COMPENSACIÓN ÓPTIMA DE POTENCIA REACTIVA EN SISTEMAS ELÉCTRICOS DE TRANSMISIÓN MEDIANTE BÚSQUEDA ARMÓNICA

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO

CARRERA: INGENIERÍA ELÉCTRICA

Trabajo de titulación previo a la obtención del título de INGENIERO ELÉCTRICO

TEMA: COMPENSACIÓN ÓPTIMA DE POTENCIA REACTIVA EN SISTEMAS ELÉCTRICOS DE TRANSMISIÓN MEDIANTE BÚSQUEDA ARMÓNICA

AUTOR: PABLO ANDRES ACHIG SANTAMARIA

TUTOR: DIEGO FRANCISCO CARRIÓN GALARZA

Quito, enero 2019

Pablo Andres Achig Santamaria

COMPENSACIÓN ÓPTIMA DE POTENCIA REACTIVA EN SISTEMAS ELÉCTRICOS DE TRANSMISIÓN MEDIANTE BÚSQUEDA ARMÓNICA.

de transmisión mediante búsqueda armónica.

Pablo Andres Achig Santamaria (Y'1993-M'11). Realizó sus estudios secundarios en el colegio Técnico Salesiano Don Bosco, se graduó de Bachiller Técnico Industrial en Electricidad-Electrónica. Egresado de la Carrera de Ingeniería Eléctrica de la Universidad Politécnica Salesiana. Su trabajo se basa en la compensación óptima de potencia reactiva en sistemas eléctricos

Diego Francisco Carrión Galarza (Y'1981-M'12). Se graduó en Ingeniería Eléctrica de la Universidad Politécnica Salesiana, Ecuador en 2010 y en la actualidad está trabajando para lograr su título de doctor en ingeniería de la Universidad Politécnica Bolivariana – Medellín, Colombia. Es profesor e investigador de la Universidad Politécnica Salesiana – Quito, Ecuador. En la actualidad es miembro del grupo de investigación GIREI (Grupo de Investigación en Redes Eléctricas Inteligentes – Smart Grid

Universidad Politécnica Salesiana Ingeniería Eléctrica

Breve reseña historia e información de contacto:

pachig@est.ups.edu.ec

Dirigido por:

dcarrion@ups.edu.ec

Todos los derechos reservados:

Research Group).

Queda prohibida, salvo excepción prevista en la ley, cualquier forma de reproducción, difusión de este texto con fines académicos o investigativos por cualquier medio, con la debida notificación a los autores.

DERECHOS RESERVADOS ©2019 Universidad Politécnica Salesiana QUITO-ECUADOR

DECLARATORIA DE COAUTORÍA DEL DOCENTE TUTOR/A

Yo, Diego Francisco Carrión Galarza declaro que bajo mi dirección y asesoría fue desarrollado el trabajo de titulación "*Compensación Óptima de Potencia Reactiva en Sistemas Eléctricos de Transmisión Mediante Búsqueda Armónica*" realizado por Pablo Andres Achig Santamaria, obteniendo un producto que cumple con todos los requisitos estipulados por la Universidad Politécnica Salesiana para ser considerados como trabajo final de titulación.

Quito, enero de 2019

Diego Francisco Carrión Galarza Cédula de identidad: 1713703062

CESIÓN DE DERECHOS DE AUTOR

Yo, Pablo Andres Achig Santamaria, con documento de identificación N° 1722976089, manifiesto mi voluntad y cedo a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que soy autor/es del trabajo de grado intitulado: "*Compensación Óptima de Potencia Reactiva en Sistemas Eléctricos de Transmisión Mediante Búsqueda Armónica*", mismo que ha sido desarrollado para optar por el título de: Ingeniero Eléctrico, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en mi condición de autor me reservo los derechos morales de la obra antes citada. En concordancia, suscribo este documento en el momento que hago entrega del trabajo final en formato impreso y digital a la Biblioteca de la Universidad Politécnica Salesiana.

Firma

PABLO ACHIG

Pablo Andres Achig Santamaria Cédula: 1722976089 Quito, enero de 2019

1. ÍNDICE GENERAL

Resumen	1
Abstract	1
1. Introducción	2
2. Compensacion de Potencia Reactiva en Sistemas Electricos de Transmisión	4
2.1 Compensadores en Serie	5
2.2 Compensadores en Paralelo	5
2.3 Compensadores Combinados	5
3. Modelacion de Dispositivos FACTS	6
3.1 TSCS	6
3.2 SVC	6
3.3 UPFC	7
4. Metaheuristica de Búsqueda Armónica	7
5. Formulación del problema	9
6. Análisis de resultados	12
7. Conclusiones	18
8. Trabajos Futuros	19
9. Referencias	20
9.1 Anexos	24
10. Estado del Arte	26

2. ÍNDICE DE FIGURAS

Figura 1. Ubicación Óptima de FACTS en Sistemas Eléctricos de Transmisión Med	liante
Tecnicas de Optimización	4
Figura 2. Modelo Matemático de Dispositivos TCSC	6
Figura 3. Modelo Matemático de Dispositivos SVC y UPFC	6
Figura 4. Modelo de 14 barras de la IEEE	12
Figura 5. Ubicación de Dispositivos SVC en el Modelo de 14 Barras de la IEEE	13
Figura 6. Potencia Reactiva en el Modelo de 14 Barras de la IEEE	14
Figura 7. Perfil de Tensión en el Modelo de 14 Barras de la IEEE	14
Figura 8. Ángulo de Tensión en el Modelo de 14 Barras de la IEEE	15
Figura 9. Modelo de 30 barras de la IEEE	15
Figura 10. Ubicación de Dispositivos SVC en el Modelo de 30 Barras de la IEEE	16
Figura 11. Potencia Reactiva en el Modelo de 30 Barras de la IEEE	17
Figura 12. Perfil de Tensión en el Modelo de 30 Barras de la IEEE	17
Figura 13. Ángulo de Tensión en el Modelo de 30 Barras de la IEEE	18
Figura 14. Temática Estado del Arte	32
Figura 15. Formulación del Problema Estado del Arte	32
Figura 16. Solución Estado del Arte	32

3. ÍNDICE DE TABLAS

Tabla 1. Potencia Reactiva Flujo Óptimo de Potencia Sistema de 14 Barras GAMS13
Tabla 2. Capacidad de los Compensadores SVC en el Flujo Óptimo de Potencia Sistema
de 14 Barras GAMS14
Tabla 3. Porcentaje de Mejora de Potencia Reactiva Flujo Óptimo de Potencia Sistema de
14 Barras GAMS14
Tabla 4. Porcentaje de Mejora de Perfil de Tensión Flujo Óptimo de Potencia Sistema de
14 Barras GAMS15
Tabla 5. Potencia Reactiva Flujo Óptimo de Potencia Sistema de 30 Barras GAMS16
Tabla 6. Capacidad de los Compensadores SVC en el Flujo Óptimo de Potencia Sistema
de 30 Barras GAMS17
Tabla 7. Porcentaje de Mejora de Potencia Reactiva Flujo Óptimo de Potencia Sistema de
30 Barras GAMS17
Tabla 8. Porcentaje de Mejora de Perfil de Tensión Flujo Óptimo de Potencia Sistema de
30 Barras GAMS
Tabla 9. Datos Líneas de Transmisión Modelo de 14 Bus IEEE 24
Tabla 10. Datos de los Límites de Generación Modelo de 14 Bus IEEE 24
Tabla 11. Datos de Carga en Nodos Modelo de 14 Bus IEEE24
Tabla 12. Datos Líneas de Transmisión Modelo de 30 Bus IEEE24
Tabla 13. Datos de los Límites de Generación Modelo de 30 Bus IEEE 25
Tabla 14. Datos de Carga en Nodos Modelo de 30 Bus IEEE
Tabla 15. Matriz Estado del Arte

Compensación Óptima De Potencia Reactiva En Sistemas Eléctricos De Transmisión Mediante Búsqueda Armónica

Resumen

En este trabajo se presenta una metodología para la compensación de los sistemas eléctricos de potencia mejorando el perfil de tensión del sistema de potencia, para lo cual se realiza un análisis del comportamiento antes y después de la compensación mediante flujos óptimos de potencia AC en los modelos de 14 y 30 barras del IEEE. La compensación óptima de potencia reactiva se realizará mediante la ubicación de dispositivos FACTS SVC en las barras de un sistema de potencia, permitiendo mejorar la componente reactiva, el perfil de voltaje en los nodos y el ángulo de tensión. La modelación matemática de la compensación reactiva se realiza mediante la metaheurística conocida como "Búsqueda Armónica"; con el cual se minimiza los costos por la ubicación optima de dispositivos FACTS en el SEP, con restricciones de potencia nodal activa, reactiva y magnitud de voltaje. Finalmente, la compensación óptima en las barras de un SEP mejora el perfil de tensión y la calidad del servicio eléctrico.

Palabras Clave: Búsqueda Armónica, FACTS, Flujo de Potencia Óptimo, Perfil de Tensión, Compensación de Potencia Reactiva.

Abstract

This paper presents a methodology for the compensation of electrical power systems by improving the voltage profile of the power system, for which an analysis of the before behavior and after the compensation is carried out by means of optimal flows of AC power in the models of 14 and 30 bars of the IEEE. The optimal compensation of reactive power will be made by the location of FACTS devices in the bars of a power system, allowing to improve the reactive component, the voltage profile in the nodes and the voltage angle. The mathematical modeling of the reactive compensation will be done through the metaheuristic known as "Harmonic Search"; with which costs are minimized by the optimal location of FACTS devices in the SEP, with restrictions of active nodal power, reactive and magnitude of voltage. Finally, the optimal compensation in the bars of a SEP improves the voltage profile and the quality of the electric service.

Keywords: Harmony Search, FACTS, Optimal Power Flow, Voltage Profile, Optimal Location, Compensation of Reactive Power.

1. Introducción

Con el transcurso del tiempo el consume de energía eléctrica ha incrementado sustancialmente, por el contrario, la expansión de la generación y transmisión gravemente energía ha sido de condicionada, este condicionamiento ha sido debido a impedimentos ambientales limitaciones económicas. Como V resultado de estas limitaciones muchas líneas de transmisión de las se encuentran en sus límites máximos de operación, cargabilidad y estabilidad lo cual convierte en un factor limitante al sistema de transferencia de potencia [1].

La condición del sistema eléctrico de transmisión para trasladar energía eléctrica se ve severamente afectado por las diferentes limitaciones de estado dinámico o limitaciones de estado estacionario tales como: estabilidad dinámica. estabilidad transitoria. estabilidad angular, límites térmicos y magnitud de tensión. Estas restricciones y limitaciones son las que determinan los valores máximos de potencia eléctrica que se puede transmitir sin causar ningún desperfecto a los equipos eléctricos y a las líneas de transmisión [2].

En el principio, las restricciones en los medios de transferencia de potencia eléctrica se aligeraban por medio del reacondicionamiento e instalación de nuevas líneas de transmisión, generación y distribución eléctrica. Opcionalmente, los dispositivos (FACTS) o Sistemas Flexibles de Transmisión AC, puede llegar a cumplir las mismas metas sin alteraciones mayores en la red eléctrica. Los beneficios más importantes de los dispositivos FACTS son: menor costo de operación, inversión en la mantenimiento y transmisión, mayor confiabilidad y seguridad el sistema eléctrico de potencia, y aumento de la capacidad de transferencia de energía eléctrica [3].

Los dispositivos FACTS cuentan con la ventaja de variar el control de potencia reactiva y el control potencia activa y así poder ajustarse al mismo tiempo al control de magnitud de voltaje debido a su control rápido y su gran elasticidad. La ubicación óptima y adecuada de estos dispositivos no permite contar con los beneficios propios de los dispositivos FACTS [4].

dispositivos FACTS también Los conocidos como Sistemas Flexibles de Transmisión AC, tienen la característica brindar una gran mejoría de al incrementar la capacidad de transmisión eléctrica del sistema y la elasticidad del control del flujo de potencia eléctrica [5]. dispositivos Los FACTS son mediante convertidores la implementación de sistema un electrónico de potencia que tiene las condiciones de controlar una gran variedad de parámetros eléctricos en sistemas de transmisión eléctrica e instalaciones, tanto en el flujo de potencia en estado dinámico en estado estacionario [6]. Los tipos de FACTS Compensador son: Estático (STATCOM), Compensador Estático de Potencia Reactiva (SVC), Compensador de Serie Controlado por Tiristor (TCSC), Controlador de Flujo de Potencia Unificado (UPFC) y otros [7].

