	10,9	145	147,94	0,2072	19,0648	8,6658
12	13	29	15,04	174	40,23	0,0561	19,6291	8,9223
0	14	33	8,93	33	4929,96	7,0101	6,7285	3,0584
14	15	21	19,58	54	738,18	1,0463	8,8021	4,0009
15	16	29	7,05	83	563,63	0,7986	10,9310	4,9686
16	17	16	0	99	31,48	0,0447	11,3053	5,1388
17	18	26	18,08	125	51,85	0,0727	11,9135	5,4152
6	19	45	16,57	145	76,53	0,1057	10,3625	4,7102
6	20	42	13,46	142	187,03	0,2603	10,8606	4,9366
20	21	36	13,46	178	40,14	0,0558	11,4875	5,2216
14	22	32	3,29	65	1009,23	1,4324	9,7235	4,4198
7	23	37	15,04	60	34828,30	49,1949	32,0028	14,5467
22	24	33	21,07	98	89,69	0,1253	10,6231	4,8287
22	25	48	7,05	113	673,05	0,9452	12,7032	5,7742
25	26	22	3,29	135	222,63	0,3153	13,8682	6,3037
26	27	44	16,57	179	388,68	0,5332	16,0110	7,2777
16	28	26	15,04	109	157,74	0,2222	11,9943	5,4520
						Continú	ia en la siguie	nte página

_	48
7	

Ni	Nj	Li-j	Demanda	Ln-j	k∆P[USD/año]	$\Delta \mathbf{P}[\mathbf{kW}]$	$\Delta V_{nj}[V]$	ΔV _{nj}	
28	29	44	16,57	153	74,90	0,1033	12,9376	5,8807	
27	30	34	21,07	213	94,81	0,1291	16,9379	7,6990	
0	31	31	0,16	31	0,00	0,0000	0,0064	0,0029	
23	32	12	0,16	72	10402,09	14,7610	37,8905	17,2230	
32	33	40	0,16	112	32471,13	45,0248	56,6643	25,7565	
33	34	17	7,05	129	13693,29	19,1187	64,6396	29,3817	
34	35	27	3,29	156	20923,70	29,1957	77,0601	35,0273	
35	36	27	5,17	183	20332,09	28,6579	89,3656	40,6207	
36	37	33	17,92	216	9347,15	13,1282	98,5734	44,8061	
37	38	39	11,75	255	553,31	0,7708	100,9990	45,9086	
38	39	31	18,08	286	251,83	0,3437	102,4429	46,5649	
37	40	38	11,91	254	2775,87	3,7040	103,8218	47,1917	
40	41	23	7,05	277	1271,16	1,7696	106,6440	48,4745	
41	42	23	8,93	300	117,95	0,1671	107,5111	48,8687	
42	43	21	15,04	321	53,10	0,0734	108,0602	49,1183	
43	44	58	5,17	379	9,55	0,0133	108,4482	49,2946	
39	45	49	17,92	335	96,53	0,1346	103,5789	47,0813	
38	46	10	0,16	265	0,01	0,0000	101,0031	45,9105	
46	47	41	0,16	306	0,01	0,0000	101,0116	45,9144	
36	48	27	5,17	210	4,42	0,0062	89,5462	40,7028	
32	49	49	8,93	121	79,55	0,1114	38,9239	17,6927	
49	50	3	0,16	124	0,98	0,0014	38,9525	17,7057	
50	51	27	0,16	151	8,50	0,0120	39,2044	17,8202	
51	52	15	7,05	166	4,50	0,0064	39,3412	17,8824	
36	53	37	0	220	3607,47	5,0453	95,4098	43,3681	
53	54	21	10,57	241	405,93	0,5692	96,9392	44,0633	
54	55	33	11,91	274	427,73	0,5900	98,8913	44,9506	
55	56	36	16,57	310	260,59	0,3520	100,4661	45,6664	
56	57	37	11,91	347	33,00	0,0449	101,0362	45,9255	
56	58	38	5,17	348	6,31	0,0087	100,7202	45,7819	
56	59	58	0,16	368	0,01	0,0000	100,4781	45,6718	
53	60	4	3,29	224	117,66	0,1675	95,7719	43,5327	
60	61	35	8,93	259	108,26	0,1501	96,7858	43,9936	
61	62	23	13,46	282	25,65	0,0356	97,1864	44,1756	
60	63	24	8,93	248	11,69	0,0164	96,0492	43,6587	
60	64	38	13,46	262	296,69	0,4064	97,5104	44,3229	
64	65	25	5,17	287	73,29	0,1026	98,2188	44,6449	
37	66	27	7,05	243	303,91	0,4254	100,0727	45,4876	
66	67	20	13,46	263	157,60	0,2201	101,0009	45,9095	
67	68	32	15,04	295	100,50	0,1375	101,9287	46,3312	
41	69	27	7,05	304	570,20	0,7944	108,6928	49,4058	
69	70	13	5,17	317	2,11	0,0030	108,7798	49,4454	
68	71	24	0,16	319	0,00	0,0000	101,9337	46,3335	
68	72	51	7,05	346	15,99	0,0217	102,3939	46,5427	
65	73	25	16,57	312	42,75	0,0587	98,7547	44,8885	
65	74	35	0,16	322	0,01	0,0000	98,2260	44,6482	
	Continúa en la siguiente página								

Ni	Nj	Li-j	Demanda	Ln-j	$k\Delta P[USD/año]$	$\Delta \mathbf{P}[\mathbf{kW}]$	$\Delta V_{nj}[V]$	ΔV_{nj}
68	75	28	0,16	323	0,00	0,0000	101,9345	46,3339
69	76	20	6,89	324	5,80	0,0081	108,8711	49,4869
69	77	30	13,46	334	292,87	0,4012	110,2275	50,1034
77	78	28	7,05	362	117,57	0,1629	111,1723	50,5329
78	79	36	10,73	398	26,11	0,0355	111,6721	50,7601
78	80	28	3,29	390	1,87	0,0026	111,2915	50,5871
78	81	43	5,01	405	6,78	0,0092	111,4511	50,6596

 Tabla 4.5: Resultado de flujos de potencia para la interconexión caso 1.

Figura 4.6: Resultado de interconexión caso 1. Fuente: autores.

4.4.2. Segundo escenario: sistema de la zona 2 recibe carga y sistema de la zona 1 envía carga

Los nodos de interconexión son los mismos, ahora hay que especificar en el software que el sistema receptor es el 2, se presentan los resultados de flujos en la tabla 4.6:

Ni	Nj	Li-j	Demanda	Ln-j	$k\Delta P[USD/año]$	$\Delta \mathbf{P}[\mathbf{kW}]$	$\Delta V_{nj}[V]$	ΔV_{nj}
0	1	39	21,07	39	777,79	1,0987	2,8958	1,3163
1	2	31	18,08	70	243,71	0,3437	4,3397	1,9726
0	3	38	11,91	38	2610,09	3,7040	5,2484	2,3856
3	4	23	7,05	61	1245,22	1,7696	8,0706	3,6685
4	5	23	8,93	84	117,80	0,1671	8,9377	4,0626
5	6	21	15,04	105	51,93	0,0734	9,4868	4,3122
6	7	58	5,17	163	9,53	0,0133	9,8748	4,4885
2	8	49	17,92	119	97,39	0,1346	5,4758	2,4890
0	9	33	5,17	33	52078,04	74,0912	21,8744	9,9429
1	10	10	0,16	49	0,01	0,0000	2,9000	1,3182
10	11	41	0,16	90	0,01	0,0000	2,9085	1,3220
9	12	27	5,17	60	4,35	0,0062	22,0550	10,0250
9	13	27	3,29	60	22944,68	32,6038	34,9998	15,9090
13	14	27	7,05	87	22605,74	32,0354	48,0103	21,8228
14	15	17	0,16	104	13665,30	19,4140	56,0470	25,4759
15	16	40	0,16	144	32443,74	45,6401	74,9486	34,0675
16	17	49	8,93	193	80,44	0,1114	75,9820	34,5373
17	18	3	0,16	196	0,98	0,0014	76,0106	34,5503
18	19	27	0,16	223	8,54	0,0120	76,2624	34,6647
19	20	15	7,05	238	4,52	0,0064	76,3992	34,7269
9	21	37	0	70	3558,57	5,0453	27,9186	12,6903
21	22	21	10,57	91	401,53	0,5692	29,4480	13,3855
22	23	33	11,91	124	419,94	0,5900	31,4001	14,2728
23	24	36	16,57	160	253,86	0,3520	32,9749	14,9886
24	25	37	11,91	197	32,34	0,0449	33,5450	15,2477
24	26	38	5,17	198	6,21	0,0087	33,2291	15,1041
24	27	58	0,16	218	0,01	0,0000	32,9869	14,9940
21	28	4	3,29	74	117,48	0,1675	28,2807	12,8549
28	29	35	8,93	109	106,48	0,1501	29,2946	13,3157
29	30	23	13,46	132	25,29	0,0356	29,6952	13,4978
28	31	24	8,93	98	11,56	0,0164	28,5580	12,9809
28	32	38	13,46	112	289,89	0,4064	30,0192	13,6451
32	33	25	5,17	137	72,55	0,1026	30,7276	13,9671
0	34	27	7,05	27	298,79	0,4254	1,4993	0,6815
34	35	20	13,46	47	154,85	0,2201	2,4275	1,1034
35	36	32	15,04	79	97,45	0,1375	3,3553	1,5252
4	37	27	7,05	88	560,63	0,7944	10,1194	4,5997
37	38	13	5,17	101	2,09	0,0030	10,2064	4,6393

Continúa en la siguiente página

	E 1
j	51
4	

Ni	Nj	Li-j	Demanda	Ln-j	$k\Delta P[USD/año]$	$\Delta \mathbf{P}[\mathbf{kW}]$	$\Delta V_{nj}[V]$	ΔV_{nj}
36	39	24	0,16	103	0,00	0,0000	3,3603	1,5274
36	40	51	7,05	130	15,49	0,0217	3,8205	1,7366
33	41	25	16,57	162	41,98	0,0587	31,2635	14,2107
33	42	35	0,16	172	0,01	0,0000	30,7348	13,9704
36	43	28	0,16	107	0,00	0,0000	3,3611	1,5278
37	44	20	6,89	108	5,73	0,0081	10,2977	4,6808
37	45	30	13,46	118	285,29	0,4012	11,6541	5,2973
45	46	28	7,05	146	115,54	0,1629	12,5989	5,7268
46	47	36	10,73	182	25,43	0,0355	13,0987	5,9540
46	48	28	3,29	174	1,84	0,0026	12,7181	5,7810
46	49	43	5,01	189	6,61	0,0092	12,8777	5,8535
16	50	12	7,05	156	8910,21	12,4857	80,3635	36,5289
50	51	37	15,04	193	27127,42	36,9569	96,7221	43,9646
51	52	23	0,16	216	11167,75	15,4130	105,0513	47,7506
52	53	37	21,07	253	3407,31	4,7098	110,8911	50,4050
53	54	41	11,91	294	846,55	1,1374	113,9121	51,7782
54	55	28	15,04	322	352,18	0,4859	115,5437	52,5199
55	56	32	21,07	354	182,24	0,2463	116,7858	53,0844
56	57	33	8,93	387	16,12	0,0225	117,1671	53,2578
53	58	63	0,16	316	767,96	1,0267	114,4490	52,0223
51	59	55	11,91	248	738,88	1,0295	100,0509	45,4777
53	60	39	0,16	292	0,02	0,0000	110,9072	50,4124
60	61	32	0,16	324	0,01	0,0000	110,9138	50,4154
59	62	31	8,93	279	234,12	0,3224	101,4495	46,1134
62	63	36	10,9	315	151,27	0,2072	102,6577	46,6626
63	64	29	15,04	344	40,76	0,0561	103,2220	46,9191
52	65	33	8,93	249	5065,35	7,0101	111,7797	50,8090
65	66	21	19,58	270	750,16	1,0463	113,8533	51,7515
66	67	29	7,05	299	566,33	0,7986	115,9823	52,7192
67	68	16	0	315	32,76	0,0447	116,3565	52,8893
68	69	26	18,08	341	54,94	0,0727	116,9647	53,1658
58	70	45	16,57	361	78,78	0,1057	115,4137	52,4608
58	71	42	13,46	358	192,28	0,2603	115,9118	52,6872
71	72	36	13,46	394	40,37	0,0558	116,5388	52,9722
65	73	32	3,29	281	1051,88	1,4324	114,7747	52,1703
73	74	33	21,07	314	93,83	0,1253	115,6743	52,5792
73	75	48	7,05	329	693,43	0,9452	117,7544	53,5247
75	76	22	3,29	351	225,35	0,3153	118,9195	54,0543
76	77	44	16,57	395	406,79	0,5332	121,0622	55,0283
67	78	26	15,04	325	161,72	0,2222	117,0456	53,2025
78	79	44	16,57	369	78,41	0,1033	117,9889	53,6313
77	80	34	21,07	429	99,21	0,1291	121,9891	55,4496
52	81	31	0,16	247	0,00	0,0000	105,0577	47,7535

 Tabla 4.6: Resultado de flujos de potencia para la interconexión caso 2.

Figura 4.7: Resultado de interconexión caso 2. Fuente: autores.

4.4.3. Análisis de flujos de potencia de los sistemas interconectados

En las Tablas 4.5 y 4.6 se muestra los resultados de flujos de potencia de los dos casos de transferencia de carga, en dichas tablas se observa que los niveles de caída de voltaje son excesivamente altos, incluso hay algunos nodos que sobrepasan el 50% de caída de voltaje, en consecuencia quedaría invalidada la operación por restricciones técnicas del sistema.

Se puede realizar un análisis más exhaustivo para implementar algunos cambios y hacer el sistema más robusto, como por ejemplo un cambio de conductor por un calibre mayor, lo que involucra conductores de gran calibre ocasionando que este estudio no sea viable, esto no quiere decir que los sistemas optimizados no puedan operar indi-

vidualmente, en el caso del análisis en la sección 4.4.2 se debería hacer un cambio de calibre de conductor por un calibre mayor para evitar que se quede demasiada carga fuera del sistema optimizado, incluyendo esta corrección quedaría invalidada la operación de transferencia de carga en bajo voltaje debido principalmente a la inversión elevada para su implementación.

Además, se propone que los límites máximos de caída de voltaje en los sistemas operando bajo condiciones normales sea al menos la mitad de los limites establecidos por la Empresa Eléctrica Regional Centro Sur, y así poder realizar el estudio y posteriormente la maniobra de transferencia de carga.

Se propone dividir cada zona en dos sub-zonas y hacer el estudio de transferencia de carga entre estas sub-zonas.
"Todas las verdades son sencillas de entender una vez que se descubren; el punto es descubrirlas.." Galileo Galilei (1564 – 1642)

54

5 Segundo caso de estudio

Índice

5.1	Selecció	ón de las zonas de estudio	54
5.2	Optimiz	ación del despliegue de la red para la subzona A	55
5.3	Optimiz	ación del despliegue de la red para la subzona B	57
5.4	Análisis	de interconexión	60
	5.4.1	Subzona A recibe la carga de la Subzona B	60
	5.4.2	Subzona B recibe la carga de la Subzona A	62
5.5	Factor d	e cargabilidad y capacidad de los transformadores	64
5.6	Coordin	ación de protecciones:	64
	5.6.1	Interconexión Subzona A-B	64
	5.6.2	Coordinación de protecciones: Interconexión Subzona B-A	67
5.7	Protoco	lo de maniobras para la transferencia de carga	71
	5.7.1	Secuencia de eventos caso 1- falla T2	71
	5.7.2	Secuencia de eventos caso 2- falla T1	71
5.8	Análisis	económico	72
	5.8.1	Escenario A-B	72
	5.8.2	Escenario B-A	72

5.1. Selección de las zonas de estudio

En este caso se analizará las subzonas A y B (ver Fig. 5.1), las mismas que resultan luego de dividir en subzonas el área total de estudio (ver Fig. 4.1).

Figura 5.1: Subzonas de estudio.

5.2. Optimización del despliegue de la red para la subzona A

El grafo que se muestra en la Fig. 5.2 muestra las posibles trayectorias para el despliegue de la red correspondiente al sistema de la subzona A.

En la Tabla 5.1 se observa la data inicial del grafo de la subzona A (ver Fig. 5.2).

Figura 5.2: Grafo con las posibles trayectorias para el despliegue de la red de distribución en la subzona A. *Fuente:* autores.

Nodo i	Nodo j	Peso [m]	Usuarios	Alum. P [W]	Configuración	Calibre
0,00	1,00	41,00	6,00	150,00	3F de 3 y 4 hilos	2/0
1,00	2,00	28,00	8,00	150,00	3F de 3 y 4 hilos	2/0
2,00	3,00	32,00	10,00	150,00	3F de 3 y 4 hilos	2/0
3,00	4,00	33,00	4,00	150,00	3F de 3 y 4 hilos	2/0
4,00	7,00	41,00	7,00	150,00	3F de 3 y 4 hilos	2/0
0,00	5,00	63,00	0,00	150,00	3F de 3 y 4 hilos	2/0
5,00	6,00	42,00	7,00	150,00	3F de 3 y 4 hilos	2/0
6,00	7,00	36,00	7,00	150,00	3F de 3 y 4 hilos	2/0
0,00	8,00	39,00	9,00	150,00	3F de 3 y 4 hilos	2/0
8,00	9,00	32,00	0,00	150,00	3F de 3 y 4 hilos	2/0
9,00	10,00	34,00	8,00	150,00	3F de 3 y 4 hilos	2/0
9,00	12,00	8,00	4,00	150,00	3F de 3 y 4 hilos	2/0
12,00	13,00	36,00	5,00	315,00	3F de 3 y 4 hilos	2/0
13,00	14,00	29,00	8,00	150,00	3F de 3 y 4 hilos	2/0
3,00	14,00	33,00	8,00	150,00	3F de 3 y 4 hilos	2/0
5,00	15,00	45,00	9,00	315,00	3F de 3 y 4 hilos	2/0
10,00	11,00	55,00	0,00	150,00	3F de 3 y 4 hilos	2/0
0,00	11,00	44,00	0,00	150,00	3F de 3 y 4 hilos	2/0

 Tabla 5.1: Data inicial del sistema A.

