

Universidad Politécnica Salesiana Sede Guayaquil

Facultad de Ingenierías

Carrera:

Ingeniería Electrónica

Trabajo de titulación previa a la obtención del título de:

Ingeniero Electrónico

Tema:

Diseño e implementación de una planta didáctica industrial con aplicaciones para el control de nivel en un reservorio, para el laboratorio de automatización industrial

Autores:

Tumbaco Castro Angelo Joffre Viña Palomino Roberto Carlos

Director:

MACI. Gary Ampuño Avilés

Guayaquil – Ecuador 2015

Declaratoria de responsabilidad

Los conceptos desarrollados, análisis realizados y las conclusiones del presente trabajo académico, son de exclusiva responsabilidad de los autores, y la propiedad intelectual pertenece a la Universidad Politécnica Salesiana Sede Guayaquil.

Guayaquil, Febrero del 2015

(f)____

Angelo Joffre Tumbaco Castro

(f)____

Roberto Carlos Viña Palomino

Dedicatoria

Este proyecto se lo dedicamos a la carrera de Ingeniería Electrónica de la Universidad Politécnica Salesiana, para que sigan promoviendo grandes profesionales al mundo laboral, que conformado por su eje principal nuestro Director de Carrera han sabido llevar avante esta carrera. Siendo su personal administrativo y docentes una base fundamental para conseguir grandes éxitos.

Angelo Joffre Tumbaco Castro

Roberto Carlos Viña Palomino

Agradecimiento

Este logro alcanzado se lo debo agradecer principalmente a mi Dios padre celestial, nuestra madre la Virgen María Auxiliadora y San Juan Bosco; puesto que aquella bendición constante fue derramado en cada ciclo cursado y más aún en este último requerimiento previo a tan ansiado título.

Luego de ello deseo agradecer eternamente a la mujer que me ha dado la vida y con su sacrificio me supo criar y guiar en cada difícil momento de mi vida, mi querida y adorada madre Mercy Castro Baque. Al igual que mi hermana Roxanna, mis sobrinos Emily, Joshua y también a cada uno de mis familiares que juntos hemos disfrutado de gratos momentos y me han inculcado a ser una persona de bien ante la sociedad, llenándome de valores e incentivándome a emplearlos.

Los amigos son aquella familia que aunque no tengan tu misma sangre son las personas que siempre se preocupan por tu bienestar y te ayudan cuando más los necesitas, es por ello que quiero agradecer a un grupo que más que amigos considero mis hermanos que aunque iniciamos la carrera hacia la meta iguales, hubieron pequeños percances pero estoy seguro que pronto podremos decir juntos "lo logramos". Mi gratitud hacia ustedes: Katherine, Francis, Josué, Nathalie y Eddy.

El desarrollo de este proyecto fue difícil y supimos cómo lidiarlos, es por ello que quiero agradecerle a mi compañero de tesis Roberto Viña y toda su familia ya que siempre estuvieron al pendiente de nuestros avances. Nuestras aportaciones debido a la experiencia laboral de cada uno fue la fórmula perfecta para tomar decisiones técnicas equitativas y así tener un buen desarrollo del mismo.

Los docentes son aquellos seres que con sus formas de comportamiento y exigencias, nos preparan hacia el ambiente laboral. Es por ello que deseo agradecer a todos los docentes quienes ciclo a ciclo nos compartieron sus conocimientos, en especial a mi tutor de tesis MACI. Gary Ampuño quien nos aconsejó y ayudó con el desarrollo del proyecto.

Gracias.

Angelo Tumbaco C

Agradecimiento

Agradezco a Dios topoderoso por guiar mi camino y derramar sus bendiciones en mi vida, dándome las fuerzas suficientes para no claudicar frente a los obstáculos que se presentaron para obtener este anhelado logro.

A mi familia, fuente de apoyo constante e incondicional en mi vida y en especial en esta etapa de mi carrera.

A mi papá, Alfredo Viña Hidalgo por ser un ejemplo de persona honesta, luchadora, responsable, emprendedora y por enseñarme a vencer las adversidades. Un ser especial en todas las etapas de mi vida, pilar fundamental, mi mamá, Noralma Palomino Zamora por sus sabios consejos de perseverancia, por el esfuerzo, su sacrificio, su demostrado cariño y amor. A mi hermano Alfredo, por su ayuda indispensable en este logro, por su preocupación en el tema, su cooperación en todo momento y por ser un gran amigo. Mi hermana Nory, por ser una mujer de cualidades excepcionales, por brindarme su desinteresado apoyo mediante sus capacidades que junto a sus valores la hacen una persona y profesional única.

A mis compañeros de mi carrera estudiantil que fueron un gran soporte en este periodo. Angelo Tumbaco, mi compañero de tesis, con quién compartimos experiencias y conocimientos para poder obtener este logro.

Agradecimiento sincero a mi tutor de tesis MACI, Gary Ampuño Avilés que con sus facultades, profesionalismo, rigor académico me brindó acertados consejos, en especial por su predisposición y disponibilidad absoluta.

Además a cada una de esas personas que de una u otra forma aportaron para que este objetivo se logre.

Roberto Carlos Viña Palomino

Índice General

Capít	ulo 1. El p	problema	15		
1.1	1.1 Planteamiento del Problema				
1.2	Delimita	ción	15		
1.2.1 Temporal			15		
1.2	1.2.2 Espacial		16		
1.2	.3 Aca	démica	16		
1.3	Objetivo	98	16		
1.3	.1 Obj	etivo General	16		
1.3	.2 Obj	etivos Específicos	16		
1.4	Justifica	ción	17		
1.5	Variable	s e Indicadores	18		
1.5	.1 Var	iables	18		
1.5	.2 Indi	cadores	18		
1.6	Metodol	ogía a Utilizar	18		
1.6	.1 Mét	odo Bibliográfico	18		
1.6	.2 Mét	odo Explicativo	18		
1.6	.3 Mét	odo Cuantitativo	19		
			10		
1.7	Població	n y Muestra	19		
1.7 1.7	Població .1 Pob	n y Muestra	19 19		
1.7 1.7 1.7	Poblacić .1 Pob .2 Mue	n y Muestra lación	19 19 19		
1.7 1.7 1.7 1.8	Poblacić .1 Pob .2 Mue Resume	n y Muestra lación estra n de la propuesta de intervención	19 19 19 20		
1.7 1.7 1.7 1.8 1.9	Població .1 Pob .2 Muo Resumen Descript	n y Muestra lación estra n de la propuesta de intervención zión de la propuesta	19 19 19 20 23		
1.7 1.7 1.7 1.8 1.9 1.9	Població .1 Pob .2 Muo Resumen Descripto .1 Des	n y Muestra lación estra n de la propuesta de intervención ción de la propuesta cripción de la planta	19 19 19 20 23 23		
1.7 1.7 1.7 1.8 1.9 1.9 1.9	Població .1 Pob .2 Muo Resumen Descripo .1 Des .2 Des	n y Muestra lación estra n de la propuesta de intervención ción de la propuesta cripción de la planta cripción del módulo de control	19 19 19 20 23 23 24		
1.7 1.7 1.8 1.9 1.9 1.9 1.9	Població .1 Pob .2 Muo Resumen Descripo .1 Des .2 Des Benefici	n y Muestra lación estra n de la propuesta de intervención ción de la propuesta cripción de la planta cripción del módulo de control arios de la propuesta	19 19 19 20 23 23 23 24 26		
1.7 1.7 1.8 1.9 1.9 1.9 1.9 1.10 1.11	Població .1 Pob .2 Muo Resumen Descripo .1 Des .2 Des Benefici Impacto	n y Muestra lación estra n de la propuesta de intervención ción de la propuesta cripción de la planta cripción del módulo de control arios de la propuesta	19 19 19 20 23 23 23 24 26 26		
1.7 1.7 1.8 1.9 1.9 1.9 1.10 1.11	Població .1 Pob .2 Muo Resumen Descripo .1 Des .2 Des Benefici Impacto	n y Muestra lación estra n de la propuesta de intervención ción de la propuesta cripción de la planta cripción del módulo de control arios de la propuesta	19 19 20 23 23 24 26 26		
1.7 1.7 1.8 1.9 1.9 1.9 1.10 1.11 Capít	Població .1 Pob .2 Muo Resumen Descripo .1 Des .2 Des Benefici Impacto ulo 2. Mat	n y Muestra lación estra n de la propuesta de intervención rión de la propuesta cripción de la planta cripción del módulo de control arios de la propuesta	19 19 19 20 23 23 24 26 26 26		
1.7 1.7 1.8 1.9 1.9 1.9 1.10 1.11 Capít 2.1	Població .1 Pob .2 Mua Resumen Descripo .1 Des .2 Des Benefici Impacto ulo 2. Ma Procesos	n y Muestra lación estra n de la propuesta de intervención rión de la propuesta cripción de la planta cripción del módulo de control arios de la propuesta rco Teórico	19 19 20 23 23 24 26 26 26 27 27		
1.7 1.7 1.8 1.9 1.9 1.9 1.10 1.11 Capít 2.1 2.1	Població .1 Pob .2 Muo Resumen Descripo .1 Des .2 Des Benefici Impacto ulo 2. Mai Procesos .1 Intro	n y Muestra	19 19 20 23 23 24 26 26 26 27 27 27		
1.7 1.7 1.7 1.8 1.9 1.9 1.9 1.10 1.11 Capít 2.1 2.2	Població .1 Pob .2 Muo Resumen Descripo .1 Des .2 Des Benefici Impacto ulo 2. Mai Procesos .1 Intro Variable	n y Muestra	 19 19 19 20 23 23 24 26 26 27 27 27 28 		
1.7 1.7 1.7 1.8 1.9 1.9 1.9 1.10 1.11 Capít 2.1 2.2 2.2	Població .1 Pob .2 Mua Resumen Descripo .1 Des .2 Des Benefici Impacto ulo 2. Ma Procesos .1 Intro Variable .1 Can	n y Muestra	 19 19 19 20 23 23 24 26 26 27 27 27 27 28 28 		
1.7 1.7 1.7 1.8 1.9 1.9 1.9 1.10 1.11 Capít 2.1 2.2 2.2 2.2	Població .1 Pob .2 Mue Resumen Descripe .1 Des .1 Des .2 Des Benefici Impacto ulo 2. Mat Procesos .1 Intro Variable .1 Can .2 Hist	n y Muestra	 19 19 19 20 23 23 23 24 26 26 27 27 27 27 28 28 28 		
1.7 1.7 1.7 1.8 1.9 1.9 1.9 1.10 1.11 Capít 2.1 2.2 2.2 2.2 2.3	Població .1 Pob .2 Mua Resumen Descripo .1 Des .1 Des .2 Des Benefici Impacto ulo 2. Ma Procesos .1 Intro Variable .1 Can .2 Hist Medició	n y Muestra	 19 19 19 20 23 23 24 26 27 27 27 27 27 27 27 28 28 29 		
1.7 1.7 1.7 1.8 1.9 1.9 1.9 1.9 1.10 1.11 Capít 2.1 2.2 2.2 2.2 2.3 2.3	Població .1 Pob .2 Muo Resumen Descripo .1 Des .1 Des .2 Des Benefici Impacto ulo 2. Mat Procesos .1 Intro Variable .1 Can .2 Hist Medició .1 Meo	n y Muestra	 19 19 19 20 23 24 26 26 27 27 27 27 27 27 28 28 29 29 		

2.4 Co	ontroladores Lógicos Programables PLC	33		
2.4.1 Campos de aplicación del PLC				
2.4.2 Ventajas e Inconvenientes				
2.4.3 Estructura del PLC				
2.5 Va	riadores	37		
2.5.1	Funcionamiento de los variadores de velocidad	37		
2.5.2	Comportamiento del motor	37		
2.6 Si	stemas de Control	40		
2.6.1	Introducción a los sistemas de control	40		
2.6.2	Definiciones de los sistemas de control	40		
2.6.2	2.1 Variable controlada y señal de control o variable manipulada	40		
2.6.2	2.2 Plantas	41		
2.6.2	2.3 Procesos	41		
2.6.2	2.4 Sistemas	41		
2.6.2	2.5 Perturbaciones	41		
2.6.2	2.6 Control realimentado	42		
2.6.3	Sistemas de control en lazo cerrado	42		
2.6.4	Sistemas de control en lazo abierto	42		
2.6.5	Reglas de Ziegler-Nichols para la sintonía de controladores PID	43		
2.6.	5.1 Control PID de plantas	43		
2.6.	5.2 Reglas de Ziegler-Nichols para sintonizar controladores PID	44		
2.6.	5.3 Primer método	44		
2.6.	5.4 Segundo método	45		
Capítulo	3. Diseño e Implementación del Proyecto	47		
3.1 Fund	cionalidad del proyecto	47		
3.1.1	Diagrama de flujo del proceso	48		
3.1.2	3.1.2 P&ID del proceso			
3.1.3	Bloques de control del proceso	50		
3.1.4	Planteamiento de solución al proceso	50		
3.2 De	esarrollo del tablero de control principal	51		
3.2.1	Materiales tablero de control	51		
3.2.2	Diseño del tablero de control	52		
3.2.3	Conexionado de los elementos de control	55		
3.2.4	Implementación de tarjeta electrónica de control	58		
3.2.5	Alimentación tablero de control principal	59		
3.3 De	esarrollo del tablero de la planta industrial	59		

3.3.1 Materiales del tablero de la planta industrial			
3.3.2 Diseño del tablero de la planta industrial			
3.3.3 Conexionado de los elementos de control			
3.3.4 Prueba del tablero de planta industrial			
3.4 Desarrollo Planta Industrial			
3.4.1 Materiales planta industrial			
3.4.2 Diseño de la estructura de soporte planta industrial			
3.4.3 Diseño de la planta industrial			
3.4.4 Ubicación de equipos y sensores en la planta industrial			
3.4.5 Recorridos de tuberías y conexionado de instrumentos			
3.4.6 Colocación de Marquillas a los elementos de la planta industrial71			
3.4.7 Alimentación de la planta industrial72			
3.5 Integración elementos tablero de control de nivel			
 Capítulo 4. Diseño de Prueba de Control PID sintonización Ziegler y Nichols			
Cronograma			
Conclusiones95			
Recomendaciones96			
Bibliografía97			

<u>Tablas</u>

Tabla 1: Regla de sintonía de Ziegler-Nichols basada en la respuesta escalón de la	
planta (primer método)	45
Tabla 2: Regla de sintonía de Ziegler-Nichols basada en la ganancia crítica Kcr	46
Tabla 3: Valores de tiempos	82
Tabla 4: Formula de parámetros PID	83
Tabla 5: Valores de parámetros PID	83
Tabla 6: Muestreo de setpoint	91
Tabla 7: Promedio, error crítico.	.92

<u>Figuras</u>

Figura 1: Alumnos realizando prácticas en el laboratorio de automatización industri	al
	15
Figura 2: Laboratorio de Automatización Industrial Bloque B de la Universidad	
Politécnica Salesiana sede Guayaquil	17
Figura 3: Instalaciones Universidad Politécnica Salesiana Guayaquil	19
Figura 4: Esquema de los equipos del sistema de módulos2	20
Figura 5: Diseño de la Planta Industrial a Escala (medidas planteadas en mm)	24
Figura 6: Diseño del módulo de control (medidas planteadas en mm)	25
Figura 7: Representación de la curva de histéresis2	29
Figura 8: Medición de nivel a través de ultrasonidos	31
Figura 9: Estructura de PLC	36
Figura 10: Conexionado de PLC	36
Figura 11: Comportamiento de motor velocidad y corriente par	37
Figura 12: Diagrama electrónico del variador de velocidad	38
Figura 13: Comportamiento del diagrama electrónico	39
Figura 14: Control PID de una planta	13
Figura 15: Respuesta a un escalón unitario de una planta	14
Figura 16: Curva de respuesta en forma de S ²	15
Figura 17: Sistemas en lazo cerrado con un controlador proporcional	16
Figura 18: Oscilación sostenida con periodo Pcr (Pcr se mide en seg)	16
Figura 19: Diseño del proyecto implementado	17
Figura 20: Flujograma de la planta industrial ²	18

Figura 21: P&ID de la planta industrial	. 49
Figura 22: Diagrama de bloque de control de la planta industrial	. 50
Figura 23: Planteamiento de solución de la planta industrial	. 51
Figura 24: Materiales Tablero de Control Principal	. 52
Figura 25: Diseño del tablero de control principal	. 53
Figura 26: Estructura del tablero de control principal	. 53
Figura 27: Ejecución de perforaciones al tablero de control	. 54
Figura 28: Colocación de elementos de control en el tablero	. 54
Figura 29: Conexionado entre elementos de control	. 55
Figura 30: Colocación del plafón al interior del tablero	. 56
Figura 31: Conexión de cables en borneras de PLC y DB25	. 56
Figura 32: Marquillas de cables	. 57
Figura 33: Colocación de voltímetro análogico en tapa de tablero	. 57
Figura 34: Elementos soldados en la tarjeta impresa	. 58
Figura 35: Colocación de tarjeta impresa y placa metálica, en tapa de tablero	. 58
Figura 36: Energización del Tablero de control	. 59
Figura 37: Materiales Tablero Planta Industrial	. 60
Figura 38: Diseño del tablero de planta industrial	. 61
Figura 39: Estructura del tablero de planta industrial	. 61
Figura 40: Ejecución de perforaciones al tablero de planta industrial	. 62
Figura 41: Colocación de elementos de control en el tablero de la planta industrial	63
Figura 42: Conexionado entre elementos tablero de planta industrial	. 63
Figura 43: Marquillas de cables del tablero de planta industrial	. 64
Figura 44: Vista interna del tablero de planta industrial	. 64
Figura 45: Energización del tablero planta industrial	. 65
Figura 46: Materiales de la planta industrial	. 66
Figura 47: Materiales del soporte de la planta industrial	. 67
Figura 48: Soldadura de estructura de la planta industrial	. 67
Figura 49: Estructura de la planta industrial	. 67
Figura 50: Diseño de los elementos planta industrial	. 68
Figura 51: Validación de medidas planta industrial	. 69
Figura 52: Ubicación de elementos en la planta industrial	. 70
Figura 53: Implementación de recorridos de tuberías y conexión de sensores en la	
planta industrial	.71

Figura 54: Colocación de tag a elementos en la planta industrial	71
Figura 55: Puesta en marcha de elementos en la planta industrial	72
Figura 56: Diseño de planta industrial	73
Figura 57: Integración de elementos proyecto de control de nivel	73
Figura 58: Árbol del proyecto	76
Figura 59: Agregar bloque alarma cíclica	76
Figura 60: Bloque PID_Compact	77
Figura 61: Ajuste de parámetros del PID	78
Figura 62: PID conexión online	78
Figura 63: Sintonización del PID	79
Figura 64: Comportamiento del nivel	80
Figura 65: Voltaje de la bomba rompe la inercia	81
Figura 66: Ingreso de Kp, Ti, Td	83
Figura 67: Comportamiento con el método Z-N	84
Figura 68: Modo automático con sintonización Z-N	85
Figura 69: Comportamiento con el modo automático con sintonización Z-N	85
Figura 70: Comportamiento del nivel vs setpoint	86
Figura 71: Comportamiento de la bomba	87
Figura 72: Ventana de trabajo - "Panel Frontal"	88
Figura 73: Ventana de trabajo - "Diagramas de Bloques"	88
Figura 74: Generar un histórico en Labview	89
Figura 75: Históricos en Excel desde Labview	90

<u>Anexos</u>

Anexo 1. Planos Eléctricos	98
Anexo 2. Planos Mecánicos	113
Anexo 3. Prácticas	124

Resumen				
AÑO	TÍTULO	ALUMNOS	DIRECTOR	TEMA DE TESIS
			DE TESIS	
				Diseño e
2015	Ingeniero	Roberto Carlos	MACI. Gary	implementación de una
	Electrónico	Viña Palomino	Ampuño	planta didáctica
			Avilés	industrial con
		Angelo Joffre		aplicaciones para el
		Tumbaco Castro		control de nivel en un
				reservorio, para el
				laboratorio de
				automatización industrial

El presente trabajo de titulación denominado "Diseño e implementación de una planta didáctica industrial con aplicaciones para el control de nivel en un reservorio, para el laboratorio de automatización industrial" tiene la finalidad de aportar una herramienta de aprendizaje que permita la simulación de procesos industriales a través de plantas didácticas para los estudiantes de la Carrera de Ingeniería Electrónica de la Facultad de Ingenierías de la Universidad Politécnica Salesiana.

La planta didáctica cuenta con un control de nivel. Implementada con sensores de nivel tipo ultrasónico, boya, capacitivos; y elementos de salida como electroválvula, variador de velocidad, bomba, complementos con tuberías de conexión rápida, que pueden ser manipulados mediante un módulo de control con un PLC Siemens S7-1200 conectado mediante el puerto DB-25 con el tablero que es parte de la planta.

El correcto funcionamiento del proyecto se sustentó en el análisis con experimentos y pruebas que se centraron en la regulación de lazo cerrado PID de los elementos de control final. Se ha logrado demostrar que mediante la técnica de optimización de Ziegler & Nichols (método práctico) se encontró un punto de partida para poder seleccionar los datos de las variables proporcional, integral y derivativo con un criterio cercano al controlador final que se dejó parametrizado en el PLC.

La planta con su respectivo manual de prácticas proporcionará a los estudiantes la oportunidad de familiarizarse con equipos, elementos, sistemas y variables de control que son utilizados en las industrias, siendo un aporte para las asignaturas de Automatización Industrial.

PALABRAS CLAVES

Control de Nivel /Fluidos/ control de lazo cerrado PID / automatización PLC S7-1200.

Abstract					
YEAR	DEGREE	STUDENTS	SUPERVISOR	THESIS TOPIC	
2015	Electronic Engineering	Roberto Carlos Viña Palomino Angelo Joffre Tumbaco Castro	MACI. Gary Ampuño Avilés	Design and implementation of an industrial plant with applications for the control of the level in a reservoir for the industrial automation laboratory	

This paper called "Design and implementation of an industrial plant with applications for the control of the level in a reservoir for the industrial automation laboratory" aims to provide a learning tool that allows the simulation of industrial processes through didactic plants for students of the study program of Electronic Engineering, of the Universidad Politécnica Salesiana.

The didactic plant has a level control. Implemented with type ultrasonic level sensors, float, capacitive; and output elements such as solenoid valve, variable speed pump, piping accessories with fast connection, which can be manipulated by a control module with a PLC Siemens S7-1200 connected via the DB-25 port to the board that is part of plant.

The proper functioning of the project was based on the analysis with experiments and tests focused on closed loop PID control of final control elements. It has succeeded in demonstrating that by optimization technique Ziegler & Nichols (practical method) a starting point to select data from the proportional, integral and derivative variables with a close at the end controller criterion left parameterized has been found in the PLC. The plant with its own operating practices provide students the opportunity to become familiar with equipment, components, systems and control variables that are used in industries, being a contribution to the subjects matters of Industrial Automation.

