IA GRANJA: Revista de Ciencias de la Vida

pISSN:1390-3799; eISSN:1390-8596

http://doi.org/10.17163/lgr.n26.2017.09

Artículo científico / Scientific paper

MANEJO DE RESIDUOS

ANÁLISIS FISICOQUÍMICO DE COMBUSTIBLES LÍQUIDOS OBTENIDOS EN EL PROCESO DE PIROLISIS DE CAUCHO VULCANIZADO

PHYSICOCHEMICAL ANALYSIS OF LIQUID FUELS OBTAINED IN THE PYROLYSIS PROCESS OF VULCANIZED RUBBER

Myriam Mancheno^{*}, Pablo Arévalo, Jhison Romero, Inés Malo, Damian Matute, Ricardo Ramos

Ingeniería Ambiental e Ingeniería en Biotecnología, Universidad Politécnica Salesiana, Calle Vieja 12-30 y Elia Liut, Cuenca, Ecuador.

*Autor para correspondencia: mmancheno@ ups.edu.ec

Artículo recibido el 3 de marzo de 2017. Aceptado, tras revisión, el 18 de abril de 2017. Publicado el 1 de septiembre de 2017.

Resumen

En el análisis del combustible pirolítico (combustibles líquidos obtenidos a partir del proceso de pirólisis de residuos de neumáticos usados), las características fisicoquímicas corresponden a fracciones de gasolina, queroseno y diésel, para determinar la sustentabilidad ambiental de su uso, se desarrollaron ensayos de combustión en un motor de pruebas a diésel (800 y 2500 rpm), para establecer la comparativa con un diésel ecuatoriano comercial, los resultados obtenidos comprueban en base a los análisis de emisiones y fallos de combustión, que dicho combustible no puede ser un reemplazante directo del diésel.

Palabras claves: Caucho, neumáticos, pirólisis, combustible, combustión, emisión, contaminantes.

Abstract

Analysis of the pyrolytic fuel (liquid fuels obtained from the pyrolysis process of used tires), the physicochemical characteristics correspond to gasoline, kerosene and diesel fractions. To determine the environmental sustainability of its use, combustion tests were developed in a diesel test engine (800 and 2500 rpm), in order to establish the comparison with a commercial ecuadorian diesel. The obtained results proved based on the analysis of emissions and combustion failures that this fuel cannot be a direct replacement for diesel.

Keywords: Rubber, tire, pyrolysis, fuel, combustion, emission, pollutant.

Forma sugerida de citar:	Mancheno Myriam, Arévalo Pablo, Romero Jhison, Malo Inés, Matute Damian, Ramos Ricardo. 2017. Análisis fisicoquímico de combustibles líquidos obtenidos en el proceso de pirolisis de caucho vulcanizado. La Granja: Revista de Ciencias de la Vida. Vol. 26(2):106-118. pISSN:1390-3799; eISSN:1390-8596.
	20(2).100-110. p15510.1590-5777, e15510.1590-6590.

1 Introducción

El impacto ambiental ocasionado por los neumáticos fuera de uso, radica en que sus residuos no se pueden reciclar fácilmente, convirtiéndose en un desecho inservible. La disposición final inadecuada, influye en forma negativa en la calidad ambiental y en la salud humana (Serrano, García y Fraile, 2007). En Ecuador se desechan anualmente millones de neumáticos, de los cuales un porcentaje mínimo es reutilizado para el reencauchado, no obstante, la gran mayoría es incinerada o depositada en basureros al aire libre, lo que representa una amenaza contra el ambiente (El Telégrafo, 2013). En general la problemática nacional es muy diversa tanto en los centros poblacionales grandes como en los pequeños; en respuesta, el Ministerio del Ambiente (MAE), expidió con Acuerdo Ministerial No. 20, el Plan de Gestión Integral de los Neumáticos Usados, estableciéndose como una oportunidad la valorización energética para obtener combustibles, aplicando tecnología como la pirólisis, disminuyendo por tanto la cantidad de residuos que ingresaría a un relleno sanitario aumentando así su vida útil. La utilización de los neumáticos usados en procesos de recuperación de la energía, representa una oportunidad a corto plazo para consumir grandes cantidades en un modo seguro y respetuoso con el medio ambiente. Los combustibles derivados de neumáticos, también han ganado méritos para aumentar la eficiencia térmica, reducir las emisiones y proporcionar a los usuarios combustibles con una apreciable disminución de costos (Astafan, 1995).