Los resultados de la optimización y del flujo de potencia (con 19 iteraciones) para la data de la Tabla 5.1 son los que se muestran en la Tabla 5.2:

Ni	Nj	$\mathbf{L_{ij}}[\mathbf{m}]$	$L_j[m]$	$k \triangle P[USD]$	$\Delta \mathbf{P}[\mathbf{k}\mathbf{W}]$	$\Delta V_{nj}[V]$	ΔV_{nj}
0	1	41	41	720.21	1.0211	2.8624	1.3011
1	2	28	69	299.4	0.4235	4.3857	1.9935
2	3	32	101	142.43	0.1997	5.504	2.5018
3	4	33	134	16	0.0225	5.8853	2.6751
0	5	63	63	732.33	1.0348	3.5718	1.6235
5	6	42	105	185.83	0.2603	5.0346	2.2885
6	7	36	141	39.93	0.0558	5.6616	2.5734
0	8	39	39	1046.21	1.4815	3.3626	1.5284
8	9	32	71	483.62	0.6862	5.4356	2.4707
9	10	34	105	46.86	0.0658	6.0972	2.7714
0	11	44	44	0.01	0	0.0091	0.0041
9	12	8	79	58.43	0.0832	5.7965	2.6348
12	13	36	115	147.37	0.2072	7.0047	3.184
13	14	29	144	40.07	0.0561	7.569	3.4405
5	15	45	108	77.49	0.1079	4.5464	2.0666

 Tabla 5.2: Resultado de la optimización del sistema de la subzona A.

Figura 5.3: Grafo optimizado resultante para el despliegue de la red de distribución en la subzona A. Fuente: autores.

El sistema presentado en la Fig. 5.2 se convierte en un sistema radial luego de la optimización, como se aprecia en la Fig. 5.3.

Para el enrutamiento óptimo por costo de pérdidas de potencia activa de la red de distribución en la subzona A el algoritmo Dijkstra elimina tres tramos del grafo planteado en la Fig. 5.2, estos tramos son P_{10-11} , P_{4-7} y P_{3-14} . Garantizando la cobertura de todos los puntos de consumo de energía eléctrica de dicha subzona.

5.3. Optimización del despliegue de la red para la subzona B

El grafo que se muestra en la Fig. 5.4 contiene las posibles trayectorias para el despliegue de la red correspondiente a la subzona B, el número de nodos y tramos en dicha subzona es 15, pero el número mínimo de tramos necesarios para dar cobertura a todos los nodos es únicamente 14, la selección de los tramos que implique menor costo de pérdidas de potencia activa se hará mediante el algoritmo de optimización implementado.

En la Tabla 5.3 se observa la data inicial del grafo de la subzona B (ver Fig. 5.4).

Nodo i	Nodo j	Peso[m]	Usuarios	Alum. P [W]	Configuración	Calibre
0,00	1,00	33,00	9,00	150,00	3F de 3 y 4 hilos	2/0
0,00	2,00	32,00	1,00	150,00	3F de 3 y 4 hilos	2/0
2,00	3,00	33,00	12,00	150,00	3F de 3 y 4 hilos	2/0
3.00	4,00	36.00	8.00	150.00	3F de 3 y 4 hilos	2/0

Nodo i	Nodo j	Peso[m]	Usuarios	Alum. P [W]	Configuración	Calibre
2,00	5,00	48,00	3,00	0,00	3F de 3 y 4 hilos	2/0
5,00	6,00	22,00	1,00	150,00	3F de 3 y 4 hilos	2/0
6,00	7,00	13,00	3,00	0,00	3F de 3 y 4 hilos	2/0
7,00	14,00	34,00	12,00	150,00	3F de 3 y 4 hilos	2/0
0,00	8,00	21,00	11,00	150,00	3F de 3 y 4 hilos	2/0
8,00	9,00	29,00	3,00	150,00	3F de 3 y 4 hilos	2/0
9,00	10,00	16,00	0,00	0,00	3F de 3 y 4 hilos	2/0
10,00	11,00	26,00	10,00	150,00	3F de 3 y 4 hilos	2/0
9,00	12,00	26,00	10,00	150,00	3F de 3 y 4 hilos	2/0
12,00	13,00	44,00	9,00	150,00	3F de 3 y 4 hilos	2/0
13,00	14,00	32,00	12,00	150,00	3F de 3 y 4 hilos	2/0

 Tabla 5.3: Data inicial del sistema de la subzona B.
 Inicial d

Figura 5.4: Grafo con las posibles trayectorias para el despliegue de la red de distribución en la subzona B. Fuente: autores.

Los resultados de la optimización y del flujo de potencia (con 19 iteraciones) para la data de la Tabla 5.3 son los que se muestran en la Tabla 5.4. En el sistema presentado en el grafo de la Fig. 5.4 el número de tramos es 15, y luego de la optimización el número de tramos es 14 (como se aprecia en la Fig. 5.5) convirtiendo así el sistema en radial y dando cobertura a todos los nodos. Además en la Tabla 5.4 se observa que en el nodo más alejado P_{14} la caída de voltaje es 3,5753%.

		* ()	.	t t p[rtop]			
Ni	Nj	L _{ij} [m]	L _j [m]	$k \triangle P[USD]$	$\Delta \mathbf{P}[\mathbf{k}\mathbf{W}]$	$\Delta V_{nj}[V]$	ΔV_{nj}
0	1	33	33	54.61	0.0775	0.7075	0.3216
0	2	32	32	1156.38	1.6457	3.2103	1.4592
2	3	33	65	261.59	0.3681	4.7521	2.16
3	4	36	101	49.63	0.0697	5.4526	2.4785
2	5	48	80	423.29	0.5972	5.5789	2.5359
5	6	22	102	129.53	0.1838	6.4684	2.9402
6	7	13	115	61.19	0.0869	6.9387	3.154
0	8	21	21	794.89	1.1313	2.1562	0.9801
8	9	29	50	623.89	0.8865	4.3992	1.9996
9	10	16	66	31.43	0.0447	4.7735	2.1698
10	11	26	92	51.61	0.0727	5.3817	2.4462
9	12	26	76	189.15	0.267	5.5648	2.5295
12	13	44	120	74.37	0.1033	6.5081	2.9582
7	14	34	149	93.51	0.1291	7.8656	3.5753

 Tabla 5.4: Resultado de la optimización del sistema de la subzona B.

Figura 5.5: Grafo optimizado resultante para el despliegue de la red de distribución en la subzona B. Fuente: autores.

5.4. Análisis de interconexión

Como referencia en la norma IEEE st
d1547 el máximo valor de caída de voltaje bajo eventos de mani
obra será de $8.4\,\%.$

5.4.1. Subzona A recibe la carga de la Subzona B

En la Tabla 5.5 se presentan los resultados de los flujos de potencia, donde se observa que existen algunos tramos que exceden el límite del valor de caída de voltaje por lo que se deberá realizar alguna maniobra para solventar este problema, más adelante se plantea una alternativa.

	N1	L_{i-j}	Demanda	Ln — j	kΔP	ΔP	ΔV_{nj}	ΔV_{nj}
Ni	Nj	[m]	[kVA]	[m]	[USD]	[k W]	$[\mathbf{V}]$	[%]
0	1	41	11.91	41	720.21	1.0211	2.8624	1.3011
1	2	28	15.04	69	299.4	0.4235	4.3857	1.9935
2	3	32	18.08	101	142.43	0.1997	5.504	2.5018
3	4	33	8.93	134	16	0.0225	5.8853	2.6751
0	5	63	0.16	63	732.33	1.0348	3.5718	1.6235
5	6	42	13.46	105	185.83	0.2603	5.0346	2.2885
6	7	36	13.46	141	39.93	0.0558	5.6616	2.5734
0	8	39	16.57	39	1046.21	1.4815	3.3626	1.5284
8	9	32	0.16	71	483.62	0.6862	5.4356	2.4707
9	10	34	15.04	105	46.86	0.0658	6.0972	2.7714
0	11	44	0.16	44	0.01	0	0.0091	0.0041
9	12	8	8.93	79	58.43	0.0832	5.7965	2.6348
12	13	36	10.9	115	147.37	0.2072	7.0047	3.184
13	14	29	15.04	144	40.07	0.0561	7.569	3.4405
5	15	45	16.74	108	77.49	0.1079	4.5464	2.0666
0	16	37	16.57	37	7429.34	10.511	8.724	3.9655
16	17	33	8.77	70	5492.5	7.7474	15.7975	7.1807
17	18	32	3.29	102	1163.08	1.6457	19.0078	8.6399
18	19	33	21.07	135	265.52	0.3681	20.5496	9.3407
19	20	36	15.04	171	50.2	0.0697	21.2501	9.6591
18	21	48	6.89	150	427.43	0.5972	21.3764	9.7166
21	22	22	3.29	172	130.05	0.1838	22.2659	10.1209
22	23	13	6.89	185	61.35	0.0869	22.7362	10.3346
17	24	21	19.58	91	801.82	1.1313	17.9537	8.1608
24	25	29	7.05	120	627.61	0.8865	20.1967	9.1803
25	26	16	0	136	31.52	0.0447	20.571	9.3504
26	27	26	18.08	162	52.12	0.0727	21.1792	9.6269
25	28	26	18.08	146	191.01	0.267	21.3623	9.7101
28	29	44	16.57	190	75.5	0.1033	22.3056	10.1389
23	30	34	21.07	219	94.93	0.1291	23.6631	10.7559

 Tabla 5.5: Resultado de flujos de potencia para la interconexión entre la subzona A-B.

El sistema que se presenta en el Anexo A.8 se puede apreciar el tramo de interconexión y los puntos de apertura que permiten garantizar que el sistema interconectado no exceda en los límites de caída de voltaje establecidos.

En la Tabla 5.6 se presentan los resultados de los flujos de potencia luego de haber determinado los puntos de apertura que garantizan, siendo el tramo P_{28-29} de mayor caída de voltaje 7,9956%.

Los tramos que deberán ser sometidos a apertura en caso de que el trasformador que esté fuera de servicio sea el de la subzona B son P_{26-27} y P_{23-30} .

	N	.	Demanda	Ln – j	kΔP	ΔΡ	ΔV_{nj}	ΔV _{nj}
Ni	Nj	\mathbf{L}_{i-j}	[kVA]	$[\mathbf{m}]$	[USD]	[k W]	$[\mathbf{V}]$	[%]
0	1	41	11.91	41	720.21	1.0211	2.8624	1.3011
1	2	28	15.04	69	299.4	0.4235	4.3857	1.9935
2	3	32	18.08	101	142.43	0.1997	5.504	2.5018
3	4	33	8.93	134	16	0.0225	5.8853	2.6751
0	5	63	0.16	63	732.33	1.0348	3.5718	1.6235
5	6	42	13.46	105	185.83	0.2603	5.0346	2.2885
6	7	36	13.46	141	39.93	0.0558	5.6616	2.5734
0	8	39	16.57	39	1046.21	1.4815	3.3626	1.5284
8	9	32	0.16	71	483.62	0.6862	5.4356	2.4707
9	10	34	15.04	105	46.86	0.0658	6.0972	2.7714
0	11	44	0.16	44	0.01	0	0.0091	0.0041
9	12	8	8.93	79	58.43	0.0832	5.7965	2.6348
12	13	36	10.9	115	147.37	0.2072	7.0047	3.184
13	14	29	15.04	144	40.07	0.0561	7.569	3.4405
5	15	45	16.74	108	77.49	0.1079	4.5464	2.0666
0	16	37	16.57	37	4580.17	6.48	6.8499	3.1136
16	17	33	8.77	70	3203.32	4.5184	12.2518	5.569
17	18	32	3.29	102	616.87	0.8728	14.5898	6.6317
18	19	33	21.07	135	265.52	0.3681	16.1315	7.3325
19	20	36	15.04	171	50.2	0.0697	16.832	7.6509
18	21	48	6.89	150	85.62	0.1196	15.6499	7.1136
21	22	22	3.29	172	13.8	0.0195	15.9396	7.2453
22	23	13	6.89	185	3.73	0.0053	16.0555	7.298
17	24	21	19.58	91	478.09	0.6745	13.9168	6.3258
24	25	29	7.05	120	305.39	0.4313	15.4814	7.037
25	26	16	0	136	0	0	15.4814	7.037
26	27	—	_	—	—	—	—	_
25	28	26	18.08	146	191.01	0.267	16.647	7.5668
28	29	44	16.57	190	75.5	0.1033	17.5903	7.9956
23	30	—	—	_	_	_	_	

 Tabla 5.6: Resultado de flujos de potencia para la interconexión entre la subzona A-B.

5.4.2. Subzona B recibe la carga de la Subzona A

En la Tabla 5.7 se presentan los resultados de los flujos de potencia, en el tramo P_{28-29} se tiene el valor máximo de caída de voltaje 11,0276%, este porcentaje corresponde a 24,2607 [V] siendo este valor superior al máximo permitido por la normativa.

El nodo P_{29} se encuentra ubicado a 214 metros del transformador, siendo este el nodo más alejado del mismo.

Ni	Nj	L _{i-j} [m]	Demanda [kVA]	 Ln – j [m]	k∆P [USD]	Δ Ρ [kW]	ΔV_{nj}	Δ V _{nj}
					. ,			
0	1	33	16.57	33	7413.45	10.5209	8.2429	3.7468
0	2	32	3.29	32	1156.38	1.6457	3.2103	1.4592
2	3	33	21.07	65	261.59	0.3681	4.7521	2.16
3	4	36	15.04	101	49.63	0.0697	5.4526	2.4785
2	5	48	6.89	80	423.29	0.5972	5.5789	2.5359
5	6	22	3.29	102	129.53	0.1838	6.4684	2.9402
6	7	13	6.89	115	61.19	0.0869	6.9387	3.154
0	8	21	19.58	21	794.89	1.1313	2.1562	0.9801
8	9	29	7.05	50	623.89	0.8865	4.3992	1.9996
9	10	16	0	66	31.43	0.0447	4.7735	2.1698
10	11	26	18.08	92	51.61	0.0727	5.3817	2.4462
9	12	26	18.08	76	189.15	0.267	5.5648	2.5295
12	13	44	16.57	120	74.37	0.1033	6.5081	2.9582
7	14	34	21.07	149	93.51	0.1291	7.8656	3.5753
1	15	37	11.91	70	7017.3	9.8581	16.6917	7.5871
15	16	41	11.91	111	728.08	1.0211	19.5541	8.8882
16	17	28	15.04	139	302.05	0.4235	21.0774	9.5806
17	18	32	18.08	171	144.16	0.1997	22.1957	10.0889
18	19	33	8.93	204	16.12	0.0225	22.5769	10.2622
15	20	63	0.16	133	740.3	1.0348	20.2635	9.2107
20	21	42	13.46	175	188.09	0.2603	21.7263	9.8756
21	22	36	13.46	211	40.34	0.0558	22.3532	10.1606
15	23	39	16.57	109	1060.57	1.4815	20.0542	9.1156
23	24	32	0.16	141	486.31	0.6862	22.1272	10.0578
24	25	34	15.04	175	47.36	0.0658	22.7888	10.3586
15	26	44	0.16	114	0.01	0	16.7008	7.5913
24	27	8	8.93	149	58.53	0.0832	22.4882	10.2219
27	28	36	10.9	185	148.69	0.2072	23.6964	10.7711
28	29	29	15.04	214	40.44	0.0561	24.2607	11.0276
20	30	45	16.74	178	78.71	0.1079	21.2381	9.6537

 Tabla 5.7: Resultado de flujos de potencia para la interconexión entre la subzona B-A.

El sistema que se presenta en el Anexo A.9 se puede apreciar el tramo de interconexión y los puntos de apertura que permiten garantizar que el sistema interconectado no exceda los límites de caída de voltaje establecidos.

63

En la Tabla 5.8 se presentan los resultados de los flujos de potencia luego de haber determinado los puntos de apertura que garantizan que no exceda los límites de caída de voltaje establecidos, siendo el tramo P_{27-28} de mayor caída de voltaje 8,213%.

Los tramos que deberán ser sometidos a apertura en caso de que el trasformador fuera de servicio sea el de la subzona A son P_{18-19} , P_{21-22} y P_{28-29} .

		L _{i-i}	Demanda	Ln – i	kΔP	ΔΡ	ΔV _{ni}	ΔV _{ni}
Ni	Nj	[m]	[kVA]	[m]	[USD]	[kW]	[V]	[%]
0	1	33	16.57	33	4817.51	6.8368	6.6448	3.0203
0	2	32	3.29	32	1156.38	1.6457	3.2103	1.4592
2	3	33	21.07	65	261.59	0.3681	4.7521	2.16
3	4	36	15.04	101	49.63	0.0697	5.4526	2.4785
2	5	48	6.89	80	423.29	0.5972	5.5789	2.5359
5	6	22	3.29	102	129.53	0.1838	6.4684	2.9402
6	7	13	6.89	115	61.19	0.0869	6.9387	3.154
0	8	21	19.58	21	794.89	1.1313	2.1562	0.9801
8	9	29	7.05	50	623.89	0.8865	4.3992	1.9996
9	10	16	0	66	31.43	0.0447	4.7735	2.1698
10	11	26	18.08	92	51.61	0.0727	5.3817	2.4462
9	12	26	18.08	76	189.15	0.267	5.5648	2.5295
12	13	44	16.57	120	74.37	0.1033	6.5081	2.9582
7	14	34	21.07	149	93.51	0.1291	7.8656	3.5753
1	15	37	11.91	70	4356.46	6.1201	13.3017	6.0462
15	16	41	11.91	111	507.04	0.7111	15.6904	7.132
16	17	28	15.04	139	187.38	0.2627	16.8903	7.6774
17	18	32	18.08	171	64.59	0.0895	17.6388	8.0176
18	19	—	—	—	—	—	—	
15	20	63	0.16	133	355.36	0.4967	15.7764	7.1711
20	21	42	13.46	175	47.02	0.0651	16.5078	7.5036
21	22	—	_	—	—	—	—	_
15	23	39	16.57	109	635.87	0.8882	15.9054	7.2297
23	24	32	0.16	141	238.03	0.3359	17.3557	7.889
24	25	34	15.04	175	47.36	0.0658	18.0173	8.1897
15	26	44	0.16	114	0.01	0	13.3108	6.0504
24	27	8	8.93	149	18.93	0.0269	17.561	7.9823
27	28	36	10.9	185	26.25	0.0366	18.0687	8.213
28	29	—	_	—	_	—	—	
20	30	45	16.74	178	78.71	0.1079	16.751	7.6141

Tabla 5.8: Resultado de flujos de potencia para la interconexión entre la subzona B-A.

