

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE GUAYAQUIL

FACULTAD DE INGENIERÍAS

CARRERA: INGENIERÍA ELECTRÓNICA

TESIS PREVIA LA OBTENCIÓN DEL TÍTULO DE: INGENIERO ELECTRÓNICO

TEMA:

DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA SCADA UTILIZANDO EL SOFTWARE INTOUCH CON RED DE COMUNICACIÓN ETHERNET PARA LA PLANTA LIOFILIZADO PARA LA COMPAÑÍA DE ELABORADOS DE CAFE "EL CAFÉ C.A."

AUTOR:

BETANCOURT SAFLA LUIS OSWALDO

DIRECTOR: Ing. Luis Neira

Guayaquil, Mayo de 2015.

DECLARATORIA

"Yo, Betancourt Safla Luis Oswaldo soy responsable de las ideas, métodos y resultado expuesto en esta memoria; y, el dominio intelectual de la tesis de grado pertenece a la UNIVERSIDAD POLITÉCNICA SALESIANA"

Betancourt Safla Luis Oswaldo

Nombre y firma del autor

AGRADECIMIENTO

Agradezco a todos los que me han ayudado en la realización de este proyecto: mi familia, mis padres quienes han sido pilar importante en el camino hacia mis metas, porque sin ellos no hubiese podido llegar adonde he llegado.

A mis maestros por brindarme todo sus enseñanzas durante el estudio de mi carrera.

También quiero agradecer a mi tutor de proyecto por su colaboración y sus consejos y por su tiempo dedicado a la revisión de este trabajo.

DEDICATORIA

Dedico esta tesis A mis padres, hermanos y mi esposa por brindarme sus esfuerzos y dedicación, apoyándome en todo momentos para lograr unos de mis anhelos y conseguir mi propósito.

ÍNDICE GENERAL

CARÁTULA	Ι
DECLARATORIA	II
AGRADECIMIENTO	III
DEDICATORIA	IV
ÍNDICE GENERAL	V
ÍNDICE DE GRÁFICAS	VIII
ÍNDICE DE TABLAS	XI
ABSTRACT	XII
INTRODUCCIÓN	1

CAPÍTULO I: EL PROBLEMA

1.1 Planteamiento del problema	2
1.2 Delimitación del problema	2
1.3 Objetivos	2
1.3.1 Objetivo General	2
1.3.2 Objetivo Específicos	3
1.4 Justificación	3
1.5 Hipótesis	3
1.6 Variables e Indicadores	4
1.7 Marco Metodológico	4
1.7.1 Método Inductivo	4
1.7.2 Método Hipotético	4
1.8 Población y Muestra	5
1.8.1 Población	5
1.8.2 Muestra	5
1.9 Resumen de la propuesta	5
1.10 Antecedente de la Empresa	6

CAPÍTULO II: MARCO TEÓRICO

2.1 Descripción del proceso de café liofilizado	11
2.2 InTouch	12
2.2.1 Introduccion del software InTouch	12

2.2.2 Localizador de la aplicación	13
2.2.3 Creación de ventanas	14
2.2.4 Select mode	16
2.2.5 Los elementos wizards	17
2.2.6 Definición del tagname	18
2.2.7 Definición de las características	19
2.2.8 Animación links	22
2.3 Sensores de temperatura utilizado	33
2.3.1 RTD	33
2.3.2 Termocupla	36
2.4 PLC	38
2.4.1 PLC Modicon M340 utilizado	38
2.4.2 Protocolo de comunicación	40

CAPÍTULO III : VARIABLES UTILIZADA EN INTOUCH

3.1 Descripción de las variables utilizadas en el área cámara de secado	42
3.2 Descripción de las variables utilizadas en el área cuarto frio	45
3.3 Descripción de las variables utilizadas en el área de túnel	48
3.4 Descripción de las variables utilizadas en el área tanque y espumado	51

CAPÍTULO IV: SOFTWARE UTILIZADO

4.1 Descripción de la plataforma de desarrollo	54
4.2 InTouch 2012 R2	54
4.2.1 Conectividad	55
4.3 Diseño del programa en InTouch 2012 R2.	55
4.4 Secuencia para elaboración de las pantallas en InTouch 2012 R2	56
4.5 Configuración de Items en InTouch	57
4.6 Uso del InTouch	58
4.6.1 Diseños de pantalla	60
4.7 Comunicación InTouch y Excel usando DDE	73
4.7.1 Configuración del Action Script	74
4.8 Comunicación InTouch – PLC	75
4.8.1 Configuración del DAServer (DASMBTCP.2)	75

4.8.2 Configuración del Tagname	76
4.8.3 Registro de Direcciones DASMBTC.2	77

CONCLUSIONES Y RECOMENDACIONES

Conclusiones	81
Recomendaciones	82
Cronograma de trabajo	83
Presupuesto	84
Referencias Bibliográficas	85
Anexos 1 (Reportes generado)	87
Anexos 2 (Variables utilizadas)	90
Anexos 3 (Programa en Utilizado)	98
Anexos 4 (Característica del Servidor)	101

ÍNDICE DE FIGURAS

Figura 1.1. Café soluble Atomizado	9
Figura 1.2. Café soluble Aglomerado	9
Figura 1.3. Café soluble Liofilizado	10
Figura 2.1. Icono de Aplicación	13
Figura 2.2. Creación de una aplicación	14
Figura 2.3. Creación de Ventana	15
Figura 2.4 Creación de objetos	16
Figura 2.5. Característica Tagname	20
Figura 2.6. Característica Animation Link	22
Figura 2.7. Característica Input Discrete	23
Figura 2.8. Característica Input Analog	23
Figura 2.9. Característica Input String	24
Figura 2.10. Característica Pushbutton	25
Figura 2.11 Característica Line color Discrete	26
Figura 2.12 Característica Line color Analog	26
Figura 2.13. Característica Object Height	27
Figura 2.14 Característica Object Visibility	28
Figura 2.15 Característica Object Blinking	28
Figura 2.16. Característica Orientation	29
Figura 2.17 Característica Vertical Loction	29
Figura 2.18. Característica Vertical Fill	30
Figura 2.19. Característica Gráfica Intouch	31
Figura 2.20. Característica Librería Symbol Factory	31
Figura 2.21. Característica Archivo de Alarmas	32
Figura 2.22. Partes de un Pt100	33
Figura 2.23. Curva de resistencia vs temperatura	34
Figura 2.24. Conexión de 2 hilos	35
Figura 2.25. Conexión de 3 hilos	35
Figura 2.26. Conexión de 4 hilos	36
Figura 2.27. Característica Termocupla	36
Figura 2.28. Curva característica f.e.m. vs temperatura	37

Figura 2.29. Producto de Schneider Electric 3	38
Figura 2.30. Red Ethernet	10
Figura 2.31. Red CANopen	11
Figura 3.1. Descripción del Hardware Área cámara de secado 4	13
Figura 3.2. Descripción del Hardware Área cuarto frio	16
Figura 3.3 Descripción del Hardware Área túnel	50
Figura 3.4 Descripción del Hardware Área tanque	51
Figura 4.1. Estructura de Pantalla	56
Figura 4.2a. Configuración de Access Name	57
Figura 4.2b. Configuración del Tag Name I/O5	58
Figura 4.3. Ventana de I/O Server SMC	58
Figura 4.4. Ingreso a Intouch	59
Figura 4.5. Ventana selección de archivo	59
Figura 4.6. Ventana Windows to Open	50
Figura 4.7. Ventana Inicio	51
Figura 4.8. Ventana Acceso al proceso	51
Figura 4.9. Ventana Área de tanque y espumado	52
Figura 4.10. Ventana registro de temperatura	53
Figura 4.11. Ventana del área túneles	53
Figura 4.12a. Ventana registro de temperatura túneles	54
Figura 4.12b. Ventana registro de frecuencia túneles	54
Figura 4.13. Ventana cuarto frio	55
Figura 4.14. Ventana registro temperatura cuarto frio	56
Figura 4.15. Ventana registro frecuencia cuarto frio	56
Figura 4.16. Ventana cámara de secado	57
Figura 4.17. Ventana sistema de glicol	58
Figura 4.18a. Ventana sistema de glicol enfriamiento	58
Figura 4.18b. Ventana sistema de glicol calentamiento	59
Figura 4.19. Ventana estado de cámara	59
Figura 4.20. Ventana tasa vacío	70
Figura 4.21. Ventana registro real de temperatura	70
Figura 4.22. Ventana registro histórico de temperatura	71
Figura 4.23. Ventana registro histórico de vacío	71

Figura 4.24. Ventana Alarma de vacío	72
Figura 4.25. Ventana Ingreso de datos	72
Figura 4.26. Ventana Access Name de Excel	73
Figura 4.27. Configuración Tagname Excel	74
Figura 4.28. Configuración Action Script	74
Figura 4.29. Configuración del DAServer	75
Figura 4.30. Configuración Access Name	76
Figura 4.31. Configuración Device groups	76
Figura 4.32. Configuración Device Items	77
Figura 4.33. Funcionamiento del Scada	79
Figura 4.34. Monitoreo variables del área de procesos	80
Figura 4.35. Monitoreo de reportes	80

ÍNDICE DE TABLAS

Tabla 2.1. Características de sondas resistivas	34
Tabla 2.2. Características del módulo digital	39
Tabla 2.3. Características del módulo analógico	39
Tabla 3.1. Direcciones PLC's área cámara de secado	42
Tabla 3.2. Variables utilizadas en el área cámara de secado	43
Tabla 3.3. Variables utilizadas en el área de cuarto frio	46
Tabla 3.4. Variables utilizadas en el área de túneles	48
Tabla 3.5. Variables utilizadas en el área de tanque y espumado	51
Tabla 4.1. Registro de direcciones	78

AÑO	ALUMNO/S	DIRECTOR DE	TEMA DE TESIS
		TESIS	
2015	BETANCOURT	Ing. NEIRA Luis	DISEÑO E
	SAFLA, Luis	Antonio	IMPLEMENTACIÓN DE UN
	Oswaldo		SISTEMA SCADA
			UTILIZANDO INTOUCH CON
			RED DE COMUNICACIÓN
			ETHERNET EN LA PLANTA
			LIOFILIZADO PARA LA
			COMPAÑÍA EL CAFÉ C.A.

ABSTRACT

La presente tesis "Diseño e implementación de un sistema de supervisión control y adquisición de datos (SCADA) utilizando Intouch con red Ethernet en la planta liofilizado para la compañía el café C.A", tiene como objetivo visualizar y registrar las variables de control de las diferentes áreas de proceso de café Liofilizado, para un mejor control.

Los controladores lógico programable (PLC) instalados utilizan protocolo Ethernet, para comunicarse con el servidor donde se encuentra el software Intouch.

Los registros históricos de las variables que intervienen en el proceso de Liofilizado y se pueden monitorear en el servidor de control, pueden generar archivos en formato de Excel para que la información sea más amigable con el operador.

PALABRAS CLAVES: InTouch / Temperatura / Frecuencia / Vacío / Registro Histórico / Alarmas / Reportes/ I/O Server / Histdata.

YEAR	STUDENT	THESIS	THESIS THOPIC		
		DIRECTOR			
2015	BETANCOURT	Ing. NEIRA Luis	DESIGN AND		
	SAFLA, Luis	Antonio	IMPLEMENTATION OF		
	Oswaldo		SCADA SYSTEM USING		
			INTOUCH WITH ETHERNET		
			COMMUNICATION		
			NETWORK ON PLANT FOR		
			THE COMPANY		
			LYOPHILISATE EL CAFÉ		
			C.A.		

ABSTRACT

This thesis "Design and implementation of a SCADA system using Ethernet network Intouch with the lyophilized plant for the company CA coffee", aims to display and record the control variables of different process areas Freeze Dried coffee, for better control.

The PLC installed Ethernet protocol used to communicate with the server where the Intouch software.

Historical records of the variables involved in the process of Powder and can be monitored in the control PC can generate files in Excel format so that information is more friendly to the operator.

KEYWORDS: InTouch / Temperature / Frequency / Vacuum / Historic Register / Alarms / Reports / I / O Server / Histdata.

INTRODUCCIÓN.

Para la compañía de elaborado de café el café, al igual que todas las empresas de alimentos, la calidad de su producto es un factor de vital importancia. Dicha calidad depende en gran medida de los registro de control y de la trazabilidad del producto.

El presente proyecto diseño e implementación de un sistema scada utilizando intouch con red de comunicación Ethernet en la planta liofilizado para la compañía de elaborados de café EL CAFÉ C.A, se desarrolló con la finalidad de que la empresa, desde su departamento de producción pueda monitorear los registros de las variables de control del proceso de la planta de liofilización.

Durante la implementación del sistema de Scada se requirió tener acceso a la informacion del funcionamiento de los diferentes equipos de mediciones del proceso, con el fin de generar reportes en archivos de excel.

Las variables que se registraron en la planta de liofilización son: Temperatura, Presión y Frecuencia.

Actualmente en la planta se encuentran instalados y programados los PLC Modicon 340 Schneider en las áreas de tanque, espumadora, congelamiento y cámaras.

Para la comunicación del Intouch y PLC Schneider se utilizó el protocolo de comunicación Systen Management Console (SMC), aquí es donde se ingresaran las variables de control ya existentes en los PLCs Schneider de las áreas de proceso

En el Capítulo 1 se detallan el problema tales como, el planteamiento, delimitación, objetivos, justificación, hipótesis, variables e indicaadores, metodología, muestra, beneficiarios y resumen de la propuesta.

En el Capítulo 2 se especifica el marco teórico de cada uno de los elementos usados en este proyecto.

En el Capítulo 3 se detalla el sistema de Hardware de cada una de las áreas de control de la planta de café liofilizado.

En el Capítulo 4 especifica el diseño de las ventadas de control y de registros de cada una de las área del proceso de café liofilizado.

CAPÍTULO I

1.0 EL PROBLEMA.

1.1 PLANTEAMIENTO DEL PROBLEMA.

En la planta de Liofilizado de la compañía de elaborados de café EL CAFÉ C.A, los operadores no podían visualizar todos los eventos, tendencias y alarmas que se necesitan para tomar los correctivos necesarios en caso de que ocurra algún problema en el proceso. Todo esto conducía en ocasiones a la elaboración de productos noconformes, devoluciones y reprocesos, lo cual representan pérdidas económicas y temporales, así como quejas de los clientes y Gerentes.

1.2 DELIMITACIÓN DEL PROBLEMA.

El proyecto fue desarrollado en la planta de Liofilizado de la compañía de elaborados de café EL CAFË C.A. Capaz de monitorear, controlar y registrar el funcionamiento de los equipos de medición.

Se implementó un servidor para realizar el monitoreo y control de las variables en el proceso de café liofilizado, por medio del programa INTOUCH.

El sistema de supervisión, control y adquisición de datos (SCADA) registra las variables de temperatura, presión y frecuencia, en las áreas de Tanque, espumado, túnel y secado de cámara. Para luego generar los reportes diarios de producción en Excel.

1.3 OBJETIVOS.

1.3.1 OBJETIVO GENERAL.

Diseñar e implementar un sistema de registro, utilizando el software Intouch y controlador lógico programable (PLC) Modicon para la planta de Liofilizado de la compañía elaborados de café EL CAFÉ C.A.

1.3.2 OBJETIVOS ESPECÍFICOS.

- Realizar el levantamiento del proceso actual, identificando las variables para los registros y alarmas.
- Diseñar las pantallas de monitoreo de las diferentes áreas de proceso, además se diseñaran las pantallas de los registros históricos de las variables de procesos.
- Configurar el puerto de comunicación para la adquisición de las variables existente en el controlador lógico programable (PLC) Modicon M340 con el protocolo de comunicación DAServer Manager.
- Configurar el puerto de comunicación para la adquisición de las variables en el protocolo de comunicación DAServer Manager hacia Intouch.
- Realizar conexión hacia una base de datos, para almacenar los datos de generación utilizando HISTDATA (un medio de almacenamiento) y posteriormente generar registros diarios e históricos de los mismo en Excel.

1.4 JUSTIFICACIÓN.

Con este antecedente se propuso la implementación de un sistema de visualización de las variables que intervienen en el proceso de Liofilizado, utilizando el Software Intouch, aprovechando que ya se tiene un sistema de control con un controlador lógico programable (PLC) de marca Modicon que pertenece a la misma familia (Schneider). Con esto se elaboraron registros de procesos, eventos, alarmas, reportes estadísticos, lo que ayudará al operador a tomar los correctivos necesarios en caso de problemas o tener una información idónea para mejoras del proceso.

1.5 HIPÓTESIS.

El diseño e implementación de un sistema de supervisión, control y adquisición de datos (scada), utilizando intouch con red de comunicación Ethernet en la planta liofilizado para la compañía de café el café C.A. Se lo utiliza para registrar históricos de las variables de control y generar registros en Excel, y de esta manera disminuir los reprocesos en la elaboración de café soluble.

1.6 VARIABLES E INDICADORES.

1.6.1 VARIABLES.

- ✓ Frecuencia.
- ✓ Presión.
- ✓ Temperatura.

1.6.2 INDICADORES.

- ✓ Señal de Temperatura
- ✓ Señal de Presión
- ✓ Señal de Frecuencia

1.7 MARCO METODOLÓGICO.

1.7.1 MÉTODO INDUCTIVO.

El método inductivo permite relacionar varios conocimientos obtenidos en la formación académica, impartidas en las materias de Automatización, Teoría de Control, Electrónica Industrial e Instrumentación, para la implementación del sistema de supervisión, control y adquisición de datos (SCADA).

El sistema de supervisión, control y adquisición de datos (SCADA) será utilizado para el monitoreo y control de las variables de procesos utilizada en cada área de la planta de café liofilizado.

La comunicación entre el sistema de supervisión, control y adquisición de datos (SCADA) y Excel, permitirá la adquisición de los datos de las variables de control, para la realización de los reportes diarios.

1.7.2 ΜÉTODO HIPOTÉTICO.

El método hipotético o deductivo permite aplicar los conocimientos obtenidos en las materias de Automatización para la implementación de un sistema de supervisión, control y adquisición de datos (SCADA), Teoría de Control para realizar un control

ON-OFF, Electrónica Industrial e Instrumentación para que se pueda realizar la transferencia de datos del equipo de medición con el autómata, para luego interaccionar con el sistema de supervisión, control y adquisición de datos (SCADA).

Para la implementación del sistema de supervisión, control y adquisición de datos (SCADA) se utilizó un servidor o PC adecuado según a su aplicación.

1.8 POBLACIÓN Y MUESTRA.

1.8.1 POBLACIÓN.

Para un mejor monitoreo continuo del proceso, el departamento de producción incluyendo al jefe, los 4 supervisores, 3 operadores y los 12 auxiliares de producción serán los encargados de este sistema de Scada Intouch.

1.8.2 MUESTRA.

La muestra es representada por los reportes diarios que se generan con datos de las variables Presión, Temperatura y Frecuencia de cada una de las etapas del proceso.

1.9 RESUMEN DE LA PROPUESTA.

La tesis está basada en el diseño e implementación de un sistema de supervisión, control y adquisición de datos (SCADA) para la planta de café Liofilizado.

Una vez realizada el diseño de las ventanas de control y registro de cada una de las áreas del proceso de café liofilizado, se procedió a ingresar las variables de control del proceso temperatura, presión y frecuencia.

Luego se procedió a la interacción entre el autómata y el sistema supervisión, control y adquisición de datos (SCADA), para la cual se utilizó el protocolo de comunicación System Management Console (SMC) para la adquirió de datos de las variables de control.

Para la generación de reporte en excel, se debe guardar los datos registrado en las ventanas de históricos dando click en el icono "Save to File".

