

UNIVERSIDAD POLITÉCNICA SALESIANA

SEDE GUAYAQUIL

CARRERA:

INGENIERÍA ELECTRÓNICA

Trabajo de titulación previo a la obtención del título de:

INGENIERO ELECTRÓNICO

TEMA:

DISEÑO DE ALGORITMOS PARA LA COMPRESIÓN DE AUDIO DIGITAL UTILIZANDO RADIOS DEFINIDOS POR SOFTWARE

AUTORES:

ESTEFANIA MALLARINO ANGEL GABRIELA IVONNE SOLIS MORAN

TUTOR:

ING. RAFAEL PÉREZ ORDÓÑEZ MSc.

Guayaquil, Julio de 2018

Certificados de responsabilidad y autoría del trabajo de titulación

Nosotras, Gabriela Ivonne Solis Moran y Estefania Mallarino Angel, declaramos bajo juramento que el trabajo aquí descrito es de nuestra autoría; que no ha sido previamente presentado para ningún grado o calificación profesional, y que hemos consultado las referencias bibliografía que se incluya en este documento.

Guayaquil, 19 de julio del 2018

Nombre: Estefania Mallarino Angel Cédula: 0952168946

Nombre: Gabriela Ivonne Solis Moran Cédula: 0931896641

Cesión de derechos de autor

Nosotras, Estefania Mallarino Angel con documento de identificación N° 095216894-6 y Gabriela Ivonne Solis Moran con documento de identificación N° 093189664-1, manifestamos nuestra voluntad y cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores del trabajo de grado titulado: DISEÑO DE ALGORITMOS PARA LA COMPRESIÓN DE AUDIO DIGITAL UTILIZANDO RADIOS DEFINIDOS POR SOFTWARE mismo que ha sido desarrollado para optar por el título de: Ingeniero Electrónico, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en nuestra condición de autores nos reservamos los derechos morales de la obra antes citada.

En concordancia, suscribimos este documento en el momento que hacemos entrega del trabajo final en formato impreso y digital a la Biblioteca de la Universidad Politécnica Salesiana.

Guayaquil, 19 de julio del 2018

Nombre: Estefania Mallarino Angel Cédula: 0952168946

Nombre: Gabriela Ivonne Solis Moran Cédula: 0931896641

Certificado de dirección de trabajo de titulación

Yo declaro que bajo mi dirección y asesoría fue desarrollado el trabajo de titulación "DISEÑO DE ALGORITMOS PARA LA COMPRESIÓN DE AUDIO DIGITAL UTILIZANDO RADIOS DEFINIDOS POR SOFTWARE" con resolución de aprobación de Consejo de Carrera N°174-007-2017-03-31 realizado por las estudiantes MALLARINO ANGEL ESTEFANIA y SOLIS MORAN GABRIELA IVONNE con cédulas de identidad N.º 0952168946 y Nº 0931896641 respectivamente, obteniendo un producto que cumple con los objetivos del diseño de aprobación, informe final y demás requisitos estipulados por la Universidad Politécnica Salesiana, para ser considerados como trabajo final de titulación.

Guayaquil, 19 de julio del 2018

Tutor del Trabajo de titulación Ing. Rafael Pérez Ordóñez MSc.

Dedicatoria

Dedicamos este proyecto a los estudiantes de la carrera de Ingeniería Electrónica mención telecomunicaciones que se forman en ella, para aportar a su educación superior, mediante el conocimiento práctico y que este proyecto de titulación los motive a fortalecer los conceptos adquiridos alrededor de la carrera.

Solis Moran Gabriela Ivonne Mallarino Angel Estefania

Agradecimiento

A Dios y a la Virgen, por la oportunidad de estar con vida, salud, bendecidas, y por darnos la sabiduría, que nos permitió tomar decisiones correctas sobre los obstáculos que se nos presentaron. A nuestros familiares por su apoyo incondicional y amigos por sus palabras de aliento y motivación para así alcanzar esta importante meta.

Solis Moran Gabriela Ivonne Mallarino Angel Estefania

Resumen

AÑO	TÍTULO	ALUMNO	DIRECTOR	TEMA DE TITULACIÓN
2017	Ingeniero	Estefania Mallarino	Ing. Rafael	Diseño de algoritmos
	Electrónico	Angel.	Pérez	para la compresión de
		Gabriela Solis	Ordóñez.	audio digital utilizando
		Moran.		radios definidos por
				software.

El presente trabajo está enfocado en el diseño de algoritmos para la compresión de un audio digital utilizando radios definidos por software como es el USRP RIO 2943. Se toma una señal de voz mediante un micrófono conectado a la PC, el cual en conjunto con el software Labview 2016, es captada y procesada a un algoritmo de compresión para luego ser transmitida y receptada en una modulación digital QAM.

El algoritmo creado con el software Labview propiedad de National Instrument, les permitirá a los estudiantes analizar, observar y entender a través de la práctica el comportamiento de señales digitales, los factores que influyen en la potencia de recepción y los tipos de compresión que están regidos a normativas.

La conexión del equipo USRP RIO 2943 con la computadora es por medio de la tarjeta PCIe-X4. La frecuencia para el sistema de comunicación depende del rango de operación que poseen las antenas, en el proyecto se utiliza dos tipos de antenas: las antenas Vert 2450 (2,4 GHz a 2,5 GHz y 4,9 GHz a 5,3 GHz) y las antenas patch (5,15 GHz a 5,875 GHz).

Se concluyó que a medida que se aumentaba la distancia, usando antenas patch, la potencia de recepción disminuía, para esto se utilizó la potencia de transmisión máxima que soporta el USRP RIO 2943 para largas distancias y así se obtuvo una potencia de recepción más favorable. A diferencia de las pruebas realizadas con antenas Vert2450, la distancia era casi nula y se pudo observar que la potencia de recepción no disminuía representativamente.

El desarrollo del proyecto de investigación permitió la realización de una práctica de laboratorio, donde los estudiantes de la carrera Ingeniería Electrónica mención en Telecomunicaciones de la Universidad Politécnica Salesiana Sede Guayaquil; en especial los que estén cursando las materias de Comunicaciones Digitales, Procesamiento Digital de Señales y Medios de Transmisión; podrán plasmar los conocimientos teóricos en una práctica real, facilitando una herramienta de estudio a los docentes de la carrera y dejando un precedente para futuras mejoras.

DESIGN OF ALGORITHMS FOR THE COMPRESSION OF DIGITAL AUDIO USING SOFTWARE DEFINED RADIO Abstract

AÑO	TÍTULO	ALUMNO	DIRECTOR	TEMA DE
				TITULACIÓN
2017	Ingeniero	Estefania Mallarino	Ing. Rafael	Design of algorithms
	Electrónico	Angel.	Pérez	for the compression of digital audio using
		Gabriela Solis	Ordóñez.	software defined
		Moran.		radio

The present work is focused on the design of algorithms for the compression of a digital audio using software defined radios such as the USRP RIO 2943. A voice signal is taken by a microphone connected to the PC, which in conjunction with the software Labview 2016, is captured and processed to a compression algorithm to then be transmitted and received in a digital QAM modulation.

The algorithm created with Labview property software of National Instrument, will allow students to analyze, observe and understand through practice the behavior of digital signals, the factors that influence in the power of reception and the types of compression that are governed to regulations.

The connection of the USRP RIO 2943 equipment to the computer is through the PCIe-X4 card. The frequency for the communication system depends on the range of operation of the antennas. The project uses two types of antennas: The Vert antennas 2450 (2.4 GHz to 2.5 GHz and 4.9 GHz to 5.3 GHz) and patch antennas (5.15 GHz to 5.875 GHz).

It was concluded that as the distance increased, using patch antennas, the receiving power decreased, for this was used the maximum transmission power that supports the USRP RIO 2943 for long distances and thus obtained a power of reception more favorable. Unlike the tests carried out with Vert2450 antennas, the distance was almost null, and it could be observed that the receiving power did not decrease representationally.

The development of the research project allowed the realization of a laboratory practice, where the students of the career of Electronics Engineer mention in Telecommunications of the University Polytechnic Salesian Headquarters Guayaquil; especially those who are studying the subjects of Digital Communications, Digital Signal Processing and transmission media; they will be able to translate the theoretical knowledge into a real practice, providing a study tool to the teachers of the career and leaving a precedent for future improvements.

ÍNDICE GENERAL

1. INTRODUCCIÓN1
1.1 Descripción del problema1
1.2 Antecedentes
1.3 Importancia y alcance
1.4 Delimitación
1.4.1 Delimitación temporal
1.4.2 Delimitación espacial
1.4.3 Delimitación académica3
1.5 Objetivos
1.5.1 Objetivo General
1.5.2 Objetivos Específicos
1.6 Impacto
ESTADO DEL ARTE
2.1 Voz humana
2.2 Filtro
2.2.1 Filtro pasa bajo5
2.2.2 Filtro pasa alto
2.2.3 Filtro pasa banda
2.2.4 Filtro de transmisión y recepción7
2.3 Audio digital
2.3.1 Características del audio digital
2.3.1.1 Frecuencia de muestreo
2.3.1.2 Número de canales
2.3.1.3 Número de bits por muestra9
2.4 Compresión de audio digital
2.4.1 Compresión de información9
2.4.2 Ventajas de usar compresión
2.4.3 Compresión de datos
2.4.4 Técnicas de compresión10
2.4.5 Tipos de compresión
2.4.6 Algoritmo de compresión de audio 11
2.4.6.1 Codificación de audio
2.4.6.2 Codificación de sub-bandas 12
2.4.6.3 Formato de audio WAV 12
2.4.6.4 Formato de audio MP312

2.4.6.5 Formato de audio MP4	13
2.4.6.6 Características de los algoritmos de compresión de audio	13
2.5 QAM (Cuantizada digital)	13
2.5.1 16-QAM	14
2.5.1.1 Transmisor 16-QAM	14
2.5.1.2 Receptor 16-QAM	15
2.6 USRP (Radios definidos por software)	15
2.6.1 USRP 2920	16
2.6.2 USRP RIO 2943	17
MARCO METODOLÓGICO	19
3.1 Fase inicial: Esquema del proyecto	19
3.2 Fase de aplicación de métodos y técnicas	19
3.2.1 Métodos	19
3.2.1.1 Método experimental	19
3.2.1.2 Método deductivo	20
3.2.2 Técnicas	20
3.2.2.1 Técnicas de campo	20
3.2.2.2 Técnica documental	20
3.2.3 Variables	20
3.2.4 Población a ser beneficiada	21
3.3 Fase de programación	21
3.3.1 Programación en Labview	21
3.3.2 Diseño de filtros	22
3.3.2.1 Filtro de transmisión y recepción	22
3.3.3 Configuración del USRP	23
3.3.3.1 Procedimiento de conexión con el USRP-RIO 2943 y la PC	23
3.3.3.2 Interconexión del NI-USRP RIO 2943 con Antenas Vert2450	23
3.3.3.2.1 Configuración del USRP en el software Labview	25
3.3.3.3 Interconexión del NI- USRP RIO 2943 con Antenas Patch	27
3.3.3.1 Configuración del USRP en el software Labview	28
3.3.4 Algoritmos de compresión	29
3.3.5 Transmisión de datos	30
3.3.5.1 Parámetros para el audio digital comprimido en la transmisión	31
3.3.6 Recepción de datos	33
RESULTADOS	35
4.1 Pruebas de transmisión de datos	35
4.2 Pruebas de recepción de datos	37

4.2.1 Caso ideal	37
4.2.2 Caso real	38
4.3 Validación de resultados	40
4.4 Análisis de resultados	44
CONCLUSIONES	47
RECOMENDACIONES	48
BIBLIOGRAFÍA Y REFERENCIAS	49
ANEXOS	50
Anexo I. Código de programación Labview, Matlab	50
Anexo II. Datasheet de los equipos	59
Anexo III. Presupuesto	64
Anexo IV. Pruebas con Antenas Vert2450	65
Anexo V. Pruebas con antenas Patch	74
Anexo VI. Fotos de las pruebas con las antenas Patch	70
Anexo VII Práctica11	10

ÍNDICE DE FIGURAS

Figura 2.1 Espectro de la voz5
Figura 2.2 Respuesta en frecuencia de filtro pasa bajo ideal y de tres pasa bajos
reales con diferentes pendientes de corte6
Figura 2.3 Frecuencia vs espectro de amplitud del filtro pasa alto
Figura 2.4 Respuesta en frecuencia de un filtro pasa banda6
Figura 2.5 Respuesta al impulso de filtro RRC (Rs normalizada)7
Figura 2.6 Respuesta de frecuencia del filtro RRC
Figura 2.7 Diagrama de bloque de un transmisor 16-QAM 15
Figura 2.8 Recuperación de la portadora 16 QAM15
Figura 2.9 USRP 2920 16
Figura 2.10 USRP 2943 17
Figura 3.1 Esquema del sistema de comunicación de un audio digital19
Figura 3.2 Diagrama de bloque de la transmisión y recepción del audio digital
comprimido21
Figura 3.3 Panel de control de la transmisión y recepción del audio digital
comprimido22
Figura 3.4 Diagrama de bloque del filtro de transmisión22
Figura 3.5 Conexión del USRP-RIO 2943 con la PC 23
Figura 3.6 Interconexión del NI-USRP RIO 2943 con las antenas Vert2450 24
Figura 3.7 Programa NI USRP Configuration Utility
Figura 3.8 Estado de la imagen FPGA del Drive ID25
Figura 3.9 Configuración de parámetros del USRP RIO en Tx 26
Figura 3.10 Configuración de parámetros del USRP RIO en Rx
Figura 3.11 Interconexión del NI-USRP RIO 2943 con Antenas Patch27
Figura 3.12 Configuración de parámetros del USRP RIO en Tx28
Figura 3.13 Configuración de parámetros del USRP RIO en Rx 28
Figura 3.14 Diagrama de bloque del Algoritmo WAV 29
Figura 3.15 Diagrama de bloque del Algoritmo MP3 29
Figura 3.16 Diagrama de bloque del Algoritmo MP4 29
Figura 3.17 Diagrama de bloque de la transmisión de datos
Figura 3.18 Panel de control de la transmisión
Figura 3.19 Configuración del audio a grabar 32
Figura 3.20 Indicador de inicio de grabación 32
Figura 3.21 Ventana para guardar el archivo 32
Figura 3.22 Guarda el audio grabado

Figura 3.23 Diagrama de bloque de la recepción de datos	. 33
Figura 3.24 Configuración de la ruta del audio Rx	. 34
Figura 4.1 Interconexión del USRP RIO 2943 con la PC	. 35
Figura 4.2 Indicadores de transmisión	. 35
Figura 4.3 Espectro de la frecuencia utilizando antenas Vert2450	. 36
Figura 4.4 Espectro de la frecuencia utilizando antenas Patch	. 36
Figura 4.5 Antenas Vert2450 conectadas al USRP RIO	. 37
Figura 4.6 Antena Patch conectadas al USRP RIO	. 38
Figura 4.7 Indicadores de recepción	. 39
Figura 4.8 Archivos de audios digitales transmitido y receptado	. 40
Figura 4.9 Señal del audio transmitido.	. 41
Figura 4.10 Señal de audio receptado	. 41
Figura 4.11 Niveles de potencia de recepción utilizando el algoritmo de	
compresión WAV	. 42
Figura 4.12 Niveles de potencia de recepción utilizando el algoritmo de	
compresión MP3	. 42
Figura 4.13 Niveles de potencia de recepción utilizando el algoritmo de	
compresión MP4	. 43
Figura 4.14 Porcentajes de compresión de los formatos	. 43
Figura 4.15 Niveles de potencia de recepción en antenas Vert2450	. 44
Figura 4.16 Niveles de potencia de recepción en antenas patch con una poter	ncia
de transmisión de 7dBm	. 44
Figura 4.17 Niveles de potencia de recepción en antenas patch con una poter	ncia
de transmisión de 11dBm	. 45
Figura 4.18 Niveles de potencia de recepción en antenas patch con una poter	ncia
de transmisión de 7dBm	. 45
Figura 4.19 Comparación de los niveles de potencia en antena Patch	. 46

ÍNDICE DE TABLAS

Tabla 2-1 Tamaño de archive WAV 12
Tabla 2-2 Comparación de los formatos de comprensión de audio 13
Tabla 2-3 Resumen de modulación digital 14
Tabla 2-4 Especificaciones del transmisor del USRP-2920 16
Tabla 2-5 Especificaciones del receptor del USRP-2920 16
Tabla 2-6 Especificaciones del transmisor del USRP-2943 17
Tabla 2-7 Especificaciones del receptor del USRP-2943 18
Tabla 3-1 Frecuencia de muestreo según formato de compresión
Tabla 4-1 Niveles de potencia de transmisión
Tabla 4-2Niveles de potencia de recepción con antenas Vert2450 39
Tabla 4-3 Niveles de potencia de recepción con una PTx de 7 dBm en antenas
Patch
Tabla 4-4 Niveles de potencia de recepción con una PTx de 11 dBm en antenas
Patch
Tabla 4-5 Niveles de potencia de recepción con una PTx de 15 dBm en antenas
Patch

INTRODUCCIÓN

La tecnología de las telecomunicaciones ha ido evolucionando gracias a la exigencia de una sociedad que busca comunicarse a todo momento en cualquier parte del mundo con una mejor calidad, pasando del envío de señales analógicas al intercambio de grandes cantidades de información en forma digital y en tiempo real.

