

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE GUAYAQUIL

FACULTAD DE INGENIERÍAS

CARRERA: INGENIERÍA ELÉCTRICA

TESIS PREVIA A LA OBTENCIÓN DEL TÍTULO DE INGENIERO ELÉCTRICO

TEMA:

ANÁLISIS MATEMÁTICO DE UN PANEL SOLAR FOTOVOLTAICO DE SILICIO

AUTORES:

JEFFERSON EUSEBIO CATA SÁNCHEZ

FULTON MIJAIL RODRÍGUEZ SÓCOLA

TUTOR:

ING. ROY SANTANA JARA MSIG

GUAYAQUIL MAYO 2015

DECLARATORIA DE RESPONSABILIDAD

Nosotros, Jefferson Cata Sánchez y Fulton Rodríguez Sócola, autorizamos a la Universidad Politécnica Salesiana la publicación total o parcial de este trabajo de titulación y su reproducción sin fines de lucro.

Además declaramos que los conceptos, análisis desarrollados y las conclusiones del presente trabajo son de nuestra exclusiva responsabilidad.

Guayaquil, mayo 2015

Jefferson Cata Sánchez I.D.

Fulton Rodríguez Sócola

I.D.

CERTIFICACIÓN

Yo, Ing. Roy Santana Jara MSIG, declaro que el presente proyecto de tesis, previo a la obtención del título de Ingeniero Eléctrico, fue elaborado por los señores: Jefferson Cata Sánchez y Fulton Rodríguez Sócola, bajo mi dirección y supervisión.

Guayaquil, mayo 2015

Ing. Roy Santana Jara MSIG

DIRECTOR

AGRADECIMIENTO

Agradecemos principalmente a Dios, a nuestras familias, a las personas por las cuales se aprobó este proyecto: el Ing. Teddy Negrete, Ing. Nino Vega, Lic. Roberto Briones y al Padre Iván Segarra. También agradecemos al Ing. Ervin Solano y a nuestro tutor Ing. Roy Santana, quienes supieron guiarnos con sus conocimientos para culminar con éxito este proyecto.

Jefferson Cata Sánchez

Fulton Rodríguez Sócola

DEDICATORIA

Tengo el sentir sincero de dedicar este trabajo, a mi Dios Todopoderoso por haberme permitido culminar una meta más, concediéndome sabiduría, salud y los ángeles terrenales que son mis progenitores.

A mi padre por sus sacrificios diarios por darme lo mejor cada día, inspirándome a alcanzar este logro y se sienta orgulloso de mí.

A mi abnegada madre, que supo tenerme paciencia desde que era tan solo un niño hasta mi adultez, dándome su cariño, comprensión, amor y los cuidados necesarios para alcanzar todo lo que me he propuesto.

A mi segunda madre, mi tía Marieta Chamba que aunque solo compartió unos años de su vida conmigo, me enseñó que cada minuto vale para expresar amor.

También dedico este trabajo a las personas especiales que creyeron, en mi capacidad, inteligencia y constancia, que me incitaron a creer que no existe nada que no se pueda lograr, que todo es posible mientras se tenga vida.

Jefferson Cata Sánchez

Dedico este proyecto de tesis a Dios Todopoderoso y a mis padres. A Dios porque ha estado presente guiándome en cada paso que he dado; a mis padres quienes a lo largo de mi vida han velado por mi bienestar y educación siendo mi apoyo en todo momento y depositándome su entera confianza en cada reto que se me ha presentado sin dudar ni un solo momento de mi inteligencia y capacidad.

Fulton Rodríguez Sócola

ÍNDICE GENERAL

DECLARATORIA DE RESPONSABILIDADi
CERTIFICACIÓNii
AGRADECIMIENTOiii
DEDICATORIAiv
ÍNDICE GENERALv
ÍNDICE DE TABLASxi
ÍNDICE DE ECUACIONESxii
RESUMENxiii
ABSTRACTxiv
INTRODUCCIÓN1
CAPÍTULO I2
PLANTEAMIENTO DEL PROBLEMA2
1.1. Identificación y diagnóstico del problema2
1.2. Descripción de la situación actual del área de intervención del proyecto2
1.3. Justificación2
1.4. Sistematización del problema3
1.5. Objetivos4
1.5.1. Objetivo general4
1.5.2. Objetivos específicos
1.6. Método de investigación4
CAPÍTULO II5
MARCO TEÓRICO5
2.1. La energía5
2.2. Tipos de energía5
2.2.1. Energía eléctrica6
2.2.2. Energía hidráulica6
2.2.3. Energía geotérmica7
2.2.4. Energía eólica7
2.2.5. Energía solar8
2.2.6. Otros
2.3. Radiación solar y sus características9

2.3.1.	El Sol	9
2.3.2.	Masa de aire	10
2.3.3.	Radiación solar en una superficie inclinada	11
2.3.4.	Medición de radiación solar	13
2.3.5.	Radiación solar promedio en Ecuador	14
2.4. El j	panel fotovoltaico	15
2.4.1.	Clasificación	15
2.5. Prin	ncipios teóricos de funcionamiento de un panel fotovoltaico de silici	o17
2.5.1.	Estructura de la célula solar	17
2.5.2.	La corriente fotogenerada	18
2.5.3.	El efecto fotoeléctrico	18
2.5.4.	Curva I-V	19
2.5.5.	La corriente de cortocircuito (I _{SC})	20
2.5.6.	Voltaje de circuito abierto (V _{OC})	20
2.5.7.	Punto de potencia máxima	21
2.5.8.	Factor de forma	21
2.5.9.	Condiciones estándar de prueba (STC)	21
2.5.10.	Eficiencia	21
2.5.11.	Resistencias de pérdidas	22
2.5.12.	Efecto de la temperatura	23
2.5.13.	Efecto intensidad de luz	23
2.5.14.	Baja intensidad de la luz	24
2.5.15.	Factor de idealidad	24
2.6. Ser	miconductores y la unión PN	24
2.6.1.	Introducción a los semiconductores	24
2.6.2.	Materiales semiconductores	25
2.6.3.	La unión PN	26
2.6.4.	Banda prohibida (Band Gap)	27
2.6.5.	Ecuación del diodo ideal	27
2.6.6.	Ecuación del diodo no ideal	28
2.7. Ma	ıtlab [®]	28
2.7.1.	Características principales	28
2.7.2.	Adquisición de datos	29

2.7.3	. Visualización de datos	30
2.7.4	. Programación y desarrollo de algoritmos	30
2.7.5	. Diseño de interfaces gráficas de usuario	32
2.8. 8	Simulink [®]	32
2.8.1	. Características principales	32
2.8.2	. Capacidades	33
2.8.3	. Aplicaciones	34
2.8.4	. Construcción del modelo	34
2	2.8.4.1. Selección de bloques	34
2	2.8.4.2. Construcción y edición del modelo	35
2.8.5	. Simulación del modelo	35
2.8.6	. Análisis de resultados de simulación	35
CAPÍTUI	_O III	37
DESARR	OLLO	37
3.1. I	Demostración de las ecuaciones para el modelamiento matemático de u	n
p	anel solar	37
3.1.1	. Corriente foto-generada (I _{PH})	39
3.1.2	. Corriente del diodo (I _D)	39
3	3.1.2.1. Ecuación de la corriente de saturación del diodo	40
3.1.3	. Corriente de pérdida de la resistencia en paralelo	43
3.2. I f	Definición de los parámetros y valores para el modelamiento del panel otovoltaico	43
3.2.1	. Instrumentos de medición que se utilizó para la estimación de	
	parámetros característicos del panel solar fotovoltaico	44
3.2.2	. Procedimiento de mediciones realizadas para la estimación de	
	parámetros característicos del panel solar fotovoltaico	45
3	3.2.2.1. Determinación del voltaje de circuito abierto del panel solar	
~	fotovoltaico	46
	5.2.2.2. Determinación de la corriente de corto circuito del panel solar fotovoltaico	46
3	3.2.2.3. Medición de la relación característica de corriente y voltaje	40
_	(Curva I-V)	47
3	3.2.2.4. Cálculo de la densidad de corriente de cortocircuito (J_{SC})	47
3	3.2.2.5. Cálculo del voltaje de circuito abierto de la celda solar (V_{OC})	48
3	3.2.2.6. Cálculo del coeficiente de temperatura de la densidad de corrie	ente
	ae cortocircuito (αJ_{SC})	48

	3.2.2.7.	Valores de la energía del GAP, parámetros dependientes de la	40
	3.2.2.8.	Cálculo de la resistencia en paralelo (R_{SH}), de la resistencia en	48
	0.2.2.0.	serie (R_s) y del factor de idealidad del diodo (n) de una celda	
		solar	49
3.3.	Modelo	matemático en Simulink [®] del panel fotovoltaico	51
3.3.	1. Moo	delo en Simulink [®] de la temperatura en Kelvin	52
3.3.	2. Moo	delo en Simulink [®] del voltaje térmico	52
3.3.	3. Moo	delo en Simulink [®] de la energía del GAP	53
3.3.	4. Moo	delo en Simulink [®] de la corriente fotogenerada	53
3.3.	5. Moo	delo en Simulink [®] de la corriente de saturación del diodo	54
3.3.	6. Moo	delo en Simulink [®] de la corriente de salida	55
3.4.	GUI MA	ATLAB [®]	55
CAPÍTU	JLO IV		68
ANÁLI	SIS DE R	RESULTADOS	68
3.5.	Compor	tamiento de la curva I-V y la curva P-V por variación de	
	irradianc	cia	68
3.6.	Compor	tamiento de la curva I-V y la curva P-V por variación de	
	temperat	tura	69
3.7.	Compor	tamiento de la curva I-V y la curva P-V por variación del área de	;
	la celda.		/1
3.8.	Compara	ación de las curvas teóricas vs experimental (I-V y P-V)	72
CAPÍTU	JLO V		79
CONCL	USIONE	ES	79
BIBLIO	GRAFÍA	\	80
ANEXC)S		82
ANEXC	A: HOJ	A DE DATOS DEL PANEL "TYN-85S5"	83
ANEXC) B: TAB	ULACIONES EXPERIMENTALES	85
ANEXC	OC: IMÁ	GENES	96

ÍNDICE DE FIGURAS

Figura 1 El Sol9
Figura 2 Descomposición de la luz solar 10
Figura 3 Ángulo del Sol referente a la Tierra 10
Figura 4 Masa de aire11
Figura 5 Radiación solar en una superficie inclinada12
Figura 6 Piranómetro
Figura 7 Insolación en Ecuador15
Figura 8 Sección transversal de una célula solar17
Figura 9 La corriente fotogenerada
Figura 10 Efecto fotoeléctrico
Figura 11 Curva I-V
Figura 12 Variación de R_S y R_{SH} en la curva característica I-V de una celda solar 22
Figura 13 El efecto de la temperatura sobre la curva característica I-V de una
célula solar23
Figura 14 Materiales semiconductores
Figura 15 Átomo de silicio25
Figura 16 La unión PN
Figura 17 La unión PN
Figura 18 Archivo numérico y texto mixto para la importación en Matlab [®]
Figura 19 Edición de un gráfico de contorno de superficie utilizando el entorno
gráfico interactivo Matlab [®]
Figura 20 El lenguaje de Matlab [®]
Figura 21 Diseño de una interfaz de usuario para el análisis del comportamiento
del viento
Figura 22 Capacidades de Simulink [®]
Figura 23 Diagrama eléctrico de una celda solar
Figura 24 Comportamiento de la celda solar
Figura 25 Comportamiento de la celda para irradiancia dada
Figura 26 Diagrama eléctrico de un panel solar
Figura 27 Piranómetro Amprobe [®] Solar - 100
Figura 28 Cámara termográfica Fluke [®] Ti20
Figura 29 Multímetros Fluke [®] 117
Figura 30 Resistencias variables de 100 [Ω], 4,2 [A]
Figura 31 Medición del voltaje de circuito abierto
Figura 32 Medición de la corriente de cortocircuito
Figura 33 Disposición de los equipos para la medición de la relación característica
de corriente y voltaje (Curva I-V) 47
Figura 34 Especificaciones del panel solar fotovoltaico "TYN-85S5"
Figura 35 Características del rendimiento eléctrico del panel solar fotovoltaico
"TYN-85S5"
Figura 36 Modelo de la temperatura en Kelvin (ecuación 21)52
Figura 37 Modelo del voltaje térmico (ecuaciones 19 y 20)52

Figura 38 Modelo de la energía del GAP (ecuaciones 22 y 23)	53
Figura 39 Modelo de corriente fotogenerada (ecuación 14)	53
Figura 40 Modelo de corriente de saturación del diodo (ecuación 16)	54
Figura 41 Modelo de corriente de salida del panel fotovoltaico (ecuación 13)	55
Figura 42 Ventana "GUIDE Quick Start"	56
Figura 43 Área de diseño	56
Figura 44 Interfaz de usuario	65
Figura 45 Tabla de datos con formato .xlsx	66
Figura 46 Curvas teóricas I-V y P-V simuladas en la aplicación de Matlab [®]	66
Figura 47 Comparación de las curvas teóricas vs curvas experimentales I-V y P-	V
simuladas en Simulink [®]	67
Figura 48 Curva I-V por variación de irradiancia	69
Figura 49 Curva P-V por variación de irradiancia	69
Figura 50 Curva I-V por variación de temperatura	70
Figura 51 Curva P-V por variación de temperatura	70
Figura 52 Curva I-V por variación del área de las celdas	71
Figura 53 Curva P-V por variación del área de las celdas	72
Figura 54 Comparación de gráfica teórica vs gráfica experimental	73
Figura 55 Comparación de gráfica teórica vs gráfica experimental	74
Figura 56 Comparación de gráfica teórica vs gráfica experimental	75
Figura 57 Comparación de gráfica teórica vs gráfica experimental	76
Figura 58 Comparación de gráfica teórica vs gráfica experimental	77
Figura 59 Comparación de gráfica teórica vs gráfica experimental	78

ÍNDICE DE TABLAS

ÍNDICE DE ECUACIONES

Ecuación 1 Masa de aire	. 10
Ecuación 2 Masa de aire según el teorema de Pitágoras	. 11
Ecuación 3 Radiación total	. 12
Ecuación 4 Radiación sobre una superficie inclinada	. 12
Ecuación 5 Radiación sobre una superficie horizontal	. 12
Ecuación 6 Factor de relación entre una superficie inclinada y horizontal	. 12
Ecuación 7 Radiación sobre una superficie inclinada	. 13
Ecuación 8 Energía de un fotón absorbido	. 19
Ecuación 9 Punto de potencia máxima	. 21
Ecuación 10 Eficiencia de un panel fotovoltaico	. 22
Ecuación 11 Diodo Ideal	. 27
Ecuación 12 Diodo no ideal	. 28
Ecuación 13 Corriente de salida	. 38
Ecuación 14 Corriente foto generada	. 39
Ecuación 15 Corriente del diodo	. 39
Ecuación 16 Corriente de saturación del diodo 1	. 40
Ecuación 17 Corriente de saturación del diodo 2	. 41
Ecuación 18 Voltaje del diodo	. 41
Ecuación 19 Voltaje térmico	. 41
Ecuación 20 Voltaje térmico a temperatura estándar	. 42
Ecuación 21 Temperatura en Kelvin	. 42
Ecuación 22 Energía del GAP	. 42
Ecuación 23 Energía del GAP a temperatura estándar	42
Ecuación 24 Corriente de la resistencia en paralelo	. 43
Ecuación 25 Densidad de corriente de cortocircuito	. 47
Ecuación 26 Voltaje de circuito abierto	
Ecuación 27 Coeficiente de temperatura	
Ecuación 28 Resistencia en paralelo	49
Ecuación 29 Resistencia en serie	. 49
Ecuación 30 Ecuación de modelamiento de una celda solar	. 51
Ecuación 31 Ecuación de modelamiento del módulo fotovoltaico	. 52

RESUMEN

TEMA: ANÁLISIS MATEMÁTICO DE UN PANEL SOLAR FOTOVOLTAICO DE SILICIO

Autores: Jefferson Cata Sánchez, Fulton Rodríguez Sócola

Director de tesis: Ing. Roy Santana Jara MSIG

Palabras claves: Panel fotovoltaico, Celda solar, Modelo matemático, Voltaje, Corriente, Potencia, Matlab.

Los sistemas fotovoltaicos surgen a partir de un sistema teórico, referido a la energía y sus diversas fuentes. En el presente trabajo se analizó el funcionamiento de un panel fotovoltaico del elemento silicio, el cual actúa como semiconductor y es el componente principal de una celda de energía fotovoltaica, entendida como la capacidad para transformar la energía solar en energía eléctrica. El proceso investigativo consistió en determinar las incidencias entre las variables de entrada y de salida. Siendo las variables de entrada analizadas; la irradiación, temperatura, área de la celda solar y número de celdas; por otra parte, las variables de salida analizadas son el voltaje, la corriente y la potencia; así mismo, se determinó las constantes del panel. A partir de los datos obtenidos, se pudo establecer un modelo matemático adaptado al desempeño del panel, el cual se desarrolló en una aplicación del programa Matlab[®], permitiendo visualizar los cambios de desempeño de las variables para futuros usos afines.