El dispositivo FACT más utilizado en las redes de los sistemas eléctrico de potencia es el SVC, esto es debido a su excelente desempeño mejorando la estabilidad de la red. Este dispositivo es un compensador estático de potencia reactiva conectado en paralelo con una salida variable, la cual os permite el intercambio de corriente tanto capacitiva como inductiva para así proporcionar con estabilidad de tensión en el sistema eléctrico de potencia. Al instalar en una ubicación óptimo el dispositivo SVC nos permite disminuir las pérdidas de energía en el sistema eléctrico [8].

dispositivo STATCOM es El un controlador estático de derivación y además es uno de los compensadores más fundamentales de los FACTS, ya que dichos dispositivos se utilizan cada vez con ms frecuencia en líneas de transmisión largas en sistemas eléctricos de potencia actuales [9]. Los dispositivos STATCOM pueden contar con varias funcionalidades dependiendo la aplicación funcionamiento, en el operación y control del SEP, como en la disminución de la cantidad de componentes asimétricos aue amortiguan las variaciones y oscilaciones de potencia eléctrica mejorando así la estabilidad transitoria del sistema, también ayudan con la programación del flujo óptimo de potencia [10].

mayores beneficios de Los la compensación de potencia reactiva van a de depender de la ubicación optima y la capacidad de los compensadores. La instalación y ubicación de dispositivos FACTS en todas las barras del sistema eléctrico de potencia es indebido e innecesario debido a sus consideraciones económicas [11]. La determinación de la mejor ubicación de los controladores estáticos de potencia reactiva involucra el cálculo de las circunstancias de estado estacionario para la red del sistema eléctrico de potencia. No obstante, la complejidad del problema aumenta debido a la no linealidad de las ecuaciones del flujo de carga [12].

Se utilizan una gran variedad de metodologías para optimizar la colocación de los Sistemas Flexibles de Transmisión AC en la red. Estas metodologías pueden ser [13]:

- Análisis de costos utilizando el flujo óptimo de potencia.
- Análisis de estabilidad de tensión.
- Análisis de sensibilidad de pérdidas.

Las metodologías de optimización heurística han sido extensamente aplicadas en la solución del problema de la colocación y ubicación optima de STATCOM. SVC v En esta investigación se presenta un análisis detallado de las metodologías de optimización heurística para la colocación óptima de STATCOMs y SVCs. Este estudio adjunta importantes metodologías de optimización heurística. tales como: Búsqueda (HS), Optimización Armónica de Enjambre de Partículas (PSO), Recocido Simulado (SA), Algoritmos Genéticos (GA) y algoritmos de estrategias de evolución (ES) [14]. Últimamente las metodologías de optimización heurística se han convertido en la opción más óptima para resolver problemas con gran complejidad que dado de otro modo sería muy dificultoso resolverlos por otras metodologías tradicionales [15]. En los últimos tiempos, se ha venido evolucionando varias metodologías de optimización a nivel mundial, las cuales están basadas en analogías inspiradas en la naturaleza. La mayoría de estas metodologías heurísticas están basadas en la población, las cuales son conocidas también como algoritmos de propósito general debido a su gran y variada aplicación en una distinta cantidad de problemas [16-25].

A continuación se observa en la figura 1 la ubicación óptima de FACTS en el sistema eléctrico de potencia mediante técnicas de optimización.

Figura 1. Ubicación óptima de FACTS en el sistema eléctrico de potencia mediante técnicas de optimización.

En esta investigación se propone un procedimiento que permite comprobar y validar el proceder del flujo óptimo en eléctricos sistemas de potencia. proponiendo un caso de estudio de optimización para mejorar la compensación reactiva en el SEP mediante la ubicación optima de FACTS. mediante la cual es posible mejorar la componente reactiva en un SEP, el perfil de tensión en los nodos de un SEP y el ángulo de la tensión. Para ello se utilizará computacionales herramientas como Matlab y GAMS, que nos ayudaran a presentar un análisis técnico del sistema eléctrico de transmisión planteado

Se pretende realizar la compensación reactiva en un flujo óptimo AC en los modelos propuesto de 14 y 30 barras del IEEE, mediante la utilización de la metaheurística Búsqueda Armónica la cual coloca óptimamente los FACTS. Para ello se hará uso de un Flujo de Potencia Optimo, para calcular los flujos reactivos del sistema. Los cuales servirán para realizar una optimización basada en costos de instalación de los dispositivos FACTS.

A continuación esta investigación está desarrollada de la siguiente forma. En la parte se trata acerca de la Π compensación óptima de potencia reactiva en un SEP, el cual es el objeto de estudio del presente documento. En la parte III se detalla el formulamiento del caso de estudio mediante el algoritmo de optimización planteado. En la parte IV se examina el resultado de la modelación obtenida en la presente investigación. Se concluye esta investigación en la parte V con las conclusiones obtenidas del estudio.

2. Compensación de Potencia Reactiva en Sistemas Eléctricos de Transmisión.

En la actualidad existen varias clases de controladores, los cuales se clasifican según su manera de instalación y conexión a la red del sistema eléctrico de potencia, tales como: Compensadores Compensadores Serie Paralelo, V Compensadores Combinados es decir serie y paralelo. A continuación se muestran algunos tipos de compensadores.

2.1 Compensadores en serie.

controladores Los serie están representados como una impedancia cambiable o como un reactor. El compensador serie introduce un voltaje a la línea de transmisión dado a su comportamiento como una impedancia cambiable, incrementada por la corriente introducida a la línea de transmisión. De la misma forma la tensión está alineada la corriente, el compensador con introduce potencia reactiva a la línea. Existen otras combinaciones posibles las cuales dependerán de la transferencia de potencia activa en el sistema eléctrico de potencia. De la misma manera el efecto principal de esta clase de dispositivos es controlar el flujo de corriente y al cargabilidad en el SEP [26].

Los compensadores serie son:

- Compensador Serie Conmutado por Tiristores (TSSC)
- Compensador Serie Controlado por Tiristores (TCSC)
- Compensador Serie de VAR Estático (SSVC)
- Compensador Serie Sincrónico Estático (SSSC)
- Reactor serie controlado por tiristores (TCSR)
- Compensadores por ángulo de fase (TCPAR)

2.2 Compensadores en paralelo.

El controlador en paralelo introduce corriente reactiva el sistema eléctrico de potencia permitiendo de esta forma se verifica la tensión en la barra, muy independiente de la red de transmisión a la que están conectadas al nodo, a divergencia de un compensador serie, requiere de compensadores unitarios, más aun si una línea de trasmisión tiene un fallo. De esta manera el funcionamiento del compensador paralelo se base en entregar potencia reactiva a la red de transmisión, para incrementar la potencia activa al sistema eléctrico de potencia por medio de la cual se mejorará el factor de potencia, manteniendo los parámetros de tensión en los límites de estabilidad y operatividad [27].

Los compensadores paralelo son:

- Reactor Controlado por Tiristores (TCR)
- Condensador Conmutado por Tiristores (TSC)
- Compensador de VAR Estático (SVC)
- Compensador Estático de VAR (STATCOM)
- Generador Síncrono Estático (SVG)

2.3 Compensadores combinados.

El controlador combinado une las aplicaciones de los compensadores serie y de los compensadores paralelos obteniendo de esta manera mejores cualidad técnicas y económicas en sus diversas aplicaciones en un sistema eléctrico de potencia. El controlador más común es: El Controlador Unificado de Flujos de Potencia. El controlador de Interlinea y el controlador Unificado Generalizado tienen la capacidad de monitorear la potencia de dos o más redes de transmisión [28].

Los compensadores combinados son:

- Controlador Interlínea de Flujos de Potencia, (IPFC)
- Controlador Unificado de Flujos de Potencia Generalizado, GUPFC (GUPFC)
- Controlador Unificado de Flujos de Potencia, UPFC

El compensador combinado tiene la característica de realizar una compensación que cambia el flujo de la potencia de una red de transmisión. No

obstante, cada una presenta ciertas restricciones y limitantes relacionadas a los reactivos y la conmutación de la potencia activa con la red de trasmisión.

3 Modelación de Dispositivos FACTS

Los dispositivos FACTS se conforman de equipos estáticos utilizados para aumentar la capacidad de transferir la potencia de la red del SEP. Son también utilizados para disminuir las pérdidas de transmisión y de esta forma mejorar el perfil de voltaje del sistema eléctrico de potencia.

3.1 Compensador Serie Controlado por Tiristores (TSCS).

Al cambiar el valor de la reactancia de la línea de transmisión, el TCSC actúa como un compensador inductivo o capacitivo. En este trabajo, el valor de la reactancia de la línea de transmisión se ajusta directo por el dispositivo TCSC. La agrupación de TCSC va a depender del valor de la reactancia de la línea de transmisión donde se encuentra ubicado el TCSC:

$$X_{ij} = X_{Linea_{ij}} + X_{TCSC_{ij}} \tag{1}$$

$$X_{TCSC_{ij}} = rt \, csc + X_{Linea_{ij}} \tag{2}$$

Donde:

 X_{Linea} = Es la reactancia de la línea de transmisión.

rt csc = Es el coeficiente que representa el grado de compensación de TCSC.

Para evitar una sobrecompensación, el rango de trabajo del TCSC se escoge entre:

$$-0.7 \leq X_{Linea} \leq 0.2 \tag{3}$$

A continuación se observa en la figura 2 [29].

Figura 2. Modelamiento matemático del dispositivo TCSC

3.2 Compensador de VAR Estático (SVC).

Los dispositivos **SVCs** tienen el comportamiento de una reactancia cambiable la cual está conectada en paralelo, la misma que se encarga de generar y absorber potencia reactiva siendo el objetivo primordial ajustar la magnitud de la tensión en la conexión al nodo de la red del sistema eléctrico de potencia. Su uso principal es administrar de forma instantánea potencia reactiva, dando apoyo a la variación del voltaje, controlando las sobrecargas, mejorando la confiabilidad del sistema de corriente alterna dando un mejor amortiguamiento ante las variaciones de potencia. Los controladores operar de manera coordinada por medio de un monitoreo de control teniendo una respuesta inmediata. Se modelan con una administración de potencia reactiva en el bus del nodo i, a continuación se observa en la figura 3 [30].

Figura 3. Modelo matemático de dispositivos SVC y UPFC

La potencia administrada en la barra del nodo i es:

$$\Delta \boldsymbol{Q}_{is} = \Delta \boldsymbol{Q}_{SVC} \tag{4}$$

Donde:

 ΔQ_{is} = Es la variación de potencia reactiva en el nodo i en MVAR.

 ΔQ_{SVC} = Es el valor de potencia reactiva del dispositivo SVC en MVAR.

3.3 Controlador Unificado de Flujos de Potencia (UPFC).

El modelamiento de un UPFC fue propuesto en 1991 por Gyugyi. Este dispositivo tiene la capacidad de controlar de una forma selectiva y simultánea, las variables que afecten el flujo de potencia en la red es decir parámetros como: ángulo de fase, impedancia y voltaje. El dispositivo UPFC está integrado con dos convertidores de conmutación el cual esta operado desde un enlace común de corriente continua.

El rango de trabajo del ángulo UPFC está entre -180° y $+180^{\circ}$ [31].

$$\Delta \overline{U}_{FACTS} = \Delta \overline{U}_{UPFC} \tag{5}$$

Las corrientes inyectadas en el nodo i y el nodo j se pueden expresar de la siguiente manera:

$$\Delta \bar{I}_{is} = \frac{\Delta \bar{U}_{UPFC}}{Z_{ii}} \tag{6}$$

$$\Delta \bar{I}_{js} = -\frac{\Delta \bar{U}_{UPFC}}{Z_{ij}} \tag{7}$$

Donde:

 $\Delta \overline{U}_{FACTS}$ = Es la variación de potencia reactiva en el nodo i en MVAR.

 $\Delta \overline{U}_{UPFC}$ = Es el valor de potencia reactiva del dispositivo UPFC en MVAR.

4 Metaheurística de Búsqueda Armónica

El algoritmo de Búsqueda Armónica es una metodología de optimización que está basada en los músicos que improvisan sus notas musicales en sus instrumentos para de esta manera encontrar una mejor armonía [32]. De la misma forma que los instrumentos musicales pueden ser interpretados con acordes musicales que están basados en un proceso de improvisación aleatorio, como resultado se puede obtener variables optimas con ciertos valores basados en procesos aleatorios mediante inteligencia artificial o computacional [33].

