UNIVERSIDAD POLITÉCNICA SALESIANA **SEDE CUENCA**

FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA ELÉCTRICA

"ANÁLISIS Y PROPUESTAS PARA LA MITIGACIÓN DE LA CONTAMINACIÓN ARMÓNICA EN LAS SUBESTACIONES DE LA EMPRESA ELÉCTRICA **REGIONAL CENTROSUR C.A."**

	Tesis previa a	Tesis previa a la obtención del Título de		
		Ingeniero Eléctrico		
AUTOR:				
	Marco Antonio Toledo Orozco			
	Christian Gabriel Jiménez Ochoa			
DIRECTO	R:			
	Ing. Walter Orozco, Msc			
TUTOR:				
	Ing. Miguel Arévalo			

Cuenca-Ecuador 2010

Los autores del presente estudio se responsabilizan por los conceptos desarrollados, analizados y las conclusiones expuestas en el mismo, por lo que damos fiel constancia en la presente tesis.

Cuenca, 15 - 12 - 2010.

Marco Antonio Toledo Orozco Christian Gabriel Jiménez Ochoa

Certifico que bajo mi dirección la tesis fue realizada por los Srs.

Marco Antonio Toledo Orozco Christian Gabriel Jiménez Ochoa

Ing. Walter Orozco, Msc
DIRECTOR

.....

DEDICATORIA

"Este trabajo va dedicado a mis padres, a mi esposa, y a mis hijos Doménica y Nicolás. Por el apoyo incondicional prestado para terminar con éxito este proyecto de grado."

Marco.

DEDICATORIA

A Dios.

A mis padres, a mi esposa, a mi hijo Adrian y en general a toda mi familia, ya que por su cariño y constante apoyo he podido culminar con éxito una de mis metas que me he propuesto.

Christian.

AGRADECIMIENTO

"Nuestro reconocimiento y gratitud:

A la Universidad Politécnica Salesiana y a sus docentes por habernos recibido en sus aulas y a más de haber formado profesionales, han formado hombres para la sociedad

A nuestro director del Proyecto de tesis, al Ing. Walter Orozco por su acertada dirección y orientación, que supo proporcionarnos para la culminación exitosa de la investigación"

A la Empresa Eléctrica en especial al Ing. Miguel Arévalo, Ing. Galo Cabrera, Ing. Andrés Cornejo. Y a todas las personas que han colaborado mediante la prestación de equipos e información de gran utilidad para el desarrollo del presente estudio.

Marco Christian

ÍNDICE GENERAL

AGRADECIMIENTOS ÍNDICE GENERAL	6 7
	,
CAPÍTULO I INTRODUCCIÓN AL ANÁLISIS DE LOS ARMÓNICOS EN LAS	
SUBESTACIONES.	10
1.1 GENERALIDADES	10
1.1.1 CONCEPTOS	10
1.2 CONCEPTOS ARMÓNICOS	15
1.3 CONCEPTOS SUBESTACIONES	21
1.4 CONCEPTOS DE CARGAS CONTAMINANTES	23
	23
CAPITULO II	
NORMAS Y REGULACIONES PARA MITIGAR ARMÓNICOS	25
2.1 REVISIÓN DE LAS REGULACIONES NACIONALES	25
2.1.1 LEY DE RÉGIMEN DEL SECTOR ELÉCTRICO	26
2.1.1 CALIDAD DEL SERVICIO ELÉCTRICO DE DISTRIBUCIÓN	27
2.1.1.2 ASPECTOS DE CALIDAD	27
2.1.1.3 MEDICIONES	28
2.1.1.4 LÍMITES	29
2.1.2 TRANSACCIONES DE POTENCIA REACTIVA EN EL MEM	30
2.1.2.1 GENERADORES	30
2.1.2.2 TRANSMISORES	31
2.1.2.3 DISTRIBUIDORES Y GRANDES CONSUMIDORES	31
2.1.3 CALIDAD DE TRANSPORTE DE ELECTRICIDAD Y DEL	
SERVIO DE TRANSMISIÓN Y CONEXIÓN EN EL SISTEMA	
NACIONAL INTERCONECTADO	31
2.1.3.1 ASPECTOS DE CALIDAD CONSIDERADOS	31
2.1.3.2 CALIDAD DE LA POTENCIA	32
2.1.3.3 RESPONSABILIDADES 2.1.3.4 AJUSTES REGULATORIOS	33 39
2.1.3.4 AJOSTES REGULATORIOS 2.1.4 NORMAS INEN	39
2.1.4 NORMAS INEN 2.2 ANÁLISIS DE LAS NORMAS INTERNACIONALES	40
2.2 ANALISIS DE LAS NORMAS INTERNACIONALES 2.2.1 NORMATIVA REGULADORA DE LA EMISIÓN DE	40
	41
ARMÓNICOS DE CORRIENTE	41
2.2.2 INTERNATIONAL ELECTROTECHNICAL COMMISSION	41
(IEC) 2.2.2.1 ESTANDAR IEC-61000-3-2	41
2.2.2.1 ESTANDAR IEC-01000-3-2 2.2.2.2 EN EL ESTÁNDAR IEC 61000-1-1 OFRECE LA SIGUIENTE	41
DEFINICIÓN DE EMC	42
2.2.2.3 EN LA NORMA IEC 61036 TENEMOS	43
2.2.2.4 EXACTITUD DE PRUEBA EN LA PRESENCIA DE	15
ARMÓNICOS	43
2.2.2.5 PRUEBAS DE LA INFLUENCIA DE ARMÓNICOS IMPARES Y	
SUB-ARMÓNICOS	44
2.2.2.6 ARMÓNICO TOTAL PRESENTE	47
2.2.2.7 ARMÓNICO PARCIAL IMPAR PRESENTE	47
2.2.2.8 MEDIDA DE LA CORRIENTE ARMÓNICA	49
2.2.2.9 ARMÓNICO LÍMITES CORRIENTES PRESENTES	50
2.2.3 DENTRO DE LA NORMA 61000-4.7	51
2.2.4 NORMA INTERNACIONAL - IEEE 519	53
2.2.5 NORMA UNE - ENV 6100, 2-2 (1994)	53
2.2.6 UNE - EN 6100, 2-4 (1997)	54
2.2.7 NORMA EN 50 160	55
2.2.8 NORMA LINE - EN 6100-3-2 (1997)	56

	COMPARACIÓN DE LAS NORMAS	58
	2.3.1 COMPARACIÓN CON NORMAS ANSI	59
	2.3.2 COMPARACIÓN CON NORMAS IEC	60
	2.3.3 PARA LOS DOS CASOS LOS PROTOCOLOS SON	- 1
	NORMALIZADOS	61
_	BENEFICIOS AL CUMPLIR LAS NORMAS	62
CAPÍTULO II	4	
EQUIPOS DE		63
	MEDIDOR DE ARMÓNICOS DE CORRIENTE Y VOLTAJE	63
	3.1.1 EQUIPO DE MEDICIÓN MEMOBOX 300	64
	3.1.2 EQUIPO DE MEDICIÓN TOPAS 1000	65
	3.1.3 EQUIPO DE MEDICIÓN NEXUS 1252	67
	CARACTERÍSTICAS Y PRINCIPIOS DE FUNCIONAMIENTO	68
	3.2.1 CARACTERÍSTICAS DEL ANALIZADOR MEMOBOX 300	68
	3.2.2 CARACTERÍSTICAS DEL ANALIZADOR TOPAS 1000	69
	3.2.3 CARACTERÍSTICAS DEL NEXUS 1252	70
	UTILIZACIÓN Y VALORES A SER MEDIDOS	73
3.4 I	PROCEDIMIENTOS DE MEDICIÓN	73
3	3.4.1 MEDICIONES	78
CAPÍTULO I		
	E LA INFORMACIÓN TÉCNICA ESTADÍSTICA Y	
	LA CENTROSUR	84
	DATOS DE LAS SUBESTACIONES	84
	1.1.1 ÁREA DE CONCESIÓN	84
	1.1.2 TOPOLOGIA Y CARACTERISTICAS	85
	1.1.3 PROTECCIONES EN LAS SUBESTACIONES	88
	1.1.4 CARGA INSTALADA POR ALIMENTADOR	89
	1.1.5 DEMANDAS MÁXIMAS	93
	1.1.6 FACTOR DE POTENCIA	93
	I.1.7 PERFILES DE CARGA I.1.8 ÍNDICES DE FALLAS	94 95
	INFORMACIÓN Y PROCESAMIENTO	93 97
	1.2.1 ARMÓNICOS DE VOLTAJE	97 98
	1.2.1 ARMÓNICOS DE VOLTAJE 1.2.2 ARMÓNICOS DE CORRIENTE	
	ANÁLISIS DE LAS PERTURBACIONES	126
		138
	I.3.1 ANÁLISIS DE LAS PERTURBACIONES PRODUCIDAS EN LA SEÑAL DE VOLTAJE	138
	1.3.2 ANÁLISIS DE LAS PERTURBACIONES PRODUCIDAS EN LAS	
	SEÑALES DE CORRIENTE	138
4.4 /	ANÁLISIS DE LA CARGA CONTAMINANTE	140
	CARACTERIZACIÓN DE LA CARGA	153
	COMPORTAMIENTO DE LA THD EN LA SUBESTACIÓN	157
CAPÍTULO V	,	
MITIGACIÓN	N DEL PROBLEMA Y SIMULACIÓN	159
5.1 I	PROCEDIMIENTOS Y METODOLOGÍAS ENFOCADAS A LA	
ELII	MINACIÓN DE ARMÓNICOS	159
5	5.1.1 FILTROS ARMÓNICOS	159
5	5.1.2 TIPOS DE FILTROS PASIVOS	160
	5.1.3 ELIMINACIÓN DE LAS ARMÓNICAS	160
5.2	ANÁLISIS MATEMÁTICO DE LA ONDA DE CORRIENTE Y	
VOI	LTAJE	178
5	5.2.1 SERIES DE FOURIER	178
	5.2.1.1 EVALUACIÓN DE LOS COEFICIENTES	180
	5.2.1.2 SIMPLIFICACIONES MEDIANTE LA SIMETRÍA DE LA	101
	SEÑAL 5.2.1.3 ESPECTRO DE SEÑALES PERIÓDICAS	181 183
	J. Z. I. J. EQI EQI IXO DE DEL MIEED I EMIODICAN	10.

5.2.1.4 SIMETRÍA DE LA SEÑAL A PARTIR DE SUS ESPECTROS DE LA SERIE DE FOURIER	184
5.2.2 ANÁLISIS DE SISTEMAS MEDIANTE LA TRANSFORMADA	
DE FOURIER	185
5.2.3 ESPECTRO DE FRECUENCIA DE LA SEÑAL DE VOLTAJE Y	
CORRIENTE	186
5.3 DISEÑO MATEMÁTICO DEL FILTRO	188
5.3.1 FUNCIONES DE TRANSFERENCIA	189
5.3.2 DISEÑO DEL FILTRO DE SEGUNDO ORDEN	190
5.3.3 ANÁLISIS DEL FILTRO EN PROGRAMA COMPUTACIONAL	191
(MATLAB) 5.3.4 CÓDIGO EN MATLAB DEL PROGRAMA UTILIZADO	191
5.3.4 CODIGO EN MATLAB DEL FROGRAMA UTILIZADO 5.4 SIMULACIÓN DEL MODELO	192
5.5 ANÁLISIS DE RESULTADOS	201
5.6 CONCLUSIONES	201
	203
CAPÍTULO VI	
ANÁLISIS ECONÓMICO DE LA MITIGACIÓN	204
6.1 ORGANIZACIÓN Y ESTRUCTURA ECONÓMICA	204
6.1.1 ANTECEDENTES DE LAS PÉRDIDAS DE LA CENTROSUR	205
6.1.2 ENERGÍA TOTAL DISPONIBLE DEL SISTEMA Y PÉRDIDAS	
TOTALES	206
6.1.3 PÉRDIDAS EN LA ETAPA DE SUBTRANSMISIÓN Y	
TRANSFORMADORES DE POTENCIA	207
6.1.4 PÉRDIDA DE ENERGÍA EN LA DISTRIBUCIÓN	208
6.1.5 PÉRDIDAS NO TÉCNICAS Y TÉCNICAS DE ENERGÍA 6.2 COSTOS POR PÉRDIDAS DE ENERGÍA CAUSADOS POR LOS	209
ARMÓNICOS	010
ARMONICOS 6.3 ANÁLISIS DE RENTABILIDAD	210
	214
CAPÍTULO VII	
CONCLUSIONES Y RECOMENDACIONES	217
7.1 CONCLUSIONES	217
7.2 RECOMENDACIONES	220
BIBLIOGRAFÍA	223
ANEXO # 1. FOTOGRAFÍAS DE LOS EQUIPOS MÁS IMPORTANTES	
CONECTADOS EN LAS S/E DE LA CENTROSUR.	226
ANEXO # 2. PERFILES DE GARGAS DE LAS SUBESTACIONES	231

DESARROLLO:

CAPÍTULO I.

INTRODUCCIÓN AL ANÁLISIS DE LOS ARMÓNICOS EN LAS SUBESTACIONES.

1.1 Generalidades.

1.1.1 Conceptos.

Potencia eléctrica -. Se define al producto de la diferencia de potencial o tensión aplicada (V) por la intensidad de corriente (I). Siempre que la tensión provoca movimiento de electrones, se realiza un trabajo al desplazar a los electrones de un punto a otro. La rapidez con que este trabajo se realiza se denomina POTENCIA ELÉCTRICA. Su unidad es el watio [W], que es la cantidad de coulomb de electrones que pasan por un punto en un segundo.

Potencia activa -. Es el promedio de las potencias instantáneas de un ciclo de alterna, la cual produce un trabajo y se transforma en energía considerada en un determinado tiempo, en que esta potencia fue entregada a la carga.

Energía -. La energía eléctrica, es el producto de la potencia absorbida por una carga, en el tiempo. Puesto que la potencia es la variación de la energía transferida en una unidad de tiempo. La unidad de energía es el Joule (J), que equivale a un watio por un segundo.

Calidad de tensión. Está relacionada con las desviaciones de la tensión respecto a la ideal. La tensión ideal en un sistema trifásico consiste en tres sinusoides equilibradas de secuencia positiva con magnitud y frecuencia constante. La calidad de tensión puede ser interpretada como la calidad del producto ofrecido por la compañía suministradora a los consumidores.

Calidad de corriente. Es complementaria a la definición anterior, y está relacionada con las desviaciones de la corriente respecto a la ideal. Nuevamente, la corriente ideal de un sistema trifásico sería aquella constituida por tres sinusoides equilibradas de secuencia positiva con magnitud y frecuencia constante, existiendo el requisito adicional de que dichas sinusoides deberían estar en fase con las de las tensiones de red Por tanto, la calidad de corriente tiene que ver con la forma en que consumidor adquiere el producto suministrado por la compañía.

Calidad de potencia. Es la combinación de la calidad de tensión y la calidad de corriente. Por tanto la calidad de potencia está relacionada con las desviaciones de la tensión y/o corriente respecto a las de la situación ideal. Hay que resaltar que calidad de potencia no tiene nada que ver con la desviación de la potencia instantánea suministrada o consumida respecto a una hipotética potencia ideal.

Calidad de suministro. Está relacionada tanto con aspectos técnicos, ligados principalmente a la fiabilidad del suministro (duración y número de cortes, interrupciones y paradas), como con aspectos no técnicos, relacionados con la calidad del servicio al cliente. La calidad de suministro delimita perfectamente las responsabilidades de la compañía suministradora.

Calidad de consumo. Es complementaria a la definición anterior, y también presenta aspectos técnicos, ligados principalmente con la variación e interrupción del consumo, y no técnicos, relacionados con la relación contractual suministradorcliente. La calidad de consumo cualifica a los clientes a la hora de analizar la rentabilidad de las inversiones y de la actividad económica desempeñada por la compañía suministradora

Calidad de la energía eléctrica-. Se puede definir como la ausencia de interrupciones, sobretensiones, deformaciones producidas por armónicas en la red y variaciones de voltaje suministrado al usuario. Además le concierne la estabilidad de voltaje, la frecuencia y la continuidad del servicio eléctrico.

Actualmente la calidad de la energía es el resultado de una atención continua. En años recientes, esta atención ha sido de mayor importancia debido al incremento del número de cargas sensibles en los sistemas eléctricos, las cuales, por sí solas resultan

ser una causa de degradación en la calidad de la energía eléctrica, como cargas inductivas y capacitivas.

Consumo: magnitud de un suministro eléctrico, expresado en kWh.

Potencia instalada: suma de las potencias nominales de los equipos eléctricos (kW).

Potencia conectada: parte de la potencia instalada, que puede ser alimentada por el suministrador (kW).

Demanda: potencia requerida por el consumidor en un instante dado (kW).

Demanda media: valor medio de la demanda integrada en un periodo regular de tiempo (kW).

Factor de carga: relación entre el consumo durante un periodo de tiempo determinado y el consumo que habría resultado de la utilización permanente de la potencia máxima.

Factor de utilización: relación entre la potencia máxima y la potencia instalada.

Factor de demanda: relación entre la potencia máxima y la potencia conectada.

Momento de carga: es el producto de la potencia conectada del usuario en MW y la distancia entre el punto de empalme con la concesionaria y la subestación de distribución, en Km.

Fluctuaciones de Voltaje Son perturbaciones en las cuales el valor eficaz del voltaje de suministro cambia con respecto al valor nominal.

Periodo de medición: A efectos del control de la Calidad del Producto, se entenderá al lapso en el que se efectuarán las mediciones de Nivel de Voltaje, Perturbaciones y Factor de Potencia, mismo que será de siete (7) días continuos.

Perturbación rápida de voltaje (flicker): Es aquel fenómeno en el cual el voltaje cambia en una amplitud moderada, generalmente menos del 10% del voltaje nominal, pero que pueden repetirse varias veces por segundo. Este fenómeno conocido como efecto "Flicker" (parpadeo) causa una fluctuación en la luminosidad de las lámparas a una frecuencia detectable por el ojo humano.

Contador patrón -. Es un equipo de medición y es el que está proyectado especialmente para servicio de ajuste o contraste de medidores de energía eléctrica.

Carga eléctrica.- Se considera como carga todos los equipos que se encuentran conectados al sistema eléctrico y realicen un trabajo en un tiempo determinado.

Cargas lineales.

Esto ocurre cuando en la carga posee elementos como resistencias, inductancias y condensadores de valores fijos. Con estas características en el sistema se tiene un voltaje sinusoidal, una corriente también sinusoidal, y por lo general existe un desfase entre ellos.

La iluminación incandescente y las cargas de calefacción son lineales en naturaleza. Esto es, la impedancia de la carga es esencialmente constante independientemente del voltaje aplicado. Como se ve en la figura 1.1, en los circuitos AC la corriente se incrementa proporcionalmente al incremento del voltaje y disminuye proporcionalmente a la disminución del voltaje.

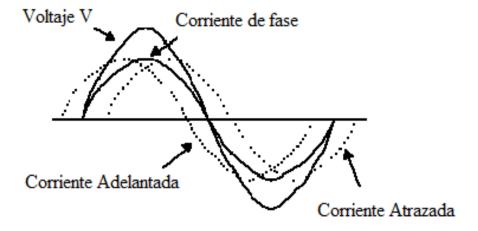


Figura 1.1.- Ondas de voltaje y corriente de una carga lineal

Corrientes lineales

IR es una corriente pura de circuito resistivo; IL es una corriente de circuito parcialmente inductiva (atrasada); e IC es una corriente de circuito parcialmente capacitiva (adelantada).

Cargas no lineales

Las cargas no lineales demandan una corriente no senoidal, cuyo paso por la impedancia del sistema provoca una caída de voltaje no senoidal, lo cual se traduce en una distorsión de voltaje en terminales de la carga. Entre las cargas no lineales más comunes tenemos los convertidores estáticos, dispositivos magnéticos saturados y hornos de arco.

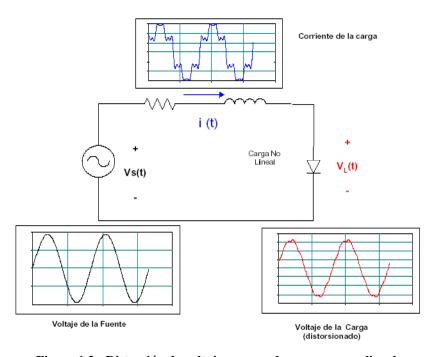


Figura 1.2.- Distorsión de voltaje provocada por carga no lineal

El uso de las cargas no lineales se ha incrementado considerablemente en los últimos años. Los convertidores estáticos son las cargas no lineales más utilizadas en la industria donde se las usa para una gran variedad de aplicaciones, tales como fuentes de poder para procesos electroquímicos, variadores de velocidad y fuentes interrumpibles de poder (UPS).

Perturbaciones en los sistemas eléctricos de Potencia

Transitorios.- En ingeniería eléctrica el término transitorio caracteriza a aquellos eventos indeseables en el sistema que son de naturaleza momentánea.

Variaciones de corta duración.- Las variaciones de tensión de corta duración generalmente se originan por las fallas del un sistema eléctrico, energización de grandes bloques de carga. Dependiendo de la localización de la falla y de las condiciones de operación del sistema, la falla puede ocasionar elevación de tensión (Swell), depresión de tensión (Sag) o una interrupción.

Interrupción.- Una interrupción se caracteriza por ser un decremento de la tensión de alimentación a un valor menor que 0,1 [p.u] por un período de tiempo de 0,5 ciclos a un minuto. Una interrupción puede ser resultado de fallas en el sistema eléctrico, fallas de los equipos o el mal funcionamiento de los sistemas de control. La duración de la interrupción debido a fallas en el sistema está determinada por los eventos que generan la falla. De modo general, las interrupciones casi siempre causan daño o mal funcionamiento de los equipos electrónicos.

Variaciones de larga duración.- Engloban variaciones del valor eficaz de la tensión durante un tiempo superior a 1 minuto, por lo tanto son consideradas como disturbios de régimen permanente.

1.2 Conceptos Armónicos.

Definición de armónicas

Este concepto proviene del teorema de Fourier y define que, bajo ciertas condiciones analíticas, una función periódica cualquiera que esta sea, puede considerarse integrada por una suma de funciones senoidales, incluyendo un término constante en caso de asimetría respecto al eje de las abscisas, siendo la primera armónica, denominada también señal fundamental, del mismo período y frecuencia que la función original y el resto serán funciones senoidales cuyas frecuencias son

múltiplos de la fundamental. Estas componentes son denominadas armónicas de la función periódica original.

En la Figura 3, se ilustra la componente fundamental, la quinta y séptima armónica de una función.

Figura 3.a Función original

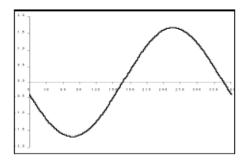


Figura 3.b Componente fundamental

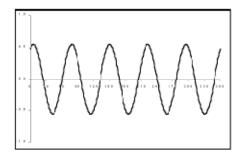


Figura 3.c 5^a armónica

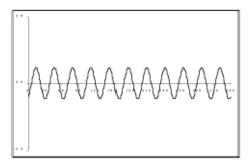


Figura 3.d 7a armónica

Figura 1.3: (Forma de onda original y sus componentes armónicos: 1^a, 5^a y 7^a

Origen de los armónicos.

En general, los armónicos son producidos por cargas no lineales, lo que significa que su impedancia no es constante. Estas cargas no lineales a pesar de ser alimentadas con una tensión sinusoidal adsorben una intensidad no sinusoidal, pudiendo estar la corriente desfasada un ángulo φ respecto a la tensión. Lo que se considera que las cargas no lineales se comportan como fuente de intensidad que inyectan armónicos en la red.

Las cargas armónicas no lineales más comunes son las que se encuentran en los receptores alimentados por circuitos electrónicos de potencia.

Existen dos clases generadoras de armónicos:

La primera es simplemente las cargas no lineales en las que la corriente que fluye por ellas no es proporcional a la tensión. Como resultado de esto, cuando se aplica una onda sinusoidal de frecuencia única, la corriente resultante no es de una sola frecuencia.

El segundo tipo de elementos que pueden generar armónicos son aquellos que tienen una impedancia dependiente de la frecuencia.

En la Tabla 1.1, se indican los elementos generadores de armónicos más comunes. En determinadas circunstancias la sobrecarga o daño de equipos pueden

ser la causa de generación de armónicos. La gran cantidad de los armónicos en la mayoría de los sistemas de potencia son generados por los equipos de los usuarios.

Los usuarios residenciales, comerciales e industriales, tienen una gran cantidad de equipos como: Hornos de inducción, hornos de microondas, computadoras, sistemas con control robótico, televisión, DVD's, estéreos y otros equipos. Todos estos equipos contribuyen con la generación de cantidades variables de armónicos. Aún ventiladores eléctricos y simples motores de inducción trabajando sobrecargados pueden contribuir a la creación de armónicos. Las salidas de armónicos de estos múltiples aparatos pueden sumarse y originar problemas en el sistema de potencia.

Tabla 1.1. Fuentes de frecuencia armónicas

Convertidores de AC-DC	Elementos magnéticos saturables
Hornos de arco AC-DC	Capacitores en paralelo
Balastros de lámparas fluorescentes	Variadores de velocidad de motores
Motores de inducción sobrecargados	Oscilaciones de baja frecuencia
Convertidores multifase	Problemas de neutro
Capacitores serie	Motor generador mal puesto a tierra
Transformadores estrella-estrella	

Armónica cero.

El flujo de corriente directa es la armónica de frecuencia cero, la contaminación con corriente directa de un sistema o potencia es parte de un estudio teórico completo de todas las armónicas, ya sea en el dominio del tiempo o de la frecuencia. Generalmente la presencia de tensión o corriente directa es una señal de una pobre puesta a tierra, severo desbalance de carga o daño de algún equipo. Aún con la presencia de una pequeña señal, existe el problema de puesta a tierra, flujo en el conductor neutro o desbalance interno.

Como las frecuencias son múltiplos enteros de la frecuencia fundamental, las armónicas en sus diferentes frecuencias siempre estarán en fase con la fundamental y

su impacto es básicamente el mismo. Esto significa que la distorsión armónica que se presenta en la onda de 50 ó 60 ciclos es la misma.

Distorsión armónica.

Es la distorsión periódica de la forma de onda senoidal del voltaje o corriente. Esta es causada por la operación de equipos no lineales como lo son rectificadores y hornos de arco eléctrico. Este es un fenómeno en estado estable.

Distorsión armónica total (THD).

Los armónicos se pueden representar y cuantificar mediante un análisis de Fourier, el cual establece que una señal no sinusoidal, periódica y de energía finita, se puede representar como una sumatoria de señales sinusoidales de frecuencias múltiplos de una frecuencia conocida como fundamental.

En ese sentido, se presenta la Distorsión Armónica Total (THD), como una medida de la desviación de la forma de onda no sinusoidal con respecto a la sinusoide pura de frecuencia fundamental.

Por la calidad de la información que este factor involucra, se adopto por muchas normativas para indicar los límites de las perturbaciones armónicas.

Matemáticamente se tiene que para una señal de tensión la THD es igual a:

$$THD_U = 100\sqrt{\sum_{h \neq 1} \left(\frac{U_h}{U_1}\right)^2}$$
 (1.1)

Y para una señal de corriente:

$$THD_i = 100 \sqrt{\sum_{h \neq 1} \left(\frac{I_h}{I_1}\right)^2}$$
 (1.2)

Donde U_h e I_h son los valores eficaces de las tensiones y corrientes armónicas y U_1 e I_1 son los valores eficaces de las tensiones y corrientes fundamentales (60 Hz).

Armónicas en los sistemas eléctricos.

La distorsión de formas de onda de corrientes y voltaje debida a las armónicas es uno de los fenómenos que afectan la confiabilidad del sistema y por lo tanto la calidad de la energía. El acoplamiento magnético, causa que algunas armónicas de frecuencias elevadas produzcan interferencia en los sistemas de comunicación, sobre todo en líneas telefónicas. Este problema no es nuevo, sin embargo, debido al notable incremento de cargas no lineales conectadas al sistema eléctrico, el nivel promedio de armónicas en el sistema eléctrico de potencia se incrementa cada día más. Las cargas no lineales son como hornos de arco y de inducción, así como de cargas controladas por dispositivos electrónicos tales como SCR's, transistores de potencia, etc. La disponibilidad y el relativo bajo costo de estos dispositivos han expandido en gran medida su uso en casi todo tipo de cargas industriales y comerciales.

Un factor menos extendido pero de importancia, que acentúa la inyección de armónicas en los sistemas eléctricos, es el drástico cambio de la filosofía del diseño del equipo utilizado en los sistemas eléctricos de potencia. En el pasado, los fabricantes tendían a diseñar la mayoría de sus equipos sobre rangos mayores al requerido. Ahora, con el objeto de ser competitivos, los equipos de potencia tienen que ser diseñados sobre rangos críticos, como en el caso de equipos con núcleo de hierro, esto significa que sus puntos de operación están cada vez más cerca de la característica no lineal, o sea, muy cerca de la saturación del núcleo, lo que resulta una clara fuente de armónicas.

Los efectos de los Armónicos

Los efectos de los armónicos se dividen en tres categorías generales:

- 1. Efectos sobre el sistema de potencia mismo
- 2. Efectos sobre la carga del consumidor
- 3. Efectos sobre circuitos de comunicación

En el sistema de potencia, las corrientes armónicas son el problema principal, ocasionando recalentamiento y pérdida de vida útil. Esto refiriéndonos a motores o transformadores. El impacto es peor cuando la resonancia de la red amplifica las corrientes armónicas. Los armónicos pueden también interferir en la operación de relees y mediciones.

Los armónicos pueden ocasionar también errores de disparo a los tiristores en equipos convertidores y en instalaciones, inexactitudes en las mediciones, y falsos disparos en los dispositivos de protección. El desempeño de los equipos de los consumidores, tales como controladores de velocidad de motores y fuentes de alimentación de computadoras, pueden ser adversamente afectado por los armónicos. Además, las corrientes armónicas que fluyen sobre las líneas de potencia pueden inducir ruido sobre líneas cercanas de comunicación.

La distorsión armónica de voltaje puede ocasionar esfuerzos en el aislamiento de equipos, particularmente en condensadores. Cuando los armónicos deforman el voltaje en el banco de condensadores, el voltaje pico puede ser lo suficientemente alto como para ocasionar una descarga parcial, o efecto corona, dentro del dieléctrico del condensador. Esto puede producir eventualmente un cortocircuito entre bornes y carcasa y hacer fallar al condensador.

Las corrientes armónicas altas también ocasionan el disparo de fusibles en bancos de condensadores. Esto ocasiona la pérdida de una fuente de alimentación reactiva al sistema, lo que puede ocasionar otros problemas.

1.3 Conceptos de subestaciones.

Subestaciones.

Una subestación es un conjunto de máquinas, aparatos y circuitos, que tienen la función de modificar los parámetros de la potencia eléctrica, permitiendo el control del flujo de energía, brindando seguridad al sistema eléctrico, para los mismos equipos y para el personal de operación y mantenimiento. Las subestaciones se pueden clasificar en:

- Subestaciones en las plantas generadoras o centrales eléctricas.
- Subestaciones receptoras primarias.

• Subestaciones receptoras secundarias.

Subestaciones en las plantas generadoras o centrales eléctricas.- Estas se encuentran en las centrales eléctricas o plantas generadoras de electricidad, para modificar los parámetros de la potencia suministrada por los generadores, permitiendo así la transmisión en alta tensión en las líneas de transmisión. Los voltajes de generación se tienen entre 5 y 25 KV y la transmisión de la E.E. se puede efectuar a 69 y 22KV (CENTROSUR).

Subestaciones receptoras primarias.- Se alimentan directamente de las líneas de transmisión, y reducen la tensión a valores menores para la alimentación de los sistemas de subtransmisión o redes de distribución, de manera que, dependiendo de la tensión de transmisión pueden tener en su secundario tensiones de 138, 115, 69 kV y eventualmente 34.5, 13.2, 6.9 o 4.16 kV.

Para el caso de las subestaciones de la CENTROSUR los niveles de tensión manejados oscilan entre 69KV y 22KV.

Subestaciones receptoras secundarias.- Generalmente estas están alimentadas por las redes de subtransmisión, y suministran la energía eléctrica a las redes de distribución a tensiones entre 34.5 y 6.9 kV.

Los principales componentes de una subestación son:

- > Transformadores de potencia
- > Interruptores de potencia
- > Cuchillas desconectadoras
- Cuchillas de puesta tierra
- > Apartarrayos
- Barras colectoras
- Estructuras de soporte
- > Transformadores para instrumentos (TC's. y TP's)

Subestaciones de distribución.

Se le llama subestación de distribución a una subestación que se ubica principalmente dentro del área de carga. Las subestaciones de distribución pueden estar a sólo dos millas de cada una en áreas densamente pobladas. Estas subestaciones también pueden ubicarse cerca de una fábrica grande o dentro de un edificio de gran altura para satisfacer las demandas de sus clientes de elevada carga.

Las estaciones de distribución contienen muchos componentes, dentro de los que se incluyen transformadores de potencia, interruptores y reguladores de tensión. Los transformadores de potencia son el corazón de la subestación de distribución, los cuales ejecutan la tarea principal de reducir las tensiones de sub-transmisión a los niveles de distribución. Los interruptores se colocan entre los circuitos de distribución y la barra de baja tensión para la protección de la subestación durante las condiciones de falla o de picos de tensión. Los reguladores de tensión se instalan en serie en cada circuito de distribución si los transformadores de potencia no están equipados con la capacidad de cambiar los taps que permiten la regulación de la tensión de bar.

1.4 Conceptos de carga contaminante.

Otras fuentes contaminantes:

Las cargas no lineales se comportan como fuentes de intensidad que dan lugar a la inyección de armónicos de corriente en la red, al circular por las líneas de transmisión y distribución se producen caídas de voltaje por armónicos en las impedancias de las líneas, lo que se traduce en la existencia de voltajes armónicos en las barras.

Los tubos fluorescentes, si bien iluminan con bajo consumo de energía, son una fuente dañina de ionización positiva. Un par de tubos sería aceptable, pero el exceso da lugar a una gran contaminación armónica.

Los fabricantes de variadores de frecuencia de motores de inducción explican cómo estos equipos mejoran la eficiencia de las máquinas permitiendo variar la velocidad de funcionamiento según las necesidades de la aplicación, pero advierten que estos producen armónicos de diferente orden.

Los balastros electrónicos también se presentan como una importante mejora, tanto para la eficiencia como para la vida útil del equipo. Solo tienen el pequeño problema del aumento en contenido armónico.

Fuentes de poder en modo de conmutación: La mayoría de los equipos electrónicos tales como computadores personales, máquinas copiadoras y fax, cuentan con una fuente regulada por conmutación (switch-mode power supply). Estas fuentes demandan corriente en un pulso corto de cada medio ciclo, Cuando el voltaje se encuentra cerca de su valor máximo. La corriente demandada por estas fuentes tiene una alta distorsión armónica total y un alto contenido de tercera armónica.

Autos eléctricos que requieren de rectificación de grandes cantidades de potencia para cargar sus baterías.

El uso potencial de dispositivos de conversión directa de energía, como baterías de almacenamiento y celdas de combustible.

Pero los mayores causantes de problemas son grupos pequeños de cargas electrónicas monofásicas, como ordenadores, impresoras, fotocopiadoras, faxes, etc.

CAPÍTULO II.

NORMAS Y REGULACIONES PARA MITIGAR ARMÓNICOS.

Las Normas llevan a que las, leyes físicas que determinan el flujo de la energía no pueden ser alteradas. Por este motivo, para evitar un deterioro en la calidad de potencia de los consumidores, los organismos reguladores han tenido que expandir su política más allá del control de los tradicionales índices de fiabilidad, incentivando económicamente las compañías de transmisión y distribución para que generen informes completos acerca de la calidad de potencia.

Desde principios de los 90, el concepto de "calidad de potencia" ha ido ganando cada vez más notoriedad dentro del ámbito de la Ingeniería Eléctrica, y hoy en día, se ha convertido en una cuestión de sumo interés tanto para las compañías productoras y distribuidoras, como para los fabricantes de equipos y los consumidores finales.

Aunque el término "calidad de potencia" resulta familiar entre los ingenieros eléctricos, su uso no está exento de críticas, ya que no se puede hablar de la calidad de una magnitud física como es la potencia. A continuación se detallan las normas a las que se ajustará este trabajo de investigación.

2.1 Revisión de las regulaciones Nacionales.

En el país la única norma que rige es la INEN, adicionalmente se encuentran regulaciones impuestas por órganos y entes de control del sistema eléctrico nacional tanto para la generación, transmisión y distribución. De no existir normativas que aclaren o concluyan el estudio, los organismos competentes han tomado como alternativas, ajustarse a normas internacionales con la aceptación y el fiel cumplimiento de los órganos normalizadores ecuatorianos.

A continuación se describe las regulaciones que, a pesar de que para el estudio que se lleva a cabo no se ajusta a los análisis del proyecto, se definirán hasta donde permitan los mismos y anotaremos los puntos a los que hace referencia.

Para asegurar un nivel satisfactorio de la prestación de los servicios eléctricos a que se refieren las disposiciones legales establecidas en la "Ley de Régimen del Sector Eléctrico" y sus reformas, al "Reglamento Sustitutivo del Reglamento General de la Ley de Régimen del Sector Eléctrico", "el Reglamento de Concesiones, Permisos y Licencias para la Prestación del Servicio de Energía Eléctrica", el "Reglamento de Suministro del Servicio de Electricidad" y el "Reglamento de Tarifas". Manifiesta.

Que, el Art. 1, inciso segundo del Reglamento de Suministro del Servicio de Electricidad, establece que las disposiciones de dicho instrumento serán complementadas con regulaciones aprobadas por el CONELEC (Consejo Nacional de Electricidad) y por instructivos y procedimientos dictados por los distribuidores de conformidad con este Reglamento, para garantizar a los Consumidores un suministro eléctrico continuo y confiable, es necesario dictar las Regulaciones relacionadas con los estándares mínimos de calidad y procedimientos técnicos de medición y evaluación a los que deben someterse las Empresas Distribuidoras del Servicio Eléctrico.

Que, la regulación, se convierte en una garantía de la prestación del servicio por parte de los Distribuidores, y en una defensa de los derechos de los Consumidores.

2.1.1 Ley de régimen del sector eléctrico.

Se fijan los siguientes objetivos fundamentales de la política nacional en materia de generación, transmisión y distribución de electricidad:

- ✓ Proporcionar al país un servicio eléctrico de alta calidad y confiabilidad que garantice su desarrollo económico y social;
- ✓ Promover la competitividad de los mercados de producción de electricidad y las inversiones de riesgo del sector privado para asegurar el suministro a largo plazo;
- ✓ Asegurar la confiabilidad, igualdad y uso generalizado de los servicios e instalaciones de transmisión y distribución de electricidad;
- ✓ Proteger los derechos de los consumidores y garantizar la aplicación de tarifas preferenciales para los sectores de escasos recursos económicos;

- ✓ Reglamentar y regular la operación técnica y económica del sistema, así como garantizar el libre acceso de los actores del servicio a las instalaciones de transmisión y distribución;
- ✓ Regular la transmisión y distribución de electricidad, asegurando que las tarifas que se apliquen sean justas tanto para el inversionista como para el consumidor;
- ✓ Establecer sistemas tarifarios que estimulen la conservación y el uso racional de la energía;
- ✓ Promover la realización de inversiones privadas de riesgo en generación, transmisión y distribución de electricidad velando por la competitividad de los mercados;
- ✓ Promover la realización de inversiones públicas en transmisión;
- ✓ Desarrollar la electrificación en el sector rural; y,
- ✓ Fomentar el desarrollo y uso de los recursos energéticos no convencionales a través de los organismos públicos, las universidades y las instituciones privadas.

Regulación N°. CONELEC – 004/01

2.1.1.1 Calidad del servicio eléctrico de distribución

El objetivo de Regulación es establecer los niveles de calidad de la prestación del servicio eléctrico de distribución y los procedimientos de evaluación a ser observados por parte de las Empresas Distribuidoras.

2.1.1.2 Aspectos de Calidad

La Calidad de Servicio se medirá considerando los aspectos siguientes:

Calidad del Producto:

- a) Nivel de voltaje
- b) Perturbaciones de voltaje
- c) Factor de Potencia

Armónicos

Índices de Calidad

$$V_i' = \left(\frac{V_i}{V_n}\right) * 100 \tag{2.1}$$

$$THD = \left(\frac{\sqrt{\sum_{i=2}^{40} (V_i)^2}}{V_n}\right) * 100$$
 (2.2)

Donde:

Vi': factor de distorsión armónica individual de voltaje.

THD: factor de distorsión total por armónicos, expresado en porcentaje

Vi : valor eficaz (rms) del voltaje armónico "i" (para i = 2... 40) expresado en voltios.

Vn : voltaje nominal del punto de medición expresado en voltios.

2.1.1.3 Mediciones

El Distribuidor deberá realizar mensualmente lo siguiente:

- ✓ Un registro en cada uno de los puntos de medición, en un número equivalente al 0,15% de los transformadores de distribución, en los bornes de bajo voltaje, no menos de 5.
- ✓ Para la selección de los puntos se considerarán los niveles de voltaje, el tipo de zona (urbana, rural), y la topología de la red, a fin de que las mediciones sean representativas de todo el sistema. Una vez realizada la selección de los puntos, la Empresa Distribuidora debe notificar al CONELEC, por lo menos 2 meses antes de efectuar las mediciones.
- ✓ Simultáneamente con este registro se deberá medir la energía entregada a efectos de conocer la que resulta suministrada en malas condiciones de calidad.

✓ En cada punto de medición, para cada mes, el registro se efectuará durante un período no inferior a 7 días continuos, en intervalos de medición de 10 minutos.

Las mediciones se deben realizar con un medidor de distorsiones armónicas de voltaje de acuerdo a los procedimientos especificados en la norma IEC 61000-4-7. Con la finalidad de ubicar de una manera más eficiente los medidores de distorsiones armónicas, se efectuarán mediciones de monitoreo de armónicas, de manera simultánea con las mediciones de voltaje indicadas anteriormente; por lo que, los medidores de voltaje deberán estar equipados para realizar tales mediciones de monitoreo.

2.1.1.4 Límites

Los valores eficaces (rms) de los voltajes armónicos individuales (Vi') y los THD, expresados como porcentaje del voltaje nominal del punto de medición respectivo, no deben superar los valores límite (Vi' y THD') señalados a continuación. Para efectos de esta regulación 004/01 se consideran los armónicos comprendidos entre la segunda y la cuadragésima, ambas inclusive.

Tabla 2.1: Valores de los armónicos individuales (Vi') y los THD

	TOLERANCIA $ V_i' $ o $ THD' $ (% respecto al voltaje nominal del punto de medición)		
ORDEN (n) DE LA			
ARMONICA Y THD	V > 40 kV (otros puntos)	V ≤ 40 kV (trafos de distribución)	
Impares no múltiplos de 3			
5	2.0	6.0	
7	2.0	5.0	
11	1.5	3.5	
13	1.5	3.0	
17	1.0	2.0	
19	1.0	1.5	

23	0.7	1.5
25	0.7	1.5
> 25	0.1 + 0.6*25/n	0.2 + 1.3*25/n
Impares múltiplos de tres		
3	1.5	5.0
9	1.0	1.5
15	0.3	0.3
21	0.2	0.2
Mayores de 21	0.2	0.2
Pares		
2	1.5	2.0
4	1.0	1.0
6	0.5	0.5
8	0.2	0.5
10	0.2	0.5
12	0.2	0.2
Mayores a 12	0.2	0.5
THD	3	8

Regulación N°. CONELEC – 004/02

2.1.2 Transacciones de potencia reactiva en el MEM

Objetivo

Establecer los procedimientos para el cumplimiento de las normas de calidad sobre el Control de Voltaje y Potencia Reactiva, por parte de los agentes del MEM en condiciones normales y en emergencia.

2.1.2.1 Generadores

Entregar reactivos hasta el 95% del límite de potencia reactiva (inductiva o capacitiva), en cualquier punto de operación que esté dentro de las características técnicas de las máquinas, de acuerdo a lo solicitado por el CENACE.

2.1.2.2 Transmisor

Declarar al CENACE los equipos para control de voltaje y suministro de potencia reactiva que pone a disposición del MEM. En el listado especificará: ubicación, nivel de voltaje de instalación, tipo de equipamiento, magnitud de potencia reactiva, restricciones o forma de operación.

2.1.2.3 Distribuidores y Grandes Consumidores.

Los Distribuidores y Grandes Consumidores deben comprometer en cada uno de sus nodos (barras) de interconexión con el transportista u otros agentes del MEM un factor de potencia, que será determinado por el CONELEC sobre la base de un estudio conjunto CENACE - Distribuidor y tomando como referencia el Plan de Expansión presentado como respaldo al cálculo del VAD. Los valores límites del factor de potencia serán calculados para demanda: mínima, media y máxima. El factor de potencia se lo determinará sin tomar en cuenta el efecto de cualquier generación insertada en la red del Distribuidor.

Regulación No. CONELEC - 003/08

2.1.3 Calidad del transporte de electricidad y del servicio de transmisión y conexión en el sistema nacional interconectado

2.1.3.1 Aspectos de calidad considerados.

Las instalaciones de transmisión tendrán el equipamiento para atender los requerimientos operativos del SNI, así como también aquellos equipos que son necesarios para mantener la seguridad de sus sistemas ante perturbaciones externas.

La calidad de la potencia y del servicio de transmisión y conexión en el SNI, se evaluarán considerando los parámetros siguientes:

Calidad de la potencia:

- Nivel de voltaje.
- Contenido armónico de voltaje.
- Balance de voltajes.

- Contenido armónico de corriente.
- Balance de corrientes.
- Factor de potencia de la carga.

Calidad del servicio de transmisión y conexión:

- Duración de las interrupciones.
- Frecuencia de interrupciones.

Cálculo de la Energía No Suministrada (ENS).- Para efectos exclusivos de aplicación de esta Regulación, en cada una de las indisponibilidades de instalaciones de transmisión y puntos de conexión que causen suspensión de la entrega de energía a los Agentes, el CENACE evaluará la cantidad de ENS sobre la base de la curva de demanda registrada por el punto de conexión, del día similar más próximo de las semanas anteriores y que no presentó desconexiones de carga.

Para el cálculo de la ENS el tiempo se considerará, desde el momento en que se produce el evento hasta cuando la ENS sea cero, o el CENACE determine que existen condiciones operativas en el SNI, para reiniciar de inmediato el servicio a través de la instalación de transmisión desconectada.

Incumplimientos de las normas de calidad.- Las sanciones y compensaciones económicas al Transmisor o a los Agentes por incumplimientos de las normas de calidad, continuidad y confiabilidad, así como el objeto y destino de las mismas, se establecerán de acuerdo a lo indicado en los respectivos Contratos de Concesión y en el Reglamento de Despacho y Operación del SNI.

El pago de sanciones y compensaciones no exime al Transmisor o Agente, de las obligaciones de solucionar las causas que las originaron.

2.1.3.2 Calidad de la potencia.

La Calidad de la Potencia se determinará sobre la base de mediciones de las características de las ondas de voltaje y corriente, y del factor de potencia de la carga conectada en los puntos de entrega de energía o conexión de los Agentes con los sistemas de transmisión.

2.1.3.3 Responsabilidades.

Responsabilidades del CENACE.- Supervisará el nivel de voltaje de las barras y el factor de potencia de las cargas conectadas al sistema de transmisión, conforme a lo indicado en la Regulación No. CONELEC - 004/02 Transacciones de Potencia Reactiva en el MEM y en la Regulación No. CONELEC - 002/00 Restricciones e Inflexibilidades Operativas.

Responsabilidades del Transmisor.- Las distorsiones de voltajes por sobre los límites de calidad en las barras del sistema de transmisión que sean causados por el Trasmisor, serán solucionados por éste.

El Transmisor supervisará el contenido armónico y balance de voltajes en los puntos de conexión del sistema de transmisión con Agentes generadores, distribuidores y grandes consumidores.

Si el contenido armónico o balance de voltajes supera los límites de calidad establecidos en esta Regulación, el Transmisor procederá conforme a lo indicado para estos casos en el Reglamento para el Libre Acceso a los Sistemas de Transmisión y Distribución.

Responsabilidades de los Agentes.- Mantener el factor de potencia de la demanda en los puntos de entrega de energía o de conexión con el Transmisor, dentro de los límites establecidos por el CONELEC, según la normativa vigente. Además, deberán:

Mantener el contenido armónico y el balance de las corrientes de la carga, dentro de los límites indicados en esta Regulación. Los Agentes propietarios de Sistemas de Transmisión Independientes, cumplirán en lo aplicable, con exigencias iguales a las del Transmisor.

Procedimientos para medición. - Los procedimientos para el control y determinación de incumplimientos de calidad del nivel de voltaje en barras del sistema de transmisión, y del factor de potencia de la carga que deben presentar los

distribuidores y grandes consumidores en los puntos de entrega de energía o de conexión con el Transmisor, se sujetarán a lo establecido en la normativa vigente.

Los controles de calidad relacionados con el contenido armónico y balance de voltajes, se harán mensualmente.

Equipo para medición.- La adquisición e instalación del equipo para la medición de calidad del voltaje lo hará el Transmisor. De ser factible el uso con estos fines del Sistema de Medición Comercial (SISMEC) instalado actualmente, el Transmisor, los Agentes involucrados y el CENACE, acordarán las condiciones para hacerlo. Los equipos que se utilicen en la medición de los parámetros de calidad de voltaje, permitirán medir los voltajes con una tolerancia total igual o menor al 5% del valor de voltaje nominal del equipo de medida.

Controles de Calidad.- Se supervisará por períodos continuos de cuatro meses y de manera simultánea al menos el 20% de los puntos de conexión con las Distribuidoras y Grandes Consumidores. Luego de cada período de cuatro meses, los puntos de control podrán ser cambiados. La selección de los puntos de control, se hará atendiendo pedidos de las Distribuidoras, Grandes Consumidores, el CENACE o el CONELEC, previo visto bueno del CENACE y la aprobación del CONELEC.

Evaluación de la Calidad.- El registro de parámetros de calidad se realizará en intervalos de medición de 10 minutos, durante un período de siete días continuos que se considerarán representativos de todo el mes. El CONELEC hará la selección de los siete días del mes para control. Para efectos de evaluar la calidad, si en el 5% o más de las mediciones de los siete días, uno o más de los parámetros de calidad superan los límites establecidos, se considera que el Transmisor incumplió con el índice de calidad.

Incumplimientos de Calidad.- Para los incumplimientos de contenido armónico de voltaje o balance de voltajes, el Transmisor procederá conforme lo establecido en Reglamento para el Libre Acceso a los Sistemas de Transmisión y Distribución, respecto a los efectos adversos producidos al SNT y las medidas correctivas.

Calidad del nivel de voltaje.- Se calcula sobre la base de índices que consideran el porcentaje de variación de los voltajes de operación con respecto al valor nominal para esa barra.

Límites.- El CONELEC establecerá los límites de calidad de nivel de voltaje, conforme al procedimiento que se indica en la Regulación CONELEC 004/02 Transacciones de Potencia Reactiva en el MEM.

Contenido armónico de voltaje.- Se determina sobre la base de índices que consideran el porcentaje de contenido armónico individual y el valor de Distorsión Armónica Total de Voltaje (VTHD), en barras de los sistemas de transmisión que tengan puntos de conexión. Para efectos de esta Regulación, se consideran las armónicas comprendidas entre la 2° y la 40°, incluyendo las mismas.

Límites.- Los valores límites de contenido armónico, de VTHD y más procedimientos para aplicación de límites, se regirán a lo indicado en las guías IEEE 519 Control armónico. Una tabla con los límites señalados en esa guía se indica a continuación:

Tabla 2.2: Límites para contenido armónico de voltajes (IEEE 519)

VOLTAJE DE BARRAS KV	CONTENIDO ARMÓNICO INDIVIDUAL MÁXIMO Vi (%)	VTHD MÁXIMO (%)
Vn ≤ 69 KV	3.00	5.00
69 KV < Vn ≤ 161 KV	1.50	2.50
Vn > 161 KV	1.00	1.50

En donde el contenido armónico individual máximo en porcentaje, es respecto al voltaje nominal de operación Vn de la barra.

El valor del VTHD viene dado por:

$$VTHD = \frac{\sqrt{\sum_{i=2}^{40} V_i^2}}{Vn}$$
 (2.3)

Balance de voltajes.- Se calculará sobre la base del factor de desbalance de voltaje de secuencia negativa MV2, dado por la relación siguiente:

$$MV 2 = VSN / VSP$$
 (2.4)

Siendo:

VSN Voltaje de secuencia negativa

VSP Voltaje de secuencia positiva

El balance de voltaje se medirá en barras de los sistemas de transmisión, que tienen puntos de conexión. Además, para esos puntos se registrará el valor de la demanda máxima en el mes (DMA).

Límites.- El factor de desbalance de voltaje de secuencia negativa no será superior al 1.3%.

Contenido armónico de corriente.- Se calcula sobre la base de índices que consideran el porcentaje de contenido armónico individual en la onda de corriente y el valor del TDD (Factor de Distorsión Total de la Demanda) de la carga conectada por los Agentes en los puntos de conexión. Para efectos de esta Regulación, se consideran las armónicas comprendidas entre la 2° y la 30°, incluyendo las mismas.

Límites.- Los valores límites de contenido armónico, de TDD y más procedimientos para aplicación de límites, se regirán a lo indicado en la guía IEEE 519 Control armónico. Una tabla con los límites señalados en esa guía se indica a continuación:

Tabla 2.3: límites para contenido armónico de corrientes (IEEE 519)

Valores de Ih en porcentaje de Ic

Vn 69 kV

SCR = Isc / Ic	h < 11	11 < h < 17	17 < h < 23	23 < h < 35	TDD
< 20	4.00	2.00	1.50	0.60	5.00
20 – 50	7.00	3.50	2.50	1.00	8.00
50 - 100	10.00	4.50	4.00	1.50	12.00
100 – 1000	12.00	5.50	5.00	2.00	15.00

> 1000	15.00	7.00	6.00	2.50	20.00	
		69 kV < Vn	161 kV			
< 20	2.00	1.00	0.75	0.30	2.50	
20 – 50	3.50	1.75	1.25	0.50	4.00	
50 - 100	5.00	2.25	2.00	1.25	6.00	
100 – 1000	6.00	2.75	2.50	1.00	7.50	
> 1000	7.50	3.50	3.00	1.25	10.00	
	Vn > 161 kV					
< 50	2.00	1.00	0.75	0.30	2.50	
≥ 50	3.50	1.75	1.25	0.50	4.00	

En donde:

- h es el orden de la armónica
- Los límites de contenido armónico de corriente Ih, están expresados en porcentaje de la corriente Ic promedio de las demandas máximas en el mes.
- La relación de cortocircuito SCR en el punto de conexión, definida como: la corriente de cortocircuito trifásico mínima calculada Isc, dividido para la corriente Ic promedio de las demandas máximas en el mes.
- Los límites de componentes armónicos individuales de corrientes Ih indicados en la tabla, se aplican sólo para componentes impares.
- Para los componentes de armónicos pares, los límites son el 25% de los valores indicados en la tabla.
- El valor del TDD, viene dado por:

$$TDD = ITHD * CMD/CNC$$
 (2.5)

Siendo:

ITHD distorsión armónica total de la corriente.

CMD corriente (Ic) promedio de las máximas demandas registradas en el mes.

CNC corriente nominal del circuito en el punto de conexión.

• El valor del ITHD se calcula de la manera siguiente:

$$ITHD = \frac{\sqrt{\sum_{h=2}^{30} I_h^2}}{I_{h=1}}$$
 (2.6)

Balance de corrientes.- Se medirán en los puntos de conexión de los Agentes con los sistemas de transmisión, y se determinarán sobre la base del factor de desbalance de corrientes de carga de secuencia negativa MC2, dado por la siguiente relación:

$$MC2 = CSN/CSP \qquad (2.7)$$

Siendo:

CSN Corriente de carga de secuencia negativa

CSP Corriente de carga de secuencia positiva

Límites.- El factor de desbalance de corrientes no será superior al 3%.

Factor de potencia de la carga.- Los índices de calidad de este parámetro, considerarán sus variaciones respecto a valores determinados por el CONELEC.

Límites.- El CONELEC establecerá los límites de factor de potencia de la carga conectada por el Agente, conforme al procedimiento que se indica en la Regulación CONELEC 004/02 Transacciones de Potencia Reactiva en el MEM.

A continuación, en la siguiente tabla describimos los límites para la contaminación armónica que ingresan los clientes por las diferentes cargas conectadas al sistema eléctrico por sus clientes.

LÍMITES PARA LA EMISIÓN ARMÓNICA Y THDI POR PARTE DE LOS CONSUMIDORES

ORDEN DE LA	P≤ 10kW V≤ 0,6 kV	P> 10kW 0,6 Kv <v≤40kv< th=""><th>P>50kW V> 40 kV</th></v≤40kv<>	P>50kW V> 40 kV
ARMÓNICA (n)	INTENSIDAD ARMÓNICA MÁXIMA(AMP)	DISTORSIÓN ARMÓNIO INDIVIDUAL DE CORRIENTE DAII EN 9	
IMPARES NO MÚLTIPLOS DE 3			
5	2,28	12,00	6,00
7	1,54	8,50	5,10
11	0,66	4,30	2,90
13	0,42	3,00	2,20
17	0,26	2,70	1,80
19	0,24	1,90	1,70
23	0,20	1,60	1,10

25	0,18	1,60	1,10
>25	4,5/n	0,2+0,8*25/n	0,40
IMPARES MULTIPLOS			
DE 3			
3	4,60	16,60	7,50
9	0,80	2,20	2,20
15	0,30	0,60	0,80
21	0,21	0,40	0,40
>21	4,5/n	0,30	0,40
PARES			
2	2,16	10,00	10,00
4	0,86	2,50	3,80
6	0,60	1,00	1,50
8	0,46	0,80	0,50
10	0,37	0,80	0,50
12	0,31	0,40	0,50
>12	3,68/n	0,30	0,50
DISTORSIÓN			
ARMÓNICA TOTAL DE CORRIENTE THDI (%)	-	20	12
, ,			

2.1.3.4 Ajustes regulatorios.

Con base a los resultados que se obtengan de la aplicación de parámetros para el control de la calidad de transmisión, y hasta que el SNT sea reforzado con la entrada en operación de las nuevas instalaciones previstas para el año 2010, y consideradas en el Plan de Expansión, el CONELEC procederá a efectuar la primera revisión de los criterios y límites utilizados para fijar los parámetros de calidad indicados en esta Regulación, en dicho año 2010. Posteriormente, se deberán efectuar revisiones periódicas cada cinco años

2.1.4 Norma INEN

279 – 1980 Contadores de energí-a eléctrica de inducción monofásicos. Clase 2. Definiciones.

280 – 1980 Contadores de energí-a eléctrica de inducción monofásicos clase 2. Requisitos

280 –**1980** Contadores de energí-a eléctrica de inducción monofásicos clase 2. Recepción de lotes

Esta norma nacional manifiesta que para el caso de no existir norma explicita se considerará una norma internacional bajo el consentimiento del INEN, previo consenso y análisis. Fiel reflejo esta dado en la regulación 004/01 Calidad del servicio eléctrico de distribución emitido por el CONELEC.

2.2 Análisis de las normas internacionales.

Desde principios de los 90, el concepto de "calidad de potencia" ha ido ganando cada vez más notoriedad dentro del ámbito de la Ingeniería Eléctrica, y hoy en día, se ha convertido en una cuestión de sumo interés tanto para las compañías productoras y distribuidoras, como para los fabricantes de equipos y los consumidores finales.

Aunque el término "calidad de potencia" resulta familiar entre los ingenieros eléctricos, su uso no está exento de críticas, ya que no se puede hablar de la calidad de una magnitud física como es la potencia.

En el IEEE (IEEE Institute for Electrical and Electronics Engineers), el término calidad de potencia ha ganado un estatus oficial, como lo refleja el comité IEEE SCC22 (IEEE SCC-22 IEEE Standards Coordinating Committee on Power Quality), el cual coordina las necesidades de estandarización en este área. El diccionario del IEEE, basándose en el estándar IEEE 1100-1999, ofrece la siguiente definición para este término:

"La calidad de potencia es el concepto de alimentación y puesta a tierra de un equipo sensible en la manera apropiada para la operación de aquel equipo."

A pesar de que esta definición resulta algo restrictiva, el IEEE utiliza el concepto de calidad de potencia de una manera más general, y el SCC-22 también cubre los estándares relacionados con la polución armónica creada por las cargas.

Por otro lado, el organismo internacional para el desarrollo de normativa en Ingeniería Eléctrica, el IEC (IEC International Electrotechnical Commission), no suele hablar de calidad de potencia en sus estándares, y en su lugar utiliza el término "compatibilidad electromagnética, EMC" (EMC Electro-Magnetic Compatibility). Aunque el significado de ambos términos es diferente, existe un marcado solapamiento entre ellos.

2.2.1 Normativa reguladora de la emisión de armónicos de corriente.

Compatibilidad necesaria entre los equipos de los consumidores finales y el sistema de potencia. No pretende revisar toda la normativa existente en esta materia, sino que únicamente persigue mostrar someramente los límites de inyección de corrientes armónicas establecidos por los estándares internacionales de mayor relevancia a modo de ofrecer una idea acerca de la estructura de los mismos.

2.2.2 International Electrotechnical Commission (IEC)

2.2.2.1 Estándar IEC-61000-3-2

Esta norma internacional regula los límites de emisión de corrientes armónicas para equipos que tengan una corriente de entrada menor o igual a 16A por fase, y que se pretendan conectar a redes públicas de baja tensión. En ella, se clasifican los equipos según el diagrama de flujo mostrado en la Figura 2.1 La forma de onda "especial" de corriente es aquella cuya envolvente se encuentra, al menos durante el 95% del tiempo, dentro de la "T invertida" mostrada en esta figura.

Para las diferentes categorías de los equipos, los límites de corriente muestran en la Tablas 1.2, 1.3 y 1.4, debiéndose resaltar que los límites para equipos de Clase B se obtienen a partir de la multiplicación por 1,5 de los límites de corriente armónica para los equipos de Clase A.

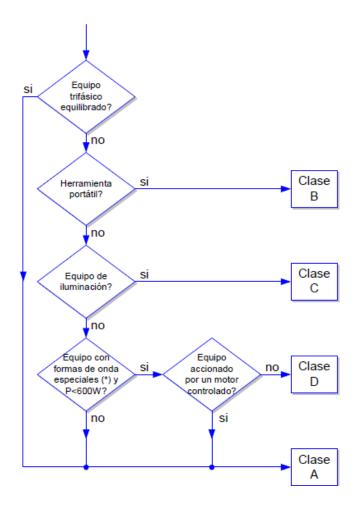


Figura 2.1 Clasificación de equipos con I menor a 16A según IEC 61000-3-2

En estas tablas sólo se muestran los detalles generales de la normativa, siendo necesaria una lectura detenida de la misma para determinar los límites ante situaciones particulares, por ejemplo en los equipos de iluminación cuando su potencia es inferior a 25W, o cuando son regulados mediante dimmers disparados por ángulo de fase. Así mismo, hay que indicar que esos límites no se aplican a equipos de gran potencia (P>1kW) de uso profesional, los cuales no están concebidos para venderse al público en general.

2.2.2.2 En el estándar IEC 61000-1-1 ofrece la siguiente definición de EMC:

"La compatibilidad electromagnética es la capacidad de un dispositivo, equipo o sistema para funcionar satisfactoriamente en su entorno electromagnético, sin introducir perturbaciones electromagnéticas intolerables a ningún otro dentro de aquel entorno."

Esta última definición refleja que el correcto funcionamiento de los sistemas de potencia no sólo depende de la calidad de la tensión suministrada desde el lado de fuente, sino que también es necesario tener en cuenta la calidad de las corrientes solicitadas por la carga.

2.2.2.3 En la norma IEC 61036 tenemos:

Otras cantidades de la influencia a su referencia condicionan según la tabla.

Tabla 2.4: Condiciones de referencia

Influence quantity	Reference value	Permissible tolerances for meters of class		
		1	2	
Ambient temperature	Reference temperature or, in its absence, 23 °C ¹⁾	±2 °C	±2 °C	
Voltage	Reference voltage	±1,0 %	±1,0 %	
Frequency	Reference frequency	±0,3 %	±0,5 %	
Wave-form	Sinusoidal voltages	Distortion factor less than:		
	and currents		3 %	
		Induction value variation of error i		
Magnetic induction of external origin at the reference frequency	Magnetic induction equal to zero	±0,2 %	±0,3 %	
ongin at the reselence nequency	10 2610	but should in any case be smaller than 0,05 mT ²⁾		

¹⁾ If the tests are made at a temperature other than the reference temperature, including permissible tolerances, the results shall be corrected by applying the appropriate temperature coefficient of the meter.

2.2.2.4 Exactitud de prueba en la presencia de armónicos

Condiciones de la prueba:

- Frecuencia fundamental corriente: Io = 0.5 Imax

- Voltaje de la frecuencia fundamental: Uo= Un

²⁾ The test consists of:

a) for a single-phase meter, determining the errors first with the meter normally connected to the mains and then after inverting the connections to the current circuits as well as to the voltage circuits. Half of the difference between the two errors is the value of the variation of error. Because of the unknown phase of the external field, the test should be made at 0,1 I_b resp. 0,05 I_n at unity power factor and 0,2 I_b resp. 0,1 I_n at 0,5 power factor;

b) for a three-phase meter, making three measurements at $0.1 l_b$ resp. $0.05 l_h$ at unity power factor, after each of which the connection to the current circuits and to the voltage circuits are changed over 120° while the phase sequence is not altered. The greatest difference between each of the errors so determined and their average value is the value of the variation of error.

- Frecuencia fundamental factor de potencia: 1
- Contenido de 5th voltaje del armónico: U5= 10% de Un
- Contenido de 5th armónico corriente: I5= 40% de principio presente
- Armónico factor de potencia: 1
- Principio y voltajes del armónico están en fase, a positivo cero cruce.

Resultado armónico de la fuente debido al 5th armónico es P5= 0,1 Uo x 0,4 Io = 0,04 Po o al total de Energía = 1,04 Po, igual verdadero, energía (Fundamental + armónicos).

2.2.2.5 Prueba de la influencia de armónicos impares y sub-armónicos

Se harán las pruebas de la influencia de armónicos impares y sub-armónicos con el circuito como se muestra en las figuras B.2.3, figura B.2.4 o con otro equipo requerido para generar la forma de onda de la corriente como muestra la figura B.2.5 y figura B.2.7 respectivamente.

La variación del error entre el test de la forma de onda de prueba y la forma de onda dada en la figura B.5 y figura B.7 no excederán los límites de variación dada por la Tabla (2.5).

NOTA: Los valores dados en las figuras es solamente para 50 Hz. Para otras frecuencias los valores tienen que ser ajustados de acuerdo con las frecuencias a las que van a trabajar.

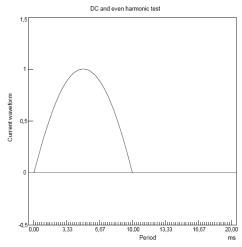


Figura B2.3: Media onda rectificada.

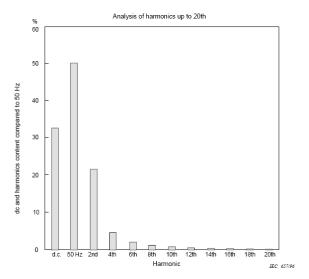


Figura B2.4: Contenido armónico de media onda.

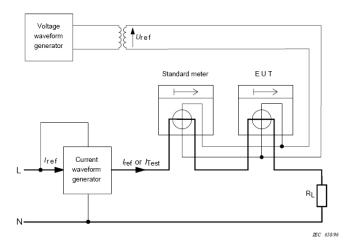


Figura B2.5: Circuito de prueba.

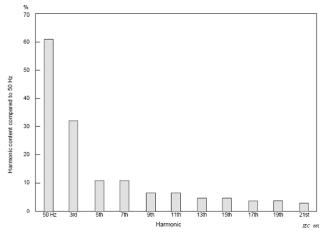


Figura B2.6: Forma de onda de fase completa

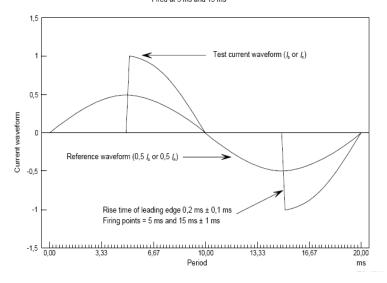


Figura B2.7: Análisis de contenido armónico de la forma de onda de fase completa

Tabla 2.5: Influencia de cantidades de armónicos.

