

UNIVERSIDAD POLITÉCNICA SALESIANA

UNIDAD DE POSGRADOS MAESTRÍA EN MÉTODOS MATEMÁTICOS Y SIMULACIÓN NUMÉRICA EN INGENIERÍA

Proyecto de investigación y desarrollo previo a la obtención del Grado de Magíster en Métodos Matemáticos y Simulación Numérica en Ingeniería

ANÁLISIS DEL MODELO MATEMÁTICO DE UNA BOBINA PLANA DE CALENTAMIENTO POR INDUCCIÓN Y OPTIMIZACIÓN DE SU EFICIENCIA

Autores: Víctor David Larco Torres Rafael Enrique Pérez Ordóñez

Dirigido por: David Barrios Puerto

ANÁLISIS DEL MODELO MATEMÁTICO DE UNA BOBINA PLANA DE CALENTAMIENTO POR INDUCCIÓN Y OPTIMIZACIÓN DE SU EFICIENCIA

ANÁLISIS DEL MODELO MATEMÁTICO DE UNA BOBINA PLANA DE CALENTAMIENTO POR INDUCCIÓN Y OPTIMIZACIÓN DE SU EFICIENCIA

VÍCTOR DAVID LARCO TORRES

Ingeniero en Electricidad Especialización Electrónica y Automatización Industrial Magíster en Administración de Empresas Maestría en Métodos Matemáticos y Simulación Numérica en Ingeniería Unidad de Posgrados Universidad Politécnica Salesiana

RAFAEL ENRIQUE PÉREZ ORDÓÑEZ

Ingeniero en Electricidad Especialización Electrónica y Automatización Industrial Magíster en Educación Superior Maestría en Métodos Matemáticos y Simulación Numérica en Ingeniería Unidad de Posgrados Universidad Politécnica Salesiana

Dirigido por:

DAVID BARRIOS PUERTO

Ingeniero Técnico Industrial en Electrónica Ingeniero en Electrónica y Automática Industrial Máster Universitario en Sistemas Electrónicos Avanzados Doctor dentro del programa en Ingeniería Eléctrica, Electrónica y Automática Universidad Politécnica Salesiana

Cuenca – Ecuador

LARCO TORRES VÍCTOR DAVID PÉREZ ORDÓÑEZ RAFAEL ENRIQUE Análisis del modelo matemático de una bobina plana de calentamiento por inducción y optimización de su eficiencia Universidad Politécnica Salesiana, Cuenca – Ecuador, 2018 MAESTRÍA EN MÉTODOS MATEMÁTICOS Y SIMULACIÓN NUMÉRICA EN INGENIERÍA

Formato 170x240

Páginas: 134

Víctor David Larco Torres

y Automatización Industrial

Breve reseña de los autores e información de contacto:

Maestría en Métodos Matemáticos y Simulación Numérica en Ingeniería Universidad Politécnica Salesiana vlarco@ups.edu.ec **Rafael Enrique Pérez Ordóñez** Ingeniero en Electricidad Especialización Electrónica y Automatización Industrial Magíster en Educación Superior Maestría en Métodos Matemáticos y Simulación Numérica en Ingeniería Universidad Politécnica Salesiana rperezo@ups.edu.ec David Barrios Puerto Máster Universitario en Sistemas Electrónicos Avanzados Doctor dentro del Programa en Ingeniería Eléctrica, Electrónica y Automática Universidad Politécnica Salesiana

Ingeniero en Electricidad Especialización Electrónica

Magíster en Administración de Empresas

Todos los derechos reservados.

Queda prohibida, salvo excepción prevista en la Ley, cualquier forma de reproducción, distribución, comunicación pública y transformación de esta obra para fines comerciales, sin contar con autorización de los titulares de propiedad intelectual. Se permite la libre difusión de este texto con fines académicos o investigativos por cualquier medio, con la debida notificación a los autores.

dbarrios@ups.edu.ec

DERECHOS RESERVADOS

©2018 Universidad Politécnica Salesiana CUENCA – ECUADOR – SUDAMÉRICA

LARCO TORRES VÍCTOR DAVID

PÉREZ ORDÓÑEZ RAFAEL ENRIQUE

Análisis del modelo matemático de una bobina plana de calentamiento por inducción y optimización de su eficiencia Edición y Producción: Víctor David Larco T. Rafael Enrique Pérez O. Diseño de portada: David Barrios Puerto IMPRESO EN ECUADOR – PRINTED IN ECUADOR

ÍNDICE GENERAL

1.	INTRODUCCIÓN	
	1.1 Técnicas numéricas aplicadas a la Ingeniería	1
	1.1.1 Pre proceso	1
	1.1.2 Módulo de cálculo	1
	1.1.3 Etapa de post proceso	2
	1.1.4 Esquema general de solución mediante técnicas numéricas	2
	1.2 Antecedentes	4
	1.3 Justificación	4
2.	PLANTEAMIENTO DEL PROBLEMA	5
	2.1 Tecnologías de calentamiento por inducción	5
	2.2 Objetivo general	8
	2.3 Objetivos específicos	8
	2.4 Descripción de una bobina de inducción	9
	2.5 Delimitación del problema	11
3.	MARCO TEÓRICO	12
	3.1 Variables físicas, eléctricas y magnéticas presentes en una bobina de calentamiento por inducción	12
	3.1.1 Variables físicas	12
	3.1.2 Variables eléctricas	13
	3.1.3 Variables magnéticas	13
	3.2 Diseño de un inductor	14
	3.2.1 Principios del calentamiento por inducción	15
	3.3 Fundamentos de transferencia de calor	16
	3.3.1 Transferencia de calor por conducción	16

	3.3.2 Transferencia de calor por convección	18
	3.3.3 Transferencia de calor por radiación	19
4.	MODELADO DEL SISTEMA	21
	4.1 Análisis electromagnético para la eficiencia de calentamiento pro inducción	21
	4.1.1 Modelo electromagnético del calentamiento por inducción	22
	4.2 Métodos de elementos finitos	24
	4.3 Topología de un sistema de energía	24
	4.4 Potencia inductiva transferida	25
	4.5 Disipación en devanados	29
	4.6 Aproximación de las resistencias de conducción y proximidad en baja frecuencia	34
	4.7 Modelo matemático de la eficiencia de inducción	39
	4.7.1 Maximización teórica de la eficiencia	40
	4.8 Esquema de transferencia de energía	48
	4.9 Calor disipado y pérdidas	49
	4.10 Eficiencia de inducción	50
5.	DISEÑO E IMPLEMENTACIÓN DEL MODELO	52
	5.1 Geometría de la bobina plana de calentamiento por inducción	52
	5.1.1 Geometría de la bobina sin carga, pre proceso y post proceso	52
	5.1.2 Geometría de la bobina con carga, pre proceso y post proceso	78
	5.2 Parámetros necesarios para enlazar MATLAB y FEMM	101
	5.3 Códigos para simulación del modelado enlazando MATLAB con FEMM	102
	5.3.1 Código del programa principal	102

	5.3.2 Código de la función haciafemm	107
	5.3.3 Código de la función resistencia	108
	5.3.4 Código de la función promedioH	109
	5.3.5 Código de la función objetivo	110
	5.3.6 Código de la función restricción	110
6.	DISCUSIÓN DE RESULTADOS Y CONCLUSIONES	111
	6.1 Resultados de resistencia de inducción, conducción y de proximidad en dependencia de la frecuencia de operación y el radio del hilo	111
	6.2 Limitaciones	114
	6.3 Resultados de campo magnético mediante la simulación de la bobina	117
	6.4 Resultados de frecuencia y radio	120
	6.5 Eficiencia de Inducción óptima con el modelo matemático teórico	121
	6.6 Contraste de resultados teóricos y resultados experimentales mediante prototipo de la bobina	123
7.	ANEXOS	125
	ANEXO I. Optimize use ga – Matlab & Simulink	125
	ANEXO II. Aplicación de funciones de Bessel de orden entero Y primera especie	127
8.	GLOSARIO	131
9.	BIBLIOGRAFÍA Y REFERENCIAS	133

ÍNDICE DE FIGURAS

Figura 1.1	Esquema de solución a través de técnicas numéricas	3
Figura 2.1	Temple por inducción	6
Figura 2.2	Braseado por inducción	6
Figura 2.3	Soldadura por inducción	7
Figura 2.4	Producción de plasma	7
Figura 2.5	Cocina de inducción	8
Figura 2.6	Descripción de una bobina de inducción	10
Figura 3.1	Variables físicas a considerar en una bobina de inducción	12
Figura 3.2	Variables magnéticas a considerar en una bobina de inducción	13
Figura 3.3.	Esquema básico de una bobina de inducción	14
Figura 3.4	Transferencia de calor por conducción	17
Figura 3.5	Transferencia de calor por convección	18
Figura 3.6	Transferencia de calor por radiación	20
Figura 4.1	Circuito equivalente de un sistema de calentamiento por inducción	21
Figura 4.2	Bobina plana en una configuración de flujo transversal	22
Figura 4.3	Diagrama de bloques de conversión de potencia de un sistema e calentamiento por inducción	24
Figura 4.4	Esquema del diferencial de volumen	27
Figura 4.5	Vista lateral y superior de na bobina en forma de anillo	34
Figura 4.6	Representación gráfica del factor de conducción y proximidad en términos de la relación $\frac{r_w}{\delta_h}$	37
Figura 4.7	Representación de transferencia de energía para la aplicación de la cocina de inducción	48
Figura 5.1	Geometría del problema sin carga en la fase de Preprocesador Magnético	52
Figura 5.2	Definición del problema de la bobina sin carga en la fase de Preprocesador Magnético	53
Figura 5.3	Definiendo el nombre del circuito de la bobina sin carga en la fase de Preprocesador Magnético	54
Figura 5.4	Construcción de fronteras abiertas en la fase de Preprocesador Magnético	55

Figura 5.5	Asignación de material para la bobina sin carga, en la fase de Preprocesador Magnético	56
	Configuración de parámetros en el bloque de propiedades	
Figura 5.6	modelo material Aire en la fase de Preprocesador	57
	Magnético para el caso de la bobina sin carga	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.7	modelo material u1 en la fase de Preprocesador Magnético	57
	para el caso de la bobina sin carga	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.8	modelo material u2 en la fase de Preprocesador Magnético	58
-	para el caso de la bobina sin carga	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.9	modelo material u3 en la fase de Preprocesador Magnético	58
C	para el caso de la bobina sin carga	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.10	modelo material u4 en la fase de Preprocesador Magnético	59
C	para el caso de la bobina sin carga	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.11	modelo material u5 en la fase de Preprocesador Magnético	59
C	para el caso de la bobina sin carga	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.12	modelo material u6 en la fase de Preprocesador Magnético	60
C	para el caso de la bobina sin carga	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.13	modelo material u7 en la fase de Preprocesador Magnético	60
C	para el caso de la bobina sin carga	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.14	modelo material cable en la fase de Preprocesador	61
C	Magnético para el caso de la bobina sin carga	
	Opciones para crear, mostrar y borrar la malla en la fase de	
Figura 5.15	Preprocesador Magnético para el caso de la bobina sin	62
C	carga	
Figura 5.16	Generación del mallado para el caso de la bobina sin carga	62
E	Generación del mallado en la geometría del modelo, para	\sim
Figura 5.17	una bobina sin carga	03
E	Ejecutando el solver llamando a fkern.exe en una bobina sin	\sim
Figura 5.18	carga	63
Eigene 5 10	Resultados después del análisis, para el caso de la bobina	61
Figura 5.19	sin carga	04
Eigung 5 20	Resultados en un punto ubicado fuera del espacio asignado	65
Figura 5.20	para la bobina sin carga	03
Eiguro 5 21	Resultados en un punto ubicado dentro del espacio asignado	66
1 iguia 3.21	para la bobina sin carga	00

Figura 5.22	Líneas de flujo en la geometría de elemento finito para la bobina sin carga	66
Figura 5.23	Densidad de flujo junto con líneas de flujo en la bobina sin carga	67
Figura 5.24	Densidad de flujo en la bobina sin carga	68
Figura 5.25	Densidad de flujo junto con vectores de campo en la bobina sin carga	69
Figura 5.26	Vectores de campo en la bobina sin carga	70
Figura 5.27	Selección del bloque integral Área de sección transversal para la bobina sin carga	71
Figura 5.28	Selección del bloque integral Volumen para la bobina sin carga	72
Figura 5.29	Selección de valores de Magnitud de intensidad de campo en el borde inferior de la geometría para una bobina sin carga	73
Figura 5.30	Gráfica de valores de Magnitud de intensidad de campo en el borde inferior de la geometría para una bobina sin carga	74
Figura 5.31	Selección de valores de Magnitud de intensidad de campo en el borde superior de la geometría para una bobina sin carga	74
Figura 5.32	Gráfica de valores de Magnitud de intensidad de campo en el borde superior de la geometría para una bobina sin carga Selección de valores de Magnitud de intensidad de campo	75
Figura 5.33	en el borde izquierdo de la geometría para una bobina sin carga	76
Figura 5.34	Gráfica de valores de Magnitud de intensidad de campo en el borde izquierdo de la geometría para una bobina sin carga	76
Figura 5.35	Selección de valores de Magnitud de intensidad de campo en el borde derecho de la geometría para una bobina sin carga	77
Figura 5.36	Gráfica de valores de Magnitud de intensidad de campo en el borde derecho de la geometría para una bobina sin carga	78
Figura 5.37	Geometría del problema con carga en la fase de Preprocesador Magnético	78
Figura 5.38	Definición del problema con carga en la fase de Preprocesador Magnético	79
Figura 5.39	Construccion de fronteras abiertas en la fase de Preprocesador Magnético, para el caso de la bobina con carga	80
Figura 5.40	Asignación de material en la fase de Preprocesador Magnético, para el caso de la bobina con carga	80

Figura 5.41	Configuración de parámetros en el bloque de propiedades modelo Vitrocerámica en la fase de Preprocesador	81
	Magnética, para la bobina con carga	
E : 5 40	Configuración de parametros en el bloque de propiedades	0.1
Figura 5.42	modelo Ferrita magnetica suave en la fase de Preprocesador	81
	Magnetico, para la bobina con carga.	
E' 5 42	Configuración de parametros en el bloque de propiedades	00
Figura 5.43	modelo Aire en la fase de Preprocesador Magnetico, para la	82
	bobina con carga.	
T : 7 44	Configuracion de parametros en el bloque de propiedades	00
Figura 5.44	modelo material Acero inoxidable 304 en la fase de	82
	Preprocesador Magnético, para la bobina con carga.	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.45	modelo material Acero inoxidable 430 en la fase de	83
	Preprocesador Magnético, para la bobina con carga.	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.46	modelo material Aluminio 1100 en la fase de Preprocesador	83
	Magnético, para la bobina con carga.	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.47	modelo material u1 en la fase de Preprocesador Magnético,	84
	para la bobina con carga.	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.48	modelo material u2 en la fase de Preprocesador Magnético,	84
	para la bobina con carga.	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.49	modelo material u3 en la fase de Preprocesador Magnético,	85
	para la bobina con carga.	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.50	modelo material u4 en la fase de Preprocesador Magnético,	85
	para la bobina con carga.	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.51	modelo material u5 en la fase de Preprocesador Magnético,	86
	para la bobina con carga.	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.52	modelo material u6 en la fase de Preprocesador Magnético,	86
	para la bobina con carga.	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.53	modelo material u7 en la fase de Preprocesador Magnético,	87
	para la bobina con carga.	
	Configuración de parámetros en el bloque de propiedades	
Figura 5.54	modelo material cable en la fase de Preprocesador	87
	Magnético, para la bobina con carga.	
Figura 5.55	Estableciendo propiedades del circuito denominado bobina	88

Figura 5.56	Opciones para crear, mostrar y borrar la malla en la fase de Preprocesador Magnético, para la bobina con carga	88
Figura 5.57	Generación del mallado, creación de nodos y elementos en la bobina con carga	89
Figura 5.58	Generación del mallado en la geometría del modelo de la bobina con carga	89
Figura 5.59	Ejecutando el solver llamando a fkern.exe para la bobina con carga	90
Figura 5.60	Resultados después del análisis	90
Figura 5.61	Resultados en un punto ubicado fuera del espacio asignado para la bobina con carga	91
Figura 5.62	Resultados en un punto ubicado dentro del espacio asignado para la bobina con carga	92
Figura 5.63	Líneas de flujo en la geometría del elemento finito de la bobina con carga	92
Figura 5.64	Densidad de flujo y líneas de flujo en la bobina con carga	93
Figura 5.65	Densidad de flujo en la bobina con carga	93
Figura 5.66	Vectores de campo en la bobina con carga	94
Figura 5.67	Selección del bloque integral Área de sección transversal en la bobina con carga	95
Figura 5.68	Selección del bloque integral Volumen del bloque en la bobina con carga	96
Figura 5.69	Selección de valores de Magnitud de intensidad de campo en el borde inferior de la geometría para una bobina con carga	97
Figura 5.70	Gráfica de valores de Magnitud de intensidad de campo en el borde inferior de la geometría para una bobina con carga	98
Figura 5.71	en el borde superior de la geometría para una bobina con carga.	98
Figura 5.72	Gráfica de valores de Magnitud de intensidad de campo en el borde superior de la geometría para una bobina con carga	99
Figura 5.73	en el borde izquierdo de la geometría para una bobina con carga	99
Figura 5.74	Gráfica de valores de Magnitud de intensidad de campo en el borde izquierdo de la geometría para una bobina con carga	100

Figura 5.75	Selección de valores de Magnitud de intensidad de campo en el borde derecho de la geometría para una bobina con carga	100
Figura 5.76	Gráfica de valores de Magnitud de intensidad de campo en el borde derecho de la geometría para una bobina con carga	101
Figura 6.1	Asignación de parámetros físicos de estructura y magnéticos de la bobina con carga	115
Figura 6.2	Asignación del espacio en el cual se alojará la bobina sin carga	116
Figura 6.3	Magnitud de intensidad de campo magnético en base a los datos de la tabla 6.3 columna 1	117
Figura 6.4	Magnitud de intensidad de campo magnético en base a los datos de la tabla 6.3 columna 2	118
Figura 6.5	Magnitud de intensidad de campo magnético en base a los datos de la tabla 6.3 columna 3	118
Figura 6.6	Magnitud de intensidad de campo magnético en base a los datos de la tabla 6.3 columna 4	119
Figura 6.7	Magnitud de intensidad de campo magnético en base a los datos de la tabla 6.3 columna 5	119
Figura 6.8	Eficiencia de Inducción aproximada de la bobina vs. Frecuencia para diversos radios y número de vueltas e hilos óptimos	120
Figura 6.9	Eficiencia de Inducción exacta de la bobina vs. Frecuencia para diversos radios y número de vueltas e hilos óptimos	121
Figura 6.10	vs. Frecuencia para diversos radios y número de vueltas e hilos óptimos	122
Figura 6.11	Bobina comercial	123

ÍNDICE DE TABLAS

Tabla 2-1	Ventajas del calentamiento por inducción	5
Tabla 6-1	Resistencias aproximadas calculadas a una frecuencia fija 20 KHz	111
Tabla 6-2	Resistencias aproximadas calculadas a varias frecuencias	112
Tabla 6-3	Optimización del número de vueltas, hilos y eficiencia a frecuencia fija de 20 KHz	113
Tabla 6-4	Eficiencia máxima de inducción calculada utilizando número de vueltas e hijos óptimos	114
Tabla 6-5	Contraste de resultados teóricos y experimentales de eficiencia de la bobina plana	124

PREFACIO

Dentro de las múltiples innovaciones que se presentan en diversas aplicaciones de carácter industrial y doméstico, se tiene la tecnología de calentamiento por inducción, la misma que ha logrado surgir como una tecnología avanzada y eficiente, permitiendo sustituir convencionales sistemas eléctricos. Tanto es su apogeo que actualmente se cuenta con familias que utilizan las cocinas de inducción sobre todo en países de Europa y Asia, esto debido a que han demostrado ser dispositivos seguros y prácticos con un preciso control.

En nuestro medio se ha visto desarrollado el uso de cocinas de inducción por iniciativa del cambio de la matriz productiva impulsado por los últimos gobiernos, esto ha despertado el interés de múltiples investigadores y analistas en estudiar las ventajas que ofrece este tipo de calentamiento por inducción, no sólo en la aplicación doméstica de una cocina de inducción sino también en aplicaciones relacionadas con la industria de metales.

Este interés ha generado la necesidad de establecer cada vez adaptaciones que ayuden a mejorar la eficiencia en el uso de dichos dispositivos, para de esta manera implantar una gestión inteligente de la energía.

En el desarrollo de este proyecto de investigación se pretende realizar un análisis de una bobina plana de calentamiento por inducción considerando varios parámetros de tipo físico, eléctrico y magnético, que afectan de una forma u otra a la eficiencia de la misma. Para lo cual se realiza una revisión conceptual de los fundamentos que soportan el estudio a realizar, así como el desarrollo del modelo matemático que proporciona de manera teórica la eficiencia de inducción en base a parámetros como frecuencia de operación, radio de la hebra que conforma el cable de la bobina, volumen de cobre utilizado, espacio entre vueltas. Cabe mencionar que existen algunos factores que no se consideran dentro de este análisis ya que demandan de un mayor tiempo de estudio e investigación y pueden quedar como alternativas para proyectos futuros.

La parte principal del trabajo de investigación se localiza en establecer un modelo matemático para la eficiencia de inducción, el mismo que será trabajado

en el entorno de simulación que ofrece Matlab para de esa manera optimizarlo mediante el uso de una herramienta como es el algoritmo genético. Cabe mencionar que, se utiliza un programa de análisis mediante elementos finitos para magnetismo como es el programa FEMM, el mismo que servirá para elaborar la geometría de estudio, realizar el pre procesamiento y post procesamiento, de esa manera al ser enlazado con Matlab permitirá tomar parámetros que serán utilizados para la optimización de la eficiencia.

Por último, se realiza un contraste de la información obtenida entre el modelo obtenido con los datos que ofrece el simulador, así como los datos obtenidos de un prototipo de prueba.

PRÓLOGO

Dentro de las ventajas que ofrece el calentamiento por inducción están el ser un método rápido, limpio, eficiente energéticamente hablando, es controlable y se puede repetir las veces que sea necesario. Además su uso se ha generalizado a no sólo aplicaciones de carácter industrial, sino de carácter doméstico.

Como elemento principal de este proceso de calentamiento se encuentra la bobina de inducción, también denominada inductor, y podría decirse que son muchos los factores que contribuyen a la efectividad de una bobina de calentamiento por inducción, entre ellos podemos mencionar calidad de materiales con los cuales se construye, la forma, el mantenimiento que se le realice, el modo de fabricación, la forma de adaptar a la fuente de alimentación entre otras.

Es así que una bobina de inducción correctamente diseñada y fabricada es esencial para la eficacia de las diversas aplicaciones de calentamiento por inducción. Se debe considerar que la inducción es un método de calentamiento en el que no se necesita contacto ni llama para calentar en pocos segundos determinado objeto, para esto una corriente alterna que fluye a través de la bobina genera un campo magnético, y ese campo se concentra en un área determinada que es la que se desea calentar.

Dentro del desarrollo del trabajo de investigación se contemplan los siguientes pasos:

- Determinación del modelo matemático que indique el comportamiento de la eficiencia de la bobina, para esto se analizan diversos factores como son frecuencia de operación, número de vueltas que conforman la bobina, número es hebras que conforman una vuelta, longitud promedio de una vuelta, corriente y tensión, espacio disponible para colocar la bobina. Aunque en este trabajo se toman en consideración sólo los parámetros de radio de hebra, frecuencia de operación y espacio disponible.
- Utilizando un software que realiza análisis de elemento finito (FEMM) se realiza la geometría del problema de la bobina tanto sin carga como

con carga, además de establecer condiciones de frontera y definir las etapas de pre procesamiento y post procesamiento.

- Con la información obtenida del programa de elementos finitos, se establece un enlace con Matlab para realizar cálculo de eficiencia y su posterior optimización mediante la respectiva función objetivo y restricciones, para esto se utilizará algoritmo genético.
- Finalmente se analizan los resultados obtenidos y las curvas elaboradas de eficiencia versus la frecuencia de operación para establecer el comportamiento y el punto óptimo de operación para una eficiencia deseada, respetando las limitaciones del modelo desde el punto de vista físico, eléctrico y magnético.
- Conclusiones y recomendaciones

INTRODUCCIÓN

1.1 Técnicas numéricas aplicadas a la Ingeniería

Dentro del planteamiento del problema se debe considerar la utilización de variables inmersas en el modelo matemático, esto dará como resultado una expresión conformada por ecuaciones que tratan de describir el comportamiento natural del sistema, y en muchos casos estas ecuaciones son diferenciales. De esta manera se quiere enlazar efectos derivados de las fronteras del modelo y de los aspectos internos producidos por las diversas reacciones derivados del funcionamiento. Cabe mencionar que, la respuesta obtenida de la simulación ofrece una vía para establecer criterios de funcionamiento del sistema que es objeto de estudio, y permite realizar una evaluación para determinar la funcionalidad del modelo a desarrollar.

1.1.1 Pre proceso

Para el problema dado se debe tener definido un medio de trabajo en el cual deben interactuar los diversos componentes que son responsables de producir efectos tanto externos como internos. Además se considerará que, el material se encuentra distribuido de manera continua en todo su volumen.

Haciendo uso de herramientas asistidas por computador se genera una buena aproximación entre el medio geométrico real y el medio geométrico de estudio. Las condiciones externas e internas estarán definidas en el modelo matemático como variables conocidas, y pueden ser manipuladas por el investigador. Es importante indicar que se deberá definir las propiedades del modelo geométrico según el medio que lo constituya y las especificaciones del mismo.

1.1.2 Módulo de cálculo

Una vez que se ha establecido el modelo en la etapa de pre proceso, se procede a discretizar el modelo, para esto se genera una estructura de porciones que sean disjuntas entre sí denominados elementos finitos. La idea es que, dentro de los elementos finitos se interpolen las variables logrando expresar matemáticamente el comportamiento del problema mediante una cantidad finita de parámetros. Se tendrá una serie de nodos, y cada nodo de la discretización geométrica mantiene un equilibrio entre los efectos internos producto de las reacciones a los efectos externos causados por las condiciones de frontera que se establezcan en la simulación. Basado en esto se puede expresar ecuaciones de equilibrio, generando de esta manera un número finito de ecuaciones que depende de la cantidad de nodos que se registre en el mallado del modelo matemático.

Estas ecuaciones que, en muchos casos son diferenciales y que describen el comportamiento del modelo físico se pueden resolver mediante varios métodos, como los variacionales o métodos de residuos ponderados. Se pueden obtener matrices que se denominan de rigidez, cuyo significado dependerá del problema que se esté estudiando.

Una vez que se resuelve el sistema general de ecuaciones resultantes, se hallan las incógnitas que estarán relacionadas con las demás variables que se desean analizar.

1.1.3 Etapa de post proceso

Una vez que se han obtenido resultados numéricos, se procede a interpretar dichos resultados y realizar la presentación de los mismos mediante el uso de técnicas gráficas que faciliten la comprensión de ellos. Estos resultados e interpretaciones son analizados para realizar las modificaciones dentro del proceso de simulación.

1.1.4 Esquema general de solución mediante técnicas numéricas

Dentro del esquema general de la solución que se pueda brindar a un problema haciendo uso de técnicas numéricas, se tiene la elaboración del modelo geométrico en el cual intervienen programas destinados a diseñar y diagramar dicha geometría, planteamiento del modelo matemático, el mismo que tiene como fin emular el comportamiento del sistema real, la discretización del modelo diseñado, dar solución a las ecuaciones que se plantean una vez definidas las variables y los datos del problema, mediante la ayuda del ordenador y con algoritmos de optimización determinar soluciones óptimas del problema planteado, una vez que se ha obtenido resultados proceder a realizar la interpretación de los mismos para verificar o refutar las hipótesis planteadas al inicio del estudio, finalmente en base a las interpretaciones realizadas de los resultados obtenidos se procederá a realizar las modificaciones del caso, ya sea en nivel de precisión, en la geometría del modelo, en el modelo matemático, en las especificaciones de simulación, etc.