Los intérpretes de la música mejoran sus acordes tomando como referencia ciertos estándares, mientras que las variables de diseño en la memoria computacional meiorarse tomando pueden como referencia una función objetivo. Las funciones del algoritmo de Búsqueda Armónica se encuentran de forma continua y discontinua, ya que estas ecuaciones no requieren gradientes diferenciales, tampoco no requieren de na variación del valor inicial para las variables, las cuales están libres de divergencia [34].

El algoritmo de Búsqueda Armónica se ha utilizado para determinar la instalación y ubicación óptima de los dispositivos FACTS tales como: SVC, TCSC y UPFC en la red de un sistema eléctrico de potencia para de esta forma mejorar la confiabilidad, estabilidad y seguridad del sistema eléctrico de potencia [35]. La cargabilidad, sobrecarga de la línea de transmisión y el sobre voltaje en la barra del nodo se resuelven controlando la potencia activa y reactiva del controlador en serie.

El algoritmo de búsqueda armónica se ha implementado actualmente en una metodología con el proceso de improvisación de las notas musicales, donde cada intérprete de música improvisa los acordes de sus instrumentos para así obtener una mejor armonía musical. [36].

En el algoritmo de búsqueda armónica cada posible resultado es considerado una "armonía", la cual es representada mediante un vector de n posibles dimensiones. Las posibles soluciones iniciales candidatas son agrupadas e inicializadas de una forma aleatoria dentro de una memoria. De esta manera una nueva posible solución es generada producto de uno de los componentes que contiene en la memoria armónica del algoritmo, por medio de una operación aleatoria o mediante una operación de variación del "tono" de un vector que este contenido dentro de la Finalmente. misma. la memoria armónica se actualiza mediante las comparaciones del nuevo resultado candidato y el peor de todos los ventores que están contenidos dentro de la memoria armónica, si el resultado es mejor procederá a remplazar el lugar del vector dentro de la memoria armónica. caso contrario se seguirá manteniendo la misma solución resultado candidata y no abra ninguna variación ni ningún cambio. Este procedimiento se realizará hasta que se cumpla los parámetros establecidos de parada. La estructura principal del algoritmo de búsqueda armónica se fundamenta en tres etapas: inicialización de las variables. improvisación de las nuevas armonías y la actualización de la memoria armónica [37].

Algoritmo de búsqueda armónica.

Búsqueda Armónica

Paso 1: Inicio del algoritmo.

Paso 2: Declaración.

HMS, *HMCR* \rightarrow numéricos *PAR*, *BW* \rightarrow numéricos *NI*, *X* \rightarrow numéricos Paso 3: Asignación.

Imprimir ("Ingrese el número de iteraciones") Leer (*NI*)

Imprimir ("Ingrese el tamaño de la memoria") Leer (*HMS*)

Imprimir ("Ingrese el rango de consideración de la memoria") Leer (*HMCR*)

Imprimir ("Ingrese el ajuste del tono") Leer (*PAR*)

Imprimir ("Ingrese el ancho de banda") Leer (*BW*)

Imprimir ("Ingrese la función objetivo") Leer (X)

Paso 4: Proceso.

Inicialización de la memoria armónica, construcción del vector *HM* y reconocimiento del peor vector en *HM*.

$$HM = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_{HMS} \end{bmatrix}$$
(8)

$$X^{peor} \in \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_{HMS} \end{bmatrix}$$
(9)

Improvisar una nueva armonía.

 $\boldsymbol{X}' = \boldsymbol{\emptyset} \tag{10}$

for
$$i = 1, ..., N$$
 do (11)
if $(U(0,1) \le HMCR)$ then (12)

begin
$$X'_{i} \in \begin{bmatrix} X_{i}^{1} \\ X_{i}^{2} \\ \vdots \\ X_{i}^{HMS} \end{bmatrix}$$
(13)

if
$$(\boldsymbol{U}(0,1) \leq \boldsymbol{PAR})$$
 then (14)

end else

$$X_i' \in X_i \tag{15}$$

end if end for

Actualizar la memoria armónica.

if
$$(f(X') < f(X^{peor})$$
 then (16)

Incluir **X**′ a la **HM** Excluir **X**^{peor} a la **HM**

Comprobar las condiciones y criterios de parada.

while (el criterio de terminación no es especificado por *NI*)

Regresar a improvisar una nueva armonía y actualizar la memoria armónica.

end if

Acepta los nuevos tonos armónicos, es decir si las soluciones son las mejores.

Paso 5: Visualizar.

Imprimir ("Los nodos de ubicación de FACTS son:", **X**')

Paso 6: Fin del algoritmo.

5. Formulación del problema

En los últimos de tiempos se ha realizado la utilización de una gran cantidad de metodologías y algoritmos para dar solución a interrogantes y problema de ingeniería. Pero los grandes e inadecuados problemas computacionales generados por los métodos numéricos han exigido a los investigadores a buscar nuevas metodologías de investigación y nuevos algoritmos como lo son las Metaheuristicas, las cuales combinan aleatoriedad y parámetros en sus procesos para buscar una solución a un fenómeno natural.

Función de Costo

De acuerdo con [38], las funciones de costos para TCSC, SVC y UPFC se desarrollan de la siguiente manera:

$$TCSC C_{TCSC} = 0.0015s^2 - 0.7130s + 153.75$$
(17)

$$SVC C_{SVC} = 0.0003s^2 - 0.3051s + 127.38$$
(18)

$$UPFC C_{UPFC} = 0.0003s^2 - 0.2691s + 188.22$$
(19)

Donde:

 C_{TCSC} , C_{SVC} y C_{UPFC} = Están en US \$ / kVar s = Es el rango de operación del dispositivo FACT en MVAR.

Restricciones

Para las restricciones planteada se han tomado en cuenta los valores de los límites de tensión tanto superior como inferior sabiendo que siempre los parámetros deben estar dentro de los márgenes del ±10% de la tensión nominal del SEP, de la misma manera la potencia reactiva del SEP debe encontrarse dentro de los parámetros establecidos tanto inferiores como superiores en el cual se encuentra programado nuestro sistema valores adecuados para una como correcta optimización, de la misma forma la potencia reactiva debe encontrase en los límites adecuados del sistema, de esta forma se logrará una optimización con mayor precisión de los valores, a continuación se detalla la ecuación (20) con las respectivas restricciones y parámetros de tensión máxima y mínima, en la ecuación (21) se presenta las restricciones y limitaciones de potencia reactiva con un valor máximo y mínimo, y por último en la ecuación (22) se presenta las limitaciones y restricciones de potencia activa con los valores máximos y mínimos.

$$V_{j\min} \le V_j \le V_{j\max} \tag{20}$$

$$\boldsymbol{Q}_{j\,min} \leq \boldsymbol{Q}_{j} \leq \boldsymbol{Q}_{j\,max} \qquad (21)$$

$$\boldsymbol{P_{j\,min} \leq P_j \leq P_{j\,max}} \tag{22}$$

Donde:

Vj = Es el voltaje en el nodo j.

Qj = Es la potencia reactiva en el nodo j. Pj = E la potencia activa en el nodo j.

Los superíndices *min*, *max*. Son los límites mínimos y máximos de las variables.

Ubicación Óptima de Dispositivos FACTS.

Los FACTS podrían instalarse y ubicarse óptimamente en cualquier parte del sistema eléctrico de potencia de forma aleatoria, pero para incrementar y contar con una mayor optimización de la ubicación e instalación de los dispositivos FACTS se debe hacer una selección adecuada del lugar del sistema eléctrico de potencia donde deberán ubicarse estos dispositivos. Para poder reconocer el lugar más idóneo y óptimo donde deben ser ubicados los FACTS se toman en cuenta los siguientes parámetros:

- Nivel de Tensión.
- Valor de Potencia Reactiva que circula en cada nodo del SEP

Estos valores se los obtiene después de hacer un análisis y correr un flujo óptimo de potencia, otro parámetro importante con el cual debemos contar es la matriz de conectividad del sistema eléctrico de potencia planteado. Con estos valores considerados se realizará la optimización del problema descrito.

Función Objetivo

El problema objetivo se expresa de la siguiente manera:

$$\min\sum_{i=1}^{N} Zi * Xi$$
 (23)

Donde:

Zi = Es el costo de la instalación, operación, mantenimiento y pérdidas de los dispositivos FACTS en el nodo i.

Xi = Es la variable binaria del problema.

En esta ecuación descrita se toma en cuenta la minimización de los dispositivos FACTS, tomando el valor de la potencia reactiva la cual es el producto del análisis del flujo óptimo de potencia, con la cual se procederá a calcular el detalle del valor del costo de la ubicación de los dispositivos FACTS.

$$f(x) \ge \hat{1} \tag{24}$$

Donde:

f(x) = Es un vector de función que representa a las restricciones del problema.

 $\widehat{\mathbf{1}}$ = Es un vector que posee entradas iguales a 1.

En esta ecuación descrita se estima un valor de 1 si el dispositivo FACTS se instalara en un nodo i y se considerara un valor de 0 si no se lo hace, la ecuación propuesta es una ecuación únicamente de variables binarias es decir solo reconocerá valores de 0 y 1 según aplique.

Por medio de la matriz de conectividad es de donde se obtienen las limitaciones y restricciones, de esta manera se determina las barras del sistema eléctrico de potencia en donde podrá ser ubicado un dispositivo FACT, es por tal motivo por el que se procede a realizar una sumatoria de los nodos interconectados por cada línea de transmisión.

$$G(x) \le 0 \tag{25}$$

En esta ecuación se asume un valor de 0 si en el nodo i existe conectado algún generador.

Flujos Óptimos de Potencia

El análisis de un flujo óptimo de potencia es de mucha importancia para de esta manera determinar las condiciones y limitaciones del sistema eléctrico de potencia existente, al mismo tiempo tiene la capacidad de entregar información valiosa para analizar las mejores estrategias que conlleven como resultad final al mejoramiento de la operación y eficiencia del sistema eléctrico de potencia; para el caso del presente estudio este análisis facilita la ubicación e instalación de los dispositivos FACTS para la compensación de potencia reactiva, indicando de alguna forma con los valores entregados las ubicaciones más optimas y adecuadas para la colocación de los dispositivos FACTS para de esta forma mejorar el rendimiento y la confiabilidad del sistema eléctrico de potencia, mejorando el perfil de tensión y disminuyendo las pérdidas en la transmisión de energía eléctrica. Los análisis de flujos de potencia óptimos entregan como resultado el ángulo y la magnitud de fase de la tensión en cada uno de los nodos de la red del sistema eléctrico de potencia, las pérdidas de transmisión en el sistema eléctrico de potencia y el flujo de potencia reactiva y activa en el sistema eléctrico de potencia [38].

El parámetro más fundamental a tomar en cuenta para la formulación de los flujos óptimos de potencia es la matriz de admitancias, la misma que está formada por todos los componentes existentes entre cada una de las barras y los nodos de conexión, se consideran los valores de capacitancia e impedancia de las líneas de transmisión, así como cada uno de los transformadores modelados en forma de un reactor. La operación y el computo a detalle de todos los componentes del vector de admitancia (Ybus), divididos en las siguientes categorías, elementos pertenecientes a la diagonal principal (Yii) de la misma forma los elementos que están fuera de la diagonal secundaria (Yij); El elemento de la diagonal es obtenido por medio del cálculo de la sumatoria de la admitancia de los componentes que conforman el nodo [39]. El elemento que se encuentra en la parte exterior de la diagonal son valores desfavorables [40]. El vector de admitancia es simétrico, como se puede observar en siguiente formulación:

$$Yij=Y_{ji} \tag{26}$$

En la siguiente formulación se observa la matriz de admitancias [41].

$$Ybus = \begin{bmatrix} Y_{ii} & Y_{ij} & \cdots & Y_{in} \\ Y_{ji} & Y_{jj} & \cdots & Y_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{ni} & Y_{nj} & \dots & Y_{nn} \end{bmatrix}$$
(27)

En las ecuaciones (28) y (29) se observa los componentes de la matriz de admitancias, los cuales representan a la conductancia (*Gbus*) y susceptancia (*Bbus*) [42].

$$Gbus = \begin{bmatrix} Gii & Gij & \cdots & Gin \\ Gji & Gjj & \cdots & Gjn \\ \vdots & \vdots & \ddots & \vdots \\ Gni & Gnj & \dots & Gnn \end{bmatrix}$$
(28)

$$Bbus = \begin{bmatrix} Bii & Bij & \cdots & Bin \\ Bji & Bjj & \cdots & Bjn \\ \vdots & \vdots & \ddots & \vdots \\ Bni & Bnj & \dots & Bnn \end{bmatrix}$$
(29)

Una vez que se obtiene la matriz de admitancia se puede calcular las potencias activa y reactiva, las cuales son expresadas en las siguientes ecuaciones (30) y (31) respectivamente [43]:

$$P_{i} = \sum_{i=1}^{N} Vj * Vi * (G_{ij} \cos\theta + B_{ii} \sin\theta)$$
(30)

$$Q_{j} = \sum_{j=1}^{N} Vj * Vi * (G_{ij} sen\theta)$$
(31)
- $B_{ij} cos\theta$)

Donde:

Pi = Potencia activa que ingresa al nodo. Qi = Potencia reactiva que ingresa al nodo.