La voz humana ocupa un espectro de frecuencia que va de los 20Hz a 20kHz, por consiguiente, un micrófono puede adquirir y transmitir dentro del rango especificado anteriormente, a pesar de ello no es indispensable captar toda la información para una transmisión de audio legible debido a que se captan datos redundantes. Es lo que sucede en la telefonía convencional de modo que solo necesita transmitir un rango de frecuencia de 400Hz a 4kHz, provocando una alteración leve en la señal, pero aun así se comprende la información.

Para un audio digital se maneja de la misma manera, actualmente existen varios formatos de compresión de audio digital que buscan dar una mejor calidad, pero sin que el tamaño del archivo pese tanto. Existen varias técnicas de compresión de audio que ayudan a escoger un rango de datos de una señal, normalmente un rango que esté libre de ruido o señales parásitas, para así comprimirlo en un archivo que no ocupe gran espacio. A su vez la compresión de audio digital facilita la transmisión y recepción de este, debido al empaquetamiento de datos. Pero no solo es suficiente comprimir para transmitir y receptar, se necesita escoger una modulación que vaya de acuerdo con el ancho de banda y la frecuencia de muestreo que necesitará el audio digital dependiendo del formato y la técnica de compresión a usar.

Hay varias modulaciones digitales, que se diferencian por sus desplazamientos en la fase, frecuencia o amplitud, logrando que cada modulación tenga una eficiencia y un mayor ancho de banda de acuerdo con una rapidez de entrada de bits.

Una de las modulaciones con mayor eficiencia es 16-QAM, ya que con ella se puede trasmitir y receptar señales que contienen grandes cantidades de datos.

En una implementación de transmisión y recepción de datos se necesita equipos que poseen potencias de transmisión y recepción altas. El USRP RIO 2943 tiene como especificaciones una potencia transmisión de va desde 7 dBm a 15 dBm y una potencia máxima de recepción de -15 dBm, de acuerdo con la frecuencia que se esté trasmitiendo.

1.1 Descripción del problema

En la carrera de Telecomunicaciones de la Universidad Politécnica Salesiana sede Guayaquil se realizan prácticas orientadas a complementar los conocimientos teóricos.

Lamentablemente en algunos casos la frecuencia con la cual se efectúa no es suficiente, y en otros casos, se deben actualizar dichas prácticas de acuerdo con las necesidades del medio, ya que, cada día existen avances desde el aspecto tecnológico. Gracias a las telecomunicaciones existe la necesidad de diseñar un sistema digital implementado mediante un software, con el fin de obtener dispositivos que sean capaces de utilizar este tipo de aplicaciones. Es así como los estudios involucran un componente teórico y otro práctico, otorgando al futuro ingeniero las herramientas necesarias para entender e implementar soluciones innovadoras.

Dado estos antecedentes, se tiene la necesidad de potenciar los conocimientos en materias como Comunicaciones Digitales, Procesamiento Digital de Señales y Medios de Transmisión, mediante el diseño e implementación de práctica dirigida al Laboratorio de Telecomunicaciones, utilizando equipos que ofrezcan una variedad de opciones para los estudiantes y docentes desde el punto de vista tecnológico.

Por lo expuesto, se plantea la elaboración de una aplicación para la compresión de audio digital con el manejo de Radios Definidas por Software USRP de National Instruments, la misma que será implementada en el laboratorio de Telecomunicaciones de la Universidad Politécnica Salesiana Sede Guayaquil, otros elementos quedan fuera del alcance del trabajo.

1.2 Antecedentes

Se han rebelado varios proyectos referentes al estudio de audio digital y sus técnicas de compresión.

Uno de los estudios fue en la Escuela Politécnica Nacional en Quito, donde se realizó un proyecto de titulación basado en el estudio, análisis e implementación en software de simulación Matlab del algoritmo mp3 para compresión de audio a través del uso de técnicas digitales para el procesamiento de señales, desarrollado por Duque B. y Tipantuña C.

Partiendo del estudio del algoritmo mp3 en el proyecto mencionado, se propone implementar un sistema de comunicación inalámbrica utilizando la herramienta Labview y el equipo NI USRP-RIO 2943, que por medio de algoritmos de compresión enviar y receptar datos en tres tipos de formato (Wav, Mp3 y Mp4).

1.3 Importancia y alcance

La implementación del proyecto tiene como fundamento principal concatenar conocimientos teórico y prácticos en las materias de Comunicaciones Digitales, Procesamiento Digital de señales y Medios de Transmisión, con el fin de facilitar una herramienta de estudio que impulse a los estudiantes y docentes de la Universidad Politécnica Salesiana Sede Guayaquil carrera Ingeniería Electrónica a desarrollar investigaciones, que permitan realizar aplicaciones para futuros proyectos, tanto en la parte del hardware en la cual tenemos al NI USRP RIO-2943 como trasmisor y receptor de señales digitales moduladas como en el software utilizando la interfaz gráfica Labview para la creación de filtros y algoritmos de compresión wav,mp3 y mp4.

1.4 Delimitación

El proyecto se desarrolla para ser utilizado en el laboratorio de Telecomunicaciones de la Universidad Politécnica Salesiana sede Guayaquil, por los alumnos que toman las materias de Comunicaciones Digitales, Procesamiento Digital de Señales y Medios de Transmisión.

Se procederá a establecer un algoritmo para la transmisión y recepción de voz en formato digital utilizando compresión de audio digital y filtros, para esto se trabajará en la parte del hardware con el equipo NI USRP RIO 2943, tarjeta PCI-Express 4, MXIe x4 Cables, Antenas Patch, Antena Vert2450, computadora, micrófono, kit de herramienta, cable coaxial y en el software con Labview 2016 y NI-USRP Configuration Utility 2016

1.4.1 Delimitación temporal

El proyecto se diseñó y desarrolló en la ciudad de Guayaquil, Ecuador en el período 2017–2018.

1.4.2 Delimitación espacial

El proyecto se desarrolla en las instalaciones del Laboratorio de Telecomunicaciones de la Carrera de Ingeniería Electrónica de la Universidad Politécnica Salesiana sede Guayaquil, la cual está ubicada en la Av. Domingo Comín y callejón Chambers.

1.4.3 Delimitación académica

Mediante el diseño y desarrollo del proyecto de titulación se aplican conocimientos teóricos adquiridos durante los cursos regulares en las materias como Comunicaciones Digitales, Procesamiento Digital de Señales y Medios de Transmisión. Además, se utilizan herramientas como software de simulación y adquisición de datos de voz en formato digital utilizando compresión de audio digital y filtros para la transmisión y recepción. El tiempo límite de grabación es de 3900 milisegundos.

1.4 Objetivos

1.5.1 Objetivo general

Desarrollar un algoritmo para la transmisión y recepción de voz en formato digital utilizando compresión de audio digital y filtros, mediante radios definidas por software como el caso del USRP.

1.5.2 Objetivos específicos

- Configurar el hardware USRP para la transmisión y recepción de datos de voz.
- Diseñar los filtros adecuados para la transmisión y recepción de datos de voz.
- Elaborar los algoritmos de compresión wav, mp3 y mp4 para la transmisión de datos de voz.
- Diseñar algoritmos para la recepción de datos de voz filtrado.
- Validar los resultados obtenidos mediante la comparación de la señal de transmisión y la recepción.

1.6 Impacto

El desarrollo de este proyecto permitirá a los estudiantes complementar los conocimientos estudiados en las materias Comunicaciones Digitales, Procesamiento Digital de Señales y Medios de Transmisión, por medio de una práctica donde se podrá visualizar el comportamiento de una señal digital sometida a algoritmos de compresión y a la comunicación de este.

El proyecto fue revisado por el docente que imparte las materias de Comunicaciones Digitales y Medios de Transmisión, el mismo que certificó y valoro como un aporte al aprendizaje practico para el curso regular de las materias mencionadas.

ESTADO DEL ARTE

2.1 Voz humana

El ser humano posee un aparato fonatorio el cual se encarga de que la voz se produzca, sin embargo, el tamaño y la masa de las cuerdas vocales definen la frecuencia de la voz humana, así como también de la tensión que se emplee y de la velocidad del flujo del aire.

Para emitir sonidos a mayor frecuencia es necesario realizar un esfuerzo vocal que comúnmente se lo conoce como vociferar, es por eso por lo que, a mayor tensión, la frecuencia aumenta y formando así los sonidos más agudos.

La frecuencia aumenta cuando se produce una creciente en la velocidad del flujo de aire, razón por la cual, al aumentar la intensidad de emisión se tiende a elevar espontáneamente el tono de voz. (Miyara, 2006).

Figura 2.1 Espectro de la voz. (Themes, 2018).

La voz está comprendida en frecuencias de 300Hz a 3KHz, la amplitud del canal debe ser igual o mayor 2,7KHz. Según (Saldaña, 2004) Un canal de comunicaciones no puede propagar una señal que contenga una frecuencia que cambie con mayor rapidez que la amplitud de banda del canal.

2.2 Filtro

Un filtro se determina como el proceso que altera el origen de una señal sonora y está diseñado para modificar una señal digital en otra, con el fin de desechar una cantidad de muestras de acuerdo con el tipo de filtro implementado. Los filtros no solo se utilizan para señales sonaras, también tiene aplicaciones para imágenes, videos, vibraciones, etc.

2.2.1 Filtro pasa bajo

Como su nombre lo indican, los filtros pasa bajos están diseñado para dar paso a frecuencias que están por debajo de una frecuencia de corte establecida. En la vida real, los filtros pasan bajo no impiden el paso de frecuencias altas, sino que atenúa la señal en base de dB por octava.

Los valores típicos de atenuaciones son 6 dB/oct, 12 dB/oct y 18 dB/oct (Bocco, Giana y Ramos, 2011).

Figura 2.2 Respuesta en frecuencia de filtro pasa bajo ideal y de tres pasas bajos reales con diferentes pendientes de corte. (Miyara, 2006).

2.2.2 Filtro pasa alto

A diferencia de los filtros pasa bajo, los filtros pasa alto (HP) obstruyen toda frecuencia inferior a la frecuencia de corte, dejando pasar las frecuencias que están por encima de esta.

2.2.3 Filtro pasa banda

Este filtro deja pasar un rango de frecuencias de la señal, impidiendo el paso de las otras frecuencias.

Figura 2.4 Respuesta en frecuencia de un filtro pasa banda. (Miyara, 2006).

Como se muestra en la figura 2.4 y según (Bocco, Giana y Ramos, 2011) el ancho de banda de la respuesta en la frecuencia del filtro centrado en W_0 (frecuencia de corte) está definido:

$$B = W_2 - W_1 \tag{1}$$

2.2.4 Filtro de transmisión y recepción

Cuando se realiza una transmisión digital ocurren cambios en cuanto a la fase, frecuencia o amplitud que a su vez producen espectros de altas frecuencias, gracias a estas perturbaciones nace la superposición de símbolos adyacentes más conocido como ISI. Se pueden utilizar dos tipos de filtros que son; respuesta de impulso finito y respuesta infinita al impulso para contrarrestar el ISI.

Los filtros más utilizados para un sistema de comunicación digital, usando equipos basados en DSP y FPGA, son los FIR (Respuesta de impulso finito). Dentro de este grupo están los gaussianos y los filtros pasa bajo de Nyquist. Una de las principales ventajas de los filtros Nyquist sobre los gaussianos es que dan la facilidad de usar un mismo filtro para la transmisión y recepción. Los filtros Coseno elevado (Raised cosine (RC)) y coseno de raíz elevado (Root Raised cosine (RRC)) pertenecen a la familia de Nyquist; estos reducen la potencia adyacente radiada que se genera en la transmisión. Y en la recepción reduce los efectos del ISI provocados por el ruido y a los multitrayectos generados por la transmisión.

Mediante la siguiente ecuación se determina el comportamiento en la frecuencia de los filtros Coseno de raíz elevado (RRC).

$$H(f) = \begin{cases} 1 & para \ |f| \le \frac{(1-\alpha)}{2T_s} \\ cos \frac{\pi T_s}{2 \alpha} \left[|f| - \frac{(1-\alpha)}{2T_s} \right] & para \ \frac{(1-\alpha)}{2T_s} \le |f| \le \frac{(1-\alpha)}{2T_s} \\ 0 & para \ |f| > \frac{(1+\alpha)}{2T_s} \end{cases}$$
(2)

Si este tuviera un filtro perfecto con una caída vertical exacta, en el procesamiento en banda base de la señal, el ancho de banda equivalente sería el symbol rate (Rs). Este resultado es imposible de implementar. (Bustillos, 2016)

Figura 2.5 Respuesta al impulso de filtro RRC (Rs normalizada). (F. Vera, A. Mora, 2016).

Figura 2.6 Respuesta de frecuencia del filtro RRC. (F. Vera, A. Mora, 2016).

2.3 Audio digital

El sonido puede ser digitalizado y fragmentado en una secuencia discreta de números; este efecto se produce cuando se graba en un micrófono, el sonido se convierte en un voltaje que varía continuamente con respecto al tiempo y esto recibe el nombre de digitalización del sonido. Además, está compuesto por dos etapas que son la frecuencia de muestreo y la cuantización. Se necesita un dispositivo para convertir una señal de analógica a digital y viceversa. (Cinit, 2007)

2.3.1 Características del audio digital

Las características de un audio digital son: frecuencia de muestreo, número de canales y número de bits por muestra

2.3.1.1 Frecuencia de muestreo

La frecuencia de muestreo no es más que el número de veces por segundo que varía una señal digital en un determinado tiempo. En el caso de un audio digital es la **N** cantidad de veces que se va a muestrear por segundo. En consecuencia, según (Gómez,2009) la frecuencia mínima de muestreo es igual al doble de la frecuencia máxima de la entrada de audio. La frecuencia de muestreo mínima de Nyquist es:

$$f_s \ge 2 f_a \tag{3}$$

en donde f_s es Frecuencia mínima de muestreo de Nyquist (Hertz) y f_a la máxima frecuencia que se debe muestrear (Hertz). (Hinostroza, 2011)

2.3.1.2 Número de canales

Existen varios canales tales como, el monofónico que solo requiere un canal, el estéreo necesita dos canales, el sonido cuadrafónico utiliza cuatro, etc. Cada canal del audio puede contener una información independiente a los demás

canales y a su vez podría contener la grabación de un mismo sonido realizada con distintos micrófonos, o simplemente efectos distintos que se le quieran añadir al sonido. Se suele almacenar el sonido en más de un canal para así tener más información de este.

2.3.1.3 Número de bits por muestra

El ruido generado en una señal depende mucho del número de bits por muestra, si es mayor proporciona altos valores de amplitud, además identifica los de estado de salida de una señal cuantificada. Habitualmente son 8 a 16 bits, (Salomon, 2007).

2.4 Compresión de audio digital

La comprensión de audio digital es utilizada para reducir la tasa de bits, logrando así un tamaño menor del archivo basado en un número de muestras; de acuerdo con la técnica de compresión; a pesar de que este proceso tenga una gran pérdida en la calidad del sonido, no es percibido por el oído humano. Cuando sucede la conversión de un sonido a un audio digital, las muestras se miden en amplitudes de voltajes, para que un sonido sea agradable al oído humano se necesita una cantidad precisa de muestras a bajas amplitudes.

2.4.1 Compresión de información

A medida que avanza la tecnología con el pasar de los años las computadoras fueron variando en tamaño y costo, de forma paralela se unieron aplicaciones multimedia; donde el texto, imágenes, videos y audio se guardan en el computador. Hoy en día es necesario conservar la información multimedia en formatos sin compresión. Existen algunas técnicas de compresión que hacen posible la transmisión de archivos multimedia.

Los sistemas de comunicación son más flexibles al medio, en la actualidad se requieren algoritmos de compresión; sea texto, audio o video; que permitan trasmitir la información de manera ágil sin exceder recursos de almacenamiento o ancho de banda. Logrando satisfacer la necesidad de comunicarse desde cualquier lugar, pero a un bajo costo.

2.4.2 Ventajas de usar compresión

Una de las ventajas fundamentales de la compresión se da en las redes de comunicación, un ejemplo exacto es la Internet debido a todo tipo de información que posee como son videos, música, anuncios publicitarios, etc.; están directamente beneficiados a la compresión por la rapidez que se puede descargar un archivo en línea o ver un video de alguna campaña publicitaria, a su vez representa un gran ahorro económico para muchas empresas y la sociedad.

Gracias a la compresión se disminuye el número de bits en la transmisión logrando una reducción en el tiempo de transmisión y ancho de banda. Como ejemplo tenemos un correo electrónico que tenga adjunto varios archivos de audio, no es lo mismo enviar varios archivos que mandar solo uno pero que este comprimido, ya que utiliza menor espacio de memoria y disminuye la tasa de bits a transmitir, sin embargo, esto no garantiza una excelente calidad.