ABSTRACT

THEME: MATHEMATICAL ANALYSIS OF A SILICON PHOTOVOLTAIC SOLAR PANEL

Authors: Jefferson Cata Sánchez, Fulton Rodríguez Sócola

Thesis Director: Ing. Roy Santana Jara MSIG

Keywords: Photovoltaic panel, Solar cell, Mathematical model, Voltage, Current, Power, Matlab.

Photovoltaic systems arise from a theoretical system, based on the energy and its various sources. In this paper it was analyzed the performance of a photovoltaic panel of silicon element, which acts as a semiconductor and it is the main component of a photovoltaic cell, it is understood as the ability to transform solar energy into electrical energy. The research process consisted on determining the incidences between the input and output variables. Being the analyzed input variables; the irradiation, temperature, solar cells area and number of cells; on the other hand, the analyzed output variables are the voltage, current and power; likewise the panel constants were determined. From the obtained data, it could be established a mathematical model adapted to the performance of the panel, which was developed in a Matlab[®] application, allowing to display the performance changes of the variables for related uses in the future.

INTRODUCCIÓN

La formación profesional en el área de ingeniería eléctrica demanda el conocimiento de varios contenidos que permitan articular el sistema teórico con las aplicaciones, y de esta manera satisfacer la expectativa profesional en el ámbito de producción de energía renovable. En el marco de contenidos de la asignatura Centrales Eléctricas se evidenció la necesidad de profundizar en sus conocimientos las fuentes de captación de energía solar, ya que Ecuador se encuentra en el marco de priorizar la construcción de fuentes de energía sustentable. Se ha revisado la base de datos de tesis de la Universidad Politécnica Salesiana (UPS) y sobre las temáticas existe poca producción teórica y de aplicación práctica, lo cual nos motivó a realizar este estudio, incrementando una nueva tendencia de investigación a nivel institucional.

La tesis se la presenta en cinco capítulos tratando de ir de lo general a lo específico. El primer capítulo hace relación a la identificación y descripción del problema a investigar, sus características y su proyección; el segundo capítulo hace alusión al sistema teórico referido a la energía solar y el funcionamiento técnico del panel fotovoltaico; el tercer capítulo presenta el desarrollo del modelo matemático y de la aplicación; el cuarto capítulo evidencia el análisis de lo desarrollado, planteando diferentes condiciones para un mayor entendimiento del impacto de las variables de entrada del panel fotovoltaico; y por último, en el quinto capítulo se establecen las conclusiones de la investigación determinando los puntos más importantes de la misma.

La importancia de este trabajo investigativo radica en haber logrado constituir un modelo matemático adaptado al comportamiento del módulo desarrollado en una aplicación del programa Matlab[®], y de esta manera permitir visualizar los cambios de comportamiento de las variables para futuros usos afines.

CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

1.1. Identificación y diagnóstico del problema

El cambio climático que afecta al mundo entero obliga a la ciencia a buscar alternativas tecnológicas para reducir su impacto en los factores sociales, económicos y productivos; lo que hace orientar los intereses investigativos hacia el uso de las energías renovables que contribuya al desarrollo energético sostenible. Al momento este tipo de energías ya están siendo ampliamente utilizadas con gran aceptación, tanto por los resultados que se obtiene como por los bajos impactos negativos en la naturaleza en la medida que son ecológicamente amigables.

El problema seleccionado se deriva por la observación del nivel de efectividad que actualmente registran los paneles solares, en cuyo uso se advierte niveles de ineficacia que depende de perturbaciones externas particularmente de carácter climático. La situación descrita plantea la necesidad de elaborar un modelo matemático de un panel fotovoltaico para estudios de sistema y de su factibilidad en caso de implementarlos en alguna localidad.

1.2. Descripción de la situación actual del área de intervención del proyecto

El campo de las energías renovables todavía no ofrece una opción conveniente para el uso de la energía solar ya que sus formas de aprovecharla no satisfacen en cuanto a la baja eficiencia; en nuestro proceso de formación profesional no se ha realizado un estudio matemático que involucre a los factores de un módulo fotovoltaico, con nuestra propuesta solventamos esa necesidad para un análisis de este elemento que es el principal en un sistema fotovoltaico.

1.3. Justificación

La utilidad de conocer el funcionamiento preciso de un panel fotovoltaico con sus respectivos parámetros y variables es de gran importancia ya que nos ofrece el conocimiento para desarrollar técnicas y alcanzar la efectividad de los mismos. En la UPS encontramos la necesidad de realizar un estudio matemático y la identificación del sistema cuyo fin sea el de comprobar su funcionamiento operativo.

El modelo matemático a plantearse prevé realizar aportaciones al análisis del comportamiento de un panel fotovoltaico que infiere en el estudio para mejorar la efectividad del mismo; paralelamente incentiva a los estudiantes a profundizar conocimientos en la esfera de la investigación del comportamiento de los sistemas operativos. Además una vez culminado el proceso investigativo los usuarios de nuestro proyecto podrán realizar pruebas experimentales, es decir al ingresar un parámetro o variable al sistema, podrán diseñar y desarrollar prácticas de laboratorio para control.

La elaboración de este trabajo surge con la necesidad de realizar un estudio en el campo de las energías renovables, específicamente en paneles fotovoltaicos, creando una herramienta de simulación y aproximación del comportamiento y rendimiento de los paneles solares bajo condiciones no estándar. Teniendo como elemento de comprobación el panel "TYN-85S5" del cual se aproximará su curva característica a la de un modelamiento matemático elaborado en el software Matlab[®], para contrastar los datos dados por el fabricante en la hoja de especificaciones técnicas.

1.4. Sistematización del problema

Lo descrito en líneas anteriores se resume en la siguiente cuestión:

• ¿Qué características asume un modelo matemático de un panel fotovoltaico, utilizando ecuaciones y variables específicas de entrada y de salida del equipo de energía fotovoltaica?

Este problema logra mayor especificidad cuando nos centramos en los siguientes puntos de interés:

- ¿Cuál es el proceso de la demostración de las ecuaciones del panel fotovoltaico?
- ¿Qué resultados se obtendría al utilizar las aplicaciones de software en la simulación de datos de entrada y salida?
- ¿Cuál es la diferencia entre los valores simulados y los experimentales?

1.5. Objetivos

1.5.1. Objetivo general

Presentar un modelo matemático de un panel fotovoltaico de silicio, utilizando ecuaciones ya establecidas y contrastar los resultados obtenidos con las variables de entrada y salida del equipo de generación fotovoltaica "TYN-85S5".

1.5.2. Objetivos específicos

- 1. Demostración teórica de ecuaciones establecidas.
- Presentar un modelo de un panel fotovoltaico de silicio, utilizando ecuaciones ya establecidas, considerando como variables de entrada: irradiancia, número de celdas, área de la celda, temperatura de trabajo; como variables de salida: voltaje, corriente y potencia.
- Crear una aplicación utilizando Matlab[®] de un panel fotovoltaico de silicio, para analizar el comportamiento del sistema de acuerdo a las variables de entrada anteriormente citadas.
- Comparar resultados obtenidos en la aplicación realizada en Matlab[®], con valores experimentales tomados desde el equipo de generación fotovoltaica "TYN-8585".

1.6. Método de investigación

El método empírico, representa un nivel en el proceso de investigación cuyo contenido procede fundamentalmente de la experiencia, el cual es sometido a cierta elaboración racional.

El experimento es el método empírico de estudio de un objeto, en el cual el investigador crea las condiciones necesarias o adecúa las existentes, para el esclarecimiento de las propiedades y relaciones del objeto, que son de utilidad en la investigación.

Nuestra vía de experimentación consistió en encontrar la forma de hacer permutar las variables incidentes en el panel fotovoltaico. Los experimentos se basaron por operar el panel a distintos niveles de irradiancia, temperatura y área de las celdas, en cada caso se tomó el tiempo necesario para analizar e interpretar los resultados e inmiscuirlos en las ecuaciones que rigen el funcionamiento del módulo fotovoltaico.

CAPÍTULO II

MARCO TEÓRICO

2.1. La energía

Sobre el concepto de energía existen varios aportes que nos dicen de su alcance y su interpretación. Para Roldán (2008) "La energía se encuentra en el calor y en la luz del sol, el viento, el agua de un rio, la madera al arder, los vegetales, un trozo de carbón, un determinado gas, un líquido, etc." (pág. 2).

Por su naturaleza la energía puede ser convertida a otras formas diferentes y en ese sentido puede ser renovable y no renovable; la energía renovable es la que utilizamos y se renueva, por ejemplo: la fuerza del viento, el calor y la luz del sol, el agua de los ríos, etc. La energía no renovable es la que una vez consumida desaparece de esa forma de energía y se transforma en otra, por ejemplo: un barril de gasolina que se gasta en un motor se transforma en energía mecánica, una bombona de butano que se quema en una cocina se transforma en energía calorífica, etc. (Roldan, 2008, pág. 3)

2.2. Tipos de energía

Para el estudio de los tipos de energía podemos citar a Roldan (2008, pág. 6), el cual los clasifica según las fuentes que las generan y pueden ser energías no renovables y renovables, a continuación se determinan para las energías renovables:

Procedencia	Tipos de energía
El viento	Eólica
El calor del interior de la tierra	Geotérmica
El agua	Hidráulica
El mar	Mareomotriz
El Sol	Fotovoltaica
Materias agrícolas diversas	Proveniente de la biomasa
El mar	De gradiente térmico oceánico

Tabla 1 Tipos de energías renovables Fuente: Fuentes de energía, José Roldan, 2008 En el ámbito de las energías no renovables existen varios tipos y éstas en su denominación devienen de las fuentes que la generan. El autor anteriormente citado manifiesta que éstas se clasifican en los siguientes tipos: (Roldan, 2008, pág. 6)

Procedencia	Tipos de energía	
Minas	Carbón	
Pozos	Gas natural, petróleo y sus derivados	
Obtención diversa	Otros gases	
Naturaleza	Madera leña	
Mineral	Nuclear	

Tabla 2 Tipos de energía no renovables Fuente: Fuentes de energía, José Roldan, 2008

2.2.1. Energía eléctrica

La forma más común en que aparece la energía es mediante la energía eléctrica, y basándonos en esto podemos citar a González (2009) que establece "La corriente eléctrica es un flujo ordenado de electrones". (pág. 9)

"Este flujo se produce con suma facilidad en los materiales denominados conductores, que se caracterizan por ofrecer una muy baja resistencia a dicho flujo. Los mejores conductores son los metales, que están formados por cristales donde los átomos están unidos entre sí por medio del enlace metálico". (González, 2009, pág. 9)

2.2.2. Energía hidráulica

Sudamérica opta como primera opción a la energía hidráulica ya que la región posee abundantes fuentes de agua. La energía del agua en movimientos, en ríos o en otros cauces se ha empleado en el pasado para el accionamiento de molinos de cereal, de martillos pilones en trabajos metalúrgicos, o para el trasporte de mercancías mediante barcazas. Esta forma de energía contribuyó de forma significativa al desarrollo industrial y económico de muchos países, desde la revolución industrial. La utilización de energía hidráulica para la generación de energía eléctrica se inició hace un siglo. (Menéndez, 1997, pág. 79) La energía hidráulica sin duda alguna es la más y mejor aprovechada en el Ecuador, esto se debe a que el país se encuentra en una condición geográfica privilegiada. En la medida que el agua situada en una posición pierde altura y gana velocidad. La disminución de energía potencial se transforma en energía cinética, salvo las pérdidas debidas a los rozamientos en los conductos. La recuperación de energía hidráulica se basa en establecer una conducción de agua hacia un tubo alternador que transforma la energía cinética en electricidad. (Menéndez, 1997, pág. 79)

2.2.3. Energía geotérmica

Por su captación y naturaleza una de las energías renovables poco utilizadas pero muy importante es la geotérmica, la cual aprovecha el calor que existe en el subsuelo de nuestro planeta y mediante yacimientos de alta temperatura que alcanzan los 150°C se utiliza para generar energía eléctrica, mientras que aquellos con temperaturas menores son óptimos para el sector industrial y servicios residenciales. (Twenergy, 2014)

La energía geotérmica ha incrementado su producción mundial en la última década llegando a realizarse estudios en Sudamérica con expectativas positivas. Las actividades de exploración geotérmica en el Ecuador, han definido un potencial teórico conjunto de alrededor de 533 [MW], dejando una visión de incrementar una fuente más a la matriz energética del país. (GeoLA Energía Geotérmica Ecuatoriana SA, 2010)

2.2.4. Energía eólica

La energía eólica es la energía que se produce mediante la variabilidad y fluctuación del viento que golpea una hélice que a su vez hace girar un rotor hasta convertirse en energía eléctrica. Gracias a su fácil captación, a su no tan alta inversión económica y a su escaza necesidad de mantenimiento este tipo de energía es muy popular a nivel mundial.

Para Villarrubia (2004) "La energía eólica es una de las fuentes de energía renovables para la que se dispone de una tecnología madura, por lo que su explotación es técnica y económicamente viable, en unas condiciones de producción y coste competitivas con las fuentes de energía tradicionales (hidráulica, térmica clásica y termonuclear)." (Energía Eólica, pág. 11)

2.2.5. Energía solar

Tous (2010) establece "La luz solar forma parte del espectro electromagnético, es decir, un tipo de onda electromagnética que se desplaza por el espacio en todas direcciones y alcanza la tierra en un tiempo aproximado de ocho minutos." (Energía Solar Fotovoltaica, pág. 17)

El sol es la estrella principal del sistema, se calcula que el Sol irradia una energía de $4x10^{26}$ Joule (una potencia de $4x10^{23}$ Vatios), más que la potencia total de todas las centrales de todo tipo actualmente en la tierra. En un solo segundo el sol irradia más energía que la que ha consumido en toda su historia la humanidad.

El aprovechamiento de esta energía se ve manipulado por la intensidad de radiación, la intensidad de radiación emitida sobre la tierra es constante, pero no así la final recibida por la superficie, la época del año, la hora del día, la latitud y la climatología modifican enormemente la recepción en la tierra. La radiación que alcanza la superficie terrestre tiene por término medio una intensidad de potencia de 900 $[W/m^2]$. (Tous, 2010, pág. 17).

Existen dos formas de captar la energía solar para generar energía eléctrica: los paneles solares fotovoltaicos por medio de un fenómeno físico; y los paneles solares térmicos que generan electricidad a través de energía térmica.

2.2.6. Otros

En esta sección se establecen los conceptos básicos de los tipos de energía restantes, debido a que su importancia en el entorno no se ha desarrollado en su totalidad en nuestro país.

Debido a que Sudamérica es una de las regiones más importantes en la producción de materia prima, se está incentivando a realizar estudios para generar energía eléctrica a través de la bioenergía que procede del aprovechamiento de la materia orgánica e industrial formada en algún proceso biológico, por lo general se obtiene de los restos o residuos de las sustancias que constituyen los seres vivos (plantas, animales, seres humanos, entre otros). El aprovechamiento de la energía de la biomasa se hace directamente por combustión, o por transformación en otras sustancias que pueden ser aprovechadas después como combustibles o alimentos. (Martínez, 2007)

La energía mareomotriz es la energía asociada a las mareas provocadas por la atracción gravitatoria del sol, y principalmente, de la luna. Las mareas se aprecian como una variación del nivel del mar, que ocurre cada 12 h 30 minutos y puede suponer una diferencia del nivel desde unos 2 metros hasta unos 15 metros, según la diferencia de la topografía costera. La técnica utilizada consiste en encauzar el agua marea en una cuenca y, en su camino, accionar las turbinas de una central eléctrica. Cuando las aguas se retiran también generan electricidad, usando un generador con turbina reversible. (Manzuano, 2008, pág. 70)

2.3. Radiación solar y sus características

La radiación solar es el flujo de energía que llega del Sol en forma de ondas electromagnéticas de diferentes frecuencias (luz visible, infrarroja y ultravioleta). En función de cómo reciben la radiación solar los objetos situados en superficies terrestres, se pueden distinguir los siguientes tipos de radiación: directa (llega directamente del Sol), difusa (parte de la radiación es reflejada por las nubes), reflejada (es aquella reflejada por la superficie terrestre); y, global (es la suma de las tres radiaciones). (Castells & Bordas, 2011, pág. 601)

2.3.1. El Sol

Según Hanasoge, Duvall & Sreenivasan (2013) el Sol es una esfera de gas caliente cuya temperatura interna llega a más de 20 millones de grados Kelvin debido a las reacciones de fusión nuclear en su núcleo, que convierten el hidrógeno en helio. La radiación del núcleo interior no es visible ya que es fuertemente absorbida por una capa de átomos de hidrógeno cerca de su superficie. El calor se transfiere a través de esta capa por convección.