Vi = Voltaje en el nodo.

Gij = Conductancia en los nodos.

Bij = Susceptancia en los nodos.

 θij = Diferencia de ángulos del nodo.

6. Análisis de resultados

Para verificar la eficacia del algoritmo de Búsqueda Armónica para la colocación de FACTS en redes eléctricas de transmisión, se hicieron uso de las redes de prueba de la IEEE como el modelo de 14 y 30 barras. Se evaluaron aspectos como el valor económico de la colocación de los FACTS, la disminución de energía eléctrica en la red y si había presencia de variaciones de voltaje, cuidando los parámetros de voltaje en cada una de las barras del SEP.

Los parámetros de inicialización tales como la velocidad de ajuste de banda, el ancho de banda, el rango de variables y la tasa de consideración de armonía se mantienen constantes para cada caso. Los parámetros que varían son el número de variables, el número de restricciones, el número de memorias armónicas y el número de iteraciones ya que eso depende directamente de cada uno de los modelos.

Modelo de la IEEE de 14 barras.

Con el objetivo de simular se lo ha realizado en el modelo establecido de la IEEE de 14 barras que es un sistema normalizado que tiene las características de contar con 5 generadores síncronos, 5 transformadores, 14 barras, por último se encuentra a la barra 1 como barra slack usando como potencia base 100 MVA, en la colocación óptima de FACTS en un SEP, se realizará el respectivo análisis en el modelo de 14 barras de la IEEE que se observa en la figura 4.

Figura 4. Modelamiento de 14 barras de la IEEE

El flujo óptimo de potencia es calculado mediante el optimizador GAMS, Para lo cual se utilizan los datos presentados de potencia reactiva en [44]. La potencia reactiva determina el costo de instalación de los FACTS. Los valores observados en la tabla 1 son producto del resultado del flujo óptimo de potencia los cuales son resultado de utilizar la herramienta computacional GAMS.

Nodos	POTENCIA
nouos	REACTIVA [P.U]
N1	-9.114
N2	-9.470
N3	-0.820
N4	-20.990
N5	-21.768
N6	-10.866
N7	-11.538
N8	0
N9	-21.160
N10	-3.950
N11	-0.018
N12	-1.753
N13	-5.217
N14	-1.749

Tabla 1. Potencia reactiva flujo	óptimo	de potencia
sistema de 14 barras	GAMS	•

El modelo de la IEEE de 14 barras posee 14 variable<u>s binarias una para cada</u> barra del SEP y 15 restricciones.

Para validar los resultados de la heurística propuesta se compara el resultado de la ubicación óptima de FACTS obtenida en Matlab con el resultado de la ubicación óptima de FACTS obtenida en GAMS.

Ubicación Óptima de SVC en el modelo de la IEEE de 14 barras.

En la figura 5 se muestra la ubicación optima resultante de la metaheurística Búsqueda Armónica, se observa la ubicación de los SVC en color rojo, en las barras 4, 5, 7, 11 y 13 del modelo de 14 bus de la IEEE.

Figura 5. Ubicación de dispositivos SVC en el modelo de 14 barras de la IEEE

Para validar la heurística propuesta se compara el resultado obtenido en GAMS con el que se obtuvo en Matlab. La ubicación que determino GAMS de los dispositivos FACTS en las barras del modelo de 14 barras propuesto por la IEEE es igual a la ubicación que determino Matlab. También se validó esta heurística mediante la comparación de resultados que se obtiene en el modelo de 14 barras de la IEEE propuesto por [45]. La capacidad de los compensadores que se deberán instalar en las barras 4, 5, 7, 11 y 13 del modelo de 14 bus de la IEEE.

Los datos presentados en la tabla 2 hacen referencia a la capacidad de los compensadores SVC en las barras 4, 5, 7, 11 y 13 de modelo de 14 bus de la IEEE.

Nodos	POTENCIA REACTIVA [p.u] MVAR
N4	-20.990
N5	-21.768
N7	-11.538
N11	-0.018
N13	-5.217

 Tabla 2. Capacidad de los compensadores SVC en el flujo óptimo de potencia sistema de 14 barras GAMS

En la figura 6 se muestra que al tener dispositivos SVC instalados en el SEP, existe una mejor distribución de la potencia reactiva en las barras de cada uno de los nodos, aliviando así el flujo reactivo de los generadores instalados.

Figura 6. Modelamiento de la potencia reactiva con SVC en el modelo a prueba de 14 barras propuesto por la IEEE

Los valores observados en la tabla 3 son producto del resultado del flujo óptimo de potencia, después de haber colocado un dispositivo SVC en las barras 4, 5, 7, 11 y 13 de modelo de 14 bus de la IEEE. Se observa que al colocar un SVC en las barras mencionadas la cargabilidad de potencia reactiva en los nodos del sistema se distribuye de mejor forma.

Tabla 3. Porcentaje de mejora de potencia reactivita	18
con la ubicación de SVC en el flujo óptimo de	
potencia sistema de 14 barras GAMS.	

POTENCIA POTENCIA POTENCIA POTENCIA REACTIVA REACTIVA REACTIVA MEJORA [P.U] [P.U] MEJORA SIN SVC CON SVC MEJORA N1 -9.114 -8.851 2.88 % N2 -9.470 -9.466 0.04 % N3 -0.820 0.210 74,39 % N4 -20.990 -20.990 0 % N5 -21.768 -21.768 0 % N6 -10.866 -7.939 26.93 % N7 -11.538 -11.538 0 % N8 0 0.156 84.4 % N9 -21.160 -18.400 13.04 % N10 -3.950 -9.038 0 % N11 -0.018 0.018 0 % N12 -1.753 -1.753 0 % N13 -5.217 0 % N N14 -1.749 -1.749 0 %				
Nodos REACTIVA [P.U] REACTIVA [P.U] REACTIVA [P.U] MEJORA SIN SVC CON SVC N1 -9.114 -8.851 2.88 % N2 -9.470 -9.466 0.04 % N3 -0.820 0.210 74,39 % N4 -20.990 -20.990 0 % N5 -21.768 -21.768 0 % N6 -10.866 -7.939 26.93 % N7 -11.538 -11.538 0 % N8 0 0.156 84.4 % N9 -21.160 -18.400 13.04 % N10 -3.950 -9.038 0 % N11 -0.018 -0.018 0 % N12 -1.753 -1.753 0 % N13 -5.217 0 % N N14 -1.749 -1.749 0 %		POTENCIA	POTENCIA	
INOUS [P.U] [P.U] MEJORA SIN SVC CON SVC CON SVC N1 -9.114 -8.851 2.88 % N2 -9.470 -9.466 0.04 % N3 -0.820 0.210 74,39 % N4 -20.990 -20.990 0 % N5 -21.768 -21.768 0 % N6 -10.866 -7.939 26.93 % N7 -11.538 -11.538 0 % N8 0 0.156 84.4 % N9 -21.160 -18.400 13.04 % N10 -3.950 -9.038 0 % N11 -0.018 0 % 0 N12 -1.753 -1.753 0 % N13 -5.217 0 % 0 N14 -1.749 -1.749 0 %	Nodos	REACTIVA	REACTIVA	%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nouos	[P.U]	[P.U]	MEJORA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SIN SVC	CON SVC	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1	-9.114	-8.851	2.88 %
N3 -0.820 0.210 74,39 % N4 -20.990 -20.990 0 % N5 -21.768 -21.768 0 % N6 -10.866 -7.939 26.93 % N7 -11.538 -11.538 0 % N8 0 0.156 84.4 % N9 -21.160 -18.400 13.04 % N10 -3.950 -9.038 0 % N11 -0.018 -0.018 0 % N12 -1.753 -1.753 0 % N13 -5.217 0 % N N14 -1.749 -1.749 0 %	N2	-9.470	-9.466	0.04 %
N4 -20.990 -20.990 0 % N5 -21.768 -21.768 0 % N6 -10.866 -7.939 26.93 % N7 -11.538 -11.538 0 % N8 0 0.156 84.4 % N9 -21.160 -18.400 13.04 % N10 -3.950 -9.038 0 % N11 -0.018 -0.018 0 % N12 -1.753 -1.753 0 % N13 -5.217 0 % N N14 -1.749 -1.749 0 %	N3	-0.820	0.210	74,39 %
N5 -21.768 -21.768 0 % N6 -10.866 -7.939 26.93 % N7 -11.538 -11.538 0 % N8 0 0.156 84.4 % N9 -21.160 -18.400 13.04 % N10 -3.950 -9.038 0 % N11 -0.018 -0.018 0 % N12 -1.753 -1.753 0 % N13 -5.217 0 % N14	N4	-20.990	-20.990	0 %
N6 -10.866 -7.939 26.93 % N7 -11.538 -11.538 0 % N8 0 0.156 84.4 % N9 -21.160 -18.400 13.04 % N10 -3.950 -9.038 0 % N11 -0.018 -0.018 0 % N12 -1.753 -1.753 0 % N13 -5.217 -5.217 0 % N14 -1.749 -1.749 0 %	N5	-21.768	-21.768	0 %
N7 -11.538 -11.538 0 % N8 0 0.156 84.4 % N9 -21.160 -18.400 13.04 % N10 -3.950 -9.038 0 % N11 -0.018 -0.018 0 % N12 -1.753 -1.753 0 % N13 -5.217 0 % N14 -1.749 -1.749 0 %	N6	-10.866	-7.939	26.93 %
N8 0 0.156 84.4 % N9 -21.160 -18.400 13.04 % N10 -3.950 -9.038 0 % N11 -0.018 -0.018 0 % N12 -1.753 -1.753 0 % N13 -5.217 -5.217 0 % N14 -1.749 -1.749 0 %	N7	-11.538	-11.538	0 %
N9 -21.160 -18.400 13.04 % N10 -3.950 -9.038 0 % N11 -0.018 -0.018 0 % N12 -1.753 -1.753 0 % N13 -5.217 -5.217 0 % N14 -1.749 -1.749 0 %	N8	0	0.156	84.4 %
N10 -3.950 -9.038 0 % N11 -0.018 -0.018 0 % N12 -1.753 -1.753 0 % N13 -5.217 -5.217 0 % N14 -1.749 -1.749 0 %	N9	-21.160	-18.400	13.04 %
N11 -0.018 -0.018 0 % N12 -1.753 -1.753 0 % N13 -5.217 -5.217 0 % N14 -1.749 -1.749 0 %	N10	-3.950	-9.038	0 %
N12-1.753-1.7530 %N13-5.217-5.2170 %N14-1.749-1.7490 %	N11	-0.018	-0.018	0 %
N13 -5.217 0 % N14 -1.749 -1.749 0 %	N12	-1.753	-1.753	0 %
N14 -1.749 -1.749 0 %	N13	-5.217	-5.217	0 %
	N14	-1.749	-1.749	0 %

<u>En la figura 7 se muestra que al instalar</u> dispositivos FACTS en el SEP el voltaje tiende a 1 (p.u), como se puede observar las barras 10 y 11 presentan una mejora de estabilidad de voltaje al momento de compensar los nodos del SEP con dispositivos SVC.

Figura 7. Comportamiento del perfil de tensión con SVC en el modelo de 14 barras de la IEEE

Los valores observados en la tabla 4 son producto del resultado del flujo óptimo de potencia, después de haber colocado un dispositivo SVC en las barras 4, 5, 7, 11 y 13 del modelo de 14 bus de la IEEE. Se observa que al colocar un SVC en las barras mencionadas el perfil de tensión en cada uno de los nodos del sistema tiende a 1 (p.u).

