UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO

CARRERA: INGENIERÍA CIVIL

Trabajo de titulación previo a la obtención del título de: INGENIERA CIVIL

TEMA:

DISEÑO SISMORESISTENTE DEL EDIFICIO DE VIVIENDAS EN HORMIGÓN ARMADO

AUTORA:

DIANA EMPERATRIZ FREIRE MEDINA

TUTOR:

CARLOS ALBERTO ROMERO ROMERO

Quito, marzo del 2018

CESIÓN DE DERECHOS DE AUTOR

Yo, Diana Emperatriz Freire Medina, con documento de identificación N° 1721044467, manifiesto mi voluntad y cedo a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que soy autora del trabajo de titulación intitulado: Diseño sismoresistente del edificio de viviendas en hormigón armado, mismo que ha sido desarrollado para optar por el título de: Ingeniera Civil, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en mi condición de autora me reservo los derechos morales de la obra antes citada. En concordancia, suscribo este documento en el momento que hago entrega del trabajo final en formato impreso y digital a la Biblioteca de la Universidad Politécnica Salesiana.

Diana Emperatriz Freire Medina 1721044467 Quito, marzo del 2018

DECLARATORIA DE COAUTORÍA DEL DOCENTE TUTOR

Yo, declaro que bajo mi dirección y asesoría fue desarrollado el trabajo de titulación Diseño sismoresistente del edificio de viviendas en hormigón armado realizado por Diana Emperatriz Freire Medina, obteniendo un producto que cumple con todos los requisitos estipulados por la Universidad Politécnica Salesiana para ser considerados como trabajo final de titulación.

Quito, marzo del 2018

Carlos Alberto Romero Romero 175806118-6

DEDICATORIA

El presente trabajo está dedicado para toda mi familia, especialmente para mi madre y padre que supieron apoyarme durante todo el ciclo de estudiante, pues sin ellos no hubiese podido alcanzar esta meta.

Mis hermanos que con sus palabras de aliento me daban ánimo para culminar con este propósito.

AGRADECIMIENTO

Un eterno e infinito agradecimiento a mi familia entera que día a día estuvieron pendiente de todo mi proceso formativo académico.

A mi Tutor, que con su vasta experiencia y conocimiento me supo guiar para alcanzar este logro tan esperado.

A tan prestigiosa Institución, Universidad Politécnica Salesiana, pues en ella adquirí los conocimientos que me han permitido forjar mi camino hacia el éxito, además es el lugar donde encontré buenos maestros, compañeros y en especial el amor de mi vida, Luis Navarrete, que en su momento fue un pilar muy importante durante mi vida estudiantil.

INTR	ODUCCIÓN	1
CAPÍ	ГULО 1	2
GENE	ERALIDADES DEL PROYECTO	2
1.1.	Nombre del proyecto	2
1.2.	Localización y ubicación	2
1.3.	Coordenadas geográficas del terreno	3
1.4.	Plazo de ejecución	4
1.5.	Costo del proyecto	4
CAPÍ	ГULO 2	5
DIAG	NÓSTICO	5
2.1.	Descripción de la situación actual del área de intervención del proyecto	5
2.1.1.	Aspectos geopolíticos y límites	5
2.1.2.	Población	6
2.1.3.	Educación	7
2.1.4.	Salud	8
2.1.5.	Vivienda y servicios básicos	9
2.1.6.	Vialidad y accesos	10
2.1.7.	Aspectos socioeconómicos	10
2.1.8.	Ocupación y uso del suelo	12
2.1.9.	Ambiente	12
CAPÍ	ГULO 3	14
OBJE'	TIVOS DEL PROYECTO TÉCNICO	14
3.1.	Objetivo general y objetivos específicos	14
3.1.1.	Objetivo general	. 14
3.1.2.	Objetivos específicos	14
ANÁI	LISIS DE INFORMACIÓN EXISTENTE	14
3.2.	Estudio topográfico	14
3.3.	Estudio geológico y geotécnico	15
3.3.1.	Estratigrafía	15
3.3.2.	Riesgo sísmico	15
3.4.	Exploración geotécnica	16
3.5.	Estudio arquitectónico	16
3.6.	Normas, códigos y ordenanzas	18

ÍNDICE

20
20
20
21
21
21
22
23
23
26
26
28
29
30
32
33
34
35
35
36
38
42
44
50
56
57
58
62
66
70
70
70
73
76
81
82
84
84
85
85
86
87

4.9. Análisis económico y financiero	
4.9.1. Estimación de volúmenes de obra	
4.9.2. Análisis de precios unitarios. (APU)	
CONCLUSIONES	
RECOMENDACIONES	
Referencias	
ANEXOS	
ANEXO 1. Planos arquitectónicos	
ANEXO 2. Planos estructurales	
ANEXO 3. Cálculo de volúmenes de obra	
ANEXO 4. Análisis de precios unitarios y presupuesto	
ANEXO 5. Estudio de suelos	

ÍNDICE DE TABLAS

Tabla 1. Coordenadas de implantación del proyecto	3
Tabla 2. Población de la Parroquia Quitumbe en el último censo	6
Tabla 3. Población de la Parroquia Quitumbe	6
Tabla 4. Población por géneros	7
Tabla 5. Índices de educación de las parroquias de la Administración Zonal	
Quitumbe	8
Tabla 6. Centros de salud de la Parroquia Quitumbe	8
Tabla 7. Características de vivienda por parroquias	9
Tabla 8. Servicios básicos y cobertura en la parroquia Quitumbe	9
Tabla 9. Población distribuida por sectores económicos	11
Tabla 10. Carga viva. Sobrecargas mínimas	22
Tabla 11. Altura equivalente de losa	24
Tabla 12. Inercia de losa alivianada	25
Tabla 13. Inercia de losa maciza	25
Tabla 14. Resumen pre diseño de columnas	27
Tabla 15. Fa: Coeficiente de amplificación de suelo en la zona de periodo corto	28
Tabla 16. Fd: Desplazamiento para diseño en roca	28
Tabla 17. Fs: Comportamiento no lineal de los suelos	28
Tabla 18. Valores del factor Z en función de la zona sísmica adoptada	29
Tabla 19. Categoría de edificio y coeficiente de importancia I	30
Tabla 20. Cuadro de cargas por nivel	34
Tabla 21. Combinaciones básicas para el diseño	35

ÍNDICE DE FIGURAS

Figura 1. Ubicación de la Parroquia Quitumbe	2
Figura 2. Ubicación del terreno	3
Figura 3. Uso y ocupación de suelo de la Parroquia Quitumbe	.12
Figura 4. Estratigrafía de Parroquia Quitumbe	. 15
Figura 5. Zonificación sísmica y factor de zona Z	. 16
Figura 6. Distribución arquitectónica de la planta baja N+0.00 (local comercial)	. 17
Figura 7. Distribución arquitectónica de las plantas N+3.24, N+6.48, N+9.72,	
N+12.96, N+16.20, N+19.44 (viviendas)	. 18
Figura 8. Vista tridimensional de la estructura	. 20
Figura 9. Esquema de losa alivianada y losa maciza	. 24
Figura 10. Propiedades de la losa	. 25
Figura 11. Altura mínima	. 26
Figura 12. Ejemplos de elementos que causan excentricidades e irregularidades	. 31
Figura 13. Coeficientes de irregularidad en elevación	. 31
Figura 14. Peso reactivo	. 32
Figura 15. Coeficiente sísmico	. 33
Figura 16. Periodo – Aceleración espectral	. 34
Figura 17. Herramientas básicas del ETABS	. 36
Figura 18. Ventana de inicio del programa y unidades	. 37
Figura 19. Inicialización del modelo	. 37
Figura 20. Ventana para definir sistema de grilla	. 39
Figura 21. Vista en planta y vista en 3D	. 39
Figura 22. Modificar grilla	.40
Figura 23. Ventana para modificar la grilla	.41
Figura 24. Ventana para editar la información	. 42
Figura 25. Ventana para editar la información piso a piso	.43
Figura 26. Modificar material	.44
Figura 27. Definición de secciones a utilizar	. 45
Figura 28. Definición sección rectangular	.46
Figura 29. Propiedades de las secciones	.46
Figura 30. Propiedades geométricas.	.47
Figura 31. Inercias agrietadas.	.48
Figura 32. Detalle de refuerzos	.48
Figura 33. Definir sección losa	. 49
Figura 34. Propiedades de losa	. 50
Figura 35. Dibujo de la estructura	. 50
Figura 36. Creación de columnas	. 51
Figura 37. Creación de vigas	. 52
Figura 38. Creación rápida de columnas	. 53
Figura 39. Columnas definidas	. 54
Figura 40. Elevación de columnas y vigas definidas pórtico B	. 55

Figura 41.	Definición de losa maciza	. 55
Figura 42.	Ventana para definir estados de carga	. 57
Figura 43.	Estados de carga por sismo	. 58
Figura 44.	Espectro de repuesta inelástico	. 59
Figura 45.	Espectro con NEC	. 59
Figura 46.	Casos de espectro de respuesta	. 60
Figura 47.	Datos de carga	. 61
Figura 48.	Combinación 1	. 62
Figura 49.	Combinación 2	. 63
Figura 50.	Combinación 3	. 63
Figura 51.	Combinación 4 y 5	. 66
Figura 52.	Asignación de cargas muertas en losa	. 67
Figura 53.	Carga asignada en losa	. 68
Figura 54.	Combinaciones de cargas	. 69
Figura 55.	Cálculo de periodo	. 70
Figura 56.	Periodo	.71
Figura 57.	Participación de masas y torsión.	. 72
Figura 58.	Ventana pa visualizar resultados	.73
Figura 59.	Información en los nudos	. 74
Figura 60.	Derivas máximas	. 74
Figura 61.	Derivas Sx y Sy	.75
Figura 62.	Visualización de la relación viga débil columna fuerte	. 77
Figura 63.	Columna fuerte – Viga débil	. 78
Figura 64.	Nudo fuerte	. 79
Figura 65.	Comprobación nudo fuerte	. 80
Figura 66.	Valor de deflexión.	. 81
Figura 67.	Valor de deflexión máxima.	. 82
Figura 68.	Diseño de muros.	. 83
Figura 69.	Diseño por corte	. 84
Figura 70.	Diseño muro sótano	. 85
Figura 71.	Cálculo de presiones del suelo	. 85
Figura 72.	Fuerzas y momentos puntuales actuantes sobre la losa de cimentación	. 87
Figura 73.	Presión máxima.	. 88
Figura 74.	Distribución de acero de refuerzo	. 89
Figura 75.	Cuadro de incidencia	. 90

ÍNDICE DE ANEXOS

Anexo 1. Planos Arquitectónicos	
Anexo 2. Planos Estructurales	
Anexo 3. Cantidades de Obra	100
Anexo 4. Análisis de Precios Unitarios y Presupuesto	
Anexo 5. Estudio de suelos	

RESUMEN

El presente proyecto técnico tiene como objetivo realizar el diseño sismoresistente del edificio para uso de viviendas en hormigón armado de 6 pisos y dos subsuelos, ubicado en Quitumbe - Distrito Metropolitano de Quito. Como objetivos específicos primeramente se realizó el pre diseño de los componentes estructurales de la edificación (losas, vigas y columnas) por carga de gravedad para determinar el tamaño de las secciones transversales iniciales. Estos resultados fueron ingresados en el programa ETABS para realizar el diseño y cálculo de acuerdo a los criterios establecidos en las Normas NEC-SE-DS-2014 y ACI 318-14. Para esto fue necesario controlar, periodo, torsión, masa participativa, corte basal, derivas inelásticas, chequeo del nudo y control de deflexiones. Los resultados obtenidos muestran que las columnas serán de 50x50cm con cuantía de refuerzo 2.43%, las vigas serán de 35x40 con cuantía de refuerzo menor a la máxima permitida 0.025, la losa será de 25 cm de espesor con refuerzo de Φ 14 tanto en acero positivo como negativo. Los diafragmas serán de 25cm de espesor reforzados con acero Φ 18 y 12 mm. Los muros sótanos serán de 35 cm de espesor reforzados con varillas de Ф20mm y Ф14mm como acero longitudinal y horizontal. Mientras que la infraestructura estará conformada por una losa de cimentación de espesor 1.20 reforzadas con varillas de Φ 25mm a cada 20cm en ambos sentidos. En relación a la lista de materiales se requieren de 1669.88 m3 de concreto y 195784.81 kilogramos de acero para la construcción de la edificación. Por último, el presupuesto estimado de la obra corresponde a 1066.103,45, es decir $403.77/m^2$ de construcción.

ABSTRACT

The objective of this technical project is to carry out the seismo-resistant design of the building for the use of reinforced concrete houses with six floors and two subfloors, located in Quitumbe - Metropolitan District of Quito. As to specific objectives, the pre-design of the structural components of the building (slabs, beams and columns) was carried out by gravity load to determine the size of the initial cross sections. These results were entered into the ETABS program to perform the design and calculation according to the criteria established in the NEC-SE-DS-2014 y ACI 318-14 Standards. For this it was necessary to control the period, torsion, participatory mass, basal cut, inelastic drifts, as well as to check the knot and control of deflections. The results obtained show that the columns will be 50x50cm with a reinforcement amount between 2.43%, the beams will be 35x40cm with a reinforcement amount less than the maximum allowed 0.025, and the slab will be 25cm thick with a reinforcement of Φ 14 in positive steel as negative. The diaphragms will be 25cm thick reinforced with steel Φ 18 and 12 mm. The basement walls will be 35 cm thick reinforced with 20 and 14 rods as longitudinal and horizontal steel. Whereas the infrastructure will be made up of 1.20 thick reinforced slabs with rods of Φ 25mm to each 20cm in both direction. In relation to the list of materials, 1669.878 m3 of concrete and 195784.81 kilograms of steel are required for the construction of the building. Finally, the estimated budget of the work corresponds to \$1'066.103,45 that is, \$403.77/m2 of construction.

INTRODUCCIÓN

El presente proyecto técnico intitulado de titulación está orientado al análisis y diseño sismoresistente de un edificio en hormigón armado.

La edificación estará destinada al uso de viviendas localizada en la parroquia Quitumbe, el terreno sobre el cual se encuentra la misma es arcilla limo – arenosa (CL– ML), con capacidad portante admisible de 29.28 T/m². Sin embargo, el estudio de suelos fue realizado a una profundidad de seis (06) metros y las cimentaciones serán construidas a una profundidad de desplante de 8.08 metros, razón por la cual se utilizará una capacidad portante del suelo del de 17 T/m² para considerar un factor de seguridad.

Posteriormente, se procedió al diseño de todos los elementos estructurales (losas armadas en dos direcciones, vigas, columnas, escaleras, diafragmas, muros y cimentaciones,) según los requisitos establecidos en la Norma Ecuatoriana de Construcción NEC 2014, el código ACI 318 -14

Para el análisis y diseño sísmico de la superestructura se utilizará el software ETABS, para cimentaciones STAAD PRO v8i; para la elaboración de los planos tanto arquitectónicos como estructurales AutoCAD, la verificación manual de los datos obtenidos se lo hará por medio de hojas electrónicas Microsoft Excel, para la elaboración del análisis de precios unitarios y presupuesto Proexcel.

CAPÍTULO 1

GENERALIDADES DEL PROYECTO

1.1. Nombre del proyecto

Diseño sismoresistente del edificio de viviendas en hormigón armado "KATARI KAYPACHA".

1.2. Localización y ubicación

El proyecto se encuentra localizado en la provincia de Pichincha, al sur de la ciudad de Quito, parroquia Quitumbe entre las calles Quitumbe Ñan y calle Oe2B.

1.3. Coordenadas geográficas del terreno

El proyecto se encuentra enmarcado dentro de las siguientes coordenadas:

Coordenadas: UTM WGS-84						
Punto	Norte	Este				
1 9967001		494574				
2	9966985	494630				
3	9966924	494621				
4	9966933	494564				
	Coordenadas: GEOGRÁFICAS					
Punto	Longitud	Latitud				
1	75°2'55.55''O	0°17'54.79" S				
2 75°2'53.73''O		0°17'53.31" S				
3	75°2'54.03''O	0°17'57.30" S				
4	75°2'55.87''O	0°17'57.00" S				

Tabla 1. Coordenadas de implantación del proyecto

Fuente. Diana Freire

1.4. Plazo de ejecución

El tiempo para la ejecución del proyecto será de once (11) meses, tiempo que está referido a la culminación del presente proyecto técnico, más no a la construcción del mismo, en este periodo de tiempo se recopilará toda la información y se realizará el diseño de la estructura.

1.5. Costo del proyecto

El costo total del proyecto en etapa de obra gris es de \$ 1'066.103,45 dólares americanos.

CAPÍTULO 2

DIAGNÓSTICO

En este capítulo se reunirá la información y datos necesarios del punto de estudio correspondientes a los sectores de población, educación, vivienda, empleo, servicios básicos, salud y de esta manera conocer las condiciones de vida de los habitantes de la parroquia Quitumbe y sus alrededores

Historia

Hasta los años 70, Quitumbe era una zona agrícola con grandes haciendas (entre ellas la Hacienda Ibarra). Desde ese momento comienza un proceso de lotización, en el que se parten los terrenos y se produce un crecimiento desordenado. Con el aparecimiento de lotes, se crearon cientos de barrios irregulares, que hasta el momento continúan así, sin servicios básicos. Quitumbe es, para muchos, el nuevo polo de desarrollo, tanto residencial como industrial. Así lo ven las autoridades, los moradores del sector y quienes lo visitan. En los últimos 10 años ha tenido una expansión acelerada. El antes llamado 'granero de Quito', se ha convertido en un territorio amigable para las inversiones (Diario La Hora, 2011).

2.1. Descripción de la situación actual del área de intervención del proyecto2.1.1. Aspectos geopolíticos y límites

Quitumbe se extiende desde la av. Morán Valverde hasta el límite con el cantón Mejía. En total esta administración zonal tiene 8863.10 hectáreas, 320 barrios y 291.439 personas, según la proyección municipal. La parroquia Quitumbe comprende 28 barrios. La zona central, que comprende los alrededores del Terminal Terrestre, el centro comercial Quicentro Sur, la Plaza Quitumbe y la Plataforma Gubernamental, el área de mayor dinamismo. (Benavides, 2013).