La información sin comprimir posee una gran cantidad de datos, lo que provoca problemas en la transmisión, almacenamiento, procesamiento y recepción.

2.4.3 Compresión de datos

La compresión de datos se refiere al proceso en el cual una cadena o archivo de datos original de entrada se transforma en una cadena de datos de salida comprimida, con el fin de reducir su tamaño en la memoria. Este método se utiliza para eliminar la redundancia de la información o datos, con el objetivo de sustraer la descripción del archivo o cadena obviando datos repetidos. Además, es un ahorro en el almacenamiento en los dispositivos y en la reducción del tiempo en la carga y descarga de un archivo en el internet.

2.4.4 Técnicas de compresión

Las técnicas de compresión ayudan a minorizar la tasa de bits, disminuir la cantidad de almacenamiento y aumentar la velocidad de datos a transmitir. Entre las técnicas más básicas se puede obtener reducciones sin la necesidad de un extenso procesamiento, en cambio con técnicas estructuradas se puede detectar y suprimir elementos que no son necesarios para una experiencia agradable al oído humano, con el objetivo de conseguir mayores tasas de compresión.

Compresión física y lógica

La compresión física se basa en agrupar los datos redundantes de un flujo de bits a otro. En cambio, la compresión lógica es general, sustituye los datos por datos equivalente, por medio de un razonamiento lógico.

Compresión simétrica y asimétrica

La compresión simétrica es cuando se aplica un método tanto para la compresión y descompresión de datos, es muy frecuente en la transmisión.

La compresión asimétrica, como bien explica su nombre, utiliza diferentes métodos para la compresión y descompresión de datos. Normalmente busca algoritmos que permitan una mayor velocidad de compresión de datos, ya que existen archivos por lo que periódicamente no se accede debido a los temas de seguridad.

2.4.5 Tipos de compresión

Existen varios tipos de compresión, que se han divido en dos grandes grupos.

Compresión sin pérdidas

La compresión sin pérdida es cuando el flujo de bit de entrada de una señal es igual al flujo de bit de salida; como por ejemplo los archivos de audio wav,

radiografías, imágenes PNG, entre otros. Es decir, no realiza una reducción de datos, asume todo el flujo que libera el convertidor analógico digital, sin perdida y a su vez se percibe una mejor calidad de audio.

Compresión con pérdidas

La compresión con pérdida se utiliza cuando se eliminan datos que no se los consideran fundamentales en la salida, en relación con la información original, con el objetivo de simplificar el tamaño de un archivo. Este tipo de compresión tiene sentido cuando lo que se transmite es información analógica digitalizada (Salomon, 2007), ya que la información no es perfecta. En el caso de un audio digital, una compresión con pérdidas es cuando se suprimen datos redundantes que no son percibidos por el oído humano.

2.4.6 Algoritmos de compresión de audio

Un algoritmo de compresión es aquel que estipula el proceso desde cuando se comprime el dato hasta su descompresión. La compresión es un método que trata de alcanzar una representación más compacta de la señal digital, a través de la eliminación de datos redundante que existen en una señal.

Con esto busca minimizar la tasa de bits al momento de su transmisión o almacenamiento, sin afectar gran parte de la calidad de la señal.

2.4.6.1 Codificación del audio

La codificación de audio se utiliza para disminuir la tasa de bits conservando la calidad del audio con el fin de comprimir la señal y ahorrar espacio de almacenamiento.

Las ventajas más destacadas de la codificación del audio es que en el transmisor se disminuye el ancho de banda, gracias a esto se puede aumentar la velocidad de transmisión.

Los codificadores se dividen en:

Codificadores perceptuales

La principal característica de los codificadores perceptuales es que remodelan el espectro de una señal a codificar volviéndola inaudible, gracias a la sensibilidad del oído humano no se logra percibir esta codificación, con el fin de reducir la tasa de bits a transmitir, he ahí su nombre "perceptuales" porque se basan en la percepción del sistema auditivo.

Tanto el estándar MPEG como el Dolby AC-3 emplean este modelo. (Pérez, 2005)

Codificadores paramétricos

Los codificadores paramétricos también pertenecen a la familia de codificaciones con pérdidas, como su nombre lo indica se basan en la manipulación de parámetros antes de transmitir la señal de la voz o audio, moldean una señal parecida a la original que sea inteligible, con la cualidad de que poseen menos calidad. Los parámetros pueden ser la amplitud, la frecuencia fundamental o los componentes espectrales.

Codificadores híbridos

Este codificador es la combinación de los codificadores paramétricos y los codificadores perceptivos que busca mejorar la calidad del audio en la fase de la codificación, pero sin incrementar la tasa de bits.

Codificadores de forma de onda

Los codificadores de forma de onda se basan en el estudio de la señal, son independientes al tipo de señal o dato a transmitir y su función básica es reproducir una señal que no necesariamente esté sujeta a la señal original, son adaptable a todo tipo de forma de una señal, al igual que las demás codificaciones mencionadas, procrea la señal eliminando datos redundantes para disminuir su tasa de bits.

2.4.6.2 Codificación de sub-bandas

El objetivo principal de la codificación de sub-bandas es segmentar la señal para codificarla por partes mediante un banco de filtros, con la ventaja que la tasa de bits a usar puede ser varias, dependiendo de los componentes a segmentar. Se multiplexa la señal dando varias a entradas a un mismo canal.

2.4.6.3 Formato de audio WAV

La palabra WAV es una abreviatura inglesa de wave (onda) y se refiere a la forma que tiene la representación gráfica típica del sonido, (Asinsten, 2013). Este formato puede ser comprimido y grabado en distintas calidades y tamaños.

Admiten tres frecuencias de muestreo (11.025 Hz, 22.050 Hz y 44.100 Hz) con una asignación de 8 o 16 bits de resolución (bits por muestra), y pueden usar uno o dos canales: mono o estéreo.

Bits por Muestra	Frecuencia de muestreo	Canales
8	44.100 Hz	Estéreo
8	44.100 Hz	Mono
8	22.500 Hz	Estéreo
8	22.500 Hz	Mono
8	11.000 Hz	Mono
16	44.100 Hz	Estéreo
16	44.100 Hz	Mono
16	22.050 Hz	Estéreo

Tabla 2-1 Tamaño del archivo WAV.

Fuente: (Tomasi, 2003)

2.4.6.4 Formato de audio MP3

Formato MPEG layer 3, es el más popular para almacenar música de cualquier tipo.

El sistema de codificación que utiliza MP3 es un algoritmo de compresión con

pérdidas, el cual recorta frecuencias muy altas y muy bajas que no son percibidas por el oído. De esta manera, la pérdida es inaudible y el tamaño del archivo se reduce con relación al original, conservando frecuencias comprendidas aproximadamente entre los 200Hz-15KHz. El formato mp3 utiliza una frecuencia de muestreo 32KHz de acuerdo con la norma ISO/IEC-11172-3.

2.4.6.5 Formato de audio MP4

Está basado en un algoritmo de compresión que puede codificar datos tanto de audio como de video, el cual posee una extensión .mp4. Para la compresión de video los archivos mp4 son guardados, usando la compresión MPEG-4 pero para comprimir el audio utiliza el estándar AAC.

El estándar de compresión AAC fue originalmente parte del proyecto MPEG-2, y fue posteriormente aumentado como parte de MPEG-4. La frecuencia de muestreo de AAC es de 8 Hz a 96 KHz. Según la norma ISO/IEC 13818-7 la frecuencia más utilizada es 24Khz.

2.4.7 Características de los algoritmos de compresión de audio.

Earmata da	Frequencia			
compresión de audio	Algoritmo de compresión	de muestreo	Tasa de bits	Bits por muestra
Wav (Formato de audio)	Sin pérdida LPCM (Modulación por Impulso Lineales)	11.025, 22.050 y 44.100 KHz	Variable 1411 Kbps	8 y 16
MPEG-1 Layer 3 (MP3)	Con pérdida MDCT, Filtro Híbrido Subbanda	8, 11.025, 12, 16, 22.05, 24, 32, 44.1 y 48 KHz	8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320 Kbps	Cualquiera
Advanced Audio Coding. (AAC)	MDCT, Filtro Híbrido Subbanda	8Khz a 192 KHz	8 a 529 Kbps (estéreo)	Cualquiera

 Tabla 2-2 Comparación de los formatos de compresión de audio.

Fuente: (Duque B. & Tipantuña C., 2010)

2.5 QAM (Cuantizada digital)

La modulación de amplitud en cuadratura (QAM, quadrature amplitude modulation), es una modulación digital, donde permite la transmisión de una señal donde la portadora varia tanto en fase como en amplitud. En la entrada posee un flujo de datos binarios, el cual es dividido en grupos de tantos bits como se

requieran para generar **N** estados de modulación.

2.5.1 16-QAM

La modulación 16-QAM es un sistema M-ario en el que M = 16 y los datos de entrada se manejan en grupos de cuatro ($2^4 = 16$) según (Tomasi, 2003). Este sistema se desplaza tanto en fase como en la amplitud, haciendo que se vuelva más eficiente en comparación con otras modulaciones digitales de fase.

Con la modulación de 16-QAM se requiere la cuarta parte del ancho de banda en comparación con BPSK, para la misma rapidez de entrada de bits.

				Eficiencia de ancho de
		Ancho de banda		banda
Modulación	Codificación	(Hz)	Baudios	(bps/Hz)
FSK	Un bit	$\geq f_b$	f_b	≤1
BPSK	Un bit	f_b	f_b	1
QPSK	Dibit	$f_b/2$	$f_b/2$	2
8-PSK	Tribit	$f_b/3$	$f_b/3$	3
8-QAM	Tribit	$f_b/3$	$f_b/3$	3
16-PSK	Cuadribit	$f_b/4$	$f_b/4$	4
16-QAM	Cuadribit	<i>f_b</i> /4	$f_b/4$	4

Tabla 2-3 Tipos de modulación digital.

Fuente: Tomasi, W (2003).

2.5.1.1 Transmisor 16-QAM

La información que capta la transmisión 16-QAM está dada en datos binarios que se divide en grupos de cuatro bits, generando moduladores con cuatro salidas en función del seno y coseno.

Su rapidez de bits en cada canal es igual a la cuarta parte de la rapidez de entrada de bits (fb/4). (Tomasi, 2003)

La salida de cada modulador varía entre las siguientes expresiones:

Canal I.- 0.821cos wc t, -0.821 cos wc t, 0.22 cos wc t, -0.22 cos wc t (4) Canal Q.- 0.821sin wc t, -0.821 sin wc t, 0.22 sin wc t, - 0.22 sin wc t (5)

Los moduladores equilibrados I,Q al final están sujetos al sumador lineal para producir la señal 16QAM.

Figura 2.7 Diagrama de bloque de un transmisor 16-QAM. (Tomasi, 2003).

2.5.1.2 Receptor 16-QAM

El receptor 16-QAM se encarga de recuperar la señal de la portadora ya sea en lazo de costa o de cuadratura, en ambos casos se obtienen los mismos resultados.

Este sistema de recepción utiliza simultáneamente dos lazos paralelos de rastreo (I y Q) para conseguir el producto de los componentes I y Q de la señal.

Figura 2.8 Recuperación de la portadora 16 QAM. (Tomasi, 2003).

2.6 USRP (Radios definidos por software)

El USRP, como sus siglas lo definen (Universal Software Radio Peripheral) es un equipo que posee un sistema universal periférico de radio, se lo conoce de este modo porque la idea general de su elaboración es convertir, un equipo computacional en un software de radio de alta gama y con una capacidad de operación de banda ancha. Su diseño permite trabajar con generación de prototipos de sistemas de comunicación inalámbricas con radios energizados por Labview. El USRP transmite y recepta señales de acuerdo con una frecuencia comprendida en el rango que trabaja el equipo y la antena.

2.6.1 USRP 2920

El USRP 2920 es el más común en el mercado de sistemas de comunicación, este equipo trabaja con frecuencias altas de 50 MHz a 2.2 GHz, y posee un ancho de banda de 20 MHz. Tiene un convertido de analógico-digital de gran velocidad y un convertidor digital-analógico lo que permite transmitir o receptar una señal. La conexión de este equipo con la computadora es por medio de Gigabit Ethernet 1/10.

Figura 2.9 USRP 2920. (http://www.ni.com/es-cr/support/model.usrp-2920.html)

Especificaciones.

Tabla 2-4 Especificaciones del transmisor del OSKF-2920.				
Rango de Frecuencia	50 MHz a 2.2 GHz			
Frecuencia Step	< 1 Hz			
Máxima Potencia de	Salida (P out)			
50 MHz a 1.2 GHz	50 mW a 100 mW (17 dBm a 20 dBm)			
1.2 GHz a 2.2 GHz	30 mW a 70 mW (15 dBm a 18 dBm)			
Rango de Ganancia	0 dB a 31.5 dB			
Ganancia Step	1.0 dB			
Precisión de Frecuencia	2.5 ppm			
Ancho de Banda Máxima Instantánea Real- Tiempo				
Ancho de muestra de 16-bit	20 MHz			
Ancho de muestra de 8-bit	40 MHz			
Velocidad máxima de muestreo I/Q				
Ancho de muestra de 16-bit	25 MS/s			
Ancho de muestra de 8-bit	50 MS/s			
Convertidor de analógico a digital (DAC)	2 canales, 400 Ms/s, 16 bit			
Rango dinámico libre de espurios (sFDR)	80 dB			

Tabla 2-4 Especificaciones del transmisor del USRP-2920.

Fuente: http://www.ni.com/pdf/manuals/375839c.pdf

Tabla 2-5. Especificaciones del receptor del USRP-2920.

Rango de Frecuencia	50 MHz a 2.2 GHz
Frecuencia Step	< 1 Hz
Rango de Ganancia	0 dB a 31.5 dB

Ganancia Step	0.5 dB	
Máxima Potencia de entrada (P in)	0 dBm	
Figura de ruido	5 dB a 7 dB	
Precisión de Frecuencia	2.5 ppm	
Ancho de muestra de 16-bit		
Ancho de muestra de 8-bit	40 MHz	
Ancho de muestra de 16-bit	20 MHz	
Velocidad máxima de muestreo I/Q		
Ancho de muestra de 16-bit	25 MS/s	
Ancho de muestra de 8-bit	50 MS/s	
Convertidor Analógico a Digital (ADC)	2 canales, 100 MS/s, 16 bit	
ADC sFDR	88 dB	

Fuente: http://www.ni.com/pdf/manuals/375839c.pdf

2.6.2 USRP RIO-2943

El USRP-2943 pertenece a la familia de National Instruments, está compuesto por un hardware robusto y un software que da apertura a impulsar prototipos modernos basados en sistemas de comunicación.

Es usado en varias aplicaciones como sincronización de redes heterogéneas, LTE, detector de espectros, etc. Está basado en la arquitectura de E/S reconfigurables (RIO) de Labview y posee varios ingresos y salidas (MIMO). (NI, 2018)

Figura 2.10 USRP 2943. (http://www.ni.com/es-cr/support/model.usrp-2943.html)

Especificaciones.

Tabla 2-6 Especificaciones del transmisor del USRP-294

Número de Canales	2
Rango de Frecuencia	1.2 GHz a 6 GHz
Frecuencia Step	< 1 Hz
Máxima Potencia de Salida (P out)	

1.2 GHz a 3.5GHz	50 mW a 100 mW (17 dBm a 15 dBm)
3.5 GHz a 6 GHz	5 mW a 32 mW (7 dBm a 15 dBm)
Rango de Ganancia	0 dB a 31.5 dB
Ganancia Step	0.5 dB
Precisión de Frecuencia	2.5 ppm
Ancho de Banda Máxima Instantánea Real- Tiempo	
USRP-2943 40 MHz	40 MHz
USRP-2943 120 MHz	120 MHz
Velocidad máxima de muestreo I/Q	200 MS/s
Convertidor de analógico a digital (DAC)	
Resolución	14 bit
Rango dinámico libre de espurios (sFDR)	80 dB

Fuente: http://www.ni.com/pdf/manuals/374193d.pdf

Tabla 2-7 Especificaciones del receptor del USRP-2943.