Tabla 4. Porcentaje de mejora del perfil de tensión con la ubicación de SVC en el flujo óptimo de potencia sistema de 14 barras GAMS.

	Perfil	Perfil	
	DE	DE	0/
Nodos	TENSIÓN	TENSIÓN	70 MEIODA
	[P.U]	[P.U]	MEJUKA
	SIN SVC	CON SVC	
N1	0.950	0.950	0 %
N2	0.950	0.950	0 %
N3	0.950	0.950	0 %
N4	0.950	0.950	0 %
N5	0.950	0.994	4.42 %
N6	0.950	0.950	0 %
N7	0.950	0.950	0 %
N8	0.950	0.978	2.86 %
N9	0.950	0.950	0 %
N10	1.100	0.950	13.63 %
N11	1.100	0.950	13.63 %
N12	0.950	0.950	0 %
N13	0.950	0.950	0 %
N14	0.950	0.950	0 %

En la figura 8 se muestra que al instalar dispositivos SVC en el sistema el ángulo de la tensión se mejora.

Figura 8. Comportamiento del Angulo de Tensión con SVC en el modelo de 14 barras de la IEEE

Modelo de la IEEE de 30 barras.

Con el objetivo de simular se lo ha realizado en el modelo establecido de la IEEE de 30 barras que es un sistema normalizado que tiene las características de contar con 6 generadores síncronos, 7 transformadores, 30 barras, por último se encuentra a la barra 1 como barra slack usando como potencia base 100 MVA, para la colocación optima de FACTS en un SEP, se realizará el respectivo análisis en el modelo de 30 barras de la IEEE el cual se muestra en la figura 9.

Figura 9. Modelamiento de 30 barras propuesto por la IEEE

El flujo óptimo de potencia es calculado mediante el optimizador GAMS, Para lo cual se utilizan los datos presentados de potencia reactiva. El parámetro necesario para realizar la optimización es la potencia reactiva por cada nodo, la misma que determina el costo de la instalación de los dispositivos FACTS. Los valores observados en la tabla 5 son producto del resultado del flujo óptimo de potencia. De la potencia reactiva necesaria para realizar la optimización.

Tabla 5. Potencia reactiva flujo	óptimo	de potencia
sistema de 30 barras	GAMS.	

Neder	POTENCIA
nouos	REACTIVA [P.U]
N1	8.009
N2	-0.327
N3	5.279
N4	-0.016
N5	3.095
N6	-4.138
N7	-0.109
N8	-0.450
N9	2.220
N10	-14.811
N11	1.885
N12	1.824
N13	0.749
N14	19.533
N15	17.198
N16	-0.018
N17	-0.058
N18	15.119
N19	1.138
N20	1.261
N21	-2.234
N22	4.441
N23	-19.464
N24	-18.578
N25	-2.212
N26	-0.023
N27	-8.700
N28	-7.805
N29	-7.352
N30	-10.055

El mod<u>elo de la IEEE de 30 barr</u>as posee 30 variables binarias una para cada barra del SEP y 31 restricciones.

Para validar los resultados de la heurística propuesta se compara el resultado de la ubicación óptima de FACTS obtenida en Matlab con el resultado de la ubicación óptima de FACTS obtenida en GAMS.

Ubicación Óptima de SVC en el modelo de la IEEE de 30 barras.

En la figura 10 se muestra la ubicación optima resultante de la metaheurística Búsqueda Armónica, se observa la ubicación de los SVC en color rojo, en las barras 3, 6, 7, 9, 12, 16, 19, 21, 23, 26 y 29 del modelo de 30 bus de la IEEE.

Figura 10. Ubicación de dispositivos SVC en el modelo de 30 barras de la IEEE

Para validar la heurística propuesta se compara el resultado obtenido en GAMS con el que se obtuvo en Matlab. La ubicación que determino GAMS de los dispositivos FACTS en cada uno de los nodos del modelo a prueba de 30 barras propuesto por la IEEE es igual a la ubicación que determino Matlab.

La capacidad de los compensadores que se deberán instalar en las barras 3, 6, 7,

9, 12, 16, 19, 21, 23, 26, y 29 del modelo de 30 bus de la IEEE.

Los datos presentados en la tabla 6 hacen referencia a la capacidad de los compensadores SVC en las barras 3, 6, 7, 9, 12, 16, 19, 21, 23, 26, 29 de modelo de 30 bus de la IEEE.

Tabla 6. Capacidad de los compensadores S'	VC en el
flujo óptimo de potencia sistema de 30 barras	GAMS.

Nodos	POTENCIA REACTIVA
N3	5.279
N6	-4.138
N7	-0.109
N9	2.220
N12	1.824
N16	-0.018
N19	1.138
N21	-2.234
N23	-19.464
N26	-0.023
N29	-7.352

En la figura 11 se muestra que al tener dispositivos SVC instalados en el SEP, la potencia reactiva en las barras de cada uno de los nodos se distribuye de mejor forma, aliviando así el flujo reactivo de los generadores instalados.

Figura 11. Comportamiento de la potencia reactiva con SVC en el modelo de 30 barras de la IEEE

Los valores observados en la tabla 7 son producto del resultados de flujo óptimo de potencia, después de haber colocado un dispositivo SVC en las barras 3, 6, 7, 9, 12, 16, 19, 21, 23, 26 y 29 del modelo de 30 bus de la IEEE.

Tabla 7. Porcentaje de mejora de potencia reactiva	a
con la ubicación de SVC en el flujo óptimo de	
potencia sistema de 30 barras GAMS.	

REACTIVA REACTIVA	
	0/_
Nodos [pu] [pu] ME	
II.0 II.0 ME	JUNA
N1 8,000 7,007 0.1	1/1 0/6
$N_1 = 0.327 = 0.327$ () %
$N_2 = -0.527 = -0.527 = 0.52$) %
N4 -0.016 -0.016 ()%
N5 3.095 3.317 ()%
N6 -4 138 -3 589 13	26 %
N7 -0.109 -0.109 ()%
N8 -0.450 -0.450 ()%
N9 2 220 -3 89 75	22 %
N10 -14.811 -14.811 () %
N11 1.885 1.591 15.	59 %
N12 1.824 -1.824 ()%
N13 0.749 0.766 ()%
N14 19.533 18.055 7.4	56 %
N15 17.198 16.068 6.4	57 %
N16 -0.018 -0.018 () %
N17 -0.058 -1.675 () %
N18 15.119 11.018 27.	12 %
N19 1.138 6.665 () %
N20 1.261 3.353 () %
N21 -2.234 -2.234 () %
N22 4.441 1.77 60.	14 %
N23 -19.464 -19.464 () %
N24 -18.578 -18.671 () %
N25 -2.212 -2.256 () %
N26 -0.023 -0.023 () %
N27 -8.700 -8.700 0) %
N28 -7.805 -8.798 () %
N29 -7.352 -7.352 () %
N30 -10.055 -10.055 () %

_

Figura 12. Comportamiento del perfil de tensión con SVC en el modelo de 30 barras de la IEEE

Los valores observados en la tabla 8 son producto del resultado del flujo óptimo de potencia, después de haber colocado un dispositivo SVC en las barras 3, 6, 7, 9, 12, 16, 19, 21, 23, 26 y 29 del modelo de 30 bus de la IEEE. Se observa que al colocar un SVC en las barras mencionadas el perfil de tensión en cada uno de los nodos del sistema tiende a 1 (p.u).

 Tabla 8. Porcentaje de mejora del perfil de tensión con la ubicación de SVC en el flujo óptimo de potencia sistema de 30 barras GAMS.

	Perfil de	Perfil de	
Nodos	TENSIÓN	TENSIÓN	%
nouos	[P.U]	[P.U]	MEJORA
	SIN SVC	CON SVC	
N1	8.009	7.997	0.14 %
N2	-0.327	-0.327	0 %
N3	5.279	5.343	0 %
N4	-0.016	-0.016	0 %
N5	3.095	3.317	0 %
N6	-4.138	-3.589	13.26 %
N7	-0.109	-0.109	0 %
N8	-0.450	-0.450	0 %
N9	2.220	-3.89	75.22 %
N10	-14.811	-14.811	0 %
N11	1.885	1.591	15.59 %
N12	1.824	-1.824	0 %
N13	0.749	0.766	0 %
N14	19.533	18.055	7.56 %
N15	17.198	16.068	6.57 %
N16	-0.018	-0.018	0 %
N17	-0.058	-1.675	0 %
N18	15.119	11.018	27.12 %
N19	1.138	6.665	0 %
N20	1.261	3.353	0 %
N21	-2.234	-2.234	0 %
N22	4.441	1.77	60.14 %
N23	-19.464	-19.464	0 %
N24	-18.578	-18.671	0 %
N25	-2.212	-2.256	0 %
N26	-0.023	-0.023	0 %
N27	-8.700	-8.700	0 %
N28	-7.805	-8.798	0 %
N29	-7.352	-7.352	0 %
N30	-10.055	-10.055	0 %

En la figura 13 se muestra que al instalar dispositivos SVC en el sistema el ángulo de la tensión se mejora.

Figura 13. Comportamiento del Angulo de Tensión con SVC en el modelo de 30 barras de la IEEE

7. Conclusiones

En la presente investigación se presenta un procedimiento el cual mejora la compensación optima de potencia reactiva mediante la colocación óptima de FACTS en un SEP minimizando perdidas de potencia en el sistema y optimizando los costos, con la ayuda del optimizador GAMS y la metaheurística de Búsqueda Armónica tomando en cuenta los límites de voltaje y de potencia reactiva.

Se han establecido dos escenarios para el análisis del comportamiento antes y después de la compensación reactiva mediante flujos óptimos de potencia AC y la colocación optima de los FACTS en el modelo a prueba de 14 barras propuesto por la IEEE, se han colocado 5 dispositivos FACTS en las barras 4,5,7,11 y 13 de diferentes capacidades logrando con esto tener una mejora en la compensación de potencia reactiva en todo el SEP, mejorando el perfil de voltaje de todas las barras del sistema pudiendo tener una estabilidad de voltaje entre 0.95 a 1.05 p.u, por último se tiene sistema compensando al con 5 dispositivos FACTS logrando tener las menores perdidas de potencia con respecto al escenario inicial, ubicando los dispositivos SVC en los nodos óptimos para lograr una compensación óptima de potencia reactiva con mayor beneficio al sistema eléctrico y entregando mayor confiabilidad para el usuario.

Por medio de la metaheurística de Búsqueda Armónica es posible realizar una óptima ubicación de los FACTS en un SEP, minimizando la cantidad de FACTS instalados en la red y por ende disminuyendo el precio de operación, instalación y mantenimiento de los mismos. Las simulaciones muestran que la colocación óptima de FACTS en el SEP ayuda a mejorar la componente reactiva, el perfil de tensión, y el ángulo de tensión de algunas barras del sistema eléctrico de potencia acercándose al 1(p.u).

Los resultados obtenidos de la modelación nos permiten redistribuir de mejor forma los flujos reactivos en las líneas de transmisión del sistema eléctrico de potencia, ayudando así a aliviar los reactivos en los generadores de las centrales de generación eléctrica.

8. Trabajos Futuros

- Dimensionamiento de los tipos de FACTS para mejorar la compensación reactiva en las líneas de transmisión.

- Selección del tipo de FACTS que se debe usar para disminuir pérdidas de energía en la red del sistema eléctrico de transmisión.

- Minimizar los costos de instalación de FACTS utilizando dispositivos UPFC y TCSC en las líneas de transmisión.

9. Referencias

- [1] Saravanan M.,Slochanal S.M.R., Venkatesh P., Abraham J.P.S., Application of particle swarm optimization technique for optimal location of FACTS devices considering cost of installation and system loadability, Electric Power System Research,77 (2007),276-283.
- [2] Hingorani N.G., High Power Electronics and Flexible AC Transmission System, IEEE Power Engineering Review ,7 (1988),3-4.
- [3] Galiana G.D., Assessment and Control of the Impact of FACTS devices on Power System Performance, IEEE Transactions on Power Systems, 11 (1996), No. 4,1931-1936.
- [4] Sirjani R., Mohamed A., Shareef H., Optimal placement and sizing of Static Var Compensators in power systems using Improved Harmony Search Algorithm, PRZEGLĄD ELEKTROTECHNICZNY,87 (2011),No. 7,214-218.
- [5] Azadani E.N., Hosseinian S.H., Janati M., Hasanpor P.,Optimal Placement of Multiple STATCOM, 12th International Middle-East Power System Conference,(2008),523-528.
- [6] Zhang, W., Li F., Tolbert L. M., Optimal Allocation of Shunt Dynamic Var Source SVC and STATCOM: A Survey, Department of Electrical and Computer Engineering, the University of Tennessee, Knoxville, (2006),1-6.
- [7] Saranjeet K., Evolutionary Algorithm Assisted Optimal Placement of FACTS Controllers in Power system, Master Thesis, Thapar University,(2009).