Figura 1 El Sol Fuente: http://www.astroyciencia.com/category/el-sol/

La potencia total emitida desde el sol se compone de muchas longitudes de onda y por lo tanto aparece blanco o amarillo para el ojo humano. Las longitudes de onda pueden ser vistas por la luz que pasa a través de un prisma, o las gotas de agua en el caso de un arco iris. Diferentes longitudes de onda se muestran como diferentes colores, pero no todas las longitudes de onda se pueden ver, algunas son "invisibles" para el ojo humano. (Hanasoge, Duvall, & Sreenivasan, 2013)

Figura 2 Descomposición de la luz solar Fuente: http://www.conocimientosweb.net/descargas/article2808.html

2.3.2. Masa de aire

La masa de aire es la longitud de la ruta que toma la luz a través de la atmósfera (cénit). La masa de aire cuantifica la reducción en la potencia de la luz cuando pasa a través de la atmósfera y es absorbida por el aire y el polvo. (PVEducation, 2013)

La masa de aire se define como:

$$AM = \frac{1}{\cos(\theta)}$$

Ecuación 1 Masa de aire

Donde θ es el ángulo de la vertical.

Figura 3 Ángulo del Sol referente a la Tierra Fuente: http://pveducation.org/pvcdrom/properties-of-sunlight/air-mass

En la figura 3 la masa de aire representa la proporción de la atmósfera que la luz debe atravesar antes de golpear la Tierra en relación con su longitud en perpendicular, y es igual a Y/X.

Un método sencillo para determinar la masa de aire es la sombra de un poste vertical.

Figura 4 Masa de aire Fuente: http://pveducation.org/pvcdrom/properties-of-sunlight/air-mass

Masa de aire es la longitud de la hipotenusa dividida por la altura del objeto h, y desde el teorema de Pitágoras se obtiene:

$$AM = \sqrt{1 + \left(\frac{s}{h}\right)^2}$$

Ecuación 2 Masa de aire según el teorema de Pitágoras

2.3.3. Radiación solar en una superficie inclinada

La potencia incidente en un módulo fotovoltaico depende de la potencia contenida en la luz del sol y también en el ángulo entre el módulo y el sol. Cuando la superficie absorbente y la luz del sol son perpendiculares entre sí, la densidad de potencia en la superficie es igual a la de la luz del sol. Sin embargo, como el ángulo entre el sol y una superficie fija está cambiando continuamente, la densidad de potencia en un módulo fotovoltaico fijo es menor que la de la luz solar incidente.

Kalogirou Soteris A. (citado por Urresta, 2013) expresa que los paneles solares en su gran porcentaje se instalan con una inclinación respecto a la horizontal, esto se debe a que de esta manera se permite recibir una mayor cantidad de energía, así como reducir la reflexión y las pérdidas por el ángulo de incidencia de la radiación. (Urresta, 2013)

Los datos sobre radiación solar están disponibles generalmente para superficies horizontales, se debe entonces modificar esta información para conocer la radiación sobre superficies inclinadas.

Una superficie inclinada recibe radiación directa (G_{Bt}), radiación difusa (G_{Dt}) y radiación reflejada por la tierra (G_{Gt}); se tiene entonces que:

$$G_t = G_{Bt} + G_{Dt} + G_{Gt}$$

Donde G_t es la radiación total sobre una superficie inclinada [W/m²]. A partir de la siguiente figura podemos determinar que:

Figura 5 Radiación solar en una superficie inclinada

Fuente: Diseño, construcción y simulación de un desalinizador solar térmico modular de agua de mar para el laboratorio de energías alternativas y eficiencia energética, con una capacidad diaria promedio de 4 litros, Francisco Urresta Suárez, 2013

La radiación en una superficie inclinada es:

$$G_{Bt} = G_{Bn} \cos \theta$$

Ecuación 4 Radiación sobre una superficie inclinada

La radiación en una superficie horizontal es:

$$G_B = G_{Bn} \cos \phi$$

Ecuación 5 Radiación sobre una superficie horizontal

R_B es el factor de relación entre G_{Bt} y G_B resultando así que:

$$R_B = \frac{G_{Bt}}{G_B} = \frac{\cos\theta}{\cos\phi}$$

Ecuación 6 Factor de relación entre una superficie inclinada y horizontal

Así la radiación en una superficie inclinada es:

$$G_{Bt} = G_B R_B$$

Ecuación 7 Radiación sobre una superficie inclinada

2.3.4. Medición de radiación solar

Los dos métodos comunes que caracterizan a la radiación solar son la irradiancia y la insolación. La irradiancia es una densidad de potencia instantánea en unidades de $[W/m^2]$, varía a lo largo del día desde 0 a un máximo de aproximadamente 1000 dependiente de la ubicación y el clima local.

El instrumento que se utiliza para medir la irradiancia es el piranómetro, el cual se basa en exponer a radiación, a una lámina metálica con una superficie reflectante y junto a ella, otra cuya superficie es absorbente; la lámina absorbente estará más caliente que la reflectante y admitiendo que la diferencia de temperaturas es proporcional a la radiación recibida, al medir este salto térmico se determina la irradiancia. Para medir esta diferencia de temperaturas se utiliza un termopar. (Jutglar, 2004, pág. 23)

Figura 6 Piranómetro Fuente: http://pixgood.com/pyranometer.html

Jutglar (2004) además menciona que "un piranómetro consta de un sensor analógico colocado bajo una cubierta semiesférica, normalmente de cristal de cuarzo, que debe ser transparente para cualquier longitud de onda." "Si el piranómetro se instala sobre la superficie considerada, su lectura nos proporciona la radiación total incidente." (pág. 23)

Si el piranómetro se sitúa sobre una superficie horizontal y se tiene la precaución de eliminar las reflexiones del entorno, medirá la radiación global. Si se cubre con un pequeño disco opaco de tal manera que elimine la radiación directa, medirá solamente la radiación difusa.

La radiación para una ubicación en particular se puede administrar de varias maneras, incluyendo:

- Datos año medio típico para un lugar determinado
- Promedio de insolación diaria, mensual o anual para un lugar determinado
- Horas de sol en datos
- La insolación solar basado en Nube-Cubierta de datos por satélite

2.3.5. Radiación solar promedio en Ecuador

Ecuador es un país con características topográficas muy variadas, de gran diversidad climática y condiciones únicas que le confieren un elevado potencial de energías renovables y limpias, las cuales no pueden quedar al margen del inventario de los recursos energéticos para producción eléctrica, pues las condiciones de cobertura y satisfacción de la demanda que se presentan en la actualidad, demuestran un estrecho vínculo especialmente con la electrificación y energización rural." (CONELEC, 2008).

A continuación se presenta una tabla de la misma fuente que detalla los valores promedios de los tres tipos de insolación en todos los meses del año, posteriormente en la gráfica se muestra la insolación difusa promedio.

Insolación Solar Promedio en Ecuador (Wh/m²/día)			
Meses	Difusa	Directa	Global
Enero	2925	2265	4111
Febrero	3103	1828	4480
Marzo	3002	2172	4655
Abril	2840	2051	4360
Mayo	2557	2443	4276
Junio	2425	2520	4140
Julio	2467	2680	4308
Agosto	2658	2701	4624
Septiembre	2683	3063	4974
Octubre	2790	2820	4888
Noviembre	2690	3131	4943

Diciembre	2704	3038	4838
-----------	------	------	------

Tabla 3 Insolación en Ecuador

Fuente: Atlas Solar del Ecuador con fines de Generación Eléctrica, CONELEC, 2008

Figura 7 Insolación en Ecuador Fuente: Atlas Solar del Ecuador con fines de Generación Eléctrica, CONELEC, 2008

2.4. El panel fotovoltaico

Un panel fotovoltaico está compuesto de celdas fotovoltaicas las que "permiten transformar directamente en electricidad la energía de parte de los fotones que componen el espectro visible de la luz solar". (González, 2009) (pág. 140).

2.4.1. Clasificación

Existen diferentes criterios para clasificar a los paneles solares fotovoltaicos, San Miguel (2011) en su texto expone la siguiente clasificación.

- Silicio puro monocristalino: Se componen de secciones de una barra de silicio perfectamente cristalizado en una sola pieza. El rendimiento de estos paneles esta al torno del 16%
- Silicio puro policristalino: Se basan en secciones de una barra de silicio que se ha estructurado desordenadamente en forma de pequeños cristales. Se reconocen fácilmente por presentar su superficie un aspecto granulado. Se obtiene de ellos un rendimiento más bajo que los monocristalinos en torno al 14%.
- Silicio amorfo (TFS): Las células son también de silicio pero se constituye sin estructura cristalina alguna, su eficiencia alcanza el 5%. Estos paneles son

finos y flexibles y son habitualmente utilizados en pequeños dispositivos electrónicos como calculadora y relojes.

- Teluro de cadmio: Rendimiento de laboratorio del 16% y en módulos comerciales de 8%
- **Diseleniuro de cobre en indio:** Con rendimiento de laboratorio del 17% y en módulos comerciales de 9%
- Arseniuro de galio: Uno de los materiales más eficientes que presenta un rendimiento del laboratorio del 28% y en módulos comerciales de 20%.
- Paneles tándem: Combinan dos tipos de materiales semiconductores distintos. Dado que cada tipo de semiconductor es capaz de sacar el máximo rendimiento en una parte del espectro electromagnético de la radiación luminosa. mediante la combinación de dos o más tipos de semiconductores es posible aumentar el rendimiento de las células fotovoltaicas. Con este tipo de paneles se están consiguiendo rendimientos por encima del 35%, pudiéndose alcanzar teóricamente rendimientos dcl 50% con uniones de 3 materiales.
- Paneles de cobre, indio, galio y selenio (CIGS): Nueva tecnología que está llamada a revolucionar el mundo de la energía solar fotovoltaica. Se trata de un nuevo tipo de panel solar muy fino, muy barato de producir y que presenta el mayor nivel de eficiencia de todos los materiales. Este nuevo tipo de panel podría llegar a sustituir a combustibles fósiles en producción de energía en un futuro no muy lejano, debido a su competitiva relación entre producción de energía/coste.

Clasificación de los paneles fotovoltaicos	Eficiencia [%]
Silicio puro monocristalino	16
Silicio puro monocristalino	14
Silicio amorfo (TFS)	5
Teluro de cadmio	16
Diseleniuro de cobre en indio	17
Arseniuro de galio	20

Paneles tándem	35
Paneles de cobre, indio, galio y selenio (CIGS)	> 35
Tabla 4 Eficiencia del panel fotovoltaico según su clasificación	
Fuente: LOS autores, 2014	

2.5. Principios teóricos de funcionamiento de un panel fotovoltaico de silicio

El funcionamiento de un panel fotovoltaico de silicio está formado por un conjunto de elementos, detallados en los siguientes enunciados.

2.5.1. Estructura de la célula solar

Una célula solar es un dispositivo electrónico que convierte directamente la luz solar en electricidad, la célula solar produce tanto una corriente y un voltaje para generar energía eléctrica. Este proceso requiere en primer lugar, un material en el que la absorción de la luz eleva un electrón a un estado de energía más alto, y en segundo lugar, el movimiento de estos electrones de energía de la célula solar se transfiere a un circuito externo. El electrón entonces disipa su energía en el circuito externo y vuelve a la célula solar. Una variedad de materiales y procesos potencialmente puede satisfacer los requisitos para la conversión de energía fotovoltaica, pero en la práctica casi toda la conversión de energía fotovoltaica utiliza materiales semiconductores en forma de una unión PN. (Honsberg & Bowden, 2013)

Figura 8 Sección transversal de una célula solar Fuente: http://pveducation.org/pvcdrom/solar-cell-operation/solar-cell-structure

Los pasos básicos en el funcionamiento de una célula solar son:

- La generación de portadores foto-generados
- La recolección de los portadores foto-generados para generar corriente eléctrica
- La generación de un gran voltaje a través de la célula solar
- La disipación de potencia en la carga y en las resistencias parásitas.

2.5.2. La corriente fotogenerada

Una de las claves cruciales de la generación de energía es la naturaleza de la unión PN, se produce cuando los materiales de tipo P y tipo N se colocan en contacto uno con otro, la unión se comporta de manera muy diferente a como lo hacen cada uno de los materiales por si solos. Específicamente, la corriente fluirá fácilmente en una dirección (polarización directa) pero no en la otra (polarización inversa), creando un diodo básico. Este comportamiento no reversible, surge de la naturaleza del proceso de transporte de carga en los dos tipos de materiales. (HyperPhysics, 2012)

Figura 9 La corriente fotogenerada Fuente: http://hyperphysics.phy-astr.gsu.edu/hbasees/solids/pnjun.html

2.5.3. El efecto fotoeléctrico

El autor Delgado (2008) en su libro Físicanova nos da un concepto general acerca del efecto fotoeléctrico aseverando que "consiste en la emisión de electrones por un material cuando se lo ilumina con una corriente de fotones: luz visible o ultravioleta en general." (pág. 93)

Figura 10 Efecto fotoeléctrico Fuente: (Delgado A., 2008)

Cuando se ilumina la superficie de un material, utilizando cualquier clase de fotones, ésta emite únicamente electrones; Así, si la superficie tiene exceso de electrones los pierde; Si es neutra pierde los electrones que tiene el átomo en su estado normal; Y si está cargada positivamente, es decir, si tiene un defecto de electrones, entonces obviamente no puede emitir nada. Se ve entonces cómo el efecto fotoeléctrico demuestra que no existen las cargas negativas ni las cargas positivas como tales y solamente existen cuerpos con exceso o defecto de electrones." (Delgado A., 2008, pág. 93)

Para analizar el efecto fotoeléctrico cuantitativamente utilizando el método derivado por Einstein, es necesario plantear las siguientes ecuaciones:

Energía de un fotón absorbido = Energía necesaria para liberar 1 electrón + energía cinética del electrón emitido.

$$hf = \Phi + E_k$$

Ecuación 8 Energía de un fotón absorbido

Donde *h* es la constante de Planck, *f* es la frecuencia de corte o frecuencia mínima de los fotones para que tenga lugar el efecto fotoeléctrico, Φ es la función de trabajo, o mínima energía necesaria para llevar un electrón del nivel de Fermi al exterior del material y E_k es la máxima energía cinética de los electrones que se observa experimentalmente.

2.5.4. Curva I-V

Cuando nos referimos al funcionamiento de un panel solar fotovoltaico nos referimos a la presentación mediante su curva característica I-V, la figura a continuación muestra la corriente que el panel proporciona en función del voltaje

La curva I-V es la gráfica que marca los valores posibles de voltaje y corriente, que principalmente dependen de la temperatura y de la irradiancia solar que reciben las células del panel. La curva característica del panel se determina variando la carga que se encuentre entre los bornes del panel, como resultado dará valores de voltaje (V) y corriente (I) y el valor de la potencia que entrega se puede calcular mediante el producto V x I.

2.5.5. La corriente de cortocircuito (I_{SC})

La corriente de cortocircuito I_{SC} es uno de los parámetros principales al analizar un panel solar, este parámetro se refiera a la intensidad máxima de corriente que se puede obtener de un panel solar fotovoltaico la cual será medida mediante un amperímetro, el panel debe estar sin ninguna otra resistencia adicional provocando un cortocircuito. Al no existir resistencia al paso de la corriente el voltaje es cero. (Martínez J., 2012, pág. 202)

2.5.6. Voltaje de circuito abierto (V_{OC})

Otro de los parámetros principales en el funcionamiento de un panel solar fotovoltaico es el voltaje de circuito abierto V_{OC} , este parámetro es la tensión máxima disponible de una célula solar la cual se mide con un voltímetro a corriente cero, a condiciones de circuito abierto. El voltaje de circuito abierto compete a la cantidad de polarización directa sobre la célula solar exigido a la polarización de la unión de células solares con la corriente producida por la luz.

2.5.7. Punto de potencia máxima

El punto de potencia máxima de un panel solar fotovoltaico es el parámetro que expresa el punto de funcionamiento para la cual la potencia entregada es máxima, se obtiene multiplicando el voltaje máximo V_{Pmax} por la corriente máxima I_{Pmax} por el factor de forma, dando un valor de potencia en Watts, cuando el panel opera a este punto se obtiene el mayor rendimiento posible.

$$P_{max} = V_{OC}I_{SC}FF$$

Ecuación 9 Punto de potencia máxima

2.5.8. Factor de forma

El factor de forma FF es la relación entre la potencia máxima que el panel puede entregar y el producto $l_{SC} \times V_{OC}$. Otorga una idea de la calidad del panel porque es una medida de lo escarpada que es su curva característica, de forma que cuanto más se aproxima a la unidad, mayor potencia puede proporcionar. Los valores comunes suelen estar entre 0.7 y 0.8. (Villas, 1999)

2.5.9. Condiciones estándar de prueba (STC)

Los fabricantes usan lo que se denomina condiciones estándar de prueba. Esto significa que ellos ponen a los paneles solares dentro de un equipo conocido como flash-tester el cual se calibra para entregar una irradiancia de 1000 [W/m²], una temperatura ambiente de 25 o 27 [°C] (300°K) y una masa de aire de 1.5 con la finalidad de definir el comportamiento del panel bajo estas condiciones, además las curvas que constan en la hoja de datos se determinan a partir de estas pruebas.