Influence quantity	Value of current (balanced unless otherwise stated)		Power factor	Limits of variation in percentage error for meters of class	
	for direct connected meters	for transformer- operated meters		1	2
Voltage variation	$0.05 I_{b} \le I \le I_{max}$	$0.02 I_{n} \le I \le I_{max}$	1	0,7	1,0
± 10 % 1) 9)	$0,1 l_{b} \le l \le l_{max}$	$0.05 I_{n} \le I \le I_{max}$	0,5 inductive	1,0	1,5
Frequency variation	$0.05 I_{b} \le I \le I_{max}$	$0.02 I_{n} \le I \le I_{max}$	1	0,5	0,8
±2% 9)	$0,1 I_{b} \le I \le I_{max}$	$0.05 I_{n} \le I \le I_{max}$	0,5 inductive	0,7	1,0
Reversed phasesequence	0,1 / _b	0,1 I _n	1	1,5	1,5
Voltage unbalance 3)	/ _b	I _n	1	2,0	4,0
Harmonic components in the current and voltage circuits 5)	0,5 I _{max}	0,5 I _{max}	1	0,8	1,0
DC and even harmonics in the a.c. current circuit 4)	$\frac{I_{\text{max}}}{\sqrt{2}}$ 2)	-	1	3,0	6,0
Odd harmonics in the a.c. current circuit 5)	0,5 l _b 2)	0,5 I _n 2)	1	3,0	6,0
Sub-harmonics in the a.c. current circuit 5)	0,5 l _b 2)	0,5 I _n 2)	1	3,0	6,0
Continuous magnetic induction of externalorigin 5)	I _D	I _n	1	2,0	3,0
Magnetic induction of external origin 0,5 mT 6)	I _D	I _n	1	2,0	3,0
Electromagnetic HF fields 7)	l _p	I _n	1	2,0	3,0
Operation of accessories 8)	0,05 I _b	0,05 I _n	1	0,5	1,0
Conducted disturbances, induced by radio- frequency fields	l _D	I _n	1	2,0	3,0

For the voltage ranges from -20 % to -10 % and +10 % to +15 % the limits of variation in percentage errors are three times the values given in this table.

Below 0,8 $U_{\rm n}$ the error of the meter may vary between +10 % and -100 %.

The distortion factor of the voltage shall be less than 1 %.

For test condition see 5.6.2.2.

Polyphase meters with three measuring elements shall measure and register, within the limits of variation in percentage error shown in this table, if the following phases are interrupted:

in a three-phase, four-wire network, one or two phases;
 in a three-phase, three-wire network (if the meter is designed for this service), one of the three phases.

This only covers phase interruptions and does not cover events such as transformer fuse failures.

This test does not apply to transformer-operated meters. The test conditions are specified in annex B, clause B.1.

The test conditions are specified in 5.6.2.

A magnetic induction of external origin of 0,5 mT produced by a current of the same frequency as that of the voltage applied to the meter and under the most unfavourable conditions of phase and direction shall not cause a variation in the percentage error of the meter exceeding the values shown in this table. The test conditions are specified in 5.6.2.

The test conditions are specified in 5.5.3.

Such an accessory, when enclosed in the meter case, is energized intermittently, for example the electromagnet of a multi-rate register.

It is preferable that the connection to the auxiliary device(s) is marked to indicate the correct method of connection. If these connections are made by means of plugs and sockets, they should be irreversible. The recommended test point for voltage variation and frequency variation is I_0 respectively I_0 .

2.2.2.6 Armónico total presente

Valor total [r.m.s] del armónico de las componentes presentes de ordenes 2 a 40.

Armónico total presente =
$$\sqrt{\sum_{n=2}^{40} I_n^2}$$
 (2.8)

2.2.2.7 Armónico parcial impar presente

Valor total [r.m.s] del armónico impar de las componentes presentes de ordenes 21 a 39

Armónico parcial impar presente =
$$\sqrt{\sum_{n=21,23}^{39} I_n^2}$$
 (2.9)

Equipo de la iluminación y otros.

Radiación por medio de lámparas incandescentes, lámparas de la descarga o LED, balastos independientes por lámparas de la descarga y lámpara independiente incandescente, Transformadores ultravioleta (UV) e infrarrojo (IR) equipo de radiación, dimmers, fotocopiadoras, proyectores.

El objetivo de esta norma es poner los límites por emisiones de armónicos de equipos dentro de su alcance, para que, con asignación debida por las emisiones de otros equipos, complacencia con los límites asegura esa perturbación del armónico niveles no excede la compatibilidad de niveles definidos en IEC 61000-2-2.

Equipo profesional que no cumplan con los requisitos de esta norma esta permitiría se conecta a tipos seguros de bajo voltaje suministrado, si el manual de la instrucción contiene un requisito preguntar la utilidad del suministro para conectar con permiso.

Clasificación de equipo

Para el propósito de la limitación de corriente armónico, el equipo está clasificado como sigue:

Clase A:

- Equipo de tres-fase balanceado;
- Aparatos de la casa, excluye equipo identificador como clase D;

- Herramientas, excluye herramientas portátiles;
- Dimmers para lámparas incandescentes;
- Equipo de audio.

Equipo no especificado en uno de las tres clases otro se considerarán como equipo de clase

Tabla 2.6: Límites para equipos clase A

Harmonic order	Maximum permissible harmonic current
n	A
Odd har	monics
3	2,30
5	1,14
7	0,77
9	0,40
11	0,33
13	0,21
15 ≤ n ≤ 39	0,15 1 <u>5</u>
Even har	rmonics
2	1,08
4	0,43
6	0,30
8 ≤ n ≤ 40	0,23 <u>8</u>

Clase B:

- Herramientas portátiles.
- Equipo de la soldadura del arco que no es equipo profesional.

Clase C:

- Equipo de la iluminación.

Tabla 2.7: Límites para equipos clase C

Harmonic order	Maximum permissible harmonic currrent expressed as a percentage of the input current at the fundamental frequency
2	2
3	30 ⋅ λ *
5	10
7	7
9	5
11 ≤ n ≤ 39	3
(odd harmonics only)	
* λ is the circuit power factor	

Clase D:

Equipo tiene un especificó poder menos que o igual a 600 W, de los siguientes tipos:

- computadoras personales y el monitor de la computadora personal.
- receptores del televisor.

Tabla 2.8: Límites para equipos clase D

Harmonic order n	Maximum permissible harmonic current per watt mA/W	Maximum permissible harmonic current A
3	3,4	2,30
5	1,9	1,14
7	1,0	0,77
9	0,5	0,40
11	0,35	0,33
13 ≤ n ≤ 39 (odd harmonics only)	3,85 n	See table 1

Métodos de control simétricos que está inclinado a producir armónicos de orden bajo (nd 40) en la corriente de entrada puede ser usado para el control del suministro de energía a elementos provenientes de la calefacción que la fuente de poder de la entrada del seno de la onda es menos que o igual a 200 W, o que los límites de la tabla 3 no se exceda.

2.2.2.8 Medida de la corriente Armónica

Procedimiento de la Medida

Se ejecutará la medida de la corriente del armónico como sigue:

- Por cada orden armónico, medido de 1,5 s se facilita la medida del armónico en [r.m.s]. Presente en cada DFT.
- Calcula la aritmética y hace un promedio de los valores moderados del DFT cronometra ventanas, encima de los períodos de la observación.

El valor de entrada de energía a ser usado por el cálculo de límites se determinará como sigue:

Medida que el 1,5 s suaviza entrada activa impulsa en cada DFT cronometra ventana;

La corriente del armónico y la entrada de energía activa se medirán debajo de la misma prueba pero no necesita ser medida simultáneamente.

El valor de energía, será especificado por el fabricante y el documentó de prueba será informado. Se usará este valor para establecer límites durante emisiones de prueba cuando se especifiquen límites en cuanto a energía. Así da lugar a la duda acerca de que los límites aplicados por el fabricante especificarían cualquiera valor que está dentro de ±10% del valor real moderado. No esté menos que 90% ni más que 110% del valor de energía especificado por el fabricante en la informe de la prueba. En el caso que el valor moderado este fuera de esa tolerancia el valor se usará para establecer la energía moderada.

Para la clase C el equipo con el mismo principio presente y factor del potencia, especificado por el fabricante, se usará para calcular los límites. El mismo efecto se da para la clase D.

2.2.2.9 Armónico límites corrientes presentes.

El procedimiento por aplicar los límites y evaluar los resultados se muestra en figura 2.2.

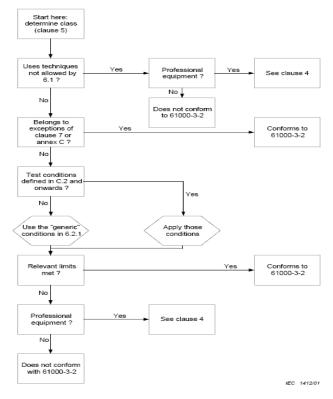


Figura 2.2: Diagrama de flujo de las clases de las pruebas para los armónicos

VOLTAJE

Funcionamiento normal:

0,9% por armónico de orden 3;

0,4% por armónico de orden 5;

0,3% por armónico de orden 7;

0,2% por armónico de orden 9;

0,2% por armónicos iguales de orden de 2 a 10;

0,1% por armónicos de orden de 11 a 40.

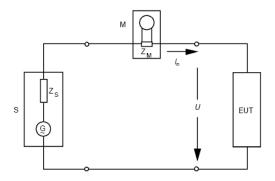


Figura 2.3: Diagrama de conexión con fuente de armónicos.

S power supply source
M measurement equipment
EUT equipment under test
U test voltage

Z_M input impedance of measurement equipment
Z_S internal impedance of the supply source
harmonic component of order n of the line current

open-loop voltage of the supply source

2.2.3 Dentro de la Norma 61000-4.7

"Compatibilidad electromagnética. [EMC]"

Definiciones relatadas al análisis de frecuencia.

Anotaciones: Se usan las anotaciones siguientes en la guía para el desarrollo de las series de Fourier. Porque está más fácil medir ángulos de fase por observaciones del cruce de ceros.

$$f(t) = c_0 + \sum_{m=1}^{\infty} c_m \sin\left(\frac{m}{N}\omega_1 t + \varphi_m\right)$$
 (2.10)

$$\begin{cases} c_m = |b_m + ja_m| = \sqrt{a_m^2 + b_m^2} \\ C_m = \frac{c_m}{\sqrt{2}} \\ \varphi_m = \arctan\left(\frac{a_m}{b_m}\right) \text{ if } b_m \ge 0 \\ \varphi_m = \pi + \arctan\left(\frac{a_m}{b_m}\right) \text{ if } b_m < 0 \end{cases}$$

$$(2.11)$$

$$\begin{cases} b_m = \frac{2}{T_w} \int_0^{T_w} f(t) \times \sin\left(\frac{m}{N}\omega_1 t + \phi_m\right) dt \\ a_m = \frac{2}{T_w} \int_0^{T_w} f(t) \times \cos\left(\frac{m}{N}\omega_1 t + \phi_m\right) dt \end{cases}$$

$$c_0 = \frac{1}{T_w} \int_0^{T_w} f(t) dt$$
(2.12)

Donde.

 ω l Es la frecuencia angular de la fundamental ω l = $2\pi f_1$

 $T\omega$ Es la anchura (o duración) de la ventana del tiempo $T\omega = NT1; T1 = 1/f1$ ventana del tiempo es ese tiempo mide por la función y se ejecuta la Trasformada de Fourier.

Cm Es la amplitud del la componente con la frecuencia $fm = \frac{m}{N} fm$

N Es el número de períodos fundamentales dentro de la anchura de la ventana;

Co Es el d.c. componente;

m Es el número ordinal (orden de la línea espectral) relacionado a la base de la frecuencia f = 1/Tw

Tabla 2.9: Requerimientos para corriente, voltaje y mediciones de potencia.

Class	Measurement	Conditions	Maximum error
	Voltage	$\begin{array}{c} U_m \geq 1\% \ U_{nom} \\ U_m < 1\% \ U_{nom} \end{array}$	±5% U _m ±0,05% U _{nom}
I	Current	$I_m \ge 3\% I_{nom}$ $I_m < 3\% I_{nom}$	±5% I _m ±0,15% I _{nom}
	Power	$P_m \ge 150 \text{ W}$ $P_m < 150 \text{ W}$	±1% P _{nom} ±1,5 W
П	Voltage	$\begin{array}{c} U_m \geq 3\% \ U_{nom} \\ U_m < 3\% \ U_{nom} \end{array}$	±5% U _m ±0,15% U _{nom}
	Current	$I_m \ge 10 \% I_{nom}$ $I_m < 10 \% I_{nom}$	±5% I _m ±0,5% I _{nom}

Inom: Nominal current range of the measurement instrument

Unom: Nominal voltage range of the measurement instrument

 U_m and I_m : Measured values

NOTE 1 Class I instruments are recommended where precise measurements are necessary, such as for verifying compliance with standards, resolving disputes, etc. Any two instruments that comply with the requirements of Class I, when connected to the same signals, produce matching results within the specified accuracy (or indicate an overload condition).

NOTE 2 Class I instruments are recommended for emission measurements, Class II is recommended for general surveys, but can also be used for emission measurements if the values are such that, even allowing for the increased uncertainty, it is clear that the limits are not exceeded. In practice, this means that the measured values should be lower than 90% of the allowed limits.

NOTE 3 Additionally, for Class I instruments, the phase shift between individual channels should be smaller than $n \times 1^{\circ}$.

2.2.4 Norma internacional - IEEE 519

Las normas con respecto a los armónicos han sido agrupadas por la IEEE en la norma 519: IEEE manifestando Recomendaciones Prácticas y Requerimientos para el Control de armónicas en Sistemas Eléctricos de Potencia. Existe un efecto combinado de todas las cargas no lineales sobre el sistema de distribución la cual tienen una capacidad limitada para absorber corrientes armónicas. Adicionalmente, las compañías de distribución tienen la responsabilidad de proveer alta calidad de abastecimiento en lo que respecta al nivel del voltaje y su forma de onda. IEEE 519 hace referencia no solo al nivel absoluto de armónicos producido por una fuente individual sino también a su magnitud con respecto a la red de abastecimiento.

Se debe tomar en cuenta que la IEEE 519 está limitada por tratarse de una colección de recomendaciones prácticas que sirven como guía tanto a consumidores como a distribuidores de energía eléctrica. Donde existan problemas, a causa de la inyección excesiva de corriente armónica o distorsión del voltaje, es obligatorio para el suministrador y el consumidor, resolver estos problemas.

El propósito de la IEEE 519 es el de recomendar límites en la distorsión armónica según dos criterios distintos, específicamente:

- 1. Existe una limitación sobre la cantidad de corriente armónica que un consumidor puede invectar en la red de distribución eléctrica.
- 2. Se establece una limitación en el nivel de voltaje armónico que una compañía de distribución de electricidad puede suministrar al consumidor.

2.2.5 Norma UNE - ENV 6100, 2-2 (1994)

Compatibilidad Electromagnética

Niveles de compatibilidad para las perturbaciones conducidas de baja frecuencia y la transmisión de señales en las redes públicas de alimentación en B.T.

Campo de aplicación

Perturbaciones producidas hasta 10 kHz. Por tanto trata de los armónicos pero también de otros tipos de perturbaciones tales como: fluctuaciones de voltaje, caídas de voltaje, microcortes, desequilibrios, etc. Se aplica a las redes alternas de

distribución a 50 o 60 Hz de voltaje máximo, 240 V en monofásico y 415 V en trifásico.

Objeto

Precisar los niveles de compatibilidad que hay que respetar en las redes públicas de B.T., por lo que los armónicos generados por cualquier aparato no deben perturbar la red por encima de los valores especificados y cada aparato debe poder funcionar normalmente en presencia de perturbaciones iguales a los niveles especificados.

Valores límite

Los niveles de armónicos en voltaje elegidos para las redes públicas de distribución se indican en la tabla de la Tabla 2.10.

Tabla 2.10. Valores mintes de compatibilidad						
	impares no los de 3	no Armónicos impares múltiplos de 3 Armónicos		•		cos pares
Rango	Uh (%)	Rango (h)	Uh (%)	Rango (h)	Uh (%)	
5	6	3	5	2	2	
7	5	9	1,5	4	1	
11	3,5	15	0,3	6	0,5	
13	3	21	0,2	8	0,5	
17	2	>21	0,2	10	0,5	
19	1,5			12	0,2	
23	1,5			>12	0,2	
25	1,2	·				
>25	0,2+0,5x25/h					
THD (V) < 8 %						

Tabla 2.10. Valores límites de compatibilidad

La tasa total de distorsión armónica en voltaje tiene un valor de THD (V) < 8 %. Por lo tanto, todos los aparatos deberán poder soportar este valor y al mismo tiempo será el máximo valor que todos los receptores podrán contaminar.

2.2.6 Norma UNE - EN 6100, 2-4 (1997)

Campo de aplicación

- Clase 1: Redes protegidas que tienen niveles de compatibilidad más bajos que los de las redes públicas.
- Clase 2: Entorno industrial en general. Los niveles de compatibilidad son los mismos que en las redes públicas.

• Clase 3: Entorno industrial severo.

Valores límite

En la Tabla 2.11, se indican los niveles máximos de armónicos en voltaje para los armónicos de rango impar no múltiplos de 3 para las distintas clases.

Armónicos impares no múltiplos de 3 Clase 1 Clase 2 Clase 3 Rango Uh (%) Uh (%) Uh (%) 5 3 8 6 7 3 5 7 11 3 3,5 5 4,5 3 13 3 17 2 2 4 1,5 19 1,5 3,5 23 1,5 1,5 25 1,5 1,5 3,5 $5x \sqrt{11/h}$ >25 0,2+12,5/h1,5

8

10

Tablas 2.11. Valores límites para las distintas clases.

2.2.7 Norma EN 50 160

THD (V)

Características del voltaje suministrado para las redes públicas de distribución.

La Norma EN 50 160 define límites y variaciones de la calidad de voltaje. Mediante un control completo según EN 50 160 implica altas exigencias al método de mediciones. Se debe medir un gran número de parámetros de voltaje en forma continua (frecuencia, valores reales, caídas e incrementos de voltaje, interrupciones del voltaje, concentración de armónicos de voltaje, índice de severidad Flicker, etc.); y se debe grabar los valores medidos ininterrumpidamente por un período de por lo menos una semana.

Tabla 2.12. Valores límites de distorsión individual en voltaje

	impares no os de 3	Armónicos impares múltiplos de 3		Armónicos pares	
Rango (h)	Uh (%)	Rango (h)	Uh (%)	Rango (h)	Uh (%)
5	6	3	5	2	2
7	5	9	1,5	4	1
11	3,5	15	0,5	624	0,5
13	3	21	0,5		
17	2				
19	1,5				
23	1,5				
25	1,2				
	THD (V) < 8 %				

Tabla 2.13. Principales parámetros de la norma EN 50 160

Parámetros	Método de medición	Intervalo	Período de monitoreo
Variaciones de voltaje	Promedio de los valores RMS instantáneos	Intervalo de 10 minutos	1 semana
Eventos repentinos en Voltaje	Duración y amplitud	Capturado como evento individual	1 día
Interrupciones de voltaje	Duración	Capturado como evento individual	1 día
Armónicos e Interarmónicos de voltaje	Promedio de valores RMS 20 ms (acorde a IEC 1000-4-7).	Intervalo de 10 minutos	1 semana
Flicker Plt	Índice de severidad Flicker de corto tiempo (Pst) para 10 minutos (acorde a IEC 868 o IEC 1000-4-15).	Promedio de 12 valores Pst (= 2h intervalo)	1 semana
Desequilibrio	Valor promedio de relación entre componentes con secuencia negativa a secuencia positiva.	Intervalo de 10 minutos	1 semana
Telecomandos	Clasificación de valores promedio de 3 - segundos.	Intervalo de 3 segundos	1 día
Frecuencia de red	Clasificación de valores promedio de 10 - segundos.	Intervalo de 10 segundos	1 semana

2.2.8 Norma UNE - EN 6100-3-2 (1997)

Compatibilidad electromagnética: límites de emisión de corriente armónica (para aparatos de In o 16 A por fase).

Norma aplicable a los aparatos eléctricos, destinados a ser conectados en redes de 50 o 60Hz de voltaje máximo, igual a 240 V en monofásico y 415 en trifásico.

Los aparatos se clasifican de la manera siguiente:

- Clase A: aparato trifásico equilibrado y cualquier otro aparato distinto de los indicados en una de las otras clases. En la Tabla 2.14. Se indican los valores máximos de emisión para los aparatos clase A.
- Clase B: herramientas portátiles.
- Clase C: aparatos de iluminación.

• Clase D: aparatos de una potencia < 600 W y una corriente de entrada con forma de onda "especial", como los receptores de TV.

Tabla 2.14. Valores límites de máxima distorsión individual en intensidad admisibles por cada aparato clase A.

Armónicos impares		Armónicos pares		
Rango (h)	Uh (%)	Rango (h)	Uh (%)	
3	2,3	2	1,08	
5	1,14	4	0,43	
7	0,77	6	0,3	
11	0,4	8 <h<40< td=""><td>0,23x8/h</td></h<40<>	0,23x8/h	
13	0,21			
15 <h<39< td=""><td>0,15x15/h</td><td></td><td></td></h<39<>	0,15x15/h			

Norma PR - CEI 1000-3-4

Compatibilidad electromagnética; límites de emisión de corriente armónica en las

Redes de B.T. para aparatos de In > 16 A por fase.

Esta norma será aplicable a los aparatos eléctricos destinados a ser conectados en redes de 50 o 60 Hz de voltaje máximo, igual a 240 V en monofásico y 415 en trifásico y cuya intensidad nominal sea mayor de 16 A.

- Categoría 1: Aparatos poco contaminantes que pueden ser conectados a la red pública sin restricción. Se indicarán los límites de Ih/I1 que como máximo deberán emitir.
- Categoría 2: Se podrán conectar a la red si la relación entre la potencia del equipo y la potencia de cortocircuito en el punto de conexión no excede de cierto valor. En función de esta relación, se imponen unos límites de porcentaje de armónicos.
- Categoría 3: Si se exceden los límites de la categoría 2, deberán utilizarse medios de reducción de armónicos, o bien llegar a un acuerdo particular con el distribuidor de energía.

Tabla 2.15: Límites de inyección de corriente armónica especificados en la IEEE 519-199

LÍMITES PARA CONTENIDO ARMÓNICO DE CORRIENTES (IEEE 519)							
Valores de lh en porcentaje de l∟							
Vn ≤ 69 kV							
SCR = I _{sc} / I _L	h < 11	11 ≤ h < 17	17 ≤ h < 23	23 ≤ h < 35	TDD (%)		
< 20 ⁽¹⁾	4.00	2.00	1.50	0.60	5.00		
20 - 50	7.00	3.50	2.50	1.00	8.00		
50 - 100	10.00	4.50	4.00	1.50	12.00		
100 - 1000	12.00	5.50	5.00	2.00	15.00		
> 1000	15.00	7.00	6.00	2.50	20.00		
69 kV < Vn ≤ 161 kV							
< 20 ⁽¹⁾	2.00	1.00	0.75	0.30	2.50		
20 – 50	3.50	1.75	1.25	0.50	4.00		
50 - 100	5.00	2.25	2.00	1.25	6.00		
100 - 1000	6.00	2.75	2.50	1.00	7.50		
> 1000	7.50	3.50	3.00	1.25	10.00		
Vn > 161 kV							
< 50 ⁽¹⁾	2.00	1.00	0.75	0.30	2.50		
≥ 50	3.50	1.75	1.25	0.50	4.00		

2.3 Comparación de las normas.

Introducción.

Las normas de medición de electricidad ANSI C12 se usan en muchos países alrededor del mundo. Mientras que los mayores mercados para los medidores de electricidad bajo norma ANSI están en Canadá, México y los Estados Unidos, ellos también se están usando por parte de muchas empresas de servicio de electricidad en partes de Asia, América Central, Sur América y otros.

Las normas de medición de electricidad usadas por las empresas de servicio público alrededor del mundo, varían, analizaremos las más importantes las normas American National Standards Institute (ANSI) o International Electrotechnical Commission (IEC).

Adicionalmente, es común para las empresas de servicio público referir las normas de ambas organizaciones. Algunas empresas de servicio público instalan medidores de cada tipo en el mismo sistema. Similarmente, los avances en el diseño de la medición electrónica pueden permitir que algunos medidores cumplan con los requerimientos de comportamientos de medición de ambas normas.

Similar a la serie de medidores de electricidad de normas IEC, la serie ANSI C12 cubre tanto los equipos de medición de electricidad como los protocolos de comunicación para los medidores de electricidad. Existen tres normas activas para

los equipos de medición y tres normas activas para las comunicaciones con los medidores. Las siguientes son estas seis normas:

Tabla 2.15: Designación y códigos de las normas ANSI

Designación	Título	
ANSI C12.1-2001	Code for Electricity Metering	
ANSI C12.10-1997	Electromechanical Watthour Meters	
ANSI C12.18-1996	Protocol Specification for ANSI Type 2 Optical Port	
ANSI C12.19a-2001	Utility Industry End Device Tables	
ANSI C12.20-1998	Electricity Meters 0.2 and 0.5 Accuracy Class	
ANSI C12.21-1999	Protocol Specification for Telephone Modem Communications	

A continuación describiremos donde existen similitudes generales entre las normas IEC y ANSI.

2.3.1 Comparación con Normas ANSI

ANSI C12.1 es la norma global de comportamiento de equipos para medidores de facturación de electricidad. Tales como condiciones de referencia, procedimientos de prueba de aceptación de diseño, pruebas de soporte de frentes de onda, pruebas de aislamiento, pruebas del medio ambiente y pruebas mecánicas.

En un sentido general, esta norma es similar a la combinación de las normas IEC 62052-11, General Requirement e IEC 62053-11, Electromechanical Meters.

La norma ANSI C12.10 sirve principalmente para especificar las dimensiones generales y de terminales de los medidores. Los medidores ANSI, a diferencia de los medidores IEC, son de sección redonda y tienen típicamente cuchillas en la parte posterior que están diseñadas para instalarse dentro de una base socket. Las normas ANSI permiten un número diferente de terminales de conexión tales como monofásicos, dos elementos, tres elementos, auto-contenidos y para uso con transformadores de instrumentos.

La norma ANSI C12.20 especifica el comportamiento de medición más preciso y los límites de influencia para medidores clase 0.2% y 0.5%. Esta norma es similar a la norma IEC 62053-22, Static Meters – class 0.2S and 0.5S. En particular ella especifica los requerimientos de comportamiento de carga, comportamiento del factor de potencia, comportamiento de variación de tensión, comportamiento de variación de frecuencia, igualdad de circuitos (para medidores polifásicos).

La norma ANSI C12.18 es una norma que especifica como transportar datos. En esta norma ha sido designado el lenguaje PSEM (Protocol Specifications for Electric Metering) para proporcionar un interfaz entre el aparato de medición y cualquier otro aparato sobre un medio de comunicaciones punto a punto. Se lo ofrece para usarse a través del puerto óptico del medidor de electricidad. Especifica los detalles de bajo nivel, tales como tasa de bit, esquema de detección de errores y fuera de tiempo. Específica además la entrada y salida de la sesión, estructuras de lectura, escritura y comandos. Esta norma específica además las dimensiones e intensidades ópticas para el puerto óptico del medidor.

La norma ANSI C12.19 es idéntica a la norma IEEE 1377-1997. Define la estructura de la tabla para pasar los datos de la aplicación de la empresa de suministro de electricidad entre un medidor y la computadora, pero no define el lenguaje o protocolo del aparato. Una descripción breve de las tablas incluiría las especificaciones para la configuración de consumo (kWh y otros), demanda, el control de la pantalla del medidor, seguridad, programa de tiempo de uso, definiciones de perfil de carga, registro de eventos y tablas definidas por el usuario.

La norma ANSI C12.21 es una extensión de la norma C12.18 que permite el uso de un canal remoto de comunicaciones punto a punto, particularmente por telefonía.

2.3.2 Comparación con Normas IEC

La diferencia más obvia entre los medidores IEC y los medidores ANSI, es que el medidor ANSI es de sección redonda y está diseñado para enchufarse en una base socket mientras que el IEC es de sección rectangular y está diseñado con una bornera para aceptar cables con la punta pelada. Los medidores IEC se usan principalmente en el interior (o en una caja protectora) y los medidores ANSI se usan principalmente al exterior (Intemperie).

Existen muchas similitudes entre las normas. Debido a que ambos medidores, IEC y ANSI ejecutan la misma función principal, sobre todo las pruebas

que prácticamente iguales. Sin embargo, debido a las diferencias en las especificaciones de niveles y condiciones de prueba, los medidores IEC y ANSI no se prueban en condiciones idénticas. Ambas normas son aplicables a frecuencias de 50 Hz o 60 Hz.

Las normas IEC omiten las dimensiones de la bornera. Las normas ANSI especifican plenamente el tamaño y forma de las conexiones externas al medidor, tanto para los medidores tipo socket (base-S) como para los medidores tipo bornera (base-A).

Otro efecto importante es la corriente nominal. Las normas ANSI definen un número pequeño de valores de corriente máxima (por ejemplo 200A o 10A) y todos los otros requerimientos de comportamiento basados en la carga.

Recíprocamente, las normas IEC usan un punto de calibración de mitad de escala en el cual basar los otros requerimientos de comportamiento. El término corriente básica, (Ib) se usa para medidores IEC conectados directamente y el término corriente nominal, (In) se usa para medidores operados por transformadores de medida en función de instrumentación. En los medidores IEC la corriente máxima se especifica en forma separada de la corriente básica o corriente nominal.

Otro hecho importante es el uso del término clase. En las normas ANSI, clase es la máxima corriente nominal del medidor.

Por ejemplo, un medidor ANSI clase 20 tendría una corriente nominal máxima de 20 amperios.

En las normas IEC, el término clase es la especificación de precisión.

Por ejemplo, un medidor IEC clase 2 tendría una precisión nominal básica de 2 por ciento.

2.3.3 Para los dos casos los Protocolos son normalizados.

Históricamente, cada fabricante ha desarrollado y soporta su propio protocolo. Recientemente, se han desarrollado normas disponibles públicamente que permiten que un solo aparato de lectura, lea medidores de diferentes vendedores.

Por razones de seguridad, tanto los medidores ANSI como los IEC usan una ruta óptica de comunicaciones a través de la tapa mediante el óptico. La distancia física y señales ópticas son las mismas entre las normas de medición ANSI e IEC.

2.4 Beneficios al cumplir las normas.

Como beneficio representativo podemos mencionar que las normas, regulan el uso de la capacidad de corriente en los alimentadores primarios y secundarios así como normalizan el uso de bornera para corrientes medias y base socket para corrientes hasta 200A.

El uso de la comunicación punto a punto entre el medidor y el computador con un mismo protocolo beneficia a las empresas de suministro de electricidad.

Los parámetros programables son similares en magnitudes y secuencias según las necesidades de los usuarios.

Que cualquiera de estas normas permite realizar análisis de calidad de energía sin importar el nivel de tensión, con un mismo protocolo de comunicación.

Al cumplir con las estipulaciones de la normativa se reduce las pérdidas técnicas y por ende cumplir con las regulaciones Nacionales de calidad de suministro de electricidad en todos los ámbitos, como son potencia reactiva, penalizaciones por bajo factor de potencia, fliker, distorsión armónica.

CAPÍTULO III.

EQUIPOS DE MEDICIÓN

3.1 Medidor de armónicos de corriente y voltaje.

Para este estudio existe una cantidad considerable de elemento e análisis de armónicos por ello es necesario la ayuda de ciertos recursos físicos, económicos y humanos para obtener la información necesaria para el estudio a realizar y de esta forma elegir el método y el equipo más adecuado

La eficacia de servicio de la red eléctrica es un contenido que preocupa a usuarios como a las propias empresas distribuidoras. La eficacia de servicio debe conocerse como una ausencia de interrupciones, sobretensiones y deformaciones de la onda producidas por armónicos en la red y variaciones de voltaje suministrado al usuario; esto en un marco de estabilidad del voltaje, la frecuencia y la continuidad del servicio eléctrico.

Los armónicos de corriente y voltajes sobrepuestos a la onda fundamental tienen efectos combinados sobre los equipos y dispositivos conectados a las redes de distribución.

Para detectar los posibles problemas de armónicos que pueden existir en las redes e instalaciones es necesario utilizar equipos de medida de verdadero valor eficaz, ya que los equipos de valor promedio sólo proporcionan medidas correctas en el caso de que las ondas sean perfectamente sinusoidales. En el caso en que la onda sea distorsionada, las medidas pueden estar hasta un 40 % por debajo del verdadero valor eficaz.

Actualmente, la eficacia de la energía es el resultado de un servicio constante; en años recientes la calidad adquiere mayor importancia debido al incremento del número de cargas sensibles en los sistemas de distribución, las cuales muestran necesidades específicas en cuanto al servicio se refiere.

Diferentes formas de onda de la tensión y la corriente.

El resultado de la presencia de cargas no lineales es que la forma de onda de la corriente y la tensión en el flujo de potencia pueden ser muy variables. De hecho como la presencia de armónicos significa que la carga es no lineal, la forma de onda de la tensión y corriente son diferentes, ó significativamente diferentes. Es importante observar como la distorsión armónica para un sistema de potencia es medido y reportado en base a la tensión, ya que un sistema de potencia es diseñado y se espera que opere como una fuente de tensión constante. Sin embargo, los sistemas de potencia son casi una fuente de tensión constante, las cargas no lineales usualmente originan más distorsión en la corriente que en la tensión.

Métodos para analizar los armónicos.

Existe una gran variedad de métodos analíticos usados para estudiar los armónicos y evaluar las soluciones de su problemática. Todos los métodos de análisis de armónicos emplean aproximaciones, linealizaciones de uno u otro tipo, presentando ventajas y desventajas los diferentes métodos, ninguno de ellos es el mejor en todas las situaciones. Ocasionalmente, dos o más métodos nos darán ligeras diferencias en los resultados cuando se usan para estudiar el mismo problema, en muy raras ocasiones pueden tenerse recomendaciones contradictorias de cómo reducir los armónicos.

3.1.1 EQUIPO DE MEDICIÓN MEMOBOX 300

Es un instrumento de medida para registrar los parámetros eléctricos del sistema, supervisión de la calidad de energía y para monitorear perturbaciones.

Los valores registrados son almacenados dentro del equipo y la capacidad de almacenamiento dependerá de la tasa de muestreo de la información.

Este equipo se ha utilizado para medir la contaminación armónica que producen los focos ahorradores, y para tener datos exactos de las mediciones realizadas en los transformadores de diferentes zonas del cantón Cuenca, tomando en consideración el tipo de zona.

El MEMOBOX 300 provee unos resultados satisfactorios de medición debido a:

- ✓ Diseño compacto y ligero.
- ✓ Medición de esquemas de fase a neutro y fase fase.

- ✓ Amplio rango de voltaje de entrada.
- ✓ Transformadores de corriente tipo flexible.
- ✓ Verificación de la conexión de voltajes y corrientes vía LED's IP65.
- ✓ Temperatura de operación: Entre 10° C y 55° C.
- ✓ Convertidor analógico/digital: 16 bits.
- ✓ Frecuencia de muestreo: 10,24 kHz.
- ✓ El software provisto con el MEMOBOX 300 se denomina CODAM Plus, este software permite comunicar, programar, descargar la información y analizar los resultados obtenidos por el MEMOBOX 300.

El menú del MEMOBOX 300 permite descargar los datos y programas en forma completa. En la Figura 3.1 se muestra la estructura del MEMOBOX 300 y la distribución de pines.

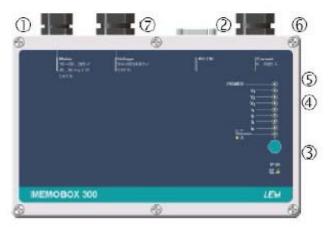


Figura 3.1. Distribución de pines del MEMOBOX 300

- 1.-Conector para suministro de energía.
- 2.-Puerto RS232.
- 3.-Botón de expansión.
- 4.-Indicadores LED's de los canales de medida.
- 5.-Indicador LED de estado de energía.
- 6.-Canales de entradas de corriente.
- 7.-Canales de entradas de voltaje.

3.1.2 EQUIPO DE MEDICIÓN TOPAS 1000

TOPAS 1000 es un analizador de energía que se puede utilizar para detectar fuentes de interferencia para evaluar calidad del voltaje de las redes de acuerdo con los estándares aplicados.

Las medidas siguientes se pueden efectuar con TOPAS 1000:

- ✓ Detección de la fuente de perturbación.
- ✓ Análisis de voltaje, la corriente y la energía.
- ✓ Medidas de la carga y energía.

- ✓ Análisis de Transitorios.
- ✓ Análisis de la señal de voltaje.
- ✓ Análisis de la calidad de servicio.

Figura 3.2. Equipo de medición TOPAS 1000

La construcción mecánica es extremadamente robusta (IP65) de TOPAS 1000 permite usar la unidad especialmente en condiciones sucias o húmedas. La memoria de datos de 1 GB proporciona un método de efectuar registros a largo plazo.

El instrumento puede actuar como memoria de datos, que recoge datos medidos sobre un período del tiempo más largo (meses) y que los transfiere en línea a una computadora de análisis.

TOPAS 1000 da medidas de 4 corrientes y 4 voltajes o, como alternativa, puede también registrar 8 voltajes. El LEM Topas 1000 puede medir:

Para cada fase individual y trifásica:

- ✓ V RMS inmediato/promedio/minuto/máximo.
- ✓ W inmediato/promedio/minuto/máximo.
- ✓ VAR inmediato/promedio/minuto/máximo.
- ✓ Medio del delta del VAR
- ✓ Instante/medio del VA
- ✓ Instante/medio del factor de la energía
- ✓ kWh, kVARh, kVAh
- ✓ Demanda para W, VA, instante del factor de energía/máximo.
- ✓ Desequilibrio del voltaje.
- ✓ kW instantáneo.
- ✓ VAR instantáneo.
- ✓ Frecuencia.
- ✓ THD.
- ✓ Los armónicos 0 a 50, para la corriente, el voltaje y también accionan con ángulo y modo.

- ✓ Armónicos.
- ✓ Las medidas se realizan automáticamente, y el analizador calcula los índices cortos y largos de la severidad de la duración.
- ✓ Análisis transitorio en todo el voltaje y canales actuales
- ✓ Tarifa del muestreo: 10 kilociclos (10 megaciclos de opcional)
- ✓ Tipo del disparador: por los niveles del RMS, pico, disturbio, derivado, exceso de nivel de THD o armónicos individuales, etc.

3.1.3 EQUIPO DE MEDICIÓN NEXUS 1252

En este equipo los datos de alto desempeño de uso y calidad de potencia siempre están disponibles en línea en el medidor de potencia Nexus para proveer la información de sistemas de potencia de manera inmediata. Este equipo (Nexus 1252) provee grabación avanzada de disturbios, análisis de Flicker y, reportes de Calidad de Potencia basados en Inteligencia Artificial. Se puede emplear la precisión del Nexus para mediciones primarias, sub Medición o en paralelo al medidor de la compañía eléctrica, lo que lo hace un instrumento muy valioso para el estudio de armónicos.

El registro del 1252 en el programa Visor de Nexus también nos ofrece la posibilidad de hacer un análisis más exhaustivo por parte de la visualización de interarmónicos.

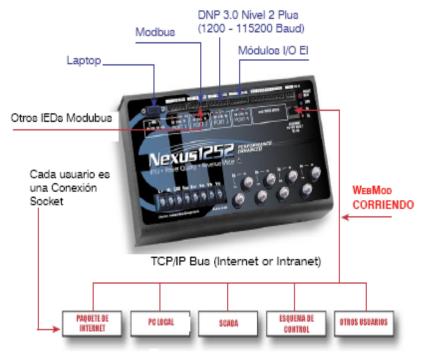


Figura 3.3. Equipo de medición NEXUS 1252

3.2 Características y principios de funcionamiento.

3.2.1 CARACTERÍSTICAS DEL ANALIZADOR MEMOBOX 300

El MEMOBOX 300 es un Analizador de Redes para el monitoreo de la calidad de Tensión, investigación de perturbaciones y optimización de Redes en Baja y Media Tensión.

Existen tres diferentes modelos para cubrir los requerimientos de los usuarios.

- ✓ Tensión monofásica
- ✓ Tensión trifásica
- ✓ Tensión trifásica y Potencia

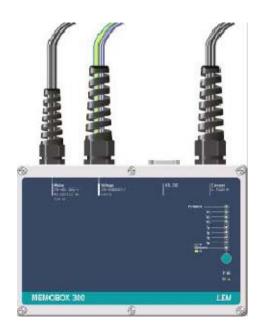


Figura 3.4. Equipo de medición MEMOBOX 300

Características principales

- ✓ Registro y análisis de voltaje, corriente, y factor de potencia.
- ✓ Rango de voltaje: 115 830 V.
- ✓ Transductores de Corriente LEM-flex (fijos), rango: 5 1500 A.
- ✓ Configurable para mediciones de redes 3 hilos Delta o 4 hilos Estrella.
- √ Valores Min y Max de voltaje, corriente, y potencia ajustable desde 8 m seg / 60 Hz.
- ✓ Disminuciones de voltaje, sobrecargas, e interrupciones ajustables desde 8 m seg.
- ✓ Mediciones de Flicker según norma IEC 61000-4-15.
- ✓ Se conecta al computador por puerto RS-232.
- ✓ Software Codam Plus para programación, adquisición, y análisis incluido
- ✓ A prueba de intemperie.
- ✓ Compacto en dimensiones, peso de 1.5 Kg

3.2.2 CARACTERÍSTICAS DEL ANALIZADOR TOPAS 1000

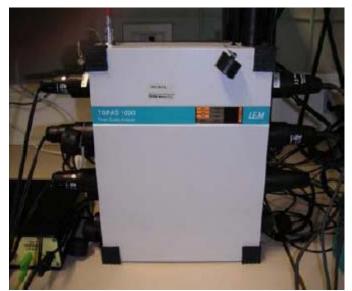


Figura 3.5.- Conexión del TOPAS 1000

Características principales

Analizador con 8 canales de entrada a 16 bits (4 corriente/4 tensión ó 8 de tensión), interface serie RS232, ethernet, disco duro 1 GB, IP65. Incluyendo: 1 cable RS232, 1 cable ethernet, 1 cable de alimentación y el software apropiado.

Función Trigger. El nivel del trigger puede ser seleccionado manualmente o automáticamente (3 sec), análisis de 4 canales de tensión y 4 de corriente, análisis de 8 canales de tensión, armónicos, THD.

Función de análisis de transitorios-10 Mhz. Análisis de 4 canales de tensión, frecuencia de muestreo 100 kHz-10 MHz, rango de tensión 6 kV., tiempo de registro por evento 20 ms-2 s.

1 Modem GSM para Topas 1000, que ofrece la posibilidad de comunicar sin hilos con el TOPAS 1000, sin importar donde se encuentre el equipo. Incluye: 1 modem GMS, 1 alimentador, 1 cable RS232 y 1 antena.

- ✓ 4 transformadores de corriente tipo pinza: 5-50 A.
- ✓ 4 transformadores de corriente tipo pinza: LEMFLEX 10-1000 A, 600 V.
- ✓ 1 transformadores de corriente tipo pinza: 10-100 A.
- ✓ 4 sensores de tensión 400 V con conexiones.

- ✓ 1 cables paralelo para conexión al ordenador.
- ✓ 2 cables de comunicación (uno rojo y otro negro).
- ✓ Peso de 4Kg.

Conexión del equipo TOPAS 1000 a la red

Las conexiones del TOPAS 1000 pueden variar según el tipo de sistema a medirse pero la conexión más usual para transformadores de distribución en el lado de bajo voltaje es la siguiente:

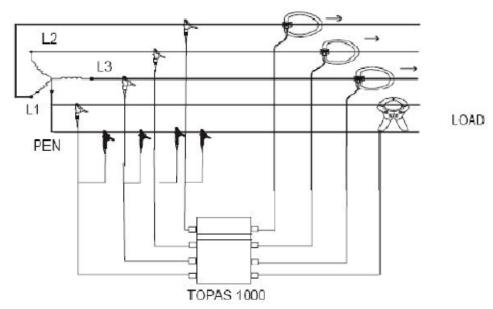


Figura 3.6.- Conexiones del equipo de medición TOPAS 1000

3.2.3 CARACTERÍSTICAS DEL NEXUS 1252

Este equipo es un dispositivo robusto y durable. Provee considerable protección y aislamiento contra Agentes Externos Dañinos.

RANGO DE ENTRADA DE VOLTAJE

- ✓ 150Voltios L-N, 300VL-L(Sufijo-120)(Emplee PTs externos para extender el rango)
- ✓ 300 Voltios L-N, 600 Voltios L-L (Sufijo-G)

CAPACIDAD DE RESISTENCIA DE ENTRADA DE VOLTAJE

- ✓ Entradas de Voltaje ópticamente aisladas a 2500V DC.
- ✓ Cumple con ANSI C37.90.1 (Capacidad de Surge Withstand)

RANGO DE ENTRADA DE CORRIENTE

- ✓ 5 amperios 2x continuo programable a cualquier rango de CT
- ✓ Registro de corriente de falla 60 amperios Pico secundario basado en la plena escala de 5 Amps

CAPACIDAD DE RESISTENCIA DE ENTRADA DE CORRIENTE

- ✓ 100 amperios por 10 Segundos
- ✓ 300 amperios por 1 Segundo

BURDEN

- ✓ Entradas de Voltaje: 0.05VA Max
- ✓ Entradas de Corriente: 0.005VA Max

AISLAMIENTO

- ✓ Todas las entradas y salidas aisladas a 2500 VDC.
- ✓ Todos los puertos de comunicación aislados entre si

RANGO DE TEMPERATURA

- ✓ Temperatura de Operación: (-40 a +80)°C
- ✓ Humedad: hasta 95% No condensable

METODO DE REGISTRO

- ✓ Hasta 512 Muestras/ Ciclo (Programable)
- ✓ Convertidores Duales con resolución de 16 Bit A/D
- ✓ Emplea tecnología Accu-measure Patentada True RMS

RANGO DE PRECISION

- ✓ Este equipo cumple y supera los requisitos de precisión de las normas ANSI C12.20 e IEC687.
- ✓ Aprobación Industrial Canadiense para Medición de Facturación: #AE-1069

TIEMPO DE ACTUALIZACION

- ✓ 50 mseg. Lecturas de Alta Velocidad
- ✓ 1 Segundo Lecturas de Clase Facturación

REQUERIMIENTOS DE FUENTE DE PODER

- ✓ 90–276 Voltios AC/DC (Sufijo -D2)
- ✓ 18–60 Voltios DC (Sufijo -D)
- ✓ Burden: 20 VA Max

RANGO DE FRECUENCIA

✓ 20–400Hz

FORMATO DE COMUNICACIÓN

- ✓ Bits de Paro y Paridad Programables
- ✓ Protocolos de Comunicación: Modbus TCP/IP ASCII/RTU y DNP 3.0 Nivel 2 Plus
- ✓ 4 Puertos de comunicación, 2 Puertos Esclavos, 2 seleccionables Maestro/Esclavo.
- ✓ Todos los puertos empelan comunicación RS-485 de 2 hilos.
- ✓ 1 Puerto Seleccionable RS232 / RS485
- ✓ INP2 Modem 56k Con Capacidad Dial-Out
- ✓ INP100 Ethernet con Total Web Solutions 10/100BaseT

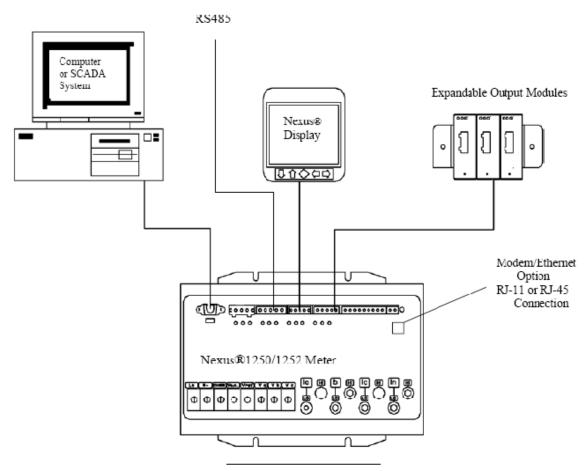


Figura 3.7. Distribución de pines del NEXUS 1252

CONSTRUCCION

✓ Embebido en Cubierta de Metal. Todo El hardware es de Acero Inoxidable.

CUMPLIMIENTO

- ✓ ANSI C12.20 Clase 0.2 e IEC687 (Exactitud)• ANSI C37.90.1 (Surge Withstand)
- ✓ ANSI C62.41 (Surge)
- ✓ ANSI/IEEE C37.90.1 Surge Withstand
- ✓ IEC 1000-4-2 (Descarga Electro Estática)
- ✓ IEC 1000-4-3 Inmunidad Radioactiva
- ✓ IEC 1000-4-4 Transigente Rápido
- ✓ IEC 1000-4-5 Surge (Inmunidad)
- ✓ IEC 868 Medidor de Flicker
- ✓ IEC 61000-4-15 Medidor de Flicker
- ✓ Marcado CE
- ✓ Listado UL y cUL

3.3 Utilización y valores a ser medidos.

Los valores que son medidos están en una base de datos del equipo utilizado la cual es procesada y analizada para nuestro estudio. Los parámetros que nos interesan medir son V, I, P, Q, S, FP, THD%, Armónicos, Además todo dependerá de lo que muestre el equipo que se empleará, sabemos que este equipo mide muchos más parámetros los cuales no son de mucha importancia para este estudio.

Cuando conectamos el equipo los valores a ser medidos dependerán de la programación del mismo, este mide armónicos hasta el orden 255avo

3.4 Procedimientos de medición.

Procedimiento de Pruebas a Equipos NEXUS

- 1. Medir niveles de tensión e intensidad del punto donde se colocará el equipo.
- 2. Proveer energía de alimentación al equipo (de acuerdo al modelo)
- 3. Conectarse vía serial RS232 al equipo (cable serial macho/hembra DB9) por medio del puerto 1 del equipo (switch en posición de RS232)
- 4. Ejecutar el software Communicator EXT en su PC.
- 5. Ejecutar comando CONNECT de la tecla de acceso directo Valores por defecto de fábrica:
 - ♣ Device Address : 1♣ Baudrate: 57,600
 - **♣** Port: Según la PC de prueba
 - **♣** Protocol: Modbus RTU

- 6. Revisar el modelo del equipo en la pantalla de "Device Status" que aparece de forma automática una vez se logra la comunicación con el equipo Valores esperados:
 - **♣** Device Taype: NEXUS según modelo
 - **♣** NVRAM: según opción
 - **♣** Protection: Full Access Password Protection Disabled
- 7. De la barra de tareas, seleccionar "TOOLS/ Retrive nexus time" y visualizar los datos de fecha y hora para validar los mismos.
- 8. En caso de tener fecha u hora inválidos, de la barra de tareas, seleccionar "TOOLS/Set Nexus Time", emplear el comando "Use PC Time" para enviar la fecha y hora requerida o ingresar manualmente en las casillas presentadas, finalmente ejecutar "SEND"
- 9. Verificar nuevamente si el comando de fecha y hora fue recibido correctamente por el equipo en "TOOLS/ Retrive nexus time"
- 10. Con el icono de acceso directo "Diagrama de Fasores" acceder a la representación gráfica del diagrama de fasores.
- 11. Conectar uno a uno los canales de voltaje (Va,Vb,Vc y Vn si aplica) y monitorear desde la pantalla de la PC el correcto "faseo"
- 12. Conectar uno a uno los canales de corriente (Ia, Ib, Ic e In si aplica) y monitorear respecto al voltaje correspondiente a cada fase, el correcto "faseo".
- 13. Si todo se encuentra congruente, salir con el comando "OK".
- 14. Con el icono de acceso directo "Polling" verificar que la potencia real total (W) sea positiva y si es así, proceder a cerrar la ventana con el comando "OK"
- 15. Con el icono de acceso directo "Profile" obtener la configuración del equipo.
- 16. Programar el equipo de acuerdo a las características requeridas por el usuario.
- 17. Dentro de la pantalla de "Device Profile" que se despliega de manera automática después de ejecutar el paso anterior, ejecutar "LOAD" y cargar la configuración buscando en el explorador que aparece automáticamente y una vez encontrado el archivo maestro (con nombre ""), seleccionar "Abrir"
- 18. Descargar la configuración maestra por medio del comando "UPDATE", entonces aparecerá una serie de mensajes como sigue:
 - → Si se tienen archivos almacenados previamente en el equipo la pantalla "Device Profile Update" aparecerá automáticamente instándole a decidir si se quiere descargar la información en memoria previa al cambio de configuración (YES) o si se desea ignorar este contenido el cual será borrado al momento de descargar la configuración (NO), seleccione esta última para efectos de prueba.
 - ♣ Como resultado de haber seleccionado la opción NO entonces una segunda advertencia aparece en la pantalla indicándole que perderá los datos almacenados en el equipo, si desea cancelar la acción escoja (YES), para continuar con el proceso de configuración escoja (NO), nuevamente para efectos de prueba seleccione NO.
 - ♣ Seguidamente aparece automáticamente la pantalla "Step 2 Of. 3: Mantain Connected Device Settings" indicándole CHECAR las casillas de los valores que desee se mantengan inalterados al descargar la configuración al equipo, ellos son:
 - 1. Meter designation (el nombre del medidor)

2. Network Settings (configuración de red Ethernet)

De lo contrario, si no checa las casillas, se permite que las modificaciones que se

hayan hecho al nombre y ethernet sean asumidas por el equipo, deje las ambas

casillas sin seleccionar y presione CONTINUAR

- Finalmente el software comenzará el proceso de configuración del equipo, devolviéndonos automáticamente a la pantalla "DEVICE PROFILE" una vez terminada esta tarea.
- 19. Salir de la pantalla de configuración (Device Profile) por medio del comando "Exit Device Profile Editor" seguido aparece una pequeña pantalla preguntando si se está seguro de querer salir, ejecutar (Yes)
- 20. Ejecutar el comando de Borrar Memoria por medio de la barra de tareas en la pantalla principal empleando "TOOLS / Reset Nexus Information" en donde aparecerá una pantalla con tres viñetas y se deberá hacer lo siguiente :
 - Viñeta "LOG DATA":
 - 1. Seleccionar todas las variables presentes mediante un "click" para colocar un Cheque en cada una de las variables de la lista
 - 2. Presionar "OK" un signo de advertencia aparecerá indicando que se perderá toda la información contenida en el equipo, pero como nuestro objetivo para esta prueba es ese mismo, seleccionar "YES".
 - 3. Finalmente aparecerán pequeñas pantallas indicándonos la sección de memoria que se está borrando, seleccionar "OK" en cada caso.

↓ Viñeta "ACUMMULATORS /MAX/MIN & DEMANDS":

- 1. Como las acciones del paso anterior nos sacan automáticamente de la pantalla de RESET NEXUS INFORMATION, es necesario seguir nuevamente las instrucciones del paso 25, para luego seleccionar todas las variables presentes bajo la viñeta "ACUMMULATORS /MAX/MIN & DEMANDS mediante un "click" para colocar un Cheque en cada una de las variables de la lista
- 2. Presionar "OK"
- 3. Finalmente aparecerán pequeñas pantallas indicándonos la sección de memoria que se está borrando, seleccionar "OK" en cada caso.
- 4. Al finalizar, el programa nos regresa automáticamente a la pantalla inicial.
- 21. Verificar que la memoria haya sido borrada mediante el icono de acceso directo "LOG STATUS" cada sección de la memoria deberá marcar 0%, salir de esta opción presionando "OK"
- 22. Anotar la fecha y hora para delimitar el inicio de la medición
- 23. Desconéctese del equipo mediante el icono de acceso directo "DISCONNECT" y dejar que el equipo mida durante 6 a 12 horas
- 24. Cuando el período de tiempo de medición haya concluido, vuelva a conectarse al equipo mediante el seguimiento de los pasos 3.4 y 5.
- 25. Descargar la información almacenada en el equipo por medio del icono de acceso directo "RETRIVE LOGS"
- 26. De la pantalla que aparece automáticamente de selección de descarga escoger:

- Historical Log 1
- ♣ Historical Log 2
- **Limits**
- ♣ Flicker (si aplica)
- ♣ Waveforms/PQ (si aplica)
- 27. Seleccionar cada uno de ellos por medio de la selección de YES en la columna de RETRIVE
- 28. Ejecutar la descarga por medio de START.
- 29. La pantalla del LOGVIEWER aparecerá de forma automática (verificar que esto suceda).
- 30. En el LOGVIEWER seleccionar con las teclas TIME RANGE (la fecha y hora que enmarque el período de medición) y DATA POINTS (para escoger las variables almacenadas a ser revisadas respectivamente CONELEC)
- 31. Siempre dentro del LOGVIEWER, revisar los registros históricos por medio de el siguiente procedimiento:
 - ♣ Acceder el icono de acceso directo HISTORICAL TRENDS
 - ♣ Dentro de la pantalla HISTORICAL TRENDS aparecerá una serie de datos numéricos en forma de tabla, Seleccionar en la parte de debajo de la pantalla, el comando "SORT" y marcar solo la casilla de la sección de memoria que quiera visualizar (primero marque LOG1) para visualizar una sección de memoria a la vez de manera ordenada, presione "OK".
 - ♣ Navegar dentro de los datos grabados en forma de tabla numérica correspondiente a LOG1 para comprobar su integridad.
 - ♣ Nuevamente emplee el comando "SORT" y esta vez solo marque la opción LOG2 y presione "OK".
 - ♣ Navegar dentro de los datos grabados en forma de tabla numérica correspondiente a LOG2 para comprobar su integridad.
 - ♣ Salir al menú principal del LOGVIEWER presionando "BACK"
- 32. Dentro del menú principal del LOGVIEWER, revisar los valores fuera de limite almacenados, empleando el siguiente procedimiento:
 - ♣ Acceder el icono de acceso directo OUT OF LIMIT
 - ♣ Dentro de la pantalla OUT OF LIMIT aparecerá una serie de datos numéricos en forma de tabla,navegar en esta tabla para revisar los eventos fuera de limite que han sido almacenados
 - ♣ Salir al menú principal del LOGVIEWER presionando "BACK"
- 33. Dentro del menú principal del LOGVIEWER, revisar los valores de eventos transitorios almacenados, empleando el siguiente procedimiento:
 - ♣ Acceder el icono de acceso directo POWER QUALITY
 - ♣ Dentro de la pantalla POWER QUALITY aparecerá una serie de datos numéricos en forma de tabla, navegar en esta tabla para revisar los eventos transitorios que han sido almacenados
 - ♣ Para obtener la curva CBEMA, presionar la tecla "GRAPH"
 - Retorne a la pantalla POWER QUALITY con la tecla "BACK"
 - ♣ Salir al menú principal del LOGVIEWER presionando "BACK"
- 34. Dentro del menú principal del LOGVIEWER, revisar los valores almacenados de FLICKER empleando el siguiente procedimiento:
 - Acceder el icono de acceso directo FLICKER

- ♣ Dentro de la pantalla FLICKER aparecerá una serie de datos numéricos en forma de tabla conteniendo los valores de PST y PLT. navegar en esta tabla para revisar los datos que han sido almacenados
- ♣ Salir al menú principal del LOGVIEWER presionando "BACK"
- 35. Salir del menú principal del LOGVIEWER por medio de la tecla superior derecha "X" de color rojo.
- 36. Salir del programa COMMUNICATOR EXT.

Mediciones y estándares para el análisis armónico

La norma IEEE 519 es una práctica recomendada para la corrección del factor de potencia y para la limitación del impacto armónico en los convertidores de potencia AC/DC.

Un aspecto fundamental y renovador es la división de responsabilidades de problema de armónicos entre los consumidores y la empresa de suministro de energía, consecuentemente ella establece límites de distorsión de tensión en el punto de unión, que son responsabilidad de la concesionaria y límites de distorsión de corriente, en el punto de unión que son responsabilidad del consumidor. Como el problema de armónicos representa siempre características particulares, esa norma propone índices basados en un sistema supuestamente real que no siempre es encontrado en la práctica.

Lo primordial de la práctica recomendada está relacionada con la calidad de la energía eléctrica en una barra A.C, en esta tabla 3.1 se da a conocer los límites máximo recomendado en la corriente armónica en el punto donde el convertidor estático de potencia (o cualquier otra carga no lineal) está conectado a la empresa de suministro de energía eléctrica. Este punto se denomina "punto de acoplamiento común" (PCC) y el PCC está indicado en la fig. 3.8.

Tabla 3.1. Distorción armónica de corriente en %

		ORDEN	ARMONICO		
$\frac{I_{sc}}{I^1}$	<11	11 - 22	23 - 35	> 35	Distorsión armónica Total
< 20	4.0	1.5	1.0	0.5	5.0
20 -49.9	7.0	2.5	1.5	0.8	8.0
50 -99.9	10.0	4.0	2.0	1.2	12.0
100-999	12.0	5.0	25	1.5	15.0
>1000	15.0	8.0	4.0	1.8	20.0

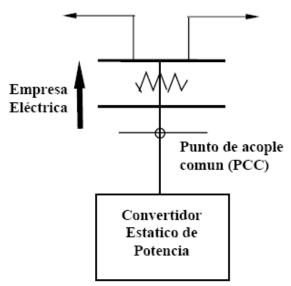


Figura 3.8 .Punto de acople común

Los límites recomendados varían en función del porte del consumidor (carga). Esta variación fue expresada en función de la relación de la corriente de cortocircuito en el punto de acople común y la corriente de demanda máxima del consumidor, es importante observar que los limites de distorsión de corriente son normalizados con relación de la corriente de demanda máxima. De esta forma la distorsión de corriente puede ser mayor a la corriente de carga pero inferior a la corriente de demanda máxima.

3.4.1 Mediciones.

El equipo que se utiliza para las mediciones presentes en este estudio acerca de los armónicos es el analizador de energía Nexus 1252 es un analizador de Energía

que puede ser utilizado para determinar calidad de energía en conformidad con los estándares aplicables del CONELEC.

El equipo Nexus 1252 es colocado después del transformador de potencia como un totalizador de los diferentes alimentadores primarios de cada subestación, estas mediciones son registradas cada diez minutos y guardadas automáticamente, las cuales son analizadas por el departamento encargado de la EERCS, este equipo siempre toma los datos por muestreo.

Medición y registro de armónicos hasta el orden 255 avo.

El equipo mide armónicos hasta el orden 255avo. Para cada canal de voltaje y corriente. Los armónicos son presentados en tiempo real hasta el orden 127avo. THD en porcentaje y el Factor K también son calculados. Este análisis de alto desempeño permite a los usuarios conducir análisis de calidad de potencia hasta un alto rango de componentes del espectro armónico.

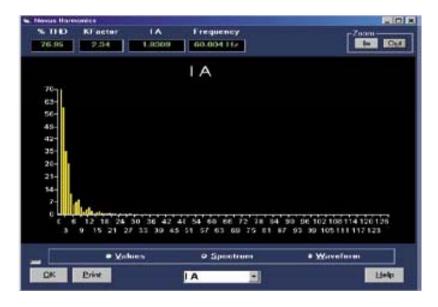
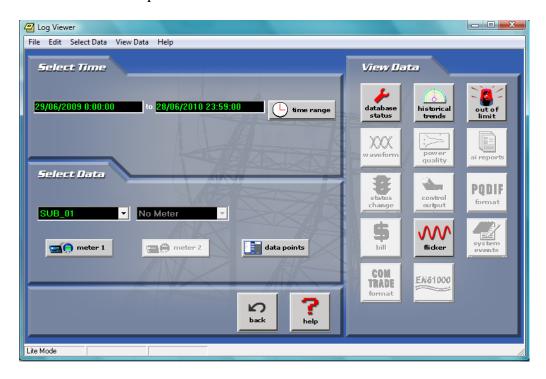
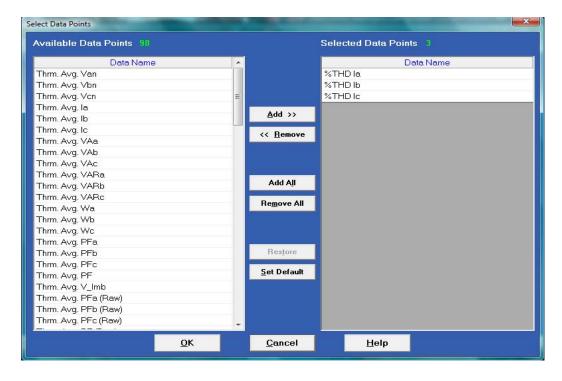
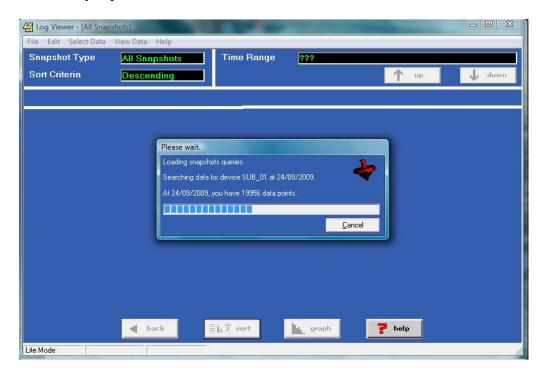


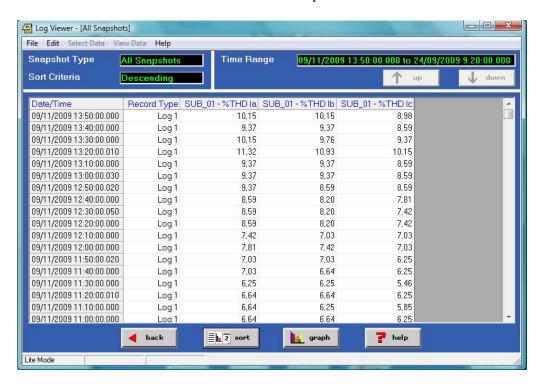
Figura 3.9. Pantalla del rango de componentes armónicas

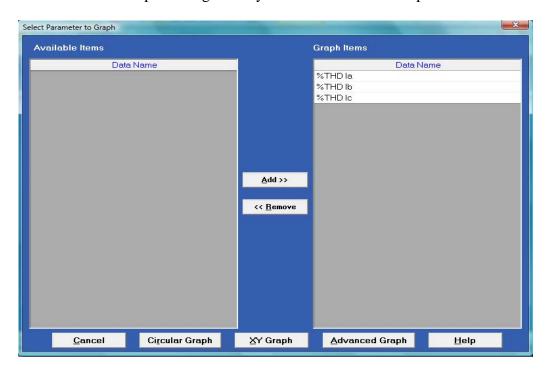
PANTALLAS DEL COMMUNICATOR EXT

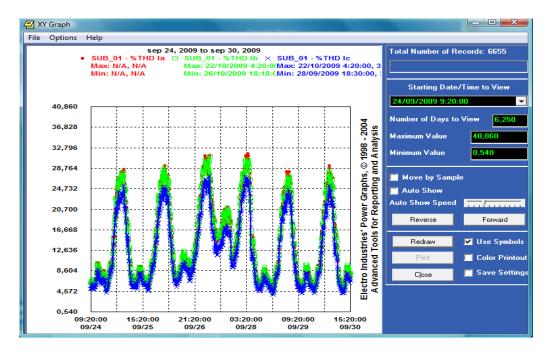

1.- Abrir el programa


2.-Abrir Open Log y seleccionamos la Subestación


3.-Seleccionamos data points


4.-Escogemos los puntos que requerimos


5.-Damos ok y esperamos


6.-Ya con los datos obtenidos seleccionamos Graph

7.- Seleccionamos los puntos a graficar y seleccionamos XY Graph.

8.- Obtenemos el graficó para el análisis

CAPÍTULO IV.

ANÁLISIS DE LA INFORMACIÓN TÉCNICA ESTADÍSTICA Y ACTUAL DE LA CENTROSUR.

4.1 Datos de las subestaciones

Actualmente la E.E.R.C.S C.A. cuenta con 23 subestaciones las cuales tienen en total 49 alimentadores con aproximadamente 270000 clientes, por lo que la información a procesar será considerable, pero de la misma manera es de suma importancia ya que nos permitirá aplicarlos de manera más rápida y eficaz para nuestro propósito.

4.1.1 AREA DE CONCESION

De acuerdo a la Ley de Régimen del Sector Eléctrico cada distribuidora tiene situada una determinada área a la cual se tiene la necesidad de servir al mayor número de clientes con la mejor calidad, en el caso de la E.E.R.C.S C.A esta área de concesión es de aproximadamente 29.640 Km2

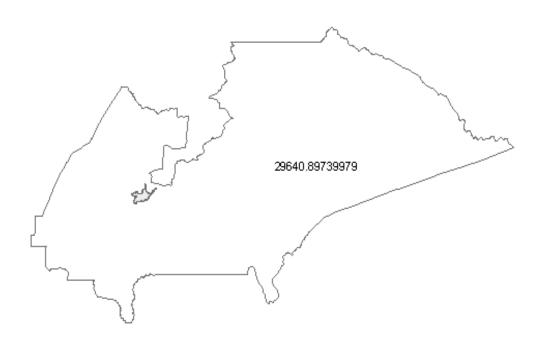


Figura 4.1- Área de Concesión de la E.E.R.C.S C.A.