Figura 1.1 Esquema de solución a través de técnicas numéricas

1.2 Antecedentes

En el Ecuador el objetivo 11.1 del Plan Nacional para el Buen Vivir 2013 – 2017 define políticas y lineamientos para reestructurar la matriz energética buscando incentivar el uso eficiente y el ahorro de energía. Es por esto que desde agosto del 2014 en el Ecuador se implementó el programa de eficiencia energética para cocción por inducción en el cual se prevé que los usuarios residenciales efectúen progresivamente el cambio del uso de una cocina de gas por una cocina de inducción recibiendo varios incentivos para este efecto.

De esta manera el país podrá ahorrar recursos al disminuir la cantidad de importación de GLP que sirve de combustible para la cocina de gas, disminuye también gastos por subsidios a este combustible y por otro lado aporta a la disminución de la contaminación del ambiente puesto que se dejan de emanar CO2 por la combustión del GLP.

Los productores locales de cocinas de inducción han presentado al mercado varios modelos de estas cocinas que van desde pequeñas de un solo calentador hasta grandes de 4 calentadores que incluyen horno eléctrico y que en general consumen una potencia eléctrica que va desde los 1000 watts-hora hasta los 8000 watts-hora.

1.3 Justificación

Por lo expuesto anteriormente, este trabajo de investigación pretende ser un aporte a la industria local de tecnologías de calentamiento por inducción, específicamente cocinas de inducción, para que el producto tenga la certeza de que la bobina de inducción cuente con las características y eficiencia óptimas de diseño, garantizando un producto que cumpla con los estándares de eficiencia energética, calidad, seguridad y a la vez su precio sea competitivo en el mercado.

PLANTEAMIENTO DEL PROBLEMA

2.1 Tecnologías de calentamiento por inducción

Dentro de las aplicaciones que se puede dar al calentamiento por inducción se tiene, endurecer, unir o ablandar metales, así como materiales conductivos. En la actualidad se ha tornado un proceso eficiente ya que establece una combinación entre consistencia, velocidad, control y optimización energética. En un esquema básico de calentamiento por inducción una fuente de alimentación genera una corriente alterna, la misma que atraviesa un inductor el cual tiene dentro de sí al elemento que se desea calentar. Realizando la analogía con un transformador, se podría decir que el inductor actúa como el primario del transformador y el elemento a calentar hace las veces de secundario, esta pieza a calentar al ser atravesada por el campo magnético, experimentará corrientes inducidas las cuales son denominadas de Foucault, dichas corrientes fluirán en dirección contraria a la resistividad eléctrica del material provocando un calor sin contacto alguno entre el elemento y el inductor (EFD Induction). La tecnología del calentamiento por inducción provee ventajas sobre las técnicas convencionales de generación de calor, algunas se presentan en la Tabla 2.1:

Detallando algunas de las tecnologías y aplicaciones del calentamiento por inducción se tiene:

• Temple: se utiliza calor inducido y enfriamiento rápido también denominado ducha, de esta manera se consigue incrementar dureza y durabilidad del material. Este proceso es rápido, repetible, limpio, seguro y normalmente de diseño compacto, además ofrece una eficiencia sobre el ahorro energético. (EFD-Induction, 2010)

Figura 2.1 Temple por inducción Fuente: http://www.efd-induction.com/~/media/PDF/Applications/ApplicationsESP.ashx

• Braseado: proceso utilizado para unir materiales mediante el uso de un material de aportación (antioxidante), el calor inducido funde la aportación y la misma penetra en los materiales de base por capilaridad. (EFD-Induction, 2010)

Figura 2.2 Braseado por inducción Fuente: http://www.efd-induction.com/~/media/PDF/Applications/ApplicationsESP.ashx

• Soldadura: se induce calor electromagnéticamente en un tubo, de esta manera se hace ideal para soldar bordes de tuberías. Su controlabilidad y repetitividad permiten minimizar los elementos denominados chatarras y es de gran utilidad en industrias de tubos y tuberías. (EFD-Induction, 2010)

Figura 2.3 Soldadura por inducción Fuente: http://www.efd-induction.com/~/media/PDF/Applications/ApplicationsESP.ashx

• Producción de plasma: esto se realiza a través de un proceso denominado plasma acoplado inductivamente, de esta manera se puede producir fibra óptica, purificar metales, cerámicas. (EFD-Induction, 2010)

Figura 2.4 Producción de Plasma Fuente: http://www.efd-induction.com/~/media/PDF/Applications/ApplicationsESP.ashx

• Cocinas de inducción: se calienta el recipiente mediante un campo electromagnético en vez de utilizar calor producido por gas o por resistencias. Este proceso ofrece menos pérdidas de energía, la energía transferida se desprende en forma de calor.

Figura 2.5 Cocina de inducción Fuente: http://laplace.us.es/wiki/images/thumb/c/c4/Foto-cocina-induccion.jpg/360px-Foto-cocinainduccion.jpg

2. 2 Objetivo general

Optimizar la eficiencia de una bobina plana de calentamiento por inducción mediante el análisis del modelo matemático.

2.3 Objetivos específicos

- Comprender el principio físico del calentamiento por inducción electromagnética.
- Identificar y analizar las variables físicas, eléctricas y magnéticas presentes en una bobina de inducción.

- Establecer un modelo matemático para la eficiencia de la bobina de inducción y su dependencia con las características físicas de la bobina.
- Realizar la simulación electromagnética de una bobina de inducción mediante un software que utilice el método de elementos finitos para encontrar valores iniciales de cálculo.
- Optimizar la eficiencia estableciendo diferentes radios, número de vueltas y frecuencia de operación de la bobina de inducción.
- Contrastar los resultados de la optimización de la eficiencia de la bobina de inducción con las mediciones realizadas con un prototipo.

2.4 Descripción de una bobina de inducción

Una bobina de inducción es un tipo de transformador el cual es utilizado para generar impulsos a gran tensión por medio de una fuente de corriente continua en baja tensión. El mecanismo utilizado para producir las variaciones de flujo y así inducir la tensión deseada en el secundario, consiste en interrumpir en forma reiterada la corriente continua que atraviesa el primario utilizando un interruptor.

Otra descripción más enfocada a la aplicación de su trabajo, es la de una bobina por la cual circula corriente alterna a una frecuencia alta capaz de calentar objetos colocados en su interior sin realizar contacto alguno.

La bobina por su forma almacena energía en forma de campo magnético, al estar la bobina hecha de espiras de cable, el campo magnético circula por el centro y se cierra su camino por su exterior.

La bobina de inducción permite generar fuerzas electromotrices o tensiones elevadas, ya sea de tipo alterno o pulsativo, empleando pequeñas fuerzas electromotrices.

En una estructura básica de una bobina, la misma está constituida por dos solenoides de hilo de cobre aislados y enrollados alrededor de un núcleo de hierro, uno de los solenoides denominado como primario, está constituido por decenas o centenas de espiras de hilo, mientras el otro denominado secundario, consta de diferentes millares de espiras de hilo delgado. Al circular una corriente eléctricas por el primario, se crea un campo magnético, entonces el secundario se encuentra acoplado magnéticamente a través del núcleo de hierro. En el caso de primario se puede decir que actúa como inductor almacenador de energía en el campo magnético asociado, al realizar una interrupción de manera súbita en la corriente, el campo magnético baja rápidamente y eso provoca un impulso de alta tensión en el secundario debido a la inducción electromagnética. Al tener el secundario un elevado número de espiras en el arrollamiento, el impulso generado tendrá una tensión de millares de voltios, la cual es suficiente para provocar chispa o descarga eléctrica en el aire que separa los terminales del secundario. (Elettronica Veneta Mod. F-ROC/EV, 2013)

Figura 2.6 Descripción de una bobina de inducción Fuente: https://i.pinimg.com/originals/43/95/ca/4395ca2e8639af01c4b184dcb322b464.gif

Para el diseño de una bobina de inducción se deben tener en cuenta varios factores como, la potencial nominal, pérdidas mínimas, tamaño, temperatura,

peso, combinación de todos. Además se debe tomar en cuenta los requerimientos específicos de frecuencia de trabajo, potencia y temperatura.

2.5 Delimitación del problema

El problema planteado consiste en realizar el análisis de una bobina plana de calentamiento por inducción. Este análisis se lo realizará teniendo en consideración diversos factores que afectan a la eficiencia de la misma, tales como radio de la hebra que conforma el cable de la bobina, frecuencia de operación o rango de frecuencia de operación a la que trabajará la bobina según la aplicación que se le quiera dar, análisis mediante software de elementos finitos para el diseño de una bobina sin carga y una con carga bajo condiciones de una vuelta y una hebra.

No se considera en el análisis factores como relación de la sección transversal del cobre y de la bobina, el factor de utilización de ventana que se define como el producto del factor de aislamiento de la hebra y el factor de aire, el espesor del aislamiento.

Una vez que se tenga el modelo matemático de la eficiencia de la bobina de inducción, se procede a optimizar la función eficiencia mediante la utilización de algoritmo genético con la ayuda del software Matlab, y para eso se especifican restricciones tanto de carácter lineal como no lineal.

MARCO TEÓRICO

3.1 Variables físicas, eléctricas y magnéticas presentes en una bobina de calentamiento por inducción

3.1.1 Variables físicas

- Acoplamiento: al ser el inductor equivalente al primario de un transformador y el objeto a calentar equivalente al secundario, el acoplamiento entre bobina y objeto a calentar dependerá de la distancia entre ellos.
- Objeto a calentar: su geometría determina la forma de la bobina.
- Radio de hebras: el radio de las hebras que conforman el cable que se enrollará formando las espiras.
- Volumen de cobre: tiene que ver con el radio de los cables o de las hebras que conformen el cable, el cual será enrollado para conformar las espiras.
- Geometría: simetría cilíndrica en la disposición de las vueltas para conformar la bobina plana circular.
- Número de hebras: cantidad de hebras que conforma el cable
- Número de vueltas: cantidad de vueltas que da el cable para conformar la bobina

Figura 3.1 Variables físicas a considerar en una bobina de inducción Fuente: Umar, 2011-2012

3.1.2 Variables eléctricas

- Fuente de poder: dependiendo de la aplicación se necesita capacidad de entrega de potencia y frecuencia de operación.
- Potencia suministrada: esto se deriva en cierta medida por la fuente de poder y el valor de las resistencias equivalentes
- Potencia transferida a la carga: se debe considerar las pérdidas por la potencia disipada en la carga, en los devanados.
- Conductividad eléctrica

3.1.3 Variables magnéticas

- Densidad de flujo: un área en la cual la densidad de flujo magnético este concentrada, será el área con mayor densidad de corriente, de esta manera se pretende tener una máxima transferencia de energía.
- Líneas de flujo magnético y velocidad de calentamiento: líneas de flujo magnético concentradas en el centro de la bobina proveen máxima velocidad de calentamiento en dicha área.
- Permeabilidad magnética: de los medios
- Profundidad de penetración: distancia medida desde la superficie al interior de la pieza a la cual se le realiza el cálculo de densidad de corriente. Es dependiente de la resistividad eléctrica del material, la frecuencia de la corriente en a bobina, la permeabilidad magnética del vacío y del material

Figura 3.2 Variables magnéticas a considerar en una bobina de inducción Fuente: https://cdn.comsol.com/wordpress/2017/03/Magnetic-density-norm-distribution-coil-and-airphantom.png

3. 2 Diseño de un inductor

Básicamente para realizar el diseño de una bobina de inducción se utilizan datos que se han obtenido de estudios de geometrías elementales. En muchos de los casos se recurre a la experiencia previa y la información recabada es empírica. Sin embargo, se pueden establecer algunas consideraciones que son indispensables y que servirán de guía para el desarrollo del diseño del inductor. Estos son:

- Acoplamiento, dado que el inductor se comportas de forma similar al primario de un transformador mientras que el objeto a calentar hace las veces del conjunto núcleo y secundario.
- Eficiencia respecto al acoplamiento entre la bobina de inducción y el objeto que se desea calentar será inversamente proporcional al cuadrado de la distancia entre ellos.
- Máxima transferencia de energía, para esto se debe garantizar que la distancia entre la superficie del objeto y el inductor sea lo más pequeña posible, esto a fin de garantizar la máxima transferencia de energía.
- Máxima velocidad de calentamiento
- La geometría del objeto que se desea calentar, esto es de suma importancia ya que de ello también depende la forma que tendrá la bobina.
- Material y revestimiento.
- Tipo de fuente de poder que se utilizará y la capacidad de entregar potencia y frecuencia de operación.

Figura 3.3 Esquema básico de una bobina de inducción Fuente: González, 2008

3.2.1 Principios del calentamiento por inducción

Si se considera una fuente que genere una fuerza electromotriz (fem) y un circuito conformado por un alambre conductor, se determina que, existe una corriente eléctrica la cual se encargará de generar un campo magnético denominado \vec{B} .

Mediante las ecuaciones de Maxwell se puede establecer una relación entre los diversos aspectos electromagnéticos (Ferrando y col.). Estos son:

Ecuaciones en forma diferencial Ley de Ampere $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ Ley de Faraday $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ Ley de Gauss $\nabla \cdot \vec{D} = \rho$ Ley de Gauss $\nabla \cdot \vec{B} = 0$ Donde: \vec{E} : Campo eléctrico voltios/metro \vec{H} : Intensidad del campo magnético Amperios/metro \vec{D} : Desplazamiento del campo eléctrico Coulombs/m² \vec{B} : Flujo del campo magnético $\frac{Weber}{m^2} = Tesla$ \vec{J} : Densidad de corriente Amperios/m² ρ : Densidad de carga Coulombs/m³

En base a las ecuaciones diferenciales citadas se puede deducir la ecuación de continuidad, para esto se debe considerar la divergencia de la ley de Ampere. De esta manera se establece una relación entre cargas y corrientes.

$$0 = \nabla \cdot \vec{J} + \frac{\partial \nabla \cdot \vec{D}}{\partial t}$$
$$\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$$

Ecuaciones de Maxwell en forma integral

Para determinar las ecuaciones en forma integral se aplica los teoremas de Stokes y de la divergencia. (Ferrando y col.)

$$\oint \vec{H} \cdot d\vec{l} = \iint \left(\vec{J} + \frac{\partial \vec{D}}{\partial t} \right) \cdot d\vec{S}$$

$$\oint \vec{E} \cdot d\vec{l} = -\iint \left(\frac{\partial \vec{B}}{\partial t} \right) \cdot d\vec{S}$$

$$\iint \vec{D} \cdot d\vec{S} = \iiint \rho dV$$

$$\iint \vec{B} \cdot d\vec{S} = 0$$

3.3 Fundamentos de transferencia de calor

Se define como calor a la energía en tránsito que se debe a una diferencia de temperatura. Se tiene diferentes tipos de transferencia de calor, y estos son: conducción, convección, radiación.

3.3.1 Transferencia de calor por conducción

El proceso de transferencia de calor por conducción es el resultado de interacciones moleculares. Es así que, las moléculas de una parte de un objeto que se encuentra a una temperatura más alta vibran con una rapidez mayor, estas moléculas chocan contra aquellas moléculas menos energéticas que se encuentran ubicadas hacia la parte más fría del objeto, y les transfieren una parte de su energía.

De esta manera se realiza la transferencia de energía por conducción desde una región con temperatura más alta hacia una región con temperatura más baja. Se podría decir que la transferencia es el resultado de una diferencia de temperaturas.
Entre los sólidos se tiene dos categorías, metales y no metales. Los metales son buenos conductores de calor, en otras palabras son denominados conductores térmicos, esto se debe a que tienen un gran número de electrones que pueden moverse libremente. Los no metales, tienen un número pequeño de electrones libres, por lo tanto son malos conductores de calor en comparación con los metales.

La capacidad de una sustancia para conducir calor depende de la fase de dicha sustancia, es así que los gases son malos conductores térmicos, ya que, sus moléculas están separadas a tal grado que, los choques entre ellas son menos frecuentes. En el caso de los líquidos y sólidos se tiene que, son mejores conductores térmicos en comparación que los gases, esto se debe a que, las moléculas están más juntas y pueden interactuar entre sí con mayor facilidad.

En términos generales, la conducción de calor se define cuantitativamente como la tasa del flujo de calor con el tiempo en un material para una diferencia de temperatura dada.

Fuente: https://image.slidesharecdn.com/transferenciapresentacion-150531002057-lva1-app6891/95/transferencia-de-calor-por-conduccin-bidireccional-3-638.jpg?cb=1433031839

Está tasa de flujo de calor a través de una sustancia depende de la diferencia de temperatura entre sus fronteras, y en consecuencia, la conducción de calor depende del tamaño y la forma del objeto, así como de su composición. Dentro de este contexto aparece el término denominado conductividad térmica, la misma que es una constante que depende del tipo de material y caracteriza la capacidad de dicho material para conducir calor.

3.3.2 Transferencia de calor por convección

El proceso de transferencia de calor por convección es el resultado de una transferencia de masa, la cual puede ser natural o forzada. Un ejemplo es la transferencia de calor de convección libre que se presenta a partir de componentes calientes en una serie vertical de placas de circuito en aire estancado. El aire que hace contacto con los componentes experimenta un aumento de temperatura para que la densidad se reduzca.

En el caso de la convección forzada, el fluido se mueve mecánicamente, de esta manera se produce la transferencia sin que haya necesidad de una diferencia de temperatura. Ejemplos típicos de convección forzada son sistemas domésticos de calefacción por aire forzado, el sistema de enfriamiento de un motor de un auto. Básicamente este modo de transferencia de calor implica la transferencia de energía por el movimiento del fluido o la difusión molecular.

Figura 3.5 Transferencia de calor por convección Fuente: Umar, 2011-2012

Considerando la transferencia de calor a un fluido que circula sobre una placa plana mostrada en la figura 3.5, si el número de Reynolds es muy grande, entonces se diferencian tres regiones de flujo diferentes. En forma adyacente a la pared existe una capa secundaria laminar donde la transferencia de calor ocurre por conducción termina, fuera de dicha capa secundaria se tiene una región de transición denominada capa de amortiguación, en ella la mezcla de remolinos y os efectos de conducción son significativos; más allá de la capa de amortiguación está la región turbulenta, donde el mecanismo dominante de transferencia es el mezclado por remolinos.

Para describir la transferencia de calor por convección se tiene la Ley de Newton de enfriamiento, la cual se expresa como (Umar, 2011-2012):

$$Q = hA(T_o - T_\infty)$$

Donde: Q: tasa de tranferencia de calor h: coeficiente de transferencia de calor A: área $T_o: temperatura de la pared$ $T_\infty: temperatura del fuido de la corriente libre$

3.3.3 Transferencia de calor por radiación

El tercer modo de transferencia de calor no necesita de ningún medio, ya que la transferencia se obtiene mediante ondas electromagnéticas. Como ejemplo se tiene el caso de la transferencia de calor por radiación al estar parado frente a una fogata. Este medio de transferencia de energía depende de las ondas electromagnéticas en intervalos de longitud de onda de 0.1 a 100 μm . Además esta transferencia de calor puede viajar en el vacío, como la energía solar.

Existe una dependencia de propiedades superficiales tales como colores, orientación superficial y cuarta potencia de la temperatura absoluta de la superficie, es así que, la ecuación base para la transferencia de calor de radiación entre dos superficies grises por ejemplo está dada por (Umar, 2011-2012):

$$Q = \sigma \varepsilon f A \big(T_1^4 - T_2^4 \big)$$

Donde: σ : constante de Stefan – Boltzman ε : emisividad de la superficie que proporciona la eficiencia con la que una superficie emite energia con respecto a un cuerpo negro f: factor geométrico que depende de la orientación entre las superficies

Figura 3.6 Transferencia de calor por radiación Fuente: http://www.tv411.org/sites/default/files/ESScience7_A1_Q8.png

MODELADO DEL SISTEMA

El diseño de una bobina de calentamiento por inducción es dependiente de varios factores como potencia, pérdidas, tamaño, temperatura, y la combinación de todos los factores mencionados anteriormente.

Para este trabajo se realiza una combinación de simulaciones de campo con el método de elementos finitos y fórmulas para realizar cálculos de pérdidas.

4.1 Análisis electromagnético para la eficiencia de calentamiento por inducción

Para el caso de una bobina plana como el de la figura 4.1, se puede establecer el circuito equivalente del sistema de calentamiento por inducción como la conexión en serie de una inductancia L_{ind} y dos resistencias, la una, propia del inductor R_{ind} y la otra resistencia del devanado, R_{DEV} .

Figura 4.1: Circuito equivalente de un sistema de calentamiento de inducción Fuente: Lope, I. 2015

Se puede decir que, la eficiencia inductiva de un sistema de transferencia de calor por inducción, a la cual se denominará η_{ind} se define como la razón entre la potencia transferida, P_{ind} respecto a la potencia eléctrica total suministrada a la bobina, P_{ent} .

$$\eta_{ind} = \frac{P_{ind}}{P_{ent}} = \frac{\frac{1}{2}I_0^2 R_{ind}}{\frac{1}{2}I_0^2 R} = \frac{R_{ind}}{R_{ind} + R_{DEV}}$$
[4.1]

 I_0 : corresponde a la corriente de la bobina R_{ind} : resistencia que representa la potencia transferida R_{DEV} : resistencia que representa la potencia disipada en el devanado Para establecer el valor de las resistencias se debe realizar simulaciones de campo mediante Análisis de Elementos Finitos del sistema de calentamiento por inducción.

4.1.1 Modelo electromagnético del calentamiento por inducción

Para establecer el modelado electromagnético se considerará una sección rectangular para una bobina de simetría rotacional, está geometría se la ve representada en la figura 4.2, en donde r_{int} y r_{ext} son los radios interno y externo de la bobina, respectivamente, además t es el espesor del devanado (Lope y col., 2015). Para el análisis del modelo se considerará que la bobina consiste de n vueltas distribuidas equitativamente las cuales se enrollan en forma compacta y constan de n_h hebra o hilos de radio r_w .

Trabajando con cables multi-hilo con hilos equivalentes, la corriente eléctrica puede ser asumida como uniformemente distribuida sobre toda el área de la sección transversal en el rango de frecuencia de operación requerida.

Figura 4.2: Bobina plana en una configuración de flujo transversal Fuente: Lope, 2015

En la figura 4.2 se pueden apreciar parámetros físicos que aportan al análisis del modelo matemático de la bobina plana, estos son:

 $\begin{array}{l} \mu_{carga}: permeabilidad magnética del material que conforma la carga\\ \sigma_{carga}: conductividad eléctrica del material que conforma la carga\\ \mu_{flujo}: permeabilidad magnética del concentrador de flujo \end{array}$

$$\begin{split} &\sigma_{flujo}: conductividad \ eléctrica \ del \ concentrador \ de \ flujo \\ &t_{carga}: espesor \ del \ material \ que \ corresponde \ a \ la \ carga \\ &t_{flujo}: espersor \ del \ concentrador \ de \ flujo \ magnético \\ &t: espesor \ del \ devanado \\ &d_{carga}: \ distancia \ entre \ el \ devanado \ y \ la \ carga \\ &d_{flujo}: \ distancia \ entre \ el \ concentrador \ de \ flujo \ magnético \ y \ el \ devanado \end{split}$$

A la bobina se la puede considerar como un medio conductor ideal (conductividad nula), la cual se modela en simulaciones de Análisis de Elementos Finitos para la densidad de corriente constante, J_{bobina} . Si se consideran los siguientes parámetros:

 S_{bob} : sección transversal de la bobina S_V : sección transversal de una vuelta

Relacionando las secciones de la bobina y de una vuelta, se tiene que:

$$S_{bob} = nS_V$$
$$S_V = \frac{S_{bob}}{n}$$

Se puede definir a la densidad de corriente constante como:

$$J_{bobina} = \frac{I_0}{S_V}\hat{\varphi} = \frac{I_0}{\frac{S_{bob}}{n}}\hat{\varphi} = n\frac{I_0}{S_{bob}}\hat{\varphi} \Longrightarrow J_{bob} = n\frac{I_0}{t(r_{ext} - r_{int})}\hat{\varphi}$$
[4.2]

 $\hat{\varphi}$: vector unitario representando la dirección azimutal del sistema.

El material, el medio y la carga tienen conductividad eléctrica σ_k y permeabilidad magnética μ_k , donde k puede ser la carga o la ferrita. Para el análisis, se considerará a la ferrita como un medio libre de pérdidas. Además los parámetros geométricos y distancias del medio y de la bobina son considerados.

4.2 Método de elementos finitos

El método de elementos finitos consiste en un procedimiento numérico para la resolución de problemas relacionados con ingeniería (Kattan, 2008). Básicamente se establecen una serie de pasos en forma general, los cuales son:

- Discretizar el dominio, lo cual implica realizar una subdivisión del dominio en elementos y nodos, para el caso de sistemas discretos este paso ya está realizado, mientras que para sistemas continuos se hace necesario la discretización y las respuestas que se obtiene son aproximaciones. Cabe mencionar que la precisión de la solución dependerá de la discretización utilizada.
- Selección de la función de interpolación, la función de interpolación se define solamente en cada subdominio y ellas tienen coeficientes.
- Formulación del sistema para resolver el problema, en esta sección se tiene el sistema de ecuaciones representando la solución del campo.
- Establecer condiciones de contorno.
- Resolver las ecuaciones.
- Post procesamiento, para obtener información adicional.

4.3 Topología de un sistema de energía

Figura 4.3: Diagrama de bloques de conversión de potencia de un sistema de calentamiento por inducción Fuente: http://ieeexplore.ieee.org/stamp.jsp?tp=&arnumber=6603370 Una aplicación típica de una bobina plana circular de calentamiento por inducción es la cocina de inducción, en la figura 4.3 se puede observar el diagrama de bloques de conversión de potencia de un sistema de calentamiento por inducción para esta aplicación. En la misma se identifican varias etapas empezando por el suministro de red eléctrica, los filtros, la etapa rectificadora, la etapa inversora controlada mediante un bloque con ese propósito, y es en esta etapa inversora en donde se observa el comportamiento de las señales. Este comportamiento obedece a la denominada conmutación, en general los dispositivos de conmutación de semiconductores operan en varios tipos de convertidores PWM DC-DC y en inversores DC-AC (Umar, 2011-2012). Es así que una corriente dada se activa o desactiva a un nivel específico de voltaje cada vez que se produce el cambio, de esta manera se obtienen las pérdidas por conmutación, cuanto mayor sea la frecuencia, más es la pérdida de conmutación, y eso es una limitación para aumentar demasiado la frecuencia.

Básicamente si se aumenta la frecuencia de conmutación, se puede reducir el tamaño del transformador y filtro. Esto ayuda a construir un convertidor más pequeño y liviano, con un alto valor de densidad de potencia, pero las pérdidas de conmutación disminuyen la eficiencia de todo el sistema de potencia en la conversión de energía, produciendo más pérdidas a una frecuencia más alta.

4.4 Potencia inductiva transferida

Para efectos de este análisis se tiene que, la impedancia equivalente inducida de este sistema se define como:

$$Z_{ind} = R_{ind} + j\omega L_{ind}$$
 [4.3]
$$Z_{ind} = \frac{V_{ind}}{I_0}$$
 [4.4]

Donde V_{ind} es el voltaje inducido de una bobina ideal libre de pérdidas, ignorando los efectos capacitivos, Z_{ind} es modelada como una resistencia en serie con una inductancia, en donde R_{ind} representa la potencia inductiva transferida a la carga y L_{ind} represente el campo magnético del sistema.