2.5.10. Eficiencia

La eficiencia de un panel fotovoltaico es un parámetro que los fabricantes lo están incrementando con el pasar del tiempo, actualmente los paneles de silicio puro monocristalino tienen una eficiencia del 16%. Este parámetro se obtiene dividiendo la potencia máxima que el panel puede entregar para la potencia de irradiancia solar incidente sobre el panel. (Honsberg & Bowden, 2013)
$$\eta = \frac{V_{OC}I_{SC}FF}{P_{IN}}$$

Ecuación 10 Eficiencia de un panel fotovoltaico

Donde η es la eficiencia, V_{OC} es la tensión en circuito abierto, I_{SC} es la corriente de cortocircuito, FF es el factor de llenado, P_{IN} es la potencia que incide en el panel.

2.5.11. Resistencias de pérdidas

Los efectos de las resistencias de pérdidas en la curva característica I-V se muestran de diferentes maneras, ambas resistencias contribuyen a la degradación de la curva.

En general la caída de corriente originada por la resistencia en paralelo R_{SH} es significativa en la parte de la curva I-V que va desde la corriente de cortocircuito hasta valores cercanos al punto máximo de potencia. R_{SH} determina la pendiente cerca de V = 0 la cual puede ser usado para determinar la R_{SH} desde los datos técnicos.

Por el contrario la caída de corriente debido a la resistencia serie R_S es mayor en los voltajes entre V_{OC} y el máximo punto de potencia. En base a estas observaciones el punto máximo de potencia cae en la zona de transición donde hay mayores efectos para ambas resistencias. La resistencia serie R_S determina la pendiente cerca del voltaje de circuito abierto el cual puede ser usado para determinar la R_S desde la hoja de datos técnicos. (Honsberg & Bowden, 2013)

En la figura 12 se puede observar los cambios que producen la variación de las resistencias R_S y R_{SH} en la curva característica I-V de una celda solar.

Figura 12 Variación de R_s y R_{SH} en la curva característica I-V de una celda solar Fuente: Los autores, 2014

2.5.12. Efecto de la temperatura

Como todos los dispositivos semiconductores las células solares son sensibles a la temperatura. Los aumentos de temperatura reducen la banda prohibida de un semiconductor, efectuando de este modo la mayor parte de los parámetros de material semiconductor. La disminución en la banda prohibida de un semiconductor con el aumento de temperatura puede ser vista como el aumento de la energía de los electrones en el material. Por lo tanto, es necesaria una energía más baja para romper el enlace. En el modelo de enlace de un intervalo de banda del semiconductor, la reducción en la energía de enlace también reduce la banda prohibida (Band Gap). Por lo tanto el aumento de la temperatura reduce el Band Gap. (Honsberg & Bowden, 2013)

En una célula solar, el parámetro más afectado por un aumento de la temperatura es el voltaje de circuito abierto. El impacto del aumento de la temperatura se muestra en la siguiente figura.

Figura 13 El efecto de la temperatura sobre la curva característica I-V de una célula solar. Fuente: http://pveducation.org/pvcdrom/solar-cell-operation/effect-of-temperature

2.5.13. Efecto intensidad de luz

El cambio de la intensidad de luz incidente sobre una célula solar, cambia todos los parámetros de la celda solar, incluyendo la corriente de cortocircuito, la tensión en circuito abierto, el factor de forma, la eficiencia y el impacto de la resistencia serie y paralelo. La intensidad de la luz en una célula solar se llama el número de soles, donde 1 sol corresponde a la iluminación estándar (1000 [W/m²]). (Honsberg & Bowden, 2013)

2.5.14. Baja intensidad de la luz

Las células solares experimentan variaciones diarias en la intensidad de la luz, la potencia incidente del sol varía entre 0 y 1000 [W/m²]. A bajos niveles de luz, el efecto de la resistencia en paralelo se vuelve cada vez más importante. A medida que la intensidad de la luz disminuye, el voltaje de polarización y la corriente a través de la célula solar también disminuye, y la resistencia equivalente de la célula solar puede comenzar a acercarse a la resistencia en paralelo. Cuando estos dos resistencias son similares, la fracción de la corriente total que fluye a través de la resistencia en paralelo aumenta. Por consiguiente, bajo condiciones de nubosidad, una célula solar con una alta resistencia en paralelo retiene una mayor fracción de su potencia original que una célula solar con una baja resistencia en paralelo. (Bunea, Wilson, Meydbray, Campbell, & Ceuster, 2006)

2.5.15. Factor de idealidad

El factor de idealidad de un diodo es una medida de cuan cerca el diodo sigue la ecuación del diodo ideal. En la práctica, hay efectos de segundo orden de modo que el diodo no sigue la ecuación del diodo ideal y el factor de idealidad proporciona una manera de describirlos. (Honsberg & Bowden, 2013)

2.6. Semiconductores y la unión PN

Cuando se unen los dos cristales, el cristal tipo P tiene la misma cantidad de huecos libres que de iones negativos. Por otro lado, el cristal tipo N tiene electrones libres y la misma cantidad de iones negativos. Al realizarse la unión de ambos cristales se produce una difusión de los electrones libres desde la zona N hacia la zona P y de huecos desde la zona P hacia la zona N para recombinarse entre ellos. (Carretero, Ferrero, Sánchez-Infantes, & Valero, 2009, pág. 118)

2.6.1. Introducción a los semiconductores

"Un semiconductor es un material que puede comportarse como un conductor o un aislante dependiendo de la temperatura a la que se encuentre." (Carretero, Ferrero, Sánchez-Infantes, & Valero, 2009, pág. 118)

2.6.2. Materiales semiconductores

Para Méndez (2011) El material con que están diseñados los semiconductores nos referencia que a la energía que liga a los electrones de valencia con su núcleo es similar a la energía de los fotones. A su vez cuando la luz solar incide sobre el material semiconductor, se rompen los enlaces entre núcleo y electrones de valencia, que quedan libres para circular por el semiconductor. Por lo tanto al lugar que deja el electrón al desplazarse se le llama hueco y tiene carga eléctrica positiva (de igual valor que el electrón pero de signo contrario). (pág. 58)

Fuente: Energía Solar Fotovoltaica, Méndez Javier, 2011

El autor detalla claramente que "los electrones libres y los huecos tienden a recombinarse perdiendo su actividad. Para que esto no ocurra y poder aprovechar esta libertad de los electrones, hay que crear en el interior del semiconductor un campo eléctrico." (Méndez, 2011, pág. 58)

Así mismo determina que "el material más utilizado en la fabricación de células solares es el silicio, que tienen cuatro electrones de valencia." (Méndez, 2011, pág. 59)

Figura 15 Átomo de silicio Fuente: http://hyperphysics.phy-astr.gsu.edu/hbasees/solids/sili.html#c2

2.6.3. La unión PN

El proceso principal de la foto-generación es la unión PN y Méndez justifica este proceso anunciando que "para conseguir un semiconductor de silicio tipo N se sustituyen algunos átomos del silicio por átomos de fósforo que tienen cinco electrones de valencia." (Méndez, 2011, pág. 59)

Como se necesitan cuatro electrones para formar los enlaces con los átomos contiguos, queda un electrón libre.

Figura 16 La unión PN Fuente: http://sirenapolicialcircuitoselectronicos.blogspot.com/p/circuitos-electricos.html

El texto nos detalla que "de forma análoga, si se sustituyen átomos de silicio por átomos de boro que tiene tres electrones de valencia se consigue un semiconductor tipo P y al igual que el caso anterior, al formar los enlaces falta un electrón, o dicho de otra forma, hay un hueco disponible." (Méndez, 2011, pág. 60)

Méndez (2011) explica que para conseguir la unión PN se pone en contacto una superficie de semiconductor tipo N con la de un semiconductor tipo P. Por lo consiguiente "los electrones libres del material tipo n tienden a ocupar los huecos del material tipo P y viceversa, creándose así un campo eléctrico que se hace cada vez más grande a medida que los electrones y los huecos continúan difundiéndose hacia lados opuestos." Por lo tanto "el proceso continúa hasta que ya no se pueden intercambiar más electrones y huecos, consiguiéndose un campo eléctrico permanente sin la ayuda de campos eléctricos externos." (pág. 60)

Figura 17 La unión PN Fuente: https://www.youtube.com/watch?v=2AX0qvnjSnM

2.6.4. Banda prohibida (Band Gap)

Para que se produzca el efecto fotovoltaico, es decir, para que se produzca una corriente eléctrica cuando incide energía sobre el material semiconductor, es necesario que los fotones tengan una energía mayor que un valor mínimo determinado, que se denomina banda prohibida (E_g), también denominada GAP de energía y se suele expresar en electrón-voltios.

$$1eV(electrón - voltio) = 1,602X10^{-19}J$$

Se pueden considerar ciertos parámetros que caracterizan a la banda prohibida:

- La energía que se aprovecha de cada fotón es la E_g. Si los materiales utilizados en la fabricación de las células fotovoltaicas tienen una E_g muy pequeña, se desaprovecharía mucha energía.
- Si la energía es muy grande, las células se mostrarían transparentes a la mayoría de los fotones incidentes ya que el espectro de la luz solar se distribuye sobre un rango de longitudes de onda que va desde 0.35 hasta algo más de 3 [µm].
- El valor óptimo de E_g está en torno a 1.5 [eV].

2.6.5. Ecuación del diodo ideal

La ecuación del diodo da una expresión para la corriente a través de un diodo como una función de la tensión. La Ley Diodo Ideal, expresado como:

$$I = I_0 \left(e^{\frac{qV}{kT}} - 1 \right)$$

Ecuación 11 Diodo Ideal

Donde *I* es intensidad de corriente neta que fluye a través del diodo, I_0 es la "corriente de saturación", *V* es el voltaje aplicado a través de los terminales del diodo, *q* es el valor absoluto de la carga del electrón, *k* es la constante de Boltzmann y *T* es la temperatura absoluta.

La "corriente de saturación" (I_0) es un parámetro muy importante que diferencia a un diodo de otro. I_0 es una medida de la recombinación en un dispositivo. Un diodo con una recombinación más grande tendrá una mayor I_0 .

Se debe considerar que:

- I_0 aumenta a medida que *T* aumenta.
- I_0 disminuye conforme aumenta la calidad del material.

2.6.6. Ecuación del diodo no ideal

Para diodos reales, la expresión se convierte en:

$$I = I_0 \left(e^{\frac{qV}{nkT}} - 1 \right)$$

Ecuación 12 Diodo no ideal

Teniendo similares variables que la ecuación 11 con la diferencia que n es el factor de idealidad, un número entre 1 y 2, que típicamente aumenta a medida que la corriente disminuye.

2.7. Matlab[®]

Matlab[®] es el lenguaje de alto nivel y un entorno interactivo utilizado por millones de ingenieros y científicos de todo el mundo. Permite explorar y visualizar las ideas y colaborar en todas las disciplinas, incluyendo procesamiento de señales e imágenes, comunicaciones, sistemas de control, y las finanzas computacionales. (MathWorks[®], 2013)

2.7.1. Características principales

Las principales características de este programa son las siguientes:

 Lenguaje de alto nivel para el cálculo numérico, visualización y desarrollo de aplicaciones.

- Entorno interactivo para la exploración, el diseño y la resolución de problemas.
- Funciones matemáticas para álgebra lineal, estadística, análisis de Fourier, filtrado, optimización, integración numérica, y la resolución de ecuaciones diferenciales ordinarias
- Construir gráficos para la visualización de datos y herramientas.
- Herramientas de desarrollo para mejorar la calidad del código, facilidad de mantenimiento y maximizar el rendimiento.
- Herramientas para la creación de aplicaciones con interfaces gráficas personalizadas.
- Funciones para integrar algoritmos con aplicaciones externas y lenguajes como C[®], Java[®], .NET[®] y Microsoft[®] Excel[®]

	IMPORT V	IEW					1 1 2 2 2 ?	\odot
0	Delimited Column of Tab	lelimiters: Options	Variable Nar	Range: A2:G745 nes Row: 1 SELECTION	Vumeri Cell Arr Table	o DATA	ABLE CELLS	
ſ	EnergyData.txt	×					Generate	Script I
	А	В	С	D	E	F	Generate	Functi
				Ene	rgyData			
	Time Datetime	TEXT	Holiday	Power NUMBER	Temperature NUMBER	WindDirection TEXT	WindSpeedMS NUMBER	-
1	Time	Day	Holiday	Power	Temperature	WindDirection	WindSpeedMS	
2	1/1/2006 0:00	Sun	0	54.5448 MW	19 °F	West	8.225536	
3	1/1/2006 1:00	Sun	0	52.3898 MW	18.85 °F	West	8.761984	
4	1/1/2006 2:00	Sun	0	51.6344 MW	17.865 °F	West	8.761984	
5	1/1/2006 3:00	Sun	0	51.5597 MW	17.28 °F	West	7.197344	
5	1/1/2006 4:00	Sun	0	51.7148 MW	15.9182 °F	West	7.733792	
7	1/1/2006 5:00	Sun	0	52.6898 MW	16.24 °F	West	6.169152	
8	1/1/2006 6:00	Sun	0	55.341 MW	17.525 °F	WNW	7.197344	
9	1/1/2006 7:00	Sun	0	57.9512 MW	17.235 °F	WNW	7.733792	
0	1/1/2006 8:00	Sun	0	62.3844 MW	18.15 °F	West	7.197344	
1	1/1/2006 9:00	Sun	0	66.2962 MW	19.3 °F	West	5.677408	
2	1/1/2006 10:00	Sun	0	67.9479 MW	21.0316 °F	West	5.677408	

2.7.2. Adquisición de datos

Figura 18 Archivo numérico y texto mixto para la importación en Matlab[®] Fuente: http://www.mathworks.com/products/matlab/features.html

Matlab[®] genera automáticamente un script o función para importar el archivo mediante programación, también permite acceder a base de datos, otras aplicaciones, y dispositivos externos; incluso puede leer los datos de formatos populares como Microsoft Excel; archivos de texto o binarios; imagen, sonido, vídeo y los archivos científicos como netCDF y HDF. Puede presentar funciones que permiten trabajar con datos en cualquier formato. (MathWorks[®], 2013)

2.7.3. Visualización de datos

Figura 19 Edición de un gráfico de contorno de superficie utilizando el entorno gráfico interactivo Matlab[®] Fuente: http://www.mathworks.com/products/matlab/features.html

Matlab[®] proporciona funciones incorporadas en 2-D y 3-D, así como funciones de visualización de volumen. Puede utilizar estas funciones para observar y entender los datos y comunicar resultados. Los gráficos se pueden personalizar de forma interactiva o mediante programación.

La galería de estructura Matlab[®] proporciona ejemplos de muchas formas de mostrar gráficamente los datos. Para cada ejemplo, se puede ver y descargar el código fuente a utilizar en la aplicación. (MathWorks[®], 2013)

2.7.4. Programación y desarrollo de algoritmos

Martlab proporciona un lenguaje y herramientas de desarrollo de alto nivel que permiten desarrollar y analizar algoritmos y aplicaciones de forma rápida.

Figura 20 El lenguaje de Matlab[®] Fuente: http://www.mathworks.com/products/matlab/features.html

El lenguaje Matlab[®] proporciona soporte nativo para las operaciones vectoriales y matriciales que son fundamentales para la solución de problemas de ingeniería y problemas científicos, lo que permite un rápido desarrollo y ejecución.

Con el lenguaje Matlab[®], se puede escribir programas y desarrollar algoritmos más rápido que con los lenguajes tradicionales. En muchos casos, el apoyo para las operaciones vectoriales y matriciales elimina la necesidad de para-bucles. Como resultado, una línea de código Matlab[®] puede sustituir a menudo varias líneas de código C o C ++.

Matlab[®] proporciona características de los lenguajes de programación tradicionales, incluyendo el control de flujo, control de errores, y la programación orientada a objetos (POO). Puede utilizar los tipos de datos fundamentales o estructuras de datos avanzadas, o puede definir tipos de datos personalizados.

Puede producir resultados inmediatos mediante la ejecución de comandos de forma interactiva uno a la vez. Este enfoque permite explorar rápidamente múltiples opciones e iterar a una solución óptima. Puede capturar pasos interactivos como scripts y funciones reutilizar y automatizar el trabajo.