- [8] M.L.,Shauder Gyugyi C.D., SenK.K., Static Synchronous Series Compensator solid state А Approach to the series compensation of transmission line, IEEE Transactions on Power Delivery,12(1997),No. 3,406-417.
- [9] Thukaram D.,Lomi A., Selection of static VAR compensator location and size for system voltage stability improvement, Electr Power Syst Res,54(2000):139–150.
- [10] Mithulanantham N.,Cañizares C.A.,Reeve J.,Comparison of PSS, SVC and STATCOM controllers for damping power system oscillation, IEEE Trans Power Syst, 18 (2003),786–792.
- [11] Sode-Yome A.,Mithulananthan N.,Comparison of shunt capacitor, SVC and STATCOM in static voltage stability margin enhancement.Int J Elec Eng Educ , 41(2004),No. 2,158–171.
- [12] Khajehzadeh M., Taha M.R.,El-Shafie A.,Eslami M., A Survey on Meta-Heuristic Global Optimization Algorithms, Research Journal of Applied Sciences, Engineering and Technology,3 (2011), No. 6,569-578.
- [13] Rechenberg I., Cybernetic solution path of an experimental problem, Royal Aircraft Establishment, brary Translation ,(1965), 1122.
- [14] Holland J., An introduction with application to biology, control and artificial intelligence Adaptation in Natural and Artificial System. MIT Press, Cambridge, MA, (1975).
- [15] Holland J.H., Adaptation in natural and artificial systems. The University of Michigan Press,AnnArbor, Michigan,

(1975).

- [16] Kirkpatrick S.,Gelatt C.D.,Vecchi M.P., Optimization by simulated annealing, Science,220 (1983), No. 4598,671-680.
- [17] Farmer J.D., Packard N.H., Perelson A.S., The immune system, adaptation, and machine learning. Physica D., 22(1986), No. 1-3, 187-20413.
- [18] Dorigo M., Maniezzo V., Optimization, Learning and Natural Algorithms. Ph.D. Thesis,Politecnico di Milano, Italy,(1992).
- [19] Kennedy J., Eberhart R., Particle swarm optimization.
 IEEE International Conference on Neural Networks Perth, Australia, (1995),1942-1948.
- [20] Geem Z.W., Kim J.H., Loganathan G. ,A new heuristic optimization algorithm: Harmony search, Simulation, 76 (2001), No.2, 136-701.
- [21] Nakrani S., Tovey C., On honey bees and dynamic server allocation in internet hosting centers.Adapt. Behav., 12(2004), No. 3-4, 223.
- [22] Rezaee-Jordehi A. ,Joorabian M. , Optimal Placement of MultiType FACTS Devices in Power Systems Using Evolution Strategies,The 5th International Power Engineering and Optimization Conference,(2011),352-357.

[23] Mendes J.C.,Saavedra O.R.,Pessanha J.O., Power system restoration restoration with priority loads using an evolutionary strategy, Proceedings of 34th North American Power Symposium, Arizona,(2002),254- 260.

[24] Santiago M., Maldonado R., Optimal Placement of FACTS Controllers in Power systems via Evolutionary Strategies, Proceedings of IEEE international conference on Transmission and Distribution Evolutionary Computation,(2006),1-6.

[25] Dominguez-Navarro

- J.A.,Bernal-Agustin J.L., Diaz A.,Requena D.,Vargas E.P., Optimal parameters of FACTS devices in electric power systems applying evolutionary strategies,Electrical Power and Energy Systems,29 (2007),83– 90.
- [26] Talebi M.A.,Kazemi A.,Gholami A.,Rajabi M.,Ootimal Placement of Static Var Compensators in Distribution Feeders For Load Balancing By Genetic Algorithm, 18th International Conference and Exhibition on Electricity Distribution,(2005),1-6.
- [27] Zhang Y.,Milanovic J.V.,Voltage Sag Cost Reduction With Optimally Placed FACTS Devices, 9th Internatinal Conference on Electrical Power,Quality and Utilisation, (2007),1-6.
- [28] Farsabgi M.M., Nezamabadipour H., Song Y.H., Lee K.Y.,Placement of SVCs and Selection of Stabilizing Signals in Power Systems,IEEE TRANSACTIONS ON POWER SYSTEMS,22 (2007), NO.3 ,1061-1071.
- Jannati [29] Baghaee H.R., М., Vahidi **B.**.Hosseinian S.H., Rastegar H., Improvement of Voltage Stability and Reduce Power System Losses by Optimal GA-based Allocation of Multi-type FACTS Devices. 11th International Conference on Optimization of Electrical and Electronic Equipment,(2008),209214.

- [30] Huang J.S. ,Negnevitsky M. , A Messy Genetic Algorithm Based Optimization Scheme for SVC Placement of Power Systems under Critical Operation Contingence, International Conference on Computer Science and Software Engineering,(2008),467-472.
- [31] Pisica ,I., Bulac C.,Toma L. , Eremia M., Optimal SVC Placement in Electric Power Systems Using a Genetic Algorithms Based Method , IEEE Bucharest Power Tech Conference (2009),1-6.
- [32] Sundareswaran K.,Bharathram P..Siddharth M..Vaishnavi G.,Shrivastava N.A.,Sarma H., Voltage Profile enhancement through optimal placement of FACTS devices using **OueenBee-Assisted** GA.Third International Conference on Power Systems, (2009), 1-5.
- [33] Berizzi A., Bovo C., Ilea V., Optimal placement of FACTS to mitigate congestions and interarea oscillations,IEEE Trondheim PowerTech, 2011,1-8.
- [34] Tavakoli Bina M.,Rezaei Siahbidi J.,Kanzi K.,Application of Averaging Technique to the Power System Optimum Placement and Sizing of Static Compensators, The 7th International Power Engineering Conference,(2005),1-6.
- Samimi A., Golkar M.A., A [35] Novel Method for Optimal Placement of STATCOM in Distribution Networks Using Sensitivity Analysis by DIgSILENT Software. Asia-Pacific Power and Energy Engineering Conference ,(2011),1-5.
- [36] Gitizadeh M.,Kalantar M., A New Approach for Congestion

Management via Optimal Location of FACTS Devices in Deregulated Power Systems, Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies,(2008),1592-1957.

- [37] Chang C.S.,Huang J.S., Optimal SVC placement for voltage stability reinforcement, Electric Power Systems Research, 42 (1997),165 172.
- [38] Pirayesh ,A.,Parastar A., Nikoukar J.,Optimal location of FACTS devices in a power system using modified particle swarm optimization, 42nd International Universities Power Engineering Conference,(2007),1122-1128.
- [39] Carrión D., González W., López G., Optimal fault location in transmission lines using hybrid method, Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), 2017 IEEE PES.
- [40] Carrión D., Inga E., Gonzalez W., Huncapié R., Optimal Geographical Placement of Phasor Measurement Units based on Clustering Techniques, Power Engineering Conference (UPEC), 2016.
- [41] Caisapanta W.. Carrión D.. Expansión de sistemas de transmisión electrica usando criterios de óptima potencia AC, Universidad Politécnica Salesiana, 2016.
- [42] Sanchez A., Carrión D., Modeling of the Behavior Power Flow on Transmission Lines Based on Voltage and Current Synchronopasors, IEEE Latin America Transsactions, 2018.
- [43] Sánchez A., Carrión D., Modelación del comportameinto de flujo de potencia en sistemas eléctricos de transmisión

mediante sincrofasores e tensión y corriente. Universidad Politécnica Salesiana, 2018.

- [44] Escudero P., Carrión D., Modelo de expansión de un sistema de transmisión basado en linealización de flujos óptimos de potencia AC, Universidad Politécnica Salesiana, 2018.
- [45] Pérez D., Carrión D., Ubicación óptima de dispositivos FACTS en redes electricas de transmisión mediante búsqueda inteligente, Universidad Politécncia Salesiana, 2017.
- [46] Yánez C., Carrión D., Caracterización de la carga eléctrica por medio de fasores de voltaje y corriente, Universidad Politécnica Salesiana, 2017.
- [47] Pillajo J., Carrión D., Estabilidad de sistemas eléctricos de potencia mediante técnicas de conmutación en sistemas de transmisión, Universidad Politécnica Salesiana, 2017.
- [48] Ayala C., Carrión D., Modelación de la propagación de ármonicos en sistemas de transmisión eléctrica, Universidad Politécnica Salesiana, 2017.
- [49] Yaguana G., Carrión D., Optimización de la expansión de los sistemas de transmisión usando Gams, Universidad Politécncia Salesiana, 2016.
- [50] Jacome D., Aguila A., Localizacion y mimensionamiento optimo de dispositivos SVC para la compensacion de potenca reactiva en SEP, Universidad Politécncia Salesiana, 2017.

9.1 Anexos Datos del modelo de prueba de la IEEE DE 14 barras.

Lin N

0.1380 0.0580

0.1490 0.0500

Tabla 9. Datos Líneas de Transmisión Modelo de 14 bus IEEE.

Datos del modelo de prueba de la IEEE DE 30 barras.

Tabla 12. Datos Líneas de Transmisión Modelo de 30 bus IEEE

					-	Linea	DESDE	HASTA	IMPEDA	IMPEDA
Linea	DESDE	HASTA	IMPEDA	IMPEDA		No	BARRA	BARRA	R	Х
No	BARRA	BARRA	R	X		1	1	2	0.0192	0.0575
1	1	2	0.01938	0.05917	-	2	1	3	0.0452	0.1852
2	1	5	0.05403	0.22304		3	2	4	0.057	0.1737
3	2	3	0.04699	0.19797		4	3	4	0.0132	0.0379
4	2	4	0.05811	0.17632		5	2	5	0.0472	0.1983
5	2	5	0.05695	0.17388		6	2	6	0.0581	0.1763
6	3	4	0.06701	0.17103		7	4	6	0.0119	0.0414
7	4	5	0.01335	0.04211		8	5	7	0.046	0.116
8	4	7	0.00000	0.20912		9	6	7	0.0267	0.082
9	4	9	0.00000	0.55618		10	6	6	0.012	0.042
10	5	6	0.00000	0.25202		11	6	9	0	0.208
11	6	11	0.09498	0.19890		12	6	10	0	0.556
12	6	12	0.12291	0.25581		13	9	11	0	0.208
13	6	13	0.06615	0.13027		14	9	10	0	0.11
14	7	8	0.00000	0.17615		15	4	12	0	0.256
15	7	9	0.00000	0.11001		16	12	13	0	0.14
16	9	10	0.03181	0.0845		17	12	14	0.1231	0.2559
17	9	14	0.12711	0.27038		18	12	15	0.0662	0.1304
18	10	11	0.08205	0.19207		19	12	16	0.0945	0.1987
19	12	13	0.22092	0.19988		20	14	15	0.221	0.1997
20	13	14	0.17093	0.34802		21	16	17	0.0824	0.1932
						22	15	18	0.107	0.2185
Tal	bla 10. Date	os de los Lí	ímites de Ge	neración		23	18	19	0.0639	0.1292
		delo de 14 l	bus IEEE. 			24	19	20	0.034	0.068
						25	10	20	0.0936	0.209
Gen	P. MIN	P. MAX	Q.MIN	Q.MAX		26	10	17	0.0324	0.0845
No	(MW)	(MW)	(MVAR)	(MVAR)	-	27	10	21	0.0348	0.0749
G1	10	262	-40	75		28	10	22	0.0727	0.1499
G2	0	80	-40	50		29	21	22	0.0116	0.0236
G3	0	0	0	40		30	15	23	0.1	0.202
G4	0	0	-6	24		31	22	24	0.115	0.179
G5	0	0	-6	24		32	23	24	0.132	0.27
						33	24	25	0.1885	0.3292
Tabla	a 11. Datos	de Carga e	n Nodos Mo	delo de 14		34	25	26	0.2544	0.38
		bus IEI	Æ		—	35	25	27	0.1093	0.2087
		. P	0	=		36	28	27	0	0.369
	Line	a P	Q			37	27	29	0.2198	0.4153
	<u>1</u>	(MW))		38	27	30	0.3202	0.6027
	1	0.0000	0.0000			39	29	30	0.2399	0.4533
	2	0.2170	0.12/0			40	8	28	0.0636	0.2
	3	0.9420) 0.1900			41	6	28	0.0169	0.0599
	4	0.4/80	J -0.0390							
	5	0.1120	J U.U160							
	6	0.1120	J U.U/50							
	/	0.0000	J U.UUUU		-					
	8	0.0000	0.0000							
	9	0.2950) -0.0240	1						
	10	0.090	J U.US80							
	11	0.0350) 0.0180) 0.0160							
	12	0.0010	7 0.0100							