El voltaje V_{ind} se obtiene mediante la integral del campo eléctrico azimutal E_{φ} a lo largo de la proyección de la bobina. Considerando la simetría axial y asumiendo que la bobina consiste de *n* vueltas distribuidas equitativamente, la fuerza electromotriz (fem) inducido se obtiene por integración de E_{φ} sobre el volumen de la bobina dividido entre el área de su sección transversal S_{bob} y multiplicado por el número de vueltas *n*.

$$V_{ind} = -\oint_{devanado} \vec{E} \cdot \vec{dl} = -\iint \frac{E_{\varphi}[2\pi r dr dz]}{S_V} = -\iint \frac{2\pi r E_{\varphi} dr dz}{\frac{S_{bob}}{n}}$$
$$V_{ind} = -\frac{n}{S_{bob}} \int_{0}^{t} \int_{r_{int}}^{r_{ext}} 2\pi r E_{\varphi} dr dz; \quad 0 \le z \le t \qquad r_{int} \le r \le r_{ext} \qquad [4.5]$$

Donde E_{φ} se obtiene de las simulaciones del Análisis de Elementos Finitos y r es la coordenada radial. Sobre la impedancia equivalente, se debe tener claro que, el número de vueltas de la bobina es de especial interés y a fin de parametrizar el número de vueltas es conveniente considerar que se tiene una bobina con una sola vuelta, es decir que n=1, y la misma geometría presentada anteriormente. Las bobinas con esta configuración se denominarán bobinas de una vuelta. Teniendo $E_{\varphi,1}$ el campo eléctrico generado por una bobina de una vuelta, por lo tanto, el voltaje inducido de una vuelta será:

$$V_{ind} = -\frac{n}{S_{bob}} \int_{0}^{t} \int_{r_{int}}^{r_{ext}} 2\pi r E_{\varphi} dr dz$$

Si n=1, entonces:

$$V_{ind,1} = -\frac{1}{S_{bob}} \int_{0}^{t} \int_{r_{int}}^{r_{ext}} 2\pi r E_{\varphi,1} dr dz \qquad [4.6]$$

En este caso de tiene que considerar que la longitud de la bobina de una vuelta corresponde a la longitud promedio de las vueltas que conforman la bobina, a misma se denominará MLT y se obtiene determinando el volumen y dividiendo para el área de la bobina.

Figura 4.4: Esquema del diferencial de volumen

Diferencial de volumen
$$dV = 2\pi r dr dz$$

Volumen = $\int_{0}^{t} \int_{r_{int}}^{r_{ext}} 2\pi r dr dz$

Si se divide el volumen entre el área de la sección de la bobina, entonces se tiene la longitud promedio de la misma.

$$MLT = \frac{Volumen}{S_{bob}} = \frac{\int_{0}^{t} \int_{r_{int}}^{r_{ext}} 2\pi r dr dz}{S_{bob}} = \frac{\pi (r_{ext}^{2} - r_{int}^{2})t}{t(r_{ext} - r_{int})}$$
[4.7]

Considerando que la sección transversal es rectangular

$$MLT = \frac{\pi (r_{ext} - r_{int})(r_{ext} + r_{int})t}{t(r_{ext} - r_{int})} = \pi (r_{ext} + r_{int})$$

Suponiendo un medio lineal, es decir un medio que simultáneamente cumple las condiciones de ser homogéneo, isotrópico, pasivo y continuo, el campo E_{φ} puede ser calculado como $E_{\varphi} = nE_{\varphi,1}$. Por lo tanto el V_{ind} puede escribirse como:

$$V_{ind} = -\frac{n}{S_{bob}} \int_{0}^{t} \int_{r_{int}}^{r_{ext}} 2\pi r E_{\varphi} dr dz = -\frac{n}{S_{bob}} \int_{0}^{t} \int_{r_{int}}^{r_{ext}} 2\pi r (n E_{\varphi,1}) dr dz$$

$$V_{ind} = n^2 \cdot \left[-\frac{1}{S_{bob}} \int_0^t \int_{r_{int}}^{r_{ext}} 2\pi r E_{\varphi,1} dr dz \right] \Longrightarrow V_{ind} = n^2 V_{ind,1}$$
 [4.8]

Se puede establecer la linealidad del medio por lo siguiente (Ayuda Electrónica, 2010):

- Se considera un medio homogéneo ya que tiene las constantes de campo eléctrico, magnético y de conducción.
 ε: permitividad constante (faradios/metro)
 μ: permeabilidad constante (henry/metro)
 σ: conductividad constante (mho/metro)
- Se define como un medio isotrópico porque la densidad del campo eléctrico es paralela a la intensidad de campo eléctrico, la densidad de campo magnético es paralela a la intensidad de campo magnético y la densidad de corriente de conducción es paralela a la intensidad de campo eléctrico. Expresado de otra forma: D || E; B || H; J || E

Para que esto suceda es necesario que las constantes que representan el campo electromagnético y de conducción sean puramente reales. Entonces con estas dos condiciones se tiene que:

ε: constante y real μ: constante y real σ: constante y real

- Se establece la condición de que no debe existir ningún generador de onda electromagnética, la onda existe, pero no se conoce la fuente que la origina. Esta condición indica que el medio es pasivo.
- Finalmente un medio continuo ya que mantiene la misma impedancia de campo, esto permite trabajar con las ecuaciones de Maxwell en su forma vectorial diferencial.

Partiendo de este análisis sobre la fuerza electromotriz inducida, se puede considerar el efecto en la impedancia de la bobina libre de pérdidas.

$$Z_{ind} = \frac{V_{ind}}{I_0} = \frac{n^2 V_{ind,1}}{I_0} = n^2 Z_{ind,1} = n^2 [R_{ind,1} + j\omega L_{ind,1}]$$
$$= n^2 R_{ind,1} + n^2 j\omega L_{ind,1}$$
$$Z_{ind} = n^2 R_{ind,1} + n^2 j\omega L_{ind,1}$$
[4.9]

Donde:

 $Z_{ind,1}$ $R_{ind,1}$ $L_{ind,1}$

Son impedancia, resistencia e inductancia de una bobina de una vuelta, respectivamente.

4.5 Disipación en devanados

El modelo que se estructura se basa en una descomposición DC, pérdidas de proximidad y efecto piel (Ferreira, 1989), por lo cual se puede considerar a la resistencia del devanado como:

$$R_{DEV} = R_{COND} + R_{PROX}$$
 [4.10]

 R_{COND} : resistencia de conducción, la cual incluye la resistencia DC y la de efecto piel.

 R_{PROX} : resistencia de proximidad, la cual corresponde a las pérdidas de proximidad inducida por la propia bobina.

Se debe considerar que, el número de hebras de las que está conformado el cable es un parámetro de importancia relevante. Es por eso que, para el análisis del modelo planteado se consideran hebras equivalentes. Sin embargo para el análisis de R_{DEV} se considerará un cable con una hebra, es decir $n_h = 1$.

Para efectos de facilidad de análisis y la posterior generalización, se establecerá la parametrización con respecto al número de vueltas. Esto permitirá que se realice el análisis de pérdidas de la bobina sobre la base de la bobina de una vuelta y de una hebra.

Considerando una hebra redonda de radio r_w , la resistencia de conducción por unidad de longitud será (Lope y col., 2015):

$$R_{CONDu,1} = \frac{1}{\text{Área de sección de la hebra } * \sigma_h} \Phi_{COND} \left(\frac{r_w}{\delta_h}\right)$$

Donde:

$$\begin{split} &\text{ Area de sección de la hebra} = \pi r_w^2 \\ &\sigma_h: \text{ conductividad del material de la hebra} \\ &\delta_h: \text{ profundidad del conductor por el efecto piel; } \\ &\delta_h = \frac{1}{\sqrt{\pi \mu_0 \sigma_h f}} \\ &\mu_0: \text{ permeabilidad de espacio libre} \\ &f: \text{ frecuencia} \\ &\Phi_{COND}\left(\frac{r_h}{\delta_h}\right): \text{ función que depende de la geometría} \\ &y \text{ la frecuencia de las pérdidas de piel} \end{split}$$

La expresión para $R_{CONDu,1}$ queda así:

$$R_{CONDu,1} = \frac{1}{\pi r_w^2 \sigma_h} \Phi_{COND} \left(\frac{r_w}{\delta_h}\right)$$
[4.11]

Para el caso de hebras redondas aislada y ampliamente espaciada una expresión exacta de $\Phi_{COND}\left(\frac{r_w}{\delta_h}\right)$ en términos de funciones de Bessel se ha establecido en (Carretero y col. 2012). En el caso de multihilos estrechamente empaquetados, esta función no es exacta ya que se tiene una pequeña discrepancia para diámetros de hilos iguales o menores que la profundidad de piel (Sullivan, 1999).

Mediante $R_{CONDu,1}$ se puede determinar la resistencia de conducción para una bobina de una vuelta con una hebra de radio r_w . Para esto, se considera que la longitud de esta vuelta se obtiene dividiendo el volumen de la bobina entre el área de la sección transversal, se denominará a está longitud media de una vuelta de la siguiente manera MLT.

La resistencia de conducción para una bobina de una vuelta con una hebra de radio r_w , será:

$$R_{COND1,1} = R_{CONDu,1} * MLT = R_{CONDu,1} * \left[\frac{Volumen \ de \ bobina}{\acute{A}rea \ de \ sección}\right]$$

$$R_{COND1,1} = R_{CONDu,1} * \left[\frac{\int_0^t \int_{r_{int}}^{r_{ext}} 2\pi r dr dz}{S_{bob}} \right] = R_{CONDu,1} * \frac{1}{S_{bob}} \int_0^t \int_{r_{int}}^{r_{ext}} 2\pi r dr dz$$

$$R_{COND1,1} = \frac{1}{\pi r_w^2 \sigma_h} \Phi_{COND} \left(\frac{r_w}{\delta_h}\right) \frac{1}{S_{bob}} \int_0^t \int_{r_{int}}^{r_{ext}} 2\pi r dr dz \qquad [4.12]$$

Con los siguientes supuestos, equivalencia de las hebras y un radio de la hebra igual o menor que la profundidad de piel, el cable se puede considerar como el paralelo de las n_h hebras equivalentes. Además, la bobina puede ser considerada como la conexión en serie de n espiras o vueltas de longitud MLT. Por lo tanto, la resistencia de conducción R_{COND} puede ser escrita de la siguiente manera:

$$R_{COND} = n[R_{\parallel}]; \ donde \ \frac{1}{R_{\parallel}} = n_h \frac{1}{R_{COND1,1}}$$

$$R_{COND} = n \left[\frac{R_{COND1,1}}{n_h} \right] \Rightarrow R_{COND} = \frac{nR_{COND1,1}}{n_h} \qquad [4.13]$$

$$R_{COND} = \frac{n}{n_h} \frac{MLT}{\pi r_w^2 \sigma_h} \Phi_{COND} \left(\frac{r_w}{\delta_h} \right) \qquad [4.14]$$

Según el análisis realizado para la resistencia de conducción, se puede establecer el estudio de la resistencia de proximidad R_{PROX} . Es así que, la resistencia de proximidad por unidad de longitud de una hebra redonda de radio r_w se puede expresar como (Lope y col., 2015):

$$R_{PROXu,1} = \frac{4\pi}{\sigma_h} \Phi_{PROX} \left(\frac{r_w}{\delta_h}\right) |\overline{H_0}|^2 \qquad [4.15]$$

Donde $|\overline{H_0}|^2$ es el promedio espacial del campo magnético transversal aplicado a una hebra para una corriente de bobina $I_0 = 1 A$. Para el modelo establecido, el valor de $|\overline{H_0}|^2$ se puede calcular por análisis de elementos finitos (FEA) y depende del medio circundante. Se debe indicar que en $\Phi_{PROX}\left(\frac{r_w}{\delta_h}\right)$ se incluye la dependencia de la geometría y la frecuencia, además se puede expresar en funciones de Bessel (Gyselinck y col., 2005).

Considerando a $R_{PROX1,1}$ como la resistencia de proximidad de la bobina de una vuelta de una hebra de radio r_w , se la puede calcular aplicando (4.15) el cual requiere $|\overline{H_{0,1}}|^2$ que es el promedio espacial del campo generado por una bobina de una vuelta en las posiciones de la bobina. Se podrá obtener este valor integrando $2\pi r |\overline{H_{0,1}}|^2$ sobre el volumen de la bobina dividido para el área de la sección transversal.

$$R_{PROX1,1} = \frac{4\pi}{\sigma_h} \Phi_{PROX} \left(\frac{r_w}{\delta_h}\right) \frac{\int_{S_{bob}} 2\pi r \left|\overline{H_{0,1}}\right|^2 dr dz}{S_{bob}}$$
[4.16]

Suponiendo la linealidad del medio, $\overline{H_0}$ puede ser expresado como el campo generado por la bobina de una vuelta de un hilo $\overline{H_{0,1}}$ multiplicado por el número de vueltas *n*, quedando $\overline{H_0} = n\overline{H_{0,1}}$

De esta manera
$$|\overline{H_0}|^2 = |n\overline{H_{0,1}}|^2 = \left[\sqrt{(nH_{0,1x})^2 + (nH_{0,1y})^2 + (nH_{0,1z})^2}\right]^2$$

 $|\overline{H_0}|^2 = n^2 \left[\sqrt{(H_{0,1x})^2 + (H_{0,1y})^2 + (H_{0,1z})^2}\right]^2 = n^2 |\overline{H_{0,1}}|^2$

Además el cable se considera como el paralelo de n_h hebras y la bobina es la conexión serie de n vueltas igualmente distribuidas, por lo tanto:

$$R_{PROX} = nn_{h} \frac{4\pi}{\sigma_{h}} \Phi_{PROX} \left(\frac{r_{w}}{\delta_{h}}\right) \frac{\int_{S_{bob}} 2\pi r |\overline{H_{0}}|^{2} dr dz}{S_{bob}}$$
$$R_{PROX} = nn_{h} \frac{4\pi}{\sigma_{h}} \Phi_{PROX} \left(\frac{r_{w}}{\delta_{h}}\right) \frac{\int_{S_{bob}} 2\pi r n^{2} |\overline{H_{0,1}}|^{2} dr dz}{S_{bob}}$$

$$R_{PROX} = n^{3} n_{h} \left[\frac{4\pi}{\sigma_{h}} \Phi_{PROX} \left(\frac{r_{w}}{\delta_{h}} \right) \frac{\int_{S_{bob}} 2\pi r \left| \overline{H_{0,1}} \right|^{2} dr dz}{S_{bob}} \right]$$
$$R_{PROX} = n^{3} n_{h} R_{PROX1,1} \qquad [4.17]$$

Se debe indicar que en esta ecuación de R_{PROX} :

- $H_{0,1}$ es dependiente de la frecuencia porque los medios conductores están presentes en el sistema.
- Según el modelo ideal que se adoptó, $H_{0,1}$ no es afectado por corrientes auto inducidas en los conductores de la bobina. Esto será válido si se utilizan cables con un nivel de varado suficiente.
- Considerando $\Phi_{PROX}\left(\frac{r_w}{\delta_h}\right)$ sólo válido para hilos redondos aislados y espaciados, esta ecuación no se puede considerar exacta. Sin embargo, la aproximación es válida si el radio de la hebra es igual o menor a la profundidad de piel.

Para el caso de las resistencias en una bobina circular el alambre utilizado consiste en un haz de hebras conductores cilíndricas, las mismas que están trenzadas de tal forma que tienen una equivalencia de transposición azimutal y longitudinal.

Esto da como resultado que cada hebra tenga la misma impedancia y la corriente se distribuya por igual entre los filamentos. Cabe mencionar que, la geometría de la bobina circular está determinada por el radio interno, radio externo y la altura, como se muestra en la figura 4.5. Además, la bobina se puede modelar como una densidad de corriente uniforme dado que el radio y la distancia entre las hebras son pequeños comparados con las dimensiones de la bobina.

Figura 4.5: Vista lateral y superior de una bobina en forma de anillo Fuente: Carretero, 2011

Al tener una bobina ideal en el aire, se puede caracterizar eléctricamente por una inductancia L que será independiente de la frecuencia, y la resistencia de este tipo de dispositivos puede determinarse por la adición de conducción y pérdidas de proximidad en los devanados.

4.6 Aproximación de las resistencias de conducción y proximidad en baja frecuencia

Para un diseño específico es necesario establecer la frecuencia de funcionamiento, el número de hebras y el diámetro de la hebra. Se debe considerar que resultaría tedioso extraer valores prácticos para R_{COND} y R_{PROX} dado que Φ_{COND} y Φ_{PROX} incluyen funciones de Bessel (Carretero y col., 2011). Otra opción más viable y que se tomará en este trabajo, consiste en realizar una aproximación basada en la tendencia asintótica de Φ_{COND} y Φ_{PROX} en valores de baja y alta frecuencia.

Considerando las funciones de Bessel de primera especie y de orden $n J_n(x)$, las cuales se obtienen proponiendo soluciones en desarrollo de serie de potencias para la ecuación de Bessel (Instituto de Física de la Facultad de Ingeniería, 2011). Para lo cual se obtiene que:

$$J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{x}{2}\right)^{2k}}{k! (n+k)!}$$
[4.18]

De esta expresión se puede determinar que $J_{-n}(x) = (-1)^n J_n(x)$ para todo n entero.

Para valores pequeños de x, la aproximación al primer término en el desarrollo de 4.18 queda (Instituto de Física de la Facultad de Ingeniería, 2011):

$$J_n(x) \approx \left(\frac{x}{2}\right)^n \frac{1}{n!}$$

Para este caso particular $x = \frac{r_w}{\delta_h}$, entonces

$$J_n\left(\frac{r_w}{\delta_h}\right) \approx \left(\frac{r_w}{2\delta_h}\right)^n \frac{1}{n!}$$
 [4.19]

$$\Phi_{COND}\left(\frac{r_{w}}{\delta_{h}}\right) = \Re\left[\frac{(j-1)}{2}\frac{r_{w}}{\delta_{h}}\frac{J_{0}\left((j-1)\frac{r_{w}}{\delta_{h}}\right)}{J_{1}\left((j-1)\frac{r_{w}}{\delta_{h}}\right)}\right]$$
[4.20]

$$\Phi_{PROX}\left(\frac{r_w}{\delta_h}\right) = \Re\left[j\left(\frac{r_w}{\delta_h}\right)^2 \frac{J_2\left((j-1)\frac{r_w}{\delta_h}\right)}{J_0\left((j-1)\frac{r_w}{\delta_h}\right)}\right]$$
[4.21]

Desarrollando 4.18 y 4.19 para el caso de J_0, J_1, J_2

$$J_0\left(\frac{r_w}{\delta_h}\right) = 1\left[1 - \left(\frac{r_w}{2\delta_h}\right)^2 + \frac{\left(\frac{r_w}{\delta_h}\right)^4}{16(2! * 2!)} + \cdots\right]$$

$$J_0\left(\frac{r_w}{\delta_h}\right) \approx \left(\frac{r_w}{2\delta_h}\right)^0 \frac{1}{0!} \approx 1$$

$$J_1\left(\frac{r_w}{\delta_h}\right) = \frac{r_w}{2\delta_h} \left[1 - \frac{1}{2!}\left(\frac{r_w}{2\delta_h}\right)^2 + \frac{\left(\frac{r_w}{\delta_h}\right)^4}{16(2! * 3!)} + \cdots\right]$$

$$J_1\left(\frac{r_w}{\delta_h}\right) \approx \left(\frac{r_w}{2\delta_h}\right)^1 \frac{1}{1!} \approx \frac{r_w}{2\delta_h}$$

$$J_2\left(\frac{r_w}{\delta_h}\right) = \left(\frac{r_w}{2\delta_h}\right)^2 \left[\frac{1}{2!} - \frac{1}{3!}\left(\frac{r_w}{2\delta_h}\right)^2 + \frac{\left(\frac{r_w}{\delta_h}\right)^4}{16(2! * 4!)} + \cdots\right]$$

$$J_2\left(\frac{r_w}{\delta_h}\right) \approx \left(\frac{r_w}{2\delta_h}\right)^2 \frac{1}{2!} = \frac{1}{8}\left(\frac{r_w}{\delta_h}\right)^2$$

Sustituyendo las expresiones para J_0 , J_1 , J_2 en 4.20 y 4.21

$$\Phi_{PROX}\left(\frac{r_w}{\delta_h}\right) = \Re\left[j\left(\frac{r_w}{\delta_h}\right)^2 \frac{J_2\left((j-1)\frac{r_w}{\delta_h}\right)}{J_0\left((j-1)\frac{r_w}{\delta_h}\right)}\right] \approx \Re\left[j\left(\frac{r_w}{\delta_h}\right)^2 \frac{(j-1)^2 \frac{1}{8}\left(\frac{r_w}{\delta_h}\right)^2}{1}\right]$$

$$\begin{split} \Phi_{PROX}\left(\frac{r_w}{\delta_h}\right) &\approx \Re\left[j\left(\frac{r_w}{\delta_h}\right)^4 \frac{(-2j)}{8}\right] \approx \Re\left[\left(\frac{r_w}{\delta_h}\right)^4 \frac{2}{8}\right] \approx \Re\left[\left(\frac{r_w}{\delta_h}\right)^4 \frac{1}{4}\right] \\ \Phi_{PROX}\left(\frac{r_w}{\delta_h}\right) &\approx \frac{1}{4}\left(\frac{r_w}{\delta_h}\right)^4 \end{split}$$

$$\Phi_{COND}\left(\frac{r_{w}}{\delta_{h}}\right) = \Re\left[\frac{(j-1)}{2}\frac{r_{w}}{\delta_{h}}\frac{J_{0}\left((j-1)\frac{r_{w}}{\delta_{h}}\right)}{J_{1}\left((j-1)\frac{r_{w}}{\delta_{h}}\right)}\right] \approx \Re\left[\frac{(j-1)}{2}\frac{r_{w}}{\delta_{h}}\frac{1}{(j-1)\frac{r_{w}}{\delta_{h}}}\right]$$
$$\Phi_{COND}\left(\frac{r_{w}}{\delta_{h}}\right) \approx \Re[1] \approx 1$$

Por lo tanto (Lope y col., 2015):

$$\Phi_{COND}^{LF}\left(\frac{r_{w}}{\delta_{h}}\right) \approx 1; \quad \frac{r_{w}}{\delta_{h}} < 1$$

$$\Phi_{PROX}^{LF}\left(\frac{r_{w}}{\delta_{h}}\right) \approx \frac{1}{4}\left(\frac{r_{w}}{\delta_{h}}\right)^{4}; \quad \frac{r_{w}}{\delta_{h}} < 1$$

Esto se lo puede apreciar gráficamente

Figura 4.6: Representación gráfica del factor de conducción y proximidad en términos de la relación $\frac{r_w}{\delta_h}$ Fuente: Carretero, 2012

Aquí se puede apreciar el comportamiento asintótico de cada uno de esos factores, podemos observar en el caso de la gráfica de la izquierda que al ser $\frac{r_w}{\delta_h} \approx 1$, el valor de Φ_{COND} tiende a ser 1. Por lo tanto las resistencias para una bobina equivalente de una sola vuelta con una sola hebra serán a baja frecuencia:

$$R_{COND1,1}{}^{LF} = \frac{1}{\pi r_w^2 \sigma_h} \Phi_{COND}{}^{LF} \left(\frac{r_w}{\delta_h}\right) \frac{1}{S_{bob}} \int_0^t \int_{r_{int}}^{r_{ext}} 2\pi r dr dz$$

$$R_{COND1,1}{}^{LF} = \frac{1}{\pi r_w^2 \sigma_h} \frac{1}{S_{bob}} \int_0^t \int_{r_{int}}^{r_{ext}} 2\pi r dr dz$$

$$R_{COND1,1}{}^{LF} = \frac{1}{\pi r_w^2 \sigma_h} MLT; \ \frac{r_w}{\delta_h} < 1$$
 [4.22]

$$R_{PROX1,1}{}^{LF} = \frac{4\pi}{\sigma_h} \Phi_{PROX}{}^{LF} \left(\frac{r_w}{\delta_h}\right) \frac{\int_{S_{bob}} 2\pi r \left|\overline{H_{0,1}}\right|^2 dr dz}{S_{bob}}$$

$$R_{PROX1,1}{}^{LF} = \frac{4\pi}{\sigma_h} \frac{1}{4} \left(\frac{r_w}{\delta_h}\right)^4 \frac{\int_{S_{bob}} 2\pi r \left|\overline{H_{0,1}}\right|^2 dr dz}{S_{bob}}$$

$$R_{PROX1,1}{}^{LF} = \frac{\pi}{\sigma_h} \left(\frac{r_w}{\delta_h}\right)^4 \langle 2\pi r \left| \overline{\boldsymbol{H}_{0,1}} \right|^2 \rangle_{S_{bob}}; \quad \frac{r_w}{\delta_h} < 1$$

$$[4.23]$$

Con lo asumido sobre la distribución uniforme de la bobina de corriente y el radio de la hebra igual o menor a la profundidad de la piel, se utiliza la aproximación de baja frecuencia para determinar ecuaciones sencillas.

Un devanado ideal modelado con una densidad de corriente constante resuelve los campos en el sistema de calentamiento por inducción así como materiales lineales y concentrados de flujos libres de pérdidas, esto permite usar series de Fourier para obtener la corriente para cualquier proceso periódico de voltaje.

Se asume hebras redondas aisladas y ampliamente espaciadas en el modelado de las pérdidas de devanado dependientes de la frecuencia. Este supuesto es adecuado para hebras de tamaño reducido en comparación con la profundidad de la piel, siendo la aproximación a baja frecuencia lo ideal.

4.7 Modelo matemático de la eficiencia de inducción

Para realizar el estudio de la eficiencia de inducción se debe establecer como objetivo la optimización de dicha eficiencia, esta optimización se realizará respecto a ciertos parámetros como frecuencia de operación de la bobina, la cantidad de cobre a utilizar, el denominado factor de empaque de las hebras del cable y ciertos parámetros del bobinado.

Con estas consideraciones y aplicando las ecuaciones 4.9, 4.10, 4.13 y 4.17 a la ecuación 4.1, se tiene:

Al ser $Z_{ind} = n^2 R_{ind,1} + n^2 j \omega L_{ind,1}$ (impedancia) y $R_{DEV} = R_{COND} + R_{PROX}$ (resistencia del devanado), la expresión para la eficiencia de inducción queda de la siguiente manera

$$\eta_{ind} = \frac{P_{ind}}{P_{ent}} = \frac{R_{ind}}{R_{ind} + R_{DEV}} = \frac{n^2 R_{ind,1}}{n^2 R_{ind,1} + R_{COND} + R_{PROX}}$$

Luego, por las ecuaciones 4.13 y 4.17 se establece que la eficiencia será:

$$\eta_{ind} = \frac{n^2 R_{ind,1}}{n^2 R_{ind,1} + \frac{n R_{COND1,1}}{n_h} + n^3 n_h R_{PROX1,1}}$$

Trabajando esta última expresión se establece una dependencia de la eficiencia de inducción respecto al número de vueltas y el número de hebras de cada vuelta, para eso podemos dividir tanto numerador como denominador para el factor n^2 , quedando lo siguiente (Lope y col., 2015):

$$\eta_{ind} = \frac{\frac{n^2 R_{ind,1}}{n^2}}{\frac{n^2 R_{ind,1}}{n^2} + \frac{n R_{COND1,1}}{n^2 n_h} + \frac{n^3 n_h R_{PROX1,1}}{n^2}}{n^2}}$$
$$\eta_{ind} = \frac{R_{ind,1}}{R_{ind,1} + \frac{R_{COND1,1}}{n n_h} + n n_h R_{PROX1,1}}}$$

$$\eta_{ind} = \frac{R_{ind,1}}{R_{ind,1} + \frac{1}{n n_h} R_{COND1,1} + n n_h R_{PROX1,1}}$$
[4.24]

Según la ecuación 4.24 la eficiencia depende de lo valores de las resistencias correspondientes a una bobina de una vuelta una hebra y del factor $n n_h$. Además se debe recordar que las resistencias de conducción y de proximidad tienen dependencia de la frecuencia.

Se puede establecer la dependencia de parámetros como el radio de la hebra ya que las resistencias de conducción y de proximidad tienen dependencia de dichos parámetros, de igual manera podemos decir que la cantidad de cobre a emplear aproximadamente sería:

 $V_{cobre} = (\# \ de \ vueltas)(\# \ de \ hebras)(\text{\'Area} \ de \ una \ hebra)(MLT)$ $V_{cobre} = n \ n_h (\pi r_w^2)(MLT)$

4.7.1 Maximización teórica de la eficiencia

Para establecer el punto en el cual se produce la máxima eficiencia, se puede trabajar con la ecuación 4.24, para esto se utilizará el criterio de la primera derivada, de tal forma que se determinará los puntos críticos y de entre dichos puntos críticos se determinará cuál es el que produce el máximo de la función eficiencia.

Para hacer más amigable el trabajo con la ecuación 4.24 se procederá a utilizar cambios de variable.