1.1 Aprovechamiento energético de residuos de neumáticos usados

El aprovechamiento energético o la valoración energética, tiene por objetivo extraer el poder calorífico de los neumáticos usados, a fin de sustituir parte de los combustibles convencionales. El poder calorífico de los neumáticos es de 35 MJ/kg, por lo que se trata de un excelente combustible que permite ahorrar entre 10-12 kg de carbón, o 7,52 kg de petróleo por cada neumático usado como combustible (Aguado-Alonso, 2010). La pirólisis se basa en la descomposición térmica de la materia orgánica o compuestos basados en carbono, en concentraciones de oxígeno suficientemente bajas como para no producir combustión (hyperlinkaguadoAguado-Alonso, 2010), el aceite pirolítico y los gases obtenidos de este proceso pueden ser utilizados directamente como combustibles (Williams, Besler, y Taylor, 1990), mientras que el carbón puede ser usado como combustible sólido, carbón activado o negro de carbón (Jones *et al* 1980). Las temperaturas óptimas del proceso oscilan entre 250 a 350°C y la distribución de los productos depende de la materia inicial y las condiciones de operación. A mayor temperatura y tiempo de residencia, mayor es el rendimiento del gas (Murillo, 1999).

1.2 Caracterización de combustibles

La caracterización de un combustible consiste en identificar sus propiedades físicas y químicas a través de diversas pruebas de laboratorio. Es importante conocer estos parámetros debido a que el diseño de los depósitos de combustible en los automóviles, bombas y conductos se basan en las propiedades físicas y químicas del combustible a utilizar, para evitar desgastes, pérdidas por evaporación, así como caídas de presión (Camarillo, 2011).

1.3 Prueba de combustión en motores diésel

Entre las principales pruebas de combustión a las que se somete un motor están la emisión de gases de combustión y fallos del proceso de combustión. El análisis de los gases de combustión consiste en medir la cantidad de gases contaminantes que el motor emite a la atmósfera. Por lo regular se analizan los siguientes gases: Dióxido de carbono (CO₂), Monóxido de Carbono (CO), Óxidos de Nitrógeno (NOX), Dióxido de Azufre (SO₂), e Hidrocarburos no Quemados (HC) y la Opacidad de los humos (Serrano y Carranza, 2005). En nuestro país se cuenta con varias normas, destacando la Norma de Emisiones al Aire desde Fuentes Fijas de Combustión en el libro VI Anexo III del Texto Unificado de Legislación Secundaria de Medio Ambiente (TULSMA), la cual establece los niveles máximos permisibles de emisión de gases provenientes del escape de motores de combustión interna. Los fallos del proceso de combustión son necesarios para una operación confiable y segura de las maquinarias, el riesgo de fallas y el tiempo en que un motor queda fuera de servicio pueden disminuirse solo si los problemas potenciales son anticipados y evitados. Por lo tanto, una de las herramientas con las que se cuenta para el análisis de los fallos en el proceso de com-

bustión, es la medición y análisis del ruido y vibraciones en los motores de combustión interna (Tapia, 2006). Los parámetros descriptores de la amplitud de vibración y ruido más usados son:

Valor RMS: El Valor Medio representa un estimado del contenido energético en la vibración o ruido de una máquina, en el análisis de vibraciones este valor es utilizado para cuantificar la severidad de la vibración (Díaz, 2011).

Factor de Cresta: Es igual a la amplitud del pico de la forma de onda dividida por el Valor de RMS, en el análisis de vibraciones permite una rápida idea de que tanto impacto está ocurriendo en la forma de la onda y está asociado al desgaste del balero de los rodillos, cavitación y desgaste de los dientes de engrane (Friedman, 2004).

La Curtosis: La curtosis y el factor de cresta representan parámetros estadísticos de gran valor en la detección de fallas, ya que para el caso normal la señal que se observa mediante un acelerómetro posee una distribución normal y cuando algunos de sus elementos empieza a fallar tiende a alejarse de la misma, en estos casos el factor de cresta tiene a aumentar tomando valores superiores (Bendat y Piersol, 1986).