KEYWORDS

Level Control / Fluids / PID closed loop control / automation S7-1200 PLC

Introducción

El ámbito laboral plantea entre otros desafíos la adaptación dinámica a los sistemas de trabajo. El éxito de un profesional se mide entre otros aspectos por el desarrollo de esta habilidad.

El presente trabajo tiene como objetivo contribuir a que los futuros profesionales de las carreras de Ingeniería Eléctrica y Electrónica que cursan las asignaturas relacionadas a Automatización Industrial, se familiaricen con una herramienta de aplicación técnica, empleando los conceptos adquiridos durante su formación en la planta didáctica que proponemos.

La planta representa un proceso industrial de amplia utilización en el área laboral, su diseño e implementación con sensores de nivel tipo ultrasónico, boya, capacitivos; y elementos de salida como electroválvula, variador de velocidad, bomba, complementos con tuberías de conexión rápida, los mismos que pueden ser manipulados mediante un módulo de control con un PLC Siemens S7-1200 conectado mediante el puerto DB-25 con el tablero que es parte de la planta. Al contar con dicho puerto, también se podrá conectar con los módulos existentes en el laboratorio, siendo una ventaja al momento de realizar las diferentes prácticas. La planta además cuenta con un control de nivel que permite mantener y regular un sistema de forma técnica.

Para sustento del funcionamiento integral del proceso se realizaron pruebas, análisis y experimentos enfocados en la regulación de lazo cerrado PID de los elementos de control final. Se demostró que mediante la técnica de optimización de Ziegler & Nichols (método práctico) se encontró un punto de partida para poder seleccionar los datos de las variables proporcional, integral y derivativo con un principio cercano al controlador final que se parametrizó en el PLC con un margen de error mínimo en relación al proceso de nivel empleado.

Finalmente se elaboró un manual de prácticas que sirva de apoyo a los estudiantes en la realización de los diferentes métodos de control y en el desarrollo de las habilidades de programación en lógica de control.

XIV

Capítulo 1. El problema

1.1 Planteamiento del Problema

A razón de potenciar los conocimientos del alumnado de la carrera de Ingeniería Eléctrica y Electrónica de forma práctica en las asignaturas relacionadas a Automatización Industrial vinculándolos a procesos industriales mediante la simulación de equipos y elementos que se encuentran en el área profesional y acrecentando la experiencia del alumno en el enfoque del control de sistemas automatizados mediante el uso de plantas industriales a escala. Además proporcionará una evaluación más precisa por parte del docente hacia los alumnos de esta forma mejorará la participación en la realización de variadas prácticas, talleres y lecciones.

Figura 1: Alumnos realizando prácticas en el laboratorio de automatización industrial

Fuente: Los autores

1.2 Delimitación

1.2.1 Temporal

El tiempo planteado para el diseño, desarrollo y construcción del proyecto, se desarrolló en el año 2014-2015.

1.2.2 Espacial

Este sistema de módulos funcionará en el Laboratorio de Automatización Industrial del cuarto nivel del Bloque B de la Universidad Politécnica Salesiana sede Guayaquil, pero al ser portable puede ser implementado en cualquier laboratorio de dicha institución.

1.2.3 Académica

El sistema de módulos desarrolla de manera teórica y práctica los conocimientos de los estudiantes en diversas materias tales como Automatización Industrial, Instrumentación, Sensores y Transductores.

1.3 Objetivos

1.3.1 Objetivo General

Diseñar y construir una planta industrial a escala para el Laboratorio de Automatización Industrial, estos se conectarían a los módulos actuales de PLC S7-1200 a través de un puerto hembra de 25 pines, que formará parte de un desarrollo más completo en la realización de prácticas.

1.3.2 Objetivos Específicos

- Diseñar e implementar una planta industrial a escala para la simulación de procesos reales.
- Diseñar e implementar un módulo de control semejante a los existentes en el laboratorio de Automatización Industrial, el cual constará de un PLC Siemens S7-1200 con su panel de botoneras e indicadores luminosos.
- Crear un banco de 10 prácticas planteadas y resueltas para el desarrollo de las mismas en las asignaturas relacionadas a Automatización Industrial.

 Fomentar el desarrollo de prácticas para una comprensión más adecuada de las materias de Automatización Industrial, Sensores y Transductores e Instrumentación.

1.4 Justificación

El presente trabajo de titulación se originó con la finalidad de aportar con una herramienta de aprendizaje que permita la simulación de procesos industriales reales a partir de plantas a escala para los alumnos de las carreras de Ingeniería Electrónica, que cursan las asignaturas de Automatización Industrial. El cual servirá para fomentar el desarrollo de proyectos para una comprensión más adecuada de las materias relacionadas al tema, con módulos y equipos que se encuentran en la práctica profesional.

Este trabajo de titulación estuvo referenciado del Banco de Tesis del año 2014, de Ingeniería Electrónica de la Universidad Politécnica Salesiana sede Guayaquil.

Figura 2: Laboratorio de Automatización Industrial Bloque B de la Universidad Politécnica Salesiana sede Guayaquil

Fuente: Los autores

1.5 Variables e Indicadores

1.5.1 Variables

- Diseño y construcción de una planta a escala con un proceso industrial del control de llenado de tanques.
- Diseño y construcción de un módulo de control.
- Vinculación del alumnado en procesos industriales mediante la planta a escala.

1.5.2 Indicadores

- Incremento en la comprensión de los estudiantes durante el desarrollo de las prácticas, debido al uso de la planta industrial.
- Aplicar los conceptos teóricos-prácticos en las asignaturas relacionadas a Instrumentación, Sensores y Transductores. Adaptando al alumnado a un ambiente laboral industrial.

1.6 Metodología a Utilizar

1.6.1 Método Bibliográfico

Se investigó información existente en bibliografía virtual, textos, documentos sobre el tema y las herramientas a emplearse.

1.6.2 Método Descriptivo

Debido a que argumenta acerca del proceso de adquisición de datos, y las técnicas de identificación empleadas para posteriormente, determinar los ajustes para el control del sistema en lazo.

1.6.3 Método Cuantitativo

Se realizará observación y análisis de datos estadísticos, junto con la aplicación de un control de procesos.

1.7 Población y Muestra

1.7.1 Población

• Estudiantes de las carreras de Ingenierías de la Universidad Politécnica Salesiana sede Guayaquil.

Figura 3: Instalaciones Universidad Politécnica Salesiana Guayaquil

Fuente: http://www.ups.edu.ec/sede-guayaquil

1.7.2 Muestra

• Estudiantes de las Carreras de Ingeniería Eléctrica y Electrónica que se encuentran cursando la asignatura Automatización Industrial 1.

1.8 Resumen de la propuesta de intervención

El sistema a implementarse proporcionará a cada uno de los alumnos de la carrera de Ingeniería Eléctrica y Electrónica en las asignaturas de Automatización Industrial una mayor experiencia en sistemas de procesos industriales a través de una planta a escala con un control de nivel de llenado de tanques con fluido específicamente agua, el cual está controlado y regulado mediante un módulo semejante a los existentes en el laboratorio de automatización industrial.

El diseño e implementación del sistema está formado por una planta a escala y un módulo de control, la planta a escala posee dos tanques, sensor de nivel ultrasónico, sensores de nivel capacitivo, variador de frecuencia, bomba y electroválvula.

El módulo de control está compuesto por un PLC Siemens S7-1200 con su panel de botoneras e indicadores luminosos. Adicionalmente la planta a escala, el módulo de control y el panel de botoneras constará con un puerto hembra de 25 pines para el envío y la recepción de señales digitales y analógicas entre cada uno de estos equipos para realizar el debido control de los mismos.

Fuente: Los autores

Elaboración de Prácticas

Las mismas estan planteadas y resueltas en la sección anexos

Práctica Nº1: Introducción a la planta industrial a escala

Se describieron cada una de las funciones y características específicas de los elementos del proceso, además los planos de interconexión eléctricos y P&ID (Piping and Instruments Diagrams) del proceso.

Práctica N°2: Autómata Programable como elemento de control de procesos

Conectividad y prueba entre el PLC S7-1200 con el dispositivo de control (PC), uso del entorno integrado del software, programación básica de las señales digitales tanto salidas y entradas del módulo de control.

Práctica N°3: Funcionalidad de sensores capacitivos para un sistema en lazo abierto

Se puso en práctica el funcionamiento de los sensores de nivel de tipo capacitivos para nivel alto y nivel bajo para uno de los tanques, a través de las entradas digitales del controlador.

Práctica N°4: Funcionalidad de sensores ultrasónicos para un sistema en lazo abierto

Se puso en práctica el funcionamiento de los sensores de nivel de tipo ultrasónico, mediante el escalamiento señales analógicas y la parametrización se los rangos de medición.

Práctica N°5: Accionamiento on/off de una electroválvula para el llenado del tanque

Se comprobó en práctica el funcionamiento de las electroválvulas como salidas digitales del controlador.

Práctica N°6: Vaciado de un tanque por medio de temporizadores

Se realizó el control de nivel a través del tiempo, por medio del sensor capacitivo temporizar el vaciado del tanque para el control de apertura y cierre de la electroválvula.

Práctica N°7: Control de una electroválvula por medio del sensor analógico mediante histéresis

Se desarrolló el control de nivel a través de una entrada analógica, por medio del sensor ultrasónico para el control de apertura y cierre de la electroválvula.

Práctica N°8: Control de nivel del tanque mediante la bomba en lazo cerrado

Se puso en práctica el funcionamiento de la bomba a través del variador de frecuencia como salida analógica del controlador.

Práctica N°9: Control PID para llenado de tanques

Se describió el funcionamiento nivel con sensor ultrasónico, sensores capacitivos y sensor tipo boya, para el llenado del tanque por medio del control de la velocidad de la bomba.

Práctica N°10: SCADA de control PID para llenado de tanques mediante LabVIEW

Se realizó el SCADA para el control de nivel de los tanques con sensor ultrasónico, sensores capacitivos y sensor tipo boya, para el llenado del tanque por medio del control de la velocidad de la bomba.

1.9 Descripción de la propuesta

1.9.1 Descripción de la planta

La planta industrial a escala se implementó con 2 tanques, uno que sirve de reservorio TK-101 y el tanque de control TK-102, una bomba P 101 que llevará el fluido del TK-101 al TK-102, el cual puede ser controlado mediante un variador de velocidad conectado a la bomba, el paso de fluido puede ser restringido por las diferentes válvulas manuales HV, al momento de realizar la descarga de agua del tanque TK-102 al TK-101 constará con una electroválvula SV 101 con un bypass de una válvula manual HV 105. El TK-102 es monitoreado y controlado por un sensor de nivel tipo ultrasónico además de un sensor de nivel tipo boya para referenciar su nivel bajo. El tanque TK-101 tiene dos sensores de nivel capacitivos tanto para determinar el nivel bajo como el nivel alto del depósito. La bomba es controlada por un variador de velocidad. Todo el sistema se encuentra bajo una estructura de metal para soportar todo los equipos que están montados en la misma.

Figura 5: Diseño de la Planta Industrial a Escala (medidas planteadas en mm)

Fuente: Los autores

1.9.2 Descripción del módulo de control

En la planta industrial a escala constaron elementos de campos, para poder realizar el control hubo un módulo de PLC semejante a los existentes en los laboratorios, está conformado por un S7-1200 de catorce entradas digitales y diez salidas digitales, además de dos entradas analógicas y una salida analógica. Tiene un puerto DB25 para el control de señales desde una tarjeta electrónica o de elementos de la planta.

Fuente: Los autores

1.10 Beneficiarios de la propuesta

Los beneficiarios principales del proyecto son los estudiantes que cursan las carreras de Ingeniería Eléctrica y Electrónica en la Universidad Politécnica Salesiana sede Guayaquil y que requieren el uso de sistema de procesos industriales reales ya sea para realizar tareas o para distintas evaluaciones que puedan ser tomadas en el Laboratorio de Automatización Industrial de dicha institución.

1.11 Impacto

La planta industrial les brindará a los beneficiarios el conocimiento necesario para dominar los diferentes instrumentos y elementos que se encuentran en los diversos tipos de industrias, además de poner en práctica los fundamentos teóricos de control y automatización adquiridos en clases para una mejor apreciación de los conceptos.

Capítulo 2. Marco Teórico

2.1 Procesos Industriales

2.1.1 Introducción

Según (Antonio Creus Sole, 2010) en la mayoría de las plantas industriales de los diferentes campos donde se elaboran los productos de consumo masivo u obtienen algún elemento a partir de su materia prima, debido a su complejidad de elaboración y la gran cantidad de procesos continuos que estos conllevan, es definitivamente necesario un control minucioso a fin de mantener constante las magnitudes de algunas variables relacionadas directamente en los procesos, estas acciones pueden ser reguladas a través de los instrumentos de medición y control, manteniendo las condiciones idóneas que el operador no podría conservar.

Al principio de la era industrial como se destaca en (Norman A. Anderson, 1997) los procesos se desarrollaban de una manera más sencilla, en donde el operador era capaz de controlar numerados procesos manualmente, es decir a través de instrumentos de manipulación sencilla como manómetros, termómetros, válvulas manuales, etc. Sin embargo, debido al desarrollo tanto de los procesos como de los instrumentos de medición y control la industria ha exigido una automatización cada vez con mayor complejidad, sintiéndose la ausencia ascendente de operadores en las industrias ya que ahora sólo es necesario de la supervisión y el monitoreo de los procesos, el cual puede estar situado en el mismo proceso a controlar o en una estación de control remota (alejado del proceso); la implementación de la automatización en las plantas industriales ha servido de gran ayuda ya que gracias a ellos es posible elaborar productos de mayor complejidad cumpliendo estándares de calidad necesarios, lo cual evidencia las características o condiciones del producto en comparación con las que el operario se le haría imposible o muy difíciles de conseguir.

2.2 Variables de Control

2.2.1 Campo de medida

El campo de medida (range) para aglomeración o acumulación de datos medidos de la variable del instrumento, los cuales se encuentran comprendidos entre los límites superior e inferior de la capacidad de medida de transmisión o recepción del instrumento. Es representado denotando los dos valores extremos.

Ejemplo: un manómetro de intervalo de medida 0- 10 bar, un transmisor de presión electrónico de 0-25 bar con señal de salida 4-20 mA c.c. o un instrumento de temperatura de 100-300 °C. (Antonio Creus Sole, 2010)

Así mismo, existe otro término relacionado el cual es dinámica de medida o rangeabilidad (rangeability), el cual es el cociente entre el valor de medida superior e inferior de un instrumento. Por ejemplo, una válvula de control lineal que regule linealmente el caudal desde el 2% hasta el 100% de su carrera tendrá una rangeabilidad de 100/2 = 50.

2.2.2 Histéresis

La histéresis (hystéresis) como concuerdan (Antonio Creus Sole, 2010) es el recorrido que hace la pluma del instrumento analógico o los diferentes valores que son representados en los instrumentos digitales que toman cualquier valor del campo de medida, ya sea este recorrido ascendente o descendente.

Se expresa en porcentaje el alcance de la medida. Por ejemplo: si en un termómetro de 0-100%, para el valor de la variable de 40 °C, la aguja marca 39,9 °C al subir la temperatura desde 0 °C, e indica 40,1 °C al bajar la temperatura desde 100 °C, el valor de la histéresis es de:

$$\frac{40.1 - 39.9}{100 - 0} x100 = \pm 0.2\%$$

La figura 7 refleja la curva de histéresis en la cual están dibujadas exageradamente para apreciar bien su forma.

Figura 7: Representación de la curva de histéresis

Fuente: (Antonio Creus Sole, 2010)

2.3 Medición de Nivel

La medición de nivel en las diferentes industrias es de suma importancia ya que gracias a este se puede obtener un funcionamiento correcto del proceso o un control adecuado de la cantidad de materia prima o de productos finales.

2.3.1 Medidores de nivel de líquidos

En la norma ISA como se explica en (Battikha, 2006) los medidores de nivel de líquidos funcionan midiendo la altura del líquido en un recipiente; ya sea: directamente, por presión hidrostática, por desplazamiento a través de un flotador que se encuentre dentro del recipiente, aprovechando características eléctricas del líquido a medir u otros medios Los instrumentos que realizan su medición directa son: sonda, cinta y plomada, nivel de cristal, nivel de flotador, magnético, palpador servo operado y magnetoestrictivo.

Los instrumentos que miden el nivel a través de la presión hidrostática son:

- Medidor manométrico
- Medidor de tipo burbujeo
- Medidor de presión diferencial de diafragma

El medidor de desplazamiento aprovecha el empuje que realiza el líquido hacia arriba obteniendo esta variación a través de un flotador que se encuentra conectado directamente a una regla graduada.

Los instrumentos que utilizan las características eléctricas del líquido son:

- Medidor resistivo/conductivo
- Medidor capacitivo
- Medidor ultrasónico
- Medidor de radar o microondas
- Medidor de radiación
- Medidor de láser

Aquellos que se basan en otros fenómenos son:

- Medidor óptico
- Vibratorio
- Detector de nivel térmico o de dispersión térmica

2.3.2 Medidor de nivel de ultrasonidos

La medición de nivel a través de ultrasonidos se ilustra en la figura 8, su funcionamiento consisten en la emisión de un impulso ultrasónico a una área reflectante y la recepción del eco del mismo en un receptor. El tiempo que tarda en receptarse el eco proporciona el nivel del tanque a medir (Antonio Creus Sole, 2010).

Figura 8: Medición de nivel a través de ultrasonidos

Fuente: (Antonio Creus Sole, 2010)

Si el sensor ultrasónico se coloca en la parte inferior del tanque, este genera un impulso eléctrico el cual es convertido a través de un transductor (cristal piezoeléctrico) a un impulso ultrasónico de breve duración, éste pasa la pared del tanque hacia el líquido (Battikha, 2006). El impulso recorre todo el líquido hasta reflejarse en la superficie y retornar al receptor del transductor, la ecuación que gobierna esta medición es:

$$h = \frac{\nu \times t}{2} \qquad (1)$$

siendo:

h = nivel del líquido v = velocidad del sonido en el líquido

t = tiempo de tránsito del sonido

Se destaca que la ubicación típica del sensor ultrasónico es en la parte superior del tanque.

La medición de nivel en estas condiciones puede ser afectada por varios factores:

• La velocidad del sonido en el líquido que varía con la temperatura, de tal forma que un ambiente que pase de 0 °C a 70 °C genera un error del 12% en la medida del nivel. Este error puede compensarse a través un sensor de temperatura.

• Si existe espuma sobre el líquido que absorbe el sonido.

• Las olas o movimientos generados en el líquido producido por algún batidor o vibración, este puede compensarse con un circuito amortiguador o temporizador en el instrumento.

• El material y el estado de las paredes del tanque (paredes gruesas, corrosión, etc.), la curvatura del tanque y las obstrucciones.

• Las burbujas de gas o vapor existentes y los sedimentos en el fondo.

Este método nos ayuda también a verificar si en una tubería o tanque hay o no líquido, pero el tipo de eco es diferente. Otra aplicación es la colocación de un transductor ubicado en la pared del tanque a cierto nivel y el receptor que se encuentre en la misma pared del tanque pero a una altura mayor a la del emisor para así verificar la existencia de líquido en niveles puntuales.

La frecuencia con la que trabajan los sensores son de 20kHz a 200 kHz, las ondas producidas circulan con cierto amortiguamiento o reflexión, el medio ambiente de gases o vapores, incrementando o decrementando la velocidad del sonido y se reflejan en la superficie del líquido o sólido.

Si tiene una frecuencia superior (unos 50 kHz) las ondas sonoras inciden las capas de aire a vapores del tanque con menor amortiguamiento.

El diagrama de bloques de este sistema de medida a través de ultrasonido es representado a través de la figura 8.

El emisor consta de un oscilador excitador para generar el impulso ultrasónico y el receptor poder aceptar la señal reflejada, enviando una señal analógica a un transmisor electrónico con comunicación HART.

Estos instrumentos tienen una exactitud de ± 5 mm o bien del $\pm 0.25\%$ al $\pm 1\%$, los sensores son a prueba de explosión. Cuentan con el problema de ser sensibles a la densidad de los fluidos y de proporcionar señales erróneas si hay obstáculos en el interior del tanque o si la superficie del nivel del líquido no es nítida, como es el caso de un líquido que forme espuma, ya que se generan falsos ecos de los ultrasonidos.

A través de un programa se puede compensar los factores externos que generan una señal errónea antes mencionada y así mejorar la exactitud de la medida.

2.4 Controladores Lógicos Programables PLC

Como se aprecia en (Micromecánica, 2014) el PLC es un equipo electrónico, que ejecuta diferentes tareas previamente programadas de manera cíclica. La actuación del programa podrá ser interrumpida por un tiempo para efectuar diferentes tareas consideradas primordiales, pero la característica principal es la garantía de ejecución completa del programa principal. Los controladores lógicos programables son empleados en ambientes industriales donde el control y ejecución deben realizarse en milisegundos de forma segura. Además de usarlo en procesos industriales donde se requieran recetas o secuencias.

2.4.1 Campos de aplicación del PLC

Para (Micromecánica, 2014) y (Siemens AG, 2009) Su aplicación elementalmente en aquellas industrias en donde es inevitable un proceso de maniobra, control y visualización de alarmas. Por ende, su empleo abarca desde procesos de fabricación industrial, plantas industriales, control de equipos o instalaciones, entre otras. Sus pequeñas dimensiones, la enorme facilidad de su montaje, la propiedad de almacenar los programas para su posterior y rápida ejecución, el cambio o modificación de los mismos, su eficacia se muestra especialmente en procesos donde se necesita:

- Espacio reducido
- Procesos de producción periódicamente cambiantes
- Procesos secuenciales
- Maquinaria de procesos variables
- Instalaciones de procesos complejos y amplios
- Chequeo de programación centralizada de las partes del proceso

Ejemplos de aplicaciones generales:

33

- Maniobra de máquinas
- Maquinaria industrial de plástico
- Máquinas transfer
- Maquinaria de embalajes
- Maniobra de instalaciones: instalación de aire acondicionado, calefacción
- Instalaciones de seguridad
- Señalización y control

2.4.2 Ventajas e Inconvenientes

De acuerdo a la experiencia de los autores y contrastando con documentación en la web como (Siemens AG, 2009) se denotan algunas ventajas y desventajas como se ve a continuación:

Ventajas

• Reducción en el tiempo dedicado a la elaboración de proyectos, debido a que no es necesario dibujar previamente el esquema de los diferentes contactos, se pueden simplificar ecuaciones lógicas, lo esencial es la capacidad de almacenamiento del módulo de memoria la cual es muy amplia.