1.10 ANTECEDENTE DE LA EMPRESA.

1.10.1 DESCRIPCIÓN DE LA EMPRESA.

COMPAÑÍA DE ELABORADOS DE CAFÉ EL CAFÉ C.A., empresa ecuatoriana industrializada, fue fundada en 1978 e inició sus operaciones con la producción de café soluble atomizado y aglomerado. Esta compañía consta con los procedimientos de calidad y normas con certificaciones ISO 9001:2000, Kosher y Halal.

1.10.2 PLAN ESTRATÉGICO.

El plan estratégico se basa en cuatro ejes principales con los cuales la COMPAÑÍA DE ELABORADOS DE CAFÉ EL CAFE, se presentará en el mercado marcando su propia identidad.

1.10.3 VISIÓN.

Agregar valor a través de la liofilización, debido al déficit de la materia prima, emulando los países de Europa del Norte al producir/exportar conocimiento local en lugar de café.

Ofrecer precio, calidad e innovación a nuestros clientes estratégicos, en el momento justo.

Ofrecer nuestros productos a las Marcas Privadas europeas, así como los propietarios de marcas mundiales que tienen capacidad limitada en café soluble.

1.10.4 MISIÓN.

Consolidar la preferencia y satisfacción de nuestros clientes y consumidores ofreciendo café soluble en polvo, aglomerado y liofilizado de calidad óptima para asegurar fidelidad y continuidad a través del tiempo.

Promover un ambiente seguro y armonioso para nuestros colaboradores y contribuir a través de la capacitación continua con su desarrollo profesional y personal (Talento Interno).

1.10.5 RECURSO HUMANO.

- ✓ Anticipar con creatividad las necesidades de los clientes para mejorar continuamente nuestro café y servicio.
- ✓ Atraer nuevos clientes con una amplia gama de café
- ✓ Capacitarse de manera continua para crecer profesional y personalmente.

1.10.5 ORGANIZACIÓN.

- ✓ Vender café a precios competitivos y rentables para los accionistas.
- Satisfacer los requisitos físicos, químicos y organolépticos definidos por los clientes para cada una de las calidades de café.
- ✓ Mantener un clima laboral armonioso y seguro.
- ✓ Garantizar disponibilidad de recursos financieros, técnicos y administrativos para lograr un proceso óptimo.

1.11 HISTORIA.

Ultramares Corporación su compañía asociada, es una empresa líder en la exportación de café en grano, con más de 80 años de presencia en el negocio. Nuestra empresa garantiza trabajo directo a 1.250 ecuatorianos y trabajo indirecto a aproximadamente 800 personas entre contratistas y proveedores de servicios.

ELCAFE tiene liderazgo en Ecuador con el 35% de participación de mercado en la categoría de café soluble. El café tiene en la actualidad una capacidad instalada anual de más de 27.000 Toneladas en sus dos plantas procesadoras de café soluble ubicadas en Guayaquil y Montecristi.

ELCAFE demanda más de un millón doscientos mil sacos de café de 60 kilos para procesarlos en café soluble incorporando valor agregado a través de la tecnología de

liofilización, café que es exportado principalmente a Rusia y Comunidad Europea. El café es el fruto del cafeta arbusto de las regiones tropicales del género Coffea, de la familia de los rubiáceos. Pese a que existen varias clases botánicas son dos las especies que se utilizan para la preparación de esta bebida.

Café Arábico es la que se cultiva desde más antiguamente, y representa el 75 por ciento de la producción mundial de café. Produce un café fino y aromático, y necesita un clima más fresco. El cultivo del arábica es más delicado, menos productivo y está reservado a tierras altas de montaña, entre 900 y 2.000 metros sobre el nivel del mar. Originario de Etiopía, hoy en día se produce en países como Brasil, Camerún, Colombia, Costa Rica, Cuba, Ecuador, Guatemala, Haití, Jamaica, Java, Kenia, México, Perú, Puerto Rico, República Dominicana, El Salvador, Tanzania y Venezuela.

1.11 PRODUCTOS.

1.12.1 CAFÉ TOSTADO.

El café tostado es el resultado del proceso en el cual se someten los granos verdes de café a altas temperaturas para luego molerlos.

Este proceso permite extraer y disfrutar de los sabores y aromas característicos de esta bebida, la cual se puede preparar de diferentes maneras, generalmente mediante un proceso de extracción o filtrado con agua caliente.

1.12.2 CAFÉ SOLUBLE ATOMIZADO.

Es el café instantáneo que ha sido obtenido por un proceso en el cual el extracto acuoso de café es atomizado en atmósfera caliente y transformado en partículas secas por evaporación del agua.

Figura 1.1 Café soluble Atomizado Fuente: (ElCafé, 2015)

1.12.3 CAFÉ SOLUBLE AGLOMERADO.

Es el café instantáneo que ha sido obtenido por un proceso en el cual las partículas secas de café instantáneo se unen para formar partículas más grandes.

Figura 1.2 Café soluble Aglomerado Fuente: (ElCafé, 2015)

1.12.4 CAFÉ SOLUBLE LIOFILIZADO.

Para la fabricación de café liofilizado, el extracto es congelado a temperaturas de – 50°C aproximadamente. Durante este proceso, el extracto espumado se envía a los cuartos fríos y se esparce en forma homogénea sobre bandas.

Durante la granulación, el hielo presente en el extracto congelado se elimina mediante la sublimación, es decir, evaporado por efecto de vacío y temperatura. Esta operación se realiza en cámaras, que entregan el producto final con la humedad requerida para su venta.

Figura 1.3 Café soluble Liofilizado Fuente: (ElCafé, 2015)

1.12.5 MARCAS ELCAFÉ

- ✓ Café soluble PRES2
- ✓ Café soluble SÍCAFÉ
- ✓ Café soluble Expreso
- ✓ Café Montecristi
- ✓ Café tostado y molido
- ✓ Gran Colombiano

CAPÍTULO II

2.0 MARCO TEÓRICO.

En este capítulo se explica detalladamente el funcionamiento del proceso de café liofilizado y de los equipos utilizados en cada una de las áreas de proceso, además del software requerido para la realización del proyecto.

2.1 DESCRIPCIÓN DEL PROCESO DE CAFÉ LIOFILIZADO.

La primera etapa de la fabricación del café liofilizado, consiste en el tostado de los granos (el café verde es imbebible). En este proceso los granos de café son sometidos a altas temperaturas, las cuales provocan los cambios químicos y físicos necesarios para desarrollar las cualidades que caracterizan el aroma, sabor y color propios del café.

Tras el tueste, el grano es sometido al proceso de molienda, durante el cual se reduce notablemente su tamaño con el objetivo de aumentar la superficie de contacto y facilitar así, la extracción de los sólidos solubles.

El café tostado y molido se carga en depósitos cerrados donde se le somete a un proceso de extracción sólido-líquido mediante la inyección de agua caliente a alta presión. La fricción de los dos componentes, agua y café, provoca que éste último ceda sus sólidos solubles, con los que se configurará el extracto.

El café tostado y molido se carga en depósitos cerrados donde se le somete a un proceso de extracción sólido-líquido mediante la inyección de agua caliente a alta presión. La fricción de los dos componentes, agua y café, provoca que éste último ceda sus sólidos solubles, con los que se configurará el extracto, sin que para ello sea necesario someter al café a ningún tipo de tratamiento químico. Seguidamente, se incorpora al extracto aire seco a bajas temperaturas, con el fin de aumentar su porosidad, facilitar la liofilización y permitir el ajuste del peso específico y el color del producto final.

Llegados a este punto, el extracto se puede utilizar en el proceso de fabricación de café liofilizado, o bien se puede empaquetar el producto y venderlo como materia prima para la fabricación de bebidas y comestibles.

Para la fabricación de café liofilizado, el extracto es congelado a temperaturas de 50°C bajo cero aproximadamente. Durante este proceso, el extracto espumado se envía a los cuartos fríos y se esparce en forma homogénea sobre bandas refrigeradas para que alcance un estado sólido que permita su granulación. Del buen resultado de esta transformación dependerá el tamaño y la forma de la presentación final del producto y la liofilización posterior.

Durante la granulación, el hielo presente en el extracto congelado se elimina mediante la sublimación, es decir, evaporándolo por efecto de vacío y temperatura. Esta operación se realiza en cámaras o en túneles de liofilización, que entregan el producto final con la humedad requerida para su empacado y venta. (EL CAFÉ, 2014).

2.2 INTOUCH.

Para el desarrollo de esta etapa se dispuso de los tutoriales del software Intouch 2012 R2 utilizado en este proyecto. Se logró aprender a manejar los recursos que nos brinda el software tales como, la visualización de información, herramientas gráficas y las bases de datos. Esta actividad es de mucha importancia para el desarrollo del proyecto de tesis, con los conocimientos que se adquirieron se pudo desarrollar el sistema de SCADA utilizando el software Intouch.

2.2.1 INTRODUCCIÓN DEL SOFTWARE INTOUCH.

(Tutorial Invensys Systems, Intouch 2012). El programa InTouch es un software de visualización que permite crear aplicaciones de interfaz entre Hombre – Máquina (HMI) para automatización industrial, control de procesos y monitoreo supervisado. InTouch es el primer paquete SCADA que utiliza el sistema operativo Windows como plataforma.

Al funcionar sobre Windows, aprovecha las capacidades gráficas de este sistema operativo: los procesos eran más factibles de documentar, el entorno gráfico son

ideal para la representación de esquemas y valores, y las aplicaciones son flexibles y fáciles de implementar e interpretar. Cuenta con las siguientes herramientas:

- ✓ Base de datos de la fábrica (Servidor industrial SLQ).
- ✓ Supervisión de la producción.
- ✓ Gerencia flexible de la jornada (In Batch).
- ✓ Visualización de internet/intranet (web server Factory Suite)
- ✓ Conectividad I/O Servers.

InTouch permite crear aplicaciones con características completas, estas incluyen el intercambio dinámico de datos DDE, enlace de objetos e incrustaciones (OLE), gráficos y más.

A continuación se explica con detalle el funcionamiento de las aplicaciones, herramienta y graficas que contiene el software.

2.2.2 LOCALIZADOR DE LA APLICACIÓN.

(Tutorial Invensys Systems, Intouch 2012). InTouch utiliza una lista interna a modo de base, en la cual almacena los lugares en los que hay aplicaciones de visualización. Esta lista debe modificarse de forma manual cada vez que cargamos o borramos una aplicación.

Figura 2.1. Icono de aplicación para In Touch

Una vez instalado el paquete **InTouch**, ya podemos crear una aplicación. Para ello, es necesario entrar en **InTouch** desde *WINDOWS* pinchando dos veces con el ratón sobre el símbolo de **InTouch**. En su monitor aparecerá la siguiente ventana:

Name	Path	Resolution	Versi	Application	Applic	Date Modif
🛍 camara	c:\users\public\wonderware\intouch appli	1600 x 900	10.6	Stand Alone	322	01/08/2014
指 Demo Application 1024 X 768	c:\programdata\intouchdemos\demoapp1	1024 x 768	10.6	Stand Alone	258	17/07/2014
指 Demo Application 1280 x 1024	c:\programdata\intouchdemos\demoapp1	1280 x 1024	10.6	Stand Alone	270	17/07/2014
指 Demo Application 800 X 600	c:\programdata\intouchdemos\demoapp1	800 x 600	10.6	Stand Alone	192	17/07/2014
🗱 FDBMANTA	c:\users\public\wonderware\intouch appli	1600 x 900	10.6	Stand Alone	3632	18/08/2014

Figura 2.2. Creación de una aplicación o proyecto

El icono de *WINDOWMAKER* o creador de aplicaciones. Una vez seleccionada la aplicación que desea crear o modificar, pinche sobre este icono para llevar a cabo su trabajo.

El icono de *WINDOWVIEWER* o runtime. Una vez seleccionada la aplicación que desea monitorizar, pinche sobre este icono. Esta aplicación debe haber sido previamente creada, por lo que este icono no estará accesible cuando seleccione unanueva aplicación.

2.2.3 CREACIÓN DE VENTANAS.

(Tutorial Invensys Systems, Intouch 2012). Aquí podemos crear una ventana nueva mediante el comando: File – New Window, o el iconocorrespondiente de la barra de botones, aparece el cuadro de diálogo, Window Properties, que nos permite definir los parámetros que configuran el tipo de ventana de nuestra aplicación como semuestra en la figura.

Window Pr	operties					×
Name: Comment:	CAM12 CAMARA 12			Window C	iolor:	OK Cancel
⊂Window ⊚ Repl	Type ace 🔘 Overlay	🔘 Рорир		Dimensions X Location:	-3	Scripts
Frame S Single	tyle e 🔘 Double	None		Y Location: Window Width:	0 1620	
🔲 Title Ba	ar 👿 Size Control:	: 🗸 Close But	tton	Window Height:	875	

Figura 2.3. Creación ventana de aplicación

En la casilla Name, introducimos un nombre que permite, a ser posible, la indentificación rapida de la función de la ventana. Introducir, en la casilla Comment, una breve descripción de la ventana que estamos creando. Nos ayudara a una mejor identificacion de la función de las ventanas.

Replace: Cierra cualquier otra ventana que corte cuando aparece en pantalla, incluyendo ventanas tipo *popup* u otras tipo *replace*.

Overlay: Aparece sobre la ventana displayada. Cuando cerramos una ventana tipo *overlay*, cualquier ventana que estuviera *escondida* bajo la overlay será restablecida. Seleccionando cualquier porción o parte visible de una ventana debajo de la *overlay*, provocará que esta ventana pase a ser considerada activa.

Popup: Similar a la *overlay*, pero en el caso de *popup* la ventana siempre queda por encima de las demás, y no desaparece ni aunque pinchemos con el ratón sobre otra. Normalmente será necesario hacer desaparecer la ventana *popup* antes de que aparezca otra.

El marco Dimensions sitúa la ventana en la pantalla y define sus dimensiones (en pixeles). X Location e Y Location son las coordenadas de la esquina superior izquierdo de la ventana, referencia a la resolución de trabajo en pantalla.

Operando sobre la celde Window Color, podremos seleccionar el color de fondo de la ventana. Pulsando encima del cuadro aparece una paleta de colores, donde seleccionamos el colos deseado para el fondo de ventana.

2.2.4 SELECT MODE.

(Tutorial Invensys Systems, Intouch 2012). Es el primer elemento de la caja, y se utiliza para seleccionar, mover y modificar el tamaño de los objetos. Para seleccionar o modificar el tamaño de un objeto existen dos métodos: el más sencillo consiste en colocarse encima del objeto que deseemos y pulsar el botón izquierdo del ratón.

Con ello el objeto queda seleccionado, y podemos modificar su tamaño (extendiendo desde cualquier punto externo del objeto) o simplemente moverlo. Existe un segundo método, y es utilizando el modo S*elect Mode*. Escoja la herramienta *select mode* y seleccione la parte del dibujo que desee creando un rectángulo.

Alrededor del objeto seleccionado podrá observar varios pequeños cuadros negros. Cuando un objeto se encuentra rodeado de *tiradores* significa que se encuentra seleccionado.

Figura 2.4. Creación de objeto a utilizar en el proyecto

- ✓ Rectángulo
- ✓ Rectángulo con ángulos curvos
- ✓ Elipse
- ✓ Línea recta
- ✓ Línea recta vertical/horizontal
- ✓ Polilinea
- ✓ Polígono
- ✓ Texto
- ✓ Bitmap

Esta herramienta se utiliza para importar dibujos de ficheros de imagen (jpg, jpeg, bmp, pcx, tga) o bien del portapapeles de *WINDOWS*. Para llamar un objeto bitmap, utilice esta herramienta y forme un rectángulo. Una vez creado el rectángulo, podrá importar en su interior una imagen utilizando *EDIT -> Import image*, o bien pegando la imagen del portapapeles (*Edit -> Paste Bitmap*).

La función *Edit - Bitmap Original Size* se utiliza para modificar el tamaño de la imagen al original con el que fue creado o a otro distinto. La función *Edit - Edit Bitmap*, permite editar la imagen importada sin modificar el fichero de imagen original.

- \checkmark Tendencias en tiempo real
- ✓ Tendencias históricas
- ✓ Página de alarmas
- ✓ Pulsadores

2.2.5 LOS ELEMENTOS WIZARDS.

(Tutorial Invensys Systems, Intouch 2012). **WIZARDS**, en su más básico concepto, podría ser definido como "elementos inteligentes" que permiten que las aplicaciones **InTouch** puedan ser generadas de un modo más rápido y eficiente. La versión 7.1 de **InTouch** dispone de los elementos WIZARDS que permiten crear rápidamente un objeto en la pantalla. Haciendo doble click sobre el objeto podemos asociarle links (animación), asignarlo a tagnames o incluso incluir una lógica en ese objeto. Si agrupamos varios de estos objetos, podemos crear un elemento completo, acabado y

programado, que lo podemos utilizar tantas veces como queramos. Bien, pues **WIZARDS** hace esto por Usted! Todo lo que tiene que hacer es seleccionar el **WIZARDS** que desee e **InTouch** se lo dibujará, animará y programará.

Por ejemplo, un amperímetro: **WIZARDS** le dibujará el elemento en la pantalla y cuando haga doble clic sobre él sólo necesitará rellenar los campos que se le indican. Esta configuración incluye el tagname sobre el que situar el amperímetro, valores máximos y mínimo de lectura, colores, divisiones, etc. Una vez la información ha sido introducida, el **WIZARDS** amperímetro ya puede utilizarse como tal.

Además de estos **WIZARDS** "sencillos", es posible utilizar otros más "complejos" que provoquen operaciones en background, tales como crear/convertir una base de datos, importar un fichero AutoCad, configurar módulos de software (p.e. recetas, SPC), etc. Ello es posible gracias a la herramienta Wonderware Extensibility Toolkit (opcional de **InTouch**). La mayoría de **WIZARDS** son escalables y configurables en tamaño. Ello le permitirá modificar y poder ajustar los dibujos ya hechos a un tamaño necesario para su ventana.

2.2.6 DEFINICIÓN DEL TAGNAME.

(Tutorial Invensys Systems, Intouch 2012). El diccionario de tagnames es el corazón de **InTouch**. Durante el runtime, este diccionario contiene todos los valores de los elementos en la base de datos. Para crear esa base de datos, **InTouch** necesita saber qué elementos la van a componer. Debemos, por lo tanto, crear una base de datos con todos aquellos datos que necesitemos para nuestra aplicación.

A cada uno de estos datos (tags) debemos asignarle un nombre. Al final, dispondremos de un diccionario con todos los tagnames o datos que nosotros mismos hemos creado.

- Acceso: A este diccionario se accede desde el menú / Special / TagName Dictionary.
- Definición de los Tagnames: Desde el diccionario de tagnames definimos los tagnames y sus características. Existen diversos tipos de tagnames, según su función o características. Básicamente se dividen en:
- ✓ Memory: Tags registros internos de InTouch

- ✓ I/O: Registros de enlace con otros programas
- ✓ **Indirect:** Tags de tipo indirecto
- ✓ Group var: Tags de los grupos de alarmas
- ✓ **Histtrend**: Tag asociado a los gráficos históricos
- ✓ TagID: Información acerca del tag que están siendo visualizados en una gráfica.

De los 3 primeros tipos, disponemos de:

- ✓ **Discrete:** Puede disponer de un valor 0 ó 1
- ✓ Integer: Tagname de 32 bits con signo. Su valor va desde -2.147.483.648 hasta 2.147.483.647.
- Real: Tagname en coma flotante. Su valor va entre ±3.4e38. Todos los cálculos son hechos en 64 bits de resolución, pero el resultado se almacena en 32 bits
- ✓ Message: Tagname alfanumérico de hasta 131 caracteres de longitud.