Productos por adquirir de Matlab[®] proporcionan algoritmos integrados para el procesamiento de señales y comunicaciones, procesamiento de imágenes y de vídeo, sistemas de control, y muchos otros dominios. Mediante la combinación de estos

algoritmos se puede construir programas y aplicaciones complejas. (MathWorks[®], 2013)

2.7.5. Diseño de interfaces gráficas de usuario

Figura 21 Diseño de una interfaz de usuario para el análisis del comportamiento del viento Fuente: http://www.mathworks.com/products/matlab/features.html

Utilizando GUIDE (Graphical User Interface Development Environment), puede diseñar, y editar las interfaces gráficas de usuario personalizada. Puede incluir controles comunes, como cuadros de lista, menús desplegables, y botones, así como gráficos de Matlab[®]. (MathWorks[®], 2013)

2.8. Simulink[®]

Simulink[®] es un entorno de diagrama de bloques para la simulación multidominio y diseño basado en modelos. Es compatible con la simulación, generación automática de código, prueba continua y verificación de sistemas embebidos.

Simulink[®] ofrece un editor gráfico, bibliotecas de bloques personalizables y solucionadores para el modelado y simulación de sistemas dinámicos. Se integra con Matlab[®], lo que permite incorporar algoritmos en modelos y resultados de la simulación de exportación para su posterior análisis. (MathWorks[®], 2013)

2.8.1. Características principales

Las principales características de este programa son las siguientes:

- Editor gráfico para la construcción y gestión de diagramas de bloques jerárquicos.
- Las bibliotecas de bloques predefinidos para el modelado de sistemas de tiempo discreto y tiempo continuo.
- Ámbitos y visualizaciones de datos para la observación de resultados de la simulación.
- Herramientas de proyecto y gestión de datos para la gestión de archivos de modelos y datos.
- Herramientas de análisis del modelo para la arquitectura modelo de refinación y el aumento de la velocidad de simulación.
- Bloque de funciones de Matlab[®] para la importación de los algoritmos en modelos.
- Herramienta código legado para la importación de C y el código C++ en modelos.

2.8.2. Capacidades

Figura 22 Capacidades de Simulink[®] Fuente: http://www.mathworks.com/products/simulink/

- **Construcción del modelo**.- Subsistemas jerárquicos modelos con bloques de la librería predefinidos.
- Simular el modelo.- Simular el comportamiento dinámico del sistema y ver los resultados como las corridas de simulación.
- Analizando los resultados de simulación.- Ver resultados de la simulación y depurar la simulación.

- **Gestión de Proyectos.** Administrar fácilmente archivos, componentes, y grandes cantidades de datos para el proyecto.
- **Conexión a Hardware.** Conectar un modelo de hardware para pruebas en tiempo real y el despliegue de sistemas embebidos.

2.8.3. Aplicaciones

Los productos de Simulink[®] se pueden utilizar para:

- Diseño basado en modelos
- Sistemas de Control
- Procesamiento digital de señales
- Sistemas de Comunicación
- Procesamiento de imagen y vídeo
- Sistemas Embebidos
- Mecatrónica

2.8.4. Construcción del modelo

Simulink[®] ofrece un conjunto de bloques predefinidos que se pueden combinar para crear un diagrama de bloques detallado de un sistema. Herramientas para el modelado jerárquico, gestión de datos y personalización subsistema permiten que usted represente incluso el sistema más complejo de forma concisa y precisa. (MathWorks[®], 2013)

2.8.4.1. Selección de bloques

El navegador de Simulink[®] Library incluye:

- Bloques dinámicos continuos y discretos, como integración y la unidad de retardo.
- Bloques algorítmicos, como Suma, Producto y tabla de búsqueda.
- Bloques estructurales, como Mux, Switch, y Selector de bus.

Se puede construir funciones personalizadas mediante el uso de estos bloques o incorporando escritura de códigos Matlab[®], C, Fortran, Ada.

Los bloques personalizados se pueden almacenar en propias bibliotecas dentro del navegador Simulink[®] Library.

Productos por adquirir de Simulink[®] permiten incorporar componentes especializados para la industria aeroespacial, comunicaciones, control PID, lógica de control, procesamiento de señales, vídeo, imágenes y otras aplicaciones. También están disponibles para el modelado de sistemas físicos, mecánicos, eléctricos e hidráulicos. (MathWorks[®], 2013)

2.8.4.2. Construcción y edición del modelo

Se construye un modelo arrastrando bloques del Navegador Simulink[®] Library en el Editor de Simulink[®], después conecta estos bloques con líneas de señales para establecer relaciones matemáticas entre los componentes del sistema. Herramientas de formato de gráficos, como las guías inteligentes y ruteo de señal inteligente ayudan a controlar la apariencia del modelo. Se puede agregar jerarquía encapsulando un grupo de bloques y señales como un subsistema en un solo bloque.

El Editor de Simulink[®] da un control total sobre lo que ve y utiliza dentro del modelo. Por ejemplo, se puede agregar comandos y submenús a los menús de edición y de contexto. También se puede agregar una interfaz personalizada de un subsistema o modelo mediante el uso de una máscara que oculta el contenido del subsistema y proporciona el subsistema con su propio cuadro de diálogo icono y parámetro. (MathWorks[®], 2013)

2.8.5. Simulación del modelo

Se puede simular el comportamiento dinámico de un sistema, ver los resultados y cómo se ejecuta la simulación. Para asegurar la velocidad y precisión de la simulación, Simulink[®] ofrece un depurador gráfico y un modelo de perfiles. (MathWorks[®], 2013)

2.8.6. Análisis de resultados de simulación

Después de ejecutar una simulación, se puede analizar los resultados en Matlab[®] y Simulink[®]. El programa incluye herramientas de depuración para ayudar a entender el comportamiento de la simulación.

Se puede observar el comportamiento de la simulación mediante la visualización de señales con las pantallas y los alcances previstos en Simulink[®]. También se puede ver los datos de simulación en el Inspector de Datos de Simulación, donde se puede comparar múltiples señales de diferentes simulaciones. (MathWorks[®], 2013)

CAPÍTULO III

DESARROLLO

3.1. Demostración de las ecuaciones para el modelamiento matemático de un panel solar

Como se mencionó anteriormente un panel solar es básicamente un arreglo de celdas solares, de modo que a partir del circuito en la figura 23, de una celda individual ideal, se agrupa en serie y/o paralelo para formar el panel solar.

Figura 23 Diagrama eléctrico de una celda solar Fuente: Los autores, 2014

En condiciones de poca o casi nada de luz, la celda solar se comporta como un diodo (sección "a" de la figura 24) cuyo comportamiento responde a la ecuación del diodo de Shockley (ecuación 15).

Cuando se hace incidir luz solar sobre la celda, se presenta una fuente de corriente proporcional a la irradiancia dada, la corriente de salida es el negativo de la corriente del diodo (sección "b" de la figura 24) y cuya gráfica es similar a la de la sección "c" de la misma figura.

A medida que se incrementa la irradiancia incidente el resultado es una superposición entre los comportamientos de la celda bajo condiciones de oscuridad y luz figura 25.

El circuito que se forma entre celdas experimenta pérdidas por conducción las cuales son representadas por una resistencia serie R_s , así también existen pérdidas provocadas por la condición de las celdas por entes externos o de construcción representadas por la resistencia paralelo R_{SH} de la figura 26. Siendo este el circuito equivalente real de una celda solar.

Figura 25 Comportamiento de la celda para irradiancia dada Fuente: Los autores, 2014

Figura 26 Diagrama eléctrico de un panel solar Fuente: Los autores, 2014

La ecuación 13 se determina a partir de la ley de corrientes de Kirchhoff del circuito equivalente de una celda solar

$$I = I_{PH} - I_D - I_{RSH}$$

Ecuación 13 Corriente de salida

Donde:

 I_{PH} es la corriente foto-generada

 I_D es la corriente del diodo

 I_{RSH} es la corriente de pérdida de la resistencia en paralelo

I es la corriente de salida de la celda

3.1.1. Corriente foto-generada (I_{PH})

El primer término de la derecha de la ecuación 13 corresponde a la corriente fotogenerada el cual se puede determinar a partir de la ecuación 14

$$I_{PH} = \frac{G}{G_{STC}} \left[\text{ Area } \cdot J_{SC} + \alpha J_{sc} (T - T_{STC}) \right]$$

Ecuación 14 Corriente foto generada

Donde:

G es el valor de la irradiancia en condiciones dadas $[W/m^2]$

 G_{STC} es el valor de la irradiancia en condiciones estándar [W/m²]

Área es el área de la celda [cm²]

 J_{SC} es la densidad de corriente de cortocircuito de la celda [A/cm²]

 αJ_{SC} es el coeficiente de temperatura de la densidad de corriente de cortocircuito [A/°C]

T es la temperatura bajo condiciones dadas [°C]

 T_{STC} es la temperatura bajo condiciones estándar [°C]

3.1.2. Corriente del diodo (I_D)

El segundo término de la derecha de la ecuación 13 corresponde a la corriente del diodo la cual se puede determinar a partir de la ecuación de Shockley (ecuación 15)

$$I_D = I_O \left(e^{\frac{V_D}{nV_T}} - 1 \right)$$

Ecuación 15 Corriente del diodo

Donde:

Io es la corriente de saturación [A] (ecuación 16 y 17)

 V_D es el voltaje del diodo [V] (ecuación 18)

n es igual al factor de idealidad del diodo

 V_T es el voltaje térmico [V] (ecuación 19)

3.1.2.1. Ecuación de la corriente de saturación del diodo

Algunos autores emplean diferentes ecuaciones para determinar la corriente de saturación, dichas ecuaciones tienen una relación inversamente proporcional entre simplicidad y precisión. La ecuación 16 aunque nos da una buena precisión tiene un cierto nivel de dificultad de comprensión y es más usada para el modelamiento realizado por fabricantes ya que dentro de esta ecuación se utilizan parámetros propios del diseño de las celdas solares.

$$I_{0} = \frac{J_{SC} \cdot \text{\AA}rea \cdot T_{K}^{3} \cdot e^{-\frac{E_{g}}{V_{T}}}}{\left(e^{\frac{V_{oc}}{nV_{T}'}} - 1\right) \cdot 300^{3} \cdot e^{-\frac{E_{g}'}{V_{T}'}}}$$

Ecuación 16 Corriente de saturación del diodo 1

Donde:

 J_{SC} es la densidad de corriente de cortocircuito de la celda [A/cm²]

Área es el área de la celda [cm²]

 T_K es la temperatura [K] (ecuación 21)

Eg es la energía del GAP para el silicio [eV/K] (ecuación 22)

Eg' es la energía del GAP del silicio para la temperatura estándar [eV/K] (ecuación 23)

 V_T es el voltaje térmico [V] (ecuación 19)

 V_{T} es el voltaje térmico a temperatura estándar [V] (ecuación 20)

 V_{OC} es el voltaje de circuito abierto de la celda [V]

n es el factor de idealidad del diodo

La ecuación 17 nos ofrece menor complejidad debido a que se puede determinar a partir de los parámetros que ofrecen las hojas de datos de los paneles comerciales.

$$I_{0} = \frac{Jsc * \acute{A}rea - \frac{V_{OC}}{R_{SH}}}{\left(e^{\frac{Voc}{nV_{T}}} - 1\right)}$$

Ecuación 17 Corriente de saturación del diodo 2

 J_{SC} es la densidad de corriente de cortocircuito de la celda [A/cm²]

Área es el área de la celda [cm²]

 V_{OC} es el voltaje de circuito abierto de la celda [V]

 R_{SH} es la resistencia en paralelo

 V_T es el voltaje térmico [V]

n es igual al factor de idealidad del diodo

$$V_D = IR_S + V$$

Ecuación 18 Voltaje del diodo

Donde:

 V_D es el voltaje del diodo

I es la corriente de salida de la celda solar

 R_S es la resistencia serie

V es el voltaje de salida de la celda solar

$$V_T = \frac{KT_K}{q}$$

Ecuación 19 Voltaje térmico

Donde:

 V_T es el voltaje térmico [V]

K es la constante de Boltzmann (1.38065x10⁻²³) [J/K]

q es la carga del electrón (1.60218x10⁻¹⁹) [C]

$$V_T' = \frac{KT_K}{q}; T_K = 300$$

Ecuación 20 Voltaje térmico a temperatura estándar

Donde:

 V_T es el voltaje térmico [V]

 T_K es la temperatura estándar en Kelvin [K]

K es la constante de Boltzmann $(1.38065 \times 10^{-23})$ [J/K]

q es la carga del electrón (1.60218x10⁻¹⁹) [C]

$$T_{K} = T + 273$$

Ecuación 21 Temperatura en Kelvin

Donde:

 T_K es la temperatura en Kelvin [K]

T es la temperatura en grados centígrados [°C]

$$Eg(T_K) = Eg_0 - \frac{\alpha_{GAP}T_K^2}{T_K + \beta_{GAP}}$$

Ecuación 22 Energía del GAP

Donde:

Eg es la energía del GAP dependiente de la temperatura [eV]

 Eg_0 es la energía del GAP dependiente del material del semiconductor [eV]

 T_K es la temperatura en Kelvin [K]

 α_{GAP} es un parámetro dependiente de la temperatura del material del semiconductor [eV/K]

 β_{GAP} es un parámetro de temperatura dependiente del material del semiconductor [K]

$$Eg(T_K)' = Eg_0 - \frac{\alpha_{GAP}T_K^2}{T_K + \beta_{GAP}}; T_K = 300K$$

Ecuación 23 Energía del GAP a temperatura estándar

Donde:

Eg' es la energía del GAP dependiente de la temperatura [eV]

 Eg_0 es la energía del GAP dependiente del material del semiconductor [eV]

 T_K es la temperatura estándar en Kelvin [K]

 α_{GAP} es un parámetro dependiente de la temperatura del material del semiconductor [eV/K]

 β_{GAP} es un parámetro de temperatura dependiente del material del semiconductor [K]

3.1.3. Corriente de pérdida de la resistencia en paralelo

Este término de la ecuación que corresponde a las fugas de corriente se suele suprimir en algunos modelamientos debido a que la resistencia en paralelo (R_{SH}) suele tener un valor muy elevado con respecto a la resistencia en serie.

$$I_{RSH} = \frac{V + R_S I}{R_{SH}}$$

Ecuación 24 Corriente de la resistencia en paralelo

Donde:

V es el voltaje de salida de la celda solar

 R_S es la resistencia en serie

 R_{SH} es la resistencia en paralelo

I es la corriente de la resistencia en paralelo

3.2. Definición de los parámetros y valores para el modelamiento del panel fotovoltaico

Para la elaboración de un modelo matemático del panel fotovoltaico de silicio "TYN-85S5" disponible en el laboratorio de la carrera Ingeniería Eléctrica se ha utilizado las ecuaciones establecidas en el capítulo 3.1. Los parámetros característicos que describen las celdas solares depende del material, para este caso el silicio y de la tecnología utilizada.

3.2.1. Instrumentos de medición que se utilizó para la estimación de parámetros característicos del panel solar fotovoltaico

Para la estimación de los parámetros característicos del panel solar fotovoltaico se realizaron mediciones con el uso de los siguientes instrumentos:

• Piranómetro Amprobe[®] Solar-100.- Medición de la irradiancia.

Figura 27 Piranómetro Amprobe[®] Solar - 100 Fuente: Los autores, 2014

• Cámara termográfica Fluke[®] Ti20.- Medición de temperatura.

28 Cámara termográfica Fluke[®] Ti20 Fuente: Los autores, 2014

• Multímetros Fluke[®] 117.- Medición de voltaje y corriente.

Figura 29 Multímetros Fluke[®] 117 Fuente: Los autores, 2014

• **Resistencias variables.-** Cargas variables para el bosquejo de la curva I-V.

Figura 30 Resistencias variables de 100 [Ω], 4,2 [A] Fuente: Los autores, 2014

3.2.2. Procedimiento de mediciones realizadas para la estimación de parámetros característicos del panel solar fotovoltaico

Las mediciones se realizaron con la finalidad de contrastar los datos característicos proporcionados por el fabricante en la hoja de datos y tener los valores reales para el bosquejo de la curva experimental I-V.

3.2.2.1. Determinación del voltaje de circuito abierto del panel solar fotovoltaico

Para determinar el voltaje de circuito abierto del panel solar fotovoltaico se tomó mediciones bajo condiciones estándar (STC) para los valores de irradiancia de 1000 [W/m²] y temperatura de 27 [°C].

Se configuró el multímetro para la medición de voltaje DC y se colocó las puntas terminales en paralelo a la salida de los bornes del panel como se ilustra en la figura 31.