2 Metodología

2.1 Condiciones experimentales del proceso de pirólisis

El trabajo experimental de pirólisis se llevó a cabo en un reactor tipo *Batch* de acero inoxidable y en ausencia completa de oxígeno. Las variables estudiadas fueron presión, temperatura y tiempo de retención; con la finalidad de determinar las condiciones ideales para la mayor producción de combustibles líquidos. Estos resultados se analizaron con el paquete estadístico MINITAB.

2.2 Caracterización fisicoquímica del combustible líquido

Para la caracterización fisicoquímica se utilizaron los siguientes métodos:

 a) La normativa Venezolana COVENIN 2052-93, "Productos Derivados del Petróleo. Determinación de la Densidad y la Densidad Relativa de Líquidos por Medio del Picnómetro Binghman", para medir la densidad.

- b) La Norma Técnica Ecuatoriana INEN 808:1986 "Productos de Petróleo. Determinación de los Puntos de Inflamación y Combustión en Vaso Abierto de Cleveland", para determinar el Punto de Inflamación.
- c) La Norma Técnica Ecuatoriana INEN 810:1986 "Productos de Petróleo. Determinación de la Viscosidad Cinemática y Dinámica en Líquidos Transparentes y Opacos", en la determinación de la viscosidad.
- d) Norma Técnica Ecuatoriana INEN 0926. "Productos de Petróleo. Ensayos de destilación".
- e) Norma Técnica Ecuatoriana INEN 1489:99 "Productos Derivados del Petróleo - Requisitos. Diésel".
- f) El medidor de calidad de petróleo SHATOX modelo SX-300 que cumple con la norma ASTM D 4737-03, ASTM D 613 e ISO 5165, para medir el número de Cetano, temperatura de solidificación y contenido de queroseno.
- g) Un cromatógrafo de gases THERMO SCIEN-TIFIC, modelo Trace GC ULTRA, con detector FID (*Flame Ionization Detector*), perteneciente al Laboratorio de Ciencias de la Vida, para determinar HAP's (Hidrocarburos Aromáticos Policíclicos).

2.3 Condiciones experimentales de la prueba de combustión

Para las pruebas en base a la Norma Técnica Ecuatoriana INEN 2 202:2000 (Gestión Ambiental. Aire. Vehículos Automotores. Determinación de la Opacidad de Emisiones de Escape de Motores Diésel Mediante la Prueba Estática. Método de Aceleración Libre), se utilizó un Motor de Combustión Interna Diésel ENGINE modelo G-130301 de 2500 CC. Para medir las concentraciones de gases de combustión se utilizó el medidor EUROTRON modelo GREENLINE 4000, el cual permite la lectura de concentraciones de los gases: Monóxido de Carbono (CO), Óxido de Nitrógeno (NO), y Óxidos de Nitrógeno (NO_X) ; en tiempo real en el proceso de combustión. Para recibir las concentraciones de opacidad y de partículas que emiten los combustibles en el momento de la combustión se empleó un equipo comprobador de gases de escape diésel MAHA modelo MET 6.2. Finalmente para el análisis de ruido y vibraciones se utilizó un micrófono piezoeléctrico

unidireccional de la marca PCB, modelo HT378B02, y un acelerómetro sumergible modelo 8042, las señales obtenidas fueron llevadas a un analizador de vibraciones A3716 de la marca ADASH, el cual tiene la función de acondicionar las señales y permitir la visualización de las magnitudes de presión sonora y vibraciones que emite el motor.

3 Resultados y discusión

3.1 Optimización del proceso de pirólisis

Para establecer los factores que influyen en el rendimiento del proceso de obtención de combustible líquido, se verifica si los datos que se muestran en la Tabla 1 presentan un comportamiento normal, condición necesaria para aplicar el diseño completamente al azar.

Para la utilización de este modelo se considera como factor de entrada (FE) la Temperatura y como factor de salida (FS) el Volumen Líquido, el resultado valor-p que arroja es de 0,010 siendo este un valor menor que 0,05 con un nivel de confianza del 95%, se demuestra que la variable de temperatura influye significativamente en el experimento. Considerando con FE la variable de Presión se obtiene un valor-p 0,688 y con el FE Tiempo de Residencia, el valor-p = 0,607, como se evidencia, los valores son mayores a 0,05 lo cual demuestra que no son estadísticamente significativos por lo cual se descartan en el experimento.