• Los materiales a utilizar queda sensiblemente reducida, ya que no será necesario tanto elementos eléctricos de control debido a la funcionalidad que ofrece el controlador, al realizar el presupuesto correspondiente eliminaremos algunos problemas que supone el contar con diferentes proveedores.

• Posibilidad de efectuar variaciones de funcionamiento de secuencia o proceso sin afectar el cableado ni añadir aparatos.

• Mínimo espacio del tablero donde se instala el autómata programable.

 Reducción de costo de mantenimiento. Además de acrecentar la fiabilidad del sistema, al eliminar contactos móviles, los mismos autómatas programables pueden mostrar y detectar averías.

• Posibilidad de gobernar simultáneamente o individual varias máquinas con un mismo autómata.

• Mayor tiempo para la puesta en marcha del sistema al quedar reducido el tiempo de cableado.

• Si por determinada razón sea mecánica o por algún otro elemento externo la máquina queda fuera de servicio, el autómata programable sigue siendo útil para otra máquina o sistema de producción.

Inconvenientes

• Como desventaja podríamos mencionar, de que necesariamente debe haber un programador, lo que obliga a instruir a cierto personal calificado en el uso del software del autómata.

• La inversión inicial del sistema.

2.4.3 Estructura del PLC

La estructura básica de un PLC como se muestra en (Micromecánica, 2014) está compuesta por:

• La CPU.

• Las interfaces de entradas.

- Las interfaces de salidas.
- Módulos de comunicación

Esta estructura se puede observar en la figura siguiente:

Figura 9: Estructura de PLC

Fuente: (PLC, 2014)

Figura 10: Conexionado de PLC

Fuente: (PLC, 2014)
2.5 Variadores

2.5.1 Funcionamiento de los variadores de velocidad

Los variadores de velocidad según (Schneider Electric, Argentina, 2014) son dispositivos electrónicos que permiten variar la velocidad y la cupla de los motores asincrónicos trifásicos, convirtiendo las magnitudes fijas de frecuencia y tensión de red en magnitudes variables.

Se utilizan estos equipos cuando las necesidades de la aplicación sean:

Dominio de par y la velocidad

Regulación sin golpes mecánicos

Movimientos complejos

Mecánica delicada

2.5.2 Comportamiento del motor

Los variadores de velocidad están preparados para trabajar con motores trifásicos asincrónicos de rotor jaula. La tensión de alimentación del motor no podrá ser mayor que la tensión de red.

La tensión y frecuencia de placa del motor se comporta de acuerdo al gráfico siguiente:

Figura 11: Comportamiento de motor velocidad y corriente par

Fuente: (Schneider Electric, Argentina, 2014)

El dimensionamiento del motor debe ser tal que la cupla resistente de la carga no supere la cupla nominal del motor, y que la diferencia entre una y otra provea la cupla acelerante y desacelerante suficiente para cumplir los tiempos de arranque y parada.

2.5.3 El convertidor de frecuencia

Se denominan así a los variadores de velocidad que rectifican la tensión alterna de red (monofásica o trifásica), y por medio de seis transistores trabajando en modulación de ancho de pulso generan una corriente trifásica de frecuencia y tensión variable. Un transistor más, llamado de frenado, permite direccionar la energía que devuelve el motor (durante el frenado regenerativo) hacia una resistencia exterior. A continuación se muestra un diagrama electrónico típico: (Siemens AG, 2009) (Schneider Electric, Argentina, 2014)

Figura 12: Diagrama electrónico del variador de velocidad

Fuente: (Schneider Electric, Argentina, 2014)

La estrategia de disparo de los transistores del ondulador es realizada por un microprocesador que, para lograr el máximo desempeño del motor dentro de todo el rango de velocidad, utiliza un algoritmo de control vectorial de flujo.

Este algoritmo por medio del conocimiento de los parámetros del motor y las variables de funcionamiento (tensión, corriente, frecuencia, etc.), realiza un control preciso del flujo magnético en el motor manteniéndolo constante independientemente de la frecuencia de trabajo. Al ser el flujo constante, el par provisto por el motor también lo será.

En el gráfico se observa que desde 1Hz hasta los 50 Hz el par nominal del motor está disponible para uso permanente, el 170% del par nominal está disponible durante 60 segundos y el 200% del par nominal está disponible durante 0,2 seg.

Figura 13: Comportamiento del diagrama electrónico

Fuente: (Schneider Electric, Argentina, 2014)

2.5.4 Selección de un variador de velocidad

Para definir el equipo más adecuado para resolver una aplicación de variación de velocidad, deben tenerse en cuenta los siguientes aspectos:

Tipo de carga: Par constante, par variable, potencia constante, cargas por impulsos.

Tipo de motor: De inducción rotor jaula de ardilla o bobinado, corriente y potencia nominal, factor de servicio, rango de voltaje.

Rangos de funcionamiento: Velocidades máximas y mínimas. Verificar necesidad de ventilación forzada del motor.

Par en el arranque: Verificar que no supere los permitidos por el variador. Si supera el 170% del par nominal es conveniente sobredimensionar al variador.

Frenado regenerativo: Cargas de gran inercia, ciclos rápidos y movimientos verticales requieren de resistencia de frenado exterior.

Condiciones ambientales: Temperatura ambiente, humedad, altura, tipo de gabinete y ventilación.

Aplicación multimotor: Prever protección térmica individual para cada motor. La suma de las potencias de todos los motores será la nominal del variador.

Consideraciones de la red: Microinterrupciones, fluctuaciones de tensión, armónicas, factor de potencia, corriente de línea disponible, transformadores de aislación.

Consideraciones de la aplicación: Protección del motor por sobre temperatura y/o sobrecarga, bypass, rearranque automático, control automático de la velocidad.

Aplicaciones especiales: Compatibilidad electromagnética, ruido audible del motor, bombeo, ventiladores y sopladores, izaje, motores en paralelo, etc.

Como lo menciona (Schneider Electric, Argentina, 2014)

2.6 Sistemas de Control

2.6.1 Introducción a los sistemas de control

Según (Katsuhiko Ogata, 2010) los sistemas de control automático han ocupado un papel fundamental en el avance de la ingeniería y la ciencia. El control automático se ha convertido en una parte importante e integral en los sistemas de vehículos espaciales, en los procesos modernos de fabricación y en cualquier operación industrial que requiera el control de temperatura, presión, humedad, flujo, etc.

En los años cuarenta y cincuenta muchos sistemas de control industrial utilizaban controladores PID para el control de la presión, de la temperatura, etc. A comienzos de la década de los cuarenta Ziegler y Nichols establecieron reglas para sintonizar controladores PID, las denominadas reglas de sintonía de Ziegler-Nichols.

2.6.2 Definiciones de los sistemas de control

Como se describe en (José Acedo Sánchez, 2003) se distinguen los sistemas de control, deben definirse ciertos términos básicos.

2.6.2.1 Variable controlada y señal de control o variable manipulada

La variable controlada es la cantidad o condición que se mide y controla. La señal de control o variable manipulada es la cantidad o condición que el controlador modifica para afectar el valor de la variable controlada.

Por lo general, la variable controlada es la salida del sistema. Controlar significa medir el valor de la variable controlada del sistema y aplicar la variable manipulada al sistema para corregir o limitar la desviación del valor medido respecto del valor deseado.

2.6.2.2 Plantas

Una planta puede ser una zona de un sistema o equipo, tal vez un grupo de los elementos de una máquina que funcionan juntos, y cuyo objetivo es efectuar una operación particular.

2.6.2.3 Procesos

Es un crecimiento natural progresivamente contínuo, marcado por una serie de cambios graduales que se suceden unos a otros de una forma relativamente fija y que conducen a un resultado o una operación artificial o voluntaria que se hace de forma progresiva y que consta de una serie de acciones o movimientos controlados, sistemáticamente dirigidos hacia un resultado. Algunos ejemplos son los procesos químicos, económicos y biológicos.

2.6.2.4 Sistemas

Un sistema es una combinación de componentes que actúan de forma conjunta y realizan un objetivo determinado. Un sistema no está necesariamente limitado a los sistemas físicos. Por tanto, la palabra sistema debe interpretarse en un sentido amplio que comprenda sistemas físicos, biológicos, económicos y similares.

2.6.2.5 Perturbaciones

Una perturbación es una señal que tiende a afectar negativamente el valor de la salida de un sistema. Si la perturbación se genera dentro del sistema se denomina interna, mientras que una perturbación externa se genera fuera del sistema ya es una entrada.

41

2.6.2.6 Control realimentado

Es una operación que, en presencia de perturbaciones, tiende a reducir la diferencia entre la salida del sistema y alguna entrada de consigna, y lo ejecuta tomando en cuenta esta diferencia. Aquí sólo se especifican con este término las perturbaciones impredecibles, ya que las perturbaciones predecibles o conocidas siempre pueden compensarse dentro del sistema.

2.6.3 Sistemas de control en lazo cerrado

De acuerdo a (Hector Garcini L, 2011) los sistemas de control realimentados se conocen como sistemas de control en lazo cerrado. En la práctica, los términos control realimentado y control en lazo cerrado se usan indistintamente. En un sistema de control en lazo cerrado, se alimenta al controlador la señal de error de actuación, que es la diferencia entre la señal de entrada y la señal de realimentación, con el objetivo de disminuir el error y llevar la salida del sistema a un valor deseado. El término control en lazo cerrado siempre implica el uso de una acción de control realimentado para reducir el error del sistema.

2.6.4 Sistemas de control en lazo abierto

Para (Hector Garcini L, 2011) los sistemas en los cuales la salida no tiene efecto sobre la variable de control se denominan sistemas de control en lazo abierto. En otras palabras, en un sistema de control en lazo abierto no se mide la salida ni se realimenta para compararla con la entrada. Un caso práctico es una lavadora. El remojo, el lavado y el centrifugado en la lavadora operan con un principio de tiempo. La máquina no mide la señal de salida, que es la limpieza de la ropa. En cualquier sistema de control en lazo abierto, la salida no se compara con la entrada de referencia. Así, a cada entrada de referencia le corresponde una condición de operación fija; como resultado de ello, la precisión del sistema depende de la calibración. Ante la presencia de perturbaciones, un sistema de control en lazo abierto no realiza la tarea deseada de corrección hacia la salida que se desea. En la práctica, el control en lazo abierto sólo se usa si se conoce la relación entre la entrada y la salida y si no hay perturbaciones internas ni externas. Es evidente que estos sistemas no son de control realimentado.

2.6.5 Reglas de Ziegler-Nichols para la sintonía de controladores PID.

En el contenido mostrado en el capítulo de control PID de (Katsuhiko Ogata, 2010) se describe el PID y su sintonización mediante técnicas empíricas como se presenta a continuación:

2.6.5.1 Control PID de plantas

En la Figura 14 se muestra un control PID de una planta. Si se puede obtener un modelo matemático de la planta, es posible aplicar diversas técnicas de diseño con el fin de determinar los parámetros del controlador que cumpla las especificaciones del transitorio y del estado estacionario del sistema en lazo cerrado. Sin embargo, si la planta es tan complicada que no es fácil obtener su modelo matemático, tampoco es posible un método analítico para el diseño de un controlador PID. En este caso, se debe recurrir a procedimientos experimentales para la sintonía de los controladores PID.

El proceso de seleccionar los parámetros del controlador que cumplan con las especificaciones de comportamiento dadas se conoce como sintonía del controlador. Ziegler y Nichols sugirieron reglas para sintonizar los controladores PID (esto significa dar valores a Kp, Ti y Td) basándose en las respuestas escalón experimentales o en el valor de Kp que produce estabilidad marginal cuando sólo se usa la acción de control proporcional. Las reglas de Ziegler-Nichols, que se presentan a continuación, son muy convenientes cuando no se conocen los modelos matemáticos de las plantas. (Por supuesto, estas reglas se pueden aplicar al diseño de sistemas con modelos matemáticos conocidos.) Tales reglas sugieren un conjunto de valores de Kp, Ti y Td que darán una operación estable del sistema.

Figura 14: Control PID de una planta

Fuente: (Katsuhiko Ogata, 2010)

No obstante, el sistema resultante puede presentar una gran variación en su respuesta escalón de forma que no resulte adecuada. De hecho, las reglas de sintonía de Ziegler-Nichols dan una estimación razonable de los parámetros del controlador y proporcionan un punto de partida para una sintonía fina, en lugar de dar los parámetros *Kp*, *Ti* y *Td* en un único intento.

2.6.5.2 Reglas de Ziegler-Nichols para sintonizar controladores PID

Ziegler y Nichols propusieron dos métodos para obtener los valores de la ganancia proporcional Kp, del tiempo integral Ti y del tiempo derivativo Td, basándose en las características de respuesta transitoria de una planta dada. Tal determinación de los parámetros de los controladores PID o sintonía de controladores PID la pueden realizar mediante experimentos o prueba y error sobre la planta.

2.6.5.3 Primer método

En el primer método, la respuesta de la planta a una entrada escalón unitario se obtiene de manera experimental, tal como se muestra en la Figura 15. Si la planta no contiene integradores ni polos dominantes complejos conjugados, la curva de respuesta escalón unitario puede tener forma de S, como se observa en la Figura 16. Este método se puede aplicar si la respuesta muestra una curva con forma de S. Tales curvas de respuesta escalón se pueden generar experimentalmente o a partir de una simulación dinámica de la planta.

La curva con forma de S se caracteriza por dos parámetros: el tiempo de retraso L y la constante de tiempo T. El tiempo de retraso y la constante de tiempo se determinan dibujando una recta tangente en el punto de inflexión de la curva con forma de S y determinando las intersecciones de esta tangente con el eje del tiempo y con la línea c(t), tal como se muestra en la figura

Figura 15: Respuesta a un escalón unitario de una planta

Fuente: (Katsuhiko Ogata, 2010)

Figura 16: Curva de respuesta en forma de S

Fuente: (Katsuhiko Ogata, 2010)

Tabla 1: Regla de sintonía de Ziegler-Nichols basada en la respuesta escalón de la planta (primer método).

Tipo de controlador	K _p	T_I	T_d
Р	$\frac{T}{L}$	8	0
PI	$0.9 \frac{T}{L}$	$\frac{L}{0.3}$	0
PID	$1.2 \frac{T}{L}$	2 <i>L</i>	0.5 <i>L</i>

Fuente: (Katsuhiko Ogata, 2010)

2.6.5.4 Segundo método

En el segundo método, primero se fija $Ti=\infty$ y Td=0. Empleando sólo la acción de control proporcional como se muestra en la figura 17, se incrementa Kp desde 0 hasta un valor crítico Kcr, en donde la salida presente oscilaciones sostenidas. (Si la salida no presenta oscilaciones sostenidas para cualquier valor que pueda tomar Kp, entonces este método no se puede aplicar).

Entonces, la ganancia crítica Kcr y el período Pcr correspondiente se determinan experimentalmente como en la figura 18, Ziegler-Nichols sugirieron que se fijen los valores de los parámetros Kp, Ti y Td de acuerdo con la fórmula que se muestra en la Tabla 2.

Figura 17: Sistemas en lazo cerrado con un controlador proporcional

Fuente: (Katsuhiko Ogata, 2010)

Figura 18: Oscilación sostenida con periodo Pcr (Pcr se mide en seg)

Fuente: (Katsuhiko Ogata, 2010)

Tabla 2: Regla de sintonía de Ziegler-Nichols basada en la ganancia crítica Kcr y periodo crítico *P*cr (segundo método).

Tipo de controlador	K _p	T_{I}	T_d
Р	$0.5K_{\rm cr}$	00	0
PI	0.45 <i>K</i> _{cr}	$\frac{1}{1.2} P_{\rm cr}$	0
PID	$0.6K_{\rm cr}$	$0.5P_{\rm cr}$	$0.125P_{\rm cr}$

Fuente: (Katsuhiko Ogata, 2010)

Capítulo 3. Diseño e Implementación del Proyecto

En este capítulo se explica con detalles las actividades realizadas para la implementación de este proyecto.

3.1 Funcionalidad del proyecto

Este proyecto fue propuesto con la finalidad de fortalecer las prácticas impartidas en el laboratorio de automatización industrial, ya que los estudiantes podrán manipular variables reales del campo industrial a través del funcionamiento de sus instrumentos.

Figura 19: Diseño del proyecto implementado

Tal como muestra la figura 19, el sistema se encuentra conformado por tres elementos importantes:

- 1. Tablero de Control Principal
- 2. Tablero de Planta Industrial
- 3. Planta Industrial

A continuación se desarrollan los diferentes diagramas del proceso de control del proyecto

3.1.1 Diagrama de flujo del proceso

El sistema se comporta conforme se muestra en la figura 20, en ella se recalca el sentido de flujo del líquido utilizado (agua) y en el mismo se representa cada uno de los elementos de control con su respectiva dirección hacia el controlador.

Figura 20: Flujograma de la planta industrial

3.1.2 P&ID del proceso

En la Figura 21 se ilustra el "Piping and Instrumentations Diagram / Drawings", es decir el diagrama a través del cual se denotan cada uno de los elementos tanto mecánicos como eléctricos que intervienen en el proceso de control, esta simbología es estandarizada según la norma ISA.

3.1.3 Bloques de control del proceso

En el proceso se puede apreciar el lazo de control gobernante, en este el PLC es el encargado de recibir la información del nivel deseado (set point), medir el valor real a través del sensor (ultrasónico de nivel) y poder realizar una corrección mediante sus actuadores (bomba); generando las estabilidad del sistema con un control PID en el punto deseado, tal como se representa en la figura 22.

Figura 22: Diagrama de bloque de control de la planta industrial

Fuente: Los autores

3.1.4 Planteamiento de solución al proceso

La solución para la estabilización requerida según el bloque de control del proyecto antes descrito, es la utilización de un controlador al cual se le programaron sus puertos a través de una pc por medio de comunicación Ethernet, en sus puertos se conectaron las entradas tanto digitales como analógicas que son los sensores; el controlador es capaz de procesar esta información y de acuerdo a los requerimientos del proceso realiza las correcciones necesarias y activa sus salidas digitales o analógicas que serían sus actuadores como válvula y bomba.

El método de control utilizado para estabilizar el lazo de control se denomina "PID de Ziegler-Nichols", éste analiza directamente la salida del sistema a través de variables propias del método, se comparan estos valores y se ejecutan las acciones necesarias en el mismo.

Figura 23: Planteamiento de solución de la planta industrial

Fuente: Los autores

3.2 Desarrollo del tablero de control principal

3.2.1 Materiales tablero de control

Los materiales utilizados para la implementación de este tablero son los ilustrados en la figura 24.

Figura 24: Materiales Tablero de Control Principal

Fuente: Los autores

3.2.2 Diseño del tablero de control

Para el desarrollo del tablero lo principal fue obtener la estructura, es por ello que se generaron los planos con el diseño y medidas del mismo, fue diseñado lo más compacto posible para que así los alumnos puedan utilizar el tablero sin ningún inconveniente.

Fuente: Los autores

Una vez culminados los planos, con ayuda de compañeros de trabajo se procedió a fabricar el tablero con las medidas ya estipuladas, para así poder implementar la estructura deseada, según la figura 26.

Figura 26: Estructura del tablero de control principal

Fuente: Los autores

Luego de haberse obtenido el tablero con el diseño estipulado, se realizaron las perforaciones al interior del tablero y plafón, para así poder colocar los riel din.

Figura 27: Ejecución de perforaciones al tablero de control

Fuente: Los autores

Una vez realizada las perforaciones al tablero se agregaron los elementos de control a los riel din, tales como: breakers, fuente de voltaje dc, borneras, etc. Según la distribución realizada en el diseño del tablero.

Figura 28: Colocación de elementos de control en el tablero

3.2.3 Conexionado de los elementos de control

Después de la colocación de los elementos de control se realizó el conexionado de los mismos, además del peinado de los cables, dejando la prolongación de cable necesaria; tal como se muestra en la figura 29.

Figura 29: Conexionado entre elementos de control

Fuente: Los autores

Por consiguiente se colocó momentáneamente el plafón en la parte interior del tablero, hasta la colocación del PLC, según la figura 30.

Figura 30: Colocación del plafón al interior del tablero

Fuente: Los autores

Se procedió a colocar el PLC en el interior del tablero, para así conectarse cada uno de los cables en las borneras del PLC y al mismo tiempo conectar los cables hacia el puerto DB25

Figura 31: Conexión de cables en borneras de PLC y DB25

Luego se procedió a colocarle marquillas a cada uno de los cables y así poder tener un buen seguimiento de los mismos, de acuerdo a los planos eléctricos generados.

Figura 32: Marquillas de cables

Fuente: Los autores

A continuación se le tuvieron que realizar unas perforaciones a la tapa del tablero de control, para insertarle el voltímetro analógico, el cual proporciona la medición de las entradas y salidas analógicas del PLC.

Figura 33: Colocación de voltímetro analógico en tapa de tablero

3.2.4 Implementación de tarjeta electrónica de control

Se necesitaba la conexión del PLC con la placa electrónica de botoneras y leds, es por ello que se solicitó a la universidad la facilidad de una tarjeta impresa, ya que ellos contaban con algunas de stock. Su ayuda fue brindada y se colocaron los elementos electrónicos que debían ser soldados.

Figura 34: Elementos soldados en la tarjeta impresa

Fuente: Los autores

Una vez soldados los elementos en la tarjeta, se procedió a montarla en la parte de abajo de la tapa del tablero y por consiguiente se colocó la placa metálica en la parte superior de la misma, en esta placa se encuentran los nombres de cada una de los puertos del PLC, tanto entradas como salidas.

Figura 35: Colocación de tarjeta impresa y placa metálica, en tapa de tablero

3.2.5 Alimentación tablero de control principal

Una vez finalizado los pasos anteriores se realizaron las pruebas debidas con el multímetro y al no ocurrir error alguno se procedió a: energizar el tablero de control, conectar el controlador PLC a la computadora a través de un cable Ethernet, cargarle un programa y verificar cada una de las entradas y salidas, manipulando botoneras en la tarjeta impresa la cual se encontraba conectada al PLC vía conector DB25.

Figura 36: Energización del Tablero de control

Fuente: Los autores

3.3 Desarrollo del tablero de la planta industrial

3.3.1 Materiales del tablero de la planta industrial

Los materiales utilizados para la implementación de este tablero son los ilustrados en la figura 37.

Fuente: Los autores

3.3.2 Diseño del tablero de la planta industrial

Lo principal para el desarrollo del tablero de la planta industrial fue el diseño de éste, al igual que el tablero de control se generaron los planos con las medidas necesarias y los puertos que debía poseer.