Las provincias que están incluidas en el área de concesión son Cañar, Azuay, Morona Santiago una parte del Oro y de Loja.

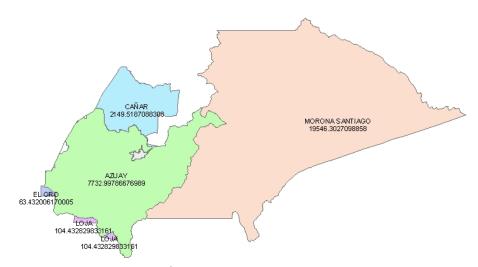


Figura 4.2 - Área de Concesión de la E.E.R.C.S C.A

4.1.2 TOPOLOGIA Y CARACTERISTICAS

El sistema de subtransmisión que alimenta a la E.E.R.C.S C.A es de un nivel de voltaje de 69kv

En la tabla 4.1 podemos observar la localización geográfica y cantidad de transformadores monofásicos, bifásicos y trifásicos instalados por Subestación.

En la tabla 4.22 observamos las subestaciones con sus niveles de tensión y números de alimentadores

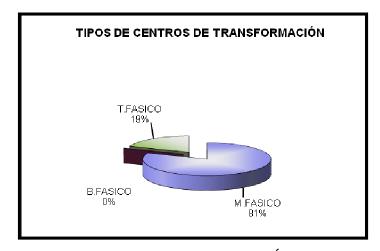


Figura 4.3 – Transformadores De Distribución Área De Concesión

En el Anexo 1, podemos observar algunas fotografías de las partes más importantes que componen las S/E de la CENTROSUR.

Tabla 4.1 – Localización geográfica y numero de transformadores por subestación.

SUBESTACION	Datum	Coordenada X	Coordenada Y	Coordenada Z	# Trafo 1F	KVA 1F	# Trafo 2F	KVA 2F	# Trafo 3F	KVA 3F	TOTAL KVA
1	WGS-84	722289,6502	9680725,93	2561	4	77.5	1	60	119	14927	15064.5
2	WGS-84	721918,5596	9679484,429	2545	3	112.50	2	0.00	166	20114.5	20289.5
3	WGS-84	724382,3711	9679012,514	2478	1091	18427.50	0	62.50	482	38917	57344.5
4	WGS-84	724398,7962	9682328,612	2545	268	6287.50	0	0.00	414	62862.5	69150
5	WGS-84	718216,1585	9678482,786	2595	2076	35330.00	0	0.00	613	44763.5	80093.5
7	WGS-84	727432,2154	9682942,619	2531	789	13110.00	0	0.00	184	18102.5	31212.5
9	WGS-84	738455,001	9696894,609	2585	359	4635.00	0	0.00	51	2085	6720
12	WGS-84	736429,7022	9686464,979	2318	856	12855.00	0	0.00	89	8134.5	20989.5
14	WGS-84	696080,1107	9641725,185	1557	1829	22590.00	2	15	67	3530	26135
15	WGS-84	746609,7261	9679040,459	2326	1328	17802.00	0	0.00	209	12295	30097.5
18	WGS-84	728951,205	9717601,132	3120	1247	14641.50	0	0.00	88	4310	18951.5
21	WGS-84	818362,95	9741192,9	940,966	497	6173.50	0	0.00	131	6757.5	12931
22	WGS-84	801026,72	9697073,65	530,853	282	3237.50	0	0.00	19	1020	4257.5
23	WGS-84	784500,6	6970408,28	1221,054	338	3271.50	0	0.00	16	920	4191.5

Tabla 4.2 – Subestaciones con sus niveles de tensión.

NOMBRE	# Subestacion	VP(kv)	VS(kv)	Provincia	Cantón	Direccion	Alimentadores	Total Trafos
Luis Cordero	01	22	6.3	Azuay	Cuenca	Luis Cordero y Rafael María Arizaga	4 (101,102,103,104)	124
Puente del Centenario	02	22	6.3	Azuay	Cuenca	Benigno Malo y Calle Larga	5 (201,202,203,204,205)	171
Monay	03	69	22	Azuay	Cuenca Max Uhle y Pumapungo		5 (321,322,323,324,325)	1573
Parque industrial	04	69	22	Azuay	Cuenca	Av. del Toril y Barrial Blanco	6 (421,422,423,424,425,426)	682
Arenal	05	69	22	Azuay	Cuenca	Tarquino Cordero y Cornelio Crespo Vega	6 (521,522,523,524,525,526)	2689
El Verdillo	06	69	22	Azuay	Cuenca	El Verdillo		
Ricaurte	07	69	22	Azuay	Cuenca	Molinopamba (Ricaurte)	3 (721,722,723)	968
Huablincay	09	69	22	Cañar	Sigsig	Shishiquin (Azogues)	1 (921)	410
El Descanso	12	69	22	Azuay	Cuenca	El Descanso	3 (1221,1222,1223)	945
Lentag	14	69	22	Azuay	Giron	Lentag (Santa Isabel)	3 (1421,1422,1423)	1898
Chiquintur	15	69	22	Azuay	Gualeceo	Chiquintur (Gualaceo)	3 (1521,1522,1523)	1537
Gualaceo	16	69	22	Azuay	Gualaceo	El Triunfo (Gualaceo)		
Cañar	18	69	22	Cañar	Cañar	Loma Narin (Cañar)	4 (1821,1822,1823,1824)	1335
Corpanche	19	69	69	Azuay	Cuenca	Corpanche		
Macas	21	69	22	Morona Santiago	Morona	Río Blanco (Macas)	3 (2111,2112,2113)	628
Méndez	22	69	22	Morona Santiago	Santiago	Bella Unión (Méndez)	2 (2211,2212)	301
Limón	23	69	22	Morona Santiago	Limon-Indanza	Plan de Milagro (Limón)	2 (2311,2312)	354

En cuestión a los alimentadores se disponen de 49 y se los lee de la siguiente manera: Como ejemplo cada alimentador tiene 4 dígitos numéricos y se los debe leer de izquierda a derecha:

Alimentador: 1221

12	2	1

Alimentador:

12 = Numero de la subestación a la que pertenece dicho alimentador

2 = Nivel de tensión del alimentador (0 para 6.3kv - 1 para 7.2 y 13.8kv - 2 para 22kv - 4 para 2.4kv)

1 = Numero de salida de la subestación.

4.1.3 PROTECCIONES EN LAS SUBESTACIONES

Los IED's instalados para protección de los alimentadores es el DPU687R0422-61001 (en su mayoría) marca ABB.

Las características técnicas descritas son las siguientes:

- ✓ Curvas de sobrecorriente IEC.
- ✓ Rango de corriente 0.4 12 A para Fase y 0.4 12 A para Tierra.
- ✓ Tensión de control 70 280 Vdc.
- ✓ Puerto de comunicaciones RS-485 (aislado) y Puerto RS-232 (Aislado).
- ✓ Con registrador digital de fallas.
- ✓ Protocolo DNP3.0.

Algunos de estos IED's que están instalados en las subestaciones poseen Registro del Perfil de Carga, con el código del modelo y el pdf adjunto se podrá confirmar lo descrito anteriormente.

Con respecto a los parámetros de programación, se necesita saber las específicamente, porque la información es muy amplia.

Los transformadores también poseen IED's modelo TPU588V0412-61111 de ABB. Las protecciones habilitadas y que actualmente están en servicio son:

- ✓ Diferencial del Transformador con característica de restricción (87T).
- ✓ Diferencial del transformador de alto ajuste sin restricción (87H).
- ✓ Sobrecorriente temporizada de Fase y Tierra (51P y 51N), algunas de ellas están habilitadas para abrir el interruptor de alta tensión y otras el interruptor de media tensión.

Las líneas de subtransmisión del anillo de 69kV mas la línea SE 07 - SE 12, poseen IED's modelo 7SD53255AB990HK0-LOG-M2G marca SIEMENS. Las protecciones habilitadas y que actualmente están en servicio son:

- ✓ Diferencial de línea (87L)
- ✓ Sobrecorriente de tierra (67N)
- ✓ Protección de distancia (21P/G)
- ✓ Protección de cierre en falla (50HS)

Todas estas protecciones descritas están embebidas en los IED's y tienen relación con las protecciones del equipamiento de potencia en las subestaciones estudiadas.

4.1.4 CARGA INSTALADA POR ALIMENTADOR

En la tabla 4.3 y 4.4 se puede observar los KVA instalados por alimentador en la CENTROSUR y en la DIMS, esta información es sumamente importante ya que nos servirá para saber los KVA instalados por subestación.

La información se la puede obtener de la pagina web de la Empresa, del GIS mediante selección por atributos o del CYMDIST programa que usa la E.E.R.C.S.C.A. que permite realizar varios tipos de estudios en sistemas monofásicos, bifásicos y trifásicos. En esta oportunidad se obtuvo la información de la página web que no es más que un reporte del GIS.

Tabla 4.3.- KVA instalados en la DIMS

POTENCIA INSTALADA POR ALIMENTADOR (KVA) DIMS - AÑO 2009

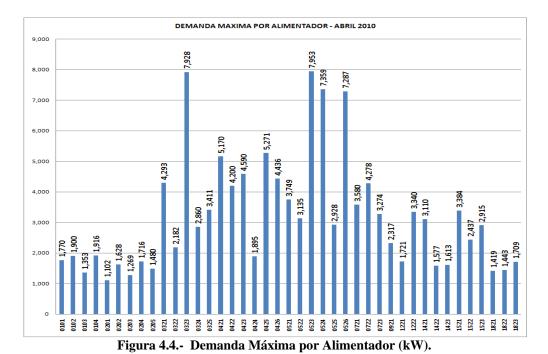
ALIM.	SEP	OCT	NOV	DIC	ALIM.	ene-10	feb-10
2111	4562,5	4562,5	4562,5	4582,5	2111	4.582,50	4.607,50
2112	4028,0	4038,0	4038,0	4038,0	2112	4.038,00	4.083,00
2113	5030,0	5075,0	5075,0	5105,0	2113	5.105,00	5.105,00
2211	2657,5	2657,5	2657,5	2657,5	2211	2.657,50	2.657,50
2212	1810,0	1810,0	1810,0	1825,0	2212	1.825,00	1.825,00
2311	1712,0	1712,0	1712,0	1712,0	2311	1.712,00	1.712,00
2312	2499,5	2499,5	2499,5	2499,5	2312	2.499,50	2.499,50
TOTAL DIMS	22299,5	22354,5	22354,5	22419,5	TOTAL DIMS	22419,5	22489,5

Tabla 4.4.- KVA instalados en la CENTROSUR

POTE	NCIA II	NSTAL	ADA P	OR ALI	MENTA	ADOR (KVA)
		CENT	ROSUR	- AÑO	2009		
ALIM.	SEP	OCT	NOV	DIC	ALIM.	ene-10	feb-10
0101	4080,0	4080,0	4080,0	4080,0	0101	4080,0	4080,0
0102	4860,0	4860,0	4860,0	4860,0	0102	4860,0	4860,0
0103	2465,0	2465,0	2465,0	2465,0	0103	2465,0	2465,0
0104	4324,5	4324,5	4324,5	4324,5	0104	4324,5	4324,5
0201	3467,5	3467,5	3467,5	3467,5	0201	3467,5	3467,5
0202	4200,0	4200,0	4200,0	4200,0	0202	4200,0	4200,0
0203	3022,0	3022,0	3022,0	3022,0	0203	3212,0	3212,0
0204	6095,0	6095,0	6095,0	6125,0	0204	6125,0	6175,0
0205	4560,0	4560,0	4560,0	4560,0	0205	4560,0	4635,0
0321	17187,5	17222,5	17222,5	17272,5	0321	17367,5	17562,5
0322	7760,0	7770,0	7770,0	7792,5	0322	7730,0	7730,0
0323	20044,5	20074,5	20074,5	20174,5	0323	20279,5	20594,5
0324	9437,5	9437,5	9437,5	9437,5	0324	9437,5	9517,5
0325	8367,5	8372,5	8372,5	8372,5	0325	8402,5	8402,5
0421	14321,5	14321,5	14321,5	22004,0	0421	20544,0	20544,0
0422	17782,5	17812,5	17812,5	12320,0	0422	12320,0	12320,0
0423	11012,0	11012,0		11012,0	0423	11012,0	11017,0
0424	7566,5	7566,5	7566,5	7566,5	0424	7566,5	7566,5
0425	8500,0	8500,0	8500,0	8500,0	0425	8500,0	8500,0
0426	8400,0	8400,0	8400,0	8400,0	0426	8400,0	8400,0
0521	15808,0	15808,0	15808,0	15828,0	0521	15838,0	16018,0
0522	8372,0	8372,0	8372,0	8372,0	0522	8372,0	8372,0
0523	18752,0		18912,0	18912,0	0523	19012,0	19219,5
0524	17900,0	17855,0	17855,0	17855,0	0524	17905,0	18055,0
0525	8300,0	8345,0	8345,0	8345,0	0525	8510,0	8665,0
0526	14954,5			15009,5	0526	15009,5	15024,5
0721	10350,0	10667,5	10667,5	10692,5	0721	12152,5	12275,0
0722	11090,0	11150,0	11150,0	9335,0	0722	9335,0	9385,0
0723	9650,0	9670,0	9670,0	9720,0	0723	9720,0	9795,0
0921	6925,0	7187,5		7187,5	0921	7187,5	7187,5
1221	12042,5	11880,0	11880,0	12020,0	1221	12020,0	12095,0
1222	10829,5	10829,5	10829,5	10879,5	1222	10949,5	11169,5
1421	13631,0	13641,0	13641,0	13641,0	1421	13846,0	14066,0
1422	8021,5	8021,5		8056,5	1422	8081,5	8106,5
1423	6600,0	6655,0	6685,0	6807,5	1423	6807,5	6882,5
1521	11205,0	11280,0	11280,0	11280,0	1521	11410,0	11590,0
1522	7682,5	7707,5	7707,5	7707,5	1522	7737,5	7767,5
1523	13332,5	13357,5	13357,5	13320,0	1523	13320,0	13345,0
1821	5082,5	5067,5	5067,5	5067,5	1821	5072,5	5192,5
1822	4075,0	4165,0	4165,0	4165,0	1822	4185,0	4530,0
1823	5151,5	5151,5	5151,5	6136,5	1823	6131,5	6301,5
1824	5872,5	5872,5	5872,5	6130,0	1824	6305,0	6362,5
Total					Total		
Centrosur	393081,0	394168,5	394198,5	396423,5	Centrosu	397761,0	400978,5

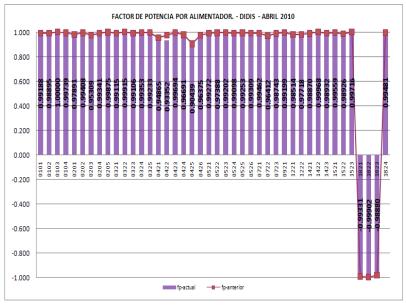
Tabla 4.5.- Distancia de Alimentadores

DISTANCIA F	N (km) DE LOS	SALIMENTAD	ORES DE LA	S S/E DE
DISTRICTE	` '	ENTROSUR	ORES DE EN	S S/L DL
ALIMENTADOR		TRAMOS (Km)		TOTAL (km)
	Monofasico	Bifasico	Trifasico	TOTAL (KIII)
0101	-	-	4,77	4,77
0102	-	-	3,93	3,93
0103	-	-	3,43	3,43
0104	-	0,12	8,65	8,77
0201	0,04	-	3,94	3,98
0202	-	-	4,98	4,98
0203	-	-	3,08	3,08
0204	-	-	6,77	6,77
0205	0,03	-	7,91	7,94
0321	282,80	7,41	60,35	350,56
0322	6,45	-	13,49	19,94
0323	92,28	0,19	55,55	148,02
0324	0,30	-	16,88	17,18
0325	3,07	_	17,86	20,93
0421	2.19		8,86	11,05
0422	2,89	-	18,77	21,66
0423	31,19		31,74	,
0424		0,12	,	63,05
	0,58	0,10	8,50	9,18
0425		-	1,57	1,57
0426	-	-	2,41	2,41
0521	388,43	0,20	76,86	465,49
0522	3,80	0,06	16,71	20,57
0523	280,19	-	99,56	379,75
0524	25,61	1,04	32,64	59,29
0525	229,97	-	70,30	300,27
0526	16,06	0,14	25,26	41,46
0721	31,78	0,20	34,48	66,46
0722	41,18	-	27,30	68,48
0723	119,48	0,04	55,45	174,97
0921	158,17	2,07	44,24	204,48
1221	104,63	0,11	32,62	137,36
1222	151,89	0,69	138,65	291,23
1223	-	-	12,55	12,55
1421	536,13	0,56	110,78	647,47
1422	346,77	-	140,24	487,01
1423	216,12	_	57,87	273,99
1521	315,92	2.71	86,46	405,09
1522	37,56		29,40	66,96
1523	148,03	4,98	61,44	214,45
1821	174,37	-,50	41,49	215,86
1822	107,41	0,20	33,88	141,49
1000	2-1.11			
1823	3/1,44	7,82	92,93	472,19 69,88
1824	46,54		23,34	,
2111	6,18	-	18,41	24,59
2112	101,11	-	32,87	133,98
2113	212,21	-	112,60	324,81
2211	131,66	-	45,54	177,20
2212	92,75	-	21,70	114,45
2311	105,98	-	14,67	120,65
2312	238,76	19,05	23,41	281,22
SIN ALIM.	22,87	0,01	67,90	90,78


En esta tabla 4.5 se puede apreciar la distancia en km de cada uno de los alimentadores dando una extensión total de 7.197,63 km, para las subestaciones ubicadas en los centros poblados, zonas céntricas de la ciudad de Cuenca, la distancia es reducida por lo que la resistencia que propende el conductor no es

mayormente considerable, mientras que para las subestaciones como 3, 5, 14, 15, 18, 21, 22, 23, en diferentes alimentadores, la distancia es considerable por

lo que la impedancia de la línea es directamente proporcional a la distancia y por ende tendremos un factor de potencia más bajo que las subestaciones que tienen sus alimentadores de menor distancia, de cierto modo este parámetro no tiene mayor influencia debido a que en el estudio que se realiza, se analiza la carga en función del factor de potencia de los diferentes clientes que contaminan los alimentadores y a su vez las subestaciones.


4.1.5 DEMANDAS MÁXIMAS

Las siguientes figuras muestran un resumen de las demandas máximas por alimentador.

4.1.6 FACTOR DE POTENCIA

Los valores de factor de potencia fueron calculados para demanda máxima por alimentador. Los alimentadores que tienen factores de potencia por debajo del límite de 0,96 son el 0421 y 0425. Alimentadores con factor de potencia capacitiva son el 1821, 1822 y 1823, comportamiento que no se observaba cuando se registraba las demandas en hojas de lectura.

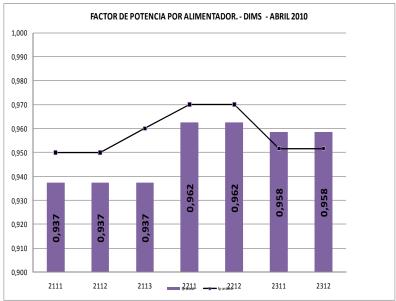


Figura 4.5.-Factor de Potencia en Demanda Máxima (pu).

4.1.7 PERFILES DE CARGA

Los perfiles de carga que se muestran en las siguientes tablas y gráficos son registros de un día en cada subestación y para cada alimentador, aquí se muestran la potencia activa y reactiva las que al final muestran la potencia máxima y mínima de cada subestación, estos datos están en el **Anexo 2**.- PERFILES DE GARGAS DE LAS SUBESTACIONES.

4.1.8 ÍNDICES DE FALLAS

Los índices de fallas se manifiestan por medio de las interrupciones en los alimentadores por diferentes razones y causas, ya sean estas por mantenimiento preventivo o correctivo de las redes, causas externas o terceros.

El origen de estas pueden ser interrupciones programadas cuando la causa es un mantenimiento, interrupciones no programadas cuando la causa se originan en las redes eléctricas o por terceros, ante cualquier eventualidad ya sea natural o causada por el hombre, ósea, puede ser cualquier equipo del sistema eléctrico de potencia que no permita un correcto funcionamiento como, transformadores, pararrayos etc. Todo esto analizado desde el punto de desconexión temporal del cliente sin previo aviso, causa imputable a la CENTROSUR. Y si se trata de terceros el origen puede ser fallas atmosféricas las cuales no están previstas, y si la causa es externa, son los racionamientos que en diferentes épocas del año son comunes en el medio debido a la falta de abastecimiento energético, esto dado por las malas administraciones públicas anteriores.

Como se puede apreciar en la tabla 4.6, lo descrito no demuestra un gran porcentaje de salida del sistema eléctrico por causas y efectos debido a la contaminación armónica que introducen los diferentes tipos de clientes de forma regresiva mediante los alimentadores a las subestaciones.

Tabla 4.6.- Índices De Fallas

							Π	NDICES	S DE I	FALLA	S			
Mes	A lim	Kvainst.	Agen.	Nro.Int.	Fecha Desconexión	Fecha Conexión	Potencia KVA	Tranformador	Subsistema	Tiempo en Horas	Descripción de la Causa	0 rigen	Causa	Dirección
Ene	421	20544	1	31840	01/01/2010 15:28	01/01/2010 16:05	20544	TR04	MT	0,62	RED\TRANSFORMADOR QUEMADO	IntNoPrg	Red	S/E 04
Ene	421	20544	1	31841	01/01/2010 16:17	01/01/2010 18:51	20544	TR04	MT	2,57	RED\PARARRAYO DEFECTUOSO	IntNoPrg	Red	S/E 04
Ene	324	9.437,5	1	31844	05/01/2010 8:57	05/01/2010 10:57	9437,5	TR03	MT	2,00	GENERADOR\RACIONAMIENTOS	Externas	Externas	S/E 03
Ene	424	7.566,5	1	31845	05/01/2010 8:59	05/01/2010 10:58	7566,5	TR04	MT	1,98	GENERADOR\RACIONAMIENTOS	Externas	Externas	S/E 04
Ene	103	2.465,0	1	31843	05/01/2010 9:00	05/01/2010 10:58	2465,0	TR01	MT	1,97	GENERADOR\RACIONAMIENTOS	Externas	Externas	S/E 01
Ene	524	17.855,0	1	31846	05/01/2010 9:00	05/01/2010 10:58	17855,0	TR05	MT	1,97	GENERADOR\RACIONAMIENTOS	Externas	Externas	S/E 05
Ene	2311	1.712,0	1	31850	05/01/2010 9:00	05/01/2010 13:00	1712,0	TR23	MT	4,00	GENERADOR\RACIONAMIENTOS	Externas	Externas	S/E 23
Ene	101	4070	1	32008	07/01/2010 2:00	07/01/2010 10:44	4070	TR01	ST	8,73	TERCEROS\RAMAS SOBRE LA RED	IntNoPrg	Terceros	S/E 01
Ene	102	4660	1	32009	07/01/2010 2:00	07/01/2010 10:34	4660	TR01	ST	8,57	TERCEROS\RAMAS SOBRE LA RED	IntNoPrg	Terceros	S/E 01
Ene	103	2465	1	32010	07/01/2010 2:00	07/01/2010 11:10	2465	TR01	ST	9,17	TERCEROS\RAMAS SOBRE LA RED	IntNoPrg	Terceros	S/E 01
Ene	104	4325	1	32011	07/01/2010 2:00	07/01/2010 10:29	4325	TR01	ST	8,48	TERCEROS\RAMAS SOBRE LA RED	IntNoPrg	Terceros	S/E 01
Ene	201	3794	1	32045	10/01/2010 2:16	10/01/2010 5:54	3467,5	TR02	ST	3,63	MANT\INSTALACION DE EQUIPO IED O DPU	IntPrg	Mantenimiento	S/E 02
Ene	202	5541	1	32046	10/01/2010 2:16	10/01/2010 5:54	4200	TR02	ST	3,63	MANT\INSTALACION DE EQUIPO IED O DPU	IntPrg	Mantenimiento	S/E 02

4.2.- Información y procesamiento.

De los datos extraídos del equipo analizador de calidad de energía NEXUS 1252 utilizado para el estudio se realizó la segmentación de datos debido a que los valores para las armónicas desde la 15va hasta la 40va prácticamente son despreciables por lo que se tomo valores de los armónicos 3ro,5to,7mo,9no,11avo,13avo ,los cuales son representativos para el análisis, de la misma forma, el equipo presenta la información en periodos de 10 minutos durante siete días continuos, que se consideraran respectivos de todo el mes, esto basado en las normas de evaluación de calidad de energía (003/08_Calidad del transporte de electricidad y del servicio de trasmisión y conexión en el sistema nacional interconectado) impuestas por el órgano regulador (CONELEC). Para el efecto mencionado se tomo la evaluación de un periodo de 8 días continuos, obteniendo un THD por fase en cada una de las subestaciones de la CENTROSUR.

Dentro del análisis estadístico mostraremos el comportamiento de cada subestación, por día, durante el fin de semana y una semana continua de lunes a viernes, conjugando la información al final en un solo cuadro y a su vez representado mediante una gráfica de barras para mejor apreciación.

Los datos sin procesar se obtienen del software, esto mostrara la gran cantidad de datos que se consideran abruptos en el momento del análisis, razón por la cual no están adjuntos en el análisis de cada subestación.

Método Estadístico

La **estadística descriptiva**, es la que se dedica a los métodos de recolección, descripción, visualización y resumen de datos originados a partir de los fenómenos en estudio. Los datos pueden ser resumidos numérica o gráficamente. Ejemplos básicos de descriptores numéricos son la media y la desviación estándar. Resúmenes gráficos incluyen varios tipos de figuras y gráficos.

El método utilizado se basó en la estadística descriptiva la cual analiza, estudia y describe a la totalidad de individuos de una población. Su finalidad es

obtener información, analizar, procesar y simplificar lo necesario para que pueda ser interpretada cómoda y rápidamente, por tanto pueda utilizarse eficazmente para el fin que se desee.

El proceso sigue de los siguientes pasos:

- ✓ Selección de caracteres dignos de ser estudiados.
- ✓ Mediante encuesta o medición, obtención del valor de cada individuo en los caracteres seleccionados.
- ✓ Elaboración de tablas de frecuencias, mediante la adecuada clasificación de los individuos dentro de cada carácter.
- ✓ Representación gráfica de los resultados (elaboración de gráficas estadísticas).
- ✓ Obtención de parámetros estadísticos, números que sintetizan los aspectos más relevantes de una distribución estadística.

Por lo que, para el efecto de análisis, una vez adoptado el método estadístico a ser utilizado, analizaremos cada una de las subestaciones del total de datos entregados por el equipo analizador de calidad de energía tanto en voltaje como en corriente.

4.2.1 ARMÓNICOS DE VOLTAJE

SUBESTACION # 1:

El análisis inicia con las perturbaciones inducidas por los diferentes agentes contaminantes durante un día, este tomado mediante el universo de datos proporcionados por el equipo analizador de calidad de energía. En la pantalla del programa se puede apreciar los datos tal cual se extraen del software del equipo, explicado en el capítulo 3.

La tabla 4.7 a continuación mostrada permite observar el porcentaje de la distorsión armónica de la S/E_1. El análisis se percibe en un día típico lo cual esta explicado anteriormente, por lo que podemos concluir que el THD de la S/E_1 no sale del margen permitido en la norma explicada en el capítulo II para ninguna de las armónicas en cuestión y por su puesto en ninguna de las fases. El valor máximo medido se da en la 5ta armónica de la fase A con un valor de 4, 87% de distorsión. Teniendo como límite un valor máximo de 6% de THD (Véase en el capítulo 2, Tabla 2.1 Valores de los armónicos individuales).

Tabla 4.7 – Análisis estadístico de los THD medidos en la S/E_1 Durante un día

			Voltaj	e en A					
Mes/Promedio por Armonica	3	5	7	9	11	13			
Enero	0,27666667	3,91319588	0,49289157	0	0,29108108	0,2005			
Febrero	0,25096774	4,18206897	0,64190141	0	0,30262136	0,2137931			
Marzo	0,2921519	4,87089655	0,84275862	0	0,28262295	0,21666667			
Abril	0,287875	4,29455172	0,67112676	0	0,29378788	0,20967742			
Mayo		No hay información							
		Voltaje en B							
Mes/Promedio por Armonica	3	5	7	9	11	13			
Enero	0,42967391	3,71484536	0,543125	0	0,25970149	0,20772727			
Febrero	0,39183824	4,04468966	0,6170073	0	0,26511364	0,2174359			
Marzo	0,53570423	4,68103448	0,83034965	0	0,2528866	0,21717949			
Abril	0,52281481	4,12434483	0,69746032	0,12	0,27366667	0,21717391			
Mayo			No hay inf	formación					
			Voltaj	e en C					
Mes/Promedio por Armonica	3	5	7	9	11	13			
Enero	0,30116667	3,7343299	0,4765	0,1625	0,27119403	0,20888889			
Febrero	0,30214286	4,05048276	0,62503597	0,14	0,28202128	0,21625			
Marzo	0,3424	4,68144828	0,90304965	0,2	0,27333333	0,21890909			
Abril	0,33587719	4,14862069	0,68244755	0,14333333	0,29059322	0,21888889			
Mayo			No hay inf	formación					
	Voltaje Promedio entre A, B y C								
Mes/Promedio por Armonica	3	5	7	9	11	13			
Enero	0,33583575	3,78745704	0,50417219	0,05416667	0,2739922	0,20570539			
Febrero	0,31498294	4,09241379	0,62798156	0,04666667	0,28325209	0,21582633			
Marzo	0,39008537	4,74445977	0,85871931	0,06666667	0,26961429	0,21758508			
Abril	0,382189	4,18917241	0,68367821	0,08777778	0,28601592	0,21524674			
Mayo			No hay inf	formación					

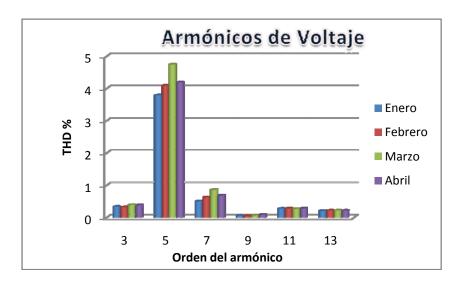


Figura 4.6 – Diagrama de barras producidas en la S/E_1 Durante un día

Aunque la regulación 003/08 emitida por el CONELEC, no permita segmentar el periodo de medición, hemos realizado para tener una idea clara del efecto de la carga contaminante en los diferentes días y horas de los valores a ser analizados. En la siguiente tabla 4.8 analizaremos el efecto producido por la carga contaminante durante el **fin de semana** y sería análogo para los días feriados.

Tabla 4.8 – Análisis estadístico de los THD medidos en la S/E_1 Durante un fin de semana

			Voltaj	e en A				
Mes/Promedio por Armonica	3	5	7	9	11	13		
Enero	0,3304902	5,01648276	1,27351724	0	0,24163043	0,18285714		
Febrero	0,25408451	5,16462069	0,99082759	0	0,26921569	0,22076923		
Marzo	0	0	0	0	0	0		
Abril	0,28139241	4,64626984	0,82936508	0	0,27151515	0,20444444		
Mayo			No hay inf	formación				
			Voltaj					
Mes/Promedio por Armonica	3	5	7	9	11	13		
Enero	0,79096552	4,69158621	1,28951724	0,18857143	0,22734694	0,21583333		
Febrero	0,62537931	4,96137931	1,03696552	0,176	0,24946429	0,21307692		
Marzo	0	0	0	0	0	0		
Abril	0,55432	4,44055556	0,8268254	0,1	0,24	0,2172093		
Mayo			No hay inf	formación				
			Voltaj	e en C				
Mes/Promedio por Armonica	3	5	7	9	11	13		
Enero	0,32813008	4,66124138	1,2537931	-	0,23428571	0,20791667		
Febrero	0,32811475	4,98103448	0,96958621	0,20363636	0,25356164	0,22519231		
Marzo	0	0	0	0	0	0		
Abril	0,35008929	4,46396825	0,79952381	0,14	0,25119565	0,21418605		
Mayo			No hay inf	ormación				
	Voltaje Promedio entre A, B y C							
Mes/Promedio por Armonica	3	5	7	9	11	13		
Enero	0,48319526	4,78977011	1,27227586		0,23442103	0,20220238		
Febrero	0,40252619	5,03567816	0,99912644	0,12654545	0,25741387	0,21967949		
Marzo	0	0	0	0	0	0		
Abril	0,39526723	4,51693122	0,81857143	0,08	0,25423693	0,2119466		
Mayo			No hay inf	formación				

Por lo que podemos concluir que el THD de la S/E_1 no sale del margen permitido para ninguna de las armónicas en cuestión y por su puesto en ninguna de las fases. El valor máximo medido, se da en la 5ta armónica de la fase A con un valor de 5,16% de distorsión.

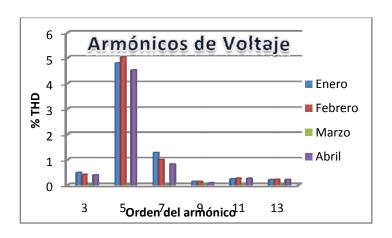


Figura 4.7 – Diagrama de barras producidas en la S/E_1 Durante un fin de semana

En la siguiente tabla 4.9 analizaremos el efecto producido por la carga contaminante durante una semana continua laboral. Por lo que podemos concluir que el THD de la S/E_1 no sale del margen permitido para ninguna de las armónicas en cuestión. El valor máximo medido, se da en la 5ta armónica de la fase A con un valor de 5,43% de distorsión.

Tabla 4.9 – Análisis estadístico de los THD medidos en la S/E_1 Durante una semana laboral

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,4975	5,14375	1,46125	0	0,35125	0,21
Febrero	0,405	5,43875	1,4025	0	0,4325	0,26625
Marzo	0,325	5,4325	1,225	0	0,3675	0,20875
Abril	0,3925	5,2225	1,255	0	0,3475	0,25375
Mayo			No hay inf	ormación		
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,945	4,88625	1,55125	0,21833333	0,315	0,23
Febrero	0,8425	5,2575	1,44875	0,21625	0,3725	0,287
Marzo	0,61875	5,225	1,26625	0,14	0,30625	0,21
Abril	0,80875	5	1,38875	0,22	0,3225	0,262
Mayo	•		No hay inf	ormación		
			Voltaj	e en C		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,48625	4,89875	1,46	0,20625	0,32375	0,2362
Febrero	0,53625	5,2425	1,41875	0,20625	0,4025	0,2812
Marzo	0,4625	5,27	1,32125	0,1925	0,34125	0,2
Abril	0,5375	5,05125	1,36375	0,226	0,35875	0,2737
Mayo			No hay inf	ormación		
		Vo	ltaje Promed	io entre A. B	v C	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,64291667	4,97625	1,49083333	0,14152778	0,33	0,22708333
Febrero	0,59458333	5,31291667	1,42333333	0,14083333	0,4025	0,27833333
Marzo	0,46875	5,30916667	1,27083333	0,11083333	0,33833333	0,2179166
Abril	0,57958333	5,09125	1,33583333	0,14866667	0,34291667	0,26333333
Mayo			No hay inf	formación		

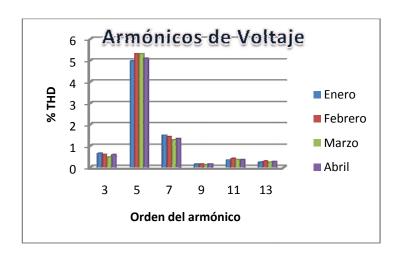


Figura 4.8 – Diagrama de barras producidas en la S/E_1 Durante una semana laboral

SUBESTACION # 2:

De la misma forma se inicia el análisis de las perturbaciones de armónicos para la S/E_2 durante un día. En la siguiente tabla 4.10 mostrada a continuación se observa la distorsión armónica, por lo que se puede observar que no supera el margen mencionado en la norma. El valor máximo medido se da en la 5ta armónica de la fase C con un valor de 2,59% de distorsión.

Tabla 4.10 – Análisis estadístico de los THD medidos en la S/E_2 Durante un día

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0	0	0	0	0	0
Febrero	0,22702703	1,94375	0,43153061	0	0,21625	0,21130435
Marzo	0,26138889	1,95096552	0,37631148	0	0,1825	0,19733333
Abril	0,22345455	2,02951456	0,36962025	0	0,175	0,19823529
Mayo	0,25037736	2,308	0,55571429	0	0,221	0,18111111
			Voltaje	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0	0	0	0	0	0
Febrero	0,38939394	1,93519231	0,4668932	0	-,	0,22119048
Marzo	0,47972727	2,10531034	0,37651852	0	0,19666667	0,20181818
Abril	0,41661538	2,09747573	0,34166667	0	0,19333333	0,20884615
Mayo	0,43470588	2,48158621	0,52976923	0	0,225	0,2
			Voltaje -			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0	0	0	0	0	0
Febrero	0,51593103		0,54186207	0	0,2044444	0,17833333
Marzo	0,5677931	2,18937931	0,43194444	0	0,16	0,17166667
Abril	0,52696552	2,19896552	0,44202797	0	0,1525	0,1525
Mayo	0,48137931	2,59117241	0,60604317	0	0,215	0,13333333
					_	
			Itaje Promed			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0	0	0	0	0	0
Febrero	0,37745067	2,00481985	0,4800953	0	0,20606481	0,20360939
Marzo	0,43630309	2,08188506	0,39492481	0	0,17972222	0,19027273
Abril	0,38901182	2,10865194	0,3844383	0	0,17361111	0,18652715
Mayo	0,38882085	2,46025287	0,56384223	0	0,22033333	0,17148148

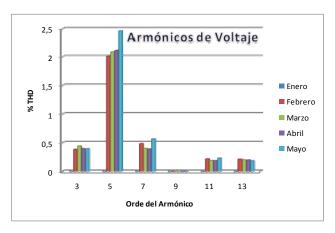


Figura 4.9 – Diagrama de barras producidas en la S/E_2 Durante un día.

En la siguiente tabla 4.11 se analiza el efecto producido por la carga contaminante durante el **fin de semana**. Por lo que concluimos que no se sale del margen permitido y el valor máximo medido se da en la 5ta armónica de la fase C con un valor de 2.46% de distorsión.

Tabla 4.11 – Análisis estadístico de los THD medidos en la S/E_2 Durante un fin de semana

	Voltaje en A					
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0	0	0	0	0	0
Febrero	0,67213793	2,30165517	0,41044776	0	0,19166667	0,1
Marzo	0,23022222	1,70724138	0,34212963	0	0,105	0,15
Abril	0	0	0	0	0	0
Mayo	0,22943662	2,08857143	0,38906667	0	0,21344828	0
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0	0	0	0	0	0
Febrero	0,52434483	2,17724138	0,36977444	0	0,20448276	0
Marzo	0,49450704	1,85206897	0,36138211	0	0,166	0,18888889
Abril	0	0	0	0	0	0
Mayo	0,58371429	2,30507143	0,36039604	0	0,2045	0,15
			Voltaj	e en C		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0	0	0	0	0	0
Febrero	0,21852941	1,98889655	0,37896104	0	-	0,15
Marzo	0,60758621	1,95841379	0,42555556	0	0,19333333	0,1
Abril	0,52805825	1,93980583	0,40553398	0	-,	0,13666667
Mayo	0,6135	2,46728571	0,41563107	0	0,19904762	0,13666667
			ltaje Promed			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0	0	0	0	0	0
Febrero	0,47167072	2,15593103	0,38639441	0	0,13204981	0,08333333
Marzo	0,44410516	1,83924138	0,37635577	0	0,15477778	0,1462963
Abril	0,17601942	0,64660194	0,13517799	0	0,05083333	0,0455556
Mayo	0,4755503	2,28697619	0,38836459	0	0,2056653	0,0955556

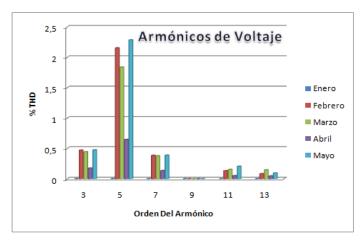


Figura 4.10 – Diagrama de barras producidas en la S/E_2 Durante un fin de semana

En la siguiente tabla 4.12 se analiza el efecto producido por la carga contaminante durante una semana continua laboral. Por lo que podemos concluir que el THD de la S/E_2 no sale del margen permitido. El valor máximo medido, se da en la 5ta armónica de la fase C con un valor de 2,76% de distorsión.

Tabla 4.12 – Análisis estadístico de los THD medidos en la S/E_2 Durante una semana laboral

	Voltaje en A					
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0	0	0	0	0	0
Febrero	0,28875	2,2875	0,5	0	0,19625	0,1975
Marzo	0,3575	2,36	0,57	0	0,228571429	0,2325
Abril	0,25	2,045	0,43875	0	0,19125	0,195
Mayo	0,25875	2,07	0,50375	0	0,2075	0,1875
				aje en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0	0	0	0	0	0
Febrero	0,635	2,41	0,57875	0	0,20625	0,20375
Marzo	0,73125	2,465	0,605	0	0,238571429	0,245
Abril	0,45	2,0575	0,4425	0	0,2	0,20625
Mayo	0,50625	2,27	0,505	0	0,21	0,1925
			Volt	aje en C		
84/D						42
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0	0	0	0	0	0
Febrero	0,77375	2,76625	0,71375	0	0,24	0,20625
Marzo	0,8525	2,51375	0,69375	0	0,231428571	0,21285714
Abril	0,645	2,10125	0,5525	0	0,19	0,1825
Mayo	0,515	2,32875	0,56625	0	0,2075	0,18125
			Voltaje Prome	dio entre A, B	уС	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0	0	0	0	0	0
Febrero	0,5658333	2,4879167	0,5975	0	0,214166667	0,2025
Marzo	0,6470833	2,44625	0,622916667	0	0,232857143	0,23011905
Abril	0,4483333	2,0679167	0,477916667	0	0,19375	0,19458333
Mayo	0,4266667	2,2229167	0,525	0	0,208333333	0,18708333

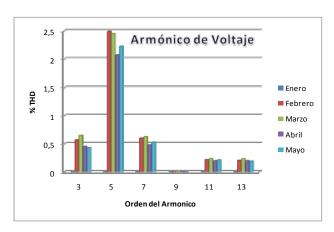


Figura 4.11 – Diagrama de barras producidas en la S/E_2 Durante una semana laboral

SUBESTACION #3:

De la igual manera se inicia el análisis de los armónicos para la S/E_3 durante un día. En la tabla 4.13 expresada a continuación se aprecia la distorsión armónica, por lo que se puede ver que no supera el margen mencionado en la norma.

Tabla 4.13 – Análisis estadístico de los THD medidos en la S/E_3 Durante un día

		Voltaje en A					
Mes/Promedio por Armonica	3	5	7	9	11	13	
Enero	1,21344828	0,7462069	0,29104167	0,51648276	0	0	
Febrero	1,30475862	0,97613793	0,26465347	0,55841379	0	0	
Marzo	1,30144828	0,69594406	0,26304348	0,50441379	0	0	
Abril	1,34131034	0,75724138	0,26636364	0,51772414	0	0	
Mayo	1,51873684	0,82063158	0,35557377	0,53610526	0	0	
			Voltaj	e en B			
Mes/Promedio por Armonica	3	5	7	9	11	13	
Enero	1,50793103	0,806	0,28853659	0,50234483	0,11	0	
Febrero	1,56117241	0,99992908	0,3856	0,53144828	0	0	
Marzo	1,62103448	0,7715625	0,27470588	0,49496552	0	0	
Abril	1,62751724	0,79517241	0,27041667	0,4977931	0	0	
Mayo	1,74821053	0,68831579	0,25282609	0,53210526	0	0	
			Voltaj	e en C			
Mes/Promedio por Armonica	3	5	7	9	11	13	
Enero	1,21337931	0,72248276	0,30865385	0,48689655	0,1	0	
Febrero	1,31027586	0,90627586	0,29859813	0,52627586	0	0	
Marzo	1,26316547	0,65021583	0,27944444	0,46951724	0	0	
Abril	1,24475862	0,69841379	0,28326733	0,47951724	0	0	
Mayo	1,614	0,78442105	0,34366667	0,52368421	0	0	
A4 - /Dun	3			io entre A, B		42	
Mes/Promedio por Armonica		5	7	9	11	13	
Enero	1,31158621	0,75822989	0,29607737	0,50190805	0,07	0	
Febrero	1,39206897	0,96078096	0,31628387	0,53871264	0	0	
Marzo	1,39521608	0,70590746	0,27239794	0,48963218	0	0	
Abril	1,40452874	0,75027586	0,27334921	0,49834483	0	0	
Mayo	1,62698246	0,76445614	0,31735551	0,53063158	0	0	

El valor máximo medido, se da en la 3^{ra} armónica de la fase B con un valor de 1,74% de distorsión.

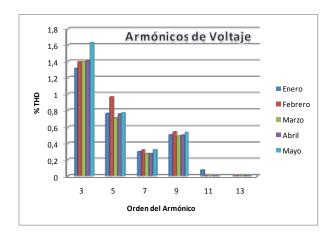


Figura 4.12- Diagrama de barras producidas en la S/E_3 Durante un día.

En la tabla 4.14 se estudia el efecto producido por la carga contaminante durante el fin de semana. Por lo que ultimamos que no se sale del margen permitido y el valor máximo medido se da en la 3ra armónica de la fase B con un valor de 1,70% de distorsión.

Tabla 4.14- Análisis estadístico de los THD medidos en la S/E_3 Durante un fin de semana

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,22070423	0,97275862	0,24185714	0,61510345	0	0
Febrero	1,23586207	0,9415	0,28157303	0,61372414	0	0
Marzo	1,21731034	0,69655172	0,33255556	0,50213793	0	0
Abril	1,20027586	0,74896552	0,26164384	0,54924138	0	0
Mayo	1,14903448	0,93703448	0,23220588	0,58110345	0,164	0
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,70958621	0,94248276	0,29425926	0,58613793	0	0
Febrero	1,70186207	0,96775362	0,28957143	0,5837931	0	0
Marzo	1,64068966	0,72319444	0,2695098	0,47675862	0	0
Abril	1,63662069	0,78333333	0,284	0,52655172	0	0
Mayo	1,70503448	0,98903448	0,30888889	0,56634483	0,18125	0
			Voltaj			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,26337931	0,97737931	0,32022727	0,57972414	0	0
Febrero	1,23944828	0,92510345	0,34108911	0,57675862	0	0
Marzo	1,18255172		0,36148515	0,45572414	0	0
Abril	1,18468966	-	0,28323232	0,508	0	0
Mayo	1,15882759	0,94103448	0,26666667	0,562	0,1975	0
		Vo	ltaje Promed	io entre A, B	y C	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,39788991	0,9642069	0,28544789	0,59365517	0	0
Febrero	1,3923908	0,94478569	0,30407786	0,59142529	0	0
Marzo	1,34685057	0,71566252	0,3211835	0,4782069	0	0
Abril	1,34052874	0,75545594	0,27629205	0,52793103	0	0
Mayo	1,33763218	0,95570115	0,26925381	0,56981609	0,18091667	0

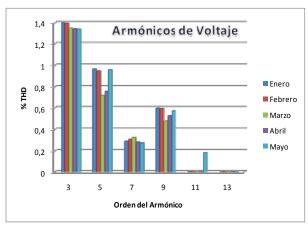


Figura 4.13 – Diagrama de barras producidas en la S/E_3 Durante un fin de semana

En la tabla 4.15 se estudia el efecto producido durante una semana continua laboral. Por lo que podemos concluir que el THD de la S/E_3 no sale del margen permitido.

Tabla 4.15 – Análisis estadístico de los THD medidos en la S/E_3 Durante una semana laboral

	Voltaje en A					
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,98	1,33125	0,48375	0,7075	0	0
Febrero	2,10375	1,44875	0,425	0,715	0	0
Marzo	2,01875	1,12375	0,4175	0,655	0	0
Abril	2,08	1,29125	0,3175	0,70125	0	0
Mayo	1,445	0,95875	0,30625	0,51375	0,164	0,1
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	2,8525	1,645	0,44	0,7125	0,11	0,1
Febrero	2,9	1,7425	0,41	0,69	0	0,17285714
Marzo	2,86625	1,3975	0,34625	0,625	0	0
Abril	2,96	1,58875	0,375	0,67875	0	0
Мауо	1,8125	1,025	0,29375	0,5075	0,17857143	0,13333333
			Voltaj	e en C		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	2,1875	1,34625	0,59	0,68	0,1	0
Febrero	2,31	1,3975	0,485	0,675	0	0
Marzo	2,2625	1,12375	0,44625	0,6	0	0
Abril	2,38	1,2475	0,37375	0,6475	0	0
Mayo	1,6075	0,9475	0,30875	0,49375	0,19714286	0
		Vo	ltaje Promed	io entre A, B	y C	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	2,34	1,44083333	0,50458333	0,7	0,07	0,03333333
Febrero	2,43791667	1,52958333	0,44	0,69333333	0	0,05761905
Marzo	2,3825	1,215	0,40333333	0,62666667	0	0
Abril	2,47333333	1,37583333	0,35541667	0,67583333	0	0
Mayo	1,62166667	0,97708333	0,30291667	0,505	0,17990476	0,07777778

El valor máximo medido, se da en la 3^{ra} armónica de la fase B con un valor de 2,86% de distorsión.

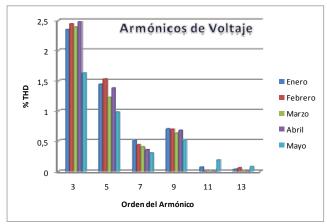


Figura 4.14- Diagrama de barras producidas en la S/E_3 Durante una semana laboral

SUBESTACION # 4:

El análisis de los armónicos para la S/E_4 durante un día. En la tabla 4.16 expresada a continuación se puede denotar la distorsión armónica la cual no supera el margen de la norma.

Tabla 4.16 – Análisis estadístico de los THD medidos en la S/E_4 Durante un día

	Voltaje en A					
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,24773585	1,76372414	0,25521739	0	0	(
Febrero	0,24378788	2,22627586	0,28782258	0	0	(
Marzo	0,25563218	2,16475862	0,30641667	0	0,1	(
Abril	0,24789474	1,68031056	0,27835443	0	0	(
Мауо	0,24076087	1,53731183	0,30061538	0	0	(
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,28604167	1,78689655	0,24831325	0	0,15	(
Febrero	0,30871429	2,32903448	0,29170455	0	0,1625	(
Marzo	0,31094595	2,27737931	0,32123596	0	0,115	(
Abril	0,30826667	1,7626087	0,29406593	0	0	(
Мауо	0,28243243	1,5944086	0,32655738	0,1	0,13333333	(
			Voltaj	o on C		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,25688889	1,69572414		0,1	0	(
Febrero	0,26444444	2,236		0	0,16	(
Marzo	0,274	2,19462069	-	0	-, -	(
Abril	0,25615385	1,68652174	0,29706897	0	0	(
Mayo	0,25076923	1,54225806	0,32415094	0	0,13333333	(
			ltaje Promed	io entre A, B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,26355547	1,74878161	0,25066406	0,03333333	0,05	0
Febrero	0,27231554	2,26377011	0,28824515	0	0,1075	0
Marzo	0,28019271	2,21225287	0,31660884	0	0,07166667	0
Abril	0,27077175	1,70981366	0,28982978	0	0	0
Mayo	0,25798751	1,55799283	0,3171079	0,03333333	0,08888889	0

El valor máximo medido se da en la 5ta armónica de la fase B con un valor de 2,32% de distorsión.

Figura 4.15- Diagrama de barras producidas en la S/E_4 Durante un día.

En la tabla 4.17 se estudia el efecto armónico producido el fin de semana. Por lo que vemos que tampoco se sale del margen permitido y el valor máximo medido se da en la 5ta armónica de la fase B con un valor de 2,80% de distorsión

Tabla 4.17- Análisis estadístico de los THD medidos en la S/E_4 Durante un fin de semana

			Voltaj	e en A			
Mes/Promedio por Armonica	3	5	7	9	11	13	
Enero	0,25902778	1,98662069	0,2643038	0	0		0
Febrero	0,24148936	2,71633028	0,29715789	0	0,13666667		0
Marzo	0,24447368	2,06232323	0,2969697	0,11	0		0
Abril	0,23666667	2,11780645	0,30833333	0	0,15		0
Mayo	0,24235294	1,78821918	0,25025316	0	0,18285714		0
			Voltaj				
Mes/Promedio por Armonica	3	5	7	9	11	13	
Enero	0,27794118	1,98806897	0,27038835	0	0,1		0
Febrero	0,26571429	2,80055046			0,18888889		0
Marzo	0,30475	2,1530303	0,2828125		0,1		0
Abril	0,29202128	2,19432258	0,32118881	0	0		0
Mayo	0,27211382	1,85369863	0,259	0	0,20409091		0
			Voltaj				
Mes/Promedio por Armonica	3	5	7	9	11	13	
Enero	0,24938462	1,88496552	0,25816901	0	0		0
Febrero	0,2346875	2,6653211	0,28705882	0	0,16		0
Marzo	0,23272727	2,0372549		0	0		0
Abril	0,25238095	2,11283871	0,29638655		0		0
Mayo	0,266	1,7413242	0,24913043	0	0,19125		0
		Vo	Itaia Dromad	io entre A, B	v.C		
Mes/Promedio por Armonica	3	5	7	9	11	13	
Enero	0,26211786	1,95321839	0,26428705	0	0,03333333	0	
Febrero	0,24729705	2,72740061	0,29245999	0	0,16185185	0	寸
Marzo	0,26065032	2,08420281	0,27967099	0,03666667	0,03333333	0	
Abril	0,2603563	2,14165591	0,30863623	0	0,05	0	
Mayo	0,26015559	1,794414	0,25279453	0	0,19273268	0	

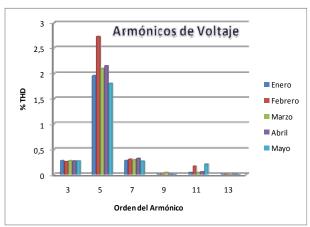


Figura 4.16 – Diagrama de barras producidas en la S/E_4 Durante un fin de semana

En la tabla 4.18 se estudia el efecto producido durante una semana continua laboral. Por lo que podemos concluir que el THD de la S/E_4 no sale del margen permitido. El valor máximo medido, se da en la 5ta armónica de la fase C con un valor de 2,65% de distorsión

Tabla 4.18 – Análisis estadístico de los THD medidos en la S/E_4 Durante una semana laboral

			Volto	a a n A		
Mas/Duamadia way Ayyaayia	3	5	Voltaj 7	9 e en A	11	13
Mes/Promedio por Armonica	_					15
Enero	0,29375	2,1575	0,31625	0	-, -	0
Febrero	0,2725	2,48125	0,2975	0	0,162	0,12
Marzo	1,618875	1,82	0,36375	0,14	0,1825	0
Abril	0,3775	2,64875	0,46125	0	-,	0,115
Мауо	0,3675	2,17625	0,43625	0	0,19	0,22
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,32	2,09875	0,35125	0	0,1625	0
Febrero	0,31625	2,5275	0,32	0	0,1975	0
Marzo	0,3175	1,90875	0,385	0,1	0,1875	0,14666667
Abril	0,4725	2,7175	0,4975	0,1	0,1975	0
Mayo	0,4725	2,2275	0,44	0,13333333	0,22	C
			Voltaj	e en C		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,3075	2,10875	0,3175	0,1	0,12	0
Febrero	0,27375	2,40875	0,30625	0		0
Marzo	0,285	1,825	0,34625	0	0,1625	0,1
Abril	0,3975	2,65875	0,45625	0	0,18428571	0
Мауо	0,41	2,155	0,415	0,2	0,1925	0
		Vo	ltaje Promed	io entre A. B	v C	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,30708333	2,12166667	0,32833333	0,03333333	0,13583333	0
Febrero	0,2875	2,4725	0,30791667	0	0,18269048	0,04
Marzo	0,74045833	1,85125	0,365	0,08	0,1775	0,08222222
Abril	0,41583333	2,675	0,47166667	0,03333333	0,19267857	0,03833333
Mayo	0,41666667	2,18625	0,43041667	0,11111111	0,20083333	0,07333333

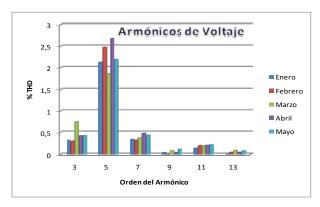


Figura 4.17- Diagrama de barras producidas en la S/E_4 Durante una semana laboral

SUBESTACION #5:

Análisis de armónicos para la S/E_5 durante un día. En la tabla 4.19 mostrada a continuación se puede notar la distorsión armónica la cual no supera el margen de la norma, y el valor máximo medido se da en la 3ra armónica de la fase B con un valor de 1,41% de distorsión.

Tabla 4.19 – Análisis estadístico de los THD medidos en la S/E_5 Durante un día

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,86537931	0,97365517	0,23441176	0,3054955	0,105	0
Febrero	1,08689655	0,79438849	0,20571429	0,36274648	0,11	0
Marzo	1,14206897	0,83489362	0,25088889	0,33887218	0	0,12
Abril	1,3417931	0,89007299	0,2115	0,36153846	0,105	0
Мауо	0,96565517	0,83570313	0,225	0,30848921	0,115	0
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,02406897	1,16048276	0,26197531	0,33270492	0,105	0
Febrero	1,19	0,93224638	0,24587302	0,40841379	0,15666667	0,1
Marzo	1,26544828	0,99724138	0,30287129	0,35552448	0	0
Abril	1,41517241	1,01213793	0,26533333	0,38986207	0	0
Mayo	1,12289655	0,89655172	0,27072917	0,33085106	0	0
			Malkat			
			Voltaj		- 44	40
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,66928058	1,09296552	0,27670455	0,28777778	0	-,-:
Febrero	0,89482759	0,87944056	0,25164179	0,34286713	0,14	0,162
Marzo	0,93958621	0,89324138	0,29444444	0,31068182	0	0,2025
Abril	1,08765517	0,94544828	0,27074468	0,32549296	0 105	0,11
Mayo	0,802	0,87668966	0,26271739	0,27601563	0,105	0,17
		Vo	ltaje Promed	io entre A, B	y C	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,85290962	1,07570115	0,25769721	0,3086594	0,07	0,04888889
Febrero	1,05724138	0,86869181	0,2344097	0,37134247	0,1355556	0,08733333
Marzo	1,11570115	0,90845879	0,28273487	0,33502616	0	0,1075
Abril	1,28154023	0,94921973	0,24919267	0,3589645	0,035	0,03666667
Mayo	0,96351724	0,86964817	0,25281552	0,30511863	0,07333333	0,05666667

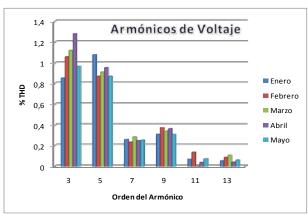


Figura 4.18- Diagrama de barras producidas en la S/E_5 Durante un día

En la tabla 4.20 se aprecia los armónicos producidos el fin de semana. Por lo que vemos que no se sale del borde permitido y el valor máximo medido se da en la 5ta armónica de la fase B con un valor de 1,45% de distorsión.

Tabla 4.20- Análisis estadístico de los THD medidos en la S/E_5 Durante un fin de semana

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,05569444	0,97092857	0,25567164	0,3496124	0,2	0
Febrero	1,0597931	1,1202069	0,277875	0,34449612	0,17857143	0
Marzo	1,18793103	1,28673759	0,24210526	0,34678261	0	0
Abril	1,27013793	1,00302326	0,23968254	0,36406897	0,13333333	0
Mayo	0,98682759	0,94280303	0,26915254	0,31654412	0,19	0
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,33310345	1,09089655	0,30558824	0,38295775	0,14	0,1
Febrero	1,32634483	1,34165517	0,31145455	0,375	0,15666667	0,13333333
Marzo	1,34744828	1,45337931	0,30137615	0,35495652	0	0,18428571
Abril	1,41206897	1,152	0,31654206	0,38006944	0,105	0,1
Mayo	1,22868966	1,04275862	0,33030303	0,3280303	0,16	0,14
			Voltaj	e en C		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,81544828	1,03576389	0,30531532	0,33465649	0,17	0,174
Febrero	0,84365517	1,24931034	0,32788991	0,32977778		0,1925
Marzo	0,95186207	1,37151724	0,2811215	0,32613861	0,15	
Abril	1,01551724	1,07462069	0,30567568	0,33020833	0,16	0,1
Mayo	0,78331034	1,05638889	0,32419048	0,28476923	0,18375	0,19
		Vo	ltaje Promed	io entre Δ R	v.C	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,06808206	1,03252967	0,2888584	0,35574221	0,17	0,09133333
Febrero	1,0765977	1,23705747	0,30573982	0,34975797	0,16574603	0,10861111
Marzo	1,16241379	1,37054471	0,27486764	0,34262591	0,05	0,10587302
Abril	1,23257471	1,07654798	0,28730009	0,35811558	0,13277778	0,06666667
Mayo	0,9996092	1,01398351	0,30788202	0,30978122	0,17791667	0,11

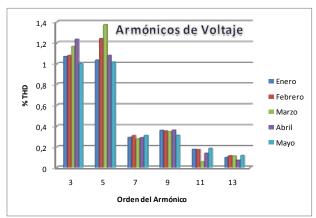


Figura 4.19 – Diagrama de barras producidas en la S/E_5 Durante un fin de semana

En la tabla 4.21 se ilustra el efecto producido durante una semana continua laboral. Por lo que podemos ultimar que el THD de la S/E_5 no sale del margen permitido. El valor máximo medido, se da en la 3ra armónica de la fase B con un valor de 2,73% de distorsión.

Tabla 4.21- Análisis estadístico de los THD medidos en la S/E_5 Durante una semana laboral

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	2,14625	1,69	0,385	0,55625	0,2225	0,205
Febrero	2,06125	1,615	0,37	0,5375	0,2	0,1575
Marzo	2,34375	1,8275	0,3725	0,5425	0,15	0,165
Abril	2,42875	1,435	0,3225	0,5625	0,19375	0,14
Mayo	1,715	1,44375	0,40875	0,485	0,24625	0,218
			Voltaj	e en R		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	2,56125	1,8225	0,4225	0,62375	0,18	
Febrero	2,39	1,8325	0,42625	0,57875	0,186	0,18166667
Marzo	2,57875	2	0,51625	0,56125	0,1	0,17666667
Abril	2,73625	1,61375	0,4425	0,59625	0,1625	0,13666667
Mayo	2,06375	1,6575	0,44625	0,51625	0,24125	0,174
			Voltaj	e en C		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,8925	1,755	0,47875	0,53375	0,18875	0,22625
Febrero	1,8225	1,76875	0,4525	0,50875	0,19125	0,23375
Marzo	1,9975	1,915	0,5075	0,49125	0,19	0,2
Abril	2,16375	1,545	0,4625	0,51	0,195	0,19875
Mayo	1,48125	1,66625	0,4675	0,43625	0,235	0,22375
			ltaje Promed	io entre A, B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	2,2	1,75583333	0,42875	0,57125	0,19708333	0,17708333
Febrero	2,09125	1,73875	0,41625	0,54166667	0,19241667	0,19097222
Marzo	2,30666667	1,91416667	0,46541667	0,53166667	0,14666667	0,18055556
Abril	2,44291667	1,53125	0,40916667	0,55625	0,18375	0,15847222
Mayo	1,75333333	1,58916667	0,44083333	0,47916667	0,24083333	0,20525

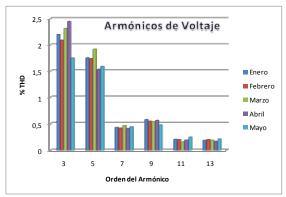


Figura 4.20- Diagrama de barras producidas en la S/E_5 Durante una semana laboral

SUBESTACION # 14:

Análisis de armónicos para la S/E_14 se realizo durante el periodo de una semana continua laboral se muestra en la tabla 4.22. Por lo que podemos ver que el THD de la S/E_14 no sale del margen permitido. El valor máximo medido, se da en la 5ta armónica de la fase C con un valor de 3,04% de distorsión.

Tabla 4.22- Análisis estadístico de los THD medidos en la S/E_14 Durante una semana laboral

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,5275	2,45875	0,5525	0,315	0,2375	0,23375
Febrero	0,57625	2,715	0,4925	0,3175	0,24875	0,23875
Marzo	0,4175	2,415	0,37125	0,2075	0,2	0,19625
Abril	0,6325	2,575	0,48375	0,24875	0,24125	0,25625
Mayo	0,59625	2,21125	0,48875	0,2625	0,2425	0,19
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,15625	2,60375	0,625	0,26	0,205	0,2175
Febrero	1,085	2,8075	0,59	0,26125	0,188	0,2575
Marzo	0,7775	2,42375	0,435	0,19375	0	0,20375
Abril	1,275	2,62375	0,56	0,25375	0,16	0,23
Mayo	1,26125	2,23375	0,59	0,24875	0,22333333	0,22571429
			Voltai	0 0 n C		
84/D				e en C	44	42
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,03375	2,78	0,6975	0,23125	0,21375	0,23375
Febrero	1,05125	3,04375	0,62875	0,195	0,26	-
Marzo Abril	0,7525 1,15875	2,65625 2,93375	0,415 0,56	0,19714286 0,24375	0,21375 0,23	0,20375 0,24375
Mayo	1,158/5	2,93373	U,36 Falt		0,23	0,24373
Iviayo			Tait	avc		
		Vo	ltaje Promed	io entre A, B	y C	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,90583333	2,61416667	0,625	0,26875	0,21875	0,22833333
Febrero	0,90416667	2,85541667	0,57041667	0,25791667	0,23225	0,24666667
Marzo	0,64916667	2,49833333	0,40708333	0,19946429	0,13791667	0,20125
Abril	1,02208333	2,71083333	0,53458333	0,24875	0,21041667	0,24333333
Мауо	0,92875	2,2225	0,539375	0,255625	0,23291667	0,20785714

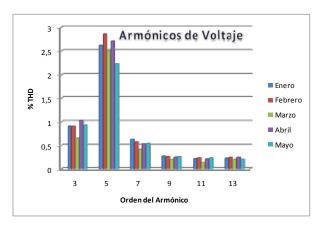


Figura 4.21- Diagrama de barras producidas en la S/E_14 Durante una semana laboral

SUBESTACION # 15:

De la misma manera analizamos los armónicos para la S/E_15 la cual se realizo durante el periodo de una semana continua laboral y se muestra en la tabla 4.23. Aquí podemos apreciar que el THD de la S/E_15 no supera el margen permitido. Y el valor máximo medido, se da en la 3ra armónica de la fase A con un valor de 1,75% de distorsión.

Tabla 4.23- Análisis estadístico de los THD medidos en la S/E_15 Durante una semana laboral

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	/ datos		
Febrero	0,4875	1,59125	0,8225	0,27125	0,19125	0,13666667
Marzo	0,525	1,505	0,64375	0,23	0,19	0,105
Abril	1,756125	0,9775	0,5625	0,21	0,18625	0
Mayo	5,707	0,82375	0,39375	0,19375	0,19	0
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	/ datos		
Febrero	1,17875	1,64	0,97625	0,27	0,1775	0
Marzo	1,26	1,605	0,80875	0,27	0,105	0,105
Abril	0,7025	1,00125	0,58375	0,21875	0,1775	0
Mayo	0,7425	0,92375	0,46375	0,2175	0,20125	0
				e en C		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay			
Febrero	1,14125	1,56875	0,86125	0,3675		0,16
Marzo	1,07625	1,57125	0,70375	0,35375		0
Abril	0,6775	0,9625	0,50625	0,30875		0
Mayo	0,6925	0,9175	0,4175	0,26625	0,21125	0
			ltaje Promed			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay			
Febrero	0,93583333	1,6	0,88666667	0,30291667	0,19166667	0,09888889
Marzo	0,95375	1,56041667	0,71875	0,28458333	0,16666667	0,07
Abril	1,045375	0,98041667	0,55083333	0,24583333	0,18375	0
Mayo	2,38066667	0,88833333	0,425	0,22583333	0,20083333	0

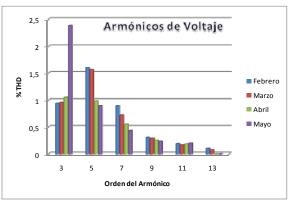


Figura 4.22- Diagrama de barras producidas en la S/E_15 Durante una semana laboral

SUBESTACION # 18:

Así mismo analizamos los armónicos para la S/E_18 la cual se realizo durante el periodo de una semana continua laboral y se muestra en la tabla 4.24. Aquí podemos apreciar que el THD de la S/E_18 no supera el margen permitido, valor máximo medido, se da en la 5ta armónica de la fase A con un valor de 2,56% de distorsión.