Número de Canales	2	
Rango de Frecuencia	1.2 GHz a 6 GHz	
Frecuencia Step	< 1 Hz	
Rango de Ganancia	0 dB a 31.5 dB	
Ganancia Step	0.5 dB	
Máxima Potencia de entrada (P in)	-15 dBm	
Figura de ruido	5 dB a 7 dB	
Precisión de Frecuencia	2.5 ppm	
Ancho de Banda Máxima Instantánea Real- Tiempo		
USRP-2943 40 MHz	40 MHz	
USRP-2943 120 MHz	120 MHz	
Frecuencia de Muestreo Máxima IQ	200 MS/s	
Convertidor de analógico a digital (DAC)		
Resolución	14 bit	
Rango dinámico libre de espurios (sFDR)	88 dB	

Fuente: http://www.ni.com/pdf/manuals/374193d.pdf

MARCO METODOLÓGICO

LABVIEW NI-USRP RIO 2943 Señal de voz Modulación Convertidor Señal Filtro de la Algoritmo de Flujo de bits a Transmisió digital y filtro de captada Compresión paquetes A/D señal Тχ a) Diagrama de bloque de transmisión LABVIEW NI-USRP RIO 2943 Archivo Demodulación Conversión Paquetes a Recepción digital v filtro de de bits a bits Audio Receptado Rx Audio b) Diagrama de bloque de la recepción

3.1 Fase inicial: Esquema del proyecto

Figura 3.1 Esquema del sistema de comunicación de un audio digital.

En la figura 3.1 se detalla el proceso a realizar para la transmisión y recepción de un audio digital mediante la compresión en uno de los formatos establecidos como son WAV, MP3 y MP4. En el esquema a) se identifica en cada bloque los pasos a seguir para la transmisión del audio, para esto se empieza por tomar una señal de voz mediante un micrófono conectado a la PC, dicha señal será convertida de analógico a digital para luego ser captada por la aplicación hecha en el entorno de Labview, en esta aplicación la señal ingresa a un bloque de filtro y uno de compresión en donde se especifica el formato que se utilizará, de esta manera se tiene un archivo de audio comprimido el mismo que ingresará a un bloque de modulación digital y filtro de transmisión. Finalmente se realiza la transmisión tomando en cuenta la configuración de parámetros en el NI-USRP RIO 2943 en cuanto a frecuencia y potencia de transmisión.

En el esquema b) se detallan los pasos para el proceso de recepción del audio digital, para esto se configura el NI-USRP RIO 2943 tal que, la señal que se receptará ingrese a un bloque filtro de recepción y de demodulación, de esta manera se tendrá un paquete de bits el mismo que deberá pasar a un bloque de conversión Bits/Audio para de esta forma poder guardar en el audio receptado.

3.2 Fase de aplicación de métodos y técnicas

3.2.1 Métodos

Para el desarrollo de este proyecto se utilizar a los siguientes métodos:

3.2.1.1 Método experimental

Se utilizó un método experimental que consiste en el desarrollo de diversas pruebas de transmisión y recepción de voz, especialmente con el equipo NI-USRP

para llegar al resultado ideal, ya que para este tipo de proyectos corren con riesgos a fallar sino se conoce precisamente los parámetros, filtros y frecuencias a usar.

A nivel de programación y software también se necesitará examinar a fondo el correcto funcionamiento de la aplicación.

3.2.1.2 Método deductivo

También un método a utilizar es el deductivo, gracias a los conocimientos adquiridos alrededor de la carrera, permitirá conocer parámetros, formulas e incógnitas necesarias para el desarrollo de este proyecto, que a su vez proporcionan la base para poder diseñar una aplicación la cual está sujeta a diversas teorías de Telecomunicaciones.

3.2.2 Técnicas

3.2.2.1 Técnica de campo

Luego de generar la información clave para el desarrollo del proyecto, se requirió validar el mismo utilizando antenas con distancias diferentes para corroborar la transmisión y recepción de datos, así mismo probando con diferentes potencias de transmisión acorde a la distancia. Comprobando que se cumplen los conceptos adquiridos en las materias cursadas que son; Comunicaciones Digitales, Procesamiento Digital de señales y Medios de Transmisión; en la carrera de Ingeniería Electrónica en Telecomunicaciones.

3.2.2.2 Técnica documental

Para la implementación de este proyecto se realizó una investigación obtenida de varias fuentes, ya se libros, tesis y proyectos investigativos, sobre la programación de algoritmos de compresión, audio digital, transmisión y recepción en modulación de digital, etc. Gracias a esto se proporcionó información base para el desarrollo de este proyecto

3.2.3 Variables

De acuerdo con el caso implementado se requirió las siguientes variables:

Independiente:

Potencia de transmisión Frecuencia de transmisión Frecuencia de recepción Frecuencia de Muestreo Tiempo de grabación Distancia **Dependientes:**

Potencia de Recepción Tipo de formato

3.2.4 Población a ser beneficiada

La propuesta está dirigida a estudiantes y docentes de la Carrera de Telecomunicaciones de la Universidad Politécnica Salesiana Sede Guayaquil, gracias al apoyo económico que les brinda a los estudiantes con equipos de tecnología avanzada, incitándolos a contribuir activamente en proyectos de investigación vinculados a este.

3.3 Fase de programación

3.3.1 Programación en Labview

Se observa un diseño en bloques del algoritmo de compresión de audio digital para la transmisión y recepción, utilizando while y librerías del equipo USRP RIO 2943.

COMUNICACION DE UN AUDIO COM	
TX Audio Espectro del Audio Parametros reales Tx	Ru Audio Ruta del audio Esp. Frecuencia Niv. Potencia Parametros Reales Rx
Señal Original	Promete Andio RV
1	1-
0,6-	0,5-
9.0	<u> </u>
'ā_ 0- ♀ -0,2-	
-0,4-	-0.5-
-0,8-	-1- 0 1000 2000 3000 4000 5000 6000 7000 8191
-1-1 I I I I 0 0,5 1 1,5 2 2,5 2,999777	Muestras
Tiempo	
<u>⊥ Ka VI</u> Sažal Filmada	Señal Receptada Receptada
1	1
0,75-	0,6-
0.5-	0,4- 2 0,2-
₹ -0.25-	-0,2- -0,4-
-0,5-	-0,6-
-1-1 1 1 1 1 1 1	-0,8- 0 20000 40000 60000 80000 100000 120000 132299
Тіетро	Muestras
Transmitting	Recentanda
	RX STOP

Figura 3.3 Panel de control de la transmisión y recepción del audio digital comprimido.

Se visualiza dashboard de la aplicación, donde da se realiza el ingreso de frecuencia de transmisión y recepción, tiempo de grabación, tipo de algoritmo de compresión y potencias de transmisión. Con el fin de mostrar la comparación de la señal trasmitida y receptada.

3.3.2 Diseño de filtros

3.3.2.1 Filtro de transmisión y recepción

Para el diseño del filtro es necesario utilizar; el bloque para generar coeficientes y
el bloque del filtro de modelado de pulsos. A su vez esta depende de variables como; el tipo modulación que es 16-QAM, el tipo de filtro selecto es Root Raised cosine (RRC), requiere 8 muestras por símbolo, la caída del filtro es de 0,5, la longitud del filtro es 8 y utiliza 500k en la velocidad de símbolo.

Se utilizo el mismo filtro en la transmisión y recepción, que es el filtro pasa bajo de Nyquist ya que su ventaja principal lo permite.

3.3.3 Configuración del USRP

3.3.3.1 Procedimiento de conexión con el USRP-RIO 2943 y la PC

- 1. Se estable conexión del USRP-RIO 2943 por medio de la tarjeta PCI-Express4.
- 2. Encender el dispositivo USRP RIO antes de encender la computadora.
- 3. Utilizar la interfaz MXI Express4 para conectar el dispositivo USRP a la computadora.

Figura 3.5 Conexión del USRP-RIO 2943 con la PC

3.3.3.2 Interconexión del NI-USRP RIO 2943 con Antenas Vert2450

- 1. Conectar las antenas Vert2450 a los terminales del panel frontal del dispositivo USRP RIO.
- 2. Encender la computadora.
- 3. Verificar que el led de la tarjeta PCI express4; que se encuentra en la computadora, este en color verde.

- 4. Abrir el programa NI-USRP Configuration Utility.
- 5. Verificar el estado de la imagen FPGA del Device ID.

Figura 3.6 Interconexión del NI-USRP RIO 2943 con las antenas Vert2450

Figura 3.7 Programa NI USRP Configuration Utility.

Configuration utilily se utilizó para homologar el equipo con el software Labview, por medio de imagenes FPGA.

NI-USRP Configuration Utility			– 🗆 X	
Devices USRP2 SD Card Burner N2xx/NI-29xx Image Updater				
Firmware Image				
FPGA Image C:\Program Files (x86)	National Instruments\NI-USRP\images\u	srp_x310_fpga_HGS.lvbitx	Browse	
Device ID Connection	Type/Revision	Image Status		
RIO0 PCle	NI USRP-2943R (40 MHz BW)/rev	5		
Find Devices	Manually Add Device		WRITE IMAGES	

Figura 3.8 Estado de la imagen FPGA del Drive ID.

Se valido por medio de la aplicación configurity utility que el estado de imagen este subido correctamente para la comunicación del equipo con software Labview.

3.3.3.2.1 Configuración del USRP en el software Labview

Transmisión.

Para una correcta transmisión es necesario; habilitar el canal RF0, luego activar el puerto de la antena TX1; una vez activado el puerto y la antena, el equipo está acto para transmitir.

Se puede escoger cualquier puerto, en este caso se prefirió el puerto TX1 como se observa en la Figura 3.6 sección a; la frecuencia que se utilizará es 2.8 GHz porque la antena opera dentro de este rango, la potencia de transmisión de salida del USRP va desde 7 dBm a 15 dBm de acuerdo con la frecuencia definida, y por último se estableció una velocidad de muestreo I/Q de 1,6MS/s según el rango de tiempo a usar. El resto de los parámetros vienen por defecto en la aplicación.

Figura 3.9 Configuración de parámetros del USRP RIO en Tx.

Recepción.

En la recepción también se necesitará habilitar el canal RF1, para evitar el solapamiento de canales, luego activar el puerto de la antena RX2; una vez activado el puerto y la antena, el equipo está acto para receptar. Se puede escoger cualquier puerto, en este caso se prefirió el puerto RX2 como se observa en la Figura 3.6 sección a; la frecuencia que se utilizará es 2.8 GHz porque la antena opera dentro de este rango, la potencia de recepción de entrada del USRP es -15 dBm, y por último se estableció una velocidad de muestreo I/Q de 1,6MS/s según el rango de tiempo. El resto de los parámetros vienen por defecto en la aplicación.

Conf. Tx Conf. Rx Conf. Paquete	
RF 0 Disabled Active Antenna RX2 Frequency 2GHzLO Frequency2,001GHzReference Level 0dBm Reference Level 0dBm Reference Level 15dBm	Ingreso de datos para la recepción
Continuous Acquisition Sample Rate	Velocidad de muestreo

Figura 3.10 Configuración de parámetros del USRP RIO en Rx.

3.3.3.3 Interconexión del NI-USRP RIO 2943 con Antenas Patch

- 1. Conectar LOS CABLES COAXIALES a los terminales del panel frontal del dispositivo USRP RIO y a las antenas patch (5,15-5.875 GHz).
- 2. Encender la computadora.
- 3. Verificar que el led de la tarjeta PCI express4 que se encuentra en la computadora este en color verde.
- 4. Abrir el programa NI-USRP Configuration Utility.
- 5. Verificar el estado de la imagen FPGA del Device ID.

Figura 3.11 Interconexión del NI-USRP RIO 2943 con Antenas Patch

3.3.3.1 Configuración del USRP en el software Labview

Transmisión.

Para una correcta transmisión es necesario; habilitar el canal RF0, luego activar el puerto de la antena TX1; una vez activado el puerto y la antena, el equipo está acto para transmitir.

Se puede escoger cualquier puerto, en este caso se prefirió el puerto TX1 como se observa en la Figura 3.6 sección a; la frecuencia que se utilizará es 5.2 GHz porque la antena opera dentro de este rango, la potencia de transmisión de salida del USRP va desde 7 dBm a 15 dBm de acuerdo con la frecuencia definida, y por último se estableció una velocidad de muestreo I/Q de 1,6MS/s según el rango de tiempo a usar.

El resto de los parámetros vienen por defecto en la aplicación.

Figura 3.12 Configuración de parámetros del USRP RIO en Tx.

Recepción.

En la recepción también se necesitará habilitar el canal RF1, luego activar el puerto de la antena RX2; una vez activado el puerto y la antena, el equipo está acto para receptar.

Se puede escoger cualquier canal, en este caso se prefirió el puerto RX2 como se observa en la Figura 3.6 sección a; la frecuencia que se utilizará es 5.2 GHz porque la antena opera dentro de este rango, la potencia máxima de la recepción de entrada del USRP es -15dBm de acuerdo con la frecuencia definida, y por último se estableció una velocidad de muestreo I/Q de 1,6MS/s según el rango de tiempo. El resto de los parámetros vienen por defecto en la aplicación.

Conf. Tx Conf. Rx (onf. Paquete	
RF 0 Disabled	RF 1 Enabled	
Prequency	Frequency	la recepción
LO Frequency	LO Frequency	
Reference Level	Reference Level	
Continuou	is Acquisition	
Sample Rate		Velocidad de muestreo

Figura 3.13 Configuración de parámetros del USRP RIO en Rx.

3.3.4 Algoritmos de compresión

Figura 3.15 Diagrama de bloque del Algoritmo MP3.

Figura 3.16 Diagrama de bloque del Algoritmo MP4.

Para la elaboración de los algoritmos se detalla el proceso en el cual el dato, dependiendo del tipo de formato y la frecuencia de muestreo, entra a un condicional para luego de ser filtrado, comprimido y guardado en la ruta elegida, de acuerdo con las condiciones mencionadas. Por consiguiente, un bloque emite un proceso de lectura de datos.

3.3.5 Transmisión de datos

Figura 3.17 Diagrama de bloque de la transmisión de datos.

Diagrama de bloques para transmisión de un algoritmo de compresión, utilizando ciclos while y mediante el equipo USRP RIO 2943

Figura 3.18 Panel de control de la transmisión.

El panel de control muestra la señal transmitida por el USRP RIO 2943 antes y después del algoritmo de compresión.

3.3.5.1 Parámetros para el audio digital comprimido en la transmisión

De acuerdo con el formato en que se desee comprimir, se debe tener en cuenta los siguientes parámetros

Tabla 3-1 i recucicias de indestreo seguiriornato de compresión.			
FORMATO	NORMA	FRECUENCIA	
WAV	IEC 908	44KHZ	
MP3	ISO/IEC-11172-3	32KHZ	
MP4	ISO/IEC 13818-7	24KHZ	

Tabla 3-1 Frecuencias de muestreo según formato de compresión.

Si el audio que se va a trasmitir es wav, bajo la norma IEC 908, la frecuencia de muestreo a utilizar es 44kHz, en mp3 la norma ISO/IEC-11172-3 especifica una frecuencia de 32KHz y según la norma ISO/IEC 13818-7 en mp4 es 24KHz.

Sabiendo esto, escogemos la frecuencia de muestreo según el formato a usar y luego se asigna un tiempo de grabación de 3,9 seg para la realización de pruebas.

Conf. Tx	Conf. Rx	Conf. Paquete	
	Tipo de Formato		
Audio		Modulación	
Sampling 4410 Tiempo G	Rate 0 irab	Tipo Modulación QAM Pulse shaping filter	

Figura 3.19 Configuración del audio a grabar.

Después de dar play a la aplicación, se enciende de color rojo el icono Record el cual indica que empezará la grabación.

Figura 3.20 Indicador de inicio de grabación.

Luego se abrirá una ventana que permite guardar el archivo de audio grabado en una carpeta (puede ser escogida), se asigna un nombre al archivo de audio y finalmente se presiona ok.

Real Choose or Enter Path of File		×
← → ∽ ↑ 🎝 → This PC → Music	✓ ^ひ Search Musi	c ک
Organize 🔻 New folder		::: • 🔟 ?
🖆 Documents 🖈 ^ Name ^	# Title	Contributing artists Alk
■ Pictures Audio Packet Xc	No items match your search.	
📙 Audio Packet Xc		
🔒 tesis		
🝊 OneDrive		
💻 This PC		
📃 Desktop		
Documents		
🖊 Downloads		
♪ Music ✓ <		>
File name:	 ✓ Custom Part OK 	ttern (*.wav) V

Figura 3.21 Ventana para guardar el archivo.

Figura 3.22 Guarda el audio grabado.

3.3.5 Recepción de datos.

Figura 3.23 Diagrama de bloque de la recepción de datos.

Los datos son receptados en paquetes, luego pasan por el filtro pasa bajo de Nyquist, los mimos son demodulados y se convierten en un flujo de bits. Pasado esto, el flujo de bits se convierte en audio y se guardar en un archivo de acuerdo con el tipo de formato.

Para conocer la ruta del audio receptado es necesario escoger el formato de audio transmitido antes de ejecutar el programa como se muestra en la figura 3.24.

Ruta del audio	isp. Frecuencia	Niv. Potencia	Parametros Reales Rx
_		_	
2 A	r chivo Receptor Rx Wav		
Rx			
\Users\TesisUps\Des	ktop\Rx\rx.wav		
	Ruta del audio 2 2 Rx (Users\TesisUps\Des	Ruta del audio isp. Frecuencia Archivo Receptor Rx Wav Users\TesisUps\Desktop\Rx\rx.wav	Ruta del audio isp. Frecuencia Niv. Potencia Archivo Receptor Rx Wav Users\TesisUps\Desktop\Rx\rx.wav

Figura 3.24 Configuración de la ruta del audio Rx.