Gen No	P. MIN (MW)	P. MAX (MW)	Q.MIN (MVAR)	Q.MAX (MVAR)
G1	5	200	-30	70
G2	20	80	-20	100
G3	15	50	-15	880
G4	10	35	-15	60
G5	10	30	-10	50
G6	12	40	-15	60

Tabla 13. Datos de los Límites de GeneraciónModelo de 30 bus IEEE.

		bus IEE	±.
=	Linea	Р	0
	No	(MW)	(MVAR)
	1	0.00	0.00
	2	21.70	12.70
	3	2.40	1.20
	4	7.60	1.60
	5	94.20	19.00
	6	0.00	0.00
	7	22.80	10.90
	8	30.00	30.00
	9	0.00	0.00
	10	5.80	-17.00
	11	0.00	0.00
	12	11.20	7.0000
	13	0.1380	7.50
	14	6.20	1.60
	15	8.20	2.50
	16	3.50	1.80
	17	9.00	5.80
	18	3.20	9.00
	19	9.50	3.40
	20	2.20	0.70
	21	17.50	11.20
	22	0.00	0.00
	23	3.20	1.60
	24	8.70	2.70
	25	0.00	0.00
	26	3.50	2.30
	27	0.00	0.00
	28	0.00	0.00
	29	2.40	0.90
	30	10.60	1.90

10 Estado del Arte

		DATOS				TI	EMÁT	FICA				FC	ORMI FU	ULAC UNCI	CIÓN I ONES	DEL I S OBJ	PROE ETIV	BLEN O	IA	RES P	STRI(D] PROB	CCIOI EL BLEM	NES A	P R	PROP P ESO PRO	UES ARA LVEF BLEN	FAS R EL MA				S Pl	SOLU ROP	JCIÓ UESI	N FA			
ITEM	AÑO	COMPENSACIÓN ÓPTIMA DE POTENCIA REACTIVA EN SISTEMAS ELÉCTRICOS DE TRANSMISIÓN MEDIANTE BÚSQUEDA ARMÓNICA	CITAS	LOCALIZACION OPTIMA DE FACTS - (POWER SYSTEM)	OPTMIZACION	CALIDAD DE LA ENERGIA	ESTABILIDAD	CAPACIDAD DE CARGA	SEGURIDAD	FIABILIDAD DEL SISTEMA	COSTOS	CAPACIDAD	OPTIMIZACION	MINIMIZACIÓN DE COSTOS	CONTROL DE POTENCIA ACTIVO Y REACTIVO	STATCOM	FLEXIBILIDAD	REDUCCION DE PERDIDAS	RENDIMIENTO DEL FLUJO	COSTO	ESTABILIDAD	TRANSFERENCIA DE DOTENCIA	LIMITACIONES DINAMICAS	HARMONY SEARCH	GENETIC ALGORITM	PARTICLE SWARM	ALGORITMOS, HEURÍSTICA o METAHEILDÍSTICAS	STATCOM	OPTIMIZACION	SEGURIDAD	CONTROL DE POTENCIA	ESTABILIDAD	PERFIL DE VOLTAJE	RENDIMIENTO	OPTIMIZAR COSTOS	FIABILIDAD	CONFIABILIDAD
1	2015	Application of particle swarm optimization technique for optimal location of FACTS devices considering cost of installation and system loadability, Electric Power System.	1	æ				₩		Æ	摄			Æ	¥			æ	Æ				Æ		æ						æ	æ		æ		₩	
2	2015	High Power Electronics and Flexible AC Transmission System, IEEE Power Engineering Review.	1	æ	æ			Ħ			¥					¥		æ			æ						æ	æ	æ		¥			¥	¥		
3	2015	Assessment and Control of the Impact of FACTS devices on Power System Performance, IEEE Transactions on Power Systems.	1	¥				æ	¥						¥			¥						æ						₩						₩	
4	2014	Optimal placement and sizing of Static Var Compensators in power systems using Improved Harmony Search Algorithm.	4	¥		¥	¥	Ħ						¥				æ	Ħ		¥				₩							¥	¥				×
5	2014	Optimal Placement of Multiple STATCOM, 12th International Middle-East Power System Conference.	1	₩	₩			₩						₩				₩				₩	₩			₩		₩	₩				₩		₩		
6	2014	Optimal Allocation of Shunt Dynamic Var Source SVC and STATCOM: A Survey, Department of Electrical and Computer Engineering, the University of Tennessee.	1	₩	æ		æ		₩	æ					æ			₩			₩				₩				æ	₩		₩		₩			₩
7	2014	Evolutionary Algorithm Assisted Optimal Placement of FACTS Controllers in Power system.	2	₩	¥		₩					¥			₩		¥	₩			₩		¥		æ			æ	₩		¥	¥		æ			
8	2014	Synchronous Series Compensator A solid state Approach to the series compensation of transmission line, IEEE Transactions on Power Delivery.	2	₩		₩		₩		¥			₩				¥		₩			¥	₩		₩				¥	₩		₩		¥		¥	
9	2014	Selection of static VAR compensator location and size for system voltage stability improvement, Electr Power System.	3	¥				¥	¥				₩		¥		¥	¥	æ						¥			₩	æ	₩		¥		₩		₩	

		DATOS				TE	MÁT	TCA				FC	ORMI FU	ULA(UNCI	CIÓN E ONES	DEL F OBJI	'ROB ETIV	LEM. O	A	RES P	TRIC DI ROB	CION EL LEM/	NES A	P R	PROP P. ESO PRO	UEST ARA LVER BLEN	TAS EL IA				S(PF	OLU ROPU	CIÓN JEST	I 'A			
ITEM	AÑO	COMPENSACIÓN ÓPTIMA DE POTENCIA REACTIVA EN SISTEMAS ELÉCTRICOS DE TRANSMISIÓN MEDIANTE BÚSQUEDA ARMÓNICA	CITAS	LOCALIZACION OPTIMA DE FACTS - (POWER SYSTEM)	OPTMIZACION	CALIDAD DE LA ENERGIA ET ECTEDICA	ESTABILIDAD	CAPACIDAD DE CARGA	SEGURIDAD	FIABILIDAD DEL SISTEMA	COSTOS	CAPACIDAD	OPTIMIZACION	MINIMIZACIÓN DE COSTOS	CONTROL DE POTENCIA ACTIVO Y REACTIVO	STATCOM	FLEXIBILIDAD	REDUCCION DE PERDIDAS DE	RENDIMIENTO DEL FLUJO	COSTO	ESTABILIDAD	TRANSFERENCIA DE POTENCIA	LIMITACIONES DINAMICAS	HARMONY SEARCH	GENETIC ALGORITM	PARTICLE SWARM OPTIMIZATION	ALGORITMOS, HEURÍSTICA o METAHEURÍSTICAS	STATCOM	OPTIMIZACION	SEGURIDAD	CONTROL DE POTENCIA	ESTABILIDAD	PERFIL DE VOLTAJE	RENDIMIENTO	OPTIMIZAR COSTOS	FIABILIDAD	CONFIABILIDAD
10	2013	Comparison of PSS, SVC and STATCOM controllers for damping power system oscillation, IEEE Trans Power Syst.	1	₩		₩		₩	₩				₩					₩	₩						₩					₩		₩		₩			æ
11	2013	Comparison of shunt capacitor, SVC and STATCOM in static voltage stability margin enhancement.Int J Elec Eng Educ.	1			₩			₩	₩					¥		₩				₩				₩			₩	*			₩	₩			₩	
12	2013	A Survey on Meta-Heuristic Global Optimization Algorithms, Research Journal of Applied Sciences, Engineering and Technology.	1		¥			₩	₩				₩	₩			₩		¥		₩	₩				¥			₩	₩			₩			¥	
13	2013	Cybernetic solution path of an experimental problem, Royal Aircraft Establishment, brary Translation.	1	₩		₩	¥	æ		₩		₩		₩	₩		æ	₩		₩	₩			₩				₩			₩	₩	₩	₩			×
14	2013	An introduction with application to biology, control and artificial intelligence Adaptation in Natural and Artificial System. MIT Press, Cambridge.	3	₩	æ		₩			₩			₩		¥		₩		¥		₩			₩					*		æ		æ		₩		₩
15	2013	Adaptation in natural and artificial systems. The University of Michigan Press, AnnArbor.	3	¥	×	₩			₩		₩			₩	¥	₩		₩	₩	₩		₩	₩	₩			æ	₩	₩		×		₩		₩	₩	
16	2013	Optimization by simulated annealing.	75	¥				¥		¥	×			×	₩			¥	¥				¥		¥						×	¥		¥		×	
17	2012	The immune system, adaptation, and machine learning. Physica.	4	×	×			₩			₩					₩		×			×						₩	×	×		×			×	₩		
18	2011	Optimization, Learning and Natural Algorithms. Ph.D. Thesis,Politecnico di Milano.	13					₩	¥						¥			₩						₩						¥						æ	
19	2011	Particle swarm optimization. IEEE International Conference on Neural Networks Perth, Australia.	1	₩		¥	₩	₩						₩				₩	¥		₩				₩							₩	₩				₩
20	2010	A new heuristic optimization algorithm: Harmony search, Simulation.	8	×	¥			æ						₩				æ				₩	₩			æ		×	₩				×		₩		
21	2010	On honey bees and dynamic server allocation in internet hosting centers.Adapt.	1		¥		₩		₩	¥					₩			¥			¥				₩				×	₩		₩		₩			₩
22	2009	Optimal Placement of MultiType FACTS Devices in Power Systems Using Evolution Strategies, The 5th International Power Engineering and Optimization.	3	₩	₩		₩					₩			₩		æ	₩			₩		Ħ		₩			₩	₩		₩	₩		₩			

		DATOS				TI	EMÁT	TICA				F	ORM F	ULA(UNCI	CIÓN I IONES	DEL I S OBJ	PROE ETIV	BLEM O	A	REST PR	RIC DE OBL	CION L LEMA	ies	P] RI I	ROP PA ESOI PROI	UEST ARA LVER BLEM	AS EL A				S Pl	OLU ROP	CIÓI UEST	N ZA			
ITEM	AŇO	COMPENSACIÓN ÓPTIMA DE POTENCIA REACTIVA EN SISTEMAS ELÉCTRICOS DE TRANSMISIÓN MEDIANTE BÚSQUEDA ARMÓNICA MEDIANTE BÚSQUEDA ARMÓNICA	CITAS	LOCALIZACION OPTIMA DE FACTS - (POWER SYSTEM)	OPTMIZACION	CALIDAD DE LA ENERGIA	ESTABILIDAD	CAPACIDAD DE CARGA	SEGURIDAD	FIABILIDAD DEL SISTEMA	COSTOS	CAPACIDAD	OPTIMIZACION	MINIMIZACIÓN DE COSTOS	CONTROL DE POTENCIA ACTIVO Y REACTIVO	STATCOM	FLEXIBILIDAD	REDUCCION DE PERDIDAS DE	RENDIMIENTO DEL FLUJO	COSTO	ESTABILIDAD	TRANSFERENCIA DE POTENCIA	LIMITACIONES DINAMICAS	HARMONY SEARCH	GENETIC ALGORITM	PARTICLE SWARM OPTIMIZATION	ALGORITMOS, HEURÍSTICA o METAHEURÍSTICAS	STATCOM	OPTIMIZACION	SEGURIDAD	CONTROL DE POTENCIA	ESTABILIDAD	PERFIL DE VOLTAJE	RENDIMIENTO	OPTIMIZAR COSTOS	FIABILIDAD	CONFIABILIDAD
23	2009	Power system restoration restoration with priority loads using an evolutionary strategy, Proceedings of 34th North American Power Symposium	31	¥		¥		₩		₩			祵				斑		¥			₩	₩		₩				₩	¥		¥		₩		₩	
24	2009	Optimal Placement of FACTS Controllers in Power systems via Evolutionary Strategies, Proceedings of IEEE international conference on Transmission and Distribution Evolutionary.	10	æ				Ð	₩				æ		æ		₽	₩	*						₽			₩	₩	₩		æ		₩		×	
25	2008	Optimal parameters of FACTS devices in electric power systems applying evolutionary strategies, Electrical Power and Energy Systems.	1	æ		₩		¥	₩				₩					₩	₽						₽					₩		₽		₩			₩
26	2008	Optimal Placement of Static Var Compensators in Distribution Feeders For Load Balancing By Genetic Algorithm, 18th International Conference and Exhibition on Electricity.	35	¥		₩			₩	₩					₩		¥				₩				₩			₩	₩			₩	₩			₩	
27	2008	Voltage Sag Cost Reduction With Optimally Placed FACTS Devices, 9th Internatinal Conference on Electrical Power, Quality and Utilisation.	61	æ	¥			₩	₩				祵	₩			æ		₩		₩	₩				₩			₩	₩			₩			₩	
28	2006	Placement of SVCs and Selection of Stabilizing Signals in Power Systems.	6	¥		×	¥	×		₩		₩		₩	¥		×	₩		¥	×			æ				×			¥	¥	₩	×			₩
29	2006	Improvement of Voltage Stability and Reduce Power System Losses by Optimal GA- based Allocation of Multi-type FACTS Devices. 11th International Conference on Optimization of Electrical and Electronic Equipment	6	₩	¥		₩			₩			æ		¥		Ð		₩		₽			æ					₩		₩		¥		₩		æ
30	2015	Optimization Scheme for SVC Placement of Power Systems under Critical Operation Contingence, International Conference on Computer Science and Software Engineering.	18	æ	¥	¥			₩		¥			¥	₩	¥		₩	₩	₩		₩	¥	₩			¥	₩	₩		₩		₩		₩	₩	