Tabla 4.24– Análisis estadístico de los THD medidos en la S/E_18 Durante una semana laboral

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,52625	1,5575	0,515	0,1575	0,235	0
Febrero	0,5975	1,9825	0,435	0,1525	0,21875	0
Marzo	0,90375	2,56625	0,5625	0,22	0,2875	0
Abril	0,98	2,0475	0,6725	0,13333333	0,24125	0
Mayo			No hay	/ datos		
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,64375	1,4825	0,4625	0,2575	0,2275	0
Febrero	0,57125	1,83625	0,3475	0,31875	0,23285714	0,1
Marzo	0,85125	2,44625	0,51375	0,3225	0,29	0
Abril	0,895	1,85625	0,58875	0,31125	0,25	0
Mayo			No hay	/ datos		
			Voltaj			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,42125	1,4325	0,36875	0,23875	0,24625	0
Febrero	0,41125	1,80625		0,22375	0,22875	0
Marzo	0,47375	2,36	0,52	0,23	0,3025	0
Abril	0,4575	1,82375	0,64875	0,2325	0,24625	0
Mayo			No hay	/ datos		
					•	
			Itaje Promed			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,53041667	1,49083333	0,44875	0,21791667	0,23625	0
Febrero	0,52666667	1,875	0,39988095	•	0,22678571	0,03333333
Marzo	0,74291667	2,4575	0,53208333	0,2575	0,29333333	0
Abril	0,7775	1,90916667	0,63666667	0,22569444	0,24583333	0
Mayo			No hay	/ datos		

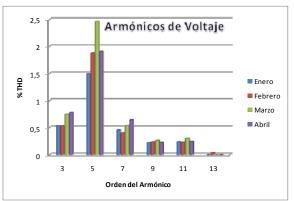


Figura 4. 23- Diagrama de barras producidas en la S/E_18 Durante una semana laboral

SUBESTACION # 21:

Aquí analizamos los armónicos para la S/E_21 durante un día. En la tabla 4.25 mostrada a continuación se puede notar la distorsión armónica la cual no supera el margen de la norma y a diferencia de las demás es mucho menor , el valor máximo medido se da en la 5ta armónica de la fase A con un valor de 0.90% de distorsión.

Tabla 4.25 – Análisis estadístico de los THD medidos en la S/E_21 Durante un día

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	datos		
Febrero	0,72322981	0,90099379	0,59478261	0,25936842	0,21705882	0,2025
Marzo	0,706875	0,66811321	0,54886792	0,28151515	0,22105263	0,2235
Abril			No hay	datos		
Mayo			No hay	datos		
			Voltaj			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay			
Febrero	0,56264151	0,7463354		0,42564626	0,17	0,21315789
Marzo	0,54246835	0,61101266		0,41042254	0,11	0,23482759
Abril			No hay			
Mayo			No hay	datos		
			Valta:			
NA - /Duana dia nan Amasania	3		Voltaj		44	12
Mes/Promedio por Armonica Enero	3	5	7 No hay	9 v datos	11	13
Febrero	0.64401316	0.0000000			0.21022222	0.21075
Marzo	0,64401316 0,65734177	0,82658385	0,73434783	0,34564103 0,35844828	0,21833333 0,21608696	0,21875 0,23419355
Abril	0,03734177	0,0739373	0,03649037 No hay		0,21000090	0,25419555
Mayo			No hay			
mayo			Honay	uutos		
		Vo	Itaje Promed	io entre A, B	y C	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	datos		
Febrero	0,64329483	0,82463768	0,70761905	0,3435519	0,20179739	0,2114693
Marzo	0,63556171	0,65102112	0,6251195	0,35012865	0,18237986	0,23084038
Abril			No hay	datos		
Mayo			No hay	datos		

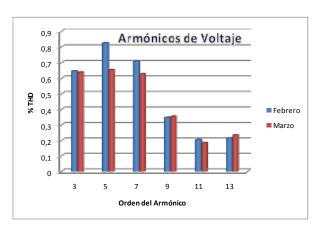


Figura 4.24- Diagrama de barras producidas en la S/E_21 Durante un día.

En la tabla 4.26 se estudia el efecto armónico producido el fin de semana. Y como observamos que son muy pequeños el porcentaje de armónico por lo tanto no se sale del margen permitido y el valor máximo medido se da en la 5ta armónica de la fase A con un valor de 1,01% de distorsión

Tabla 4.26- Análisis estadístico de los THD medidos en la S/E_21 Durante un fin de semana

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	datos		
Febrero	0,73282759	1,01103448	0,54090278	0,26261682	0,22933333	0,21545455
Marzo	0,69713514	0,68552486	0,5579235	0,28551948	0,20636364	0,2256
Abril			No hay	datos		
Mayo			No hay	datos		
			Voltaj			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay			
Febrero	0,56592857	0,85227586	,	0,43149606	,	0,23977273
Marzo	0,5376087	0,64375	0,69135135		0,105	0,23538462
Abril			No hay			
Mayo			No hay	datos		
			Voltaj			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0.70040700	2044	No hay		0.0000000	0.000
Febrero	0,70813793	0,944		0,36568627		0,23977273
Marzo Abril	0,66010811	0,6992973	0,6221978 No hay	0,36122951	0,19	0,22238095
Mayo			No hay			
ividyO			INO IIay	ualus		
		Vo	Itaje Promed	io entre A. B	v C	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	datos		
Febrero	0,6689647	0,93577011	0,6345538	0,35326639	0,21618301	0,23166667
Marzo	0,63161731	0,67619072	0,62382422	0,34861512	0,16712121	0,22778852
Abril			No hay			
Mayo			No hay	datos		

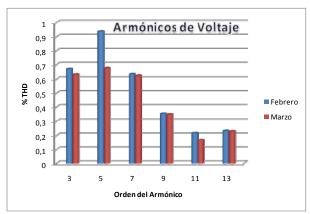


Figura 4.25 – Diagrama de barras producidas en la S/E_21 Durante un fin de semana

En la tabla 4.27 se ilustra el efecto producido durante una semana continua laboral. Por lo que podemos ultimar que el THD de la S/E_21 no sale del margen permitido. El valor máximo medido, se da en la 3ra armónica de la fase C con un valor de 1.56% de distorsión.

Tabla 4.27- Análisis estadístico de los THD medidos en la S/E_21 Durante una semana laboral

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	/ datos		
Febrero	1,53625	1,42375	0,96875	0,38625	0,29	0,26875
Marzo	1,54875	1,35375	0,95875	0,42625	0,2725	0,26125
Abril			No hay	/ datos		
Mayo			No hay	/ datos		
			Voltaj			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay			
Febrero	1,3475	1,19375	1,14375			
Marzo	1,4075	1,105	1,10375		0,19375	0,2975
Abril			No hay			
Mayo			No hay	/ datos		
			Voltai	e en C		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	/ datos		
Febrero	1,5575	1,24375	1,145	0,5275	0,2675	0,28625
Marzo	1,56125	1,1875	1,12125	0,5525	0,2575	0,29375
Abril			No hay	/ datos		
Mayo			No hay	/ datos		
		Vo	ltaje Promed	io entre A, B	y C	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	/ datos		
Febrero	1,48041667	1,28708333	1,08583333	0,52708333	0,26666667	0,28291667
Marzo	1,50583333	1,21541667	1,06125	0,54375	0,24125	0,28416667
Abril			No hay	/ datos		
Mayo			No hay	/ datos		

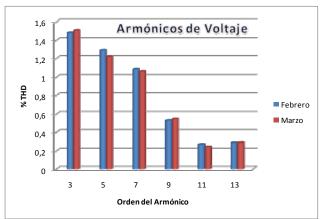


Figura 4.26– Diagrama de barras producidas en la S/E_21 Durante una semana laboral SUBESTACION # 22:

Aquí analizamos los armónicos para la S/E_22 durante un día. En la tabla 4.28 mostrada a continuación se puede notar la distorsión armónica la cual no supera el margen de la norma, el valor máximo medido se da en la 5ta armónica de la fase B con un valor de 1.33% de distorsión.

Tabla 4.28 – Análisis estadístico de los THD medidos en la S/E_22Durante un día

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,36555556	1,1699262	0,53574144	0,33023121	0,28898734	0,26567708
Febrero	0,38643836	0,9139759	0,47309211	0,29131868	0,26154639	0,24792453
Marzo	0,38670732	0,99368715	0,34740741	0,43464286	0,255	0,22648649
Abril	0,37489796	1,07979592	0,55428571	0,30108696	0,2085	0,2721739
Мауо	0,52535211	1,17275862	0,41790323	0,3635443	0,105	0,2
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,62388889	1,33512915	0,51255725	0,30590643	0,34766667	0,242
Febrero	0,61360248	1,08837349	0,45699301	0,30166667	0,30714286	0,2311666
Marzo	0,6202381	1,1427933	0,35522124	0,39673469	0,29671642	0,20
Abril	0,77591837	1,26244898	0,4244898	0,32755556	0,26212766	0,2053333
Мауо	0,78972414	1,1282069	0,47015873	0,35981481	0,1	0,2205882
			Voltaj			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,49452756	1,39339483	0,4391498	0,28018405	0,31247368	0,2487596
Febrero	0,52716981	1,17975904	0,40620155	0,25567568	0,29418182	0,2230508
	0.50400000				0.2000000	0.3000000
Marzo	0,58196629	1,13240223	0,28778846	0,36433628	0,26906667	0,2088888
Abril	0,61295337	1,13240223 1,19768786	0,28778846 0,39690608	0,36433628 0,25403361	0,28803738	0,2504629
		1,13240223	0,28778846	0,36433628		
Abril	0,61295337	1,13240223 1,19768786 1,00475862	0,28778846 0,39690608 0,40122642	0,36433628 0,25403361 0,39540323	0,28803738 0,21347826	0,2504629
Abril Mayo	0,61295337 0,57069444	1,13240223 1,19768786 1,00475862	0,28778846 0,39690608	0,36433628 0,25403361 0,39540323 io entre A, B	0,28803738 0,21347826 y C	0,2504629 0,22
Abril Mayo Mes/Promedio por Armonica	0,61295337 0,57069444	1,13240223 1,19768786 1,00475862 Vo	0,28778846 0,39690608 0,40122642 Itaje Promed	0,36433628 0,25403361 0,39540323 io entre A, B	0,28803738 0,21347826 y C 11	0,2504629
Abril Mayo Mes/Promedio por Armonica Enero	0,61295337 0,57069444 3 0,49465733	1,13240223 1,19768786 1,00475862 Vo 5 1,29948339	0,28778846 0,39690608 0,40122642 Itaje Promed 7 0,49581616	0,36433628 0,25403361 0,39540323 io entre A, B 9 0,30544057	0,28803738 0,21347826 y C 11 0,3163759	0,2504629 0,22 13 0,25231226
Abril Mayo	0,61295337 0,57069444 3 0,49465733 0,50907022	1,13240223 1,19768786 1,00475862 Vo 5 1,29948339 1,06070281	0,28778846 0,39690608 0,40122642 Itaje Promed 7 0,49581616 0,44542889	0,36433628 0,25403361 0,39540323 io entre A, B 9 0,30544057 0,28288701	0,28803738 0,21347826 y C 11 0,3163759 0,28762369	0,2504629 0,22 13 0,25231226 0,23404735
Abril Mayo Mes/Promedio por Armonica Enero Febrero	0,61295337 0,57069444 3 0,49465733	1,13240223 1,19768786 1,00475862 Vo 5 1,29948339	0,28778846 0,39690608 0,40122642 Itaje Promed 7 0,49581616	0,36433628 0,25403361 0,39540323 io entre A, B 9 0,30544057	0,28803738 0,21347826 y C 11 0,3163759	0,2504629

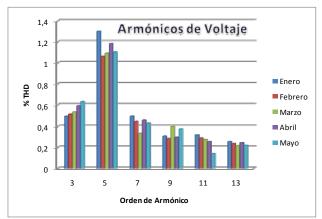


Figura 4.27- Diagrama de barras producidas en la S/E_22 Durante un día.

En la tabla 4.29 se estudia el efecto armónico producido el fin de semana. Y como casi todas las subestaciones de DIMS son de porcentaje de armónico pequeños por lo tanto no se sale del margen permitido y el valor máximo medido se da en la 5ta armónica de la fase C con un valor de 1,49% de distorsión

Tabla 4.29- Análisis estadístico de los THD medidos en la S/E_22 Durante un fin de semana

	Voltaje en A					
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,39408696	1,05992126	0,44284483	0,33350649	0,25912088	0,25557895
Febrero	0,38677852	1,03	0,4064557	0,33257732	0,27757282	0,24927536
Marzo	0,39616438	1,28148387	0,42711111	0,29113924	0,27108527	0,24778761
Abril	0,27833333	1,42571429	0,265	0,35666667	0	0
Mayo	0,45556818	0,88813187	0,37043956	0,38564103	0,32083333	0,25673077
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,66696	1,27464567	0,46980769	0,30195122	0,32470085	0,22684211
Febrero	0,62640719	1,16094675	0,37651007	0,30670213	0,36165217	0,22805556
Marzo	0,58660131	1,48619355	0,45134752	0,27775	0,31097222	0,22875
Abril	0,62571429	1,43571429	0,17	0,236	0	C
Mayo	0,71489796	0,86127451	0,43592105	0,34142857	0,35342105	0,224
			Voltaj	e en C		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,51325203	1,36944882	0,39589286	0,25880597	0,27632353	0,23
Febrero	0,48590361	1,25609467	0,33260504	0,30616162	0,31807018	0,22272727
Marzo	0,57896774	1,49070968	0,40758865	0,27057471	0,26457143	0,21846154
Abril	0,50314815	0,86127273	0,22111111	0,5095	0,31116279	0,21235294
Mayo	0,6028	0,7459	0,38468354	0,37545455	0,35804878	0,2176
		Vo	Itaie Promed	io entre A, B	v C	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,52476633	1,23467192	0,43618179	0,29808789	0,28671509	0,23747368
Febrero	0,49969644	1,14901381	0,37185694	0,31514702	0,31909839	0,23335273
Marzo	0,52057781	1,41946237	0,42868243	0,27982132	0,28220964	0,23166638
Abril	0,46906526	1,24090043	0,2187037	0,36738889	0,10372093	0,07078431
Mayo	0,59108871	0,83176879	0,39701472	0,36750805	0,34410106	0,23277692

121

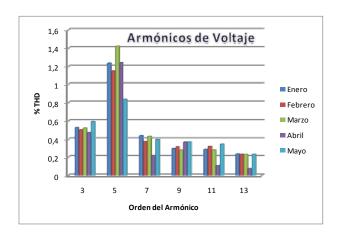


Figura 4.28 – Diagrama de barras producidas en la S/E_22 Durante un fin de semana

En la tabla 4.30 se ilustra el efecto producido durante una semana continua laboral. Por lo que podemos concluir que el THD de la S/E_22 no sale del margen permitido. El valor máximo medido, se da en la 3ra armónica de la fase C con un valor de 1.56% de distorsión

Tabla 4.30- Análisis estadístico de los THD medidos en la S/E_22 Durante una semana laboral

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	0,81125	1,4325	0,74125	0,45428571	0,4825	0,40375
Febrero	0,765	1,4975	0,6775	0,43625	0,395	0,36
Marzo	0,84375	1,67875	0,60625	0,46	0,33625	0,3375
Abril	0,42428571	1,18857143	0,49571429	0,31714286	0,23333333	0,265
Mayo	0,98125	1,45	0,7425	0,4775	0,385	0,395
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,195	1,645	0,8725	0,44285714	0,54875	0,3225
Febrero	1,10125	1,71	0,78	0,40625	0,5025	0,3225
Marzo	1,22125	1,83	0,81375	0,47	0,38625	0,295
Abril	0,73714286	1,30714286	0,4	0,31285714	0,27833333	0,19
Mayo	1,4225	1,67	0,935	0,53125	0,405	0,3125
			Voltaj	e en C		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,15125	1,71125	0,73875	0,35375	0,495	0,34625
Febrero	1,06	1,85375	0,70875	0,35625	0,44125	0,3375
Marzo	1,36375	1,93875	0,57125	0,4725	0,3675	0,29
Abril	1,37571429	1,81142857	0,54857143	0,44571429		0,332857143
Mayo	1,49	1,5925	0,66	0,52125	0,3975	0,34125
			ltaje Promed			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero	1,0525	1,59625	0,78416667	0,41696429	0,50875	0,3575
Febrero	0,97541667	1,68708333	0,72208333	0,39958333	0,44625	0,34
Marzo	1,14291667	1,81583333	0,66375	0,4675	0,36333333	0,3075
Abril	0,84571429	1,43571429	0,48142857	0,35857143	0,3034127	0,262619048
Mayo	1,29791667	1,57083333	0,77916667	0,51	0,39583333	0,349583333

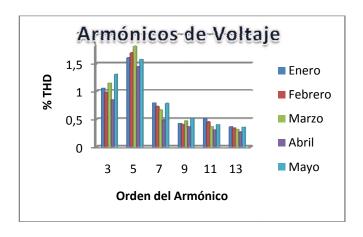


Figura 4.29- Diagrama de barras producidas en la S/E_22 Durante una semana laboral SUBESTACION # 23:

Aquí analizamos los armónicos para la S/E_23 durante un día. En la tabla 4.31 mostrada a continuación se puede notar la distorsión armónica la cual no supera el margen de la norma, el valor máximo medido se da en la 5ta armónica de la fase A con un valor de 0.92% de distorsión.

Tabla 4.31 – Análisis estadístico de los THD medidos en la S/E_23Durante un día

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	datos		
Febrero	0,23733333	0,68	0,32129032	0,1	0,38931034	0,1366666
Marzo	0,24666667	0,5755556	0,274	0	0,11	0,2333333
Abril	0,27888889	0,5355556	0,28266667	0	0,1775	(
Мауо	0,22745098	0,922249	0,41875502	0,17857143	0,28325991	0,28636364
			Voltaj			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay			
Febrero	0,19636364	0,71451613	0,27571429	0,22		0,196
Marzo	0,2862963	0,65222222	0,1	0,27181818	0,17428571	0,2166666
Abril	0,34111111	0,55	0	0,27148148	0,11	0,1
Mayo	0,24589744	0,87582329	0,40566372	0,29189189	0,45318777	0,2216666
			Voltaj	e en C		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	datos		
Febrero	0,24709091	0,73285714	0,45771429	0,33290323	0,37473684	0,20272727
Marzo	0,29651515	0,78512048	0,3325	0,37708861	0,23269231	0,23461538
Abril	0,35546875	0,8129697	0,3237037	0,32611111	0,15	0,14333333
Мауо	0,28360825	0,79447619	0,45176471	0,32756098	0,3765625	0,22873418
		Vo	Itaje Promed	io entre A, B	y C	
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	datos		
Febrero	0,22692929	0,70912442	0,35157296	0,21763441	0,43102648	0,17846465
Marzo	0,2764927	0,67096609	0,2355	0,21630226	0,17232601	0,22820513
Abril	0,32515625	0,63284175	0,20212346	0,19919753	0,14583333	0,09444444
Mayo	0,25231889	0,86418283	0,42539448	0,2660081	0,37100339	0,24558816

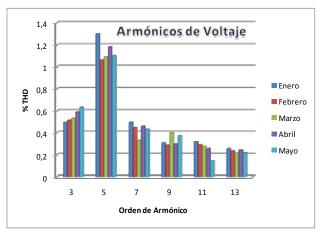


Figura 4.30- Diagrama de barras producidas en la S/E_23 Durante un día.

En la tabla 4.32 se estudia el efecto armónico producido el fin de semana. Y como casi todas las subestaciones de DIMS son de porcentaje de armónico pequeños por lo tanto no se sale del margen permitido y el valor máximo medido se da en la 5ta armónica de la fase C con un valor de 0.99% de distorsión

Tabla 4.32- Análisis estadístico de los THD medidos en la S/E_23 Durante un fin de semana

			Voltaj	e en A		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	/ datos		
Febrero	0,20666667	0,93977901	0,4418232	0	0,35216867	0,207
Marzo	0,22666667	0,73789474	0,31842105	0	0,34052632	0
Abril	0,25	0,48925373	0,28688525	0	0,32288462	0,1
Mayo	0,20805556	0,73300752	0,32121212	0,19416667	0,35413534	0,27877193
			Voltaj	e en B		
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay	/ datos		
Febrero	0,21555556	0,95110497	0,40619048	0,21892308	0,50845304	0,13333333
Marzo	0,23866667	0,83210526	0,2575	0,252	0,37684211	0
Abril	0,26195122	0,56134328	0,21967742	0,24512195	0,3145614	0,13666667
Mayo	0,21688889	0,67616541	0,34744681	0,20181818	0,45112782	0,21176471
			Voltaj			
Mes/Promedio por Armonica	3	5	7	9	11	13
Enero			No hay			
Febrero	0,29142857	0,79192825	0,4855157	0,40690265		0,205
Marzo	0,29373626		0,43374101	0,36830986	0,3980597	0,18666667
Abril	0,31096045	0,81030151	0,2604375	0,38875	0,2145122	0
Mayo	0,24756757	0,59163636	0,28285714	0,22727273	0,31534884	0,26470588
		1/-	lists Barrer	' A B		
Mary Durance dia man America	3		Itaje Promed		y C 11	13
Mes/Promedio por Armonica	3	5	7 No hay	9 udatos	- 11	15
Enero Febrero	0,2378836	0.00427074	No hay 0,44450979	0,20860858	0.42026794	0 10177770
Marzo		0,89427074			0,42026784	0,18177778
Abril	0,2530232 0,27430389	0,85556237	0,33655402 0,25566672	0,20676995	0,37180937 0,28398607	0,06222222 0,07888889
		0,62029951	-	0,21129065	-	
Mayo	0,22417067	0,66693643	0,31717202	0,20775253	0,37353733	0,25174751

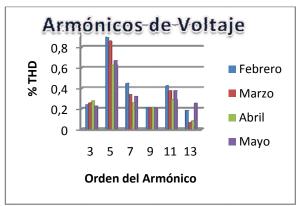


Figura 4.31 – Diagrama de barras producidas en la S/E_23 Durante un fin de semana

En la tabla 4.33 se ilustra el efecto producido durante una semana continua laboral. Por lo que podemos concluir que el THD de la S/E_23 no sale del margen permitido. El valor máximo medido, se da en la 5ta armónica de la fase C con un valor de 1.52% de distorsión.

Tabla 4.33- Análisis estadístico de los THD medidos en la S/E_23 Durante una semana laboral

			Voltaj	e en A		
omedio por A	3	5	7	9	11	13
Enero			No hay	/ datos		
Febrero	0,2425	0,695	0,32875	0,1	0,365	0,19
Marzo	0,33875	1,3675	0,45125	0	0,38142857	0,28125
Abril	0,35	1,1325	0,4425	0	0,2875	0,28125
Mayo	0,2275	1,09375	0,50125	0,18875	0,325	0,27125
			Voltaj			
Mes/Prome	3	5	7	9	11	13
Enero			No hay			
Febrero	0,19875	0,71125	0,30875	0,2325	0,50625	0,19
Marzo	0,34875	1,45625	0,3825	0,3725	0,51	0,2425
Abril	0,32125	1,24375	0,47125	0,3625	0,3775	0,23875
Mayo	0,28875	1,075	0,53375	0,26125	0,5575	0,2175
			Voltaj			
Mes/Prome	3	5	7	9	11	13
Enero			No hay			
Febrero	0,5525	1,38125	0,66875	0,49125	0,615	0,25375
Marzo	0,52875	1,52125	0,6075	0,49875	0,46875	0,25375
Abril	0,56125	1,44375	0,59875	0,46625	0,33375	0,23625
Mayo	0,31	0,8825	0,51125	0,31625	0,405	0,22125
		Vo	Itaia Promad	io entre A, B	v.C	
Mes/Prome	3	5	7	9	11	13
Enero			No hay			
Febrero	0,33125	0,92916667	0,43541667	0,27458333	0,49541667	0,21125
Marzo	0,40541667	1,44833333	0,48041667	0,29041667	0,45339286	0,25916667
Abril	0,41083333	1,27333333	0,50416667	0,27625	0,33291667	0,25208333
Mayo	0,27541667	1,01708333	0,51541667	0,25541667	0,42916667	0,23666667

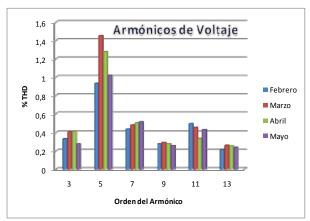


Figura 4.32- Diagrama de barras producidas en la S/E_23 Durante una semana laboral

4.2.2 ARMÓNICOS DE CORRIENTE

SUBESTACION # 1

Para el análisis de armónicos de corriente se va a considerar el estudio de la subestación 1 y 2, debido a que no se cuentan con las mediciones de armónicos de corriente para obtener los datos estadísticos de las demás subestaciones. Por lo que para el capítulo V, análisis matemático del filtro nos regiremos únicamente a estas subestaciones.

La siguiente tabla 4.34 mostrada a continuación, permite observar el porcentaje de la distorsión armónica de corriente en la S/E_1. En este análisis se puede percibir que durante el periodo de toma de muestras del equipo instalado en la subestación el cual inicio el día 19/09/2010 a las 13:00 y finalizo el día 22/09/2010 a las 11:00, mediante el análisis estadístico podemos concluir que el THD de la S/E_1 se sale del margen permitido por la normas internacionales en la 5^{ta} armónica, cabe mencionar que dentro de las regulaciones impuestas por el órgano regulador vigente en el país no se tiene regulado el porcentaje de armónicos producidos por los clientes, por lo que en el estudio nos ajustamos a los compendios internacionales de las normas descritas en el capítulo II.

El valor máximo medido se da en la 5^{ta} armónica de la fase A con un valor de 12,55% de distorsión. Teniendo como límite un valor máximo de 12% de THDi (Véase en el capítulo II). Por lo que la corrección mediante el filtro se dará en la armónica 5^{ta}, para el resto de armónicos en el análisis no superan los límites permitidos en la norma.

Tabla 4.34 - Análisis de armónicos de corriente S/E 1

MEDICIÓN DE ARMÓNICOS DE CORRIENTE S/E 1							
Fecha inicial:	19,	/09/2010 13	:00				
Fecha final:	22,	/09/2010 11:	:00				
Armonicas I	FASE A	FASE B	FASE C				
Affilofficas f	Valor (%)	Valor (%)	Valor (%)				
1	100,00	100,00	100,00				
2	0,06	0,04	0,04				
3	0,67	2,52	1,78				
4	0,02	0,02	0,01				
5	12,55	12,46	11,11				
6	0,04	0,03	0,02				
7	3,26	3,61	3,08				
8	0,00	0,00	0,00				
9	0,04	0,08	0,14				
10	0,00	0,00	0,00				
11	0,26	0,28	0,19				
12	0,00	0,00	0,00				
13	0,33	0,39	0,35				

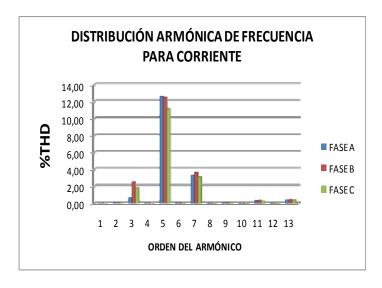


Figura 4.33 – Distribución armónica de corriente S/E 1

En la tabla 4.35 se muestra los datos obtenidos del desarrollo de la serie de Fourier, esto para graficar la distorsión armónica en forma sinusoidal y en lo posterior modelar matemáticamente la corrección de la onda mediante el filtro.

Tabla 4.35 - Datos para Armónicos de corriente

Forma de onda de corriente					
Arg°	Arg rad	FASE A	FASE B	FASE C	
0	0,00000	0,000	0,000	0,000	
4	0,06981	0,134	0,140	0,131	
8	0,13962	0,256	0,267	0,250	
12	0,20943	0,357	0,372	0,350	
16	0,27924	0,434	0,450	0,427	
20	0,34906	0,488	0,505	0,483	
24	0,41887	0,524	0,541	0,522	
28	0,48868	0,546	0,563	0,548	
32	0,55849	0,559	0,575	0,566	
36	0,62830	0,568	0,583	0,579	
40	0,69811	0,577	0,591	0,593	
44	0,76792	0,594	0,606	0,613	
48	0,83773	0,623	0,633	0,643	
52	0,90754	0,666	0,675	0,686	
56	0,97736	0,722	0,729	0,739	
60	1,04717	0,786	0,790	0,798	
64	1,11698	0,852	0,852	0,857	
68	1,18679	0,913	0,909	0,910	
72	1,25660	0,967	0,957	0,957	
76	1,32641	1,012	0,998	0,997	
80	1,39622	1,048	1,029	1,029	
84	1,46603	1,073	1,052	1,052	
88	1,53584	1,086	1,064	1,064	
92	1,60566	1,086	1,064	1,064	
96	1,67547	1,072	1,052	1,051	
100	1,74528	1,047	1,029	1,028	
104	1,81509	1,011	0,997	0,997	
108	1,88490	0,966	0,957	0,957	
112	1,95471	0,912	0,908	0,910	
116	2,02452	0,851	0,852	0,856	
120	2,09433	0,786	0,790	0,798	
124	2,16414	0,722	0,729	0,739	
128	2,23396	0,666	0,675	0,686	
132	2,30377	0,623	0,633	0,643	
136	2,37358	0,594	0,606	0,613	
140	2,44339	0,577	0,590	0,593	
144	2,51320	0,567	0,582	0,579	
148	2,58301	0,558	0,574	0,565	
152	2,65282	0,545	0,561	0,547	
156	2,72263	0,523	0,539	0,521	
160	2,79244	0,487	0,503	0,482	
164	2,86226	0,432	0,449	0,426	
168	2,93207	0,356	0,370	0,349	
172	3,00188	0,255	0,266	0,250	

404	2 24424	0.422	0.440	0.420
184	3,21131	-0,133	-0,140	-0,130
188	3,28112	-0,255	-0,266	-0,249
192	3,35093	-0,356	-0,370	-0,349
196	3,42074	-0,432	-0,449	-0,426
200	3,49056	-0,486	-0,503	-0,481
204	3,56037	-0,522	-0,539	-0,520
208	3,63018	-0,545	-0,561	-0,547
212	3,69999	-0,558	-0,574	-0,565
216	3,76980	-0,567	-0,582	-0,579
220	3,83961	-0,577	-0,590	-0,593
224	3,90942	-0,594	-0,606	-0,612
228	3,97923	-0,623	-0,633	-0,643
232	4,04904	-0,666	-0,675	-0,686
236	4,11886	-0,722	-0,729	-0,739
240	4,18867	-0,786	-0,790	-0,798
244	4,25848	-0,851	-0,852	-0,856
248	4,32829	-0,912	-0,908	-0,910
252	4,39810	-0,966	-0,957	-0,957
256	4,46791	-1,011	-0,997	-0,996
260	4,53772	-1,047	-1,029	-1,028
264	4,60753	-1,072	-1,052	-1,051
268	4,67734	-1,086	-1,064	-1,064
272	4,74716	-1,086	-1,064	-1,064
276	4,81697	-1,073	-1,052	-1,052
280	4,88678	-1,048	-1,030	-1,029
284	4,95659	-1,012	-0,998	-0,997
288	5,02640	-0,967	-0,958	-0,958
292	5,09621	-0,913	-0,909	-0,911
296	5,16602	-0,852	-0,852	-0,857
300	5,23583	-0,787	-0,790	-0,798
304	5,30564	-0,723	-0,729	-0,739
308	5,37546	-0,666	-0,675	-0,686
312	5,44527	-0,623	-0,633	-0,643
316	5,51508	-0,594	-0,606	-0,613
320	5,58489	-0,577	-0,591	-0,593
324	5,65470	-0,568	-0,583	-0,579
328	5,72451	-0,559	-0,575	-0,566
332	5,79432	-0,546	-0,563	-0,548
336	5,86413	-0,524	-0,541	-0,522
340	5,93394	-0,489	-0,505	-0,483
344	6,00376	-0,434	-0,450	-0,427
348	6,07357	-0,358	-0,372	-0,350
352	6,14338	-0,257	-0,268	-0,251
356	6,21319	-0,135	-0,141	-0,131
360	6,28300	0,000	0,000	0,000

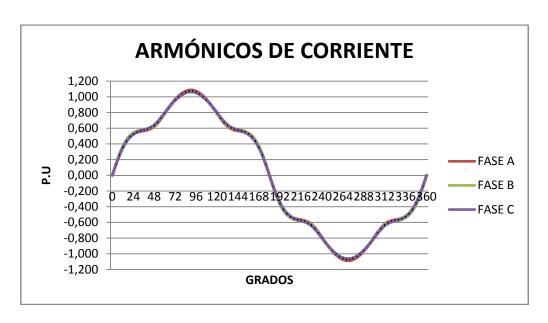


Figura 4.34 – Forma de onda de corriente de la S/E 1

Según se puede apreciar en la figura 4.34, la distorsión a la forma senoidal de la onda se presenta por el rango elevado que tiene el porcentaje en la 5ta armónica, aunque los valores no sean pronunciados en el resto de armónicos también se da el efecto de distorsión, por lo que el valor pico es de $\pm 1,086$ en la gráfica, cabe mencionar que todos los valores extraídos de la base de datos creada para el análisis estadístico son valores en (**rms**) y no con valores picos.

Tabla 4.36- Datos de THDi durante un día típico en la S/E 1

DATOS DE A	RMÓNICO DE C	ORRIENTE DUF	RANTE UN DIA
HORA	%THD Ia	%THD Ib	%THD Ic
0:10	27,13	25,93	23,74
0:20	25,95	25,41	22,91
0:30	26,25	25,95	23,13
0:40	27,05	26,70	24,30
0:50	26,79	26,94	23,63
1:00	28,28	27,06	24,74
1:10 1:20	28,07 26,60	27,28 26,59	24,74 23,72
1:30	27,24	27,74	24,13
1:40	29,16	28,69	25,17
1:50	29,42	28,67	25,70
2:00	28,86	28,00	25,34
2:10	28,20	27,69	24,33
2:20	27,85	27,97	24,36
2:30	29,18	29,29	25,66
2:40	28,84	28,49	24,99
2:50	28,48	27,75	25,33
3:00	28,23	27,82	24,54
3:10	29,64	29,45	26,06
3:20	28,87	28,06	25,65
3:30	29,81	28,63	25,28
3:40	29,35	28,83	25,07
3:50	29,20	28,97	25,43
4:00	29,84	28,75	25,18
4:10	29,55	28,76	25,21
4:20	28,97	28,15	25,77
4:30 4:40	28,47 28,25	27,95 27,42	24,75 24,62
4:50	28,23	27,30	24,78
5:00	28,97	27,65	24,98
5:10	27,49	26,11	24,28
5:20	25,84	24,94	22,44
5:30	25,24	24,00	21,96
5:40	22,85	21,53	20,23
5:50	20,68	19,51	18,33
6:00	20,99	19,50	18,50
6:10	18,52	18,13	16,37
6:20	18,28	17,63	16,60
6:30	17,69	17,04	15,47
6:40	17,52	16,52	15,57
6:50	16,31	15,47	14,77
7:00	16,38	15,07	14,93
7:10	15,72	13,95	14,27
7:20 7:30	16,20 14,92	14,80 13,84	14,17 13,54
7:40	12,42	11,96	11,06
7:50	11,20	10,72	10,51
8:00	10,08	9,44	8,80
8:10	9,41	8,90	8,65
8:20	8,59	8,16	8,01
8:30	7,49	7,21	6,95
8:40	7,35	7,26	7,16
8:50	6,96	6,75	6,59
9:00	7,04	6,68	6,62
9:10	6,55	6,34	6,23
9:20	6,35	5,85	5,58
9:30	5,86	5,53	5,30
9:40	5,95	5,66	5,52
9:50	5,73	5,27	5,28
10:00	5,91	5,55	5,36
10:10	5,50	5,26	4,99
10:20	6,09	5,82	5,58
10:30 10:40	5,92 6.41	5,68 6 10	5,40 5,82
10:40	6,41 6,37	6,10 6,02	5,78
11:00	6,37	6,32	6,02
11:10	6,23	5,94	5,70
11:20	6,16	5,92	5,58
11:30	6,34	5,95	5,69
11:40	6,68	6,45	6,20
11:50	6,24	6,10	5,65
12:00	6,04	5,81	5,42

12:10	6,44	6,26	5,90
12:20	5,81	5,62	5,20
12:30	5,91	5,75	5,35
12:40	6,20	6,23	5,59
12:50 13:00	6,60	6,36	5,85 12,46
13:00	13,79 7,14	13,32 7,01	6,40
13:10	14,66	14,39	13,36
13:20	14,71	14,51	13,67
13:30	15,68	15,34	14,25
13:40	16,24	16,38	14,91
13:50	15,68	15,48	13,96
14:00	16,23	15,75	14,35
14:10	16,36	16,23	14,53
14:20	16,09	15,84	14,41
14:30	16,84	16,07	14,66
14:40	16,78	16,37	15,45
14:50	17,35	16,61	15,62
15:00	17,32	16,83	15,35
15:10	18,54	17,92	16,11
15:20	18,19	17,59	15,76
15:30	18,29	17,98	16,61
15:40	19,00	18,42	16,76
15:50	18,29	17,92	16,54
16:00	18,89	18,66	17,24
16:10	20,15	19,63	17,94
16:20	20,09	19,41	17,52
16:30	18,68	18,59	16,83
16:40	19,10	18,94	17,33
16:50	19,28	18,37	17,25
17:00	17,97	17,27	15,81
17:10	18,11	17,01	15,96
17:20	16,70	15,93	15,16
17:30	16,66	16,11	15,12
17:40	17,45	16,51	15,54
17:50	15,48	15,36	13,83
18:00	12,91	12,88	11,42
18:10	13,85	13,42	11,94
18:20 18:30	11,63 11,09	11,40 10,99	9,82 9,70
18:40	9,83	9,75	8,77
18:50	9,41	9,47	8,62
19:00	9,51	9,34	8,41
19:10	9,06	9,12	7,96
19:20	8,83	8,84	8,02
19:30	9,21	8,91	8,34
19:40	9,15	8,97	8,40
19:50	9,38	9,30	8,61
20:00	10,29	9,72	9,51
20:10	10,22	9,82	9,45
20:20	10,47	10,22	9,64
20:30	10,87	10,75	9,91
20:40	10,83	10,44	9,53
20:50	11,75	11,35	10,70
21:00	11,55	11,15	10,52
21:10	11,07	10,80	9,97
21:20	11,45	11,20	10,39
21:30	11,99	11,73	10,90
21:40	12,42	12,03	11,46
21:50	13,84	13,43	12,39
22:00	15,15	14,76	13,57
22:10	15,80	15,33	14,49
22:20	16,62	16,24	14,52
22:30	16,52	16,41 17,15	15,05 15.79
22:40	17,33		15,79 16.90
22:50 23:00	18,79 19,25	18,50 18,93	16,90 17,61
23:00	22,21	21,42	20,05
23:10	22,21	21,42	20,05
23:30	22,66	22,70	20,48
23:40	24,34	23,82	22,09
23:50	25,51	24,47	22,63
0:00	25,12	25,01	22,95
	,	,	,

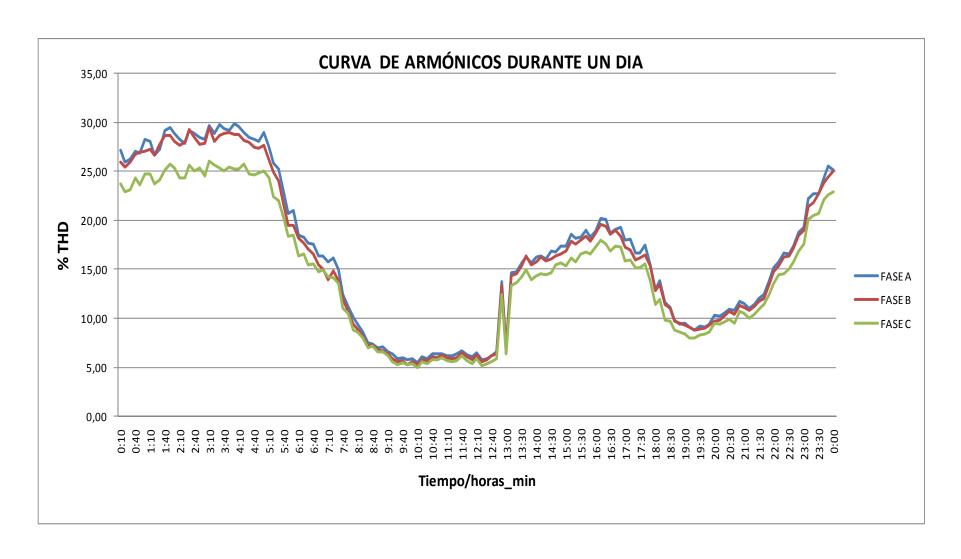


Figura 4.35- Curva de armónicos de corriente por la carga conectada a la S/E 1 durante un día típico

SUBESTACION #2

Para el análisis de la subestación 2 se considera de la misma manera que la subestación 1. En la tabla 4.37 se muestra el porcentaje de la distorsión armónica de corriente en la S/E_2, por lo que podemos concluir que la THD de la S/E_2 no se supera el margen permitido por las normas establecidas en este estudio.

El valor máximo medido se da en la 5ta armónica de la fase C con un valor de 8.67% de distorsión. Teniendo como límite un valor máximo de 12% de THD (Véase en el capítulo 2). Por lo que se puede determinar que ninguna armónica supera el umbral de la regulación 004/01 y de las normas establecidas para el estudio.

Tabla 4.37- Análisis de armónicos de corriente S/E 2

MEDICIÓN DE ARMÓNICOS DE CORRIENTE S/E 2						
Fecha inicial:	19	9/09/2010 11:	00			
Fecha final:	2	2/09/2010 8:1	LO			
Armonicas I	FASE A	FASE B	FASE C			
Aimonicas i	Valor (%)	Valor (%)	Valor (%)			
1	100,00	100,00	100,00			
2	0,05	0,04	0,03			
3	1,57	0,71	2,50			
4	0,00	0,00	0,00			
5	6,87	7,47	8,67			
6	0,00	0,00	0,00			
7	0,82	0,78	1,11			
8	0,00	0,00	0,00			
9	0,15	0,10	0,12			
10	0,00	0,00	0,00			
11	0,33	0,28	0,30			
12	0,00	0,00	0,00			
13	0,15	0,16	0,18			

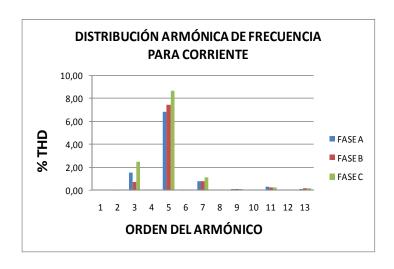


Figura 4.36- Distribución armónica de corriente S/E 2

En la tabla 4.38 se muestra los datos obtenidos del desarrollo de la serie de Fourier, esto para graficar la distorsión armónica en forma sinusoidal y en lo posterior modelar matemáticamente la corrección de la onda mediante el filtro, la distorsión armónica que presenta esta subestación no sobrepasa los umbrales permitidos en la regulación 004/01 y en las normas que rigen el estudio.

Tabla 4.38 - Datos para Armónicos de corriente

	Forma de onda de corriente					
Arg°	Arg rad	FASE A	FASE B	FASE C		
0	0,00000	0,000	0,000	0,000		
4	0,06981	0,105	0,104	0,114		
8	0,13962	0,203	0,202	0,220		
12	0,20943	0,290	0,288	0,313		
16	0,27924	0,363	0,362	0,390		
20	0,34906	0,425	0,424	0,453		
24	0,41887	0,478	0,475	0,503		
28	0,48868	0,523	0,520	0,544		
32	0,55849	0,563	0,557	0,577		
36	0,62830	0,598	0,590	0,604		
40	0,69811	0,629	0,619	0,628		
44	0,76792	0,659	0,648	0,651		
48	0,83773	0,691	0,680	0,678		
52	0,90754	0,726	0,717	0,712		
56	0,97736	0,767	0,760	0,753		
60	1,04717	0,813	0,807	0,800		
64	1,11698	0,860	0,858	0,849		
68	1,18679	0,905	0,907	0,898		
72	1,25660	0,948	0,952	0,944		
76	1,32641	0,984	0,992	0,983		
80	1,39622	1,013	1,024	1,015		
84	1,46603	1,033	1,047	1,038		
88	1,53584	1,043	1,058	1,049		
92	1,60566	1,043	1,058	1,049		
96	1,67547	1,033	1,046	1,037		
100	1,74528	1,013	1,024	1,015		
104	1,81509	0,984	0,992	0,983		
108	1,88490	0,947	0,952	0,943		
112	1,95471	0,905	0,906	0,898		
116	2,02452	0,859	0,857	0,849		
120	2,09433	0,812	0,807	0,799		
124	2,16414	0,767	0,759	0,753		
128	2,23396	0,726	0,716	0,712		
132	2,30377	0,690	0,679	0,678		
136	2,37358	0,658	0,647	0,651		
140	2,44339	0,628	0,619	0,627		
144	2,51320	0,597	0,589	0,603		
148	2,58301	0,562	0,557	0,576		
152	2,65282	0,523	0,519	0,543		
156	2,72263	0,477	0,475	0,503		
160	2,79244	0,425	0,423	0,452		
164	2,86226	0,363	0,362	0,390		
168	2,93207	0,289	0,288	0,313		
172	3,00188	0,203	0,202	0,220		
176	3,07169	0,105	0,104	0,114		
180	3,14150	0,000	0,000	0,000		

incos uc	Corriente			
184	3,21131	-0,105	-0,104	-0,114
188	3,28112	-0,202	-0,202	-0,220
192	3,35093	-0,289	-0,288	-0,312
196	3,42074	-0,363	-0,361	-0,390
200	3,49056	-0,424	-0,423	-0,452
204	3,56037	-0,477	-0,475	-0,502
208	3,63018	-0,522	-0,519	-0,543
212	3,69999	-0,562	-0,557	-0,576
216	3,76980	-0,597	-0,589	-0,603
220	3,83961	-0,628	-0,619	-0,627
224	3,90942	-0,658	-0,647	-0,651
228	3,97923	-0,690	-0,679	-0,678
232	4,04904	-0,725	-0,716	-0,711
236	4,11886	-0,766	-0,759	-0,752
240	4,18867	-0,812	-0,807	-0,799
244	4,25848	-0,859	-0,857	-0,849
248	4,32829	-0,905	-0,906	-0,898
252	4,39810	-0,947	-0,952	-0,943
256	4,46791	-0,983	-0,992	-0,983
260	4,53772	-1,012	-1,024	-1,015
264	4,60753	-1,033	-1,046	-1,037
268	4,67734	-1,043	-1,058	-1,049
272	4,74716	-1,043	-1,058	-1,049
276	4,81697	-1,033	-1,047	-1,038
280	4,88678	-1,013	-1,024	-1,015
284	4,95659	-0,984	-0,992	-0,983
288	5,02640	-0,948	-0,953	-0,944
292	5,09621	-0,906	-0,907	-0,898
296	5,16602	-0,860	-0,858	-0,850
300	5,23583	-0,813	-0,808	-0,800
304	5,30564	-0,767	-0,760	-0,753
308	5,37546	-0,727	-0,717	-0,712
312	5,44527	-0,691	-0,680	-0,679
316	5,51508	-0,659	-0,648	-0,651
320	5,58489	-0,629	-0,619	-0,628
324	5,65470	-0,598	-0,590	-0,604
328	5,72451	-0,563	-0,557	-0,577
332	5,79432	-0,524	-0,520	-0,544
336	5,86413	-0,478	-0,476	-0,503
340	5,93394	-0,425	-0,424	-0,453
344	6,00376	-0,363	-0,362	-0,390
348	6,07357	-0,290	-0,289	-0,313
352	6,14338	-0,203	-0,202	-0,221
356	6,21319	-0,105	-0,105	-0,114
360	6,28300	0,000	0,000	0,000

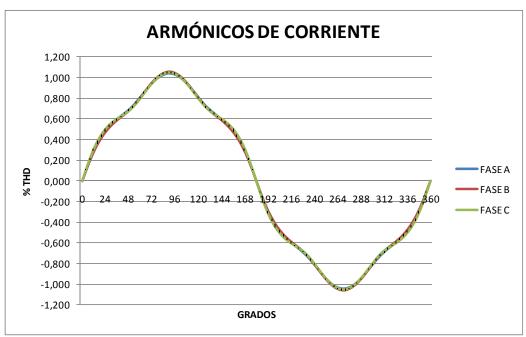


Figura 4.37– Forma de onda de corriente de la S/E 2

La figura 4.37, muestra la distorsión de la forma senoidal de la onda que presenta el rango elevado aun sin sobrepasar los límites, aunque los valores no sean pronunciados en el resto de armónicos también se da el efecto de distorsión, de igual forma se debe aplicar el modelo para reducir y mitigar las diferentes armónicas que de cierta forma, aunque tenga valores reducidos contaminan el sistema. En esta subestación el valor pico de la onda es de $\pm 1,058$ p.u. Estos valores darán el punto de partida para el análisis matemático del filtro para mitigar los armónicos en la subestación.

Tabla 4.39- Datos de THDi durante un día S/E 1

DATOS DE AI	RMÓNICOS DE	CORRIENTE DU	RANTE UN DIA
HORA	%THD Ia	%THD Ib	%THD Ic
0:00	14,46	14,93	18,09
0:10	14,68	15,98	18,52
0:20	14,63	15,61	18,12
0:30	14,61	15,87	18,3
0:40	14,69 14,73	15,73	18,11
0:50 1:00	15,01	16,39 16,63	18,79 19
1:10	15,26	16,91	19,37
1:20	15,26	16,67	19,27
1:30	15,05	16,55	19,13
1:40	15,71	17,04	19,64
1:50	15,6	17,24	19,95
2:00	15,5	16,84	19,37
2:10	15,57	16,8	19,75
2:20	15,35	16,94	19,72
2:30	15,34	16,79	19,87
2:40	15,33	16,38	19,25
2:50	15,42	17,27	20,01
3:00	15,31	17,07	19,81
3:10	15,71	17,08	20,35
3:20	15,28	16,69	19,35
3:30	15,2	17	19,49
3:40	15,43	17,52	20,3
3:50	15,27	16,81	19,55
4:00	15,26	17,18	20,26
4:10 4:20	14,66 14,55	16,37	19,29
4:30	14,08	16,31 15,69	19,23 18,5
4:40	14,07	15,8	18,78
4:50	14,51	15,71	18,62
5:00	14,36	15,85	18,94
5:10	14,34	15,63	18,54
5:20	14,21	15,18	18,29
5:30	13,62	14,83	17,94
5:40	13,09	14,06	16,91
5:50	15,64	16,9	19,19
6:00	15,64	15,74	18,37
6:10	15,67	14,8	17,54
6:20	15,29	14,79	17,25
6:30	14,31	14,24	16,59
6:40	13,85	13,53	15,58
6:50	14,57	13,9	15,67
7:00	12,96	12,73	14,29
7:10	13,36	12,98	15,37
7:20	12,91	12,37	14,36
7:30	12,19	11,92	13,73
7:40 7:50	11,44	10,99	12,99
8:00	10,76 9,78	10,75 9,64	12,3 10.85
8:10	8,77	8,48	10,85 9,36
8:10	9,27	8,86	10,04
8:20	8,92	8,44	9,68
8:30	8,67	8,23	9,29
8:40	8,7	8,41	9,34
8:50	8,5	8,01	9,23
9:00	8,04	7,77	8,67
9:10	7,83	7,59	8,51
9:20	7,65	7,36	8,33
9:30	7,69	7,45	8,3
9:40	7,31	6,95	7,8
9:50	7,15	6,83	7,64
10:00	7,04	6,74	7,45
10:10	7,05	6,82	7,62
10:20	7,19	6,91	7,64
10:30	6,77	6,44	7,32
10:40 10:50	7 6.97	6,59 6,66	7,51
11:00	6,97 6.87	6,66 6,67	7,46 7,46
11:10	6,87 7	6,67 6,68	7,46
11:10	6,83	6,44	7,4
11:30	6,56	6,39	7,06
11:40	6,72	6,38	7,03
11:50	6,95	6,68	7,39
12:00	7,3	7,11	7,68
	, -	, -	,

12:10 7,66 7,29 8,1 12:20 7,7 7,35 8,1 12:30 7,83 7,55 8,2 12:40 8,31 7,81 8,5 12:50 8,39 8,06 8,7 13:00 8,91 8,74 9,7 13:10 9,43 9,04 9,9 13:20 9,29 8,72 9,7	5 2 6 7
12:40 8,31 7,81 8,5 12:50 8,39 8,06 8,7 13:00 8,91 8,74 9,7 13:10 9,43 9,04 9,9 13:20 9,29 8,72 9,7	6 7
12:50 8,39 8,06 8,7 13:00 8,91 8,74 9,7 13:10 9,43 9,04 9,9 13:20 9,29 8,72 9,7	7
13:00 8,91 8,74 9,7 13:10 9,43 9,04 9,9 13:20 9,29 8,72 9,7	
13:10 9,43 9,04 9,9 13:20 9,29 8,72 9,7	7
13:20 9,29 8,72 9,7	
13:30 9,37 8,71 9,8	
13:40 9,36 8,96 9,8	
13:50 9,2 8,79 9,6	
14:00 9,03 8,8 9,4	
14:10 9,1 8,69 9,6 14:20 8.42 8.12 0.00	
14:20 8,42 8,12 9,0 14:30 8,4 8,15 8,8	
14:30 8,4 8,15 8,8 14:40 8,42 8,32 9,0	
14:50 8,02 7,83 8,6	
15:00 7,43 7,07 7,5	
15:10 7,4 7,14 7,7	
15:20 7,35 7,14 7,7	
15:30 7,41 7,09 7,7	
15:40 7,16 6,81 7,5	
15:50 7,23 6,9 7,5	
16:00 7,17 6,99 7,3	
16:10 7,19 6,84 7,5	
16:20 7,14 6,76 7,3	
16:30 7,4 7,08 7,7	8
16:40 7,24 6,7 7,4	4
16:50 7,27 6,93 7,5	1
17:00 6,97 6,53 7,2	1
17:10 6,92 6,67 7,2	8
17:20 6,98 6,62 7,2	
17:30 6,91 6,56 7,1°	6
17:40 6,68 6,26 7	
17:50 6,91 6,41 7,0	
18:00 6,9 6,34 7,0	
18:10 6,02 5,62 6,21	
18:20 5,54 5,17 6,0 18:30 5,55 5,33 6,2	
18:40 5,54 5,24 6,2	
18:50 6,11 5,66 6,74	
19:00 6,34 5,94 7,1	
19:10 6,48 6,12 7,3	
19:20 6,63 6,14 7,4	
19:30 7,05 6,43 7,75	8
19:40 7,36 6,89 8,4	7
19:50 7,46 6,95 8,4	
20:00 8,01 7,44 8,7	3
20:10 8,29 7,64 9,3	
20:20 8,51 8,02 9,7	
20:30 8,9 8,2 10,1	
20:40 8,84 8,25 10,2	
20:50 9,26 8,67 10,7	
21:00 9,57 9,02 11,1 21:10 9,5 8,81 11,3	
21:10 9,5 8,81 11,3 21:20 10.14 9.12 11.1	
21:20 10,14 9,12 11,1 21:30 9,99 9,48 11,6	
21:40 10,09 9,65 11,8	
21:50 10,47 10,09 12,5	
22:00 11,32 11,01 13,3	
22:10 11,67 11,38 13,7	
22:20 12,28 11,95 14,	
22:30 12,78 12,59 15,2	
22:40 12,44 12,45 15,0	
22:50 12,93 13,21 15,6	58
23:00 13,24 13,71 16,0)5
23:10 12,82 12,95 15,	8
23:20 13,36 13,52 16,5	54
23:30 13,6 14,16 17,0	
23:40 13,62 13,98 17,0	
23:50 14,27 15,12 18,1	19

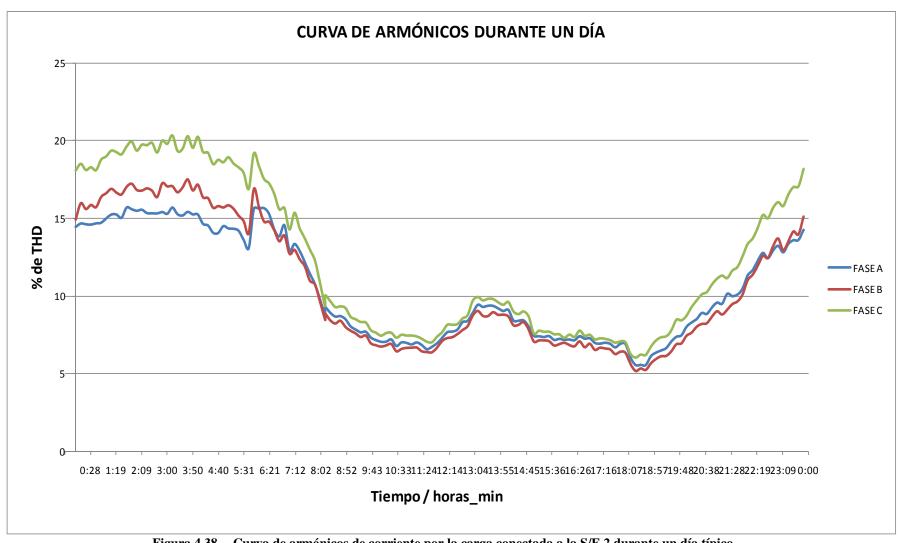


Figura 4.38- - Curva de armónicos de corriente por la carga conectada a la S/E 2 durante un día típico

4.3 Análisis de las perturbaciones

En este numeral realizaremos las observaciones referentes a lo acontecido en los numerales anteriores del mismo capítulo, como a continuación describimos.

4.3.1 Análisis de las perturbaciones producidas en la señal de voltaje.

El análisis inició con la extracción de los datos del equipo analizador de calidad de energía NEXUS 1252, instalados en las subestaciones con uso continuo de la CENTROSUR, para el efecto se tomo muestras cada 10 minutos durante 8 días, como indica la regulación 004/01, las muestras son tomadas para las armónicas 2^{da} hasta la 20^{ava}, pero para el análisis solo se tomo las magnitudes de hasta la 13^{ava} armónica, en vista de que en todas las subestaciones los valores desde la 14^{ava} hasta 20^{ava} prácticamente son despreciables, por lo que el análisis se basó en las armónicas representativas, y más aun en las impares en donde se ve un efecto pronunciado que posiblemente afectara al sistema,

De todas las muestras se realizo el cálculo del Total Harmonic Distorción (THD) mediante la ecuación (1.1) y en lo posterior un promedio de cada una de las armónicas respectivamente. Dejando ver que en ninguna de las subestaciones de la CENTROSUR el orden de distorsión armónica y el THD supera los límites dados por las normativas estudiadas en el capítulo II.

Modelamos a través de la serie de Fourier la forma de onda en donde es despreciable la distorsión presentada en el voltaje. Por lo que en conclusión las armónicas de voltaje cumplen con la regulación emitida por el órgano regulador en el país así como por las normativas internacionales estudiadas.

4.3.2 Análisis de las perturbaciones producidas en las señales de corriente.

En las tablas 4.34 y 4.37 de la S/E 1 y S/E 2 respectivamente, se tiene el porcentaje de la distorsión armónica que está presente en cada una de ellas, pudiendo observar que en la S/E 1 la 5^{ta} armónica supera el umbral permitido por la norma, siendo el único valor que sobrepasa los límites mientras que el resto de armónicos aunque perjudican la forma de onda estos no superan los límites normalizados por los órganos referentes, para el caso de la S/E 2 los porcentajes están cercanos al límite

permitido por las normas, dando la pauta para que la corrección también se realice en esta subestación.

Ahora con el comportamiento en función del tiempo, como se puede apreciar en las figuras 4.35 y 4.38, los armónicos producidos por las diferentes cargas contaminantes se dan en las primeras horas del día debido a que en ese instante de tiempo permanecen conectados un sin número de equipos electrónicos de pequeña potencia por lo que la inyección de armónicos a la red es notoria, a medida que se incrementa la curva de carga (figura 4.39) hasta llegar a su valor pico la curva de armónicos se reduce por lo que es indirectamente proporcional la curva de carga con respecto a la curva de armónicos en el tiempo, ósea la carga lineal o resistiva prevalece y absorbe los armónicos en el rango medio y pico de la curva de carga, por lo que la incidencia de contaminación aumenta notoriamente en el periodo de tiempo que puede oscilar entre las 23H00 y las 07H00 como valor pico de la curva de armónicos en el tiempo y se puede manifestar un valor medio desde las 14H00 hasta las 17H30, este efecto de los valores pico y medio en la curva de armónicos se da debido a que la corriente de la curva de carga es mayor a la corriente de la magnitud de los armónicos, y el uso de equipos con carga lineal es representativo en las horas pico y media de la curva de carga, por lo que absorben cierta cantidad de la magnitud de corriente de los armónicos. Esta curva podrá definir el rango de tiempo en el que debería ingresar a trabajar el filtro para corregir la forma de onda y reducir los armónicos para evitar que estos superen la norma y perjudicar el sistema eléctrico.

Figura 4.39- Curva de carga vs Curva de armónicos

4.4 Análisis de la carga contaminante.

En el capítulo 1 sección 1.4 se definió el concepto de carga contaminante, ahora se realizará la interpretación de la definición, mediante la instalación de un equipo de medición clase 20, de marca ABB, el equipo mostrara la contaminación producida en cada uno de los equipos usados diariamente entre los más importantes y comunes conectados a la red eléctrica, el análisis permitirá demostrar cuál es la carga que prevalece en los diferentes alimentadores de la CENTROSUR, tomando como principal referencia el factor de potencia promedio y datos estadísticos del sistema de comercialización (SICO).

Iniciamos con el sector residencial, el cual es el más propenso a contaminar las redes eléctricas, debido al alto índice de uso de equipos electrónicos que contienen fuentes rectificadoras y componentes electrónicos que por su utilidad no pueden dejar de ser usados durante largas horas del día debido a la actividad que los clientes de la distribuidora realizan.

En la siguiente tabla podemos apreciar la ubicación de cada una de las subestaciones de la CENTROSUR.

Tabla 4.40- Ubicación de las subestaciones en el área de concesión de la CENTROSUR.

NOMBRE	#	VP (kv)	VS (kv)	Provincia	Cantón	DIRECCION	Subtipo
Luis Cordero	01	22	6.3	Azuay	Cuenca	Luis Cordero y Rafael María Arizaga	Interior
Puente del Centenario	02	22	6.3	Azuay	Cuenca	Benigno Malo y Calle Larga	Interior
Monay	03	69	22	Azuay	Cuenca	Max Uhle y Pumapungo	Exterior
Parque Industrial	04	69	22	Azuay	Cuenca	Av. del Toril y Barrial Blanco	Exterior
Arenal	05	69	22	Azuay	Cuenca	Tarquino Cordero y Cornelio Crespo Vega	Exterior
El Verdillo	06	69	22	Azuay	Cuenca	El Verdillo	Exterior
Ricaurte	07	69	22	Azuay	Cuenca	Molinopamba (Ricaurte)	Exterior
Huablincay	09	69	22	Cañar	Sigsig	Shishiquin (Azogues)	Exterior
El Descanso	12	69	22	Azuay	Cuenca	El Descanso	Exterior
Lentag	14	69	22	Azuay	Giron	Lentag (Santa Isabel)	Exterior
Chiquintur	15	69	22	Azuay	Gualaceo	Chiquintur (Gualaceo)	Exterior
Gualaceo	16	69	22	Azuay	Gualaceo	El Triunfo (Gualaceo)	Exterior
Cañar	18	69	22	Cañar	Cañar	Loma Narin (Cañar)	Exterior
Corpanche	19	69	69	Azuay	Cuenca	Corpanche	Exterior
Macas	21	69	13.8	Morona Santiago	Morona	Río Blanco (Macas)	Exterior
Méndez	22	69	13.8	Morona Santiago	Santiago	Bella Unión (Méndez)	Exterior
Limón	23	69	13.8	Morona Santiago	Limón Indanza	Plan de Milagro (Limón)	Exterior

A continuación se muestra la carga que predomina en el alimentador con su respectivo factor de potencia, se recurre a este análisis para tener la idea clara del tipo de consumidores que existen en cada uno de los alimentadores que se derivan de las S/E de la CENTROSUR.

Tabla 4.41 – Factor de potencia por S/E y tipo de carga por alimentador

DEMANDAS MAXIMAS Y FP			FP	CARGA DE LAS S/E DE LA CENTROSUR
		kW.	FP	SEGÚN SU USO
	D Max C	6.635		
	D Max NC	6.884		
S/E 01	0101	1.743	0,991	Predominante comercial
3/E 01	0102	1.845	0,991	Predominante comercial
	0103	1.327	1,000	Predominante comercial
	0104	1.970	0,993	Predominante comercial
	D Max C	6.633		
	D Max NC	6.870		
	0201	1.095	0,98	Predominante comercial
S/E 02	0202	1.623	0,99	Predominante comercial
	0203	1.200	0,97	Predominante comercial
	0204	1.549	0,99	Predominante comercial
	0205	1.403	1,00	Predominante comercial
	D Max C	20.211		
	D Max NC	20.529		
	0321	4.247	0,99	Predominante residencial
S/E 03	0322	2.175	1,00	Predominante residencial
	0323	7.812	0,99	Predominante residencial
	0324	2.848	1,00	Predominante comercial
	0325	3.447	0,99	Predominante residencial
	D Max C	22.329		
	D Max NC	26.051		
	0421	5.916	0,95	Predominante industrial
S/E 04	0422	4.060	0,97	Predominante residencial
3/L 04	0423	4.657	1,00	Predominante residencial
	0424	1.927	0,98	Predominante residencial
	0425	5.251	0,90	Predominante industrial
	0426	4.240	0,97	Predominante industrial
	D Max C	28.912		
	D Max NC	30.178		
S/E 05	0521	3.724	0,99	Predominante residencial
	0522	2.780	0,99	Predominante residencial
	0523	8.315	0,99	Predominante residencial
	0524	7.261	0,99	Predominante industrial
	0525	2.935	0,99	Predominante residencial
	0526	5.163	0,99	Predominante residencial
	D Max C	10.698		
	D Max NC	11.375		
S/E 07	0721	3.983	0,99	Predominante residencial
	0722	4.066	0,97	Predominante residencial
	0723	3.326	0,99	Predominante residencial

DEMANDAS MAXIMAS Y FP			' FP	CARGA DE LAS S/E DE LA CENTROSUR
		kW.	FP	SEGÚN SU USO
	D Max C	2.313		
S/E 09	D Max NC	2.313		
	0921	2.313	0,99	Predominante residencial
	D Max C	5.000		
S/E 12	D Max NC	5.016		
3/E 12	1221	1.672	0,98	Predominante residencial
	1222	3.344	0,98	Predominante residencial
	D Max C	5.861		
	D Max NC	6.008		
S/E 14	1421	2.905	0,99	Predominante residencial
	1422	1.512	1,00	Predominante residencial
	1423	1.591	0,99	Predominante residencial
	D Max C	8.274		
	D Max NC	8.414		
S/E 15	1521	3.137	0,99	Predominante residencial
	1522	2.439	0,99	Predominante residencial
	1523	2.838	1,00	Predominante residencial
	D Max C	5.775		
	D Max NC	5.914		
S/E 18	1821	1.416	-0,99	Predominante residencial
0,210	1822	1.669	-1,00	Predominante residencial
	1823	1.692	-0,98	Predominante residencial
	1824	1.137	1,00	Predominante residencial

DEN	MANDAS M	AXIMAS Y	/ FP	CARGA DE LAS S/E DE LA CENTROSUR
		kW.	FP	SEGÚN SU USO
		DIREC	CIÓN MO	RONA SANTIAGO (DIMS)
	D Max C	5.436		
	D Max NC	5.442		
S/E 21	2111	2.484	0,950	Predominante residencial
	2112	1.567	0,950	Predominante residencial
	2113	1.391	0,960	Predominante residencial
	D Max C	1.450		
S/E 22	D Max NC	1.464		
3/2 22	2211	864	0,970	Predominante residencial
	2212	600	0,970	Predominante residencial
	D Max C	1.026		
S/E 23	D Max NC	1.026		
3/E 23	2311	598	0,952	Predominante residencial
	2312	428	0,952	Predominante residencial

Para el caso del Factor de Potencia los umbrales analizados en los diferentes alimentadores de las S/E de la CENTROSUR fueron calculados para demanda máxima por alimentador. Los alimentadores que tienen factores de potencia por debajo del límite de 0,96 son el 0421, 0422 y 0425. Alimentadores con factor de potencia capacitiva son el 1821, 1822 y 1823, comportamiento anormal dentro del sistema de distribución debido a que en muchos casos bancos de capacitores no tienen un control automático en sus instalaciones y prácticamente estos estarían

trabajando en vacio, adicionalmente, la sumatoria del conjunto de cargas capacitivas, están dadas por la mayoría de equipos electrónicos conectados a la red eléctrica y por ende la gran contaminación armónica de la cual seguimos analizando.