5.5. Factor de cargabilidad y capacidad de los transformadores

64

La capacidad del transformador del sistema de la subzona A es de 250[kVA], en la Tabla 5.9 se observa que existen dos valores de cargabilidad para este transformador, el primero es el factor de carga local cuyo valor es 46,08% y representa la cargabilidad del transformador cuando este se encuentra trabajando en condiciones normales, es decir únicamente con la demanda de la sub-zona A, el segundo es el factor de carga total cuyo valor es 86,14% y representa la cargabilidad del transformador cuando la demanda es la de la sub-zona A más parte de la demanda de la sub-zona B, cuando se realiza la maniobra de interconexión en caso de falla o mantenimiento.

Indicador	Valor	Unidad
Capacidad del transformador	250	[kVA]
Factor de carga local	46.08	[%]
Factor de carga total	86.14	[%]

Tabla 5.9: Factor de cargabilidad y capacidad del transformador de la subzona A.

La capacidad del transformador del sistema de la subzona B es de 250[kVA], en la Tabla 5.10 se observa que existen dos valores de cargabilidad para este transformador, el primero es el factor de carga local cuyo valor es 48,87% y representa la cargabilidad del transformador cuando este se encuentra trabajando en condiciones normales, es decir únicamente con la demanda de la sub-zona B, el segundo es el factor de carga total cuyo valor es 87,50% y representa la cargabilidad del transformador cuando la demanda de la sub-zona B más parte de la demanda de la sub-zona A, cuando se realiza la maniobra de interconexión en caso de falla o mantenimiento.

Indicador	Valor	Unidad
Capacidad del transformador	250	[kVA]
Factor de carga local	48.57	[%]
Factor de carga total	87.50	[%]

 Tabla 5.10: Factor de cargabilidad y capacidad del transformador de la subzona B.

5.6. Coordinación de protecciones:

5.6.1. Interconexión Subzona A-B

En el Anexo. A.10 se puede apreciar el diagrama del sistema de protecciones para la interconexión de los sistemas de la subzona A-B.

En la Tabla. 5.11 se presenta los resultados del análisis de corto circuitos en el nodo P_{11} el cual con los sistemas interconectados se renumera como nodo P_{27} .

La corriente nominal en el nodo de análisis es 36,75[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 2,3473[kA].

$I_n[A]$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]
36,75	2,3473	2,0328	1,47	0,7334

Tabla 5.11: *Corriente nominal y corrientes de falla en el nodo* $P_{27}(P_{11})$.

En la Fig. 5.6 se muestra la coordinación de las protecciones $R_4 - R_i$.

Figura 5.6: Coordinación entre $R_4 - R_i$. **Fuente:** autores.

5.6.1.2. Coordinación entre las protecciones $R_5 - R_i$

En la Tabla. 5.12 se presenta los resultados del análisis de corto circuitos en el nodo P_{14} el cual con los sistemas interconectados se renumera como nodo P_{30} .

La corriente nominal en el nodo de análisis es 43,37[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 1,71[kA].

$I_n[A] \\$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]
43,37	1,71	1,48	1,078	0,53

Tabla 5.12: Corriente nominal y corrientes de falla en el nodo $P_{30}(P_{14})$.Fuente: autores.

En la Fig. 5.7 se muestra la coordinación de las protecciones $R_5 - R_i$.

Figura 5.7: Coordinación entre $R_5 - R_i$. **Fuente:** autores.

5.6.1.3. Coordinación entre las protecciones $R_i - R_{T1}$

En la Tabla. 5.13 se presenta los resultados del análisis de corto circuitos en el nodo P_1 el cual con los sistemas interconectados se renumera como nodo P_{16} .

La corriente nominal en el nodo de análisis es 271,6[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 11,01[kA].

$I_n[A]$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]
271,6	11,01	9,54	6,93	3,5

Tabla 5.13: *Corriente nominal y corrientes de falla en el nodo* $P_{16}(P_1)$.

Figura 5.8: Coordinación entre $R_i - R_{T1}$. **Fuente:** autores.

5.6.2. Coordinación de protecciones: Interconexión Subzona B-A

En el Anexo. A.11 se puede apreciar el diagrama del sistema de protecciones para la interconexión de los sistemas de la subzona B-A.

5.6.2.1. Coordinación entre las protecciones $R_3 - R_i$

En la Tabla. 5.14 se presenta los resultados del análisis de corto circuitos en el nodo P_4 el cual con los sistemas interconectados se renumera como nodo P_{19} .

La corriente nominal en el nodo de análisis es 18,28[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 1,8[kA].

$I_n[A] \\$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]
18,28	1,8	1,6	1,16	0,62

Tabla 5.14: Corriente nominal y corrientes de falla en el nodo $P_{19}(P_4)$.

En la Fig. 5.9 se muestra la coordinación de las protecciones $R_3 - R_i$.

68

Figura 5.9: Coordinación entre $R_3 - R_i$. **Fuente:** autores.

5.6.2.2. Coordinación entre las protecciones $R_2 - R_i$

En la Fig. 5.10 se muestra la coordinación de las protecciones $R_2 - R_i$

Figura 5.10: Coordinación entre $R_2 - R_i$. **Fuente:** autores.

En la Tabla. 5.15 se presenta los resultados del análisis de corto circuitos en el nodo P_7 el cual con los sistemas interconectados se renumera como nodo P_{22} .

La corriente nominal en el nodo de análisis es 27,52[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 1,79[kA].

$I_n[A] \\$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]
27,52	1,79	1,55	1,12	0,59

Tabla 5.15: Corriente nominal y corrientes de falla en el nodo $P_{22}(P_7)$.Fuente: autores.

5.6.2.3. Coordinación entre las protecciones $R_1 - R_i$

En la Fig. 5.11 se muestra la coordinación de las protecciones $R_2 - R_i$.

Figura 5.11: Coordinación entre $R_1 - R_i$. **Fuente:** autores.

En la Tabla. 5.16 se presenta los resultados del análisis de corto circuitos en el nodo P_{14} el cual con los sistemas interconectados se renumera como nodo P_{29} .

La corriente nominal en el nodo de análisis es 31,05[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 1,7494[kA].

$I_n[A] \\$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]
31,05	1,7494	1,515	1,10	0,5852

70

Tabla 5.16: Corriente nominal y corrientes de falla en el nodo $P_{29}(P_{14})$.

5.6.2.4. Coordinación entre las protecciones $R_i - R_{T2}$

-

En la Tabla. 5.17 se presenta los resultados del análisis de corto circuitos en el nodo P_0 el cual con los sistemas interconectados se renumera como nodo P_{15} .

La corriente nominal en el nodo de análisis es 271,9[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 12,36[kA].

$I_n[A] \\$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]	
271,9	12,36	10,70	7,77	4,32	

Tabla 5.17: Corriente nominal y corrientes de falla en el nodo $P_{15}(P_0)$.Fuente: autores.

En la Fig. 5.12 se muestra la coordinación de las protecciones $R_2 - R_i$

Figura 5.12: Coordinación entre $R_i - R_{T2}$. *Fuente:* autores.

5.7. Protocolo de maniobras para la transferencia de carga

5.7.1. Secuencia de eventos caso 1- falla T2

Transferencia

- 1. Actúa la protección RT_2 , transformador T_2 se encuentra en falla o RT_2 se abre intencionalmente para mantenimiento.
- 2. El módulo de transferencia verifica que T_2 está fuera de servicio y se cierran contactos de *RI*, se brinda suministro eléctrico desde T_1 hacia T_2 .
- 3. Se deben abrir R_5 y R_4 para garantizar que las caídas de voltaje permitidas y la capacidad de corriente del conductor sean las adecuadas.
- 4. Transformador T_2 queda aislado para reparación de falla o mantenimiento.

Restablecimiento de la carga

- 1. Se abre módulo de transferencia RI y se deja de brindar suministro eléctrico desde T_1 hacia T_2 .
- 2. Se cierra RT_2 y se restablece el flujo normal de carga.
- 3. Se cierran los dispositivos abiertos R_4 y R_5 para cubrir el servicio toda la zona en condiciones normales.

5.7.2. Secuencia de eventos caso 2- falla T1

Transferencia

- 1. Actúa la protección RT_1 , el transformador T_1 se encuentra en falla o RT_1 se abre intencionalmente para mantenimiento.
- 2. El módulo de transferencia verifica que T_1 está fuera de servicio y se cierran los contactos de *RI*, se brinda suministro eléctrico desde T_2 hacia T_1 .
- 3. Se deben abrir R_1 , R_2 y R_3 para garantizar que las caídas de voltaje permitidas y la capacidad de corriente del conductor sean las adecuadas.
- 4. Transformador T_1 queda aislado para reparación de falla o mantenimiento.

Restablecimiento de la carga

- 1. Se abre módulo de transferencia RI y se deja de brindar suministro eléctrico desde T_2 hacia T_1 .
- 2. Se cierra RT_1 y se restablece el flujo normal de carga.
- 3. Se cierran los dispositivos abiertos R_1 , R_2 y R_3 para cubrir el servicio de toda la zona en condiciones normales.

5.8. Análisis económico

72

5.8.1. Escenario A-B

<i>T</i>	$1/(1+m)^{t}$	St	$\triangle P$	$k \triangle P$	Beneficio	Costo	VAN
14	$\mathbf{I}/(\mathbf{I}+\mathbf{r}_{i})$	[kVA]	[kW]	[USD]	[USD]	[USD]	[USD]
0	1	143.09	13.93	19249.95	19249.95	814.16	18435.8
1	0.9597	150.359	14.637	20227.85	19412.53	781.34	18631.19
2	0.921	157.997	15.381	21255.43	19576.47	749.85	18826.62
3	0.8839	166.023	16.162	22335.2	19741.8	719.62	19022.18
4	0.8483	174.457	16.983	23469.83	19908.52	690.62	19217.91
5	0.8141	183.32	17.846	24662.1	20076.66	662.78	19413.88
6	0.7813	192.633	18.752	25914.93	20246.21	636.06	19610.15
7	0.7498	202.418	19.705	27231.41	20417.2	610.43	19806.77
8	0.7195	212.701	20.706	28614.77	20589.63	585.82	20003.8
9	0.6905	223.506	21.758	30068.4	20763.51	562.21	20201.3
10	0.6627	234.86	22.863	31595.87	20938.87	539.55	20399.32
11	0.636	246.791	24.025	33200.94	21115.7	517.8	20597.9
12	0.6104	259.328	25.245	34887.55	21294.03	496.93	20797.1
13	0.5858	272.502	26.528	36659.84	21473.86	476.9	20996.96
14	0.5621	286.345	27.875	38522.16	21655.22	457.68	21197.54
15	0.5395	300.892	29.291	40479.08	21838.1	439.23	21398.87
R	BC = 33,7						

 Tabla 5.18: Análisis económico de la interconexión de los subsistemas A-B.

T	1/(1 +)t	St	$\triangle P$	$k \triangle P$	Beneficio	Costo	VAN
14	$\mathbf{I}/(\mathbf{I}+\mathbf{r}_{i})$	[kVA]	[kW]	[USD]	[USD]	[USD]	[USD]
0	1	139.06	9.206	14186.22	14186.22	973.09	13213.13
1	0.9597	146.124	9.674	14906.88	14306.03	933.87	13372.16
2	0.921	153.547	10.166	15664.15	14426.85	896.23	13530.62
3	0.8839	161.348	10.682	16459.89	14548.69	860.1	13688.58
4	0.8483	169.544	11.225	17296.06	14671.56	825.44	13846.12
5	0.8141	178.157	11.795	18174.7	14795.46	792.16	14003.3
6	0.7813	187.207	12.394	19097.97	14920.41	760.23	14160.18
7	0.7498	196.717	13.024	20068.15	15046.42	729.59	14316.83
8	0.7195	206.711	13.685	21087.61	15173.49	700.18	14473.31
9	0.6905	217.211	14.381	22158.86	15301.64	671.96	14629.68
10	0.6627	228.246	15.111	23284.53	15430.86	644.88	14785.99

5.8.2. Escenario B-A

Continúa en la siguiente página

Та	$1/(1+r_i)^t$	St [kVA]	$\triangle P$ [kW]	$k \triangle P$ [USD]	Beneficio [USD]	Costo [USD]	VAN [USD]
11	0.636	239.841	15.879	24467.38	15561.18	618.88	14942.3
12	0.6104	252.025	16.685	25710.33	15692.6	593.94	15098.66
13	0.5858	264.827	17.533	27016.41	15825.13	570	15255.13
14	0.5621	278.281	18.424	28388.84	15958.78	547.02	15411.76
15	0.5395	292.417	19.36	29831	16093.56	524.97	15568.58
RI	BC = 20,78						

 Tabla 5.19: Análisis económico de la interconexión de los subsistemas B-A.

"Aunque la naturaleza comienza con la razón y termina con la experiencia, es necesario que hagamos lo contrario, que es comenzar con la experiencia y desde ella proceder a investigar la razón."

Leonardo da Vinci (1452 - 1519)

6

Tercer caso de estudio

Índice

6.1	Selecci	ión de las zonas de estudio	74
6.2	Optimi	zación del despliegue de la red para la subzona C	75
6.3	Optimi	zación del despliegue de la red para la subzona D	77
6.4	Análisi	is de interconexión	80
	6.4.1	Subzona C recibe la carga de la Subzona D	80
	6.4.2	Subzona D recibe la carga de la Subzona C	82
6.5	Factor	de cargabilidad y capacidad de los transformadores	85
6.6	Coordi	nación de protecciones:	86
	6.6.1	Interconexión Subzona C-D	86
	6.6.2	Interconexión Subzona D-C	89
6.7	Protoco	olo de maniobras para la transferencia de carga	92
	6.7.1	Secuencia de eventos caso 1- falla T4	92
	6.7.2	Secuencia de eventos caso 2- falla T3	93
6.8	Análisi	is económico	94
	6.8.1	Escenario C-D	94
	6.8.2	Escenario D-C	94

6.1. Selección de las zonas de estudio

En este caso se analizará las subzonas C y D las cuales se miestran en la Fig. 5.1.

6.2. Optimización del despliegue de la red para la subzona C

El grafo que se muestra en la Fig. 6.1 contiene las posible trayectorias para el despliegue de la red correspondiente a la subzona C.

Figura 6.1: Grafo con las posibles trayectorias para el despliegue de la red de distribución en la subzona C. Fuente: autores.

En la Tabla 6.1 se observa la data inicial del grafo de la subzona C (ver Fig. 6.1).

Nodo i	Nodo j	Peso [m]	Usuarios	Alum. P [W]	Configuración	Calibre
0,00	1,00	33,00	2,00	150,00	3F de 3 y 4 hilos	2/0
1,00	2,00	37,00	0,00	150,00	3F de 3 y 4 hilos	2/0
2,00	3,00	5,00	1,00	150,00	3F de 3 y 4 hilos	2/0
2,00	18,00	21,00	5,00	150,00	3F de 3 y 4 hilos	2/0
18,00	19,00	33,00	6,00	245,00	3F de 3 y 4 hilos	2/0
0,00	4,00	27,00	3,00	150,00	3F de 3 y 4 hilos	2/0
4,00	5,00	20,00	7,00	150,00	3F de 3 y 4 hilos	2/0
5,00	6,00	32,00	8,00	150,00	3F de 3 y 4 hilos	2/0
6,00	14,00	24,00	0,00	150,00	3F de 3 y 4 hilos	2/0
14,00	17,00	29,00	2,00	315,00	3F de 3 y 4 hilos	2/0
6,00	15,00	28,00	0,00	150,00	3F de 3 y 4 hilos	2/0
6,00	16,00	51,00	3,00	150,00	3F de 3 y 4 hilos	2/0

Continúa en la siguiente página

Nodo i	Nodo j	Peso [m]	Usuarios	Alum. P [W]	Configuración	Calibre
3,00	7,00	24,00	4,00	150,00	3F de 3 y 4 hilos	2/0
3,00	8,00	35,00	4,00	150,00	3F de 3 y 4 hilos	2/0
8,00	9,00	23,00	7,00	150,00	3F de 3 y 4 hilos	2/0
3,00	10,00	38,00	9,00	150,00	3F de 3 y 4 hilos	2/0
10,00	11,00	25,00	2,00	150,00	3F de 3 y 4 hilos	2/0
11,00	13,00	25,00	10,00	150,00	3F de 3 y 4 hilos	2/0
11,00	12,00	35,00	0,00	150,00	3F de 3 y 4 hilos	2/0
11,00	16,00	27,00	3,00	150,00	3F de 3 y 4 hilos	2/0

 Tabla 6.1: Data inicial del sistema de la subzona C.

Los resultados de la optimización y del flujo de potencia (con 19 iteraciones) para la data de la Tabla 6.1 son los que se muestran en la Tabla 6.2.

Ni	Nj	$L_{ij}[m]$	$L_j[m]$	$k \triangle P[USD]$	$\Delta \mathbf{P}[\mathbf{kW}]$	$\Delta V_{nj}[V]$	ΔV_{nj}
0	1	33	33	2091.02	2.9749	4.3832	1.9923
1	2	37	70	2121.6	3.008	9.0501	4.1137
2	3	5	75	166.92	0.2379	9.5327	4.333
0	4	27	27	377.76	0.5379	1.6859	0.7663
4	5	20	47	204.39	0.2905	2.7522	1.251
5	6	32	79	149.43	0.2108	3.9011	1.7732
3	7	24	99	11.56	0.0164	9.8099	4.4591
3	8	35	110	106.49	0.1501	10.5466	4.7939
8	9	23	133	25.29	0.0356	10.9471	4.976
3	10	38	113	372.01	0.5195	11.4983	5.2265
10	11	25	138	82.9	0.1172	12.2555	5.5707
11	12	35	173	0.01	0	12.2627	5.574
11	13	25	163	50.08	0.0699	12.8403	5.8365
6	14	24	103	4.38	0.0062	4.0719	1.8509
6	15	28	107	0	0	3.9069	1.7759
6	16	51	130	15.49	0.0217	4.3663	1.9847
14	17	29	132	5.01	0.0071	4.2723	1.9419
2	18	21	91	65.53	0.0929	9.668	4.3945
18	19	33	124	28.98	0.0407	10.1808	4.6276

 Tabla 6.2: Resultado de la optimización del sistema de la subzona C.

El sistema presentado en la Fig. 6.1 se convierte en un sistema radial luego de la optimización, como se aprecia en la Fig. 6.2.

Figura 6.2: Grafo optimizado resultante para el despliegue de la red de distribución en la subzona C. Fuente: autores.

6.3. Optimización del despliegue de la red para la subzona D

El grafo que se muestra en la Fig. 6.3 contiene las posibles trayectorias para el despliegue de la red correspondiente a la subzona D.

Figura 6.3: Grafo con las posibles trayectorias para el despliegue de la red de distribución en la subzona D. *Fuente:* autores.