RESULTADOS

Las pruebas se realizaron en el laboratorio de Telecomunicaciones de la Universidad Politécnica Salesiana sede Guayaquil utilizando el equipo USRP RIO 2943, antenas Vert2450 y antenas Patch.

4.1 Pruebas de transmisión de datos

Figura 4.1 Interconexión del USRP RIO 2943 con la PC.

En la parte posterior de la aplicación se diseñó una alerta que se enciende cada vez que esté transmitiendo, esto quiere decir, que el hardware USRP 2943 está interconectado con la PC de forma correcta y su configuración con Labview.

Figura 4.2 Indicadores de transmisión

Adicional, la aplicación tiene una opción que nos permite ver el espectro de frecuencia, validando la primera alerta de que el equipo USRP está transmitiendo, el espectro muestra el ancho de banda de la señal y su frecuencia de corte.

Figura 4.3 Espectro de la frecuencia utilizando antenas Vert2450.

En las primeras pruebas se transmitió a una frecuencia de 2,8Ghz con las antenas Vert2450 como se muestra en la tabla 4-1, se varió la potencia de transmisión, gracias a esto se observó que estaba transmitiendo en base a que la potencia de recepción se alteraba.

Figura 4.4 Espectro de la frecuencia utilizando antenas Patch.

Para extraer los resultados se requirió exportar los valores de la gráfica de niveles de potencia en Labview a Excel.

Potencia Tx (dBm)	Potencia Rx (dBm)
7	-26,7293
11	-22,1539
15	-18,3733

Tabla 4-1 Niveles de potencia de transmisión.

Para la validación de resultados de la transmisión se genera un archivo de audio digital comprimido, el cual fue captado con un micrófono y procesado por software Labview.

4.2 Pruebas de recepción de datos

4.2.1 Caso ideal

Se le llama caso ideal porque entre las antenas Vert2450 no existía línea de vista, esto quiere decir que la distancia era mínima, se utilizó una frecuencia de transmisión y recepción de 2.8GHz, como variable se escogió la potencia de transmisión, dependiendo de esta se obtuvo las potencias de recepción como muestra la tabla 4-2.

Figura 4.5 Antenas Vert2450 conectadas al USRP RIO.

Potencia Tx (dBm)	Potencia Rx (dBm)
7	-26,7293
8	-25,3674
9	-24,0240
10	-23,6838
11	-22,1539
12	-21,5842
13	-20,1910

14	-19,6178
15	-18,3733

4.2.2 Caso real

Figura 4.6 Antenas Patch conectadas al USRP RIO.

Para este caso se utilizó las antenas Patch, las variables fueron la distancia y la potencia de transmisión, como se visualiza en las tablas 4-3, 4-4, 4-5; dando así, una línea de vista entre las antenas, se usó una frecuencia de transmisión y de recepción de 5,2 Ghz, ya que estas antenas trabajan en frecuencias más altas en comparación con las antenas Vet2450.

Tabla 4-3 Niveles de potencia de recepción con una PTx de 7 dBm en antenas Patch.

Distancia (M)	Potencia Tx (dBm)	Potencia Rx (dBm)
1		-24,2315
1.5		-24,8479
2		-25,1978
2.5		-26,9849
3		-27,085
3.5	7 dBm	-30,7863
4		-31,418
4.5		-32,9442
5		-32,2773
5.5		-33,2567
6		-34,4562

Distancia (M)	Potencia Tx (dBm)	Potencia Rx (dBm)
1		-21,8725
1.5		-22,5423
2		-24,0471
2.5	-	-25,0142
3		-25,1536
3.5	11 dBm	-27,7296
4		-29,1469
4.5		-29,9758
5		-30,3867
5.5		-32,7682
6		-33,6542

Tabla 4-4 Niveles de potencia de recepción con una PTx de 11 dBm enantenas Patch.

Tabla 4-5 Niveles de potencia de recepción con una PTx de 15 dBm en antenas Patch.

Distancia (M)	Potencia Tx (dBm)	Potencia Rx (dBm)
1		-20,1521
1.5		-20,4706
2		-22,8343
2.5		-24,4042
3		-24,5069
3.5	15 dBm	-26,6686
4		-27,4993
4.5		-29.4996
5		-29,6487
5.5		-30,6810
6		-30,79921

Al igual que la transmisión, se diseñó una alerta que ayudó a validar que se está receptando la señal.

Figura 4.7 Indicadores de recepción.

4.3 Validación de resultados

Existen dos etapas, la transmisión y la recepción, que a su vez la aplicación realiza el grabado de audio tanto para el transmisor y receptor, con el fin de comparar el tipo y el peso del audio. Para la transmisión, la aplicación pregunta la ruta donde se desee guardar el archivo, en cambio para la recepción se estableció una ruta predeterminada para guardar el audio digital comprimido. Para validar los tipos de algoritmos de compresión se realizaron pruebas por cada uno de los formatos (wav, mp3 y mp4), el tiempo de grabación fue de 3,9 seg. Como muestra la figura 4.8 donde se especifica la fecha, el tipo y tamaño.

- > This PC > Desktop > Tx							
	Name	Date	Туре	Size			
ss *	💿 tx.wav	12/6/2018 15:51	WAV File	336 KB			
	a)	Audio Wav transm	nitido.				
> This PC > De	esktop > Rx						
	Name	Date modified	Туре	✓ Size			
:ss *	🖲 rx.wav	12/6/2018 15:51	WAV File	336 KB			
	b) Audio Wav recep	tado.				
> This PC > Des	ktop → Rx						
	Name	Date created	Туре	Size			
ess *	orx.mp3	12/6/2018 16:01	MP3 File	122 KB			
	c)	Audio Mp3 transm	nitido.				
> This PC > E	Desktop → Rx						
	Name	Date modified	Туре	Size			
ess	💽 rx.mp3	12/6/2018 16:01	MP3 File	122 KB			
	d	l) Audio Mp3 recep	tado.				
🔒 > This PC > Des	ktop → Tx						
	Name	Date	Туре	Size			
:ss *	🛋 tx.mp4	12/6/2018 16:10	MP4 File	92 KB			
· · · ·	e)	Audio Mp4 transm	nitido.				
→ This PC → Des	ktop > Rx						
	Name	Date	Туре	Size			
55 *	🛋 rx.mp4	12/6/2018 16:10	MP4 File	92 KB			
	f) Audio Mp4 recep	tado.				
Figura 4.8 Archivos de audios digitales transmitido y receptado.							

Al realizar las pruebas se visualizó las gráficas del audio transmitido vs audio receptado, mostrando que las grafica son iguales, esto quiere decir que el sistema de comunicación implementado transmitió y recepto el audio comprimido.

Figura 4.9 Señal del audio transmitido.

Figura 4.10 Señal del audio receptado.

Se realizó la comparación con los algoritmos de compresión, el tipo de compresión requiere una cantidad menor o mayor de muestras, como se puede observar en las siguientes graficas el formato WAV requiere un mayor número de muestras para su compresión, debido a que es un algoritmo de compresión sin pérdida, a diferencia de los formatos MP3 y MP4 que son algoritmos de compresión con pérdida, es decir, que no utilizan en gran parte la información del audio, reflejando un menor número de muestras.

Figura 4.11 Niveles de potencia de recepción utilizando el algoritmo de compresión WAV.

Figura 4.12 Niveles de potencia de recepción utilizando el algoritmo de compresión MP3.

Figura 4.13 Niveles de potencia de recepción utilizando el algoritmo de comprensión MP4.

En la figura 4.14 representa en porcentaje la compresión que requiere cada tipo de algoritmo, se visualiza que es WAV es que posee una menor cantidad ya que acapara la mayoría de las muestras a comparación del MP4 que tiene un alto índice de compresión.

Figura 4.14 Porcentajes de compresión de los formatos.

4.4 Análisis de resultados

Con las antenas VERT2450 se observó que a mayor potencia de transmisión mayor potencia de recepción, sin embargo, no difiere en gran cantidad la potencia de recepción ya que su distancia es mínima.

Figura 4.15 Niveles de potencia de recepción en antena Vert2450.

La recepción con las antenas Patch es muy diferente debido a que realizaron pruebas a diferentes distancias. Como muestra en la figura 4.16 al incrementar la distancia entre las antenas provoca que la potencia de recepción disminuya en su amplitud. Algo similar ocurre en la figura 4.17 y la figura 4.18, por lo tanto, se cumple que a mayor distancia menor potencia de recepción se obtendrá

Figura 4.16 Niveles de potencia de recepción en antenas patch con una potencia de transmisión de 7dBm.

Figura 4.17 Niveles de potencia de recepción en antenas patch con una potencia de transmisión de 11dBm.

Figura 4.18 Niveles de potencia de recepción en antenas patch con una potencia de transmisión de 15dBm.

En la figura 4.19 Se agrupó en un mismo gráfico, los tres niveles de potencia de recepción obtenidos a una misma distancia, pero se varió la potencia de transmisión, lo cual demuestra que al aumentar la potencia de transmisión se logra una potencia de recepción más favorable. Cumpliendo así, que a mayor potencia transmisión, en una distancia constante, mayor será la potencia de recepción.

Figura 4.19 Comparación de los niveles de potencia en antena Patch.

En un sistema de comunicación real la señal está expuesta a varias clases de ruidos, en el proyecto se implementó filtros en la transmisión y recepción que eliminaría en gran parte estos ruidos provocados por el efecto del multitrayectos e interferencias que existen en el medio.

El proyecto está diseñado para grabar voz hasta un máximo de tiempo de 3,9 segundos, debido a que el equipo utilizado para transmitir y receptar (USRP RIO 2943) no posee la capacidad de almacenar grandes cantidades de datos en su memoria (buffer).

CONCLUSIONES

Se implementó un sistema de comunicaciones basados en radios definidos por software (equipo USRP 2943) con antenas Patch y antenas Vert2450, validando la transmisión y recepción de un audio digital comprimido con tres algoritmos de compresión diferentes, por medio de las potencias de recepción obtenidas por pruebas con distancias y frecuencias diferentes. Las pruebas y el desarrollo del proyecto se realizaron en el laboratorio de Telecomunicaciones de la Universidad Politécnica Salesiana Sede Guayaquil, con el fin de facilitar una herramienta de estudio al aprendizaje práctico de las materias de Comunicaciones Digitales, Procesamiento Digital de Señales y Medios de Transmisión; e impulse a los estudiantes y docentes de las carreras Ingeniería Electrónica con mención en Telecomunicaciones y la carrera de Telecomunicaciones a desarrollar investigaciones futuras.

Por tal motivo se concluye en lo siguiente:

Para la configuración del hardware en el software Labview se estableció parámetros como la frecuencia de Tx y Rx de acuerdo al rango de operación del equipo USRP y las antenas, a su vez el canal que se habilito para las pruebas.

En el diseño de filtros para la transmisión y recepción de datos de voz se concluyó que, el más adecuado fue el coseno de raíz elevado (RRC) debido a que pertenece a la familia de los filtros pasa bajo de Nyquist y son recomendados para sistema de señales digitales.

Se utilizó los 3 tipos de formatos para las pruebas, y se validó que las frecuencias de muestreo que estaban regidas a las normas de cada uno de los formatos influyeron en el tamaño y tipo de compresión de cada uno. Dando a mostrar que, el formato WAV posee una menor compresión y mayor calidad, en comparación con MP3 y MP4 que poseen la ventaja de tener menor tamaño, por ende, no ocupan mucho almacenamiento a diferencia que WAV.

En la recepción del audio digital, la señal ingresa a distintos bloques donde el dato es procesado con el fin de generar un archivo de audio que es guardado en otra ruta diferente a la transmitida, se validó que los 2 archivos poseen las mismas características.

Se realizó dos casos de estudios; el caso ideal y el caso real. El primer caso es ideal porque en el sistema de comunicación la distancia entre las antenas es casi nula, para realizar las pruebas se utilizó las antenas Vert2450 y se observó que, al incrementar la potencia de transmisión, la potencia de recepción aumentaba obteniendo así valores más favorables. Para el caso real, se trabajó con antenas Patch, de esta forma se corroboró que conforme se aumentaba la distancia y se disminuía la potencia de transmisión, daba como resultado una potencia de recepción menor. También se visualizó que al establecer una distancia constante e incrementar la potencia de transmisión, la potencia de recepción tenía un comportamiento creciente. Para este caso se pudo apreciar que la alineación de las antenas y los conectores influyen significativamente en los resultados de la potencia de recepción.

Tomar en cuenta las siguientes recomendaciones:

- a) Ante una configuración de hardware para la transmisión y recepción de datos, se recomienda validar la frecuencia de transmisión y recepción de acuerdo con el tipo de antena, debido a que cada antena posee un rango de operación diferente; también se debe utilizar canales intercalados en la interconexión de las antenas con el equipo USRP RIO 2943 para evitar el solapamiento del mismo en el enlace.
- b) El diseño del proyecto tiene integrado filtros para la transmisión y recepción, si embargo se recomienda evitar algún tipo de interferencia o ruido, de preferencia realizar pruebas en lugares cerrados.
- c) En los formatos de algoritmo de compresión se recomienda validar la frecuencia de muestreo correspondiente a la normativa, dado que cada algoritmo es diferente y trabaja con frecuencias distintas.
- d) En el diseño de algoritmos de recepción de datos de voz se recomienda visualizar en el panel de control la ruta asignada para encontrar el archivo de recepción del audio digital a comparar.
- e) En las pruebas con las antenas Patch, evitar obstáculos en el enlace y no tocar el equipo USRP RIO 2943 ya que el dispositivo es muy sensible y esto podría distorsionar la transmisión. Al realizar pruebas con distancias, se recomienda tratar de alinear las antenas lo más posible para obtener potencias de recepción más favorables y cercanas a los datos base.

BIBLIOGRAFÍA Y REFERENCIA

- 1. Miyara, F. (2006). Acústica y Sistemas de Sonido. UNR Editora. Rosario.
- 2. Saldaña, G. (2004). Comunicaciones II. Manual de asignatura. Universidad Tecnológica de Puebla.
- Bocco, F., Giana, F. y Ramos, P. (2011). Procesadores de audio: filtros, generalidades. Departamento de ingeniería electrónica. Catedra fundamentos de acústica y electroacústica. Universidad Tecnológica Nacional, Argentina.
- 4. Cinit. (2007). Matemáticas para CATV.Centro de investigación e innovación en telecomunicacniones. México.
- 5. Hinostroza, V. (2011). Unidad II codificación de la señal fuente. Comunicaciones II.
- Tomasi, W. (2003). Sistemas de Comunicaciones Electrónicas. México: Pearson Educación.
- 7. Asinsten, J. 2013. El sonido. Teoría y práctica. Educar. Ministerio de educación ciencia y tecnología.
- 8. Vera, F., Mora, A. (2017). Diseño de un prototipo de pruebas de un radar monoestático utilizando radio definida por software. Tesis de Ing. Electrónico. Universidad Politécnica Salesiana, Guayaquil, Ecuador.
- 9. Gómez, E. (2009). Digitalización del sonido. Sintesis del procesamiento de So I. Departamento de Sinología. Escuela Superior de Música de Catalunya.
- Salomon, D. (2007). Data Compression. 4^{ta} Edición. London. Springer-Verlag.
- 11. Pérez, C. (2005). Introducción a la compresión de audio. Dpto. de Ingeniería de Comunicaciones. Universidad de Cantabria, España.
- 12. Dispositivo Reconfigurable de Radio Definido por Software. (2018). National Instrument (NI). Recuperado de: http://www.ni.com/escr/shop/select/usrp-softwaredevice?modelld=125057

ANEXOS

Anexo I. Código de programación Labview, Matlab

Programación en Labview

Filtro del algoritmo Wav.

Filtro del algoritmo Mp3.

Filtering Type Bandpass	25- 25-	ta linaa kii liin whara tiinaa illa aafal ita
Filter Specifications Low cutoff frequency (Hz) 200 High cutoff frequency (Hz) 15000	90 0- -25- -50- -75- 0 0,1 0,2 0,3	Santole Data 9 4 0,5 0,6 0,7 0,8 0,9 Time
O Finite impulse response (FIR) filter Taps 29 O Infinite impulse response (IIR) filter Topology Butterworth V Order	Result Preview an be displayed. The current Filter the Nyquist criter Signal.	d Transfer Function cannot Specifications do not meet ion for the given Input
30	View Mode	
	Signals	Show as spectrum
	O Transfer function	
	Scale Mode Magnitude in dB Frequency in log	

Filtro del algoritmo Mp4.

Señal del audio convertido a un flujo de paquetes.

Modulación del flujo de bit.

Demodulación de la señal transmitida.

Genera del archivo del audio digital receptado.