Tomando como $y = \eta_{ind}$; $x = n n_h$; $a = R_{ind,1}$; $b = R_{COND1,1}$; $c = R_{PROX1,1}$

La ecuación 4.24 queda expresada así:

$$y = \frac{a}{a + \frac{1}{x}b + cx};$$
 $y(a + bx^{-1} + cx) = a$

Obteniendo la derivada parcial respecto a x en forma implícita

$$\frac{\partial y}{\partial x}(a+bx^{-1}+cx)+y(-bx^{-2}+c)=0$$

Despejando $\frac{\partial y}{\partial x}$ $\frac{\partial y}{\partial x} = \frac{y(bx^{-2} - c)}{a + bx^{-1} + cx}$

Para determinar los puntos críticos estacionarios, se tiene que:

$$\frac{\partial y}{\partial x} = 0; \quad por \ lo \ tanto \ y(bx^{-2} - c) = 0$$

Despejando

$$bx^{-2} - c = 0;$$
 $\frac{b}{x^2} = c;$ $x^2 = \frac{b}{c}$
 $x = \sqrt{\frac{b}{c}};$ $n n_h = \sqrt{\frac{R_{COND1,1}}{R_{PROX1,1}}}$

Este resultado para el producto $n n_h$, corresponde a un punto crítico estacionario puesto que, la derivada parcial de la función respecto a la variable analizada es cero. Se puede utilizar el criterio de la segunda derivada para determinar si en ese punto crítico ocurre un máximo de la función, para esto se procederá a determinar la segunda derivada parcial de la función eficiencia respecto a la variable $n n_h$, una vez obtenida dicha derivada se evaluará en la misma el valor del punto crítico obtenido mediante la primera derivada igualada a cero, si el resultado de esa evaluación es negativo, entonces se podrá afirmar que el punto crítico utilizado corresponde al de un punto máximo de la función.

Partiendo de la función simplificada mediante los cambios de variables asumidos

$$y(a+bx^{-1}+cx)=a$$

Obteniendo la derivada parcial respecto a x en forma implícita

$$\frac{\partial y}{\partial x}(a+bx^{-1}+cx)+y(-bx^{-2}+c)=0$$

A esta última expresión se deriva nuevamente.

$$\frac{\partial^2 y}{\partial x^2} (a + bx^{-1} + cx) + \frac{\partial y}{\partial x} (-bx^{-2} + c) + \frac{\partial y}{\partial x} (-bx^{-2} + c) + y(2bx^{-3}) = 0$$
$$\frac{\partial^2 y}{\partial x^2} \left(a + \frac{b}{x} + cx\right) + 2\frac{\partial y}{\partial x} \left(-\frac{b}{x^2} + c\right) + \frac{2by}{x^3} = 0$$
$$\frac{\partial^2 y}{\partial x^2} \left(a + \frac{b}{x} + cx\right) + 2\left[\frac{-y\left(-\frac{b}{x^2} + c\right)}{a + \frac{b}{x} + cx}\right] \left(-\frac{b}{x^2} + c\right) + \frac{2by}{x^3} = 0$$
$$\frac{\partial^2 y}{\partial x^2} \left(a + \frac{b}{x} + cx\right) - 2\left[\frac{a}{\left(a + \frac{1}{x}b + cx\right)^2}\right] \left(-\frac{b}{x^2} + c\right)^2 + \frac{2ba}{x^3\left(a + \frac{b}{x} + cx\right)} = 0$$

Dividiendo ambos lados de la igualdad por el factor $\left(a + \frac{b}{x} + cx\right)$

$$\frac{\partial^2 y}{\partial x^2} - 2\left[\frac{a}{\left(a + \frac{1}{x}b + cx\right)^3}\right] \left(-\frac{b}{x^2} + c\right)^2 + \frac{2ba}{x^3 \left(a + \frac{1}{x}b + cx\right)^2} = 0$$

Sustituyendo en la última expresión el valor del punto crítico estacionario

$$x = \sqrt{\frac{b}{c}}$$

$$\frac{\partial^2 y}{\partial x^2} - 2 \left[\frac{a \left(-\frac{b}{\left(\sqrt{\frac{b}{c}}\right)^2} + c \right)^2}{\left(a + \frac{1}{\sqrt{\frac{b}{c}}}b + c\sqrt{\frac{b}{c}} \right)^3} \right] + \frac{2ba}{\left(\sqrt{\frac{b}{c}}\right)^3 \left(a + \frac{1}{\sqrt{\frac{b}{c}}}b + c\sqrt{\frac{b}{c}} \right)^2} = 0$$
$$\frac{\partial^2 y}{\partial x^2} - 2 \left[\frac{a(-c+c)^2}{\left(a + \sqrt{bc} + \sqrt{bc}\right)^3} \right] + \frac{2ab}{\frac{b}{c}\sqrt{\frac{b}{c}}\left(a + \sqrt{bc} + \sqrt{bc}\right)^2} = 0$$

El segundo término se anula, quedando

$$\frac{\partial^2 y}{\partial x^2} + \frac{2ac}{\sqrt{\frac{b}{c}} (a + 2\sqrt{bc})^2} = 0$$
$$\frac{\partial^2 y}{\partial x^2} + \frac{2ac\sqrt{c}}{\sqrt{b} (a + 2\sqrt{bc})^2} = 0$$
$$\frac{\partial^2 y}{\partial x^2} = -\frac{2ac\sqrt{c}}{\sqrt{b} (a + 2\sqrt{bc})^2}$$

Como se puede apreciar en esta última expresión para la segunda derivada parcial de la función, al resultado de sustituir los valores de las resistencias, los cuales son positivos

$$a = R_{ind,1}; \quad b = R_{COND1,1}; \quad c = R_{PROX1,1}$$

Se obtiene que $\frac{\partial^2 y}{\partial x^2} < 0$ por lo tanto por el criterio de la segunda derivada, el valor crítico de $x = \sqrt{\frac{b}{c}}$ ofrece un punto máximo de la función. Regresando

a las expresiones originales, se tiene que el valor en el cual ocurre un máximo es:

$$nn_{h_{max}} = \sqrt{\frac{R_{COND1,1}}{R_{PROX1,1}}}$$
[4.25]

Teniendo en cuenta este resultado, también se puede llegar a un punto que ofrece eficiencia máxima cuando $R_{COND} = R_{PROX}$ (la resistencia de conducción es igual a la resistencia de proximidad)

$$\eta_{ind} = \frac{n^2 R_{ind,1}}{n^2 R_{ind,1} + R_{COND} + R_{PROX}}; \quad si \quad R_{COND} = R_{PROX}$$
$$\frac{n R_{COND1,1}}{n_h} = n^3 n_h R_{PROX1,1}$$
$$\frac{R_{COND1,1}}{n_h} = n^2 n_h R_{PROX1,1}$$
$$R_{COND1,1} = n^2 n_h^2 R_{PROX1,1}$$
$$(nn_h)^2 = \frac{R_{COND1,1}}{R_{PROX1,1}}$$
$$nn_{h_{máx}} = \sqrt{\frac{R_{COND1,1}}{R_{PROX1,1}}}$$

Sustituyendo la ecuación 4.25 en la ecuación 4.24, se tiene el máximo valor de la eficiencia de inducción (recordar que este valor es considerando como variable el factor nn_h).

$$\eta_{ind} = \frac{R_{ind,1}}{R_{ind,1} + \frac{1}{n n_h} R_{COND1,1} + n n_h R_{PROX1,1}}$$

$$\eta_{ind_{máx}} = \frac{R_{ind,1}}{R_{ind,1} + \frac{1}{nn_{h_{máx}}}R_{COND1,1} + nn_{h_{máx}}R_{PROX1,1}}$$

$$\eta_{ind_{máx}} = \frac{R_{ind,1}}{R_{ind,1} + \frac{1}{\sqrt{\frac{R_{COND1,1}}{R_{PROX1,1}}}} R_{COND1,1} + \sqrt{\frac{R_{COND1,1}}{R_{PROX1,1}}} R_{PROX1,1}}$$
$$\eta_{ind_{máx}} = \frac{R_{ind,1}}{R_{ind,1} + \sqrt{R_{COND1,1}} R_{PROX1,1}} + \sqrt{R_{COND1,1}} R_{PROX1,1}}$$
$$\eta_{ind_{máx}} = \frac{R_{ind,1}}{R_{ind,1} + 2\sqrt{R_{COND1,1}} R_{PROX1,1}}}$$
[4.26]

Recordando que las ecuaciones 4.25 y 4.26 son obtenidas para análisis teórico del punto de eficiencia máximo.

Con el fin de realizar la selección del radio de la hebra r_w de manera más simple, sería útil tener una expresión de factor nn_h en términos de r_w en lugar de tener en términos de R_{COND} y R_{PROX} ya que estas resistencias incluyen una dependencia de funciones de Bessel.

Se puede establecer que existe dependencia de la eficiencia respecto a variables tales como: número de vueltas, número de hebras, frecuencia de operación, radio de la hebra, por lo tanto la ecuación 4.24 se puede escribir en términos de dichas variables.

Sustituyendo 4.22 y 4.23 en la ecuación 4.24 y trabajando la expresión para $R_{ind,1}$ se tiene que:

$$R_{COND1,1}{}^{LF} = \frac{1}{\pi r_w^2 \sigma_h} MLT$$

Recordando que $MLT = \pi(r_{ext} + r_{int})$

$$R_{COND1,1}{}^{LF} = \frac{\pi (r_{ext} + r_{int})}{\pi r_w^2 \sigma_h}$$
$$= \frac{(r_{ext} + r_{int})}{r_w^2 \sigma_h} \quad [4.27]; \ donde \begin{cases} \sigma_h \\ r_{int} \ son \ constantes \\ r_{ext} \end{cases}$$

$$R_{PROX1,1}{}^{LF} = \frac{\pi}{\sigma_h} \left(\frac{r_w}{\delta_h}\right)^4 \langle 2\pi r \left| \overline{H_{0,1}} \right|^2 \rangle_{S_{bob}}$$

Como $\delta_h = \frac{1}{\sqrt{\pi\mu_0\sigma_h f}}$

$$R_{PROX1,1}{}^{LF} = \frac{\pi}{\sigma_h} \left(\frac{r_w}{\frac{1}{\sqrt{\pi\mu_0 \sigma_h f}}} \right)^4 \frac{\int_{S_{bob}} 2\pi r \left| \overline{H_{0,1}} \right|^2 dr dz}{S_{bob}}$$

$$R_{PROX1,1}{}^{LF} = \frac{\pi}{\sigma_h} \left(\frac{r_w}{\frac{1}{\sqrt{\pi\mu_0 \sigma_h f}}} \right)^4 \frac{\int_0^t \int_{r_{int}}^{r_{ext}} 2\pi r \left| \overline{H_{0,1}} \right|^2 dr dz}{S_{bob}}$$

$$R_{PROX1,1}{}^{LF} = \frac{\pi}{\sigma_h} r_w{}^4 (\pi^2 \mu_0{}^2 \sigma_h{}^2 f^2) \frac{\pi t (r_{ext}{}^2 - r_{int}{}^2) |\overline{H_{0,1}}|^2}{t (r_{ext} - r_{int})}$$

~

$$R_{PROX1,1}{}^{LF} = \pi^4 \sigma_h \mu_0{}^2 f^2 r_w{}^4 (r_{ext} + r_{int}) \left| \overline{H_{0,1}} \right|^2$$
 [4.28]

Simplificando para obtener $R_{ind,1}$ se tiene que:

$$R_{ind,1} = \frac{V_{ind,1}}{I_0} = -\frac{\frac{1}{S_{bob}} \int_0^t \int_{r_{int}}^{r_{ext}} 2\pi r E_{\varphi,1} dr dz}{I_0} = -\frac{E_{\varphi,1} \pi (r_{ext} + r_{int})}{I_0} \quad [4.29]$$

Para simplificar la expresión de la eficiencia se definen valores constantes

$$A = \frac{(r_{ext} + r_{int})}{\sigma_h}; \quad B = \pi^4 \sigma_h \mu_0^2 (r_{ext} + r_{int})$$
$$R_{COND1,1}^{\ LF} = \frac{A}{r_w^2}; \quad R_{PROX1,1}^{\ LF} = Bf^2 r_w^4 |\overline{H_{0,1}}|^2; \quad R_{ind,1} = -\frac{\pi A \sigma_h E_{\varphi,1}}{I_0}$$

Sustituyendo estas expresiones para $R_{ind,1}$; $R_{COND1,1}^{LF}$; $R_{PROX1,1}^{LF}$

$$\eta_{ind}^{LF} = \frac{R_{ind,1}}{R_{ind,1} + \frac{1}{n n_h} R_{COND1,1}^{LF} + nn_h R_{PROX1,1}^{LF}} - \frac{\pi A \sigma_h E_{\varphi,1}}{I_0} - \frac{\pi A \sigma_h E_{\varphi,1}}{I_0} - \frac{\pi A \sigma_h E_{\varphi,1}}{I_0} + \frac{A}{n n_h r_w^2} + B nn_h f^2 r_w^4 |\overline{H_{0,1}}|^2$$

$$(4.30)$$

Se supone que se tienen valores constantes para:

 $r_{ext}; r_{int}; \sigma_h; \mu_0; I_0$

Además los valores de $E_{\varphi,1}$ y $|\overline{H_{01}}|^2$ se obtienen de la simulación mediante elementos finitos en base a una corriente específica I_0 . En vista de lo anterior se tiene que, $n_{ind}{}^{LF}$ depende de las variables: $n; n_h; r_w; f$

Restricciones de las variables

$$\begin{aligned} f_0 &\leq f \leq f_m \\ n_0 &\leq n \leq n_1 \\ n_{h0} &\leq n_h \leq n_{h1} \\ 0 &< r_w \leq r_1 \\ nn_h &= cantidad \ definida \end{aligned}$$

En la ecuación 4.30 se observa la dependencia de la eficiencia de inducción de las variables número de vueltas n, número de hebras n_h , radio de la hebra r_w y frecuencia de operación f. Al depender del número de vueltas, número de hebras y radio de la hebra, podemos decir que tiene dependencia del volumen de cobre a utilizar.

4.8 Esquema de transferencia de energía

En el esquema de transferencia de energía de la figura 4.7 la energía es proporcionada en forma de electricidad, y se disipa en forma de calor en las áreas mostradas de la cubierta:

Figura 4.7: Representación de transferencia de energía para la aplicación de la cocina de inducción Fuente: Umar, 2011-2012

Calor disipado en la bobina de cobre por efecto de la resistencia del cable con el cual se construye la bobina: se debe considerar el hecho de que, cada espiral en una bobina de inducción tiene el trabajo de inducir un campo magnético en el recipiente colocado sobre la superficie de calentamiento, es así que, al transitar una corriente alterna por la bobina, el campo magnético que se induce en el fondo del recipiente (olla) permite que circule una corriente alta dentro del recipiente que se calienta.

Con la finalidad de mejorar el acoplamiento entre bobina y la carga, se coloca barras de ferritas debajo de la bobina para de esa forma orientar el flujo magnético, además se coloca una placa de aluminio debajo de la ferrita para proporcionar un punto adecuado de fijación.

El calor que se disipa de los elementos de control por medio de los disipadores de calor. El calor que se disipa en las paredes de la olla hacia el entorno por medio de la convección: el calor se disipa de las paredes del recipiente a un ritmo constante y se puede considerar como tres componentes, calor disipado al aire por convección para el área en contacto con el producto dentro del recipiente, calor disipado por la radiación de la superficie del recipiente y calor disipado al aire por convección para el área que no está en contacto con el producto dentro dentro dentro del recipiente.

Calor disipado al ambiente producto de la evaporación de los líquidos en el recipiente: el calor se suministra a los elementos que se encuentran en el interior del recipiente (olla) desde el fondo del recipiente, si se necesitará calcular la rapidez de evaporación, se puede considerar la teoría de transferencia de masa.

4.9 Calor disipado y pérdidas

En el caso de que se desee calcular las pérdidas de calor en la bobina de cobre, primero se debe establecer la resistencia de la bobina y para esto se utiliza datos técnicos como diámetro interno y externo del bobinado interno y externo, número de vueltas, longitud del cable, número de hebras que conforman el cable, resistividad del cable de cobre y temperatura a la cual se trabajará. Después de determinar la resistencia del cable, se puede determinar la pérdida de calor mediante la aplicación del efecto Joule.

Si existe algún líquido dentro del recipiente, entonces mediante criterios de calor específico y calor latente, se puede determinar el calor disipado por el líquido que se encuentre en el interior.

En el caso del disipador de calor, este es un dispositivo diseñado para reducir la temperatura de un elemento electrónico a través de la disipación de calor en un medio fluido como el aire o un líquido. De manera general se puede decir que el disipador de calor es diseñado para aumentar el área de la superficie que estará en contacto con el fluido de refrigeración que lo rodea.

4.10 Eficiencia de inducción

Aplicando la aproximación a baja frecuencia y considerando las ecuaciones 4.22 y 4.23 en la expresión para eficiencia bajo el régimen de baja frecuencia, se tiene que:

$$\eta_{ind,max}{}^{LF} = \frac{R_{ind,1}}{R_{ind,1} + \sqrt{MLT \langle 2\pi r | \overline{H_{0,1}} |^2 \rangle_{S_{bob}}}} \frac{1}{\omega \mu_0 r_w}; \ \frac{r_w}{\delta_h} < 1 \ [4.31]$$

Bajo esta consideración y al tener en cuenta que los ecuaciones obtenidas anteriormente son sin considerar restricciones de carácter espacial o de volumen, se debe especificar que en los resultados experimentales se reflejan todas estas restricciones que por efectos de simplificación y de tiempo no se han analizado en mayor detalle en este trabajo, pero que pueden ser objeto de estudio para un trabajo futuro.

El volumen de cobre generalmente se restringe debido a factores como la relación que existe entre la sección transversal de cobre y la sección transversal de la bobina, también se tiene el parámetro de utilización de ventana el cual depende del radio de la hebra, el aislamiento del cable y el factor de empaquetado del devanado.

En frecuencias bajas, los resultados teóricos requieren más espacio de lo disponible, por lo tanto, los diseños con la máxima eficiencia no son factibles y la eficiencia disminuye. Para efectos de aplicación se tiene que la frecuencia de conmutación es fija o limitada por diferentes especificaciones, por lo tanto el radio de le hebra debe seleccionarse de acuerdo a una eficiencia óptima, sin

embargo esto también podría incurrir a seleccionar radios demasiado pequeños y costosos, y se debe tomar en cuenta que el costo del cable depende en cierta medida del diámetro de la hebra (Sullivan, 2001).

DISEÑO E IMPLEMENTACIÓN DEL MODELO

5.1 Geometría de la bobina plana de calentamiento por inducción

5.1.1 Geometría de la bobina sin carga, pre proceso y post proceso

Para establecer la geometría de la bobina circular plana sin carga se utiliza las herramientas de dibujo que ofrece el entorno de trabajo del programa FEMM (FINITE ELEMENT METHOD MAGNETICS).

Utilizando FEMM Interactive Shell se tiene la sección de Magnetics Preprocessor (Meeker, 2015), en la cual se realiza el dibujo de la geometría del problema, aquí también se definen los materiales y las condiciones de frontera. Una geometría es válida cuando consta de cuatro tareas fundamentales:

- Dibujar los puntos finales de las líneas y segmentos de arco que componen un dibujo
- Conectar los puntos finales con segmentos de línea o segmentos de arco
- Agregar marcadores de Bloquear etiqueta en cada sección del modelo para definir las propiedades del material y el tamaño de la malla para cada sección
- Especificar las condiciones de contorno en los bordes exteriores de la geometría

Figura 5.1 Geometría del problema sin carga en la fase de Preprocesador Magnético
En la figura 5.1 se puede apreciar la geometría del espacio en el cual será colocada la bobina circular plana sin carga, la misma que tendrá un número de vueltas y cada vuelta un número de hebras o hilos. Para este caso la bobina circular plana tendrá un radio interior de 22 mm y un radio exterior de 70 mm.

También se ha especificado los botones de la barra de herramientas para el modo dibujo, estos servirán para colocar puntos, segmentos y arcos, los botones de manipulación con los que el usuario podrá ajustar el tamaño o mover la vista de la geometría del problema que se muestra en la pantalla, finalmente los botones de la barra de herramientas de manipulación de rejilla los cuales permitirán establecer una cuadrícula.

Figura 5.2 Definición del problema de la bobina sin carga en la fase de Preprocesador Magnético

En la figura 5.2 se muestra junto con la geometría la definición del problema, lo primero será desplegar la pestaña tipo de problema, se tienen dos opciones: problema planar 2-D o problema axisimétrico, para el análisis de la bobina circular plana se escogerá un tipo de problema axisimétrico.

A continuación se tiene la lista desplegable de las unidades de longitud, de esta manera se identificará que unidad está asociada con las dimensiones en la geometría del modelo, para este caso se utilizará milímetros. En tercer lugar se tiene un cuadro de edición que permite colocar la frecuencia de trabajo, en este caso se coloca 10000 Hz.

El segundo cuadro de edición es la especificación de profundidad. Si se escoge un problema planar, entonces este cuadro se habilita para la respectiva especificación de un valor, en el caso del problema de tipo axisimétrico no se habilita la opción. El tercer cuadro de edición corresponde a la precisión en la solución, de esta manera se específica los criterios de detención para el solucionador lineal. El cuarto cuadro de edición corresponde al ángulo mínimo, con esta selección se establece una restricción en el programa respecto al mallado triangular que se obtendrá. Un triángulo agrega puntos a la malla para garantizar que no haya ángulos más pequeños que el ángulo especificado. Este cuadro de edición permite colocar valores entre 1 y 33.8 grados.

Figura 5.3 Definiendo el nombre del circuito de la bobina sin carga en la fase de Preprocesador Magnético

Para que la definición del problema tenga solución, se debe identificar condiciones de contorno y propiedades de materiales. Las diferentes propiedades para un problema se definen a través de la selección de materiales, límites,

puntos y circuitos, para este caso se específica el nombre de la propiedad y el nombre del circuito. Se considera un circuito serie ya que las vueltas del cable estará en esa configuración, además se coloca un valor de corriente del circuito de 1 A como condición inicial. Esto se puede apreciar en la figura 5.3.

Figura 5.4 Construcción de fronteras abiertas en la fase de Preprocesador Magnético

En el programa FEMM se asigna automáticamente el número de capas en la construcción de fronteras abiertas, pero se puede cambiar esos parámetros. Además se tiene valores editables de radio, centro horizontal, centro vertical, y tipo de borde. Para el caso que se está analizando se deja por default los valores de número de capas en 7, radio en 280.01, centro horizontal en 0 y centro vertical en 3.268, en el caso del tipo de borde se puede escoger entre: Dirichlet en el cual el valor del potencial A o V se define explícitamente en el límite, y el uso más común de las condiciones de frontera tipo Dirichlet en problemas magnéticos es definir A=0 a lo largo de un límite para impedir que el flujo magnético cruce el límite, el otro tipo de borde es Neumann, en esta condición de frontera se especifica la derivada de potencial normal a lo largo del límite y en problemas magnéticos la condición de Neumann homogénea es $\frac{\partial A}{\partial n} = 0$, la misma que se

define a lo largo de un límite para forzar a que el flujo pase el límite exactamente en un ángulo de 90° con respecto al límite.

Para el caso que se tratará en este proyecto en la figura 5.4 se observan las especificaciones sobre condiciones de frontera, las cuales serán de Dirichlet ya que, en problemas magnéticos axisimétricos se establece un A=0 a lo largo del contorno para de esa manera no permitir que el flujo magnético de la bobina cruce los límites establecidos por las capas.

Figura 5.5 Asignación de material para la bobina sin carga, en la fase de Preprocesador Magnético

En vista de que, se puede necesitar un tipo de material en varios modelos distintos, FEMM tiene una biblióteca incorporada para definir propiedades de bloques, en el cuadro de librería de materiales se puede intercambiar definiciones de propiedades de bloques entre el modelo actual y la biblioteca de materiales a través de una interfaz de arrastrar y soltar. Los materiales seleccionados se pueden editar realizando doble clic en el material deseado, también se pueden importar materiales de otras bibliotecas.

Como se puede apreciar en la figura 5.5 al tener el entorno de la bobina se define esta como aire, las capas que automáticamente ofrece el programa también se definen por default y el cable de la bobina se específica de que material será.