En la tabla 4.1 se observa la data inicial del grafo de la subzona D (ver Fig. 6.3).

Nodo i	Nodo j	Peso [m]	Usuarios	Alum. P [W]	Configuración	Calibre
0,00	1,00	31,00	12,00	150,00	3F de 3 y 4 hilos	2/0
1,00	2,00	10,00	0,00	0,00	3F de 3 y 4 hilos	2/0
2,00	3,00	41,00	0,00	0,00	3F de 3 y 4 hilos	2/0
3,00	4,00	15,00	2,00	150,00	3F de 3 y 4 hilos	2/0
4,00	5,00	32,00	1,00	150,00	3F de 3 y 4 hilos	2/0
5,00	6,00	27,00	2,00	150,00	3F de 3 y 4 hilos	2/0
6,00	7,00	17,00	0,00	150,00	3F de 3 y 4 hilos	2/0
7,00	8,00	40,00	0,00	150,00	3F de 3 y 4 hilos	2/0
8,00	24,00	49,00	3,00	150,00	3F de 3 y 4 hilos	2/0
1,00	9,00	37,00	6,00	150,00	3F de 3 y 4 hilos	2/0
9,00	10,00	23,00	3,00	150,00	3F de 3 y 4 hilos	2/0
10,00	11,00	23,00	4,00	150,00	3F de 3 y 4 hilos	2/0
0,00	12,00	61,00	3,00	315,00	3F de 3 y 4 hilos	2/0
12,00	13,00	21,00	0,00	150,00	3F de 3 y 4 hilos	2/0
13,00	14,00	37,00	8,00	150,00	3F de 3 y 4 hilos	2/0
11,00	14,00	21,00	8,00	150,00	3F de 3 y 4 hilos	2/0
13,00	15,00	20,00	5,00	150,00	3F de 3 y 4 hilos	2/0
15,00	16,00	22,00	1,00	150,00	3F de 3 y 4 hilos	2/0
15,00	17,00	36,00	3,00	150,00	3F de 3 y 4 hilos	2/0
17,00	20,00	28,00	7,00	150,00	3F de 3 y 4 hilos	2/0
10,00	18,00	27,00	3,00	150,00	3F de 3 y 4 hilos	2/0
18,00	19,00	20,00	3,00	150,00	3F de 3 y 4 hilos	2/0
18,00	20,00	30,00	7,00	150,00	3F de 3 y 4 hilos	2/0
0,00	21,00	49,00	10,00	150,00	3F de 3 y 4 hilos	2/0
21,00	22,00	33,00	3,00	150,00	3F de 3 y 4 hilos	2/0
22,00	23,00	15,00	0,00	150,00	3F de 3 y 4 hilos	2/0
23,00	24,00	27,00	3,00	150,00	3F de 3 y 4 hilos	2/0
24,00	25,00	30,00	3,00	150,00	3F de 3 y 4 hilos	2/0

 Tabla 6.3: Data inicial del sistema de la subzona D.

Los resultados de la optimización y del flujo de potencia (con 19 iteraciones) para la data de la Tabla 6.3 son los que se muestran en la Tabla 6.4.

El sistema presentado en la Fig. 6.3 se convierte en un sistema radial luego de la optimización, como se aprecia en la Fig. 6.4.

Ni	Nj	$\mathbf{L_{ij}}[\mathbf{m}]$	$L_j[m]$	$k \triangle P[USD]$	$\Delta \mathbf{P}[\mathbf{kW}]$	$\Delta V_{nj}[V]$	ΔV_{nj}
0	1	31	31	1109.03	1.5726	3.0887	1.404
1	2	10	41	11.68	0.0166	3.2692	1.486
2	3	41	82	48.23	0.0682	4.0092	1.8224

Continúa en la siguiente página

Ni	Nj	$\mathbf{L_{ij}}[\mathbf{m}]$	$\mathbf{L_j}[\mathbf{m}]$	$k \triangle P[USD]$	$\Delta \mathbf{P}[\mathbf{kW}]$	$\Delta V_{nj}[V]$	ΔV_{nj}
3	4	15	97	17.57	0.025	4.28	1.9454
4	5	32	129	14.95	0.0211	4.6435	2.1107
5	6	27	156	4.93	0.007	4.8352	2.1978
6	7	17	173	0.01	0	4.8423	2.201
7	8	40	213	0.01	0	4.8506	2.2048
1	9	37	68	394.81	0.558	5.0989	2.3177
9	10	23	91	125.52	0.178	5.994	2.7245
10	11	23	114	11.09	0.0157	6.2597	2.8453
0	12	61	61	1199.21	1.6923	4.4947	2.043
12	13	21	82	312.65	0.4442	5.8458	2.6572
13	14	37	119	51.19	0.0716	6.5658	2.9845
13	15	20	102	143.97	0.204	6.7393	3.0633
15	16	22	124	1.44	0.002	6.833	3.1059
15	17	36	138	92.11	0.1295	7.6946	3.4976
10	18	27	118	32.48	0.0459	6.4865	2.9484
18	19	20	138	6.01	0.0085	6.6689	3.0313
17	20	28	166	31	0.0434	8.1822	3.7192
0	21	49	49	461.9	0.6503	2.4972	1.1351
21	22	33	82	90.55	0.1282	3.4071	1.5487
22	23	15	97	18.35	0.0261	3.6838	1.6745
23	24	27	124	32.49	0.0459	4.1764	1.8983
24	25	30	154	9.06	0.0128	4.45	2.0227

 Tabla 6.4: Resultado de la optimización del sistema de la subzona D.

Figura 6.4: Grafo optimizado para el despliegue de la red en la subzona D. Fuente: autores.

El grafo que se muestra en la Fig. 6.3 contiene las posible trayectorias para el despliegue de la red correspondiente a la subzona B, el número de nodos es 26 y el de tramos es 28, pero el número mínimo de tramos necesarios para dar cobertura a todos los nodos es únicamente 25, la selección de los tramos que implique menor costo de pérdidas de potencia activa se hará mediante el algoritmo de optimización implementado.

80

6.4. Análisis de interconexión

Como referencia en la norma IEEE std 1547 el máximo valor de caída de voltaje bajo eventos de maniobra será de 8.4%.

6.4.1. Subzona C recibe la carga de la Subzona D

En este caso el transformador de la zona C es el receptor de la carga de la zona D dado que su transformador que encuentra fuera de servicio.

En la Tabla 6.5 se presentan los resultados de los flujos de potencia.

	N	L_{i-j}	Demanda	Ln – j	$k\Delta \mathbf{P}$	ΔΡ	ΔV_{nj}	ΔV _{nj}
Ni	Nj	[m]	[kVA]	[m]	[USD]	[kW]	$[\mathbf{V}]$	[%]
0	1	33	5.17	33	2091.02	2.9749	4.3832	1.9923
1	2	37	0.16	70	2121.6	3.008	9.0501	4.1137
2	3	5	3.29	75	166.92	0.2379	9.5327	4.333
0	4	27	7.05	27	377.76	0.5379	1.6859	0.7663
4	5	20	13.46	47	204.39	0.2905	2.7522	1.251
5	6	32	15.04	79	149.43	0.2108	3.9011	1.7732
3	7	24	8.93	99	11.56	0.0164	9.8099	4.4591
3	8	35	8.93	110	106.49	0.1501	10.5466	4.7939
8	9	23	13.46	133	25.29	0.0356	10.9471	4.976
3	10	38	16.57	113	372.01	0.5195	11.4983	5.2265
10	11	25	5.17	138	82.9	0.1172	12.2555	5.5707
11	12	35	0.16	173	0.01	0	12.2627	5.574
11	13	25	18.08	163	50.08	0.0699	12.8403	5.8365
6	14	24	0.16	103	4.38	0.0062	4.0719	1.8509
6	15	28	0.16	107	0	0	3.9069	1.7759
6	16	51	7.05	130	15.49	0.0217	4.3663	1.9847
14	17	29	5.34	132	5.01	0.0071	4.2723	1.9419
2	18	21	10.73	91	65.53	0.0929	9.668	4.3945
18	19	33	12.01	124	28.98	0.0407	10.1808	4.6276
0	20	39	21.07	39	8594.88	12.2043	9.6513	4.3869
20	21	31	17.92	70	2460.69	3.4618	14.234	6.47
20	22	10	0	49	11.68	0.0166	9.8317	4.469
22	23	41	0	90	48.27	0.0682	10.5717	4.8053
23	24	15	5.17	105	17.57	0.025	10.8425	4.9284
24	25	32	3.29	137	14.96	0.0211	11.206	5.0936
25	26	27	5.17	164	4.94	0.007	11.3978	5.1808

Continúa en la siguiente página

N:	N:	L_{i-j}	Demanda	Ln – j	$k\Delta \mathbf{P}$	$\Delta \mathbf{P}$	ΔV_{nj}	ΔV_{nj}
	- 1	[m]	[kVA]	[m]	[USD]	[k W]	[V]	[%]
26	27	17	0.16	181	0.01	0	11.4048	5.184
27	28	40	0.16	221	0.01	0	11.4131	5.1878
20	29	37	11.91	76	395.26	0.558	11.6614	5.3006
29	30	23	7.05	99	125.58	0.178	12.5565	5.7075
30	31	23	8.93	122	11.09	0.0157	12.8222	5.8283
21	32	61	7.22	131	1214.43	1.6923	18.7287	8.513
32	33	21	0.16	152	313.79	0.4442	20.0799	9.1272
33	34	37	15.04	189	51.79	0.0716	20.7998	9.4545
33	35	20	10.73	172	144.68	0.204	20.9734	9.5333
35	36	22	3.29	194	1.44	0.002	21.067	9.5759
35	37	36	7.05	208	92.79	0.1295	21.9287	9.9676
30	38	27	7.05	126	32.5	0.0459	13.049	5.9314
38	39	20	7.05	146	6.01	0.0085	13.2315	6.0143
37	40	28	13.46	236	31.24	0.0434	22.4163	10.1892
21	41	49	18.08	119	470.7	0.6503	16.7312	7.6051
41	42	33	7.05	152	91.16	0.1282	17.6411	8.0187
42	43	15	0.16	167	18.4	0.0261	17.9178	8.1445
43	44	27	7.05	194	32.67	0.0459	18.4104	8.3684
44	45	30	7.05	224	9.12	0.0128	18.684	8.4927

 Tabla 6.5: Flujos de potencia para la interconexión entre la subzona C-D.

El sistema que se presenta en el Anexo A.12 se puede apreciar el tramo de interconexión y los puntos de apertura que permiten garantizar que el sistema interconectado no exceda los límites de caída de voltaje establecidos.

En la Tabla 6.6 se presentan los resultados de los flujos de potencia luego de haber determinado los puntos de apertura que garantizan que se no exceda en los límites de caída de voltaje establecidos, siendo el tramo P_{11-13} la mayor caída de voltaje 5,8365 %.

Los tramos que deberán ser sometidos a apertura en caso de que el trasformador fuera de servicio sea el de la subzona D son P_{33-35} , P_{35-36} , P_{35-37} , P_{42-43} , P_{43-44} , y P_{44-45} .

Ni	Nj	L_{i-j}	Demanda [kVA]	Ln – j [m]	k∆P [USD]	ΔP [kW]	ΔV_{nj} [V]	ΔV_{nj} [%]
0	1	33	5.17	33	2091.02	2.9749	4.3832	1.9923
1	2	37	0.16	70	2121.6	3.008	9.0501	4.1137
2	3	5	3.29	75	166.92	0.2379	9.5327	4.333
0	4	27	7.05	27	377.76	0.5379	1.6859	0.7663
4	5	20	13.46	47	204.39	0.2905	2.7522	1.251
5	6	32	15.04	79	149.43	0.2108	3.9011	1.7732
3	7	24	8.93	99	11.56	0.0164	9.8099	4.4591
3	8	35	8.93	110	106.49	0.1501	10.5466	4.7939
						Continúa e	en la siguien	te página

			Demanda	Ln – j	kΔ P	ΔΡ	ΔV _{nj}	ΔV _{nj}
Ni	Nj	L_{i-j}	[kVA]	[m]	[USD]	[kW]	[V]	[%]
8	9	23	13.46	133	25.29	0.0356	10.9471	4.976
3	10	38	16.57	113	372.01	0.5195	11.4983	5.2265
10	11	25	5.17	138	82.9	0.1172	12.2555	5.5707
11	12	35	0.16	173	0.01	0	12.2627	5.574
11	13	25	18.08	163	50.08	0.0699	12.8403	5.8365
6	14	24	0.16	103	4.38	0.0062	4.0719	1.8509
6	15	28	0.16	107	0	0	3.9069	1.7759
6	16	51	7.05	130	15.49	0.0217	4.3663	1.9847
14	17	29	5.34	132	5.01	0.0071	4.2723	1.9419
2	18	21	10.73	91	65.53	0.0929	9.668	4.3945
18	19	33	12.01	124	28.98	0.0407	10.1808	4.6276
0	20	39	21.07	39	4769.29	6.7721	7.1894	3.2679
20	21	31	17.92	70	807.89	1.1366	9.8153	4.4615
20	22	10	0	49	11.68	0.0166	7.3699	3.3499
22	23	41	0	90	48.27	0.0682	8.1099	3.6863
23	24	15	5.17	105	17.57	0.025	8.3806	3.8094
24	25	32	3.29	137	14.96	0.0211	8.7441	3.9746
25	26	27	5.17	164	4.94	0.007	8.9359	4.0618
26	27	17	0.16	181	0.01	0	8.9429	4.065
27	28	40	0.16	221	0.01	0	8.9512	4.0687
20	29	37	11.91	76	395.26	0.558	9.1995	4.1816
29	30	23	7.05	99	125.58	0.178	10.0946	4.5885
30	31	23	8.93	122	11.09	0.0157	10.3603	4.7092
21	32	61	7.22	131	188.22	0.2623	11.5847	5.2658
32	33	21	0.16	152	29.32	0.0415	11.9977	5.4535
33	34	37	15.04	189	51.79	0.0716	12.7177	5.7808
33	35	—	—	—	—	—	—	_
35	36	—	—	_	—	—	_	_
35	37	—	—	_	—	—	_	_
30	38	27	7.05	126	32.5	0.0459	10.5872	4.8123
38	39	20	7.05	146	6.01	0.0085	10.7696	4.8953
37	40	_	—	—	—	—	—	
21	41	49	18.08	119	191.58	0.2647	11.4084	5.1857
41	42	33	7.05	152	9.98	0.014	11.7094	5.3225
42	43	—	—	—	—	—	—	_
43	44	—	—	—	—	—	—	_
44	45	—	—	—	—	—	—	_

 Tabla 6.6: Resultado de flujos de potencia para la interconexión entre la subzona C-D.

6.4.2. Subzona D recibe la carga de la Subzona C

En este caso el transformador de la zona D es el receptor de la carga de la zona C dado que su transformador que encuentra fuera de servicio.

En la Tabla 6.7 se presentan los resultados de los flujos de potencia.

Ni	Nj	L _{i-j}	Demanda	Ln – j	kΔP	ΔP	ΔV _{nj}	ΔV _{nj}
		[m]	[kVA]	[m]	[USD]	[kW]	[V]	[%]
0	1	31	21.07	31	10160.91	14.4079	9.3492	4.2497
1	2	10	0	41	11.68	0.0166	9.5297	4.3317
2	3	41	0	82	48.23	0.0682	10.2697	4.6681
3	4	15	5.17	97	17.57	0.025	10.5405	4.7911
4	5	32	3.29	129	14.95	0.0211	10.904	4.9564
5	6	27	5.17	156	4.93	0.007	11.0958	5.0435
6	7	17	0.16	173	0.01	0	11.1028	5.0467
7	8	40	0.16	213	0.01	0	11.1111	5.0505
1	9	37	11.91	68	394.81	0.558	11.3594	5.1633
9	10	23	7.05	91	125.52	0.178	12.2545	5.5702
10	11	23	8.93	114	11.09	0.0157	12.5202	5.691
0	12	61	7.22	61	1199.21	1.6923	4.4947	2.043
12	13	21	0.16	82	312.65	0.4442	5.8458	2.6572
13	14	37	15.04	119	51.19	0.0716	6.5658	2.9845
13	15	20	10.73	102	143.97	0.204	6.7393	3.0633
15	16	22	3.29	124	1.44	0.002	6.833	3.1059
15	17	36	7.05	138	92.11	0.1295	7.6946	3.4976
10	18	27	7.05	118	32.48	0.0459	12.747	5.7941
18	19	20	7.05	138	6.01	0.0085	12.9295	5.877
17	20	28	13.46	166	31	0.0434	8.1822	3.7192
0	21	49	18.08	49	461.9	0.6503	2.4972	1.1351
21	22	33	7.05	82	90.55	0.1282	3.4071	1.5487
22	23	15	0.16	97	18.35	0.0261	3.6838	1.6745
23	24	27	7.05	124	32.49	0.0459	4.1764	1.8983
24	25	30	7.05	154	9.06	0.0128	4.45	2.0227
1	26	39	5.17	70	5731.17	8.1277	17.2254	7.8297
26	27	33	5.17	103	2104.21	2.9749	21.6085	9.8221
27	28	37	0.16	140	2135.21	3.008	26.2755	11.9434
28	29	5	3.29	145	167.07	0.2379	26.758	12.1627
26	30	27	7.05	97	379.86	0.5379	18.9112	8.596
30	31	20	13.46	117	205.56	0.2905	19.9776	9.0807
31	32	32	15.04	149	150.94	0.2108	21.1265	9.603
29	33	24	8.93	169	11.62	0.0164	27.0353	12.2888
29	34	35	8.93	180	107.32	0.1501	27.7719	12.6236
34	35	23	13.46	203	25.46	0.0356	28.1725	12.8057
29	36	38	16.57	183	376.92	0.5195	28.7236	13.0562
36	37	25	5.17	208	83.3	0.1172	29.4808	13.4004
37	38	35	0.16	243	0.01	0	29.4881	13.4037
37	39	25	18.08	233	50.55	0.0699	30.0656	13.6662
32	40	24	0.16	173	4.4	0.0062	21.2973	9.6806
32	41	28	0.16	177	0	0	21.1323	9.6056
32	42	51	7.05	200	15.66	0.0217	21.5917	9.8144

Continúa en la siguiente página

Ni	Nj	L _{i-j} [m]	Demanda [kVA]	Ln – j [m]	k∆P [USD]	ΔP [kW]	ΔV_{nj} [V]	ΔV _{nj} [%]
40	43	29	5.34	202	5.04	0.0071	21.4976	9.7717
28	44	21	10.73	161	65.87	0.0929	26.8933	12.2242
44	45	33	12.01	194	29.23	0.0407	27.4061	12.4573

 Tabla 6.7: Resultado de flujos de potencia para la interconexión entre la subzona D-C.