Figura 38: Diseño del tablero de planta industrial

Fuente: Los autores

Una vez culminados los planos, con ayuda de compañeros laborales se procedió a fabricar el tablero con las medidas ya estipuladas, y de esa forma poder implementar la estructura deseada, según la figura 39

Figura 39: Estructura del tablero de planta industrial

Fuente: Los autores

Una vez finalizada la estructura del tablero se realizaron las perforaciones al interior del tablero y plafón, para así poder colocar los rieles din

Figura 40: Ejecución de perforaciones al tablero de planta industrial

Fuente: Los autores

Ya realizadas las perforaciones al tablero se agregaron los elementos de control a los riel din, tales como: breakers, relés, variador, borneras, etc. Al mismo tiempo se colocaron las luces pilotos, pulsadores, paro de emergencia y selector en la tapa del tablero, según la distribución realizada en el diseño del mismo la cual es representada en la figura 41.

Figura 41: Colocación de elementos de control en el tablero de la planta industrial

Fuente: Los autores

3.3.3 Conexionado de los elementos de control

Después de haber finalizado la colocación de los elementos en el tablero se procedió a realizar las interconexiones entre cada uno de éstos, tal como se muestra en la figura 42.

Figura 42: Conexionado entre elementos tablero de planta industrial

Simultáneamente al conectar cada uno de los elementos del tablero de la planta industrial se procedió a colocar las marquillas de cada uno de los cables, para así poder tener un buen seguimiento de los mismos de acuerdo a los planos eléctricos generados.

Figura 43: Marquillas de cables del tablero de planta industrial

Fuente: Los autores

En la figura 44 se muestra una vista interna del tablero de la planta industrial finalizado.

Figura 44: Vista interna del tablero de planta industrial

3.3.4 Prueba del tablero de planta industrial

Una vez finalizado el tablero de la planta industrial se procedió a conectar con el tablero de control a través del cable DB25 y así mediante éste, poder verificar cada una de las señales receptadas en el PLC y las salidas en las luces pilotos del tablero de la planta industrial, una vez cerrado el breaker del tablero.

Figura 45: Energización del tablero planta industrial

Fuente: Los autores

3.4 Desarrollo Planta Industrial

3.4.1 Materiales planta industrial

Los materiales utilizados para la implementación de este tablero son los ilustrados en la figura 46.

Figura 46: Materiales de la planta industrial

Fuente: Los autores

3.4.2 Diseño de la estructura de soporte planta industrial

Siguiendo los mismos procedimientos para el desarrollo de esta planta lo principal era diseñar una estructura estable para el soporte de los elementos, es por ello que se generaron los planos con las medidas necesarias de la estructura, ilustradas en la figura 47.

Figura 47: Materiales de soporte de la planta industrial

Fuente: Los autores

Para poder implementar la estructura de la planta industrial se realizó un listado de materiales necesarios que cumplan con los requerimientos técnicos para que sea estable, compacta y segura. Una vez listo el material se procedió a implementar dicho diseño. Tal como muestra la figura 48.

Figura 48: Soldadura de estructura de la planta industrial

Fuente: Los autores

Una vez soldada cada parte del soporte de la planta se procedió a pintar la estructura, teniendo un buen acabado, ilustrado en la figura 49.

Figura 49: Estructura de la planta industrial

Fuente: Los autores

3.4.3 Diseño de la planta industrial

El diseño de la distribución de los elementos sobre la estructura de la planta industrial se representa en la figura 50.

Figura 50: Diseño de los elementos planta industrial

Mientras se desarrollaba la estructura de la planta se validaron las medidas realizadas en el diseño para posteriormente colocar los elementos.

Figura 51: Validación de medidas planta industrial

Fuente: Los autores

3.4.4 Ubicación de equipos y sensores en la planta industrial

Una vez finalizado el soporte estructural de la planta industrial se procedió a ubicar los soportes para los tanques, el soporte para la electroválvula y se colocó la bomba respetando las medidas establecidas en el diseño

Figura 52: Ubicación de elementos en la planta industrial

Fuente: Los autores

3.4.5 Recorridos de tuberías y conexionado de instrumentos

Luego se procedió a realizar los recorridos de tuberías, utilizando los accesorios como tee, codos y llaves de 15mm de conexionado rápido (Jhon Guest speedfit), para así poder generar el ciclo de recorrido de fluido para el llenado de los tanques. Al mismo tiempo se procedió a conectar los siguientes sensores: sensor ultrasónico de nivel, bomba DC, sensores capacitivos, sensor de nivel tipo boya y electroválvula los cuales se encontraban en campo y se debían conectar al tablero de la planta industrial para realizar el debido control. Figura 53: Implementación de recorridos de tuberías y conexión de sensores en la planta industrial

Fuente: Los autores

3.4.6 Colocación de Marquillas a los elementos de la planta industrial

Una vez finalizada la ubicación de los elementos en la planta industrial se procedió a colocarle a cada uno su tag correspondiente, es decir el nombre distintivo de cada elemento para representarlos en las diferentes prácticas.

Figura 54: Colocación de tag a elementos en la planta industrial

3.4.7 Alimentación de la planta industrial

Luego de haber finalizado con la implementación de la planta industrial se procedió a conectar el tablero de la planta industrial con el tablero de control principal a través del cable DB25, mediante el cual pudimos supervisar cada una de las señales de entrada de los sensores como las señales de salidas hacia los actuadores.

Figura 55: Puesta en marcha de elementos en la planta industrial

Fuente: Los autores

3.5 Integración elementos tablero de control de nivel

En la figura 56 se muestra los elementos finalizados que conforman el proyecto, tales como: el tablero de control principal, el tablero de la planta industrial y la planta industrial.

Al igual como se pudo apreciar en cada uno de sus desarrollos podemos denotar que físicamente cada una de las exigencias que se plantearon en los diseños fueron ejecutados, para así poder tener un mejor manejo de la estación de trabajo hacia los usuarios; es decir, que al momento de integrar cada uno de los elementos sea con mayor facilidad y con una distribución de equipos que pueda ser rápidamente identificadas según sea la práctica que se esté solicitando.
Figura 56: Diseño de planta industrial

Fuente: Los autores

Figura 57: Integración de elementos proyecto de control de nivel

Fuente: Los autores

Capítulo 4. Diseño de Prueba de Control PID sintonización Ziegler y Nichols

En el software TIA Portal se utiliza el objeto tecnológico PID_Compact para realizar el control de procesos técnicos con variables contínuas de entrada como el nivel del tanque TK-102 y salida como la bomba P 101.

La instrucción PID que se usó, puede calcular u optimizar (inicial o final) las acciones P, I y D; proporcionando la facilidad de poder ingresar los valores de forma manual, para obtener los valores a ingresar se usó el método de Ziegler & Nichols. Para esto se realizaron diferentes pruebas y así obtener los valores deseados.

El valor de salida del regulador PID está formado por tres acciones:

• P (proporcional): cuando se calcula con la acción "P", el valor de salida es proporcional a la diferencia entre la consigna (set point) y el valor de proceso (valor de entrada).

• I (integral): cuando se calcula con la acción "I", el valor de salida aumenta en proporción a la duración de la diferencia entre la consigna (set point) y el valor de proceso (valor de entrada) para corregir la diferencia al final.

• D (derivativo): cuando se calcula con la acción "D", el valor de salida aumenta como una función de la tasa de incremento de cambio de la diferencia entre la consigna (set point) y el valor de proceso (valor de entrada). El valor de salida se corrige a la consigna lo más rápido posible.

4.1 Pasos para realizar el bloque PID_Compact

Se ejecutan los siguientes pasos para realizar el control PID obteniendo los valores de forma automática usando la herramienta de optimización del software TIA Portal.

Seleccionamos en el árbol del proyecto "Bloques de programa", se hace doble click "Agregar nuevo bloque".

Figura 58: Árbol del proyecto

Actual data programme 21.4	Apripar masse Morphe	
Dispetitives	States	A. Vista in index. Wata de dispositivos. 1
Configuration Accessing Configuration Accessing Configuration Confi	Jampa Age 10 • Winge Age • • <	And the second s
	O tanger years	

Fuente: Los autores

Seleccionamos "Bloque de organización (OB)" y como tipo se elije "Alarma cíclica". Para el lenguaje de programación seleccionamos el diagrama de funciones "FUP". La numeración (OB200) es automática. El tiempo de ciclo fijo lo dejamos en 100 ms. Se confirman los parámetros con "Aceptar".

Figura 59: Agregar bloque alarma cíclica

Fuente: Los autores

Es necesario que la llamada del regulador PID se parametrice con un tiempo de ciclo fijo (en este caso 100 ms), ya que el tiempo de procesamiento es crítico. El regulador no podría optimizarse si no se le llamara de este modo. El bloque de organización "Alarma cíclica" se abre automáticamente.

A continuación se agrega el bloque regulador "PID_Compact" al segmento. Se lo activará cuando el selector se encuentre en modo automático. En el árbol de instrucciones, se hace click en "Tecnología" en la parte de "PID Control – Compact PID" se lo arrastra hasta el segmento.

Figura 60: Bloque PID_Compact

Fuente: Los autores

Aquí es necesario configurar los "Ajustes básicos", como el tipo de regulación, definir la variable de entrada y de salida, la estructura interna del regulador. En este caso la entrada escalada del sensor de nivel ultrasónico y la salida escalada hacia la bomba como elemento final de control varían desde 0 - 10 V.

Figura 61: Ajuste de parámetros del PID

Besic settings Process value settings Advanced settings	Basic settings
	Controller type
	Volume
	Cable last mode after CPU restart.
	Input / output parameters
	Setpoint:
	i mput: Output
	Input_PER (analog)

Fuente: Los autores

Una vez ajustado los parámetros básicos de control se realiza la carga al PLC junto a la programación necesaria para realizar el PID. Haciendo clic con el ratón en el símbolo Control el control el control en el símbolo de los bloques y de las variables durante la comprobación del programa. La primera vez que se arranca la CPU, el regulador "PID_Compact" todavía no está optimizado. Para realizar la optimización se tiene que iniciar la preparación haciendo clic en el símbolo "

Figura 62: PID conexión online

Fuente: Los autores

4.2 Optimización PID inicial y final

En una pantalla de mando, la opción "Medicion Inicial" permite mostrar en una tendencia el comportamiento del valor real, la magnitud manipulada y el setpoint. Después de cargarlo por primera vez en el controlador, el regulador todavía está inactivo. Esto significa que la magnitud manipulada permanece en el 0%. Seleccione ahora "Modo de ajuste" y, a continuación, "Optimización Inicial" luego "Optimización Final". Una vez que se realizó la optimización se puede trabajar de forma automática el PID.

Fuente: Los autores

Obteniendo los siguientes resultados luego de que se realizó la optimización del PID, teniendo un setpoint de 5.0 manteniéndose un nivel de estabilidad de 4.8 a 5.2.

Figura 64: Comportamiento del nivel

Fuente: Los autores

4.3 Sintonización de PID de forma manual mediante Ziegler-Nichols

En esta parte se encontraron los valores que se deben ingresar para el control PID usando el método de Ziegler-Nichols el cual nos permite sintonizar un regulador PID sin la necesidad de saber las ecuaciones matemáticas de la planta o el sistema de control que se vaya a realizar. Mediante el primer método se deben encontrar la ganancia proporcional (kp), el tiempo de integración (Ti) y tiempo derivativo (Td). Utilizando la siguiente ecuación:

$$Ko = \frac{dX * T2}{dY * T1} \qquad (2)$$

A la planta se le debe ingresar una señal tipo escalón para determinar donde rompe la inercia, es decir cuando el flujo de agua llega al TK 102, utilizando la bomba P101 como variable de control de forma analógica se determina el voltaje que se le debe ingresar para obtener dicho valor. En la figura 65 se muestra de color negro el comportamiento del nivel vs el funcionamiento de la bomba.

Figura 65: Voltaje de la bomba rompe la inercia

Fuente: Los autores

Para determinar los valores se debe trazar una línea recta tangente (roja) a la señal de salida de nivel (negra), desde el punto donde rompe la inercia y se comienza a llenar el TK 102. Donde T1 corresponde al tiempo muerto. Este es el tiempo donde el sistema comienza a responder.

El T2 es el tiempo desde donde termina el T1 y se mantiene constante el nivel.

Tabla 3: Valores de tiempos

Nivel (lt)	Voltaje (V)	Tiempo (s)
1.5	0.00	0
1.6	5.00	10
2.4	5.00	160

Fuente: Los autores

Una vez obtenido los valores de tiempo se debe calcular el valor del dX y dY, para calcular el dX se utiliza los valores de la señal escalón que se ingresó al sistema, en este caso fue de 0 V a 5 V. Donde el nivel responde al cambio desde 1.5 a 2.4 lt.

dX = 5 - 0 = 5 VdY = 2.4 - 1.5 = 0.9 lt

Aplicando la ecuación del método se reemplaza los valores obtenidos:

$$Ko = \frac{5 * 160}{0.9 * 10} = 88.88$$

Una vez que se obtuvo el valor Ko se determinó la tabla para obtener los valores del PID.

Tabla 4: Ecuación de parámetros PID

	Кр	Ti	Td
Р	Ко		
PI	0.9*Ko	3.3*T1	
PID	1.2*Ko	2*T1	0.5*T1

Fuente: Los autores

Reemplazando los valores del PID se obtiene lo siguiente:

Tabla 5: Valores de parámetros PID

	Кр	Ti	Td
Р	88.88		
PI	79.99	33	
PID	106.66	20	5

Fuente: Los autores

Esos valores fueron ingresados de forma manual al PLC para ver el comportamiento del mismo, los valores de Kp, Ti, Td fueron ingresados al sistema divido para 10 de esta forma habrá un mejor comportamiento de la panta

Figura 66: Ingreso de Kp, Ti, Td.

Simmens - PRD			
nepacto Edicari vel montar Oslina 9:19:10:10:10:10:10:10:10:10:10:10:10:10:10:	A The Cart B and a	Carle Ande 位置目 J Totaline construction J Deckers construction 人 注意 X 日日	Totally integrated Automation PORTAL
Adust diet penner to 27.4	HIS + HILLS SERVICE AG	NICON/L > INFORMATION INFORMATION - 110 Company 1 101811	
Dispositivos	1003 2003 40		
Post de la constante de l	Constanting the second se	Parametros PD	

Fuente: Los autores

Una vez ingresado los valores el comportamiento de la planta fue el siguiente:

Figura 67: Comportamiento con el método Z-N

Como se muestra en la figura 67 el control del nivel no es tan estable teniendo una saturación de la bomba.

4.4 Optimización PID de forma automática con método Ziegler-Nichols

El último método de control que se usó fue el modo automático con sintonización tipo Ziegler & Nichols.

Fuente: Los autores

Figura 68: Modo automático con sintonización Z-N

Fuente: Los autores

Teniendo un comportamiento del nivel más estable y en un período de tiempo mayor sin oscilaciones tan pronunciadas ni picos de voltajes en la bomba como se muestra en la siguiente figura.

Figura 69: Comportamiento con el modo automático con sintonización Z-N

Fuente: Los autores

Capítulo 5. Resultados de análisis

Luego de utilizar y verificar cada uno de los métodos de regulación PID, se decidió trabajar con el modo automático con sintonización Ziegler-Nichols.

Se tuvo un comportamiento del nivel con respecto al setpoint, en la figura 70 se muestra una estabilidad de la variable de proceso muy constante con respecto a la señal de consigna.

Figura 70: Comportamiento del nivel vs setpoint

Fuente: Los autores

Además de ver el funcionamiento de la variable de control frente al set point establecido en tres puntos diferentes.

Figura 71: Comportamiento de la bomba

Fuente: Los autores

Mediante la tabla 5 se registra el muestreo de los set point establecido y obtener su estabilidad, promedio y error de la variable de control. Los setpoint establecidos son 5.0 lt, 5.5 lt, 6.0 lt. Fueron tomados 20 registros en un tiempo de 30 minutos por cada setpoint.

Utilizando la interfaz LabVIEW, obtenemos la visualización del comportamiento de las variables que gobiernan la planta industrial en tiempo real, a través de sus ventanas de trabajo.

- Panel Frontal
- Diagrama de Bloques

La comunicación que se establece para obtener dicha información es "LabVIEW" – "NI OPC Server" – "TIA Portal". Verificando que en cada uno de estos se coloquen las mismas direcciones para sus variables, ya que si no se realiza este correcto procedimiento no existe comunicación alguna.

Figura 72: Ventana de trabajo - "Panel Frontal"

Fuente: Los autores

Figura 73: Ventana de trabajo - "Diagramas de Bloques"

Fuente: Los autores

Una herramienta fundamental con la que el software LabVIEW consta es la de generar históricos (recolectar los valores de la señal en un tiempo de muestreo establecido) el tiempo de muestreo es definido en la ventana de diagramas de bloques, y se generar un archivo en el software EXCEL. La herramienta se encuentra en el "Cuadro de gráficas"; para la utilización de la misma realizamos lo siguiente:

"Click derecho en el cuadro de gráficas" - "Export" - "Export Data to Excel"

Figura 74: Generar un histórico en LabVIEW

Fuente: Los autores

El archivo de Excel que se genera, consta del número de variables que se encuentran visualizándose en el "Cuadro de gráficas", es decir el número de columnas dependerá del número de señales muestreadas.

	Α	В	С	D	E	F	
1	Time - Plot 0	SET POINT/NIVEL/VOLT - Plot 0	Time - Plot 1	SET POINT/NIVEL/VOLT - Plot 1	Time - Plot 2	SET POINT/NIVEL/VOLT - Plot 2	
2	08:41,8	1,58677	08:41,8	5	08:41,8	0	
3	08:42,8	1,57614	08:42,8	5	08:42,8	0	
4	08:43,8	1,58145	08:43,8	5	08:43,8	0	
5	08:44,8	1,59917	08:44,8	5	08:44,8	0	
6	08:45,8	1,58382	08:45,8	5	08:45,8	0	
7	08:46,8	1,58441	08:46,8	5	08:46,8	0	
8	08:47,8	1,57437	08:47,8	5	08:47,8	0	
9	08:48,8	1,57082	08:48,8	5	08:48,8	0	
10	08:49,8	1,57141	08:49,8	5	08:49,8	0	
1	08:50,8	1,58263	08:50,8	5	08:50,8	0	
12	2 08:51,8	1,59917	08:51,8	5	08:51,8	0	
13	08:52,8	1,58382	08:52,8	5	08:52,8	0	
14	4 08:53,8	1,58441	08:53,8	5	08:53,8	0	
1	5 08:54,8	1,58441	08:54,8	5	08:54,8	0	
16	5 08:55,8	1,57437	08:55,8	5	08:55,8	0	
17	7 08:56,8	1,56551	08:56,8	5	08:56,8	0	
18	B 08:57,8	1,57555	08:57,8	5	08:57,8	0	
19	08:58,8	1,58204	08:58,8	5	08:58,8	0	
20	08:59,8	1,58323	08:59,8	5	08:59,8	0	
2	1 09:00,8	1,58204	09:00,8	5	09:00,8	0	
22	2 09:01,8	1,56432	09:01,8	5	09:01,8	0	
23	3 09:02,8	1,55428	09:02,8	5	09:02,8	0	
2	00.02	L 1 1026	00.02.0		00.02.0		
	- P	ivtemporary_501920 (+)				: 4	

Figura 75: Históricos en Excel desde LabVIEW

Fuente: Los autores

Debido a que el número de muestras es demasiado grande y los valores son repetitivos se seleccionaron 20 valores equitativamente, según la representación de la tabla 6.

Tabla 6: Muestreo setpoint

Setpoint(lt)	Nivel (lt)	Setpoint(lt)	Nivel (lt)	Setpoint(lt)	Nivel (lt)
	5.1		5.3		6
	5		5.4		6.1
	5.1		5.5		6.1
	4.9		5.5		16
	5		5.6		6
	5		5.6		6
	5.1		5.5		5.9
	5.1		5.5		5.9
	5		5.5		6
5	5	55	5.4	6	6
5	5	5.5	5.4	0	6
	5.1		5.5		6.1
	5		5.5		6
	5		5.5		6
	5		5.5		6
	5		5.6		6.1
	5.1		5.6		6.1
	5.1		5.5		6
	4.9		5.5		6
	4.9		5.5		6

Fuente: Los autores

Se obtuvieron los siguientes resultados luego del muestreo:

Tabla 7:	Promedio,	error	crítico.
----------	-----------	-------	----------

Setpoint	Promedio	Error crítico	Moda	Mediana
5	5.02	0.02	5	5

Setpoint	Promedio	Error crítico	Moda	Mediana
5.5	5.49	0.01	5.5	5.5

Setpoint	Promedio	Error crítico	Moda	Mediana
6	6.1	0.01	6	6

Fuente: Los autores

Cronograma

Cronograma de actividades del proyecto Fuente: Los autores

Presupuesto

		MATERIALES REQUERIDOS			
CANT		οεςοριοςιόν	-	PRECIO	PRECIO
		DESCRIPCION		\$700.00	¢700.00
1		PLC Siemens 37-1200 1214C		\$700.00	\$700.00
1	0	Fuence de poder Siemens 110VAC 24VDC 2.5A		\$150.00	\$150.00
1		Signal board Siemens con 1AO		\$180.00	\$180.00
1	U 	Sensor ultrasonico Banner con salida DC 0-10Vdc		\$965.00	\$965.00
2	U	Sensor de proximidad capacitivo diste 25mm		\$85.00	\$1/0.00
1	U	Electroválvula de 0-24Vdc con confirmaciones		\$350.00	\$350.00
1	U	Sensor de nivel tipo boya FESTO		\$57.00	\$57.00
1	U	Elevador de tensión de 0-24 VDC		\$350.00	\$350.00
1	U	Bomba Jhonson de 24 VDC		\$586.00	\$586.00
2	U	Tanques FESTO de 10lt		\$390.00	\$780.00
1	U	Breaker 6A 1P Siemens		\$15.00	\$15.00
1	U	Breaker 1A, 2A 1P ABB		\$15.00	\$15.00
2	U	Placas de aluminio de 2.5mm		\$30.00	\$60.00
3	U	Conectores de 25 pines hembra		\$13.00	\$39.00
1	U	Cable serial DB25		\$12.00	\$12.00
1	FUN	Terminales de punta cable#18		\$6.50	\$6.50
2	ROL	Cable #18		\$38.00	\$76.00
2	U	Conectores metálicos ethernet Siemens		\$20.00	\$40.00
2	U	Riel Din Omega Estándar		\$3.50	\$7.00
1	U	Cartucho para marquillas termoencogible		\$45.00	\$45.00
6	U	Borneras porta fusible		\$8.00	\$48.00
50	U	Borneras de control 4mm		\$2.00	\$100.00
2	U	Tableros de control		\$165.00	\$330.00
1	U	Pulsadores NA, NC		\$25.00	\$25.00
12	U	Indicadores luminosos de 24 VDC		\$2.50	\$30.00
1	U	Selector de tres posiciones		\$25.00	\$25.00
4	U	Relé de 24 VDC		\$14.00	\$56.00
1	U	Estructura de la planta industrial a escala		\$480.00	\$480.00
1	U	Tuberías de 15mm y acoples rápido JG Speedfit		\$450.00	\$450.00
1	U	Juego de herramientas		\$80.00	\$80.00
				SUBTOTAL	\$6,227.50
				IVA	\$747.30
				TOTAL	\$6,974.80

Conclusiones

La implementación del presente proyecto de graduación es un aporte muy importante para la Universidad Politécnica Salesiana sede Guayaquil, en especial para el alumnado perteneciente a la carrera de Ingeniería Electrónica.