Los límites de la parroquia de Quitumbe son: al Norte con las parroquias de Solanda y La Argelia, al Sur Guamaní, Turubamba, al Este La Ecuatoriana, Chillogallo y al Oeste el Valle de los Chillos.

2.1.2. Población

En la siguiente tabla se puede observar la población de la parroquia Quitumbe según el censo del 2010 realizado por el INEC.

Tabla 2. Población de la Parroquia Quitumbe en el último censo

	Población según censo
Quitumbe	2010
	79075

Nota. Población de la parroquia Quitumbe. Fuente: (Secretaría de Territorio, Hábitat y Vivienda, 2010).

Descripción			Total Zona	Parroquia
			Quitumbe	Quitumbe
Superficie	e Total Ha.	8863.1	1380.8	
Superficie	Urbana Ha.		5361	1272.6
Población	2010		319.056	79.075
roblación	2001		190.385	39.262
Viviendas	2010		100.693	25.668
VIVICINAS	2001		54.594	11.789
Hogares	2010		84.24	20.95
nogates	2001		47.229	9.909
Tasa de Crecimiento Dem	ográfico %	2010-2001	5.9	8.1
	ografieo //	2001-1990	10	13.5
Incremento %		2010	67.6	101.4
		2001	184.7	303.8
* Densidad (Hab./Ha.) 2010		Global	36	57.3
		Urbana	59.5	62.1
Distribución Proporcional	al 2010		14.2	3.5
de la población %		2001	10.3	2.1

Tabla 3. Población de la Parroquia Quitumbe

Nota. Población Quitumbe. Fuente: (Secretaría de Territorio, Hábitat y Vivienda, 2010).

Tabla 4. Población por géneros

			Total Hombres	39.158
			Menos de 5 años	4.113
			Niños (5-11)	5.833
		Hombres	Adolescentes (12-18)	5.577
			Jóvenes (19-35)	12.655
			Adultos (36-64)	9.942
\$	Grupos de		Tercera edad (65 y más)	1.038
eros	Edad		Total Mujeres	39.917
gén			Menos de 5 años	3.833
por			Niños (5-11)	5.611
010		Mujeres	Adolescentes (12-18)	5.292
oe 2(Jóvenes (19-35)	13.4
umb			Adultos (36-64)	10.534
a Quit			Tercera edad (65 y más)	1.247
qui			Total	3.998
arrc	Etnia	Indígenas	Hombres	2.084
ón p			Mujeres	1.914
lacio		A free acustoriance	Total	2.48
Pob	Airo ecuatorianos Negros		Hombres	1.256
			Mujeres	1.224
			Total	5.293
	D	iscapacitados	Hombres	2.879
			Mujeres	2.414
			Total General	1.858
	М	adres solteras	Indígenas	47
			Afro ecuatoriana - Negra	64

Nota. Población Quitumbe. Fuente: (Secretaría de Territorio, Hábitat y Vivienda, 2010).

2.1.3. Educación

La oferta educativa es amplia y se destaca la Unidad Educativa Municipal Quitumbe y la Escuela Bucheli en cuanto a educación básica, y en la superior, la Universidad Politécnica Salesiana. Además, cuenta con Unidades Educativas del Milenio y el Colegio Réplica Mejía.

También se puede destacar, Centro Educativo Abdón Calderón, Academia Naval Almirante Howard, Colegio Nacional Mixto Jorge Mantilla Ortega, Escuela - Colegio Juan Pablo II Fe y Alegría, Colegio Dr. Ricardo Cornejo Rosales, Colegio Nueva Primavera, Unidad Educativa González Zumárraga, Unidad Educativa Aristóteles.

Descripción		Parroquias				
		Guamaní	Turubamba	La Ecuatoriana	Quitumbe	Chillogallo
Tasa de	Hombres	5.8	3.5	3.5	5.2	4.3
Analfabetismo (población de 10	Mujeres	10.2	7.4	6.5	7.8	6.8
años y +)	Total	8.1	5.5	5	6.5	5.6
	Ninguna	1,972	1,118	1,335	1,337	1,392
	Primaria	15,211	10,834	13,788	13,874	14,645
Nivel de Instrucción	Secundaria	13,371	10,441	16,181	14,334	16,280
monuceron	Superior	1,787	1,849	2,436	2,988	3,341
	Postgrado	19	18	33	29	20

Tabla 5. Índices de educación de las parroquias de la Administración Zonal Quitumbe

Nota. Niveles de Educación parroquia Quitumbe. Fuente: (Secretaría de Territorio, Hábitat y Vivienda, 2010).

2.1.4. Salud

Un referente importante es el Hospital del Padre Carollo conocido también como "Un Canto a la Vida", el mismo que abrió su atención al público en el año 2008 siendo de carácter privado, además cuenta con el Hospital Gíneco Obstétrico Luz Elena Arismendi-

Tabla 6. Centros de salud de la Parroquia Quitumbe

Centros de Salud y Especialidades			
Centro	Servicios		
SubCentro Asistencia Social	Odontología		
SubCentro El Blanqueado	Medicina no tradicional, Odontología		
Sub Centro Pueblo Unido	Medicina no tradicional, Odontología		
SubCentro San Martín de Porres	Medicina no tradicional. Odontología y Laboratorio		

Nota. Centros de Salud Parroquia Quitumbe. Fuente: (Ministerio de Salud Pública, 2008).

2.1.5. Vivienda y servicios básicos

	Condición de ocupación y ocupantes				
Parroquias	Total	Ocupadas			En
Tarroquias		Total	Con personas presentes		Ell
	VIVICIIdus	Total	Viviendas	Ocupantes	construction
Administración zonal Quitumbe	100.884	87.627	83.65	319.905	4.736
Guamaní	21.564	18.632	17.786	68.583	1.208
Turubamba	17.607	14.653	13.949	53.892	1.016
La Ecuatoriana	18.415	16.381	15.743	60.152	763
Quitumbe	25.681	21.994	20.781	79.015	1.26
Chillogallo	17.617	15.967	15.391	58.263	489

Tabla 7. Características de vivienda por parroquias

Nota. Vivienda de Parroquia de Quitumbe. Fuente: (Secretaría de Territorio, Hábitat y Vivienda, 2010).

Tabla 8. Servicios básicos y cobertura en la parroquia Quitumbe

Descripción		Parroquia	
		Total zona Quitumbe	Quitumbe
	Agua Potable - Red Publica	96.3	99
Agua Potable - ' vivCobertura de ServiciosBásicos(Porcentaje)Combustible p Disponibilidad de 	Agua Potable - Tubería dentro de la vivienda	86.2	90.1
	Alcantarillado - Red Pública	94.2	96.6
	Eliminación Basura - Carro recolector	98	99
	Disponibilidad de Energía Eléctrica	99.1	99.6
	Servicio Higiénico - Uso exclusivo	89.2	92.2
	Servicio Ducha - Uso exclusivo	78.3	85
	Combustible para Cocinar - Gas	98.6	98.9
	Disponibilidad de Servicio Telefónico	50	55.5
	Vía adoquinada. pavimentada o de hormigón rígido	68.8	71.5

Nota. Servicios Básicos. Fuente: (Secretaría de Territorio, Hábitat y Vivienda, 2010).

En cuanto a servicios básicos como agua potable, alcantarillado, recolección de basura y energía eléctrica la parroquia Quitumbe cuenta con altos porcentajes de cobertura como se puede observar en la tabla anterior muy cercanos al 100%, con lo que la población goza de confort y buen vivir.

2.1.6. Vialidad y accesos

La Terminal Terrestre Quitumbe es la principal estación de autobuses de transporte interprovincial en la ciudad de Quito y, conjuntamente con la de Guayaquil, son las de mayor tráfico de pasajeros en el Ecuador, se ubica entre la av. Mariscal Sucre y Cóndor Ñan y la bordean las quebradas Ortega y El Carmen, catalogadas como áreas protegidas. La terminal fue fundada en 2008, ubicada al sur de la ciudad, cercana a centros comerciales, barrios y otros servicios, tiene un patio de comidas y locales comerciales, información turística, y algunas agencias bancarias. Es además una estación multimodal del Sistema Integrado de Transporte Metropolitano de Quito (SITM-Q), con conexiones hacia el Metro (a futuro) y los corredores Trolebús, Sur Oriental y Sur Occidental, mediante los cuales se puede acceder a casi cualquier punto de la ciudad (Wikipedia, 2015).

2.1.7. Aspectos socioeconómicos

El Sur de Quito con el pasar de los años cuenta con más servicios y alternativas que ofrecer a los habitantes propios de la localidad o extraños. El parque Las Cuadras posee con 24 hectáreas. así mismo la Plaza Quitumbe con 4 hectáreas. las mismas que acogen a gran cantidad de personas los fines de semana, por la variedad de espectáculos artísticos, ciclo paseo, espacios para cantantes contratados por el Municipio o independientes así mismo como teatro callejero.

La parroquia cuenta con el centro comercial Quicentro del Sur, Mercado y Parque de las Cuadras, Comerciales del Ahorro Ipiles del Sur, Cuerpo de Bomberos, Hospital Padre Carollo, Universidad Politécnica Salesiana, Boulevard Quitumbe Ñan, Confiteca, Coca Cola, fábrica Edesa, bares y discotecas, supermercado Santa María, servicio de hoteles, administración zonal, entidades bancarias y múltiples servicios.

			Parroquia		
Descripción		Total Zona	Quitumbe		
Población Económicamente		Total	213.08	51.561	
		Hombre	119.558	28.86	
Acuva (1 E	(A)	Mujer	93.522	22.701	
Población en Edad de Trabajar		Total	250.831	62.972	
		Hombre	122.402	30.95	
	(PE1)		128.429	32.022	
	Primario (Agrícola)	Total	2.959	555	
		Hombre	1.798	361	
		Mujer	1.161	194	
	Secundario	Total	36.079	7.602	
		Hombre	27.026	5.575	
Sectores	(Industrial)	Mujer	9.053	2.027	
Económicos * Terciario (Comercio y Servicios) Trabajador Nuevo	Terciario	Total	90.985	23.246	
	(Comercio y	Hombre	48.683	12.67	
	Servicios)	Mujer	42.302	10.576	
	Trabajador	Total	6.394	1.557	
		Hombre	2.872	689	
	Mujer	3.522	868		

Tabla 9. Población distribuida por sectores económicos

El proceso de poblamiento del sector ha sido creciente en las últimas décadas, especialmente en el sector de Quitumbe, donde se han construido urbanizaciones unifamiliares y multifamiliares; lo cual ha dado paso para que los sectores de comercio y servicios también se desarrollen. La PEA de 12 años y más, se refiere a las personas que están en edad de trabajar. Es un indicador de la oferta de mano de obra en una sociedad.

Los sectores más representativos son el industrial, el comercial y de servicios como se puede observar en la tabla anterior. La parroquia Quitumbe alberga muchas industrias como son las constructoras por el crecimiento de planes multifamiliares, la construcción inicial de El Metro, Envasadora de gas (Agip Gas), la fábrica Plywood, la construcción de la plataforma de Desarrollo Social que incluirá a los ministerios de Desarrollo Urbano y Vivienda (Miduvi), Inclusión Económica y Social (MIES) y Coordinador de Desarrollo Social; el Instituto Nacional del Niño y la Familia, Programa de Protección Social y Consejo Nacional de Salud.

Nota. Población Parroquia Quitumbe. Fuente: (Secretaría de Territorio, Hábitat y Vivienda, 2010).

2.1.8. Ocupación y uso del suelo

La superficie total de suelo de la Administración Zonal Quitumbe es de 8863.1 hectáreas, la superficie urbana 5361 hectáreas, correspondiendo a la parroquia Quitumbe 1272.6 hectáreas. Como se observa en la figura el uso principal del suelo es residencial 2 y residencial 3, industrial y protección ecológica (Ortega y El Carmen) en el que se permite comercio y servicio de nivel barrial. En lo que respecta a la parte industrial se tendrá de impacto bajo, mediano y alto.

2.1.9. Ambiente

El clima de la zona del Proyecto, está determinada por la incidencia de factores meteorológicos, la condición climática depende de la ubicación geográfica, la

topografía, el tipo de cobertura (vegetal, acuosa, etc.) y la época del año, teniendo un clima generalmente templado húmedo.

El sur de Quito tiene un clima entre semihúmedo a húmedo. Se caracteriza por tener una temperatura media anual que oscila entre 12 y 13 °C con estaciones secas y lluviosas. La estación lluviosa se distribuye de octubre hasta abril, siendo marzo y abril los meses con la mayor intensidad de lluvias registradas, mientras que la estación seca comienza en julio y termina a mediados de septiembre.

CAPÍTULO 3

OBJETIVOS DEL PROYECTO TÉCNICO

3.1. Objetivo general y objetivos específicos

3.1.1. Objetivo general

Diseñar por sismoresistencia el edificio de viviendas en hormigón armado.

3.1.2. Objetivos específicos

- Calcular el tamaño de la sección transversal de los componentes estructurales de la edificación por carga de gravedad (losas, vigas y columnas).
- Diseñar los componentes estructurales de la edificación de acuerdo a los criterios simoresistentes establecidos en las Normas NEC 2014 y ACI 318 -14.
- Calcular las cantidades de obra para la construcción de la edificación
- Elaborar el análisis de precios unitarios y el presupuesto del proyecto en su obra gris.

ANÁLISIS DE INFORMACIÓN EXISTENTE

3.2. Estudio topográfico.

La Topografía es la ciencia que estudia el conjunto de procedimientos para determinar las posiciones de puntos sobre la superficie de la tierra, por medio de medidas según los tres elementos del espacio. Estos elementos pueden ser: dos distancias y una elevación, o una distancia, una dirección y una elevación.

Para distancias y elevaciones se emplean unidades de longitud (en sistema métrico decimal), y para direcciones se emplean unidades de arco. (grados sexagesimales).

El conjunto de operaciones necesarias para determinar las posiciones de puntos y posteriormente su representación en un plano es lo que se llama comúnmente levantamiento (Avendaño, 2014)

3.3. Estudio geológico y geotécnico

Gracias a los estudios de referencia realizados en campo y laboratorio se puede saber la capacidad admisible, así como el tipo de cimentación recomendada y asentamientos permisibles del proyecto, el cual contará de 2 sub suelos y 6 plantas construidas en hormigón armado.

3.3.1. Estratigrafía

La carta geológica del sector de Quitumbe fue proporcionada por el Instituto Nacional de Investigación Geológico Minero Metalúrgico, se puede observar que el material predominante es Cangagua y presencia de depósitos de cenizas provenientes del Pululahua.

3.3.2. Riesgo sísmico

Según la Norma Ecuatoriana de la Construcción NEC-SE-DS, vigente para el diseño sismo resistente de todo tipo de estructuras que estén sujetas a los efectos de terremotos que podrían presentarse en su vida útil:

El área de estudio en el sector de Quitumbe, al sur de Quito, se encuentra enclavada en una zona de intensidad sísmica de V grado, valor factor Z = 0.40, caracterización de la amenaza sísmica alta, según el mapa de zonificación sísmica para diseño, que fue realizado de manera integral para todo el territorio nacional, de acuerdo con las metodologías actuales usadas a nivel mundial y a la disponibilidad de la información a nivel local.

3.4. Exploración geotécnica

Con la finalidad de obtener datos reales de un estudio de suelos, la Universidad Politécnica Salesiana proporcionó los datos de referencia para el proyecto.

En el anexo 5 se encuentra el informe de estudio de suelos.

3.5. Estudio arquitectónico

El Proyecto consta de 6 niveles, con 2 subsuelos, la planta baja N+0.00, las planta tipo desde el N+3.24 hasta el N+19.44

3.6. Normas, códigos y ordenanzas

Las normas que sirven de guía y base de diseño de todos los elementos estructurales del presente proyecto son:

• ACI 318 -14 (Instituto Americano del Concreto.)

La Norma Ecuatoriana de la Construcción con los respectivos capítulos:

- Capítulo 1. NEC-SE-CG Cargas (No sísmicas).
- Capítulo 2. NEC-SE-DS Peligro Sísmico.
- Capítulo 5. NEC-SE-HM Estructuras de Hormigón Armado.

CAPÍTULO 4

PLANTEAMIENTO Y ANÁLISIS DE ALTERNATIVA

4.1. Generalidades de la estructura

La estructura de la edificación estará construida por marcos (columnas y vigas), diafragmas, muros de contención y losas nervadas armadas en dos sentidos. La infraestructura será considerada como losa de cimentación.

4.1.1. Características del hormigón armado

La resistencia a compresión del hormigón es la medida máxima de la resistencia a carga axial de especímenes de concreto tomados a los 28 días, para el diseño de la superestructura se utilizará f´c= 240 Kg/cm2 y para la infraestructura f´c= 250 Kg/cm2, módulo de Elasticidad, Ec= 15000 $\sqrt{f'c}$ Kg/cm2 equivalente a Ec= 4.7 $\sqrt{f'c}$, en MPA la resistencia del concreto, y en GPA el módulo de elasticidad según NEC. El acero de refuerzo que se utilizará será fy = 4200 Kg/cm2, el módulo de elasticidad Es = 2100000 Kg/cm2.