El sistema que se presenta en el Anexo A.13 se puede apreciar el tramo de interconexión y los puntos de apertura que permiten garantizar que el sistema interconectado no exceda los límites de caída de voltaje establecidos.

En la Tabla 6.8 se presentan los resultados de los flujos de potencia luego de haber determinado los puntos de apertura que garantizan que no exceda los límites de caída de voltaje establecidos, siendo el tramo P_{44-45} la mayor caída de voltaje 8,3962%.

Los tramos que deberán ser sometidos a apertura en caso de que el trasformador fuera de servicio sea el de la subzona C son P_{29-34} , P_{34-35} , P_{36-37} , P_{37-38} , P_{37-39} , y P_{32-42} .

	N	L_{i-j}	Demanda	Ln — j	$k\Delta \mathbf{P}$	$\Delta \mathbf{P}$	ΔV_{nj}	ΔV_{nj}
Ni	Nj	[m]	[kVA]	[m]	[USD]	[kW]	$[\mathbf{V}]$	[%]
0	1	31	21.07	31	6075.73	8.6152	7.2295	3.2861
1	2	10	0	41	11.68	0.0166	7.41	3.3682
2	3	41	0	82	48.23	0.0682	8.15	3.7045
3	4	15	5.17	97	17.57	0.025	8.4207	3.8276
4	5	32	3.29	129	14.95	0.0211	8.7842	3.9928
6	7	17	0.16	173	0.01	0	8.9831	4.0832
5	6	27	5.17	156	4.93	0.007	8.976	4.08
6	7	17	0.16	173	0.01	0	8.9831	4.0832
7	8	40	0.16	213	0.01	0	8.9913	4.087
1	9	37	11.91	68	394.81	0.558	9.2396	4.1998
9	10	23	7.05	91	125.52	0.178	10.1347	4.6067
10	11	23	8.93	114	11.09	0.0157	10.4005	4.7275
0	12	61	7.22	61	1199.21	1.6923	4.4947	2.043
12	13	21	0.16	82	312.65	0.4442	5.8458	2.6572
13	14	37	15.04	119	51.19	0.0716	6.5658	2.9845
13	15	20	10.73	102	143.97	0.204	6.7393	3.0633
15	16	22	3.29	124	1.44	0.002	6.833	3.1059
15	17	36	7.05	138	92.11	0.1295	7.6946	3.4976
10	18	27	7.05	118	32.48	0.0459	10.6273	4.8306
18	19	20	7.05	138	6.01	0.0085	10.8097	4.9135
17	20	28	13.46	166	31	0.0434	8.1822	3.7192
0	21	49	18.08	49	461.9	0.6503	2.4972	1.1351
21	22	33	7.05	82	90.55	0.1282	3.4071	1.5487

Continúa en la siguiente página

N.	N	L_{i-j}	Demanda	Ln – j	$k\Delta \mathbf{P}$	$\Delta \mathbf{P}$	ΔV_{nj}	ΔV_{nj}
	тъj	$[\mathbf{m}]$	[kVA]	[m]	[USD]	[k W]	$[\mathbf{V}]$	[%]
22	23	15	0.16	97	18.35	0.0261	3.6838	1.6745
23	24	27	7.05	124	32.49	0.0459	4.1764	1.8983
24	25	30	7.05	154	9.06	0.0128	4.45	2.0227
1	26	39	5.17	70	2507.2	3.5556	12.4389	5.654
26	27	33	5.17	103	645.51	0.9126	14.8666	6.7575
27	28	37	0.16	140	600.25	0.8456	17.341	7.8823
28	29	5	3.29	145	24.89	0.0354	17.5273	7.9669
26	30	27	7.05	97	276.98	0.3922	13.8785	6.3084
30	31	20	13.46	117	141.25	0.1996	14.7624	6.7102
31	32	32	15.04	149	83.99	0.1173	15.6194	7.0997
29	33	24	8.93	169	11.62	0.0164	17.8046	8.093
29	34	—	—	—	—	—	—	—
34	35	—	—	—	—	—	—	—
29	36	38	16.57	183	64.74	0.0892	18.342	8.3373
36	37	—	_	—	—	—	—	—
37	38	_	—	_	_	_	_	_
37	39	_	—	_	_	_	_	_
32	40	24	0.16	173	4.4	0.0062	15.7902	7.1774
32	41	28	0.16	177	0	0	15.6252	7.1024
32	42	—	_	—	—	—	—	—
40	43	29	5.34	202	5.04	0.0071	15.9906	7.2684
28	44	21	10.73	161	65.87	0.0929	17.9589	8.1631
44	45	33	12.01	194	29.23	0.0407	18.4717	8.3962

Tabla 6.8: Resultado de flujos de potencia para la interconexión entre la subzona D-C.

6.5. Factor de cargabilidad y capacidad de los transformadores

Para la selección de la capacidad del transformador se tiene en cuanta los valores comerciales de capacidad de los transformadores de distribución.

Indicador	Valor	Unidad
Capacidad del transformador	250	[kVA]
Factor de carga local	42.25	[%]
Factor de carga total	82.15	[%]

 Tabla 6.9: Factor de cargabilidad y capacidad del transformador de la subzona C.

La capacidad del transformador del sistema de la subzona C es de 250[kVA], en la

Tabla 6.9 se observa que existen dos valores de cargabilidad para este transformador, el primero es el factor de carga local cuyo valor es 42,25 % y representa la cargabilidad del transformador cuando este se encuentra trabajando en condiciones normales, es decir únicamente con la demanda de la sub-zona C, el segundo es el factor de carga total cuyo valor es 82,15 % y representa la cargabilidad del transformador cuando la demanda es la de la sub-zona C más parte de la demanda de la sub-zona D, cuando se realiza la maniobra de interconexión en caso de falla o mantenimiento.

Indicador	Valor	Unidad
Capacidad del transformador	200	[kVA]
Factor de carga local	60.67	[%]
Factor de carga total	96.80	[%]

Tabla 6.10: Factor de cargabilidad y capacidad del transformador de la subzona D.C

La capacidad del transformador del sistema de la subzona D es de 200[kVA], en la Tabla 6.9 se observa que existen dos valores de cargabilidad para este transformador, el primero es el factor de carga local cuyo valor es 60,67% y representa la cargabilidad del transformador cuando este se encuentra trabajando en condiciones normales, es decir únicamente con la demanda de la sub-zona D, el segundo es el factor de carga total cuyo valor es 96,80% y representa la cargabilidad del transformador cuando la demanda de la sub-zona D más parte de la demanda de la sub-zona C, cuando se realiza la maniobra de interconexión en caso de falla o mantenimiento.

6.6. Coordinación de protecciones:

6.6.1. Interconexión Subzona C-D

En el Anexo. A.14 se puede apreciar el diagrama del sistema de protecciones para la interconexión de los sistemas de la subzona C-D.

6.6.1.1. Coordinación entre las protecciones $R_1 - R_i$

En la Tabla. 6.11 se presenta los resultados del análisis de corto circuitos en el nodo P_{23} el cual con los sistemas interconectados se renumera como nodo P_{43} .

La corriente nominal en el nodo de análisis es 28,52[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 2,3144[kA].

$I_n[A] \\$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]
28,52	2,3144	2,0043	1,46	0,7229

Tabla 6.11: *Corriente nominal y corrientes de falla en el nodo* $P_{23}(P_{43})$.

Figura 6.5: Coordinación entre $R_1 - R_i$. **Fuente:** autores.

6.6.1.2. Coordinación entre las protecciones $R_2 - R_i$

En la Tabla. 6.12 se presenta los resultados del análisis de corto circuitos en el nodo P_{15} el cual con los sistemas interconectados se renumera como nodo P_{35} .

La corriente nominal en el nodo de análisis es 70,12[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 2,2131[kA].

$I_n[A]$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]
70,12	2,2131	1,9166	1,39	0,6909

Tabla 6.12: Corriente nominal y corrientes de falla en el nodo $P_{15}(P_{35})$.

En la Fig. 6.6 se muestra la coordinación de las protecciones $R_2 - R_i$.

88

Figura 6.6: Coordinación entre $R_2 - R_i$. *Fuente:* autores.

6.6.1.3. Coordinación entre las protecciones $R_i - R_{T1}$

En la Fig. 6.7 se muestra la coordinación de las protecciones $R_i - R_{T1}$.

Figura 6.7: Coordinación entre $R_i - R_{T1}$. **Fuente:** autores.

En la Tabla. 6.13 se presenta los resultados del análisis de corto circuitos en el nodo P_1 el cual con los sistemas interconectados se renumera como nodo P_{20} .

89

La corriente nominal en el nodo de análisis es 270,5[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 10,4365[kA].

$I_n[A]$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]
270,5	10,4365	9,0383	6,57	3,3244

Tabla 6.13: *Corriente nominal y corrientes de falla en el nodo* $P_1(P_{20})$.

6.6.2. Interconexión Subzona D-C

En el Anexo. A.15 se puede apreciar el diagrama del sistema de protecciones para la interconexión de los sistemas de la subzona D-C.

6.6.2.1. Coordinación entre las protecciones $R_3 - R_i$

En la Fig. 6.8 se muestra la coordinación de las protecciones $R_3 - R_i$.

Figura 6.8: Coordinación entre $R_3 - R_i$. **Fuente:** autores.

En la Tabla. 6.14 se presenta los resultados del análisis de corto circuitos en el nodo P_{11} el cual con los sistemas interconectados se renumera como nodo P_{37} .
La corriente nominal en el nodo de análisis es 49,66[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 1,7519[kA].

$I_n[A] \\$	$Icc_{LLL}[kA]$	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]
49,66	1,7519	1,5172	1,10	0,5454

Tabla 6.14: Corriente nominal y corrientes de falla en el nodo $P_{11}(P_{37})$.

6.6.2.2. Coordinación entre las protecciones $R_4 - R_i$

En la Fig. 6.9 se muestra la coordinación de las protecciones $R_4 - R_i$.

Figura 6.9: Coordinación entre $R_4 - R_i$. **Fuente:** autores.

En la Tabla. 6.15 se presenta los resultados del análisis de corto circuitos en el nodo P_8 el cual con los sistemas interconectados se renumera como nodo P_{34} .

La corriente nominal en el nodo de análisis es 47,07[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 2,6425[kA].

$I_n[A]$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]	
47,07	2,6425	1,7689	1,28	0,6372	

Tabla 6.15: Corriente nominal y corrientes de falla en el nodo $P_8(P_{34})$.

6.6.2.3. Coordinación entre las protecciones $R_5 - R_i$

-

En la Tabla. 6.16 se presenta los resultados del análisis de corto circuitos en el nodo P_{16} el cual con los sistemas interconectados se renumera como nodo P_{42} .

La corriente nominal en el nodo de análisis es 14,36[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 1,8974[kA].

$I_n[A] \\$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]	
14,36	1,8974	1,6432	1,19	0,591	

Tabla 6.16: Corriente nominal y corrientes de falla en el nodo $P_{16}(P_{42})$.

En la Fig. 6.10 se muestra la coordinación de las protecciones $R_5 - R_i$.

Figura 6.10: Coordinación entre $R_5 - R_i$. **Fuente:** autores.

En la Tabla. 6.17 se presenta los resultados del análisis de corto circuitos en el nodo P_0 el cual con los sistemas interconectados se renumera como nodo P_{26} .

La corriente nominal en el nodo de análisis es 201[A], la corriente de falla máxima corresponde al cortocircuito trifásico y su valor es 5,3712[kA].

$I_n[A] \\$	Icc _{LLL} [kA]	Icc _{LL} [kA]	Icc _{LT} [kA]	Icc _{LLT} [kA]
201	5,3712	4,91	3,54	1,7689

Tabla 6.17: *Corriente nominal y corrientes de falla en el nodo* $P_0(P_{26})$.

En la Fig. 6.11 se muestra la coordinación de las protecciones $R_i - R_{T2}$.

Figura 6.11: Coordinación entre $R_i - R_{T2}$. **Fuente:** autores.

6.7. Protocolo de maniobras para la transferencia de carga

- 6.7.1. Secuencia de eventos caso 1- falla T4
 - Transferencia

- 1. Actúa la protección RT_4 , el transformador T_4 se encuentra en falla o RT_4 se abre intencionalmente para mantenimiento.
- 2. El módulo de transferencia verifica que T_4 está fuera de servicio y se cierran contactos de *RI*, se brinda suministro eléctrico desde T_3 hacia T_4 .
- 3. Se deben abrir R_1 y R_2 para garantizar que las caídas de voltaje permitidas y la capacidad de corriente del conductor sean las adecuadas.
- 4. Transformador T_4 queda aislado para reparación de falla o mantenimiento.

Restablecimiento de la carga

- 1. Se abre el módulo de transferencia RI y se deja de brindar suministro eléctrico desde T_3 hacia T_4 .
- 2. Se cierra RT_4 y se restablece el flujo normal de carga.
- 3. Se cierran los dispositivos R_1 y R_2 para cubrir el servicio de toda la zona en condiciones normales.

6.7.2. Secuencia de eventos caso 2- falla T3

Transferencia

- 1. Actúa la protección RT_3 , transformador T_3 se encuentra en falla o RT_4 se abre intencionalmente para mantenimiento.
- 2. El módulo de transferencia verifica que T_3 está fuera de servicio y se cierran contactos de *RI*, se brinda suministro eléctrico desde T_4 hacia T_3 .
- 3. Se deben abrir R_3 , R_4 y R_5 para garantizar que las caídas de voltaje permitidas y la capacidad de corriente del conductor sean las adecuadas.
- 4. Transformador T_3 queda aislado para reparación de falla o mantenimiento.

Restablecimiento de la carga

- 1. Se abre el módulo de transferencia RI y se deja de brindar suministro eléctrico desde T_4 hacia T_3 .
- 2. Se cierra RT_3 y se reestablece el flujo normal de carga.
- 3. Se cierran los dispositivos R_3 , R_4 y R_5 para cubrir el servicio de toda la zona en condiciones normales.

6.8. Análisis económico

6.8.1. Escenario C-D

	1/(1))t	St	$\triangle P$	$k \triangle P$	Beneficio	Costo	VAN
Ta	$1/(1+r_i)^{-1}$	[kVA]	[kW]	[USD]	[USD]	[USD]	[USD]
0	1	142.48	9.507	16342.58	16342.58	1151.24	15191.34
1	0.9597	149.718	9.99	17172.78	16480.59	1104.84	15375.76
2	0.921	157.324	10.497	18045.16	16619.78	1060.3	15559.47
3	0.8839	165.316	11.03	18961.85	16760.14	1017.57	15742.57
4	0.8483	173.714	11.591	19925.11	16901.68	976.55	15925.13
5	0.8141	182.538	12.18	20937.31	17044.42	937.19	16107.23
6	0.7813	191.811	12.798	22000.92	17188.37	899.41	16288.95
7	0.7498	201.555	13.449	23118.57	17333.53	863.16	16470.36
8	0.7195	211.794	14.132	24292.99	17479.91	828.37	16651.54
9	0.6905	222.554	14.85	25527.08	17627.54	794.98	16832.56
10	0.6627	233.859	15.604	26823.85	17776.41	762.94	17013.47
11	0.636	245.739	16.397	28186.5	17926.53	732.19	17194.35
12	0.6104	258.223	17.23	29618.38	18077.93	702.67	17375.25
13	0.5858	271.341	18.105	31122.99	18230.6	674.35	17556.25
14	0.5621	285.125	19.025	32704.04	18384.56	647.17	17737.39
15	0.5395	299.609	19.991	34365.41	18539.83	621.08	17918.74
RI	BC = 20,23						

Tabla 6.18: Análisis económico de la interconexión de los subsistemas C-D.

T	1/(1 +)t	St	$\triangle P$	$k \triangle P$	Beneficio	Costo	VAN
1a	$\mathbf{I}/(\mathbf{I}+\mathbf{r}_{i})$	[kVA]	[kW]	[USD]	[USD]	[USD]	[USD]
0	1	103.24	6.311	8721.25	8721.25	814.16	7907.09
1	0.9597	108.485	6.631	9164.29	8794.9	781.34	8013.56
2	0.921	113.996	6.968	9629.83	8869.18	749.85	8119.33
3	0.8839	119.787	7.322	10119.03	8944.08	719.62	8224.46
4	0.8483	125.872	7.694	10633.07	9019.61	690.62	8329
5	0.8141	132.266	8.085	11173.23	9095.79	662.78	8433.01
6	0.7813	138.985	8.496	11740.83	9172.6	636.06	8536.54
7	0.7498	146.046	8.927	12337.27	9250.07	610.43	8639.64
8	0.7195	153.465	9.381	12964	9328.19	585.82	8742.37
9	0.6905	161.261	9.857	13622.57	9406.97	562.21	8844.76
10	0.6627	169.453	10.358	14314.6	9486.41	539.55	8946.86

6.8.2. Escenario D-C

Continúa en la siguiente página

T	1/(1)t	St	$\triangle P$	$k \triangle P$	Beneficio	Costo	VAN
$Ta = 1/(1+r_i)^{*}$	$\mathbf{I}/(\mathbf{I}+\mathbf{r}_i)$	[kVA]	[kW]	[USD]	[USD]	[USD]	[USD]
11	0.636	178.061	10.884	15041.78	9566.53	517.8	9048.73
12	0.6104	187.106	11.437	15805.9	9647.32	496.93	9150.39
13	0.5858	196.611	12.018	16608.84	9728.8	476.9	9251.9
14	0.5621	206.599	12.629	17452.57	9810.96	457.68	9353.28
15	0.5395	217.095	13.27	18339.16	9893.81	439.23	9454.58

 Tabla 6.19: Análisis económico de la interconexión de los subsistemas D-C.

"Si la juventud está bien educada, tendremos orden moral. Si no, el vicio y el desorden prevalecerán." Juan Bosco (1815 – 1888)

96

Análisis de resultados

Índice

7.1	Análisis de los resultados del primer caso de estudio	96
	7.1.1 Análisis de los flujos de potencia	96
7.2	Análisis de los resultados del segundo caso de estudio	98
	7.2.1 Análisis de los flujos de potencia	98
7.3	Análisis de los resultados del tercer caso de estudio	100
	7.3.1 Análisis de los flujos de potencia	100
7.4	Análisis Económico	102

7.1. Análisis de los resultados del primer caso de estudio

7.1.1. Análisis de los flujos de potencia

En la Tabla 7.1 se muestra el resumen de los flujos de potencia de los sistemas optimizados para la zona 1 y la zona 2; en ella se indica la carga total a la que debe abastecer cada transformador, la longitud desde el transformador hacia el nodo más lejano, el porcentaje de caída de voltaje máximo, las pérdidas de potencia activa totales y el costo anual de las mismas.