2.2.7 DEFINICIÓN DE LAS CARACTERÍSTICAS.

(Tutorial Invensys Systems, Intouch 2012). **Main:** Visualiza las características principales del tagname.

- ✓ Details: Visualiza las características del tag que va a crear (valor mínimo/máximo, etc.)
- ✓ Alarms: Visualiza las condiciones de alarma del tag
- ✓ Details&Alarms: Le permitirá de visualizar las características del tagname tanto de detalles como de alarma.
- ✓ **Members:** Visualiza Miembros caso de ser supertag

Una vez seleccionado el tipo de tagname y qué características debemos definir, un submenú aparecerá para que rellenemos los campos de ese tagname.

Tagname Dictionary								
🖳 Main 💿 Details 🔘 Alarms 🔘 Details & Alarms 📄 Members								
New Restore Delete Save << Select >> Cancel Close								
Tagname: ALARMAVACIOC1 Type: I/O Real								
Group: \$System	Group: \$System							
Comment:								
Log Data Log Events	Retentive Value	🔲 Retentive Para	meters					
Initial Value: 0	Min EU:	-32768	Max EU:	32767				
Deadband: 0	Min Raw:	-32768	Max Raw:	32767				
Eng Units:	Log Deadband:	0	- Conversi () Linear	ion r 🔘 Square Root				
Access Name: CAM1								
Item: ALARMAVACIOC1			🔽 Use Ta	agname as Item Name				

Figura 2.5. Caracteristica Tagname Dictionary. Aquí se detalla el tipo tagmane que se utiliza.

Campos a Rellenar del Tagname

✓ Permite lectura/escritura o sólo lectura del registro.

✓ Graba el valor del tag al fichero de históricos cuando varía más que lo especificado en Log Deadband.

 \checkmark Activa la grabación de eventos para ese tag.

LOGETORIO

✓ Permite que el valor current del registro sea retentivo.

ſ

✓ Permite retener los cambios del registro de cualquier campo de límites de alarmas.

Retentive Parameters

✓ Selecciona el valor inicial del registro.

Initial Value: 20

✓ Introduzca el valor en unidades.

Min EU: |-10

✓ Introduzca el valor en unidades de ingeniería del registro equivalente al máximo recibido.

Max EU: 150

✓ Permite definir cuánto debe cambiar el valor de un registro para ser actualizado en pantallas.

```
Deadband: 0
```

✓ Valor mínimo en el rango de valores enteros del valor I/O.

Min Raw: -32768

✓ Valor máximo en el rango de valores enteros del valor I/O.

Max Raw: 32767

✓ Seleccione el programa de acceso.

Access Na<u>m</u>e: ...

✓ Seleccione si quiere una conversión lineal o de raíz cuadrada.

Conversion					
Einear					
🔿 Square Root					

✓ Seleccione esta opción para displayar el tagname como nombre del item I/O.

🛛 Use TagName as Item Name

✓ Permite definir cuánto debe.

🛛 Use TagName as Item Name

2.2.8 ANIMATION LINKS.

(Tutorial Invensys Systems, Intouch 2012). Tras haber creado un objeto gráfico o un símbolo, éste puede ser animado mediante las Animation Links. Las Animation Links provocan que el objeto cambie de apariencia reflejando cambios en los valores de la base de datos.

Object type: Polygon Prev Link Next Link Cancel							
- Touch Links	Line Color	Fill Color	Text Color				
User Inputs	Discrete	Discrete	Discrete				
Discrete	🗖 🗌 Analog	🗖 🗌 Analog	Analog				
🗖 🗌 Analog	Discrete Alarm	Discrete Alarm	Discrete Alarm				
String	Analog Alarm	🗖 🗌 Analog Alarm	Analog Alarm				
Sliders	Object Size	Location	Percent Fill				
Vertical	🗖 🛛 Height	Vertical	Vertical				
Horizontal	🔲 🗌 Width	Horizontal	Horizontal				
Touch Pushbuttons	Miscellaneous	Value Display					
Discrete Value	Visibility	Discrete					
Action	🗖 🔚 Blink	Analog					
Show Window	Orientation	String					
Hide Window	Disable						
	T ooltip						

Figura 2.6. Característica Animation Links. Se detalla la asignación de una *animation link* a un objeto, éste deberá estar seleccionado. Haciendo dos veces click sobre el objeto o símbolo deseado entramos directamente en el menú de A*nimation Links*.

Una vez seleccionado el tipo de animación que queremos asociar a ese objeto. Podemos incluso asociar varios A*nimation Links* a un mismo objeto o símbolo, a continuación se detalla cada uno de los item.

✓ User Inputs: Al pulsar sobre un USER INPUT, InTouch nos pregunta el nuevo valor según si es:
 DISCRETE: Modificación valor 0/1
 ANALOG: Modificación valor analógico
 STRING: Modificación cadena alfanumérica.

-	In	put -> Discrete Tag	name	
Tagname:	E2V1			ОК
– Key equivale 🔲 Ctrl	nt	Key None		Cancel
Msg to User:				Clear
Set Prompt:	On	On Message:	On	🔲 loout Oplu
Reset Prompt:	Off	Off Message:	Off	E input only

Figura 2.7. Característica Input Discrete. Permite modificar un valor discreto. Al pulsar, nos aparecerá una ventana para que modifiquemos el valor a 0 ó 1. Podemos modificar en el menú los mensajes que le deben aparecer al operador.

		Ing	out -> Analog Tagname		
Tagname: Key equivale	VACIO nt	C3 ft K	ey None		OK Cancel Clear
Msg to User:					
Keypad?) No	Min Value: Max Value:	0 100	🔲 Input Only	

Figura 2.8. Característica Input Analog. Permite modificar un valor analógico (ya sea *Memory Type o I/O Type*).
Podemos dar un mensaje al operador, así como limitar los valores mínimo y máximo de entrada. La función *KEYPAD*? Posibilita que la entrada se lleve a cabo desde un teclado externo *PC* compatible.

Object type:	Polygon	Prev Link	Ne:	kt Link	OK Cancel
	I	nput -> String Ta	igname		
Tagname:	VALVE7C1				ОК
Keyequiva	lent] Shift Key	None	Keypad?	No	Cancel
Msg to User:					Clear
Echo Chara Yes	acters? No 🔘 Password	Password Cha	×	🔲 Input O	nly

Figura 2.9. Característica Input String. Permite modificar una cadena alfanumérica.

Para un completo teclado QWERTY aparece en pantalla. Se utiliza para passwords, selecciones de datos, etc. Podemos dar un mensaje al operador. La función ECHO CHARACTERS? permitirá o no que los valores que se van introduciendo sean a la vez displayados en pantalla. La función KEYPAD? Posibilita que la entrada se lleve a cabo desde un teclado externo PC compatible.

 Value Slider: Permite crear una barra de desplazamiento vertical u horizontal para seleccionar valores.

✓ Touch Pushbutton:

DISCRETE: A diferencia del touch value, actúa como un pulsador, directamente sobre una señal 0/1.

ACTION: Permite ejecutar una lógica o acciones (llamada a otros programas, impresión, etc.

SHOW/HIDE WINDOW: Permite llamar a otras pantallas o hacerlas desaparecer del monitor.

Object type: Symbol	Prev Link Next Link	OK Cancel
	Pushbutton -> Discrete Value	
Tagname: V25C1		OK
Key equivalent	Key None	Cancel
Action O Direct O Reverse	🔿 Toggle 🛛 Reset 🔘 Set	Clear

Figura 2.10. Característica Pushbutton. Creamos un pulsador que colocará a 1 o a 0 el registro seleccionado en *tagname*.

Podemos asignar además una tecla o combinación de teclas que hagan la misma función que este pulsador. El pulsador creado puede ser del siguiente tipo:

- DIRECT: Pone el valor a 1 al pulsar el botón y mantenerlo. Al soltarlo lo pone a 0.
- REVERSE: Pone el valor a 0 al pulsar el botón y mantenerlo. Al soltarlo lo pone a 1.
- TOGGLE: Invierte el estado del bit seleccionado al ser pulsado.
- RESET: Pone el valor a 0 al ser pulsado.
- SET: Pone el valor a 1 al ser pulsado.
- ✓ Line Color: Permiten animar el color de línea de un objeto. Este cambio de color puede depender de un valor discreto/analógico o asociarse a una alarma de tipo discreto o analógico.

Discrete
Analog
Discrete Alarm
Analog Alarm

Fil	Color -> Discrete Expression	
Expression:		
VALVE13C10		Cancel
Colors		
1,TRUE,On:	0,FALSE,Off:	Clear

Figura 2.11. Característica Line Color Discrete. Animación del objeto o tags utilizados

Figura 2.12. Característica Line Color Analog. Animación del objeto o tags utilizados.

✓ Fill Color: Permiten rellenar un objeto de un color. Este cambio de color puede depender de un valor discreto/analógico o asociarse a una alarma de tipo discreto o analógico.

	Discrete
	Analog
	Discrete Alarm
\Box	Analog Alarm

✓ Text Color: Permiten cambiar el color de un texto. Este cambio de color puede depender de un valor discreto/analógico o asociarse a una alarma de tipo discreto o analógico.

Discrete
Analog
Discrete Alarm
Analog Alarm

✓ Object Size: Permite asociar el tamaño vertical/horizontal de un objeto a un registro

Object Height -> Analog Value					
Expression:					
LTTQ1				Cancel	
Properties					
Value at Max Height:	11000	Max % Height:	100	Clear	
Value at Min Height:	0	Min % Height:	0		
Anchor					
🔘 Тор	🔘 Middle	Ø Bottom			

Figura 2.13. Característica Object Height. Podemos definir altura (anchura) mínima y máxima tanto real como porcentual. Definimos también cuál es el punto de partida de ese movimiento.

✓ Miscellaneous

Visibility: Permite que un objeto aparezca/desaparezca de la pantalla.

Blink: Intermitencia del objeto.

Orientation: Modifica orientación del objeto.

Disable: Hace que un objeto "táctil" deje de serlo.

Visibility
Blink
Orientation
Disable

Object type: Symbol	Prev Link Next Link	OK Cancel
	Object Visibility -> Discrete Value	
Expression: VALVE13C10		OK Cancel
Visible State On Off 		Clear

Figura 2.14. Característica Object Visibility. El objeto seleccionado sólo se visualizará cuando el registro VALVE13C10 tenga un valor lógico de 1.

Object type: Text	Prev Link Next Link	OK Cancel
Obj	ject Blinking -> Discrete Value	
Expression - Blink When: BOMBA C1A		OK Cancel
Blinked Attributes Blink Invisible Blink visible with these attributed Text Color: Line Color: Fill Color: 	Blink Speed Slow Hedium Fast Ites:	Clear

Figura 2.15. Característica Object Blinking. El objeto seleccionado se hará intermitente al activarse una alarma.

Orientation -> Analog Value						
Expression:						
VARIABLE3	VARIABLE3					
Properties						
Value at Max CCW:	0	CCW Rotation:	0	Clear		
Value at Max CW:	100	CW Rotation:	360			
Center of Rotation Offset from Object Centerpoint X Position: 0 Y Position: 0						

Figura 2.16. Característica Orientation. El objeto seleccionado rotará de acuerdo al valor del tagname Variable3.

✓ **Location:** Permite modificar la posición del objeto.

Vertical Location					
Expression:					
E3V1				Cancel	
Properties	Value	1	/ertical Movement		
At Top:	0	Up:	0	Llear	
At Bottom:	100	Down:	100		

Figura 2.17. Característica Vertical Location. Aminacion del objeto se desplaza verticalmente.

✓ Value Display: Se utiliza para visualizar un valor discreto, analógico o alfanumérico.

✓ **Percent Fill:** Permite asociar un registro tagname a una barra gráfica.

Vertical
Horizontal

Object type: Symbol		Prev Link	Next Link	OK Cancel
	Vertical	Fill -> Analog V	/alue	
Expression: LTTQ1				OK Cancel
Properties Value at Max Fill: Value at Min Fill:	11000 0	Max % Fill: Min % Fill:	100 0	Clear
Direction O Up O D	own	Background	Color:	

Figura 2.18. Característica Vertical Fill. Indica el nivel de los tanques de extracto de café.

✓ Interface gráfica.

Las interfaces gráficas permiten la elaboración de pantallas de usuario con múltiples combinaciones de imágenes y/o texto, definiendo así las funciones de control y supervisión de planta se muestra en la figura 2.19.

F	U Ŷ		
	Start Stop	Start Stop	Ŧ

Figura 2.19. Gráfica Intouch. Ejemplo de una interfaz gráfica.

Es posible realizar cambios de configuración si tenemos los privilegios adecuados. Por ejemplo, modificar la duración de una gráfica para ver unos datos que no se muestran en la pantalla en ese momento.

Figura 2.20. Librería Symbol Factory. Librería para la utilización de elementos gráficos para un determinado control.

✓ Registro y archivado.

Por registro (logging) se entiende el archivo temporal de valores, generalmente basándose en un patrón cíclico y limitado en tamaño. Por ejemplo, podemos definir un archivo histórico de alarmas de manera que almacene en disco duro hasta mil alarma se escribirá sobre la primera que se guardó (registro de tipo rotativo).

Tambien será posible que, una vez el registro de alarmas este lleno, se guarde una copia en un archivo (archivado) que no se borr,quedando a disposición del usuario que necesite recuperar esos datos.

Los datos de alarmas y eventos que ocurren en el sistema suelen ir acompañados de más identificadores, tales como el momento en el cual ocurrieron (Time Stamp) o el usuario activo en ese momento.

Historical Logging Properties			
 Enable Historical Logging Historical Log File Keep Log Files for: 0 days Store Log Files in Application Directory Store Log Files in Specific Directory: 			OK Cancel
Name of Logging Node:			
Printing Control			
Default % of page to print on:	50	%	
Max consecutive time to spend printing:	500	msec	
Time to wait between printing:	2000	msec	
Select Printer Font	ays use color	when printing	

Figura 2.21. Configuración de archivo de alarmas. Se detalla la configuración del archivo de alarmas del Scada Intouch.

Se puede determinar donde se guarda, la duracion delarchivo, e incluso los datos que se van a archivar.

2.3 SENSOR DE TEMPERATURA UTILIZADO.

2.3.1 (RTD).

(National Instruments, 2012). Indican que las RTD son materiales que con el aumento de la temperatura aumentan su resistencia, la principal característica de los RTD es que son elementos muy lineales en un gran rango de resistencia vs temperaturas. La máxima calidad de los RTD la dan los detectores de platino ya que permite realizar medidas más exactas y estables.

Figura 2.22. Partes de un Pt-100. Sensor utilizado para la medición de temperatura en la área de curto frio. Por Antonio Creus, (7ma edición). (2005). Instrumentación Industrial. Barcelona: Marcombo, S.A.

(Arian, 2011). El Pt100 es un sensor de temperatura. Consiste en un alambre de platino que a 0 °C tiene 100 ohms y que al aumentar la temperatura aumenta su resistencia eléctrica.

Figura 2.23. Curva de Resistencia Vs Temperatura. Aquí se Muestra la variación de la resistencia en los terminales de un Pt100 a medida que cambia la temperatura. Por Arian, Control & Instrumentación, (2011).

(Antonio Creus, 2005). El material que forma el conductor se lo llama "coeficiente de temperatura de resistencia" en una determinada temperatura específica, la variación de la resistencia en ohmios del conductor por cada grado que cambia su temperatura, (pag. 237).

 Tabla 2.1. Característica de sondas resistencia.

Metal	<i>Resistividad</i> μΩ/cm	Coeficiente temp. Ω/Ω, °C	Intervalo útil de temp. *C	Ø mín. de hilo mm	Coste relativo	Resis. sonda a 0° C, ohmios	Preci- sión °C
Platino	9,83	0,00385	- 200 a 950	0,05	Alto	25, 100, 130	0,01
Níquel	6,38	0,0063 a 0,0066	- 150 a 300	>	Medio	100	0,50
Cobre	1,56	0,00425	- 200 a 120	>	Bajo	10	0,10

Nota: Se detalla la resistividad, coeficiente de temperatura, rango de temperatura, diámetro del conductor, precisión y costo, de cada material de una Pt100. Por A. Creus, (2005). Instrumentación Industrial. Barcelona: Marcombo, S.A.

Las RTD se fabrican en varios tipos de configuración de los alambres de conexión.

Conexión de 2 hilos.

(Arian, 2011). Nos indica que es el modo más sencillo de conexión pero menos recomendado. Lo único que se puede hacer es usar cable de mayor

diámetro posible para disminuir la resistencia de Rc1 y Rc2 y así disminuir el error en la lectura. La resistencia equivalente es:

$$RT = R(t) + Rc1 + Rc2.$$

Figura 2.24. Conexión de 2 hilos. Los alambres Rc1 y Rc2 que unes la Pt100, son tan cortos que su resistencia es despreciable generando un error inevitable. Por Arian, Control & Instrumentación, 2011.

Conexión de 3 hilos.

(Arian, 2011). Esta configuración de conexión de 3 hilos es el más común y resuelve bastante bien el problema de error generado por los cables.

Figura 2.25. Conexión de 3 hilos. Se describe que los alambre Rc1, Rc2 y Rc2 que conecta la Pt100, tiene resistencia cuyos efectos tienden a cancelarse si dichos alambre tienen la misma resistencia eléctrica, el sistema de medición se basa en el puente de Wheatstone. Por Arian, Control & Instrumentación, 2011.

Conexión de 4 hilos.

(Arian, 2011). El metodo de 4 hilos es el más preciso que las otras dos conexiones, si los 4 alambre de conexión al Pt100 pueden ser distintas resistencia entre ellas.

Figura 2.26. Conexión de 4 hilos. Pt100 más utilizada en la industria por su precisión. Por Arian, Control & Instrumentación, (2011).

2.3.2 TERMOCUPLA.

(Antonio Creus, 2005). Nos indica que está compuesta por dos alambres de metales diferentes, los que unidos convenientemente generan entre sus extremos libres una diferencia de potencial proporcional a la diferencia de temperatura entre ellos.

Figura 2.27. Característica de una termocupla. Sensor utilizado para la medición de temperatura en el área secado de cámara.

(Antonio Creus, 2005). Pag. 248. El comportamiento de las termocuplas ha permitido establecer tres leyes fundamentales:

- Ley del circuito homogéneo: no puede sostenerse la circulación de una corriente eléctrica por la aplicación exclusiva de calor.
- Ley de los metales intermedios: si en un circuito de varios conductores la temperatura es uniforme desde un punto de soldadura A a otro punto B, la

suma algebraica de todas las fuerzas electromotrices es totalmente independiente de los conductores metálicos intermedios y es la misma que si se pusieran en contacto directo A y B.

• Ley de las temperaturas sucesivas: la f.e.m. generada por una termocupla con sus uniones a la temperatura T1 y T3 es la suma algebraica de la f.e.m. de la termocupla con sus uniones a T1 y T2 y de la f.e.m. de la misma termocupla con sus uniones a las temperaturas T2 y T3.

Figura 2.28. Curva características f.e.m. Vs temperatura. De los diferentes tipos de material de una Termocupla. Por A. Creus, (2005). Instrumentación Industrial. Barcelona: Marcombo, S.A.

2.4 PLC.

Significa Controlador Lógico Programable, destinado a gobernar máquinas o procesos lógicos y/o secuenciales que inicialmente surgen para implementar funciones lógicas.

2.4.1 PLC MODICON M340 UTILIZADO.

(Manual Usuario, Schneider Electric). Los procesadores de plataforma automatizados M340 de Modicon gestionan toda la estación PLC, que está formada por módulos de E/S binarias, módulos de E/S analógicas y módulos de conteo, otros módulos expertos y módulos de comunicación.