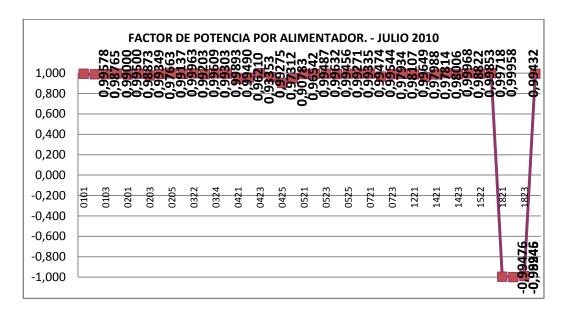


Figura 4.40- Factor de Potencia en Demanda Máxima (pu).

Del análisis expuesto hasta ahora, definimos cada uno de los alimentadores, segmentando según su carga, ahora, mediante pruebas y mediciones realizadas en el laboratorio de medidores de la CENTROSUR a diferentes equipos electrónicos que generan cargas contaminantes se obtuvo los siguientes datos citando los siguientes.

- Equipos de computación.
- Televisores.
- Focos ahorradores.
- Radios.
- Hornos Microondas.
- Lámparas fluorescentes.
- Equipos de música.
- Hornos de arco.
- Rectificadores.
- UPS.
- DVD.
- Convertidores Electrónicos de Potencia.

- Control de Luminarias,
- Variadores Estáticos de Velocidad
- PLC's
- Control de Motores,
- Fax
- Fotocopiadoras
- Impresoras
- Balastros Electrónicos,
- Equipos de Soldadura Eléctrica
- Sistemas de Tracción Eléctrica.
- Equipos Ferro magnéticos
- Transformadores Operando Cerca del Nivel de Saturación.

Para determinar el porcentaje de armónicos que introducen los diferentes utilizadores de carácter residencial, se ha realizado la toma de muestras o mediciones a través de un equipo contrastador portátil electrónico, marca ELSTER, clase 0.2, Forma 16A, Tipo A1RLQ+.

Para el caso de equipos industriales y o áreas comerciales, no se pudo obtener los mismos datos, debido a que existía un celo entre las diferentes fábricas y se percibió el criterio de los diferentes administradores a que podía existir un plagio o cruce de información, cuestión que no sucedía con los diferentes clientes residenciales, en vista de lo acontecido se prefirió llegar solo a la explicación en los diferentes equipos para usos comerciales e industriales.

Los resultados de las mediciones de los equipos que contaminan las redes eléctricas son:

UTILIZADOR	DA	TOS DE PLA	CA	Marca	% Total De THDI
Focos ahorradores	PN	VN	IN	Sylvania	101.791 %
1 ocos anomadores	18 W	120 V	0,15 A	Syrvama	101.771 70

Figura 4.41

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
Cafetera eléctrica	PN	VN	IN	General Electric.	2.489 %
	800 W	120 V	6.67 A	Status Browns.	

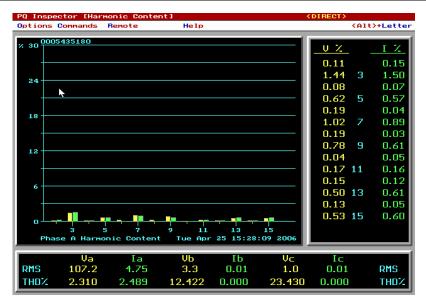


Figura 4.42

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
Computador con monitor	PN	VN	IN	COMPAC	123.932 %
Computation con monitor	144 W	120 V	1.2 A	COMITIC	123,732 70

Figura 4.43

UTILIZADOR	DA	DATOS DE PLACA			% Total De THDI
Equipo de música	PN	VN	IN	SONY	50.192 %
Equipo de masica	34.8 W	120 V	0.29 A	50111	2011) 2 70

Figura 4.44

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
Equipo de música con CD	PN	VN	IN	SONY 47.211 %	
Equipo de masica con OB	33.6 W	120 V	0.28 A	501(1	17,211 /0

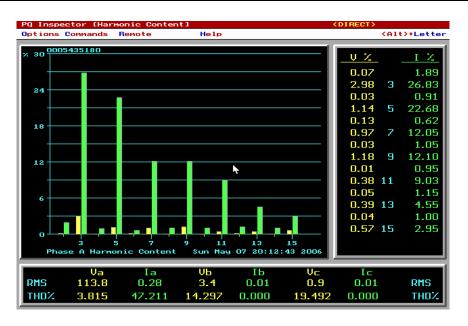


Figura 4.45

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
Laptop hp 1	PN	VN	IN	hp	122.643 %
Zuptop np 1	86.4 W	120 V	0.72 A		1221310 70

Figura 4.46

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
Laptop hp	PN	VN	IN	hp	117.399 %
Euptop np	123.6 W	120 V	1.03 A	p	11,1655 / 0

Figura 4.47

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
Microondas	PN	VN	IN	PANASONIC	29.227 %
1,11010011000	1015.6 W	120 V	8.46 A	111111101110	_>,,,

Figura 4.48

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
Equipo de computación	PN	VN	IN	COMPAC	120.178 %
Equipo de computación	182.4 W	120 V	1.52 A	COMITIC	120.170 /0

Figura 4.49

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
PC-HP-MONITOR	PN	VN	IN	hp	129.314 %
	265.2 W	120 V	2.21 A		1231011 /0

Figura 4.50

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
Radio CD	PN	VN	IN	SONY	48.958 %
radio CD	30 W	120 V	0.25 A	55111	101520 70

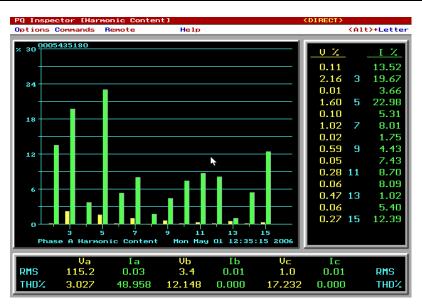


Figura 4.51

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
Refrigerador 07	PN	VN	IN	ECASA	8.038 %
rtenigerader e,	350 W	120 V	2.92 A	2011011	0.020 /0

Figura 4.52

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
Refrigeradora 14 pies	PN	VN	IN	Westinghouse	3.868 %
		120 V		Westinghouse	2.000 / 0

Figura 4.53

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
Teléfono Inalámbrico	PN	VN	IN	Panasonic	41.406 %
	4.8 W	120 V	0.04 A	1 unusonit	111100 70

Figura 4.54

UTILIZADOR	D.	ATOS DE PLA	Marca	% Total De THDI	
TV 20pulg. DECO	PN	VN	IN	SANSUNG	122.038 %
	104.4 W	120 V	0.87 A	STITISETIC	122.030 70

Figura 4.55

UTILIZADOR	DATOS DE PLACA			Marca	% Total De THDI
TV 21 pulgadas.	PN	VN	IN	SONY	115.570 %
	90 W	120 V	0.75 A	55111	110.070 70

Figura 4.56

4.5 Caracterización de la carga.

Para mostrar el comportamiento de la carga se ha tomado en tres (3) diferentes sectores del área de concesión apegado al consumo promedio mensual de los consumidores residenciales mediante censos de carga en algunas viviendas, los resultados de éstas, nos han dado la pauta para tener una idea concisa del consumo promedio mensual de energía eléctrica de una residencia.

Del transformador de la zona de menor consumo, se analiza la curva de carga promedio de un día típico,

Figura 4.57 - Curva de carga

Como resultado del Monitoreo de carga realizado en el Transformador de propiedad de la EERCS número 6507 trifásico de 75 KVA marca ABB Ubicado en el sector de las puertas del Sol entre las calles Ricardo Darquea y Reginaldo Arízaga. Se obtuvo del equipo MEMOBOX 404 Instalado durante setenta y dos horas el siguiente promedio de distorsión armónica.

PRUEBAS DE CAMPO EN TRANSFORMADOR UTILIZANDO EL EQUIPO MEMOBOX								
No. TRANS.	THDT	3 ^{ra}	5 ^{ta}	7 ^{ma}	9 ^{na}			
6507	9,74%	7,43%	5,60%	2,33%	1,06%			

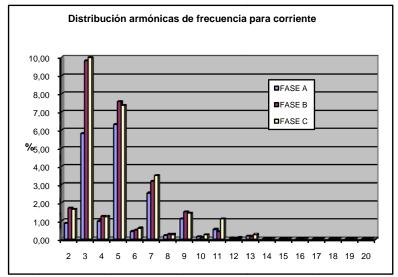


Figura 4.58

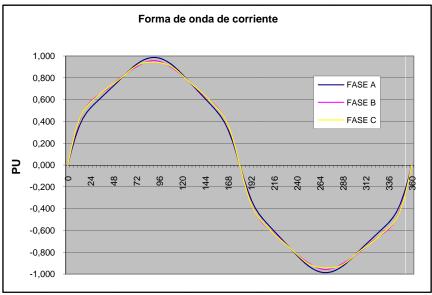


Figura 4.59

Para el transformador número 9808 de marca ABB Trifásico de 50KVA ubicado en la ciudadela de los ingenieros. Se realizan las mismas pruebas como en el transformador anterior, obteniendo los siguientes datos, tomando en consideración que este es el consumo medio a analizarse y la muestra de datos que tomo el equipo MEMOBOX 404, es en el mismo tiempo "72 Horas".

PRUEBAS DE CAMPO EN TRANSFORMADOR UTILIZANDO EL EQUIPO MEMOBOX							
No. TRANS. THDT		3 ^{ra}	5 ^{ta}	7 ^{ma}	9 ^{na}		
9808	21,66%	19,30%	4,90%	3,40%	2,00%		

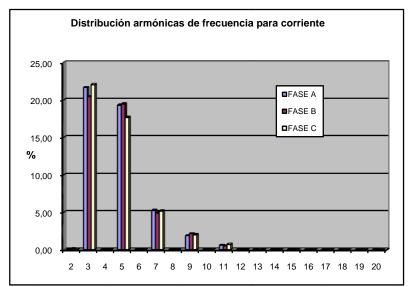


Figura 4.60

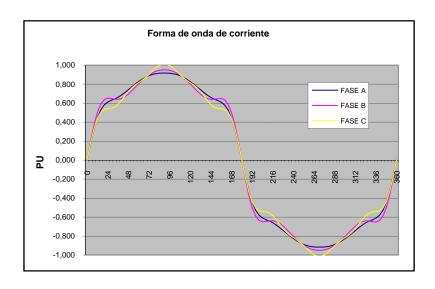


Figura 4.61

Y como un último análisis en general, tenemos un tercer transformador de Marca Transunel, de 45KVA Ubicado en la Ciudadela Calderón en las calles General Córdoba y Batallón.

PRUEBAS DE CAMPO EN TRANSFORMADOR UTILIZANDO EL EQUIPO MEMOBOX								
No. TRANS.	THDT	3 ^{ra}	5 ^{ta}	7 ^{ma}	9 ^{na}			
3009	12,28%	8,60%	6,03%	2,56%	0,00%			

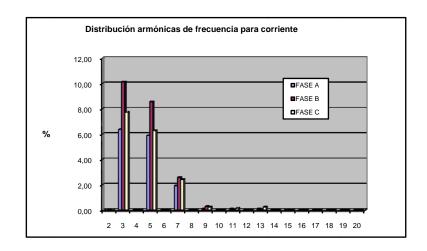


Figura 4.62 Distribución armónica de frecuencia de corriente

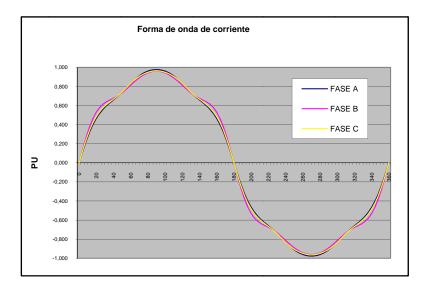


Figura 4.63 Forma de onda de corriente

4.6 Comportamiento de la THD en la subestación.

Tabla 4.42- Comportamiento THDv

		VA	LORES MÁXIN	NOS	POTENCIA	POTENCIA CARGA S/E		CUMPLE CON LA	CUMPLE CON
No	NOMBRE S/E	ORDE	N ARMÓNICO	THDv%	NOMINAL	(%)	FP	REGULACIÓN	LA NORMA
		3 ^{ra} THD ≤ 5%	5 ^{ta} THD ≤ 6%	7 ^{ma} THD ≤ 5%	(MVA)	(/9)		CONELEC 004/01	IEEE 519
1	Luis Cordero	0,64	5,31	1,49	10,00	59,96	0,99	SI	NO
2	Puente del centenario	0,66	2,48	0,62	12,00	52,44	0,98	SI	SI
3	Monay	2,47	1,52	0,5	26,00	78,35	0,99	SI	SI
4	Parque industrial	0,74	2,47	0,47	36,50	63,47	0,96	SI	SI
5	Arenal	2,44	1,91	0,46	34,00	83,61	0,99	SI	SI
14	Lentag	1,02	2,85	0,57	10,00	59,28	0,99	SI	SI
15	Gualaceo	2,38	1,6	0,88	10,00	79,78	0,99	SI	SI
18	Cañar	0,74	2,45	0,63	10,00	60,24	0,99	SI	SI
21	Macas	1,5	1,28	1,08	5,00	121,76	0,95	SI	SI
22	Méndez	1,14	1,81	0,78	2,50	24,74	0,97	SI	SI
23	Limón	0,41	1,44	0,51	2,50	59,31	0,95	SI	SI

La descripción que podemos realizar mediante la tabla 4.42, en donde se observan el comportamiento del %THDv en cada una de las S/E de la CENTROSUR, donde se aprecian los valores máximos de la 3ra, 5ta, y 7ma armónica, tomando como referencia los límites dados por la regulación y las normas establecidas en el capítulo II. En la S/E 1 los valores de los diferentes orden de los armónicos entre los más relevantes, cumplen con la regulación pero no con el compendio de la norma IEEE 519, En el Ecuador todavía no se tiene una política de cumplimiento de las normas internacionales y solo se rigen en el cumplimiento de las regulaciones emitidas por el órgano regulador CONELEC. El valor no es exagerado en cuanto a que supere el límite estipulado en la norma, a medida que se corrigen las armónicas de corriente en el capítulo V, las armónicas deberán decrecer ingresando en el cumplimiento de los límites que manejan los compendios internacionales.

Para el resto de subestaciones no se tiene consecuencias en el incumplimiento de la regulación y mucho menos de la norma, los valores no superan el 50% de lo que establecen las normativas, por lo que de igual forma que el la S/E 1 al ingresar el filtro de corriente deberán reducirse notoriamente las distorsiones en las señales de tensión.

Tabla 4.43- Comportamiento THDi

No	NOMBRE S/E	VALORES MÁXIMOS ORDEN ARMÓNICO THDI%			POTENCIA NOMINAL CARGA S/E	FP	CUMPLE CON LA REGULACIÓN	CUMPLE CON LA NORMA	
		3 ^{ra} THD ≤ 16,60%	5 ^{ta} THD ≤ 12%	7 ^{ma} THD ≤ 8,50%	(MVA)	(%)		CONELEC 004/01	IEC
1	Luis Cordero	2,52	12,55	3,61	10	59,96	0,99	NO ESTIPULA	NO
2	Puente del centenario	2,5	8,67	1,11	12	52,44	0,98	NO ESTIPULA	SI

Para los armónicos de corriente analizados en las dos subestaciones, se observa que en la S/E 1 supera el límite permitido en el compendio de la norma IEEE 519, por lo que en el capítulo V pondremos plena atención a desarrollar el modelo matemático para el filtro y reducir o eliminar la distorsión presentada en la 5ta armónica de dicha subestación. Este modelo podrá aplicarse para el resto de subestaciones de la CENTROSUR.

No podemos mencionar que los armónicos son producidos por la saturación en los transformadores, debido a que la cargabilidad a la que están expuestos en tiempo continuo no superan en el mayor de los casos el 70%, esto deja ver que el dimensionamiento no llega a la zona de saturación y se autoinduscan armónicos perjudiciales a nivel de subestación.

El factor de potencia cumpliendo con los márgenes establecidos no da razón a que sea causa de distorsión armónica, por lo que podemos manifestar que todas las subestaciones cumplen con lo establecido en la regulación para calidad de energía.

Otro punto importante que se debe tomar en cuenta es el referenciamiento a tierra de los neutros y la magnitud de la impedancia en la puesta a tierra, todos estos deben cumplir con los reglamentos y normativas internacionales para subestaciones.

Adicionalmente la regulación 004/01 no tiene estipulado ningún manifiesto o regulación sobre los límites de corriente, por lo que nos ajustamos a las normativas internacionales referidas en el capítulo II.

CAPÍTULO V

MITIGACIÓN DEL PROBLEMA Y SIMULACIÓN.

5.1 Procedimientos y Metodologías enfocadas a la eliminación de armónicos.

Como se puede indicar, los problemas causados por armónicos de tensión y/o corriente pueden ser muy severos tanto para las propias cargas perturbadoras como para el sistema general, deteriorando notoriamente tanto el comportamiento normal de las cargas así como también generando pérdidas de energía no deseadas (especialmente en transformadores, motores y conductores eléctricos), las mismas que dependiendo del nivel de distorsión existente pueden llegar a ser muy representativas; además en todos los dispositivos por los cuales circulan corrientes armónicas se produce un deterioro prematuro de su vida útil, disminuyendo así su eficiencia y causando importantes pérdidas económicas.

Es por tanto de mucha importancia realizar una descripción de los métodos existentes enfocados a solucionar los problemas causados por los armónicos, es decir a disminuir totalmente o en su defecto parcialmente las tasas de distorsión armónica total en tensión o en corriente, para lo cual se tomará en cuenta no solamente los aspectos netamente técnicos sino también su aplicabilidad en función de las necesidades y los costos que representan

5.1.1 FILTROS ARMÓNICOS

En un contexto general, nos podemos referir a los filtros armónicos como filtros pasivos y activos. Su diferencia esencial, radica sobre si ellos proveen una acción de filtración dentro de un ancho de banda seleccionado (pasivo) o como resultado de un proceso de monitoreo en tiempo real que guía la inyección de la cancelación de corrientes armónicas en tiempo real (activo).

Uno de los métodos más comunes para el control de la distorsión armónica en la industria es el uso de técnicas de filtración pasiva que hacen uso de filtros sintonizados o pasa altas. Los filtros armónicos pasivos pueden ser diseñados como elementos sintonizados que proveen un camino de baja impedancia a las corrientes armónicas a una frecuencia puntual o como componentes pasa altas o pasa banda que pueden filtrar armónicas sobre un cierto rango de frecuencia.

Los más sofisticados conceptos de filtración activa operan en un rango amplio de frecuencias, ajustando su operación al espectro armónico resultante. Los filtros activos son diseñados para inyectar corrientes armónicas de igual magnitud pero desfasadas 180° para contrarrestar las componentes armónicas existentes. Los filtros activos comprenden configuraciones serie y paralelo de C.D. y C.A. Los filtros híbridos son una combinación de esquemas de filtración pasiva y activa. La filtración activa es tan extensa y especializada, por lo que en esta tesis se consideran sólo los filtros pasivos.

5.1.2 TIPOS DE FILTROS PASIVOS

Los filtros pasivos son los más comúnmente usados en la industria. Como se ilustra en la figura 5.1, se pueden clasificar como:

- ✓ Filtros sintonizados
- ✓ Filtros pasa altas o pasa banda (primero, segundo y tercer orden)

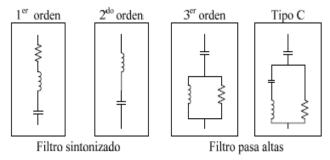


Figura 5.1 - Diagrama eléctrico de filtros pasivos

5.1.3 ELIMINACIÓN DE LAS ARMÓNICAS

Tal como se ha estudiado, la presencia de componentes armónicas tanto en la señal de tensión como en la señal de corriente hace que se presenten efectos no deseados en el sistema eléctrico. Por lo tanto, y para garantizar el adecuado funcionamiento de un sistema eléctrico es necesario mantener las componentes armónicas dentro de unos límites establecidos. Estos límites han sido y continúan siendo analizados por diferentes organizaciones técnicas entre las cuales se destacan las propuestas por la IEEE y la IEC.

Para mantener los armónicos de tensión y corriente dentro de los límites recomendados por estas normas se requiere de una compensación o atenuación de estas.

La atenuación debe entenderse entonces como la reducción del nivel de inyección de la perturbación en el punto de conexión de la carga no lineal a la red eléctrica, también llamado PCC o Punto de Conexión Común y no como la desaparición de la perturbación (ya que esta es de presencia obligada por la característica no lineal de la carga). En ese orden de ideas, las técnicas de mitigación evitan que las perturbaciones se propaguen al sistema eléctrico.

Técnicas para la Mitigación de Armónicas

La forma de mitigar estos problemas se pueden enumerar de la siguiente manera:

a) Reducir la Aportación de Corrientes Armónicas

Reducir la aportación de corrientes armónicas provenientes de las fuentes que las generan es mediante:

- ✓ Cuando se trata de Fuentes de armónicas provenientes de lámparas, es recomendable utilizar conexión delta-estrella del transformador de alimentación con el fin de atrapar las armónicas de secuencia cero.
- ✓ Si las armónicas provienen de un transformador, lo mejor será cambiar el transformador o liberarle carga.
- ✓ Si se trata de un controlador de velocidad, una buena opción es conectar un reactor limitador en la alimentación de tal manera que atenúe la magnitud de las armónicas, además de servir como protección para estados transitorios.
- ✓ Si se trata de un rectificador de 6 pulsos, una opción es cambiarlo por uno de 12 pulsos, aunque económicamente no puede ser factible.
- ✓ En caso de tener varias cargas que utilicen rectificación conectadas a un mismo bus, entonces lo recomendable es que unos rectificadores se alimenten de un transformador delta-estrella y otros de un delta-delta, esto con el fin de que se tenga cancelación de armónicas.

b) Utilizando Filtros Sintonizados

La utilización de filtros es una buena opción pero no siempre es la más económica o factible, pues depende mucho de qué problema se esté tratando.

c) Modificación de la respuesta a la frecuencia

Problema: Operación de los fusibles de bancos de capacitores debido a resonancia. Posible solución:

- ✓ Modificar la frecuencia de resonancia:
- ✓ Poniendo un reactor en terminales del banco de capacitores, de tal manera que se modifiquen los MVAcc, esto no significa que se esté poniendo un filtro sintonizado.
- ✓ Cambiar el valor del banco de capacitores, esto traerá cambios en el FP, el cual se puede tratar de corregir mediante capacitores locales.
- ✓ Cambiar los capacitores a otros puntos donde se tengan diferentes capacidades de corto circuito.
- ✓ Definitivamente quitar los capacitores.

Problema: Interferencia telefónica y/o mal operación de equipo de cómputo o equipo de control numérico.

Posibles soluciones:

- ✓ La interferencia telefónica se puede resolver mediante la modificación de la trayectoria de las armónicas, esto es, relocalizando capacitores de tal manera que las armónicas se dirijan hacia los bancos. Otra posibilidad es cambiar de lugar los cables por los cuales se sabe que circulan armónicas.
- ✓ Para la mala operación de equipos sensibles, la solución se complica un poco más, pues se puede tratar de un problema transitorio, por ejemplo: flickers (parpadeos), sags (caídas de tensión), etc., dado que estos problemas de calidad de energía afectan grandemente a estos equipos. Lo más importante es tratar de alimentar a estos equipos de un nodo tal que no se esté expuesto o cerca de fuentes tales como: hornos eléctricos, rectificadores, lámparas, etc.
- ✓ Hacer lo mismo que para la interferencia telefónica.

Filtros pasivos

El filtro pasivo es un filtro que se sintoniza para una armónica en especial, o un rango determinado. Estos filtros son los más utilizados en los sistemas eléctricos por su bajo costo y fácil instalación, aunque en algunos casos trae con sigo problemas de resonancia. La Figura 5.2, muestra la configuración de estos filtros.

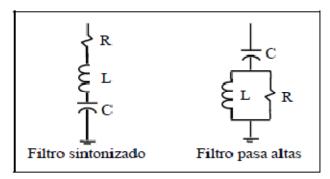


Figura 5.2 - Filtros pasivos en paralelo con la red

El filtro lo que hace es presentar una impedancia baja a una corriente de una frecuencia determinada, esto significa que los elementos del filtro entran en resonancia serie, ocasionando la circulación de esta corriente. De esta manera, a partir de un valor del banco de capacitores se obtiene el valor del reactor del filtro:

$$X_{cap} = \frac{KV^{2}}{MVAr_{CAP}}$$

$$X_{reac} = \frac{Xcap}{h^{2}}$$
(5.1)

Donde h es la armónica a la cual está sintonizado el filtro; y por tanto, a la corriente que se quiere drenar.

El filtro sintonizado es utilizado para eliminar en forma individual las armónicas más bajas como la 3a, 5a y 7a. En cambio, el filtro pasa altas es utilizado para eliminar un rango de armónicas las cuales tienen un valor pequeño de corriente, por lo general son usados para eliminar de la armónicas 11a en adelante.

Uso de Filtros Pasivos.

En general podemos definir los filtros pasivos como la agrupación y combinación de varios elementos tales como: inductancias, condensadores y resistencias, los cuales en conjunto y de acuerdo a su configuración específica presentan una importante variación de su impedancia en función de la frecuencia, teniendo como objetivos básicos, en primer lugar servir como sumidero para las corrientes y tensiones armónicas y en segundo orden, proveer al sistema toda o parte de la energía reactiva que ésta necesita. Según el propósito particular que persigan, los filtros pasivos pueden ser:

Filtros Pasivos Serie.

Filtros Pasivos Paralelo o Shunt.

Filtros Pasivos Serie

Los Filtros Pasivos Serie principalmente tienen como misión evitar el paso de una o varias componentes de corriente en particular, desde la carga contaminante hacia otro sitio de la propia instalación o hacia el sistema de potencia, mediante la presencia de una alta impedancia serie sintonizada a una frecuencia específica. Típicamente este tipo de filtros está constituido por varias células L-C (inductancia-capacitor) que actúan como "tapón" para los armónicos a los cuales deseamos anular, conjuntamente con una célula "pasa bajo" que generalmente se sintoniza entre el 9° y 11° armónico. En la figura 5.3 se muestra la configuración de un filtro pasivo serie sintonizado para cancelar los armónicos 5°, 7° y una célula pasa bajo la frecuencia del armónico de orden 9°.

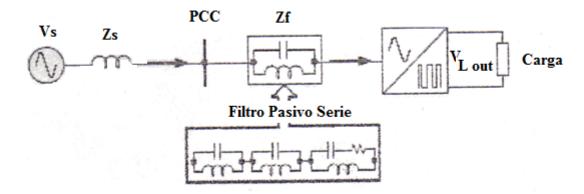


Figura 5.3 - Filtro Pasivo Serie en un Sistema de Potencia.

La impedancia resultante luego de insertar el filtro pasivo serie se ve aumentada en su magnitud de acuerdo a la expresión:

$$Z = Z_{s.} + Z_{f} \tag{5.2}$$

Donde:

Z= Impedancia Total Resultante.

 $Z_{s.}$ = Impedancia de la fuente.

 Z_{f} = Impedancia del filtro pasivo serie.

Filtros Pasivos Paralelo o Shunt

Los Filtros Pasivos Paralelo están encaminados a ofrecer un paso alternativo de muy baja impedancia para las frecuencias armónicas; estos filtros presentan mayores ventajas que el filtro serie ya que son más económicos, solamente transportan las corrientes armónicas para las que fue sintonizado y proporcionan una parte de la potencia reactiva al sistema de potencia. Existe una gran variedad de configuraciones de filtros paralelos, los más utilizados son los: Filtros Sintonizados Simples y los Filtros Pasa Alto.

Filtro Sintonizado

Son filtros pasivos que se conectan en paralelo al sistema de distribución general o a cargas individuales significativas, para reducir el contenido armónico generado por los dispositivos no lineales, además de proporcionar potencia reactiva fundamental para compensar el factor de potencia de desplazamiento, debiendo de coordinar su operación con la demanda de la carga.

Cuando los filtros se instalan en el bus principal de distribución, su potencia total está conformada por grupos o pasos que son accionados por contactores y que a su vez son comandados por un regulador que determina los requerimientos específicos de potencia reactiva del sistema ante una condición dada, permitiendo compensarla en una amplia gama de demandas.

En aquellos sistemas en los que se cuenta con diversas cargas no lineales de potencia significativa y de funcionamiento prolongado, se puede instalar un filtro para cada una de estas cargas, coordinando su operación y reduciendo tanto la corriente fundamental como la distorsionante desde el punto de conexión.

El cálculo de la resistencia del filtro está dado por la siguiente expresión:

$$R = \frac{X_{reac}(f_{res})}{Qf} \tag{5.3}$$

 Q_f = Factor de calidad 20< Q_f <30

La Figura 5.4, Muestra la respuesta del filtro sintonizado ante diferentes factores de calidad.

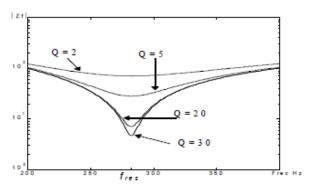


Figura 5.4 - Respuesta de un filtro sintonizado

En los casos prácticos, muchas veces esta resistencia es la propia del reactor, por lo que no se hace necesario la utilización de resistencias adicionales.

$$R = \text{Constante}$$
 $X_L(h) = jhX_L$ $X_c(h) = -jX_c/h$

Figura 5.5 - Configuración típica de un filtro en baja tensión

Filtros Pasa Alto

Los filtros pasa alto o también denominados amortiguadores son utilizados para eliminar un amplio rango de frecuencias y generalmente se emplean cuando las armónicas no tienen frecuencia fija o también cuando el número de frecuencias a anular es elevado y por tanto la utilización de una batería con filtros sintonizados simples resulte en elevados costos y además poco ortodoxo desde el punto de vista técnico.

En general este tipo de filtros tiene 3 funciones básicas, las cuales son:

- ✓ Reducir las tensiones armónicas de frecuencias igual o superiores a la de sintonía
- ✓ Amortiguar las antirresonancias, es decir las caídas bruscas en la magnitud de la impedancia producidas cuando se presentan tensiones o corrientes cuya frecuencia corresponde con la de sintonía del filtro.
- ✓ Amortiguar rápidamente el régimen transitorio debido a la conexión del filtro.

Dentro de esta categoría uno de los más usados es el filtro amortiguador pasa alto de segundo orden (el orden viene dado por el número de elementos almacenadores de energía existentes en el filtro), el cual presenta una reactancia nula ante la frecuencia de sintonía fr mayor que la frecuencia f.

$$f = \frac{1}{2\pi\sqrt{LC}}$$
 y $f_r = \frac{1+Qq}{2\pi q\sqrt{(Q^2-1)*LC}}$ (5.4)

Donde:

f = Frecuencia de sintonía del filtro sintonizado simple.

f_r = Frecuencia de sintonización del filtro amortiguador.

Q= Factor de calidad del filtro amortiguador (generalmente se encuentra entre 2 y 10).

q= Factor de calidad de la inductancia.

La figura 5.6. Muestra la configuración y la respuesta en frecuencia de un filtro pasa alto o amortiguador.

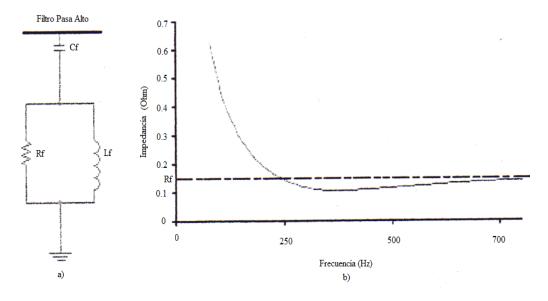


Figura 5.6 - Filtro Pasa Alto o Amortiguador a) Configuración; b) Respuesta en frecuencia

Según la configuración del filtro mostrada en la figura anterior, se obtiene una impedancia total resultante igual a:

$$Z = \frac{1}{jwC_f} + \left(\frac{1}{R_f} + \frac{1}{jwL_f}\right)^{-1}$$
 (5.5)

El funcionamiento de este filtro se puede analizar para frecuencias menores a la frecuencia de sintonía (f<fr), a la frecuencia de sintonía fr y para frecuencias mayores a la de sintonía (f>fr).

Para frecuencias menores a la de sintonía, el filtro presenta una reactancia predominantemente inductiva de la misma naturaleza de la red, la misma que tiene una elevada magnitud, razón por la cual no ejerce efectos de atenuación para los armónicos correspondientes a este espectro de frecuencias.

En el caso de que se presente un armónico con frecuencia igual a fr, se produce una reducción de la tensión armónica, debido a que el filtro presenta una impedancia de carácter puramente resistiva y en este caso ya no es posible que se produzca resonancia entre el filtro y la red. Para los armónicos de frecuencia mayor a fr, el filtro presenta un amortiguamiento debido a la presencia de la resistencia en

paralelo con la inductancia, en este caso el valor de la impedancia se estabiliza en alrededor de $R_{\rm f}$.

Filtro de Butterworth

El prototipo pasa-bajas de Butterworth se basa en la selección $L(v) = v^n$ de modo que

$$\left|H(v)\right|^{2} = \frac{1}{1 + \varepsilon^{2} v^{2n}} \qquad A_{dB}(v) = 10 \log(1 + \varepsilon^{2} v^{2n}) \quad (dB)$$
 (5.6)

El filtro Butterworth también se conoce como filtro máximamente plano porque la elección de $L(v) = v^n$ (sin la presencia de alguno de los demás coeficientes de menor grado) obliga a que todas sus derivadas sean cero en v = 0, lo que garantiza no sólo la respuesta más plana en v = 0 sino también la menor desviación con respecto a la ganancia unitaria en la banda de paso. Todos los grados de libertad (que son los coeficientes libres en el polinomio de n-ésimo grado L(v) se invierten en hacer que la respuesta en magnitud del filtro de Butterworth sea lo más plana posible en el origen (lo que se obtiene al hacerlos cero). Con esto se tiene una respuesta en frecuencia monótona libre de sobretiros, pero a costa de una transición lenta de la banda de paso a la de supresión.

La cantidad ε^2 es una medida de la desviación con respecto a la magnitud unitaria en la banda de paso. La magnitud es monótona y disminuye con la frecuencia. La ganancia del filtro en el límite de la banda de paso v = 1 es igual a

$$|H(1)| = \frac{1}{\sqrt{1+\varepsilon^2}} \tag{5.7}$$

La figura 5.7 muestra un espectro de magnitud representativo de esta clase de filtro.

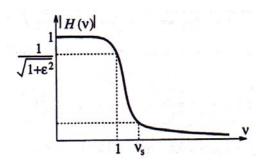


Figura 5.7 - Filtro pasa-bajas Butterworth

Para un filtro Butterworth de n-ésimo orden, la rapidez de atenuación a frecuencias altas es 20n dB/dec, y la atenuación puede aproximarse mediante

$$A(v) = 10\log(1 + \varepsilon^2 v^{2n}) \approx 10\log(\varepsilon^2 v^{2n}) = 20\log\varepsilon + 20n\log v$$
 (5.8)

Diseño del filtro de Butterworth

La forma de $|H(v)|^2$ requiere sólo el parámetro de rizo ε y el orden del filtro n. El valor de ε^2 se obtiene al evaluar la atenuación $A_{dB}(v)$ en el límite de la banda de paso $(v = v_p = 1 \, \text{rad/s})$:

$$A_p = A_{dB}(1) = 10\log(1 + \varepsilon^2)$$
 $\varepsilon^2 = 10^{0.1A_p} - 1$ (5.9)

El valor de n se calcula evaluando $A_{dB}(v)$ en el límite de la banda de supresión $v = v_s \ rad/s$, con lo que se tiene

$$A_{s} = A_{dB}(v_{s}) = 10\log(1 + \varepsilon^{2}v_{s}^{2n}) \qquad n = \frac{\log[(10^{0.1A_{s}} - 1)/\varepsilon^{2}]^{1/2}}{\log v_{s}}$$
 (5.10)

El orden del filtro debe redondearse a un valor entero. Si la atenuación está especificada en varias frecuencias entonces es necesario encontrar el orden para cada frecuencia seleccionando el máximo valor de éste paras El orden del filtro n aumenta cuanto menor sea la atenuación en la banda de paso A_p (lo que significa un valor pequeño de ε^2 o una banda de paso más plana) o mayor la atenuación en la banda de supresión A_s (lo que significa una transición más pronunciada).

El filtro de Butterworth tiene un espectro de magnitud al cuadrado máximamente plano lo que significa que:

$$|H(v)^2| = \frac{1}{1 + \varepsilon^2 v^{2n}} \qquad |H(0)| = 1 \qquad |H(1)| = \frac{1}{\sqrt{1 + \varepsilon^2}} \qquad H_{dB} = -10\log(1 + \varepsilon^2 v^{2n}) \quad (5.11)$$

Función de transferencia del prototipo de Butterworth

Para encontrar la función de transferencia del prototipo Butterworth pasabajas H_p (s) a partir de $|H(v)|^2$, se reemplaza v^2 por $-s^2$ y se escogen sólo las raíces que se encuentran en el semiplano izquierdo (LHP) para generar con ellas la función de transferencia de fase mínima requerida. Con $v^2 = -s^2$ se obtiene:

$$H_{p}(s)H_{p}(-s) = \frac{1}{1+\varepsilon^{2}(-s^{2})^{n}} = \frac{1}{1+(-1)^{n}(s/R)^{2n}} \quad R = (1/\varepsilon)^{1/n}$$
 (5.12)

Esta función tiene 2n polos, y sólo la mitad de ellos se encuentra en el semiplano izquierdo, Las posiciones de los polos están dadas por

$$(-1)^n (s/R)^{2n} = -1$$
 $(-js/R)^{2n} = -1$ (5.13)

Esta ecuación sugiere que se encuentren las 2n raíces de -1. Con $e^{j(2k-1)\pi}=-1$, se tiene que

$$(-js/R)^{2n} = e^{j(2k-1)\pi}, \qquad k = 1,2,\dots,2n$$
 (5.14)

Con esto, los 2n polos p_k son

$$p_k = \text{Re}^{j(\theta_{k+\pi/2})}$$
 $\theta_k = \frac{(2k-1)\pi}{2n}, \qquad k = 1, 2, \dots, 2n$ (5.15)

Uso de Compensadores Activos de Armónicos.

Los Compensadores Activos de Armónicos (CAA) nacen como una solución "inteligente" para la mitigación de armónicos de tensión y corriente en una red perturbada, pues su funcionamiento está basado en la generación de las corrientes armónicas requeridas por las cargas no lineales a través de un dispositivo electrónico de potencia, pero con la condición de que la fase sea opuesta a la fase de la corriente

de carga, con el objeto de cancelar dichas componentes armónicas aguas arriba del punto de conexión del CAA; la corriente que circula por la carga se mide mediante un transformador de corriente (CT), cuya salida es analizada por un procesador digital de señales (DSP) para determinar el perfil armónico; esta información sirve al generador de corriente para producir exactamente la corriente armónica requerida por la carga en el siguiente ciclo de la onda fundamental. Con este método se logra reducir la corriente armónica requerida de la fuente en aproximadamente un 90%.

Este dispositivo es inmune totalmente a los cambios producidos en las redes, ya que la medición previa efectuada por el transformador de corriente permite generar las corrientes armónicas solicitadas por las cargas en ese preciso momento, además con la utilización de los compensadores activos de potencia se tiene la posibilidad de eliminar solamente ciertos armónicos de acuerdo a nuestras necesidades, esto se realiza por medio de la programación del software que controla los procesos de análisis y generación. La figura 5.8 muestra un diagrama esquemático de los Compensadores Activos de Armónicos.

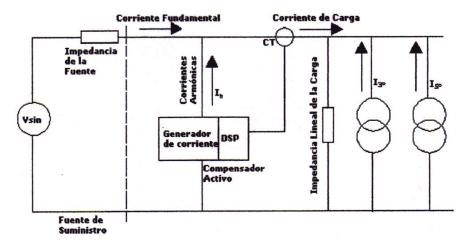


Figura 5.8 - Diagrama Esquemático de un compensador activo de Armónicos En general los CAA realizan varias funciones simultáneamente, estas son:

- ✓ Reducción de los armónicos de corriente que circulen por la red entre los Compensadores y los centros de generación de energía (fuente).
- ✓ Reducción de la corriente del conductor neutro.

Conexiones de transformadores para eliminar armónicas

La Figura 5.9 muestra un transformador T1 en conexión Y-Y y un transformador T2 en conexión D-Y cuyos primarios están en paralelo. Los secundarios alimentan a cargas no lineales iguales. Asúmase que sólo existe distorsión de corrientes y que sólo existen armónicas impares, además de la componente fundamental. El transformador T2 puede, alternativamente, conectarse en Y-D.

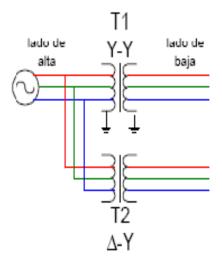


Figura 5.9. Conexión de dos transformadores para eliminación de 5as y 7as armónicas Debido a que el secundario del transformador T1 no se encuentra aterrizado y el transformador T2 tiene una conexión D en el primario. No existe posibilidad de que las corrientes de 3as armónicas y sus múltiplos fluyan hacia la fuente.

✓ Eliminación de quinta armónica

Debido al desfasamiento de -30° que introduce el transformador T2, las corrientes del secundario correspondientes a la 5a armónica están desfasadas:

 -30° x 5 = -150° con respecto a las del transformador T1.

Mientras que, debido a que las 5as armónicas se comportan como componentes de secuencia negativa, existen -30° de desfasamiento, por tanto las corrientes en el primario de T2 están desfasadas:

- 150° - 30° = -180° = 180° con respecto a las del transformador T1.

Si las magnitudes de las corrientes en los primarios de T1 y T2 son iguales, entonces las 5as armónicas se cancelan y no fluyen a la fuente. Este análisis se aprecia mejor en la Figura 5.10, donde se han incluido las corrientes de 5a armónica de las 3 fases de ambos transformadores.

✓ Eliminación de séptima armónica

Debido al desfasamiento de -30° que introduce el transformador T2, las corrientes del secundario correspondientes a la 7a armónica están desfasadas:

 -30° x $7 = -210^{\circ} = 150^{\circ}$ con respecto a las del transformador T1.

Mientras que, debido a que las 7as armónicas se comportan como componentes de secuencia positiva, existen 30° de desfasamiento, por tanto las corrientes en el primario de T2 están desfasadas:

 $150^{\circ} + 30^{\circ} = 180^{\circ}$ con respecto a las del transformador T1.

Si las magnitudes de las corrientes en los primarios de T1 y T2 son iguales, entonces las 7as armónicas se cancelan y no fluyen a la fuente. Este análisis se aprecia mejor en la Figura 5.11, donde se han incluido las corrientes de 7a armónica de las 3 fases de ambos transformadores

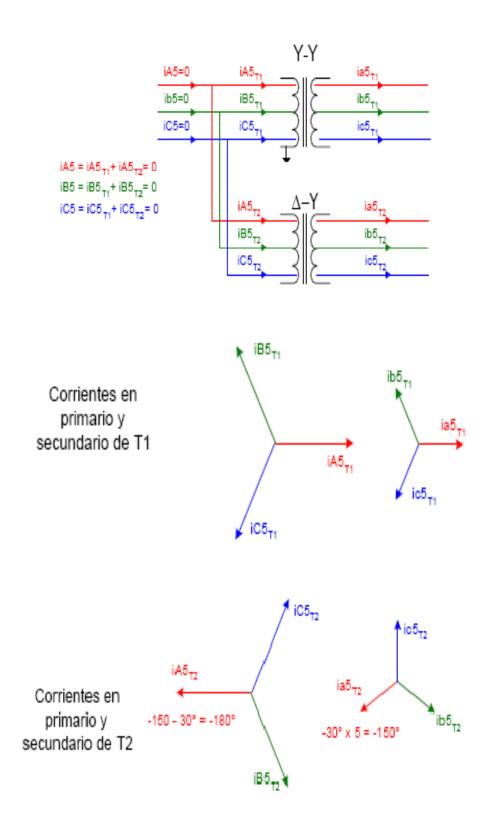
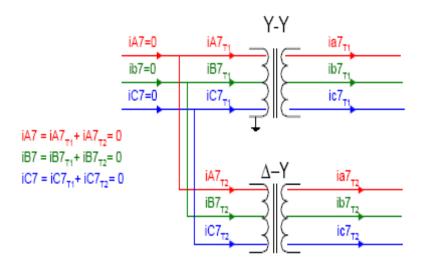
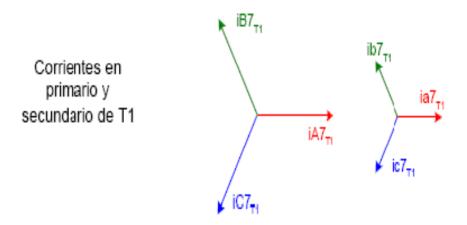




Figura 5.10. Análisis de eliminación de 5as armónicas

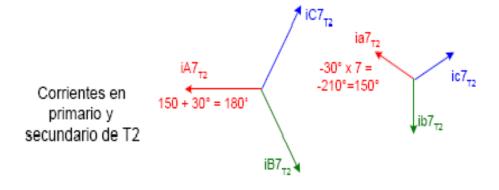


Figura 5.11. Análisis de eliminación de 7as armónicas

Selección de un filtro y evaluación de desempeño

Para la selección del filtro, primero se debe determinar si la compensación reactiva es requerida. Si este es el caso, el banco de capacitores del filtro debe ser dimensionado para proveer los VARs necesarios.

Para ciertas condiciones del sistema, más de un filtro puede ser necesario. Considere todos los posibles escenarios para determinar la condición del peor caso. En ciertas aplicaciones, cargas no lineales pueden ser cíclicas y los esquemas de filtros deben ser diseñados tanto que ellos permitan la posibilidad de tener ramas de componentes de filtros adentro y afuera como sean necesarios.

Cuando se analiza la efectividad de un filtro (entenderlo como el grado de supresión armónica), es importante intentar lo anterior para diferentes condiciones de impedancia, los cuales están relacionados con la utilidad de la fuente de impedancia.

Otro punto importante a considerar es la posibilidad del cambio de los puntos de resonancia paralela. Como fue descrito previamente, cambiando el alimentador de capacitancia como una respuesta para variaciones de carga o el perfil de tensión puede tener un impacto sobre la frecuencia resonante paralela. Por ejemplo, si en un alimentador cargado al 100%, hay una resonancia pico a la armónica 4.5, una carga decrece acompañada por la desconexión del banco de capacitores para corrección del factor de potencia puede cambiar el pico resonante paralelo a la 5^{ta} armónica.

Cualquier corriente de 5^{ta} armónica de la carga podría ver una gran impedancia hacia arriba y una alta distorsión de tensión armónica y a que frecuencia se podría desarrollar. Esta situación debe ser considerada en el diseño de filtros armónicos o en la implementación de reglas especiales de operación para minimizar los efectos negativos de la resonancia pico.

El criterio de diseño tradicional en relación con la presencia de corrientes armónicas en redes industriales es la distorsión armónica total (THD). La distorsión armónica es probable que sea excedida en aplicaciones industriales y comerciales incluyendo grandes convertidores de potencia, amontonamientos masivos de iluminación fluorescente, y un significante amontonamiento de equipo de oficina.

El THD debe ser evaluado en cada bus relevante en el sistema, es decir, en el bus principal de la subestación de la planta, en aquellos nodos con fuentes de corriente armónica, y en cualquier lugar que exista equipo sensible. Si los límites de

THD están por encima de los límites, y entonces la necesidad de proveer filtros armónicos debe ser buscada y los niveles de THD reevaluados.

Los escenarios de operación deben ser considerados en el diseño del filtro donde la etapa debería incluir la red y la reconfiguración de la carga que involucre la expansión de la planta y el crecimiento futuro de la carga.

Si los valores nominales de los componentes de los filtros son excedidos bajo operación normal, un ajuste debe seguir. Sin embargo, ningún ajuste en el desempeño del filtro debería ser anticipado al esquema del filtro y considerado en las especificaciones del diseño del filtro.

En la evaluación de los filtros armónicos debe ser incluida la frecuencia de la potencia y las pérdidas armónicas. Esto es particularmente relevante para el diseño de un "mínimo filtro", por ejemplo, el cual es especificado e instalado para traer la distorsión de corriente armónica dentro de los límites pero no para efectos de corrección del factor de potencia.

5.2 Análisis matemático de la onda de corriente y voltaje.

En el capítulo 5 revisaremos todo lo referente al dominio de la frecuencia para llegar al modelo matemático del objetivo del desarrollo del proyecto de tesis. El estudio inicia con el dominio de la frecuencia por las series de Fourier, las cuales describen señales periódicas mediante combinaciones de señales armónicas o senoidales. Esta representación abre una perspectiva de las señales periódicas en el dominio de la frecuencia en términos de su contenido en frecuencia, o espectro.

5.2.1 Series de Fourier

Cuando se combinan señales periódicas con frecuencias conmensurables, lo que se obtiene es otra señal periódica. Lo que ahora se intenta es el análisis, o separación, de una señal periódica en sus componentes periódicos. Aun cuando la selección de los componentes periódicos no es única, se escogen las señales armónicas o senoidales porque se encuentran entre las señales periódicas más simples y proporcionan además un vínculo único con el dominio de la frecuencia.

Desde el punto de vista o análisis de los armónicos perpetuos de la forma ℓ^{jwt} también son señales propias de los sistemas lineales.

La serie de Fourier (SF) describe una señal periódica $x_p(t)$ como una suma (combinación lineal), en la mezcla correcta, de armónicos (o senoides) en la frecuencia fundamental f(0) de $x_p(t)$ y sus múltiplos K_{f0} . La selección de señales armónicas también trae otras ventajas. Permite un esquema simple, congruente y único para encontrar los coeficientes (la proporción correcta o factor de ponderación) de cada componente. De hecho, una suma de senoides que describe una señal periódica se conoce como serie de Fourier sólo si los coeficientes se seleccionan de acuerdo con este esquema.

La serie de Fourier también produce el error cuadrático medio más pequeño en la potencia entre $x_p(t)$ y su representación en serie, independientemente del número de términos o armónicos.

También representa el ajuste de mínimos cuadrados de una señal periódica. La forma aplicada para el desarrollo de la serie de Fourier.

En el análisis de la información que se llevo a cabo en el capítulo 4, en donde se aplica una de las formas para el desarrollo de la serie de Fourier, en el análisis de cada uno de los equipos instalados en las diferentes subestaciones de la CENTROSUR, esto para obtener la serie de Fourier y mostrar la perturbación en la forma de onda, para el caso se aplico el desarrollo mediante la forma trigonométrica de la serie de Fourier de una señal periódica $x_p(t)$ es simplemente una combinación lineal de senos y cosenos con frecuencias iguales a los múltiplos de su frecuencia fundamental $f_0 = 1/T$:

$$x_{p}(t) = a_{0} + \sum_{k=1}^{\infty} ak \cos(2\pi k f_{0}t) + bksen (2\pi k f_{0}t)$$
 (5.16)

El término constante a_0 toma en cuenta cualquier valor para $x_p(t)$, y a_0 , a_k y b_k , se conocen como los coeficientes de la serie trigonométrica de Fourier. Para cada frecuencia armónica kf_0 existe un par de términos (un seno y un coseno)

5.2.1.1 Evaluación de los coeficientes.

Para encontrar los coeficientes de la serie de Fourier, basta con examinar sólo un periodo de $x_p(t)$, puesto que una representación que describa a $x_p(t)$ sobre un periodo garantiza la misma representación sobre los demás periodos y, por tanto, para toda la señal. La clave para determinar los coeficientes de la serie de Fourier es la ortogonalidad. Se dice que dos señales f(t) y g(t) son ortogonales sobre el intervalo $\alpha \le t \le \beta$ si el área de su producto f(t) * g(t) sobre $\alpha \le t \le \beta$ es igual a cero:

$$\int_{a}^{\beta} f(t)g *(t)dt = 0 \text{ Para que } f(t) \text{ y } g(t) \text{ sean ortogonales.}$$
 (5.17)

La conjugación solo se necesita cuando las señales son de valor complejo. Las senoides y las exponenciales complejas son ortogonales sobre su periodo común $T=1/f_0$ con:

$$\int_{T} \cos(2\pi n f_0 t) \cos(2\pi n f_0 t) dt = \int_{T} \sin(2\pi n f_0 t) \sin(2\pi n f_0 t) dt = \int_{T} \ell^{j2\pi n n f_0} \ell^{-j2\pi n n f_0} dt = 0$$
 (5.18)

Para invocar la ortogonal, se integra la serie de Fourier sobre un periodo T con lo que se tiene

$$\int_{T} x p(t) dt = \int_{T} a_0 dt + \dots + \int_{T} a_k \cos(2\pi k f_0 t) dt + \dots + \int_{T} b_k sen(2\pi k f_0 t) dt + \dots$$
 (5.19)

Salvo por el primer término del lado derecho, los demás se integran a cero, así que.

$$a_0 = \frac{1}{T} \int_T x p(t) dt \tag{5.20}$$

Por lo tanto el contenido de a0 representa el valor promedio de $x_p(t)$. Si se multiplica $x_p(t)$ por $\cos(2\pi k f_0 t)$ y después se integra sobre un periodo T, se tiene que

$$\int_{T} xp(t)\cos(2\pi k f_{0}t)dt = \int_{T} a_{0}\cos(2\pi k f_{0}t)dt + \dots + \int_{T} a_{k}\cos(2\pi k f_{0}t)\cos(2\pi k f_{0}t)dt + \dots + \\
= \int_{T} b_{k} sen(2\pi k f_{0}t)\cos(2\pi k f_{0}t)dt + \dots$$
(5.21)

Nuevamente, por ortogonalidad, todos los términos del miembro derecho son cero, con excepción del que contiene al coeficiente a_k , así que

$$\int_{T} x p(t) \cos(2\pi k f_0 t) dt = \int_{T} a_k \cos^2(2\pi k f_0 t) dt = a_k \int_{T} 0.5\{1 - \cos(4\pi k f_0 t) dt = 0.5T a_k$$
 (5.22)

De la expresión anterior, el coeficiente ak es igual a

$$a_k = \frac{2}{T} \int_T x p(t) \cos(2\pi k f_0 t) dt \qquad (5.23)$$

De manera similar, si se multiplica $x_p(t)$ por $sen(2\pi k f_0 t)$ y se integra sobre un periodo, se obtiene

$$b_k = \frac{2}{T} \int_T x p(t) sen(2\pi k f_0 t) dt$$
 (5.24)

5.2.1.2 Simplificaciones mediante la simetría de la señal

La serie de Fourier de una señal periódica $x_p(t)$ sin ninguna simetría contiene componentes impares (senos) y pares (cosenos). Si $x_p(t)$ tiene simetría par, entonces debe estar formada sólo por términos de simetría par (cosenos). De aquí que $b_k = 0$ yx[k] sea puramente real con X[k] = ak/2. Si $x_p(t)$ tiene simetría impar, entonces sólo debe estar formada por términos de simetría impar (senos). De aquí que $a_0 = a_k = 0$ y X[k] debe ser puramente imaginario con $x[k] = -jb_k/2$. Si $x_p(t)$ tiene simetría de media onda, entonces debe contener únicamente términos con simetría de media onda. Sólo los armónicos que tienen índices impares en f0, 3f0, 5f0,....) Son los que representan simetría de media onda.

Sin embargo, los armónicos de índice par (en 2f0, 4f0.....) muestran un número par de ciclos sobre el periodo fundamental T, y cada semiperiodo es idéntico al siguiente semiperiodo y no una réplica invertida, como lo requiere la simetría de media onda. En consecuencia, los armónicos de índice par no pueden tener una simetría de media onda, y una señal con simetría de media onda sólo puede contener armónicos de índice impar, con lo que a0, ak, bk, ck y X[k] son cero para k par.

La evaluación de los coeficientes distintos de cero de una señal simétrica puede simplificarse de manera considerable mediante el uso de los límites simétricos (-0.5T, 0.5T) en las definiciones integrales e invocando los efectos de la simetría. Si x(t) tiene simetría par, $x(t)\cos w_0t$ también tiene simetría par. Para encontrar la ak de una señal con simetría par, se puede integrar $x(t)\cos w_0t$ solo sobre (0, 0.5T), multiplicando posteriormente el resultado por 4/T. De manera similar, para encontrar la bk de una señal con simetría impar, se integra $x(t)senw_0t$ la cual tiene simetría par) sólo sobre (0, 0.5T) y se multiplica el resultado por 4/T. Si X(t) tiene una simetría de media onda, entonces también se puede integrar sobre (0, 0.5T) y multiplicar por 4/T, siempre y cuando el resultado se evalúe sólo para k impar (los armónicos impares). En la forma exponencial, la expresión para X [k] no exhibe ninguna simplificación con excepción de la simetría de media onda, donde se pueden utilizar los límites (0, 0.5T) pero sólo para k impar.

Si están presentes tanto la simetría par como la de media onda, sólo los ak (k impar) son distintos de cero y pueden encontrarse integrando $x(t)\cos w_0 t$ sobre (0, 0.25T) y multiplicando por 8/T. De manera similar, cuando están presentes tanto la simetría impar como la de media onda, sólo los bk (k impar) son distintos de cero y pueden determinarse integrando $x(t)senw_0 t$ sobre (0, 0.25T) y multiplicando por 8/T.

En todas las simplificaciones realizadas a través de la simetría, nótese que el límite de integración inferior siempre es cero.

5.2.1.3 Espectro de señales periódicas

Los términos análisis espectral o análisis armónico se usan a menudo para describir el análisis de una señal periódica x(t) por medio de su serie de Fourier. Las cantidades ak, bk, ck, θ k, o X[k] describen los coeficientes espectrales de x(t). Estos coeficientes pueden graficarse como una función del índice armónico k, o kf0 (hertz), o kw0 (radianes por segundo), como se muestra en la figura 5.12; estas gráficas se conocen como espectros o gráficas espectrales.

Espectro de magnitud o fase

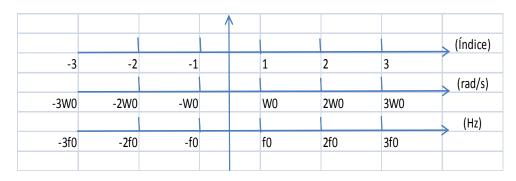


Figura 5.12 - Diferentes maneras de dibujar las gráficas espectrales de una serie de Fourier

El espectro de magnitud y el espectro de fase describen las gráficas de magnitud y de fase de cada armónico. Estos espectros se trazan como señales discretas y en ocasiones también se les conoce como espectros lineales. El término espectros unilaterales se refiere a gráficas de ck y θ k para k \geq 0 (frecuencias positivas). El término espectros bilaterales se refiere a gráficas de | X [k] | y θ k para toda k (todas las frecuencias, positivas y negativas).

Para señales reales periódicas, X [k] exhibe una simetría conjugada. Como resultado de lo anterior, la magnitud bilateral de | X [k] | muestra una simetría par, y el espectro de fase bilateral exhibe una inversión de fase para índices negativos (o frecuencias negativas). Lo usual es trazar la magnitud como una cantidad positiva.

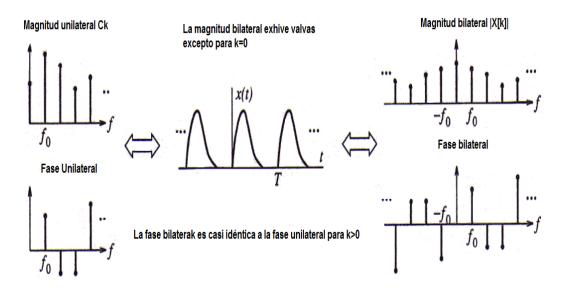


Figura 5.13 - Espectros unilaterales y bilateral de la serie de Fourier.

Para señales reales, X [k] son puramente reales si $x_p(t)$ tiene simetría par, o puramente imaginarios si $x_p(t)$ tiene simetría impar. En tales casos, es más útil dibujar el espectro de amplitud como la parte real (o imaginaria) de X[k] (lo que puede incluir los cambios de signo).

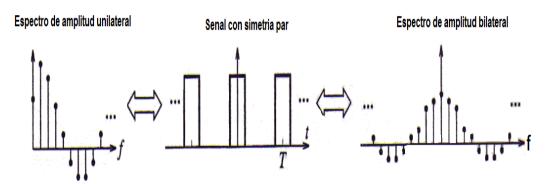


Figura 5.14 - Espectro de amplitud

5.2.1.4 Simetría de la señal a partir de sus espectros de la serie de Fourier

La simetría impar o par de una señal periódica puede discernirse a partir de su espectro de fase. Si la fase de todo coeficiente de la serie de Fourier es 90° o -90° , la señal en el tiempo contiene únicamente términos seno y tiene simetría impar (si la componente de dc es cero), o simetría impar oculta (si la componente de de no es cero). Si la fase de todo coeficiente de la serie de Fourier es 0° o $\pm 180^{\circ}$, la señal en el tiempo contiene sólo cosenos (y tal vez un componente de de) y tiene simetría par.

Para la simetría de media onda, el componente de de debe ser cero y los espectros de magnitud y fase deben mostrar armónicos sólo para valores impares del índice k.

Espectro de magnitud y fase

La trasformada de Fourier X(f) es compleja y puede presentarse en cualquier de las siguientes formas.

$$X(f) = \text{Re}\{x(f)\} + j \text{Im}\{x(f)\} = |X(f)| \angle \phi(f) = |x(f)| \ell^{j\phi(f)}\}$$
 (5.25)

Para señales reales, $\mathbf{x}(\mathbf{f})$ es simetría conjugada con $X(-f) = X^*(f)$. Lo anterior significa que la magnitud |X(f)| o Re $\{X(f)\}$ exhibe una simetría par y que la fase $\mathbf{x}(f)$ o Im $\{X(f)\}$ exhibe una simetría impar, la gráfica de la magnitud y la fase $\mathbf{x}(f)$ como funciones bilaterales.

Las señales periódicas tienen espectros continuos, los espectros pueden dibujarse como funciones de f (HZ) o w (radianes/s). Señales reales: el espectro de magnitud tiene simetría par; el espectro de fase tiene simetría impar.

5.2.2 Análisis de sistemas mediante la transformada de Fourier

Función de transferencia.

La respuesta de y(t) de un sistema relajado (Con condiciones iniciales cero) cuya respuesta al impulso es h(t) a una entrada x(t) en convolución y(t) = x(t) * h(t) en el dominio de la frecuencia, esta relación se traduce en

$$y(f) = X(f)H(f) \text{ o } Y(w) = X(w)H(w)$$
 (5.26)

La cantidad H(f) o H(w) define la función de transferencia del sistema. La función de transferencia también es igual a la transformada de Fourier de la respuesta al impulso h(t) Las relaciones entrada salida en los dominios del tiempo y la frecuencia según la figura.

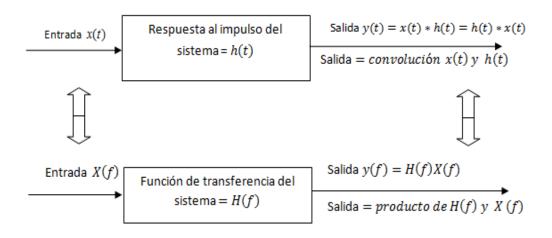


Figura 5.15 - Relación Entrada-Salida en los dominios del tiempo y de la frecuencia

5.2.3 Espectro de frecuencia de la señal de voltaje y corriente

La respuesta mediante el espectro de frecuencia de la señal de voltaje en el estudio realizado manifiesta que la onda no supera los límites dados en el capítulo II correspondiente a la regulación vigente en el país mediante el órgano regulador, ni en los manifiestos de las normas internacionales para armónicos, por lo que no se ha visto conveniente realizar el modelo matemático de esta onda para ninguna de las subestaciones.

Caso diferente sucede con la onda de corriente ya que está supera los límites permitidos en los estándares internacionales y en los nacionales no se hace referencia a su cumplimiento, esto no sucede en todas las armónicas, el resultado del estudio permite conocer que la distorsión fuera de los umbrales se da en la 5^{ta} armónica y para poder corregir esta distorsión se tiene que realizar el modelo matemático con respecto al espectro de frecuencia.

Para esto se consideran los datos analizados en el capítulo IV, en este caso empezaremos con la S/E 1, la cual supera el límite de la norma en la 5^{ta} armónica. Este proceso se basa en la obtención de la magnitud de cada una de las armónicas y el valor correspondiente en frecuencia.

Tabla 5.1.- Datos para la obtención del espectro de frecuencia

DA	DATOS PARA LA OBTENCIÓN DEL ESPECTRO DE FRECUENCIA								
Armonicae	FASE A	FASE B	FASE C	PROMEDIO	FRECUENCIA				
Armonicas I	Valor (Mag)	Valor (Mag)	Valor (Mag)	Valor (Mag)	(Hz)				
1	100,00	100,00	100,00	100,00	60				
2	0,06	0,04	0,045	0,05	120				
3	0,90	2,85	2,077	1,94	180				
4	0,02	0,02	0,014	0,02	240				
5	15,45	14,61	13,643	14,57	300				
6	0,04	0,03	0,020	0,03	360				
7	3,71	3,84	3,435	3,66	420				
8	0,00	0,00	0,000	0,00	480				
9	0,04	0,08	0,143	0,09	540				
10	0,00	0,00	0,000	0,00	600				
11	0,30	0,31	0,222	0,28	660				
12	0,00	0,00	0,000	0,00	720				
13	0,44	0,50	0,462	0,47	780				

Ya obteniendo los valores en magnitud y frecuencia podemos graficar el espectro y así modelar la actuación del filtro que se proponga.

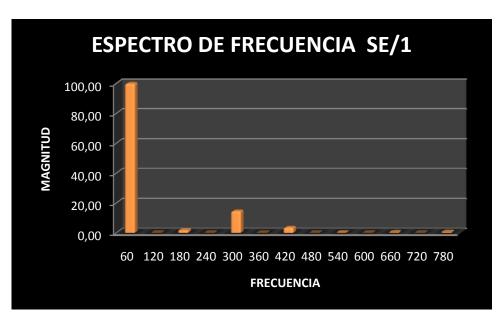


Figura 5.16 – Espectro de frecuencia de la S/E 1

En la figura 5.16 se puede observar que las armónicas de orden 3, 5, 7 son en las cuales se aprecian con un pico, pero la que supera el límite es la 5^{ta} armónica la cual tiene una magnitud de 14,57 a una frecuencia de 300Hz.

Es decir, una vez obtenidos los límites de las frecuencias en la que se analizara la corrección de la distorsión armónica producida en la 5ta señal de corriente, mediante un filtro que actué únicamente sobre la distorsión para reducir o eliminar el porcentaje de distorsión y así cumplir con la normativa planteada en este estudio.

5.3 Diseño matemático del filtro.

Para el diseño de este filtro, la técnica que emplearemos será la de un filtro Butterworth pasa bajas, debido a que los datos del análisis durante el proceso estudiado, permitirán con el modelo descrito corregir la distorsión armónica para el caso del estudio.

FILTRO PASA BAJAS.- Este filtro permite el paso de una banda de frecuencias que va desde CD (cero hertz.), hasta una cierta frecuencia.

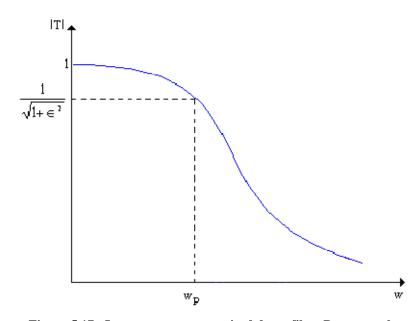


Figura 5.17 - La respuesta en magnitud de un filtro Butterworth

En la figura 17, se ilustra una curva de la respuesta en magnitud de un filtro Butterworth. Este filtro exhibe una transmisión que decrece en forma monótona con todos los ceros de transmisión en $w = \infty$, haciendo un filtro para todo polo. La función de magnitud para un filtro Butterworth de N-ésimo orden con un borde de banda pasante wp está dado por.

$$\left|T\left(jw_p\right)\right| = \frac{1}{\sqrt{1+\varepsilon^2}}$$
 (5.27)

Entonces el parámetro ϵ determina la máxima variación en transmisión de banda pasante, A_{max} según

$$A_{\text{max}} = 20 \log \sqrt{1 + \varepsilon^2}$$
 (5.28)

Por el contrario, dada A_{max} , el valor de ε se puede determinar con:

$$\varepsilon = \sqrt{10^{A_{\min}/10}} - 1 \tag{5.29}$$

En el borde de banda suprimida, $w = w_s$, la atenuación del filtro Butterworth está dada por:

$$A(w_s) = 10 \log \left[1 + \varepsilon^2 \left(w_s / w_p\right)^{2N}\right]$$
 (5.30)

Esta ecuación se puede utilizar para determinar el orden requerido de filtro, que es el mínimo valor de entero de N que produce $A(w_s) \ge A_{min}$.

5.3.1 Funciones de transferencia:

Una de las formas para obtener la respuesta del sistema en un simulador es introducir la función de transferencia del filtro, para el caso que se estudia se analizo la entrada vs la salida del filtro Butterworth a continuación presentado.