Trasformador	Carga total [kVA]	$L_{n-j}[m] \\$	$\Delta Ptotal[kW]$	$k\Delta \mathbf{P}$ anual [USD]	$\Delta V_{max}[V]$
Zona 1	239.092	213	23.2591	16459.06	7.69
Zona 2	259.434	238	25.1923	17771.1	8,479

Tabla 7.1: Resumen de los flujos de potencia de los sistemas optimizados de la zona 1y 2.

Los perfiles de voltaje en los nodos más lejanos de cada sistema desde el transformador se muestran en la Fig. 7.1 y 7.2, donde se constata que el porcentaje de caída de voltaje máximo tanto en el sistema de la zona 1 como en el sistema de la zona 2 se encuentran en el límite del 5% (209V) permitido.

Figura 7.1: Perfil de voltaje hacia el nodo más lejano del transformador de la zona 1. Fuente: autores.

Figura 7.2: Perfil de voltaje hacia el nodo más lejano del transformador de la zona 2.

Los perfiles de voltaje en los nodos más lejanos de cada sistema interconectado desde el transformador se muestran en la Fig. 7.3 y 7.4, donde se constata que el porcentaje

de caída de voltaje máximo en los sistemas interconectados sobrepasan el límite del 8,4% (201,52V) permitido.

Figura 7.3: Perfil de voltaje hacia el nodo más lejano del transformador al interconectar la zona 1-2. Fuente: autores.

Figura 7.4: Perfil de voltaje hacia el nodo más lejano del transformador al interconectar la zona 2-1. Fuente: autores.

7.2. Análisis de los resultados del segundo caso de estudio

7.2.1. Análisis de los flujos de potencia

En la Tabla 7.2 se muestra el resumen de los flujos de potencia de los sistemas optimizados para la subzona A y la subzona B; en ella se indica la carga total a la que debe abastecer cada transformador, la longitud desde el transformador hacia el nodo más lejano, el porcentaje de caída de voltaje máximo, las pérdidas de potencia activa totales y el costo anual de las mismas.

Trasformador	Carga total [kVA]	$L_{n-j}[m] \\$	$\Delta Ptotal[kW]$	$k\Delta \mathbf{P}$ anual [USD]	$\Delta V_{max}[V]$
Subzona A	115.206	144	5.7056	4036.19	3.44
Subzona B	127.568	149	5.6635	3995.07	3.57

Tabla 7.2: Resumen de los flujos de potencia de los sistemas optimizados de la zona A
y B.

Los perfiles de voltaje en los nodos más lejanos de cada sistema desde el transformador se muestran en la Fig. 7.5 y 7.6, donde se constata que el porcentaje de caída de voltaje máximo tanto en el sistema de la subzona A como en el sistema de la subzona B se encuentran dentro del límite del 5% (209V) permitido.

Figura 7.5: Perfil de voltaje hacia el nodo más lejano del transformador de la subzona A. Fuente: autores.

Figura 7.6: Perfil de voltaje hacia el nodo más lejano del transformador de la subzona B. Fuente: autores.

Los perfiles de voltaje en los nodos más lejanos de cada sistema interconectado desde el transformador se muestran en la Fig. 7.7 y 7.8, donde se constata que el porcentaje de caída de voltaje máximo en los sistemas interconectados no sobrepasan el límite del 8,4% (201,52V) permitido.

Figura 7.7: Perfil de voltaje hacia el nodo más lejano del transformador al interconectar la subzona A-B. Fuente: autores.

Figura 7.8: Perfil de voltaje hacia el nodo más lejano del transformador al interconectar la subzona B-A. Fuente: autores.

7.3. Análisis de los resultados del tercer caso de estudio

7.3.1. Análisis de los flujos de potencia

En la Tabla 7.3 se muestra el resumen de los flujos de potencia de los sistemas optimizados para la subzona C y la subzona D; en ella se indica la carga total a la que debe abastecer cada transformador, la longitud desde el transformador hacia el nodo más lejano, el porcentaje de caída de voltaje máximo, las pérdidas de potencia activa totales y el costo anual de las mismas.

Trasformador	Carga total [kVA]	$L_{n-j}[m] \\$	$\Delta Ptotal[kW]$	$k\Delta \mathbf{P}$ anual [USD]	$\Delta V_{max}[V]$
Subzona C	105.644	173	8.3373	5878.85	5.83
Subzona D	133.889	213	5.9669	4220.24	3.71

Tabla 7.3: Resumen de los flujos de potencia de los sistemas optimizados de la zona Cy D.

Los perfiles de voltaje en los nodos más lejanos de cada sistema desde el transformador se muestran en la Fig. 7.9 y 7.10, donde se constata que el porcentaje de caída de voltaje máximo tanto en el sistema de la subzona C como en el sistema de la subzona D se encuentran dentro del límite del 5% (209V) permitido.

Figura 7.9: Perfil de voltaje hacia el nodo más lejano del transformador de la subzona C. Fuente: autores.

Figura 7.10: Perfil de voltaje hacia el nodo más lejano del transformador de la subzona D. Fuente: autores.

Los perfiles de voltaje en los nodos más lejanos de cada sistema interconectado desde el transformador se muestran en la Fig. 7.11 y 7.12, donde se constata que el porcentaje de caída de voltaje máximo en los sistemas interconectados no sobrepasan el límite del 8,4% (201,52V) permitido.

Figura 7.11: Perfil de voltaje hacia el nodo más lejano del transformador al interconectar la subzona C-D. Fuente: autores.

Figura 7.12: Perfil de voltaje hacia el nodo más lejano del transformador al interconectar la subzona D-C. Fuente: autores.

7.4. Análisis Económico

En el análisis económico de los escenarios de interconexión del segundo y tercer caso de estudio, se compara costo perdidas de potencia, costo de red y costo de equipos de apertura y cierre (tableros) necesarios para realizar la operación.

En la Tabla. 7.4 se muestra un resumen de los valores de RBC para cada escenario, dicho indicador económico siempre es positivo, esto quiere decir, que es económicamente factible realizar la operación de interconexión, siempre y cuando no se exceda los límites de las restricciones del sistema. De estos resultados, los valores menores representan las maniobras en las que menos carga se transfiere.

103

Interconexión	RCB
Interconexión A-B	33.7
Interconexión B-A	20.78
Interconexión C-D	20.23
Interconexión D-C	15.27

 Tabla 7.4: Razón beneficio costo de los casos de estudio.

"Nada es demasiado maravilloso para ser cierto si obedece a las leyes de la naturaleza." Michael Faraday (1791 – 1867)

Conclusiones y Recomendaciones

Índice

8.1	Conclusiones													104
8.2	Recomendaciones													105

8.1. Conclusiones

- Al optimizar el despliegue de la red eléctrica mediante el Algoritmo Dijkstra utilizando la función objetivo de costos de pérdidas, se puede evidenciar que se obtiene distintos resultados a los esperados si se optimizara con una función objetivo de longitud, debido a que la optimización por distancia es lineal, mientras que la optimización por costos de pérdidas además de la longitud depende de la demanda existente en los tramos, y esa función es no líneal.
- 2. De la factibilidad de realizar una transferencia de carga en bajo voltaje se puede concluir que: primero existen todos los dispositivos necesarios de protección y control para realizar esta maniobra de la forma más segura posible, y segundo que el análisis técnico como la selección del área, el óptimo diseño del despliegue de la red, análisis de los resultados de flujos de potencia es fundamental para no exceder los límites de las restricciones técnicas del sistema, realizado este análisis previo es totalmente factible realizar una transferencia de carga en bajo voltaje.
- 3. Del análisis de flujos de potencia de los casos de estudio se concluye que en los sistemas candidatos para implementar esta maniobra de interconexión, la caída de voltaje debe ser la mínima posible y se recomienda que no debe superar el 3 % en el tramo de interconexión cuando el sistema está en condiciones normales,

con esta condición se asegura que se pueda abarcar la mayor cantidad de carga posible en la maniobra de transferencia sin exceder los límites permitidos de caída de voltaje.

- 105
- 4. El transformador de distribución que va recibir la carga debe estar dimensionado para que pueda soportar la transferencia, caso contrario se podría tener fallas en los dos transformadores lo cual ocasionaría dejar sin servicio a una sección más grande de usuarios. De los resultados obtenidos aplicando este criterio de dimensionamiento, se evidencia que el transformador en condiciones normales va a estar subutilizado en todos los casos de estudio y se va aprovechar su capacidad solo en condiciones de falla o mantenimiento.
- 5. En el segundo y tercer caso de estudio, para garantizar el correcto funcionamiento del sistema de protecciones y que la maniobra de transferencia se ejecute sin contratiempos, se debe establecer el ajuste de los relés de sobre corriente adecuado tanto para el tramo más alejado como para el tramo más cercano o protección de cabecera, lo que significa que en ningún momento se pierda selectividad de la protecciones en condiciones normales y en condiciones de transferencia de carga.
- 6. En el análisis económico, se consideró los indicadores VAN y RBC para demostrar la viabilidad del estudio, los parámetros técnicos que intervienen en este cálculo son: costo de perdidas, costo de red (costo de material y mano de obra), costo de tableros de transferencia (costo de equipos y montaje); dando como resultado que el costo de inversión amortizado (costo de red más costo de tableros) es menor, al beneficio que representa abastecer cierta cantidad de demanda que es representada en función del costo de pérdidas.

8.2. Recomendaciones

- 1. Se recomienda a la Empresa Eléctrica Regional Centro Sur C.A la implementación de un plan piloto en base a este estudio y la selección de las zonas, sean urbanas donde exista carga tanto concentrada como mixta, se sugiere tener en cuenta las zonas expuestas en este documento.
- En caso de implementación de un plan piloto se recomienda considerar: costos de equipos y operación, penalizaciones por energía no suministrada e índices de calidad para el análisis económico.
- 3. A partir de las pautas de este proyecto se puede realizar un estudio de interconexión de generación distribuida en alguna de las zonas, para analizar el comportamiento de los flujos de potencia que ahora serian bidireccionales y como estas tecnologías pueden ingresar a la red.
- 4. La información subida al ArcGIS de la Empresa Eléctrica Regional Centro Sur C.A debe ser la más actual, reduciendo los tiempos de análisis de la información, conociendo de igual manera que la red de bajo voltaje es muy dinámica en comparación con otros niveles de voltaje.

5. Realizar el análisis de flujos de potencia y cortocircuitos de la mayor cantidad de sistemas de bajo voltaje, para elegir de mejor manera los dispositivos de protección e incorporarlos a un sistema de control y monitoreo, buscando a corto plazo la automatización de la red de bajo voltaje.

6. Revisar la metodología que se emplea para el cálculo de la demanda máxima unitaria (estratos) debido a que la misma no refleja la situación actual.

Bibliografía

- [1] "Coordinación de las protecciones BT," Schneider Electric, 2000.
 [Online]. Available: http://automata.cps.unizar.es/bibliotecaschneider/BT/Guia/ 2{_}CoordInterrup.pdf
- [2] "Recommended Practice for Calculating AC Short-Circuit Currents in Industrial and Commercial Power Systems," *IEEE Std 551-2006 [The Violet Book]*, pp. 1– 308, nov 2006.
- [3] "IEEE Application Guide for IEEE Std 1547(TM), IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems," *IEEE Std 1547.2-*2008, pp. 1–217, 2009.
- [4] ABB, "Interruptores de corte en carga Versiones motorizadas OTM, OSM y OTM-C," 2015.
- [5] J. G. Cárdenas Cobos and B. D. Jaramillo León, "Modelación y simulación de las redes de baja tensión de la Empresa Eléctrica Regional Centro Sur CA," {B.S.} thesis, 2017.
- [6] R. Carvajal Pérez and S. Laborí Llamo, "Efectividad del método de flujo con recurrencia en estuduis de circuitos de distribución primaria," *Ingeniería Eléctrica*, vol. 34, no. 1, pp. 78–87, 2013.
- [7] K. C. Ciesielski, A. Xavier, and F. Paulo, "Path-Value Functions for Which Dijkstra's Algorithm Returns Optimal Mapping," *Journal of Mathematical Imaging and Vision*, 2018. [Online]. Available: https://doi.org/10. 1007/s10851-018-0793-1
- [8] B. d. M.-N. F. Dumas and G. Thomasset, "Cálculo de corrientes de corto circuito," *Cuaderno Técnico N-158, Schneider Electric*, 2000.
- [9] D. Electronics, "DSE7420 Auto Mains (Utility) Failu-Control Modules DSEGenset Deep Sea Electrore nics." https://www.deepseaelectronics.com/genset/ [Online]. Available: auto-mains-utility-failure-control-modules/dse7420
- [10] S. Engineering, "SEL-587-0 Relay Current Differential Relay Overcurrent Relay Instruction Manual," 2015. [Online]. Available: https://www.eiseverywhere.com/ file{_}uploads/c8538af927d2f1c252aad0532ed4b73a{_}SEL587.pdf
- [11] J. D. Glover and M. S. Sarma, Sistemas de potencia: análisis y diseño. Cengage Learning Editores, 2003.

[12] J. Granger and W. Stevenson, Análisis de Sistemas de Potencia, primera ed. McGraw-Hill, 2001.

- [13] T. S. Guamán Espinoza and J. C. Velecela Chichay, Análisis técnico de la interconexión entre el alimentador 124 de la S/E Azogues 1 y el alimentador 221 de la S/E Azogues 2 pertenecientes a la Empresa Eléctrica Azogues C.A., 2018. [Online]. Available: https://dspace.ups.edu.ec/bitstream/123456789/ 14991/1/UPS-CT007395.pdf
- [14] IEEE, "Inverse-time characteristic equations for overcurrent relays," *IEEE Stan*dard C37. 112-1996, 1997.
- [15] S. Llamo Laborí, *Flujo de cargas en las Redes de Distribución Urbanas*. Folleto de maestría, 2002.
- [16] —, Representación matemática de las líneas de transmisión de energía eléctrica. Folleto de maestría, 2002.
- [17] MEER, "Homologación de las unidades de propiedad (UP) y unidades de construcción (UC) del sistema de distribución eléctrica," 2013. [Online]. Available: http://www.unidadesdepropiedad.com/
- [18] H. Ortega-Arranz, D. R. Llanos, and A. Gonzalez-Escribano, *The Shortest-Path Problem: Analysis and Comparison of Methods*, 2014. [Online]. Available: http://www.morganclaypool.com.ezproxy.lib.monash.edu.au/doi/abs/ 10.2200/S00618ED1V01Y201412TCS001
- [19] Schneider-electric, "Complementary technical information," 2016. [Online]. Available: http://download.schneider-electric.com/files?p{_}enDocType=Catalog{&}p{_}File{_}Name=LVPED308005EN.pdf{&}p{_}Doc{_}Ref=LVPED308005EN
- [20] —, "Transferpact Projet Catalogue 2018 Source-changeover systems," 2018. [Online]. Available: http://download.schneider-electric.com/ files?p{_}enDocType=Catalog{&}p{_}File{_}Name=LVPED216028EN. pdf{&}p{_}Doc{_}Ref=LVPED216028EN
- [21] —, "Circuit breakers and switch-disconnectors from 630A to 3200 A," 2019. [Online]. Available: http://download.schneider-electric.com/ files?p{_}enDocType=Catalog{&}p{_}File{_}Name=LVPED211021EN. pdf{&}p{_}Doc{_}Ref=LVPED211021EN
- [22] A. Std, "C84. 1-2006," For Electric Power Systems and Equipment-Voltage Ratings (60 Hz), 2006.
- [23] J. M. Valdez Gómez, "Proceso adaptativo de las funciones de operación de los relevadores de protección," Ph.D. dissertation, Universidad Autónoma de Nuevo León, 2012.
- [24] K. William H, Distribution System Modeling and Analysis, crc press, ed., CRC Press, Ed., 2001.
- [25] D. Woodhouse, "On the theoretical basis of Carson' s equations," *Power System Technology (POWERCON)*, 2012 IEEE International Conference on, p. 2012, 2012.

"Temo el día en que la tecnología sobrepase nuestra humanidad; el mundo solo tendrá una generación de idiotas." Albert Einstein (1879 – 1955)

A.1. Determinación de la demanda por el tipo de estrato.

# De	"A1"	"A"	''B''	"C"	"D"	"Е"
	501-1000	311-500	181-310	111-180	61-110	
Clientes	kWh	kWh	kWh	kWh	kWh	kWh
Clientes	DMD (kVA)					
0	0,00	0,00	0,00	0,00	0,00	0,00
1,00	6,16	5,70	4,22	3,13	2,53	2,06
2,00	9,85	9,12	6,75	5,01	4,05	3,29
3,00	13,54	12,53	9,28	6,89	5,56	4,53
4,00	17,24	15,96	11,81	8,77	7,08	5,76
5,00	20,78	19,23	14,24	10,57	8,54	6,95
6,00	23,65	21,60	15,91	11,75	9,43	7,62
7,00	26,49	24,34	17,97	13,30	10,70	8,67
8,00	29,56	27,20	20,09	14,88	11,98	9,72
9,00	32,40	29,92	22,12	16,41	13,23	10,76
10,00	35,25	32,62	24,14	17,92	14,47	11,77
11,00	38,10	35,29	26,13	19,42	15,68	12,77

 Tabla A.1: Demanda por tipo de estrato y número de clientes (Parte I).