Además, se realiza una regresión polinómica con los datos de la Tabla 2, con el fin de identificar el punto máximo de la curva (ver Figura 1) y se determina la temperatura óptima (eje x), para obtener el mayor volumen líquido (eje y).

En base a una regresión polinómica de cuarto grado, se obtiene la siguiente ecuación:

$$y = -1E - 07x^4 + 0,0001x^3 - 0,0678x^2 + 14,815x - 1206,4$$
(1)

Considerando esta ecuación se calcula el punto crítico máximo de Temperatura que es de 376°C, el cual produce el mayor volumen de combustible líquido.

3.2 Caracterización fisicoquímica del combustible

Los análisis fisicoquímicos del combustible líquido obtenido determinan que posee características propias de los combustibles derivados del petróleo (gasolina, diésel y queroseno); en la Tabla 3 se describe las propiedades fisicoquímicas del Combustible Pirolítico.

El Combustible Pirolítico, posee color y olor característico de los productos derivados del petróleo; la densidad y la gravedad API corresponden a un crudo mediano, de acuerdo a norma Venezolana COVENIN 2052-93; su viscosidad corresponde a un diésel tipo I, basado en las Normas Técnicas Ecuatorianas (NTE) INEN 810:1986 e INEN 1489:99; el punto de inflamación está en el rango de la gasolina según la NTE - INEN 808:1986; el punto de solidificación, el número de Cetano y el contenido de queroseno se determinan con el equipo SHATOX modelo SX-300 que cumple con la norma ASTM D 4737-03, ASTM D 613 e ISO 5165 e INEN 1489:99, resultados que corresponden a un diésel tipo II; para el proceso de destilación se basa en la metodología de la norma INEN 0926. La temperatura de destilación del 90% que se obtuvo corresponde a un diésel tipo II, según INEN 1489:99.

3.3 Caracterización de Hidrocarburos Aromáticos Policíclicos (HAP's)

De los análisis en el cromatógrafo de gases se establece que de los seis HAP's analizados cuyos resultados de concentración se observan en la Tabla 4, el Fluoranteno y el Benzo (a) pireno, son los que se encuentran en mayor proporción dentro de la composición química del combustible pirolítico, el porcentaje de volumen de los seis HAPs analizados corresponde al 1,49% del combustible líquido.

3.4 Comparativa del proceso de combustión

Se analizan emisiones de Óxidos de Nitrógeno (NO_X, NO), Monóxido de Carbono (CO), Material Particulado, Opacidad; y para establecer los fallos en el proceso de combustión se analizan: ruido y vibraciones; esta comparativa se establece a 800 rpm y 2500 rpm del motor.

Temperatura (°C)	Presión (Psi)	Tiempo de Retención (min)	Volumen Líquido (cm ³)
340	55	10	4,51
340	15	10	4,72
340	55	20	4,5
340	15	20	4,82
440	55	10	4,26
440	15	10	4,16
440	55	20	4,42
440	15	20	4,28

|--|

Tabla 2. Pruebas para determinar mayor rendimiento de combustible

Temperatura	Volumen
(°C)	Líquido (cm ³)
280	5,03
310	5,73
340	6,26
370	6,93
400	6,02

Figura 1. Curva de calibración de la temperatura óptima

Parámetro	Unidad	Valor
Densidad	g/cm ³	0,88
Gravedad API	-	23,87
Viscosidad	Centipoise	1,11
Punto de inflamación	°Č	20,5
Punto de congelación	°C	-39,3
Número de Cetano	-	46,7
Temperatura de destilación del 90%	°C	320
Porcentaje de Queroseno	%	45,4

Tabla 3. Características fisicoquímicas del combustible obtenido

Tabla 4. Concentración de HAP's en el combustible

LLAD's	Concentración		
	ppm	% v/v	
Fluoranteno	6089,48	0,61	
Benzo (b) fluoranteno	441,04	0,05	
Benzo (k) fluoranteno	0	0	
Benzo (a) pireno	4892,56	0,49	
Indeno (1,2,3,-c,d) pireno	2100,6	0,21	
Benzo (ghi) perileno	1376,31	0,14	
TOTAL	14900	1,5	

Figura 2. Concentración de gases a 800 rpm

3.4.1 Emisión de Gases NO_X, NO y CO en 800 rpm

La información sobre la prueba en 800 rpm, nos presenta que el diésel comercial emite un 96% más de NO_X que el combustible pirolítico, y un 109% más de NO. El combustible pirolítico emite un 261% mÃ_is de CO que el diésel comercial, como se observa en la Figura 2.