4.1.2. Cargas

4.1.2.1. Cargas muertas según NEC 2014

Espesor de losa: 0.25 m Tipo de losa: Bidireccional Y hor. armado: 2.40 (T/m3)Y masillado: 2.20 (T/m3)B (bloque): 0.40 mn (nervio): 0.10 mr (recubrimiento): 0.025 mh-r (altura bloque): 0.20 mh (altura losa): 0.25 mpeso del bloque: 0.012T/m2Peso de nervios: 0.1*0.2*3.6*2.4 Ton/m3: 0.1728 Ton/m2Peso de loseta compresión: 0.05*2.4 Ton/m3: 0.12 Ton/m2Peso de bloque: 8 bloques*0.012 Ton/m2: 0.096 Ton/m2Peso Propio de Losa Total: 0.388 Ton/m2

Peso del masillado

Espesor: 0.05 m (2,5 cm de enlucido y 2,5 cm de masillado) Peso de masillado: 0.05*2.2 Ton/m2 Sub total: 0.11 Ton/m2 Peso de recubrimiento piso Peso de recubrimiento: 0.02*2.2 Ton/m2 Sub total: 0.044 Ton/m2 Peso de la mampostería Peso: 0.20 Ton/m2 Sub total: 0.20 Ton/m2

Ι

Carga permanente:

Peso de masillado: 0.11 Ton/m2 Peso de mampostería: 0.20 Ton/m2 Peso de recubrimiento: 0.044 Ton/m2

Total: 0.354 Ton/m2

El valor de la carga muerta de elementos no estructurales que se ingresó en el programa es de 0.36 Ton/m2, ya que software ETABS calcula automáticamente las cargas muertas por el peso propio de la losa y elementos estructurales.

4.1.2.2. Carga viva

			1
Piso	Uso	Nivel	Carga (T/m ²)
7	Terraza	24.14	0.10
6	Residencias	19.44	0.10
5	Residencias	16.20	0.20
4	Residencias	12.96	0.20
3	Residencias	9.72	0.20
2	Residencias	6.48	0.20
1	Residencias	3.24	0.20
PB	Local comercial	0.00	0.48
Subsuelo 2	SB2	-3.44	0.20
Subsuelo 1	SB1	-6.88	0.20

Tabla 10. Carga viva. Sobrecargas mínimas

Fuente: Capítulo 1. Cargas no sísmicas (Norma Ecuatoriana de Construcción, 2014, pág. 27).
4.2. Pre diseño de secciones

4.2.1. Pre dimensionamiento de losa

Es necesario pre dimensionar la losa, de acuerdo a la geometría, tomando la expresión simplificada del ACI, tenemos:

$$hmin = \frac{Ln * (800 + 0.0712 * fy)}{36000}$$

Donde hmin es la altura mínima de losa considerando una luz libre Ln, medida a partir de la cara de las columnas. Considerando la fluencia del acero fy = 4200 kg/cm^2 tenemos el siguiente resultado.

$$hmin = \frac{5.20 * (800 + 0.0712 * 4200)}{36000}$$

hmin: 15.88 cm

Por lo tanto, asumimos para tener una dimensión estándar de losa, una losa de 20 centímetros.

Luego para dimensionar la loseta de compresión tomamos en cuenta la longitud entre nervios, *L*₁, de 50 cm., donde la siguiente ecuación muestra cómo se obtuvo el espesor mínimo de loseta de compresión considerado en el ACI.

$$e = \frac{L1}{12} = \frac{50}{12} = 4.16 \ cm$$

De igual modo se asume un espesor de loseta de 5 cm. De esta manera el espesor de la losa será de 25 cm

Para el modelado de la estructura tanto en el plano como en tres dimensiones, el programa de cálculo estructural, ETABS, no define secciones de acero para losas ya que se modela para que la losa transfiera las cargas a las vigas, por lo tanto, se propone considerar los siguiente:

Determinar una altura de losa equivalente para que la rigidez correspondiente de la losa intervenga en el análisis estructural y no solo en la distribución de cargas. Se muestra a continuación una tabla con las alturas de losa equivalente según el NEC.

Losa Maciza h (cm.)	Losa Alivianada h (cm)
10.88	15
14.50	20
18.06	25
21.54	30
24.96	35

Tabla 11. Altura equivalente de losa

Fuente: Diana Freire Medina

Para una losa alivianada de 25 cm, se tiene una losa maciza de 18.06 cm, este valor se considerará para elementos área tipo membrana del programa ETABS se introducirá este valor para ser considerada su rigidez a flexión.

Cálculo de losa maciza equivalente de losa alivianada

Datos: Tipo: losa nervada ancho nervio: 10 cm h1: 5 cm h2: 20 cm resultado de losa maciza base: 100 cm

hmac: 18.06 cm

Esquema de losas LOSA ALIVIANADA ⊥h1 2 h2 1 .10 .40 .40 .10 LOSA MACIZA hmac $b^3 \cdot h$ $Io = I + A \cdot d^2$ $b \cdot h^3$ 100.0 Iy =Ix =12 12 Figura 9. Esquema de losa alivianada y losa maciza Elaborado por: Diana Freire

Tabla 12	. Inercia	de losa	alivianada
----------	-----------	---------	------------

FIG	b	h	Xmed	Ymed	А	A*Xmed	A*Ymed	Xcentro	Ycentro	Iox	Ix	Iox losa
no	(cm)	(cm)	(cm)	(cm)	(cm2)	(cm3)	(cm3)	(cm)	(cm)	(cm4)	(cm4)	(cm4)
1	10.00	20.00	5.00	10.00	200.00	1000.00	2000.00			6666.67	26666.67	
2	10.00	20.00	55.00	10.00	200.00	11000.00	2000.00	41.11	16.94	6666.67	26666.67	49097.22
3	100.00	5.00	50.00	22.50	500.00	25000.00	11250.00			1041.67	254166.67	
				sumas	900.0	37000.0	15250.0				307500.00	

Fuente: Elaborado por Diana Freire M.

Tabla 13. Inercia de losa maciza

FIG	b	hmac	Xmed	Ymed	А	A*Xmed	A*Ymed	Xcentro	Ycentro	Iox maciza
FIG	(cm)	(cm)	(cm)	(cm)	(cm2)	(cm3)	(cm3)	(cm)	(cm)	(cm4)
Maciza	100.00	18.06	50.00	9.03	1806.12	90305.89	16310.31	50.00	9.03	49097.22

Fuente: Elaborado por Diana Freire M.

Como se indica se usa una losa de espesor equivalente ante la imposibilidad de modelar directamente losas aligeradas o nervadas en el ETABS.

osa			
135	Slab F	Property Data	×
	General Data		
	Property Name	LOSA 25	
	Slab Material	FC240 V	
	Notional Size Data	Modify/Show Notional Size	
	Modeling Type	Membrane 🗸	
	Modifiers (Currently Default)	Modify/Show	
	Display Color	Change	
	Property Notes	Modify/Show	
	Use Special One-Way Load Dist	ribution	
	Property Data		
	Туре	Slab 🗸 🗸	
	Thickness	18.06	cm
	ОК	Cancel	
ra 10. Propiedades de	la losa		
- Tomado dal progr	ama ETARS		
i omado del progr	ania ETADS		

4.2.2. Pre diseño de vigas por carga de gravedad

Para esto se utilizó lo recomendado por el ACI es decir el cálculo de la altura mínima en vigas y losas.

Como criterio de la autora se utilizó para determinar la altura de la viga L/16, que es la condición más desfavorable es decir la longitud de la viga más larga 520/16=32.5cm, mientras que el ancho de la viga será el 60% de su altura es decir 19.4 cm. Sin embargo, se utilizó como pre diseño una sección de viga de 35x40 cm, para disponer de suficiente ancho para la colocación de la distribución del acero de refuerzo.

4.2.3. Pre diseño de columnas

Materiales

f'c: 240 kg/cm2 fy: 4200 kg/cm2 Peso específico hormigón: 2.4 t/m3 φf= 0.9 sin unidades φv= 0.75 sin unidades

Cargas L mayor: 5.2 m L menor: 5 m A colaborante: 26 m2 Longitud de vigas colaborante: 10.2 m b viga: 35 cm
h viga: 40cm
Volumen vigas: 1.428 m3
Peso vigas: 3.43 t
Peso repartido: 0.132 t/m2
W D Losa: 0.36 t/m2
W L: 0.20 t/m2
Wu: 0.91 t/m2

n: 9 número de pisos
Pu: 212.98 t
fac. mayoración sismo: 1.3 sin unidades
Pu diseño: 276.876 t
Ag: 2450.23 cm2
Sección de la col: 49 cm

Tabla 14. Resumen pre diseño de columnas

	b	h	Ag	As (con pmin)	φ var	A var (cm2)	Nun var
columnas centrales	50	50	2500	25	14	1.54	16.00

Elaborado: Diana Freire M.

La cantidad de acero de refuerzo y el tamaño de las vigas de la estructura se encontrará detallada en el Anexo 2 (Planos Estructurales).

Las secciones transversales y armado correspondientes a las columnas y cimentación, se detallan en el Anexo 2 (Planos Estructurales).

Los detalles estructurales de los muros sótanos, diafragmas de corte, se detallan en el Anexo 2 (Planos Estructurales).

4.3. Carga sísmica

En el capítulo de la norma NEC-SE-DS parte 1, se encuentran las tablas para el valor de los coeficientes de amplificación del suelo utilizados para el cálculo del cortante basal. A continuación, se detallan tablas que describen dichos valores:

Tabla 15. Fa: Coeficiente de amplificación de suelo en la zona de periodo corto.

	Zona sísmica y factor Z								
Tipo de perfil del subsuelo	I	Ш	ш	IV	v	VI			
	0.15	0.25	0.30	0.35	0.40	≥0.5			
A	0.9	0.9	0.9	0.9	0.9	0.9			
В	1	1	1	1	1	1			
С	1.4	1.3	1.25	1.23	1.2	1.18			
D	1.6	1.4	1.3	1.25	1.2	1.12			
E	1.8	1.4	1.25	1.1	1.0	0.85			

Fuente: Capítulo 2. Cargas sísmicas sismoresistente. (Norma Ecuatoriana de Construcción, 2014, pág. 31).

Tabla 16. Fd: Desplazamiento para diseño	en	roca
--	----	------

	Zona sísmica y factor Z								
Tipo de perfil del subsuelo	I	Ш	ш	IV	v	VI			
	0.15	0.25	0.30	0.35	0.40	≥0.5			
A	0.9	0.9	0.9	0.9	0.9	0.9			
В	1	1	1	1	1	1			
С	1.36	1.28	1.19	1.15	1.11	1.06			
D	1.62	1.45	1.36	1.28	1.19	1.11			
E	2.1	1.75	1.7	1.65	1.6	1.5			

Fuente: Capítulo 2. Cargas sísmicas sismoresistente. (Norma Ecuatoriana de Construcción, 2014, pág. 31).

	Zona sísmica y factor Z								
Tipo de perfil del subsuelo	I	Ш	ш	IV	v	VI			
	0.15	0.25	0.30	0.35	0.40	≥0.5			
A	0.75	0.75	0.75	0.75	0.75	0.75			
В	0.75	0.75	0.75	0.75	0.75	0.75			
С	0.85	0.94	1.02	1.06	1.11	1.23			
D	1.02	1.06	1.11	1.19	1.28	1.40			
E	1.5	1.6	1.7	1.8	1.9	2			

Fuente: Capítulo 2. Cargas sísmicas sismoresistente. (Norma Ecuatoriana de Construcción, 2014, pág. 31).

4.3.1. Límites de periodo de vibración

Los valores de Fa, Fd, Fs dependen del tipo de suelo que nos da el correspondiente estudio el mismo que es un tipo D para el presente proyecto y del factor Z que depende de la zona sísmica adoptada.

Tabla 18. Valores del factor Z en función de la zona sísmica adoptada

Zona Sísmica	Ι	II	III	IV	V	VI
Valor Factor Z	0.15	0.25	0.3	0.35	0.4	≥50
Peligro Sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy Alta

Fuente: Capítulo 2. Cargas sísmicas diseño sismo resistente. (Norma Ecuatoriana de Construcción, 2014, pág. 28).

Datos:

Fa: 1.20	Fd: 1.19	Fs: 1.28

Fórmulas a utilizar:

$$Tc = 0.55 * Fs * \left(\frac{Fd}{Fa}\right) \rightarrow 0.698 seg$$

 $Tl = 2.4 * Fd \rightarrow 2.856 seg$

 $To = 0.10 * Fs * \left(\frac{Fd}{Fa}\right) \rightarrow 0.127 seg$

Para $0 \le T \le Tc$ se usará la siguiente fórmula: $Sa = \eta * Z * Fa$

Sa: Espectro de respuesta elástico de aceleraciones,

η: 2.48 valor de amplificación espectral para la región Sierra.

Z: Factor de zona sísmica

Fa: Coeficiente de amplificación de suelo en la zona de periodo corto.

Por lo tanto, como: $0 \le 0.599 \le 0.698$

Sa= (2.48) (0.4) (1.20) con valor igual Sa= 1.19 (g)

4.3.2. Cálculo del cortante basal

Categoría	Tipo de uso, destino e importancia	Coeficiente I
Edificaciones Esenciales	Hospitales, clínicas, centros de salud, sanitaria. Instalaciones militares, de policía, bomberos, defensa civil. Garage para vehículos o aviones que atienden emergencias. Estructuras de centros de telecomunicaciones, estructuras que albergan equipos de generación y distribución eléctrica. Tanques utilizadas para depósito de agua u otras sustancias anti-incendio. Estructuras que albergan depósitos tóxicos, explosivos, químicos.	1.5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar continuamente.	1.3
Otras estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores.	1

Tabla 19. Categoría de edificio y coeficiente de importancia I

Fuente: Capítulo 2. Cargas sísmicas diseño sismo resistente. (Norma Ecuatoriana de Construcción, 2014, pág. 41).

En el diseño sísmico se recomienda tomar las debidas precauciones con respecto a las configuraciones de los edificios sean estos en planta o en elevación, excentricidades, discontinuidad de elementos verticales, concentraciones de masa en pisos, etc., Ya que esto puede ocasionar problemas en el comportamiento de la edificación, a continuación, se describen los tipos de irregularidades y coeficientes de configuración estructural:

La simetría es una característica valiosa para la configuración de edificaciones resistentes a sismos.

- La rotación de la planta produce momentos torsionantes en columnas alejadas del centro de rigidez y la falla se produce debido a las fuerzas cortantes por torsión.
- Toda planta irregular implica la presencia de efectos torsionantes que deben ser controlados.

Fuente: (Macías, 2011, pág. 24)

Irregularidades en elevación	
Tipo 1 - Piso flexible $\phi_{k}=0.9$ Rigidez K _c < 0.70 Rigidez K _o $Rigidez < 0.80 \frac{(K_o + K_e + K_e)}{3}$ La estructura se considera irregular cuando la rigidez lateral de un piso es menor que el 70% de la rigidez lateral del piso superior o menor que el 80 % del promedio de la rigidez lateral de los tres pisos superiores.	F I E I D I C I B I A I
Tipo 2 - Distribución de masa $\phi_{b}=0.9$ $m_{0} > 1.50 m_{E}$ ó $m_{D} > 1.50 m_{C}$ La estructura se considera irregular cuando la masa de cualquier piso es mayor que 1,5 veces la masa de uno de los pisos adyacentes, con excepción del piso de cubierta que sea más liviano que el piso inferior.	
Tipo 3 - Irregularidad geométrica $\psi_{B}=0.9$ a > 1.3 b La estructura se considera irregular cuando la dimensión en planta del sistema resistente en cualquier piso es mayor que 1,3 veces la misma dimensión en un piso adyacente, exceptuando el caso de los altillos de un solo piso.	
Nota: La descripción de estas irregularidades no faculta al calculista o dis normales, por lo tanto la presencia de estas irregularidades requiere revisio que garanticen el buen comportamiento local y global de la edificación. Figura 13. Coeficientes de irregularidad en elevación Fuente: Capítulo 2. Cargas sísmicas diseño sismo resistente. (Nor 2014, pág. 54).	eñador a considerarlas como ones estructurales adicionales ma Ecuatoriana de Construcción,

4.3.2.1. Factor de reducción de resistencia sísmica

El factor R a considerarse en el cálculo del cortante basal aplicado a una estructura de edificación, en cualquiera de las direcciones de cálculo adoptadas, se escogerá de la tabla 13 de la NEC 14. Según el tipo de sistema estructural resistente al efecto sísmico.

Con los parámetros obtenidos se procede a obtener el valor del Coeficiente C el cual será ingresado al ETABS, para posterior calcular el valor del cortante basal.

$$V = \frac{I * Sa}{R * \emptyset Pi * \emptyset Ei} * W$$
$$V = C * W$$

Datos:

I= 1	Importancia de la estructura
Sa= 1.19	Espectro elástico de diseño en aceleraciones
ØPi= 0.9	Irregularidad en Planta
$\emptyset Pe=0.9$	Irregularidad en Elevación
R=8 este valo	r se obtiene del NEC SE-DS

W= 1346.2535 Ton es el peso reactivo, se le llama así porque reacciona a las cargas o ante la acción sísmica.

$$V = \frac{1*1.19}{8*0.9*0.9} * W \qquad V = 0.184*1346.2535$$
$$V = 0.184*W \qquad V = 247.71 \text{ Ton}$$

ß	Auto Seismic - Use	er Coefficients	Modal Parti	cipating Mass Ratios							
M	4 1 de 2	🕨 🕨 Reloa	d Apply								
	Load Pattern	Туре	Direction	Eccentricity %	Ecc. Overridden	Top Story	Bottom Story	С	К	Weight Used tonf	Base Shear tonf
•	SX	Seismic	X + Ecc. Y	5		N+24.14	N+0.00	0.184	1	1346.2535	247.7106
	SY	Seismic	Y + Ecc. X	5		N+24.14	N+0.00	0.184	1	1346.2535	247.7106

Seismic Load Pat	tern - User Defined	
Direction and Eccentricity X Dir Y Dir Y Dir + Eccentricity Y Dir + Eccentricity Y Dir - Eccentricity Y Dir - Eccentricity Ecc. Ratio (All Diaph.) Overwrite Eccentricities	Factors Base Shear Coefficient, C Building Height Exp., K Story Range Top Story Bottom Story	0.1 4 1 N+24.14 ~ N+0.00 ~
ок a 15. Coeficiente sísmico	Cancel	

4.3.3. Definición de análisis modal espectral

Para la definición del análisis espectral Sa= f (t), se genera un archivo en el cual este almacenado el espectro de diseño, el archivo que contenga el espectro de diseño puede tener una extensión .txt, el espectro puede ser generado en Excel y posteriormente se puede copiar las columnas con los valores de periodo (T) y aceleración espectral al block de notas, o grabar el archivo desde Excel como "texto con formato (delimitado por espacios)". El espectro de diseño inelástico, asociado al edificio ha sido definido para los siguientes parámetros principales I=1, R= 8, Z= 0,40 y para suelo tipo D.