	ESTRATOS									
# De	"A1"	"A"	"B"	"C"	"D"	"E"				
	501-1000	311-500	181-310	111-180	61-110					
	kWh	kWh	kWh	kWh	kWh	kWh				
Clientes	DMD (kVA)									
12,00	40,94	37,98	28,13	20,91	16,89	13,76				
13,00	44,01	40,82	30,23	22,48	18,16	14,80				
14,00	46,85	43,50	32,23	23,97	19,37	15,79				
15,00	49,70	46,17	34,21	25,45	20,58	16,78				
16,00	52,55	48,82	36,18	26,92	21,77	17,75				
17,00	55,39	51,47	38,14	28,38	22,94	18,71				
18,00	58,24	54,13	40,12	29,86	24,14	19,69				
19,00	60,87	56,60	41,96	31,23	25,26	20,61				
20,00	63,93	59,40	44,02	32,75	26,48	21,60				
21,00	66,56	61,89	45,88	34,15	27,62	22,53				
22,00	69,41	64,52	47,83	35,59	28,79	23,48				
23,00	71,81	66,84	49,57	36,91	29,87	24,38				
24,00	72,25	67,78	50,40	37,66	30,58	25,06				
25,00	74,44	69,98	52,07	38,95	31,65	25,96				
26,00	78,82	73,65	54,69	40,80	33,07	27,04				
27,00	81,45	76,15	56,56	42,20	34,21	27,99				
28,00	85,17	79,35	58,86	43,85	35,50	28,98				
29,00	86,48	80,92	60,11	44,87	36,39	29,78				
30,00	89,11	83,34	61,90	46,20	37,46	30,65				
31,00	91,74	85,82	63,75	47,58	38,58	31,57				
32,00	94,37	88,29	65,59	48,96	39,70	32,49				
33,00	96,99	90,76	67,42	50,33	40,82	33,40				
34,00	99,40	93,00	69,09	51,57	41,82	34,22				
35,00	102,03	95,46	70,91	52,93	42,92	35,13				
36,00	104,44	97,76	72,64	54,23	43,99	36,00				
37,00	107,07	100,21	74,45	55,58	45,08	36,90				
38,00	109,47	102,50	76,17	56,87	46,14	37,77				
39,00	112,10	104,95	77,98	58,22	47,23	38,66				
40,00	114,51	107,23	79,68	59,50	48,27	39,52				
41,00	116,92	109,51	81,39	60,78	49,31	40,37				
42,00	119,33	111,79	83,08	62,05	50,35	41,23				
43,00	121,52	113,91	84,68	63,26	51,34	42,05				
44,00	124,14	116,33	86,47	64,59	52,41	42,92				
45,00	126,77	118,75	88,25	65,91	53,48	43,78				
46,00	129,18	121,10	90,03	67,26	54,59	44,71				
47,00	131,81	123,52	91,81	68,58	55,65	45,57				

Tabla A.2: Demanda por tipo de estrato y número de clientes (Parte II).

	ESTRATOS								
# De	"A1"	"A"	"B"	"C"	"D"	"E"			
	501-1000	311-500	181-310	111-180	61-110				
~	kWh	kWh	kWh	kWh	kWh	kWh			
Clientes	DMD (kVA)								
48,00	134,43	125,92	93,58	69,89	56,70	46,43			
49,00	136,62	128,02	95,15	71,07	57,67	47,23			
50,00	139,03	130,27	96,82	72,32	58,68	48,05			
51,00	141,66	132,77	98,69	73,72	59,83	49,00			
52,00	143,85	134,86	100,25	74,90	60,79	49,79			
53,00	146,04	136,94	101,81	76,07	61,74	50,58			
54,00	148,88	139,59	103,77	77,53	62,93	51,54			
55,00	151,07	141,66	105,32	78,69	63,88	52,33			
56,00	153,70	144,04	107,07	79,98	64,90	53,15			
57,00	155,89	146,23	108,73	81,25	65,96	54,04			
58,00	158,30	148,45	110,37	82,47	66,94	54,84			
59,00	161,15	150,97	112,20	83,80	68,00	55,68			
60,00	163,12	153,00	113,76	85,01	69,01	56,54			
61,00	165,52	155,21	115,39	86,22	69,98	57,33			
62,00	167,93	157,42	117,02	87,42	70,95	58,11			
63,00	170,34	159,75	118,77	88,74	72,04	59,02			
64,00	172,75	161,95	120,39	89,94	73,00	59,79			
65,00	175,16	164,27	122,14	91,26	74,09	60,70			
66,00	182,16	169,67	125,85	93,74	75,88	61,95			
67,00	184,57	172,00	127,60	95,06	76,96	62,85			
68,00	182,16	170,83	127,01	94,90	77,03	63,11			
69,00	184,57	173,15	128,75	96,22	78,12	64,01			
70,00	186,98	175,34	130,35	97,40	79,06	64,77			
71,00	189,39	177,66	132,10	98,72	80,14	65,66			
72,00	191,80	179,83	133,69	99,89	81,08	66,41			
73,00	194,21	182,15	135,43	101,20	82,16	67,31			
74,00	196,40	184,17	136,92	102,31	83,05	68,03			
75,00	198,80	186,49	138,66	103,62	84,12	68,93			
76,00	200,99	188,50	140,15	104,72	85,01	69,64			
77,00	203,40	190,82	141,88	106,03	86,08	70,53			
78,00	205,59	192,82	143,36	107,12	86,96	71,24			
79,00	208,00	195,13	145,09	108,43	88,03	72,13			
80,00	210,19	197,13	146,57	109,52	88,91	72,84			
81,00	212,71	199,52	148,35	110,86	90,00	73,74			
82,00	215,23	201,74	149,97	112,03	90,92	74,47			

 Tabla A.3: Demanda por tipo de estrato y número de clientes (Parte III).

	ESTRATOS										
# De	"A1"	"A"	"B"	"C"	"D"	"E"					
	501-1000	311-500	181-310	111-180	61-110						
	kWh	kWh	kWh	kWh	kWh	kWh					
Clientes	DMD (kVA)										
83,00	217,09	203,67	151,45	113,18	91,89	75,30					
84,00	218,95	205,60	152,93	114,34	92,86	76,13					
85,00	221,14	207,58	154,38	115,41	93,72	76,82					
86,00	223,33	209,74	156,01	116,65	94,75	77,68					
87,00	225,52	211,72	157,47	117,72	95,60	78,36					
88,00	227,71	213,87	159,09	118,96	96,62	79,22					
89,00	230,99	216,61	161,04	120,32	97,67	80,01					
90,00	234,27	219,52	163,16	121,87	98,89	80,98					
91,00	236,46	221,67	164,79	123,11	99,92	81,84					
92,00	238,65	223,64	166,22	124,16	100,75	82,51					
93,00	240,84	225,79	167,85	125,40	101,78	83,36					
94,00	243,03	227,93	169,47	126,63	102,80	84,22					
95,00	245,22	229,89	170,90	127,68	103,63	84,88					
96,00	247,41	232,04	172,52	128,91	104,65	85,73					
97,00	249,60	233,99	173,94	129,95	105,47	86,39					
98,00	251,79	236,13	175,56	131,18	106,49	87,24					
99,00	253,98	238,28	177,18	132,41	107,50	88,09					
100,00	256,17	240,22	178,59	133,44	108,32	88,74					
101,00	258,36	242,36	180,21	134,67	109,33	89,58					
102,00	260,55	244,51	181,83	135,90	110,35	90,43					
103,00	262,74	246,44	183,23	136,93	111,16	91,07					
104,00	264,93	248,58	184,85	138,15	112,17	91,92					
105,00	267,12	250,72	186,46	139,38	113,18	92,76					
106,00	269,31	252,65	187,86	140,40	113,98	93,40					
107,00	271,49	254,79	189,47	141,62	114,99	94,24					
108,00	273,68	256,93	191,09	142,85	116,01	95,08					
109,00	275,87	258,84	192,48	143,85	116,80	95,71					
110,00	278,06	260,98	194,09	145,08	117,81	96,55					
111,00	280,25	263,12	195,70	146,30	118,81	97,39					
112,00	282,44	265,25	197,31	147,53	119,82	98,23					
113,00	284,63	267,16	198,69	148,52	120,61	98,85					
114,00	286,82	269,30	200,30	149,74	121,61	99,69					
115,00	289,01	271,43	201,90	150,97	122,62	100,53					
116,00	291,20	273,33	203,28	151,95	123,39	101,13					
117,00	293,39	275,47	204,88	153,17	124,40	101,97					

 Tabla A.4: Demanda por tipo de estrato y número de clientes (Parte IV).

	ECTRATOS										
# De	"A1"	" • "	E51K "R"	A105 "C"	ייחיי	"F"					
" DC	501-1000	311-500	181-310	111-180	61-110	Е					
	kWh	kWh	kWh	kWh	kWh	kWh					
Clientes	DMD (kVA)	DMD (kVA)	DMD (kVA)	DMD (kVA)	DMD (kVA)	DMD (kVA)					
118.00	295.58	277.60	206.49	154.39	125.40	102.81					
119.00	297.77	279.73	208.10	155.61	126.41	103.65					
120.00	299,96	281.62	209.46	156.59	127.17	104.24					
121,00	302,15	283,75	211,06	157,81	128,17	105,08					
122,00	304,34	285,88	212,67	159,03	129,18	105,91					
123,00	306,53	287,76	214,02	160,00	129,93	106,50					
124,00	308,72	289,89	215,62	161,21	130,93	107,33					
125,00	310,91	292,02	217,23	162,43	131,93	108,17					
126,00	313,09	294,15	218,83	163,64	132,94	109,00					
127,00	315,28	296,02	220,17	164,60	133,68	109,58					
128,00	317,47	298,15	221,77	165,82	134,68	110,41					
129,00	319,66	300,27	223,37	167,03	135,68	111,24					
130,00	321,85	302,40	224,97	168,24	136,68	112,07					
131,00	324,04	304,26	226,31	169,19	137,41	112,64					
132,00	326,23	306,39	227,90	170,41	138,41	113,47					
133,00	328,42	308,51	229,50	171,62	139,41	114,30					
134,00	330,61	310,64	231,10	172,83	140,40	115,13					
135,00	332,80	312,49	232,43	173,77	141,13	115,69					
136,00	334,99	314,61	234,02	174,98	142,12	116,52					
137,00	337,18	316,73	235,62	176,19	143,12	117,34					
138,00	339,37	318,86	237,21	177,40	144,11	118,17					
139,00	341,56	320,70	238,53	178,33	144,83	118,72					
140,00	343,75	322,82	240,12	179,53	145,82	119,54					
141,00	345,94	324,94	241,72	180,74	146,81	120,37					
142,00	348,13	327,06	243,31	181,95	147,81	121,20					
143,00	350,32	328,89	244,61	182,87	148,51	121,73					
144,00	352,51	331,01	246,21	184,08	149,50	122,56					
145,00	354,69	333,13	247,80	185,28	150,49	123,38					
146,00	356,88	335,25	249,39	186,49	151,49	124,20					
147,00	359,07	337,07	250,68	187,40	152,18	124,73					
148,00	361,26	339,18	252,27	188,60	153,17	125,55					
149,00	363,45	341,30	253,86	189,80	154,16	126,37					
150,00	365,64	343,42	255,45	191,01	155,15	127,20					

 Tabla A.5: Demanda por tipo de estrato y número de clientes (Parte V).

A.2. Flujograma para flujos de potencia^[13]

A.3. Código del algoritmo Dijkstra

```
1 using DevExpress.Utils;
 2 using System;
3 using System.Collections.Generic;
 4 using System.Linq;
 5 using System. Text;
6 using System. Threading. Tasks;7 using System. Windows. Forms;
8
 9 namespace DXApplication1. Clases
10 {
11
         class Clase_algoritmo_Dijkstra
12
        {
             // Declaración de los arreglos a utilizar
static double[,] _Distancia;
static bool[,] _Visitado;
public double[,] Ruta_minima(int[] Vertice_i, int[] Vertice_j, double
15
16
                   [] Pesos)
17
18
              {
                   List <double > D = new List <double >();
List <double > Peso_Aux = new List <double >();
19
20
                   List <int > Nodo_Aux = new List <int >();
List <double > Valor = new List <double >();
21
23
                   List <int > Valor_nodo = new List <int >();
24
25
                   List <int > List_num_nodos = new List <int >();
                   // 1. Declaración de variables
int num_nodos = 0;
double inf = 1000000000;
26
27
28
29
                   int nodo_fuente = 0;
30
31
                   // 2. Determinación del número de nodos
32
33
                   for (int i = 0; i < Pesos.Length; i++)
34
                   {
35
                        List_num_nodos.Add(Vertice_j[i]);
36
                        List_num_nodos.Add(Vertice_i[i]);
37
                   }
39
                   num nodos = List num nodos.Max() + 1;
40
41
                   // 3. Declaración del tamaño de los arreglos
42
43
                   GlobalVar.Distancia = new double[1, num_nodos];
44
                   GlobalVar.Visitado = new bool[1, num_nodos];
45
                   // 5. Formación de la matriz de adyacencia
46
47
48
                   double[,] matriz_ady = new double[num_nodos, num_nodos];
                   int[,] p = new int[1, num_nodos];
for (int i = 0; i < num_nodos; i++)</pre>
49
50
51
                   {
52
                        for (int j = 0; j < num_nodos; j++)
53
                        {
54
                             if (i == j) matriz_ady[i, j] = 0;
55
                             else matriz_ady[i, j] = inf;
56
                        }
57
                   }
58
59
                   for (int i = 0; i < Vertice_i.Length; i++)
60
                   {
61
                        int a = Vertice_i[i];
62
                        int b = Vertice_j[i];
                        matriz_ady[a, b] = Pesos[i];
63
                   }
65
66
                   //4. Inicialización de los arreglos
67
68
                   for (int i = 0; i < num_nodos; i + +)
                   {
70
```

```
GlobalVar.Distancia[0, i] = matriz_ady[nodo_fuente, i];
GlobalVar.Visitado[0, i] = false;
GlobalVar.Distancia[0, nodo_fuente] = 0;
GlobalVar.Visitado [0, nodo_fuente] = true;
int num nodosvisitados = 0;
for (int i = 0; i < num_nodos; i + +)
{
    if (GlobalVar.Visitado[0, i] == true)
    {
        num_nodosvisitados = num_nodosvisitados + 1;
    }
}
int vertice;
// Implementación del Algoritmo
while (num_nodosvisitados != num_nodos)
{
    for (int i = 0; i < num_nodos; i + +)
    {
        if (GlobalVar.Visitado[0, i] == false)
        {
             Peso_Aux.Add(GlobalVar.Distancia[0, i]);
             Nodo_Aux.Add(i);
        }
    }
    vertice = Nodo_Aux[Peso_Aux.IndexOf(Peso_Aux.Min())];
    GlobalVar.Visitado[0, vertice] = true;
    Peso_Aux . Clear ();
    Nodo Aux. Clear();
    for (int w = 0; w < num_nodos; w++)</pre>
    {
        if (matriz_ady[vertice, w] != 0 & matriz_ady[vertice, w]
              != inf)
        {
             double valor = GlobalVar.Distancia[0, vertice] +
                 matriz_ady[vertice, w];
             Valor.Add(valor);
             Valor_nodo.Add(w);
             if (GlobalVar.Distancia[0, w] > valor)
             {
                 GlobalVar.Distancia[0, w] = valor;
                 p[0, w] = vertice;
             }
        }
    }
Valor_nodo.Clear();
Clear();
    Valor.Clear();
    num_nodosvisitados = 0;
    for (int i = 0; i < num_nodos; i++)
    {
        if (GlobalVar.Visitado[0, i] == true)
        {
             num_nodosvisitados = num_nodosvisitados + 1;
        }
    }
// Cálculo de los nodos de la secuencia que componen el camino
     mínimo.
double[,] Solucion = new double[num_nodos - 1, 3];
for (int w = 1; w < num_nodos; w++)
{
    int n = p[0, w];
Solucion[w - 1, 0] = n;
Solucion[w - 1, 1] = w;
    Solucion[w - 1, 2] = matriz_ady[n, w];
}
```

78 79

80

81 82

83

84

85

86 87

88 89

90

91

92

93 94

95

96

97

98

99

100

103 104

106

107

108

109

114 115

116

119 120

124

125

126

127

129

130

133 134

140

```
142
                  return Solucion:
143
             }
144
             public static class GlobalVar
145
146
                   public static double[,] Distancia
147
                       get { return _Distancia; }
148
                       set { _Distancia = value; }
149
150
151
                  public static bool[,] Visitado
                       get { return _Visitado; }
set { _Visitado = value; }
154
155
                  }
156
             }
157
        }
158 }
```

A.4. Código para determinar la demanda según el número de clientes

```
    using System;
    using System. Collections. Generic;

 3 using System.IO;
 4 using System.Linq;
 5 using System. Text;
6 using System. Threading. Tasks;7 using System. Windows. Forms;
8 using SpreadsheetLight;
0
10 namespace DXApplication1. Clases
11 {
12
        class Clase_demanda_maxima_residencial
       {
14
            public double Metodo_Demanda_maxima(String estrato, int num_usuarios)
15
16
            {
17
                 String Ruta_Excel = Path. Combine(Application. StartupPath, @"
                       Base_de_Datos \ Demanda_máxima_diversificada_ [kVA]. x1sx ");
                 FileStream fs = new FileStream(Ruta_Excel, FileMode.Open,
FileAccess.Read, FileShare.ReadWrite);
SLDocument s1 = new SLDocument(fs);
18
19
20
21
                 double demanda_max = 0;
                 if (estrato.Equals("Estrato_A1"))
24
                 {
25
                     demanda_max = Convert.ToDouble(s1.GetCellValueAsString(
                           num_usuarios +4, 2));
26
                 }
27
                 if (estrato_Equals("Estrato_A"))
28
29
                 {
                     demanda_max = Convert.ToDouble(s1.GetCellValueAsString(
30
                           num_usuarios + 4, 3));
31
                 }
32
                 if (estrato_Equals("Estrato_B"))
34
                 {
35
                      demanda_max = Convert.ToDouble(s1.GetCellValueAsString(
                           num\_usuarios + 4, 4));
36
                 }
37
38
                 if (estrato.Equals("Estrato_C"))
39
                 {
                      demanda_max = Convert.ToDouble(s1.GetCellValueAsString(
40
                           num_usuarios + 4, 5));
41
                 }
42
43
                 if (estrato_Equals("Estrato_D"))
```

```
44
               {
                    demanda_max = Convert.ToDouble(s1.GetCellValueAsString(
45
                         num_usuarios + 4, 6));
46
               }
47
                if (estrato.Equals("Estrato_E"))
48
49
               {
50
                    demanda_max = Convert.ToDouble(s1.GetCellValueAsString(
                         num\_usuarios + 4, 7));
51
               }
52
53
               return demanda_max;
54
           }
55
           }
56 }
```