117	Block Property	n
	Name Ar	
	B-H Curve Unear B-H Relationship 💌	
	- Linear Material Properties	
i na na na na 🔍 🔪 na 🗌 🔁	Relative μ_{γ} 1 Relative μ_{z} 1	🔺 이 지지 지지 ?
	Phy deg 0 Phz deg 0	et
	Nonlinear Material Properties	
ana ana ana ana ana ana 🚺 a 🛛 🔮	Edt 8-H Curve Mmax , deg 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
W	Control Parkets Parkets	E 5 5 5
	H, Am 0 0, MSIm 0	
s		1 10 XXX XXX X
[ucoina:1]	Source Current Density	
i se se ses se se se la	3,m/m-2 0	
	Special Attributes: Lamination & Wire Type	
	Not laminated or stranded	
	Lam thickness, mm 0 Lam fill factor 1	
	Number of strands 0 Strand dia, mm 0	A 4 9 9
a second a second of the second second		
	UN Care	
and the second		-

Figura 5.6 Configuración de parámetros en el bloque de propiedades modelo material Aire en la fase de Preprocesador Magnético, para el caso de la bobina sin carga

femm - (Solo Bobina (H Sin Carga,FEM)		- 3 8
File Edit View Problem Grid Operation Properties Mes	n Analysis Window Help	- (7)
Fil = 14	Block Property	
10	Name ut · · · ·	
al	8-H Curve Unear B-H Relationship	
(Alter Mater	Linear Material Properties	
	Relative #, 2.408924266674 Relative #, 2.408924266674	
A	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
8	Consider Material Properties	
	max, deg	
	Coercivity Electrical Conductivity	
	a ne your lo	
12 (Sobina:1)	Source Current Density	
The state of the s	3, MA/m*2 0	
	Special Attributes: Lamination & Wire Type	
	Not laminated or stranded	
	Lam thideness, mm 0 Lam fill factor 1	
	Number of strands 0 Strand da, mm 0	
	OK Cover 1	
	the second s	
the second second second		
Solo Bobina IH Sin Carga FEM		
Ready		Shadow Mode
🚳 🧉 🔄 🖸 💿	🃣 💈 👘 🗉 🖬 🖬 🖬	16:21

Figura 5.7 Configuración de parámetros en el bloque de propiedades modelo material u1 en la fase de Preprocesador Magnético, para el caso de la bobina sin carga

	Block Property	J.	
endos (Bobina:1)	Name u2 BH Curve Linear BH Relationship • Linear Material Properties Relative H_{\pm} [0.149299291057 Φ_{xx} , dog 0 Φ_{xx} , dog 0 Noninear Material Properties Relative H_{\pm} [0.149299291057 Noninear Material Properties Φ_{xx} , dog 0 Coerdviky Φ_{xx} , dog 0 Source Current Density σ , MS/m 0 Special Attributes: Lamination & Wer Type [Vet Immatted or stranded • Number of strands 0 Strand da, mm 0 Cot Candid Conductive: Immatted or stranded •		
Solo Bobera H Sin Carga FEM			

Figura 5.8 Configuración de parámetros en el bloque de propiedades modelo material u2 en la fase de Preprocesador Magnético, para el caso de la bobina sin carga

femm - [Solo Bobina IH Sin Carga.FEM]			- 0 X
File Edit View Problem Grid Operation Properties Mesh			- e ×
			N 17
<u>a</u>	Name u3	12 22 2 2	그것 시 않는
	B-H Curve Linear B-H Relationship 💌		
P Material	Linear Material Properties	44	
	Relative $\mu_{\rm r}$ 13.81759221300 Relative $\mu_{\rm r}$ 13.81759221300		1 201 W 103
20 H H H	$\phi_{\rm he}$, deg 0 $\phi_{\rm hz}$, deg 0	12-1X	
1	Nonlinear Material Properties		that is the
🐣 . Da a a ser a de la cia 🚺 a 🛛 📴	Edit B-H Curve Phmax , deg 0		- 194 (c) 1984
		E 191 - 1	9 B.
	H , A/m 0 0 0		이 아이는 아이들이 아이들이 아이들이 아이들이 아이들이 아이들이 아이들이
. acoble_s	E 1		- 200 X 200
gid See	Source Current Density		
	2 PR(0 2 0		- 13 X X X
	Special Attributes: Lamination & Wire Type		· · · · · ·
	[Not laminated or stranded		
	Lam thickness, mm 0 Lam fill factor 1		l siù a fiù
	Number of strands 0 Strand dia, mm 0	A	1 (H H)
	OK Cancel	1.1.1.1.1.1	
- have got have been			201 m 101
	the state of the state of the state of the	a a neser é) <mark>12</mark> 67 Sa 1963
		n a react a	
Solo Bobina IH Sin Carga, FEM			
Ready		Sh	adow Mode
		ES 🚎 🔺 🤤 隆	16:21

Figura 5.9 Configuración de parámetros en el bloque de propiedades modelo material u3 en la fase de Preprocesador Magnético, para el caso de la bobina sin carga

e Edit View Problem Grid Operation P	roperties Mesh	Analysis Window Help			- 0
× · / · · · · · · · · · · · · · · · · ·	· 00	98000 IX O			
1	0.000.00.0	Block Property		1. 20 100	1 2 10 1
u7 u6		News Dist.			
	10 10	Name U4	_	4 (4) 4(2) 17 - 17	
		8-H Curve Linear 8-H Relationship 💽		6	
	Materia	Linear Material Properties		1.11	
the second state of the second		Relative $\mu_r = 0.058217224585$ Relative $\mu_z = 0.05821722$	4585	1.00.000	
1944		\$\$hr, deg 0 \$\$hz, deg 0		1 or 16	
	8-1	- Nonlinear Material Properties		4.10	
la a sua a sua a sua a sua a	A. 64	Edit B-H Curver			
		Bectrical Conductivity			
a alden a		Contraction of the second seco		1.5	
[Bobina:1]		Source Current Density			
the relation of which the which the	908	3, MA/m^2 0		 8 80 	1 8 63
		Special Attributes: Lamination & Wire Type		1.12	88
		Not laminated or stranded	-		
		Lam thickness, mm 0 Lam fill factor			
		Number of strands 0 Strand dia, mm 0	-		
and the second					
		OK CI	noel		
and a set of a set of a set of a	0.000	a ana ana ana ana ana amin'ny aona ao amin'ny fanisana amin'ny fanisana amin'ny fanisana amin'ny fanisana amin'	1.101.1.1	1.0.1	1.1.10
Solo Bobina IH Sn Carga FEM				01.01	
				Shad	10W Mode

Figura 5.10 Configuración de parámetros en el bloque de propiedades modelo material u4 en la fase de Preprocesador Magnético, para el caso de la bobina sin carga

File Edit View Problem Grid Operation Properties Me	Analysis Window Help	100
		(* 1 × 1 ×
		N
9 u7	Block Property	
	Name	- Louis à misme literie
45		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a la se service a la service se la service service se la service ser	SH Curve Linear 6-H Relationship	22
Mare Mare	Linear Material Properties	
e la constante de la constante	Relative μ_r 45.65595453189 Relative μ_2 45.6559545318	2
	\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	- eA
	Nonlinear Material Properties	
	hmax, deg 0	
	Coerdvity Electrical Conductivity	
	H _c , A/m 0 σ, MS/m 0	
Bobina:1	- Source Ourrent Density	Ellipsee a pres
	3, MA/m^2 0	
	Special Attributes: Lamination & Wire Type	
	Indiaminated or scanded	
 In the second of the second of the second sec	Lam thickness, mm 0 Lam fill factor 1	
	Number of strands 0 Strand dia, mm 0	The second second
	OK Cancel	
	C	
		TT 1 . 1 . 1 . 1 . 1
Solo Bobina IH Sin Carga FEM		
ady		Shadow Mode
		ES = 16-21

Figura 5.11 Configuración de parámetros en el bloque de propiedades modelo material u5 en la fase de Preprocesador Magnético, para el caso de la bobina sin carga

💈 femm - [Solo Bobina IH Sin Carga.FEM]		- 0 X
🚦 File Edit View Problem Grid Operation Properties Mesh Analysis Window Help		_ 8 ×
· D@ · Z ㅋ @ @ 恕ø⊘ ㅋ = > 문문표 + = X @		
Image: Section of the section of th		
	Sh	adow Mode
	Un	
🚱 🤁 📜 🖸 🥥 😜 🥠 💈 📲 📭	🍯 🔺 🛱 🕅	16:21 17/11/2017

Figura 5.12 Configuración de parámetros en el bloque de propiedades modelo material u6 en la fase de Preprocesador Magnético, para el caso de la bobina sin carga

femm - [Solo Bobina IH Sin Carga.FEM]	
File Edit View Problem Grid Operation Properties Mesh Analysis Window Help	- 6)
Block Property	
17 Name U7	
	a a a a a
P. A Relationship ▼	x
D	
$\begin{array}{c c} \hline \\ \hline $	
$p_{\rm hr}$, deg $p_{\rm hr}$, deg $q_{\rm hr}$	e-N
A Contraction of the second seco	
	E e e e e
[Bobina:1] Source Current Density	
J, MA/m^20	· · · · · · · ·
Special Attributes: Lamination & Wire Type	
Not laminated or stranded	
Lam thickness, mm 0 Lam fill factor	
OK Cancel	and a second second
Solo Bobina IH Sin Carga FEM	
Ready	Shadow Mode
	ES 🚎 🔺 🗂 🍡 16:22

Figura 5.13 Configuración de parámetros en el bloque de propiedades modelo material u7 en la fase de Preprocesador Magnético, para el caso de la bobina sin carga

Como se puede apreciar en las figuras 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13 en las propiedades lineales del material $\mu_r y \mu_z$ van tomando valores que alternan en magnitud en cada capa.

femm - [Solo Bobina IH Sin Carga.FEM]			- 0 X
File Edit View Problem Grid Operation F	roperties Mesh Analysis Window Help		_ 8 ×
🏽 🖆 🕴 🗸 ㄱ 이 🚳 😭 🖼 💞 🕫			
		· · · · · · · · ·	
1	Block Property	$(x_1, x_2, \dots, x_{n-1}, \dots, x_$	
	Name cable		
	B-H Curve Linear B-H Relationship		
A A A A A A A A A A A A A A A A A A A	Linear Material Properties	J	
	Relative μ_r Relative μ_z 1		
	$\phi_{\rm hr}$, deg 0 $\phi_{\rm hz}$, deg 0 e-N		
👻	Nanitara Matarial Descarting		
	Edit B-H Curve		
🔲 a la la la 🖡	Coercivity Electrical Conductivity	1	
grid Bobina:1	H _c , A/m 0 0, MS/m 58		
	Source Current Density		
	J, MA/m^2 0		
	Special Attributes: Lamination & Wire Type		
	Litz wire		
	Lam thickness, mm 0 Lam fill factor 1		
	Number of strands 1 Strand dia, mm 0.1	- · · · · · ·	
	OK Cancel		
		* * * * * * *	
Solo Bobina IH Sin Carga.FEM		Sh	adow Mode
			16:24
		ES 🖮 🔺 🛄 🎙	17/11/2017

Figura 5.14 Configuración de parámetros en el bloque de propiedades modelo material cable en la fase de Preprocesador Magnético, para el caso de la bobina sin carga

El cable es un elemento lineal ya que no se magnetiza, al ser de cobre su conductividad será 58 MS/m y no tiene densidad de carga. Dentro de los atributos especiales, se tiene que, es un cable Liz wire (multihilo trenzado) y el diámetro inicial de 0.1 mm y de un solo hilo.

Figura 5.15 Opciones para crear, mostrar y borrar la malla en la fase de Preprocesador Magnético para el caso de la bobina sin carga

El botón de color amarillo ejecuta el generador de malla, en ese instante se llama al mallador y aparecerá una entrada con la etiqueta triángulo en la barra de tareas de Windows. Después de triangular la geometría, la malla del elemento finito se carga en la memoria y se muestra debajo de lo nodos, segmentos y etiquetas de bloques definidos como un conjunto de líneas amarillas.

Figura 5.16 Generación del mallado para el caso de la bobina sin carga

Figura 5.17 Generación del mallado en la geometría del modelo, para una bobina sin carga

Con el segundo botón, que es una especie de manivela se ejecuta el solver. Antes de esto se debe asegurar que la malla está actualizada, entonces se llama a fkern.exe, cuando se ejecuta fkern, se muestra una ventana que da información de estado.

1000	1.000	100				100						-				-	and so the local diversion of	100	A start in	a destruction																
e i	lan	vie	- P	1001	em	un		per	atio	n P	rop	entre	B	mes	1 1	inary	/SIS	wing	NAOA	riep	-														-	22
	11	•	1.	1 @	1	2	1		¢,	P		2		Ω			1	۲	1.5	< 1	0															
		1	-				1					1						*	1	7		7		,	-			1.		1	 _		-	-	1	
																			100																	
																	and in case	-nu	2.	12																
																1.1	-		13.4	總	1															
																	132				Su	5														
																÷.,	155					ð.														
													-	_	-	_	100	140	1.5	01-1	SP-S	100	4	-	-	ä.,										
													6	t So	lo Be	bin	a TH S	in Ca	rga - t	kem	and the		17.82	. 2		F.										
													Ir.	-			(COMPANY	-6145.04	bile-tile-	and the second	-			-	1	£										
														21	anus.											ε.										
													н.	0	plates a		N 10 Cl	a								F.										
													п.	45	44 m	odes	MORE ST.								- 14	ε.										
														86	68 ek	emer	nks								- 11	Ε.										
														P	8000	#C10	00e-0	18							- 11											
															-	100									1	ε.										
													۰.	1	Lonia	gare	Ureas	erk St	orver	-		1				Ε.										
																									_ 11											
													11													ε.										
																										F.										
																									- 11	ε.										
													L	_	-		-	-	-	-	-	-	-		_	Ε.										
													-	-	-		1000	1.11	2002	100	100		1140		-											
																1.1						. A	397													
																. 1	2.5				1	600	ų.													
																•	2.1			-	100	98° -														
																			1		3															
																1	-			and a																
																.,	-9	10.0																		
£1.	iala I	Bobini	i H S	in Ca	rga A	EM	Γ								_		_			_	_										_	_	_	-	_	ĺ
1			-	-	-	-																										S	had	low	M	ic
																																10000	COLUMN TWO IS NOT	10000	1000	

Figura 5.18 Ejecutando el solver llamando a fkern.exe en una bobina sin carga

Una vez finalizado el análisis, el tercer botón permite observar los resultados en una ventana de pos procesamiento.

Figura 5.19 Resultados después del análisis, para el caso de la bobina sin carga

De forma similar al preprocesador, el pos procesador opera en uno de los tres modos que dispone, dependiendo de la tarea que se desea realizar, estos modos son:

- Modo de valores de punto: aquí el usuario puede hacer clic en varios puntos de la región de la solución y los valores de los campos locales se enumeran en la ventana de salida de FEMM.
- Modo de contorno: este modo permite al usuario definir contornos arbitrarios en la región de la solución, una vez definido el contorno, se puede producir parcelas de cantidades de campo a lo largo del contorno y se pueden evaluar varias integrales de línea a los largo de dicho contorno.
- Modo de bloque: permite definir un subdominio en la región de la solución, ya que, una vez que se ha definido el bloque, se puede tomar una variedad de integrales de área y volumen sobre el subdominio definido.

Figura 5.20 Resultados en un punto ubicado fuera del espacio asignado para la bobina sin carga

En la figura 5.20 se puede apreciar resultados en cuanto a los siguientes parámetros:

- Flujo magnético
- Magnitud de densidad de flujo magnético
- Densidad de flujo en dirección radial y dirección azimutal
- Intensidad de campo magnético
- Densidad de corriente

Figura 5.21 Resultados en un punto ubicado dentro del espacio asignado para la bobina sin carga

Figura 5.22 Líneas de flujo en la geometría de elemento finito para la bobina sin carga

En las figuras 5.21 y 5.22 se pueden apreciar el trazado de las líneas de flujo, estas son líneas de corriente a lo largo de las cuales fluye el flujo en la geometría de elemento finito. En el espacio en el cual las líneas de flujo están más juntas, la densidad de flujo será más alta.

También se aprecian resultados obtenidos en una medición realizada en un punto interior a la geometría en la cual estará ubicada la bobina, estos parámetros medidos son: Flujo magnético, Magnitud de densidad de flujo magnético, Densidad de flujo en dirección radial y dirección azimutal, Intensidad de campo, Densidad de corriente, Porcentaje de geometría ocupado por la bobina.

Figura 5.23 Densidad de flujo junto con líneas de flujo en la bobina sin carga

Figura 5.24 Densidad de flujo en la bobina sin carga

En la figura 5.23 se muestran las líneas de flujo junto con el diagrama de densidad |H|, se puede apreciar una gama de colores pudiendo notar que esta densidad es más intensa en aquella sección que está cerca del radio interno (en la cual el color es más oscuro).

De esta manera se puede mostrar un gráfico de densidad de flujo, intensidad de campo o densidad de corriente. Cabe mencionar que la densidad de flujo en cada punto se clasifica en cada uno de los contornos distribuidos uniformemente entre las densidades de flujo mínima y máxima o los límites especificados por el usuario.

En la figura 5.24 se tiene el mismo comportamiento de densidad, pero en este caso no se muestran las líneas de flujo. También se puede obtener el trazado de los vectores de campo, de esta manera se tendrá una idea de la dirección y la magnitud del campo. En este tipo de diagrama, las flechas se trazan de forma tal que la dirección de la flecha indica la dirección del campo y el tamaño de la flecha indica la magnitud del campo.

Figura 5.25 Densidad de flujo junto con vectores de campo en la bobina sin carga

Figura 5.26 Vectores de campo en la bobina sin carga

En la figura 5.26 se muestran resultados eléctricos de la bobina, tales como Corriente total, caída de voltaje, flujo enlazado, flujo/corriente (inductancia), voltaje/corriente (resistencia), potencia real, potencia reactiva, potencia aparente, de ellos solamente el valor Voltaje/current (resistencia) es el que se extraerá para utilizarlo en MATLAB y los cálculos de eficiencia.

A continuación se muestran las gráficas obtenidas al operar en el modo Bloque, específicamente Bloque integral. Las integrales se realizan en forma analítica sobre cada elemento en la región que se define y sumando los resultados para todos los elementos.

Dentro de las diversas opciones de integrales de bloques con las que se cuenta, se tiene:

- A.J: se resuelve $\int A \cdot J dV$ y se evalúa de manera general la inductancia para problemas lineales
- A: se resuelve $\int A \cdot dV$ y se usa para evaluar inductancias mutuas entre bobinas
- Energía de campo magnético: con esta opción se determina la energía almacenada en el campo magnético en la región determinada.

- Pérdidas totales: en esta opción se suman las pérdidas de todos los posibles mecanismos de pérdida que se pueden aplicar sobre el bloque dado.
- Corriente total: la integral ofrece las corrientes totales que se especifican en el bloque
- Volumen del bloque para problemas axisimétricos: con esta opción se determina el volumen barrido por el bloque especificado por el usuario

En la figura 5.27 podemos apreciar la selección del bloque integral Área de sección transversal y el resultado que se obtiene de 9.6e-5 m^2 .

Figura 5.27 Selección del bloque integral Área de sección transversal para la bobina sin carga

A continuación en la figura 5.28 se escoge el bloque volumen, ya que, para el análisis en MATLAB se necesitará de estos dos valores para determinar una longitud media en el estudio de la eficiencia de la bobina circular plana. Es así que, el volumen obtenido del bloque es de 2.77465e-5 m³

Figura 5.28 Selección del bloque integral Volumen para la bobina sin carga

Además de los resultados obtenidos en el modo de post procesamiento, también se puede utilizar el modo contorno para trazar valores de campo que nos interesen a lo largo de dicho contorno, evidentemente el contorno debe ser definido previamente por el usuario. De esta forma se obtendrá un gráfico en un plano X-Y indicando el comportamiento de dicho valor de campo.

Se pueden trazar gráficos de: vector potencial a lo largo del contorno, magnitud de la densidad de flujo, componente de la densidad de flujo normal al contorno, componente de la densidad de flujo tangencial al contorno, magnitud de intensidad de campo a los largo del contorno, etc.

En la figura 5.29 se ha escogido el gráfico de valores de Magnitud de intensidad de campo en el contorno inferior de la geometría del modelo de la bobina sin carga, y se puede apreciar en la figura 5.30 que se genera un gráfico en un plano X-Y comparando como varía |H| en función de la longitud en milímetros del contorno inferior escogido.

Figura 5.29 Selección valores de Magnitud de intensidad de campo en el borde inferior de la geometría para una bobina sin carga

Figura 5.30 Gráfica de valores de Magnitud de intensidad de campo en el borde inferior de la geometría para una bobina sin carga

En la figura 5.31 se ha escogido el gráfico de valores de Magnitud de intensidad de campo en el contorno superior de la geometría del modelo de la bobina sin carga, y se puede apreciar en la figura 5.32 que se genera un gráfico en un plano X-Y comparando como varía |H| en función de la longitud en milímetros del contorno superior escogido.

Figura 5.31 Selección de valores de Magnitud de intensidad de campo en el borde superior de la geometría para una bobina sin carga

Figura 5.32 Gráfica de valores de Magnitud de intensidad de campo en el borde superior de la geometría para una bobina sin carga

Tanto en la figura 5.30 como 5.32 se aprecia que se tiene el mayor valor de magnitud de intensidad de campo en el extremo inferior y superior izquierdo de los contornos escogidos, eso concuerda con el gráfico de densidad de flujo de la figura 5.24.

En la figura 5.33 se ha escogido el gráfico de valores de Magnitud de intensidad de campo en el contorno izquierdo de la geometría del modelo de la bobina sin carga, y se puede apreciar en la figura 5.34 que se genera un gráfico en un plano X-Y comparando como varía |H| en función de la longitud en milímetros del contorno escogido.

Se puede establecer un comportamiento casi simétrico en el gráfico del plano X-Y, esto dado que el borde izquierdo se encuentra en una zona de densidad de flujo grande.

File Edit Zoom View Operation □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	n Pict X-Y Integrate Window Help	
	XY Phot of Field Values Field Type Field Type Varies of points in solt 130 Wilke data to text Re Field Field Mutual text m/ legend	2.245s+001: 5-2.93s+001 2.126e+001: 2.245s+001 2.008e+001: 2.245s+001 1.890e+001: 1.890e+001 1.53e+001: 1.890e+001 1.53e+001: 1.55t+001 1.93e+001: 1.55t+001 1.93e+001: 1.95t+001 1.93e+001: 1.95t+001 1.93e+001: 1.95t+001 1.93e+001: 1.95t+001 1.93e+001: 1.95t+001 9.45t+000: 1.95t+001 9.45t+000: 1.05t+001 9.45t+000: 1.05t+001 9.45t+000: 1.05t+001 9.45t+000: 3.545t+000 9.235t+000: 3.545t+000 9.145t+00053122Am 10: 1.195t+00053122Am 11: 1.95t+00053122Am 11: 1
Solo Bobina IH Sin Carga FEM	🖓 Solo Bobins IH Sin Carpa ans 👔 Sin Itulo 🗽 Sin Itulo	Shadow Mode
🗿 ⋵ 📋 🖸	0 0 0 10 10 10 10 10 10 10 10 10 10 10 1	ES 🖀 - 🗊 🎦 17:11

Figura 5.33 Selección de valores de Magnitud de intensidad de campo en el borde izquierdo de la geometría para una bobina sin carga

Figura 5.34 Gráfica de valores de Magnitud de intensidad de campo en el borde izquierdo de la geometría para una bobina sin carga

En la figura 5.35 se ha escogido el gráfico de valores de Magnitud de intensidad de campo en el contorno derecho de la geometría del modelo de la bobina sin carga, y se puede en la figura 5.36 apreciar que, se genera un gráfico en un plano X-Y comparando como varía |H| en función de la longitud en milímetros del contorno escogido.

Se puede establecer un comportamiento irregular en el gráfico del plano X-Y, esto dado que el borde derecho se encuentra en una zona de densidad de flujo pequeña comparada con el borde izquierdo.

Figura 5.35 Selección de valores de Magnitud de intensidad de campo en el borde derecho de la geometría para una bobina sin carga

Figura 5.36 Gráfica de valores de Magnitud de intensidad de campo en el borde derecho de la geometría para una bobina sin carga

5.1.2 Geometría de la bobina con carga, pre proceso y post proceso

Figura 5.37 Geometría del problema con carga en la fase de Preprocesador Magnético

	•••• <u>•</u> •• <u>•</u> ••							
Problem Definition	- ×1							
Problem Type Length Units	Axisymmetric • Milimeters •	_e Air						
Prequency (Hz) Death	0							
Solver Precision	1e-008			"430 Stainiess	Sleet "Aluminum, 11	00304 Stainle	ss Steel	
Min Angle	30					Utrocord	anice.	
AC Solver	Sutt. Apprex					Bandorena		
Previous Solution				_e Air		6533		
Connent		1	_ cal	ble		Ĩ		
Add comments	here.	-	Soft magnatic foreits	(Ea-Ni-7e-V)		•	+2	-2
			Dane undirect retrice	(remover)				
	~] (m)]	- UNITATION INC.						
-	uk unus							
E Bahara Bi Can Ca	AND FEM							
	and the second se							

Figura 5.38 Definición del problema con carga en la fase de Preprocesador Magnético

En la definición del Problema se establece el tipo de problema, para el caso que se está analizando con simetría axial por ser una bobina circular plana de radio interior 22mm y radio exterior de 70mm. Además se establece una aproximación en la solución del orden de 1e-8. Para la formación de la malla se ha considerado un mallado con elementos triangulares planos con un ángulo mínimo de 30 grados, y se estableció una frecuencia inicial de 10khz.

En la figura 5.38 se aprecia dentro de la geometría del modelo que se han distribuido varias capas para simular tanto la olla como la bobina, es así que, se selecciona el Aluminio 1100 como base para colocar la ferrita, encima de la ferrita (Fe-Ni-Zn-V) se tiene el espacio para colocar la bobina circular plana, luego se considera una capa de aire y la vitrocerámica, la olla tiene una estructura que es predeterminada para aplicaciones de calentamiento por inducción, esta base de la olla se forma por una capa de acero inoxidable 430, aluminio 1100 y finalmente acero inoxidable 304. Cada uno de estos materiales tiene sus propiedades eléctricas y magnéticas, las mismas que deberán ser escogidas como parámetros en el instante de realizar el diseño y la simulación.

En la figura 5.39 se identifica como el programa FEMM asigna el número de capas en forma automática, el radio y el tipo de contorno de la frontera circular. La frontera se forma haciendo un barrido alrededor del eje z, y el tipo de contorno

de la frontera es del tipo Dirichlet. Esto se asigna en la ventana designada como Open Boundary Builder.

Figura 5.39 Construcción de fronteras abiertas en la fase de Preprocesador Magnético, para el caso de la bobina con carga

Figura 5.40 Asignación de material en la fase de Preprocesador Magnético, para el caso de la bobina con carga

En la figura 5.40 se aprecia el uso de la ventana Material Library para escoger el material del entorno, del cable de la bobina, de las capas de la frontera, y de las capas de aluminio, acero inoxidable y vitrocerámica.

47 v6						
	Block Property >	2				
***	Name Vitroceránica					
A Contraction of the second seco	8H Curve Linear 5H Relatorsho	×				
	Linear Naterial Properties					
	Relative μ_1 1 Relative μ_2 1	1000				
	Phy deg 0 Phy deg 0	1010-0				
	Notinear Material Properties	2				
· · · · · · · · · · · · · · · · · · ·	Printlat Care Press , deg 0					
Arr And Abasild Stations Steel	Country Destantion					
and the second (or to (Fa-No Zn-V) (0)	m, , Am 0 0 , MS/m 0					
ante de la companya d	Source Current Density					
	Training In					
	Special Attributes: Lamnation & Wire Tupe					
and a second second second	Not lammated or stranded					
	Lam thickness. mm 0 Lam fil factor 1					
and the second	Number of strands 0 Strand da, mm 0	1				
	Oi. Carcel	1				

Figura 5.41 Configuración de parámetros en el bloque de propiedades modelo material Vitrocerámica en la fase de Preprocesador Magnético, para la bobina con carga

En la figura 5.41 se especifican los parámetros del bloque denominado Vitrocerámica, aquí se puede apreciar que se establece una densidad de corriente de 0 MA/m^2 , una conductividad eléctrica de 0 MS/m.

The second se									
		Bock Property	×						
682	1 1	Name Suft magnetic ferrite (*e 14-2+14)							
and the second sec	Manufalela	BH Carve Revinear BH Carve	× 110	£.					
F#0	Falleran	Linear Material Properties							
	84	Relative μ_{χ} - Relative μ_{χ} -	Eastern 10						
1	8 2 54								
	800	Nonlinear Material Properties Edit 8-H Curve Phnas , deg 0							
410 Kaudide Strongs Steel		Computy Electrical Conductivity							
Lauring and and for the (P+the 2n-V)	8-215	н _с "Ајн [0 о "најн [0							
N8		Source Current Density							
The second second second second second		1, MA/m*2 0							
and the second		Special Attributes: Laminator & Vive Type							
		Flot lamnated or stranded							
		Len thickness, mn	OK						
		hate datast [] fixed to an [0		ε.					
and and a set of the second		and a rest of the							
		OK Cancel	1						
and the second second second	1.1.1								

Figura 5.42 Configuración de parámetros en el bloque de propiedades modelo material Ferrita magnética suave en la fase de Preprocesador Magnético, para la bobina con carga

Otro de los bloques a definir es la ferrita magnética, en la misma se establece una densidad de corriente de 0 MA/m^2 , una conductividad eléctrica de 0 MS/m y una relación entre B y H no lineal.

11/ NO							
102	Block Property X						
	Name Ar	1					
A A A A A A A A A A A A A A A A A A A	and the second present the second sec	×					
	Litra Belatve #, 1 Leatve #, 1	-					
	P \$1, , des 0 \$	rete-zn-v)					
*	Col Colores Colores						
AF AN ALL ALL ALL ALL ALL ALL ALL ALL ALL	Correlation Constantion						
L. nur Set (accelerated (and a (Fe-1a-2n-V))	a the Ahm 0 dd , Hojm 0						
	Source Current Density						
and a second second second second	3, MA/m*2 0						
	Special Arbitudes: Lammation & Wire Type						
	Not iaminated or stranded						
and the second states of the second	Lan Bidness, nn 1 Lan Bifsctor 1	OK					
and the second second	Number of strands 0 Strand dia, mm 0	1 1					
	OK Canal	1.1.1					
and the second		1					

Figura 5.43 Configuración de parámetros en el bloque de propiedades modelo material Aire en la fase de Preprocesador Magnético, para la bobina con carga

	그의 프				 	 	 	 	_
100 m									
		lisckProperty >							
	1.1	Name 304StarVess Steel							
	_	8H Curve Unex 8H Teletonhip *	-						
	Materials L	Linex Meterial Properties	×						
	Clow)	Relative H, 1 Relative H, 1							
Page	800	Ø _{hv} , deg [5 Ø _{hv} , deg [0	Fe-fe-2n-V)						
	8	Paulinese Material Proceeding							
(Pre)	8.00	ERDICOrie Frank, deg 0							
a Ar glo Abuildi Fibility Steel	E O O	Constants Destand Constantials							
Anna Sali a California (an- 20-20-V)	0.01	HA/h 0 0,H5/m 1.45							
100		Source Funery Funery							
<i>[///</i>		1, MA,Mr^2 0							
· · · · · · · · · · · · · · · · · · ·		Secold APPIN care - Landration & Way Turk							
and the second		Not laminated or stranded							
		Lan Balancia, em 0 Lan Bifacia I	ox						
	-	Banhar of strands 0 Grand da em 0		۰.					
and the second s		and a second to the second sec							
		OK Cansal							

Figura 5.44 Configuración de parámetros en el bloque de propiedades modelo material Acero inoxidable 304 en la fase de Preprocesador Magnético, para la bobina con carga

En la figura 5.44 se aprecia las especificaciones dentro del bloque de configuración para el material Acero inoxidable 304, el cual tiene una conductividad eléctrica de 1.45 MS/m, y se tiene una relación lineal entre B y H.