En la siguiente tabla se muestran los valores de periodo y su correspondiente aceleración espectral.

4.3.4. Resumen de cargas

Tabla 20. Cuadro de cargas por nivel

NIVEL	Carga Viva por uso/ocupac	Carga Muerta (D)	Carga Viva (L)
N+24.14	0.1	0.04	0.1
N +19.44	0.1	0.04	0.1
N +16.2	0.2	0.36	0.2
N +12.96	0.2	0.36	0.2
N +9.72	0.2	0.36	0.2
N +6.48	0.2	0.36	0.2
N +3.24	0.2	0.36	0.2
N +0.00	0.48	0.36	0.48
N -3.44	0.2		0.2
N -6.88	0.2		0.2

Elaborado por: Diana Freire

4.3.5. Combinaciones de carga

Se presenta a continuación las combinaciones de cargas que se utilizan para el diseño, estas combinaciones son tomadas del código ACI 318 2014. Se recuerda al lector la siguiente nomenclatura:

D carga muerta, L carga viva, E carga de sismo, R carga de lluvia, W carga del viento, S carga de granizo

Todos los componentes estructurales presentes en la edificación, serán diseñadas con el fin de que la resistencia de diseño iguale o exceda los efectos de las cargas.

Tabla 21. Combinaciones básicas para el diseño

Combinaciones de Carga
1.4 D
1.2 D + 1.6 L + 0.5 (Lr ó S ó R)
1.2 D + 1.6 (Lr ó S ó R) + (L ó 0.5W)
1.2 D + 1.0 W + L + 0.5 (Lr ó S ó R)
1.2 D + 1.0 E + L + 0.2 S
0.9 D + 1.0 W
$0.9D + 1.0E^2$

Fuente: Capítulo 1. Cargas no sísmicas (Norma Ecuatoriana de Construcción, 2014, pág. 19).

4.4. Introducción al ETABS

El programa computacional será el protagonista del diseño de la estructura, cabe mencionar que se realizaron varios modelos con muros de diafragmas que fueron colocados en diferentes posiciones y con diferentes secciones, esto con la finalidad de controlar los tres primeros modos de vibración, ya que estos hacen referencia a la masa participante, los mismos no deben exceder al 30%, es decir Rz y así mismo los valores de Ux, Uy tienen que ser $\pm 30\%$.

PIR	Vista en planta	EB	Dibujar ventanas		Main (Principal)		Define (Definir)
-	10.1				Nuevo Modelo	ke.	Definir propiedades de material
eļê	Vista en Elevación	ব	Dibujar puertas	*	Abrir modelo existente	°I	Definir secciones frame (vigas, diagonales, columnas)
60	Perspectiva		Display (Visualizar)		Guardar modelo	l@	Definir secciones área
+ +	Desplazar Arriba/Abajo,		Mostrar modelo no deformado	3	Imprimir Gráfico	8	Espectros de respuesta
10000	Izquierda/Derecha			13-	Imprimir tablas de datos	*	Casos de historia en el tiempo
6	Onciones para ver modelo		Mostrar modelo deformado	5	Deshacer	맡	Estados de Carga
	Opciones para ver modero	11	Mostral modelo delormado	2	Rehacer	•?	Definir Masas
	Shell and area assings	F	Mostrar formas modales	8	Refresh (Actualizar)		Draw (Dibujar)
	(Asignación de placas)	1915		6	Bloquear/Desbloquear Modelo	₽ ₽	Seleccionar objeto
25	Asignar muro o losa	₩.	Diagramas de esfuerzos	•	Correr análisis	1	Dibujar líneas
٥	Abertura en losa	4	Diagrama de energia y trabajo	₽	Correr análisis de secuencia constructiva		Crear líneas en una región (opción rápida)
			Virtual	K	Correr análisis No Lineal		Crear columnas en una región
N.	Asignar diafragma rigido		Point and joint assings	ø	Zoom de área seleccionada		Crear vigas secundarias
			(Asignación de nudos)	۶	Zoom completo	ж	Dibujar Diagonales
4	Asignar ejes locales	X	Asignar diafragma rigido	æ	Zoom previo		Dibujar áreas poligonales
NIL	Asignas pares uniforme	-		ø	Acercamiento		Dibujar áreas rectangulares
5	Asignar carga uniforme	(1)	Asignar panel zone	ø	Alejamiento		Dibujar áreas con un clic
00	Asignar etiqueta de Pier	14	Asignar restricciones				(opción rápida)
	Asignar etiqueta de Spandrel	63	Asignar fuerzas o momentos	229	Mover con el Mouse (Pan)		Dibujar muros
	i nightir enqueta de opularen		roighar tacizas o momentos	3-d	Vista 3D	8	Crear muros en una región

4.4.1. Crear archivo y guardar modelo

A continuación, se describe paso a paso el procedimiento para la creación del modelo estructural que se desea realizar:

Iniciamos el programa

Aparece un cuadro con recomendaciones para el uso del programa, se recomienda que el usuario tome en cuenta cada uno de los "tips" que nos proporciona esta ventana, cada vez que iniciemos el programa, se desplegará un tip diferente. Presione OK para desplegar para dejar la pantalla del programa libre y empezar a desarrollar el modelo.

Image: Set in the late inicio del programa y unidades	entana del pro	grama		
Image: Status Image: Status Image: Status	Be Eds Sev Get Image: Several state Image: Several state<	ne Dian Select Asilon Andrias Digar Design (G 이 이 제 / 월 · 유니 / 영 / 영 / 일 철 여 달 양 별 · [] I · [월 ·] 문· 조· []	tors Heb 】 3d 用 电 (J dr) ★ ・. 湯 田 國 ≪ 照.	
<u>Nuevo</u> gura 18. Ventana de inicio del programa y unidades	* * / / / / / / / / / / / / / / / /	Tip of the Day Did you know that Keep an eye on the status bar for useful information and messages Image: Show Tips at Startup	OK Next Tip Previous Tip	N-mm N-m Ton-mm Ton-m KN-cm Kgf-cm N-cm Ton-cm
gura 18. Ventana de inicio del programa y unidades	Nuevo	- uniter special and and		Tonna
	gura 18. Ventana	de inicio del programa y unidade	ès	

Cambie las unidades en la parte inferior derecha de la pantalla, en el presente análisis de trabajará en toneladas, metros.

Presione el icono para crear una nueva estructura, es el primero de la fila de iconos en la parte superior de la pantalla:

Se desplegará entonces una ventana "New Model Initialization", la cual pregunta al usuario si desea inicializar un modelo en base a definiciones y preferencias ya existentes. Seleccionamos: **NO** pues no tenemos aún un modelo de referencia.

Ventana del prog	grama
	New Model Initialization
	Do you want to initialize your new model with definitions and preferences from an existing .edb file? (Press F1 Key for help.) Choose edb Default.edb
Figura 19. Inicializa Nota: Tomado del p	ción del modelo programa ETABS

En la ventana anterior se tienen tres opciones, cada una de las cuales se describe a continuación:

Chooose.edb Cuando seleccionamos esta opción, el programa desplegará una lista de archivos que previamente hayan sido creados, los mismos que deberán tener la extensión .edb y que pueden ser usados como base para la inicialización de nuevos modelos, usando sus definiciones y preferencias.

Default.edb Este método es similar al anterior, excepto que la selección de archivos sucede automáticamente. Etabs primero espera iniciar el nuevo modelo, utilizando las definiciones y preferencias que son especificadas en un archivo con extensión .edb típico de Etabs, que tiene el nombre Default.edb y que es almacenado en el mismo directorio como ETABS.exe, es así que ETABS puede localizar el Default.edb automáticamente.

NO: ETABS despliega el sistema de grilla y de pisos, para que usuario la modifique en función de sus requerimientos.

4.4.2. Definir la grilla

A continuación, se debe definir la grilla para crear el modelo, se debe ingresar datos correspondientes al número de líneas en sentido X, sentido Y, distancia entre ejes, número de pisos etc. Es importante resaltar que número de líneas no implica necesariamente número de ejes de columnas, pues pueden generarse líneas auxiliares adicionales para definir algunas características especiales del modelo, o también pueden ser definidas para el efecto líneas secundarias.

En el presente caso, se tiene 9 ejes de columnas en sentido X, además se definen líneas para poder modelar ciertas irregularidades en planta. Igualmente, en sentido Y, tenemos 11 ejes de columnas. Sin embargo, se definen líneas en dicho sentido para modelar el volado. Por lo tanto, se tiene:

Grilla		
	New Model Quick Templates	
	Grid Dimensions (Plan) Story Dimensions Uniform Grid Spacing Number of Grid Lines in X Direction Author of Grid Lines in X Direction Spacing of Grids in X Direction B m Botom Story Height 3 m	
	Specify Grid Labeling Options Grid Labelina C Custom Grid Specing Specify Data for Grid Lines Edit Grid Data. Add Shruchral Objects	
	Bunk Grid Only Steel Deck Staggered Truss Fat State Primeter Beams	
	OK Canol	
Figura 20. Ventana j Nota: Tomado del p	para definir sistema de grilla rograma ETABS	

En esta ventana el ETABS permite añadir al modelo algunos elementos estructurales como son: Paneles metálicos, losas planas etc. En nuestro caso se selecciona la opción "Grid Only" y presionamos **OK**

Automáticamente se genera la grilla para la construcción del modelo estructural. En la práctica son pocos los casos en los que se cuenta con modelos regulares tanto en planta como en elevación, razón por la cual será necesario modificar la grilla para que se adapte a la geometría en planta y elevación de cada proyecto particular.

Por esta razón debemos editar la grilla y definirla de acuerdo a las características propias del modelo que se quiera construir. Para editar la grilla lo hacemos de la siguiente manera:

Alternativamente se puede hacer doble clic sobre la malla con el botón izquierdo del Mouse. A continuación, se presenta una ventana en la cual podemos modificar la grilla de acuerdo a los requerimientos del modelo que deseamos generar. Se muestra la identificación de las líneas tanto en sentido X e Y:

					Grid Sy	/stem Data				
Grid S	System Name		Story	Story Range Option		Click to Mo	dify/Show:			
A'G1		۲	Default - All Stories			Reference Points			600E	
vster	m Oriain			User Specified Top Story N+24.14			Reference Planes		6	++++
Glo	obal X	0 m				Options			4	
Glo	obal Y	0 m		Bottom Story		Bubble	Size 1.25	m	3	
Ro	otation	0 deg		Base		Grid Cole	or			
lecta () -X(angular Grids - Display Grid Grid Data	Data as Ordinates) Display Grid Data	a as Spacing	Y Grid Data		Quick	Start New Rectangula	r Grids
	Grid ID	X Ordinate (m)	Visible	Bubble Loc	^	Grid ID	Y Ordinate (m)	Visible	Bubble Loc]
	В	4.6	Yes	End	Add	4	15.2	Yes	Start	Add
	С	9.6	Yes	End	Delete	4'	18.9	No	Start	Delete
	C'	10.6	No	End		5	20.4	Yes	Start	
	D	14.6	Yes	End		5'	22.7	No	Start	
iener	ral Grids									
	Grid ID	X1 (m)		Y1 (m)	X2 (m)	Y2 (m)	Visible	Bubble Loc	Add Delete Sort by ID
					ОК	Cancel]			

Una vez modificada la grilla, según la geometría del modelo estructural, presionamos: OK. De manera similar se puede editar la grilla en sentido Z.

En el modelo que estamos desarrollando se tiene una altura de entrepiso igual a 3.24 m y entre subsuelos 3.44 m. Una vez editada la grilla tendremos la siguiente pantalla:

				Story Data	I			
	Story	Height	Elevation	Master Story	Similar To	Splice Story	Splice Height	Story Color
	N+24 14	m 4 7	m 31.02	Yes	None	No	m	
r i	N+19.44	3.24	26.32	No	N+24 14	No	0	
	N+16.20	3.24	23.08	No	N+24.14	No	0	
	N+12.96	3.24	19.84	No	N+24.14	No	0	
	N+9.72	3.24	16.6	No	N+24.14	No	0	
	N+6.48	3.24	13.36	No	N+24.14	No	0	
	N+3.24	3.24	10.12	No	N+24.14	No	0	
	N+0.00	3.44	6.88	No	N+24.14	No	0	
	N-3.44	3.44	3.44	No	N+24.14	No	0	
	Base		0					
Note: Ri	ght Click on Grid for Optio	ns						
			ОК	Refresh View	Cancel			

4.4.3. Definir los materiales

Una vez creada la grilla para modelar la estructura, es necesario definir los materiales constitutivos de los elementos. En nuestro estudio se analiza una estructura de hormigón armado (Concrete). Para definir las propiedades de los materiales seguimos la siguiente secuencia

Para modificar las propiedades del material concreto, se hace clic en Modify/Show Material y se despliega la siguiente pantalla:

18	Mater	ial Property Data	
	General Data		
	Material Name	FC240	
	Material Type	Concrete	~
	Directional Symmetry Type	Isotropic	~
	Material Display Color	Change	
	Material Notes	Modify/Show Notes	
	Material Weight and Mass		
	Specify Weight Density	 Specify Mass Density 	(
	Weight per Unit Volume	0.0024	kgf/cm ³
	Mass per Unit Volume	0.000002	kgf-s²/cm
	Mechanical Property Data		
	Modulus of Elasticity, E	209141.1	kgf/cm ²
	Poisson's Ratio, U	0.2	
	Coefficient of Thermal Expansion, A	0.0000099	1/C
	Shear Modulus, G	87142.13	kgf/cm ²
	Design Property Data		
	Modify/Show M	laterial Property Design Data	
	Advanced Material Property Data		
	Nonlinear Material Data	Material Dampin	g Properties
	ОК	Cancel	
	ОК	Cancel	
	OK Material P	cancel	
	OK Material P Material Name and Type	cancel	_
	OK Material P Material Name and Type Material Name	cancel	
	OK Material P Material Name Material Name Material Type	Cancel Cancel FC240 Concrete Lettronic	
	OK Material P Material Name Material Type	cancel Cancel FC240 Concrete, Isotropic	
	OK Material P Material Name and Type Material Name Material Type Design Properties for Concrete Materials	Cancel Cancel FC240 Concrete, Isotropic	
	OK Material P Material Name and Type Material Name Material Type Design Properties for Concrete Materials Specified Concrete Compressive Stre	roperty Design Data FC240 Concrete, Isotropic ngth, fc 240	kgf/cm ²
	OK Material P Material Name and Type Material Name Material Type Design Properties for Concrete Materials Specified Concrete Compressive Stre Ughtweight Concrete	cancel Cancel FC240 Concrete, Isotropic ngth, fc 240	kgf/cm²
	OK Material P Material Name and Type Material Name Material Type Design Properties for Concrete Materials Specified Concrete Compressive Stree Specified Concrete Shear Strength Reduction Facto	r cancel Cancel FC240 Concrete, Isotropic Ingth, fc 240 r	kgf/cm ²
B	OK Material P Material Name and Type Material Name Material Type Design Properties for Concrete Materials Specified Concrete Compressive Stre Design Properties for Concrete Shear Strength Reduction Facto	roperty Design Data FC240 Concrete, Isotropic Ingth, fo 240 r	kgf/cm ²
	OK Material P Material Name and Type Material Name Material Type Design Properties for Concrete Materials Specified Concrete Compressive Stre Design Properties for Concrete Shear Strength Reduction Facto	roperty Design Data FC240 Concrete, Isotropic Ingth, fc 240 r	kgf/cm ²
	OK Material P Material Name and Type Material Name Material Type Design Properties for Concrete Materials Specified Concrete Concrete Materials Specified Concrete Concrete Stree in Lightweight Concrete Shear Strength Reduction Facto	roperty Design Data	kgf/cm²
	OK Material Name and Type Material Name Material Name Material Type Design Properties for Concrete Materials Specified Concrete Compressive Stre Specified Concrete Shear Strength Reduction Facto	roperty Design Data	kgf/cm ²
	OK Material Name and Type Material Name Material Name Material Type Design Properties for Concrete Materials Specified Concrete Compressive Stre Uptweight Concrete Shear Strength Reduction Facto	roperty Design Data FC240 Concrete, Isotropic ngth, fc 240 r	kgf/cm ²
<u>ц</u>	OK Material Name and Type Material Name Material Type Design Properties for Concrete Materials Specified Concrete Compressive Stre Ughtweight Concrete Shear Strength Reduction Facto OK	ependent Properties Cancel roperty Design Data FC240 Concrete, Isotropic ngth, fc 240 r Cancel Cancel	kgf/cm ²

4.4.4. Definir las secciones

Mediante el menú "Define", podemos definir las secciones que asignaremos a los distintos elementos estructurales. En las figuras que se muestran a continuación se describe el ingreso de un tipo de columna y un tipo de viga.

Aparece un cuadro "Frame Sections", existen secciones previamente definidas, las cuales podríamos borrar si no son de nuestra utilidad. Aplastamos en **Add New Property** donde las secciones de vigas y columnas que definiremos son rectangulares, por lo tanto, seleccionamos **Concrete rectangular** en la pestaña inferior.

	Frame Properties	× a	Frame Pro	operty Shape Type
Rter Popeties Lat Type Al Rter Propeties Profile	Clek to: Import New Pin Clear	peter pedy ropety ropety ropeters Sector lector	Sector Shape or Types The Types The Types The Types The Types The Types The Types The Types The Types	Course Retangler
	OK	Cancel	OK	Carcel
		_		

Inmediatamente procedemos a crear la sección para una columna de 50x50 cm, a la cual nombraremos C50X50. Se deberá tener en cuenta las unidades en las cuales se está trabajando, y por supuesto asignar el material adecuado a la sección que se está creando.