Con los datos obtenidos en las mediciones que se detallan en la Figura 4, se procede a transformar a las unidades de la normativa de referencia del Anexo 3 (TULSMA), el valor obtenido para NO_X es de 119.03 mg/m³ valor menor al establecido en la norma (2300 mg/m³) y en cuanto a las emisiones de CO y NO, no hay una normativa ecuatoriana aplicable ver Tabla 5.

3.4.2 Emisión de Gases NO_X, NO y CO en 2500 rpm

En la prueba de 2500 rpm (Ver Figura 3) el combustible del proceso emite un 98% más de Óxidos de Nitrógeno (NO_X), un 98% más Monóxido de Nitrógeno (NO), y en un 276% más de Monóxido de Carbono (CO) que el diésel comercial.

Con los datos obtenidos en las mediciones que se detallan en la Figura 4, se procede a transformar a las unidades de la normativa de referencia del Anexo 3 (TULSMA), el valor obtenido para NO_X es de 119.03 mg/m³ valor menor al establecido en la norma (2300 mg/m³) y en cuanto a las emisiones de CO y NO, no hay una normativa ecuatoriana aplicable ver Tabla 5.

3.4.3 Emisión de partículas a 800 rpm y 2500 rpm

Para la prueba de emisión de partículas se realiza la comparación con el diésel comercial, a 800 rpm y 2500 rpm, tomando las medidas con el equipo comprobador de gases de escape diésel MAHA modelo MET 6.2. La Figura 4, muestra la concentración de partículas a 800 rpm, y se observa que la emisión de partíulas del Combustible Pirolítico, es mayor en 588 % más que el diésel.

El Combustible pirolítico en comparación con el diésel a 2500 rpm, como muestra la Figura 5 tiene un porcentaje mayor a 4629% más que el diésel comercial.

De acuerdo con el análisis de la NTE INEN para Fuentes Fijas de Combustión en los límites máximos permisibles de emisiones al aire para motores de combustión interna, el combustible del proceso de pirólisis a 800 rpm está dentro de los límites establecidos para fuentes nuevas, y a 2500 rpm sobrepasa el valor establecido en un 913 %, como se observa en la Tabla 6.

3.4.4 Opacidad a 800 rpm y 2500 rpm

En los resultados para opacidad, en los que se compara al diésel y el combustible pirolítico, los dos están dentro de los límites establecidos por la Norma Técnica Ecuatoriana INEN 2202:2000.

En las pruebas de 800 rpm la opacidad del combustible obtenido es mayor 538% más que la opacidad del diésel, como se indica en la Figura 6.

Para las pruebas de 2500 rpm la opacidad del combustible obtenido es mayor 2589% más que la opacidad del diésel, como está representado en la Figura 7.

Para los análisis de opacidad se empleó un equipo comprobador de gases de escape diésel MAHA modelo MET 6.2, el cual determina que el factor k del combustible pirolítico es de 0,134 que equivale a 1,3% de opacidad, lo cual representa un índice mayor en comparación del factor k del diésel que es de 0,021 equivalente a 0,2% de opacidad, para los datos obtenidos a 800 rpm, ver Tabla 7.

Así mismo, para 2500 rpm el factor k es de 3,765 que equivale a 37,6% de opacidad, por lo tanto es un índice mayor en comparación del factor k del diésel de 0,14 correspondiente al 1,4% de opacidad, cumpliendo con la NTE - INEN 2 202:2000, como podemos observar en la Tabla 7.