1		
	Rock Property X	
au a	them. All finitian final	
and the second sec		
1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	apple and the personal and the second	
1	Unite Material Properties	
1000	and the rest of th	
N/A	90 CC - Nordrear Material Properties	
10 A	Ct Edit8H Curve Phnas , deg 0	
A 20 ADADED STORED STORED	M - Controlly - Electrical Conductivity	
An Antife Children for the (Fa-Ne-Zn-V)	15 H, Alm 0 0, Mijm 0	
KOU		
800	Source Current Density	
<i>101</i>	Special Attributes: Laminaton & Nire Type	
and the second second of the second s	Tel montai o trancei	
	Lan Bulless, rm C Lan Rifector 1	
	Number of stands C Strend da, nm 1	
	<u> </u>	

Figura 5.45 Configuración de parámetros en el bloque de propiedades modelo material Acero inoxidable 430 en la fase de Preprocesador Magnético, para la bobina con carga

En la figura 5.45 se determinan las especificaciones de los parámetros para el acero inoxidable 430, en el mismo se aprecia que, la permitividad relativa radial y azimutal es de 409, y la curva que relaciona B y H es no lineal. Además se tiene una conductividad eléctrica de 0.

	Block Property	×		
103	Name Aluminum, 1130			
· · · · · · · · · · · · · · · · · · ·	BHCurver Unear 3-HRelationship		1000	
	Linear Hotenal Properties		10.00	
el elle linder i 🙀 e	0 1 M Phy day 1 Phy day	0 Fe të Zn V)	and also	
A statistical and a statistical statisticae statisticae statisticae statisticae statisticae statistica	R G For Nonlinear Material Properties		wheel mine	
"Ait Ato shuidhi 6toniano Steel	8-00 C	1 10		
Anna Ser Transferrer (Ferrer (Ferrer 20-V)	R D H Coerdvity Eechical Co R D H H Coerdvity 0 0 0, M6/m	34.45	1.1.1.1.1.1.1	
	Source Current Density		7 3 3	
	3.MAm-2 [0		120151 1111	
er en renne e 📶 e	Social Attributes: Lamination & Wire Type		10.00	
di sila baha 🎢 🖂	Lan Hidness, ron 0 Lan @ factor		and the	
	Number of strands 0 Strand da, m	= 0		
		OK Cancel		

Figura 5.46 Configuración de parámetros en el bloque de propiedades modelo material Aluminio 1100 en la fase de Preprocesador Magnético, para la bobina con carga

Otro de los materiales que se considera es aluminio 1100, con una conductividad eléctrica de 34.45 MS/m y una relación entre B y H lineal.

	1	sk Property X		
240		Name UI		
a second and a second	· ····	SH Curve Unear SH Relationship		
Kha .	-	Linear Material Properties		
	AM	Relative $\mu_r = \frac{2.408924266674}{Relative} R_{2} = \frac{2.408924266674}{Relative}$		
	0- <u>0</u> -19 0- <u>0</u> -50	•hr , deg 0 •hg , deg 0 • • ••• • • • • • • • • • • • • • •		
	8	Nonlinear Material Properties		
44	8 4 6	Dit B-H Curve Mmax , deg 0		
410 Abaditi Stating Steel	8 <u>0</u> 0	Coercivity Electrical Conductivity		
Alaristic Street for the (Fe-Ni-Zn-V)	8-0115	H _c , Alm 0 0, MS/m 0		
1		Source Current Density		
I share the state of the state of the		3, MA/m^2 0		
		Special Attributes: Lamination & Wire Type		
a se se se se se se s		Not laminated or stranded		
	10	an tridness, nn 0 Lan fil factor 1 OK		
		unber of strands 0 Strand da, mm 0		
and the second second second				
and the second second		OK Cancel		

Figura 5.47 Configuración de parámetros en el bloque de propiedades modelo material ul en la fase de Preprocesador Magnético, para la bobina con carga

- u?			 	 	 	 	
		-					
	Block Property X	<					
	Name u2	10.00					
1	BH Curve Unear BH Relationship •	-					
A A A A A A A A A A A A A A A A A A A	Linear Material Properties	× .					
	Relative # 0.149299291057 Relative # 0.149299291057						
	Ph . , deg , deg .	Fe-Ni-2n-V)					
	Iso the termination of the						
a na da da na la 🖓 👔	Contract Nonlinear Material Properties						
Air 19-	Ce Elementorie Thmax, deg 9						
420 Standing Standings Steel	Me Coerdvity Electrical Conductivity						
2 Alushing Constants (Ha-No-2n-Y)	10 H Alm 0 0 , MS/m 0						
1	Source Current Density						
an an an an an an an an an AMM an an	3, MA/m^2 0						
the second se	Council Altrich stars: Lamonation & Mina Tuna						
the state of the s	tot lamnated or stranded +	-					
		ox					
All a second	Number of strands 0 Strand da, mm 0						
	OK Cancel	1 2 2					
a strengt for the strengt store		<u> </u>					

Figura 5.48 Configuración de parámetros en el bloque de propiedades modelo material u2 en la fase de Preprocesador Magnético, para la bobina con carga

B+(Relationship	×										
5	-										
Relative #1 13.81799221300											
Phu , deg 0	Fe44-(n-4)										
das											
e hmax , deg 0											
President and											
a MSim 0											
	ł.										
	1										
sation & Wire Type											
ded 🔄	>										
Lam fill factor 1	OK.										
Strand da, mm 0											
	1. 1.1.										
OK Cancel											
	8 + 18 Addsourdsp ■ 8 + 18 Addsourdsp ■ 9 + 18 Addsourdsp ● 9 + 18 + 19 + 19 + 19 + 19 + 19 + 19 + 1	** ** ** **	# HI FIG destronting	# H Rolebourte # # H Rolebourte #	# H Rolebourbo et 0000000 # H Rolebourbo et 0000000 # H Rolebourbo # Status dog # Rolebourbo # Rolebourbo <td>8 + R Relationship • et • 0 •</td> <td>8 + R Balasourbo et 757222200 θ₁₀₂ , dag θ₁₀₂ , dag et 66 Φ₁₀₂ , dag District Conductivity 0 , Mol(n) 0 , Mol(n) Noted Lian 18 fector Strand da, mm OK</td> <td>8 + K Balastoryto et 757222200 Φ₁₀₀ , deg Φ</td> <td>8 + K Balastownyo est compared by the start of th</td> <td>8 H H Balastownigo etc. 9 H H Balastownigo 9 H H Balastownigo</td> <td># Hindustroning </td>	8 + R Relationship • et • 0 •	8 + R Balasourbo et 757222200 θ ₁₀₂ , dag θ ₁₀₂ , dag et 66 Φ ₁₀₂ , dag District Conductivity 0 , Mol(n) 0 , Mol(n) Noted Lian 18 fector Strand da, mm OK	8 + K Balastoryto et 757222200 Φ ₁₀₀ , deg Φ	8 + K Balastownyo est compared by the start of th	8 H H Balastownigo etc. 9 H H Balastownigo 9 H H Balastownigo	# Hindustroning

Figura 5.49 Configuración de parámetros en el bloque de propiedades modelo material u3 en la fase de Preprocesador Magnético, para la bobina con carga

UZ								
il Ve		Enck Property X	1.1					
545	1 방문 전	Name Lut	1.1					
		Name U1						
	Materials 11	8H Curve Linear 8H Relationship	×					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lbran	Linear Material Properties	1					
	At D	d den la d den la	Fe-N-Zn-V)					
And I have been a second se	10.00	Life Line 10	1.1.1.1					
Contraction and a second second	800	Nonlinear Material Properties						
Air	9 00	Phmax , deg						
Support Starting Farmer (Fa-Ne-Zn-V)	8 - M	Coerdivity Electrical Conductivity						
1. 4. mentipsonsistips (0 🔁 22	ⁿ _E , Am 0 0, M5/m 0						
		Source Current Density						
		3, MA/m^2 0						
		Special Attributes: Lamination & Wre Type						
a a se a se alle	1.1.	Plot laminated or stranded	- i					
the second second second fill and		Lan thidness, mm 0 Lan fill factor 1	- N					
in the second	1.1	Number of strands 0 Strand dia, mm 0	1					
		OK Carol						
<i></i>	100 - 10							

Figura 5.50 Configuración de parámetros en el bloque de propiedades modelo material u4 en la fase de Preprocesador Magnético, para la bobina con carga

Here's			
		ck Property X	
4.62	4 4	Name u5	
and the second sec	Mataniah Li	BH Curve Unear BH Relationship	
	Lbran	Inter Material Properties Relative #4 45.65395453189 Relative #4 45.65395453189	
a ha ha ha ha ha i	8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Φ _{he} , deg 0 Φ _{he} , deg 0 VeA-2h-1)	
a ha ha ha ha ha ila 🔒	8 5 5	toninear Material Properties	
Air 400 Abarilia (Stoless, Steel	8 G G 8 G M	Carcinty - Bactical Conductativ	
an Soft Start for to (Fa-Ni-Zn-V)	0-01 0-01 10	H _z , Alm 0 Ø , MS/m 0	
5 B. B. B. B. B. M		J, MA(ter 12 0	
		pecal Attributes: Lamination & Wire Type	
	2	Proteinmeted or standed	
n an an an tr' Ann	_	en thickness, em [0] Lan fil factor [1]	
n en en e 🖉 en en	3 M3	OK Genot	
	2. 201. 2		

Figura 5.51 Configuración de parámetros en el bloque de propiedades modelo material u5 en la fase de Preprocesador Magnético, para la bobina con carga

-	U7	10 min 1	of the schol that this the this species	8 109 P	1221	100	102	10.04	1.1	1200	1004	 1.11	122	100
-	a46	· · · · · · · · · · · · · · · · · · ·	(m											
	245	12 2 2 3		1. ene -										
	114	1.	Name u6	1										
	and the second sec	Materials L	BH Curve Linear 8-H Relationship 💌	×	î.									
		Service and	Linear Material Properties	-										
		Lbrar Ar	Relative μ_r 0.033867295231 Relative μ_z 0.033867295231											
		0 G Ph	the des 0	Fe-Ni-Zn-V)	14									
		0.00												
	Mar	0.00	Norlinear Material Properties		12									
	DAIR	0.00	in stream in max, eg [*											
÷	Provide Landa (Service Co	0 0 M	Coercivity Bectrical Conductivity		1									
	2. Aundaline and a full	0 0 20	H _c , Alm 0 0, MS/m 0											
			Source Current Density											
	and the second		3, HA/m^2 0											
			Special Attributes: Lamination & Wre Type											
	a care a care a care a series and a care a	1	Not laminated or stranded	3	1									
			Lan Bifetrer I	ox										
			construction in the second sec		1									
			Number of strands 0 Strand dia, mm V											
		a	OK Cancel	1.0.0										
		All alla 🖡		100										
-														
	a second													

Figura 5.52 Configuración de parámetros en el bloque de propiedades modelo material u6 en la fase de Preprocesador Magnético, para la bobina con carga

Contraction of the second s										
	1.1	Block Property		×						
100		Name U7								
1	Meterials L	BH Curve Unear BH Relationsh	• •	×	11					
e persona este 🖓 🗠	Lbran	Linear Material Properties Relative 14, 429.0464290099	Relative #2 429.0464280099							
a propost os tes 142 1	0 0 P	∲ _{hr} ,deg 0	€ _{hg} , deg 0	Fe-16-2n-1)						
(44		Nonlinear Material Properties	hmax, deg							
All ALL READING CONTROLS Steel	8 9 00 8 9 9 M	Coercivity	Bectrical Conductivity							
Y-soconigectrastics] - 6	0.01	H ^c when to	0, MS,m 0							
a farbal al ala		Source Current Density 3, Majler^2 0		1						
		Special Attributes: Lamination & Wire T	lype .	,						
		Lan thickness, mn	Lam fil factor	ox						
	111	Number of strands	Strand dia, mm		18					
	10.1		OK Cancel	L						

Figura 5.53 Configuración de parámetros en el bloque de propiedades modelo material u7 en la fase de Preprocesador Magnético, para la bobina con carga

		block Property X		
20,		Name cable		
Ma		BH Crive Linear BH Relationship *		
	Material	X X		
and the second sec	-	Belative # 1 Belative # 1		
		d den la de den la		
246	8.0			
	8 🧧	Nonlinear Material Properties		
1994	8-0	EditArCursa Phras, ing II		
All All And the States Steel		Coerdwhy Bechnal Conductivity		
Aturity and Start Street (Lasta-2n-V)	8 2	H _c , Alta 0 α , MS(α 58		
in the state of the state of the state	8 🔤	Source Current Departy		
and the second		1. MAIm^2 0		
		Sproat Attributes: Lammeton & Wee Type		
and the second				
in the set of a star with star strength		Lan trocest, mil / Lan trocest /·		
		Number of strands 1 Strand dia, mm 0.1		
in the set of the set of the set of		OK Genot		

Figura 5.54 Configuración de parámetros en el bloque de propiedades modelo material cable en la fase de Preprocesador Magnético, para la bobina con carga

En la figura 5.54 se establece la definición de las propiedades del cable, es un elemento lineal porque no se magnetiza, el cable es de cobre por lo que, la conductividad es 58 MS/m, no tiene una densidad de carga. El cable usado es multihilo trenzado por eso se elige el tipo Litz Wire con un diámetro inicial de 0.1mm y de un solo hilo.

202			
	Property Definition X		
	Property Name		
]Dobina 💌		
	Add Property		
a 100 h 100	Delete Property OK		
	Modify Property		
(MA)			
A TO ASLONG STANDARS STEE	Court Dopped:	v	
Anna Anna Anna Charles (Fo-Ni-Zn-V)	Carcol Property		
	Name Bobina		
	C Parallel Circuit Current, Amps		
	@ series	그는 이상에 많이 잘 가장 지갑에 많이 잘 가장 지갑에 많이 잘	
I se filler se se	OK Cancel	I state and a set of set of a set of set of the set	
a the trade of the particular of the second			
		김 영상은 것이 같아요. 이상은 것이 같아요. 영상은 것이 같	
and a should be a set of the set			
Datase III Case Cases CEM			

Figura 5.55 Estableciendo propiedades del circuito denominado bobina

Se considera a la bobina como un circuito serie con una corriente de 1 Ampere.

Figura 5.56 Opciones para crear, mostrar y borrar la malla en la fase de Preprocesador Magnético, para la bobina con carga

Figura 5.57 Generación del mallado, creación de nodos y elementos en la bobina con carga

Figura 5.58 Generación del mallado en la geometría del modelo de la bobina con carga

Se puede apreciar en la figura 5.58 como en aquellas secciones más agudas de la geometría del modelo se tienen elementos triangulares más pequeños y más agrupados, además se observa como en las capas de acero inoxidable 304 y 430 los elementos triangulares están más agrupados y son de menor tamaño comparados con el resto.

Figura 5.59 Ejecutando el solver llamando a fkern.exe para la bobina con carga

En la figura 5.59 se observa el estado que se presenta cuando se realiza la solución del problema con las especificaciones realizadas, se puede apreciar que se tiene 7257 nodos, 14030 elementos, una precisión de 1e-8

Figura 5.60 Resultados después del análisis

Figura 5.61 Resultados en un punto ubicado fuera del espacio asignado para la bobina con carga

En la figura 5.61 se muestran los resultados en un punto fuera del espacio diseñado para la bobina, en cuanto a los siguientes parámetros:

- Flujo magnético= $8.24e^{-12} 1.238e^{-11}i Wb$
- Magnitud de densidad de flujo magnético= $1.463e^{-8}T$
- Densidad de flujo en dirección radial y dirección azimutal
- Intensidad de campo magnético= 0.0116408 A/m
- Densidad de corriente= $0 MA/m^2$

Para un punto ubicado dentro del espacio asignado para la bobina se tienen resultados de los mismos parámetros, y eso se puede apreciar en la figura 5.62

- Flujo magnético= $2.656e^{-7} 7.484e^{-10}i Wb$
- Magnitud de densidad de flujo magnético= $3.591e^{-5} T$
- Densidad de flujo en dirección radial y dirección azimutal
- Intensidad de campo magnético= 28.5797 A/m
- Densidad de corriente= $0.0104167 MA/m^2$
- Porcentaje de llenado del 0.01%

Además se aprecia como es el comportamiento de las líneas de flujo magnético.

Figura 5.62 Resultados en un punto ubicado dentro del espacio asignado para la bobina con carga

Figura 5.63 Líneas de flujo en la geometría del elemento finito de la bobina con carga

En las figuras 5.63 se cuenta con el trazado de las líneas de flujo, estas son líneas de corriente a lo largo de las cuales fluye el flujo en la geometría de elemento finito. En el espacio en el cual las líneas de flujo están más juntas, la densidad de flujo es alta. Además en el cuadro de diálogo se específica si se desea mostrar el gráfico de densidad.

Figura 5.64 Densidad de flujo y líneas de flujo en la bobina con carga

En la figura 5.64 se muestran las líneas de flujo junto con el diagrama de densidad |H|, se puede apreciar una gama de colores pudiendo notar que esta densidad es más intensa en aquella sección en la cual el color es más oscuro.

Es importante destacar que, la densidad de flujo en cada punto se clasifica en cada uno de los contornos distribuidos uniformemente entre las densidades de flujo mínima y máxima o los límites especificados por el usuario. En la figura 5.65 se tiene el mismo comportamiento de densidad, pero en este caso no se muestran las líneas de flujo.

Figura 5.65 Densidad de flujo en la bobina con carga

Figura 5.66 Vectores de campo en la bobina con carga

En la figura 5.66 se muestran resultados eléctricos de la bobina con carga, tales como Corriente total, caída de voltaje, flujo enlazado, flujo/corriente (inductancia), voltaje/corriente (resistencia), potencia real, potencia reactiva, potencia aparente, de ellos solamente el valor Voltaje/current (resistencia) es el que se extraerá para utilizarlo en MATLAB y los cálculos de eficiencia. Se puede evidenciar que en este caso con carga la densidad de corriente es de 0.0104167 MA/m², además se tienen trazados los vectores de campo junto con la densidad de flujo.

i femm - [Bobin ⊘ File Edit : : □ 😰 : •	Ins IH Con Carga.ans] Zoom View Operation Plot X-Y Integrate Window	Help	-
R CLEARANNE STREET	MM Copput X with (==53,7,6=0.2) X with (==53,7,6=0.2) X with (==53,7,6=0.2) X with (==53,117,6=0.57,6=0.2) X	Block Integrals X A. 3 A. 3	3.557e+002 :>3.744e+002 3.370e+002 :>3.744e+002 3.370e+002 :3.557e+002 2.959e+002 :3.057e+002 2.959e+002 :3.059e+002 2.2521e+002 :2.805e+002 2.2572+002 :2.845e+002 2.2572+002 :2.845e+002 2.259e+002 :1.655e+002 1.655e+002 :1.655e+002 1.655e+002 :1.655e+002 1.311e+002 :1.655e+002 1.311e+002 :1.655e+002 1.311e+002 :1.655e+002 1.311e+002 :1.655e+002 1.311e+002 :1.655e+002 1.311e+002 :1.565e+002 1.324e+001 :1.328e+001 3.744e+001 :5.312e+001 3.744e+001 :5.312e+001 3.744e+001 :5.312e+001 3.744e+001 :5.312e+001 0.6658y+001 :1.872e+001 0.6658y+001 :1.872e+001 0.6589+001 :1.872e+001 0.6589+001 :1.872e+001 0.6589+001 :1.872e+001 0.6589+001 :1.872e+001 0.6589+001 :1.872e+001 0.6589+001 :1.872e+001 0.6589+001 :1.872e+00
Bebra Ready	IMConCarga FER 20 Bobra IH Con Carga ans		
File Edit	a H Con Carga.ans] Zoom View Operation Plot X-Y Integrate Window	Help	▲ @ 12 99 80 26/11/2017 — Ø × — Ø ×
La Constant and the state of th	MM Cotput X attr ==53,7,4=0.2 == 1,0576=0.0774,9272.5=0.19 Wb == 1,0578=0.0774,9272.5=0.19 Wb == 1,05820,00514,93318=0.01T == 1,05820,00514,93318=0.01T == 1,533874,003203713,48 == 1,533874,003203713,48 == 1,533874,0036,940 == 1,533874,0036,940 == 0,015157,0438,040 == 0,015157,0438,040 == 0,015157,0438,040 == 0,015157,0438,040 == 0,01557,0438,040 == 0,01557,040,040 == 0,01557,040,040,040 == 0,01557,040,040,040,040,040,040,040,040,040,04	integral Result 9.46-055 meter ^2 	3.557e+002 :> 3.74e+002 3.370e+002 :> 3.557e+002 3.183e+002 :3.570e+002 2.996e+002 :3.969e+002 2.409e+002 :2.909e+002 2.421e+002 :2.909e+002 2.421e+002 :2.909e+002 2.4579+002 :2.457e+002 2.459e+002 :1.959e+002 1.658=+002 :1.872e+002 1.658=+002 :1.868=+002 1.311e+002 :1.458=+002 1.311e+002 :1.458=+002 1.311e+002 :1.458=+002 1.311e+002 :1.458=+002 1.311e+002 :1.458=+002 1.311e+002 :1.458=+002 1.311e+002 :1.458=+002 1.311e+002 :1.458=+002 1.311e+002 :1.458=+002 1.312e+001 :3.448e+001 3.744e+001 :5.6172e+001 3.744e+001 :5.6172e+001 3.744e+001 :5.6172e+001 3.744e+001 :1.672e+001 3.744e+001 :1.672e+001 :1.672e+001 3.744e+001 :1.672e+001 :1.672e+001 :1.742e+001 3.744e+001 :1.672e+001 :1.672e+001 :1.752e+001 :
Bobina Ready	IH Con Carga FEM 🛷 Bobina IH Con Carga ana	a 💿 🛤 🖬 📴 🔼 💈	 ▲ 및 등 및 2017007

Figura 5.67 Selección del bloque integral Área de sección transversal en la bobina con carga

En la figura 5.67 se ha escogido el bloque integral Área de la sección transversal, la misma que da un valor de 9.6e-005m². Este será uno de los parámetros a necesitar para determinar el valor promedio de una vuelta, el mismo que servirá para la simulación en MATLAB.

femm - [Bobina IH Con Carga.ans]		- a ×
	regrate Window Help	_ 6' X
P Plath Output > P Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.3 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.3 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.3 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.2 Platti r=#3,7,r=1.2 Plati	Block Integrals X A. 3 A. 3 A. 3 Nagence Kell avery Hysterse, Kell avery Hysterse, Kell avery Hysterse, Kell avery Total cores Total core Total c	3.557e+002 : >3.744e+002 3.730e+002 : >3.74e+002 3.182e+002 : 3.57e+002 2.99e+002 : 3.183e+002 2.99e+002 : 2.99e+002 2.242e+002 : 2.99e+002 2.959e+002 : 2.454e+002 2.959e+002 : 2.454e+002 1.655e+002 : 1.454e+002 1.655e+002 : 1.655e+002 1.655e+002 : 1.655e+002 1.312e+002 : 1.655e+002 1.312e+002 : 1.655e+002 1.312e+002 : 1.655e+002 1.312e+002 : 1.655e+002 1.312e+002 : 1.572e+001 3.746e+001 : 3.57e+001 3.746e+001 : 3.57e+001 3.746e+001 : 3.746e+001 3.746e+001 : 3.746e+001 : 3.746e+0
Ready Ready File Dobins Hi Con Carga File Form - [Bobins Hi Con Carga and] Firem - [Bobins Hi Con Carga and] Firem - [Bobins Hi Con Carga and] Firem - [Bobins Hi Con Carga and] File State Zoom View Operation Pict XV I Diff 201 State Zoom View Operation Pict XV I File State Zoom View Operation P	ang Sang Sang Sang Sang Sang Sang Sang S	^ (t) (⊐ (t)
P FDMM Output >> P Prett: r=85.7, z=1.2 Prett: r=85.7, z=1.2 Prett: r=85.7, z=1.2 P Prett: r=85.7, z=1.2 Prett: r=85.7, z=1.2 Prett: r=85.7, z=1.2 P P 1.00114:0014 Bit = 1.000000514%.0381e:0101 T Bit = 1.000000514%.0381e:0101 T P P 1.00114:0014510.0887e:0001 T Prett: r=85.878470:0002101 A) Prett: r=85.878470:0002101 A) P P 1.00014000 A) Prett: r=85.878470:0002101 A) Prett: r=85.878470:0002101 A) P P 1.0001400 A) Prett: r=85.878470:00010 A) Prett: r=85.878470:00010 A) P P 1.0001400 A) Prett: r=85.878470:00010 A) Prett: r=85.878470:00010 A) P P 1.0001400 A) Prett: r=85.878470:00010 A) Prett: r=85.878470:00010 A) P P 1.0001400 A) Prett: r=85.878470:00010 A) Prett: r=85.878470:00010 A) P P P 1.0001400 A) Prett: r=85.878470:00010 A) P P P 1.0001400 A) P P P P P P P	Integral Result 2.77456-005 meter*3 CC	1.557e+002 : >3.744e+002 3.370e+002 : 3.557e+002 3.183+e002 : 3.557e+002 2.989e+002 : 3.138+e002 2.898e+002 : 2.918e+002 2.434e+002 : 2.6212e+002 2.474e+002 : 2.4212e+002 2.474e+002 : 2.424e+002 2.474e+002 : 2.494e+002 1.685e+002 : 1.637e+002 1.311e+002 : 1.498e+002 1.311e+002 : 1.498e+002 1.311e+002 : 1.311e+002 1.311e+002 : 1.311e+002 3.517e+001 : 7.488e+001 3.574e+001 : 7.484e+001 1.627e+001 : 3.744e+001 1.627e+001 : 3.74e+001 1.627e+001 : 3.74e+001 : 3.74e+001 1.627e+001 : 3.74e+001 : 3.74e+001 : 3.74e+001 1.627e+001 : 3.74e+001 : 3.74e
Ready	<u>****</u> 第 第 73 @ X3 % 1 0 7 13	스 40 1 년 19 명 17:38 스 40 1 년 11 명 18 17:38

Figura 5.68 Selección del bloque integral Volumen del bloque en la bobina con carga

En la figura 5.68 se ha escogido el bloque integral Volumen, el cual da un valor de 2.77465e-005m³. Este será uno de los parámetros a necesitar para determinar el valor promedio de una vuelta, el mismo que servirá para la simulación en MATLAB.

Ahora se procede a obtener un gráfico en un plano X-Y indicando el comportamiento del valor de campo. Con esta opción se pueden trazar gráficos de: vector potencial a lo largo del contorno, magnitud de la densidad de flujo, magnitud de intensidad de campo a los largo del contorno.

En la figura 5.69 se ha escogido el gráfico de valores de Magnitud de intensidad de campo en el contorno inferior de la geometría del modelo para la bobina con carga, y se puede apreciar en la figura 5.70 que se genera un gráfico en un plano X-Y comparando como varía |H| en función de la longitud en milímetros del contorno inferior escogido.

		3.557e+002 : >3.744 3.370e+002 : 3.557e 3.183e+002 : 3.370e
PARAL Corpus X Para = 30516 errors 1.0.127 erg 30 to 10 0.0.127 erg 30 to 20 0.0.127	X-Y Plot of Freid Values X Ref Type Plot of gray subject of freid intervisity) T Noteboor of parties in plating 150 Twitte data to too file File Formatting Multiculum text w (lingend	1.1824-0002 - 1.1972 2.0614-002 - 2.0644 2.0214-002 - 2.0644 2.0214-002 - 2.0644 2.0214-002 - 2.0644 2.0214-002 - 2.0244 2.0204-002 - 2.0244 1.0214-002 - 1.0245 1.0214-002 - 1.0245 2.0204-002 - 1.0245 2.0204-002 - 1.0245 2.0204-002 - 1.0245 2.0204-001 - 1.0245 2.0204-001 - 1.0245 2.0244-001 - 1.0245 2.0244-001 - 1.0245 2.0464-001 - 1.025 2.0464-001 - 1.025 2.0464-0

Figura 5.69 Selección de valores de Magnitud de intensidad de campo en el borde inferior de la geometría para una bobina con carga

Figura 5.70 Gráfica de valores de Magnitud de intensidad de campo en el borde inferior de la geometría para una bobina con carga

En la figura 5.71 se ha escogido el gráfico de valores de Magnitud de intensidad de campo en el contorno superior de la geometría del modelo con carga, y se puede apreciar en la figura 5.72 que se genera un gráfico en un plano X-Y comparando como varía |H| en función de la longitud en milímetros del contorno superior escogido.