Programación en Matlab

Se utilizó el comando **FDATOOL** para conocer el orden mínimo que necesitan los filtros de los formatos Wav, Mp3 y Mp4

it Anabusis Tassats View Window Idala			
nt Analysis Targets View Window Help			
			Shadow N
	Magnitude Kesponse (db)		
Structure: Drect-Form II, Second-Order Sections Order: 30 Sections 15 Stable: Via Source: Designed Store Filter		10 15 Frequency (kHz) 15 Units rz Pa: 44100 Patopi: 10 Passa: 20	20 Magnitude Specifications Unite: Astop: Astop: 50 Astop: Astop: 80
Design Method		Epass2: 20000	Astop2: 80
IR Butterworth		2000	
FIR Equiripple		P STOP2: 22000	
Citta Dava		Design Filter	
Ing Flitter Done			
			21/03
(Design & Analysis Tool - [untitled.fda *] Sitt Analysis Targets View Window Help 교육(A, Q, Q ~ 값 CE) 우리 도입 도입 도입			
Design & Analysis Tool - [untitled.fda *] Git Analysis Targets View Window Help 글 중 및 역 약 상 집 같이 좋다 토니 같이 - Curret Effect Information	田市 他 会 ① デ 回 論 ① N 正 N? Warked Reports (印)		Shadow M
/ Design & Analysis Tool – Suntified Ida 1 Edit Analysis Targets View Window Help 교 중 D. 역 약 상 교 한 등 등 도 Current Filter Information	Lagnbude Response (dB)		Shadow M
Design & Analysis Tool - [untitled.fdo *] Edit Analysis Torgets View Window Help P P P P P P P P P P P P P P P P P P P	© # + 1 = 0 → 0 > = Y?		Shadow M
T Design & Analysis Tool – [untitled.ida 1] Git Analysis Targets View Window Help Git Analys		5 10	Shadow A
r Design & Analysis Tool - [untitled.ida 1] isk Analysis Targets View Window Help ⊕ @ Q Q << & II Tool	Image: black interview Image: black interview <	5 Frequency (Mtz)	Shadow M
Pesign & Analysis Tool - Suntilled fda 1 Star Analysis Targets View Window Help Current Filter Information Current Filter Information Structure Drect-Form I, Second-Order Sections Order 30 Sections 15 Stude: Ves and Source Designed Starte Filter Filter Manager Filter M	1	5 Frequency (ktz)	Shadow M
P Design & Analysis Tool - [untitled.fds *] Edit Analysis Tool - [untitled.fds *] Edit Analysis Targets View Window Hele Correct File Internation State: Ves Source: Designed State: Ves Source: De	Image: set of the set of t	5 Frequency (ktz) 10 Frequency (ktz) 11 Frequency (ktz) 12 Frequency (ktz) 13 Frequency (ktz) 14 Frequency (ktz) 15 Frequency (ktz) 16 Frequency (ktz) 17 Frequency (ktz) 18 Frequency (ktz) 19 Frequency (ktz) 10	
r Design & Analysis Tool - [untitled.ide 1] Edit Analysis Tool - [untitled.ide 1] Edit Analysis Targets View Window Help P ⊕ D @ R & S D D E D D Structure: Direct-Form I, Second-Order Sections Order: 30 Structure: Direct-Form I, Second-Order Sections Order: 30 Statute: Yes Source: Designed State F&r: F&r Manager Response Type © [unopass B Bandstop © [offerentiator © Design Method @ R _ Butterworth © FR _ Equiriple	Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second Control Image: Second	5 Frequency (Htz) Freq	Naprinde Specifications Units: 60 Astop1: 60 Astop2: 80

🛃 Filter Design & Analysis Tool - [untitled.fda *]							
File Edit Analysis Targets View Window Help							
D 😂 🖬 🕾 🔍 역· 양· 🖓 💭 🖬 🔽 🐼 🗯 🗄 🗇 🖽 😡 🚯 🐿 🗹 🕅 📢							
Current Filter Information-	Magnitude Response (dB)						
Structure: Direct-Form IL Second-Order Sections Order:: 60 Statistic: 748 Source: Designed	0 						
Store Filter Filter Manager	0 2	4 6 8 Frequency (KHz)	10				
Response Type	Fiter Order	Frequency Specifications	Magnitude Specifications				
Nyquist 👻	Specify order	Units: Hz 👻	Units: dB 💌				
CION CION Highpass • Bandpass	Minimum order	F8: 24000	Astop1: 60				
Bandstop	Options	Fstop1: 500					
Differentiator	Match exactly: stopband		Apass: 1				
Design Method		Ppass1: 700	Astop2: 80				
IR Butterworth		Fpass2: 11500					
FR Equripple							
	De	sign Filter					
Designing Filter Done							
🚳 🙋 📋 🛛 🚺 🚯			ES 🚎 🔺 🕕 🔯 🛱 13:57 21/03/2018				

Código de las gráficas en Matlab

Gráfica por los niveles de potencia de Tx y Rx utilizando Antenas Vert2450. hold on dato7= xlsread('Datos1.xlsx',5);%Importación de datos desde excel d=dato7(:,1); %selección de elementos de la 3era columna rx=dato7(:,2); %selección de elementos de la 3era columna plot(d,rx,'r-*') xlabel('Potencia de Tx[dBm]'); ylabel('Potencia de Rx[dBm]'); grid; title('NIVELES DE POTENCIA Tx vs Rx ')

Gráfica por separado los niveles de potencia vs distancias con potencias de Tx: 7dBm, 11dBm y 15 dBm utilizando antenas Patch.

dato7= xlsread('Datos1.xlsx',2);%Importación de datos desde excel d=dato7(:,1); %selección de elementos de la 1era columna rx=dato7(:,3); %selección de elementos de la 3era columna grid; figure(1) plot(d,rx,'m-*'), xlabel('Distancia[M]'),ylabel('Potencia de Rx[dBm]'),grid title('NIVELES DE POTENCIA vs DISTANCIA') legend('PTx:7 Dbm');

dato11= xlsread('Datos1.xlsx',3);%Importación de datos desde excel d=dato11(:,1); %selección de elementos de la 1era columna rx=dato11(:,3); %selección de elementos de la 3era columna figure(2) plot(d,rx,'r--O'),xlabel('Distancia[M]'),ylabel('Potencia de Rx[dBm]'),grid title('NIVELES DE POTENCIA vs DISTANCIA') legend('PTx:11 dBm');

dato15= xlsread('Datos1.xlsx',4);%Importación de datos desde excel d=dato15(:,1); %selección de elementos de la 1era columna

rx=dato15(:,3); %selección de elementos de la 3era columna figure(3) plot(d,rx,'b:+'), xlabel('Distancia [M]'),ylabel('Potencia de Rx [dBm]'),grid title('NIVELES DE POTENCIA vs DISTANCIA') legend('PTx:15 dBm');

Gráfica la comparación de los niveles de potencia de las antenas patch con potencias de Tx: 7dBm, 11dBm y 15 dBm. hold on dato7= xlsread('Datos1.xlsx',2);%Importación de datos desde excel d=dato7(:,1); %selección de elementos de la 1era columna rx=dato7(:,3); %selección de elementos de la 3era columna plot(d,rx,'y-*') xlabel('Distancia[M]'); ylabel('Potencia de Rx[dBm]') title('NIVELES DE POTENCIA vs DISTANCIA')

dato11= xlsread('Datos1.xlsx',3);%Importación de datos desde excel d=dato11(:,1); %selección de elementos de la 1era columna rx=dato11(:,3); %selección de elementos de la 3era columna plot(d,rx,'r--o') tickValues = -35:1:-10; set(gca, 'YTick',tickValues) grid on xlabel('Distancia[M]') ylabel('Potencia de Rx[dBm]')

dato15= xlsread('Datos1.xlsx',4);%Importación de datos desde excel d=dato15(:,1); %selección de elementos de la 1era columna rx=dato15(:,3); %selección de elementos de la 3era columna plot(d,rx,'b:x') xlabel('Distancia [M]') ylabel('Potencia de Rx [dBm]') legend('PTx:7 Dbm','PTx:11 dBm','PTx:15 dBm');

Actualizar la imagen FPGA en el Driver ID

- 1. Para actualizar el dispositivo USRP RIO, verificar la compatibilidad con la última versión del software.
- 2. Seleccionar Inicio» Todos los programas» National Instruments» NI-USRP» utilities» USRP-utils para reconocer el Device ID en la computadora.
- 3. Escoger la pestaña "*N2xx/NI-29xx*" Imagen Updater, luego en device ID, sino es reconocido presionar "*Fin Devices*".
- 4. Subir la Imagen FPGA
- 5. Verificar que la versión del archivo de imagen FPGA coincida con la revisión de la placa para el dispositivo que está actualizando y presionar *"Write Images"*.
- 6. Verificar el estado de la imagen.

19 NI-USRP Con	figuration Utility		-		
Devices USRF	2 SD Card Burner	12xx/NI-29xx Image Updater	•		
Device ID	Connection	Type/Revision		Image Status	
RIOO	PCle	*** x300		UPDATE NEED	
					Refresh Devices List
1					

💥 NI-USRP Configuration	n Utility			- (×	7
Devices USRP2 SD Card	d Burner N2xx/N	II-29xx Image Updater				
Firmware Image					Browse	
FPGA Image C:\Progra	am Files (x86)\Natio	nal Instruments\NI-USRP\images\usrp_x310_	fpga_HGS.lvbitx		Browse	+
Device ID C	Connection	Type/Revision	Image Status			1
RIO0 P	PCle	NI USRP-2943R (40 MHz BW)/rev5		-		
					[*	
Find Devices	Mar	nually Add Device		WRITE IMA	GES	2
			L			" Z

Figura 2 Pasos para cargar la imagen al Drive ID

Exportar datos de Labview a Excel

- 1. Seleccionar la gráfica de Niveles de potencia.
- 2. Dar click derecho, luego seleccionar Export
- 3. Escoger Export Data To Excel
- 4. Abrir la hoja en Excel con los datos exportados
- 5. Utilizar las herramientas en Excel para calcular la potencia promedia

Se debe extraer la cantidad de muestras de acuerdo con la siguiente tabla:

Tabla I Número de muestras de acuerdo con el formato de audio

Formatos de Audio	Número de Muestras
WAV	7340
MP3	5400
MP4	4120

Figura 3 Gráfica de los Niveles de Potencia en Rx.

Figura 4 Ventana para exportar los datos de Labview a Excel.

Pe	Calibri Bar ≪ N K S	· 11 · A [*] A [*] ≡ ≡	= - - - - - - - - - -	Ajustar t Combin	exto arycentrar ▼	General \$ ~ % 000	▼ ←0 00 00 →0	Formato condicional ▼
Porta	apapeles 🕞	Fuente 🕞	Alir	eación	Fai	Número	Es.	
C2	• E ×	√ f _x						
	А	В	С	D	E	F	G	н
1	Samples - Resampled	Power (dBm) - Resampled						
2	45088	-29,2179						
3	45087	-29,2179						
4	45086	-29,2193						
5	45085	-29,2204						
6	45084	-29,222						
7	45083	-29,2223						
8	45082	-29,2233						
9	45081	-29,2249						
10	45080	-29,2201						
12	45079	-25,2265						
13	45078	-29,2308						
14	45076	-29.233						
15	45075	-29,2413						
16	45074	-29,2878						
17	45073	-29,348						
18	45072	-29,3785						
19	45071	-29,3831						
20	45070	-29,3833						
21	45069	-29,3836						
22	45068	-29,3843						
23	45067	-29,3845						
~	Vitempo	rary 477276 (+)						
LIST	0							

Figura 5 Datos en Excel

X∎	₽ 5 - ∂ - ∓					lvtemporary_4	177276 - Mic	rosoft Excel
ARC	HIVO INICIO INSE	RTAR DISEÑO DE PÁGINA	FÓRMULAS	DATOS	REVISAR	VISTA CC	MPLEMENT	OS
1	Calibri	- 11 - A A = =	= %-	F Ajustar t	exto	General	-	≠
Pe	gar 💉 NKS	• 🖾 • 🔷 • 🗛 • 🚍 =	= += +=	E 🖽 Combin	ar y centrar 🔹	\$ - % 000	o €0 00 0€ 00	Formato
Porta	ananeles D	Fuente G	Δli	neación	5	Númer		condicional *
	paperes (a)			incución i				
D1	0 • i ×	√ f _{sc} =PROMEDIO	(B2:B3:B7320)				
	А	В	С	D	E	F	G	н
1	Samples - Resampled	Power (dBm) - Resampled						
2	45088	-29,2179						
3	45087	-29,2179						
4	45086	-29,2193						
5	45085	-29,2204						
6	45084	-29,222						
7	45083	-29,2223						
8	45082	-29,2233						
9	45081	-29,2249						
10	45080	-29,2261		-35,5473281				
11	45079	-29,2283						
12	45078	-29,2308						
13	45077	-29,2323						
14	45076	-29,233						
15	45075	-29,2413						
16	45074	-29,2878						
1/	45073	-29,348						
18	45072	-29,3785						
20	45071	-29,3831						
20	45070	-25,5055						
22	45069	-25,5850						
23	45008 45067	-25,3043						
	45000	20,0040						
	V Ivtempo	rary_477276 +						
LIST	0							
H	נם) ל	e 💿 🔝 📻	W		x			

Figura 6 Cálculo de la potencia promedio en Excel.
Anexo II. Datasheet de los equipos

Datasheet del USRP RIO 2943

Figura 7 USRP-2943 panel frontal (http://www.ni.com/pdf/manuals/375717h.pdf)

Tabla II	Modulo USRP	2843	conectores del	nanel frontal
i abia ii		2040		

JTAG		Puerto USB que conecta la computadora host al dispositivo FPGA para fines de recuperación. Este puerto se puede usar con Xilinx iMPACT herramienta de configuración para cargar temporalmente un nuevo archivo de bits.		
RF 0	TX1 RX1	Terminal de entrada y salida para la señal de RF. TX1 RX1 es un SMA (f) conector con una impedancia de 50 Ω y es una entrada o salida de un solo extremo canal.		
	RX2	Terminal de entrada para la señal de RF. RX2 es un conector SMA (f) con una impedancia de 50 Ω y es un canal de entrada de un solo extremo.		
AUX I/O		Puerto de E / S de propósito general (GPIO). AUX I / O es controlado por el FPGA.		
RF 1	TX1 RX1	Terminal de entrada y salida para la señal de RF. TX1 RX1 es un SMA (f) conector con una impedancia de 50 Ω y es una entrada o salida de un solo extremo canal.		
	RX2	Terminal de entrada para la señal de RF. RX2 es un conector SMA (f) con una impedancia de 50 Ω y es un canal de entrada de un solo extremo.		

Fuente: http://www.ni.com/pdf/manuals/375717h.pdf

Figura 8 Panel posterior del módulo USRP- 2943 (http://www.ni.com/pdf/manuals/375717h.pdf)

Tabla III Modulo USRP 2843 conectores del panel posterior.

PWR	Entrada que acepta un conector de alimentación de CC externo de 9 V a 16 V.
1G/10G ETH	Dos terminales de entrada SFP + utilizados para la conectividad 1G ETH o 10G ETH con el controlador de host. Actualmente no es compatible con Labview FPGA.

REF OUT	Terminal de salida para una señal de referencia externa para el LO en el dispositivo. REF OUT es un conector hembra SMA con una impedancia de 50 Ω , y es una salida de referencia de un solo extremo. La señal de salida en este conector es de 10 MHz a 3,3 V.
REF IN	Terminal de entrada para una señal de referencia externa para el LO en el dispositivo. REF IN es un conector hembra SMA con una impedancia de 50 Ω , y es una entrada de referencia de un solo extremo. REF IN acepta una señal de 10 MHz con una potencia de entrada mínima de 0 dBm (0,632 Vpk-pk) y una potencia de entrada máxima de 15 dBm (3,56 Vpk- pk) para una onda cuadrada o sinusoidal.
PCIe x4	Puerto para una conexión de bus PCI Express Generation 1, x4 a través de un cable de cuatro carriles MXI Express
PPS TRIG OUT	Terminal de salida para la referencia de temporización de pulso por segundo (PPS). PPS TRIG OUT es un conector hembra SMA con una impedancia de 50 Ω , y es una entrada de un solo extremo. La señal de salida es de 0 V a 3.3 V TTL. También puede usar este puerto como salida activada (TRIG OUT) que programa con la señal de E / S Trig Out de PPS.
PPS TRIG IN	Terminal de entrada para referencia de tiempo por pulso por segundo (PPS). PPS TRIG IN es un conector hembra SMA con una impedancia de 50 Ω , y es un canal de entrada simple. PPS TRIG IN acepta 0 V a 3.3 V TTL y 0 V a 5 V señales TTL. También puede usar este puerto como una entrada desencadenada (TRIG IN) que usted controla usando el software NI-USRP
GPS ANT	Terminal de entrada para la señal de antena GPS. GPS ANT es un conector hembra SMA con una potencia de entrada máxima de -15 dBm y una salida de CC de 5 V para alimentar una antena activa

Fuente: http://www.ni.com/pdf/manuals/375717h.pdf

Datasheet del Antena Vert2450

Figura 9 Antena Vert2450.(http://www.ni.com/pdf/manuals/375717h.pdf)

Esta antena es compatible con IEEE 802.11a / b / g / n, Bluetooth y aplicaciones ZigBee, WLAN, también se puede usar para una variedad de aplicaciones dentro del rango de frecuencia especificado.