Como ya se ha expuesto en el capítulo 3 (Diseño e implementación del proyecto), este proyecto consta de tres partes: tablero de control principal, tablero de planta industrial y planta industrial; de las cuales el tablero de planta industrial se encuentra interconectada a la planta industrial y sus elementos. Por lo tanto, existen dos tipos de funcionamiento: sólo tablero principal (igual a los tableros de prueba existentes en el laboratorio) y el otro funcionamiento es la utilización de la planta industrial conectado al tablero de control principal a través de un cable DB25.

El método aplicado para conseguir el control de nivel en los reservorios comparado con otros métodos es de baja dificultad, debido a que se basa en los resultados producidos por la planta; es decir, sólo se estudia el comportamiento de la señal de salida. Se propone una práctica sobre los controles PID para una mejor comprensión del alumnado.

Al realizar la comunicación LabVIEW – NI OPC Server – TIA Portal se podrá fortalecer los conocimientos de la automatización, puesto que se genera una herramienta en el campo industrial como es el SCADA, es decir la supervisión en tiempo real del proceso desde un punto lejano a éste.

Con este proyecto, los docentes que imparten las asignaturas relacionadas con la automatización industrial pueden ejecutar las diez prácticas desarrolladas en el manual. Se podrán alcanzar diversos objetivos tales como: ilustración del comportamiento real de cada elemento instalado en la planta, complementar los conocimientos teóricos con los prácticos, asociar a los alumnos al ambiente laboral industrial, proporcionar los recursos para resolver los problemas con los que se podrían enfrentar en el campo laboral y finalmente demostrar la competitividad de los profesionales de la UPS-G.

Finalmente, se espera que este proyecto de graduación represente un punto de partida para los futuros egresados teniéndolo como referencia de prototipo, quienes podrán ampliar o modificar el modelo (con otras variables), retribuyendo a la UPS-G parte de lo que la misma aportó hacia los profesionales actuales.

95

Recomendaciones

Para una mejor eficiencia del proyecto es recomendable realizar un mantenimiento preventivo luego de seis meses, es decir reajustar los tornillos de los diferentes elementos tales como PLC, señales en los tableros (principal y planta industrial), indicadores led, fuente, variador, contactos de pulsadores y breakers; también en la tarjeta electrónica del tablero principal se debe verificar el funcionamiento mecánico de los pulsadores y switch.

Se recomienda previo a impartir cualquiera de las diez prácticas desarrolladas en el folleto de prácticas, se tenga la suma comprensión de las mismas para luego poder ser impartida a los alumnos respaldados con los planos eléctricos que se encuentran en la sección anexos.

Para una mejor comprensión de cada uno de los elementos ubicados en la planta industrial, se recomienda revisar el datasheet de cada uno de los mismos los cuales se encuentran en la sección anexos.

Para el traslado del proyecto, se recomienda desconectar el tablero de control principal con el tablero de la planta industrial y bajar el soporte del mismo (soporte tipo pie) que se encuentra en el lado izquierdo de la estructura de la planta. Para así tener una menor dimensión y haciendo uso de las ruedas que se encuentran en su parte inferior poder realizar un traslado de una manera adecuada y evitar daños a los elementos que lo componen.

Se recomienda leer los mensajes que se encuentren en la planta industrial, para un mejor funcionamiento.

Aunque el diseño del proyecto se ha desarrollado de una forma compacta, es decir no existe necesidad de abrir los tableros para que el estudiante pueda utilizarlos. Si se desea modificar algún conexionado interno, se recomienda leer detenidamente los planos eléctricos y datasheet de cada elemento, los cuales se encuentran en la sección de anexos.

Bibliografía

Antonio Creus Sole. (2010). Instrumentación Industrial . México: Alfaomega.

Battikha, N. E. (2006). *The Condensed Handbook of Measurement and Control*. ISA: The Instrumentation, Systems, and Automation Society.

C.I.P. ETI Tudela. (2013, 10 13). *C.I.P. ETI Tudela*. Recuperado el 9 10, 2014, de C.I.P. ETI Tudela: http://www.etitudela.com/profesores/formacioncontinua/ Ferre, L. (s.f.). *Taringa*. Recuperado el Febrero 3, 2013, de http://www.taringa.net/posts/info/11968149/El-lenguaje-de-signos_senas.html?dr

Hector Garcini L. (2011). Sistemas de control en tiempo contínuo. *Maestría de Automatización y Control Industrial (Espol)*. Guayaquil.

José Acedo Sánchez. (2003). *Control Avanzado de Procesos*. España: Díaz de Santos. S. A.

Katsuhiko Ogata. (2010). *Ingeniería de control moderna*. Madrid: Pearson Educación SA.

Micromecánica, A. (2014). *microautomación*. Recuperado el 09 23, 2014, de http://www.microautomacion.com/capacitacion/Manual061ControladorLgicoProgra mablePLC.pdf

Mora Merchan. (s.f.). *Barbacana*. Obtenido de http://barbacana.net/moramerchan/files/Tema10.pdf

Norman A. Anderson. (1997). *Instrumentation for Process Measurement and Control*. CRC Press.

PLC, I. (2014). *Info PLC*. Recuperado el 09 20, 2014, de http://www.infoplc.net/descargas/98-omron/automatas-plc/cpm/768-programacionde-un-grafcet-cp1a-puente-grua

Schneider Electric, Argentina. (2014). *Schneider Electrics*. Recuperado el 10 20, 2014, de http://www.schneiderelectric.com.ar/documents/recursos/myce/capitulo04_1907.pdf

Siemens AG. (2009). *SCE - Siemens Automation Cooperates with Education*. Recuperado el 9 9, 2014, de SCE - Siemens Automation Cooperates with Education: https://www.swe.siemens.com/spain/web/es/industry/automatizacion/sce_educacion/ e_education/pages/default.aspx

Anexo 1. Planos Eléctricos

-												-
	«					0		0		in.		2442
											MCN-02	LO COMTROL DE NIVEL
											-13-540	MÓDUI
	IPS EL MON 01	JPS-EL-MCN-02 JPS-EL-MCN-03 JPS-EL-MCN-03	JPS-EL-MON-05	JPS-EL-MCN-06 JPS-EL-MCN-07	IPS-EL-MCN-08	IPS-EL-MCN-10	PS-EL-MCN-11 JPS-EL-MCN-12 JPS-EL-MCN-13	IPS ELMON 14 IPS ELMON 15			DIACTRIANS ESOUTIMAS	RU INTRODUCTION
•						(INDUSTRIAL)		AL (2)			LI ESIANA	THEORY
					CONTROL. NTA INDUSTRIAL	tos (contriol, Y PI	SENALES RO DE CONTROL CONTROL NTA INDUSTRIAL	OUIPOS PLANTA INDUSTRU PLANTA INDUSTRU				ADUL A
		es de biseño	(LES	FRALES (1) FRALES (2)	ICO TABLERO DE I	ERZA E FUERZA TAINEI	TERCONEXIÓN I LC 57-1200 TABLE 825 TABLERO DE (825 TABLERO PLA	ERCONEXIÓN E INSTRUMENTOS E INSTRUMENTOS			NIVERSIDAD	ALESIANA - GUAY
*	E FRODUCCIÓN PORTADA	INDICE ESPECIFICACION	SIMBOLOGIA STADOS LISTADO DE SEÑU	LISTADO DE MATI LISTADO DE MATI	ANOS FISICOS DESCRIPTIVO FIS DESCRIPTIVO FIS	AGRAMAS DE FU CONEXIONADO D	AGRAMAS DE IN CONEXIONADO P CONEXIONADO D CONEXIONADO D	AGRAMAS DE IN CONEXIONADO D CONEXIONADO D			the 22.612-2014 gady A.ThMMMCD	state 6. AMPURO
	INDIG 00, IN		01. LIS		02 PL	03. DW	04. DI	03, DI			100 and 100 an	a Fectuary UPShare
	≪.			e ';		Ū.		٥	SI SI	<i>u</i> .		P Modificació

SIMBOLO DESCRIPCIÓN SIMBOLO DESCRIPCIÓN D	<			9		0	W		
SIMBOLO DESCRIPCIÓN SIMBOLO DESCRIPCIÓN SIMBOLO DESCRIPCIÓN SIMBOLO SIMBOLO SIMBOLO SIMBOLO DESCRIPCIÓN SIMBOLO SIMBOLO SIMBOLO DESCRIPCIÓN SIMBOLO SIMBOLO SIMBOLO DESCRIPCIÓN SIMBOLO DESCRIPCIÓN SIMBOLO SIMBOLO DESCRIPCIÓN SIMBOLO	DESCRIPCIÓN	SENSOR DE MIVEL ULTRASÓNICO	SENSOR DE MVEL CAPACITIVO	SENSOR DE NIVEL TIPO BOYA	NALVULA SOLENOIDE	VARIADOR DE VELOCIDAD	VOLTIMETRO (ANALÓGICO)	BOMBA 24VDC	
SIMBOLO DESCRIPCIÓN SIMBOLO DESCRIPCIÓN + A_2 INTERNITIOR DE 1 POLO CON INTERNITIOR DE 2 POLOS CON POTECIÓN TERNIZAMARENTIÓN INTERNITIOR DE 2 POLOS CON POTECIÓN TERNIZAMARENTIÓN INTERNITION DE 2 POLOS CON POLOS POLOS POLOS CON POLOS POLOS POLOS CON POLOS POLOS POLOS POLOS CON POLOS POLOS POLOS POLOS POLOS POLOS POLOS POLOS POLOS POLOS POLOS POLOS POLOS PO	SIMBOLO		- > +\/-	- da		-5-	- (\$) +	(W)]	D-MCM-0
SIMBOLO DESCRIPCIÓN ESIMBOLO ESIMPOLO E	DESCRIPCIÓN	SELECTOR DE 3 VIAS (NO / NO)	FUENTE DE VOLTAJE CONTINUO (120VAC / 24VDC)	RELE 24VDC. TNO Y 1 NC	LUZ PLOTO (24VDG)	BORNERA SMPLE	GRUPO DE BORNERAS CORTOCICUITABLES	CONECTOR HEMBRA 25 PINES DE25	Distribution Constants Capatitations on Intracourcione
SIMBOLO DESCRIPCIÓN * A a INTERRUPTOR DE 1 POLO CON PROTECCIÓN TERRUPAGNETICA PROTECCIÓN TERRUPAGNETICA	SIMBOLO	a 2	4 1 1 100 1	*** A1 12 14	ž⊗ž	10 ×	5 2 4 X	•	SALESIANA
SIMBOLO SIMBOLO	DESCRIPCIÓN	INTERRUPTOR DE 1 POLO CON PROTECCIÓN TERMOMAGNETICA	INTERRUPTOR DE 2 POLOS CON PROTECCIÓN TERMOMAGNÉTICA	PULSADOR DE MARCHA	PULSADOR DE PARO (NO)	PARO DE EMERGENCIA	CONTACTO NO9MALMENTE ABIERTO (NO)	CONTACTO NORMALMENTE CERRADO (NC)	terbis 11-11-3014 UNIVERSIDAD Displacem A Video POLITECHICA
	SIMBOLO		त विहिन विहिन	2 T 2	a Tr	=	s_2	E FE	00 10 10 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10

		_		_		_		_			_	_	92			V	_	_	0	_	_	_	_		Mi .		_	- 16	-	1
ELEMENTO / PLANTA INDUSTRIAL	ALMENTACIÓN «24V	MARCHA	CHAN	PARD DE EMERGENON	SELECTOR (MINUML)	SELECTOR (AUTOMATICO)	ADD VALVASA	ADD VARIADOR	SENSOR TIPO BOYALL TKN2	COMP., VALV. ABRETA	DONF, VALV, CERENDA	SENSOR CAPACITIVO HL TKIDI	SENSOR CAPACITIVO LL TKVIN	AUMENTACIÓN VÁLVALA	VARIADOR ON) OFF	VARIADORI ANALÓGICO	LUZ PILOTO (HI)	LU2 PLOTO (H5)	LUZ PLC7TO (H6)	LUZ PLOTO 2473	LU2 PL0TO (HB)	SENSOR DE NIVEL ULTRABÓNICO	RESIGNA A	MASA	ALIMENTACIÓN DV					-+
ELEMENTO / TABLERO	ALIMENTACIÓN «24V	PLASADOR 1	PLASADOR 2	PULLADOR 3	PULSADOR 4	PULSADOR 5	PUL SADOR 6	BWITCH 1	SWTCH 2	SWITCH 3	SWTCH4	SWITCH S	SWICHS	1601	160.2	1603	160.4	1005	16D 6	1607	LED 6	POTENCIONICHO 1	POTENCIÓMETRO 2	MASA	ALMENTACIÓN DV					UPS-EL-MI
NO PLC	11-25	100	10.1	102	103	10.4	103	10.6	10.7	1.1.10	11.5	11.2	113	0.05	0.01	012	0.03	004	0.05	008	007	AL0	1.14	24	W1					
TAG TARJETA		in?	2	42	10	98	15	15		1	848	211	215	Ŧ	Ŧ	Ha	111	18	914	147	16	4.14	A12			ELEMENTO / FLANTA NOUSTRIAL	VANNADOR		Dialihaaaad	CIANA INCINCT
NG CABLE	2	5	WH	OR/BD.	GR / BK / WH	WHE / BHC	81,140	BK/RD/BL	GR / WH	BL. / WH	OR / BK	WHE / BK / RD	84,786	ø	z	ND / BK	EM. 7 VIN6	HD / BK / MH	OR / 04	08/86	RD / GR	PD / WH	Cite / HM	DK / RD	×	LEMENTO / TABLERO	voc tiastrao			
ILE T/					deres			2				1100						market.							-				DADAD	ECNICA
COLOR CAE	OFCH	VENDE	BLANCO	CARANALA F REPORT	VERDE / weget /	BLANCO / regre	AZUL / mis	NEORO / HIN / W	VERDE / MIDOO	AZUL / Namo	NARANAA / MURA	BLANCO / negra	A20.8, (suges	VERMENT	AZUL	ROJO / megro	NECRO / Nanco	ROJO / regro / In	NARANJA / USING	VERDE / mega	ROJO / verde	ROJO / Nimes	BLANCO / rose	NECISIO / HER	NEGRO	I/O PLC	AQ 0	00	27.12.2014 UNIVE	A TUMMADD DCW IT
PIN DB25		2	6		æ	e	7			40		11	13	1	15	18	11	11	10	92	10	22	23	24	n	PLUG BANANA	0010	9450390	(acha	Cobulatio

,		<	-					- 16				_		.92		- 1	U			R						10			T		-	÷	1011		-
																																		0100 4/13 6 164	
~	ERENCIA		3.84		0.87			6	<i>a</i>	10.67		4				8								1				5.46	2	W.	<i>a</i>	<i>x</i>		_	
	REF	111.8	1254/1	a cur	110.85, 11	0.011	mon.	(14.8)	115.D	70.05 M	115.0	194.0	115.0	115.0	115.0	115.0	. M5.0	115.0	115.0	115.0	/18.0	18.0	19.0	nac	NSC	114.0	14:0	/12/06/1	211.2	115.0	112.10	112,0		DE NIVEL	
*										NOMBA DC																			NET PARA PLC		CORCA	D AID	DC.51.MCN.06	ÓDULO CONTROL	1
		ICTUMDORES			KTA/E -01, -01			DUSTRIAL	eco	DECTRICOR. B															102			ICA 0-10V	STRAL ETHER	MOUE THISS	D SALIDA ANA	ANALOGA ALL		W	
	INCIÓN	SENSCREEY.		ERM	FUENTE DE VO	SPAL .	PLC-A1	NO PLANTA IN	INEL ULTRASÓR	A ELEMENTOS I	BOMBA	MOLE TKIN									off.		1000	A.A.	/EL TANQUE TH	NACUE TK101	WOUE TK102	AUDA MULCO	XE CABLE MOU	ID DE AQUA TA	DE ENTRADA	DE ENTRADA.			
	F	ROCESAR LA SEMALES DE	RAMSPORTAR SEMALES	UNKINTACIÓN 129 VACI DEN	ROTECCIÓN 129VAC PARA	UNKENTACHÓN 24V/DC CIERS	ROTECCIÓN SZIVÁC PARA	HOTECCIÓN 24VDC, TABLE	NOTECCIÓN SENSOR DE N	WINENTACIÓN 24VDC PARA	CHTROLAR VELOCIDAD DE	REDICTION DE NIVEL ALTO TA	MUDA DEL PLC ON 1	AUDA DRI, PLC CO 2	MUDA DEL PLC OR 3	AUDA DEL PLC CO.4	ALIDA DEL PLC Q0 5	ALIDA DEL PLC CO.R.	ALIDA DEL FLO 00.7	OMBA MODO ONICEF	LOQUED BOMBA MODO CM	COUNTY WOOD WAY DOD	LOGUED BOMBA MODO AN	CTIVACIÓN ELECTROVÁLV	EDICIÓN CONTINUA DE NIN	REDICIÓN DE NIVEL BAJO TO	REDICIÓN DE NIVEL BAJO TA	RANDPORTAR SERAL DE 5	COMUNICACIÓN A TRAVES O	ERMITURY BLOQUEAR HAD	RUECCONAR LA MEDICIÓN	SLECCIONAR LA MEDICIÓN	CARGEMANS	IL USTADOL USTADO SH MATTRIALES	5
	ELEMENTO										DC IS 24VDC						-																And the first of the second	SALESIANA	-
1	ESCRIPCIÓN DEL	S7-1206	Sime S	W	W	N		W.	W	DUTALE TORVAC/20/DC.234	EVADOR DE TENERÓN 9-10V	IVEL CAPACITIVO	WDC, COLOR VERCE	INDEL COLORI VENDE	IVDC, COLORI VERDE	INDE, COLOR VERDE	INDEL COLOR VERDE	ANDE, COLOR VERDE	INDEL COLOR VERDE	NUCLINE 24VDC. 1NC + 1NO	NUMBER 2010C. 1NC + 1NO	NUCLIMIT 2010CL 1NC + 1ND	NUCCUAR 24VDC. 1NC + 1NO	NUMBER OF STREET	IVEL ULTRASONICO	IVEL CAPACITIVO	IVEL TIPO BOYA, NO	E THO PLUE	145	AUA 2010C	MAIL	VAU	TEIDAD CARD	CNICA ANA - GUAYADUIL	1
	D	PLC SUBJERS	CONSCION 20	BREAKER 1P4	BREAKER 1P.1	BUEAGER 29-1	BREAKER 1P.1	BREAKER 201	BREAKER 291	FUENTE DE VI	VARIADOR, EL	BENBOR DE N	LUT PLOTO 3	LUZ PILOTO 2	LUZ PLOTO 2	LUZ PLOTO 3	102 91010 2	LUZ PLOTO 2	LUE PILOTO 2	CONTACTOR /	CONTACTOR	CONTACTOR	CONTACTOR	CONTACTOR	SENSOR DE N	BENBOR DE N	DENSOR DE N	CONFICTOR D	CONFICTOR R.	ELECTROVAL	INTCH DE 21	BWITCH DE 21	14 UNIVER	SALES	
~	TAG ELEMENTO	12	DR25	E.	12, 17	52	94	6.8	#6	at. co	8	HL TK101	Ŷ	1	144	594	1001	Hr.	H	101	502	600	NO4	600	1.00 102.2	LL THORN	11 TK102	PLUG BANNAA	RURS	SV101	1991	CANE	fields 25.45.20	P.11-20340.A. Dihusuka B. WMA	1
-																																		DML	-
P,		<						- 18						0						- 10						ш					-	н.			1

		4	5						1			1		-0							6					100						÷			
																																		7.462	
	REFERENCIA	14.01	1403	14.03	74.04	TK:DA	ALCH	MON	014.05	14.06	MCL	/NACT	74.08	(10,000)	(10.E3)	(10.54	0.05	10,85	(10,880	10.06	12.43	02.46	12,46	05.40	14.01	74.02	1	0.01	03.05	10.66	13.68	10.07		E NIVEL	
							DDO MININE.	WOOD WWWW																				PLO	0	AS PLO	10		DC ET. AAPKLINT	DULLO CONTROL D	*
	IÓN	DOSTRIM.	NTA INDUSTIBAL	ANTA INDUSTRIAL	TA INDUSTRIAL	PUARTA ISDUSTRIAL	R FLANTA INDUST. EN N	SI PLANTA INDUST EN	THENDE	RENTA	(PRIORDA)	TK101	TK101		WC.	9					ADAS DIGITALES PLC	AS CRUTALES PLC	ADAS ANK DOICAS PLC	NS MALOGICAS PLC	IN LINEA 120YAG	IN LINEA 120MAG	NUMEA 120440	CENTRADAS DIGITALES	E SALIDAS DIGITALES PL	ENTRADAS ANN DOIC	E SAUDAS ANALÓGICAS	DC BOMBA		, W	
	FUNC	NICA LOS PROCESOS PLANTA IN	WALIZA EL PROCESO DE LA MAN	THAL BACKIN DENERAL DE LA PL	ILLECTON NODO MANUAL PLAN	IELECCIÓN MODO AL/TOMÁTICO I	ICTIVINGION DE VALVALA, SOLO 3	ACTIVACIÓN DE VANIADOR, BOLD	NDICACIÓN NIVEL BAUD TANGUE	NDICACIÓN ELECTRIOVÁLVIU.A AB	NDICACIÓN ELECTRIOVÁLVUCA CE	NDICACIÓN NIVEL ALTO TANQUE 1	NDICACIÓN NIVEL BAJO TANQUE	CENTRO DE CARGA L'NEA 120VAC	CENTRO DE CARGA NEVTRO 120V	DENTRO DE CARDA TREBBA 120VA	CENTRO DE CARGA «24VDC	CENTRO DE CASGA INDIC	DRIVERAL 24VDIC DRL PLC	DORVERA INDIC DRI, PLC	CONEXON DE SEÑALES DE ENTR	CONEXION DE SERALES DE SALID	CONECTION DIS BERINALESS DIS ENTRY	CONEXCON DE REFALES DE SALID	CENTRO DE CARGA ALIMENTACIÓ	JENTRO DE CASOA ALIMENTACIÓ	CENTRO DE CASGA ALMENTACIÓ	CONECCON DE MATTRUMENTOS DE	CONEXION DE INSTRUMENTOS DE	CONDICINE DE INITITUMENTOS DE	CONEXION DE INSTRUMENTOS DE	CONEXION DE AUMENTACIÓN 24V	Triality Annual.	UL LITRADOS UNIVERSITY MARTINELES	
-	L ELEMENTO			ABERTO																				L.									Contractor Por Providence	SALESIANA	
-	ESCRIPCIÓN DE	E CONTACTO ABIENTO	E CONTACTO ABIERTO	PO HONOO DE CONTACTO	BIERTO DE SELECTOR	BIENTO DE BRIECTOR	E CONTACTO ABIENTO	E CONTACTO ABERTO	EVDC. COCOR VERDE	EVDG, COLOR VERDE	INDC. COLORI VERDE	INDC, COLORI VERDE	EVDC. COLOR VERDE	INCELEDINGCOMOUS	IPLE TELEMECANDUE	TRIPHA TELEMECANOUE	APLE TELEMECANOUR	PLE TELEMECANOUE	PLE TELEMECANDUE	PLE TELEMECANOUE	RING CLAMP ABB	RING CLAMP ADD	RTAFUDIBLE ALLEN BRADU	RTAFURBLE ALLEN BRADU	IFLE TELEMECANOUE	PLE TELEMECANOUE	TIERRA TELEMECANOUE	80°E ADB	01.K. ADD	IPLE ADD	IPLE ADD	IPLE ADD	REDAD	CONICA IANA - GUAYAQUIL	9
		PULEADOR DI	PULSADOR DI	PULSHDOR TI	CONTACTO A	CONTACTO A	PULSADOR DE	PULSADOR DI	10/2 FILOTO 3	1,02 FL010 2	1,02 P1,010/2	LUZ PLOTO 2	LUZ PLOTO 2	BORNERA SIN	BORNERA SIA	BORNERADE	BORNERA SIA	BORNERA EN	BORNERA SH	BORNERA SH	BORNERA BP	BORNERA BPI	BORNERA PO	BORNEHA PO	BORNERA SN	BORNERA SIN	BORNERA DE	BORNERA SAV	BORNERA SA	BORNERA SIA	BORNERA SIN	BORNERA SA	DIM UNVE	NURD BALES	
	TAG ELEMENTO	15	02	63	54	49	36	57	195	88	010	115	513	240	DX.	x	20	302	(+)1-2X	(-12,-51)		20	20	82	X10	X11	XG	XCB	104	XIS	xut	10.1	facts 27.43.	25-31-2034 G.A. Delogette Dr. volle Burdia OPTA concentre Dr. volle	
						_						_		-																				CONN.	-
					_	-		-	_		_										_					-			_			-			-