Se muestra a continuación las funciones que están disponibles en la ventana mostrada anteriormente. La función Show **Section Properties** permite desplegar una ventana

en la cual se muestran las propiedades geométricas de la sección, tales como: área, momentos de inercia, secciones de corte, módulos de sección elásticos y plásticos, radios de giro etc.

Propiedades			
635	Frame Section P	roperties ×	
Pro	perty Name Section Name COL50X50 Base Material FC240		
Pro	perties		
	Item Area, cm2	Value 2500	
	AS3, cm2	2083.3	
	133, cm4 122, cm4	520833.3 520833.3	
	S33Pos, cm3 S33Neg, cm3	20833.3 20833.3	
	S22Pos, cm3	20833.3	
	S22Neg, cm3	20833.3	
	R33, cm	14.434	
	R22, cm	14.434	
	Z33, cm3	31250	
	Z22, cm3	31250	
	J, cm4	880208.3	
	CG Offset 3 Dir, cm	0	
	CG Offset 2 Dir, cm	0	
	PNA Offset 3 Dir, cm	0	
	OK	Cancel	
igura 30. Propiedades geométric lota: Tomado del programa ETA	cas. ABS		

La función **Modify Show Modifiers**, permite ingresar factores para modificar las propiedades de la sección Por ejemplo, aquí es donde se reducen las inercias para adaptarse a las exigencias del NEC 14.

Inercias agrietadas	
	Property/Stiffness Modification Factors
	Property/Stiffness Modifiers for Analysis Cross-section (axial) Area 1 Shear Area in 2 direction 1 Shear Area in 3 direction 1 Torsional Constant 1 Moment of Inetia about 2 axis 0.8 Mass 1 Weight 1
	OK Cancel
Figura 31. Inercias agrietadas.	
Nota: Tomado del programa E	TABS

La función **Modify Show Rebar** permite especificar ciertos parámetros necesarios para el análisis, por ejemplo: Se especifica si se trata de columna "Column" o viga "Beam", igualmente la configuración del refuerzo, el tipo de refuerzo transversal etc.

Sección y refuerzos				
	rame	Section Property Reinford	cement Data	×
	Design Type P.4424/3 Design (Column) M3 Design Only (Beam) Peirforcement Configuration © Rectangular	Rebar Material Longitudnal Bars Confinement Bars (Ties) Confinement Bars Ties	A515Gr60 v A515Gr60 v Check/Design @ Renforcement to be Checked	
	Longtudinal Bars Clear Cover for Confinement Bars Number of Longtudinal Bars Along 3- Number of Longtudinal Bars Along 2- Longtudinal Bar Size and Area Comer Bar Size and Area	dr Face 16 16	4 cm 5 c v m 201 cm ² v m 201 cm ²	
	Confinement Bans Confinement Bans Size and Areas Longitudinal Spacing of Confinement Number of Confinement Bans in 3 dir Number of Confinement Bans in 2 dir	10 Bars (Along 1-Axis)	v 0.79 om² 10 om 3 3	
		OK Cance	a	
Figura 32. Detalle de refue	rzos			
Nota: Tomado del progran	na ETABS			

De manera similar se puede crear las secciones para las vigas de los primeros niveles. Sin embargo, al llenar el cuadro que resulta de presionar el botón **Modify Show Modifiers** debe colocar los factores para considerar la inercia agrietada de las vigas con el valor de 0.5 y 0.8 para las columnas a efecto de calcular las derivas inelásticas.

Para modelar la losa debemos recordar que se trabajará con una losa maciza de 18.06 cm de espesor equivalente a una losa nervada de 25 cm de espesor. Dado que en el ETABS no se puede incluir una losa aligerada. Para ello definimos una sección losa de la siguiente manera:

rija		
File Edit View	Define Draw Select Assign Analyze	Display Design Detailing Options Toc
	Material Properties	3-d PIR PI 3 60 🕋 🗣 🏠 🗹 🗹
Plan View	Section Properties	Frame Sections
	Spring Properties	Tendon Sections
\mathbf{i}	Diaphragms	Contraction Slab Sections
\mathbb{N}	Pier Labels	Deck Sections
	Spandrel Labels	Wall Sections
	Group Definitions	Reinforcing Bar Sizes
\times	Section Cuts	k Link/Support Properties
	*f _x Functions	The Frame/Wall Nonlinear Hinges
	Generalized Displacements	Panel Zone
	•? Mass Source	_
	Pδ P-Delta Options	
	M Modal Cases	_
	✓ E Load Patterns	
24	Shell Uniform Load Sets	
H	1.0 D 1.5 E Load Cases	
A	D+L +E Load Combinations	
~	Auto Construction Sequence Case	
	Walking Vibrations	
	₽ [₽] Performance Checks	

ih	Slab I	Property Data	×
	General Data Property Name Sab Material Notorial Sze Data Modeling Type Modifiers (Currenty Default) Displey Color Property Nata — Use Special One-Wey Load Dist Property Data Type Trackmess	LOSA 25 FC240 V m Medbrand Sze Medbrane V Medbrane Moddy/Show Moddy/Show Hoddy/Show Hoddy/Show Hoddy/Show thousail and the state of t	
	ОК	Cancel	
Figura 34. Propiedades de la	osa		
-			

En nuestro caso, las losas no serán diseñadas por el programa, pero es importante modelarlas para distribuir las cargas, considerar su peso y analizar el comportamiento de la estructura en conjunto. Es importante que la losa se defina como membrana, caso contrario las cargas que pasen hacia las vigas serán incorrectas.

4.4.5. Dibujo de la estructura

Como se mostró en la descripción de las herramientas del programa, existen varios procedimientos para dibujar la estructura y asignar las secciones definidas a los elementos que se dibujan. Se presentan dos procedimientos:

Se dibuja los elementos columna en cada piso, uno a uno, desde el nudo inicial hasta el nudo final, posteriormente se mostrará el procedimiento mediante el cual se puede agilizar el proceso de dibujo.

Una vez dibujados todos los elementos columna, desde el primero hasta el último nivel, hacemos clic derecho y el puntero quedará liberado para poder dibujar los elementos del siguiente eje, o podemos presionar también la tecla escape "Esc".

El procedimiento antes descrito se repetirá hasta generar todos los elementos columnas en todos los pórticos y en todos los niveles. Similar procedimiento se realizará para dibujar las vigas, igualmente elemento por elemento.

Es claro que este procedimiento no es ágil, de hecho, es bastante tedioso y demoroso, por esta razón se muestra a continuación un procedimiento que permite generar los elementos de una manera más rápida. Se deja constancia que igualmente el usuario puede emplear otras alternativas para una generación más efectiva de los elementos de la estructura. Sin embargo, la alternativa que se muestra a continuación es usada con fines didácticos.

Se procede a la generación de todas las columnas nivel por nivel, es así que a continuación se describe el procedimiento para generar las columnas del primer nivel. Primeramente debe asegurarse de que en la ventana ubicada en la parte inferior derecha esté seleccionado **"One Story":** para que los elementos se generen solamente en un piso. Si todas las columnas de la estructura son iguales, entonces convendría que en la ventana se elija **All Stories**, para que las columnas se generen en todos los pisos.

Posteriormente siga la secuencia:

Para marcar el área debe hacer clic en la parte superior izquierda y desplazarse hasta la parte inferior derecha sin dejar de presionar el botón izquierdo del mouse. Una vez que esté marcada el área en la cual se desea generar las columnas suelte el botón izquierdo del mouse. Presionando la tecla "Escape", el puntero vuelve a su condición inicial.

De esta manera quedan creadas las columnas del primer nivel. El mismo procedimiento se realiza para crear las columnas en el resto de pisos.

En la figura 40 se presenta la elevación correspondiente al pórtico B, se muestra además las secciones asignadas a los elementos en cada piso. Las vigas pueden ser creadas con un procedimiento similar.

В	S E		S B	3 8	B B)
_			VIGA 35X40			N+24.14
	VIGA 35X40	05X05 70 00 VIGA 35X40	05X05 00 00 VIGA 35X40	VIGA 35X40	VIGA 35X40	N+19.44
COL50X50	05X05 VIGA 35X40 0	05X0510 VIGA 35X40 00	05X 05 VIGA 35X40 00	05X05 VIGA 35X40 O	VIGA 35X40	N+16 20
COL50X50	05 X 05 TO 2 VIGA 35X40 2	05X05 VIGA 35X40 0	09 8 8 9 9 0 9 0 9 0 9 0 9 9 9 9 9 9 9 9	VIGA 35X40 0	VIGA 35X40	N+12.96
COL50X50	05X0510 VIGA 35X40 0	95X0510 VIGA 35X40 0	95X0510 VIGA 35X40 0	95X0510 VIGA 35X40 0	VIGA 35X40	N+9.72
COL50X50	05X0510 VIGA 35X40 0	05X05100 VIGA 35X40	05X05100 VIGA 35X40 0	05X0510 VIGA 35X40 0	VIGA 35X40	N+6.48
COL50X50	05X0510 VIGA 35X40 0	05X05100 VIGA 35X40 00	05X0510 VIGA 35X40 0	05X0510 VIGA 35X40 0	VIGA 35X40	N+3.24
COL50X50	05X05 05 VIGA 35X40 0	05X05100 VIGA 35X40 0	05X0510 VIGA 35X40 0	05X0510 VIGA 35X40 0	VIGA 35X40	N+0.00
COL50X50	05X05T0 VIGA 35X40	09 09 09 09 09 09 09 09 09 09 09 09 09 0	95 85 95 95 95 95 95 95 95 95 95 95 95 95 95	05X0510 VIGA 35X40	05 X 05 Y 05 Y 10 Y 10 A 35X40	N-3.44
COL50X50	COL50X50	COL50X50	COL50X50	COL50X50	COL50X50	Base

Finalmente se modela una losa maciza equivalente de 18.06 cm, el procedimiento se describe a continuación.

Seleccionamos cualquiera de los 3 iconos donde se desplegará la ventana con información de la sección que se va a usar.

Para marcar el área será necesario señalar dos de los nudos que forman una diagonal. El procedimiento presentado no es el único, existen varias opciones para dibujar los elementos de losa, en tal virtud el usuario deberá familiarizarse con estos procedimientos.

4.4.6. Definición de los estados de carga

A continuación se presentará el procedimiento para la definición de los estados de carga que se consideraron en el análisis.

Los estados de carga son los siguientes:

- **Peso propio** (**PP**): En este estado de carga, automáticamente el programa calculará el peso propio de los elementos.
- **Permanente** (**Perman**): Estado de carga, correspondiente a carga muerta, que incluye los siguientes componentes:
- Peso de mamposterías.
- Peso de enlucidos masillados y recubrimientos (Acabado de piso).

Carga viva: Para la carga viva se definen tres estados de carga, Viva1, Viva2 y Viva3, según la distribución presentada anteriormente, aplicando el criterio de tablero de ajedrez.

- SX1: Fuerzas laterales estáticas equivalentes en sentido "X", considerando excentricidad positiva.
- SX2: Fuerzas laterales estáticas equivalentes en sentido "X", considerando excentricidad negativa.
- SY1: Fuerzas laterales estáticas equivalentes en sentido "Y", considerando excentricidad positiva.
- SY2: Fuerzas laterales estáticas equivalentes en sentido "Y", considerando excentricidad negativa.

La figura 42 muestra la secuencia para definir los estados de carga. El usuario deberá notar que solo se ha colocado el valor de 1, para el factor multiplicador de peso propio en el estado PP, correspondiente al Peso Propio, colocar el valor de 1 en otro estado de carga, representará una duplicación de las cargas provenientes del peso propio de los elementos. Es importante que el usuario defina correctamente el tipo de carga.

Define y load cases

File Edit View	Define Draw Select Assign Analyze	
🗋 💊 💾 🔗	Material Properties]
Plan View	Section Properties	-
	Spring Properties	-
<u>~</u>	Diaphragms	-
Ň	Pier Labels	-
[1]	Spandrel Labels	
	Group Definitions	-
X	Section Cuts	
D	*∫ _x Functions ►	-
	Generalized Displacements	
	•? Mass Source	-
G	Põ P-Delta Options	Define Load Patterns
E	M Modal Cases	Loads Click To:
	✓ ^B Load Patterns	Self Weight Auto Load Type Multiplier Lateral Load Add New Load
×	Shell Uniform Load Sets	Dead Dead V 1 Vodfy Load
Ħ	10 D 15 E Load Cases	Live D Modify Lateral Load PP Dead 0
 	P+L +E Load Combinations	SX Seismic U User Coefficient Delete Load Delete Load
~	Auto Construction Sequence Case	
	Valking Vibrations	OK Cancel
	P Performance Checks	

4.4.7. Definición de estados de carga para fuerzas sísmicas

El usuario podrá constatar que para definición de los estados de carga para las fuerzas laterales estáticas equivalentes, el proceso es muy sencillo. La autora ha considerado pertinente resaltar este procedimiento por la importancia que estos estados de carga representan en el análisis y diseño.

En la figura 43, los estados de carga correspondientes a las fuerzas laterales han sido modificados para utilizar coeficientes definidos por el usuario. Seleccionamos el estado de carga SX1 y lo modificamos como se muestra a continuación:

f	Direction and Eccentricity		Factors	
	🗌 X Dir	Y Dir	Base Shear Coefficient, C	0.184
	X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1
X Dir - Eccentricity	Y Dir - Eccentricity	Story Range		
	Ecc. Ratio (All Diaph.)	0.05	Top Story	N+24.14 ¥
	Overwrite Eccentricities	Overwrite	Bottom Story	N+0.00 🗸
		ОК	Cancel	

En esta ventana se tiene la opción para definir la dirección en la cual se desea considerar la excentricidad accidental y el valor que esta tomará; en este caso se toma un 5%. Igualmente se define el coeficiente para el cálculo del cortante basal y el rango de pisos que se desea considerar para el cálculo, se considerara desde el primero hasta el último piso.

El mismo procedimiento se repetirá para los estados de carga SX2, SY1 y SY2, tomando en cuenta la dirección de la acción sísmica y el sentido de la excentricidad accidental.

4.4.8. Definición de análisis modal espectral

Para la definición del análisis modal espectral e=J(t), el usuario deberá generar un archivo en el cual esté almacenado el espectro de respuesta, el archivo que contenga el espectro de respuesta puede tener una extensión de archivo de texto (.txt), el espectro puede ser generado en excel y posteriormente se pueden copiar las columnas con los valores de periodo y aceleración al bloc de notas. Con fines didácticos se presenta el siguiente espectro de respuesta inelástico:

Con la siguiente secuencia: seleccionamos **Define** y luego a **Functions** y **Response Spectrum** para definir un espectro de respuesta desde cero. Seguido se escogerá la opción de Ecuador NEC e ingresamos los valores de Z, R, I, Fa, Fs, Fd, n y tipo de suelo.

Una vez que ha sido definada la función, presionamos OK. Ahora es necesario definir los estados de espectro de respuesta que utilizarán la función que acabamos de crear, para lo cual seguimos el siguiente procedimiento:

Define luego Load Cases y DINAMICO X, Modify Show Case

		Load Case Data						
General								
Load Case Name		DINAMICO X	Design					
Load Case Type		Response Spectrum	Response Spectrum V					
Exclude Objects in this	Group	Not Applicable						
Mass Source		Previous (MsSrc1)						
oads Applied				_				
Load Type	Load Name	Function	Scale Factor	0				
Acceleration	U1	ESPECTRO	9.8067	Add				
Modal Combination Me	thod	CQC Binid Frequency f1	¥					
Modal Combination Me	thod	000						
Include Rigid	d Response	Rigid Frequency, f1						
		Rigid Frequency, f2						
		Periodic + Rigid Type						
Earthquake Dur	ation, td							
Directional Combination	n Type	SRSS	~					
Absolute Direction	onal Combination Sc	ale Factor						
Modal Damping	Constant at 0.0	5	Modify/Show					
Diaphragm Eccentricity	0 for All Diaphra	agms	Modify/Show					
		OK Cance	el					

A continuación, se desplegará una ventana en la cual se debe definir el nombre del caso del espectro de respuesta. Es recomendable generar un estado de carga de espectro de respuesta para sentido "X" y para sentido "Y".

Conviene en este punto hacer algunas precisiones: Se toma un factor de amortiguamiento igual a 0.05 del amortiguamiento crítico, que se usa para edificios de hormigón armado.

En lo referente a la combinación Modal (Modal Combination) se usa CQC (Complete Quadratic Combination), método que toma en cuenta el acoplamiento estadístico entre modos cercanos causados por el amortiguamiento, con este método se evita que dichos modos de vibración se superpongan.

En lo que tiene que ver con la Combinación Direccional (Directional Combination), se toma SRSS, que combina los resultados direccionales tomando la raíz cuadrada de la suma de sus cuadrados, con lo cual se consideran todas las direcciones.

4.4.9. Combinaciones de cargas

Para las combinaciones de carga se toman aquellas que actuando sobre la estructura generan los esfuerzos más críticos sobre la misma.

Para el análisis sísmico se considera el recomendado por el NEC-2014, para un tipo de suelo dado; además de acuerdo a la misma norma, la estructura es implantada en zona sísmica V.

El diseño en hormigón armado ha sido realizado siguiendo la teoría última resistencia.