Tiene un patrón omnidireccional adecuado para la radiodifusión punto a multipunto, con una ganancia de 3 dBi también posee una transmisión y recepción superior entre puntos de acceso inalámbricos y dispositivos en una WLAN (red de área local inalámbrica). Está diseñada para cubrir las frecuencias desde 2.4 GHz a 2.5 GHz, 4.9 GHz a 5.3 GHz y 5.7 GHz a 5.8 GHz.

Modelo	VERT 2450			
Frecuencia	2.4 a 2.48 GHz y 4.9 a 5.9 GHz			
Ganancia	3 dBi			
Impedancia	50 ohm nominal			
Polarización	Vertical			
Ancho de haz horizontal	360°			

Tabla IV. Características de la antena VERT 2450

Fuente: http://www.ni.com/pdf/manuals/375717h.pdf

Dimensiones de la antena

Fuente:(http://kb.microembedded.com/usrpvert2450)

Posee una mejor potencia irradiada en el rango de frecuencia de 2.4 a 2.48 GHz.

Patrones de antena de RF aen el rango de 2.4 a 4.48 GHz

Patrones de antena de RF en el rango de 4.9 a 5.9 GHz.

Datasheet del Antena Patch

Es una antena que puede orientar con polarización vertical u horizontal, está diseñada para operar desde 5.1Ghz hasta 5.8, teniendo una amplia cobertura y es adecuada para aplicaciones tanto interiores como exteriores. Posee un conector N hembra, de la interfaz de RF. Sirve para realizar pruebas de una comunicación a largas distancias.

Teletronics International, In

Tel: 301.309.8500

Fuente: (https://www.teletronics.com/15-204.pdf)

Anexo III. Presupuesto

DESCRIPCION	PRECIO
Micrófono	\$30
Maletín de elementos	\$60
Cinta métrica	\$15
Cable coaxial y conectores	\$20
Puntas para las antenas	\$20
Fuente de poder	\$20
Estructura de madera	\$40
SUB TOTAL	\$205

Anexo IV. Prueba con Antena Vert2450

Potencia de transmisión de 7 dBm.

Potencia de transmisión de 8 dBm.

Potencia de transmisión de 10 dBm.

Potencia de transmisión de 11 dBm.

Potencia de transmisión de 12 dBm.

Potencia de transmisión de 13 dBm.

Potencia de transmisión de 14 dBm.

Potencia de transmisión de 15 dBm.

Anexo V. Pruebas con Antenas Patch

Pruebas con potencia de transmisión de 7 dBm con las siguientes distancias: Distancia de 1 metro.

Distancia de 1.5 metro.

Distancia de 2 metros.

Distancia de 2.5 metros.

Distancia de 3 metros.

Distancia de 3.5 metros.

Distancia de 4 metros.

Distancia de 4.5 metros.

Distancia de 5 metros.

Distancia de 5.5 metros.

Distancia de 6 metros.

Pruebas con potencia de transmisión de 11 dBm con las siguientes distancias: Distancia de 1 metro.

Distancia de 1.5 metro.

Distancia de 2 metros.

Distancia de 2.5 metros.

Distancia de 3 metros.

Distancia de 3.5 metros.

Distancia de 4 metros.

Distancia de 4.5 metros.

Distancia de 5 metros.

Distancia de 5.5 metros.

Distancia de 6 metros.

Pruebas con potencia de transmisión de 15 dBm con las siguientes distancias: Distancia de 1 metro.

Distancia de 1.5 metro.

Distancia de 2 metros.

Distancia de 2.5 metros.

Distancia de 3 metros.

Distancia de 3.5 metros.

Distancia de 4 metros.

Distancia de 4.5 metros.

Distancia de 5 metros.

Distancia de 5.5 metros.

Distancia de 6 metros.

Anexo VI. Fotos de las pruebas con las Antenas Patch

Figura 10. Distancia de 1metro entre las dos antenas Patch.

Figura 11. Distancia de 1.5 metro entre las dos antenas Patch.

Figura 12. Distancia de 2 metros entre las dos antenas Patch.

Figura 13. Distancia de 2.5 metros entre las dos antenas Patch.

Figura 14. Distancia de 3 metros entre las dos antenas Patch.

Figura 15. Distancia de 3.5 metros entre las dos antenas Patch.

Figura 16. Distancia de 4 metros entre las dos antenas Patch.

Figura 17. Distancia de 4.5 metros entre las dos antenas Patch.

Figura 18. Distancia de 5 metros entre las dos antenas Patch.

Figura 19. Distancia de 5.5 metros entre las dos antenas Patch

Figura 20. Maletin de Herramientas.

Figura 21. Estructura para las pruebas con antenas Patch.

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		PRÁCTICA
LABORATORIO	TELECOMUNICACIONES	
CARRERA	INGENIERÍA ELECTRÓNICA	
SEDE	GUAYAQUIL	

PRÁCTICA

TEMA:

TRANSMISIÓN Y RECEPCIÓN DE UN AUDIO DIGITAL COMPRIMIDO UTILIZANDO EL EQUIPO USRP RIO 2943

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		PRÁCTICA
LABORATORIO	TELECOMUNICACIONES	
CARRERA	INGENIERÍA ELECTRÓNICA	
SEDE	GUAYAQUIL	

1) OBJETIVO GENERAL.

Diseñar un sistema de comunicación para la transmisión y recepción de un audio digital comprimido utilizando equipo USRP RIO 2943.

2) OBJETIVOS ESPECÍFICOS.

- Configurar el hardware USRP RIO 2943 para ser utilizado en la transmisión y recepción de datos de voz.
- Constatar la señal original de audio con la obtenida luego de aplicar los filtros adecuados.
- Utilizar los tipos de algoritmos de compresión y ver sus diferencias.
- Validar los resultados obtenidos mediante la comparación de la señal de transmisión y la de recepción.

3) MARCO TEÓRICO

Formatos de audio.

WAV

La palabra WAV es una abreviatura inglesa de wave (onda) y se refiere a la forma que tiene la representación gráfica típica del sonido, (Asinsten, 2013). Este formato puede ser comprimido y grabado en distintas calidades y tamaños.

Admiten tres frecuencias de muestreo (11.025 Hz, 22.050 Hz y 44.100 Hz) con una asignación de 8 o 16 bits de resolución (bits por muestra), y pueden usar uno o dos canales: mono o estéreo.

MP3

Formato MPEG layer 3, es el más popular para almacenar música de cualquier tipo.

El sistema de codificación que utiliza MP3 es un algoritmo de compresión con pérdidas, el cual recorta frecuencias muy altas y muy bajas que no son percibidas por el oído. De esta manera, la pérdida es inaudible y el tamaño del archivo se reduce con relación al original, conservando frecuencias comprendidas aproximadamente entre los 200Hz-15KHz. El formato mp3 utiliza una frecuencia de muestreo 32KHz de acuerdo con la norma ISO/IEC-11172-3.

MP4

Está basado en un algoritmo de compresión que puede codificar datos tanto de audio como de video, el cual posee una extensión .mp4. Para la compresión de video los archivos mp4 son guardados, usando la compresión MPEG-4 pero para comprimir el audio utiliza el estándar AAC.

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		PRÁCTICA	
LABORATORIO	TELECOMUNICACIONES		
CARRERA	INGENIERÍA ELECTRÓNICA		
SEDE	GUAYAQUIL		

El estándar de compresión AAC fue originalmente parte del proyecto MPEG-2, y fue posteriormente aumentado como parte de MPEG-4. La frecuencia de muestreo de AAC es de 8 Hz a 96 KHz. Según la norma ISO/IEC 13818-7 la frecuencia más utilizada es 24Khz.

Modulación 16-QAM

La modulación 16-QAM es un sistema M-ario en el que M = 16 y los datos de entrada se manejan en grupos de cuatro ($2^4 = 16$) según (Tomasi, 2003). Este sistema se desplaza tanto en fase como en la amplitud, haciendo que se vuelva más eficiente en comparación con otras modulaciones digitales de fase.

Con la modulación de 16-QAM se requiere la cuarta parte del ancho de banda en comparación con BPSK, para la misma rapidez de entrada de bits.

USRP RIO-2943

El USRP-2943 pertenece a la familia de National Instruments, está compuesto por un hardware robusto y un software que da apertura a impulsar prototipos modernos basados en sistemas de comunicación.

Es usado en varias aplicaciones como sincronización de redes heterogéneas, LTE, detector de espectros, etc. Está basado en la arquitectura de E/S reconfigurables (RIO) de Labview y posee varios ingresos y salidas (MIMO). (NI, 2018)

Figura 1 USRP 2943. (http://www.ni.com/es-cr/support/model.usrp-2943.html)

Especificaciones.

Tabla I Especificaciones del transmisor del USRF-2943
--

Número de Canales	2
Rango de Frecuencia	1.2 GHz a 6 GHz
Frecuencia Step	< 1 Hz
Máxima Potencia de Salida (P out)	
1.2 GHz a 3.5GHz	50 mW a 100 mW (17 dBm a 15 dBm)
3.5 GHz a 6 GHz	5 mW a 32 mW (7 dBm a 15 dBm)

SA	IANA ECUADOR

LABORATORIO TELECOMUNICACIO		DNES
CARRERA	INGENIERÍA ELECTRÓNICA	
SEDE	GUAYAQUIL	
Rango de Ganancia		0 dB a 31.5 dB
Ganancia Step		0.5 dB
Precisión de Frecuencia		2.5 ppm
Ancho de Banda Máxima Instantánea Real		- Tiempo
USRP-2943 40 MHz		40 MHz
USRP-2943 120 MHz		120 MHz
Velocidad máxima de muestreo I/Q		200 MS/s
Convertidor de analógico a digital (DAC)		
Resolución		14 bit
Rango dinámico libre de espurios (sFDR)		80 dB

Fuente: http://www.ni.com/pdf/manuals/374193d.pdf

Tabla 2 Especificaciones del receptor del USRP-2943.

Número de Canales	2	
Rango de Frecuencia	1.2 GHz a 6 GHz	
Frecuencia Step	< 1 Hz	
Rango de Ganancia	0 dB a 31.5 dB	
Ganancia Step	0.5 dB	
Máxima Potencia de entrada (P in)	-15 dBm	
Figura de ruido	5 dB a 7 dB	
Precisión de Frecuencia	2.5 ppm	
Ancho de Banda Máxima Instantánea Real- Tiempo		
USRP-2943 40 MHz	40 MHz	
USRP-2943 120 MHz	120 MHz	
Frecuencia de Muestreo Máxima IQ	200 MS/s	
Convertidor de analógico a digital (DAC)		
Resolución 14 bit		
Rango dinámico libre de espurios (sFDR)	88 dB	

Fuente: http://www.ni.com/pdf/manuals/374193d.pdf

Antena Vert2450

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		PRÁCTICA
LABORATORIO	TELECOMUNICACIONES	
CARRERA	INGENIERÍA ELECTRÓNICA	
SEDE	GUAYAQUIL	

Esta antena es compatible con IEEE 802.11a / b / g / n, Bluetooth y aplicaciones ZigBee, WLAN, también se puede usar para una variedad de aplicaciones dentro del rango de frecuencia especificado.

Tiene un patrón omnidireccional adecuado para la radiodifusión punto a multipunto, con una ganancia de 3 dBi también posee una transmisión y recepción superior entre puntos de acceso inalámbricos y dispositivos en una WLAN (red de área local inalámbrica). Está diseñada para cubrir las frecuencias desde 2.4 GHz a 2.5 GHz, 4.9 GHz a 5.3 GHz y 5.7 GHz a 5.8 GHz.

Tabla 3. Características de la antena VERT 24	50
---	----

Modelo	VERT 2450	
Frecuencia	2.4 a 2.48 GHz y 4.9 a 5.9 GHz	
Ganancia	3 dBi	
Impedancia	50 ohm nominal	
Polarización	Vertical	
Ancho de haz horizontal	360°	

Fuente:https://kb.ettus.com/images/9/9e/ettus_research_vert2450_datasheet.pdf

Figura 2. Antena Vert2450. (https://www.ettus.com/product/details/VERT2450)

Antena Patch

Es una antena que puede orientar con polarización vertical u horizontal, está diseñada para operar desde 5.1Ghz hasta 5.8, teniendo una amplia cobertura y es adecuada para aplicaciones tanto interiores como exteriores. Posee un conector N hembra, de la interfaz de RF. Sirve para realizar pruebas de una comunicación a largas distancias.

Figura 3. Antena Patch 5.8GHz, 23dBi.(https://www.teletronics.com/15-204.pdf)

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		PRÁCTICA
LABORATORIO	TELECOMUNICACIONES	
CARRERA	INGENIERÍA ELECTRÓNICA	
SEDE	GUAYAQUIL	

4) MARCO PROCEDIMENTAL

Parte A- Configuración del hardware

Se estable conexión del USRP-RIO 2943 por medio de la tarjeta PCI-Express4.

- **1.** Encender el dispositivo USRP RIO antes de encender la computadora.
- **2.** Utilizar la interfaz MXI Express4 para conectar el dispositivo USRP a la computadora.

Figura 4. Conexión del USRP-RIO 2943 con la PC

Parte B- Interconexión entre el NI-USRP y las antenas Vert2450.

- 1. Conectar las antenas Vert2450 a los terminales del panel frontal del dispositivo USRP RIO.
- 2. Encender la computadora.
- 3. Verificar que el led de la tarjeta PCI express4; que se encuentra en la computadora, este en color verde.
- 4. Abrir el programa NI-USRP Configuration Utility.
- 5. Verificar el estado de la imagen FPGA del Device ID.

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		PRÁCTICA	
LABORATORIO TELECOMUNICAC		ONES	
CARRERA	RRERA INGENIERÍA ELECTRÓNICA		
SEDE	GUAYAQUIL		

Figura 5. Interconexión del NI-USRP RIO 2943 con las antenas Vert2450

Figura 6. Programa NI USRP Configuration Utility.

ABORATORIO	TELECOMUNICACI	ONES	
ARRERA	INGENIERÍA ELEC	FRÓNICA	
EDE	GUAYAQUIL		
FPGA Image C:\Program Files (x86)	National Instruments\NI-USRP\images\	usrp_x310_fpga_HGS.lvbitx	Browse
Ri00 PCie	NI USRP-2943R (40 MHz BW)/re	/5	

Figura 7. Estado de la imagen FPGA del Drive ID

Parte B.1 Parámetros para el sistema de comunicación.

Transmisión.

Para una correcta transmisión es necesario; habilitar el canal RF0, luego activar el puerto de la antena TX1; una vez activado el puerto y la antena, el equipo está acto para transmitir.

Se puede escoger cualquier canal, en este caso se prefirió el puerto TX1 como se observa en la Figura 5 sección a; la frecuencia que se utilizará es 2.8 GHz porque la antena opera dentro de este rango, la potencia de transmisión de salida del USRP va desde 7 dBm a 15 dBm de acuerdo con la frecuencia definida, y por último se estableció una velocidad de muestreo I/Q de 1,6MS/s según el rango de tiempo a usar.

El resto de los parámetros vienen por defecto en la aplicación.

Figura 8. Configuración de parámetros del USRP RIO en Tx

Recepción.

En la recepción también se necesitará habilitar el canal RF1, para evitar el solapamiento de canales, luego activar el puerto de la antena RX2; una vez activado el puerto y la antena, el equipo está acto para receptar.

Se puede escoger cualquier puerto, en este caso se prefirió el puerto RX2 como se observa en la Figura 5 sección a; la frecuencia que se utilizará es 2.8 GHz porque la antena opera dentro de este rango, la potencia de recepción de entrada del USRP es -15 dBm, y por último se estableció una velocidad de muestreo I/Q de 1,6MS/s según el rango de tiempo. El resto de los parámetros vienen por defecto en la aplicación.

Figura 9. Configuración de parámetros del USRP RIO en Rx.

Parte B.2 Parámetros para el audio digital comprimido.

De acuerdo con el formato en que se desee comprimir, se debe tener en cuenta los siguientes parámetros

FORMATO	NORMA	FRECUENCIA
WAV	IEC 908	44KHZ
MP3	ISO/IEC-11172-3	32KHZ
MP4	ISO/IEC 13818-7	24KHZ

Tabla 4. Frecuencias de muestreo según formato de compresión.

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		PRÁCTICA	
LABORATORIO TELECOMUNICAC		ONES	
CARRERA	INGENIERÍA ELECTRÓNICA		
SEDE	GUAYAQUIL		

Si el audio que se va a trasmitir es wav, bajo la norma IEC 908, la frecuencia de muestreo a utilizar es 44kHz, en mp3 la norma ISO/IEC-11172-3 especifica una frecuencia de 32KHz y según la norma ISO/IEC 13818-7 en mp4 es 24KHz.