Figura 5.71 Selección de valores de Magnitud de intensidad de campo en el borde superior de la geometría para una bobina con carga

Figura 5.72 Gráfica de valores de Magnitud de intensidad de campo en el borde superior de la geometría para una bobina con carga

Tanto en la figura 5.70 como 5.72 se aprecia que se tiene el mayor valor de magnitud de intensidad de campo en el extremo inferior y superior izquierdo de los contornos escogidos. En la figura 5.73 se ha escogido el gráfico de valores de Magnitud de intensidad de campo en el contorno izquierdo de la geometría del modelo, y se puede apreciar en la figura 5.74 que se genera un gráfico en un plano X-Y comparando como varía |H| en función de la longitud en milímetros del contorno escogido. Se puede apreciar un valor de más de 300 Amp/m cuando la longitud del segmento escogido se aproxima a 2 mm.

Figura 5.73 Selección de valores de Magnitud de intensidad de campo en el borde izquierdo de la geometría para una bobina con carga

Figura 5.74 Gráfica de valores de Magnitud de intensidad de campo en el borde izquierdo de la geometría para una bobina con carga

En la figura 5.75 se ha escogido el gráfico de valores de Magnitud de intensidad de campo en el contorno derecho de la geometría del modelo de la bobina con carga, y se puede en la figura 5.76 apreciar que, se genera un gráfico en un plano X-Y comparando como varía |H| en función de la longitud en milímetros del contorno escogido.

Se puede apreciar un comportamiento en el gráfico del plano X-Y parecido al del borde izquierdo, salvo el caso de la máxima intensidad de campo que sería la mitad de la obtenida en el borde izquierdo.

Figura 5.75 Selección valores de Magnitud de intensidad de campo en el borde derecho de la geometría para una bobina con carga

Figura 5.76 Gráfica de valores de Magnitud de intensidad de campo en el borde derecho de la geometría para una bobina con carga

5.2 Parámetros necesarios para enlazar MATLAB y FEMM

Una vez que se han realizado las etapas de creación de la geometría de la bobina, pre procesamiento y post procesamiento, tanto para el caso de bobina sin carga y con carga en el programa de elementos finitos FEMM, se necesitan parámetros que sean utilizados para la simulación del modelo en Matlab y a su vez este software ofrezca parámetros de configuración para realizar el cálculo de las resistencias sin carga y con carga en FEMM.

Estos parámetros son de tipo físico, eléctrico y magnético, a su vez son utilizados y declarados dentro de la simulación del modelo matemático planteado.

- Área de sección transversal
- Volumen de espacio destinado para la bobina
- Resistencia de inducción para una bobina de una vuelta y una hebra
- Resistencia de conducción para una bobina de una vuelta y una hebra
- Resistencia de proximidad para una bobina de una vuelta y una hebra
- Radio de una hebra
- Longitud promedio de una vuelta de la bobina
- Número de vueltas
- Número de hilos
- Conductividad eléctrica

- Corriente
- Permeabilidad magnética
- Frecuencia de operación
- Campo magnético

5.3 Códigos para simulación del modelado enlazando MATLAB con FEMM

En esta sección se detallará la programación realizada para la respectiva simulación enlazando parámetros obtenidos con FEMM y MATLAB, tanto para el cálculo de resistencias, eficiencia y a su vez la optimización de la función objetivo definida como la eficiencia de inducción.

En primer lugar se detallará el código correspondiente al programa principal desde el cual se manda a llamar a diversas funciones elaboradas para efectos de simplificación y mejor trabajo en MATLAB, dichas funciones son: haciafemm, resistencia, promedioH, funObj, funRestric.

5.3.1 Código del programa principal

```
%% Código de Inicialización
addpath('c:\\femm42\\mfiles'); %añande la ruta de la carpeta en la que se encuentra
instalado el software FEMM y los archivos con los que se trabajará
savepath; %guarda la ruta
\% Se borra las variables globales que pudieron haber quedado con información en\prime
elecuciones anteriores
clear all; %borra todas las variables del Workplace inclusive las globales
% Para seguridad se borra individualemente cada variable global
clear global j;
clear global rind_11;
clear global rcond 11;
clear global rprox_11;
clear global rw;
clear global MLT;
clear global volumen;
clear global area;
clc; %se borra información del Command Window
```

%% Creación de variables globales. % Se las ha declarado globales para que el valor que obtengan en % principal.m pueda ser utilizado en varias de las funciones convocadas global 1; %la variable 1 se utilizará en un lazo for para el cálculo de las resistencias global rind 11; %variable para la resistencia de indicción de 1 vuelta y 1 hilo global rcond 11; %variable para la resistencia de conducción de 1 vuelta y 1 hilos global rprox 11; %variable para la resistencia de proximidad de 1 vuelta y 1 hilos global rw; %variable para el radio de una hebra del conductor en milímetros global MLT; %variable para la longitud promedio de un vuelta de la bobina global volumen; %variable para el volumen del espacio en el que se alojará la bobina global area; %variable para el área transversal del espacio en el que se alojará la bobina %% Se inicializan las variables a utilizar 1 = 0;rind 11=0; rcond_11=0; rprox_11=0; rw=0:MLT=0; volumen=0; area=0; %% Código para abrir el programa FEMM, luego el archivo y obtener el área y volumen del⊄ espacio en que se situará la bobina openfemm; %abre el programa FEMM opendocument('C:\femm42\tesis\Solo Bobina IH Sin Carga.FEM'); %abre el archivo del dibujo 🗸 de la bobina sin carga mi_analyse(1); %se indica a FEMM que construya la malla y luego ejecute los cálculos mi_loadsolution; %se indica a FEMM que cargue los datos en el archivo .ans mo_selectblock(45,1); %se selecciona el bloque en el que se encuentra la bobina con la ubicación r-45 y z-1 volumen-mo_blockintegral(10); %se obtiene el volumen del bloque donde se encuentra la bobina area-mo_blockintegral(5); %se obtiene el área del bloque donde se encuentra la bobina MLT-volumen/area; %calcula la longitud promedio de la vuelta de la bobina en metros mo clearblock; %se guita la selección del blogue en el gue se encuentra la bobina %% Definición de los parámetros que entrarán a FEMM para el cálculo de las resistencias vueltas-1; %define el número de vueltas "n" inicial para el programa hilos-1; %define el número de hilos "ns" inicial para el programa conductividad-58; %conductividad del cobre en MegaSiemens por metro corriente-1; %define la corriente en amperios para el programa sigw-conductividad*le+06; %conductividad del cobre en Siemens por metro uo=4e-07*pi; %permeabilidad magnética del vacío frecuencia=20e3; %define una frecuencia para el programa radios-[0.1803 0.1273 0.0899 0.0635 0.0503]; %radios de los conductores que se utilizarán, están en milímetros %% Inicio del cálculo de las resistencias for j=1:1:5 radio-radios(j); %selección del radio del conductor al que se le calculará sus d resistencias

%Función para abrir el archivo de la Bobina Sin Carga y Con Carga y %calcular las resistencias rsc_11 que es la resistencia sin carga de una %vuelta y de un hilo y la resistencia rcc_11 que es la resistencia con %carga de una vuelta y de un hilo. [rsc_11(j),rcc_11(j)]-haciafemm(frecuencia,hilos,vueltas,radio,conductividad,corriente);

%Cálculo de la Resistencia de Inducción obtenida restando la resistencia con carga menos
la resistencia sin carga.
rind_11(j)-rcc_11(j)-rsc_11(j); %rind almacena el valor de la Resistencia de Inducción de
la Bobina para una vuelta y un hilo

%% Código para calcular las resistencias de conducción rcond_ll para una vuelta y un hilo y la resistencia de proximidad rprox_ll de una vuelta y un hilo rw(j)-radio*le-03; %se pasa de milímetros a metros el radio elejido del conductor epsilon-(2*pi*uo*sigw*frecuencia)^0.5; skin-sqrt(2)/epsilon; %Cálculo de la profundidad de penetración en milímetros condicion(j)-rw(j)/skin; %verificación de que con la frecuencia de operación el radio del K' conductor es menor que la profundidad de penetración.

rcond_11(j)-MLT/(pi*rw(j).^2*sigw); %cálculo de la resistencia de conducción para una
vuelta y un hilo

medicion(j)-promedioH(); % Obtención desde FEMM del promedio del campo magnético H al cuadrado en el espacio de la bobina

rprox_11(j)-medicion(j)*2*pi^2*(rw(j)./skin)^4/sigw; %cálculo de la resistencia de
proximidad para una vuelta y un hilo

%% Código para maximizar la función objetivo usando ga (genetic algorithm) ObjFcn-@funObj; %variable que almacena el nombre de la función objetivo nvars-2; %son dos variables las que entran en la optimización, las cuales son las vueltas 🖌 v los hilos % el número de vueltas es representada por la variable x(1) y el número de % hilos por x(2) LB-[1 1]; %vector que tiene el limite inferior es decir el valor mínimo de vueltas el hilos que debe tener la bobina UB-[]; %vector para establecer el límite superior es decir el máximo de vueltas e hilos 🖌 que debe tener la bobina, se lo ha dejado sin valores puesto que estos están sujetos ad las restricciones ConsFcn-@funRestric; %variable que almacena el nombre de la función que tiene las de restricciones del problema. [x,fval]-ga(ObjFcn,nvars,[],[],[],LB,UB,ConsFcn); % estructura para llamar a lat función qa para hacer la optimización con algoritmo genético. % los resultados serán guardados en el vector x, su primer elemento x(1) % tendrá el número de vueltas óptimo y el segundo valor tendrá el número de % hilos óptimo. La máxima eficiencia se quardará en la variable fval

```
%% Número de vueltas y número de hilos óptimos y máxima eficiencia para el conductor
inicialmente seleccionado
vueltas_opt(j)-floor(x(1)); %se redondea hacia abajo el número de vueltas optimizada
hilos_opt(j)-floor(x(2)); %se redondea hacia abajo el número de hilos optimizada
nns(j)-vueltas_opt(j).*hilos_opt(j); %multiplicación del número de vueltas (n) y el 
número de hilos (ns)
efic_max(j)=-fval; %evaluación de la eficiencia con el número de vueltas y de hilos 
fotimos
```

%% Con el radio del conductor seleccionado y conociendo el tamaño óptimo de la bobina (número de vueltas e hilos) mediante la combinación nns se procede a realizar un barrido de frecuencias a partir de la inicialmente definida para calcular la eficiencia de la bobina a cada frecuencia % Se utiliza el software FEMM unicamente para calcular la resistencia de % inducción a las distintas frecuencias, para las resistencias de % conducción y de proximidad se ultizarán los valores ya calculados pero % tomando en cuenta el efecto de la frecuencia en la resistencia de % proximidad for k-1:1:15;

frecuencias(k)-frecuencia*k; %selección de frecuencia

[rsc_11(k),rcc_11(k)]-haciafemm(frecuencias(k),hilos,vueltas,radio,conductividad, corriente); %cálculo de las nuevas resistencias sin carga y con carga

rind_11(k)-rcc_11(k)-rsc_11(k); %cálculo de la nueva resistencia de inducción de una
vuelta y de un hilo para la frecuencia seleccionada

eficiencias(j,k)-(rind_11(k)./(rind_11(k) + (1/nns(j))*rcond_11(j) + nns(j)*(medicion∠ (j)*2*pi^2*(rw(j)./(sqrt(2)./(sqrt(2*pi*uo*sigw*frecuencias(k))))).^4/sigw)))*100; %∠ cálculo de la nueva eficiencia para toda la bobina con el radio del conductor y la∠ frecuencia seleccionada, los valores serán almacenados como una matriz end

end

```
%%Código para graficar la eficiencia versus la frecuencia de toda la bobina
%%para un conductor seleccionado y con una combinación de vueltas e hilos
$$nns
figure
semilogx(frecuencias, eficiencias(1,:),'-.r*', 'Linewidth',2)
hold on
semilogx(frecuencias, eficiencias(2,:),'--mo', 'Linewidth',2)
semilogx(frecuencias, eficiencias(3,:),':bs', 'Linewidth',2)
semilogx(frecuencias, eficiencias(4,:),'-k+', 'Linewidth',2)
semilogx(frecuencias, eficiencias(5,:),'-g^', 'Linewidth',2)
grid minor
axis([10e3 300e3 70 100])
legend( ...
 sprintf('rw=0.1803mm y nns = %d',nns(1))
                                             , ...
 sprintf('rw=0.1273mm y nns = %d',nns(2))
                                                , ...
 sprintf('rw-0.0899mm y nns - %d',nns(3))
                                                , ...
 sprintf('rw-0.0635mm y nns = %d',nns(4))
                                                , ...
 sprintf('rw-0.0503mm y nns - %d',nns(5))
                                                , ...
 'location', 'NorthWest' );
title ('Eficiencia de la Bobina de Inducción versus Frecuencia para diferentes radios y
combinación nns','FontSize' , 12, 'FontWeight' , 'bold')
xlabel('f(Hz)')
ylabel('efic. ind. (%)')
```

5.3.2 Código de la función haciafemm

% Código de la función para abrir el archivo de la Bobina Sin Carga y Con Carga y llamar \checkmark a la función resistencia.m calcular sus respectivas resistencias

function [rsc,rcc]=haciafemm(frecuencia, hilos, vueltas, radio, conductividad, corriente);

opendocument('C:\femm42\tesis\Solo Bobina IH Sin Carga.FEM'); %abre el archivo de la bobina sin carga

rsc=resistencia(frecuencia, hilos, vueltas, radio, conductividad, corriente); %llama a la \varkappa función resistencia para realizar la simulación en FEMM y calcular la resistencia de la \varkappa bobina sin carga.

mi_saveas('C:\femm42\tesis\Solo Bobina IH Sin Carga.FEM'); %guarda el archivo de la ℓ bobina sin carga

mi_close; %cierra el pre-procesador, es decir cierra el archivo del dibujo
mo_close; % cierra el post-procesador, es decir el archivo de resultados

opendocument('C:\femm42\tesis\Bobina IH Con Carga.FEM'); %abre el archivo de la bobina de con carga

rcc=resistencia(frecuencia, hilos, vueltas, radio, conductividad, corriente); %llama a la ℓ función resistencia para realizar la simulación en FEMM y calcular la resistencia de la ℓ bobina con carga.

mi_saveas('C:\femm42\tesis\Bobina IH Con Carga.FEM'); %guarda el archivo de la bobina con carga

mi_close; %cierra el pre-procesador, es decir cierra el archivo del dibujo mo_close; % cierra el post-procesador, es decir el archivo de resultados

end

5.3.3 Código de la función resistencia

%% Código para hacer el cálculo de las resistencias function res=resistencia(frecuencia, hilos, vueltas, radio, conductividad, corriente) %función "resistencia" que trae "hilos" y "vueltas" de "principal" mi_probdef(frecuencia,'millimeters','axi',1E-8,0,30,0) %mi_probdef cambia las definiciones del problema %frecuencia = toma el valor de la frecuencia definido en "principal.m" %millimeters = indica que las dimensiones del problema están en milímetros %axi = indica que el problema es axisimétrico %1E-8 = indica la presición del solver %0 = este valor se usa para problemas axisimétricos e indica la profundidad %del problema dentro de la dirección de la página %30= restricción que representa el valor mínimo del ángulo de los %triángulos construidos por el generador del enmallado. %0 = indica que el solver utilizará el método de aproximaciones sucesivas mi_deletematerial('cable'); %para borrar de la librería el material cable antes de⊄ crearlo desde cero mi_addmaterial('cable', 1, 1, 0, 0, conductividad, 0, 0, 1, 5, 0, 0, hilos, 2*radio); % 🖌 para añadir el cable a la librería mi_addblocklabel(43,1); %añade un bloque de etiqueta "<None>" en la coordenada r=43 y z=1√ donde irá el material "cable" mi_selectlabel(43,1); %selecciona el bloque "cable" localizado en la coordenada r=43mm y 🖌 z=1mm para luego editar sus atributos mi_setblockprop('cable',1,0,'<None>',0,0,vueltas) %añade el material "cable" al bloque "<None>" situado en r=43 y z=1 mi_setblockprop('cable',1,0,'Bobina',0,0,vueltas); %se define que el bloque ya no sea vacio "<None>" sino que tenga asignado una bobina con # de vueltas mi_clearselected; %se quita la selección del bloque "cable" mi_modifycircprop('Bobina',2,1); %modifica las propiedades del circuito "Bobina" %el valor de 2 es para indicar se quiere cambiar la configuración de la bobina %el valor 1 es para indicar que la configuración de la bobina es en serie. mi_setcurrent('Bobina', corriente) %asigna el valor de corriente definido en "principal.m" al circuito "Bobina" mi_analyse(1); %se indica a FEMM que construya la malla y luego ejecute los cálculos mi_loadsolution; %se indica a FEMM que cargue los datos en el archivo .ans pb=mo_getcircuitproperties('Bobina');

5.3.4 Código de la función promedio de H

```
%% Código de la función para el cálculo del promedio del campo magnético H al cuadrado enm{\prime}
el espacio de la bobina
function medicion=promedioH();
opendocument('C:\femm42\tesis\Solo Bobina IH Sin Carga.FEM'); %abre el archivo de la
bobina sin carga
mi_analyse(1); %se indica a FEMM que construya la malla y luego ejecute los cálculos
mi_loadsolution; %se indica a FEMM que carque los datos en el archivo .ans
zi=0; %altura z inicial en milímetros
zf=2; %altura z final en milímetros
pz=10; %número de puntos leidos en z
ri=22; %radio r inicial en milímetros
rf=70; %radio r final en milímetros
pr=10; %número de puntos leidos en r
rj=0;
z_{j=0};
hocuaradio=0;
for r=ri:(rf-ri)/pr:rf;
    r_{j=r_{j+1}};
    for z=zi:(zf-zi)/pz:zf;
        z_{j=z_{j+1}};
        ho=mo_geth(r,z); %campo magnético leido en el punto r,z
        horeal=real(ho); %parte real del campo magnético
        hocuadrado=horeal(1)^2+horeal(2)^2;
        hocuaradio=hocuaradio+rj*hocuadrado;
    end
```

end

medicion=hocuaradio/(1000*(pr*pz)); %se divide para 1000 porque los radios están en \checkmark milímetros

mi_close; %cierra el pre-procesador, es decir cierra el archivo del dibujo mo_close; % cierra el post-procesador, es decir el archivo de resultados

end

5.3.5 Código de la función objetivo

```
%% Función Objetivo para la optimización mediante algoritmo genético
function y = funObj(x)
global j
global rind_11
global rcond_11
global rprox_11
%Ecuación de la eficiencia de la Bobina de Inducción con x(1) vueltas y
%x(2) hilos
y=- ( x(1)^2*rind_11(j) / ( x(1)^2*rind_11(j) + (x(1)/x(2))*rcond_11(j) + x(1)^3*x(2) 
*rprox_11(j)))*100;
end
```

5.3.6 Código de la función restricción

```
%% Función de Restricciones para la optimización mediante algoritmo genético
function [c,c_eq] = funRestric(x)
global 1
global rw
global area
%vector de restricciones no lineales de desigualdad
c=[x(2)^{2}-x(1)^{2}; x(1)*x(2)*(1.154)^{2}pi*(rw(1)^{2}) - area];
  la primera restricción es x(2)^2-x(1)^2 para indicar que x(2) tiene que
% ser menor que x(1), es decir el número de hilos no puede superar al
% número de vueltas
% la segunda restricción x(1)*x(2)*(1.154)^2*pi*(rw(1)^2) - area es para
% indicar que el área del conjunto de x(2) hebras multiplicado
% por las x(1) vueltas no puede superar el área disponible en el que se
% alojará la bobina. El factor 1.154 considera que existe un espacio sin
% utilizar entre cada hebra así como el aislamiento de esmalte que recubre
% a cada hebra por lo que la bobina no llega a ocupar el 100% del parea
% disponible.
%vector de restricciones no lineales de igualdad
c_eq=[]; %no se tienen restricciones de este tipo
```

end

DISCUSIÓN DE LOS RESULTADOS Y CONCLUSIONES

6.1 Resultados de resistencia de inducción, conducción y de proximidad en dependencia de la frecuencia de operación y el radio del hilo.

Se realizaron las mediciones con el software FEMM para diferentes radios (Litz Wire Technical Information de la empresa New England Wire Technologies) de conductor a una frecuencia fija de 20kHz para una bobina con 1 vuelta y con 1 hilo. Las mediciones fueron las siguientes.

Datos de entrada al software FEMM												
	1	2	3	4	5							
frecuencia [Hz]	20000	20000	20000	20000	20000							
radio [mm]	0.1803	0.1273	0.0899	0.0635	0.0503							
Resistencias calculadas con el software FEMM para una bobina de 1 vuelta y 1 hilo												
Resistencia sin carga												
rsc_11 [Ohm]	0.0488	0.0979	0.1963	0.3934	0.6269							
Resistencia con carga												
rcc_11 [Ohm]	0.0490	0.0981	0.1965	0.3936	0.6271							
Resistencia de inducción												
rind_11=rcc_11-rsc_11												
[mOhm]	0.2042	0.2039	0.2038	0.2038	0.2038							
Resistencias aproximadas	calculadas co	n las fórmulas	para bajas fr	recuencias par	a una bobina							
Resistencia de												
Conducción												
rcond_11 [Ohm]	0.0488	0.0979	0.1963	0.3934	0.6269							
Resistencia de												
Proximidad												
rprox_11 [nOhm]	3.427	0.852	0.212	0.053	0.021							

Tabla 6.1: Resistencias aproximadas calculadas a una frecuencia fija 20kHz

Se observa que la resistencia de inducción es prácticamente igual a $0.2038m\Omega$ a 20kHz en cada una de las mediciones sin importar que el radio del conductor aumente.

Conclusión 1: Se evidencia que la resistencia de inducción no depende del radio del conductor.

La resistencia de conducción representa la resistencia en corriente directa y se calcula dividiendo la longitud del cable para la conductividad multiplicada por el área mientras que se cumpla con la condición de trabajar en bajas frecuencias es decir mientras se cumpla la condición de que el radio del conductor dividido para la profundidad de piel sea menor que uno.

Conclusión 2: Al disminuir el radio del conductor disminuirá su área transversal y hará que el valor de la resistencia de conducción aumente.

Conclusión 3: La resistencia de proximidad disminuye según disminuye el radio del conductor porque esta resistencia es directamente proporcional al radio del conductor elevado a la cuarta potencia mientras se trabaje en bajas frecuencias cumpliendo con la misma condición que la resistencia de conducción.

Se realizaron las mediciones con el software FEMM para diferentes radios de conductor para varias frecuencias para una bobina con 1 vuelta y con 1 hilo. Las mediciones fueron las siguientes.

Datos de entrada al software FEMM											
	3	4	5								
frecuencia [Hz]	1000	10000	20000	50000	100000						
radio [mm]	0.1803	0.1273	0.0899	0.0635	0.0503						
Resistencias calculadas con el software FEMM para una bobina de 1 vuelta y 1 hilo											
Resistencia sin carga											
rsc_11 [Ohm]	0.0488	0.0979	0.1963	0.3934	0.627						
Resistencia con carga											
rcc_11 [Ohm]	0.0489	0.098	0.1965	0.3938	0.6276						
Resistencia de inducción											
rind_11=rcc_11-rsc_11											
[mOhm]	0.0792	0.1632	0.2038	0.3574	0.5925						
Resistencias aproximadas	calculadas co	n las fórmulas	para bajas fr	recuencias par	a una bobina						
	de	1 vuelta y 1 h	ilo								
Resistencia de											
Conducción											
rcond_11 [Ohm]	0.0488	0.0979	0.1963	0.3934	0.6269						
Resistencia de											
Proximidad											
rprox_11 [nOhm]	0.009	0.2241	0.2229	0.3468	0.5462						

Tabla 6.2: Resistencias aproximadas calculadas a varias frecuencias

Conclusión 4: Se observa que la resistencia de inducción aumenta cuando la frecuencia de operación también aumenta debido a que el campo magnético generado interactúa más veces por segundo sobre el fondo magnético que será calentado.

Igual que en lo descrito anteriormente la resistencia de conducción aumentará no por el aumento de la frecuencia sino por la reducción del radio del conductor y por consiguiente la reducción del área de la sección transversal del mismo.

Conclusión 5: En esta ocasión la resistencia de proximidad aumenta de valor con el aumento de la frecuencia porque esta resistencia es directamente proporcional a la frecuencia mediante la profundidad de piel elevada a la cuarta potencia.

Luego de estas dos mediciones se decidió trabajar con los datos de entrada al software FEMM de la Tabla 6.1 para realizar la optimización de tamaño de la bobina mediante la determinación del óptimo número de vueltas y de la cantidad óptima del número de hilos que la bobina debería tener para alcanzar a su vez el máximo de la eficiencia.

La optimización fue realizada con el uso de la función de algoritmo genético de MATLAB cuyos resultados se presentan en la Tabla 6.3.

Datos de entrada al software FEMM												
	1	2	3	4	5							
frecuencia [Hz]	20000	20000	20000	20000	20000							
radio [mm]	0.1803	0.1273	0.0899	0.0635	0.0503							
Optimización realizada con MATLAB para obtener la máxima eficiencia												
Número de vueltas												
óptimas												
vueltas_opt	28	37	53	78	96							
Número de hilos óptimos												
hilos_opt	24	37	53	72	94							
Número de vueltas por												
número de hilos óptimos												
nns_opt	672	1369	2809	5616	9024							
Eficiencia máxima												
efic_max	74.05%	74.35%	74.51%	74.59%	74.62%							

 Tabla 6.3: Optimización del número de vueltas, hilos y eficiencia a frecuencia fija de 20 kHz

Con los valores de los números de vueltas e hilos óptimos de la tabla 6.3 y con los valores de la resistencia de inducción, de conducción y de proximidad para una vuelta y un hilo de la tabla 6.1 se ha construido la siguiente tabla para comparar la eficiencia de la tabla 6.3

Resistencias aproximadas calculadas con las fórmulas para bajas frecuencias para una bobina con el número de bilos y de vueltas óntimos											
110	1	2	3	4	5						
frecuencia [Hz]	20000	20000	20000	20000	20000						
radio [mm]	0.1803	0.1273	0.0899	0.0635	0.0503						
Resistencia Inducida rind_v = vueltas_opt*rind_11 [Ohm] (1)	0 160	0 279	0 572	1 240	1 878						
	0.100	0.279	0.372	1.240	1.878						
Resistencia de Condución rcond_vh = vueltas_opt*rcond_11/hilos_opt	0.05603	0 0070	0.106	0.426	0.640						
	0.05095	0.0979	0.190	0.420	0.040						
Resistencia de Proximidad rprox_vh = vueltas_opt^3*hilos_opt*rprox_11 [Ohm] (3)	0.00181	0.00160	0.00167	0.00181	0.00175						
Eficiciencia máxima aproximada (1)/[(1)+(2)+(3)]	73.16%	73.72%	74.30%	74.34%	74.53%						

Tabla 6.4: Eficiencia máxima de inducción calculada utilizando número de vueltas e hilos óptimos

Se observa que la eficiencia máxima aproximada es muy similar a la eficiencia máxima calculada con el algoritmo genético de MATLAB.

6.2 Limitaciones

El Reglamento Técnico Ecuatoriano RTE INEN 101 llamado "Artefactos Electrodomésticos para Cocción por Inducción" indica que el diámetro externo de la bobina debe ser de al menos 140mm. Se ha decidido usar este valor como diámetro exterior de la bobina y como diámetro interior se decidió usar 44mm. La altura de la bobina se la fijó en 2mm. Es decir las dimensiones de la bobina serían:

Radio exterior: $r_{ext} = 70 mm$ Radio interior: $r_{int} = 22 mm$ Altura: h = 2 mm La norma RTE INEN 101 indica que para el diámetro de la bobina de 140mm el recipiente a calentar debe tener un diámetro inferior de 140mm±10mm y debe estar constituido por 3 capas de 0.5mm de grosor cada una.