Figura 31 Medición del voltaje de circuito abierto Fuente: https://marcelorobin.wordpress.com/category/voltaje-de-circuito-abierto/

3.2.2.2. Determinación de la corriente de corto circuito del panel solar fotovoltaico

Para determinar la corriente de cortocircuito del panel solar fotovoltaico se tomó mediciones bajo condiciones estándar (STC) para los valores de irradiancia de 1000 [W/m²] y temperatura de 27 [°C].

Se configuró el multímetro para la medición de corriente DC y se colocó las puntas terminales en serie a la salida de los bornes del panel. Adicionalmente también se puede medir la corriente de cortocircuito con un amperímetro de pinza como se ilustra en la figura 32.

Figura 32 Medición de la corriente de cortocircuito Fuente: http://www.electricidad-gratuita.com/multimetro_solar.html

3.2.2.3. Medición de la relación característica de corriente y voltaje (Curva I-V)

Para la medición de la curva característica del panel fotovoltaico fue necesario usar una resistencia variable con una corriente nominal mayor que la corriente de corto circuito (I_{SC}) del módulo fotovoltaico. En la figura 33 se ilustra la disposición de los equipos.

Figura 33 Disposición de los equipos para la medición de la relación característica de corriente y voltaje (Curva I-V) Fuente: Los autores, 2014

3.2.2.4. Cálculo de la densidad de corriente de cortocircuito (J_{SC})

Para el cálculo de la densidad de corriente de cortocircuito se utiliza la ecuación 25, con el valor de corriente de cortocircuito que se calculó en el capítulo 3.2.2.2. y el área de la celda igual a 156.25 $[cm^2]$.

$$J_{SC} = \frac{I_{SC}}{\text{Área}}$$

Ecuación 25 Densidad de corriente de cortocircuito

Reemplazando en la ecuación 25 los parámetros antes mencionados, tenemos como resultado:

$$J_{SC} = \frac{4.25}{156.25} = 0.0272 \, [\text{A/cm2}]$$

3.2.2.5. Cálculo del voltaje de circuito abierto de la celda solar (V_{OC})

Para el cálculo del voltaje de circuito abierto se utiliza la ecuación 26, con el valor del (V_{OC}) que se calculó en el capítulo 3.2.2.1 y el número de celdas igual a 36.

$$V_{OC} = \frac{V_{OCPanel}}{36}$$

Ecuación 26 Voltaje de circuito abierto

Reemplazando en la ecuación 26 los parámetros antes mencionados, tenemos como resultado:

$$V_{OC} = \frac{21.96}{36} = 0.61[V]$$

3.2.2.6. Cálculo del coeficiente de temperatura de la densidad de corriente de cortocircuito (αJ_{SC})

Para el cálculo del coeficiente de temperatura de la densidad de corriente de cortocircuito se utilizó la ecuación 27, con el valor de los parámetros del rendimiento eléctrico (+2.5 mA/°C) de la figura 32.

$$\alpha J_{SC} = \frac{+2.5x10^{-3}}{\text{\AA}rea}$$

Ecuación 27 Coeficiente de temperatura

Reemplazando en la ecuación 27 con los parámetros antes mencionados, tenemos como resultado:

$$\alpha J_{SC} = \frac{+2.5x10^{-3}}{156.25} = 16x10^{-6} [A/^{\circ}C]$$

3.2.2.7. Valores de la energía del GAP, parámetros dependientes de la temperatura del material del semiconductor

En la tabla 4 se clasifican los valores de energía del GAP (Eg_0) y los parámetros de ajuste por temperatura para los diferentes materiales con los que se fabrican comúnmente las celdas solares.

	Germanio	Silicio	GaAs
Eg ₀ [eV]	0.7437	1.166	1.519
α _{GAP} [eV/K]	4,77 x 10 ⁻⁴	4,73 x 10 ⁻⁴	5,41 x 10 ⁻⁴
β _{GAP} [K]	235	636	204
-			

Tabla 5 Parámetros característicos de un panel fotovoltaico según el material Fuente: http://ecee.colorado.edu/~bart/book/eband5.htm

3.2.2.8. Cálculo de la resistencia en paralelo (R_{SH}) , de la resistencia en serie (R_S) y del factor de idealidad del diodo (n) de una celda solar

Para el cálculo de la resistencia en paralelo se aplicó la ecuación 28 en la gráfica que se determinó a partir de las mediciones detalladas en el capítulo 3.2.2.3.

$$R_{SH} = -\frac{dV}{dI}; STC$$

Ecuación 28 Resistencia en paralelo

Resolviendo la ecuación 28 en la curva característica I-V del panel, tenemos como resultado:

$$\frac{dI}{dV} = \left(\frac{-0.1}{2.4}\right) \left(\frac{1}{1.35}\right) \left(\frac{2.4}{5}\right) = -1.48000 \cdot 10^{-2}$$
$$R_{SH} = \frac{-1}{-1.48000 \cdot 10^{-2}} = \frac{67.5}{36} = 1.87500[\Omega]$$

Para el cálculo de la resistencia en serie se aplicó las ecuaciones 29 y 19.

$$R_S = \frac{dV}{dI} - \frac{V_T n}{I_{SC}}; STC$$

Ecuación 29 Resistencia en serie

En primer plano se encuentra el valor de V_T para posteriormente determinar el valor de R_S.

$$V_T = \frac{KT}{q} = \frac{(1.38 \cdot 10^{-23}) \cdot (300)}{1.6 \cdot 10^{-19}} = 0.02588$$
$$R_S = -\frac{dV}{dI} - \frac{0.02588}{4.25}$$
$$R_S = -\frac{dV}{dI} - 6.08823 \cdot 10^{-23}$$

$$R_{S} = \frac{-1}{\left(-\frac{y}{x}\right)\left(\frac{x_{esc}}{s}\right)\left(\frac{1}{y_{esc}}\right)} - 6.08823 \cdot 10^{-23}$$
$$R_{S} = \frac{-1}{\left(-\frac{1.4}{0.2}\right)\left(\frac{2.4}{5}\right)\left(\frac{1}{1.35}\right)} = 0.39670$$
$$R_{S} = \frac{0.39670}{36} = 1.09916 \cdot 10^{-2} [\Omega]$$

Para el factor de idealidad (n) se tomó el valor de 1.2 ya que es el que más se asemeja con nuestro modelo.

En la tabla 6 se resume los valores obtenidos a través de los cálculos en el capítulo 3.2.2 y se pueden contrastar con los datos del fabricante en la figura 34.

156.25 [cm ²] 0.0272 [A/cm ²] 1000 [W/m ²] 0.610 [V] 16x10 ⁻⁶ [A/°C] 27 [°C]
0.0272 [A/cm ²] 1000 [W/m ²] 0.610 [V] 16x10 ⁻⁶ [A/°C] 27 [°C]
1000 [W/m ²] 0.610 [V] 16x10 ⁻⁶ [A/°C] 27 [°C]
0.610 [V] 16x10 ⁻⁶ [A/°C] 27 [°C]
16x10 ⁻⁶ [A/°C] 27 [°C]
27 [°C]
1.38065x10 ⁻²³ [J/K]
1.60218x10 ⁻¹⁹ [C]
1.166 [eV]
4.73x10 ⁻⁴ [eV/K]
636 [K]
1.2
1.099x10 ⁻² [Ω]
1.875 [Ω]

Fuente: Los autores, 2014

El área de las celdas del panel fue obtenida de http://es.enfsolar.com/pv/paneldatasheet/Monocrystalline/4621

SPECIFICATION

Type Of Module	TYN-8555	
Maximum Power [W]	85	
Tolerance [%]	Plus	
Open circuit Voltage [V]	21.96	
Short circuit Current [A]	5.06	
Maximum Power Voltage [V]	18.22	
Maximum Power Current [A]	4.67	
Module Efficiency [%]	12.77	
Series Fuse Rating [A]	12	
Terminal Box	IP65	
Maximum System Voltage [V]	DC1000	
Operating Temperature [°C]	-40 to 85	

* The measuring uncertainty of Pmax is $\leq \pm 2\%$

Figura 34 Especificaciones del panel solar fotovoltaico "TYN-85S5" Fuente: Hoja de datos del módulo fotovoltaico "TYN-85S5"

Electric Performance Typical Performance Characteristics			
Short Circuit Current Temperature Coefficient	mA/°C	+2.5	
Open Circuit Voltage Temperature Coefficient	V/° C	-0.0735	
Maximum Power Temperature Coefficient	%/ ℃	-0.4	
Performance Warranty:			
90%output, 12 Years			
80%output, 25 Years			

Figura 35 Características del rendimiento eléctrico del panel solar fotovoltaico "TYN-85S5" Fuente: Hoja de datos del módulo fotovoltaico "TYN-85S5"

3.3. Modelo matemático en Simulink[®] del panel fotovoltaico

Para el modelo matemático del panel reemplazamos en la ecuación 13 las ecuaciones 14, 15 y 24 y los valores obtenidos en el capítulo 3.2 con lo cual da como resultado la ecuación del modelamiento para una celda solar (ecuación 30).

$$I = I_{PH} - I_0 \left(e^{\frac{V + R_S I}{nV_T}} - 1 \right) - \frac{V + R_S I}{R_{SH}}$$

Ecuación 30 Ecuación de modelamiento de una celda solar

Entendiendo que un panel solar está conformado por la agrupación de celdas en serie y/o paralelo y considerando que el panel "TYN-85S5" solo está formado por celdas en serie, para determinar la ecuación del modelamiento del módulo fotovoltaico (ecuación 31) el voltaje de salida (V) en la ecuación del modelo de la célula solar

(ecuación 30) se divide para el número de celdas (Ns) y la corriente de salida (I) al estar en serie se mantiene.

$$I = I_{PH} - I_0 \left(e^{\frac{V}{NS} + R_S I} - 1 \right) - \frac{\frac{V}{NS} + R_S I}{R_{SH}}$$

Ecuación 31 Ecuación de modelamiento del módulo fotovoltaico

Las variables que intervienen en la ecuación 31 fueron definidas en el capítulo 3.1.

Las ecuaciones del capítulo 3.1 se simularon en modelos de Simulink[®] (figuras 36 a 41).

3.3.1. Modelo en Simulink[®] de la temperatura en Kelvin

Figura 36 Modelo de la temperatura en Kelvin (ecuación 21) Fuente: Los autores, 2014

3.3.2. Modelo en Simulink[®] del voltaje térmico

Figura 37 Modelo del voltaje térmico (ecuaciones 19 y 20) Fuente: Los autores, 2014

Modelo en Simulink[®] de la energía del GAP 3.3.3.

Figura 38 Modelo de la energía del GAP (ecuaciones 22 y 23) Fuente: Los autores, 2014 Modelo en Simulink[®] de la corriente fotogenerada

3.3.4.

Figura 39 Modelo de corriente fotogenerada (ecuación 14) Fuente: Los autores, 2014

3.3.5. Modelo en Simulink[®] de la corriente de saturación del diodo

Figura 40 Modelo de corriente de saturación del diodo (ecuación 16) Fuente: Los autores, 2014

3.3.6. Modelo en Simulink[®] de la corriente de salida

Figura 41 Modelo de corriente de salida del panel fotovoltaico (ecuación 13) Fuente: Los autores, 2014

En la figura 41 se refleja la ecuación 13 después de reemplazar sus términos en ecuaciones propias de los mismos.

3.4. GUI MATLAB®

Para el diseño de la Interfaz Gráfica de Usuario (GUI) en Matlab[®] se utilizaron las ecuaciones establecidas en los capítulos 3.1 y 3.3 siguiendo el siguiente procedimiento

• Primero

Para iniciar un nuevo proyecto se ejecuta la instrucción "guide" en la ventana de comandos.

• Segundo

Inmediatamente se abre un cuadro de diálogo en el cual escogemos la opción "Blank GUI (Default)", esta opción nos presenta un formulario nuevo donde podemos diseñar el programa, como se muestra en el figura 42.

J GUIDE Quick Start	
Create New GUI Open Existing GUIDE templates	GUI Preview
GUI with Uicontrols GUI with Axes and Menu Modal Question Dialog	BLANK
Save new figure as: C:\Use	ers\FULTON\Desktop\Tesis\pruebas Browse
(OK Cancel Help
Figura 42 Ve	entana "GUIDE Quick Start"
Fuen	te: Los autores, 2014

• Tercero

En el lado izquierdo de la ventana "Blank GUI" se escogen los componentes a utilizar y que formarán parte del diseño, como se muestra en la figura 43.

Fuente: Los autores, 2014

Para fines del modelamiento de este proyecto, en la interfaz de usuario se podrá ingresar las cuatro variables de entrada con las cuales podremos simular las gráficas I-V y P-V.

También se podrá cargar un archivo con formato .xlsx el cual contendrá los valores tabulados que fueron medidos en el capítulo 3.2 que permitirá contrastar las gráficas teóricas vs las experimentales y así poder determinar un porcentaje error.

A continuación se presenta el código Matlab[®] utilizado en esta interfaz.

• Código Matlab[®]

function varargout = ModeloTYNSOLAR(varargin) % MODELOTYNSOLAR MATLAB code for ModeloTYNSOLAR.fig % MODELOTYNSOLAR, by itself, creates a new MODELOTYNSOLAR or raises the existing % singleton*. % H = MODELOTYNSOLAR returns the handle to a new MODELOTYNSOLAR or the handle % to % the existing singleton*. % % MODELOTYNSOLAR('CALLBACK', hObject, eventData, handles, ...) calls the local % function named CALLBACK in MODELOTYNSOLAR.M with the given input arguments. % MODELOTYNSOLAR('Property', 'Value',...) creates a new MODELOTYNSOLAR or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before ModeloTYNSOLAR_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to ModeloTYNSOLAR_OpeningFcn via varargin. % % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one instance to run (singleton)". % % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help ModeloTYNSOLAR % Last Modified by GUIDE v2.5 10-Dec-2014 22:40:39 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @ModeloTYNSOLAR_OpeningFcn, ... 'gui_OutputFcn', @ModeloTYNSOLAR_OutputFcn, ... 'gui LayoutFcn', [], ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT

% --- Executes just before ModeloTYNSOLAR is made visible. function ModeloTYNSOLAR_OpeningFcn(hObject, eventdata, handles, varargin)
```
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to ModeloTYNSOLAR (see VARARGIN)
% Choose default command line output for ModeloTYNSOLAR
handles.output = hObject;
axes(handles.axes2);
[upslogo]=imread('logofinal.jpg');
image(upslogo),axis off, hold on
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes ModeloTYNSOLAR wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = ModeloTYNSOLAR_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function Irradiancia_Callback(hObject, eventdata, handles)
% hObject handle to Irradiancia (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Irradiancia as text
      str2double(get(hObject,'String')) returns contents of Irradiancia as a double
%
% --- Executes during object creation, after setting all properties.
function Irradiancia_CreateFcn(hObject, eventdata, handles)
% hObject handle to Irradiancia (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
     See ISPC and COMPUTER.
%
if ispc && isequal(get(hObject, 'BackgroundColor'), get(0, 'defaultUicontrolBackgroundColor'))
  set(hObject,'BackgroundColor','white');
end
function A_Callback(hObject, eventdata, handles)
% hObject handle to A (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```

% Hints: get(hObject,'String') returns contents of A as text

% str2double(get(hObject,'String')) returns contents of A as a double

```
% --- Executes during object creation, after setting all properties.
function A_CreateFcn(hObject, eventdata, handles)
% hObject handle to A (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
      See ISPC and COMPUTER.
%
if ispc && isequal(get(hObject, 'BackgroundColor'), get(0, 'defaultUicontrolBackgroundColor'))
  set(hObject,'BackgroundColor','white');
end
function Temperatura Callback(hObject, eventdata, handles)
% hObject handle to Temperatura (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Temperatura as text
      str2double(get(hObject,'String')) returns contents of Temperatura as a double
%
% --- Executes during object creation, after setting all properties.
function Temperatura_CreateFcn(hObject, eventdata, handles)
% hObject handle to Temperatura (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
     See ISPC and COMPUTER.
%
if ispc && isequal(get(hObject, 'BackgroundColor'), get(0, 'defaultUicontrolBackgroundColor'))
  set(hObject,'BackgroundColor','white');
end
function N_Callback(hObject, eventdata, handles)
% hObject handle to N (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of N as text
      str2double(get(hObject,'String')) returns contents of N as a double
%
% --- Executes during object creation, after setting all properties.
function N_CreateFcn(hObject, eventdata, handles)
% hObject handle to N (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
     See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
  set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
```

% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA) clc, clear all, close all

% --- Executes on button press in Graficar. function Graficar_Callback(hObject, eventdata, handles)

axes(handles.axes1)
G=str2double(get(handles.Irradiancia,'String'));
T=str2double(get(handles.Temperatura,'String'));
A=str2double(get(handles.A,'String'));
N=str2double(get(handles.N,'String'));

k=1.38e-23; q=1.6e-19;

Rs=10.5e-3; Rsh=10000; n=1.2; Ego=1.16; agap=4.73e-4; Bgap=636; Jsc=26.72e-3; aJsc=16e-6; Voc=0.61