Las combinaciones de carga establecidas por el ACI 318-2014, recomienda las siguientes combinaciones:

Combinación 1:

Combinación 2:

Carga muerta=1.2, Carga	viva =1.6		
10	Load Combination Data		
	General Data		
	Load Combination Name	Comb2	
	Combination Type	Linear Add 🔹	
	Notes	Modify/Show Notes	
	Auto Combination	No	
	Define Combination of Load Case/	Combo Results	
	Load Name	Scale Factor	
	Dead	1.2 Add	
	Live	1.6	
	OP	Cancel	
Figura 49. Combinación 2			
Nota: Tomado del programa E	ETABS		

Combinación 3:

Carga muerta =1.2, Carga viva =1.0	0
📊 Load Combination Data	· · · · · · · · · · · · · · · · · · ·
General Data	
Combination Type	Linear Add
Notes	Modify/Show Notes
Auto Combination	No
Define Combination of Lo	oad Case/Combo Results
Load Nan	ame Scale Factor
Dead PP	1.2 Add
Live	1
	OK Cancel
Figura 50. Combinación 3 Nota: Tomado del programa ETABS	

Combinación 4 y 5:

Carga muerta = 1.2, Carga viva = 1.0, Sismo en dirección X = +/-1.4

Carga muerta = 0.9, Sismo en dirección X = +/-1.4

Carga muerta = 1.2, Carga viva = 1.0, Sismo en dirección Y = +/-1.4

Carga muerta = 0.9, Sismo en dirección Y = +/-1.4

General Data			General Data		
Load Combination Name	Comb4		Load Combination Name	Comb4-1	
Combination Type	Linear Add	-	Combination Type	Linear Add	•
Notes	Modify/Show Note		Notes	Modify/Show No	es
Auto Combination	No		Auto Combination	No	
Define Combination of Load Cas	e/Combo Results		Define Combination of Load Case	e/Combo Results	
Load Name	Scale Factor		Load Name	Scale Factor	
Dead	1.2	Add	Dead	1.2	Add
PP	1.2	Delete	PP	1.2	Delete
Live	1		Live	1	
			- SKI		
	OK Cancel			JK Cancel	
d Combination Data	OK Cancel		Load Combination Data	DK Cancel	
d Combination Data	OK Cancel		Load Combination Data	DK Cancel	1
d Combination Data eneral Data Load Combination Name	OK Cancel		Load Combination Data General Data Load Combination Name	Comb4-3	
d Combination Data eneral Data Load Combination Name Combination Type	OK Cancel		Load Combination Data General Data Load Combination Name Combination Type	Comb4-3 Linear Add	1
d Combination Data eneral Data Load Combination Name Combination Type Notes	OK Cancel Comb4-2 Linear Add Modfy/Show Note	×	General Data General Data Load Combination Name Combination Type Notes	Comb4-3 Linear Add Modify/Show No	tes
d Combination Data eneral Data Load Combination Name Combination Type Notes Auto Combination	OK Cancel Comb4-2 Linear Add No	25	Load Combination Data General Data Load Combination Name Combination Type Notes Auto Combination	Comb4-3 Linear Add No	
d Combination Data eneral Data Load Combination Name Combination Type Notes Auto Combination efine Combination of Load Case	Comb4-2 Linear Add Modfy/Show Note No a/Combo Results	×	General Data General Data Load Combination Name Combination Type Notes Auto Combination Define Combination of Load Case	Comb4-3	
d Combination Data eneral Data Load Combination Name Combination Type Notes Auto Combination efine Combination of Load Case Load Name	OK Cancel Comb4-2 Linear Add Modfy/Show Note No s/Combo Results Scale Factor 12	×	Combination Data General Data Load Combination Name Combination Name Combination Type Notes Auto Combination Define Combination Define Combination of Load Case Load Name Deval	Comb4-3 Linear Add Modfy/Show No No VCombo Results Scale Factor 1.2	tes
d Combination Data eneral Data Load Combination Name Combination Type Notes Auto Combination efine Combination of Load Case Load Name Dead PP	OK Cancel Comb4-2 Linear Add Modfy/Show Note No s/Combo Results Scale Factor 1,2 1,2 1,2	P5	Load Combination Data General Data Load Combination Name Combination Type Notes Auto Combination Define Combination Define Combination of Load Case Load Name Dead Pp	Comb4-3 Linear Add Modfy/Show No No Scale Factor 1.2 12	tes
d Combination Data eneral Data Load Combination Name Combination Type Notes Auto Combination efine Combination Load Name Dead PP Live	OK Cancel Comb4-2 Linear Add Modfy/Show Note No Combo Results Scale Factor 1.2 1.2 1.2 1 1	25	Load Combination Data General Data Load Combination Name Combination Type Notes Auto Combination Define Combination Define Combination of Load Case Load Name Dead PP live	Comb4-3 Linear Add Modfy/Show No No Combo Results Scale Factor 1.2 1.2 1.2 1.2 1.2	tes Add Delete
d Combination Data eneral Data Load Combination Name Combination Type Notes Auto Combination efine Combination efine Combination of Load Case Load Name Dead PP Live SY1	OK Cancel Comb4-2 Linear Add No Scale Factor 1 1 1 1 1	28 Add Delete	Load Combination Data General Data Load Combination Name Combination Name Combination Type Notes Auto Combination Define Combination Define Combination Define Combination Define Combination PP Live SY1	Comb4-3 Linear Add Modify/Show No No Combo Results Scale Factor 1.2 1.2 1.2 1.2 1.2 1.2 1.2	tes Add Delete
d Combination Data eneral Data Load Combination Name Combination Type Notes Auto Combination efine Combination of Load Case Load Name Dead PP Live SY1	OK Cancel Comb4-2 Linear Add Modfy/Show Note No e/Combo Results Scale Factor 1.2 1.2 1.1 1 1 X Cancel	es	Combination Data General Data Load Combination Name Combination Type Notes Auto Combination Define Combination of Load Case Load Name Dead PP Live SY1	X Cancel Comb4-3 Comb4-3 Linear Add Modify/Show Na No Combo Results Scale Factor 1.2 1.2 1.2 1.2 1.2 1.4 K Cancel	tes Add Delete

General Data		
Load Combination Name	Comb4-4	General Data
Combination Type	Linear Add 🔹	Load Combination Name Comb4-5
Notes	Modify/Show Noton	Combination Type
Auto Combination	Mounty/ Show Notes	Notes Modify/Show Notes
Auto Complination	110	Auto Combination No
Define Combination of Load Case	/Combo Results	Define Combination of Load Case/Combo Results
Load Name	Scale Factor	Load Name Scale Factor
Dead PP	1.2 Add	Dead 1.2 Add
Live	1 Delete	Live 1
SX2	1	SX2 -1
0	K	OK Cancel
Load Combination Data	×	I Load Combination Data
General Data		General Data
Load Combination Name	Comb4-6	Load Combination Name Comb4-7
Combination Type	Linear Add 🗸	Combination Type
Notes	Modify/Show Notes	Notes Modify/Show Notes
Auto Combination	No	Auto Combination No
Define Combination of Load C	ase/Combo Results	Define Combination of Load Case/Combo Results
Load Name	Scale Factor	Load Name Scale Factor
PP		PP 1.2 Delete
Live	1	Live 1
SY2	1	SY2 -1
	OK Cancel	OK Cancel
Load Combination Data	<u>^</u>	M Load Complication Data
General Data		General Data
Load Combination Name	Comb5	Load Combination Name Comb5-1
		Combination Type Linear Add
Combination Type	Linear Add 🔹	Natas to the second state
Combination Type Notes	Linear Add Modify/Show Notes	Notes Modify/Show Notes
Combination Type Notes Auto Combination	Linear Add Modify/Show Notes No	Auto Combination No
Combination Type Notes Auto Combination	Linear Add Modify/Show Notes No se/Combo Results	Auto Combination No Define Combination of Load Case/Combo Results
Combination Type Notes Auto Combination Define Combination of Load Ca Load Name	Linear Add Modify/Show Notes No se/Combo Results Scale Factor	Auto Combination No Define Combination of Load Case/Combo Results Load Name Scale Factor
Combination Type Notes Auto Combination Define Combination of Load Ca Load Name Dead	Linear Add Modify/Show Notes No se/Combo Results Scale Factor 0.9 Add	Auto Combination No Define Combination of Load Case/Combo Results Load Name Scale Factor Dead 0.9 Add
Combination Type Notes Auto Combination Define Combination of Load Ca Load Name Dead PP	Linear Add Modify/Show Notes No se/Combo Results Scale Factor 0.9 Add 0.9 Delete	Auto Combination No Define Combination of Load Case/Combo Results Load Name Scale Factor Detad 0.3 PP 0.9 Delete V1
Combination Type Notes Auto Combination Define Combination of Load Ca Load Name Dead PP SX1	Linear Add Modfy/Show Notes No Scale Factor 0.9 Add Delete 1	Notes Modhy/Show Notes Auto Combination No Define Combination of Load Case/Combo Results Load Name Scale Factor Dead 0.9 PP 0.9 SX1 -1
Combination Type Notes Auto Combination Define Combination of Load Ca Load Name Dead PP SX1	Linear Add Modfy/Show Notes No Scale Factor 0.9 Add 0.9 Delete 1	Notes Modhy/Show Notes Auto Combination No Define Combination of Load Case/Combo Results Image: Combination of Load Case/Combo Results Load Name Scale Factor Deaid 0.9 PP 0.9 SX1 -1
Combination Type Notes Auto Combination Define Combination of Load Ca Load Name Dead PP SX1	Linear Add Modify/Show Notes No Scale Factor 0.9 0.9 0.9 1 Delete	Notes Modhy/Show Notes Auto Combination No Define Combination of Load Case/Combo Results Image: Combination of Load Case/Combo Results Load Name Scale Factor Deaid 0.9 PP 0.9 SX1 -1
Combination Type Notes Auto Combination Define Combination of Load Ca Load Name Dead PP SX1	Linear Add Modify/Show Notes No Scale Factor 0.9 0.9 0.9 1 Delete	Notes Modhy/Show Notes Auto Combination No Define Combination of Load Case/Combo Results Image: Combination of Load Case/Combo Results Load Name Scale Factor Deaid 0.9 PP 0.9 SX1 -1
Combination Type Notes Auto Combination Define Combination of Load Ca Load Name Dead PP SX1	Linear Add Modify/Show Notes No Scale Factor 0 9 0.9 Delete 0 K Cancel	Notes Modity/Show Notes Auto Combination No Define Combination of Load Case/Combo Results Image: Combo Results Dead 0.9 PP 0.9 SX1 -1

General Data		General Data		
Load Combination Name	Comb5-2	Load Combination Name	Comb5-4	
Combination Type	Linear Add 💌	Combination Type	Linear Add	
Notes	Modify/Show Notes	Notes	Madifu/Show Natas	
Auto Combination	No	Auto Combination	No.	s
Define Combination of Lond Con-	Camba Ban da		h	
Load Name	Scale Eactor	Define Combination of Load Case	:/Combo Results	
Dead	0.9 Add	Load Name	Scale Factor	Add
PP	0.9 Delete	pp	0.9	Delete
SX2	-1	SY1	1	Delete
	General Data Load Combination Data Load Combination Name Combination Type Linear Add			
	General Data General Data Load Combination Name Combination Type Linear Add Notes Auto Combination No	Modfy/Show Notes		
	General Data General Data Load Combination Name Combination Name Auto Combination Type Linear Add Notes Auto Combination Define Combination of Load Case/Combo Results	Modfy/Show Notes		
	General Data General Data Load Combination Name Combination Name Combination Name Linear Add Notes Auto Combination No Define Combination of Load Case/Combo Results Load Name S	Modfy/Show Notes		
	Combination Data General Data General Data Load Combination Name Comb5-5 Combination Type Linear Add Notes Add Combination Define Combination Define Combination Load Name S Dead	Modify/Show Notes		
	Combination Data General Data General Data Load Combination Name Comb5-5 Combination Type Linear Add Notes Auto Combination of Load Case/Combo Results Load Name S Dead Name S Dead PP P P CV	Modify/Show Notes Cale Factor 0.5 0.9 Delete		
	Control Data General Data General Data Load Combination Name Comb5-5 Combination Type Linear Add Notes Define Combination of Load Case/Combo Results Define Combination of Load Name S Dead PP SY1	Modify/Show Notes Cale Factor 0.9 0.9 1		
	Combination Data General Data Load Combination Name CombS-5 Combination Type Linear Add Notes Auto Combination of Load Case/Combo Results Load Name S Deale Name S Deale Name S PP SY1	Modify/Show Notes Cale Factor 0.9 1 Delete -1		
	General Data General Data Load Combination Name Combinst Combination Type Linear Add Notes Auto Combination of Load Case/Combo Results Define Combination of Load Case/Combo Results Data PP SY1	Modfy/Show Notes icale Factor 0.9 0.9 -1 Delete		
	General Data General Data Load Combination Data Load Combination Name Combinst Combination Type Linear Add Notes Adds Combination of Load Case/Combo Results Define Combination of Load Case/Combo Results Decad PP SY1	Modify/Show Notes Cale Factor 0.9 0.9 -1 Delete		
	Central Data General Data Load Combination Name Combinston Type Linear Add Notes Auto Combination of Load Case/Combo Results Define Combination of Load Case/Combo Results Define Combination of Load Name S Decid PP SY1 OK	Modify/Show Notes icale Factor 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9		
	Central Data Central Data Load Combination Data Load Combination Name Combination Type Linear Add Notes Auto Combination Define Combination of Load Case/Combo Results Define Combination of Load Name S Desid PP SY1 OK	Modfy/Show Notes Kale Factor 0.9 0.9 1 Delete Cancel		
	General Data General Data Load Combination Name Combination Type Linear Add Notes Auto Combination of Load Case/Combo Results Define Combination of Load Case/Combo Results Define Combination of Load Name S PP SY1 OK OK	Modify/Show Notes icale Factor 0.9 0.9 -1 Delete Cancel		
	General Data General Data Combination Name CombiS-5 Combination Type Linear Add Notes Auto Combination Define Combination of Load Case/Combo Results Define Combination of Load Name S Dead PP SY1 OK OK	Modify/Show Notes icale Factor 0.9 0.9 -1 Cancel		
51. Combinacio	General Data General Data Combination Name Combination Type Notes Auto Combination of Load Case/Combo Results Define Combination of Load Case/Combo Results Load Name PP SY1	Modfy/Show Notes icale Factor 0.9 0.3 0.9 0.1 Detete Cancel		

4.4.10. Procedimiento para asignar cargas

Como se mencionó en páginas anteriores, la aplicación de carga será realizada a través de los elementos área (losas), si no tuviesen estos elementos, el procedimiento sería: asignar las cargas triangulares, trapezoidales o rectangulares directamente en las vigas, lo que sin dudarlo resultaría algo tedioso.

Para asignar cargas en las losas el procedimiento se describe a continuación:

Los elementos de losa pueden ser seleccionados uno a uno, o también se puede utilizar la herramienta "Select", para seleccionar todos los elementos de área que tengan secciones similares, y a las cuales queramos aplicarles la misma carga por unidad de área. Una vez seleccionados los elementos, la secuencia es la siguiente:

A	an Anakan Dianlay (Design Detailing Options Table Usin
+	loint	
•	Frame	
*	Shell	
	Link	
à	Tendon	•
	Joint Loads	•
1. In	Frame Loads	•
<u> </u>	Shell Loads	► 🖽 Uniform Load Sets
**	Tendon Loads	Uniform
5	Assign Objects to Group	Non-uniform
×	Clear Display of Assigns	Temperature
	Copy Assigns	Wind Pressure Coefficient
iħ	Paste Assigns	•
	Shell L	Load Assignment - Uniform
	Load Pattern Name	Dead
	Uniform Load	Options
		N/m ² Add to Existing Loads
	Load 0	Beplace Existing Loads
	Load 0 Direction Gravity	Replace Existing Loads Delete Existing Loads
	Load 0 Direction Gravity OK	Replace Existing Loads Delete Existing Loads Close Apply

La figura anterior muestra como asignamos la carga correspondiente a "VIVA ", como se recordará, en este estado, la carga viva se aplica en todas los elementos de losa en la dirección de la gravedad, la carga viva tiene un valor de 0.2 T/m2 para los pisos de uso residencial, 0.48 T/m2 en planta baja por ser de uso comercial y 0.1 T/m2 en los niveles 24.14 y 19.44. Según código NEC 2014.

La carga aplicada puede ser sumada a una carga previamente asignada "Add to Existing Loads", por otra parte, si se desean remplazar las cargas existentes por la carga que se está asignando, la opción será "Replace Existing Loads" finalmente si se desean eliminar las cargas, deberemos seleccionar "Delete Existing Loads".

Estas opciones aplican solamente al estado de carga que está activo. El mismo procedimiento deberá repetirse para los demás estados de carga, verificando que la carga asignada corresponda al estado de carga correcto, igualmente es importante verificar la concordancia de unidades y la dirección de aplicación de la carga. Una vez completado el procedimiento, sobre cada elemento de losa aparecerá el valor de carga asignado.

Debemos recordar que fueron definidos dos estados para Carga Muerta: Peso Propio (PP) y Permanente (PERMAN), y carga Viva, en la figura 54 se puede observar la asignación de carga "Viva" de 0.2 T/m2, no obstante, el usuario deberá realizar las respectivas combinaciones utilizando cada uno de los estados de carga que se definieron.

Combos	
Defin	ne Draw Select Assign Analyze
	Section Properties
	Spring Properties
	Diaphragms
la la	Pier Labels
	Spandrel Labels
	Group Definitions
	Section Cuts
``fx ₽	Functions
P8	P-Delta Options
M	Modal Cases
✓ D ✓ F	Load Patterns
(000)	Shell Uniform Load Sets
1.0 D 1.5 E	Load Cases
D+L +E	Load Combinations
目	Auto Construction Sequence Case
22	Walking Vibrations
Р ^и	Performance Checks
Load Combinations	Load Combination Data
Combinations Combinations Combinations Cambod Combinations Cambod Ca	General Data General Data Load Combination Name Load Combination Name Load Combination Type Linear Add Combination Type Linear Add Combination Type Linear Add Combination Type Linear Add Combination of Load Case/Combo Results Load Name Scale Factor Cend 14 Add PP 1.4 Delete
	OK Cancel
Figura 54. Combinaciones de carga	s
Nota: Tomado del programa ETAB	S

4.4.11. Análisis del modelo con ETABS

Una vez que se definieron todas las características del modelo, a saber: materiales, secciones, geometría, se definieron estados de carga, se asignaron cargas, y se efectuaron los perfeccionamientos correspondientes, el modelo está listo para ser

analizado. Para ello simplemente se debe hacer clic en el icono Run

Ê	

4.5. Análisis e interpretación de resultados

4.5.1. Periodo

Como punto principal se tiene que comparar el periodo T calculado con las fórmulas que propone la NEC y el periodo calculado por ETABS donde se tiene lo siguiente:

Se puede apreciar que el periodo calculado manualmente da T=0.599 seg. y el periodo calculado por el programa T=0.617 seg., lo que nos indica que no cumple con la norma NEC, pero, sin embargo, la entidad colaboradora CAE permite un factor de mayoración de 30% del valor calculado, obteniendo un período de T=0.778 seg.