Sabiendo esto, escogemos la frecuencia de muestreo según el formato a usar y luego se asigna un tiempo de grabación de 3,9 seg para la realización de pruebas.

Conf. Tx Conf.	Rx Conf. Paquete		
Tipo de Formato			
Audio	Modulación		
Sampling Rate 44100 Tiempo Grab 3,9	Tipo Modulación QAM Pulse shaping filter Root Raised Cos		

Figura 10. Configuración del audio a grabar.

Después de dar play a la aplicación, se enciende de color rojo el icono Record el cual indica que empezará la grabación.

Figura 11. Indicador de inicio de grabación.

Luego se abrirá una ventana que permite guardar el archivo de audio grabado en una carpeta (puede ser escogida), se asigna un nombre al archivo de audio y finalmente se presiona ok.

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		PRÁCTICA			
LABOR	ATORIO	TELECOMUNICACI	ONES		
CARRE	RA	INGENIERÍA ELECTRÓNICA			
SEDE		GUAYAQUIL			
	Organize New fol Organize New fol Pictures Audio Packet Xc Audio Packet Xc Tesis tesis OneDrive This PC Desktop Documents Documents Documents Documents Documents	der #	Title items match your s	Contributing artists Alt	
	Music File	< name:	~	Custom Pattern (*.wav) V OK Cancel	

Figura 12. Ventana para guardar el archivo.

🔩 Choose or Enter	r Path of File					×
$\leftarrow \rightarrow \land \uparrow$	🔒 > This PC > Desktop > Tx		√ Č	Search Tx		Q
Organize 👻 🛛	New folder				i== ▼ □	?
E Desktop	🖈 ^ Name ^	#	Title		Contributing artists	Alb
🕹 Downloads	- A	Noit	ome match your	coarch		
Documents	5 x	NOIL	erns match your	search.		
Pictures	*					
2						
Rx						
tesis 2.4						
Tx						
\land OneDrive						
💻 This PC						
📃 Desktop						
Documents	5 V K			1		>
1→	File name: tx.wav		~	Custom Pa	attern (*.wav)	\sim
			2→	ОК	 ▼ Cancel	

Figura 13. Guarda el audio grabado.

Parte C. Resultados obtenidos en los niveles de potencia de Rx.

Calcular las siguientes potencias de la recepción y realizar las capturas necesarias de los resultados:

Para extraer los resultados se requiere exportar los valores de Labview a Excel (revisar en los anexos) y calcular la potencia promedio.

 Tabla 5. Niveles de potencia de recepción con antenas Vert2450.

Potencia Tx (dBm)	Potencia Rx (dBm)
7	-26,7293
8	-25,3674
9	-24,0240
10	-23,6838
11	-22,1539
12	-21,5842
13	-20,1910
14	-19,6178
15	-18,3733

Parte D- Transmisión y recepción con antenas patch

- 1. Conectar los cables coaxiales a los terminales del panel frontal del dispositivo USRP RIO y a las antenas patch (5,15-5.875 GHz).
- 2. Encender la computadora.
- 3. Verificar que el led de la tarjeta PCI express4 que se encuentra en la computadora este en color verde.
- 4. Abrir el programa NI-USRP Configuration Utility.
- 5. Verificar el estado de la imagen FPGA del Device ID.

Figura 14. Interconexión del NI-USRP RIO 2943 con Antenas Patch

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		PRÁCTICA
LABORATORIO TELECOMUNICAC		ONES
CARRERA	INGENIERÍA ELECTRÓNICA	
SEDE GUAYAQUIL		

Parte D.1 Configuración del USRP en el software Labview

Transmisión.

Para una correcta transmisión es necesario; habilitar el canal RF0, luego activar el puerto de la antena TX1; una vez activado el puerto y la antena, el equipo está acto para transmitir.

Se puede escoger cualquier puerto, en este caso se prefirió el puerto TX1 como se observa en la Figura 14 sección a; la frecuencia que se utilizará es 5.2 GHz porque la antena opera dentro de este rango, la potencia de transmisión de salida del USRP va desde 7 dBm a 15 dBm de acuerdo con la frecuencia definida, y por último se estableció una velocidad de muestreo I/Q de 1,6MS/s según el rango de tiempo a usar.

El resto de los parámetros vienen por defecto en la aplicación.

Figura 15. Configuración de parámetros del USRP RIO en Tx.

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		PRÁCTICA
LABORATORIO TELECOMUNICAC		ONES
CARRERA	INGENIERÍA ELECTRÓNICA	
SEDE	GUAYAQUIL	

Recepción.

En la recepción también se necesitará habilitar el canal RF1, luego activar el puerto de la antena RX2; una vez activado el puerto y la antena, el equipo está acto para receptar.

Se puede escoger cualquier canal, en este caso se prefirió el puerto RX2 como se observa en la Figura 3.6 sección a; la frecuencia que se utilizará es 5.2 GHz porque la antena opera dentro de este rango, la potencia máxima de la recepción de entrada del USRP es -15dBm de acuerdo con la frecuencia definida, y por último se estableció una velocidad de muestreo I/Q de 1,6MS/s según el rango de tiempo. El resto de los parámetros vienen por defecto en la aplicación.

Figura 16. Configuración de parámetros del USRP RIO en Rx.

Parte B.2 Parámetros para el audio digital comprimido.

Tabla G. Frecuencias de Indestreo seguir formato de compresión.				
FORMATO	NORMA	FRECUENCIA		
WAV	IEC 908	44KHZ		
MP3	ISO/IEC-11172-3	32KHZ		
MP4	ISO/IEC 13818-7	24KHZ		

Tabla (6. Frecuenci	as de muestre	o según formato	de compresión.
			o oogan ionnaid	

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		PRÁCTICA		
LABORATORIO TELECOMUNICACI		ONES		
CARRERA	INGENIERÍA ELECTRÓNICA			
SEDE	GUAYAQUIL			

Si el audio que se va a trasmitir es wav, bajo la norma IEC 908, la frecuencia de muestreo a utilizar es 44kHz, en mp3 la norma ISO/IEC-11172-3 especifica una frecuencia de 32KHz y según la norma ISO/IEC 13818-7 en mp4 es 24KHz. Sabiendo esto, escogemos la frecuencia de muestreo según el formato a usar y luego se asigna un tiempo de grabación de 3,9 seg para la realización de pruebas.

Conf. Tx Conf. Rx Conf. Paquete			
Ti	wav		
Audio	Modulación		
Sampling Rate 44100 Tiempo Grab	Tipo Modulación QAM Pulse shaping filter		

Figura 17. Configuración del audio a grabar.

Después de dar play a la aplicación, se enciende de color rojo el icono Record el cual indica que empezará la grabación.

Figura 18. Indicador de inicio de grabación.

Luego se abrirá una ventana que permite guardar el archivo de audio grabado en una carpeta (puede ser escogida), se asigna un nombre al archivo de audio y finalmente se presiona ok.

Parte C. Resultados obtenidos.

Colocar las antenas a una altura de 1.45 m con respecto al suelo, como se muestra en la siguiente imagen.

	POLITÉCNICA SIANA ecuador	PRÁCTICA		
LABORATORIO	TELECOMUNICACI	ONES		
CARRERA	INGENIERÍA ELEC	FRÓNICA		
SEDE	GUAYAQUIL			
Distancia (M) 1.45 m				

Figura 19. Antenas Patch conectadas al USRP RIO.

Para este caso se utilizaron las antenas Patch, las variables fueron la distancia y la potencia de transmisión, como se visualiza en las tablas 7, 8, 9; dando así, una línea de vista entre las antenas, se usó una frecuencia de transmisión y de recepción de 5,2 Ghz, ya que estas antenas trabajan en frecuencias más altas en comparación con las antenas Vet2450.

Tabla 7 Niveles de potencia de recepción con una PTx de 7 dBm en antenas Patch.

Distancia (M)	Potencia Tx	Potencia Rx	
1		-24,2315 dBm	
1.5		-24,8479 dBm	
2		-25,1978 dBm	
2.5		-26,9849 dBm	
3	7 dBm	-27,085 dBm	
3.5		-30,7863 dBm	
4		-31,418 dBm	
4.5		-32,9442 dBm	
5		-32,2773 dBm	
5.5		-33,2567 dBm	
6		-34,4562 dBm	

Tabla 9 Niveles de potencia de recepción con una PTx de 11 dBm en antenas Patch.

Distancia (M)	Potencia Tx (dBm)	Potencia Rx (dBm)	
1		-21,8725	
1.5	11 dBm	-22,5423	
2		-24,0471	

UNIVERSIDAD POLITÉCNICA SALESIANA	
ECUADOR	

PRÁCTICA

LABORATORIO	TELECOMUNICAC	ACIONES
CARRERA	INGENIERÍA ELEC	ECTRÓNICA
SEDE	GUAYAQUIL	
2.5		-25,0142
3		-25,1536
3.5		-27,7296
4		-29,1469
4.5		-29,9758
5		-30,3867
5.5		-32,7682
6		-33,6542

Tabla 10. Niveles de potencia de recepción con una PTx de 15 dBm en antenas Patch.

Distancia (M)	Potencia Tx (dBm)	Potencia Rx (dBm)
1		-20,1521
1.5		-20,4706
2		-22,8343
2.5		-24,4042
3		-24,5069
3.5	15 dBm	-26,6686
4		-27,4993
4.5		-29.4996
5		-29,6487
5.5		-30,6810
6		-30,79921

5) Recomendación

- Antes de instalar el hardware es necesario instalar todo el software requerido.
- > La tarjeta interfaz PCI Express4 debe estar instalada en la computadora.
- Si el led de la tarjeta PCI express4 se encuentra en color anaranjado, revisar que la interfaz MXI Express4 esté conectada correctamente.
- > Encender el equipo USRP RIO 2943 antes de encender la computadora.
- Usar un kit de llaves para montar las antenas en las bases y tratar de alinearlas lo más posibles.
- > No demorar en guardar el archivo de audio grabado.
- Conectar las antenas en puertos de diferentes canales por especificaciones propias del USRP-RIO.

6) RECURSOS UTILIZADOS

- NI USRP RIO 2943
- Computadora
- Micrófono
- Tarjeta PCI-Express 4
- Cable MXIe x4

LABORATORIO	TELECOMUNICACIONES	
CARRERA	INGENIERÍA ELECTRÓNICA	
SEDE	GUAYAQUIL	

- Cable coaxial
- Antenas Patch
- Antenas Vert2450
- Software Labview 2016
- > NI-USRP Configuration Utility 2016

7) REGISTRO DE RESULTADOS

- > Colocar las imágenes resultantes de la práctica realizada
- > Realizar satisfactoriamente los niéveles de potencia.

8) BIBLIOGRAFÍA UTILIZADA

Libro D.Salomon, "Data Compression".

http://www.denwaip.com/softphone.html

> Libro W. Tomasi, "Sistemas de Comunicaciones Electrónicas",

https://hellsingge.files.wordpress.com/2014/08/sistemas-de-comunicacioneselectronicas-tomasi-4ta-edicic3b3n.pdf

> National Instrument "Manual de USRP RIO".

http://www.ni.com/pdf/manuals/375717h.pdf

MicroEmbedded

http://kb.microembedded.com/usrpvert2450

HypertLink Technologies

https://www.gowifi.co.nz/specs/hg5158-23p.pdf

UNIVERSIDAD POLITÉCNICA SALESIANA ECUADOR		PRÁCTICA		
LABORATORIO	TELECOMUNICACI	ONES		
CARRERA	INGENIERÍA ELECTRÓNICA			
SEDE	GUAYAQUIL			
9) ANEXOS				

Actualizar la imagen FPGA en el Driver ID

- 1. Para actualizar el dispositivo USRP RIO, verificar la compatibilidad con la última versión del software.
- 2. Seleccionar Inicio» Todos los programas» National Instruments» NI-USRP» utilities» USRP-utils para reconocer el Device ID en la computadora.
- 3. Escoger la pestaña "*N2xx/NI-29xx*" Imagen Updater, luego en device ID, sino es reconocido presionar "*Fin Devices*".
- 4. Subir la Imagen FPGA
- 5. Verificar que la versión del archivo de imagen FPGA coincida con la revisión de la placa para el dispositivo que está actualizando y presionar *"Write Images"*.
- 6. Verificar el estado de la imagen.

Figura 20. La imagen FPGA del Drive ID sin cargar.

🛬 NI-USRP Config	uration Utility			:	×
Devices USRP2 S	SD Card Burner N2xx	/NI-29xx Image Updater			
Firmware Image				Browse	
FPGA Image C:	\Program Files (x86)\Na	tional Instruments\NI-USRP\images\usrp_>	:310_fpga_HGS.lvbitx	Browse	
Device ID	Connection	Type/Revision	Image Status		1
RIOU	PCIe	NI USRP-2943R (40 MHz BW)/rev5			
			-		-
	1			WRITE IMAGES	
Find Dev	rices N	lanually Add Device			- III - 2
					- 2

Figura 21. Pasos para cargar la imagen al Drive ID

LABORATORIO	TELECOMUNICACIONES			
CARRERA	INGENIERÍA ELECTRÓNICA			
SEDE	GUAYAQUIL			

Exportar datos de Labview a Excel

- 1. Seleccionar la gráfica de Niveles de potencia.
- 2. Dar click derecho, luego seleccionar Export
- 3. Escoger Export Data To Excel
- 4. Abrir la hoja en Excel con los datos exportados
- 5. Utilizar las herramientas en Excel para calcular la potencia promedia
- 6. Se debe extraer la cantidad de muestras de acuerdo con la siguiente tabla:

Tabla 11 Número de muestras de acuerdo con el formato de audio

Formatos de Audio	Número de Muestras				
WAV	7340				
MP3	5400				
MP4	4120				

Figura 22. Gráfica de los Niveles de Potencia en Rx.

Figura 23. Ventana para exportar los datos de Labview a Excel.

Pe	Calibri		■ ≫-	Ajustar	texto	General		Formato
	• • • • • • • • • • • • • • • • • • •	· □ · <mark>· · ▲</mark> · = =		Combin	ar y centrar 🔹	» + % ™	00 -00	condicional *
Port	apapeles 🕞	Fuente 🕞	Ali	neación	Fa	Númer	D Fa	
C2	2 • E ×	\checkmark f_x						
	А	В	С	D	Е	F	G	н
1	Samples - Resampled	Power (dBm) - Resampled						
2	45088	-29,2179						
3	45087	-29,2179						
4	45086	-29,2193						
5	45085	-29,2204						
6	45084	-29,222						
7	45083	-29,2223						
8	45082	-29,2233						
9	45081	-29,2249						
10	45080	-29,2261						
11	45079	-29,2283						
12	45078	-29,2308						
13	45077	-29,2323						
14	45076	-29,233						
15	45075	-29,2413						
16	45074	-29,2878						
17	45073	-29,348						
18	45072	-29,3785						
19	45071	-29,3831						
20	45070	-29,3833						
21	45069	-29,3836						
22	45068	-29,3843						
23	45067	-29,3845						
- 1	Ivtempo	rary 477276 (+)						
1167								
LIST	0							

Figura 24. Datos en Excel

LABORATORIO	TELECOMUNICACIONES		
CARRERA	INGENIERÍA ELECTRÓNICA		
SEDE	GUAYAQUIL		

x	<u></u> 5• ∂• ∓					lvtemporary_4	477276 - Mic	rosoft Excel
ARC	CHIVO INICIO INSE	RTAR DISEÑO DE PÁGINA	FÓRMULAS	DATOS	REVISAR	VISTA CO	DMPLEMENT	OS
	Calibri	- 11 - A A =	= **	🛱 Ajustar f	texto	General	*	≠
Pe	gar <mark>→ N K S</mark>	• 🗄 • 🔷 • 🔺 = :		E 🔄 Combin	ar y centrar 🔹	\$ - % 00	0 ←0 00 00 →0	Formato condicional •
Port	apapeles 🕞	Fuente 🕞	AI	ineación	5	Númer	то Г <u>я</u>	
D	10 • : ×	√ f _x =PROMEDI	D(B2:B3:B7320))				
	Α	В	С	D	E	F	G	Н
1	Samples - Resampled	Power (dBm) - Resampled						
2	45088	-29,217	9					
3	45087	-29,217	9					
4	45086	-29,2193	3					
5	45085	-29,2204	1					
6	45084	-29,222	2					
7	45083	-29,222	3					
8	45082	-29,223	3					
9	45081	-29,2249	9					
10	45080	-29,226	L	-35,5473281				
11	45079	-29,228	3					
12	45078	-29,2308	3					
13	45077	-29,232	3					
14	45076	-29,233	3					
15	45075	-29,2413	3					
16	45074	-29,2878	3					
17	45073	-29,348	3					
18	45072	-29,3785	5					
19	45071	-29,3833	L					
20	45070	-29,3833	3					
21	45069	-29,3830	5					
22	45068	-29,3843	3					
23	45067	-29,3845	5					
24	45000	20.20						
	Ivtempo	rary_477276 +						
LIST	ю							
					VI			

Figura 25. Cálculo de la potencia promedio en Excel.