Función de transferencia de un filtro pasa bajas de segundo orden es;

$$\frac{Vout}{Vin} = \frac{K}{S^2 + S \frac{w_0}{Q} + w_0^2}$$

$$\frac{Vout}{Vin} = \frac{K \frac{1}{R_1 R_2 C_1 C_2}}{S^2 + S \left[\frac{(R_2 C_2 + R_1 C_2 + R_1 C_1 (1 - K))}{R_1 R_2 C_1 C_2} \right] + \frac{1}{R_1 R_2 C_1 C_2}}$$
(5.31)

Para determinar los polos de un filtro Butterworth de orden n, se deben de encontrar las raíces del denominador.

La respuesta a la frecuencia de un filtro pasa bajas normalizado óptimo de orden n , esta dado por:

$$|Av(jw)| = \frac{Af}{\sqrt{1 + w^{2n}}}$$
 (5.33)

Donde las raíces están dados por:

Para n impar: $Sk = e^{jk\pi/n}$ para k = 0,1,...,2n-1

Para n par:
$$Sk = (e^{j(2k+1)\pi})^{1/2n}$$
 para $k = 0,1,...,2n-1$

Dado que el filtro es estable, los polos en el semiplano izquierdo pertenecen a AV(s) (que se toman en cuenta para el diseño del filtro) y los polos del semiplano derecho a AV(-S)

5.3.2 Diseño del filtro de segundo orden

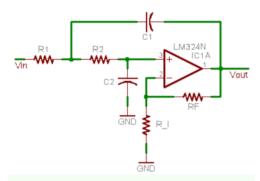


Figura 5.18 - filtro Butterworth de 2^{do} Orden

Diseño:

- 1.- Seleccione el valor de la frecuencia de corte
- 2.- Seleccione el valor de C1 = C2
- 3.- Calcule el valor de R1 = R2 utilizando:

$$FH = \frac{1}{2\pi RC} \tag{5.34}$$

4.- Seleccione el valor de Af para lograr una respuesta máximamente plana por medio del factor de calidad

$$Q = \frac{1}{3 - Af} = factor de calidad$$
 (5.35)

5.- Seleccione r y Rf de acuerdo a la ganancia Af

5.3.3 Análisis del filtro en programa computacional (Matlab)

$$H(s) = \frac{B(s)}{A(s)} = \frac{b(1)s^{n} + b(2)s^{n-1} + \dots + b(n+1)}{s^{n} + a(2)s^{n-1} + \dots + a(n+1)}$$
(5.36)

Se diseñara un filtro se segundo orden con una frecuencia de corte de 200Hz, el cual especificara las características de diseño del filtro en el programa Matlab.

>> [b,a]=butter(2,200/500) se establecen las características del filtro.(n,Wn)
b =
0.2066 0.4131 0.2066
a =
1.0000 -0.3695 0.1958

>> Freqz(b,a,128,1000) Una vez establecido el filtro graficaremos la frecuencia en decibeles y defazamiento de ángulo.

En la figura 5.19 se puede observar que a partir de 200 Hz la señal se empieza a atenuar por lo cual las frecuencias mayores a ésta se filtrarán. Es importante notar que la banda de paso es lineal y plana característica de un filtro Butterworth.

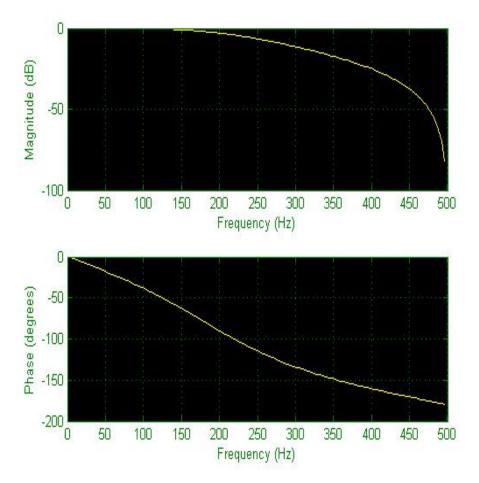


Figura 5.19 – Diagrama de bode

5.3.4 CÓDIGO EN MATLAB DEL PROGRAMA UTILIZADO

Para el análisis de la propagación de armónicas y las diferentes ondas de ingreso en el análisis respectivo, se realizo un programa base de acuerdo al sistema eléctrico de la CENTROSUR y con los respectivos datos obtenidos en el capítulo IV anteriormente descrito.

El código del programa se realizo en MATLAB, el cual nos grafica todas las ondas requeridas

```
clear all;
load Onda;
% onda distorsionada
syms i
for i=1:1:91;
    Prom(1,i)=Onda(i,6);
end
Prom=Prom./(max(Prom));
```

```
ang=0:360/90:360;
figure(1);
plot(ang,Prom);
grid on;
axis([0 360 -1 1]);
title('Onda Distorsionada');
% onda pura
alpha=0:2*pi/90:2*pi;
Wave=sin(alpha);
figure(2);
plot(ang, Wave);
grid on;
axis([0 360 -1 1]);
title('Onda Pura');
% Onda Resultante
figure(3);
Res=Wave-Prom;
plot(ang,Res);
grid on
axis([0 360 -1 1]);
title('Onda Resultante');
% Ondas
figure(4)
P=filter(300,1,Prom)
plot(ang,Wave,ang,Prom);
grid on;
axis([0 360 -1 1]);
title('Ondas');
```

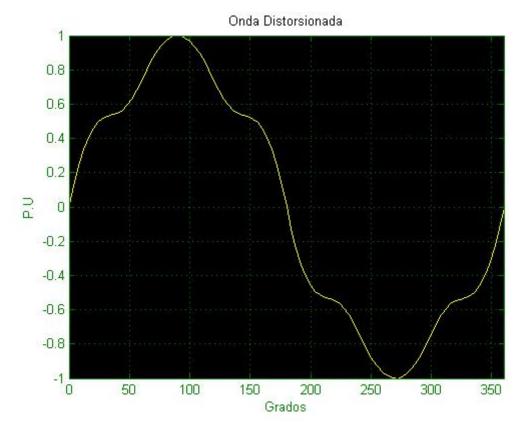


Figura 5.20 – Forma de Onda Distorsionada

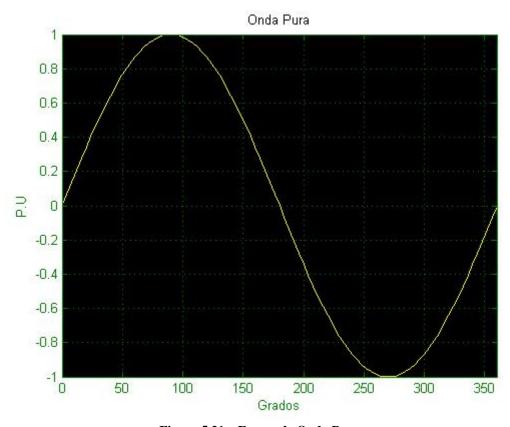


Figura 5.21 – Forma de Onda Pura

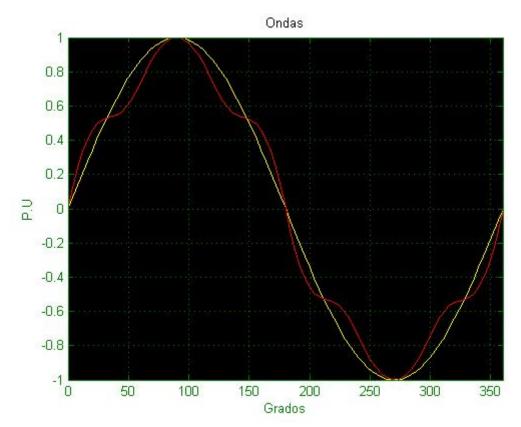


Figura 5.22 – Formas de Ondas (Pura - Distorsionada)

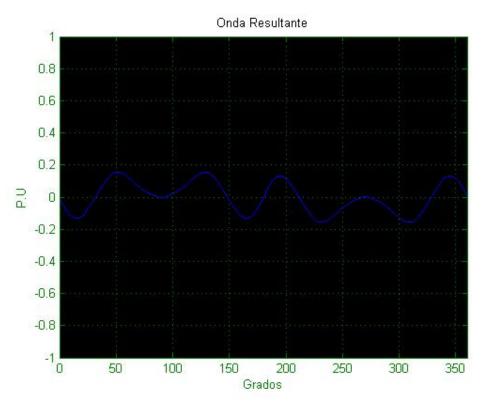


Figura 5.23 – Formas de Onda Resultante

5.4 Simulación del modelo.

En el ingreso de la información de los parámetros a ser simulados mediante MATLAB_SIMULINK a través de los bloques de comandos, Signal From Workspace, inicialmente se ingresa el nombre de la señal no contaminada, que para el caso le llamaremos Wave y en el siguiente bloque de comando con las mismas características la señal con distorsión llamada Prom, esta segunda es la que está presente en la subestación 1, como se muestra en la figura 5.24 el parámetro de la viñeta (cyclic repeticion) es necesario para tener continuidad en la gráfica y poder apreciar de mejor forma el análisis que resulta al ingresar las dos ondas.

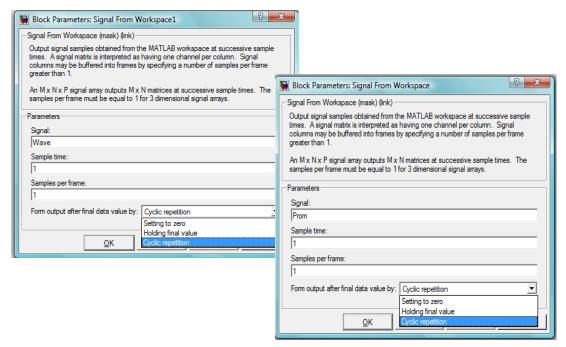


Figura 5.24 – Bloques de Parámetros (Signal From Workspace)

Continuando con el diseño del filtro, en el ingreso de los parámetros para el bloque del Filter Design, utilizamos el método de diseño calculado, que es el Butterworth, luego el tipo de filtro que para nuestro estudio es Lowpass y el orden que para el caso es de tipo 2.

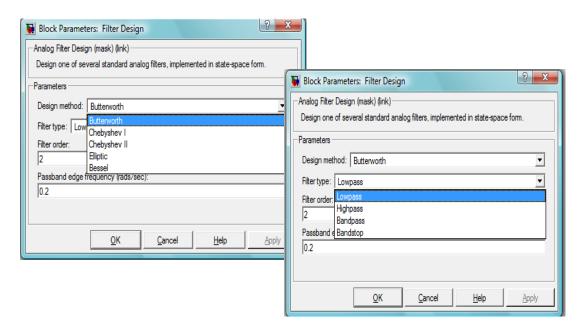


Figura 5.25 – Bloques de Parámetros (Filter Design)

Para visualizar los parámetros utilizamos el número de ejes 3 así observaremos las tres ondas que serían las siguientes: Onda Pura (Wave), Onda Distorsionada (Prom) y la Onda filtrada (Respuesta).

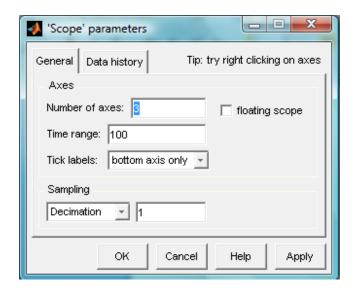


Figura 5.26 – "Scope" Parámetros

En figura 5.27 mostrada a continuación está el diagrama de bloques de la programación en SIMULINK para obtener las diferentes Ondas y la respuesta que dará el sistema una vez filtrada la señal en mención llegando a uno de los objetivos planteados en el estudio, en la figura 5.28 podremos visualizar las ondas las cuales se obtienen de la simulación, aquí observamos las tres ondas, estas corresponden a la onda pura, onda distorsionada y onda de respuesta o filtrada.

En el diagrama de bloque a continuación descrito se realizó la diferencia entre las ondas de ingreso, para así obtener el porcentaje de corrección de la distorsión armónica. En la figura 5.29 se puede apreciar la onda resultante con una magnitud bajo los límites permisibles, cabe recalcar que esta respuesta dará el porcentaje que se está corrigiendo.

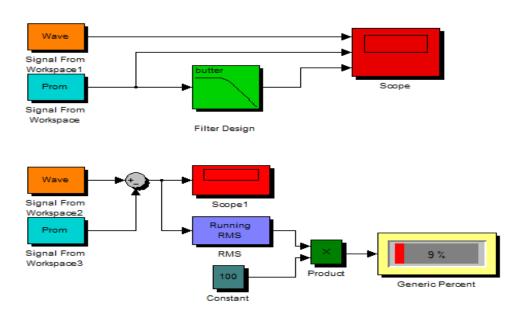


Figura 5.27 – Diseño del Filtro en Simulink

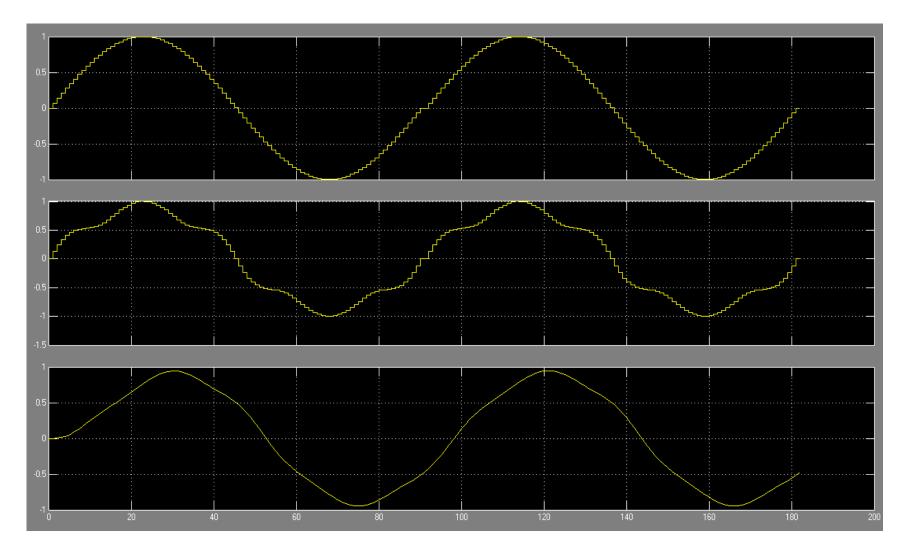


Figura 5.28 – Simulación de las Ondas en Simulink

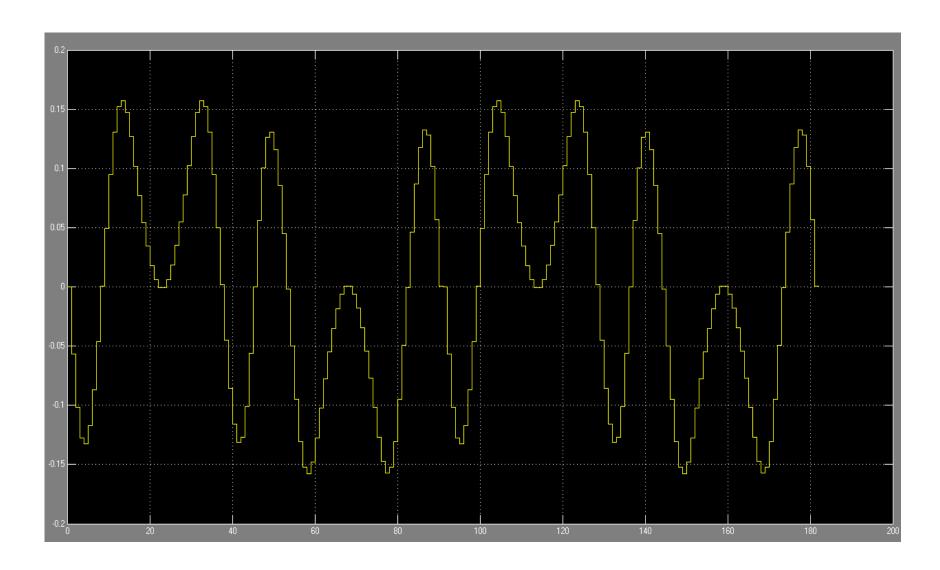


Figura 5.29 – Simulación de las Ondas Resultante entre la Onda "Prom" y la Onda "Wave"

5.5 Análisis de resultados

En el análisis de las perturbaciones se demostró la distorsión armónica presente en la subestación 1 de la CENTROSUR, en la que se puede apreciar que en el 3^{er} armónicos tiene un porcentaje de 1.66, el 5^{to} armónico presenta un valor porcentual del 12.04 y en el 7^{mo} armónico un porcentaje de 3.32.

Como se puede apreciar los datos analizados en el 5^{to} armónico supera los límites de la norma IEEE 519, describiendo los límites permisibles de la distorsión armónica total de corriente para niveles de media tensión.

El objetivo del estudio se cumple a partir del desarrollo del modelo matemático para la simulación del diseño del filtro Butterworth de 2^{do} orden, con este se logro corregir la distorsión armónicas provocadas por el sin número de cargas no lineales conectadas a la subestación y así cumplir con lo estipulado en las normas establecidas, los valores de corrección de la distorsión armónica se pueden apreciar en la columna THDi% corregido de la tabla 5.2, los valores nos muestran el cumplimiento de la normativa y con este el porcentaje de ahorro de energía que representara a la subestación. El uso de un filtro pasivo aplacando directamente a la 5^{ta} armónica permite mostrar la respuesta al nuevo sistema con la señal filtrada.

Tabla 5.2. Comparación del THDi %

ORDEN ARMÓNICO	THDi % IEEE 519	THDi % MEDIDO	THDi % CORREGIDO
3 ^{ro}	16.60	1.66	1.66
5 ^{to}	12.00	12.04	3.04
7 ^{mo}	8.50	3.32	3.32

En la siguiente tabla 5.3 se puede considerar los valores de magnitud en cada armónico los cuales nos servirán para desarrollar la serie de Fourier y así demostrar que la señal de la onda está filtrada.

Tabla 5.3. Datos para la obtención del espectro de frecuencia corregido

DATO	DATOS PARA LA OBTENCIÓN DEL ESPECTRO DE FRECUENCIA							
		COR	REGIDO					
Armónicas	FASE A	FASE B	FASE C	PROMEDIO	FRECUENCIA			
ı	Valor	Valor	Valor	Valor				
ı	(Mag)	(Mag)	(Mag)	(Mag)	(Hz)			
1	100,00	100,00	100,00	100,00	60			
2	0,06	0,04	0,045	0,05	120			
3	0,90	2,85	2,077	1,94	180			
4	0,02	0,02	0,014	0,02	240			
5	6,45	5,61	4,64	5,57	300			
6	0,04	0,03	0,020	0,03	360			
7	3,71	3,84	3,435	3,66	420			
8	0,00	0,00	0,000	0,00	480			
9	0,04	0,08	0,143	0,09	540			
10	0,00	0,00	0,000	0,00	600			
11	0,30	0,31	0,222	0,28	660			
12	0,00	0,00	0,000	0,00	720			
13	0,44	0,50	0,462	0,47	780			

Figura 5.29. Espectro de frecuencia corregido.

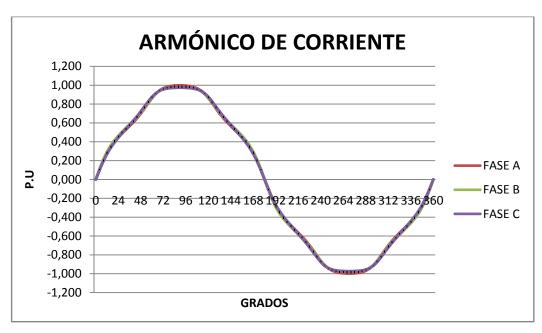


Figura 5.30. Onda de armónicos de corriente filtrada.

La pequeña distorsión presente en la onda filtrada, muestra los valores remanentes de los armónicos 3ro, 5to, 7mo, 9no, los cuales no se corrigieron en su totalidad porque de llegar a valores cercanos a cero, esta presentaría un desfase y por ende una resonancia en paralelo que afectaría el sistema de la subestación.

5.6 Conclusiones

En este análisis tenemos como conclusión tenemos que si se reduce el porcentaje de armónicos utilizando el filtro Butterworth pasa bajo de segundo orden el cual al pasar la onda distorsionada por el filtro esta se atenúa, pero tenemos un desfase mínimo el cual corresponde a la capacitancia del filtro.

Con esto queda demostrado que este filtro nos sirve para dejar el porcentaje armónico dentro de las normas internacionales.

CAPÍTULO VI

Análisis económico de la mitigación

6.1 Organización y estructura económica.

La estructura organizacional de la CENTROSUR mediante sus diferentes áreas en su afán de reducir las pérdidas de energía, ajustarse a las regulaciones y normativas nacionales e internacionales, ha visto conveniente la posibilidad de aplicar el estudio realizado, para lo cual se efectuara un análisis de la estructura económica vigente en el mercado eléctrico del país, esto mediante su revisión permitirá conocer la factibilidad de la aplicación del modelo en función de sus costos y su rentabilidad de ser el caso.

El control de las pérdidas de energía es una preocupación permanente de todas las áreas de la Empresa, debido a que el costo de éstas incide directamente en su economía y en sus planes de expansión, siendo esta la razón por la que uno de los capítulos de importancia del estudio es la evaluación técnica y económica de las pérdidas en la subestación.

La estrategia que se utilizara en el estudio es determinar las cargas que contaminan el sistema eléctrico de potencia de la CENTROSUR, obtener el porcentaje de pérdidas por dicha contaminación, modelar matemáticamente el filtro para su construcción y realizar el análisis económico para objetar su conveniencia y se aspira con esto cumplir los objetivos planteados con el estudio.

A continuación el estudio propone mediante la estructura económica vigente llegar a determinar técnicamente el porcentaje total de pérdidas por armónicos en la subestación 1, así como cuantificar sus costos que representan dichas pérdidas y su aplicación al resto de subestaciones con las que cuenta la CENTROSUR.

El modelo matemático del filtro de Butterworth, desarrollado específicamente para la subestación 1, dará la respuesta técnica económica para que según su costo sede paso a la implementación, permitiendo cumplir el objetivo principal del estudio que es reducir las pérdidas producidas por las diferentes cargas armónicas en las subestaciones de la CENTROSUR.

Por otro lado, la Regulación 002/99, emitida por CONELEC, referente a las pérdidas de energía compromete a las empresas distribuidoras a mantener una continua evaluación de sus pérdidas con la finalidad de redefinir sus políticas de

inversión, para establecer procedimientos orientados a la reducción de pérdidas (de potencia y energía) mejorando la calidad de servicio, convirtiéndolas en las prioridades más importantes dentro del nuevo marco legal constitucional.

La estructura económica con la que cuenta la CENTROSUR en la actualidad se divide en varios factores, de los cuales iremos describiendo cada uno de ellos, como sigue a continuación.

- La energía total disponible del sistema
- El estudio se realiza para cada etapa funcional, esto es: líneas de subtransmisión, transformadores de potencia, alimentadores primarios, transformadores de distribución, redes secundarias, acometidas y medidores.
- La evaluación considera las pérdidas de potencia y energía activa.
- Para calcular los porcentajes de pérdidas de energía se utilizan dos bases de comparación: la energía del sistema (denominado CENTROSUR) y la energía total disponible de la CENTROSUR.

6.1.1 Antecedentes de las pérdidas de la CENTROSUR.

Las pérdidas que mantiene la CENTROSUR son decrecientes como se puede apreciar en la figura 6.1 esto considerando la Energía Total Disponible y la energía disponible por la CENTROSUR.

Tabla 6.1 Antecedentes de las pérdidas de los años 2005-2009

CONCEPTO	UNID	2005	2006	2007	2008	2009
Energía Total Disponible (ETD)	MWh	633.669	664.383	692.744	720.417	728.982
Disponible CENTROSUR	MWh	615.669	635.661	655.896	693.183	726.888
% Pérdidas totales respecto a ETD	%	9,24%	8,89%	9,44%	6,75%	6,02%
Pérdidas Técnicas	MWh	37.775	38.733	38.711	41.360	42.033
% Pérdidas Técnicas respecto a ETD	%	5,96%	5,83%	5,59%	5,75%	5,77%
Pérdidas No técnicas	MWh	20.784	20.323	26.664	7.238	1.828
% Pérdidas No Técnicas respecto a ETD	%	3,28%	3,06%	3,85%	1,00%	0,25%

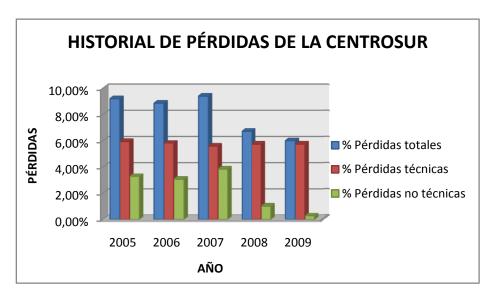


Figura 6.1 Historial de pérdidas de la CENTROSUR

6.1.2 Energía total disponible del sistema y pérdidas totales

De las transacciones de energía realizadas en el Mercado Eléctrico Mayorista (MEM), se han determinado mediante la sumatoria de las energías disponibles mensuales, así mismo la energía consumida por los clientes es tomada de los reportes mensuales de la Dirección de Comercialización. La diferencia entre la energía disponible y la energía consumida (facturada), corresponde a las pérdidas totales, como se presenta en la siguiente tabla.

Cabe mencionar que Los porcentajes de energía disponible y de pérdidas se calculan con respecto a la energía total del sistema.

Tabla 6.2 Energía Disponible y pérdidas totales [MWh]

TOTAL	ENERMAX	Total	Regulados	Total	Clientes Regulad		los
SISTEMA	LINLINIVI	CENTROSUR	CENTROSUR	Pérdidas	Disponible	Consumo	Pérdidas
728.982	2.094	726.888	683.027	43.860,99	726.888	683.027	43.861
100%	0,29%	99,71%	93,70%	6,02%	99,71%	93,70%	6,02%

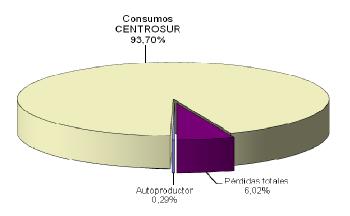


Figura 6.2 Participación porcentual de consumos y pérdidas de energía

6.1.3 Pérdidas en la etapa de subtransmisión y transformadores de potencia.

La metodología usada para determinar las pérdidas técnicas en las líneas de subtransmisión y los transformadores de potencia. Se determina para cada mes, un equivalente diario que es el promedio horario de las transacciones de potencia y energía realizadas en el MEM, compuesta por la potencia registrada en los puntos de entrega del SNI, de las centrales de ELECAUSTRO y de las subestaciones 15 Gualaceo, 21 Macas, 22 Méndez y 23 Limón.

Para las **Pérdidas de potencia y energía**, se determinan mediante la simulación de operación en el software de cálculo de flujos de potencia DIGSILENT, a través del siguiente procedimiento:

Con la información del día equivalente, se forma la curva de duración de carga; se determinan escalones de esta curva escogidos de tal forma que el error entre la energía calculada bajo la curva original y la de los escalones propuestos no supere el $\pm 1\%$.

Los resultados del cálculo de las pérdidas de energía en líneas de subtransmisión y transformadores de potencia, se muestran en la tabla 6.3

Tabla 6.3 Pérdidas de energía en líneas de subtransmisión y transformadores de potencia.

DESCRIPCIÓN	TOTAL SI	STEMA	CENTROSUR	
DESCRIPCION	MWh	%	MWh	%
ENERGÍA DISPONIBLE	728.982,32	100%	726.888,21	100%
PÉRDIDASEN SUBTRANSMISIÓN	7.309,89	1,00%	7.309,89	1,01%
Pérdidas en líneas de S/T – 69kV	3.052,64	0,42%	3.052,64	0,42%
Pérdidas en líneas de S/T – 22kV	1.212,23	0,17%	1.212,23	0,17%
Pérdidas en transformadores de potencia	3.045,03	0,42%	3.045,03	0,42%

6.1.4 Pérdidas de energía en la distribución

La evaluación de las pérdidas de energía en la etapa de distribución es más compleja debido a su topología y gran número de componentes. Considerando que en distribución se concentra el mayor porcentaje de pérdidas, para lo cual se analiza las pérdidas en: alimentadores primarios, transformadores de distribución, redes secundarias, acometidas, contadores, entre otros elementos, a continuación se presenta un resumen de pérdidas de energía en la etapa de distribución.

Tabla 6.4 Pérdidas de energía en la etapa de distribución

DESCRIPCIÓN	TOTAL SIS	STEMA	CENTROSUR	
DESCRIPCION	MWh	%	MWh	%
ENERGÍA DISPONIBLE	728.982,32	100%	726.888,21	100%
PÉRDIDAS EN DISTRIBUCIÓN	34.722,93	4,76%	34.722,93	4,78%
Pérdidas en alimentadores primarios	6.553,10	0,90%	6.553,10	0,90%
Pérdidas en transformadores de distribución	13.391,10	1,84%	13.391,10	1,84%
Pérdidas en otros elementos de MT	42,54	0,01%	42,54	0,01%
Pérdidas en redes secundarias	9.088,39	1,25%	9.088,39	1,25%
Pérdidas en alumbrado público	927,94	0,13%	927,94	0,13%
Pérdidas en acometidas	1.367,93	0,19%	1.367,93	0,19%
Pérdidas en contadores	2.693,94	0,37%	2.693,94	0,37%
Pérdidas en otros elementos de BT	657,99	0,09%	657,99	0,09%

En la figura 6.3 se presenta un diagrama en donde muestra la distribución porcentual de las pérdidas de energía en la etapa de la distribución de energía.

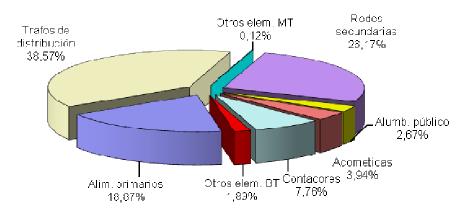


Figura 6.3 Porcentaje de las pérdidas de energía en la distribución.

6.1.5 Pérdidas no técnicas y técnicas de energía

Las pérdidas no técnicas de energía son el resultado de la diferencia entre las pérdidas totales y las pérdidas técnicas calculadas en los sistemas de subtransmisión y distribución. Estas son originadas por diferentes causas entre las más importantes se mencionan a continuación.

- Clase de precisión en los contadores instalados en el sistema de la CENTROSUR. Deterioro de la precisión del contador por el tiempo de uso y su vida útil.
- Manipulación de la instalación y de la calibración del medidor por parte del cliente.
- Conexiones directas en la acometida o desde la red de distribución.
- Falta de lectura periódica, errores en el procesamiento de los valores registrados en los contadores de energía o el uso de promedios de consumos históricos, no actualizados, en la facturación de los clientes.

Tabla 6.5 Pérdidas técnicas y no técnicas de energía

Dogovinojća	TOTAL S	ISTEMA	CENTROSUR		
Descripción	MWh	%	MWh	%	
ENERGÍA DISPONIBLE	728.982,32	100%	726.888,21	100%	
PÉRDIDAS TOTALES	43.860,99	6,02%	43.860,99	6,03%	
Pérdidas en subtransmisión	7.309,89	1,00%	7.309,89	1,01%	
Pérdidas en distribución	34.722,93	4,76%	34.722,93	4,78%	
Pérdidas no técnicas	1.828,17	0,25%	1.828,17	0,25%	

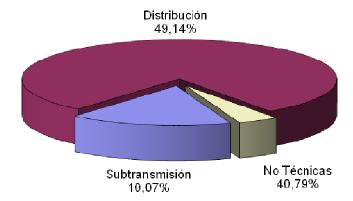


Figura 6.4 Distribución porcentual de las pérdidas de energía en el sistema

6.2 Costos por pérdidas de energía causados por armónicos.

En la actualidad la CENTROSUR en la subestación 1 presentan un porcentaje de pérdidas causadas por la contaminación armónica del 12,04% THD, al realizar el modelo matemático del filtro para la corrección, esta contaminación se reduce al 9%, el efecto armónico restante tanto técnica como económica resulta infructífero, con la reducción planteada la CENTROSUR se ajusta a las regulaciones y normativas internacionales analizadas en este estudio.

La contaminación producida por el 5to armónico representa una pérdida de energía de 8.624 kWh/año contablemente tiene un costo de 491,57 \$/año.

La CENTROSUR, tendría que invertir 18.381,72 USD para corregir la distorsión armónica producida en la subestación. Teniendo una recuperación del capital invertido en un tiempo de 38 anos. Económicamente el proyecto no puede ser viable, pero se debe tener conciencia que en la actualidad, las regulaciones emitidas por el órgano regulador CONELEC en el país, aun no establece multas y penalizaciones por incumplir con regulaciones nacionales o normativas internacionales, así como, es de

conocimiento público que la CENTROSUR al momento cuenta con la normativa de calidad ISO-9001, esto hará que la empresa siga mostrando su compromiso por servir con un producto de calidad, y por consecuencia de lo actuado se evite daños en los diferentes equipos de las subestaciones.

En las siguientes tablas se describe el proceso para llegar a determinar la pérdida económica dada en la **SUBESTACIÓN 1**.

Tabla 6.5 Porcentaje de pérdidas en el trasformador de potencia S/E 1

Trafo potencia	Pérdidas Hora D. Max [kW]
T011	11,01
T012	11,17

Como se observa en la tabla 6.6 las pérdidas mensuales en los trasformadores de potencia ascienden a los 7.985,19 kWh/mes, aplicando el porcentaje total de distorsión armónica producida en la subestación se tiene una pérdida de 958,22 kWh/mes, ósea es lo que la empresa pierde por causa de los armónicos, corrigiendo el quinto armónico en un 9%, la empresa recuperaría energía en la subestación 1 en un valor de 718,67 kWh/mes, representando anualmente 8.624 kWh/año.

Tabla 6.6 Pérdidas producidas por el 5^{to} armónico en la S/E 1

		9%THD	9%THD
Pérdidas mes	12% THD Pérdidas	Corrección	Corrección
[kWh]	[kWh]	[kWh/mes]	[kWh/año]
7.985,19	958,22	718,67	8.624,00

De las mediciones realizadas en la subestación 1 se tiene que, la energía total consumida es de 2.699.030,61 kWh/mes, valorada en 1.846.136,94 \$/año, por lo que la empresa actualmente en dicha subestación anualmente pierde 491,57 \$/año.

Tabla 6.7 Pérdidas de energía y en USD, producidas por el 5^{to} armónico en la S/E 1

Alimentador	Potencia Hora D. Max [kW]	FC	FC Tiempo [h] Energ		gía
0101	1.712	0,57	720	700.731,19	KWh/mes
0102	1.865	0,51	720	688.159,14	KWh/mes
0103	1.343	0,48	720	462.747,57	KWh/mes
0104	1.892	0,62	720	847.392,71	KWh/mes
			TOTAL S/E 1	2.699.030,61	KWh/mes
			TOTAL S/E 1	1.846.136,94	\$/Ano
		TOTAL S/E 1	. CORREGIDO	2.698.311,95	KWh/mes
		TOTAL S/E 1	. CORREGIDO	491,57	\$/Ano

Obtenida la energía perdida en el transformador de potencia y cuantificada podemos realizar el flujo económico para demostrar la rentabilidad y el costo beneficio que resulta de la corrección del quinto armónico en la subestación.

Los gastos que representa realizar la corrección están dados en la siguiente tabla.

		GASTOS			
ESTUDIO ECONÓMICO DEL MOD	ELO A SER IMI	PLEMENTADO			
Mano de Obra personal		Sueldo básico	Tiempo (meses)	# Personas	Total
Marco Toledo / Christian Jimene	ez	500	6	2	6.000,00
					,
Costos de Equipos-Herramienta	s-Materiales				
		Costo total equipo	Depreciación(mes)	Uso (día)	TOTAL
Nexus 1252		9.000,00	36	30	250,00
Herramientas		costo			
Playo		80,00	36		6,67
Pértiga detectora de tensión		600,00	36		50,00
Pinza corta frio		30,00	36		2,50
Cuchillas electricista		60,00	36		5,00
Mochilas para herramientas		22,00	36		1,83
Camara digital		350,00	36		9,72
Equipo puesta		1.200,00	36		33,33
Multímetro		150,00	36		12,50
Cono de seguridad		32,00	36		2,67
Cinta limitadora de zona de ries	go	5,00	36		5,00
Casco de seguridad		105,00	36		8,75
Guantes de MT		145,00	36		12,08
Guantes de BT		30,00	36		2,50
Gafa protectora contra arco eléc	ctrico	90,00	36		7,50
				SUBTOTAL	160,06
Suministros					
Computadoras		1200	36	2	67
Impresión de documentos/anill	ados -empast	500			500
Internet		30		6	180
Libros		150			150
Movilización		200			200
Varios		100			100
				SUBTOTAL	1.196,67
Filtro de armónicos para la sube	stación				1
Costo del filtro en el mercado		8.500,00			8.500,00
Costo del montaje en la S/E		2.125,00			2.125,00
Mantenimiento		150,00	mensual		150,00
				SUBTOTAL	10.775,00
			TOTAL	\$ 18	.381,72

VALORACIÓN FINANCIERA DEL PROYECTO:

"ANÁLISIS Y PROPUESTAS PARA LA MITIGACIÓN DE LA CONTAMINACIÓN ARMÓNICA EN LAS SUBESTACIONES DE LA EMPRESA ELÉCTRICA REGIONAL CENTROSUR C.A."

				referencia		11,50%
Orden	Año		Inversión	costos	Ingresos	Valor Neto
1	0	2.010	18.381,72			-18.381,72
2	1	2.011		0,00	491,57	491,57
3	2	2.012		0,00	491,57	491,57
4	3	2.013		0,00	491,57	491,57
5	4	2.014		150,00	491,57	341,57
6	5	2.015		0,00	491,57	491,57
7	6	2.016		0,00	491,57	491,57
8	7	2.017		0,00	491,57	491,57
9	8	2.018		0,00	491,57	491,57
10	9	2.019		150,00	491,57	341,57
11	10	2.020		0,00	491,57	491,57
			18.381,72	300,00	4.915,68	-13.766,04
				Valor Actual Neto (VAN) (%)		-15.391,42
				Beneficio / Costo (B/C)		-0,84
Costo de	e la					

Costo de la		
Implementación	18.381,72 \$	

Costo Unitario de kWh	= 5,75 C/kWh
-----------------------	--------------

Recuperación económica al corregir los armónicos en la S/E

Ahorro anual de la			
CENTROSUR	491,57	\$/año	

6.3 Análisis de rentabilidad.

Como se puede apreciar en el análisis, el beneficio/costo no justifica una inversión de tal magnitud presente en diez años, la inversión deberá ser realizada en un tiempo de 38 años, por lo que dado el caso, la CENTROSUR a través de sus administradores deberán tomar la mejor decisión.

El costo del kWh es de 0,057 C/USD, considerado al precio efectivo de compra de energía en el mercado eléctrico mayorista, dado que el análisis esta dado en el lado de baja tensión del transformador de potencia, y aun la energía no pasa por las diferentes etapas para la distribución, ósea aun no llega al consumidor final.

Un análisis, con el mismo modelo y las mismas variables, realizaremos para el total de la energía disponible en la CENTROSUR, tomando como referencia el modelo matemático planteado mediante el filtro, los índices mostraran la recuperación económica que le representara a la CENTROSUR corregir la quinta armónica en el total de las subestaciones. Para efectos de construcción se debe plantear variables para cada una de las subestaciones debido al cambio de condiciones técnicas y operativas.

Tabla 6.8 Análisis de pérdida en energía y en USD en la S/E 1

Energía total del sistema	Pérdidas totales del sistema	Pérdidas Trafos de potencia	Corrección del 9% THD	Unidades
728.982,32	43.860,99	3.045,03	274,05	[MWh]
41.916.483,40	2.522.006,93	175.089,23	15.758,03	[USD]

Con la corrección del 9% del THD en el total de las pérdidas en los transformadores en las subestaciones de la CENTROSUR.

Ahorro en [MWh]	274,05
Ahorro en [USD]	15.758,03

De instalarse los filtros en todas las S/E de la CENTROSUR las pérdidas de energía se reducirían a un **5,98%** anual en el global de la energía total disponible.

La reducción de pérdidas mediante la introducción de filtros para armónicos deben ser tratadas dentro de las políticas de calidad que maneja la Empresa para la reducción de pérdidas, el control continuo de la carga de los transformadores de potencia y un manejo simplificado de la información estadística permitirá identificar y mejorar las condiciones operativas en las subestaciones.

Adicionalmente los armónicos producen el envejecimiento prematuro de los equipos instalados en el sistema eléctrico, esto hace suponer que se deben reemplazar con anterioridad, a menos que se hayan sobredimensionado la capacidad operativa de los diferentes equipos, incrementando su costo al momento de la adquisición, esto representa pérdidas adicionales en el flujo económico de la Empresa.

CAPÍTULO VII CONCLUSIONES Y RECOMENDACIONES

7.1 CONCLUSIONES

Este capítulo presenta las conclusiones más importantes a las que se ha llegado después del desarrollo de la presente tesis, adicionalmente se dan algunas recomendaciones para optimizar el análisis y mitigación de armónicos.

La distorsión armónica puede causar serios problemas para los usuarios de potencia eléctrica, desde un disparo inadvertido de los dispositivos de protección, hasta un peligroso sobrecalentamiento de transformadores, y conductores de tierra.

En los conductores, los armónicos de corriente generan un incremento de las pérdidas por efecto Joule., debido al efecto pelicular, ya que las corrientes de alta frecuencia, sólo circulan por la superficie de los conductores, concentrando el calentamiento en esas zonas.

La barra del conductor neutro puede sobrecalentarse debido a los efectos de cancelación de las corrientes armónicas se secuencia positiva y negativa provenientes de los desbalances de fase, entre los conductores neutros de circuitos de ramales individuales que suministran energía a diferentes cargas. La circulación por los conductores neutros de las corrientes armónicas triples de secuencia cero generados por la carga, también pueden sobrecargar las barras del neutro.

En los bancos de condensadores, la existencia de voltajes armónicos en la red da lugar a la circulación de corrientes armónicas en los mismos, debido a que la impedancia de estos elementos disminuye al aumentar la frecuencia.

La existencia de armónicos de voltaje y corriente da lugar a errores en los equipos de medida y contadores de energía, ya que muchos de estos equipos están diseñados para trabajar con ondas de voltaje y corriente prácticamente sinusoidales.

Los transformadores de voltaje capacitivos no pueden ser utilizados para mediciones de voltajes armónicos, porque la frecuencia de resonancia más baja aparece a frecuencias menores a 200 Hz.

En el análisis realizado, se observa que todas las etapas tienen cierta injerencia en las pérdidas, y las subestaciones no dejan de ser importantes por lo que el estudio ratifica la necesidad de invertir en filtros para armónicos, esto por la

responsabilidad que viene manteniendo la CENTROSUR en cuanto a la calidad de energía.

En el análisis de media tensión del lado secundario del transformador, se observó que la inserción de cargas no lineales producen corrientes y tensiones de frecuencia diferente a la del diseño del sistema eléctrico (60 Hz), las cuales fluyen a través de la red eléctrica afectando a dispositivos y equipos que no fueron diseñados para operar en condiciones diferentes a la del sistema.

A través del análisis, modelación matemática, simulación y comportamientos de las señales distorsionadas se estableció diseñar un "filtro pasivo en serie", basado en un filtro Butterworth, ya que estos impiden el paso de una frecuencia particular armónica, en función del arreglo de un inductor y un condensador en paralelo que se posicionan en serie a la parte de la red que se desea proteger.

Mediante el estudio realizado se establece que la corrección de la distorsión armónica en las subestaciones no se puede realizarse al 100%, siempre quedara una pequeña distorsión por la sumatoria de las diferentes cargas que contiene el sistema eléctrico de potencia y por su complejidad en las características técnicas de los diferentes equipos que lo componen, lo interesante es que se dé cumplimiento a los diferentes manifiestos que dan las normativas, y así evitar que las pérdidas no perjudique el flujo económico de las empresas distribuidoras.

En base al análisis realizado mediante la simulación del filtro, se observa una corrección del 9% de THD en la quinta armónica, la forma de onda corregida se puede apreciar en la figura 5.30, el filtro realiza la corrección únicamente en la armónica individual. Adicionalmente, el filtro Butterworth no tiene pico alguno en la región de la frecuencia de corte, pero mantiene una ganancia constante en un rango menor de frecuencia de la quinta armónica, ya que empieza a disminuir mucho antes de la frecuencia de corte, lo cual permite alcanzar los resultados esperados según la normativa estudiada.

Una de las mayores ventajas del filtro, es que proporciona una máxima atenuación para una armónica individual, a frecuencia fundamental puede proporcionar la potencia reactiva requerida en la red, y tiene bajas perdidas, las cuales asociadas a la resistencia del inductor y la resistencia del filtro se evita la amplificación. Sin embargo, la mayor desventaja es la vulnerabilidad a la desintonía debido a las tolerancias de elementos con la temperatura y/o variaciones de

frecuencia fundamental, ya que estos interactúan con la red originando una resonancia paralela al igual que un banco de condensadores.

Las instalaciones donde los filtros pasivos estén ubicados deben ser suficientemente estables, es decir, con un nivel bajo de fluctuaciones de carga. Si la potencia reactiva alimentada es importante, se recomienda desconectar la tensión del filtro pasivo cuando los niveles de carga son bajos.

Se puede ver que en el caso de la CENTROSUR las interrupciones del suministro eléctrico no son provocadas por las distorsiones armónicas tanto de voltaje como de corriente, es un buen índice pero no ajustado a la normativa, aunque no se pueda eliminar al 100% los armónicos se debe apuntar a niveles tipo cero, mediante controles que vayan desde los clientes ósea en baja tensión hasta el control óptimo en las subestaciones.

Los armónicos no contribuyen a la transferencia de energía, solamente aumentan las pérdidas, debido a que aparece la potencia distorsionante. La cual hace que el factor de potencia disminuya, aumentando así las penalizaciones.

En un sistema de potencia, los armónicos provocan resonancias en serie y en paralelo entre las impedancias propias del sistema y los elementos capacitivos conectados al mismo, lo que puede dar lugar a la aparición de voltajes excesivos en las barras, y a la circulación de corrientes elevadas por los condensadores.

La utilización de programas de simulación y diseño como Matlab, tienen las ventajas primordiales de facilitar un entorno visual para un profundo análisis matemático y por sobre todo la capacidad de minimizar el tiempo de trabajo del diseño y análisis del comportamiento de los filtros digitales.

El presente trabajo sirve para aplicaciones prácticas de las transformaciones ya sea en tiempo continuo o discreto de un sistema real como es el caso del Filtro pasa-bajos Butterworth, ya que en sistemas reales la única forma de analizar el comportamiento de estos es mediante la toma de muestras a un intervalo de tiempo o frecuencia de muestreo

Por último, es muy importante atender la recomendación de mantener desconectado todo electrodoméstico cuando no está siendo utilizado debido a que estos equipos inyectan armónicos a las redes eléctricas en esas condiciones. Adicionalmente, a corto o largo plazo su impacto es económico y ambiental, además de energético.

7.2 RECOMENDACIONES

Se debería continuar con el desarrollo mediante la construcción del modelo analizado en el presente estudio en la cual se pueda construir el filtro con los datos obtenidos del análisis y de la simulación, mediante la electrónica de potencia lo que permite abarcar un gran campo a costos medianamente reducidos, para así corregir las pérdidas técnicas y económicas.

Una vez detectados los problemas de calidad debido a los armónicos, en todos los puntos evaluados, es responsabilidad de la empresa distribuidora, corregir estos inconvenientes identificando las causas y origen de los mismos, que provocan los incumplimientos en las mediciones.

Se debería utilizar las herramientas informáticas actuales y mantener a las subestaciones conectadas en línea para obtener parámetros continuos de medición y que estos sean estudiados con mayor facilidad.

Es recomendable pedir que el órgano regulador en el país profundice más en el aspecto de las penalizaciones y compensaciones para así determinar una función de costos aplicables en el sector eléctrico todo regido a través de las normativas vigentes.

La CENTROSUR debería comenzar un plan de mantenimiento emergente en la DIMS y en las subestaciones del centro histórico de cuenca ya que todos sus alimentadores bordean o en algunos casos superan los límites admisibles, además debería prestarse especial atención en las subestaciones 1, 2, 4, 5, 23 que muestran valores próximos a los límites impuestas por las normas, lamentablemente no se dispone de información pasada que permita hacer comparaciones y encontrar tendencias.

Como la distorsión armónica es un fenómeno continuo, debe ser caracterizada por mediciones en el tiempo y no solamente mediante muestreos instantáneos, para asegurar la exactitud de las mediciones realizadas y sobre las conclusiones que de ellas deriven.

No se recomienda conectar condensadores en instalaciones que tengan una tasa de distorsión armónica alta, debido al efecto de resonancia, que puede causar la perforación del aislamiento de los capacitores. Sin embargo aunque no aparezcan resonancias, la circulación de una corriente excesiva por los bancos de

condensadores aumentará el calentamiento, provocará fallos de aislamiento y disminuirá la vida útil de los mismos.

Mediante las mediciones de inyección armónica de las cargas, se recomienda retirar los bancos capacitivos de compensación, con el fin de evitar los problemas de resonancia armónica.

En el proceso de la medición del contenido armónico en una red eléctrica, se debe considerar la relación de la transformación de los transformadores de potencial y corriente, en función de la frecuencia, pues dicha relación debe ser constante en el rango de medición, para no terminar con una señal secundaria modificada. Para el caso de la CENTROSUR no se tiene inconvenientes porque tanto lo TP's como los TC's no son multirango ósea tienen una sola relación de transformación.

Se sugiere verificar la capacidad True RMS (Verdadero valor eficaz) en mediciones ya que es requerida para medir con exactitud sistemas en donde hay corrientes armónicos presentes, pues los instrumentos que cuentan con esta característica de medición, toman la muestra en muchos puntos distintos de la onda y proveen lecturas precisas de las ondas distorsionadas.

Las pinzas de corriente no deben tocar los conductores para evitar distorsiones en las mediciones y deben encerrar en el interior de esta, a todos los conductores de la misma fase en el secundario del transformador de potencia.

Los períodos designados para realizar el registro de las mediciones, deben ser establecidos según la regulación emitida por el CONELEC y considerando que durante este intervalo de tiempo, no se efectúen otros trabajos de diferente índole en la misma instalación, con el fin de obtener un muestreo del punto de conexión en condiciones normales de funcionamiento y operación.

De acuerdo a la evaluación realizada en el presente trabajo se detectó un incumplimiento de la calidad relacionado con el THD presente en la subestación 1 donde se efectuaron las mediciones, debido principalmente por la presencia de armónicos de corrientes, por lo que se recomienda a la empresa distribuidora corregir o mitigar los efectos que puede causar la distorsión armónica de corriente en estos puntos de conexión.

La implementación del proyecto de "Focos Ahorradores", por parte del Ministerio de Electricidad y Energías Renovables, establecido en el Plan Nacional de Eficiencia Energética, y en el cual se estima la colocación de 6 millones lámparas

fluorescentes compactas a nivel nacional, produce la necesidad de realizar un análisis de la incidencia que provoca la utilización de este tipo dispositivo, los cuales en conjunto introducen un considerable grado de distorsión en las formas de onda de voltaje y corriente, cuyo efecto será reflejado en la calidad del suministro de energía eléctrica.

El THD debe ser evaluado en cada barra relevante en el sistema, es decir, en la barra principal de la subestación, en aquellos nodos con fuentes de corriente armónica, y en cualquier lugar que exista equipo sensible. Sí los límites de THD están por encima de los umbrales permitidos, la CENTROSUR debe analizar la posibilidad de construir un filtro mediante el modelo propuesto.

Se recomienda siempre ajustar las corrientes y voltajes del neutro para detectar fallas monofásicas y bifásicas a tierra en líneas de transmisión, transformadores y generadores.

Comparar la metodología empleada en esta tesis con la utilizada por los fabricantes comerciales de filtros, como es el caso de ABB, Schneider Electric, Siemens, etc.

BIBLIOGRAFIA

[1] Normas y Regulaciones.

- IEEE 519, Recommended Practices and Requirements for Harmonics Control in Electric Power Systems.
- IEC-61000-4-30; "Método de medición de la calidad de potencia".
- IEEE Std 1100-1999;" Recommended Practice for Powering and Grounding.
- IEEE std 1159; "Practicas recomendadas para el monitoreo de la calidad de la energía eléctrica".
- Regulación No. CONELEC 003/08; "Calidad del Transporte de Electricidad y del Servicio Transmisión y Conexión en el SNI" Res. 033/08; 28 de febrero de 2008.
- Regulación CONELEC 004/02; "Transacciones de Potencia Reactiva en el MEM".
- LEY DE RÉGIMEN DEL SECTOR ELÉCTRICO, "Reglamento General de la Ley de Régimen del Sector Eléctrico, Abril 2007.
- CONELEC (2006), "Estadística del Sector Eléctrico Ecuatoriano".
- CONELEC (2007), "Calidad del Transporte de Potencia y del Servicio de Conexión en el SNI", Regulación No. CONELEC 002/06.

[2] Manual de los equipos.

- Nexus 1250 /1252, High Performance SCADA Monitor, Electro Industries/GaugeTech
- Installation & Operation Manual, Version 1.24, December 22, 2004, Westbury, New York 11590, Sales@electroind.com, www.electroind.com

[3] Papers IEEE:

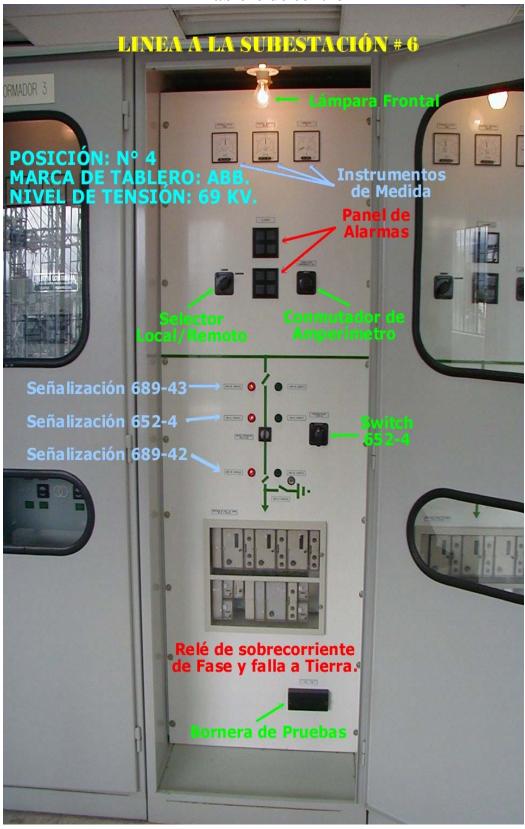

- J. Lázaro, J.F. Miñambres, M.A. Zorrozua, B. Larrea, M. Sánchez and I. Antiza, "New Quick-converge invariant digital filter for phasor estimation", Electric Power Systems Research, Vol. 79, pp. 705-713, May 2009.
- IEEE Task Force on Harmonics Modeling and Simulation, "Interharmonic: Theory and Modeling", IEEE Transactions on Power Delivery, Vol. 22, No. 4, pp 2335-2348, October 2007
- T.S. Sidhu, X. Zhang, F. Albasri, M.S. Sachdev, "Discrete-Fourier-transform-based technique for removal of decaying DC offset from phasor estimates", IEE

- Proc.Generation, Transmission and Distribution, Vol. 150, No. 6, pp.745-752, November 2003.
- Muños Alfredo; "Manual técnico Calidad de Energía"; ProCobre-Chile;
 Primera Edición 1999.
- CREG- 069; "Indicadores de Calidad para la Continuidad en la Prestación del Servicio de Energía Eléctrica en Sistemas de Transmisión Regional y/o Distribución Local"; diciembre 2004.
- [4] Enríquez Harper G, Elementos de diseño de subestaciones eléctricas, Edit. Limusa, México. Pre-edición. 1983.
- [5] Weedy B.M, Cory B.J, Electric Power systems, 4th edition, John Wiley, 1998.
- [6] Oppenheim A, Willsky A, Hamid S, Signals and Systems, 2nd edition, Prentice-Hall Signal Processing Series, 1996.
- [7] STEVENSON, William, GRAINGER, John. "Análisis de Sistemas de Potencia". Primera edición. McGRAW-HILL. México. 1996.
 [8] Electrical Transmission and Distribution by Central Station Engineers of the Westinghouse Electric Corporation EAST PITTSBURGH, PENNSYLVANIA Copyright 1964. Printed in the United States of A,merica
- [9] Matlab®. Simulink® (Sim power systems).
- [10] Matlab®. Filter Design Toolbox.

ANEXOS

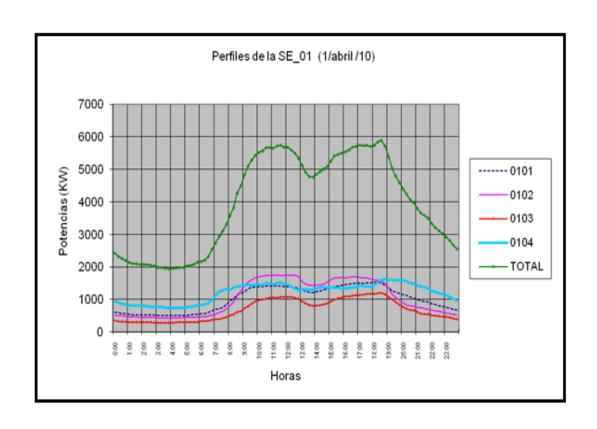
ANEXO #1.- FOTOGRAFÍAS DE LOS EQUIPOS MAS IMPORTANTES CONECTADOS EN LAS S/E DE LA CENTROSUR.

Vista de la salida de los alimentadores a 22kV.

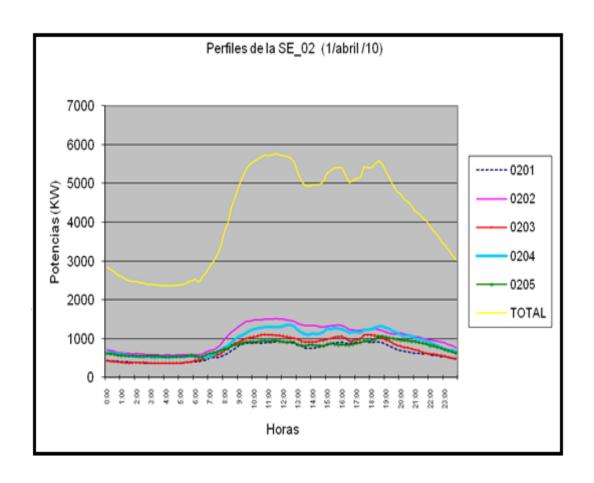


Interruptores a 22kV.

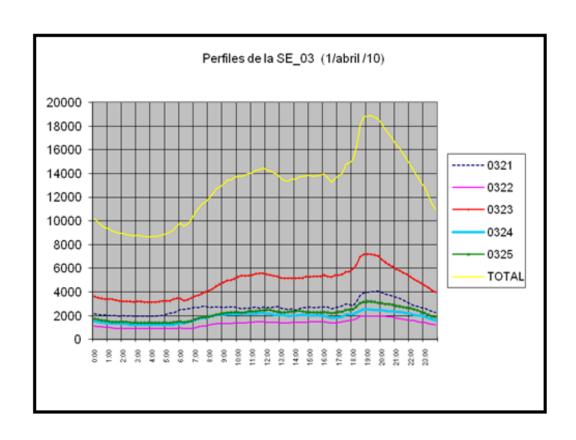
Tablero de control


Cuarto de control

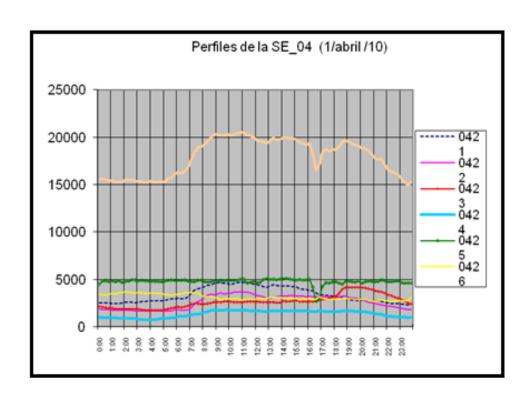
ANEXO #2.- PERFILES DE GARGAS DE LAS SUBESTACIONES


01/04/2010				S	UBEST	ACION 0	1			
	01	01	01	02	01	03	01	04	TO	ΓAL
HORA	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.
0:00	608			0	351	-171	942	0	2422	-171
0:15	593	0	507	0	321	-178	893		2315	-179
0:30	571	0	499	0	321	-165			2259	-165
0:45	556		483	0	307	-173		0	2194	-173
1:00	542	0	473	0	298				2139	-179
1:15	526		466	0	298				2104	-172
1:30	530		463	0	298		806		2097	-178
1:45	527	0	446	0	298		799		2070	-170
2:00	524		446	0	298		803		2071	-168
2:15	524	0	457	0	298				2075	-173
2:30	524	0	452	0	298			0	2053	-173
2:45	521	0	450	0	281	-173		0	2023	-173
3:00	504	0	436	0	278				1983	-174
3:15	504	0	435	0	278		762		1979	-177
3:30	504	0	435	0	278				1962	-184
3:45	504	0	435	0	278		727	-6	1944	-183
4:00	504	0	435	0	278		729	-12	1946	-197
4:15	504	0	435	0	291	-176			1964	-184
4:30	504	0	425	0	299				1974	-178
4:45	504	0	440	0	291	-178	739		1973	-200
5:00	507	0	455	-1	299		769			-197
5:15	525	0	451	-2	299		766		2040	-212
5:30	534	0	457	-4	299		792		2082	-212
5:45	548	0	464	-4	301	-103	833		2146	-198
6:00	555	0	464	-1	332		818		2169	-198
6:15	559	0	474	-1	329			-11	2207	-185
6:30	599	0	491	0	343				2318	-170
6:45	655	0	521	-1	375			1	2542	-180
7:00	685	0	543	-3	385				2733	-150
7:00	720		591	-4	389				2938	-108
7:10	760		637	-11	425			84	3109	-86
7:45	837	0	710	-1	456				3316	-6
8:00	959	0	817	-1	496		1301	130	3572	-26
8:15	1021	11	913	0	536				3819	6
8:30	1142		1114	15	616			191	4266	123
8:45	1194			81	635				4496	265
9:00	1250		1436	121	726					373
9:00	1319		1527	160						
9:30	1379			189	789					470
					871					523
9:45	1376			206	936				5429	571
10:00	1396			214	974				5521	587
10:15	1403			217	999			-	5560	619
10:30	1410			223	1024				5667	686
10:45	1414		1727	220	1047			270	5669	680
11:00	1407			216	1054					657
11:15	1407		1749	224	1052			251	5719	665
11:30	1410		1733	226	1073					701
11:45	1404			229	1076				5679	669
12:00	1399	195	1749	230	1069	0	1461	265	5679	690

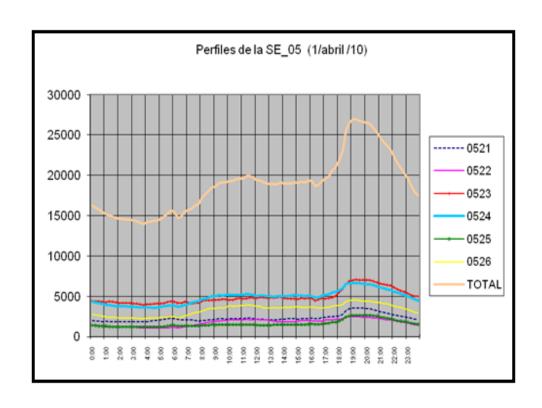
12:15	1386	202	1744	239	1077	0	1388	191	5595	632
12:30	1368	185	1749	247	1045	0	1340	163	5501	595
12:45	1334	188	1705	234	1015	-2	1291	158	5345	579
13:00	1305	186	1555	207	932	-24	1324	194	5116	562
13:15	1251	170	1467	198	880	-35	1305	187	4902	520
13:30	1225	165	1425	197	828	-49	1305	202	4782	515
13:45	1210	165	1438	217	806	-56	1305	193	4759	519
14:00	1249	182	1436	206	817	-49	1344	225	4847	565
14:15	1269	184	1459	209	825	-42	1380	262	4932	612
14:30	1309	190	1474	207	849	-36	1380	272	5012	633
14:45	1327	199	1524	229	875	-36	1359	249	5085	641
15:00	1357	205	1607	230	939	-3	1350	217	5252	648
15:15	1391	213	1663	249	1002	0	1363	220	5418	682
15:30	1408	213	1663	262	1035	0	1353	196	5459	671
15:45	1442	224	1672	259	1053	0	1329	177	5495	661
16:00	1448	203	1669	237	1083	0	1340	182	5540	623
16:15	1467	211	1671	239	1090	0	1363	169	5591	619
16:30	1495	223	1691	242	1120	0	1374	142	5681	606
16:45	1490	204	1705	234	1132	0	1379	126	5705	565
17:00	1513	207	1673	229	1130	0	1429	116	5745	553
17:15	1499	203	1662	221	1145	0	1417	80	5723	505
17:30	1513	217	1659	246	1170	3	1395	102	5737	568
17:45	1511	209	1625	242	1171	1	1400	116	5706	568
18:00	1526	210	1597	243	1169	1	1438	100	5730	554
18:15	1526	207	1592	226	1194	0	1530	86	5842	519
18:30	1514	185	1569	202	1200	0	1604	77	5886	464
18:45	1442	171	1499	196	1153	0	1623	74	5716	441
19:00	1363	151	1331	150	1072	0	1609	67	5376	368
19:15	1270	140	1163	119	1006	0	1600	61	5039	321
19:30	1224	123	1054	114	919	-38	1593	63	4789	261
19:45	1181	123	982	95	843	-57	1582	59	4588	221
20:00	1148	104	900	74	769	-60	1586	41	4403	158
20:15	1132	101	830	53	713	-90	1567	59	4242	123
20:30	1072	93	802	45	684	-94	1514	40	4072	84
20:45	1039	77	792	22	660	-104	1488	10	3980	5
21:00	994	48	752	0	618	-121	1432	0	3797	-73
21:15	955	38	742	0	559	-130	1400	0	3656	-92
21:30	939	32	715	0	551	-126	1374	0	3580	-94
21:45	917	30	700	0	544	-122	1337	0	3498	-92
22:00	873	4	673	0	511	-143	1272	-11	3329	-150
22:15	838	0	637	0	500	-140	1224	-17	3199	-157
22:30	805	0	630	0	486	-140	1194	-12	3115	-152
22:45	783	0	603	0	470	-147	1166	-20	3022	-167
23:00	751	1	580	0	458	-153	1128	-17	2917	-168
23:15	726	0	564	0	443	-158	1074	-2	2806	-161
23:30	688	0	548	0	419	-162	1012	-32	2666	-194
23:45	669	0	528	-1	391	-162	962		2550	-163
ENERG_D	24371	2194	25003	2389	16372	-2218	29154	2211	94900	4575
POT_MIN	504	0	425	-11	278	-185	727	-32	1944	-212
POT_MAX	1526	224	1749	262	1200	3	1623	283	5886	701


01/04/2010					Sl	JBEST	ACION	N 02				
	0	201	0	202	0	203	0	204	0	205	TC	TAL
IORA	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.
0:00	444	123	704	21	421	124	660	139	615	-17	2844	390
0:15	427	102	686	26	413	124	645	143	606	-17	2777	378
0:30	420	112	671	32	403	124	626	123	599	-17	2719	374
0:45	416	127	638	20	395	124	606	115	573	-17	2628	369
1:00	393	120	641	20	386	124	605	124	567	-17	2592	371
1:15	392	107	627	20	381	119	581	111	562	-17	2543	340
1:30	398	127	618	20	367	99	550	119	556	-17	2489	348
1:45	387	127	603	20	375	114	544	127	557	15	2466	403
2:00	386	127	612	28	379	125	538	118	551	17	2466	415
2:15	380	127	601	19	377	125	529	120	545	17	2432	408
2:30	371	127	600	19	382	125	537	117	546	17	2436	405
2:45	370	127	582	19	376	125	529	112	549	17	2406	400
3:00	370	107	587	19	367	125	520	114	547	6	2391	371
3:15	368	111	584	19	367	125	514	86	546	-17	2379	324
3:30	370	102	576	19	367	125	524	105	548	13	2385	364
3:45	367	102	567	19	367	125	520	85	535	-16	2356	315
4:00	370	102	577	19	367	115	517	79	538	-17	2369	298
4:15		102	580	19	367	120	510		536	-17	2366	297
4:30		102	570	19	367	124	526	74	533	-17	2369	302
4:45		102	580	19	367	124	531	92	531	-17	2380	320
5:00		102	576	19	367	124	526	76	537	-17	2375	304
5:15		102	575	19	376	110	527	74	543	-17	2403	288
5:30		102	589	19	384	95	542	91	551	-17	2460	290
5:45		102	590	19	397	95	541	82	565	-17	2492	281
6:00		102	588	19	437	97	539	71	547	-17	2517	272
6:15		102	582	19	438	120	506	87	522	-17	2447	311
6:30		110	611	19	483	120	521	115	530	-17	2574	347
6:45		117	650	19	504	120	521	112	590	-17	2708	351
7:00		119	694	19	519	120	525	87	612	-17	2856	328
7:15		108	711	19	542	120	591	96	636	-17	2994	326
7:30		119	762	19	576	121	659	100	653	-17	3155	342
7:45		117	837	19	609	130	705	140	692	-17	3369	389
8:00		132	990	22	694	152	775	128	730	-17	3772	417
8:15	_	133	1072	33	744	171	825	141	733	-17	3990	461
8:30		148	1179	56	824	193	899	151	813	2	4403	550
8:45		171	1243	93	878	228	981	178	833	20	4677	690
9:00		182	1311	85		246			850			722
9:15		200	1396		977	273	1088		894			817
9:13		200	1436	120	997	258	1158		906	44		855
9:30		200	1450	127	1029	286	1203		915	34		867
10:00		200	1475	147	1029	282	1250		917	41	5569	901
10:00		213	1479	155	1047	281	1268		917		5620	942
10:13		213	1479		1002	300	1286		934			966
10:30		217		142								954
		210	1497		1100	300	1296			38		954 978
11:00 11:15			1501	157	1089	300	1294		931	27	5719	
		228	1492	157	1095	315	1297	270	942	43		1013
11:30		235	1510		1083	305	1303		945	45	5765	1033
11:45		234	1496		1081	308	1295			65		1034
12:00	917	227	1498	157	1065	282	1321	273	919	53	5720	992