Para determinar el periodo calculado por el programa vamos a la siguiente ruta:

Perio	odo				
Disp	olay Design Detailing Options	Тс	, ,		
П	Undeformed Shape F4				
ţ	Load Assigns	F			
'n	Deformed Shape F6				
F/S	Force/Stress Diagrams	•			
Ρģ	Display Performance Check				
₩	Energy/Virtual Work Diagram				
\mathcal{P}_{c}	Cumulative Energy Components				
AX	Story Response Plots				
Æ	Combined Story Response Plots				
Nº	Response Spectrum Curves				
±7,	Plot Functions F12				
*	Quick Hysteresis	•	Case	Mode	Period
m	Static Pushover Curve		Modal	1	0.617
r1	Hinge Results		Modal	2	0.486
.nd	Save Named Display		Modal	3	0.325
nd	Show Named Display		Modal	4	0.133
	Show Tables Ctrl+T		Modal	5	0.128
		4	Modal	6	0.092
Figura	a 56. Periodo				
Nota:	Tomado del programa ETABS				

Para determinar la masa participativa y torsión calculado por el programa vamos a la siguiente ruta

1	Modal Participa	ting Mass Ratios	Auto Seismi	c - User Coefficient	ts					▼ 3
4	1 de	21 🕨 🔰 Relo	ad Apply					Modal P	articipating Mass Ratios	
	Case	Mode	Period sec	UX	UY	UZ	Sum UX	Sum UY	RZ	
	Modal	1	0.617	0.3594	0.0004	0	0.3594	0.0004	0.032	
	Modal	2	0.486	0.0006	0.4304	0	0.36	0.4308	0.0156	
	Modal	3	0.325	0.0475	0.0004	0	0.4075	0.4312	0.2448	
	Modal	4	0.133	0.1417	0.0001	0	0.5492	0.4312	0.0049	
	Modal	5	0.128	0.0033	0.0441	0	0.5525	0.4753	0.0002	
	Modal	6	0.092	0.0033	0.1167	0	0.5558	0.592	0.0112	
	Modal	7	0.083	0.0171	0.0001	0	0.5729	0.5921	0.0002	
	Modal	8	0.069	0.0043	0.0079	0	0.5772	0.6001	0.0675	
	Modal	9	0.064	0.1242	0.006	0	0.7015	0.6061	0.0347	
	Modal	10	0.061	0.0007	0.0017	0	0.7022	0.6078	0.002	
	Modal	11	0.055	0.0002	0.0047	0	0.7024	0.6125	0.0038	2
	Modal	12	0.048	0.1179	0.0005	0	0.8202	0.613	0.0041	
	Modal	13	0.047	0.0081	0.134	0	0.8283	0.747	0.0045	
	Modal	14	0.046	0.0093	0.0032	0	0.8376	0.7501	0.0015	
	Modal	15	0.045	0.0087	0.0042	0	0.8463	0.7544	0	
	Modal	16	0.04	0.0546	0.0349	0	0.9009	0.7892	0.0264	
	Modal	17	0.037	0.0088	0.0799	0	0.9098	0.8691	0.0081	
	Modal	18	0.034	0.0137	0.0019	0	0.9234	0.871	0.0076	
	Modal	19	0.031	0.0022	0.0036	0	0.9256	0.8746	0.1674	
	Modal	20	0.031	0.0016	0.0047	0	0.9272	0.8793	0.0804	
	Modal	21	0.03	0.003	0.0339	0	0.9302	0.9132	0.0046	

Se controla los dos primeros modos de vibración ya que son los mayores, estos modos indican la existencia o no de rotación tomando como referencia la masa participante no mayor al 30%, es decir que $Rz \leq 30\%$ y así mismo los valores de Ux, Uy tienen que ser $\pm 30\%$. De esta manera, se puede determinar que el edificio cumple con la de NEC y los parámetros establecidos por el Colegio de Arquitectos del Ecuador (CAE).

Lo que la norma indica es que consideremos tantos modos que para las combinaciones nos aseguren como mínimo un 90% de la participación de masa, en la tabla se puede observar la sumatoria de las dos columnas Ux, Uy 100% con lo que se cumple la norma Posteriormente seguimos la secuencia siguiente para calcular el corte basal:

4.5.2. Comparación de derivas en modelos

Con fines explicativos, una vez que se ha analizado el modelo, se han obtenido los desplazamientos en un nudo y derivas de piso para el estado de carga "SX". Las derivas de piso se miden para estados de carga, sismo o viento, no para combinaciones de carga.

A continuación, se desplegará una ventana en la cual están disponibles varias opciones para visualizar las respuestas de fuerzas o desplazamientos para cargas laterales. El usuario podrá desplegar respuestas de: fuerzas laterales en pisos, derivas en diafragmas, desplazamientos medidos en el centro de masa, máxima deriva de piso, momentos de volteo etc.

A continuación, se desplegará la opción para ver las derivas máximas en donde en Display Type se seleccionará **Max Story Drifts,** en Case Combo **SX** y **SY** como se indica en la figura.

En el proceso de diseño se debe cumplir con "derivas máximas" que se pueden esperar ante un evento sísmico extremo (2% conforme a la NEC-14), los desplazamientos relativos entre dos pisos consecutivos divididos entre la altura de entrepiso fueron calculados con un factor de reducción de 25%, por consiguiente:

$\Delta m \acute{a}x = 0.75 R^{*} deriva en X$	$\Delta m \acute{a}x = 0.75 R^* deriva en Y$
∆máx=0.75*8*0.002367	∆máx=0.75*8*0.001345
$\Delta m \acute{a} x = 0.014 < 0.02$ ok	$\Delta m \acute{a}x = 0.008 < 0.02$ ok

4.5.3. Chequeo viga débil - columna fuerte

En diseño sismorresistente es fundamental realizar el chequeo de viga débil - columna fuerte. ETABS nos permite visualizar esta condición, estableciendo un índice entre la capacidad de la columna y de la viga. Se plantea una verificación manual de esta condición y posteriormente se la compara con los resultados que reporta el programa.

Según el diseño por capacidad la relación de las resistencias nominales de las columnas sobre las vigas no debe ser menor que 6/5 (1.20), entonces, teóricamente, el rango de 0 a 1.20 es inaceptable y requieren columnas como mayor cuantía o mayor sección, rangos mayores a 1.20 son adecuadas. En este caso se tiene que aclarar que el programa ETABS va arrojar valores que se van a encontrar en el rango entre 0 a 0.8333 (la inversa de 1.20 es 0.8333), si es mayor el diseño es inadecuado, caso contrario el diseño está correcto. Con esta aclaración los resultados se aprecian a continuación siguiendo la secuencia:

	gn Detailing Options Tools Help Steel Frame Design Image: Concrete Frame Design Image:
ıra 62. Visualiz	Display Concrete Frame Design Results

Los valores que se detallan a continuación son los que arroja el programa, se tomó como ejemplo de cálculo el pórtico C-C y los ejes 3-4 dando como acero longitudinal los siguientes valores que serán ingresados a la hoja de cálculo para el respectivo chequeo.

	8.00)		3	1.19	1		8.0	9			_														
	4.20)		8	.14	ł		4.2	0																	
				\setminus																						
Ş	Q				2	2				Ç	3)				G	4)				(5) (5') (6	
C	2				G	X.				C	2				(2				(Ŷ) (Ļ) (Ŷ	
							\leftarrow				3.99	1.2	29	4.20)											N+24.1
								\setminus		(60.82)	2.10) 2.	15	2.35	(60.82)											
	4.24	1.3	38 :	2.59	,	4	.69	1.60	4.9	4	4.20) 1.	29	4.20	,	3	3.95	1.3	7 4.3	23	6.	53 4.20 2.18	5			N+19.4
60.82)	2.77	2.0)9 2	2.00	60.82)	3.	07	4.20	3.2:	80.82)	2.07	2.3	22	2.61	60.82)	1	1.95	2.2	6 2.	77 6	60.82) ±	20 2.18 2.18	5			
=	5.50	1.7	77 :	3.89	ĩ	7	.32	2.33	7.3	5 7	4.20) 1.	59	4.92	? [~]	4	4.27	1.6	8 5.2	22	5 9	29 5.26 3.03	3			N+16.2
(60.82)	3.58	2.9)6 2	2.51	(60.82)	4.	20	5.46	4.2	(60.82)	2.69	13.	73	3.21	(60.82)	1	2.80	3.6	53.4	40 2	(60.82)	54 3.03 3.03	3			
	5.33	1.7	72 3	3.91	2	7.	.23	2.33	7.3	4	4.20	1.	59 72	4.93	;	4	4.25	1.6	8 5.2	21 39	9) (1)	53 5.23 3.01				N+12.9
(60.82)	3.47	2.3	, <u>,</u> ,	2.30	(60.82)	4.	20	5.47	4.2	(60.82)	2.15		12	J.22	(60.82)	-	2.70	5.0	+ J.	35	(60.82)	51 3.01 3.01				
	5.18	1.6	37 3 94 :	3.94) r	-7. -4	.17	2.32	4.2	3 0	4.20	2 3.	56 72	4.82	! ;	4	4.22 2.77	1.6	5 5. 4 3.:	11 33	9:	57 5.21 2.96 55 2.99 2.96	9			N+9.72
(60.82)	4.95		E7 -	2 01	(60.82)	7	0.1	2 27	7.1	(60.82)	4.20	. 1	50	4.61	(60.82)		4 20	1 5	7 4 1	07	(60.82)					
	3.17	2.9	93 :	2.06	3	4	.20	5.46	4.2	•	2.67	7 3.	72	3.02	2	1	+.20 2.69	3.6	5 3.	18	9.	66 5:14 2:90 52 2:96 2:90	6			N+6.48
(60.82)	4.50	1.	46 (3.9((60.82)	6	.83	2.22	6.9	ه (60.82)	4.20	0 1.	42	4.39	(60.82)		4.20	1.5	54.8	80	(60.82)	12 5.09 2 92	2			N+3.2/
~	2.94	2.9	90 '	1.92	:	4	.20	5.47	4.2	0	2.65	5 3.	72	2.87	1	2	2.61	3.6	23.	14		4T 2.92 2.93	2			_ 111-3.24
(60.82	7.16	2.	72 !	5.50	(60.82	7	.94	2.79	8.0	。 (60.82	7.78	3 2.	61	8.27	(60.82	٤	B.00	3.2	18.0	07	(60.82	7.42	2.5	81 8.48		N+0.0(
ର	4.20	6.2	23 3	3.96	, त	4.	.20	8.09	4.2	ິ	4.20	8.0	07	4.20	ן ה	4	4.20	8.1	4 4.3	20	() ()	4.20	8.	07 4.20	() ()	
(60.8					(60.8					(60.8					(60.8					0 007	(60.8				(60.8	
	4.20	1.3	32 3	3.75	<i>i</i>	4.	20	1.49	4.2	0 3	4.20) 1.	46 20	4.22	! ,	4	4.20	1.4	7 4.2	20 82	-	4.20	1.3	50 4.51 20 2 98		N-3.44
(60.82)	2	-1.4		1.00	(60.82)	-	02	1.20	2.0	(60.82)	2.75	,	20	2.02	(60.82)	-		1.2	0 2.1	02	(60.82)	2.10		20 2.00	(60.82)	
		۲	\leftarrow			J				C	b					Ь									由	Base

Para que el nudo sea fuerte y la comprobación sea valida debe cumplif obligatoriamente las condiciones de corte, adherencia y corte vertical.

4.5.4. Deflexiones en vigas internas y volados.

19	Diagram for Beam B11 at Sto	ory N+9.72 (VIGA 35X4	0)	×
	l oad Case/Load Combination	End Offse	t Location	
	Load Case Load Combination Moda	Case I-End	0.2500 m	
		J-End	4.9500 m	
		Length	5.2000 m	
			1	
	Major (V2 and M3)	Scroll for Values		
		0		
	Silear V2		-2.1087 tonf	
			at 0.2500 m	
	Moment M3			
			-1.6194 tonf-m	
			at 0.2500 m	
	Deflection (Down +)			
	I End Jt 19	J End Jt: 26	0.000812 m at 2.6000 m	
	Absolute Relative to Frame Minimum	tive to Beam Ends O Rela	tive to Story Minimum	
		_	,	_
	Done			
/alot	de deflexión.			

Como se muestra en la figura esta analizada la viga del nivel 9.72 y pórtico en elevación del eje B entre los ejes 3-4 ya que tiene la luz más crítica 5.20 m además se crea un combo de carga muerta + carga viva sin mayorar y con eso se obtiene:

Para comprobar la deflexión se lo hace con el siguiente cálculo:

Vigas: L/360 donde 5.20 m/360 = 0,014 m

0,014 > 0.000812 ok

Comprobación para el voladizo

Voladizos: L/180 donde 2.30m/180 = 0,004 m

0,004 > 0.0015 ok

4.6. Diseño de muros - diafragmas

Se detalla el diseño del muro de longitud L=5.20 m ubicado en el eje A" entre los ejes 3-4 para lo cual se observan los valores marcados en el recuadro.

Ste					10 011	Gui	a .	Desig				
Ste				AC	1 318-14	Pier	r Design					
Sto					Pier	Detai	ls					_
	ory ID Pie	r ID	Cent	roid X (cm)	Centro	id Y (cm) Lei	ngth (cm)	Thickne	ess (cm)	LLRF	
N	+3.24 F	2	3	310.111	1:	260		900	2	5	0.466	_
					Material	Prop	erties					
-	E _c (tonf/c	:m²)	f' c (1	tonf/cm²)	Lt.Wt Fac	ctor (I	Unitless)	f _y (tonf	/cm²)	f _{ys} (tonf/cm	n²)	
-	209.14	1		0.24		1		4.21	8	4.218		
				De	sign Cod	e Par	ameters					
	4	P _T	Φ.	с Ф _v	Φ.	(Seis	mic)	IP _{MAX}		P _{MAX}		
	0	.9	0.6	5 0.75		0.6		0.04	0.0025	0.8		3
				Pier Leg Lo	ocation, l	engt	h and Th	ickness				
	Station	n n	ID	Left X 1 cm	Left Y t cm	Rig	htX ₂ m	Right Y ₂ cm	Length cm	Thickness cm	8	
	Тор	L	eg 1	270	1520	4	60	1520	190	25	_	
	Тор	L	eg 2	270	1000	2	270	1520	520	25	_	
	Тор	L	eg 3	270	1000	4	60	1000	190	25		
	Bottom	L	eg 1	270	1520	4	60	1520	190	25	_	
	Bottom	L	eg 2	270	1000	2	270	1520	520	25	_	
	Bottom		eg 3	270	1000	4	160	1000	190	25	_	
				Flexural D	esign for	P ., 1	M _{u2} and	M _{u3}				
	Dea	uired	m²)	Required Reinf Ratio	Curre Reinf R	nt atio	Flexural Combo	P u tonf	M u2 tonf-cm	M u3 tonf-cn	Pi n o	erA₀ cm²
Station Location	Rebar A	rea (ci	1		0.005	3	DWal9	252.0409	-3212.998	120082.8	23 2	2500
Station Location Top	Rebar A	rea (ci .86		0.0029	0.000							

Datos:

Armadura vertical			
	diafragma	Ag	22500
	5.20 metros	required reinf ratio	0.0049
Pier Ag cm2: 22500 cm2		As vertical	110.25
Required Reinf Ratio: 0.004	9	No de varillas c/lado	22.5
As vertical: 22500/0.0049		As c/varilla	2.45
As vertical:			
Armadura horizontal	1 m entran 5 varillas cada 20 cm		
	acero horizontal cm2 /	m 6.3	
	numero de varillas(2 car	as) 10	
Rehar c2/m· 6 3	as requerido	0.63	Ø12 @ 20

4.6.1. Armado de diafragmas

Los diafragmas se deben diseñar por cada nivel en ETABS, determinando los esfuerzos para cada estado de carga, donde se obtienen los esfuerzos últimos (Mu, Pu, Vu). Con estos resultados se determinan las cuantías para las combinaciones de carga. Cabe destacar que se mantendrá la distribución de acero en toda la altura del elemento.