```
Tk=T+273
Eg=Ego-((agap*Tk^2)/(Bgap+Tk))
Eg1=Ego-((agap*300^2)/(Bgap+300))
Vt=k*Tk/q
Vt1=k*300/q
```

$$\label{eq:loc-kappa} \begin{split} Io=&(Jsc^*A^*Tk^{3*}exp(-Eg/Vt))/(((exp(Voc/(n^*Vt1))-1)^*300^*3^*exp(-Eg1/Vt1)))\\ I1=&A^*(aJsc^*(T-27)+Jsc^*(G/1000)) \end{split}$$

```
syms x y
x=sym(x)
y=sym(y)
I1=sym(I1)
Io=sym(Io)
Rs=sym(Rs)
Rsh=sym(Rsh)
n=sym(N)
Vt=sym(Vt)
h=ezplot(-y+I1-Io*(exp((x/N+Rs*y)/(n*Vt))-1)-((x/N+Rs*y)/Rsh),[0 25 0 6])
title('Curva V vs I');
set(h, 'Color',[1 0 0]);
grid on
hold on
```

guidata(hObject,handles)

```
% hObject handle to Graficar (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```

function C_Callback(hObject, eventdata, handles)
% hObject handle to C (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

```
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of C as text
      str2double(get(hObject,'String')) returns contents of C as a double
%
% --- Executes during object creation, after setting all properties.
function C_CreateFcn(hObject, eventdata, handles)
% hObject handle to C (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
      See ISPC and COMPUTER.
%
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
  set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in radiobutton1.
function radiobutton1 Callback(hObject, eventdata, handles)
% hObject handle to radiobutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of radiobutton1
% --- Executes on button press in radiobutton4.
function radiobutton4_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of radiobutton4
% --- Executes on button press in radiobutton5.
function radiobutton5_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of radiobutton5
% --- Executes on selection change in listbox1.
function listbox1_Callback(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject, 'String')) returns listbox1 contents as cell array
      contents{get(hObject,'Value')} returns selected item from listbox1
%
% --- Executes during object creation, after setting all properties.
function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
```

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in Rojo. function Rojo_Callback(hObject, eventdata, handles) % hObject handle to Rojo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of Rojo % --- Executes on button press in Azul. function Azul Callback(hObject, eventdata, handles) % hObject handle to Azul (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of Azul % --- Executes on button press in Verde. function Verde_Callback(hObject, eventdata, handles) % hObject handle to Verde (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of Verde % --- Executes on button press in Rojo. function radiobutton9 Callback(hObject, eventdata, handles) % hObject handle to Rojo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of Rojo % --- Executes during object creation, after setting all properties. function uipanel2_CreateFcn(hObject, eventdata, handles) % hObject handle to uipanel2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called function Nombre_Callback(hObject, eventdata, handles) % hObject handle to Nombre (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of Nombre as text % str2double(get(hObject,'String')) returns contents of Nombre as a double % --- Executes during object creation, after setting all properties. function Nombre CreateFcn(hObject, eventdata, handles) % hObject handle to Nombre (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER. if ispc && isequal(get(hObject, 'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject, 'BackgroundColor', 'white');

end

% --- Executes on button press in Comparar1. function Comparar1_Callback(hObject, eventdata, handles)

axes(handles.axes1)

a=get(handles.Nombre,'String'); a=xlsread(a); x=a(:,1); y=a(:,2); plot (x,y) grid on

guidata(hObject,handles)

```
% hObject handle to Comparar1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```

% --- Executes on button press in Limpiar. function Limpiar_Callback(hObject, eventdata, handles) handles.output = hObject; axes(handles.axes1); cla axes(handles.axes3); cla

```
set(handles.Irradiancia,'String','KW/m^2');
set(handles.Temperatura,'String','°C');
set(handles.A,'String','cm^2');
set(handles.N,'String','#');
set(handles.Nombre,'String','Ejm: Nombre.xlsx');
axes(handles.axes3)
```

clc guidata(hObject,handles);

```
% hObject handle to Limpiar (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```

```
% --- Executes on mouse press over axes background.
function axes2_ButtonDownFcn(hObject, eventdata, handles)
% hObject handle to axes2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```

```
% --- Executes on button press in GraficarPotencia.
function GraficarPotencia_Callback(hObject, eventdata, handles)
```

axes(handles.axes3)

G=str2double(get(handles.Irradiancia, 'String')); T=str2double(get(handles.Temperatura, 'String')); A=str2double(get(handles.A, 'String')); N=str2double(get(handles.N, 'String'));

k=1.38e-23; q=1.6e-19;

Rs=10.5e-3; Rsh=10000; n=1.2; Ego=1.16; agap=4.73e-4; Bgap=636; Jsc=26.72e-3; aJsc=16e-6;

Voc=0.61

Tk=T+273 Eg=Ego-((agap*Tk^2)/(Bgap+Tk)) Eg1=Ego-((agap*300^2)/(Bgap+300)) Vt=k*Tk/q Vt1=k*300/q

 $Io = (Jsc^*A^*Tk^{3}*exp(-Eg/Vt))/(((exp(Voc/(n^*Vt1))-1)*300^{3}*exp(-Eg1/Vt1)))$