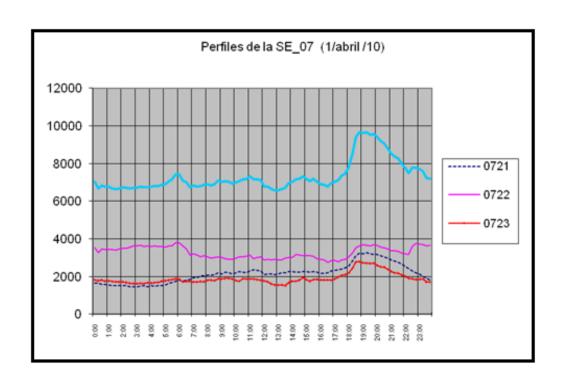
12:15	921	226	1482	170	1048	272	1347	292	904	45	5702	1005
12:30	896	226	1461	161	1030	282	1346	289	918	47	5651	1005
12:45	868	220	1454	168	1012	293	1309	300	911	70	5554	1051
13:00	829	215	1399	156	981	294	1220	292	849	49	5278	1006
13:15	795	216	1357	143	930	285	1148	268	830	60	5060	972
13:30	755	209	1340	154	915	300	1123	278	812	49	4945	990
13:45	740	208	1333	154	920	297	1104	271	836	70	4933	1000
14:00	746	204	1342	156	915	285	1128	272	835	68	4966	985
14:15	773	214	1339	158	918	292	1123	268	817	70	4970	1002
14:30	787	215	1299	152	946	301	1132	278	817	58	4981	1004
14:45	809	208	1303	148	951	287	1179	286	810	69	5052	998
15:00	849	219	1321	148	982	287	1256	297	857	82	5265	1033
15:15	882	225	1344	155	1003	306	1250	289	868	74	5347	1049
15:30	902	235	1337	140	1037	318	1278	298	855	73	5409	1064
15:45	901	229	1361	146	1048	317	1261	281	841	68	5412	1041
16:00	908	227	1344	139	1057	301	1243	268	844	36	5396	971
16:15	877	198	1298	105	1010	257	1198	232	833	32	5216	824
16:30	871	164	1220	55	937	224	1148	194	833	24	5009	661
16:45	888	163	1219	55	943	207	1167	195	860	24	5077	644
17:00	895	157	1211	54	967	202	1167	190	879	24	5119	627
17:15	899	162	1211	63	986	217	1150	193	898	24	5144	659
17:30	931	203	1246	137	1093	290	1231	273	936	19	5437	922
17:45	906	217	1239	141	1090	286	1220	265	939	30	5394	939
18:00	899	207	1226	137	1091	271	1248	290	944	14	5408	919
18:15	907	182	1253	131	1078	237	1275	268	985	16	5498	834
18:30	916	158	1234	106	1064	218	1316	273	1058	29	5588	784
18:45	901	166	1207	104	1012	207	1318	279	1054	13	5492	769
19:00	855	157	1177	107	970	190	1272	279	1036	20	5310	753
19:15	804	141	1140	100	934	190	1251	278	1007	19	5136	728
19:30	759	131	1120	90	874	179	1193	271	999	19	4945	690
19:45	718	131	1112	96	827	162	1149	264	981	19	4787	672
20:00	693	131	1158	105	807	156	1098	250	965	19	4721	661
20:15	678	131	1120	101	776	146	1068	239	958	19	4600	636
20:30	662	131	1089	86	762	142	1072	243	942	14	4527	616
20:45	635	131	1073	89	735	142	1052	226	930	17	4425	605
21:00	615	110	1045	77	708	137	998	202	923	3	4289	529
21:15	616	106	1037	79	685	117	981	196	900	0	4219	498
21:30	609	112	1011	79	645	126	971	203	885	-2	4121	518
21:45	613	112	995	82	623	127	935	194	867	-2	4033	513
22:00	592	112	972	63	607	127	904	198	821	-2	3896	498
22:15	563	112	954	62	595	127	860	181	808	-2	3780	480
22:30	562	112	929	75	579	127	819	168	779	-2	3668	480
22:45	535	112	905	70	564	127	759	162	755	-2	3518	469
23:00	529	112	887	72	549	153	735	154	721	-2	3421	489
23:15	520	112	849	56	517	135	714	146	692	-2	3292	447
23:30	492	117	814	26	497	131	695	140	661	-2	3159	412
23:45	475	115	776	15	489	131	667	118	629		3036	379
ENERG_DIA		3710			17675		22373		18564		99119	15261
POT_MIN	367		567				506		522		2356	272
POT_MAX	931	235	1510	170	1100	318	1347	300	1058	82	5765	1064


01/04/	2010					Sl	JBEST	ACION	N 03				
		0	321	0	322	03	323	0	324	0	325	TO	TAL
HORA		ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.
	0:00	2167	295	1141	72	3633	407	1535	165	1730	335	10206	1274
	0:15	2127	295	1076	72	3536	407	1480	165	1690	335	9909	1274
	0:30	2065	299	1057	72	3459	407	1430	165	1623	335	9634	1278
	0:45	2060	290	1006	72	3400	407	1388	165	1583	335	9437	1269
	1:00	2032	290	1006	72	3400	407	1368	165	1536	254	9342	1188
	1:15	2012	290	964	72	3400	407	1314	137	1479	230	9169	1136
	1:30	2002	290	936	72	3318	407	1314	60	1479	230	9049	1059
	1:45	1972	290	936	72	3246	407	1314	60	1479	230	8947	1059
	2:00	2001	290	936	72	3222	407	1314	60	1479	230	8952	1059
	2:15	1969	290	936	72	3222	407	1262	60	1479	230	8868	1059
	2:30	1986	290	936	72	3222	407	1242	160	1432	230	8818	1159
	2:45	1980	290	936	72	3162	407	1242	88	1409	230	8729	1087
	3:00	1975	290	936	72	3214	407	1242	52	1409	230	8776	1051
	3:15	1958	290	936	72	3204	407	1242	52	1409	230	8749	1051
	3:30	1941	290	936	72	3140	407	1242	52	1409	230	8668	1051
	3:45	1935	290	936	72	3140	390	1242	52	1409	230	8662	1034
	4:00	1982	290	936	72	3140	305	1242	52	1409	230	8709	949
	4:15	1961	290	936	72	3140	305	1242	52	1409	230	8688	949
	4:30	1994	290	936	72	3178	305	1242	52	1409	230	8759	949
	4:45	2032	290	936	72	3228	305	1242	52	1409	230	8847	949
	5:00	2092	290	936	72	3228	305	1242	52	1409	230	8907	949
	5:15	2196	290	936	72	3245	305	1242	90	1409	230	9028	987
	5:30		290	936	72	3391	305	1252	52	1439	230	9221	949
	5:45	2371	298	936	72	3476	305	1314	52	1479	230	9576	957
	6:00	2550	439	956	72	3447	305	1375	52	1515	230	9843	1098
	6:15	2521	601	933	72	3268	305	1362	52	1465	230	9549	1260
	6:30	2573	642	900	72	3346	325	1419	52	1501	230	9739	1321
	6:45	2610	642	922	72	3497	405	1522	52	1569	230	10120	1401
	7:00	2732	642	992	72	3649	447	1643	76	1677	230	10693	1467
	7:15	2710	647	1073	72	3745	531	1731	152	1799	230	11058	1632
	7:30	2800	675	1134	72	3875	640	1791	121	1872	230	11472	1738
	7:45	2775	741	1108	72	4028	650	1818	152	1872	230	11601	1845
	8:00	2708	685	1225	72	4127	721	1959	152	1921	230	11940	1860
	8:15	2757	712	1284	148	4268	810	1988	152	1995	310	12292	2132
	8:30	2755	775	1325	175	4499	907	2056	228	2093	335	12728	2420
	8:45	2732	775	1319	175	4666	1068	2043	255	2138	345	12898	2618
	9:00		775	1332	175	4828	1139	2049	255	2200	437	13105	2781
	9:15		852				1195		296		437		
	9:30				175		1269			2277		13456	
	9:45						1248			2290			
4	10:00				175		1300			2284		13777	
	10:15				175		1347	2150		2254			
	10:30				243		1330		367	2288	549		
	10:45		822		277	5387	1347	2144		2389	557		
	11:00		822		277	5448	1439	2142		2354		14032	
	11:15		822		277	5539	1461	2152		2371	557	14283	
	11:30		822		277	5558	1462		367	2434			3485
		_0.0	<u></u>			3000			001		001		5 100
	11:45	2756	848	1477	277	5572	1440	2196	367	2461	557	14462	3489

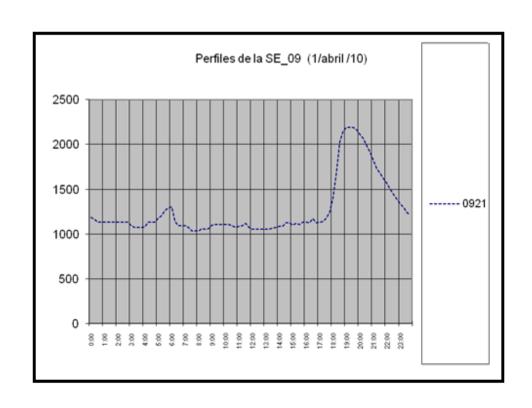
40.45	0070	005	4.450	077	E404	4050	04.40	207	0500		4.4000	0070
12:15	2676	825	1450	277	5434	1353	2146	367	2502	557	14208	3379
12:30	2750	825	1458	277	5360	1320	2076	367	2396	557	14040	3346
12:45	2765	825	1442	277	5302	1240	2086	367	2344	557	13939	3266
13:00	2649	825	1392	277	5175	1240	2052	367	2275	471	13543	3180
13:15	2558	825	1375	277	5151	1240	2057	367	2275	457	13416	3166
13:30	2541	825	1372	277	5146	1300	1984	367	2321	478	13364	3247
13:45	2591	825	1432	277	5161	1325	2017	367	2353	562	13554	3356
14:00	2499	789	1445	277	5157	1400	2015	367	2398	562	13514	3395
14:15	2593	836	1440	277	5180	1400	2063	367	2432	562	13708	3442
14:30	2704	963	1438	277	5172	1400	2053	367	2369	562	13736	3569
14:45	2672	959	1449	277	5316	1409	2063	367	2306	562	13806	3574
15:00	2757	950	1505	277	5290	1405	2027	367	2275	562	13854	3561
15:15	2692	960	1496	277	5307	1405	2007	367	2279	562	13781	3571
15:30	2680	956	1482	277	5308	1348	2066	367	2267	562	13803	3510
15:45	2748	890	1496	277	5303	1305	2026	367	2273	562	13846	3401
16:00	2731	860	1496	277	5430	1305	2015	367	2299	525	13971	3334
16:15	2727	779	1439	167	5300	1124	1933	288	2274	406	13673	2764
16:30	2598	580	1374	81	5264	1052	1809	197	2197	345	13242	2255
16:45	2700	660	1414	67	5406	1052	1837	72	2257	345	13614	2196
17:00	2752	636	1459	67	5420	997	1853	72	2318	345	13802	2117
17:15	2845	615	1479	67	5487	992	1889	100	2345	363	14045	2137
17:30	2986	780	1531	67	5691	1162	2107	240	2488	455	14803	2704
17:45	2965	659	1580	67	5729	1109	2138	240	2505	455	14917	2530
18:00	2863	565	1655	67	5951	1106	2140	240	2550	455	15159	2433
18:15	3193	565	1743	67	6296	1060	2250	240	2787	455	16269	2387
18:30	3699	524	1934	167	6959	995	2437	240	3054	455	18083	2381
18:45	3916	462	1953	167	7180	952	2548	240	3174	455	18771	2276
19:00	3962	462	1953	67	7184	952	2534	240	3199	425	18832	2146
19:15	4025	462	1953	67	7166	952	2534	240	3200	355	18878	2076
19:30	4043	462	1953	67	7133	952	2467	240	3157	355	18753	2076
19:45	4072	462	1963	67	7041	914	2473	240	3084	355	18633	2038
20:00	3957	462	1956	67	6768	847	2474	240	3061	355	18216	1971
20:15	3834	462	1956	67	6518	830	2451	240	2990	355	17749	1954
20:30	3766	462	1886	67	6330	745	2383	240	2985	355	17350	1869
20:45	3648	462	1886	67	6158	745	2362	196	2920	355	16974	1825
21:00	3550	382	1809	67	5943	655	2333	137	2837	355	16472	1596
21:15	3470	362	1738	67	5803	632	2308	137	2792	355	16111	1553
21:30	3320	362	1689	67	5629	632	2275	137	2731	355	15644	1553
21:45	3155	362	1651	67	5489	632	2208	137	2667	355	15170	1553
22:00	2991	362	1598	67	5285	554	2157	137	2648	355	14679	1475
22:15	2865	362	1579	67	5073	530	2082	137	2555	355	14154	1451
22:30		362	1519	67	4930	530	2011	137	2453	355	13724	1451
22:45		362	1467	67	4733	530	2011	137	2311	355	13190	1451
23:00		362	1449	67	4563	530	1918	137	2243	355	12813	1451
23:15		263	1357	67	4381	453	1821	137	2080	328	12122	1248
23:30		260	1267	67	4155	430	1683	137	1949	252	11427	1146
23:45		260	1215	67	3998	430	1623	137	1895		10992	894
ENERG_DIA			32298		114366	19962			51560		307594	50487
	1935		900				1242		1409		8662	894
POT_MAX	4072	963	1963	277	7184	1462	2548	367	3200	562	18878	3574


01/04/	/2010						SI	JBES	TACIO	V 04					
		0	421	0	422	0	423	C	1424	04	425	()426	TO	TAL
HORA		ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT
	0:00	2527	361	1847	143	2152	73	1031	10	4495	2079	3462	539	15514	320
	0:15	2542	476	1825	179	2065	73	965	0	4814	2185	3398	544	15609	345
	0:30	2547	486	1818	184	2022	73	959	0	4863	2178	3311	500	15520	342
	0:45	2503	345	1789	209	1952	73	959	0	4749	2033	3448	490	15400	3150
	1:00	2450	402	1754	149	1952	73	959	0	4849	2276	3482	447	15446	334
	1:15	2478	486	1733	80	1893	73	959	0	4738	2212	3433	535	15234	3386
	1:30	2453	379	1730	88	1854	73	885	9	4843	2274	3565	535	15330	335
	1:45	2490	346	1714	108	1854	73	867	9	4688	2124	3604	512	15217	317
	2:00	2564	485	1732	129	1854	73	867	22	4799	2269	3702	497	15518	347
	2:15	2571	490	1720	142	1854	73	867	15	4826	2337	3639	497	15477	355
	2:30	2575	490	1708	157	1854	73	867	19	4966	2429	3591	497	15561	366
	2:45	2522	490	1667	129	1854	73	867	0	4933	2345	3519	497	15362	353
	3:00	2584	456	1654	129	1854	73	792	0	4834	2070	3631	497	15349	322
	3:15	2634	466	1653	129	1783	73	773	0	4888	2293	3580	502	15311	346
	3:30	2639	451	1666	129	1757	73	773	0	4857	2174	3500	504	15192	333
	3:45	2746	504	1677	159	1757	73	773	0	4817	2155	3516	504	15286	339
	4:00	2731	514	1694	59	1757	73	773	0	4821	2145	3583	504	15359	329
	4:15	2755	551	1671	97	1757	73	773	0	4784	2166	3511	504	15251	339
	4:30	2717	507	1691	104	1757	73	834							
	4:45	2730	507	1660	66	1757	73	865	0	4752	2138	3484	504	15248	328
	5:00	2769	507	1653		1804		865				3396			
	5:15	2859	513	1660		1883		918				3364		15569	
	5:30	2923	497	1690		1964		970				3289		15775	
	5:45	2981	470	1777	63	2044		985				3407			
	6:00	2987	467	1778				1078				3440			
	6:15	2955	473	1723		2040		1078							
	6:30	2959	479	1741	326			1091				3567			370
	6:45	3133	633	1837	340		73	1178				3607			385
	7:00	3603	753	2053		2378		1210				3614			
	7:15	3881	888	2433				1301	290			3567			
	7:30	3988	937	2674			73	1338				3589			
	7:45	4096	1068	2839				1390				3286		18924	
	8:00	4260	1087	3123				1544				3171			524
	8:15	4352	1221	3281	993			1617				3140			536
	8:30	4463	1230	3445		2496		1718				3149			
	8:45	4616	1344	3403				1718				3092			
	9:00	4648	1367	3430				1718				3020			
		4646													
	9:15 9:30	4576	1380	3589		2669		1721	330 465			2913			602 625
		4547	1389	3478				1706							
	9:45		1369	3544				1779							
	10:00	4474	1405	3502				1754				2930			
	10:15	4574	1428	3633				1728						20332	
	10:30	4641	1486	3628				1710		4908		2989			
	10:45	4701	1546	3663		2576		1706							651
	11:00	4685	1532	3639				1716							
	11:15	4663	1473	3674				1743				2876			
	11:30	4625	1381	3618		2668		1670				2932			
	11:45	4533	1350	3476		2658		1687		4802		2865			595
	12:00	4434	1290	3270	945	2663	511	1663	364	4674	2115	2976	352	19680	557

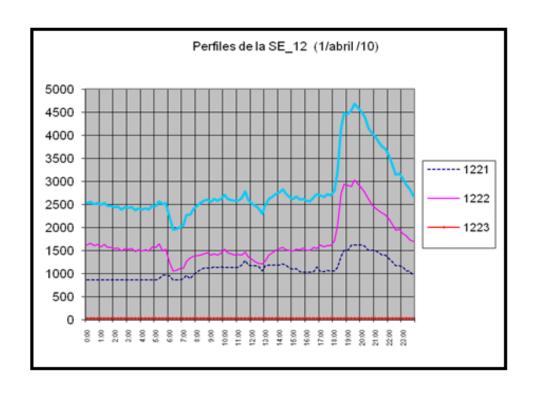
POT_MIN POT_MAX	2330 4701	345 1546	1653 3674		1757 4124	0 1 651 1		0 ¹ 486 ¹	2672 5101		2669 3702	164 683	14980 20506	2672 6790
ENERG_DIA			62904		63778		32452		114437	52775			429394	109451
23:45	2331	397	1805	71	2395	0774	1000	0	4609	2204	3135	40405	15275	2672
23:30	2330	388	1842	110	2515	0	944	0	4622	2140	2727	216	14980	2854
23:15	2371	388	1868	57	2706	0	998	0	4595	2081	2706	205	15244	2731
23:00	2407	376	1930	79	2866	0	998	0	4656	2133	2767	210	15624	2798
22:45	2434	360	2018	134	3015	0	998	0	4806	2394	2768	210	16039	3098
22:30	2451	381	2088	129	3122	0	1039	0	4819	2299	2725	216	16244	3025
22:15	2429	377	2139	129	3277	25	1092	5	4744	2037	2692	241	16373	2814
22:00	2488	375	2156	129	3355	185	1092	0	4760	2120	2708	213	16559	3022
21:45	2579	413	2231	129	3533	185	1166	16	4836	2174	2726	210	17071	3127
21:30	2683	486	2305	305	3666	185	1278	20	4936	2253	2781	186	17649	3435
21:15	2723	495	2351	311	3733	185	1281	45	4797	2183	2789	164	17674	3383
21:00	2729	469	2434	311	3803	185	1369	89	4733	2162	2669	191	17737	3407
20:30	2710	489	2538	311	3930	185	1480	308	4768	2173	2714	211	18140	3696
20:30	2805	570	2625	311	4013	185	1548	308	4809	2173	2819	222	18619	3769
20:00	2790	570	2743	421	4103	185	1575	308	4736	2164	2871	243	18818	3891
20:00	2794	457	2859	455	4124	185	1566	308	4613	2146	2860	289	18816	3840
19:30	2760	499	2955	454	4124	185	1566	308	4809	2212	2905	374	19105	3961
19:15 19:30	2839 2811	516 499	3041 3012	373 454	4124 4124	185 185	1667 1610	308 308	4740 4703	2147 2212	2922 2905	374 374	19333 19165	3903 4032
19:00	2857	498	3096	353	4124	331	1667	308	4822	2282	2938	374	19504	4146
18:45	2922	581	3224	444	4124	360	1667	308	4766	2186	2950	374	19653	4253
18:30	3067	655	3265	535	3973	360	1667	308	4500	2162	3033	374	19505	4394
18:15	3143	787 655	3166	601	3518	365	1601	308	4599	2147	2905	338	18932	4546
18:00	3198	798	3080	675	3220	504	1566	308	4747	2317	2880	420	18691	5022
17:45	3243	876	3124	717	3098	504	1605	308	4723	2261	2912	418	18705	5084
17:30	3276	885	3177	857	3047	504	1568	308	4605	2174	2852	385	18525	5113
17:15	3288	794	3229	833	2971	504	1611	308	4659	2202	2970	478	18728	5119
17:00	3393	794	3176	808	2908	504	1640	308	4277	1847	3047	625	18441	4886
16:45	3398	794	3154	808	2817	504	1632	308	2933	1267	3128	683	17062	4364
16:30	3592	896	3127	808	2682	504	1589	411	2672	1184	2897	546	16559	4349
16:15	3806	1061	3173	900	2649	587	1624	429	4191	1974	2883	594	18326	5545
16:00	3825	1141	3196	984	2649	651	1656	486	5010	2418	3039	580	19375	6260
15:45	3907	1166	3154	1058	2649	651	1674	486	4939	2295	2852	356	19175	6012
15:30	3937	1176	3243	1102	2649	651	1660	486	4928	2300	2991	522	19408	6237
15:15	4020	1229	3263	1120	2665	651	1686	486	4975	2336	2826	538	19435	6360
15:00	4214	1345	3239	1155	2783	651	1675	486	4922	2321	2985	576	19818	6534
14:45	4249	1418	3278	1163	2744	651	1672	486	4964	2291	2974	570	19881	6579
14:30	4280	1407	3311	1153	2670	651	1652	486	5016	2308	2929	570	19858	6575
14:15	4282	1420	3239	1146	2662	651	1647	486	5101	2484	3020	603	19951	6790
14:00	4297	1399	3199	1137	2704	628	1647	486	5074	2410	3021	483	19942	6543
13:45	4308	1425	3197	1137	2537	511	1663	486	5024	2376	3083	608	19812	6543
13:30	4371	1400	3147	1123	2536	511	1649	486	4960	2358	3065	554	19728	6432
13:15	4449	1400	3113	1004	2596	511	1660	457	5014	2389	3103	535	19935	6296
13:00	4266	1349	3043	881	2571	511	1636	311	5002	2229	3099	477	19617	5758
12:45	4191	1246	3011	817	2571	511	1586	321	5063	2476	2986	388	19408	5759
12:30	4240	1249	3167	889	2571	511	1574	364	4993	2415	2975	388	19520	5816
12:15	4391	1329	3226	877	2611	511	1657	364	4676	2103	3034	388	19595	5572


01/04	/2010						SL	JBEST.	ACION	05					
		0	521	0	522	05	523		524	_	525	0	526	TO	TAL
HORA				ACT.	REACT.		REACT.		REACT.		REACT.		REACT.	_	REACT.
	0:00	2006	197	1403	70	4430	672	4293	637	1410	189	2744	416	16286	2181
	0:15	1938	178	1362	70	4384	672	4229	652	1388	189	2704	416	16005	2177
	0:30	1918	178	1309	70	4393	672	4200	770	1318	189	2608	416	15746	2295
	0:45	1882	82	1309	70	4322	672	4064	761	1318	189	2544	416	15439	2190
	1:00	1897	174	1226	70	4284	677	3948	630	1318	189	2503	325	15176	2065
	1:15	1873	192	1217	70	4375	756	3912	630	1235	189	2419	273	15031	2110
	1:30	1869	192	1217	70	4333	759	3857	630	1226	189	2419	273	14921	2113
	1:45	1865	127	1217	70	4272	759	3820	630	1226	189	2358	273	14758	2048
	2:00	1859	52	1217	70	4158	759	3774	630	1226	189	2323	273	14557	1973
	2:15	1846	52	1217	70	4185	747	3772	630	1226	189	2323	273	14569	1961
	2:30	1833	52	1217	70	4187	717	3750	630	1226	189	2323	273	14536	1931
	2:45	1823	52	1217	70	4175	717	3711	630	1226	189	2323	273	14475	1931
	3:00	1819	52	1217	70	4123	717	3692	630	1226	189	2323	273	14400	1931
	3:15	1825	52	1204	70	4112	717	3668	630	1226	189	2286	273	14321	1931
	3:30	1840	52		70	4044	680	3657	630		189	2231	273		
	3:45	1860	52	1122	70	3900	577	3617	602	1226	189	2250	273	13975	1763
	4:00	1869	52	1122	70	4026	577	3627	490	1226	189	2328	273	14198	1651
	4:15	1926	66	1122	70	4040	577	3635	490	1226	189	2328	273	14277	1665
	4:30	1990	192	1122	70	4068	577	3590	490	1226	189	2328	273	14324	1791
	4:45	2019	192		70	4107	577	3626			189	2328			
	5:00	2063	192		70	4105	577	3699	490		189	2362			1791
	5:15	2178	192		70	4133	577	3755			189	2422			
	5:30	2266	192		70	4289	577	3830			189	2422			
	5:45	2339	192		70	4373	577	3893	490		189	2495			
	6:00	2245	192		70	4322	577	3868	490		189	2436			
	6:15	2144	192		70	4167	577	3679	490		189	2330			
	6:30	2073	192		70	4154		3806	490		189	2410			1874
	6:45	2108	192		70	4362	707	3923	563		189	2587	273		
	7:00	2064	192		70	4231	667	4043	637	1329	189	2707	273		
	7:15	2051	192		70	4127	553	4267	637	1329	189	2835			
	7:30	2028	192		117	4185	574	4305	637	1329	189	2998			
	7:45	1966	262		210		607	4374			189	3025			
	8:00	1983	332		210		605	4597	793		189	3183			
	8:15		332		210						189				
	8:30		391	1796			731	4848			292	3447			
	8:45	2116	399		210		761	4994			336	3528		18554	
	9:00	2167	420				834	5001	1039		336	3508		18604	
	9:15		420		357	4587	888	5147	1147	1502	336	3633			
	9:30		515			4648	973	5119			336	3586			
	9:45	2181	524			_	973				336	3641	731		
	10:00	2211	462		416		973				336	3832			4309
	10:15	2226	472		416		973				336	3798			
	10:30	2240	472		416		1070		1253		336	3815			
	10:45	2216	502		416		1162	5198			336	3867	910		
	11:00	2264	586		416		1143				336	3867			
	11:15	2310	613		416		1057	5299		1502	336	3920			
	11:30	2302	598		416		1162	5239			336	3964			
	11:45		530				1162				336	3898			
									1263						
	12:00	2192	511	2144	416	4760	1079	5056	1203	1456	336	3791	910	19399	4455

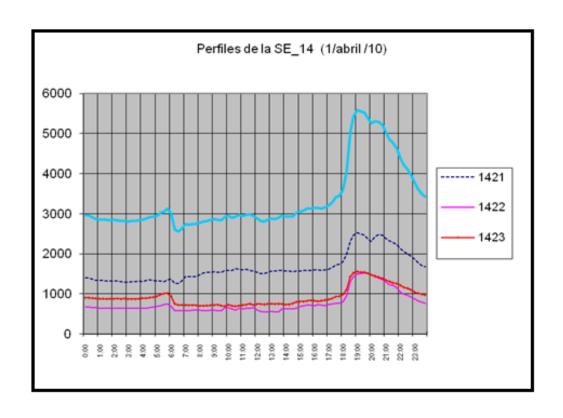
12:16 21:38 511 2077 416 4875 1158 5089 1164 1410 336 3574 881 1933 4476 12:45 2083 511 2077 416 4804 1158 5045 1200 1410 336 355 766 18953 4387 13:45 2083 511 2077 416 4804 1158 5045 1200 1410 336 3524 766 18953 4387 13:45 2055 486 1906 416 4865 1158 4992 1200 1410 336 3524 766 18953 4387 13:45 2055 486 1906 416 4815 1158 4962 1200 1488 336 3619 766 18885 4372 13:45 21:79 518 1870 416 4826 1194 4994 1270 1504 336 3546 886 18909 4545 14:40 21:68 518 1870 416 4720 1169 5054 1340 1504 336 3561 910 19107 4695 14:45 22:10 527 1870 416 4720 1169 5054 1340 1504 336 3656 910 18930 4776 14:45 22:14 518 1870 416 4720 1169 5054 1340 1504 336 3653 910 1900 4898 15:50 22:05 518 1870 416 4770 1187 5064 1340 1504 336 3663 910 1906 4707 14:45 22:14 518 1870 416 4675 1232 5145 1340 1504 336 3663 910 1906 4707 14:45 22:14 518 1870 416 4770 1187 5064 1340 1504 336 3663 910 1906 4707 15:50 22:29 524 1375 416 4717 1823 5053 1200 1504 336 3662 910 1914 4451 15:45 22:27 52:11 1375 416 4717 1232 5053 1200 1504 336 3626 910 1914 4451 15:45 22:27 52:11 1375 416 4717 1232 5053 1200 1504 336 3660 910 1933 4588 16:50 22:72 52:11 1375 416 4717 1232 5053 1200 1504 336 3660 910 1933 4588 16:50 22:72 52:11 1375 416 4717 1232 5053 1200 1504 336 3660 910 1933 3458 16:50 22:72 52:11 1375 416 4717 1232 5053 1200 1504 336 3660 910 1933 3458 16:50 22:72 52:11 1375 416 4716 1205 5066 1204 349 15:44 52:44 52:44 52:44 52:44 52:44 52:44 52:44 52:44		0.45	0400	F44	0077	110	4075	4450	F000	4404	4440	000	0740	004	10000	4.170
12.45 2093 511 2077 416 4904 1158 5045 1200 1410 336 3524 766 18933 4387 1315 2095 436 1906 416 4815 1158 4991 1200 1410 336 3574 766 18921 4387 1315 2095 436 1906 416 4815 1158 4962 1200 1488 336 3619 766 18921 4387 1315 2095 436 1906 416 4815 1158 4962 1200 1488 336 3619 766 18921 4387 13145 2179 518 1870 416 4820 1312 5053 1200 1504 336 3586 8910 18930 4776 4164 4792 1298 5020 1298 1504 336 3636 910 18930 4776 4164 4720 1169 5054 1340 1504 336 3636 910 18930 4776 4164 4720 1169 5054 1340 1504 336 3636 910 18930 4776 4164 4701 1876 5064 1340 1504 336 3636 910 18930 4776 4164 4701 1876 5064 1340 1504 336 3636 910 19036 4707 4164 4701 1876 5064 1340 1504 336 3636 910 19036 4752 4767																
13.00 2099 511 1984 416 4865 1158 4991 1200 1410 338 3572 766 18921 4387 1330 2109 443 1367 416 4896 1194 4994 1270 1504 338 3546 886 18909 4545 4372 4400 2168 518 1870 416 4892 1312 5053 1200 1504 338 3546 886 18909 4545 4372 4400 2168 518 1870 416 4792 1298 5020 1298 1504 338 3636 910 18900 4761																
13:15 2095 496 1906 416 4816 1158 4994 1270 1504 336 3546 886 18909 4756 13:45 2719 518 1870 416 4820 1312 5053 1200 1504 336 3546 886 18909 4756 14:45 2210 527 1870 416 4720 1169 5054 13:40 1504 336 3581 910 19107 4692 14:40 2168 518 1870 416 4720 1169 5054 13:40 1504 336 3651 910 1909 4766 4710 1870 4707 1870 4707 1871 4707 1871 4707 1871 4707																
1330 2109 443 1870 416 4886 1194 4994 1270 1504 336 3546 886 18909 4545																
13:45 2179 518 1870 416 4920 1312 5053 1200 1504 336 3681 910 19107 4682																
14-00 2168 519 1870 416 4792 1298 5020 1228 1504 336 3636 910 18990 4766 14-15 2210 527 1870 416 4720 1169 5054 1340 1504 336 3651 910 191096 4707 14-15 2214 518 1870 416 470 1187 5064 1340 1504 336 3653 910 19006 4707 14-15 2214 518 1870 416 4675 1232 5145 1340 1504 336 3685 910 19088 4752 1515 2209 524 1975 416 4675 1232 5145 1340 1504 336 3685 910 19088 4752 1515 2209 524 1975 416 4717 1232 5053 1200 1504 336 3626 910 19121 4679 1530 2223 521 1975 416 4717 1232 5053 1200 1504 336 3650 910 19124 4675 1530 2223 521 1975 416 4776 1223 5097 1200 1547 336 3650 910 19282 4666 1600 2319 521 1975 416 4754 1205 5006 1200 1603 336 3696 910 19363 4588 1615 2272 446 1948 416 4456 975 4874 1011 1537 336 3596 910 19363 4588 1615 2272 446 1948 416 4456 975 4874 1011 1537 336 3593 661 1801 3378 16.45 2375 4351 1999 269 4798 7714 5174 861 1656 336 3598 661 19283 3429 17.00 2411 391 2059 269 4795 7711 5257 888 1680 228 3645 661 19283 3429 17.00 2411 391 2059 269 4785 5716 5488 1022 1813 189 3477 661 20590 2393 17.45 2548 395 2146 269 5047 767 5548 1022 1801 189 3795 661 20590 2393 17.45 2548 395 2146 269 5047 767 5548 1022 1801 189 3795 661 20590 2393 1813 1813 3473 661 20590 23075 3401 1813 375 395 2472 320 6648 774 678 679 688 662 677 2443 189 4386 518 2660 23075 3401 1813 3476 661 20590 23075 3401 1813 3676 3444 273 7016 742 6638 927 2652 189 4450 2660 23075 2401 1815 3541 367 2444 273 7016 7742 6638 927 2652 189 4450 23076 2400 241																
14:15 2210 527 1870 416 4720 1169 5054 1340 1504 336 3661 910 19019 4888 14:30 2205 518 1870 416 4710 1187 5064 340 1504 336 3665 910 19008 4707 14:45 2214 518 1870 416 4675 1232 5145 1340 1504 336 3680 910 19008 4707 15:00 2196 518 1912 416 4670 1232 5145 1340 1504 336 3685 910 19083 4752 15:15 2209 524 1975 416 4626 1232 5053 1200 1504 336 3626 910 19217 4679 15:30 2223 521 1975 416 4776 1223 5053 1200 1504 336 3626 910 19217 4679 15:45 2237 521 1975 416 4776 1223 5097 1200 1547 336 3650 910 19282 4606 16:00 2319 521 1975 416 4766 1205 5006 1200 1603 336 3680 910 19282 4606 16:15 2272 446 1948 416 4456 975 4874 1011 1537 336 3533 794 18680 3978 16:30 2276 424 1969 348 4629 878 4891 812 1515 336 3530 5661 18801 3459 17:00 2411 391 2059 2699 4780 774 5174 861 1656 336 3538 661 19283 3429 17:00 2411 391 2059 2699 4680 774 5174 861 1656 336 3538 661 19283 3429 17:45 2548 395 2146 2699 5047 767 5548 1022 1813 189 3876 661 20590 3293 17:45 2548 395 2146 2699 5047 767 5548 1022 1813 189 3878 661 20594 3303 18:80 2575 395 2472 320 6548 784 5715 1022 1926 189 4478 518 26650 3283 18:45 3493 333 3484 273 7014 742 6660 927 2552 189 4478 518 26650 3283 18:45 3493 333 3484 273 7014 742 6660 927 2565 189 4478 518 26650 2320 2201 331 6888 882 6366 6062 1067 2575 189 4478 6462 22576 2285 2215 2444 2490 273 7034 742 6660 927 2565 189 4425 4406 26662 2270 2290 2290 2271 233 6684 2271 233 6684 2271 233 6684 2271 233																
14:30 2205 518 1870 416 4710 1187 5064 1340 1504 336 3653 910 19006 4707 14:45 2214 518 1870 416 4675 1232 51145 1340 1504 336 3680 910 19098 4752 15:00 2196 518 1912 416 4670 1232 5116 1340 1504 336 3685 910 19098 4752 15:15 2209 524 1975 416 4767 1232 5081 1261 1504 336 3685 910 19217 4679 15:30 2223 521 1975 416 4776 1232 5097 1200 1547 336 3680 910 19217 4679 15:45 2237 521 1975 416 4776 1223 5097 1200 1547 336 3680 910 19282 4606 16:00 2319 521 1975 416 4764 1205 5006 1200 1603 336 3680 910 19282 4606 16:15 2272 446 1948 416 4466 975 4874 1011 1537 336 3593 794 18680 3978 16:15 2272 446 1948 416 4466 975 4874 1011 1537 336 3593 794 18680 3978 16:45 2375 435 1969 2699 4768 873 5068 855 1578 336 3533 661 19883 3232 17:10 2411 391 2059 2699 4765 711 5257 888 1680 228 3643 661 19842 3050 17:30 2505 395 2123 2699 4686 757 5498 1022 1813 189 3847 661 20590 2393 17:45 2548 395 2163 431 5903 784 5990 1040 2129 189 4002 580 23075 3401 18:50 2559 395 2261 413 5903 784 5990 1040 2129 189 4002 580 23075 3401 18:30 3275 395 2261 413 5903 784 5990 1040 2129 189 4425 446 62693 2406 2454 2413 2430 273 7016 719 6665 969 2652 189 4478 518 26571 3118 19:00 3538 381 2484 273 7016 719 6665 969 2652 189 4478 518 26571 3118 19:03 3346 241 2443 273 7024 742 6638 927 2652 189 4425 346 6619 23070 2413 2300 2371 245 7016 882 6485 927 2652 189 4425 346 26692 23070 2414 2215 313 6680 744 6666 927 2652 189 4426 4666 24666 2																
14:45 2214 518 1870 416 4675 1232 5145 1340 1504 336 3680 910 19098 4752																
15:00 2196 518 1912 416 4670 1232 5116 1340 1504 336 3685 910 19083 4752																
15:15 2299 524 1975 416 4822 1232 5081 1261 1504 336 3626 910 19217 4679 15:30 2223 521 1975 416 4776 1223 5097 1200 1504 336 3632 910 19104 4615 15:45 2237 521 1975 416 4776 1223 5097 1200 1547 336 3650 910 19282 4606 16:00 2319 521 1975 416 4764 1205 5006 1200 1603 336 3698 910 19383 4588 16:15 2272 446 1948 416 4466 975 4874 1011 1537 336 3593 794 18880 3978 16:45 2375 435 1969 269 4748 873 5088 885 1578 336 3530 661 18880 3478 16:45 2375 435 1969 269 4748 873 5088 885 1578 336 3530 661 19588 3232 17:00 2411 391 2059 269 4768 675 711 5257 888 1680 228 3643 661 19588 3232 17:45 2438 293 2069 269 4768 675 5488 1022 1813 189 3847 661 20849 3303 18:00 2559 395 2123 269 4868 757 5488 1022 1813 189 3847 661 20849 3303 18:00 2559 395 2201 351 5484 784 5715 1022 1926 189 3878 661 20849 3303 18:30 3275 395 2472 320 6548 784 6526 1077 2443 189 3866 661 21763 3402 18:33 3275 395 2472 320 6548 784 6526 1077 2443 189 4386 518 26567 3118 19:00 3538 381 2444 273 7016 719 6665 969 2652 189 4454 406 26493 2040 19:30 3546 241 2439 273 7027 742 6638 927 2652 189 4454 406 26493 2040 19:30 3546 241 2439 273 7027 742 6638 927 2652 189 4454 406 26494 2073 2074 2030 3688 882 6366 927 2565 189 4454 406 26454 2740 2030 3366 341 2390 2737 7023 877 6514 927 2652 189 4425 378 26609 2750 2043 344 2297 133 6688 882 6366 927 2560 189 4425 378 26609 2750 2045 3243 344 2297 133 6660 783 6660 927 2560 189 3493 346 6662 2374 2230																
15:30 2223 521 1975 416 4717 1232 5053 1200 1504 336 3632 910 19104 4615 1545 2237 521 1975 416 4776 1223 5097 1200 1547 336 3650 910 19282 4606 1610 2319 521 1975 416 4754 1205 5006 1200 1603 336 3696 910 19383 4588 1615 2272 446 1948 416 4456 975 4874 1011 1537 336 3593 794 18680 3978 16:30 2267 424 1969 348 4629 878 4891 812 1515 336 3593 661 18801 3459 16:45 2375 435 1969 269 4680 714 5174 861 1656 336 3598 661 19583 3429 17:00 2411 391 2059 269 4680 714 5174 861 1656 336 3598 661 19583 3222 17:15 2438 233 2069 269 4680 771 5257 888 1680 228 3643 661 19842 3050 17:30 2505 395 2146 269 5047 767 5548 1022 1801 189 3795 661 20949 3303 18:00 2559 395 2201 351 5484 784 5715 1022 1926 189 3478 661 20949 3303 18:00 2559 395 2201 351 5484 784 5715 1022 1926 189 3478 661 20749 3401 18:15 2790 395 2201 351 5484 784 5715 1022 1926 189 3478 661 20749 3401 18:15 2790 395 2201 351 5484 784 5715 1022 1926 189 3478 661 20749 3401 18:15 2790 395 2201 351 5484 784 5715 1022 1926 189 3478 661 20749 3401 18:15 3541 367 2472 320 6548 784 6526 1077 2443 189 4386 518 26565 3283 18:45 3493 338 2484 273 7076 779 6665 969 2652 189 4486 518 26576 3118 19:00 3538 381 2484 273 7016 779 6665 969 2652 189 4480 378 26561 2750 20:00 3503 241 2390 273 7021 742 6638 927 2652 189 4480 378 26561 2750 20:00 3503 241 2390 273 7021 742 6638 927 2652 189 4480 378 26561 2750 20:00 3503 241 2290 273 7031 742 6630 927 2652 189 4480 378 26652 2258 20:00 3536							4670		5116	1340		336		910		
15:45 2237 521 1975				524			4822			1261					19217	4679
16:00 2319 521 1975 416 4754 1205 5006 1200 1603 336 3696 910 19353 4588 16:15 2272 446 1948 416 4466 975 4874 1011 1537 336 3593 794 18680 3978 16:46 2375 424 1969 348 4669 878 4891 812 1515 336 3530 3530 661 18801 3459 16:45 2375 435 1969 269 4748 873 5008 855 1578 336 3545 661 19588 3232 17:00 2411 391 2059 269 4690 714 5174 861 1656 336 3598 661 19588 3232 17:15 2438 293 2069 269 4785 711 5257 888 1680 228 3643 661 19588 3232 17:45 2548 395 2123 269 4686 757 5498 1022 1801 189 3795 661 20590 3293 17:45 2548 395 2146 269 5047 767 5548 1022 1801 189 3795 661 20590 3293 18:00 2559 395 2201 351 5484 784 5715 1022 1926 189 3878 661 21763 3402 18:15 2790 395 2472 320 6548 784 6526 1077 2443 189 4386 518 25650 3283 18:45 3493 383 2484 273 7016 719 6665 665 2652 189 4478 518 26571 3118 19:00 3538 381 2484 273 7084 742 6633 927 2652 189 4426 518 26690 2750 19:45 3551 241 2390 273 7027 742 6633 927 2652 189 4425 378 26690 2750 20:00 3503 241 2390 273 7027 742 6633 927 2652 189 4425 378 26690 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4425 378 26690 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4425 426 26425 2971 20:30 336 334 2297 133 6688 882 6366 927 2652 189 4425 426 26425 2971 20:30 336 334 2297 133 6403 788 5888 787 2293 189 3979 406 2365 2562 2885 22:15 3476 300 2750 333 6588 874 6758 877 2553 189 4426 4426 4426 26425 2971 20:30 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 3			2223		1975				5053	1200			3632	910	19104	4615
16:15 2272 446 1948 416 4456 975 4874 1011 1537 336 3593 794 18680 3978 16:30 2267 424 1969 348 4629 878 4891 812 1515 336 3530 661 18801 3459 16:45 2375 435 1969 269 4748 873 5068 855 1578 336 3530 3541 661 19283 3429 17:00 2411 391 2059 269 4669 714 5174 861 1656 336 3598 661 19842 3050 17:30 2505 395 2123 269 4868 757 5498 1022 1801 189 3795 661 2059 3293 17:45 2548 395 2146 269 5047 767 5548 1022 1801 189 3795 661 20499 3303 18:00 2559 395 2201 351 5484 748 7715 1022 1926 189 3878 661 20494 3303 18:00 2559 395 2261 413 5903 784 5990 1040 2129 189 4002 580 23075 3401 18:30 3275 395 2472 320 6548 784 6526 1077 2443 189 4366 518 25650 3283 18:45 3493 383 2484 273 6879 688 6662 1067 2575 189 4478 56571 3118 19:00 3538 381 2484 273 7016 719 6665 969 2652 189 4581 518 26633 3049 19:15 3541 367 2484 273 7027 742 6633 927 2652 189 4480 378 26781 2750 19:45 3551 241 2390 273 7031 742 6630 927 2652 189 4449 378 26690 2750 20:00 3036 334 2297 133 6888 882 6366 927 2560 189 4429 378 26600 2750 20:15 3476 302 2371 245 7016 882 6485 927 2652 189 4425 426 26425 2971 20:30 3336 334 2297 133 6888 882 6366 927 2560 189 4439 378 26621 2885 20:15 3476 300 2371 245 7016 882 6669 927 2560 189 4439 378 26621 2885 20:15 3476 300 2371 245 7016 882 6669 927 2560 189 4439 378 26621 2885 20:15 3476 300 2560 2169 313 6568 774 6136 606 2425 189 4429 3486 614 259 20:20 20:20 20:20 133 6681 783 6066 606 614 607 607 6	1	5:45	2237	521	1975	416	4776	1223	5097	1200	1547	336	3650	910	19282	4606
16:30 2267 424 1969 348 4629 878 4891 812 1515 336 3530 661 18801 3459 16:45 2375 435 1969 269 4748 873 5068 855 1578 336 3545 661 19283 3429 17:700 2411 391 2059 269 4690 714 5174 861 1656 336 3584 661 19283 3323 17:15 2438 293 2069 269 4755 711 5257 888 1680 228 3643 661 19842 3050 17:30 2505 395 2123 269 4868 757 5498 1022 1801 189 3795 661 20590 3293 17:45 2548 395 2146 269 5047 767 5548 1022 1813 189 3847 661 2049 3303 18:00 2559 3395 2201 331 5484 784 5715 1022 1926 189 3878 661 20763 3402 18:15 2790 395 2261 413 5903 784 5990 1040 2129 189 4002 5860 23075 3401 18:30 3275 335 2472 320 6548 784 6526 1077 2443 189 4386 518 265671 3118 19:00 3533 381 2484 273 6879 688 6662 1067 2575 189 4478 518 26571 3118 19:00 3533 381 2484 273 7016 719 6665 969 2652 189 4581 518 26936 3049 19:15 3541 367 2484 273 7076 742 6633 927 2652 189 4480 378 26781 2750 19:45 3551 241 2390 273 7023 877 6514 927 2652 189 4449 378 26781 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4439 378 26521 2885 20:15 3476 302 2371 245 7016 882 6485 927 25652 189 4439 378 26699 2750 20:30 3336 381 2297 133 6568 774 6136 806 2425 189 4218 406 24654 2549 20:45 3243 344 2297 133 6568 774 6136 806 2425 189 439 378 406 23660 2200 22:00 27:90 259 2001 133 6562 783 6026 787 2362 189 439 349 406 23160 2300 22:15 2642 259 1909 133 5587 755 5450 637 188 439 3674 406 23662 2330 22:15 2642 259 189 133 5560 696 5149 696 691 68			2319	521	1975	416	4754	1205	5006	1200	1603	336	3696	910	19353	4588
16:45 2375 435 1969 269 4748 873 5068 855 1578 336 3545 661 19283 3429 17:00 2411 391 2059 269 4690 714 5174 861 1656 336 3598 661 19588 3232 17:15 2438 293 2069 269 4755 711 5257 888 1680 228 3645 3661 19842 3050 17:30 2505 395 2123 269 4686 757 5498 1022 1801 189 3795 661 20590 3223 17:45 2548 395 2146 269 5047 767 5548 1022 1813 189 3847 661 20949 3303 18:00 2559 395 2201 351 5484 784 5715 1022 1926 189 3878 661 20794 3303 18:15 2790 395 2261 413 5903 784 5990 1040 2129 189 4002 588 23075 3401 18:30 3275 395 2472 320 6548 784 6626 1067 2575 189 4478 518 26550 3283 18:45 3493 383 2484 273 7016 719 6665 969 2652 189 4481 518 26936 3049 19:15 3541 367 2484 273 7027 742 6633 927 2652 189 4484 406 26943 2904 19:30 3546 241 2390 273 7023 877 6514 927 2652 189 4449 378 26609 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4449 378 26620 2750 20:01 3503 341 2297 133 6688 882 6396 927 2560 189 4425 378 26609 2750 20:45 3243 3344 2297 133 6688 882 6396 927 2560 189 4439 378 26521 2885 20:15 3476 3002 241 2215 133 6668 774 6136 806 2425 189 449 406 24654 2549 20:45 3243 3344 2297 133 6688 882 6396 927 2560 189 439 449	1	6:15	2272	446	1948	416	4456	975	4874	1011	1537	336	3593	794	18680	3978
17:00	1	6:30	2267	424	1969	348	4629	878	4891	812	1515	336	3530	661	18801	3459
17:15 2438 293 2069 269 4755 711 5257 888 1680 228 3643 661 19842 3050 17:30 2505 395 2123 269 4868 757 5438 1022 1801 189 3795 661 20590 3293 17:45 2548 395 2146 269 5047 767 5548 1022 1813 189 3847 661 20949 3033 18:00 2559 395 2201 351 5484 784 5795 5481 1022 1926 189 3878 661 20949 3033 18:15 2790 395 2261 413 5903 784 5990 1040 2129 189 4002 580 23075 3401 18:30 3275 395 2472 320 6548 784 6526 1077 2443 189 4386 518 25650 3283 18:45 3493 383 2484 273 6879 688 6662 1067 2575 189 4478 518 26571 3118 19:00 3538 381 2484 273 7016 719 6665 969 2652 189 4581 518 26936 3049 19:15 3541 367 2484 273 7027 742 6638 927 2652 189 4480 378 26781 2750 19:45 3551 241 2390 273 7023 877 6514 927 2652 189 4448 378 26781 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4445 426 26425 2971 20:30 3336 381 2297 133 6888 882 6396 927 2560 189 4425 426 26425 2971 20:30 3336 381 2297 133 6688 882 6366 927 2560 189 4425 426 26425 2971 20:30 3393 331 2491 2415 313 6686 744 6136 806 2425 189 4425 4466 24654 2549 21:15 3005 256 2169 133 6560 783 6026 787 2362 189 4092 406 24174 2554 21:30 2929 259 2107 133 6344 826 5788 787 2293 189 4065 406 23685 2562 21:45 2814 259 2092 133 6344 826 5788 787 2293 189 4065 406 23160 2600 22:00 2729 259 2001 133 6344 826 5788 787 2293 189 3053 348 406 24564 2459 22:15 2642 259 1812 133 5560 696 5149 637 1875 189 3453 406 24654 2549 22:15 2642 259 1812 133 5560 696 5149 637	1	6:45	2375	435	1969	269	4748	873	5068	855	1578	336	3545	661	19283	3429
17:30 2505 395 2123 269 4868 757 5498 1022 1801 189 3795 661 20590 3293 17:45 2548 395 2146 269 5047 767 5548 1022 18113 189 3847 661 20949 3303 18:00 2559 395 2201 351 5484 784 5715 1022 1813 189 3847 661 20949 3303 18:15 2790 395 2261 413 5903 784 5990 1040 2129 189 4002 580 23075 3401 18:30 3275 385 2472 320 6548 784 6526 10707 2443 189 4386 518 25650 3283 18:45 3493 383 2484 273 6879 688 6662 1067 2575 189 4478 518 26571 3118 19:00 3538 381 2484 273 7016 719 6665 969 2652 189 4581 518 26936 3049 19:15 3541 367 2484 273 7084 742 6638 927 2652 189 4544 406 26943 2904 19:30 3546 241 2443 273 7027 742 6633 927 2652 189 4480 378 26781 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 44480 378 26781 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4425 378 26699 2750 20:03 3336 381 2297 133 6888 882 6396 927 2652 189 4425 426 26425 2971 20:30 3336 381 2297 133 6888 882 6396 927 2560 189 4425 426 26425 2971 20:30 3032 341 2297 133 6888 882 6396 927 2560 189 4282 406 25397 2881 21:00 3092 241 2215 133 6508 774 6136 806 2425 189 428 406 25397 2881 21:00 3092 241 2215 133 6508 774 6136 806 2425 189 428 406 25397 2881 21:00 3092 259 250 107 133 6403 788 5888 787 2293 189 4065 406 2365 2660 22:045 259 109 133 6520 783 6026 787 2362 189 4909 406 24174 2554 21:35 2662 269 189 343 340 2297 133 6580 774 6136 806 2425 189 4495 378 8060 2456 2456 22:00 2729 259 2001 133 6520 783 6026 787 2362 189 4092 406 2474 2554 21:35 2002 2729 259 2001 133 6520 783 6026 787 2362 189 3919 406 23160 2600 22:00 2729 259 2001 133 6581 783 5004 637 1926 189 3033 348 17907 23:556 259 1855 133 5681 783 5004 637 1926 189 3453 406 20362 2320 22:45 2463 259 1809 133 5874 755 5450 637 1926 189 3033 348 17907 23:75 22:30 2556 259 1855 183 5133 5881 783 5004 637 1926 189 3033 348 17907 23:75 22:30 2556 259 1855 183 5133 5881 783 5004 637 1926 189 3033 348 17907 23:75 23:35 2157 188 1455 133 5908 7014 117152 21305 3889 5821 80216 13006 452732 73449 POT_MIN 1819 752 41315 549 11833 20147 117152 21305 3889 5821 80216 13006 452732 73449 POT	1	7:00	2411	391	2059	269	4690	714	5174	861	1656	336	3598	661	19588	3232
17:45 2548 395 2146 269 5047 767 5548 1022 1813 189 3847 661 20949 3303 18:00 2559 395 2201 351 5484 784 5715 1022 1926 189 3878 661 21763 3402 18:15 2790 395 2261 413 5903 784 5990 1040 2129 189 4002 580 23075 3401 18:30 3275 395 2472 320 6548 784 6526 1077 2434 189 4386 518 25650 3283 18:45 3493 383 2484 273 7676 779 6685 6662 1067 2575 189 4478 518 26571 3118 19:00 3538 381 2484 273 7016 719 6665 969 2652 189 4581 518 26651 3049 19:15 3541 367 2484 273 7084 742 6638 927 2652 189 4544 406 26943 2904 19:30 3546 241 2443 273 7027 742 6633 927 2652 189 4480 378 26781 2750 20:00 3503 241 2390 273 7031 742 6560 927 2652 189 4480 378 26621 2885 20:01 3336 381 2297 133 6888 82 6485 927 2652 189 4435 378 26621 2885 20:15 3476 302 2371 245 7016 882 6485 927 2652 189 4439 378 26521 2885 20:45 3243 344 2297 133 6688 82 6396 927 2590 189 4336 388 25843 2900 20:45 3243 344 2297 133 66749 882 6266 927 2560 189 4425 426 24625 2971 20:30 3092 241 2215 133 6568 774 6136 806 2425 189 4425 406 25937 2881 21:00 3092 241 2215 133 6568 774 6136 806 2425 189 4425 406 25637 2881 21:00 3092 259 2010 133 6749 882 6266 927 2560 189 4282 406 25937 2881 21:00 3092 241 2215 133 6568 774 6136 806 2425 189 4092 406 24174 2554 21:30 2929 259 2107 133 66403 788 5888 787 2293 189 4092 406 24174 2554 21:30 2929 259 2107 133 66403 788 5888 787 2293 189 4065 406 23685 2562 21:45 2814 259 2092 133 6343 896 5788 787 2203 189 3799 406 23160 2600 22:15 2642 259 1909 133 6547 755 5450 637 1984 189 3674 406 1253 2379 22:30 2556 259 1835 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:15 2300 259 1622 133 5133 5681 783 5304 637 1926 189 3335 406 19662 2320 23:15 2300 259 1622 133 5133 5681 783 5304 637 1926 189 3033 348 17907 2375 23:45 2157 188 1435 133 5908 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 549 118336 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN 7 1819 7 527 11157 707 3900 7 553 3500 7 540 7 1226 7 189 7221 7 7 13975 1651	1	7:15	2438	293	2069	269	4755	711	5257	888	1680	228	3643	661	19842	3050
18:00 2559 395 2201 351 5484 784 5715 1022 1926 189 3878 661 21763 3402	1	7:30	2505	395	2123	269	4868	757	5498	1022	1801	189	3795	661	20590	3293
18:15 2790 395 2261 413 5903 784 5990 1040 2129 189 4002 580 23075 3401 18:30 3275 395 2472 320 6548 784 6526 1077 2443 189 4386 518 25650 3283 18:45 3493 383 2484 273 6879 688 6662 1067 2575 189 4478 518 26571 3118 19:00 3538 381 2484 273 7016 719 6665 969 2652 189 4581 518 26936 3049 19:15 3541 367 2484 273 7084 742 6638 927 2652 189 4584 406 26943 2904 19:30 3546 241 2443 273 7027 742 6633 927 2652 189 4480 378 26781 2750 19:45 3551 241 2390 273 7031 742 6560 927 2652 189 4425 378 26609 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4425 378 26609 2750 20:03 3336 381 2297 133 6888 882 6396 927 2552 189 4425 426 26425 2971 20:30 3336 381 2297 133 6688 882 6396 927 2550 189 4436 388 25843 2900 20:45 3243 344 2297 133 6688 882 6266 927 2560 189 4428 406 25397 2881 21:00 3092 241 2215 133 6568 774 6136 806 2425 189 4092 406 2407 21:15 3055 256 2169 133 6520 783 6026 787 2362 189 4092 406 24144 2544 21:30 2929 259 2107 133 6344 826 5788 787 2293 189 4066 2406 23660 22:00 2729 259 2001 133 6344 826 5788 787 2293 189 3798 406 2360 2490 22:15 2642 259 1909 133 55874 755 5450 637 1984 189 3674 406 2407 22:45 2463 259 1812 133 5580 696 5149 637 1875 189 3453 406 20312 2320 23:10 23:85 238 259 1720 133 5587 696 5007 637 1875 189 3453 406 20312 2320 23:15 2642 259 1812 133 5580 696 5149 637 1875 189 3453 406 20312 2320 23:15 2642 259 1812 133 5580 696 5149 637 1875 189 3453 406 20312 2320	1	7:45	2548	395	2146	269	5047	767	5548	1022	1813	189	3847	661	20949	3303
18:15 2790 395 2261 413 5903 784 5990 1040 2129 189 4002 580 23075 3401 18:30 3275 395 2472 320 6548 784 6526 1077 2443 189 4386 518 25650 3283 18:45 3493 383 2484 273 6879 688 6662 1067 2575 189 4478 518 26571 3118 19:00 3538 381 2484 273 7016 719 6665 969 2652 189 4581 518 26936 3049 19:15 3541 367 2484 273 7084 742 6638 927 2652 189 4584 406 26943 2904 19:30 3546 241 2443 273 7027 742 6633 927 2652 189 4480 378 26781 2750 19:45 3551 241 2390 273 7031 742 6560 927 2652 189 4425 378 26609 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4425 378 26609 2750 20:03 3336 381 2297 133 6888 882 6396 927 2552 189 4425 426 26425 2971 20:30 3336 381 2297 133 6688 882 6396 927 2550 189 4436 388 25843 2900 20:45 3243 344 2297 133 6688 882 6266 927 2560 189 4428 406 25397 2881 21:00 3092 241 2215 133 6568 774 6136 806 2425 189 4092 406 2407 21:15 3055 256 2169 133 6520 783 6026 787 2362 189 4092 406 24144 2544 21:30 2929 259 2107 133 6344 826 5788 787 2293 189 4066 2406 23660 22:00 2729 259 2001 133 6344 826 5788 787 2293 189 3798 406 2360 2490 22:15 2642 259 1909 133 55874 755 5450 637 1984 189 3674 406 2407 22:45 2463 259 1812 133 5580 696 5149 637 1875 189 3453 406 20312 2320 23:10 23:85 238 259 1720 133 5587 696 5007 637 1875 189 3453 406 20312 2320 23:15 2642 259 1812 133 5580 696 5149 637 1875 189 3453 406 20312 2320 23:15 2642 259 1812 133 5580 696 5149 637 1875 189 3453 406 20312 2320	1	8:00	2559	395	2201	351	5484	784	5715	1022	1926	189	3878	661	21763	3402
18:30 3275 395 2472 320 6548 784 6526 1077 2443 189 4386 518 25650 3283 18:45 3493 383 2484 273 6879 688 6662 1067 2575 189 4478 518 26571 3118 19:00 3538 381 2484 273 7016 719 6665 969 2652 189 4581 518 26936 3049 19:15 3541 367 2484 273 7027 742 6633 927 2652 189 4581 518 26936 3049 19:45 3551 241 2390 273 7021 742 6660 927 2652 189 4480 378 26601 2750 20:00 3503 241 2390 273 7023 877 614 927 2652 189 4425 4262 26425	1	8:15	2790	395	2261	413	5903	784	5990	1040	2129	189	4002	580	23075	3401
18:45 3493 383 2484 273 6879 688 6662 1067 2575 189 4478 518 26571 3118 19:00 3538 381 2484 273 7016 719 6665 969 2652 189 4581 518 26936 3049 19:15 3541 367 2484 273 7027 742 6638 927 2652 189 4584 406 26943 2904 19:45 3551 241 2390 273 7023 877 6514 927 2652 189 4425 378 26609 2750 20:00 3503 241 2390 273 7023 877 6514 927 <t>2652 189 4425 378 26609 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4425 426 26425</t>	1	8:30	3275	395	2472	320	6548	784	6526	1077	2443	189	4386	518	25650	3283
19:00 3538 381 2484 273 7016 719 6665 969 2652 189 4581 518 26936 3049 19:15 3541 367 2484 273 7084 742 6638 927 2652 189 4544 406 26943 2904 19:30 3546 241 2443 273 7027 742 6633 927 2652 189 4480 378 26781 2750 19:45 3551 241 2390 273 7031 742 6560 927 2652 189 4425 378 26609 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4425 378 26609 2750 20:15 3476 302 2371 245 7016 882 6485 927 2652 189 4425 426 26425 2971 20:30 3336 381 2297 133 6888 882 6396 927 2590 189 4336 388 25843 2900 20:45 3243 344 2297 133 6749 882 6266 927 2560 189 4282 406 25397 2881 21:00 3092 241 2215 133 6568 774 6136 806 2425 189 4218 406 24654 2549 21:15 3005 256 2169 133 6520 783 6026 787 2362 189 4092 406 24174 2554 21:30 2929 259 2107 133 6344 826 5788 787 2293 189 4065 406 23685 2562 21:45 2814 259 2092 133 6344 826 5788 787 2293 189 3919 406 23160 2600 22:00 2729 259 2001 133 6132 791 5553 712 2093 189 3674 406 22136 2320 22:30 2556 259 1835 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG DIA 55819 7675 42315 5497 118336 20147 117152 21305 3895 5821 80216 13006 452732 73449 POT_MIN 1819 52 1115 70 3900 553 3590 490 1226 189 5221 273 13975 1651			3493		2484		6879		6662	1067		189	4478		26571	3118
19:15 3541 367 2484 273 7084 742 6638 927 2652 189 4544 406 26943 2904 19:30 3546 241 2443 273 7027 742 6633 927 2652 189 4480 378 26781 2750 19:45 3551 241 2390 273 7023 877 6514 927 2652 189 4425 378 26609 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4425 378 26609 2750 20:30 3336 381 2297 133 6888 882 6396 927 2590 189 4425 426 26425 2971 20:45 3243 344 2297 133 6749 882 6266 927 2560 189 4218 406 24544 241 2215 133 6568 774 6136 806 2425 189			3538		2484		7016						4581		26936	
19:30 3546 241 2443 273 7027 742 6633 927 2652 189 4480 378 26781 2750 19:45 3551 241 2390 273 7031 742 6560 927 2652 189 4425 378 26609 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4439 378 26521 2885 20:15 3476 302 2371 245 7016 882 6485 927 2652 189 4425 426 26425 2971 20:30 3336 381 2297 133 6888 882 6396 927 2590 189 4336 388 25843 2900 20:45 3243 344 2297 133 6749 882 6266 927 2560 189 4282 406 25397 2881 21:00 3092 241 2215 133 6568 774 6136 806 2425 189 4218 406 24654 2549 21:15 3005 256 2169 133 6520 783 6026 787 2362 189 4092 406 24174 2554 21:30 2929 259 2107 133 6403 788 5888 787 2293 189 4065 406 23685 2562 21:45 2814 259 2092 133 6344 826 5788 787 2203 189 3919 406 23160 2600 22:00 2729 259 2001 133 6132 791 5553 712 2093 189 3798 406 22306 2490 22:15 2642 259 1909 133 5874 755 5450 637 1984 189 3674 406 21533 2379 22:30 2556 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3355 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 2016 2016 189 5221 73 13975 1651			3541	367	2484		7084			927	2652	189	4544			2904
19:45 3551 241 2390 273 7031 742 6560 927 2652 189 4425 378 26609 2750 20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4439 378 26521 2885 20:15 3476 302 2371 245 7016 882 6485 927 2652 189 4425 426 26425 2971 20:30 3336 381 2297 133 6888 882 6396 927 2590 189 4336 388 25843 2900 20:45 3243 344 2297 133 6688 882 6266 927 2560 189 4282 406 25397 2881 21:00 3092 241 2215 133 6568 774 6136 806 2425 189 4218 406 24654 2549 21:15 3005 256 2169 133 6520 783 6026 787 2362 189 4092 406 24174 2554 21:30 2929 2599 2107 133 6403 788 5888 787 2293 189 4065 406 23685 2562 21:45 2814 259 2092 133 6344 826 5788 787 2203 189 3919 406 23160 2600 22:00 2729 259 2001 133 6132 791 5553 712 2093 189 3798 406 22306 2490 22:15 2642 259 1909 133 5874 755 5450 637 1984 189 3674 406 21533 2379 22:30 2556 259 1835 133 5681 783 5304 637 1926 189 3602 406 20904 2407 22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3375 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 2014 17523 1991 2014 1819 52 1115 70 7 3900 553 3590 490 1226 189 5231 273 13975 1651					2443								4480			
20:00 3503 241 2390 273 7023 877 6514 927 2652 189 4439 378 26521 2885 20:15 3476 302 2371 245 7016 882 6485 927 2652 189 4425 426 26425 2971 20:30 3336 381 2297 133 6688 882 6396 927 2590 189 4336 388 25843 2900 20:45 3243 344 2297 133 6749 882 6266 927 2560 189 4282 406 25397 2881 21:00 3092 241 2215 133 6568 774 6136 806 2425 189 4218 406 24654 2549 21:15 3005 256 2169 133 6520 783 6026 787 2362 189 4092 406 24174 2554 21:30 2929 259 2107 133 6403 788 5888 787 2293 189 4065 406 23685 2562 21:45 2814 259 2092 133 6344 826 5788 787 2203 189 3919 406 23160 2600 22:00 2729 259 2001 133 6132 791 5553 712 2093 189 3798 406 22306 2490 22:15 2642 259 1909 133 5874 755 5450 637 1984 189 3674 406 21533 2379 22:30 2556 259 1835 133 5681 783 5304 637 1926 189 3602 406 20904 2407 22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 118336 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN			3551	241	2390		7031			927		189	4425	378		
20:15 3476 302 2371 245 7016 882 6485 927 2652 189 4425 426 26425 2971 20:30 3336 381 2297 133 6888 882 6396 927 2590 189 4336 388 25843 2900 20:45 3243 344 2297 133 6548 774 6136 806 2425 189 4282 406 25397 2881 21:00 3092 241 2215 133 6568 774 6136 806 2425 189 4218 406 24654 2549 21:15 3005 256 2169 133 6520 783 6026 787 2362 189 4092 406 24174 2554 21:30 2929 259 2107 133 6403 788 5888 787 2293 189 4065 406 23685 2562 21:45 2814 259 2092 133 6344 826 5788 787 2203 189 3919 406 23160 2600 22:00 2729 259 2001 133 6132 791 5553 712 2093 189 3798 406 22306 2490 22:15 2642 259 1909 133 5874 755 5450 637 1984 189 3674 406 21533 2379 22:30 2556 259 1835 133 5681 783 5304 637 1926 189 3602 406 20904 2407 22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 118336 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN							7023					189	4439			
20:30 3336 381 2297 133 6888 882 6396 927 2590 189 4336 388 25843 2900 20:45 3243 344 2297 133 6749 882 6266 927 2560 189 4282 406 25397 2881 21:00 3092 241 2215 133 6568 774 6136 806 2425 189 4218 406 24654 2549 21:15 3005 256 2169 133 6520 783 6026 787 2362 189 4092 406 24174 2554 21:30 2929 259 2107 133 6403 788 5888 787 2293 189 4065 406 23685 2562 21:45 2814 259 2092 133 6344 826 5788 787 2203 189 3919 406 23160 2600 22:00 2729 259 2001 133 6132 791 5553 712 2093 189 3798 406 22306 2490 22:15 2642 259 1909 133 5874 755 5450 637 1984 189 3674 406 21533 2379 22:30 2556 259 1835 133 5681 783 5304 637 1926 189 3602 406 20904 2407 22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3375 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 11836 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN				302						927						
20:45 3243 344 2297 133 6749 882 6266 927 2560 189 4282 406 25397 2881 21:00 3092 241 2215 133 6568 774 6136 806 2425 189 4218 406 24654 2549 21:15 3005 256 2169 133 6520 783 6026 787 2362 189 4092 406 24174 2554 21:30 2929 259 2107 133 6403 788 5888 787 2293 189 4065 406 23685 2562 21:45 2814 259 2092 133 6344 826 5788 787 2203 189 3919 406 23160 2600 22:00 2729 259 2001 133 6132 791 5553 712 2093 189 3798 406 22306 2490 22:15 2642 259 1909 133 5874 755 5450 637 1984 189 3674 406 21533 2379 22:30 2556 259 1835 133 5681 783 5304 637 1926 189 3602 406 20904 2407 22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3375 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 11836 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN							6888									
21:00 3092 241 2215 133 6568 774 6136 806 2425 189 4218 406 24654 2549 21:15 3005 256 2169 133 6520 783 6026 787 2362 189 4092 406 24174 2554 21:30 2929 259 2107 133 6403 788 5888 787 2293 189 4065 406 23685 2562 21:45 2814 259 2092 133 6344 826 5788 787 2203 189 3919 406 23160 2600 22:00 2729 259 2001 133 6132 791 5553 712 2093 189 3798 406 22306 2490 22:15 2642 259 1909 133 5874 755 5450 637 1984 189 3674 406 21533 2379 22:30 2556 259 1835 133 5681 783 5304 637 1926 189 3602 406 20904 2407 22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3375 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 11836 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN										927						
21:15 3005 256 2169 133 6520 783 6026 787 2362 189 4092 406 24174 2554 21:30 2929 259 2107 133 6403 788 5888 787 2293 189 4065 406 23685 2562 21:45 2814 259 2092 133 6344 826 5788 787 2203 189 3919 406 23160 2600 22:00 2729 259 2001 133 6132 791 5553 712 2093 189 3798 406 22306 2490 22:15 2642 259 1909 133 5874 755 5450 637 1984 189 3674 406 21533 2379 22:30 2556 259 1835 133 5681 783 5304 637 1926 189 3602 406 20904 2407 22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3375 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 11836 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN																
21:30 2929 259 2107 133 6403 788 5888 787 2293 189 4065 406 23685 2562 21:45 2814 259 2092 133 6344 826 5788 787 2203 189 3919 406 23160 2600 22:00 2729 259 2001 133 6132 791 5553 712 2093 189 3798 406 22306 2490 22:15 2642 259 1909 133 5874 755 5450 637 1984 189 3674 406 21533 2379 22:30 2556 259 1835 133 5681 783 5304 637 1926 189 3602 406 20904 2407 22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3375 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 11836 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN																
21:45 2814 259 2092 133 6344 826 5788 787 2203 189 3919 406 23160 2600 22:00 2729 259 2001 133 6132 791 5553 712 2093 189 3798 406 22306 2490 22:15 2642 259 1909 133 5874 755 5450 637 1984 189 3674 406 21533 2379 22:30 2556 259 1835 133 5681 783 5304 637 1926 189 3602 406 20904 2407 22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3375 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 11836 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN 1819 52 1115 70 3900 553 3590 490 1226 189 2231 273 13975 1651																
22:00 2729 259 2001 133 6132 791 5553 712 2093 189 3798 406 22306 2490 22:15 2642 259 1909 133 5874 755 5450 637 1984 189 3674 406 21533 2379 22:30 2556 259 1835 133 5681 783 5304 637 1926 189 3602 406 20904 2407 22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3375 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3033 348 17907 2375 23:45 2157 188 1435 133 4984 731 <td></td>																
22:15 2642 259 1909 133 5874 755 5450 637 1984 189 3674 406 21533 2379 22:30 2556 259 1835 133 5681 783 5304 637 1926 189 3602 406 20904 2407 22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3375 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 <td></td>																
22:30 2556 259 1835 133 5681 783 5304 637 1926 189 3602 406 20904 2407 22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3375 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 118336 20147																
22:45 2463 259 1812 133 5560 696 5149 637 1875 189 3453 406 20312 2320 23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3375 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 118336 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN ** 1819** 52************************************																
23:00 2398 259 1720 133 5377 696 5007 637 1785 189 3375 406 19662 2320 23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 118336 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN 7 1819 525 11115 705 3900 553 3590 490 1926 189 2231 273 13975 1651																
23:15 2300 259 1622 133 5143 696 4836 691 1687 189 3234 406 18822 2374 23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 118336 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN 7 1819 52 1115 70 3900 553 3890 490 1226 189 2231 273 13975 1651																
23:30 2185 218 1506 133 5003 703 4615 784 1595 189 3003 348 17907 2375 23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 118336 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN 7 1819 52 1115 70 3900 553 390 490 1226 189 2231 273 13975 1651																
23:45 2157 188 1435 133 4984 731 4484 750 1549 189 2914 17523 1991 ENERG_DIA 55819 7675 42315 5497 118336 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN 7 1819 52 1115 70 3900 553 3590 490 1226 189 2231 273 13975 1651																
ENERG_DIA 55819 7675 42315 5497 118336 20147 117152 21305 38895 5821 80216 13006 452732 73449 POT_MIN 1819 52 1115 70 3900 553 3590 490 1226 189 2231 273 13975 1651														J-10		
POT_MIN														13006		