Figura 2.29. Productos de Schneider Electric. Gamas de producto que ofrece Schneider electric a sus cliente. Por Schneider Electric. (Catálogo 2009). Plataforma de automatización Modicon M340.

 Entradas/Salidas binarias: tiene una amplia gama de módulos de entradas y salidas binarias permite seleccionar el módulo que mejor se ajusta a lo que se precise. Tabla 2.2. Característica módulos digital.

Características	Descripción
Modularidad	 8 canales 16 canales 32 canales 64 canales
Tipo de entradas	 Módulos con entradas de corriente continua (24 VCC y 48 VCC) Módulos con entradas de corriente alterna (24 VCA, 48 VCA y 120 VCA)
Tipo de salidas	 Módulos con salidas de relé Módulos con salidas estáticas de corriente continua (24 VCC/0,1 A – 0,5 A - 3 A) Módulos con salidas estáticas de corriente alterna (24 VCC/240 VAC/3 A)
Tipo de conector	 Bloque de terminales de 20 pins Conectores de 40 pins que permiten la conexión a sensores y preaccionadores a través del sistema de precableado TELEFAST 2

Nota: Se detalla los diferentes tipos de módulos digitales que ofrece Schneider. Por Schneider Electric. (Catálogo 2009). Plataforma de automatización Modicon M340.

• Entradas/Salidas analógicas: las características de estos módulos se diferencian en lo siguiente.

Tabla 2.3. Característica módulos analógicos.

Características	Descripción
Modularidad	 2 canales 4 canales
Rendimiento y rango de las señales	Tensión/CorrienteTermoparTermopozo
Tipo de conector	 Bloque de terminales de 20 pins Conectores de 40 pins que permiten la conexión a sensores y preaccionadores a través del sistema de precableado TELEFAST 2

Nota: Se detalla los diferentes tipos de módulos analógicas que ofrece Schneider. Por Schneider Electric. (Catálogo 2009). Plataforma de automatización Modicon M340.

2.4.2 PROTOCOLO DE COMUNICACIÓN.

En esta sección proporciona una descripción general de las redes del PLC. (Manual Usuario, Schneider Electric). Pag. 34.

- Red Ethernet: la comunicación Ethernet está especialmente diseñada para las siguientes aplicaciones.
 - Coordinación entre PLC.
 - Supervisión local o centralizada.
 - Comunicación con la información de gestión de producción.
 - Comunicación con entradas/salidas remotas.

Al actuar como agente, la comunicación Ethernet también se encarga de la gestión del estándar de supervisión de red SNMP.

Figura 2.30. Red Ethernet. Se detalla el lazo de una red ethernet con diferente puerto de comunicación. Por Schneider Electric. (Catálogo 2009). Plataforma de automatización Modicon M340.

- Red CANopen: Es un bus de campo su estructura incluye:
 - Un maestro de bus
 - Dispositivos esclavos, también llamados nodos.

El bus funciona punto a puno. En cualquier momento, cada dispositivo puede enviar una solicitud al bus, a la que responden los dispositivos afectados. La prioridad de solitud del bus se calcula po medio de un identificador para cada mensaje.

Figura 2.31. Red CANopen. Se detalla el lazo de una red CANopen con diferente módulos de comunicación. Por Schneider Electric. (Catálogo 2009). Plataforma de automatización Modicon M340.

CAPÍTULO III

3. DESCRIPCIÓN DEL HARDWARE.

A continuación se detalla el Hardware existente con sus respectivos módulos I/O para identificar las variables o Tags utilizados en el software InTouch 2012 R2, de cada uno de los procesos de control de la planta de liofilizado.

3.1 DESCRIPCIÓN DEL HARDWARE Y VARIABLES EN EL ÁREA DE CÁMARA DE SECADO.

Las variables que se detalla a continuación en la tabla 3.2 pertenecen al área cámara de secado. Estas variables son las mismas en las doces cámaras de secado. Lo que cambia son las direcciones de los PLC Instalados en cada una de las cámaras, como se observa en la tabla 3.1.

PLC MODICON M340	Dirección PLC
Cámara de Secado # 1	192.168.122.101
Cámara de Secado # 2	192.168.122.102
Cámara de Secado # 3	192.168.122.103
Cámara de Secado # 4	192.168.122.104
Cámara de Secado # 5	192.168.122.105
Cámara de Secado # 6	192.168.122.106
Cámara de Secado # 7	192.168.122.107
Cámara de Secado # 8	192.168.122.108
Cámara de Secado # 9	192.168.122.109
Cámara de Secado # 10	192.168.122.110
Cámara de Secado # 11	192.168.122.111
Cámara de Secado # 12	192.168.122.112

Tabla 3.1. Direcciones PLC's área secado de cámara.

Nota: Se detalla las direcciones IP de los autómatas de la red Ethernet.

Figura 3.1 Descripción del Hardware Área Cámara de secado. Se detalla las características de los módulos utilizados.

Tabla 3.2. Variables utilizadas en el área Cámara de secad	lo.
--	-----

Item en InTouch	Item DAServe	Item PLC	Descripción
MAXVACIOC1	400189	%MW 188	Vacío máximo de secado en cámara
MINVACIOC1	400190	%MW 189	Vacío mínimo de secado en cámara
P1MINC1	400053	%MW 52	Tiempo de secado en el paso 1
P1TEMPC1	400041	%MW 40	Temperatura secado en el paso 1
P2MINC1	400054	%MW 53	Tiempo de secado en el paso 2
P2TEMPC1	400042	% MW 41	Temperatura secado en el paso 2
P3MINC1	400055	%MW 54	Tiempo de secado en el paso 3

P3TEMPC1	400043	%MW 42	Temperatura secado en el paso 3
P4MINC1	400056	%MW 55	Tiempo de secado en el paso 4
P4TEMPC1	400044	%MW 43	Temperatura secado en el paso 4
P5MINC1	400057	%MW 56	Tiempo de secado en el paso 5
P5TEMPC1	400045	%MW 44	Temperatura secado en el paso 5
P6MINC1	400058	%MW 57	Tiempo de secado en el paso 6
P6TEMPC1	400046	%MW 45	Temperatura secado en el paso 6
P7MINC1	400059	%MW 58	Tiempo de secado en el paso 7
P7TEMPC1	400047	%MW 46	Temperatura secado en el paso 7
P8MINC1	400060	%MW 59	Tiempo de secado en el paso 8
P8TEMPC1	400048	%MW 47	Temperatura secado en el paso 8
P9MINC1	400061	%MW 60	Tiempo de secado en el paso 9
P9TEMPC1	400049	%MW 48	Temperatura secado en el paso 9
P10MINC1	400062	%MW 61	Tiempo de secado en el paso 10
P10TEMPC1	400050	%MW 49	Temperatura secado en el paso 10
P11MINC1	400063	%MW 62	Tiempo de secado en el paso 11
P11TEMPC1	400051	%MW 50	Temperatura secado en el paso 11
P12MINC1	400064	%MW 63	Tiempo de secado en el paso 12
P12TEMPC1	400052	%MW 51	Temperatura secado en el paso 12
TEMPP1C1	400114 S	%MW 113	Temperatura de producto 1
TEMPP2C1	400115 S	%MW 114	Temperatura de producto 2
TEMPP3C1	400116 S	%MW 115	Temperatura de producto 3
TEMPP4C1	400117 S	%MW 116	Temperatura de producto 4
TEMPP5C1	400118 S	%MW 117	Temperatura de producto 5

TEMPP6C1	400119 S	%MW 118	Temperatura de producto 6
TEMPAGUATORREC1	400124 S	%MW 123	Temperatura agua fría
TEMPCONDAC1	400120 S	%MW 119	Temperatura de Condensador A
TEMPCONDBC1	400121 S	%MW 120	Temperatura de Condensador b
TEMPGLICOLC1	400125 S	%MW 124	Temperatura de Glicol Caliente
TEMPMEZCLAC1	400126 S	%MW 125	Temperatura de Glicol Frio
TEMPREFRIGCONDAC1	400122 S	% M W 121	Temperatura de Refrigerante condensador A
TEMPREFRIGCONDBC1	400123 S	%MW 122	Temperatura de Refrigerante condensador B
VBOMBA1A	400104	%MW 103	Vacío de bomba A
VBOMBA1B	400105	%MW 104	Vacío de bomba B
VCAMARA1	400101	% MW 100	Vacío Cámara de secado
VCOND1A	400102	% MW 101	Vacío Condensador A
VCOND1B	400103	%MW 102	Vacío Condensador B
VALVE30C1	300021:6	%MW 20:6	Válvula Rompe Vacío de cámara
VALVE13C1	300021:14	%MW 20:14	Válvula Rompe Vacío de condensador A
VALVE14C1	300021:11	%MW 20:11	Válvula Rompe Vacío de condensador B
VALVEDRENAC1	300021:2	%MW 20:2	Válvula Drenaje de condensador A
VALVEDRENBC1	300022:4	%MW 21:4	Válvula Drenaje de condensador B

3.2 DESCRIPCIÓN DE LAS VARIABLES UTILIZADA EN EL ÁREA DE CUARTO FRIO.

A continuación se detallas las variables utilizadas en el área de cuarto frio, como se puede apreciar en la tabla 3.3.

Figura 3.2 Descripción del Hardware Área de cuarto frio. Se detalla los módulos utilizados y la comunicación CANopen.

Tabla 3.3. Variables utilizadas en el área de cuarto frio.

Item en InTouch	Item DAServe	Item PLC	Descripción
HZBREGMAN1	400354	%MW 353	Frecuencia molino Bregman Línea #1
HZBREGMAN2	400359	%MW 358	Frecuencia molino Bregman Línea #2

HZM1L1	400351	%MW 350	Frecuencia Molino primario Línea #1
HZM1L2	400356	%MW 355	Frecuencia Molino primario
HZM2L1	400352	%MW 351	Frecuencia Molino Secundario Línea #1
HZM2L2	400357	%MW 356	Frecuencia Molino Secundario Línea #2
HZM3L1	400353	%MW 352	Frecuencia Molino Terciario Línea #1
HZM3L2	400358	%MW 357	Frecuencia Molino Terciario Línea #2
HZSINFIN1	400355	%MW 354	Frecuencia Molino Sin Fin línea #1
HZSINFIN2	400360	%MW 359	Frecuencia Molino Sin Fin línea #2
BREGMAN1	400093	%MW 92	RPM molino Bregman Línea #1
BREGMAN2	400097	%MW 96	RPM molino Bregman Línea #2
M1L1	400096	%MW 95	RPM Molino primario Línea #1
M1L2	400092	%MW 91	RPM Molino primario Línea #2
M2L1	400099	%MW 98	RPM Molino Secundario Línea #1
M2L2	400091	%MW 90	RPM Molino Secundario Línea #2
M3L1	400095	%MW 94	RPM Molino Terciario Línea #1
M3L2	400100	%MW 99	RPM Molino Terciario Línea #2
SINFIN1	400094	%MW 93	RPM Molino Sin Fin línea #1
SINFIN2	400098	%MW 97	RPM Molino Sin Fin línea #2
TEMPBREGMAN1	401510 S	%MW 1509	Temperatura Molino Bregman Línea #1
TEMPBREGMAN2	401511 S	%MW 1510	Temperatura Molino Bregman Línea #2
TEMPBREGMAN3	401513 S	%MW 1512	Temperatura Evaporador # 2
TEMPMOLINO1	402066 S	%MW 2065	Temperatura Molino Primario línea #1
TEMPMOLINO2	402067 S	%MW 2066	Temperatura Molino Primario línea #2

TEMPMOLINO3	402069 S	%MW 2068	Temperatura Evaporador # 1
TEMPTOLVA1	401232 S	%MW 1231	Temperatura Tolva de producto línea #1
TEMPTOLVA2	401233 S	%MW 1232	Temperatura Tolva de producto línea #2
TEMPTOLVA3	401792 S	%MW 1791	Temperatura Evaporador # 4
TEMPTRUCK1	401235 S	%MW 1234	Temperatura Evaporador # 5
TEMPTRUCK2	401236 S	%MW 1235	Temperatura Evaporador # 6
TEMPZARANDA1	401788 S	% MW 1787	Temperatura Zaranda línea #1
TEMPZARANDA2	401789 S	%MW 1788	Temperatura Zaranda línea #2
TEMPZARANDA3	401791 S	%MW 1790	Temperatura Evaporador # 3

3.3 DESCRIPCIÓN DE LAS VARIABLES UTILIZADA EN EL ÁREA DE TÚNELES.

A continuación se detalla las Variables utilizadas en el área de túneles ver la tabla 3.4.

Item en InTouch	Item DAServe	Item PLC	Descripción
PRESD1	400602	%MW 601	Presión dosificador Túnel #1
PRESD2	400602	%MW 601	Presión dosificador Túnel #2
TEMPD1	400601 S	%MW 600	Temperatura dosificador Túnel #1
TEMPD2	400601 S	%MW 600	Temperatura dosificador Túnel #2
TEMPZ11	404568 S	%MW 567	Temperatura Zona 1 Túnel #1
TEMPZ12	404568 S	%MW 567	Temperatura Zona 1 Túnel #2
TEMPZ21	404569 S	%MW 568	Temperatura Zona 2 Túnel #1
TEMPZ22	404569 S	%MW 568	Temperatura Zona 2 Túnel #2
TEMPZ31	404571 S	%MW 4570	Temperatura Zona 3 Túnel #1

Tabla 3.4. Variables Utilizadas en el área de Túneles.

TEMPZ32	404571 S	%MW 4570	Temperatura Zona 3 Túnel #2
TEMPZ41	404572 S	%MW 4571	Temperatura Zona 4 Túnel #1
TEMPZ42	404572 S	%MW 4571	Temperatura Zona 4 Túnel #2
TEMPZ51	404574 S	%MW 4573	Temperatura Zona 5 Túnel #1
TEMPZ52	404574 S	%MW 4573	Temperatura Zona 5 Túnel #2
TEMPZ61	404575 S	%MW 4574	Temperatura Zona 6 Túnel #1
TEMPZ62	404575 S	%MW 4574	Temperatura Zona 6 Túnel #2
TEMPZ71	404577 S	%MW 4576	Temperatura Zona 7 Túnel #1
TEMPZ72	404577 S	%MW 4576	Temperatura Zona 7 Túnel #2
TEMPZ81	404578 S	%MW 4577	Temperatura Zona 8 Túnel #1
TEMPZ82	404578 S	%MW 4577	Temperatura Zona 8 Túnel #2
VENTZ11	400107	%MW 106	Frecuencia Zona 1 Túnel #1
VENTZ12	400107	%MW 106	Frecuencia Zona 1 Túnel #2
VENTZ21	400108	%MW 107	Frecuencia Zona 2 Túnel #1
VENTZ22	400108	%MW 107	Frecuencia Zona 2 Túnel #2
VENTZ31	400109	%MW 108	Frecuencia Zona 3 Túnel #1
VENTZ32	400109	%MW 108	Frecuencia Zona 3 Túnel #2
VENTZ41	400110	%MW 109	Frecuencia Zona 4 Túnel #1
VENTZ42	400110	%MW 109	Frecuencia Zona 4 Túnel #2
VENTZ51	400111	%MW 110	Frecuencia Zona 5 Túnel #1
VENTZ52	400111	% MW 110	Frecuencia Zona 5 Túnel #2
VENTZ61	400112	%MW 111	Frecuencia Zona 6 Túnel #1
VENTZ62	400112	%MW 111	Frecuencia Zona 6 Túnel #2
VENTZ71	400113	%MW 112	Frecuencia Zona 7 Túnel #1

VENTZ72	400113	%MW 112	Frecuencia Zona 7 Túnel #2
VENTZ81	400114	% M W 114	Frecuencia Zona 8 Túnel #1
VENTZ82	400114	% M W 114	Frecuencia Zona 8 Túnel #2

Figura 3.3 Descripción del hardware Área de Túneles. Se detalla los módulos utilizados y la comunicación CANopen.

3.4 DESCRIPCIÓN DE LAS VARIABLES UTILIZADA EN EL ÁREA DE TANQUE Y ESPUMADO.

En la tabla 3.5 se detalla las Variables utilizadas en el área de tanque y espumado.

Figura 3.4 Descripción del Hardware Área de Tanque. Se detalla los módulos utilizados.

Tabla 3.5. Variables utilizadas en el área de Tanque y Espumado.

Item en InTouch	Item DAServe	Item PLC	Descripción
TEMPTQ11	400041	%MW 40	Temperatura Tanque #1
TEMPTQ1ESP	400119	% MW 118	Temperatura Tanque #1 espumado
TEMPTQ22	400042	% MW 41	Temperatura Tanque #2
TEMPTQ2ESP	400120	%MW 119	Temperatura Tanque #2 espumado
TEMPTQ33	400043	%MW 42	Temperatura Tanque #3
TEMPTQ3ESP	400121	%MW 120	Temperatura Tanque #3 espumado
TEMPTQ44	400044	%MW 43	Temperatura Tanque #4

TEMPTQ4ESP	400107	%MW 106	Temperatura Tanque #4 espumado
TEMPTQ55	400045	%MW 44	Temperatura Tanque #5
LTTQ1	400101	%MW 100	Litros almacenado Tanque #1
LTTQ1ESP	400112	% MW 111	Litros almacenado Tanque #1 espumado
LTTQ2	400102	%MW 101	Litros almacenado Tanque #2
LTTQ2ESP	400126	%MW 125	Litros almacenado Tanque #2 espumado
LTTQ3	400103	%MW 102	Litros almacenado Tanque #3
LTTQ3ESP	400127	%MW 126	Litros almacenado Tanque #3 espumado
LTTQ4	400104	% MW 103	Litros almacenado Tanque #4
LTTQ4ESP	400113	%MW 112	Litros almacenado Tanque #4 espumado
LTTQ5	400105	% MW 104	Litros almacenado Tanque #5
HZB1ESP	400136	%MW 135	Frecuencia Bomba #1 de envío tanque a espumado
HZB2ESP	400137	% MW 136	Frecuencia Bomba #2 de envío tanque a espumado
BOMBAESP11	400118	% MW 117	Frecuencia Bomba #1 Espumadora #1
BOMBAESP22	400119	% MW 118	Frecuencia Bomba #2 Espumadora #2
HZBRETORESP	400138	%MW 137	Frecuencia Bomba #3 Auxiliar
VVHOMOGTQ1	300022:6	%MW 21,6	Confirmación del Homogenizador tanque #1
VVHOMOGTQ1ESP	303066:0	%MW 3065,0	Confirmación del Homogenizador tanque #1 espumado
VVHOMOGTQ2	300022:5	%MW 21,5	Confirmación del Homogenizador tanque #2

VVHOMOGTQ2ESP	303066:1	%MW 3065,1	Confirmación del Homogenizador tanque #2 espumado
VVHOMOGTQ3	300022:3	%MW 21,3	Confirmación del Homogenizador tanque #3
VVHOMOGTQ3ESP	303066:2	%MW 3065,2	Confirmación del Homogenizador tanque #3 espumado
VVHOMOGTQ4	300022:2	%MW 21,2	Confirmación del Homogenizador tanque #4
VVHOMOGTQ4ESP	303066:3	%MW 3065,3	Confirmación del Homogenizador tanque #4 espumado
VVHOMOGTQ5	300022:1	%MW 21,1	Confirmación del Homogenizador tanque #5

CAPÍTULO IV

4. IMPLEMENTACIÓN DE LAS PANTALLAS DE MONITOREO.

En este capítulo se detalla el diseño de las pantallas, además la comunicación entre el scada y el autómata.