La primera capa llamada fondo magnético es la más cerca de la bobina y será la que se caliente debe ser de acero AISI 430, la segunda capa llamada sobre fondo no magnético debe ser de aluminio y la tercera capa llamada cuerpo es la que estará en contacto con el alimento o líquido a calentar debe ser de acero alimenticio AISI 304.

El recipiente se asentará sobre una placa de cristal vitrocerámica de 4mm de espesor. Entre la bobina y la placa de cristal vitrocerámica habrá una separación de 2mm. La bobina se asentará sobre un disco de ferrita de 3mm de espesor que servirá para distribuir mejor el flujo electromagnético, a su vez el disco de ferrita se asentará sobre una placa de aluminio de 1mm de espesor que se usa para aislar los circuitos electrónicos de los campos magnéticos generados por la bobina.

🛍 femm	- (Ok	obina IH Co	n Carga.FEM]																			- 0	×
Eile	Edit	t ⊻iew P	coblem <u>G</u> ri	<u>Operatio</u>	n <u>P</u> roperti	es <u>M</u> es	h <u>A</u> naly	sis Win	dow Help	p												-	θ×
0 🗳																							
0 /	1	<u> </u>	g 🔣 💕	~ ~		780] e r	×	>														
							oÂir						430 Sta	inless Ste	el a ^{Aj} u	minum, 110	0	34 Stainless S	iteel g				
																		Vitrocerámic	a				
	1											40	ir							11			•
						-			_e Sof	t magnel	n cab [Bo tic ferrite	ole ibina:1] e (Fe-Ni-2	In-V)				-						
						•	_o Alumini	ım, 1100)								•			•			
		Bobina IH	Con Carga FEI	(T																			
(r=22.400	0,z=2	23.8000)												_									_
-	Q	Đ	e	. 🕯		111	P	0	×		<u>o</u> z	4	7	\bigcirc	550					R ^R	^ 40 🔬 🕯	15:18 11/1/2018	Q

El esquema completo quedaría de la siguiente manera.

Fig. 6.1: Asignación de parámetros físicos de estructura y magnéticos de la bobina con carga

De esta configuración se obtiene el valor de la resistencia del conductor con carga r_{cc} para una bobina de una vuelta y de una hebra a una frecuencia determinada y con un radio del conductor establecido

También se debe calcular el valor de la resistencia del conductor sin carga r_{sc} con iguales condiciones como las mencionadas anteriormente. Está configuración se muestra a continuación.

Figura 6.2: Asignación del espacio en el cual se alojará la bobina sin carga

La diferencia entre la resistencia del conductor con carga y la resistencia del conductor sin carga es el valor de la resistencia del objeto a calentar, es decir la resistencia que el acero magnético AISI 430 representa, y se la conoce como la resistencia inducida que a su vez es el numerador y primer término del denominador de la ecuación de la eficiencia de inducción.

$$\eta_{ind} = \frac{n^2 R_{ind,1}}{n^2 R_{ind,1} + R_{COND} + R_{PROX}}$$

Según la Especificación Técnica CEN/TS 12983-3 "Cookware - Domestic cookware for use on top of a stove, cooker or hob - Part 3: Cookware for use on induction heating sources" la bobina de inducción de una cocina debe operar a una frecuencia de 20kHz hasta 80kHz. Se opera a una frecuencia mínima de 20kHz debido a que a frecuencias inferiores a este valor son audibles para el ser humano y trabajar sobre los 80kHz resultaría que la circuitería electrónica sea más costosa.

El espacio que debe ocupar la bobina dentro de un equipo de calentamiento también es una limitante por lo que la bobina debería ser eficiente pero sin sobrepasar sus dimensiones, es por esto que en el algoritmo genético de MATLAB se ha considerado como una restricción al volumen total de la bobina, la cual no puede pasar del volumen resultante de multiplicar la altura de la bobina por la resta del área exterior menos el radio interior, una versión a esta restricción es tomar en consideración que el área de la sección transversal de la bobina no puede superar el área resultante de multiplicar la altura de la bobina de la diferencia del radio exterior con el interior.

Adicionalmente se consideró que el número de hilos no podría ser mayor que el número de vueltas para que el algoritmo genético de MATLAB balancee la asignación del número de vueltas e hilos óptimos de tal manera que la relación número de vueltas para número de hilos esté lo más cercano a la unidad.

6.3 Resultados de campo magnético mediante la simulación de la bobina

Los datos de frecuencia, radios, número de vueltas e hilos óptimos de la tabla 6.3 se han ingresado al software FEMM para el cálculo y visualización gráfica del campo magnético que la bobina genera sobre el fondo magnético a calentar.

Figura 6.3: Magnitud de intensidad de campo magnético en base a los datos de la tabla 6.3 columna 1

Figura 6.4: Magnitud de intensidad de campo magnético en base a los datos de la tabla 6.3 columna 2

Figura 6.5: Magnitud de intensidad de campo magnético en base a los datos de la tabla 6.3 columna 3

Figura 6.6: Magnitud de intensidad de campo magnético en base a los datos de la tabla 6.3 columna 4

Figura 6.7: Magnitud de intensidad de campo magnético en base a los datos de la tabla 6.3 columna 5

Conclusión 6: Se evidencia que el campo magnético generado en el fondo magnético aumenta conforme el radio del conductor disminuye y el número de vueltas y de hilos aumenta.

6.4 Resultados de frecuencia y radio

Se ingresó al software FEMM los datos de la tabla 6.1 pero variando la frecuencia de operación desde los 20kHz hasta los 300kHz para realizar 15 mediciones de la resistencia con carga y sin carga de una bobina de 1 vuelta y de 1 hilo. Estas mediciones fueron ingresadas a MATLAB para realizar el cálculo de la resistencia de inducción de la bobina de 1 vuelta y de 1 hilo y en conjunto con los resultados del número de vueltas e hilos óptimos se proceda a calcular la resistencia de inducción total de la bobina así como las resistencias de conducción y de proximidad de la misma. Con estas tres resistencias calculadas de la bobina completa a varias frecuencias y haciendo uso de la ecuación de eficiencia se realizó la gráfica de las eficiencias de inducción aproximadas versus frecuencias. A continuación se muestran los resultados.

Figura 6.8: Eficiencia de Inducción aproximada de la bobina vs. Frecuencia para diversos radios y número de vueltas e hilos óptimos

Conclusión 7: Se observa que con conductores de menor radio se obtiene una mejor eficiencia y también que con cualquier radio de conductor que se trabaje la eficiencia aumenta conforme aumenta la frecuencia de operación siempre que la relación entre el radio del conductor y la profundidad de piel sea menor que la unidad. Cuando esta relación supera la unidad la eficiencia decrece porque la resistencia de proximidad comienza a ser más grande que la resistencia de conducción mientras se aumenta la frecuencia de operación. Se repitió el procedimiento descrito anteriormente pero en esta ocasión se envió al software FEMM los valores de las vueltas óptimas para obtener la gráfica de las eficiencias de inducción exactas versus frecuencias. A continuación se muestran los resultados.

Figura 6.9: Eficiencia de Inducción exacta de la bobina vs. Frecuencia para diversos radios y número de vueltas e hilos óptimos

En esta gráfica se observa la concordancia entre los resultados aproximados y los exactos para la bobina de inducción con el número de vueltas e hilos optimizados.

6.5 Eficiencia de inducción óptima con el modelo matemático teórico

Para determinar la eficiencia de inducción óptima de una bobina que cumpla con la limitación física del volumen de acuerdo a las dimensiones establecidas se comparan los resultados de las curvas de eficiencias aproximadas y exactas para los conductores de mayor y menor radio.

Figura 6.10: Eficiencia de Inducción aproximada y exacta de la bobina vs. Frecuencia para diversos radios y número de vueltas e hilos óptimos

En la gráfica se observa que la diferencia entre los resultados del modelo matemático teórico o aproximado y los resultados del modelo exacto obtenido con las mediciones en el software FEMM son mínimas cuando se trabaja con el menor radio del conductor, mientras que cuando se trabaja con el mayor radio del conductor la diferencia entre los resultados del modelo aproximado y el exacto aumentan.

Conclusión 8: Los resultados indican que para obtener la máxima eficiencia óptima de 91.54% se debería seleccionar el menor radio del conductor, es decir trabajar con un conductor de radio igual a 0.0503mm y a una frecuencia de 240kHz lo que implicaría construir una bobina con 96 vueltas y 94 hilos lo que a su vez sería muy costoso por la longitud total de la bobina.

Adicionalmente por la Especificación Técnica CEN/TS 12983-3 mencionada anteriormente la frecuencia de operación para una bobina de inducción debe estar en el rango de 20kHz a 80kHz, siendo la frecuencia de 240kHz muy lejana a los 80kHz e implicaría que la electrónica utilizada para conmutar a esas frecuencias también represente un mayor costo para la aplicación.

Con las consideraciones mencionadas anteriormente y la restricción de no sobrepasar los 80kHz se puede apreciar que para el conductor de radio igual a 0.0503mm la

eficiencia es de 87.5% y para el conductor de radio igual a 0.1803mm la eficiencia es de 86% pero con una considerable reducción del número de vueltas e hilos, las vueltas se reducirían de 96 a 28 que representa una reducción de 3.4 veces. El número de hilos se reducirían de 94 a 24 lo cual representa una reducción de 4 veces. Esto implica entonces que se puede alcanzar una eficiencia similar seleccionando un mayor radio del conductor con menos vueltas e hilos a un costo menor.

Conclusión 9: Con este análisis se puede concluir que para la aplicación de una cocina de inducción en la que se calentará un recipiente metálico con fondo magnético se deberá tener una bobina con 28 vueltas y 24 hilos conformado por un conductor de radio igual a 0.1803mm.

6.6 Contraste de resultados teóricos y resultados experimentales mediante prototipo de la bobina

Como prototipo de una bobina de inducción se ha hecho uso de una bobina comercial con las siguientes características.

Radio exterior: $r_{ext} = 70 mm$ Radio interior: $r_{int} = 22 mm$ Altura: h = 1.9518 mmRadio del conductor: $r_w = 0.1803 mm$ Número de vueltas: n = 29Número de hilos: $n_s = 22$ Frecuencia de operación: f = 20 KHz

Figura 6.11: Bobina comercial

	Resultados de Eficienica Experimental, Teórico y Optimizado para una Bobina de Inducción									
		FEMM (Experimental o Exacto)	Teórico	MATLAB (Optimizado)						
	frecuencia [Hz]	20000	20000	20000						
Datas da antrada	radio [mm]	0.1803	0.1803	0.1803						
Datos de entrada	vueltas	29	29	28						
	hilos	22	22	24						
	Resistencia Inducida del total de									
	vueltas [Ohm] (1)	0.181190	0.171460	0.168593						
	Resistencia de Condución del total									
	de vueltas e hilos [Ohm] (2)	0.058960	0.064320	0.056927						
Resultados	Resistencia de Proximidad									
	del total de vueltas e hilos [Ohm]									
	(3)	0.001839	0.001839	0.001805						
	Eficiciencia máxima de la Bobina									
	(1)/[(1)+(2)+(3)]	74.88%	72.16%	74.16%						

Tabla 6.5: Contraste de resultados teóricos y experimentales de eficiencia de la bobina plana

Conclusión 10: Se observa que la eficiencia teórica y experimental difiere de 2.72 puntos porcentuales y que con los datos de entrada la optimización de MATLAB indica que el diseño de la bobina podría disminuir 1 vuelta para pasar de 29 a 28 vueltas pero aumentar 2 hilos para pasar de 22 a 24 hilos y obtener una eficiencia que difiera de 2 puntos porcentuales con respecto a la teórica.
ANEXOS

ANEXO I. Optimize use ga - Matlab & Simulink

Optimizar el uso de ga

- Llamar a la Asamblea General de la función en la línea de comandos
- · Utilizar la aplicación de optimización

Llamar a la Asamblea General de la función en la línea de comandos

Para utilizar el algoritmo genético en la línea de comandos, llame a la función de algoritmo genético ga con la sintaxis

[x,fval] = ga(@fitnessfun, nvars, options)

donde

- · @fitnessfun es un identificador de la función de la aptitud.
- nvars es el número de variables independientes para la función de la aptitud.
- options contiene las opciones para el algoritmo genético. Si no pasa de este argumento, ga usa sus opciones por defecto.

Los resultados están dados por

- x punto en el que se alcanza el valor final
- · fval, valor Final de la función de la aptitud

Un ejemplo, vea encontrar el mínimo de la línea de comandos.

Utilizando la función ga es conveniente si usted quiere

- Devolver resultados a MATLAB[®] espacio de trabajo
- · Ejecutar el algoritmo varias veces con diferentes opciones, llamando ga desde un archivo

Utilizar la aplicación de optimización

Para abrir la aplicación de optimización, entrar

optimtool('ga')

en la línea de comandos, o entrar en optimtool y luego seleccione ga desde el menú de Solver.

	Bat options	Exp	and or contract help
1	A Optimization Tool		
Choose solver	File Help	•	
	Problem Setup and Lesuits	Options	Quick Reference
Bitar problem and constraints	Solven ga Genetic Algorithm Proben functions Falmen functions Derivative Composition Linge equation: Ang beg Definite Linge equation: Ang beg	Papulation P	Genetic Algorithm S This tool conseponds to the Click to expand the section to your task. Problem Setup and Rase Problem Constraints Ras solver and view res.
Run solver View results	Par Sincer constantial forutions Par Sincer constantial forutions Independent indexe: Pars solver and niner results Use remotem states from provious nun Rast Pouce Scop Current iterations Clear Results	Specify Secify	Options Biselity options for the den Population Fritness studing Satection Reproduction Mutation Crossover
See to a point	Final point	R Selection Selection Interior Stochastic uniform	Migration Constraint parameters Hybrid function Stopping offentia Pol Functions Output function
	· ·	Bapesduction Bite count B Use default: 0.05*PopulationRise Specify: Crossover fraction: Secify: Mutation Mutation Mutation	Chaptay to command with User function evaluation More information User Catilian Function equivalent

También puede iniciar la herramienta desde la pestaña de aplicaciones MATLAB.

HOME	PLOTS		APPS	SHO	ORTCUTS	
Get Nore Install Apps App	Package App	MuPA(Notebo	D Opt	V inization	PDE	Qurve F

Para utilizar la optimización de la aplicación, primero debe introducir la siguiente información:

- Función de la aptitud, la función objetivo que se desea minimizar. Escriba la función de la aptitud en la forma
 @fitnessfun, donde fitnessfun.m es un archivo que calcula la función de la aptitud. Objetivo de calcular funciones
 explica cómo escribir este archivo. El signo @ crea un identificador de función para fitnessfun.
- Número de variables, la longitud del vector de entrada a la función de la aptitud. Para la función my_fun que se describe en el Objetivo de calcular funciones, es necesario introducir 2.

Puede introducir limitaciones o una función de restricción no lineal para el problema en el panel de las restricciones. Si el problema es sin restricciones, deje estos campos en blanco.

Para ejecutar el algoritmo genético, haga clic en el botón Inicio. La herramienta muestra los resultados de la optimización en el panel de Ejecutar solver y ver los resultados.

ANEXO II. Aplicación de funciones de Bessel de orden entero y

primera especie

UNA APLICACIÓN ACÚSTICA DE LAS FUNCIONES DE BESSEL DE ORDEN ENTERO Y DE PRIMERA ESPECIE.

En muchos problemas de la Física que dan lugar a ecuaciones diferenciales en derivadas parciales, de Laplace o de ondas en coordenadas cilíndricas, aparece una ecuación diferencial ordinaria en la coordenada radial, de la forma

$$x\frac{d}{dx}\left(x\frac{df}{dx}\right) + \left(x^2 - n^2\right)f(x) = 0, \qquad (1)$$

donde la variable x es proporcional a la coordenada radial y n es un entero.

La ecuación (1) se conoce como *ecuación de Bessel de orden n*. Como es una ecuación diferencial de segundo orden en las derivadas, su solución general está formada por dos funciones linealmente independientes, que podemos escribir como

$$f(x) = AJ_{n}(x) + BY_{n}(x),$$
 (2)

donde $J_n(x)$ se llama función de Bessel de primera especie y de orden n, y la función $Y_n(x)$ se llama función de Bessel de segunda especie y de orden n (o función de Neumann o función de Weber).

Estas funciones se obtienen proponiendo soluciones en desarrollo en serie de potencias para la ecuación (1), esto es, soluciones de la forma

$$f(x) = x^{\alpha} \sum_{k=0}^{\infty} a_k x^k$$
. (3)

Al sustituir (3) en (1) e igualar los coeficientes correspondientes a los términos con la misma potencia de x, se obtienen el valor del exponente α y una relación de recurrencia entre los valores de a_k . Para la función de Bessel de primera especie estos coeficientes proporcionan el desarrollo

$$J_{n}(x) = \left(\frac{x}{2}\right)^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k} (x/2)^{2k}}{k! (n+k)!}$$
(4)

De esta expresión se puede probar que

$$J_{-n}(x) = (-1)^n J_n(x),$$
 (5)

para todo entero n.

La función de Bessel (4) sigue siendo solución de la ecuación (1) aún si el número n no es un entero. En este caso la factorial que involucra a n en (4) se debe sustituir por la

función continua $\Gamma(\nu)$ en la variable continua ν , donde si $\nu = n$ entero, entonces $\nu! = \Gamma(\nu+1)$. En este caso, la solución de la ecuación de Bessel (1) para un valor de nno entero ν se indica como $J_{\nu}(x)$. La relación (5) no se cumple si n no es un entero.

La función de Neumann $Y_n(x)$ de orden entero *n* no se puede obtener de un desarrollo en serie de potencias del estilo de (4). No obstante, se puede obtener haciendo uso de las funciones de Bessel no enteras $J_v(x)$ calculando el límite

$$Y_{n}(x) = \lim_{\nu \to \pi} \frac{J_{\nu}(x) \cos(\nu \pi) - J_{-\nu}(x)}{\sin(\nu \pi)}$$
(6)

Para valores pequeños de x, la aproximación al primer término en el desarrollo (4) es

$$J_n(x) \simeq \left(\frac{x}{2}\right)^n \frac{1}{n!},$$
 (7)

estando entonces definida en x = 0 para todo n.

La funciones de Neumann $Y_n(x)$, no obstante, se prueba que tienen un comportamiento divergente para $x \to 0$. Por lo tanto, si el dominio de la variable x en la ecuación de Bessel (l) (con n entero) contiene el origen, solamente la función de Bessel de primera especie $J_n(x)$ es una solución aceptable.

En las figuras 1 y 2 se muestran, respectivamente, las primeras funciones de Bessel de orden entero y de Neumann.

Figura 1. Primeras funciones de Bessel de primera especie

Figura 2. Primeras funciones de Bessel de segunda especie (funciones de Neumann)

Como se observa en las gráficas de la figura 1, una función de Bessel de cualquier orden *n* es oscilatoria y contiene infinidad de raíces. No obstante, estas raíces no están periódicamente distribuidas en el eje *x*, y dos raíces cualesquiera correspondientes a funciones de diferentes órdenes *n* no coinciden.

Para cada función de Bessel J_n existe entonces un conjunto infinito de raíces $(\mu_{n1}, \mu_{n2}, \mu_{n3}, \cdots)$, tales que $J_n(\mu_{nk}) = 0$. El primer subíndice indica el orden n de la función de Bessel y el segundo subíndice identifica una raíz correspondiente a ese orden. Mediante el cálculo numérico se pueden obtener los valores aproximados de las primeras raíces μ_{nk} de cada orden n, como se muestra en la tabla I.

n k	1	2	3	4	5
0	2.4048	5.5201	8.6537	11.7915	14.9309
1	0	3.8317	7.0156	10.1735	13.3237
2	0	5.1356	8.4172	11.6198	14.7960
3	0	6.3802	9.7610	13.0152	16.2235
4	0	7.5883	11.0647	14.3725	17.6160

Tabla I. Primeras raíces de los primeros órdenes de las funciones de Bessel.

GLOSARIO

Algoritmo genético: son métodos adaptativos que pueden usarse para resolver problemas de búsqueda y optimización, y se basan en el proceso genético de los organismos vivos.

(tomado de:http://www.sc.ehu.es/ccwbayes/docencia/mmcc/docs/temageneticos.pdf)

Axisimétrico: simetría alrededor de un eje, exhibe simetría cilíndrica. (http://diccionario-internacional.com/definitions/?spanish_word=axisymmetric)

Bobina: componente pasivo de dos terminales que generan un flujo magnético cuando se hacen circular por ella una corriente eléctrica. (tomado de <u>https://www.electronicafacil.net/tutoriales/Las-bobinas.php</u>)

Calentamiento por inducción: proceso que se utiliza para endurecer, unir o ablandar metales u otros materiales conductivos. (tomado de <u>http://www.ghinduction.com/sobre-calentamiento-por-induccion/?lang=es</u>)

Campo magnético: descripción matemática de la influencia magnética de las corrientes eléctricas y de los materiales magnéticos. (tomado de <u>https://es.wikipedia.org/wiki/Campo_magn%C3%A9tico</u>)

Densidad de flujo magnético: es el flujo magnético por unidad de área de una sección normal a la dirección de flujo, y es igual a la intensidad del campo magnético. (tomado de <u>https://magnetismoymagnetismo.blogspot.com/2012/04/concepto-y-</u><u>definicion-de-densidad-de.html</u>)

Efecto piel: fenómeno que hace que la resistencia efectiva o de corriente altera sea mayor que la resistencia óhmica de corriente continua. Este efecto es el causante de la variación de la resistencia eléctrica, en corriente alterna, de un conductor debido a la variación de la frecuencia de la corriente eléctrica que circula por éste. (tomado de https://es.wikipedia.org/wiki/Efecto_pelicular)

Eficiencia: relación entre la energía útil y la energía invertida. (tomado de <u>https://es.wikipedia.org/wiki/Eficiencia</u>)

Método de Elementos finitos: método numérico general para la aproximación de soluciones de ecuaciones diferenciales parciales muy complejas utilizado en problemas de ingeniería.

(tomado de https://es.wikipedia.org/wiki/M%C3%A9todo_de_los_elementos_finitos)

Función de Bessel de primera especie: son soluciones de la ecuación diferencial de Bessel que son finitas en el origen (x=0) para no enteros no negativos alfa y divergen en el límite cuando x tiende a cero para un alfa negativo no entero.

(tomado de https://es.wikipedia.org/wiki/Funci%C3%B3n_de_Bessel)

Modelo matemático: tipo de modelo científico que emplea algún tipo de formulismo matemático para expresar relaciones, proposiciones sustantivas de hechos, variables, parámetros, entidades y relaciones entre variables de las operaciones, para estudiar comportamientos de sistemas complejos ante situaciones difíciles de observar en la realidad.

(tomado de https://es.wikipedia.org/wiki/Modelo_matem%C3%A1tico)

Optimizar: buscar la mejor manera de hacer una cosa para obtener buenos resultados. (tomado de <u>https://es.thefreedictionary.com/optimizar</u>)

Permeabilidad magnética: indica con qué facilidad atraviesa el campo magnético la materia, o sea si esta es buena conductora o no del campo magnético. Es una característica magnética de la materia.

(tomado de <u>http://www.fullmecanica.com/definiciones/p/674-permeabilidad-</u> magnetica)

Simulación en ingeniería: técnica numérica para conducir experimentos en una computadora digital, los mismos que comprenden cierto tipo de relaciones matemáticas y lógicas, las cuales son necesarias para describir el comportamiento y la estructura de sistemas complejos del mundo real a través de largos períodos de tiempo.

(tomado de <u>https://villalana.wordpress.com/1-1-definicion-e-importancia-de-la-</u> simulacion-en-la-ingenieria/)

BIBLIOGRAFÍA Y REFERENCIAS

- 1. Ayuda Electrónica. (2010). Medio lineal.
- Carretero, C., Alonso, R., Acero, J., Burdío, J. (2011). Dissipative Losses Evaluation in Magnetic Power Devices with Litz-wire Type Windings.
- Carretero, C., Acero, J., Alonso, R. (2012). TM-TE decomposition of power losses in multi-stranded litz-wires used in electronic devices, Progress In Electromagnetic Research, vol. 123, pp. 83-103.
- 4. CEN/TS 12983-3. (2007). "Cookware Domestic cookware for use on top of a stove, cooker or hob Part 3: Cookware for use on induction heating sources"
- 5. EFD Induction. Aplicaciones de calentamiento por inducción.
- ELETTRONICA VENETA S.P.A., (2013). BOBINA DE INDUCCIÓN Mod. F-ROC/EV.
- Feeney, C., Wang, N., Kulkarni, S., Pavlovic, C., Mathuna, O., Duffy, M. (2015). Loss modeling of coupled stripline microinductors in power supply on chip applications, IEEE Transactions on Power Electronics, vol. PP, pp. 1-1.
- Ferrando M., Valero, A., Ecuaciones de Maxwell Fundamentos de radiación, Departamento de comunicaciones.
- Ferreira, J. (1989). Electromagnetic Modelling of Power Electronics converters, Norwel, MA: Kluwer.
- González, W., (2008) Diseño y construcción de bobina de calentamiento por inducción para fundición de titanio, Universidad Simón Bolívar, 13-14.
- Gyselinck, J., Dular, P.(2005). Frequency-domain homogenization of bundles of wires in 2-D magnetodynamic FE calculations, IEEE Transcations on Magnetics, vol. 41, pp. 1416-1419.
- INEN (2017). Reglamento Técnico Ecuatoriano RTE INEN 101 "Artefactos Electrodomésticos para Cocción por Inducción"

- Instituto de Física de la Facultad de Ingeniería. (2011). Una aplicación acústica de las funciones de Bessel de orden entero y de primera especie. Curso de Acústica. Universidad de la República, Montevideo-Uruguay.
- Kattan, P. (2008). Matlab Guide to finite elements. Second edition, Springer Berlin Heidelberg New York.
- Lope, I., Acero, J. Carretero, C. (2015). Analysis and Optimization of the Efficiency of Induction Heating Applications with Litz-Wire Planar and Solenoidal Coils.
- Lucía, O., Acero, J., Carretero, C., Burdio, J. (2013). Induction Heating Appliances Toward More Flexible Cooking Surfaces.
- 17. Meeker, D. (2015). Finite Element Method Magnetics, Version 4.2, User's Manual.
- Sullivan, C., (2001). Cost-constrained selection of strand diameter and number in a litz-wire transformer winding, IEEE Transactions on Power Electronics, vol. 16, pp. 281-288
- 19. Sullivan, C. (1999). Optimal choice for number of strands in a litzwire transformer winding, IEEE Transcactions on Power Electronics, vol 14, pp. 283-291.
- Umar, M. (2011-2012) Thermal Analysis of Induction Cooktops, Politécnico Di Milano, 35-36-48.

UNIVERSIDAD POLITÉCNICA SALESIANA UNIDAD DE POSGRADOS

MAESTRÍA EN MÉTODOS MATEMÁTICO Y SIMULACIÓN NUMÉRICA EN INGENIERÍA

Autores: Víctor David Larco Torres Rafael Enrique Perez Ordóñez Director: PhD. David Barrios Puerto

ANÁLISIS DEL MODELO MATEMÁTICO DE UNA BOBINA PLANA DE CALENTAMIENTO POR INDUCCIÓN Y OPTIMIZACIÓN DE SU EFICIENCIA

Este trabajo de investigación ha sido desarrollado con el objetivo de proporcionar las bases del estudio del uso de la bobina de inducción en las diferentes tecnologías de calentamiento por inducción.

Constituye un primer estudio sobre la dependencia de la eficiencia de una bobina plana de calentamiento por inducción respecto a parámetros como frecuencia de trabajo y radio de hebra utilizada para el cable del bobinado.

Para la simulación y optimización se utilizan como herramientas los softwares FEMM que utiliza elementos finitos y MATLAB para trabajar con la función objetivo y restricciones mediante algoritmo genético.