3.4.5 Análisis de fallos en el proceso de combustión

El análisis de los fallos en el proceso de combustión se realiza para determinar los efectos que tiene el combustible en el funcionamiento del motor, para lo cual se utiliza un micrófono piezoeléctrico unidireccional de la marca PCB, modelo HT378B02, y un acelerómetro sumergible modelo 8042, las señales obtenidas fueron llevadas a un analizador de vibraciones A3716 de la marca ADASH.

3.4.5.1. Ruido de combustión a 800 rpm En la Tabla 8 se encuentran los valores de curtosis y del factor de cresta del combustible pirolítico, los cuales son mayores que los del diésel, por lo cual, se producen variaciones de la amplitud del ruido, mientras que el Valor de RMS que nos muestra la concentración

Figura 3. Concentración de gases a 2500 rpm

Tabla 5. Concentraciones de contaminantes en el Combustible Pirolítico

Contaminante	TULSMA	Combustible Pirolítico (800 rpm	Combustible Pirolítico 2500 rpm	Uni	Obs.
Óxidos de Nitrógeno	2300 mg/m ³	81,72	175,99	mg/m ³	Cumple
Monóxido de Nitrógeno	-	53	121	ppm	No existe límite
Monóxido de Carbono	-	1609	1896	ppm	No existe límite

Figura 4. Concentración de partículas a 800 rpm.

Figura 5. Concentración de partículas a 2500 rpm.

Tabla 6. Concentraciones de contaminantes en el Combustible Pirolítico

Contaminante	Norma INEN	Combustible Pirolítico	Unidad	Observación
Partículas Totales (800 rpm)	150	30,66	mg/m ³	Cumple
Partículas Totales (2500 rpm)	150	1520	mg/m ³	No cumple

Figura 6. Opacidad a 800 rpm.

Figura 7. Opacidad a 2500 rpm.

Tabla 7. Concentraciones de contaminantes en el Combustible Pirolítico

Contaminante	Norma INEN	Diesel	Combustible Pirolítico	Unidad	Observación
Opacidad (800 rpm)	50	0,2	1,3	%	Cumple
Opacidad (2500 rpm)	50	1,4	37,6	%	Cumple

Tabla 8. Señales de ruido a 800 rpm

Caracterización señales de ruido a 800 rpm					
Características de señales Diésel Combustible Pirolítico					
Factor de Curtosis	2,3078	2,6506			
Valor RMS	0,002	0,0021			
Factor de Cresta	3,1681	3,4113			

Caracterización señales de ruido a 2500 rpm					
Características de señales Diésel Combustible Pirolítico					
Factor de Curtosis	2,4	2,3806			
Valor RMS	0,01	0,0111			
Factor de Cresta	3,131	3,0382			

Caracterización señales de vibraciones a 800 rpm				
Características de señales	Diésel	Combustible Pirolítico		
Factor de curtosis	21,97	39,1095		
Valor RMS	0,006	0,0081		
Factor de Cresta	15,58	20,2924		

Tabla 10.Vibraciones a 800 rpm

Tabla 11.	Vibraciones	a	2500	rpm
-----------	-------------	---	------	-----

Caracterización señales de vibraciones a 2500 rpm					
Características de señales	Diésel	Combustible Pirolítico			
Factor de curtosis	11,28	16,1305			
Valor RMS	0,034	0,0348			
Factor de Cresta	9,778	15,2128			

de la energía del sonido son apreciablemente iguales.

3.4.5.2. Ruido de combustión a 2500 rpm En este caso el factor de curtosis y el factor de cresta del combustible pirolítico son menores a los valores del diésel, lo que significa que no se producen variaciones considerables de la amplitud del ruido, mientras que el Valor de RMS es mayor del combustible obtenido, lo que significa mayor energía contenida en el ruido y por lo tanto mayor ruido, esto se aprecia en la Tabla 9.

3.4.5.3. Vibraciones del motor a 800 rpm En la Tabla 10, se muestra que el factor de curtosis y el factor de cresta del combustible pirolítico, son mayores a los del diésel, lo que representa que el motor con el uso del combustible mostrará un serio desgaste de los rodillos; el factor de cresta es relativamente alto debido a la cantidad de impactos ocurridos dentro del balero, lo que provocará un desgaste del balero de los rodillos, cavitación y desgaste de los dientes de engrane. Además, el valor de RMS del combustible pirolítico es mayor que el diésel, lo que significa que el contenido energético en la vibración es mayor siendo más incidente la severidad de la vibración.