4.1 DESCRIPCIÓN DE LA PLATAFORMA DE DESARROLLO.

Al ser los operadores los encargados del monitoreo y la toma acciones ante cualquier circunstancia se establece un diseño de pantallas que permiten el monitoreo de los registros de las variables de todo el sistema relacionado con la elaboracion de café liofilizado. Para realizar esta implementación se escogió el software SCADA Intouch 2012 R2, principalmente por ser de la familia Wonderware.

4.2 INTOUCH 2012 R2.

La versión del software de InTouch 2012 R2 para monitorización y control de procesos industriales ofrece una sobresaliente facilidad de uso, creación y configuración de gráficos. Permite a los usuarios la creación y puesta en marcha de aplicaciones para la captura de información a tiempo real. El paquete consta básicamente de dos elementos: Windowmaker y Windowviewer.

Windowmaker: Es el sistema de desarrollo, permite todas las funciones necesarias para crear ventanas animadas del proceso de café liofilizado, ingresos de las variables del proceso a controlar conectadas al sistemas de E/S externos o a otras aplicaciones Windows.

Windowviewer: Es el sistema runtime, se visualiza las variables en tiempo real utilizada en la aplicación creadas con windowmaker.

Para el diseño de las ventas animadas y la visualización de las variables en tiempo real se utilizó la licencia RunTime (instalada directamente en el CPU).

4.2.1 CONECTIVIDAD.

InTouch 2012 R2 se puede conectar a casi cualquier dispositivo de control debido a los ciento de controladores I/O y servidores OPC existentes diseñados para la conexión a productos de Wonderware. Su lista de controladores es la más grande del mercado.

Los servidores Wonderware suministran datos a aplicaciones InTouch a través de comunicación DDE de Microsoft, el protocolo *Suitelink* de Wonderware o la tecnología OPC. Otros fabricante utilizan el set de herramienta *Archestra DAS* (Data Access Server) *Toolkit* para la creación de servidores que incorporen uno o varios de los métodos anteriormente mencionado.

4.3 DISEÑO DEL PROGRAMA EN INTOUCH 2012 R2.

Después de analizar cada uno de los procesos de la planta liofilizado, se decidió que el Scada elaborada permita realizar las funciones siguientes.

- Acceder a las pantallas de control por medio de usuario y clave, el cual permite acceder a los procesos de producción de café liofilizado.
- Monitorear el correcto funcionamiento de todos los equipos principales y elementos que intervienen en los procesos de producción como bombas de vacío, bomba de producto, válvulas solenoides, válvula proporcional, variadores de velocidad.
- Monitorear las temperaturas de secado de café, la temperatura de congelado de café, sensores de vacío.
- Ingresar los valores de variables de control del proceso de café liofilizado, no medible con sensores atreves con el autómata existente en la planta como densidad de hielo del café, densidad de sacado del café, °Brix, solido solubles.
- Almacenar las variables de control como las temperaturas de café en hielo y secado, vacío de secado, frecuencia.
- Generar reportes diarios de las variables de control del proceso de café liofilizado, realizado por el departamento de producción en archivo .csv de Excel.

4.4 SECUENCIA DE ELABORACIÓN DE LAS PANTALLAS EN INTOUCH 2012 R2.

Figura 4.1a. Secuencia del proceso de café liofilizado. Se detalla el funcionamiento de cada área del proceso.

Figura 4.1b. Estructura de pantalla en InTouch. Diseño de las pantalla de control y alarma de cada área del proceso de café liofilizado.

4.5 CONFIGURACIÓN DE ITEMS EN INTOUCH.

Para poder leer datos en el PLC desde Intouch, es necesario que el dato sea definido como un tagname tipo I/O (discreto, entero, real, string, etc).

Además se debe crear un Access Name el cual está asociado a cada uno de los I/O tagname del intouch. Access Name es aquel que contiene la información del nombre de la aplicación (Application Name), y el nombre del tópico (Topic Name). El application Name corresponde al nombre de la aplicación con la que se va a comunicar el intouch, en este caso el nombre es CAM3.

Add Access Nam	e		-
Access	CAM3		OK
Node Name:			Cancel
Application Nat DASMBTCP	me:		Failover
Topic Name: CAM3			
Which protoc	ol to use	🔘 Message Exch	ange
When to adv	ise server all items 🛛 💿	Advise only active items	3
🔲 Enable Sec	ondary Source		

Figura 4.2a. Configuración de Access Name. Acceso para la comunicación entre el scada y SMC.

El topic Name es el nombre genérico de la aplicación, para este caso CAM3. Como se muestra en la figura 4.2 a, es igual al Access Name del cuadro de dialogo y también debe ser igual al definido en el topic Definition de configuración en el I/O server.

Luego se selecciona el protocolo a utilizarse en este caso *SuiteLink* y se acepta. Para indicar la dirección de memoria del dato que va a ser leido en el PLC se coloca en el casillero Item de la siguiente ventana que se muestra en la figura 4.2 b.

Tagname Dictionary				x
🔘 Main 💿 Details 🔘 Alarms 🔘 Details & Alar	rms 💿 Members	\$		
New Restore Delete Save <<	Select	Cancel C	ose	
Tagname: ALARMAVACIOC1	Type:]/	O Real		
Group: \$System	🔘 Read onl	y 💿 Read Write		
Comment:				
🗖 Log Data 📄 Log Events 📃 I	Retentive Value 🛛	Retentive Paran	neters	
Initial Value: 0	Min EU:	-32768	Max EU:	32767
Deadband: 0	Min Raw:	-32768	Max Raw:	32767
Eng Units:	Log Deadband:	0	- Conversi (© Linear	on 💿 Square Root
Access Name: CAM1				
Item: ALARMAVACIOC1			🔽 Use Ta	igname as Item Name

Figura 4.2b. Configuración del Tagname I/O. Característica y configuración del tagname.

El tagname definido como ALARMAVACIOC1es tipo I/O real, el Access Name CAM1 como se indicó anteriormente y el Item se utilizó igual que el Tagname, que es la dirección donde se encuentra almacenado en el I/O server para comunicarse con el PLC.

4.6 USO DEL INTOUCH.

Para dar inicio al software de InTouch se procede de la siguiente manera. Primero es necesario abrir el programa I/O server "SMC" que permite comunicar el PLC con intouch como se muestra en la figura 4.3.

Archivo Acción Ver Ayuda			
🖉 ArchestrA System Management (Activate server)	Component	Version	Build Date
Galaxy Database Manager DAServer Manager Default Group	DASMBTCP	0279.0201.0000.0000	mayo 25, 2010
	DASMBTCP [Shell]	0985.0007.0000.0000	enero 13, 2010
	🗄 Original DAS Toolkit	0798.0000.0000.0000	April 20, 2010
A 🔤 Local	[] DASEngine	0941.0505.0000.0000	noviembre 3, 2012
Archestra.PSOBleway.3	PlugInOPC	0941.0246.0000.0000	noviembre 3, 2012
A Configuration Log Viewer	PlugInDDESL	0941.0246.0000.0000	noviembre 3, 2012
Platform Manager			

Figura 4.3. Pantalla del I/O server "SMC". Configuración del puerto de comunicación SMC y el PLC.

Una vez abierto el programa del I/O server se procede a abrir el software Intouch como se muestra en la figura 4.4.

Figura 4.4. Ingreso a InTouch. Iniciando la ejecución del software Intouch.

InTouch - Application Manager - [c:\users\public\wonderware\intouch applications\fdbmanta]						
<u>File V</u> iew <u>T</u> ools <u>H</u> elp						
Name	Path	Resolution	Versi	Application	Applic	Date Modified
🛍 camara	c:\users\public\wonderware\intouch appli	1600 x 900	10.6	Stand Alone	322	01/08/2014
🛍 Demo Application 1024 X 768	c:\programdata\intouchdemos\demoapp1	1024 x 768	10.6	Stand Alone	258	17/07/2014
指 Demo Application 1280 x 1024	c:\programdata\intouchdemos\demoapp1	1280 x 1024	10.6	Stand Alone	270	17/07/2014
🛍 Demo Application 800 X 600	c:\programdata\intouchdemos\demoapp1	800 x 600	10.6	Stand Alone	192	17/07/2014
🗱 FDBMANTA	c:\users\public\wonderware\intouch appli	1600 x 900	10.6	Stand Alone	3632	18/08/2014

Figura 4.5. Ventana selección del archivo. Se detalla la dirección donde se encuentra guardada la carpeta del archivo.
En el InTouch application Manager se escoge el archivo que para el proyecto tiene en nombre de FDBMANTA como se muestra en la figura 4.5.

De un ENTER en el archivo antes mencionado, aparece la ventana "Windows to open" donde estan todas las ventanas realizada en este proyecto como se muestra en la figura 4.6.

Figura 4.6. Ventana Window to open. Se detalla todas las ventanas creada para el programa.

4.6.1 DISEÑOS DE PANTALLA.

La ventana de inicio debemos ingresar el usuario y clave para dar acceso a las diferentes areas de procesos se muestra en las figura 4.7 y figura 4.8.

Figura 4.7. Ventana Inicio. Ingreso de clave para acceder al proceso.

Figura 4.8. Ventana acceso al proceso. Acceso a las áreas de proceso.

Para la elaboración de café liofilizado en la Compañía El café, se inicia en el área de adquisición del café soluble o área de tanque, la siguiente área espumado, túneles, cuarto de molino, cámara de secado. En la siguiente figura de muestra el área de tanque y espumado.

Figura 4.9. Ventana área de tanques y espumado. Detalle de las variables de control del área de tanques.

En el área de tanque se recepta el café soluble, donde se logra disminuir las temperatura del producto de 40 °C a 11 °C por medio de placas de enfriamiento, la temperatura del producto es muy importate para poder ser espumado.

Luego de espumar el café soluble se envia por medio de una banda transportadora al área de tunel para congelar el café, el tunel se encuetra a una temperatura de 49 °C bajo cero.

Figura 4.10. Ventana registro de temperatura. Histórico de las temperaturas de café soluble en tanque.

Figura 4.11. Ventana de control del Área tuneles. Se visualiza las variables de control temperatura, frecuencia

Figura 4.12a. Ventana Registro de temperatura. Histórico de temperatura de las zonas de los tuneles

Figura 4.12b. Ventana Registro de frecuencia. Histórico de frecuencia de las zonas de los tuneles.

En el área del cuarto frio se mantiene a una temperatura de 43 °C bajo cero donde llega el café en tableta donde pasan por molinos para obtener partículas de café. A continuación se muestra el área cuarto frio.

Figura 4.13. Ventana control cuarto frio.

En la figura 4.14 se detalla los registros de temperatura del cuarto frio, en la figura 4.15 registran la frecuencia de los variadores de velocidad.

Figura 4.14. Ventana registro de temperatura cuarto frio

Figura 4.15. Ventana registro de frecuencia cuarto frio

En la Figura 4.16 se detalla el control de la camara de secado de café, donde se visualiza las siguiente variables analogas, temperatura de producto, temperatura de condensadores, Vacio en camara, condensadores y bomba, tiempo de proceso. Ademas se visualiza el estado de funcionamiento de las señales digitales, valvulas de vacio, valvulas de vapor, bomba de vacio, bomba de glicol.

Figura 4.16. Ventana cámara de secado. Se visualiza las variables de control temperaturas, presiones, y estado de las válvulas.

La planta de liofilizado consta con doces cámara de secado, con autómata independiente. Todas las ventanas secado de café son similares.

Figura 4.17. Ventana Sistema de Glicol. Se detalla el sistema de glicol, donde se visualiza las temperatura de secado en camara, valvula de control.

Figura 4.18a. Ventana curva de secado. Se visualiza el tiempo y temperatura de los 12 paso del proceso de secado de la cámara.

Figura 4.18b. Ventana sistema de glicol de calentamiento. Se visualiza el control manual o automático de la válvula de vapor

Special			Development
CÁMARA 1 0.6 TORR	CAMARA 4 0.5 TORR	CÁMARA 7 0.6 TORR	CÁMARA 10 1.0 TORR
PASO 7	PASO 7	PASO 7	PASO 1
TT 05:41 TP 04:22	TT 03:30 TP 02:11	TT 01:50 TP 00:31	TT 00.02 TP 00:02
T.GLICOL 108.0°C P. VAPOR 31.0PSI	T.GLICOL 108:0°C P.VAPOR 27.0PSI	T.GLICOL 108.0°C P.VAPOR 25.0 PSI	T.GLICOL 39.0 °C P.VAPOR 29.0 PSI
TEMP. P1 48.0 °C TEMP. P4 0.0 °C	TEMP.P1 0.0 °C TEMP.P4 -7.0 °C	TEMP. P1 0.0 °C TEMP. P4 -23.0 °C	TEMP. P1 0.0 °C TEMP. P4 0.0 °C
TEMP. P2 0.0 °C TEMP. P5 39.0 °C	TEMP.P2 0.0 °C TEMP.P5 0.0 °C	TEMP. P2 0.0 °C TEMP. P5 0.0 °C	TEMP. P2 -31.0 °C TEMP. P5 0.0 °C
TEMP. P3 0.0 °C TEMP. P6 105.0°C	TEMP.P3 0.0 °C TEMP.P6 0.0 °C	TEMP. P3 0.0 °C TEMP. P6 0.0 °C	TEMP. P3 0.0 °C TEMP. P6 0.0 °C
COND. A 0.6 TORR 18.0 °C	COND.A 0.6 TORR 19.0 °C	COND. A 0.0 TORR 17.0 °C	COND. A 0.9 TORR 13.0 °C
COND. B 0.5 TORR 17.0 °C	COND.B 0.6 TORR 19.0 °C	COND. B 0.6 TORR 17.0 °C	COND. B 0.8 TORR 12.0 °C
CAMARA 2 0.6 TORR	CÁMARA 5 0.5 TORR PASO 7	CÁMARA 8 0.4 TORR PASO 7	CÁMARA 11 749.9 TORR
TT 04:58 TP 03:39	TT 03:00 TP 01:41	TT 01:26 TP 00:08	TT 06:36 TP 00:24
T.GLICOL 108.0°C P.VAPOR 28.0PSI	T.GLICOL 108:0°C P.VAPOR 26:0PSI	T.GLICOL 107.0°C P.VAPOR 27.0PSI	T.GLICOL 42.0 °C P.VAPOR 0.0 PSI
TEMP.P1 20.0 °C TEMP.P4 0.0 °C	TEMP.P1 0.0 °C TEMP.P4 0.0 °C	TEMP.P1 0.0 °C TEMP.P4 0.0 °C	TEMP. P1 0.0 °C TEMP. P4 0.0 °C
TEMP.P2 0.0 °C TEMP.P5 0.0 °C	TEMP.P2 0.0 °C TEMP.P5 0.0 °C	TEMP.P2 0.0 °C TEMP.P5 -25.0 °C	TEMP. P2 0.0 °C TEMP. P5 0.0 °C
TEMP.P3 0.0 °C TEMP.P6 0.0 °C	TEMP.P3 0.0 °C TEMP.P6 0.0 °C	TEMP.P3 0.0 °C TEMP.P6 0.0 °C	TEMP. P3 0.0 °C TEMP. P6 0.0 °C
COND.A 0.6 TORR 20.0 °C	COND.A 0.5 TORR 18.0 °C	COND.A 0.4 TORR 18.0 °C	COND. A 749.9 TORR14.0 °C
COND.B 0.6 TORR 19.0 °C	COND.B 0.5 TORR 19.0 °C	COND.B 0.3 TORR 19.0 °C	COND. B 0.0 TORR 47.0 °C
CAMARA 3 0.6 TORR	CÁMARA 6 0.6 TORR	CÁMARA 9 0.4 TORR	CAMARA 12 0.6 TORR
PASO 7 3	PASO 7	PASO 4	PASO 8
$\begin{array}{ccccc} TT & 04:13 & TP & 02:55 \\ T.GLICOL & 108.0^\circC & P.VAPOR & 30.0PSI \\ TEMP.P1 & 0.0 & ^\circ C & TEMP.P4 & 0.0 & ^\circ C \\ TEMP.P2 & 0.0 & ^\circ C & TEMP.P5 & 0.0 & ^\circ C \\ TEMP.P3 & 0.0 & ^\circ C & TEMP.P6 & 0.0 & ^\circ C \\ COND.A & 0.6 & TORR & 18.0 & ^\circ C \\ COND.B & 0.0 & TORR & 17.0 & ^\circ C \\ \end{array}$	TT 02:25 TP 01:07 T.GLICOL 108.0°C P.VAPOR 27.0PSI TEMP.P1 0.0 °C TEMP.P4 0.0 °C TEMP.P2 0.0 °C TEMP.P5 -19.0 °C TEMP.P3 0.0 °C TEMP.P6 0.0 °C COND.A 0.6 TORR 19.0 °C COND.B 0.0 TORR 21.0 °C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TT 06:17 TP 00:07 T.GLICOL 105.0°C P. VAPOR 28.0 PSI TEMP.P1 0.0 °C TEMP.P4 0.0 °C TEMP.P2 0.0 °C TEMP.P5 66.0 °C TEMP.P3 0.0 °C TEMP.P6 0.0 °C COND.A 0.8 TORR 18.0 °C COND.B 0.7 TORR 16.0 °C
DELCAFE C.A. CAMARA	GLICOL ESTADO VACIO CAMARAS CAMARAS PAR	ALARMAS TEMPERAT IMPAR REGISTRO VACIO REGISTRO REFISIO.	9:27:52 SALESIANA toure 20/08/2014

Figura 4.19. Ventana estado de camaras. Se visualiza las doces cámara en proceso y sus variables de control.

SinTouch - WindowViewer - CAUSERSAPUBLICAWC File Logic Special	INDERWAREUNTOUCH APPLICATIONS	FD8MANTA		– o × Development
	VALC	DRES DE VACIO EN	N CÁMARAS	
1	1.213	TORR 2	21.827	TORR
3	0.610	CONTROL DE VACIO EN LA CAMARA 1	0.528	TORR
5	0.528	MAXIMO 610.0 TORR	826	TORR
7	0.607	CAM BV-A BV-B	0.521	TORR
9	0.617	SP ALARMA	0.553	TORR
11	0.395	TORR 12	749.900	TORR
ELCAFE CA	CAMARA GLICOL	ESTADO VACIO TEMPERAT ALARMAS TEM CAMARAS PAR ALARMAS IM	IPERAT REGISTRO VACIO REGISTRO REFIG.	9:10:52 SALESIANA 9:10:52 18/08/2014

Figura 4.20. Ventana Tasa de vacio. Se visualiza el valor máximo y mínimo de vacio para el secado de camara.

En el proceso de secado de camara consta con ventanas de registros histórico y registro real de temperatura y vacio comose puede observar en las siguientes figuras. El registro real los evento se grafican constantemente en el tiempo.

Figura 4.21. Ventana registro real de temperatura.

Figura 4.22. Ventana registro histórico de temperatura. Se muestra los registro histórico de temperatura, se puede observar el valor de temperatura real y el valor de la temperatura histórico.

Figura 4.23. Ventana registro histórico vacío. Se visualiza los registros históricos de vacío, se puede observar el valor de vacío real y el valor de vacío histórico.