Anexo 2. Planos Mecánicos

PLANOS MECANICOS	
PROYECTO:	
MÓDULO CONTROL DE NIVEL	
PORTADA	01
MÓDULO DE CONTROL	
PLANO ESTRUCTURAL MÓDULO DE CONTROL	02
PLANO DE DISPOSICIÓN DE EQUIPOS MÓDULO DE CONTROL	03
DISEÑO DE PERFORACIONES PLACA METÁLICA MÓDULO DE CONTROL	04
DISEÑO DE IMPRESIÓN PLACA METÁLICA MÓDULO DE CONTROL	05
MÓDULO PLANTA INDUSTRIAL	
PLANO ESTRUCTURAL MÓDULO DE PLANTA INDUSTRIAL	06
DISEÑO DE PERFORACIONES PLACA METÁLICA MÓDULO PLANTA	07
DISEÑO DE IMPRESIÓN PLACA METÁLICA MÓDULO PLANTA	08
PLANTA INDUSTRIAL	00
ESTRUCTURA PLANTA INDUSTRIAL	09
PLANO ESTRUCTURAL DEL SOPORTE DE MÓDULOS Y PLANTA	10
PLANTA INDUSTRIAL	
PLANO PROYECTO CONTROL DE NIVEL	11
Patient Mode and	
	SALESIAN
MÓDULO DE CONTROL	DE

		PRÁCTICA #1	
		MANUAL DE PROCEDIMIENTOS DE PRÁCTIC	AS
LABORATORIO	LABORATORIO AUTOMATIZACIÓN INDUSTRIAL		
CARRERA	INGENIERÍA ELECTRÓNICA SEDE GUAYAQUIL		
PRÁCTICA	#1		

Anexo 3: Prácticas

- a. TEMA INTRODUCCIÓN A LA PLANTA INDUSTRIAL A ESCALA.
- b. OBJETIVO GENERAL Verificar el funcionamiento, características y elementos de proceso que se encuentran en la planta industrial didáctica, además de los planos de interconexión eléctricos de los tableros. Conocer elementos de entradas como sensores capacitivos, ultrasónicos, pulsadores, también actuadores como electroválvula, bomba.
- RECURSOS UTILIZADOS
 Las laptops con el software TIA PORTAL DE SIEMENS.
 Módulos de PLCs S7-1200, Cable DB25, RJ45
 Planta industrial
- MARCO PROCEDIMENTAL
 Conocer los equipos y elementos que está conformada la planta industrial a escala. Sus planos de interconexión eléctricos, los P&ID y diseño de la distribución de elementos en los tableros de control.
- e. REGISTRO DE RESULTADOS

FIGURA 1: TABLERO DEL MÓDULO DE CONTROL

FIGURA 2: ELEMENTOS DEL MÓDULO DE CONTROL

FUENTE: LOS AUTORES

ing and into its

FIGURA 3: TABLERO DE LA PLANTA INDUSTRIAL

FIGURA 4: DISTRIBUCIÓN INTERNA DEL TABLERO DE LA PLANTA INDUSTRIAL

FUENTE: LOS AUTORES

FIGURA 5: P&ID DE PLANTA INDUSTRIAL

FUENTE: LOS AUTORES

FIGURA 6: PLANTA INDUSTRIAL

ELEMENTO	TAG	DESCRIPCIÓN
	TK 101	Reservorio TK 101, capacidad de 10 lts, llenado por la parte superior, vaciado por la parte inferior central. Control del nivel sensor LSL 101.1 y LSH 101.2.
	TK 102	Reservorio TK 102, capacidad de 10 lts, llenado por la parte superior, vaciado por la parte inferior central o la parte lateral derecha. Control del nivel sensor LSL 102.1 y LIC 102.2.
	P 101	Bomba P 101, rango de voltaje de 0 – 24VDC, 25W. Control mediante salida H2 24VDC o H3 de forma analógica. Verificar los niveles de agua, y válvulas manuales antes de encenderla.
	SV 101	Electroválvula SV 101, estado normalmente cerrada, se abre con 24VDC. Control mediante salida Q0.0, confirmación de abierta S9, confirmación de cerrada S10.

LSL 107.1	LSL 101.1	Sensor de nivel bajo del TK 101, LSL 101.1, tipo capacitivo. Alimentación y señal 24VDC-PNP, desde 1- 25mm detección. Señal de control S12.
LSH 101.2	LSH 101.2	Sensor de nivel alto del TK 101, LSL 101.2, tipo capacitivo. Alimentación y señal 24VDC-PNP, desde 1- 25mm detección. Señal de control S11.
LSL 102.1	LSL 102.1	Sensor de nivel bajo del TK 102, LSL 102.1, tipo boya. Señal 24VDC. Señal de control S8
	LIC 102.2	Indicador de control de nivel del TK 102, LIC 102.2, tipo ultrasónico. Alimentación 24VDC, señal 0-10VDC o 4- 20mA, desde 200mm- 8m detección. Señal de control AI1.
GERNAND D	HV 101 HV 102 HV 103 HV 104 HV 105 HV 106	Válvulas manuales, desde HV 101-HV 106, se pueden abrir o cerrar dependiendo el control a realizar.
	A1	Controlador lógico programable A1, PLC Siemens S7-1200 CPU 1214C-AC/DC/RLY. Señales 14 IN, 10 OUT, 2 AI. Tarjeta de salida analógica AO 0-10VDC o 4-20mA.

f. ANEXO

CANAL	TAC		DESCRIPCIÓN				
CANAL	IAG	DURINERA	T. CONTROL	PLANTA INDUSTRIAL			
10.0	S1	X6.1	PULSADOR 1	MARCHA			
10.1	S2	X6.2	PULSADOR 2	PARO			
10.2	S3	X6.3	PULSADOR 3	PARO EMERGENCIA			
10.3	S4	X6.4	PULSADOR 4	SELECTOR (MANUAL)			
10.4	S5	X6.5	PULSADOR 5	SELECTOR (AUTOMÁTICO)			
10.5	S6	X6.6	PULSADOR 6	JOG VÁLVULA			
10.6	S7	X6.7	SWITCH 1	JOG VARIADOR			
10.7	S8	X6.8	SWITCH 2	SENSOR TIPO BOYA (LL TK102)			
				CONFIRMACIÓN VÁLVULA			
I1.0	S9	X6.9	SWITCH 3	ABIERTA			
				CONFIRMACIÓN VÁLVULA			
11.1	S10	X6.10	SWITCH 4	CERRADA			
l1.2	S11	X6.11	SWITCH 5	SENSOR CAPACITIVO (HL TK101)			
l1.3	S12	X6.12	SWITCH 6	SENSOR CAPACITIVO (LL TK101)			
Q0.0	H1	X7.1	LED 1	ACCIONAMIENTO VÁLVULA			
Q0.1	H2	X7.2	LED 2	VARIADOR MODO ON/OFF			
Q0.2	H3	X7.3	LED 3	VARIADOR MODO ANALÓGICO			
Q0.3	H4	X7.4	LED 4	LUZ PILOTO (H4)			
Q0.4	H5	X7.5	LED 5	LUZ PILOTO (H5)			
Q0.5	H6	X7.6	LED 6	LUZ PILOTO (H6)			
Q0.6	H7	X7.7	LED 7	LUZ PILOTO (H7)			
Q0.7	H8	X7.8	LED 8	LUZ PILOTO (H8)			
AIO	Al1	X8.1	POT. 1	SENSOR DE NIVEL ULTRASÓNICO			
Al1	AI2	X8.2	POT. 2	RESERVA			
A0+	Al1	X9.1	VOLTÍMETRO	VARIADOR			
1M	OVDC	X5.1	OVDC	OVDC			

		PRÁCTICA #2	
	LESIANA	MANUAL DE PROCEDIMIENTOS DE PRÁCTIC	AS
LABORATORIO	ORATORIO AUTOMATIZACIÓN INDUSTRIAL		
CARRERA	INGENIERÍA ELECTRÓNICA SEDE GUAYAQUIL		
PRÁCTICA	#2		

a. TEMA AUTÓMATA PROGRAMABLE COMO ELEMENTO DE CONTROL DE PROCESOS.

- DBJETIVO GENERAL
 Verificar mediante prácticas el funcionamiento del software TIA Portal de Siemens, su entorno de trabajo, las herramientas que ofrece para realizar diferentes tipos de controles.
- RECURSOS UTILIZADOS
 Las laptops con el software TIA PORTAL DE SIEMENS.
 Módulos de PLCs S7-1200, Cable DB25, RJ45
 Planta industrial
- d. MARCO PROCEDIMENTAL

Conocer el entrono, las herramientas y demás funciones tecnológicas que ofrece el software TIA Portal de Siemens para la programación de las diferentes prácticas a desarrollar durante el ciclo. El manejo para la programación de la lógica del controlador, la configuración de los HMI además de las conexiones

e. REGISTRO DE RESULTADOS

TIA Portal proporciona un entorno de fácil manejo para programar la lógica del controlador, configurar la visualización de HMI y definir la comunicación por red. Para aumentar la productividad, TIA Portal ofrece dos vistas diferentes del proyecto, a saber: Distintos portales orientados a tareas y organizados según las funciones de las herramientas (vista del portal) o una vista orientada a los elementos del proyecto (vista del proyecto). El usuario puede seleccionar la vista que considere más apropiada para trabajar eficientemente. Con un solo clic es posible cambiar entre la vista del portal y la vista del proyecto.

Con los siguientes pasos se puede crear un proyecto para SIMATIC S7-1200 y programar la solución para las tareas planteadas:

1. La herramienta central es el **"Totally Integrated Automation Portal"**, que se abre aquí haciendo doble clic. (-- Totally Integrated Automation Portal V12)

FIGURA 1: TIA Portal

 Los programas para SIMATIC S7-1200 se administran en proyectos. Un proyecto de este tipo se crea en la vista del portal (-- Create new project (Crear proyecto) – Nombre del proyecto -- Create (Crear))

FIGURA 2: VISTA DEL PORTAL

Vista del portal

- Portales para las diferentes tareas
- (2) Tareas del portal seleccionado
- ③ Panel de selección para la acción seleccionada
- (4) Cambia a la vista del proyecto

FUENTE: LOS AUTORES

 Ahora se proponen los "First steps (Primeros pasos)" de configuración. En primer lugar nos interesa la opción "Configure a device (Configurar un dispositivo)". (-- First steps (Primeros pasos) -- Configure a device (Configurar un dispositivo))

FIGURA 4: CONFIGURAR UN DISPOSITIVO

··· 崎	>	Primeros p				
Otepesitions y 🚽	Abra pinyorta attatas	E payed	o "PRACTICA" se ka abi	erte correc	tamente. Velecciane el signiente paso	
Angeamatin 🍕	Capar punyecta	and the second	1			
Matthew & Exclosularity	Conser prosperito		A disposition o	- 6	Carlterrar un dissouther	
And Accheration	Wetcome Tear			-	Esculto programa N.C.	
Online y	Pinneres passes		and the state	-	Configurar albetus tecnelógicos	
	Suffmare installatia			ø	Canfigurar una mages III.II	
				840	Parametricar accionamente	
	🔹 latarea de la interfar					

FUENTE: LOS AUTORES

 A continuación, elegimos "Add new device (Agregar dispositivo)" y escribimos el "Device name (Nombre de dispositivo)". Para ello, seleccionamos del catálogo "CPU1214C" con la referencia correspondiente.

FIGURA 5: AGREGAR PLC

FUENTE: LOS AUTORES

5. El software cambia automáticamente a la vista del proyecto con la configuración de hardware abierta. Aquí se pueden agregar módulos adicionales del catálogo de hardware (derecha). Adicionalmente se puede introducir el Signal Board para una salida analógica, mediante "arrastrar y soltar" desde el catálogo. (-- Catalog (Catálogo) -- Signal board -- AO1 x 12 bits -- 6ES7 232-...)

FIGURA 6: AGREGAR SIGNAL BOARD

FUENTE: LOS AUTORES

En "Device overview (Vista general de dispositivos" se pueden ajustar las direcciones de las entradas/salidas. Las entradas analógicas integradas de la CPU tienen las direcciones IW64 - IW66 y las entradas digitales integradas, las direcciones I0.0 - I1.3. La dirección de la salida analógica en el Signal Board es QW80 (-- Device overview (Vista general de dispositivos) -- AO1 x 12 bits -- 80...81)

FIGURA 7: ASIGNACIÓN DE VARIABLES

Actual del proyecto 🛛 🖾 🕯	PRACTICA + PLC_1 [CPU 1214C	ACOCH	ly]					
Dispositivos						🖓 Vista top	ológica	📥 Vista
1900 2					-lite #1 Fig	autor	o tor u	1
	Vista general de dispositivos	2						
Agregardispontive Spositives / vedes Ruc 1 (CPU121ac AODCAM)	W Mödule	5lat 103 102	Dimenter I	Direction Q	Тре	Delerencia	Firmware	Comental
Configuración de dispo Quarte y diagnostico Subques de programa	RLC_3 DH4D010_1 AD1	1.11	0.1 54.67	01	090 1214C ACDONy 0114/0010 442	(ES7 214-18631-018)	VS B	
Generation and an and a second s	ADI + 12brts_1	1.3		80.01	AQT Signal Board	(ES7 232-4H+30-04B0	¥3.0.	
Control CC C	HSCJ HSCJ HSCJ HSCJ HSCJ HSCJ NikeJ NikeJ	1 17 1 18 1 19 1 20 1 21 1 52 1 53 1 54	1004 10 1008 16 1012 10 1016 10 1020 10	1000 T0 1002 T0 1004 T0	HSC HSC HSC HSC Generador de impulso Generador de impulso Generador de impulso			
• m Accesos atáne	Pidse_4	135		1006.10	Generador de impulsa.			

FUENTE: LOS AUTORES

 Para que el software acceda posteriormente a la CPU correcta, deben configurarse su dirección IP y la máscara de subred. (-- Properties (Propiedades) -- General (General) -- PROFINET interface (Interfaz PROFINET) --Ethernet addresses (Direcciones Ethernet) -- IP address (Dirección IP): 192.168.1.10 -- Subnet mask (Máscara de subred): 255.255.255.0)

		- Contraction of the local division of the l								
	1.1.	Vista gen	eral de dispositivos	87 L						
PRACICA Agregar dispositivo Apregar dispositivo Apregar dispositivo Agregar dispo		W Mida	Pulos_1 Pulos_2 Pulos_3	Shot 1.92 1.33 1.54	Dirección I	Direction Q 1000-10 1002-10 1004-10	Tipo Generador de impulso Generador de impulso Generador de impulso	Referencia	Firmweit	Correnta
	Online y thagnointco Slomet de programa	Supervised and							Ropiedades	Inform
	Otycos technikycos Otycos technikycos	General General Dancenne Avarcado Sinconzac ID de bardi	200 horane	Direcci	ones Ethern faz comectad	ot la en red ca Tutrod	e FI(12_1			
	Uritec de textos Unidades locales Unidades locales Origination del decumento Origination del decumento Origination del decumento		1	Proto	cola IP		Agregat subred	en el project		
	 Te Acceso orlane Te Lector de tagetacimentonia USE 					<	Enrección IP Hace publicad Infinar router Processon del recher	192 168 255 255	1 10	

FIGURA 8: DIRECCIÓN ETHERNET PLC

FUENTE: LOS AUTORES

 Una vez agregada la direccion IP se abre el Main OB1 donde se realizaran la lógica de programación que se le cargará al controlador. (PLC_1.... – Bloque de Programas – (Doble click) Main OB1)

FIGURA 9: VISTA DEL PROYECTO

A Garder projette & X	N - X OLCI	Totally Integrated Automation PORT
and and provide the last	PAACTICA. + PLC_1 (ON 1214C ACIDONIy) + Blaques de programa + Main (OB1)	And an American Ame American American A
Disperatives	こころのでき 日本では14月前のためなる アンシューロ	Opcieren 4 🖸
 North State of the sta	Trade del Margen Deres Solar Trade del Margen Deres Solar Vista del proyecto 1 Menús de barras herramientas 2 Árbol del proyecto 3 Área de trabajo 4 Instrucciones lógicas 5 Cambia a la vista del portal 6 Barra del editor	A provides Align and a provides Align and a provide provide a provide a provide provide a provide a pro
Propectos de seferencia Vista detallada	Demotates Victoria	Commit achim

FUENTE: LOS AUTORES

		PRÁCTICA #3	
	LESIANA	MANUAL DE PROCEDIMIENTOS DE PRÁCTIC	AS
LABORATORIO	TORIO AUTOMATIZACIÓN INDUSTRIAL		
CARRERA	INGENIERÍA ELECTRÓNICA SEDE GUAYAQUIL		
PRÁCTICA	#3		

- a. TEMA FUNCIONALIDAD DE SENSORES CAPACITIVOS PARA UN SISTEMA EN LAZO ABIERTO.
- DBJETIVO GENERAL
 Verificar a través de prácticas el funcionamiento específico de los sensores capacitivos mediante el control del PLC S7-1200, integrar los conocimientos de instrumentación con la programación del PLC, en el software TIA Portal usando bobinas y contactos para el desarrollo.
- RECURSOS UTILIZADOS
 Las laptops con el software TIA PORTAL DE SIEMENS.
 Módulos de PLCs S7-1200, Cable DB25, RJ45
 Planta didáctica industrial de control de nivel
- d. MARCO PROCEDIMENTAL

Consideraciones preliminares

Inicialmente debe estar vacío el reservorio TK-102 (1.5lts) y el reservorio TK-101 debe encontrarse lleno (9lts), las válvulas manuales HV 101, HV104, HV 105, HV 106 deben estar cerradas y las válvulas manuales HV 102, HV 103 tienen que estar abierta.

Proceso

Se desea vaciar el reservorio TK-101 mediante la bomba controlada por los sensores capacitivos. Habrá dos modos de operación manual o automático. Modo automático; deberá estar el selector en automático (S5) seleccionado, una vez seleccionado si se pulsa marcha (S1) en ese momento se enciende la bomba (P 101) mediante la salida variador On/Off (H2) si el sensor capacitivo de nivel bajo (LSL 101.1) esta activado, en el momento que se desactive el sensor se apaga la bomba. Si en el proceso de vaciado del tanque se presiona paro (S2) o paro de emergencia (S3) se para el proceso si se vuelve a pulsar marcha continúa. Para volver a llenar el reservorio TK 101 se debe abrir la válvula manual HV 105. Si se desactiva el sensor capacitivo de nivel bajo LSL 101.1 debe encender el indicador luminoso (H4).

Modo manual; se ubica el selector en manual (S4) se programa el pulsador jog variador (S7) solo cuando este pulsado se encienda la bomba (P 101) mediante la salida variador On/Off (H2). Si se desactiva el sensor capacitivo de nivel bajo LSL 101.1 debe encender el indicador luminoso (H4).

e. REGISTRO DE RESULTADOS

FIGURA 1: SIN ACTIVAR SELECTOR AUTOMÁTICO.

FUENTE: LOS AUTORES

FIGURA 2: SELECTOR AUTOMÁTICO ACTIVADO.

FUENTE: LOS AUTORES

FIGURA 3: ACTIVADO PULSADOR MARCHA.

FUENTE: LOS AUTORES

FIGURA 4: SECUENCIA DE SENSORES CAPACITIVOS.

Segmento 2: SECUENCIA DE LOS SENSORES DE NIVEL CAPACITIVO

> Se programa la señal(M40.1) para activar la secuencia de los sensores, se realiza el paralelo de las

FUENTE: LOS AUTORES

FIGURA 5: ACTIVACIÓN DE BOMBA.

FUENTE: LOS AUTORES

FIGURA 6: SELECTOR MANUAL ACTIVADO.

FUENTE: LOS AUTORES

FIGURA 7: JOG MANUAL DE BOMBA ACTIVADO.