4.6.2. Cálculo de armadura por corte

Se debe calcular la capacidad nominal cortante para muros cuya ecuación es:

$$Vn = Acv * (\alpha c * \sqrt{f'c} + \rho n * fy)$$

Donde $\alpha c = \frac{1}{4}$

$$Acv = 25cm * 520cm = 13000cm^2$$

 $Vn = 13000 * (0.25 * \sqrt{240} + 0.0025 * 4200)$

Rebar cm²/cm	Shear Combo	P _u tonf	Mu tonf-cm	V u tonf	ΦV و tonf	ΦV " tonf
1 0.0625	DWal4	42.4892	2217.63	38.3847	45.0068	75.0631
2 0.0625	DWal10	134.6308	-18171.488	133.1077	125.9283	208.1874
3 0.0625	DWal5	-88.4766	4488.687	21.3338	13.6374	43.6936
1 0.0625	DWal4	47.2964	-10219.002	38.3847	29.5605	59.6167
2 0.0625	DWal10	142.7272	-61298.367	133.1077	127.1427	209.401
3 0.0625	DWal5	-83.6694	-2423.455	21.3338	26.0831	56.1393
	cm²/cm 1 0.0625 2 0.0625 3 0.0625 1 0.0625 2 0.0625 3 0.0625 3 0.0625 3 0.0625	cm²/cm 1 0.0625 DWal4 2 0.0625 DWal10 3 0.0625 DWal5 1 0.0625 DWal4 2 0.0625 DWal5 1 0.0625 DWal5 3 0.0625 DWal4 2 0.0625 DWal5	cm²/cm cm²/cm tonf 1 0.0625 DWal4 42.4892 2 0.0625 DWal10 134.6308 3 0.0625 DWal5 -88.4768 1 0.0625 DWal4 47.2964 2 0.0625 DWal10 142.7272 3 0.0625 DWal5 -83.6694	cm³/cm tonf tonf tonf-cm 1 0.0625 DWal4 42.4892 2217.63 2 0.0625 DWal10 134.6308 -18171.488 3 0.0625 DWal5 -88.4766 4488.687 1 0.0625 DWal5 -88.4766 4488.687 2 0.0625 DWal4 47.2964 -10219.002 2 0.0625 DWal10 142.7272 -61298.367 3 0.0625 DWal5 -83.6694 -2423.455	cm²/cm ton tonf tonf-cm tonf 1 0.0625 DWal4 42.4892 2217.63 38.3847 2 0.0625 DWal10 134.6308 -18171.488 133.1077 3 0.0625 DWal5 -88.4766 4488.687 21.3338 1 0.0625 DWal4 47.2964 -10219.002 38.3847 2 0.0625 DWal10 142.7272 -61298.367 133.1077 3 0.0625 DWal5 -83.6694 -2423.455 21.3338	cm³/cm tonf tonf tonf-cm tonf tonf 1 0.0625 DWal4 42.4892 2217.63 38.3847 45.0068 2 0.0625 DWal10 134.6308 -18171.488 133.1077 125.9283 3 0.0625 DWal5 -88.4766 4488.687 21.3338 13.6374 1 0.0625 DWal4 47.2964 -10219.002 38.3847 29.5605 2 0.0625 DWal4 142.7272 -61298.367 133.1077 127.1427 3 0.0625 DWal5 -83.6694 -2423.455 21.3338 26.0831

Vu= 133.1077 Ton este valor de cortante es obtenido de la combinación más crítica en ETABS.

Vu < V

133.1077 Ton < 186.85 Ton OK

4.7. Diseño de muro de sótano.

El diseño del muro de sótano se realizó en hojas electrónicas de Excel, a continuación, se muestra el detalle del mismo.

4.7.1. Cálculo presión producido por suelo, reacciones y momentos

4.7.2. Diseño de pantalla

a.- Diseño a flexión

21.16	ton-m
100	Cm
5	Cm
30	Cm
0.9	
	21.16 100 5 30 0.9

a.1- Cálculo de cuantía de refuerzo

$$w = 0.847 - \sqrt{0.719 - \frac{Mu}{0.59 \phi f' c b d^2}} \rho_{cal} = w \frac{f' c}{fy} = 0.0066$$

$$\rho_{min} = \frac{14}{fy} = 0.00333 \qquad 0.00662$$

w=0.11591674

a.2 Calculo de acero de refuerzo principal. $As_{dis} = \rho bd$

$$As_{dis} = 9.8714 \text{ cm}$$

a.3 Cálculo de acero de refuerzo por temperatura

$$As_{tem} = 0,002bt$$

 $As_{tem} = 0.07 \text{ cm}^2$ $As_{tem} = 0.035 \text{ cm}^2/2$ cm²/cara

b.- Diseño a corte

$V_u =$	18.46	ton
b=	100	cm
rec=	5	cm
d=	30	cm
$\phi_{\text{corte}} =$	0.85	

b.1- Chequeo a corte

$$v_u = \frac{V_u}{\phi bd} \le vuc = 7.238 \text{ kg/cm}^2$$

$$v_{uc} = 0,53\sqrt{f'c} = 8.211 \, kg/cm^2$$

4.8. Diseño de losa cimentación

El diseño de las cimentaciones fue realizado con el software Staad Pro v8i. la infraestructura se calculó como una losa fundación. Para el cual fue necesario colocar las reacciones de apoyo resultantes del ETABS tal como se muestra en la figura 66.

En la figura 72 se muestran los resultados donde se aprecia la presión máxima actuante con un valor máximo de 1.45 kg/cm2 menor que el considerado en el cálculo de la estructura 1.7 kg/cm2. Cabe destacar que realmente el estudio de suelos de referencia recomienda un valor de esfuerzo permisible del suelo de 2.928 kg/cm2 a una profundidad de -6 m. Sin embargo, la losa fundación estará a una profundidad de desplante de -8.08m, quiere esto decir que se consideró un factor de seguridad de 1.2

kg/cm2, dado que las recomendaciones del estudio de suelos corresponden a -6m de profundidad y el cimiento estará a -8.08m.

El espesor resultante de la losa es de 1.20 m y será reforzada con el área de acero mínimo, es decir 24 cm2/m tal como se muestra en la figura 75 para el cual se utilizarán varillas de 25mm de diámetro a cada 20cm en ambas direcciones.

4.9. Análisis económico y financiero

4.9.1. Estimación de volúmenes de obra

El volumen del generador del concepto se multiplicará por el precio unitario que está definido en el presupuesto y nos dará una estimación del costo de obra. La lista de materiales se encuentra en el Anexo 3.

4.9.2. Análisis de precios unitarios. (APU)

El análisis de precio unitario es el costo de una actividad por unidad de medida, el mismo que se compone de una valoración de los materiales, la mano de obra, materiales, equipos y herramientas que serán los costos directos, mientras que la utilidad, transporte, material de oficina y gastos varios por ejemplo (papelería, impresión, carpetas, esferos, alquiler de oficina, pago de servicios públicos etc.) corresponden a costos indirectos.

prevención de accidentes corresponden a los costos indirectos, material de oficina y gastos varios por ejemplo (papelería, impresión, carpetas, esferos, alquiler de oficina, pago de servicios públicos etc.)

Para saber que un presupuesto está bien elaborado la Cámara de Construcción cuenta con unos porcentajes de incidencia de componente de un proyecto.

A continuación, se puede apreciar que el presente proyecto se encuentra dentro los rangos correspondientes a una edificación.

	D	С	D	E	F G	н	I	J
2								
	CUADRO DE INCIDENCI	IAS DE COMP	ONENTES		Porcen	taje de Incide	encia de los	
3	DESCRIPCION	MONTO	%			Componen	tes	
	MATERIALES	641,269.03	70.86				MATERI	ALES
	MANO DE OBRA	147,392.81	16.29					
5	EQUIPO Y HERRMIENTA	116,259.70	12.85		13%09	6	MANO E	DE OBRA
		0.00	0.00			\ \		
-	TOTAL DIRECTO	904,921.54	100.00		16%		EQUIPO HERRMI	Γ IFNTΔ
,								
1						71%	TRANSP	ORTE
2	TABLA DE COSTOS	MONTO						
-	TABLA A	904.921.54						
	TABLA B							
5	TABLA C							
5	TABLA D							
7	TABLA E							
		ТАВ	LA DE INO	CIDENCIA	A DE INSUM	105		
Tipo	% de obra	TAB	LA DE INO MATERI	CIDENCIA IALES %	A DE INSUM	IOS E OBRA %	E	QUIPO %
Tipo	de obra EDIFICACION	ТАВ	LA DE INC MATER 60 -	CIDENCIA IALES % - 80	A DE INSUM MANO DI 15 -	IOS E OBRA %	EC	QUIPO % 5 15
Tipo	% de obra EDIFICACION REDES DE AGUA	TAB	LA DE INC MATERI 60 - 60 -	CIDENCIA IALES % - 80 - 80	MANO DI 15 -	IOS E OBRA % · 30 · 30	E	QUIPO % 5 15 5 15
Tipo	de obra EDIFICACION REDES DE AGUA	ADO	LA DE ING MATERI 60 - 60 -	CIDENCIA IALES % - 80 - 80	A DE INSUM MANO DI 15 - 15 -	IOS E OBRA % 30 30	EC	QUIPO % 5 15 5 15 5 15

El análisis de los precios unitarios se encuentra en el Anexo 4.

CONCLUSIONES

- El tamaño de la sección transversal de los componentes estructurales (losa, vigas y las columnas) calculado en el pre diseño por carga de gravedad permitió que el programa realizara la revisión de la estructura.
- Los componentes estructurales de la edificación fueron calculados según los criterios sismoresistente establecidos en las normas ACI-318-14 y NEC-2014.
 Para esto fue necesario controlar, periodo, masa participativa, corte basal, derivas inelásticas, chequeo del nudo y control de deflexiones.
- El periodo de la estructura resulto ser T=0.617 seg, menor que el permisible según la entidad colaboradora CAE cuyo valor corresponde a T=0778 seg. El porcentaje de la masa participativa, en cada dirección de análisis es de 93.02% y 91.32% en las direcciones X y Y respectivamente, mayor al mínimo establecido por norma la cual establece 90% como mínimo. El corte basal, resulto ser el mínimo según norma cuyo valor corresponde a 247.71 Ton. Las derivas inelásticas en cada dirección de análisis del sismo resultaron ser 0.014 y 0.008 ambas menores que la máxima establecida según NEC el cual corresponde a 0.02. En relación al chequeo del nodo en todos los casos los resultados fueron mayor a 1.2, por ultimo las deflexiones actuantes están dentro de los valores permisible.
- Los resultados obtenidos muestran columnas con sección de 50x50cm con cuantía de refuerzo 2.43 %, las vigas serán de 35x40 con cuantía de refuerzo menor a la máxima permitida 0.025, la losa tiene espesor de 25 cm con refuerzo

de Φ 14 tanto en refuerzo positivo como negativo. Los diafragmas serán de 25cm de espesor reforzados con acero Φ 18 y 12 mm. Los muros sótanos serán de 35 cm de espesor reforzados con varillas de Φ 20 y Φ 14 como acero longitudinal y horizontal. En relación a la infraestructura es será una losa cimentación de espesor de 1.20 m de altura reforzadas con varillas de Φ 25mm a cada 20cm en ambos sentidos.

- Los diagramas o muros de corte permitieron controlar el periodo y la torsión en el edificio dada la irregularidad de la estructura.
- El proyecto requiere un total de 195784.81 kilogramos de acero de refuerzo y 1669.88 m3 de concreto para la construcción de la infraestructura y superestructura de la edificación.
- Se requieren de 117.24 kilogramos de acero por cada metro cubico de concreto.
- El costo de construcción de la edificación en su obra gris corresponde a un monto aproximado de \$1066103.45
- El costo de construcción por m2 estimado para este proyecto corresponde a un valor de \$403.77 en su obra en gris.

RECOMENDACIONES

- Realizar el diseño sismoresistente de la edificación considerando que la estructura estará conformada por perfiles metálicos y sistema de entre piso losas deck. A efecto de comparar los resultados en cuanto a materiales requeridos para la construcción del edificio y el costo del mismo.
- Diseñar la edificación considerando la hipótesis de dilatar (separar) la estructura a efectos de vitar irregularidad en planta para evaluar y comparar el comportamiento de la estructura con los obtenidos en el trabajo técnico desarrollado.

REFERENCIAS

- Aguilar, L. D. (2015). Evaluación estructural mediante el FEMA 154 del NEC y propuesta del reforzamiento de la institución honrar la vida del D.M.Q.
 Universidad Central del Ecuador, Quito. Obtenido de www.dspace.uce.edu.ec/bitstream/25000/5300/1/T-UCE-0011-191.pdf
- Aguirre, C. E. (2008). Análisis técnico-económico entre proyectos de construcción de estructura metálica y hormigón armado para edificios. Universidad Poliécnia Salesiana, Quito. Obtenido de https://www.researchgate.net/publication/277869276_Analisis_tecnicoeconomico_entre_proyectos_de_construccion_de_estructura_metalica_y_hor migon_armado_para_edificios
- Alvear, S. (17 de Abril de 2013). *Slide Share*. Obtenido de http://es.slideshare.net/azuca92/criterios-para-diseo-estructural
- American Institute of Steel Construction. (2005). Especificaciones para construcciones en acero estructural. Chicago . Obtenido de http://www.aisc.org/uploadedfiles/steel_solution_center/technical_resources/ engineering_faqs/2005specification_third_printing.pdf
- Avendaño, M. G. (2013). Cimentaciones sismo resistentes utilizando SAFE. Quito.
- Avendaño, M. G. (2014). Diseño sismoresistente de edificios de acero utilizando ETABS y NEC 2014 (Segunda edición ed.). Quito.
- Benavides, M. (2013). Los Quitos del Sur. Obtenido de http://www.quitofun.com/ADondeIr-LosQuitosDelSur.html
- Club Ensayos. (2013). *Levantamiento Topográfico*. Obtenido de https://www.clubensayos.com/Historia/Levantamiento-Topografico/1342564.html
- Diario La Hora. (1 de Junio de 2011). Noticias de Quito. *Quitumbe en pleno auge*. Obtenido de http://lahora.com.ec/index.php/noticias/show/1101150511#.Vv1vMnokjCZ
- Google. (27 de Noviembre de 2014). Google Earth. Obtenido de https://www.google.com/maps/@-0.2986801,-78.5484682,917a,20y,15.75h/data=!3m1!1e3
- Guerra A, M., & Chacón S, D. (2010). Manual para el Diseño Sismo Resistente de Edificios utilizando el programa ETABS. Quito.
- Instituto Nacional de Investigación Geológico Minero Metalúrgico. (2016). *Infraestructura de datos espaciales del INIGEMM*. Obtenido de http://geoportal.inigemm.gob.ec/
- Macías, M. J. (2011). Análisis Técnico Económico del Diseño Sismoresitente de un edificio con estructura de acero vs estructura de hormigón armado. Guayaquil. Obtenido de http://repositorio.ug.edu.ec/handle/redug/496
- Maps, Google. (2016). *Google Maps*. Obtenido de https://www.google.com/maps/@-0.297624,-78.5496814,16.5z

Ministerio de Desarollo Urbano y Vivienda. (2014). Norma Ecuatoriana de la Construcción. Quito: Dirección de Comunicación Social, MIDUV. Obtenido de http://www.normaconstruccion.ec/capitulos_nec_2015/NEC_SE_RE_%28Ri esgo_sismico%29.pdf

Ministerio de Desarrollo Urbano y Vivienda. (2014). Norma Ecuatoriana de Construcción. Quito: Dirección de Comunicación Social, MIDUV. Obtenido de http://www.normaconstruccion.ec/capitulos_nec_2015/NEC_SE_DS_%28pel

igro%20sismico%29.pdf

Ministerio de Desarrollo Urbano y Vivienda. (2014). Norma Ecuatoriana de Construcción. Quito: Dirección de Comunicación Social, MIDUVI. Obtenido de

http://www.normaconstruccion.ec/capitulos_nec_2015/NEC_SE_CG_%28ca rgas_no_sismicas%29.pdf Ministerio de Desarrollo Urbano y Vivienda. (2014). Norma Ecuatoriana de Construcción. Quito: Dirección de Comunicación Social, MIDUVI. Obtenido de http://www.normaconstruccion.ec/capitulos_nec_2015/NEC_SE_AC_%28Es tructura_Acero%29.pdf

Ministerio de Desarrollo Urbano y Vivienda. (2014). Norma Ecuatoriana de Construcción . Quito: Dirección de Comunicación Social, MIDUVI. Obtenido de http://www.normaconstruccion.ec/capitulos_nec_2015/NEC_SE_HM_%28h ormigon_armado%29.pdf

Ministerio de Desarrollo Urbano y Vivienda. (2014). Norma Ecuatoriana de la Construcción. Quito: Dirección de Comunicación Social, MIDUVI. Obtenido de http://www.disaster-info.net/PED-Sudamerica/leyes/leyes/suramerica/ecuador/otranorm/Codigo_Ecuatoriano_C onstruccion.pdf

Ministerio de Salud Pública. (2008). Servicios Públicos de Salud. Quito. Obtenido de http://www.saluddealtura.com/fileadmin/PDF/Directorio_servicios_salud_pu blicos.pdf

- Municipio del Distrito Metropolitano de Quito. (s.f.). *Alcaldía de Quito*. Obtenido de http://sthv.quito.gob.ec/images/PUOS2012/USOSSUELOPRINCIPALPUOS U1.pdf
- Rosas, G. E. (2015). Estudio Estructural comparativo entre hormigón armado y acero estructural para el conjunto habitacional FAROGAMA 1. Quito, Pichincha, Ecuador.
- Secretaría de Territorio, Hábitat y Vivienda. (2010). *Alcaldia de Quito*. Obtenido de http://sthv.quito.gob.ec/index
- Wikipedia. (28 de Septiembre de 2015). Wikipedia. Obtenido de https://es.wikipedia.org/wiki/Terminal_Terrestre_Quitumbe

Zambrano, D. B. (2006). *Research Gate*. Obtenido de https://www.researchgate.net/publication/277987920_Estudio_de_factibilida d_el_proyecto_de_creacion_de_un_patrio_de_comidas_de_la_empresa_com unitaria_de_los_comerciantes_informales_del_barrio_carcelen_en_la_ciudad __de_Quito

ANEXOS

ANEXO 1. Planos arquitectónicos

Las láminas con los planos arquitectónicos tienen el siguiente contenido:

A1: Plantas arquitectónica de los dos subsuelos (N-3.44, N-6.88)

A2: Planta arquitectónica de la planta baja (N 0.00) y planta tipo para el resto de niveles (N+3.24, N+6.48, N+9.72, N+12.96, N+16.20, N+19.44).

A3: Fachadas frontales y laterales.

A4: Corte longitudinal y corte transversal.

ANEXO 2. Planos estructurales

Las láminas con los planos estructurales presentan el siguiente contenido:

- E1: Muro Cimentación.
- E2: Columnas Escaleras
- E3: Diafragmas
- E4: Rampas y vigas del nivel N-6.88 a N-3.44 y del nivel N-3.44 a N 0.00
- E5: Losa y Vigas N-3.44
- E6: Losas N 0.00
- E7: Vigas N 0.00
- E8: Losas N+3.24, N+6.48, N+9.72, N+12.96, N+16.20, N+19.44, N+24.14
- E9: Vigas N+3.24, N+6.48, N+9.72, N+12.96, N+16.20
- E10: Vigas N N+19.44

ANEXO 3. Cálculo de volúmenes de obra

ANEXO 4. Análisis de precios unitarios y presupuesto

ANEXO 5. Estudio de suelos