	En la	figura 4	.24 se	muestra	las	alarmas	de	vacío,	en	las	cámaras	de	secado.
--	-------	----------	--------	---------	-----	---------	----	--------	----	-----	---------	----	---------

1	АСК	ELCA	I FE c.≁	a. A	LAF	RMA	AS [DE '	VAC		
Date	Time	State	Class	Туре	Priority	Name	Group	Provider	Value	Limit	
25 ago 2014	08:38:11	UNACK	DSC	DSC	4	ALARMACAM1	SSystem	Vintouch	ON	ON	
	-										
	-										
	-										
	-										
	-										

Figura 4.24. Ventana Alarmas de vacío

CA	MARA #1			····· ··· ··· ··· ··· ··· ··· ··· ···	MARA #4				MAKA # /			····· · · · · · · · · · · · · · · · ·	MARA #10		
BATCH 25	INGRESO	SALIDA	EMPACADO	BATCH 45	INGRESO	SALIDA	EMPACADO	BAICH 45	LINGKESU	SALIDA	EMPACADO	BATCH 45	INGRESO	SALIDA	EMPACADO
°BRIX CONCENTRADO	25			°BRIX CONCENTRADO	45				J9	40		°BRIX CONCENTRADO	2		
% SOL. SOLUBLE	15	0		% SOL. SOLUBLE	0	2,2		% SOL. SOLUBLE	03	90		% SOL. SOLUBLE	54	52	
# TRUCK	3	0		# TRUCK	4	4			043	35		# TRUCK	51	36	
# BANDEJAS	30			# BANDEJAS	208	208			33			# BANDEJAS	54	96	
NUVEL BANDEJAS				NIVEL BANDEJAS	5,5			NIVEL BANDEJAS	41			NIVEL BANDEJAS	95		
gr/Lt den. Espumado	0			gr/Lt DEN. ESPUMADO	380			gr/LL DEN. ESPOMADO	54			gr/Lt DEN. ESPUMADO	12		
gr/Lt DENSIDAD	12	0	0	gr/Lt DENSIDAD	331	208	215	gr/lt densidad	45	11	78	gr/Lt DENSIDAD	32	78	25
Kg PESO x BANDEJA	0	15		Kg PESO x BANDEJA	3,8	1,7		Kg PESO x BANDEJA	41	55		Kg PESO x BANDEJA	12	65	
% HUMEDAD	50	85	0	% HUMEDAD	2,1	1,2	1,6	% HUMEDAD	23	5	69	% HUMEDAD	35	62	56
°C TEMPERATURA	15	10	11	°C TEMPERATURA	-40	36	25	°C TEMPERATURA	12	32	84	°C TEMPERATURA	15	65	65
gr ACEITE			10	gr ACEITE			180	gr ACEITE			35	gr ACEITE			84
Nº DISPARO D1 - D3				Nº DISPARO 11 - 13			1	Nº DISPARO L1 - L3			45	Nº DISPARO 11 - 13			15
Nº DISPARO DI DJ				IN DISPARO LI LI			2	Nº DISPARO 12 - 14			15	Nº DISPARO LI LI		=	62
		_	0			_	-			_					02
	MAKA # 2				MAKA #5				MARA #8	CALTRA	FURACARO		MAKA # 11		
BAICH 33	12	SALLDA	EMPACADO		45	SALLDA	EMPACADO		45	SALIDA	EMPACADO		5	SALIDA	EMPACADO
	12	45			50	00			32	32			74	40	
TO SUL SULUBLE	12	45		- TRUCK	32	70		TDICK	32	42		THEY	74	10	
	40	7052			3	10		# RANDETAS	14	45				95	
	3	/033			3	09		ITVEL RANDETAS	15	7.5			4	90	
	33				3				15				07	-	
gr/LL DEN. ESPUMADO	12			gr/Lt DEN: ESPOMADO	8				40		_	gr/Lt DEII. ESPUMADO	54		
gr/ll densidad	3	36	45	gr/lt DENSIDAD	87	69	56		8	32	13	gr/LC DENSIDAD	13	88	84
Kg PESO x BANDEJA	45	87		Kg PESO x BANDEJA	78	8		Kg PESO X BANDEJA	36	4		Kg PESO x BANDEJA	32	36	
% HUMEDAD	12	45	45	% HUMEDAD	8	35	32	% HUMEDAD	45	56	556	% HUMEDAD	12	21	69
°C TEMPERATURA	12	54	47	°C TEMPERATURA	36	15	65	°C TEMPERATURA	6	2	45	°C TEMPERATURA	65	65	41
gr ACEITE			45	gr ACEITE			45	gr ACEITE			4	gr ACEITE			12
Nº DISPARO L1 - L3			48	Nº DISPARO L1 - L3			12	Nº DISPARO L1 - L3			65	Nº DISPARO L1 - L3			32
Nº DISPARO L2 - L4			45	Nº DISPARO L2 - L4			47	Nº DISPARO L2 - L4			69	Nº DISPARO L2 - L4			98
C	MARA #3				MADA #C			CA	MADA #0			C4	MARA #12		
BATCH 35	INGRESO	SALTDA	FMPACADO	RATCH 85	INGRESO	SALTDA	FMDACADO	RATCH 36	INGRESO	SALIDA	FMDACADO	BATCH 63	INGRESO	SALIDA	FMPACADO
^o BRIX CONCENTRADO	25			^o BRTX CONCENTRADO	5	UNLUA		BRTX CONCENTRADO	3	UNLIDA	LINE ALLO	°BRIX CONCENTRADO	12		
% SOL. SOLUBLE	45	45		% SOL SOLUBLE	5	13		% SOL SOLUBLE	56	32		% SOL. SOLUBLE	23	41	
# TRUCK	25	56		# TRUCK	5	45		# TRUCK	58	15		# TRUCK	65	21	
# BANDEJAS	285	45		# BANDEJAS	4	45		# BANDEJAS	63	14		# BANDEJAS	22	32	
NIVEL BANDEJAS	45			NIVEL BANDEJAS	12			NIVEL BANDEJAS	84			NIVEL BANDEJAS	32		
gr/Lt DEN. ESPUMADO	7		_	ar/Lt DEN. ESPUMADO	25			ar/Lt DEN. ESPUMADO	5		=	gr/Lt DEN. ESPUMADO	69		
ar/Lt DENSIDAD	8	85	5	gr/lt_DENSIDAD	60	55	07	gr/It DENSIDAD	5	54	EAL	ar/Lt DENSIDAD	47	21	21
Ka DESO y RANDETA	0	45			14	55	0/		25	54	J41	Ka DESO y RANDEIA	21	22	
	<u></u>	75		NY PEOUX DAILUEDA	14	34		NY PESO X DAIIDEDA	33	- 20			4	22	
% HUMEDAD	9	30	4	% HUMEDAD	96	25	65	% HUMEDAD		23	5	% HUMEDAD	03	<u></u>	48
°C TEMPERATURA	98	45		°C TEMPERATURA	33	21	1	°C TEMPERATURA		2	4	°C TEMPERATURA	96	85	98
gr ACEITE			4	gr ACEITE			32	gr ACEITE			12	gr ACEITE			74
Nº DISPARO L1 - L3			8	Nº DISPARO L1 - L3			15	Nº DISPARO L1 - L3			2	Nº DISPARO L1 - L3			2
Nº DISPARO L2 - L4			78	Nº DISPARO L2 - L4			14	Nº DISPARO L2 - L4			2	Nº DISPARO L2 - L4			36
										0					
COMPAÑA DE E	ELABORADOR DE CAF	ē.								4	UNIVERSIDAD PO	UTÉCNICA		16:3	4:30
UELO	AF	Ec.	4.	CA	MARA					4	SALES	ANA		21/08	2014

Figura 4.25. Ventana ingresos de datos. Se ingresan datos del proceso que no registra el autómata, estos datos la ingresa el operador.

4.7 COMUNICACIÓN INTOUCH Y EXCEL USANDO DDE.

Intouch dispone de un paquete de herramientas incorporadas para extraer información y presentarla en formatos compactibles para otras aplicaciones más específicas, como Office de Microsoft.

Por ejemplo, podemos transferir datos de una tabla de una base de datos a una hoja de cálculo gracias a la utilidad DDE, incluida en Microsoft Windows. En la siguiente figura 4.26 detalla la configuración de un Access Name

Figura 4.26. Configuración Access Name de Excel.

Configuración del Tagname para enviar datos que el operador ingresara desde Intouch a Excel, en la siguiente figura 4.27 se puede observar como configurar el Tagname en el Dictionary.

- **Tagname:** Es el nombre de la variable que se utilizó.
- Access Name: Es el nombre del Application Name que se ingresó en Modify Access Name, para este programa se utilizó Excel.
- Item: Es la celda donde se registrara los datos en el archivo de Excel, para esta variable utilizamos la fila ocho y columna cuatro.

Tagname Dictionar	y X
🔘 Main 💿 Detai	ls 🔘 Alarms 🔘 Details & Alarms 📄 Members
New Restore	Delete Save << Select >> Cancel Close
Tagname: TRUCK	INC1 Type: I/O Message
Group: \$Syst	em 💿 Read only 💿 Read Write
Comment: # DE TRI	UCK INGRESA
	og Events Retentive Value
Maximum Length:	131 Initial Value:
Alarm Comment	
Access Name	EXCEL
Item: F8C4	🔲 Use Tagname as Item Name

Figura 4.27. Configuración Tagname Excel. Configuración del tagname para comunicarse entre Intouch y Excel.

4.7.1 CONFIGURACIÓN DEL ACTION SCRIPT.

Desde el programa de intouch podemos abrir un archivo de Office de Microsoft, a continuación se detalla la configuración del Action Script.

En la ventana de Action Script se ingresa la ruta donde se encuentra el archivo de Excel guardado como se detalla a continuación,

Touch -> Action Script	_ D X
File Edit Insert Help	
🔉 🖻 🔁 📏 🗖 🕒 🎒	
Key equivalent Clear All	OK Cancel
Condition Type: On Left Click/Key Down 👻 Scripts use	d:1
StartApp "C:\USERS\SERVER\DOCUMENTS\reportes camara\VACIO // \vaciocam11.XLSX";	Convert Validate
	Functions
	All
	Math
	System
	Add-ons
	Misc
IF ELSE AND <<= == <> >= >	Quick
THEN ELSE IF OR = + · × / ;	Help
ENDIF NOT	MEM OLE

Figura 4.28. Configuración Action Script. La aplicación nos permite abrir un archivo de Excel desde Intouch.

4.8 COMUNICACIÓN INTOUCH – PLC.

El PLC se comunica con el I/O server mediante el puerto Ethernet del computador y mediante un servidor de protocolo SMC "System Management Console". Primeramente lo que se debe hacer es instalar el software en el computador, para luego configurarlo para su correcto funcionamiento.

Los requisitos de instalación de este paquete son:

- ✓ PC marca Dell.
- ✓ Sistema operativo Windows de 32 o 64 bit.
- ✓ SQL Server 2008.
- ✓ Wonderware InTouch 2012 R2
- ✓ DAServer Manager (DASMBTCP.2).
- ✓ Tarjeta Ethernet.

4.8.1 CONFIGURACIÓN DEL DASERVER (DASMBTCP.2).

Este I/O Server se los instaló desde el CD Device Integration del paquete de software adquirido por la compañía elaborado de café, esta aplicación permite conectar redes Industriales Ethernet de schneider con cualquier PC a través de una tarjeta de red LAN común, basta con realizar la configuración adecuada y arrancar el servidor desde la System Management Console (SMC).

Archivo Acción Ver Ayuda		
← ⇒ 2 🗊 🛛 🖬		
 ArchestrA System Management Console (SERVERL) Galaxy Database Manager 	Node Type: \$ROOT\$ Delimiter:	
A 🔄 DAServer Manager	Global Parameters	
▷ → ArchestrA.FSGateway.3 ▲ → ArchestrA.DASMBTCP.2	Device Group Update Interval (msec): 1000 Enable/Disable	
Configuration	Slow Poll Interval (msec): 10000 Case Sensitive	
Batform Manager	Transaction to Subscription Ratio: 3 Device Group Cache	
	Transaction Message Timeout (msec): 60000	
	Server Protocol Timer (msec): 50 Simulation Mode	=
	Diagnostic Backlog Size: 0 🔽 System Items	
	Maximum Queued Transactions: 75	
	Maximum Queued Updates: 1	
	DDE/SuiteLink Timer Tick (msec): 50	
	Poke Mode: Optimization Mode 💌	

Figura 4.29. Configuración del DAServer

4.8.2 CONFIGURACIÓN DEL TAGNAME.

En esta pantalla debemos configurar la IP del equipo con el que vamos a tener comunicación.

Archivo Acción Ver Ayuda		
🗢 🔿 🖄 🔣 🔢 🖬		
 ArchestrA System Management Console (SERVERLIC Galaxy Database Manager DAServer Manager Default Group Local ArchestrA.FSGateway.3 ArchestrA.DASMBTCP.2 Configuration New_TCPIP_PORT_000 CAM2 New_ModbusPLC_000 Diagnostics 	Node Type: ModbusPLC Delimit New_ModbusPLC_000 Parameters Device Groups Device Groups Network address: 192168122103 Reply timeout (sec): 3 Image: Use Concept data structures (Longs)	iter: . evice Items Port number: 502 Maximum outstanding messages: 4 Vuse Concept data structures (Reals)
	 Support multiple coil write Close Ethernet connection when no activity. 	 ✓ Support multiple register write ✓ Swap string bytes
 Log Viewer Platform Manager 	Bit order format: B1 B2	Register size (digits): 6 Register type • • Binary • Coil write: 800 Register write: 100

Figura 4.30. Configuración Access Name

En la siguiente figura 4.31 ingresamos nombre del Device Groups que permite comunicar con InTouch.

💋 SMC - [ArchestrA System Management Console (SEF	\VERLIOW7)\DAServer Manager\Default Grou	up\Local\ArchestrA.DASMBTCP.2\Cor	figuration\New_TCPIP_PORT_000\
Archivo Acción Ver Ayuda			
 ArchestrA System Management Console (SERVERLI) Galaxy Database Manager DAServer Manager Default Group Local 	CAM3 Parameters Device Groups Device	Delimiter: . Items	
 Local ArchestrA.FSGateway.3 ArchestrA.DASMBTCP.2 Configuration New_TCPIP_PORT_000 CAM1 CAM2 CAM3 Diagnostics 	Name CAMB	Update Interval (ms) 1000	

Figura 4.31. Configuración Device Groups.

💋 SMC - [ArchestrA System Management Console (SE	RVERLIOW7)\DAServer Manager\Default Group\Local	\ArchestrA.DASMBT
Archivo Acción Ver Ayuda		
🗢 🔿 🖄 📰 🗙 🔢 🖬		
🧭 ArchestrA System Management Console (SERVERLI	Mada Tuna' MadhuaDLC Dali	mitor
J Galaxy Database Manager	Noue Type, MoubusPEC Den	mmer
A 🖪 DAServer Manager		
Default Group	CAM1 Parameters Device Groups Device Items	
🔺 🛄 Local	Name	Item Deference
> 🛃 ArchestrA.FSGateway.3		Telli Kelerence
a 🛃 ArchestrA.DASMBTCP.2	ACTIVARSECADOC1	300019:7
A Configuration		400027
		300019:0
		300019:5
D 🔏 CAM1	DETENERSECADOC1	300019:6
D 🔏 CAM2	MANPORCGLICOLC1	400130
D 🔏 CAMB	MANPORCVAPORC1	400132
CAMA	MANVALVE3VIAC1	300019:1
	MANVALVEVAPORC1	300019:4
D 🔏 CAMS	MAXVACIOC1	400189
D 🔏 CAM6	MINVACIOC1	400190
D 🔏 CAM7	P10MINC1	400062
	P10TEMPC1	400050
	P11MINC1	400063
D CAMP	P11TEMPC1	400051
D 🔏 CAM10	P12MINC1	400064
D 🔏 CAM11	P12TEMPC1	400052
CAM12	P1MINC1	400053
	PTIEMPC1	400041
	P2MINC1	400054
D 🔏 TUNELI	P2IEMPC1 P3MINC1	400042
D 🔏 TUNEL2	P3TEMPC1	400043
> 🔏 TANQUE	P4MINC1	400056
ESPUMADO	P4TEMPC1	400044
Disgnostics	P5MINC1	400057
	P5TEMPC1	400045
Log Viewer	P6MINC1	400058
Platform Manager	P6TEMPC1	400046
	P7MINC1	400059

Figura 4.32. Configuracion Device Items. Ingreso de variable del PLC para comunicarse con Intouch.

4.8.3 REGISTRO DE DIRECCIONES DASMBTC.2.

La siguiente tabla enumera otros formatos de nombre de punto que son consistentes con la señalar la convención de nombres con el sufijo MBTCP DAServer.

Item Name	Descripción
400001	Cuando no hay espacios ni letras siguen el registro número, el contenido del registro son tratados como 16 bits cantidad sin signo.
400001 S	Cuando un espacio y la letra "S" siguen el registro número, el contenido del registro son tratados como 16 bits cantidad firmado.
400001 I	Cuando un espacio y la letra "I" siguen el número de registro, el contenido del registro son tratados como una cantidad de 32 bits. Esta ocupa dos registros consecutivos
400001 L	Cuando un espacio y la letra "L" siguen el número de registro, el contenido del registro son tratados como una cantidad de 32 bits.
400001 F	Cuando un espacio y letra "F" siguen el número de registro, el contenido del registro se trata como una cantidad de punto flotante. Esta ocupa dos registros consecutivos.
400001 U	Cuando un espacio y letra "U" siguen el registro número, el contenido del registro son tratados como de 32 bits cantidad sin signo.
400001-400003 M	Cuando un espacio y la letra "M" siguen el register number o registros número par separado por un guion, la registrar contenidos son tratados como datos ASCII. Cada registro contiene un máximo de dos caracteres ASCII. Este ejemplo representa seis (6) caracteres ASCII
300001:10	Cuando dos puntos y un número de 1 (uno) a 16 siguen el número de registro, el contenido del registro se tratan como datos discretos. Este ejemplo representa el bit 10 de la entrada de registro 300001

Tabla 4.1. Registro de direcciones. formato que se puede utilizar para comunicar elPLC con SCM. Por Tutorial Invensys Systems, Inc. 26561 Rancho Parkway South.

Figura 4.33 Funcionamiento del Scada

El servido que se utilizó para el sistema de Scada se le instaló dos monitores como se observa en la figura 4.33, el funcionamiento del monitor del lado izquierdo como se detalla en la figura 4.34 es controlar y supervisar las variables en todas las áreas de proceso de café liofilizado, el monitor del lado derecho ver figura 4.35 el operador lo utiliza para generar los reportes diarios.