FIGURA 8: ACTIVADA SALIDA Q0.1 BOMBA ON/OFF

r 5	Segmento 3:	SALIDA H2 Q0.1VARIADOR ON-OFF	
Se	eñal de salida d	e bomba P101 para encendido directo 24∨ (M4.1)	
T	%M0.1		%Q0.1
-	"F_H2"		"H2"
L	%M4.1		
	"O_H2"		

FUENTE: LOS AUTORES

FIGURA 9: ACTIVADA ENTRADA DE SELECTOR MANUAL

FUENTE: LOS AUTORES

FIGURA 10: ACTIVADA ENTRADA DE SELECTOR AUTOMÁTICO

Señal de entra	da de selector automático(M2.4)	
%10.4		%M2.4
"S5"		"I_S5"
		()

FIGURA 11: ACTIVADA ENTRADA DE JOG VARIADOR

eñal de entrad	a de pulsador jog variador(M2.6)	
%10.6		%M2.6
"S7"		"I_S7"
		()

FIGURA 12: ACTIVADA ENTRADA SENSOR DE NIVEL ALTO

FUENTE: LOS AUTORES

FIGURA 13: ACTIVADA ENTRADA DE SENSOR DE NIVEL BAJO

FUENTE: LOS AUTORES

f. ANEXO P&ID de la práctica

		PRÁCTICA #4	
	LESIANA	MANUAL DE PROCEDIMIENTOS DE PRÁCTIC	AS
LABORATORIO	AUTOMATIZACIÓN INDUS	STRIAL	
CARRERA	INGENIERÍA ELECTRÓNICA	A SEDE GUAYAQUIL	
PRÁCTICA	#4		

a. TEMA FUNCIONALIDAD DEL SENSOR ULTRASÓNICO PARA UN SISTEMA DE LAZO ABIERTO.

b. OBJETIVO GENERAL

Comprobar con las prácticas el funcionamiento específico del sensor ultrasónico como entrada analógica mediante el control del PLC S7-1200, integrar los conocimientos de instrumentación con la programación del PLC mediante el escalamiento de señales analógicas con las herramientas del software TIA Portal de Siemens.

- RECURSOS UTILIZADOS
 Las laptops con el software TIA PORTAL DE SIEMENS.
 Módulos de PLCs S7-1200, Cable DB25, RJ45
 Planta industrial
- d. MARCO PROCEDIMENTAL

Consideraciones preliminares

Inicialmente debe estar vacío el reservorio TK 102 (1.5lts) y el reservorio TK-101 debe encontrarse lleno (9lts), las válvulas manuales HV 101, HV 104, HV 105, HV 106 deben estar cerradas, y las válvulas HV 102, HV 103 tienen que estar abierta.

Proceso

Se desea realizar un programa para el escalamiento de la señal del sensor ultrasónico. Donde una entrada analógica representa un nivel en la que el valor 4360 de la entrada analógica representa Olt y 21300 representa 10lt, se utilizara la entrada analógica AI1. Van a existir dos modos de operación modo manual y modo automático en ambos se desea realizar un control de lazo abierto con el sensor ultrasónico.

Modo automático; se ubica el selector en automático y se pulsa el botón de marcha (S1). Se enciende la bomba (P 101) mediante ON/OFF (H2), si el sensor de nivel alto capacitivo esta activado y el sensor de nivel bajo capacitivo, se mantiene encendida hasta que se desactive el sensor de nivel bajo o se pulse el paro (S2) o paro de emergencia (S3). Se debe llenar el reservorio TK 102 hasta los 9lts. Una vez lleno el reservorio TK 102 se debe abrir la válvula manual HV 105 para llenar el TK 101 hasta los 9lts y luego cerrarla. Para volver a realizar el proceso. Cuando se presione el paro S2 o paro de emergencia S3 se debe parar el proceso.

Modo manual; se ubica el selector en manual se debe mantener pulsado el jog variador (S7) para que se prenda la bomba (P 101) mediante ON/OFF (H2) hasta que el TK 102 se llene (9lts), una vez lleno se debe proceder abrir HV 105 para volver a llenar el reservorio TK 101.

e. REGISTRO DE RESULTADOS

FIGURA 1: SIN PULSAR MARCHA

FUENTE: LOS AUTORES

FIGURA 2: PULSANDO MARCHA

Segmento 1: MAPCHA Y PARO

FUENTE: LOS AUTORES

FIGURA 3: SECUENCIA DE SENSORES CAPACITIVOS

Segmento 2: SECUENCIA DE LOS SENSORES DE NIVEL CAPACITIVO
 Se programa la señal(M40.1) para activar la secuencia de los sensores, se realiza el paralelo de las señales para poder encender como pide los requerimientos

FIGURA 4: ACTIVACIÓN DE BOMBA MODO AUTOMÁTICO

- Segmento 3: ACTIVACIÓN DE BOMBA
 - ➡ Los dos contactos NO que estan en la parte superior(M40.1-M40.2) son del modo de operación automático y los dos contactos de abajo son del modo de operación manual

FUENTE: LOS AUTORES

FIGURA 5: SELECTOR MANUAL ACTIVADO

Segmento 3: ACTIVACIÓN DE BOMBA

FUENTE: LOS AUTORES

%M2.3

"1 \$4"

FIGURA 6: JOG MANUAL DE BOMBA ACTIVADO

%M2.6 "I_S7"

Segmento 3: ACTIVACIÓN DE BOMBA.

 Los dos contactos NO que estan en la parte superior(M40.1-M40.2) son del modo de operación automático y los dos contactos de abajo son del modo de operación manual

FIGURA 7: ESCALAMIENTO DE ENTRADA ANALÓGICA AI1

FUENTE: LOS AUTORES

FIGURA 8: RESTA PARA 10 PARA OBTENER VALOR EN LT

FUENTE: LOS AUTORES

FIGURA 9: ACTIVADA SALIDA Q0.1 BOMBA ON/OFF

FUENTE: LOS AUTORES

FIGURA 10: ACTIVADA ENTRADA DE SELECTOR MANUAL

FIGURA 11: ACTIVADA ENTRADA DE SELECTOR AUTOMÁTICO

Señal de entrada de selector automático(M2.4)	
210 A	
10U.4	%M2.4
"55"	"I_S5"

FUENTE: LOS AUTORES

1

FIGURA 12: ACTIVADA ENTRADA DE JOG VARIADOR

Señal de entrada de pulsador jog variador(M2.6)	
%10.6	%M2.6
"\$7"	"I_S7"

FUENTE: LOS AUTORES

FIGURA 13: ACTIVADA ENTRADA SENSOR DE NIVEL ALTO

	Segmento 23: ENTRADA \$11-11.2—HL TK101	
	Señal de entrada sensor de nivel alto tipo capacitivo(M3.2)	
1	%11.2	%M3.2
	"S11"	" <11"

FUENTE: LOS AUTORES

- f. ANEXO
 - P&ID de la práctica

		PRÁCTICA #5	
		MANUAL DE PROCEDIMIENTOS DE PRÁCTIC	AS
LABORATORIO	AUTOMATIZACIÓN INDUS	STRIAL	
CARRERA	INGENIERÍA ELECTRÓNICA	A SEDE GUAYAQUIL	
PRÁCTICA	#5		

- a. TEMA
 ACCIONAMIENTO ON/OFF DE UNA ELECTROVÁLVULA PARA EL LLENADO DEL TANQUE (TK101).
- b. OBJETIVO GENERAL

Verificar mediante prácticas el funcionamiento de la electroválvula como salida digital mediante el control del PLC S7-1200, siendo programado con el uso de comparadores que tiene el software TIA Portal de Siemens, para realizar la apertura de la electroválvula.

- RECURSOS UTILIZADOS
 Las laptops con el software TIA PORTAL DE SIEMENS.
 Módulos de PLCs S7-1200, Cable DB25, RJ45
 Planta industrial
- d. MARCO PROCEDIMENTAL

Consideraciones preliminares

Inicialmente debe estar por la mitad el nivel del reservorio TK-102 (5lts) y el reservorio TK-101 debe encontrarse a la mitad (5lts), las válvulas manuales HV 101, HV104, HV 105, HV 106 deben estar cerradas y las válvulas manuales HV 102, HV 103 tienen que estar abierta.

Proceso

Se desea accionar la electroválvula, bomba y un indicador luminoso usando comparadores en la programación del PLC. Habrá dos modos de operación: manual o automático.

Modo automático; se desea comparar dos datos, DATO A y DATO B, mediante interruptores que se encontrarán en el SCADA. Los datos estarán conformados por tres bits que se visualizarán en el SCADA de forma decimal del 0 al 7. Con las siguientes condiciones, si el DATO A es mayor que el DATO B se activa la electroválvula, si el DATO A es menor que el DATOB se activa el indicador luminoso (H4), si el DATO A es igual que el DATO B se activa la bomba (P 101) mediante la salida (H2). Deberá estar el selector en automático (S5), una vez seleccionado si se pulsa marcha (S1) comienza el proceso. Con el pulsador de paro (S2) o paro de emergencia (S3) se para el proceso en cualquier momento. Modo manual; se ubica el selector en manual (S4) se programa el pulsador jog variador (S7) solo cuando este pulsado se encienda la bomba (P 101) mediante la salida variador On/Off (H2), además el jog válvula (S6) si se mantiene pulsado abre la electroválvula mediante la salida Q0.0.

e. REGISTRO DE RESULTADOS

FIGURA 1: SIN ACTIVAR SELECTOR AUTOMÁTICO

FIGURA 2: ACTIVADO SELECTOR AUTOMÁTICO

FUENTE: LOS AUTORES

FIGURA 3: PULSANDO MARCHA

▼ Segmento 3: MARCHA Y PARO

 La señal del pulsador de marcha S1 se le realiza un autoenclavamiento(M40.1), como protección esta la señal de paro y paro de emergencia debe estar la señal del selector automático activado

FIGURA 4: ACTIVANDO INTERRUPTOR MAYOR SIGNIFICATIVO DEL DATO A (4)

FUENTE: LOS AUTORES

FIGURA 5: ACTIVANDO INTERRUPTOR DEL DATO B (2)

FUENTE: LOS AUTORES

FIGURA 6: DATO A MENOR QUE DATO B

FIGURA 7: DATO A MAYOR QUE DATO B

FUENTE: LOS AUTORES

FIGURA 8: DATO A IGUAL QUE DATO B

▼ Segmento 8: DATO A IGUAL A DATO B, ACTIVACIÓN DE BOMBA

 La primera linea es para el modo de operación manual, la linea de abajo es para el modo de operación automático si el dato A es igual que el dato B se abre la enciende la bomba

FUENTE: LOS AUTORES

FIGURA 9: ACTIVADA SALIDA Q0.0 ELECTROVÁLVULA

FIGURA 10: ACTIVADA SALIDA Q0.1 BOMBA ON/OFF Segmento 3: SALIDA H2- Q0.1—VARIADOR ON-OFF Señal de salida de bomba P 101 para encendido directo 24V (M4.1) %M0.1 "F_H2" %M4.1 "O_H2"

FUENTE: LOS AUTORES

FIGURA 11: ACTIVADA ENTRADA DE SELECTOR MANUAL

FUENTE: LOS AUTORES

FIGURA 12: ACTIVADA ENTRADA DE SELECTOR AUTOMÁTICO

FUENTE: LOS AUTORES

FIGURA 13: ACTIVADA ENTRADA DE JOG VÁLVULA

	Segmento 18: ENTRADA S6-10.5—JOG VÁLVULA	
	Señal de entrada de pulsador jog válvula(M2.5)	
I	%10.5	%M2.5
I	"\$6"	"I_S6"

FIGURA 14: ACTIVADA ENTRADA DE JOG VARIADOR

	Segmento 19:	ENTRADA S7-10.6-JOG VARIADOR	
	Señal de entrada d	e pulsador jog variador(M2.6)	
Ĩ	%10.6		%M2.6
L	"S7"		"I_S7"

FUENTE: LOS AUTORES

FIGURA 15: ACTIVADA ENTRADA SENSOR DE NIVEL ALTO

%11.2	%M3.2
"S11"	"I_S11"

FUENTE: LOS AUTORES

FIGURA 16: ACTIVADA ENTRADA DE SENSOR DE NIVEL BAJO

FUENTE: LOS AUTORES

f. ANEXO

P&ID de la práctica

		PRÁCTICA #6	
		MANUAL DE PROCEDIMIENTOS DE PRÁCTIC	AS
LABORATORIO	AUTOMATIZACIÓN INDUS	STRIAL	
CARRERA	INGENIERÍA ELECTRÓNICA	A SEDE GUAYAQUIL	
PRÁCTICA	#6		

a. TEMA

VACIADO Y LLENADO DE UN RESERVORIO POR MEDIO DE TEMPORIZADORES.

b. OBJETIVO GENERAL

Verificar mediante prácticas el funcionamiento de los temporizadores como control de vaciado de un reservorio. Usando las herramientas más comunes de temporizadores del software TIA Portal de Siemens.

- RECURSOS UTILIZADOS
 Las laptops con el software TIA PORTAL DE SIEMENS.
 Módulos de PLCs S7-1200, Cable DB25, RJ45
 Planta industrial
- d. MARCO PROCEDIMENTAL

Consideraciones preliminares

Inicialmente debe estar vacío el reservorio TK-102 (1.5lts) y el reservorio TK-101 debe encontrarse lleno (9lts), las válvulas manuales HV 101, HV 105, HV 106 deben estar cerradas y las válvulas manuales HV 102, HV 103, HV104 tienen que estar abierta.

Proceso

Realizar un programa para el vaciado del reservorio TK-101 mediante las herramientas de temporizadores TON, TOF, TONR que ofrece el software. Modo automático; la aplicación consiste en que la bomba (P 101) debe encenderse por 8s para llenar el reservorio TK 102, luego se apaga y se espera 4s para que se abra la electroválvula (SV 101) durante un tiempo que se puede variar y vaciar el reservorio TK 102. Debe estar el selector en automático (S5) y pulsar marcha (S1). Si se pulsa paro o paro de emergencia en el momento que está encendida la bomba cuando se vuelva a pulsar marcha debe prenderse solo el tiempo restante, si se para cuando está abierta la electroválvula debe cerrarse la electroválvula y cuando se pulse marcha se abrirá todo el tiempo ingresado.

Modo manual; se ubica el selector en manual (S4) se programa el pulsador jog variador (S7) solo cuando este pulsado se encienda la bomba (P 101) mediante la salida variador On/Off (H2). Si se mantiene pulsado el jog válvula (S6) se abre la electroválvula (SV 101).

e. REGISTRO DE RESULTADOS

FIGURA 1: SIN SELECCIONAR AUTOMÁTICO

FUENTE: LOS AUTORES

FIGURA 2: SELECTOR EN AUTOMÁTICO

FUENTE: LOS AUTORES

FIGURA 3: SIN PULSAR MARCHA

FUENTE: LOS AUTORES

FIGURA 4: PULSADO MARCHA

FIGURA 5: SECUENCIA PARA ACTIVACIÓN DE TONR DE LA BOMBA

 Secuencia de señales del sensor de nivel alto TK101, para permitir el encendido de la bomba con autoenclavamiento

FUENTE: LOS AUTORES

FIGURA 6: CONTEO DE TONR DE LA BOMBA

- Segmento 5: ACUMULADOR PARA ENCENDIDO DE BOMBA
 - Se utiliza un TONR para la acumulación de tiempo si se para el proceso cuando esta encendida la bomba, se tiene el tiempo restante que debe permanecer prendida

FUENTE: LOS AUTORES

FIGURA 7: ACTIVACIÓN DE BOMBA MODO AUTOMÁTICO

 ← Los dos contactos NO que estan en la parte superior(M40.1-02_TEMP.Q) son del modo de operación automático y los dos contactos de abajo son del modo de operación manual, sentencia para la activación de la bomba

FIGURA 8: CONTEO DE TOF PARA ENCENDER ELECTROVÁLVULA

FUENTE: LOS AUTORES

FIGURA 9: TIEMPO DE APERTURA DE LA ELECTROVÁLVULA CON EL TON

 Segmento 8: TIEMPO DE APERTURA DE LA ELECTROVÁLVULA
 Se realiza el conteo de tiempo ingresado en MD50 para la apertura de la electroválvula mediante un TON la desactivación del temporizador se la realiza cuando se activa el TOF

FUENTE: LOS AUTORES

FIGURA 10: ACTIVACIÓN DE LA ELECTROVÁLVULA MODO AUTOMÁTICO

FIGURA 11: INGRESO DE TIEMPO PARA APERTURA DE ELECTROVÁLVULA

Segmento 10: VALOR DE SETEO DE TIEMPO DE APERTURA DE LA ELECTROVÁLVULA

 El valor se ingresa desde el scada pero lo lee en ms se lo divide para 1000 para que cuente el temporizador en segundos

FUENTE: LOS AUTORES

FIGURA 12: ACTIVADA SALIDA Q0.0 ELECTROVÁLVULA

FUENTE: LOS AUTORES

FIGURA 13: ACTIVADA SALIDA Q0.1 BOMBA ON/OFF

f. ANEXO

P&ID de la práctica

		PRÁCTICA #7	
		MANUAL DE PROCEDIMIENTOS DE PRÁCTIC	AS
LABORATORIO AUTOMATIZACIÓN INDUSTRIAL			
CARRERA	INGENIERÍA ELECTRÓNICA	A SEDE GUAYAQUIL	
PRÁCTICA	#7		

a. TEMA

CONTROL ON/OFF DE UNA ELECTROVÁLVULA POR MEDIO DEL SENSOR ULTRASÓNICO MEDIANTE HISTÉRESIS.

b. OBJETIVO GENERAL

Verificar mediante la práctica el funcionamiento de una electroválvula trabajando como elemento final de control. Además de cómo se realiza un control mediante histéresis, con las diferentes herramientas que brinda el software TIA Portal de Siemens.

c. RECURSOS UTILIZADOS

Las laptops con el software TIA PORTAL DE SIEMENS. Módulos de PLCs S7-1200, Cable DB25, RJ45 Planta industrial

d. MARCO PROCEDIMENTAL

Consideraciones preliminares

Inicialmente debe estar vacío el reservorio TK-102 (1.5lts) y el reservorio TK-101 debe encontrarse lleno (9lts), las válvulas manuales HV 101, HV 105, HV 106 deben estar cerradas y las válvulas manuales HV 102, HV 103, HV104 tienen que estar abierta.

Proceso

Se desea realizar el control ON/OFF de la electroválvula para controlar el nivel del reservorio TK-102 mediante histéresis. Habrá dos modos de operación manual o automático.

Modo automático; se deberá ingresar el valor del setpoint del nivel que se desea tener y el valor de histéresis. Se tiene que programar la salida analógica a un valor de 5.8 para mantener un llenado con un flujo laminar, teniendo activada la salida H3. Una vez ingresado los dos valores se ubica el selector en automático (S5) una vez seleccionado, si se pulsa marcha (S1) en ese momento se enciende la bomba (P 101) mediante la salida H3. Luego dependiendo del valor del setpoint e histéresis que esté ingresado se abrirá o cerrará la electroválvula (SV 101) mediante la salida (Q0.0). Si en cualquier momento se pulsa paro (S2) o paro de emergencia (S3) se para el proceso.

Modo manual; se ubica el selector en manual (S4) se programa el pulsador jog variador (S7) solo cuando este pulsado se encienda la bomba (P 101) mediante la salida variador On/Off (H2). Si se mantiene pulsado el jog válvula (S6) se abre la electroválvula (SV 101).

e. REGISTRO DE RESULTADOS

FIGURA 1: SIN SELECCIONAR AUTOMÁTICO

FUENTE: LOS AUTORES

FIGURA 2: SELECTOR EN AUTOMÁTICO

FUENTE: LOS AUTORES

FIGURA 3: SIN PULSAR MARCHA

Segmento 3: MARCHA Y PARO

FUENTE: LOS AUTORES

FIGURA 4: PULSADO MARCHA

FUENTE: LOS AUTORES

FIGURA 5: COMPARACIONES PARA LA APERTURA DE LA ELECTROVÁLVULA

Segmento 4: COMPARACIONES PARA LA APERTURA DE LA ELECTROVALVULA

 Se realiza las comparaciones para la apertura de la electroválvula cuando sea mayor a la histéresis positiva y se cierra la válvula cuando sea mayor a la histerésis negativa.

FUENTE: LOS AUTORES

FIGURA 6: SUMA Y RESTA DE SETPOINT E HISTÉRESIS

▼ Segmento 5: SETEO DE HISTÉRESIS

FIGURA 7: INGRESOS DE SETPOINT E HISTÉRESIS

FUENTE: LOS AUTORES

FIGURA 8: ACTIVACIÓN DE ELECTROVÁLVULA

FUENTE: LOS AUTORES

FIGURA 9: ACTIVACIÓN DE BOMBA MEDIANTE VARIADOR ANALÓGICO

FIGURA 10: ESCALAMIENTO DE SENSOR ULTRASÓNICO

Segmento 28: ENTRADA ANALÓGICA ALI - IW64-SENSOR ULTRASÓNICO

FUENTE: LOS AUTORES

FIGURA 11: ESCALAMIENTO DE SENSOR ULTRASÓNICO

FUENTE: LOS AUTORES

FIGURA 12: SIN ACTIVAR MODO MANUAL

FUENTE: LOS AUTORES

FIGURA 13: ACTIVADO MODO MANUAL

FIGURA 14: ACTIVADA SALIDA Q0.0 ELECTROVÁLVULA

FUENTE: LOS AUTORES

FIGURA 15: ACTIVADA SALIDA Q0.1 BOMBA ON/OFF

FUENTE: LOS AUTORES

FIGURA 16: ACTIVADA ENTRADA DE SELECTOR MANUAL

FUENTE: LOS AUTORES

FIGURA 17: ACTIVADA ENTRADA DE SELECTOR AUTOMÁTICO

•	Segmento 17:	ENTRADA \$5-10.4-AUTOMÁTICO	
	Señal de entrada d	e selector automático(M2.4)	
	%IO.4 "S5"		%M2.4
	—		()
FL	IENTE: LOS AUT	ORES	

FIGURA 18: ACTIVADA ENTRADA DE JOG VÁLVULA

FUENTE: LOS AUTORES

FIGURA 19: ACTIVADA ENTRADA DE JOG VARIADOR

FUENTE: LOS AUTORES

f. ANEXO

P&ID de la práctica

		PRÁCTICA #8	
		MANUAL DE PROCEDIMIENTOS DE PRÁCTIC	AS
LABORATORIO AUTOMATIZACIÓN INDUSTRIAL		STRIAL	
CARRERA	INGENIERÍA ELECTRÓNICA	A SEDE GUAYAQUIL	
PRÁCTICA	#8		

a. TEMA

CONTROL DE NIVEL DEL RESERVORIO MEDIANTE LA BOMBA EN LAZO CERRADO.

b. OBJETIVO GENERAL

Verificar mediante la práctica el comportamiento de la bomba para realizar un control de nivel mediante histéresis. Utilizando las herramientas que ofrece el software TIA Portal de Siemens.