A.5. Código para calcular flujos de potencia

```
1 using System;
 2 using System. Collections. Generic;
 3 using System.Linq;
 4 using System. Text;
 5 using System. Threading. Tasks;
 7 namespace DXApplication1. Clases
 8 {
 9
          class Clase_flujos_de_potencia
          {
                {
                      Clase_caidas_de_voltaje D = new Clase_caidas_de_voltaje();
14
                      int num_nodos = nodo_i.Length;
15
16
                      double[] L_j = new double[num_nodos];
17
                      double[] S_nj = new double[num_nodos];
                      double[] P_nj = new double[num_nodos];
18
                     double[] Q_nj = new double[num_nodos];
double[] P_nij = new double[num_nodos];
double[] Q_nij = new double[num_nodos];
double[] Q_nij = new double[num_nodos];
19
20
21
22
23
                      double[] X_nj = new double[num_nodos];
24
25
                      double[] DP_nj = new double[num_nodos];
                     double[] DQ_nj = new double[num_nodos];
double[] DQ_nnuevoj = new double[num_nodos];
double[] DQ_nnuevoj = new double[num_nodos];
double[] DV_nij = new double[num_nodos];
double[] DV_nij1 = new double[num_nodos];
26
28
29
30
                     double[] DV_nj = new double[num_nodos];
double[] DV_porcetual = new double[num_nodos];
double[] KDP_nj = new double[num_nodos];
double[] P_ni = new double[num_nodos];
31
32
33
34
                      double [] Q_ni = new double [num_nodos];
double [] S_ni = new double [num_nodos];
35
36
                      double Te = 8760 * fc:
38
                      int[,] matriz_incidencia = new int[num_nodos, num_nodos];
39
40
41
                      for (int i = 0; i < num_nodos; i++)
42
                      {
43
                            //demanda[i] = demanda[i] * fc;
                            \begin{split} P_nij[i] &= demanda[i] * fp; \\ Q_nij[i] &= demanda[i] * Math.Sin(Math.Acos(fp)); \end{split}
44
45
46
47
                      }
48
49
                      for (int i = 0; i < num_nodos; i++)
50
                      {
```

```
for (int j = 0; j < num_nodos; j++)
    {
        matriz_incidencia[j, i] = matriz_transpuesta[i, j];
    }
}
// DV_nij = D. metodo_Calculo_perdidas_voltaje_volt(L_nij, demanda,
     fp, voltaje, r, x, t_circuito); // volt
if (n_iteraciones == 1)
{
    for (int i = 0; i < num_nodos; i + +)
    {
        for (int j = 0; j < num_nodos; j++)
        {
            L_j[i] = L_j[i] + (L_nij[j] * matriz_transpuesta[i, j]
                  1):
             S_nj[i] = S_nj[i] + (demanda[j] * matriz_incidencia[i,
                   j]);
             P_nj[i] = P_nj[i] + (P_nij[j] * matriz_incidencia[i, j
                  ]);
             Q_nj[i] = Q_nj[i] + (Q_nij[j] * matriz_incidencia[i, j
                 ]);
        }
    }
    DP_nj = D.metodo_Calculo_perdidas_potencia(L_nij, S_nj, fp,
         voltaje, r, x, t_circuito);
    DV_nij = D. metodo_Calculo_perdidas_voltaje_volt(L_nij, S_nj,
         fp, voltaje, r, x, t_circuito); // volt
    DQ_nj = D.metodo_Calculo_perdidas_potencia(L_nij, S_nj, fp, voltaje, r, x, t_circuito);
    for (int i = 0; i < num_nodos; i + +)
    {
        KDP_nj[i] = DP_nj[i] * (cp * Te + Ka[i] * L_j[i]);
    }
    for (int i = 0; i < num_nodos; i++)
    {
        for (int k = 0; k < num_nodos; k++)
        {
            DV_nj[i] = DV_nj[i] + (DV_nij[k] * matriz_transpuesta[
                  i, k]);
        }
        DV_porcetual[i] = ((voltaje / 1) - ((voltaje / 1) - DV_nj[
i])) * 100 / (voltaje / 1);
    }
}
else if (n_iteraciones == 2)
{
    //iteracion 1
    for (int i = 0; i < num_nodos; i++)
    {
        for (int j = 0; j < num_nodos; j ++)
        {
            L_j[i] = L_j[i] + (L_nij[j] * matriz_transpuesta[i, j
                  ]);
             S_nj[i] = S_nj[i] + (demanda[j] * matriz_incidencia[i,
                   j]);
             P_nj[i] = P_nj[i] + (P_nij[j] * matriz_incidencia[i, j
                  ]);
```

58 59

60 61 62

63 64

65

66

67

69

70

72

73 74 75

76 77

78

79

80 81

82 83

84

85

86 87

88

89 90

91 92

93

94

95

96 97

98

99 100

104

105

106

112	$Q_nj[i] = Q_nj[i] + (Q_nij[j] * matriz_incidencia[i, j]);$ 120	
114	}	
115		
116	}	
117		
118	$DP_n i = D.metodo_Calculo_perdidas_potencia(L_n i j, S_n j, fp,$	
119	voltaje, r, x, t_circuito); DV_nij = D.metodo_Calculo_perdidas_voltaje_volt(L_nij, S_nj,	
120	<pre>Ip, voltaje, r, x, t_circuito); //volt DQ_nj = D.metodo_Calculo_perdidas_potencia(L_nij, S_nj, fp, voltaje, r, x, t_circuito);</pre>	
121		
122	for (int $i = 0$; $i < num_nodos$; $i++$)	
123	{	
124	$KDP_n[i] = DP_n[i] * (cp * Te + Ka[i] * L_j[i]);$	
125	}	
126		
127	for $(int i = 0; i < num_nodos; i++)$	
128	{	
129		
130	for (int $k = 0$; $k < num_nodos$; $k++$)	
131	{	
132	<pre>DV_nj[i] = DV_nj[i] + (DV_nij[k] * matriz_transpuesta[</pre>	
133	}	
135	DV_porcetual[i] = ((voltaje / 1) - ((voltaje / 1) - DV_nj[i])) * 100 / (voltaje / 1);	
136	}	
137	// fin iteracion 1	
138		
139	// iteracion 2	
140	for (int $i = 0$; $i < num_nodos$; $i++$)	
141	{	
142	$P_n[i] = demanda[i] * fp + DP_n[i];$	
143	$Q_n[i] = demanda[i] * Math.Sin(Math.Acos(fp)) + DQ_nj[i];$	
144		
145	}	
146		
147	for $(1nt \ 1 = 0; \ 1 < num_nodos; \ 1++)$	
148		
149	$P_{-n}[1] = 0;$	
150	$Q_{-n}[1] = 0;$	
151	$S_n [1] = 0;$	
152	for (int i = 0; i < num nodos, itt)	
155	$f(1) = 0, j < num_nodos, j++)$	
155	l	
156	P_nj[i] = P_nj[i] + (P_ni[j] * matriz_incidencia[i, j]);	
157	Q_nj[i] = Q_nj[i] + (Q_ni[j] * matriz_incidencia[i, j]);	
150		
159 160	$\begin{cases} S_nj[i] = Math.Sqrt(Math.Pow(P_nj[i], 2) + Math.Pow(Q_nj[i], 2)); \end{cases}$	
161		
162	}	
163		
164	<pre>DP_nj = D.metodo_Calculo_perdidas_potencia(L_nij, S_nj, fp, voltaje, r, x, t_circuito);</pre>	
165	<pre>DV_nij = D.metodo_Calculo_perdidas_voltaje_volt(L_nij, S_nj, fp, voltaje, r, x, t_circuito); //volt DO ni = D.metodo_Calculo_perdidas_potencia(L_nii_S_ni_fn)</pre>	
167	voltaje, r, x, t_circuito);	
168	for (int $i = 0$; $i < num_nodos$; $i++$)	
169	{	
170	$KDP_nj[i] = DP_nj[i] * (cp * Te + Ka[i] * L_j[i]);$	
171	}	
172		
173	<pre>for (int i = 0; i < num_nodos; i++)</pre>	

```
174
                      {
175
                           DV_nj[i] = 0;
176
                           for (int k = 0; k < num_nodos; k++)
                           {
                               DV_nj[i] = DV_nj[i] + (DV_nij[k] * matriz_transpuesta[
                                     i, k]);
179
                           }
180
                           DV_porcetual[i] = ((voltaje / 1) - ((voltaje / 1) - DV_nj[
i])) * 100 / (voltaje / 1);
181
182
                      }
183
                      // fin iteracion 2
184
185
186
                  }
187
188
                  else if (n_iteraciones > 2)
189
                  {
                      //iteracion 1
190
191
                      for (int i = 0; i < num_nodos; i++)
192
                      {
193
                           for (int j = 0; j < num_nodos; j++)
                           {
                               L_j[i] = L_j[i] + (L_nij[j] * matriz_transpuesta[i, j
196
                                     1):
                                S_nj[i] = S_nj[i] + (demanda[j] * matriz_incidencia[i,
197
                                      j]);
198
                                P_nj[i] = P_nj[i] + (P_nij[j] * matriz_incidencia[i, j
                                     ]);
                                Q_nj[i] = Q_nj[i] + (Q_nij[j] * matriz_incidencia[i, j
                                     ]);
200
201
                           R_nj[i] = L_j[i] * r[i];

X_nj[i] = L_j[i] * x[i];
202
203
205
                      }
206
207
                      DP_nj = D. metodo_Calculo_perdidas_potencia(L_nij, S_nj, fp,
                            voltaje, r, x, t_circuito);
                      DV_nij = D.metodo_Calculo_perdidas_voltaje_volt(L_nij, S_nj,
                      fp, voltaje, r, x, t_circuito); // volt
DQ_nj = D.metodo_Calculo_perdidas_potencia(L_nij, S_nj, fp,
209
                            voltaje, r, x, t_circuito);
                      for (int i = 0; i < num_nodos; i++)
212
                      {
                           for (int k = 0; k < num_nodos; k++)
215
                           {
216
                               DV_nj[i] = DV_nj[i] + (DV_nij[k] * matriz_transpuesta[
                                     i, k]);
                           }
218
                           DV_porcetual[i] = ((voltaje / 1) - ((voltaje / 1) - DV_nj[
i])) * 100 / (voltaje / 1);
219
220
                      }
221
                      // fin iteracion 1
222
                     // iteracion 2
223
                      for (int i = 0; i < num_nodos; i++)
224
                      {
                           P_ni[i] = demanda[i] * fp + DP_nj[i];
                           Q_{ni}[i] = demanda[i] * Math. Sin(Math. Acos(fp)) + DQ_{nj}[i];
226
227
                      }
228
229
                      for (int i = 0; i < num_nodos; i++)
230
                      {
                           P_n j[i] = 0;
                           Q_n j[i] = 0;
233
                           S_nj[i] = 0;
234
                           for (int j = 0; j < num_nodos; j++)
236
                           {
```

238 $P_nj[i] = P_nj[i] + (P_ni[j] * matriz_incidencia[i, j])$]); Q_nj[i] = Q_nj[i] + (Q_ni[j] * matriz_incidencia[i, j]); 240 241 } 242 243 $S_nj[i] = Math.Sqrt(Math.Pow(P_nj[i], 2) + Math.Pow(Q_nj[i])$], 2)); 244 245 } 246 247 DP_nnuevoj = D. metodo_Calculo_perdidas_potencia(L_nij, S_nj, fp, voltaje, r, x, t_circuito); 248 DV_nij = D. metodo_Calculo_perdidas_voltaje_volt(L_nij, S_nj, fp, voltaje, r, x, t_circuito); // volt DQ_nnuevoj = D. metodo_Calculo_perdidas_potencia(L_nij, S_nj, 249 fp, voltaje, r, x, t_circuito); 250 251 for (int i = 0; $i < num_nodos$; i + +) 252 { 253 $DV_nj[i] = 0;$ for (int k = 0; $k < num_nodos$; k++) 255 { 256 DV_nj[i] = DV_nj[i] + (DV_nij[k] * matriz_transpuesta[i, k]); 257 } DV_porcetual[i] = ((voltaje / 1) - ((voltaje / 1) - DV_nj[i])) * 100 / (voltaje / 1); 260 } 261 262 // fin iteracion 2 263 264 for (int h = 1; $h < n_{iteraciones} - 2$; h++) 265 { for (int i = 0; $i < num_nodos$; i++) 266 267 { 268 269 270 for (int i = 0; $i < num_nodos$; i + +) { 273 $DP_nj[i] = 0;$ 274 $DQ_nj[i] = 0;$ $DP_nj[i] = DP_nnuevoj[i];$ $DQ_nj[i] = DQ_nnuevoj[i];$ 275 277 } 278 279 for (int i = 0; $i < num_nodos$; i + +) 280 { 281 $P_nj[i] = 0;$ 282 $Q_n j[i] = 0;$ 283 284 for (int j = 0; $j < num_nodos$; j++) 285 { 286 287 P_nj[i] = P_nj[i] + (P_ni[j] * matriz_incidencia[i , j]); Q_nj[i] = Q_nj[i] + (Q_ni[j] * matriz_incidencia[i 288 , j]); 289 290 } 291 292 $S_nj[i] = Math.Sqrt(Math.Pow(P_nj[i], 2) + Math.Pow($ Q_nj[i], 2)); 293 294 } 295 296 for (int i = 0; i < num_nodos; i++) 297 { $DV_nij[i] = 0;$ 298

```
299
                                     DP_nnuevoj[i] = 0;
300
                                    DQ_nnuevoj[i] = 0;
301
                               }
302
303
                               DP_nnuevoj = D. metodo_Calculo_perdidas_potencia(L_nij,
                               D1_indevoj = D.indevoj_culculo_perdidus_potentu (L_ini),
S_nj, fp, voltaje, r, x, t_circuito);
DV_nij = D.metodo_Calculo_perdidus_voltaje_volt(L_nij,
S_nj, fp, voltaje, r, x, t_circuito); // volt
DQ_nnuevoj = D.metodo_Calculo_perdidus_potencia(L_nij,
304
305
                                      S_nj, fp, voltaje, r, x, t_circuito);
306
307
                               for (int i = 0; i < num_nodos; i++)
308
                               {
309
                                    KDP_nj[i] = DP_nj[i] * (cp * Te + Ka[i] * L_j[i]);
                               }
                               for (int i = 0; i < num_nodos; i + +)
                               {
                                    DV_nj[i] = 0;
                                    DV_porcetual[i] = 0;
315
316
                                     for (int k = 0; k < num_nodos; k++)
317
                                     {
318
                                          DV_nj[i] = DV_nj[i] + (DV_nij[k] *
                                                matriz_transpuesta[i, k]);
319
                                    }
                                    DV_porcetual[i] = ((voltaje / 1) - ((voltaje / 1) -
DV_nj[i])) * 100 / (voltaje / 1);
321
322
                               }
324
                          }
326
                          for (int i = 0; i < num_nodos; i + +)
328
329
                               DP_nj[i] = DP_nnuevoj[i];
330
                               DQ_nj[i] = DQ_nnuevoj[i];
331
                          }
332
333
                    }
                    double[,] Flujo_potencia_it1 = new double[num_nodos, 12];
336
337
                    for (int i = 0; i < num_nodos; i++)
338
                    {
339
340
                          Flujo_potencia_it1[i, 0] = L_j[i];
                          Flujo_potencia_it1[i, 1] = S_nj[i];

Flujo_potencia_it1[i, 2] = P_nj[i];
341
342
                           \begin{array}{l} Flujo\_potencia\_it1[i, 3] = Q\_nj[i];\\ Flujo\_potencia\_it1[i, 4] = R\_nj[i];\\ Flujo\_potencia\_it1[i, 5] = X\_nj[i];\\ \end{array} 
343
344
345
346
                          Flujo_potencia_it1[i, 6] = DP_nj[i];
347
                          Flujo_potencia_it1[i, 7] = DQ_nj[i];
                          349
350
351
352
                    return Flujo_potencia_it1;
               }
356
357
               public double[,] flujo_n_iteracion(double[,] Flujo_potencia_it1)
358
               {
359
                     int num_nodos = Flujo_potencia_it1.Length / 12;
360
                    double[,] Flujo_potencia_itn = new double[num_nodos, 12];
361
362
                    return Flujo_potencia_itn;
363
364
               }
365
366
         }
367 }
```


.25

A.8. Renumeración del sistema B para interconectar los sistemas A-B.

tectar 12

A.9. Renumeración del sistema A para interconectar los sistemas B-A.

A.10. Diagrama de protecciones al fallar el transformador del sistema de la subzona B.

4

P7

22

90

P15

₽

₽

A.11. Diagrama de protecciones al fallar el transformador del sistema de la subzona A.

A.16. Catalogo de conductores ACSR (Electrocables)

Nombre	Calibre	Sección	Sección	Diámetro	Resistencia	Cap. de
clave	AWG	Al	total	exterior	C.C. a 20žC	corriente
	ó MCM	mm^2	mm^2	mm.	ohms/Km	de Amp.
Turkey	6	13,30	15,46	5,,04	2,154	105
Swan	4	21,15	24,71	6,36	1,353	140
Sparrow	2	33,62	29,22	8,01	0,8507	184
Raven	1/0	53,49	62,38	10,11	0,5351	242
Quail	2/0	67,43	78,64	11,34	0,4245	276
Pigeon	3/0	85,01	99,23	12,75	0,3367	315
Penguin	4/0	107,20	125,10	14,31	0,2671	357
Waxwing	266,80	135,20	157,20	15,47	0,2126	449
Partridge	266,80	135,20	142,60	16,28	0,2117	457
Ostrich	300,00	152,00	176,70	17,28	0,1900	492
Piper	300,00	152,00	187,50	17,78	0,1902	490
Merlin	336,40	170,50	179,90	17,37	0,1686	519
Linnet	336,40	170,50	198,30	18,31	0,1671	529
Oriole	336,40	170,50	210,30	18,83	0,1666	535
Chickadee	397,50	201,42	212,50	18,87	0,1427	576
Brant	397,50	201,42	227,55	19,61	0,1418	584
Ibis	397,50	201,42	234,20	19,88	0,1414	587
Lark	397,50	201,42	248,40	20,44	0,1405	594
Pelikan	477,00	241,70	255,10	20,68	0,1189	646
Flicker	477,00	241,70	273,10	21,48	0,1175	655
Hawk	477,00	241,70	281,10	21,80	0,1175	659
Hen	477,00	241,70	298,10	22,40	0,1170	666
Heron	500,00	253,30	312,40	22,96	0,1141	694
Osprey	556,50	282,00	298,20	23,22	0,1015	711
Parakeet	556,50	282,00	318,52	23,22	0,1010	721
Dove	556,50	282,00	327,90	23,55	0,1007	726
Eagle	556,50	282,00	347,80	24,22	0,1001	734
Peacock	605	306,60	346,39	24,21	0,09420	760
Squab	605	306,60	356,45	24,54	0,09410	765
Teal	605	306,60	376,45	25,25	0,09402	773
Rook	636	322,30	364,00	24,82	0,08966	784
Grosbeck	636	322,30	374,70	25,15	0,89530	789