OAMARA 4 0.000 TORK	I CAMARA / LORR	
PASO 7	PASO 5	PASO 0
T.GLICOL 1100°C P VAPOR 30 0PSI		T 08:28 TP 00:23
TEMP. P1 0.0 °C TEMP. P4 0.0 °C	TEMP. P1 00 °C TEMP. P4 00 °C	TEMP. P1 0.0 °C TEMP. P4 0.0 °C
TEMP P2 -26.0 °C TEMP P5 -10.0 °C	TEMP. P2 0.0 °C TEMP. P5 -28.0 °C	TEMP P2 00 °C TEMP P5 00 °C
COND.A 0.0 TORR 40.0 °C	COND.A 0.0 TORR 410 °C	COND A 749.9 TORR 410 °C
COND. B 0.0 TORR 40.0 °C	COND. B 749.9 TORR -42.0 "C	COND. B 749.9 TORR -20.0 C
CAMARA 5 0.500 TORR	CAMARA 8 0.307 TORR	CAMARA 11 0.624 TORR
TT 02:16 TP 00:57	TT 00:36 TP 00:08	TT 06:00 TP 04:41
T.GLICOL 110.0°C P. VAPOR 34.0PSI	T.GLICOL 70.0 °C P. VAPOR 33 0PSI	TGLICOL 110.0°C P VAPOR 0.0 PSI
TEMP.P2 0.0 °C TEMP.P5 0.0 °C	TEMP. P2 0.0 °C TEMP. P5 -28.0 °C	TEMP. P2 0.0 *C TEMP. P5 0.0 *C
TEMP. P3 -22.0°C TEMP. P6 0.0 °C	TEMP. P3 -32.0 °C TEMP. P6 0.0 °C	TEMP P3 64.0 °C TEMP P6 70.0 °C
COND. B 0.4 TORR 42.0 "C	COND. B 0.0 TORR 42.0 °C	COND. 8 0.9 TORR 40.0 °C
CAMARA 6 0.604 TORR	CAMARA 9 711.200 TORR	CAMARA 12 0.612 TORR
PASO 7	PASO 0 TT 06:33 TP 00:50	PASO 7 11 05:40 TP 04:22
T.GLICOL 110.0°C P. VAPOR 32.0PSI	T.GLICOL 330 °C P. VAPOR 34 (PSI	TGLICOL 1100 °C P VAPOR 310 PS
TEMP. P2 0.0 °C TEMP. P5 0.0 °C	TEMP. P2 00 °C TEMP. P5 0.0 °C	TEMP P2 700 +C TEMP P5 00 +C
TEMP P3 -23.0*C TEMP P6 0.0 *C	TEMP P3 0.0 °C TEMP P6 0.0 °C COND A 7499 TORR 42.0 °C	COND A 08 TORR 410 *C
COND. B 749.9 TORR 42.0 °C	COND. B 749.9 TORR 42.0 °C	COND. B 749.9 TORR 41.0 *C
INTADO VACIO ITHPERAL	ILMPERAL REGISTRO REGISTRO	BNCRESO 442244
	TT 02-52 TP 0134 T.GLICOL 110°C P.VADR 30.0PSI TEMP.P1 0.0 °C TEMP.P4 0.0 °C TEMP.P2 250°C TEMP.P5 100°C TEMP.P2 00 °C TEMP.P6 00°C COND A 00 TORR 400°C COND B 00 TORR 400°C COND B 00 TORR 400°C COND B 00 TORR 400°C TEMP.P2 00°C TEMP.P4 00°C TEMP.P2 00°C TEMP.P4 00°C COND.A 00 TORR 420°C COND.A 00 TORR 420°C COND.A 00 TORR 420°C COND.A 00 TORR 420°C COND.B 04 TORR 420°C COND.B 04 TORR 420°C TEMP.P2 00°C TEMP.P4 00°C TEMP.P2 00°C TE	TT 02:32 TF 01:34 T.GLICOL 110°C P. VAPOR 30.0PSI TEMP.P1 0.0 °C TEMP.P4 0.0 °C TEMP.P1 0.0 °C TEMP.P6 0.0 °C TEMP.P1 0.0 °C TEMP.P6 0.0 °C TEMP.P2 0.0 °C TEMP.P6 0.0 °C COND.A 0.0 TORR 400 °C TEMP.P2 0.0 °C TEMP.P6 0.0 °C COND.A 0.0 TORR 400 °C COND.A 0.0 TORR 400 °C COND.A 0.0 TORR 400 °C COND.A 0.0 TORR 400 °C COND.B 0.0 TORR 400 °C COND.A 0.0 TORR 400 °C COND.B 0.0 TORR 400 °C COND.A 0.0 TORR 400 °C COND.A 0.0 TORR 400 °C COND.A 0.0 TORR 420 °C COND.A 0.0 TORR 400 °C TEM.P3 0.0 °C TEM.P6 0.0 °C TEM.P3 0.0 °C TEM.P6 0.0 °C TEM.P4 0.0 °C TEM.P1 02.16 TP 0.057 T.GLICOL 1100°C P. VAPOR 33.0PSI T.GLICOL 1100°C P. VAPOR 32.0°C TEM.P3 0.0 °C TEM.P6 0.0 °C COND.A 0.0 TORR 42.0 °C COND.A 0.0 TORR 42.0 °C COND.A 0.0 TORR 42.0 °C COND.A 0.0 TORR 42.0 °C COND.A 0.0 TORR 42.0 °C COND.A 0.0 TORR 42.0 °C COND.A 0.0 TORR 42.0 °C COND.A 0.0 TORR 42.0 °C TEM.P9 1.00 °C TEM.P8 0.0 °C TEM.P3 0.0 °C TEM.P8 0.0 °C TEM.P9 1.00 °C TEM.P8 0.0 °C COND.A 0.0 TORR 42.0 °C TEM.P9 1.00 °C TEM.

Figura 4.34 Monitoreo variables de las áreas de procesos

Figura 4.35 Monitoreo de reportes

CONCLUSIONES.

- Gracias a los paquetes de supervisión industrial en la actualidad todo proceso industrial puede ser monitoreado en tiempo real a través de la pantalla de un servidor y a una cierta distancia sin la necesidad de estar presente en el lugar mismo. Uno de los paquetes informáticos que brinda esta gran ayuda es el InTouch de Wonderware.
- InTouch es un software que permite crear aplicaciones de interfaz entre hombre y computadora de una manera rápida y fácil, el monitoreo de un determinado proceso industrial se lo realiza en tiempo real de acuerdo a las entradas y salidas del PLC Schneider.
- Para la comunicación entre el PLC e InTouch es necesario tener un programa de enlace, este programa es el DAServer que permite recibir o enviar datos, sin la ayuda de este programa de enlace sería imposible realizar la visualización de un proceso.
- La ejecución de este proyecto es el punuto de partida para que las demás área de proceso de café soluble se puedan integrar al sistema de monitoreo.
- La generación de reportes de las variables de control del proceso de café soluble en excel, ha servido para tomar decisiones para mejorar las produccion diaria.
- La capacitación adquirida, en cuanto a las multiples aplicaciones utilizadas, nos ha servido para fortalecer los conocimiento adquiridos en la Universidad Politécnica Salesiana.
- Las variables externa que se utilizaron fue un total de 1407 y los Tag internas que se utilizaron es de 150 variables.

RECOMENDACIONES.

- Se recomienda reemplazar las valvulas solenoide instalada en las camaras de secado por unas valvulas proporcional para mejorar el control de vacio dentro de la camara de secado.
- Si por algún motivo se apagara este equipo, se deben realizar los siguientes pasos para su correcto inicio:
 - 1.- Activar el DAServer desde el SYSTEM MANAGEMENT CONSOLE.
 - 2.- Colocar en RUN el DAServer DASMBTCP.
 - 3.- Iniciar la aplicación Intouch.
- Para la generación de reporte en excel, se debe guardar los datos registrado en las ventanas de históricos dando click en el icono "Save to File".

CRONOGRAMA DE TRABAJO.

Actividades	Octubre	Noviembre	Diciembre	Enero	Febrero	Marzo
Aprobación del tema						
Diseño de las						
pantallas						
Configuración puerto						
comunicación						
Pruebas del proyecto						
Presentación de la						
tesis y sustentación						

PRESUPUESTO.

El presupuesto fue financiado en su totalidad por la compañía de elaborado de café. A continuación se detalla los equipos que se utilizó para la realización de la tesis.

- Software con su respectiva licencia. \$11.000
- CPU marca DELL modelo industrial. \$2.500

REFERENCIA BIBLIOGRÁFICA.

- <u>Aquilino Rodríguez Penin</u>. (1er edición). (2008). Comunicaciones industriales: editorial <u>MARCOMBO S.A</u>.
- Aquilino Rodríguez Penin. (2da edición). (2007). Sistema SCADA. Editorial Marcombo S.A. Barcelona – España.
- Creus Solé, A. (7ma edición). (2005). Instrumentación Industrial. Barcelona: Marcombo, S.A.
- Ramón Piedrafita Moreno. (2da edición). (2004). Ingeniería de la Automatización Industrial. Editorial Alfaomega. México D.F.
- o Tutorial Invensys Systems, Inc. 26561 Rancho Parkway South.
- Tutorial de Wonderware. Manual InTouch 10.6. Básico.
- o Tutorial de Wonderware. Manual InSQL Server 10.6
- Schneider Electric. Manual usuario (Catálogo 2009). Plataforma de automatización Modicon M340.

REFERENCIA WEB GRAFÍA.

 Arian. (2011). Control & Instrumentacion. Obtenido de http://www.arian.cl/downloads/nt-004.pdf

ANEXOS

Anexo 1

Reportes generados.

Antes de exportar los datos en Excel debe hacer click en "Save to File". Desde el programa de InTouch se abre el archivo de reporte en Excel.

X 🚽	L) = (× ∓		-	_			_		T	EMP.CAM12 -	Microsoft E	cel		-	_			_	-		_		X
Archivo	Ini	cio Inse	ertar D	iseño de págin	a Fórmulas	s Datos	Revisar	Vista															۵ 🕜	- # X
Ê	🔏 Cor	tar iar +	Calibri	- 1	1 · A A	= = =	≫-	Ajustar texto	G	eneral		S		Normal		Buena	^ •		× 📋	Σ Ai	utosuma * ellenar *	<mark>7</mark> 7	A	
Pegar	J Cop	iar formato	N K	<u>s</u> - 🗄 -	<u>ð</u> - <u>A</u> -	E E E	建建 🗄	Combinary (centrar * \$	* % 000	* 0 00 00 → 0	Formato E	ar formato	Incorrec	to	Neutral	Ŧ	Insertar Elim	inar Formato	0 B	orrar * u	Ordenar filtrar v se	Buscar y	
Po	rtapape	es 5		Fuente	5		Alineació	ón	5	Número	5			Estilos	5			Cel	das		Mo	dificar	receiving.	
1		В	С	D	E	F	G	Н	1	J	K	L	N	1	Ν	0	р	Q	1	R	S	T	U	-
1						REPO	ORTE	S DE 1	TEMF	PERA	TURA	EN (CAMA	ARAS	S 12	A Ĩ								
2																			- C.A	4.				
3																								_
4			TIEMPO	EN PROCESO		1	TEMPERATU	RA GLICOL HO	DT	· .	TEMPERAT	JRA GLICOL	FRIO			TURNO :				J	EFE DE TUR	RNO		
5	-	INIC	IA		FIN	IN	ICIA	•	IN		NICIA	-	FIN	-		OPERADOR:								_
7	-									-				_		AUXILIANES			-					
8																								
9					1	1		-	1	-	_													_
10	F	ECHA	HORA	TEMP. 1	TEMP. 2	TEMP. 3	TEMP.4	TEMP. 5	TEMP.6	GL. HOT	GL. FRIO	_												_
12	-																							
13																								
14																								
15																								_
10																								=
18																								
19																								
20																								_
21																								_
22																								
24																								
25																								
26																								

Los datos guardado se encuentra en el archivo HISTDATA.

X) • (² •] .				TEMP CAN	V12 - Mirrosoft Excel					_	_		- 6 X
Archivo	Inicio Insertar	Diseño de página F	Fórmulas Datos Revisar	Vista	- Construction									a 🕜 🗆 🖓 🛛
Desde De Access w	esde Desde De otras reb texto fuentes	Conexiones existentes todo *	Conexiones	Filtro Volver a aplicar y Avanzadas	Texto en Quitar olumnas duplicado Herri	Validación Consolid os de datos * amientas de datos	er Análisis Y si +	fupar Desagi	rupar Subtotal	Mostrar detalle Ocultar detalle				
A	В	C D	E F G	H I	J	K L	м	N	0	P Q	R	S	Т	U
1			REPORTE	S DE TEMPE	RATUR		MAR	AS 12						16
2		G									С.А.	-		
3		X Importar archivo d	de texto					-						
4	TIEN	<u>1P</u> 🕒 🗢 📕 « W	/onderware 🕨 Intouch Application	► FDBMANTA ►	• 49	Buscar FDBMANTA		۹	TURNO :			JEFE DE TUR	NO	
5	INICIA	Organizar 🔻 N	lueva carpeta)# •	- 1 0		OPERADOR:					
7		Downloads	Nombre	Fecha	de modifica Tie	oo Ta	maño		AUNIDARES					
8		RecentPlaces	Sumbole	79/07/	2014 0-11 Ca	meta de archivos								
9	EECHA HO			13/08/2	2014 9:46 An	chivo de valores	2 KB							
11		Bibliotecas												
12		Music												
13		E Pictures												
14		Videos												
16		1	=											_
17		Equipo	5)											
18			.,											
20		🗣 Red												
21		1	-											
22		-	Nombre de archivo: HISTDATA		•	Archivos de texto								
23		-		F	lerramientas 🔻	Importar 🚽	Cancelar							
25														
26							_							
27														
29														
30														
31														
32														
34														
N. C. F. H.	Hoja1 Hoja2	Hoja3 🔔					[]•	(
Listo													100% -	- U +

X 🚽 🕯) • (° • =								TE	MP.CAM12 - N	ficrosoft Excel						_	-	-	- Ó X
Archivo	Inicio In	sertar Di	iseño de página	Fórmulas	Datos	Revisar	Vista													۵ 😮 🗆 🗗
fx Insertar función	Autosuma Reci	entes Financi	ieras Lógicas T Biblioteca	exto Fecha y hora * de funciones	₿úsqueda y referencia * tr	Ø Matemáticas y igonométricas	Más r funciones *	Administrado de nombres	Asignai A Utilizar E Crear d lombres defir	r nombre * en la fórmula * esde la selección sidos	문과 Rastrear pr 이 문 Rastrear di 이 곳 Quitar flec	recedentes ependientes has * A	Mostrar f Comprob @ Evaluar fo uditoría de fó	órmulas ación de erron órmula rmulas	es * Venta Inspeci	na Opcior ción el cál	nes para Dak Iculo * Cálculo	cular ahora cular hoja		
A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	р	Q	R	S	Т	U
1 2 3					REPO	ORTE	S DE '	TEMP	ERA	TURA	EN CAI	MARA	AS 12	ÛĔ		1FE	C . <i>A</i> .			
4		TIEMPO B	EN PROCESO		1	FEMPERATUR	A GLICOL HO	TC		TEMPERATUR	A GLICOL FRIO			TURNO :				JEFE DE TURN	0	
5	INI	CIA	F	IN	IN	ICIA	F	IN	11	NICIA	FIN			OPERADOR						
6	9:00	0:47	179	40:23	-	31	1	12		31	108			AUXILIARES						
7																				
8																				
5	EECHA	цора	TEMD 1	TEMD 2	TEMD 2	TEMD 4	TEMD 5	TEMD 6	GL HOT		120								_	-
11	08/11/2014	9:00:47	0	0	0	0	0	0	31	31							استينين	HHH		-
12	08/11/2014	9:13:46	0	0	0	0	0	0	31	31	100								_	-
13	08/11/2014	9:26:45	0	0	0	0	0	0	32	31							1			-
14	08/11/2014	9:39:45	0	0	0	0	0	0	32	31							<i>t</i>			
15	08/11/2014	9:52:44	0	0	0	0	0	0	33	32	80						<u> </u>		-	
16	08/11/2014	10:05:44	0	0	0	0	0	0	34	32										
17	08/11/2014	10:18:43	0	0	0	0	0	0	34	32										
18	08/11/2014	10:31:42	0	0	0	0	0	0	34	32	60								_	TEMP. 1
19	08/11/2014	10:44:42	0	0	0	0	0	0	35	33										TEMP. 2
20	08/11/2014	10:57:41	0	0	0	0	0	0	35	33	40								_	TEMP. 3
21	08/11/2014	11:10:41	0	0	0	0	0	0	35	33					فللهدر	<u>L</u> #				
22	08/11/2014	11:23:40	0	0	0	0	0	0	35	33					11.00	Part -				TEMP. 5
23	08/11/2014	11:36:39	0	0	0	0	0	0	29	29	20								_	
24	08/11/2014	11:49:39	0	0	0	0	0	0	30	30										
25	08/11/2014	12:02:38	0	0	0	0	0	0	31	31								<u>1</u>		
20	08/11/2014	12-15:38	0	0	0	0	.37	0	32	32	0 00000	2-24-00	4:48:00	7-12-00	936:00	12:0000	14:24:00	16:48 00 10	12:00	GL. FRIO
28	08/11/2014	12:41:36	0	0	0	0	-29	0	45	45	0.00.00	2.24.00	4.40.00	1.12.00	5.30.00	12.0000	14.24.00	10.4000 19		
29	08/11/2014	12:54:36	0	0	0	0	-29	0	62	61	-20							1	_	H
30	08/11/2014	13:07:35	0	0	0	0	-28	0	79	79						140	A second	e1		
31	08/11/2014	13:20:35	0	0	0	0	-26	0	90	90	1					ſ	e.			-
32	08/11/2014	13:33:34	0	0	0	0	-26	0	100	100	-40								_	
33	08/11/2014	13:46:33	0	0	0	0	-25	0	107	106										
34	08/11/2014	13:59:33	0	0	0	0	-24	0	109	108										
HEFH	Hoja1 Ho	ija2 / Hoija3	3/22	^	•	^		^	400	400	-60	14							-	
Listo													P	romedio: 0,555	960648 Rei	tuento: 15	Suma: 1,1119212	96 🔳 🗉	100% (-) (

Reporte de vacío de secado en cámara.

Anexo 2

Variables utilizadas en el área de cámara de secado.