- RECURSOS UTILIZADOS
 Las laptops con el software TIA PORTAL DE SIEMENS.
 Módulos de PLCs S7-1200, Cable DB25, RJ45
 Planta industrial
- d. MARCO PROCEDIMENTAL

Consideraciones preliminares

Inicialmente debe estar vacío el reservorio TK-102 (1.5lts) y el reservorio TK-101 debe encontrarse lleno (9lts), las válvulas manuales HV 101, HV 105, HV 106 deben estar cerradas y las válvulas manuales HV 102, HV 103, HV104 tienen que estar abierta.

Proceso

Se desea realizar el control de nivel del reservorio TK-102 mediante histéresis realizando el control con la bomba. Habrá dos modos de operación manual o automático.

Modo automático; se deberá ingresar el valor del setpoint del nivel que se desea tener y el valor de histéresis. Una vez ingresado esos dos valores se ubica el selector en automático (S5) una vez seleccionado, si se pulsa marcha (S1) en ese momento abre la válvula (SV 101) mediante la salida Q0.0. Dependiendo del valor del setpoint e histéresis que se halla ingresado se va a encender o apagar la bomba (P 101) mediante la salida H2, para tener un nivel establecido. Si en cualquier momento se pulsa paro (S2) o paro de emergencia (S3) se para el proceso.

Modo manual; se ubica el selector en manual (S4) se programa el pulsador jog variador (S7) solo cuando este pulsado se encienda la bomba (P 101) mediante la salida variador On/Off (H2). Si se mantiene pulsado el jog válvula (S6) se abre la electroválvula (SV 101).

e. REGISTRO DE RESULTADOS

FIGURA 1: SIN SELECCIONAR AUTOMÁTICO

FUENTE: LOS AUTORES

FIGURA 2: SELECTOR EN AUTOMÁTICO

FUENTE: LOS AUTORES

FIGURA 3: SIN PULSAR MARCHA

FUENTE: LOS AUTORES

FIGURA 4: PULSADO MARCHA

FIGURA 5: COMPARACIONES PARA LA ACTIVACIÓN DE LA BOMBA

Segmento 4: COMPARACIONES PARA LA ACTIVACIÓN DE LA BOMBA

 Se realiza las comparaciones para la activación de la bomba cuando sea menor a la histeresis negativa y se apaga la bomba cuando sea mayor a la histeresis positiva.

FUENTE: LOS AUTORES

FIGURA 6: SUMA Y RESTA DE SETPOINT E HISTÉRESIS

Segmento 5: SETEO DE HISTERESIS

Se realiza la formula de histeresis que es valor que se ingresa divido para 2 mas el valor de setpoint

FIGURA 7: INGRESOS DE SETPOINT E HISTÉRESIS

FUENTE: LOS AUTORES

FIGURA 8: APERTURA DE ELECTROVÁLVULA

- ▼ Segmento 6: ACTIVACION DE LA ELECTROVALVULA
 - La primera linea del segmento es para abrir la electrovalvula para el vaciado del TK-102, la linea de abajo son para el modo manual activando el jog valvula

FUENTE: LOS AUTORES

FIGURA 9: ACTIVACIÓN DE BOMBA

- Segmento 7: ACTIVACIÓN DE BOMBA
 - Se activa la bomba en ON/OFF para el modo de operación manual con las líneas del segmento de arriba (I_S4, I_S7), las líneas del segmento de abajo son los set y reset de los comparadores tanto para el mayor que y menor que.

FUENTE: LOS AUTORES

FIGURA 10: ACTIVADO MODO MANUAL

FUENTE: LOS AUTORES

FIGURA 11: ACTIVADO ELECTROVÁLVULA EN MODO MANUAL

FUENTE: LOS AUTORES

FIGURA 12: ACTIVADA BOMBA EN MODO MANUAL

- Segmento 7: ACTIVACIÓN DE BOMBA ¥
 - 🗢 Se activa la bomba en ON/OFF para el modo de operación manual con las líneas del segmento de arriba (I_S4, I_S7), las lineas del segmento de abajo son los set y reset de los comparadores tanto para el mayor que y menor que.

FUENTE: LOS AUTORES

FIGURA 13: ACTIVADA SALIDA Q0.0 ELECTROVÁLVULA

FIGURA 14: ACTIVADA SALIDA Q0.1 BOMBA ON/OFF

FUENTE: LOS AUTORES

FIGURA 15: ESCALAMIENTO DE ENTRADA ANALÓGICA AI1

▼ Segmento 28; ENTRADA ANALOGICA AN + IN84—SENSOR ULTRASONICO

Bioques de escalamientos. NORM_X sirve para normalizar la señal de entrada analógica a los rangos de lectura que que tiene el caval N/64. SCALE_X sirve para
 escalar el valor de salida

FUENTE: LOS AUTORES

FIGURA 16: RESTA PARA 10 PARA OBTENER VALOR EN LT

FUENTE: LOS AUTORES

FIGURA 17: ACTIVADA ENTRADA DE SELECTOR MANUAL

FIGURA 18: ACTIVADA ENTRADA DE SELECTOR AUTOMÁTICO

•	Segmento 17:	ENTRADA \$5-10.4-AUTOMÁTICO	
	Señal de entrada d	e selector automático(M2.4)	
	%IO.4 "S5"		‰⋈2.4 "I_S5"
			()

FUENTE: LOS AUTORES

FIGURA 19: ACTIVADA ENTRADA DE JOG VARIADOR

%10.6	%M2.6
"S7"	"I_S7"

FUENTE: LOS AUTORES

f. ANEXO

P&ID de la práctica

		PRÁCTICA #9	
		MANUAL DE PROCEDIMIENTOS DE PRÁCTIC	AS
LABORATORIO AUTOMATIZACIÓN INDUSTRIAL			
CARRERA	INGENIERÍA ELECTRÓNICA	A SEDE GUAYAQUIL	
PRÁCTICA	#9		

a. TEMA

CONTROL PID PARA LLENADO DE RESERVORIO.

b. OBJETIVO GENERAL

Verificar mediante la práctica el funcionamiento del control proporcional integral derivativo PID, su comportamiento, características, configuración. Utilizando los objetos tecnológicos que ofrece el software TIA Portal para realizar el PID con el controlador S7-1200. Teniendo como variable de control el nivel del reservorio TK 102.

- RECURSOS UTILIZADOS
 Las laptops con el software TIA PORTAL DE SIEMENS.
 Módulos de PLCs S7-1200, Cable DB25, RJ45
 Planta industrial
- d. MARCO PROCEDIMENTAL

Consideraciones preliminares Inicialmente debe estar vacío el reservorio TK-102 (1.5lts) y el reservorio TK-101 debe encontrarse lleno (9lts), las válvulas manuales HV 101, HV 105, HV 106 deben estar cerradas y las válvulas manuales HV 102, HV 103, HV104 tienen que estar abierta.

Proceso

Se desea realizar el control de nivel del reservorio TK-102 mediante el PID teniendo como variable de control la bomba, variable de proceso el nivel del reservorio TK 102, mediante el instrumento de medida el sensor ultrasónico. Habrá dos modos de operación manual o automático.

Modo automático; se debe ingresar una magnitud regulada o setpoint de referencia, para mantener el nivel en el reservorio TK 102 mediante el control de la bomba como elemento de regulación que modifica la magnitud regulada en función de la magnitud manipulada. Teniendo como instrumento de medición de la magnitud manipulada el sensor ultrasónico. Ajustar el PID en optimización automática con el S1 marcha y teniendo el selector en automático, además se debe abrir la electroválvula SV 101 para simular consumo del TK 101. Se debe utilizar la bomba de forma analógica H3, si se pulsa paro o paro de emergencia se para la optimización del PID. Modo manual; se ubica el selector en manual (S4) se programa el pulsador iog variador (S7) solo cuando este pulsado se anciendo la homba (D 101)

jog variador (S7) solo cuando este pulsado se enciende la bomba (P 101) mediante la salida variador ON/OFF (H2). Si se mantiene pulsado el jog válvula (S6) se abre la electroválvula (SV 101).

e. REGISTRO DE RESULTADOS

FIGURA 1: SIN SELECCIONAR AUTOMÁTICO

FIGURA 2: SELECTOR EN AUTOMÁTICO

FUENTE: LOS AUTORES

FIGURA 3: SIN PULSAR MARCHA

▼ Segmento 3: MARCHA Y PARO

FUENTE: LOS AUTORES

FIGURA 4: PULSADO MARCHA

FIGURA 5: ACTIVACIÓN DE ELECTROVÁLVULA MODO AUTOMÁTICO

La primera línea c la línea de abajo s	onformado por el marcha son para el m on para el modo manual activando el jo	odo de operación automático. og válvula
%M40.1 "E_Start"		%M4.0 "О_Н1"
%M2.3 "I_54"	%M2.5 "I_S6" { }	

FUENTE: LOS AUTORES

FIGURA 6: ACTIVACIÓN DE BOMBA DE FORMA ANALÓGICA

FUENTE: LOS AUTORES

FIGURA 8: MARCHA DEL SISTEMA SETEO DEL PID EN AUTOMÁTICO

FUENTE: LOS AUTORES

FIGURA 9: MODO DE OPERACIÓN DE TRABAJO DEL PID

FUENTE: LOS AUTORES

FIGURA 10: MODO DE OPTIMIZACIÓN DEL PID EN AUTOMÁTICO

FIGURA 11: ACTIVADA SALIDA Q0.0 ELECTROVÁLVULA

FUENTE: LOS AUTORES

FIGURA 12: ACTIVADA SALIDA Q0.1 BOMBA ON/OFF

FUENTE: LOS AUTORES

FIGURA 13: ESCALAMIENTO DE ENTRADA ANALÓGICA AI1

Segmento 28: ENTRADA 4NALOGICA 4N - 8664-5ENSOR ULTRASONICO

Bloques de escalamientos. NORM_II save para normalizar la señal de entrada analogica a los rangos de lectura que que tiene el canal IN64. SCALE_X save para escalar el valor de salida

FUENTE: LOS AUTORES

FIGURA 14: RESTA PARA 10 PARA OBTENER VALOR EN LT

f. ANEXO P&ID de la práctica

		PRÁCTICA #10			
		MANUAL DE PROCEDIMIENTOS DE PRÁCTICAS			
LABORATORIO	AUTOMATIZACIÓN INDUSTRIAL				
CARRERA	CARRERA INGENIERÍA ELECTRÓNICA SEDE GUAYAQUIL				
PRÁCTICA	#10				

a. TEMA

SCADA DE CONTROL PID PARA LLENADO DE TANQUES MEDIANTE LabVIEW

b. OBJETIVO GENERAL

Verificar mediante la práctica el funcionamiento del control proporcional integral derivativo PID, su comportamiento, características, configuración. Utilizando los objetos tecnológicos que ofrece el software TIA Portal para realizar el PID con el controlador S7-1200. Realizando la visualización en LabVIEW para confirmar el comportamiento del controlador.

c. RECURSOS UTILIZADOS

Las laptops con el software TIA PORTAL DE SIEMENS. Módulos de PLCs S7-1200, Cable DB25, RJ45 Planta industrial

d. MARCO PROCEDIMENTAL

Consideraciones preliminares

Inicialmente debe estar vacío el reservorio TK-102 (1.5lts) y el reservorio TK-101 debe encontrarse lleno (9lts), las válvulas manuales HV 101, HV 105, HV 106 deben estar cerradas y las válvulas manuales HV 102, HV 103, HV104 tienen que estar abierta.

Proceso

Se desea realizar el control de nivel del reservorio TK-102 mediante el PID teniendo como variable de control la bomba, variable de proceso el nivel del reservorio TK 102, mediante el instrumento de medida el sensor ultrasónico. Habrá dos modos de operación manual o automático, y un sistema de visualización mediante LabVIEW para visualizar el comportamiento del PID.

Modo automático; se debe ingresar una magnitud regulada o setpoint de referencia, para mantener el nivel en el reservorio TK 102 mediante el control de la bomba como elemento de regulación que modifica la magnitud regulada en función de la magnitud manipulada. Teniendo como instrumento de medición de la magnitud manipulada el sensor ultrasónico. Ajustar el PID en optimización automática con el S1 marcha y teniendo el selector en automático, además se debe abrir la electroválvula SV 101 para

simular consumo del TK 101. Se debe utilizar la bomba de forma analógica H3, si se pulsa paro o paro de emergencia se para la optimización del PID. Modo manual; control similar al realizado en la práctica #9

e. REGISTRO DE RESULTADOS

Vex Open	(990) (99+0	W ⁻ 2013		Class Q
Create Project Open Project			1	
acare Bragarita			0	Doon Existing
INCOME.			Stev A	*

FIGURA 1: CREACIÓN NUEVO INSTRUMENTO VIRTUAL (VI)

FUENTE: LOS AUTORES

FIGURA 2: COMPARTIMIENTO VENTANAS DEL VI

Untitled 1 Front Panel				(Cole
File Edit View Project Operate Tools	Help			E
💠 🕀 🥌 🖬 🛛 13pt Application Fa	Show Block Diegram	CM+E	(+) Search	<u>م الم</u>
	Tile Left and Right	Carl+1		
	Tile Up and Down Full Size	Cbf+/		
	1 Untitled 1 Front Panel 2 Untitled 1 Block Diagram			
	All Windows-	Chi+Shift+W		

FIGURA 3: IMPORTACIÓN DE IMAGEN AL VI

United 2 Fault Party	O Select a Picture File to Place on the Clipboard			
a View Project Denois Tank Window Help Lindo Alexbus Tan CIS-2	OO . Ecopo + ANGELO_T #1 + TESE LABVEN	A a a day Annue Milliologicality of		
100 DIVE	Organizar • Nueva sagetta	E• G 0		
Construction of the second sec	Anocobos Crescargas Crescargas Sonse securitas Sonse securitas Madema Final Sonse securitas Madema Final Madema M	PSERVER Seleccione of arthum dri que deune obtern le ortic provid. NEL - copia NEL - ML		
Daabis Faad bist bigereet Od+# Alge Term Od+Pathy	🚓 Gruppi en el hoger 🔒 SCADA	Text Integer (FE) Texteriol: 76.1.88 Fecha de intelificación: 25/31/2014 25:18		
Dorman been Oni+0	(S Equipo + A	4		
Vi Anvanovi Alatary Color V Entro Toria Mena	Normbres	• [AB Film (*.*) •		
Find and Replace. 2014		OK Canodar		

FUENTE: LOS AUTORES

FIGURA 4: COLOCACIÓN DE INDICADORES LUMINOSOS

FIGURA 5: COLOCACIÓN DE INDICADORES NUMÉRICOS

FUENTE: LOS AUTORES

FIGURA 6: COLOCACIÓN DE INDICADOR DE NIVEL

FUENTE: LOS AUTORES

FIGURA 7: COLOCACIÓN DEL CUADRO DE GRÁFICAS

FUENTE: LOS AUTORES

FIGURA 8: MODIFICACIONES TABLA DE GRÁFICAS

FUENTE: LOS AUTORES

FIGURA 9: DISEÑO PANEL FRONTAL

FUENTE: LOS AUTORES

FIGURA 10: ABERTURA NI OPC SERVER

FUENTE: LOS AUTORES

FIGURA 11: NI OPC SERVER, NUEVO CANAL Y DISPOSITIVO

en 16 OPC Servers - Ruttime								
File Edit View Tatala Runtime Halt				_				
131890000	A	43-1	8					
6 40 Dan Tex Everyie 6 40 Data Tex Everyie 6 40 Similatin Everyie 7 New Channel	04 600 600 600	Dhur Yan Seulator tia Seulator rul Seulator	Comut Other Other Other	1 99amg N/A N/A N/A	Vituat NUA NUA NUA	1		
1 1								
Date Tee Star		fort				1		
0 25/01/2015 7.50/45 NLO 0 25/01/2015 1.30/53 NLO 0 25/01/2015 7.30/53 NLO 0 25/01/2015 7.30/53 NLO 0 25/01/2015 7.30/53 NLO 0 25/01/2015 7.30/53 SmL	C Serven. C Serven. C Serven. BOY	Smulate device Runtime service Starting Simulat Simulator Device	e divertion e stated er device d e Diver VS	ind successf have 11.252.0	dų.			
30/01/2015 730/53 NO 20/01/2015 730/53 NO 20/01/2015 730/53 NO 20/01/2015 730/53 NO 0/00/01/2015 730/53 NA	C Servers C Servers C Servers C Servers	Starting Simular Starting Simular Starting Simular Conferentiation of	or device d or device d tr device d	tow here fow class (all has		Defer		

FUENTE: LOS AUTORES

FIGURA 12: COLOCACIÓN DE SEÑALES EN EL NUEVO DIPOSITIVO

File Edit View Tools Runtime Help		XIN				
표 특구 Charmel1 금 특구 Charmel2 - 10 57-1200 H 특구 Data Type Exemples 관 특구 Smulaton Exemples	Tap None /	Address 11.2 11.3 11.4 11.5 10.1 10.2 10.3 10.4 10.5 10.5 10.5 10.7 11.0 MD50	Data Type Boolean Boolean Boolean Boolean Boolean Boolean Boolean Boolean Boolean Boolean Boolean Boolean Boolean Boolean Boolean	50an Rate 100 100 100 100 100 100 100 100 100 10	Scoling None None None None None None None None	Description
🖣 🥔 🔍	1	New T	eg be			
Date Time Source	Event	1			1	
20/01/2015 7:30:51 NICPC 5 20/01/2015 7:30:51 Sinulator 20/01/2015 7:30:51 Sinulator 20/01/2015 7:30:51 NICPC 5 20/01/2015 7:30:53 NICPC 5 20/01/2015 14:44:36 NICPC 5 20/01/2015 14:44:27 NICPC 5 20/01/2015 14:48:27 NICPC 5	erven Stating Smular erven Stating soven Stating erven Stating erven Carlig erven Openin	g Simulator den tor Devica Driv g Simulator dev g Simulator dev g Simulator dev unitor segator unitor segator unitor segator	nce driver ver VS.11.252.0 nce driver acce driver acce driver started by Lab Ac assigned to Lab / ID 16-01-2015 (1)	torostieno as De utorostieno as D OPC 14512015/	inc. M.	

FUENTE: LOS AUTORES

			100000000000000000000000000000000000000
		0	4 9
			21 8
		M V	×
			-
(m)	721		
[mooeau	-		
Read/Write	*		
100 +	niliseconds		
nly used for client a rencing this tag (e g	pplications that p, non-OPC die	do nat rita)	
	Ecolean Read-Vine 100 niy used for client a rencing this tag (s)	Ecoleum Fead-Wite Fead-Wite Figure States of the seg leg	

FIGURA 13: CONFIGURACIÓN DE SEÑALES EN EL OPC

FUENTE: LOS AUTORES

National Instruments NIOPCServers VS	Iten ID	Data Tute	Value	Tredato	Quette	-
System	Channel 2 57,1200	Box.	0	15-03-57 367	Cont	_
Darvell Salatica	Cover 2 57-1200	Bate	Ť.	16:05 47 377	Gent	
Channel 1. System	COurse(2:57-1200	Final	5.46606	15-12-45 701	Gent	
Channell Device 1	Channel? \$7-1200	Register.	1	18-30/24 803	Gent	
Channel1 Device1 _System	Channel 2 57, 1200	Boolean	0	15 10 56 936	Ganad	
Channel2_StateSce	Change 2 57-1285	Redeat	8	15-10-55 305	Gunt	
Chanvel2_System	OChamal2 57,1200	Reciser	1	15 30 24 802	Grand	
Charmel2.57-1200	Commercial 2 675 1280	Enders	n	16-10-66 \$16	General	
Charwel2.17-1200_Statistics	Change 2 57, 1205	Review		18.10.56.936	Contra .	
Charmed 5.1-1250 Jystem	Contral 57,190	Boolean		16.15.46.936	Good	
Lata type Charges _ Stands	Channel 2 57, 1285	Rodern		18, 10, 56, 1016	Sand	
Date Type Coampes, System	Channel 2 57, 1300	Ender		15 10 40 400	Good	
Data Type Coangles to de Device	Commerciante.	Enter		15.10.52.030	Good	
Data Type Complex To be Device	Commit 57 1200	- Second	5.01175	15.10.06.008	Good	
The Function 16 Ref Course	Consult 57,1998	Product 1	391172	10.00.00.00	Good	
a Data Tute Function 8 Bt Device	Charmer 27/12/0	Builden		10.10.20.046	Georg	
Git Onto Type Expresses & Bt Device H.	Commercia/1200	- coorean	9	10.00.04.000	0000	
Date Type Examples 8 Bt Device #	Charries 57 (200)	Doorean)		13.30.33.333	Gend	
Date Type Examples 3 Bt Device 5	CWY8237-1270	(coest)	20	13 10 56 306	(3008	
Simulation Examples Statistics	Crammer 57 1220	20/2621	2	15.10.20.336	Geod	
- Sesuiation Examples System	Commerc 57-1200	Societari	0	15 16 20 316	Coord	
Smulation Examples Functions	Charriel2.57-1200	500ear		15/23/35/141	Good	
Smulaton Examples Functions (Spi	Channel 3.5-1200	Dodean	0	15 10 56 206	Canod	
	Chanes257-1208	Boolean		15 10 56 906	Geod	
	COwwel2 57 1200	Doolean.	1	15/10/56 906	Gandell	
	COWHR2.57-1200	Ecolean	0	15.30.56.936	Geod	
	Charrel2.57-1200	Boolean	u .	15 10 56 336	Geod	
	Convel2.57-1208	Boolean	1	15.30.48.124	Good	
	F		R .			

FUENTE: LOS AUTORES

FIGURA 15: DIRECCIONAMIENTO DE SEÑALES LABVIEW

22Lui Risol Panel	THERE IS A MULTER WALL FUR AND
Ell Ven Proof Openin Tool Index Hall (0.18) (0.18) The Supervise first + (0.1 (0.1 (0.1 (0.1	A Backer Properties St 7 (MARCHA)
DISEÑO E IMPLEMENTACIÓN DE UNA PLANTA DIDÁCTICA INDU EN UN RESERVORIO, PARA EL LABORATORIO	Date Binding Selection
PLANTA INDUSTRIAL MODO AUTOMATICO MILA Bary Mark Bary Ma	DetxSocket Access Fype Path pp://localhush/NEOPCServers.VS/Chassa02.57- 1200.53 Netional bistuments recommends that you use data binding through the Shared Visuable Engine. Refer to the Labi/EVV Disig for more information aloud data binding controls.
	OK Canad Hele

FUENTE: LOS AUTORES

FIGURA 16: DIRECCIONAMIENTO DE SEÑALES LABVIEW

FUENTE: LOS AUTORES

FIGURA 17: COMUNICACIÓN LABVIEW – NI OPC SERVER

FUENTE: LOS AUTORES

FIGURA 18: PID VISUALIZACION EN LABVIEW

FUENTE: LOS AUTORES.

f. ANEXO P&ID de la práctica