01/04/2010					SUE	BESTAC	CION 0	7	
	0	721	0	722		723		TAL	
HORA	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	
0:00			3540	906	1815	268	7020	1329	
0:15			3262	842	1777	268	6678	1265	
0:30			3453	914	1819	268	6854	1337	
0:45			3434	864	1761	268	6771	1287	
1:00			3445	882	1767	268	6762	1305	
1:15		155	3423	925	1744	268	6688	1348	
1:30		155	3411	904	1724	268	6656	1327	
1:45		155	3456	904	1716	269	6693	1349	
2:00			3496	930	1716			1355	
		155				270	6743		
2:15			3506	973	1681	270	6696	1398	
2:30			3573	1057	1636	270	6673	1464	
2:45			3638	999	1623	270	6725	1424	
3:00			3623	999	1624	270	6711	1355	
3:15			3645	999	1639	270	6762	1358	
3:30			3611	999	1628	270	6754	1409	
3:45			3614	999	1667	270	6751	1341	
4:00			3596	998	1665	270	6780	1349	
4:15			3618	988	1678	270	6795	1330	
4:30	1531	85	3603	1001	1686	278	6820	1364	
4:45		79	3592	987	1750	306	6873	1372	
5:00	1564	80	3572	954	1779	306	6915	1340	
5:15	1649	81	3617	976	1810	306	7076	1363	
5:30	1693	81	3619	985	1839	306	7151	1372	
5:45	1758	81	3798	1053	1881	283	7437	1417	
6:00	1803	114	3785	1067	1851	297	7439	1478	
6:15	1748	216	3627	1070	1721	297	7096	1583	
6:30	1804	209	3473	1022	1733	297	7010	1528	
6:45	1859	203	3144	877	1741	251	6744	1331	
7:00			3197	958	1705	205	6834	1399	
7:15			3142	896	1702	221	6790	1427	
7:30			3043	812	1737	258	6815	1438	
7:45			3110	869	1723	281	6887	1541	
8:00			3053	822	1808	384	6916	1658	
8:15			2967	829	1811	399	6846	1722	
8:30			3016	880	1785	389	6918	1814	
8:45			3034	923	1884			1906	
9:00			3011	856	1870	342		1841	
9:00			2936	886	1894			1902	
9:30			2930		1902			1902	
				854					
9:45			2905	795	1872		6923	1818	
10:00			2981	831	1793			1863	
10:15			3051	864	1757	360	7061	1928	
10:30			3053	864	1888	439		1996	
10:45			3069	864	1868	445		1995	
11:00			3151	949	1873			2105	
11:15			2953	831	1861	445		2057	
11:30			3008	871	1831	445		2097	
11:45		767	3037	885	1806	433	7137	2085	
12:00	2116	595	2896	801	1767	380	6779	1776	

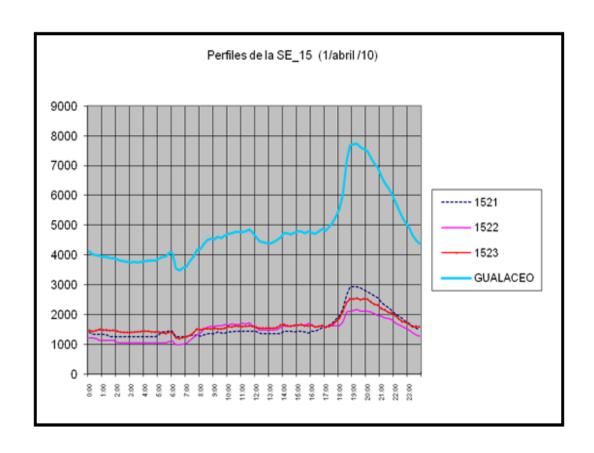
12:15	2137	589	2900	801	1726	364	6763	1754	
12:30	2138	589	2897	801	1610	281	6645	1671	
12:45	2108	589	2929	801	1554	281	6591	1671	
13:00	2131	651	2888	813	1548	288	6567	1752	
13:15	2202	711	2884	832	1559	333	6645	1876	
13:30	2214	723	2969	871	1518	333	6701	1927	
13:45	2250	787	3028	904	1680	388	6958	2079	
14:00	2252	787	3023	927	1763	448	7038	2162	
14:15	2228	771	3189	982	1754	391	7171	2144	
14:30	2233	765	3148	990	1814	396	7195	2151	
14:45	2266	768	3122	922	1950	480	7338	2170	
15:00	2265	739	3098	959	1834	386	7197	2084	
15:15	2220	707	3097	960	1747	360	7064	2027	
15:30	2257	723	3093	958	1838	393	7188	2074	
15:45	2241	758	2953	891	1850	432	7044	2081	
16:00	2164	688	2914	809	1819	413	6897	1910	
16:15	2171	628	2889	825	1820	403	6880	1856	
16:30	2200	620	2747	824	1818	348	6765	1792	
16:45	2287	551	2863	841	1808	312	6958	1704	
17:00	2334	513	2842	837	1869	332	7045	1682	
17:00	2356	513	2792	837	1985	308	7133	1658	
17:13	2411	513	2894		2056	308	7361	1692	
	2455	505	2926	871 940	2090	309	7471	1754	
17:45									
18:00	2562	477	3053	935	2193	297	7808	1709	
18:15	2806	530	3239	936	2443	348	8488	1814	
18:30	3109	464	3525	936	2781	439	9415	1839	
18:45	3241	408	3636	912	2789	393	9666	1713	
19:00	3222	346	3679	871	2727	346	9628	1563	
19:15	3263	346	3673	881	2711	346	9647	1573	
19:30	3218	346	3626	864	2700	346	9544	1556	
19:45	3171	346	3696	951	2709	346	9576	1643	
20:00	3167	346	3675	945	2596	329	9438	1620	
20:15	3104	346	3574	936	2515	243	9193	1525	
20:30	3053	346	3542	859	2498	243	9093	1448	
20:45	2979	290	3452	844	2389	243	8820	1377	
21:00	2871	247	3380	826	2264	207	8515	1280	
21:15	2806	247	3366	844	2189	153	8361	1244	
21:30	2741	247	3343	844	2184	163	8268	1254	
21:45	2652	247	3255	844	2083	175	7990	1266	
22:00	2537	154	3196	835	2009	191	7742	1180	
22:15	2413	154	3175	827	1902	110	7490	1091	
22:30	2303	153	3586	948	1883	99	7772	1200	
22:45	2198	153	3755	1033	1842	90	7795	1276	
23:00	2121	153	3730	1048	1852	113	7703	1314	
23:15	2015	153	3695	1078	1876	169	7586	1400	
23:30	1897	153	3625	1079	1713	99	7235	1331	
23:45	1812	153	3671	1152	1706		7189	1305	
ENERG_DIA			78736	21915		7328	175936	38738	
	1464		2747		1518		6567	1091	
POT_MAX	3263		3798		2789		9666	2170	
. 5 1_1/1/00	0200	101	0.00	. 102	2.00	100	0000	_110	


01/04/2010			SUBESTACION	09		
	0921				TC	TAL
HORA	ACT.	REACT.			ACT.	REACT.
0:00		103			1187	103
0:15		103			1164	103
0:30		103			1131	103
0:45		103			1131	103
1:00		103			1131	103
1:15		103			1131	103
1:30		103			1131	103
1:45		103			1131	103
2:00		103			1131	103
2:15		103			1131	103
2:30		103			1131	103
2:45		103			1131	103
3:00		103			1095	103
3:15		103			1095	103
					1077	
3:30 3:45		103 103			1077	103 103
4:00		103			1082	103
4:15		103			1133	103
4:30		103			1133	103
4:45		103			1133	103
5:00		103			1180	103
5:15		103			1203	103
5:30		103			1262	103
5:45		103			1289	103
6:00		103			1305	103
6:15		103			1140	103
6:30		103			1093	103
6:45		103			1093	103
7:00		103			1093	103
7:15		103			1072	103
7:30		103			1034	103
7:45		103			1034	103
8:00		103			1034	103
8:15	1060	103			1060	103
8:30		121			1051	121
8:45	1061	207			1061	207
9:00	1102	207			1102	207
9:15	1109	207			1109	207
9:30	1109	207			1109	207
9:45	1109	207			1109	207
10:00	1109	207			1109	207
10:15	1109	207			1109	207
10:30		207			1095	
10:45					1076	
11:00					1088	
11:15					1093	
11:30		270			1121	270
11:45		297			1072	
12:00		297			1057	
12.00	. 507	_01			. 507	_0,

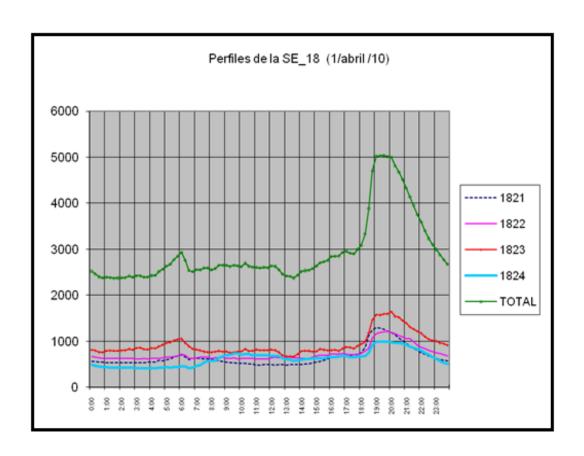
40.45	4057	007	4057	007
12:15		297	1057	297
12:30	1057	297	1057	297
12:45	1057	297	1057	297
13:00	1057	297	1057	297
13:15		297	1057	297
13:30	1064	297	1064	297
13:45	1072	297	1072	297
14:00	1084	297	1084	297
14:15	1087	297	1087	297
14:30		297	1127	297
14:45		297	1126	297
15:00		297	1100	297
15:15		297	1121	297
15:30		297	1104	297
15:45	1134	297	1134	297
16:00	1132	297	1132	297
16:15	1126	297	1126	297
16:30	1175	297	1175	297
16:45	1126	297	1126	297
17:00	1133	297	1133	297
17:15		297	1139	297
17:30		297	1180	297
17:45	1247	297	1247	297
18:00	1408	258	1408	258
18:15	1682	237	1682	237
18:30		250	2027	250
18:45		196	2149	196
19:00		196	2189	196
19:15		196	2189	196
19:30		196	2189	196
19:45	2161	196	2161	196
20:00	2114	196	2114	196
20:15	2064	196	2064	196
20:30	1985	196	1985	196
20:45		196	1914	196
21:00		196	1824	196
21:15		196	1729	196
21:30		196	1677	196
21:45	1620	196	1620	196
22:00	1564	196	1564	196
22:15	1501	196	1501	196
22:30	1443	196	1443	196
22:45		196	1391	196
23:00		196	1335	196
23:15		196	1297	196
23:30		196	1236	196
23:45		196	1221	196
ENERG_DIA		4614	30548	4614
		400	4004	400
POT_MIN POT_MAX	1034 2189		1034 2189	103 297


01/04/2010 SUBESTACION 12											
		1221		1222		1223			TAL	LINEA SE12-SE1	
HORA		ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.
	0:00	861	0	1628	270	37	0	2526	270	4284	
	0:15	861	0	1658	270	37	0	2556	270	4004	-769
	0:30	861	0	1604	250	37	0	2502	250	3994	-769
	0:45	861	0	1637	250	37	0	2535	250	3994	-769
	1:00	861	0	1590	279	37	0	2488	279	3994	-769
	1:15	861	0	1631	246	37	0	2529	246	3994	-769
	1:30	861	0	1568	272	37	0	2466	272	3994	-769
	1:45	861	0	1571	228	37	0	2469	228	3994	-769
	2:00	861	0	1543	254	37	0	2441	254	3994	-769
	2:15	861	0	1556	172	37	0	2454	172	3994	-769
	2:30	861	0	1498	225	37	0	2396	225	3994	-769
	2:45	861	0	1539	190	37	0	2437	190	3994	-769
	3:00	861	0	1529	230	37	0	2427	230	3994	-769
	3:15	861	0	1543	204	37	0	2441	204	3994	-769
	3:30	861	0	1484	228	37	0	2382	228	3994	-769
	3:45	861	0	1525	228	37	0	2423	228	3994	-769
	4:00	861	0	1498	228	37	0	2396	228	3994	-769
	4:15	861	0	1523	210	37	0	2421	210	3994	-769
	4:30	861	0	1490	224	37	0	2388	224	3994	-769
	4:45	861	0	1579	224	37	0	2477	224	3994	-769
	5:00		46	1576	197	37	0	2474	243	4274	-769
	5:15	886		1653	171	37	0	2576	209	4306	-769
	5:30		60	1494	163	37	0	2502	223	4410	-769
	5:45		60	1527	104	37	0	2535	164	4618	-769
	6:00			1248	152	37	0	2237	212	4550	-769
	6:15	861	69	1052	144	37	0	1950	213	4095	-306
	6:30		73	1076	188	37	0	1974	261	4037	-164
	6:45	861	98	1107	204	37	0	2005	302	4037	-164
	7:00	886		1124	204	37	0	2047	335	4037	-164
	7:15	971	200	1269	303	37	0	2277	503	4037	-164
	7:30			1345	285	37	0	2278	497	4037	-164
	7:45						0		528		
	8:00					37	0	2465	651	4037	
	8:15	1083				37	0	2527	770		
	8:30	1124		1426		37	0	2587	914		
	8:45	1116		1453			0	2606	960		
	9:00	1116		1404		37	0	2557	933		
	9:15						0	2619	975		
	9:30						0	2584	973		
	9:45						0	2628	1009		
	10:00						0	2709	1057		
	10:15	1138		1452		37	0	2627	1010		
	10:30			1426		37	0	2601	947		
	10:45	1138		1406			0	2581	902		
							0	2588	906		
	11·00	11.30			T 10	٠,٠	U	_5555	500	.520	107
	11:00 11:15					37	n	2630	949	4328	-164
,	11:15	1185	501	1408	448		0	2630 2789	949 967		
		1185 1287	501 534	1408 1465	448 433	37	0 0	2630 2789 2591	949 967 938	4328	-164

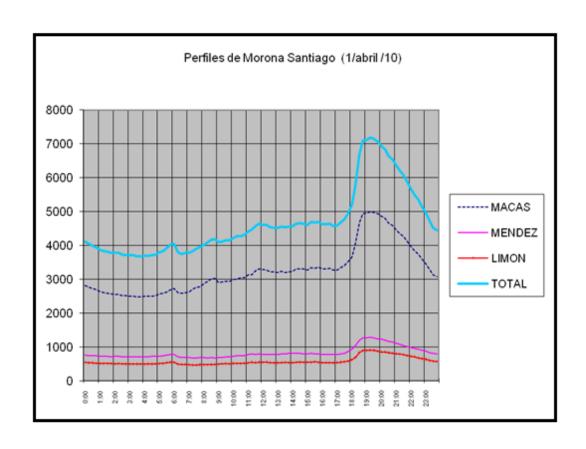
POT_MAX	「1620 「	583	3033	595	37		4690	1166	8192	-164
POT_MIN	861	0	1052	104	37		1950	164	3994	-769
ENERG_DIA			40493	9037	888	0	67830		114299	-7959
23:45	951	120	1701	208	37		2689	328	4410	-726
23:30	1061	126	1741	258	37	0	2839	384	4458	-426
23:15		126	1832	210	37	0	2930	336	4709	-164
23:00		126	1869	310	37	0	3059	436	4903	-164
22:45		126	1968	246	37	0	3176	372	5038	-164
22:30		126	1940	238	37	0	3148	364	5270	-164
22:15		128	2053	196	37	0	3342	324	5467	-164
22:00		193	2186	303	37	0	3552	496	5754	-164
21:45		193	2270	272	37	0	3707	465	6058	-164
21:13		246	2316	303	37	0	3753	549	6253	-164
21:00		211	2363	268	37	0	3855	479	6546	-164
20.45		274	2435	378	37	0	3982	666 606	7203 6865	-164
20:30 20:45		264 274	2616 2497	436 392	37 37	0	4163	700 666	7438	-164 -164
20:15		276	2769	481	37	0	4407 4163	757 700	7711	-164
20:00		291	2847	520	37	0	4504	811	7982	-164
19:45		291	2944	520	37	0	4601	811	7992	-164
19:30		247	3033	531	37	0	4690	778	8192	-164
19:15		288	2892	542	37	0	4545	830	7989	-164
19:00		280	2917	542	37	0	4464	822	7989	-164
18:45		261	2940	542	37	0	4483	803	7896	-164
18:30		261	2742	595	37	0	4160	856	7139	-164
18:15		233	2036	503	37	0	3211	736	5711	-164
18:00		246	1715	460	37	0	2807	706	5142	-164
17:45		299	1606	470	37	0	2700	769	4827	-164
17:30		334	1608	538	37	0	2722	872	4654	-164
17:15		334	1582	554	37	0	2661	888	4654	-164
17:00		334	1618	553	37	0	2697	887	4654	-164
16:45	1146	406	1546	490	37	0	2729	896	4654	-164
16:30	1049	408	1572	510	37	0	2658	918	4654	-164
16:15	1032	433	1508	576	37	0	2577	1009	4654	-164
16:00	1037	415	1512	576	37	0	2586	991	4360	-164
15:45		417	1558	576	37	0	2627	993	4328	-164
15:30		440	1526	576	37	0	2613	1016	4328	-164
15:15		470	1534	576	37	0	2679	1046	4328	-164
15:00		492	1491	576	37	0	2628	1068	4328	-164
14:45		492	1501	576	37	0	2660	1068	4328	-164
14:30		526	1516	579	37	0	2739	1105	4175	-164
14:00		583	1574	583	37	0	2824	1166	4023	-164
14:00		510	1549	580	37	0	2769	1009	4023	-164
13:45		484	1503	525	37	0	2722	1009	4023	-164
13:15		503	1460	445	37	0	2679	930	4023	-164
13:15		485	1404	444	37	0	2623	930	4023	-164
13:00		457	1279	444	37	0	2490	901	4023	-164
12:30 12:45		481 451	1227 1208	377 406	37 37	0	2423 2306	858 857	4023 4023	-164 -164
12:15		481	1269	416	37	0	2480	897	4186	-164
40.45	4474	404	4000	440	27	0	0.400	007	4400	404


01/04/2010			SI	JBEST/	ACION	I 14			
	1	421	1	422	1	423	TOTAL		
HORA	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	
0:00	1393	158	666	0	904	76	2963	234	
0:15		158	666	0	904	76	2963	234	
0:30		119	659	0	896	101	2920	220	
0:45		122	652	0	882	72	2873	194	
1:00		133	648	0	875	61	2855	194	
1:15		119	641	0	875	7	2851	126	
1:30		112	648	0	871	47	2844	158	
1:45		112	644	0	875	50	2840	162	
2:00		115	648	0	875	61	2848	176	
2:15		112	644	0	882	76	2840	187	
2:30		104	648	0	868	65	2822	169	
2:45		104	637	0	882	65	2815	169	
3:00		94	637	0	871	68	2804	162	
3:15		104	641	0	868	58	2812	162	
3:30		101	637	0	871	61	2815	162	
3:45		101	641	0	875	58	2830	158	
4:00		101	648	0	896	76	2855	176	
4:15		115	648	0	896	61	2876	176	
4:30		112	662	0	907	22	2916	133	
4:45		101	673	0	914	29	2923	130	
5:00		101	684	0	940	47	2938	148	
5:15		94	702	0	986	86	3017	180	
5:30		86	731	0	1008	94	3046	180	
5:45		79	752	0	1015	29	3125	108	
6:00		76	695	0	940	104	3002	180	
6:15		90	587	0	752	86	2599	176	
6:30		101	572	0	724	86	2560	187	
6:45		130	580	0	724	90	2617	220	
7:00		184	583	0	720	76	2740	259	
7:15		184	583	0	713	79	2732	263	
7:30		234	590	0	713	94	2740	328	
7:45		234	590	0	716	97	2743	331	
8:00		256	594	0	702	94	2776		
8:15		284	587	0	698	101	2801	385	
8:30		317	572	0	706	101	2819		
8:45		342	590	0	716	112	2848		
9:00		346	590	0	710	115	2862	461	
9:00		364	583	0	727	119			
9:30		364	587	0	709	119	2840		
9:30		378	652	0	695	119			
10:00		378	652	0	727	119	2923		
10:00		378	619	0	702	119	2898		
10.13		392	601	0	695	119			
10:30					709	126			
		396	637	0			2966		
11:00		389	623	0	720	130	2945	518	
11:15		396	637	0	731	137	2977	533	
11:30		392	644	0	752	140	2988		
11:45		389	652	0	724	137	2948		
12:00	1541	385	590	0	745	140	2876	526	

POI_WIIN	1200	70	001					100
POT MIN	1260	76	551		695	7	2560	108
ENERG_DIA		6599	18614	0	22258	2738	80505	9337
23:45		234	770	0	968	104	3416	338
23:30		176	792	0	990	104	3496	281
23:15		194	832	0	1019	108	3629	302
23:00		310	868	0	1048	86	3773	396
22:45		320	918	0	1102	97	3956	418
22:30		324	965	0	1141	126	4111	450
22:15	2070	310	997	0	1163	97	4230	407
22:00	2131	212	1040	0	1213	126	4385	338
21:45	2225	338	1152	0	1253	133	4630	472
21:30	2286	342	1206	0	1274	115	4766	457
21:15	2329	364	1224	0	1310	158	4864	522
21:00	2387	374	1310	0	1350	166	5047	540
20:45	2470	396	1354	0	1390	187	5213	583
20:30	2484	385	1397	0	1415	122	5296	508
20:15	2426	378	1429	0	1444	144	5299	522
20:00	2315	346	1480	0	1472	209	5267	554
19:45	2351	346	1505	0	1512	176	5368	522
19:30	2466	353	1519	0	1541	126	5526	479
19:15	2502	353	1501	0	1544	176	5548	529
19:00	2527	371	1490	0	1559	158	5576	529
18:45		378	1429	0	1523	212	5411	590
18:30		382	1300	0	1422	223	5033	605
18:15		378	954	0	1102	173	4043	551
18:00	1804	360	803	0	983	148	3589	508
17:45		356	760	0	940	144	3442	500
17:30		364	770	0	932	144	3427	508
17:15		324	745	0	882	133	3283	457
17:00	1609	306	727	0	864	130	3200	436
16:45	1606	313	702	0	850	137	3157	450
16:30		320	720	0	832	137	3136	457
16:15		331	727	0	817	140	3146	472
16:00	1606	324	702	0	832	140	3139	464
15:45	1584	338	713	0	839	144	3136	482
15:30	1580	364	720	0	824	144	3125	508
15:15	1580	374	698	0	806	140	3085	515
15:00	1566	371	684	0	806	140	3056	511
14:45	1573	396	648	0	803	158	3024	554
14:30	1548	400	623	0	763	155	2934	554
14:15	1566	407	634	0	734	148	2934	554
14:00	1573	418	630	0	731	148	2934	565
13:45	1584	421	626	0	745	151	2956	572
13:30		418	554	0	749	144	2891	562
13:15	1573	392	554	0	745	133	2873	526
13:00	1562	396	569	0	756	140	2887	536
12:45	1541	374	554	0	749	137	2844	511
12:30	1512	367	551	0	734	133	2797	500
12:15	1508	364	558	0	745	133	2812	497


01/04/20	010				S	UBES	STACIO	N 15				
		1:	521	1	522	1523		TO	TAL	GUALACEO		
HORA		ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	
0:	:00	1415	66	1217	110	1476	69	4108	245	4125,82	482,824	
0:	:15	1339	66	1217	110	1437	69	3993	245	4020,86	423,236	
0:	:30	1339	66	1194	7	1468	69	4001	142	3999,272	422,9	
0:	:45	1339	66	1142	0	1508	69	3989	135	3981,084	407	
1:	:00	1339	66	1142	0	1482	69	3963	135	3938,88	404,724	
1:	:15	1324	66	1142	0	1480	69	3946	135	3933,536	432,884	
1:	:30	1264	66	1142	0	1470	69	3876	135	3886,304	406,028	
1:	:45	1264	66	1142	0	1474	69	3880	135	3883,384	421,4	
2:	:00	1264	66	1077	0	1444	69	3785	135	3849,504	427,992	
2:	:15	1264	66	1061	0	1414	69	3739	135	3814,736	402,208	
2:	:30	1264	66	1061	0	1408	69			3781,916		
	:45	1264	66	1061	0	1401	69					
	:00	1264	66	1061	0	1401	69			3752,004		
	:15	1264	66	1061	0	1413				3768,78		
	:30	1264	66	1061	0	1421	69				361,588	
	:45	1264	66	1061	0	1436			135		361,672	
	:00	1264	66	1061	0	1445	69					
	:15	1264	66	1061	0	1444				3804,672		
	:30	1264	66	1061	0	1412				3802,604		
	:45	1264	66	1061	0	1412					311,656	
	:00	1309	66	1061	0	1412						
	:15	1415	66	1061	0	1397	-41	3873		3943,652		
	:30	1417	66	1061	0	1367	-41	3845		3959,168		
	:45	1450	66	1097	0	1412		3959		4083,576		
	:00	1435	66	1115	0	1382	-41	3932		4056,224		
	:15	1265	66	995	0	1220	-41	3480		3551,344		
	:30	1265	66	982	0	1189	-41	3436		3493,824		
	:45	1265	182	1012	0	1231	-26					
	:00	1265	195	1035	48	1257	69			3611,048		
	:15	1321	195	1138	121	1305	69					
	:30	1306	195	1228	167	1397	141		503			
	:45	1313	195	1310	338		223			4183,264		
	:00		195		338					4195,484		
	:15	1307	195	1494	395					4371,196		
	:30	1359	276	1577	503							
	:45	1359	305	1596	503					4550,292		
	:00	1359	305	1600	503						1439,06	
	:15	1427	305	1628	526		333					
	:30	1386	305	1615	616	1517	333			4564,068		
	:45	1378	305	1661	616	1550				4645,004		
	:00	1426	305	1639	616	1598				4704,424		
	:15	1423	327		616		333			4704,424		
				1685						4741,436		
	:30 :45	1432	415 415	1669	616 616					4769,756		
		1447		1674								
	:00	1447	415	1696	616	1600				4777,876		
	:15	1447	415	1676	616	1606				4790,612		
	:30	1447	415	1734	616		333					
	:45	1447	415	1628	592	1608				4748,82		
12:	:00	1447	415	1565	475	1582	445	4594	1335	4607,192	1520,69	

10.15	1373	115	1490	450	1547	274	4410	1240	44E0 706	1400 E4
12:15 12:30	1360	415 415	1490	459 459	1547	374 333	4380	1248 1207	4459,796 4431,3	
12:30	1355	389	1472		1545	333	4372	1181	4413,268	1362,04
				459						
13:00	1355	305	1472	461	1545	333	4372	1099 1094	4378,604	1379,93
13:15	1355	305	1472	456	1545	333	4372		4418,66	1444,78
13:30	1355	367	1501	456	1569	333	4425	1156	4503,908	1542,88
13:45	1368	415	1560	456	1644	409	4572	1280	4595,688	1624,03
14:00	1432	415	1627	580	1672	459	4731	1454	4739,568	1696,6
14:15	1432	415	1599	580	1632	459	4663	1454	4722,42	1723,77
14:30	1432	415	1622	580	1610	460	4664	1455	4691,488	1693,14
14:45	1417	415	1628	580	1635	465	4680	1460	4751,112	1718,86
15:00	1430	415	1639	580	1634	423	4703	1418	4783,6	1780,42
15:15	1438	415	1668	580	1664	400	4770	1395	4802,904	1756,88
15:30	1410	415	1638	592	1615	434	4663	1441	4728,516	1699,02
15:45	1382	415	1701	619	1618	434	4701	1468	4787,164	1776,47
16:00	1434	415	1637	619	1654	438	4725	1472	4756,456	1731,6
16:15	1442	415	1574	619	1585	432	4601	1466	4704,804	1683,39
16:30	1509	415	1609	619	1610	454	4728	1488	4799,38	1711,86
16:45	1570	415	1642	619	1629	433	4841	1467	4869,836	1640,9
17:00	1592	400	1565	512	1580	383	4737	1295		
17:15	1652	305	1639	509	1601	379	4892	1193		1479,14
17:30	1727	305	1629	446	1664	315	5020	1066	5099,096	1404,37
17:45	1854	305	1629	399	1775	336	5258	1040	5303,804	1409,82
18:00	1948	305	1629	399	1873	359	5450	1063	5541,284	1349,72
18:15	2197	305	1749	399	2111	271	6057	975	6013,952	1362,92
18:30	2669	305	2085	358	2402	231	7156	894	7173,696	1420,35
18:45	2937	305	2115	289	2525	169	7577	763	7683,1	1283,31
19:00	2940	305	2135	204	2525	115	7600	624	7726,316	-
19:15	2940	305	2184	179	2549	115	7673	599		
19:30	2898	305	2113	179	2501	115	7512	599	7613,24	1131,7
19:45	2836	305	2113	179	2530	115	7479	599	7556,544	1135,5
20:00	2773	305	2113	179	2519	115	7405	599		-
20:15	2702	279	2096	179	2428	115	7226	573	7294,872	1070,7
20:30	2617	192	2029	179	2342	101	6988	472	7064,116	-
20:45	2574	192	1976	179	2325	151	6875	522	6940,976	-
21:00	2423	192	1954	179	2201	56	6578	427		877,428
21:15	2324	192	1891	179	2162	41	6377		6439,128	
21:30	2237	192	1879	179	2082	41	6198	412		
21:45	2139	192	1819	179	2057	41	6015	412		
22:00	2034	192	1729	179	1963	41	5726	412		717,148
22:15	1956	192	1661	179	1862	41	5479	412	5551,408	-
22:30	1872	192	1595	113	1766	41	5233	346	5263,264	610,44
22:45	1776	192	1549	69	1738	41	5063	302	5089,628	
23:00	1702	52	1489	69	1685	41	4876	162	4934,488	-
23:15	1627	52	1406	69	1590	41	4623	162	4672,248	
23:30	1544	52	1310	69	1613	41	4467	162	4483,612	483,54
23:45	1499	52	1270	69	1587		4356	121	4377,3	508,88
ENERG_DIA			35769		39905		114292	17010	115502,9	
_	1264		982		1189		3436		3493,824	
POT_MAX	2940	415	2184	619	2549	465	7673	1488	7736,984	1780,74


01/04/2010				S	<u>UBES</u>	TACION	N 18				
	1	821	1	822	18	1823		B24	TOTAL		
IORA	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	
0:00	559	-180	664	-78	809	-432	489	92	2521	-59	
0:15	553	-177	647	-77	800	-416	461	81	2461	-58	
0:30	546	-180	635	-83	762	-440	456	87	2399	-61	
0:45	546	-180	632	-87	757	-445	442	85	2377	-62	
1:00	537	-182	627	-83	791	-420	433	83	2388	-60	
1:15	535	-179	627	-79	797	-416	425	82	2384	-59	
1:30	535	-180	623	-81	792	-421	420	78	2370	-60	
1:45	531	-180	621	-84	794	-421	427	83	2373	-60	
2:00	534	-179	620	-91	797	-425	426	86	2377	-60	
2:15	536	-181	624	-83	802	-428	423	87	2385	-60	
2:30	534	-181	629	-80	833	-412	424	82	2420	-59	
2:45	532	-180	623	-84	813	-421	421	82	2389	-60	
3:00	537	-178	619	-88	850	-387	416	81	2422	-57	
3:15	534	-181	617	-86	857	-364	417	83	2425	-54	
3:30	536	-185	620	-86	824	-394	409	79	2389	-58	
3:45	543	-178	617	-88	818	-395	417	83	2395	-57	
4:00	546	-180	621	-87	850	-367	411	78	2428	-55	
4:15		-180		-84	845	-383	410	76	2430		
4:30	583	-190		-88	885	-373	419	84	2517		
4:45		-179	646	-86		-354	424	84	2567		
5:00		-184		-88		-352	432	88			
5:15		-183		-92	976	-352	431	79			
5:30		-181	670	-87	1015	-352	436	78			
5:45		-176		-90		-359	443	70			
6:00		-173	715	-87	1056	-361	454	73			
6:15		-151	695	-71	959	-355	448	79			
6:30		-109	632	-41	892	-315	406	93			
6:45		-96	630	-29	834	-347	427	99	2514		
7:00		-102	639	-23		-335	470	102	2556		
7:15		-102	648	-18		-336	485	103			
7:30		-105	659	-17	775	-336	539	96	2590		
7:45		-108		-16		-324	567	95			
8:00		-103		-19		-311	567	108			
8:15		-88		-12		-275	574	108			
8:30		-86		-10		-247	643	136			
8:45		-76		2		-255	671	145			
9:00		-73		7		-249	699	155			
9:15		-73		6		-271	710	165			
9:30		-70		25		-242	732	176			
9:45		-64		29		-237	734	173			
10:00		-69		35		-234	703	171	2619		
10:15		-65				-203	722	193			
10:13		-62		40		-215	715	190			
10:30		-56			790	-213	698	188			
11:00		-50 -57				-208	697	182			
11:15		-5 <i>1</i>		40		-206	696	173			
11:30		-60				-204 -191	695	173			
11:30						-191					
11.45	490	-59	616	48	803	-191	690	182	2599	-2	

12:30 490 -68 655 59 761 -219 674 171 2560 -57 12:45 491 -69 645 61 687 -274 632 161 2455 -121 13:00 483 -66 653 65 666 -304 614 167 2410 -159 13:10 492 -69 660 62 672 -302 596 150 2410 -159 13:30 494 -67 641 67 663 -319 576 145 2374 -174 13:45 492 -64 643 66 718 -267 594 152 2437 -113 14:00 496 -59 631 58 768 -215 605 161 2518 -55 14:50 500 -60 626 45 789 -211 619 166 2534 -78 14:45 532 -64 664 39 788 -223 619 167 2543 -78 14:45 532 -64 664 37 772 -239 621 153 2579 -113 15:00 544 -65 674 39 781 -236 631 153 2530 -109 15:15 556 -73 696 25 831 -212 620 143 2703 -117 15:30 585 -79 699 22 815 -241 626 136 2725 -162 15:45 617 -87 697 21 796 -252 651 136 2725 -162 16:15 662 -89 715 22 802 -264 655 124 2848 -188 16:30 681 -86 719 20 812 -246 655 124 2848 -188 16:30 681 -86 716 18 788 -2266 669 115 2854 -239 17:00 676 -85 723 19 873 -266 684 123 2956 -299 17:00 676 -85 706 -3 866 -259 652 117 2913 -193 17:00 676 -85 706 -3 866 -259 652 117 2913 -193 17:00 676 -85 706 -3 866 -259 652 117 2913 -193 17:30 703 -86 705 -13 840 -221 651 116 3082 -224 18:50 117 -160 841 4 1192 -243 742 121 3882 -278 18:30 1117 -160 841 4 1192 -243 742 121 3882 -278 18:30 1117 -160 841 4 1192 -243 661 124 2997 -256 428 18:30 1117 -160 841 4 1192 -243 742 121 3882 -278 19:00 1256 -176 1163 -59 1566 -324 986 93 5032 -471 19:00 1251 -178 1050 -80 1307 -307 878 504 4319 -479 123 -335 500 431 -435 -431 -435 -431 -435 -431	40.45	404	74	050	00	000	000	000	400	0000	0.4
12:45	12:15	481	-71	659	66	803	-202	686	183	2629	-24
13:00											
13:15											
13:30											
13:45											
14:00											
14:15 500 60 626 45 789 -211 619 166 2534 -60 14:30 508 -61 628 39 788 -223 619 167 2543 -78 14:45 532 -64 654 37 772 -239 621 153 2579 -113 15:00 544 -65 674 39 781 -236 631 153 2630 -109 15:15 556 -73 696 25 831 -212 620 143 2703 -117 15:30 585 -79 699 22 815 -241 626 136 2725 -162 15:45 617 -87 697 21 796 -252 661 136 2725 -162 16:00 662 -89 715 22 802 -264 659 126 2838 -205 16:15 662 -86 719 20 812 -246 655 124 2848 -188 16:30 681 -86 716 18 788 -286 669 115 2854 -239 17:00 676 -85 723 19 873 -266 684 123 2956 -209 17:15 688 -85 706 -8 866 -259 652 121 2933 -199 17:30 703 -86 705 -13 840 -291 651 116 2899 -274 17:45 712 -89 723 -8 901 -283 669 116 3086 -268 18:30 750 -94 730 -7 937 -283 669 116 3086 -268 18:30 717 -100 841 4 1182 -243 742 121 3882 -278 18:45 1251 -173 1064 -24 1466 -275 924 105 4705 -367 19:00 1296 -176 1163 -52 1577 -295 986 93 5032 -471 19:45 1218 -177 1213 -65 1589 -319 995 101 5015 -460 20:00 1911 -176 1192 -68 1641 -283 981 96 5005 -431 20:30 1073 -181 1192 -68 149 -297 954 97 4517 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 20:45 1019 -183 1095 -70 1449 -297 954 9											
14:30 508											
14:45 532 -64 654 37 772 -239 621 153 2579 -113 15:00 544 -65 674 39 781 -236 631 153 2630 -109 15:15 556 -73 696 25 831 -212 620 143 2703 -117 15:30 585 -79 699 22 815 -241 626 136 2725 -162 15:45 617 -87 697 21 796 -252 651 136 2761 -182 16:00 662 -89 715 22 802 -264 659 126 2838 -205 16:15 662 -86 719 20 812 -246 655 124 2848 -183 16:30 681 -86 716 18 788 -286 669 115 2854 -239 17:00 676 -85 723 19 873 -266 684 123 2956 -209 17:15 688 -85 706 -8 866 -259 652 117 2912 -235 17:30 703 -86 705 -13 840 -291 651 116 2899 -274 17:45 712 -89 723 -8 901 -283 661 124 2997 -256 18:00 750 -94 730 -7 937 -283 669 116 3086 -268 18:15 874 -113 789 15 990 -282 680 118 3333 -262 18:30 1117 -160 841 4 1182 -243 742 121 3882 -278 19:15 1284 -181 1196 -59 1566 -324 986 93 5032 -471 19:30 1252 -182 1207 -67 1589 -319 995 101 5015 -460 20:15 1142 -185 1163 -74 153 -280 699 481 -483 20:15 1142 -185 1163 -74 153 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1521 -281 964 93 4681 -453 20:15 1142 -185 1163 -74 1521 -281 964 93 4681 -453 20:15 1142 -185 1163 -74 1521 -281 964 93 4681 -453 20:15 1142 -185 1163 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1521 -281 964 93 4681 -453 20:15 1142 -185 1163 -74 1538 -290 965 97 99 99 99 99 99 99 9											
15:00 544 -65 674 39 781 -236 631 153 2630 -109 15:15 556 -73 696 25 831 -212 620 143 2703 -117 15:30 585 -79 699 22 815 -241 626 136 2725 614 15:45 617 -87 697 21 796 -252 651 136 2725 182 16:00 662 -89 715 22 802 -264 659 126 2838 -205 16:15 662 -86 719 20 812 -246 665 124 2848 -188 16:30 681 -86 716 18 788 -286 669 115 2854 -239 16:45 677 -88 733 23 841 -255 682 121 2933 -199 17:00 676 -85 723 19 873 -266 684 123 2956 -209 17:15 688 -85 706 -8 866 -259 652 117 2912 -235 17:30 703 -86 705 -13 840 -291 651 116 2899 7-256 18:00 750 -94 730 -7 937 -283 669 116 3086 -268 18:15 874 -113 789 15 990 -282 680 118 3333 -262 18:30 117 -160 841 4 1182 -243 742 121 3882 -278 19:00 1296 -176 1163 -52 1577 -295 986 95 5022 -428 19:15 1284 -181 1196 -59 1566 -324 986 93 5032 -471 19:30 1252 -182 1207 -67 1589 -319 995 101 5015 -431 19:45 1218 -177 1213 -65 1589 -319 995 101 5015 -431 20:30 1073 -191 1123 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1521 -281 964 93 4681 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -451 21:10 951 -180 -175 908 -80 1307 -307 878 75 4135 -491 21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:15 900 -179 1050 -80 1307 -307 878 75 4135 -491 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:15 716 -172 840 -79 1100 -335											
15:15 556 -73 696 25 831 -212 620 143 2703 -117 15:30 585 -79 699 22 815 -241 626 136 2725 -162 15:45 617 -87 697 21 796 -252 651 136 2725 -162 16:00 662 -89 715 22 802 -264 659 126 2838 -205 16:15 662 -86 719 20 812 -246 655 124 2848 -188 16:30 681 -86 716 18 788 -286 669 115 2854 -239 16:45 677 -88 733 23 841 -255 682 121 2933 -199 17:00 676 -85 723 19 873 -266 684 123 2956 -209 17:15 688 -85 706 -8 866 -259 652 117 2912 -235 17:30 703 -86 705 -13 840 -291 651 116 2899 -274 17:45 712 -89 723 -8 901 -283 661 124 2997 -256 18:03 750 -94 730 -7 937 -283 669 116 3086 -268 18:15 874 -113 789 15 990 -282 680 118 333 -266 18:33 1117 -160 841 4 1182 -243 742 121 3882 -278 19:00 1296 -176 1163 -52 1577 -295 986 95 5022 -428 19:15 1284 -181 1196 -59 1566 -324 986 93 5032 -428 19:15 1284 -181 1196 -59 1566 -324 986 93 5032 -428 19:45 1218 -177 1213 -65 1589 -319 995 101 5015 -460 20:00 1191 -176 1192 -68 1641 -283 981 96 5005 -431 20:30 1073 -191 1123 -74 1524 -281 964 93 4681 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 -453 -453 -453 -454 -453 -453 -454 -453 -454 -453 -454 -453 -454											
15:30											
15:45											
16:00 662 -89 715 22 802 -264 659 126 2838 -205 16:15 662 -86 719 20 812 -246 655 124 2848 -188 16:30 681 -86 716 18 788 -286 669 115 2854 -239 16:45 677 -88 733 23 841 -255 682 121 2933 -199 17:00 676 -85 723 19 873 -266 684 123 2956 -209 17:15 688 -85 706 -8 866 -259 652 117 2912 -235 17:30 703 -86 705 -13 840 -291 651 116 2899 -274 17:45 712 -89 723 -8 901 -283 661 124 2997 -256 18:00 750 -94 730 -7 937 -283 669 116 3086 -268 18:15 874 -113 789 15 990 -282 680 118 3333 -262 18:30 1117 -160 841 4 1182 -243 742 121 3882 -278 18:45 1251 -173 1064 -24 1466 -275 924 105 4705 -367 19:00 1296 -176 1163 -52 1577 -295 986 93 5032 -471 19:30 1252 -182 1207 -67 1589 -319 992 96 5040 -472 19:45 1218 -177 1213 -65 1589 -319 995 101 5015 -460 20:00 1191 -176 1192 -68 1641 -283 981 96 5005 -431 20:15 1142 -185 1163 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1050 -80 1398 -293 927 92 4326 -461 21:15 900 -179 1050 -80 1397 -337 878 75 4135 -491 21:30 838 -178 992 -81 1260 -307 858 81 3948 -453 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 22:15 716 -172 869 -78 1175 -311 801 82 3594 -479 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:30 688 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERGINA -487 -491 -608 -92 668 -											
16:15 662 -86 719 20 812 -246 655 124 2848 -188 16:30 681 -86 716 18 788 -286 669 115 2854 -239 16:45 677 -88 733 23 841 -255 682 121 2933 -199 17:00 676 -85 723 19 873 -266 684 123 2956 -209 17:15 688 -85 706 -8 866 -259 652 117 2912 -235 17:30 703 -86 705 -13 840 -291 651 116 2899 -274 -274 17:45 712 -89 723 -8 901 -283 661 124 2997 -256 18:00 750 -94 730 -7 937 -283 669 116 3086 -268 18:15 874 -113 789 15 990 -282 680 118 3333 -262 18:30 1117 -160 841 4 1182 -243 742 121 3882 -278 18:45 1251 -173 1064 -24 1466 -275 924 105 4705 -367 19:00 1296 -176 1163 -52 1577 -295 986 95 5022 -428 19:15 1284 -181 1196 -59 1566 -324 986 93 5032 -471 19:30 1252 -182 1207 -67 1589 -319 992 96 5040 -472 19:45 1218 -177 1213 -65 1589 -319 995 101 5015 -460 20:00 1191 -176 1192 -68 1641 -283 981 96 5005 -431 20:15 1142 -185 1163 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1538 -280 969 94 4812 -445 20:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 660 -173 781 -83 1015 -346 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 685 -173 707 -78 943 -344 535 -8991 23:45 504 -171 735 -75 961 -360 577 90 2877 -516 23:30 685 -173 707 -78									136		
16:30									126		
16:45	16:15						-246				-188
17:00 676 -85 723 19 873 -266 684 123 2956 -209 17:15 688 -85 706 -8 866 -259 652 117 2912 -235 17:30 703 -86 705 -13 840 -291 651 116 2899 -274 17:45 712 -89 723 -8 901 -283 661 124 2997 -256 18:00 750 -94 730 -7 937 -283 669 116 3086 -268 18:15 874 -113 789 15 990 -282 680 118 3333 -262 18:30 1117 -160 841 4 1182 -243 742 121 3882 -278 18:45 1251 -173 1064 -24 1466 -275 924 105 4705 -367 19:00 1296 -176 1163 -52 1577 -295 986 95 5022 -428 19:15 1284 -181 1196 -59 1566 -324 986 93 5032 -471 19:30 1252 -182 1207 -67 1589 -319 992 96 5040 -472 19:45 1218 -177 1213 -65 1589 -319 995 101 5015 -460 20:00 1191 -176 1192 -68 1641 -283 981 96 5005 -431 20:15 1142 -185 1163 -74 1521 -281 964 93 4681 -445 20:30 1073 -191 1123 -74 1521 -281 964 93 4681 -453 21:00 951 -180 1050 -80 1398 -293 927 92 4326 -461 21:15 900 -179 1050 -80 1398 -293 927 92 4326 -461 21:15 900 -179 1050 -80 1398 -293 927 92 4326 -461 21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 22:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 888 819 945 -8319,25 800 -174 70 684 -80 912 -354 502 82 2672 -522 800 -181 -191 608 -92 663 -445 406 70 2370 -627		681					-286				
17:15 688 -85 706 -8 866 -259 652 117 2912 -235 17:30 703 -86 705 -13 840 -291 651 116 2899 -274 17:45 712 -89 723 -8 901 -283 661 124 2997 -256 18:00 750 -94 730 -7 937 -283 669 116 3086 -268 18:15 874 -113 789 15 990 -282 680 118 3333 -262 18:30 1117 -160 841 4 1182 -243 742 121 3882 -278 18:45 1251 -173 1064 -24 1466 -275 924 105 4705 -367 19:00 1296 -176 1163 -52 1577 -295 986 95 5022 -428 19:15 1284 -181 1196 -59 1566 -324 986 93 5032 -471 19:30 1252 -182 1207 -67 1589 -319 992 96 5040 -472 19:45 1218 -177 1213 -65 1589 -319 995 101 5015 -460 20:00 1191 -176 1192 -68 1641 -283 981 96 5005 -431 20:15 1142 -185 1163 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1521 -281 964 93 4681 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 21:00 951 -180 1050 -80 1398 -293 927 92 4326 -461 21:15 900 -179 1050 -80 1398 -293 927 92 4326 -461 21:15 802 -175 908 -80 1307 -307 878 75 4135 -491 21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 869 -78 1175 -311 801 82 3594 -479 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 2886 2672 -52		677						682			-199
17:30	17:00	676	-85	723	19	873	-266	684	123		-209
17:45	17:15	688	-85	706	-8	866	-259	652	117	2912	-235
18:00	17:30	703	-86	705	-13	840	-291	651	116	2899	-274
18:15 874 -113 789 15 990 -282 680 118 3333 -262 18:30 1117 -160 841 4 1182 -243 742 121 3882 -278 18:45 1251 -173 1064 -24 1466 -275 924 105 4705 -367 19:00 1296 -176 1163 -52 1577 -295 986 95 5022 -428 19:15 1284 -181 1196 -59 1566 -324 986 93 5032 -471 19:30 1252 -182 1207 -67 1589 -319 992 96 5040 -472 19:45 1218 -177 1213 -65 1589 -319 995 101 5015 -460 20:00 1191 -176 1192 -68 1641 -283 981 96 5005 -431 20:15 1142 -185 1163 -74 1538 -280	17:45	712	-89	723	-8	901	-283	661	124	2997	-256
18:30 1117 -160 841 4 1182 -243 742 121 3882 -278 18:45 1251 -173 1064 -24 1466 -275 924 105 4705 -367 19:00 1296 -176 1163 -52 1577 -295 986 95 5022 -428 19:15 1284 -181 1196 -59 1566 -324 986 93 5032 -471 19:30 1252 -182 1207 -67 1589 -319 992 96 5040 -472 19:45 1218 -177 1213 -65 1589 -319 995 101 5015 -460 20:00 1191 -176 1192 -68 1641 -283 981 96 5005 -431 20:15 1142 -185 1163 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1521 -281 </td <td>18:00</td> <td>750</td> <td>-94</td> <td>730</td> <td>-7</td> <td>937</td> <td>-283</td> <td>669</td> <td>116</td> <td>3086</td> <td>-268</td>	18:00	750	-94	730	-7	937	-283	669	116	3086	-268
18:45 1251 -173 1064 -24 1466 -275 924 105 4705 -367 19:00 1296 -176 1163 -52 1577 -295 986 95 5022 -428 19:15 1284 -181 1196 -59 1566 -324 986 93 5032 -471 19:30 1252 -182 1207 -67 1589 -319 992 96 5040 -472 19:45 1218 -177 1213 -65 1589 -319 995 101 5015 -460 20:00 1191 -176 1192 -68 1641 -283 981 96 5005 -431 20:15 1142 -185 1163 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1521 -281 964 93 4681 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 21:00 951 -180 1050 -80 1398 -293 927 92 4326 -461 21:15 900 -179 1050 -80 1307 -307 878 75 4135 -491 21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA	18:15	874	-113	789	15	990	-282	680	118	3333	-262
19:00 1296 -176 1163 -52 1577 -295 986 95 5022 -428 19:15 1284 -181 1196 -59 1566 -324 986 93 5032 -471 19:30 1252 -182 1207 -67 1589 -319 992 96 5040 -472 19:45 1218 -177 1213 -65 1589 -319 995 101 5015 -460 20:00 1191 -176 1192 -68 1641 -283 981 96 5005 -431 20:15 1142 -185 1163 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1521 -281 964 93 4681 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 21:00 951 -180 1050 -80 1398 -293 927 92 4326 -461 21:15 900 -179 1050 -80 1307 -307 878 75 4135 -491 21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 748 -191 608 -92 663 -445 406 70 2370 -627	18:30	1117	-160	841	4	1182	-243	742	121	3882	-278
19:15	18:45	1251	-173	1064	-24	1466	-275	924	105	4705	-367
19:30	19:00	1296	-176	1163	-52	1577	-295	986	95	5022	-428
19:45 1218 -177 1213 -65 1589 -319 995 101 5015 -460 20:00 1191 -176 1192 -68 1641 -283 981 96 5005 -431 20:15 1142 -185 1163 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1521 -281 964 93 4681 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 21:00 951 -180 1050 -80 1398 -293 927 92 4326 -461 21:15 900 -179 1050 -80 1307 -307 878 75 4135 -491 21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN	19:15	1284	-181	1196	-59	1566	-324	986	93	5032	-471
20:00 1191 -176 1192 -68 1641 -283 981 96 5005 -431 20:15 1142 -185 1163 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1521 -281 964 93 4681 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 21:00 951 -180 1050 -80 1398 -293 927 92 4326 -461 21:15 900 -179 1050 -80 1307 -307 878 75 4135 -491 21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627	19:30	1252	-182	1207	-67	1589	-319	992	96	5040	-472
20:15 1142 -185 1163 -74 1538 -280 969 94 4812 -445 20:30 1073 -191 1123 -74 1521 -281 964 93 4681 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 21:00 951 -180 1050 -80 1398 -293 927 92 4326 -461 21:15 900 -179 1050 -80 1307 -307 878 75 4135 -491 21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627	19:45	1218	-177	1213	-65	1589	-319	995	101	5015	-460
20:30 1073 -191 1123 -74 1521 -281 964 93 4681 -453 20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 21:00 951 -180 1050 -80 1398 -293 927 92 4326 -461 21:15 900 -179 1050 -80 1307 -307 878 75 4135 -491 21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN	20:00	1191	-176	1192	-68	1641	-283	981	96	5005	-431
20:45 1019 -183 1095 -70 1449 -297 954 97 4517 -453 21:00 951 -180 1050 -80 1398 -293 927 92 4326 -461 21:15 900 -179 1050 -80 1307 -307 878 75 4135 -491 21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627	20:15	1142	-185	1163	-74	1538	-280	969	94	4812	-445
21:00 951 -180 1050 -80 1398 -293 927 92 4326 -461 21:15 900 -179 1050 -80 1307 -307 878 75 4135 -491 21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627	20:30	1073	-191	1123	-74	1521	-281	964	93	4681	-453
21:15 900 -179 1050 -80 1307 -307 878 75 4135 -491 21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627	20:45	1019	-183	1095	-70	1449	-297	954	97	4517	-453
21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627	21:00	951	-180	1050	-80	1398	-293	927	92	4326	-461
21:30 838 -178 992 -81 1260 -307 858 81 3948 -485 21:45 802 -175 908 -80 1213 -315 827 83 3750 -487 22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627					-80						
22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627		838	-178	992	-81	1260	-307	858	81	3948	-485
22:00 749 -172 869 -78 1175 -311 801 82 3594 -479 22:15 716 -172 840 -79 1100 -335 750 87 3406 -499 22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3	21:45	802	-175	908	-80	1213	-315	827	83	3750	-487
22:30 680 -174 804 -79 1049 -337 701 91 3234 -499 22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627	22:00	749	-172	869	-78		-311	801	82	3594	-479
22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627	22:15	716	-172	840	-79	1100	-335	750	87	3406	-499
22:45 650 -173 781 -83 1015 -349 655 88 3101 -517 23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627					-79						
23:00 628 -174 744 -81 1003 -334 616 84 2991 -505 23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627					-83			655	88		
23:15 604 -171 735 -75 961 -360 577 90 2877 -516 23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627											
23:30 585 -173 707 -78 943 -344 535 87 2770 -508 23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627											
23:45 574 -170 684 -80 912 -354 502 82 2672 -522 ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627											
ENERG_DIA 15692 -3065,3 17418 -654,75 22275 -7367,3 14969 2768 70354 -8319,25 POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627											
POT_MIN 481 -191 608 -92 663 -445 406 70 2370 -627											
	POT_MAX			1213	67	1641	-183	995	193	5040	-7

01/04/201	0		M	ORONA	IA SANTIAGO						
	MA	CAS	MENDEZ		LIM	ON	TOTAL				
HORA	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.	ACT.	REACT.			
0:0	0 2812	1356	756,276	287,756	542,392	225,376	4110,668	1869,132			
0:1	5 2768	1360	743,896	291,24	528,596	220,164	4040,492	1871,404			
0:3	0 2716	1364	739,984	294,716	528,872	227,62	3984,856	1886,336			
0:4	5 2688	1344	731,672	291,16	514,636	225,764	3934,308	1860,924			
1:0	0 2628	1336	725,968	288,36	510,372	224,236	3864,34	1848,596			
1:1	5 2604	1332	724,448	289,968	504,1	222,16	3832,548	1844,128			
1:3	0 2592	1328	716,724	281,856	504,828	228,556	3813,552	1838,412			
1:4	5 2564	1304	709,024	277,668	505,448	228,6	3778,472	1810,268			
2:0	0 2552	1324	719,064	292,804	500,516	224,68	3771,58	1841,484			
2:1	5 2552	1324	723,96	297,508	503,896	229,772	3779,856	1851,28			
2:3	0 2516	1288	707,22	281,604	497,288	224,46	3720,508	1794,064			
2:4	5 2508	1268	705,892	278,164	494,104	219,36	3707,996	1765,524			
3:0	0 2504	1296	703,976	273,76	491,492	215,784	3699,468	1785,544			
3:1						218,52	3702,856	1790,144			
3:3	0 2480	1268	706,12		493,484	221,824	3679,604	1767,94			
3:4	5 2484	1264	705,06		487,648	213,132	3676,708	1753,732			
4:0	0 2496	1268	698,82	266,148	492,416	214,984	3687,236	1749,132			
4:1		1268			494,784	217,892	3695,208	1755,86			
4:3	0 2496	1256	713,908		493,684	214,016	3703,592	1747,348			
4:4		1248			497,38	213,684	3730,848	1734,224			
5:0					507,796	211,176	3802,084	1726,224			
5:1		1240			512,384	203,776	3835,532	1710,472			
5:3		1248			531,784	211,428	3915,304	1727,892			
5:4		1240			545,732	206,18	4024,16	1714,372			
6:0	0 2728	1276	774,112		541,4	202,128	4043,512	1742,7			
6:1		1276			490,792	193,38	3792,856	1745,128			
6:3		1344			479,948	197,784	3751,492	1823,816			
6:4	5 2600	1344	694,656	291,224	480,216	211,784	3774,872	1847,008			
7:0		1364			471,956	208,504	3783,528	1883,112			
7:1		1420			463,928	208,636	3834,888	1934,26			
7:3		1480			464,552	209,492	3904,316	2010,344			
7:4	5 2784	1524	687,844	334,848		219,012	3949,864	2077,86			
8:0						216,98	4012,1	2072,68			
8:1					474,444						
8:3					475,584						
8:4					480,896			2235,868			
9:0				352,724		241,224		2217,948			
9:1				357,136		251,768	4111,9				
9:3				370,976		253,9		2236,876			
9:4				368,312		255,976					
10:0				370,568				2309,98			
10:1		1728		397,884		261,384					
10:3					504,544	257,94					
10:4		1768	-	401,092		272,132					
11:0								2498,932			
11:1						282,7		2554,74			
11:3				417,696		282,748		2648,444			
11:4		1968				293,388		2682,204			
12:0				414,568				2664,256			
12.0	0204	1900	, , 0, 100	717,500	555,564	200,000	TOO 1,032	2007,200			

12:15	3264	1920	782,68			293,664	4596,48	2633,748
12:30	3216	1908	778,692	430,64	532,132		4526,824	2627,572
12:45	3216	1920	772,164		526,268	295,34	4514,432	2637,592
13:00	3204	1900	780,404		529,536		4513,94	2620,012
13:15	3228	1932	789,808			294,652	4552,236	2669,504
13:30	3204	1956	790,776	454,272	543,304		4538,08	2718,168
13:45	3216	1952	802,048	455,964	535,96	313,688	4554,008	2721,652
14:00	3228	1948	812,14	460,456	531,804	314,624	4571,944	2723,08
14:15	3300	1996	807,276	454,672	539,016	310,876	4646,292	2761,548
14:30	3304	1996	806,816	458,368	546,312	310,056	4657,128	2764,424
14:45	3304	1996	793,964	447,164	543,18	309,12	4641,144	2752,284
15:00	3272	1980	797,848	458,1	541,5	311,544	4611,348	2749,644
15:15	3340	2064	812,324	471,132	545,324	320,788	4697,648	2855,92
15:30	3324	2036	798,644	461,048	556,724	315,568	4679,368	2812,616
15:45	3360	2064	785,756	455,588	544,756	319,56	4690,512	2839,148
16:00	3312	2016	775,632	442,64	535,052	316,064	4622,684	2774,704
16:15	3312	2032	775,92	451,792	534,884	314,784	4622,804	2798,576
16:30	3320	2016	775,456	462,932	535,788	325,508	4631,244	2804,44
16:45	3272	1980	767,884	462,108	530,8	325,568	4570,684	2767,676
17:00	3276	1940	776,308	453,112	532,48	317,484	4584,788	2710,596
17:15	3332	1928	798,904	442,596	547,18	314,832	4678,084	2685,428
17:30	3416	1900	811,084	430,624	556,18	310,16	4783,264	2640,784
17:45	3512	1920	855,668	430,62	576,212	297,208	4943,88	2647,828
18:00	3648	1900	926,08	416,88	624,508	299,036	5198,588	2615,916
18:15	4052	1912	1034,5	414,472	693,148	297,3	5779,648	2623,772
18:30	4676	1928	1189,02	392,124	830,2	284,504	6695,22	2604,628
18:45	4936	1920	1262,824	368,46	896,38	266,76	7095,204	2555,22
19:00	4960	1884	1264,06	343,864	892,904	241,8	7116,964	2469,664
19:15	4992	1880	1285,62	345,476	903,408	238,3	7181,028	2463,776
19:30	4976	1852	1270,368	335,332	899,052	236,988	7145,42	2424,32
19:45	4944	1844	1239,588	332,968	873,948	241,284	7057,536	2418,252
20:00	4864	1804	1223,36	328,316	851,532	236,864	6938,892	2369,18
20:15	4792	1776	1188,1	311,432	853,32	240,216	6833,42	2327,648
20:30	4664	1728	1155,852		828,532	235,972	6648,384	2270,016
20:45	4580	1712	1144,848	310,036	813,116	232,928	6537,964	2254,964
21:00	4464	1680	1108,136		800,328			2208,664
21:15	4348	1648	1072,048	294,736	787,548	221,176	6207,596	2163,912
21:30	4264	1664	1044,016			229,9		2187,932
21:45	4120	1612	1007,136			225,404		2130,74
22:00	3972	1604		293,424			5677,268	
22:15	3832	1564	947,644	286,108	709,884	222,524	5489,528	
22:30	3744	1564		292,748		228,084	5351,784	
22:45	3580	1528		286,376		227,208	5131,092	2041,584
23:00	3456	1504	880,66			229,988	4972,956	2021,368
23:15	3284	1452		274,012		221,252	4720,988	1947,264
23:30	3128	1420		268,804			4518,652	1905,188
23:45	3072	1432	799,064	273,84		225,936	4442,968	1931,776
ENERG_DIA			19767,92		13835		111626,9	
	2480			⁷ 264,572			3676,708	1710,472
POT_MAX	* 4992 *	2064	1285,62	* 471,132	903,408	325,568	7181,028	2855,92