Item en InTouch	Item DAServe	Item PLC	Formato
ACTIVARSECADOC1	300019:7	%MW 18.7	BOOL
ALARMAVACIOC1	400027	%MW 26	REAL
APAGARSECADOC1	300019:8	%MW 18.8	BOOL
AUTOVALVE3VIAC1	300019:2	%MW 18.2	BOOL
AUTOVALVEVAPORC1	300019:5	%MW 18.5	BOOL
DETENERSECADOC1	300019:6	%MW 18.6	BOOL
MANPORCGLICOLC1	400130	%MW 129	REAL
MANPORCVAPORC1	400132	%MW 131	REAL
MANVALVE3VIAC1	300019:1	%MW 18.1	BOOL
MANVALVEVAPORC1	300019:4	%MW 18.4	BOOL
MAXVACIOC1	400189	%MW 188	REAL
MINVACIOC1	400190	%MW 189	REAL
P10MINC1	400062	%MW 61	REAL
P10TEMPC1	400050	%MW 49	REAL
P11MINC1	400063	%MW 62	REAL
P11TEMPC1	400051	%MW 50	REAL
P12MINC1	400064	%MW 63	REAL
P12TEMPC1	400052	%MW 51	REAL
P1MINC1	400053	%MW 52	REAL
P1TEMPC1	400041	%MW 40	REAL
P2MINC1	400054	%MW 53	REAL
P2TEMPC1	400042	%MW 41	REAL
P3MINC1	400055	%MW 54	REAL
P3TEMPC1	400043	%MW 42	REAL
P4MINC1	400056	%MW 55	REAL
P4TEMPC1	400044	%MW 43	REAL
P5MINC1	400057	%MW 56	REAL
P5TEMPC1	400045	%MW 44	REAL
P6MINC1	400058	%MW 57	REAL
P6TEMPC1	400046	%MW 45	REAL
P7MINC1	400059	%MW 58	REAL
P7TEMPC1	400047	%MW 46	REAL
P8MINC1	400060	%MW 59	REAL
P8TEMPC1	400048	%MW 47	REAL
P9MINC1	400061	%MW 60	REAL
P9TEMPC1	400049	%MW 48	REAL
PASOC1	400135	%MW 134	REAL
PORCMAXVAPORC1	400066	%MW 65	REAL
PORCMINVAPORC1	400065	%MW 64	REAL
PORCVALVE3VIASC1	400133	%MW 132	REAL

PORCVALVEVAPORC1	400134	%MW 133	REAL
PORCVAPORRAMPAC1	400162	%MW 161	REAL
PRESREFRCONDAC1	400112	%MW 111	REAL
PRESREFRCONDBC1	400113	%MW 112	REAL
PRESVAPORC1	400111	%MW 110	REAL
SEL3PGLICOLC1	400127	%MW 126	REAL
SEL3PVAPORC1	400128	%MW 127	REAL
SPTEMPGLICOLC1	400129	%MW 128	REAL
SPTEMPRODUCTOC1	400026	%MW 25	REAL
TEMPAGUATORREC1	400124 S	%MW 123	REAL
TEMPCONDAC1	400120 S	%MW 119	REAL
TEMPCONDBC1	400121 S	%MW 120	REAL
TEMPGLICOLC1	400125 S	%MW 124	REAL
TEMPMEZCLAC1	400126 S	%MW 125	REAL
TEMPP1C1	400114 S	%MW 113	REAL
TEMPP2C1	400115 S	%MW 114	REAL
TEMPP3C1	400116 S	%MW 115	REAL
TEMPP4C1	400117 S	%MW 116	REAL
TEMPP5C1	400118 S	%MW 117	REAL
TEMPP6C1	400119 S	%MW 118	REAL
TEMPREFRIGCONDAC1	400122 S	%MW 121	REAL
TEMPREFRIGCONDBC1	400123 S	%MW 122	REAL
TPARCIALC1	400094	%MW93	REAL
TTOTALC1	400090	%MW 89	REAL
VALVE11C1	300021:15	%MW 20:15	BOOL
VALVE12C1	300021:12	%MW 20:12	BOOL
VALVE13C1	300021:14	%MW 20:14	BOOL
VALVE14C1	300021:11	%MW 20:11	BOOL
VALVE1C1	300021:7	%MW 20:7	BOOL
VALVE20C1	300022:16	%MW 21:16	BOOL
VALVE21C1	300022:15	%MW 21:15	BOOL
VALVE22C1	300022:14	%MW 21:14	BOOL
VALVE23C1	300022:13	%MW 21:13	BOOL
VALVE24C1	300022:12	%MW 21:12	BOOL
VALVE25C1	300022:11	%MW 21:11	BOOL
VALVE26C1	300022:10	%MW 21:10	BOOL
VALVE27C1	300022:9	%MW 21:9	BOOL
VALVE2C1	300021:9	%MW 20:9	BOOL
VALVE30C1	300021:6	%MW 20:6	BOOL
VALVE7C1	300019:9	%MW 18:9	BOOL
VALVE8C1	300019:10	%MW 18:10	BOOL
VALVEDRENAC1	300021:2	%MW 20:2	BOOL
VALVEDRENBC1	300022:4	%MW 21:4	BOOL
VALVEECUAAC1	300021:4	%MW 20:4	BOOL
VALVEECUABC1	300022:6	%MW 21:6	BOOL

VALVEGASAC1	300021:1	%MW 20:1	BOOL
VALVEGASBC1	300022:8	%MW 21:8	BOOL
VALVELIQAC1	300021:5	%MW 20:5	BOOL
VALVELIQBC1	300022:7	%MW 21:7	BOOL
VALVESUCCAC1	300021:13	%MW 20:13	BOOL
VALVESUCCBC1	300022:5	%MW 21:5	BOOL
VBOMBA1A	400104	%MW 103	REAL
VBOMBA1B	400105	%MW 104	REAL
VCAMARA1	400101	%MW 100	REAL
VCOND1A	400102	%MW 101	REAL
VCOND1B	400103	%MW 102	REAL
VMAYORBAC1	400109	%MW 108	REAL
VMAYORBBC1	400110	%MW 109	REAL
VMAYORC1	400106	%MW 105	REAL
VMAYORCONDAC1	400107	%MW 106	REAL
VMAYORCONDBC1	400108	%MW 107	REAL

Variables utilizadas en el área de cuarto frio.

Item en InTouch	Item DAServe	Item PLC	Formato
BANDAT1	300101.0	%MW 100.0	BOOL
BANDAT2	300102.0	%MW 101.0	BOOL
BBREGMAN1	300031:15	%MW 30.15	BOOL
BBREGMAN2	300031:16	%MW 30.16	BOOL
BM1L1	302031:2	%MW 30.2	BOOL
BM1L2	300032:2	%MW 31.2	BOOL
BM2L1	300031:15	%MW 30.15	BOOL
BM2L2	300031:7	%MW 30.7	BOOL
BM3L1	300031:14	%MW 30.14	BOOL
BM3L2	300031:8	%MW 30.8	BOOL
BREGMAN11	400093	%MW 92	REAL
BREGMAN22	400097	%MW 96	REAL
BSINFIN1	300031:13	%MW 30.13	BOOL
BSINFIN2	300032:1	%MW 31.1	BOOL
HZBREGMAN1	400354	%MW 353	REAL
HZBREGMAN2	400359	%MW 358	REAL
HZM1L1	400351	%MW 350	REAL
HZM1L2	400356	%MW 355	REAL
HZM2L1	400352	%MW 351	REAL
HZM2L2	400357	%MW 356	REAL
HZM3L1	400353	%MW 352	REAL
HZM3L2	400358	%MW 357	REAL
HZSINFIN1	400355	%MW 354	REAL
HZSINFIN2	400360	%MW 359	REAL

M1L11	400096	%MW 95	REAL
M1L22	400092	%MW 91	REAL
M2L11	400099	%MW 98	REAL
M2L22	400091	%MW 90	REAL
M3L11	400095	%MW 94	REAL
M3L22	400100	%MW 99	REAL
SINFIN11	400094	%MW 93	REAL
SINFIN22	400098	%MW 97	REAL
TEMPBREGMAN11	401510 S	%MW 1509	REAL
TEMPBREGMAN22	401511 S	%MW 1510	REAL
TEMPBREGMAN33	401513 S	%MW 1512	REAL
TEMPMOLINO11	402066 S	%MW 2065	REAL
TEMPMOLINO22	402067 S	%MW 2066	REAL
TEMPMOLINO33	402069 S	%MW 2068	REAL
TEMPTOLVA11	401232 S	%MW 1231	REAL
TEMPTOLVA22	401233 S	%MW 1232	REAL
TEMPTOLVA33	401792 S	%MW 1791	REAL
TEMPTRUCK11	401235 S	%MW 1234	REAL
TEMPTRUCK22	401236 S	%MW 1235	REAL
TEMPZARANDA11	401788 S	%MW 1787	REAL
TEMPZARANDA22	401789 S	%MW 1788	REAL
TEMPZARANDA33	401791 S	%MW 1790	REAL
V1E1	300032:14	%MW 31.14	BOOL
V1E2	300032:10	%MW 31.10	BOOL
V1E3	300032:7	%MW 31.7	BOOL
V1E4	300032:6	%MW 31.6	BOOL
V1E5	300031:4	%MW 30.4	BOOL
V1E6	300032:4	%MW 31.4	BOOL
V2E1	300032:11	%MW 31.11	BOOL
V2E2	300032:9	%MW 31.9	BOOL
V2E3	300032:8	%MW 31.8	BOOL
V2E4	300032:5	%MW 31.5	BOOL
V2E5	300032:1	%MW 31.1	BOOL
V2E6	300032:3	%MW 31.3	BOOL
ZARANDA1	300031:0	%MW 301.0	BOOL
ZARANDA2	300031:5	%MW 30.5	BOOL

Variable utilizada en el área de túneles.

Item en InTouch	Item DAServe	Item PLC	Formato
MINBANDA1	400106	%MW 105	REAL
MTBANDA1	400105	%MW 104	REAL
PRESD11	400602	%MW 601	REAL
TEMPD11	400601 S	%MW 600	REAL
TEMPZ11	404568 S	%MW 567	REAL
TEMPZ22	404569 S	%MW 568	REAL
TEMPZ33	404571 S	%MW 4570	REAL
TEMPZ44	404572 S	%MW 4571	REAL
TEMPZ55	404574 S	%MW 4573	REAL
TEMPZ66	404575 S	%MW 4574	REAL
TEMPZ77	404577 S	%MW 4576	REAL
TEMPZ88	404578 S	%MW 4577	REAL
VELB11	400102	%MW 101	REAL
VENTZ11	400107	%MW 106	REAL
VENTZ22	400108	%MW 107	REAL
VENTZ33	400109	%MW 108	REAL
VENTZ44	400110	%MW 109	REAL
VENTZ55	400111	%MW 110	REAL
VENTZ66	400112	%MW 111	REAL
VENTZ77	400113	%MW 112	REAL
VENTZ88	400114	%MW 114	REAL

Item en InTouch	Item DAServe	Item PLC	Formato
MINBANDA2	400106	%MW 105	REAL
MTBANDA2	400105	%MW 104	REAL
PRESD22	400602	%MW 601	REAL
TEMPD22	400601 S	%MW 600	REAL
TEMP2Z11	404568 S	%MW 567	REAL
TEMP2Z22	404569 S	%MW 568	REAL
TEMP2Z33	404571 S	%MW 4570	REAL
TEMP2Z44	404572 S	%MW 4571	REAL
TEMP2Z55	404574 S	%MW 4573	REAL
TEMP2Z66	404575 S	%MW 4574	REAL
TEMP2Z77	404577 S	%MW 4576	REAL
TEMP2Z88	404578 S	%MW 4577	REAL
VELB22	400102	%MW 101	REAL
VENT2Z11	400107	%MW 106	REAL
VENT2Z22	400108	%MW 107	REAL
VENT2Z33	400109	%MW 108	REAL
VENT2Z44	400110	%MW 109	REAL

VENT2Z55	400111	%MW 110	REAL
VENT2Z66	400112	%MW 111	REAL
VENT2Z77	400113	%MW 112	REAL
VENT2Z88	400114	%MW 114	REAL

Variable utilizada en el área de tanque y espumado.

Item en InTouch	Item DAServe	Item PLC	Formato
BOMBAESP11	400118	%MW 117	REAL
BOMBAESP22	400119	%MW 118	REAL
BOMBAESPU1	300055:5	%MW 54.5	REAL
BOMBAESPU2	300055:6	%MW 54.6	REAL
BOMBAPRINCIPAL	300021:1	%MW 20,1	REAL
BOMBASOLUBLE	300021:3	%MW 20,3	REAL
BOMBASTAND	300021:2	%MW 20,2	REAL
BOMBASTANDESP	300055:7	%MW 54.7	REAL
BOMBATRASP	300021:4	%MW 20,4	REAL
CMTQ1	400091	%MW 90	REAL
CMTQ1ESP	400108	%MW 107	REAL
CMTQ2	400092	%MW 91	REAL
CMTQ2ESP	400122	%MW 121	REAL
CMTQ3	400093	%MW 92	REAL
CMTQ3ESP	400123	%MW 122	REAL
CMTQ4	400094	%MW 93	REAL
CMTQ4ESP	400109	%MW 108	REAL
CMTQ5	400095	%MW 94	REAL
HZB1ESP	400136	%MW 135	REAL
HZB2ESP	400137	%MW 136	REAL
HZBRETORESP	400138	%MW 137	REAL
HZHOMEGTQ1ESP	403029	%MW 3028	REAL
HZHOMEGTQ2ESP	403030	%MW 3029	REAL
HZHOMEGTQ3ESP	403031	%MW 3030	REAL
HZHOMEGTQ4ESP	403032	%MW 3031	REAL
LTTQ1	400101	%MW 100	REAL
LTTQ1ESP	400112	%MW 111	REAL
LTTQ2	400102	%MW 101	REAL
LTTQ2ESP	400126	%MW 125	REAL
LTTQ3	400103	%MW 102	REAL
LTTQ3ESP	400127	%MW 126	REAL
LTTQ4	400104	%MW 103	REAL
LTTQ4ESP	400113	%MW 112	REAL
LTTQ5	400105	%MW 104	REAL
TEMPTQ11	400041	%MW 40	REAL
TEMPTQ1ESP	400119	%MW 118	REAL
TEMPTQ22	400042	%MW 41	REAL
-------------------	-----------	-------------	------
TEMPTQ2ESP	400120	%MW 119	REAL
TEMPTQ33	400043	%MW 42	REAL
TEMPTQ3ESP	400121	%MW 120	REAL
TEMPTQ44	400044	%MW 43	REAL
TEMPTQ4ESP	400107	%MW 106	REAL
TEMPTQ55	400045	%MW 44	REAL
VALVEARECIRCULAR	300023:3	%MW 22,3	BOOL
VALVEASOLTQ1	300022:1	%MW 21,1	BOOL
VALVEASOLTQ2	300022:3	%MW 21,3	BOOL
VALVEASOLTQ3	300022:5	%MW 21,5	BOOL
VALVEASOLTQ4	300022:9	%MW 21,9	BOOL
VALVEASOLTQ5	300022:7	%MW 21,7	BOOL
VALVEASOLUBLE	300023:2	%MW 22,2	BOOL
VALVEBANDA1	300074:0	%MW 73,0	BOOL
VALVEBANDA2	300075:0	%MW 74,0	BOOL
VALVEDRENTQ1	300034:0	%MW 33,0	BOOL
VALVEDRENTQ2	300034:2	%MW 33,2	BOOL
VALVEDRENTQ3	300034:4	%MW 33,4	BOOL
VALVEDRENTQ4	300034:6	%MW 33,6	BOOL
VALVESOLATQ1	300063:1	%MW 62,1	BOOL
VALVESOLATQ2	300063:5	%MW 62,5	BOOL
VALVESOLATQ3	300063:9	%MW 62,9	BOOL
VALVESOLATQ4	300063:13	%MW 62,13	BOOL
VALVESPUATQ1	300062:0	%MW 61,0	BOOL
VALVESPUATQ2	300062:6	%MW 61,6	BOOL
VALVESPUATQ3	300062:4	%MW 61,4	BOOL
VALVESPUATQ4	300062:2	%MW 61,2	BOOL
VALVESPUATQ5	300062:8	%MW 61,8	BOOL
VALVETQ1ESP	300022:0	%MW 21,0	BOOL
VALVETQ2ESP	300022:2	%MW 21,2	BOOL
VALVETQ3ESP	300022:4	%MW 21,4	BOOL
VALVETQ4ESP	300022:6	%MW 21,6	BOOL
VALVETQ5ESP	300022:8	%MW 21,8	BOOL
VALVETRASPATQ1	300033:6	%MW 32,6	BOOL
VALVETRASPATQ2	300033:10	%MW 32,10	BOOL
VALVETRASPATQ3	300033:14	%MW 32,14	BOOL
VALVETRASPATQ4	300033:18	%MW 32,18	BOOL
VALVEV10ESP	302024:5	%MW 2023,5	BOOL
VALVEV11ESP	302024:6	%MW 2023,6	BOOL
VALVEV1DREN	302034:14	%MW 2033,14	BOOL
VALVEV1E1	302034:10	%MW 2033,10	BOOL
VALVEV1E2	302034:12	%MW 2033,12	BOOL
VALVEV1R	302034:8	%MW 2033,8	BOOL
VALVEV2DREN	302035:6	%MW 2034,6	BOOL

VALVEV2E1	302035:2	%MW 2034,2	BOOL
VALVEV2E2	302035:4	%MW 2034,4	BOOL
VALVEV2R	302035:0	%MW 2034,0	BOOL
VALVEV3DREN	302035:14	%MW 2034,14	BOOL
VALVEV3E1	302035:10	%MW 2034,10	BOOL
VALVEV3E2	302035:12	%MW 2034,12	BOOL
VALVEV3R	302035:8	%MW 2034,8	BOOL
VALVEV4DREN	302036:6	%MW 2035,6	BOOL
VALVEV4E1	302036:2	%MW 2035,2	BOOL
VALVEV4E2	302036:4	%MW 2035,4	BOOL
VALVEV4R	302036:0	%MW 2035,0	BOOL
VALVEV5ESP	302024:0	%MW 2023,0	BOOL
VALVEV6ESP	302024:1	%MW 2023,1	BOOL
VALVEV7ESP	302024:2	%MW 2023,2	BOOL
VALVEV8ESP	302024:3	%MW 2023,3	BOOL
VALVEV9ESP	302024:4	%MW 2023,4	BOOL
VVHOMOGTQ1	300022:6	%MW 21,6	BOOL
VVHOMOGTQ1ESP	303066:0	%MW 3065,0	BOOL
VVHOMOGTQ2	300022:5	%MW 21,5	BOOL
VVHOMOGTQ2ESP	303066:1	%MW 3065,1	BOOL
VVHOMOGTQ3	300022:3	%MW 21,3	BOOL
VVHOMOGTQ3ESP	303066:2	%MW 3065,2	BOOL
VVHOMOGTQ4	300022:2	%MW 21,2	BOOL
VVHOMOGTQ4ESP	303066:3	%MW 3065,3	BOOL
VVHOMOGTQ5	300022:1	%MW 21,1	BOOL

Anexo 3

Programa realizado en la ventana de Application Script para la animación de las señales digital.

IF VARIABLE < 100 AND BOMBAVAC1==1 THEN

VARIABLE = VARIABLE +3;

ELSE

VARIABLE = 0;

ENDIF;

IF VARIABLE2 < 100 AND BLOWERVAC1==1 THEN

VARIABLE2 = VARIABLE2 +3;

ELSE

VARIABLE2=0;

ENDIF;

IF VARIABLE3 < 100 AND BOMBAVBC1==1 THEN

VARIABLE3 = VARIABLE3 +3;

ELSE

VARIABLE3 = 0;

ENDIF;

IF VARIABLE4 < 100 AND BLOWERVBC1==1 THEN

VARIABLE4 = VARIABLE4 +3;

ELSE

VARIABLE4=0;

ENDIF;

IF VARIABLE < 100 AND BOMBAVAC2==1 THEN

VARIABLE = VARIABLE +3;

ELSE

VARIABLE = 0;

ENDIF;

IF VARIABLE2 < 100 AND BLOWERVAC2==1 THEN

VARIABLE2 = VARIABLE2 +3;

ELSE

VARIABLE2=0;

ENDIF;

IF VARIABLE3 < 100 AND BOMBAVBC2==1 THEN

VARIABLE3 = VARIABLE3 + 3;

ELSE

VARIABLE3 = 0;

ENDIF;

IF VARIABLE4 < 100 AND BLOWERVBC2==1 THEN

VARIABLE4 = VARIABLE4 +3;

ELSE

VARIABLE4=0;

ENDIF;

IF VARIABLE < 100 AND BOMBAVAC3==1 THEN

VARIABLE = VARIABLE +3;

ELSE

VARIABLE = 0;

ENDIF;

IF VARIABLE2 < 100 AND BLOWERVAC3==1 THEN

VARIABLE2 = VARIABLE2 +3;

ELSE

VARIABLE2=0;

ENDIF;

IF VARIABLE3 < 100 AND BOMBAVBC3==1 THEN

VARIABLE3 = VARIABLE3 +3;

ELSE

VARIABLE3 = 0;

ENDIF;

IF VARIABLE4 < 100 AND BLOWERVBC3==1 THEN

VARIABLE4 = VARIABLE4 +3;

ELSE

VARIABLE4=0;

ENDIF;

Anexo 4

Característica del Servidor utilizado para este proyecto.

La Dell Precision R5400 disponible con el procesador Intel ® Xeon ® una estación de trabajo en rack de dos sockets de alto rendimiento que ofrece una alternativa estándar de la industria a la cuchilla estaciones de trabajo y totalmente escalables, opciones de gráficos de alto rendimiento, así como:

- Amplia gama de estaciones de trabajo de escritorio de clase OpenGL tarjetas gráficas estándar con la flexibilidad para cambiar en una fecha posterior
- Ranuras PCIe y PCI estándar adicionales para una excelente flexibilidad
- Nuevas posibilidades para las soluciones de computación de alto rendimiento a través de las aplicaciones multitarea.

Tablero de control utilizado en cada cámara de secado.

Modulo de comunicación CANOpen

Switch Ethernet Schneider utilizado para la red de comunicación entre los PLC