		DATOS				TI	EMÁT	ГІСА				FO	ORMI FU	ULAC JNCI	CIÓN E ONES)EL F OBJI	ROE	LEM O	A	RES P	TRIC DE ROB	CIO EL LEM/	NES A	P R:]	ROP PA ESOI PROI	UEST ARA LVER BLEN	TAS EL IA				S PF	OLU ROPU	CIÓN UEST	۹ A			
ITEM	AÑO	COMPENSACIÓN ÓPTIMA DE POTENCIA REACTIVA EN SISTEMAS LÉCTRICOS DE TRANSMISIÓN MEDIANTE BÚSQUEDA ARMÓNICA MEDIANTE BÚSQUEDA ARMÓNICA	CITAS	LOCALIZACION OPTIMA DE FACTS - (POWER SYSTEM)	OPTMIZACION	CALIDAD DE LA ENERGIA	ESTABILIDAD	CAPACIDAD DE CARGA	SEGURIDAD	FIABILIDAD DEL SISTEMA	COSTOS	CAPACIDAD	OPTIMIZACION	MINIMIZACIÓN DE COSTOS	CONTROL DE POTENCIA ACTIVO Y REACTIVO	STATCOM	FLEXIBILIDAD	REDUCCION DE PERDIDAS DE	RENDIMIENTO DEL FLUJO	COSTO	ESTABILIDAD	TRANSFERENCIA DE POTENCIA	LIMITACIONES DINAMICAS	HARMONY SEARCH	GENETIC ALGORITM	PARTICLE SWARM OPTIMIZATION	ALGORITMOS, HEURÍSTICA º METAHEURÍSTICAS	STATCOM	OPTIMIZACION	SEGURIDAD	CONTROL DE POTENCIA	ESTABILIDAD	PERFIL DE VOLTAJE	RENDIMIENTO	OPTIMIZAR COSTOS	FIABILIDAD	CONFIABILIDAD
31	2015	Optimal SVC Placement in Electric Power Systems Using a Genetic Algorithms Based Method, IEEE Bucharest Power Tech Conference.	1	æ				Æ		æ	æ			₩	₩			₩	¥				æ		₩						¥	₩		₩		₩	
32	2015	Voltage Profile enhancement through optimal placement of FACTS devices using QueenBee-Assisted GA,Third International Conference on Power Systems.	1	æ	¥			¥			¥					¥		₩			₩						æ	¥	₩		æ			₩	₩		
33	2014	Optimal placement of FACTS to mitigate congestions and inter-area oscillations, IEEE Trondheim PowerTech.	1	æ				₩	₩						₩			₩						₩						¥						¥	
34	2014	Application of Averaging Technique to the Power System Optimum Placement and Sizing of Static Compensators, The 7th International Power Engineering Conference.	4	¥		₩	æ	æ						₽				₩	₩		₩				₩							₩	₩				₩
35	2014	Novel Method for Optimal Placement of STATCOM in Distribution Networks Using Sensitivity Analysis by DIgSILENT Software, Asia-Pacific Power and Energy Engineering Conference.	1	æ	¥			æ						¥				₩				₩	₩			¥		¥	₩				₩		₩		
36	2014	A New Approach for Congestion Management via Optimal Location of FACTS Devices in Deregulated Power Systems, Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies.	1	æ	×		æ		₩	₩					₽			₩			¥				æ				₽	*		₩		¥			¥
37	2014	Optimal SVC placement for voltage stability reinforcement, Electric Power Systems Research.	2	¥	×		æ					¥			¥		₩	₩			¥		₩		¥			¥	×		₩	æ		æ			
38	2014	Optimal location of FACTS devices in a power system using modified particle swarm optimization, 42nd International Universities Power Engineering.	2	₩		₩		¥		₩			₩				æ		₩			æ	₩		¥				₩	₽		¥		₩		₩	

		DATOS				TI	EMÁT	FICA				FO	ORM F	ULA UNC	CIÓN I IONES	OEL I OBJ	PROF ETIV	BLEM O	A	RES P	TRIC DI PROB	CCIO EL ELEM	NES A	F R	PROP P. ESO PRO	UEST ARA LVER BLEN	TAS EL IA				S Pl	SOLU ROPI	CIÓI UEST	N FA			
ITEM	AÑO	COMPENSACIÓN ÓPTIMA DE POTENCIA REACTIVA EN SISTEMAS ELÉCTRICOS DE TRANSMISIÓN MEDIANTE BÚSQUEDA ARMÓNICA	CITAS	LOCALIZACION OPTIMA DE FACTS - (POWER SYSTEM)	OPTMIZACION	CALIDAD DE LA ENERGIA	ESTABILIDAD	CAPACIDAD DE CARGA	SEGURIDAD	FIABILIDAD DEL SISTEMA	COSTOS	CAPACIDAD	OPTIMIZACION	MINIMIZACIÓN DE COSTOS	CONTROL DE POTENCIA ACTIVO Y REACTIVO	STATCOM	FLEXIBILIDAD	REDUCCION DE PERDIDAS DE	RENDIMIENTO DEL FLUJO	COSTO	ESTABILIDAD	TRANSFERENCIA DE POTENCIA	LIMITACIONES DINAMICAS	HARMONY SEARCH	GENETIC ALGORITM	PARTICLE SWARM OPTIMIZATION	ALGORITMOS, HEURÍSTICA o METAHEURÍSTICAS	STATCOM	OPTIMIZACION	SEGURIDAD	CONTROL DE POTENCIA	ESTABILIDAD	PERFIL DE VOLTAJE	RENDIMIENTO	OPTIMIZAR COSTOS	FIABILIDAD	CONFIABILIDAD
39	2017	Optimal fault location in transmission lines using hybrid method, Innovative Smart Grid Technologies Conference - Latin America.	3	¥				₩	æ				₩		¥		₩	¥	₩						₩			₩	₩	₩		¥		₩		₩	
40	2018	Optimal Geographical Placement of Phasor Measurement Units based on Clustering Techniques, Power Engineering Conference.	1	æ		¥		₩	₩				₩					*	₩						₩					¥		¥		*			₩
41	2017	Expansión de sistemas de transmisión electrica usando criterios de óptima potencia AC, Universidad Politécnica Salesiana.	1			₩			₩	₩					¥		₩				₩				₩			₩	₩			₩	¥			₩	
42	2018	Modeling of the Behavior Power Flow on Transmission Lines Based on Voltage and Current Synchronopasors, IEEE Latin America Transsactions.	1		¥			æ	¥				¥	₩			æ		₩		₩	₩				₩			₩	₩			¥			₩	
43	2017	Ubicación óptima de dispositivos FACTS en redes electricas de transmisión mediante búsqueda inteligente, Universidad Politécncia Salesiana.	1	¥		¥	¥	Ħ		¥		¥		¥	æ		¥	¥		¥	¥			¥				¥			¥	¥	¥	₩			₩
44	2018	Modelo de expansión de un sistema de transmisión basado en linealización de flujos óptimos de potencia AC, Universidad Politécnica Salesiana.	3	æ	æ		æ			Æ			Æ		₩		₩		¥		æ			₩					¥		æ		¥		₩		¥
45	2017	Modelación del comportameinto de flujo de potencia en sistemas eléctricos de transmisión mediante sincrofasores e tensión y corriente. Universidad Politécnica Salesiana.	3	æ	囹	¥			¥		¥			¥	æ	¥		¥	¥	¥		¥	¥	挼			æ	¥	¥		¥		¥		₩	æ	
46	2018	Caracterización de la carga eléctrica por medio de fasores de voltaje y corriente, Universidad Politécnica Salesiana.	3	æ				Æ		₩	₩			¥	¥			¥	¥				¥		¥						¥	¥		¥		₩	
47	2017	Estabilidad de sistemas eléctricos de potencia mediante técnicas de conmutación en sistemas de transmisión, Universidad Politécnica Salesiana.	4	₩	₩			₩			₩					₩		₩			₩						₩	₩	₩		₩			₩	*		
48	2018	Modelación de la propagación de ármonicos en sistemas de transmisión eléctrica, Universidad Politécnica Salesiana.	2					₩	¥						¥			¥						₩						¥						æ	

	DATOS			TEMÁTICA						FORMULACIÓN DEL PROBLEMA FUNCIONES OBJETIVO								RESTRICCIONES DEL PROBLEMA				PROPUESTAS PARA RESOLVER EL PROBLEMA				SOLUCIÓN PROPUESTA											
ITEM	AÑO	COMPENSACIÓN ÓPTIMA DE POTENCIA REACTIVA EN SISTEMAS ELÉCTRICOS DE TRANSMISIÓN MEDIANTE BÚSQUEDA ARMÓNICA	CITAS	LOCALIZACION OPTIMA DE FACTS - (POWER SYSTEM)	OPTMIZACION	CALIDAD DE LA ENERGIA	ESTABILIDAD	CAPACIDAD DE CARGA	SEGURIDAD	FIABILIDAD DEL SISTEMA	COSTOS	CAPACIDAD	OPTIMIZACION	MINIMIZACIÓN DE COSTOS	CONTROL DE POTENCIA ACTIVO Y REACTIVO	STATCOM	FLEXIBILIDAD	REDUCCION DE PERDIDAS DE	RENDIMIENTO DEL FLUJO	COSTO	ESTABILIDAD	TRANSFERENCIA DE POTENCIA	LIMITACIONES DINAMICAS	HARMONY SEARCH	GENETIC ALGORITM	PARTICLE SWARM OPTIMIZATION	ALGORITMOS, HEURÍSTICA o METAHEURÍSTICAS	STATCOM	OPTIMIZACION	SEGURIDAD	CONTROL DE POTENCIA	ESTABILIDAD	PERFIL DE VOLTAJE	RENDIMIENTO	OPTIMIZAR COSTOS	FIABILIDAD	CONFIABILIDAD
49	2017	Optimización de la expansión de los sistemas de transmisión usando Gams, Universidad Politécncia Salesiana.	1	₩		₩	×	₩						₩				¥	₩		₩				₩							祵	₩				₩
50	2018	Localización y dimensionamiento óptimo de dispositivos SVC para la compensación de potencia reactiva en un SEP, Universidad Politécncia Salesiana.	2	₩	₩			æ						₩				₩				₩	₩			₩		¥	₩				₩		₩		
			CANTIDAD:	43	23	19	16	35	22	19	11	6	15	21	29	7	21	38	26	6	26	13	17	13	26	7	7	23	32	19	20	29	23	26	14	23	16

Tabla 15. Matriz Estado del Arte

Figura 14. Temática Estado del Arte

Figura 15. Formulación del Problema Estado de Arte

Figura 16. Solución Estado de Arte