3.4.5.4. Vibraciones del motor a 2500 rpm Como se aprecia en la Tabla 11, el factor de curtosis y el factor de cresta del combustible pirolítico, son mayores a los del diésel, lo que representa que al usarlo, pre-

sentará un serio desgaste de los rodillos, el factor de cresta es relativamente alto lo que provocará un desgaste del balero de los rodillos, cavitación y desgaste de los dientes de engrane. El valor RMS del Combustible pirolítico es mayor al del diésel, por lo tanto, el contenido energético de las vibraciones es mayor y su severidad se incrementa.

4 Conclusiones

Después de realizar las pruebas de emisiones de gases y partículas se determina que el diésel presenta mejores resultados en la combustión, al mostrar valores muy por debajo de las emisiones del Combustible Pirolítico, en el que además se observa una excesiva generación de humo blanco, síntoma de una combustión anticipada en la cámara.

Al realizar la comparativa en la combustión del combustible pirolítico y el diésel comercial, se establece que en condiciones de ralentí a 800 rpm del motor, los dos combustibles están dentro de los límites máximos permisibles de la normativa ecuatoriana para fuentes fijas de combustión en la emisión de NO_X y Partículas.

En el proceso de combustión a una aceleración de 2500 rpm del motor, se determina que la emisión de NO_X está por debajo de los límites máximos permisibles.

El porcentaje de Opacidad de los dos combustibles cumplen con la norma NTE INEN 2 202:2000.

De los resultados de fallos del proceso de combustión mediante el análisis de ruido y vibraciones,

en las pruebas a 800 rpm y 2500 rpm, se determina que el motor presenta más dificultades en el proceso de combustión del combustible pirolítico en comparación con el diésel comercial, encontrando mayor ruido y vibraciones que generan un alto desgaste en las piezas del motor. En base al análisis de emisiones del combustible pirolítico con la Normativa Ecuatoriana para Fuentes Fijas de Combustión, se observa que para la emisión de NO_X cumple con los límites permisibles establecidos, mientras que para las emisiones de CO y NO, no existe un límite establecido en la normativa.

Una vez analizados los resultados se demuestra que la sustentabilidad del proceso de pirólisis no constituye una metodología de gestión de residuos de caucho vulcanizado, mediante el análisis de la prueba de combustión en el motor diésel; debido a que el combustible obtenido del proceso presenta en su combustión mayores emisiones de contaminantes (CO, NO, NO_X, Partículas y Opacidad) y fallos de combustión que afecta al motor.

Se determina que el combustible obtenido en el proceso de pirólisis presenta características similares a las del diésel; pero mediante las pruebas de combustión se establece que este no puede ser un reemplazante directo del diésel comercial.

Referencias

- Aguado-Alonso, L., 2010. Reciclado de neumáticos para la fabricación de láminas impermeabilizantes en la construcción *Tesis de maestría*, Madrid-España: Universidad Politécnica de Madrid. Disponible en: https://goo.gl/ 704Kmc.
- Astafan, C. G., 1995. *Procesamiento de neumáticos usados en los Estados Unidos*. Estados Unidos: Tecnología Internacional de Neumáticos. Disponible en: https://goo.gl/mqx4YZ.
- ASTM D4737-03, 2003. *Standard Test Method for Calculated Cetane Index by Four Variable Equation*. Annual Book of ASTM Standards. DOI: https: //doi.org/10.1520/D4737-03
- Bendat, J. y Piersol, A., 1986. *Random data: analysis and measurement procedures*. Segunda Edición. Universidad de Minnesota: Wiley-Interscience publication. Disponible en: https: //goo.gl/1DqSgy

- Camarillo, J. A., 2011. Estudio de la combustión de un motor monocilíndro de ignición alimentado con mezclas gasolina-etanol anhidro e hidratado a distintas concentraciones *Tesis de Maestría*, Xalapa-México: Universidad Veracruzana. Disponible en: https://goo.gl/ QGcS1D
- Jones, J. L., Radding, S. B., Takaoka, S., Buekens, A. G., Hiaoka, M. y Overend, R., 1980. Thermal Conversion of Solid Wastes and Biomass. Washington-Estados Unidos: American Chemical Society. DOI: https://doi.org/10.1021/ bk-1980-0130
- COVENIN 2052-93, 1993. Productos derivados del petróleo. Determinación de la densidad y la densidad relativa de líquidos por medio del picnómetro Binghman. Norma Venezolana. Disponible en: https://goo.gl/a6MaFY
- Decreto ejecutivo N° 3516, 2012. *Texto Unificado Legislación Secundaria, Medio Ambiente, Parte I.* Ecuador: Ministerio del Ambiente. Disponible en: https://goo.gl/4eptSL
- Díaz, S., 2006. *Medición y análisis de vibraciones*. Caracas-Venezuela: Universidad Simón Bolívar. Laboratorio de dinámica de máquinas. Disponible en: https://goo.gl/p8pjtP
- Diario El Telégrafo, 2013. Diez mil carros entran cada año al parque automotor de Cuenca. [En línea] Disponible en: https://goo.gl/6aVkor. (Consultado: 16-08-2016)
- Friedman, A., 2004. *Detección automática del desgaste de rodamientos*. Estados Unidos: Procedimientos del Instituto de Vibraciones. Disponible en: https://goo.gl/ZtWCU1
- INEN 0926, 1984. *Productos de Petróleo. Ensayos de destilación.* Norma Técnica Ecuatoriana. Quito-Ecuador. Disponible en: https://goo. gl/EKGWT2
- INEN 0808, 1986. Productos de petróleo. Determinación de los puntos de inflamación y combustión en vaso abierto Cleveland. Norma Técnica Ecuatoriana. Quito-Ecuador. Disponible en: https: //goo.gl/oJe8wX
- INEN 0810, 1986. Productos de petróleo. Determinación de la viscosidad cinemática y dinámica en

líquidos transparentes y opacos. Norma Técnica Ecuatoriana. Quito-Ecuador. Disponible en: https://goo.gl/XhZLwV

- INEN 1489, 1999. Productos derivados del petróleo. Diesel. Requisitos. Norma Técnica Ecuatoriana. Quito-Ecuador. Disponible en: https: //goo.gl/rqs6WN
- INEN 2202, 2000. Gestión ambiental. Aire. Vehículos automotores. Determinación de la opacidad de emisiones de escape de motores de diésel mediante la prueba estática. Método de aceleración libre. Norma Técnica Ecuatoriana. Quito-Ecuador. Disponible en: https://goo.gl/QwkVtA
- INEN 2204, 2002. Gestión ambiental. Aire. Vehículos automotores. Límites permitidos de emisiones producidas por fuentes móviles terrestres de gasolina. Norma Técnica Ecuatoriana. Quito-Ecuador. Disponible en: https://goo.gl/kSsKuF
- INEN 2207, 2002. Gestión ambiental. Aire. Vehículos automotores. Límites permitidos de emisiones producidas por fuentes móviles terrestres de diesel. Norma Técnica Ecuatoriana. Quito-Ecuador. Disponible en: https://goo.gl/TaazWV
- Murillo, B., 1999. Pirólisis de caucho procedente de neumáticos empleados en automoción. *Te*-

sis de Maestría. Cáceres España: Universidad de Extremadura.

- Serrano, J. C. y Carranza, Y. A., 2005. Análisis teórico de la combustión en quemadores de gas natural. *Scientia Et Technica*, 3(29), pp. 139-143. DOI: http://dx.doi.org/10. 22517/23447214.6627
- Serrano, E. C., García, L. C., y Fraile, M. U., 2007. Valorización material y energética de neumáticos fuera de uso. España: Confederación Empresarial de Madrid-COE. Disponible en: https: //goo.gl/Pt97F7
- Tapia. C., 2006. Análisis de vibraciones en elementos funcionales del faro derecho del auto new beetle 2,5 versión Europea (ECE). *Tesis de Maestría*. Choluca-México: Universidad de las Américas Puebla. Disponible en: https: //goo.gl/kwDQr9
- Williams, P., Besler, S. y Taylor, D., 1990. The pyrolysis of scrap automotive tyres: The influence of temperature and heating rate on product composition. *Fuel*, 69(12), pp. 1474-1482.
 DOI: https://doi.org/10.1016/0016-2361(90) 90193-T