```
I1=A*(aJsc*(T-27)+Jsc*(G/1000))
```

syms x y x=sym(x) y=sym(y) I1=sym(I1) Io=sym(Io) Rs=sym(Rs) Rsh=sym(Rsh) n=sym(n) Vt=sym(Vt) h=ezplot(-y/x+I1-Io*(exp((x/N+Rs*y/x)/(n*Vt))-1)-((x/N+Rs*y/x)/Rsh),[0 25 0 90]) title('Curva V vs I'); set(h,'Color',[1 0 0]); grid on hold on

guidata(hObject,handles)

% --- Executes on button press in Comparar2. function Comparar2_Callback(hObject, eventdata, handles)

axes(handles.axes3)

tpc=get(handles.Nombre, 'String'); tpc=xlsread(tpc); x=tpc(:,1); y=tpc(:,3); plot (x,y) grid on

guidata(hObject,handles)

En la figura 44 se muestra el bosquejo de la interfaz en la cual constan las cuatro entradas de texto que corresponden a las cuatro variables con sus respectivas unidades de medida.

Luego de haber ingresado las cuatro variables correspondientes a irradiancia, temperatura, área de celda y número de celdas para graficar la curva I-V damos clic en el botón "Graficar I–V", a su vez para graficar la curva P-V damos clic en el botón "Graficar P–V" (Figura 46).

Si se desea comparar las gráficas del modelamiento con las gráficas experimentales, se deberá cargar un archivo en el espacio editable con la etiqueta "Ingresar Nombre Archivo". Se debe tener en cuenta que al ingresar el nombre es necesario incluir la extensión .xlsx. Luego de haber cargado el archivo damos clic en el botón "Comparar I–V" para la gráfica experimental I-V y el botón "Comparar P–V" para la gráfica experimental I-V y el botón "Comparar P–V" para la gráfica experimental P-V (figura 47). El archivo con extensión .xlsx debe tener los valores tabulados en el orden que se muestra en la figura 45.

Figura 44 Interfaz de usuario Fuente: Los autores, 2014

🔟 🚰 🤟 👻 🛨							
Arc	hivo Inicio	Insertar	Diseño d	le página	Fórmu	ulas Datos	Revisar
Peg	A Cortar	formato	libri <i>K</i> S.≁	• 11	• A /	, ≡ ≡ ; , ≡ ≡ ;	_ ≫ • 6 ∃ ∉ ∉ 6
	Portapapeles	6	F	uente		B	Alineacio
	H6		f_{x}				
	А	В	С		D	E	F
1	Voltaje	Corriente	Poten	ia		Tabla No. 00	1
2	0,261	5,31	3 1,386	693			
3	0,259	5,31	5 1,376	585	li li	rradiancia 12	34
4	0,26	5,31	4 1,38	3164			
5	0,259	5,31	1 1,375	549	Te	mperatura 3	7°C
6	0,338	5,13	1 1,734	278			
7	0,262	5,3	1 1,39	122			
8	0,259	5,31	1 1,375	549			
9	0,29	5,31	1 1,54	019			
10	0,338	5,31	3 1,795	794			

Figura 46 Curvas teóricas I-V y P-V simuladas en la aplicación de Matlab[®] Fuente: Los autores, 2014

Figura 47 Comparación de las curvas teóricas vs curvas experimentales I-V y P-V simuladas en Simulink[®] Fuente: Los autores, 2014

CAPÍTULO IV

ANÁLISIS DE RESULTADOS

3.5. Comportamiento de la curva I-V y la curva P-V por variación de irradiancia

En la figura 48 se evidencia la influencia que tiene la irradiancia con respecto a la corriente fotogenerada, a medida que el valor de irradiancia incrementa la corriente de cortocircuito crece de manera proporcional y viceversa. También se puede evidenciar una variación de voltaje de circuito abierto para diferentes niveles de irradiancia pero esta es insignificante.

Debido a que la resistencia serie es un valor muy pequeño, se la pueda despreciar y asumir que la corriente fotogenerada es igual a la corriente de cortocircuito, por lo tanto la irradiancia también afecta principalmente a la corriente de cortocircuito.

En la familia de curvas (figura 48), la gráfica de color negro corresponde a un valor de irradiancia de 1000 $[W/m^2]$, la azul a un valor de 800 $[W/m^2]$, la verde a un valor de 600 $[W/m^2]$, la roja a un valor de 400 $[W/m^2]$ y la turquesa a un valor de 200 $[W/m^2]$, todas ellas con valores de temperatura de 25°C y el 100% del área de las celdas.

En la figura 49 se expone que a mayor irradiancia se obtiene una mayor potencia, es decir en la curva de color negro el valor mayor de irradiancia da como resultado una mayor potencia.

Figura 49 Curva P-V por variación de irradiancia Fuente: Los autores, 2014

3.6. Comportamiento de la curva I-V y la curva P-V por variación de temperatura

En la figura 50 se aprecia que el efecto más dominante de la temperatura en la curva I-V se enfoca en el voltaje de circuito abierto, a medida que el valor de la temperatura incrementa, el voltaje de circuito abierto decrece de manera proporcional y viceversa.

También se puede evidenciar la corriente de cortocircuito incrementa ligeramente para valores mayores de temperatura debido a que la banda de energía (Band Gap) del material decrece ligeramente con la temperatura ya que se crea mayor movimiento de electrones. La mayoría de fabricantes de módulos solares colocan dentro de su hoja de datos un coeficiente de temperatura positivo en el cual la corriente de cortocircuito varía con respecto a la temperatura de manera creciente "Short Circuit Current Temperature Coefficient" (figura 35).

En la familia de curvas (figura 50), la gráfica de color negro corresponde a un valor de temperatura de 25°C, la azul a un valor de 35°C, la verde a un valor de 45°C, la roja a un valor de 55°C y la turquesa a un valor de 65°C, todas ellas con valores de irradiancia de 1000 $[W/m^2]$ y el 100% del área de las celdas.

En la figura 51 se muestra que la curva de color negro con el menor valor de temperatura tiene una elevación marcada en el punto máximo de potencia lo cual da como resultado una mayor potencia de salida.

Figura 50 Curva I-V por variación de temperatura Fuente: Los autores, 2014

3.7. Comportamiento de la curva I-V y la curva P-V por variación del área de la celda

En la figura 52 se aprecia el paralelismo de la variable área de celda con respecto a la corriente fotogenerada, a medida que el valor del área disminuye, la corriente de cortocircuito decrece de manera proporcional y viceversa, es decir, se evidencia un efecto similar al de la irradiancia.

Debido a que la resistencia serie es un valor muy pequeño y se la puede despreciar, se asume que la corriente fotogenerada es igual a la corriente del cortocircuito, por lo tanto el área de la celda también afecta principalmente a la corriente de cortocircuito

En la familia de curvas (figura 52), la gráfica de color negro corresponde a un valor del 100%, la azul a un valor del 75% y la verde a un valor del 50% del área de las celdas, todas ellas con valores de irradiancia de 1000 $[W/m^2]$ y temperatura de 25°C.

En la figura 53 se evidencia que a mayor área de las celdas se obtiene una mayor potencia, dando como resultado que la curva color negro (que tiene el 100% del área) es la que mayor potencia posee.

Figura 52 Curva I-V por variación del área de las celdas Fuente: Los autores, 2014

Figura 53 Curva P-V por variación del área de las celdas Fuente: Los autores, 2014

3.8. Comparación de las curvas teóricas vs experimental (I-V y P-V)

Como se evidencia a partir de la figura 54 a la figura 59 se realizó la simulación del modelo matemático del módulo fotovoltaico "TYN-85S5" con el fin de contrastar los datos teóricos (curva color rojo) con los datos experimentales (curva color azul) para los diferentes valores de entrada indicados en cada una de las gráficas, de las cuales se determinó el error para los valores de voltaje de circuito abierto (V_{OC}) y corriente de corto circuito (I_{SC}), a continuación los datos teóricos y experimentales.

- $G = 1234 [W/m^2]$, (irradiancia)
- $T = 34 [^{\circ}C]$, (temperatura)
- $A = 156.25 \text{ [cm}^2\text{]}$, (área de la celda)
- N = 36 celdas, (número de celdas)

Figura 54 Comparación de gráfica teórica vs gráfica experimental Fuente: Los autores, 2014

Parámetro	Valor	
V _{OC} teórico	21.13 [V]	
V _{OC} experimental	21.10 [V]	
I _{SC} teórico	5.245 [A]	
I _{SC} experimental	5.313 [A]	
Error del voltaje de circuito abierto	0.14%	
Error de la corriente de corto circuito	1.30%	

Tabla 7 Cálculo del error del voltaje de circuito abierto y la corriente de corto circuito correspondiente a la gráfica 54 Fuente: Los autores, 2014

- $G = 360 [W/m^2]$, (irradiancia)
- T = 34 [°C], (temperatura)
- $A = 156.25 \text{ [cm}^2\text{]}, \text{ (área de la celda)}$
- N = 36 celdas, (número de celdas)

Figura 55 Comparación de gráfica teórica vs gráfica experimental Fuente: Los autores, 2014

Parámetro	Valor
V _{oc} teórico	20.27 [V]
V _{OC} experimental	20.09 [V]
I _{SC} teórico	1.530 [A]
I _{SC} experimental	1.537 [A]
Error del voltaje de circuito abierto	0.40%
Error de la corriente de corto circuito	1.30%

Tabla 8 Cálculo del error del voltaje de circuito abierto y la corriente de corto circuito correspondiente a la gráfica 55 Fuente: Los autores, 2014

- $G = 440 [W/m^2]$, (irradiancia)
- T = 32 [°C], (temperatura)
- $A = 156.25 \text{ [cm}^2\text{]}, \text{ (área de la celda)}$
- N = 36 celdas, (número de celdas)

Figura 56 Comparación de gráfica teórica vs gráfica experimental Fuente: Los autores, 2014

Parámetro	Valor
V _{OC} teórico	20.48 [V]
V _{OC} experimental	20.60 [V]
I _{SC} teórico	1.870 [A]
I _{SC} experimental	1.791 [A]
Error del voltaje de circuito abierto	0,38%
Error de la corriente de corto circuito	4.00%

Tabla 9 Cálculo del error del voltaje de circuito abierto y la corriente de corto circuito correspondiente a la gráfica 56 Fuente: Los autores, 2014

- $G = 945 [W/m^2]$, (irradiancia)
- $T = 37 [^{\circ}C]$, (temperatura)
- $A = 156.25 \text{ [cm}^2\text{]}$, (área de la celda)
- N = 36 celdas, (número de celdas)

Figura 57 Comparación de gráfica teórica vs gráfica experimental Fuente: Los autores, 2014

Parámetro	Valor
V _{oc} teórico	20.81 [V]
V _{OC} experimental	21.18 [V]
I _{sc} teórico	4.010 [A]
I _{SC} experimental	4.082 [A]
Error del voltaje de circuito abierto	1.78%
Error de la corriente de corto circuito	1.79%

Tabla 10 Cálculo del error del voltaje de circuito abierto y la corriente de corto circuito correspondiente a la gráfica 57 Fuente: Los autores, 2014

- $G = 1123 [W/m^2]$, (irradiancia)
- $T = 50 [^{\circ}C]$, (temperatura)
- $A = 156.25 \text{ [cm}^2\text{]}$, (área de la celda)
- N = 36 celdas, (número de celdas)

Figura 58 Comparación de gráfica teórica vs gráfica experimental Fuente: Los autores, 2014

Parámetro	Valor
V _{oc} teórico	19.62 [V]
V _{oc} experimental	19.97 [V]
I _{SC} teórico	4.778 [A]
I _{SC} experimental	4.663 [A]
Error del voltaje de circuito abierto	1.78%
Error de la corriente de corto circuito	2.93%

Tabla 11 Cálculo del error del voltaje de circuito abierto y la corriente de corto circuito correspondiente a la gráfica 58 Fuente: Los autores, 2014

- $G = 334 [W/m^2]$, (irradiancia)
- $T = 40 [^{\circ}C]$, (temperatura)
- $A = 78.125 \text{ [cm}^2\text{]}$, (área de la celda)
- N = 36 celdas, (número de celdas)

Figura 59 Comparación de gráfica teórica vs gráfica experimental Fuente: Los autores, 2014

Parámetro	Valor
V _{OC} teórico	19.33 [V]
V _{OC} experimental	18.36 [V]
I _{SC} teórico	0.670 [A]
I _{SC} experimental	0.661 [A]
Error del voltaje de circuito abierto	5.00%
Error de la corriente de corto circuito	1.34%

Tabla 12 Cálculo del error del voltaje de circuito abierto y la corriente de corto circuito correspondiente a la gráfica 59 Fuente: Los autores, 2014

CAPÍTULO V

CONCLUSIONES

- Para la elaboración del modelo matemático se tuvo que partir de la comprensión de los fenómenos físicos del efecto fotoeléctrico, así como hacer uso de las herramientas del cálculo numérico y cálculo diferencial para tratar de aproximar nuestra curva experimental con la teórica, con la finalidad de obtener el menor error posible debido a los cambios bruscos de las condiciones climáticas.
- Se pudo comprobar que las especificaciones técnicas dadas por el fabricante no responden al comportamiento actual del panel fotovoltaico "TYN-85S5", fue lo que revelaron las pruebas cuando se sometía al panel a las condiciones estándar, aunque la dificultad de alcanzar estas condiciones no permite tener una medición similar a la efectuada por los fabricantes en los laboratorios, se pudo comprobar lo anterior expuesto en los puntos críticos de la curva.
- Al hacer un promedio de la irradiancia para el modelamiento, causa una variación en el punto inicial de la curva I-V (corriente de cortocircuito) ya sea por encima o por debajo de la corriente medida, para un instante de irradiancia dada que a su vez se manifiesta en el aumento del porcentaje de error lo cual hace menos preciso a nuestro modelo y puede alterar los datos para la futura función en que se lo vaya a emplear.

BIBLIOGRAFÍA

- Bunea, G., Wilson, K., Meydbray, Y., Campbell, M., & Ceuster, D.
 (2006). *Red de Educación Voltaica*. Obtenido de http://dx.doi.org/10.1109/WCPEC.2006.279655
- [2] Carretero, A., Ferrero, J., Sánchez-Infantes, P., & Valero, F. (2009). *Electrónica*. Editex.
- [3] Castells, X., & Bordas, S. (2011). *Energía, agua, medioambiente territorialidad y sostenibilidad*. Madrid: Ediciones Díaz de Santos S.A.
- [4] CONELEC. (2008). Atlas Solar Del Ecuador Con Fines De Generación Eléctrica. Quito.
- [5] Delgado A., J. (2008). *Físicanova*. Bucaramanga: FISICANOVA.
- [6] GeoLA Energía Geotérmica Ecuatoriana SA. (2010). *Geolaecuador*.Obtenido de http://geolaecuador.com/index_ecuador_energia.html
- [7] González, J. (2009). *Energías renovables*. Barcelona: Editorial Reverté S.A.
- [8] Hanasoge, S., Duvall, T., & Sreenivasan, K. (07 de 12 de 2013). *Red de Educación Fotovoltaica*. Obtenido de http://dx.doi.org/10.1073/pnas.1206570109
- [9] Honsberg, C., & Bowden, S. (28 de 03 de 2013). *Red de Educación Fotovoltaica*. Recuperado el 01 de 12 de 2014, de http://pveducation.org/pvcdrom/solar-cell-operation/solar-cell-structure
- [10] HyperPhysics. (2012). HyperPhysics. Obtenido de http://hyperphysics.phy-astr.gsu.edu/hbasees/solids/pnjun.html
- [11] Jutglar, L. (2004). *Energía Solar*. Barcelona: Ediciones CEAC.
- [12] Manzuano, J. (2008). *Electricidad I, teoría básica y prácticas*.Barcelona: Marcombo Ediciones Técnicas .

- [13] Martínez J., A. (2012). Dimensionado de Instalaciones Solares Fotovoltaicas. Madrid: Paraninfo.
- [14] Martínez, A. d. (2007). *Termotécnia Básica para IngenierosQuímicos*. La Mancha: Universidad de Castilla .
- [15] MathWorks®. (2013). MathWorks. Obtenido de http://www.mathworks.com
- [16] Méndez, J. M. (2011). Energía Solar Fotovoltaica. Madrid: CONFEMETAL.
- [17] Menéndez, E. (1997). Las Energías Renovables. Madrid: Libros de Catarar.
- [18] PVEducation. (28 de marzo de 2013). *pveducation.org*. Recuperado el 01 de 12 de 2014, de http://pveducation.org/
- [19] Roldan, J. (2008). *Fuentes de Energía*. Madrid: Paraninfo.
- [20] San Miguel, A. (2011). *Electrotecnia* 2° *Bachillerato*. Madrid: Paraninfo.
- [21] Tous, M. R. (2010). *Energía Solar Fotovoltaica*. Barcelona: Editoriales CEAC.
- [22] Twenergy. (2014). *Twenergy*. Obtenido de http://twenergy.com/energia/energia-geotermica
- [23] Urresta, E. F. (2013). Diseño, construcción y simulación de un desalinizador solar térmico modular de agua de mar para el laboratorio de energías alternativas y eficiencia energética, con una capacidad diaria promedio de cuatro litros. Quito: Escuela Politécnica Nacional.
- [24] Villarrubia, M. (2004). *Energía Eólica*. Barcelona: Editorial CEAC.
- [25] Villas, M. G. (1999). Energía Solar Fotovoltaica y Cooperación al Desarrollo. Madrid: IEPALA.

ANEXOS

ANEXO A: HOJA DE DATOS DEL PANEL "TYN-85S5"

High Quality Mono-Crystalline Photovoltaic Module

Feature

- 1. Bypass diode minimizes the power drop by shade.
- 2. The conversion efficiency of solar cell is above 15.9%.
- White tempered glass, EVA resin, weather proof film and anodized aluminum frame to provide efficient protection from the severest environmental conditions.
- 4. Waterproof (UL94, V-O). Perfect for grid applications.
- 5. Product guarantee 5 years.

SPECIFICATION

Type Of Module	TYN-8555
Maximum Power [W]	85
Tolerance [%]	Plus
Open circuit Voltage [V]	21.96
Short circuit Current [A]	5.06
Maximum Power Voltage [V]	18.22
Maximum Power Current [A]	4.67
Module Efficiency [%]	12.77
Solar Cell Efficiency [%]	15.9
Series Fuse Rating [A]	12
Terminal Box	IP65
Maximum System Voltage [V]	DC1000
Operating Temperature [°C]	-40 to 85

* The measuring uncertainty of Pmax is $\leq \pm 2\%$

Electrical Characteristics

Electric Performance Typical Performance Characteristics					
Short Circuit Current Temperature Coefficient	mA/℃	+2.5			
Open Circuit Voltage Temperature Coefficient	V/ ℃	-0.0735			
Maximum Power Temperature Coefficient	% / ℃	-0.4			
Performance Warranty :					
90%output, 12 Years					
80%output, 25 Years					
1					

Quality Assurance

- 1. Electrical insulation test.
- 2. Outdoor exposure test.
- 3. Hot-spot endurance test.
- 4. UV-exposure.
- 5. Thermal cycling test.
- 6. Humidity freeze test

- 7. Damp heat test.
- 8. Robustness of terminations test.
- 9. Wet leakage current test.
- 10. Mechanical load test.
- 11. Hail impact test.
- 12. Bypass diode thermal test.

Physical Specifications

Dimension : Length : 1206 mm / 47.48 in Width : 552 mm / 21.73 in Depth : 50 mm / 1.97 in Weight : 8 kg / pcs Packing : 10 pcs / carton

Loading Capacity: 320 pcs / 20ft container

720 pcs / 40ft container

Tynsolar Corporation

No.. 620, Sec. 6, Jhonghua Rd., Sianghan District, Hsinchu City 300, Taiwan R.O.C. Website: <u>http://www.tynsolar.com.tw</u>

Tel : 886-35-181686

Fax: 886-35-181196

ANEXO B: TABULACIONES EXPERIMENTALES

TABULACIÓN 1

- Irradiancia 1234 [W/m²]
- Temperatura 37°C

Voltaje	Corriente	Potencia		
[V]	[A]	[W]		
0,261	5,313	1,386		
0,259	5,315	1,376		
0,260	5,314	1,381		
0,259	5,311	1,375		
0,338	5,131	1,734		
0,262	5,310	1,391		
0,259	5,311	1,375		
0,290	5,311	1,540		
0,338	5,313	1,795		
0,338	5,296	1,790		
2,049	5,296	10,851		
3,113	5,286	16,455		
3,113	5,216	16,237		
3,113	5,286	16,455		
5,472	5,216	28,541		
11,330	5,102	57,805		
15,100	5,012	75,681		
15,110	4,941	74,658		
15,110	4,750	71,772		
15,940	4,751	75,730		
16,640	4,440	73,881		
18,840	4,213	79,372		
17,190	4,213	72,421		
17,230	4,131	71,177		
17,620	3,854	67,907		
17,630	3,854	67,946		
17,920	3,636	65,157		
18,240	3,390	61,833		
18,390	3,340	61,422		
18,500	3,157	58,404		
18,600	3,156	58,701		
18,630	3,044	56,709		
18,790	2,915	54,772		
18,790	2,897	54,434		
18,880	2,822	53,279		

19,000	2,704	51,376
19,110	2,623	50,125
19,110	2,568	49,074
19,130	2,568	49,125
19,130	2,567	49,106
19,130	2,566	49,087
19,270	2,456	47,327
19,270	2,412	46,479
19,270	2,436	46,941
19,260	2,422	46,647
19,350	2,422	46,865
19,450	2,249	43,743
19,450	2,227	43,315
19,560	2,142	41,897
19,560	2,031	39,726
19,650	2,031	39,909
19,650	1,995	39,201
19,810	1,854	36,727
19,850	1,794	35,610
19,890	1,754	34,887
19,890	1,789	35,583
19,930	1,725	34,379
19,950	1,678	33,476
19,970	1,665	33,250
20,040	1,625	32,565
20,040	1,510	30,260
20,140	1,491	30,028
20,140	1,454	29,283
20,220	1,373	27,762
20,220	1,333	26,953
20,250	1,295	26,223
20,310	1,264	25,671
20,310	1,249	25,367
20,320	1,234	25,074
20,340	1,234	25,099
20,350	1,213	24,684
20,400	1,142	23,296

20,400	1,108	22,603	20,900	0,467	9,760
20,450	1,069	21,861	20,910	0,448	9,367
20,510	1,031	21,145	20,920	0,437	9,142
20,510	0,999	20,489	20,930	0,420	8,790
20,520	0,996	20,437	20,930	0,411	8,602
20,540	0,996	20,457	20,950	0,386	8,086
20,560	0,944	19,408	20,950	0,379	7,940
20,560	0,937	19,264	20,960	0,375	7,860
20,570	0,937	19,274	20,960	0,367	7,692
20,570	0,917	18,862	20,970	0,350	7,339
20,600	0,888	18,292	20,980	0,339	7,112
20,600	0,876	18,045	20,980	0,334	7,007
20,620	0,863	17,795	20,980	0,329	6,902
20,620	0,856	17,650	20,990	0,326	6,842
20,690	0,773	15,993	20,990	0,318	6,674
20,700	0,747	15,462	20,990	0,312	6,548
20,710	0,720	14,911	21,000	0,304	6,384
20,720	0,705	14,607	21,000	0,299	6,279
20,750	0,690	14,317	21,010	0,284	5,966
20,760	0,677	14,054	21,010	0,274	5,756
20,770	0,659	13,687	21,020	0,266	5,591
20,780	0,651	13,527	21,020	0,253	5,318
20,780	0,636	13,216	21,020	0,249	5,233
20,790	0,620	12,889	21,030	0,245	5,152
20,800	0,611	12,708	21,030	0,237	4,984
20,800	0,605	12,584	21,040	0,232	4,881
20,800	0,585	12,168	21,040	0,220	4,628
20,810	0,582	12,111	21,050	0,206	4,336
20,820	0,574	11,950	21,060	0,191	4,022
20,830	0,562	11,706	21,060	0,167	3,517
20,840	0,541	11,274	21,070	0,154	3,244
20,850	0,536	11,175	21,080	0,137	2,887
20,850	0,526	10,967	21,100	0,112	2,363
20,860	0,509	10,617	21,100	0,096	2,025
20,880	0,480	10,022			
20,880	0,479	10,001			

- Irradiancia 360 [W/m²] Temperatura 34 °C •
- •

E.

Voltaje	Corriente	Potencia
[V]	[A]	[W]
0,020	1,537	0,030
0,019	1,537	0,029
0,019	1,596	0,030
0,020	1,544	0,030
0,021	1,544	0,032
0,020	1,539	0,030
0,020	1,541	0,030
0,019	1,541	0,029
0,030	1,542	0,046
0,042	1,544	0,064
0,042	1,564	0,065
0,737	1,577	1,162
0,741	1,580	1,170
1,165	1,577	1,837
2,273	1,540	3,500
2,342	1,540	3,606
2,766	1,559	4,312
3,185	1,559	4,965
3,216	1,558	5,010
3,482	1,549	5,393
3,450	1,543	5,323
4,314	1,543	6,656
4,652	1,543	7,178
4,898	1,554	7,611
5,210	1,554	8,096
5,217	1,552	8,096
5,709	1,546	8,826
5,719	1,547	8,847
5,999	1,547	9,280
6,369	1,546	9,846
6,460	1,546	9,987
6,438	1,547	9,959
7,580	1,547	11,726
7,680	1,546	11,873
7,890	1,546	12,197
7,900	1,547	12,221
8,090	1,547	12,515
9,180	1,549	14,219

9,380	1,549	14,529
9,340	1,549	14,467
9,640	1,550	14,942
10,630	1,551	16,487
10,760	1,551	16,688
11,040	1,550	17,112
11,090	1,550	17,189
11,260	1,550	17,453
11,470	1,549	17,767
11,680	1,549	18,092
11,580	1,402	16,235
11,620	1,538	17,871
12,200	1,441	17,580
12,200	1,441	17,580
15,070	1,523	22,951
15,670	1,511	23,677
15,930	1,511	24,070
15,960	1,504	24,003
16,050	1,502	24,107
16,060	1,503	24,138
16,080	1,503	24,168
16,210	1,496	24,250
16,500	1,483	24,469
16,940	1,451	24,579
17,100	1,432	24,487
17,210	1,425	24,524
17,460	1,391	24,286
17,670	1,391	24,578
17,800	1,339	23,834
17,840	1,329	23,709
17,940	1,320	23,680
18,030	1,290	23,258
18,180	1,258	22,870
18,250	1,236	22,557
18,490	1,236	22,853
18,450	1,185	21,863
18,530	1,160	21,494
18,570	1,147	21,299
18.660	1.121	20.917

18,640	1,121	20,895	19,690	0,686	13,507
18,620	1,116	20,779	19,720	0,657	12,956
18,670	1,097	20,480	19,730	0,647	12,765
18,730	1,076	20,153	19,750	0,646	12,758
18,780	1,064	19,981	19,770	0,624	12,336
18,820	1,051	19,779	19,780	0,615	12,164
18,850	1,043	19,660	19,790	0,611	12,091
18,870	1,027	19,379	19,800	0,611	12,097
18,970	0,996	18,894	19,810	0,602	11,925
19,030	0,996	18,953	19,860	0,566	11,240
19,090	0,956	18,250	19,890	0,554	11,019
19,130	0,947	18,116	19,900	0,543	10,805
19,150	0,938	17,962	19,910	0,539	10,731
19,170	0,933	17,885	19,930	0,530	10,562
19,200	0,920	17,664	19,950	0,514	10,254
19,230	0,904	17,383	19,970	0,507	10,124
19,250	0,894	17,209	19,980	0,501	10,009
19,270	0,883	17,015	19,990	0,497	9,935
19,300	0,871	16,810	20,000	0,491	9,820
19,360	0,863	16,707	20,010	0,487	9,744
19,350	0,849	16,428	20,020	0,480	9,609
19,370	0,839	16,251	20,030	0,472	9,454
19,390	0,831	16,113	20,040	0,462	9,258
19,400	0,825	16,005	20,050	0,455	9,122
19,440	0,807	15,688	20,070	0,451	9,051
19,460	0,796	15,490	20,090	0,443	8,899
19,490	0,784	15,280	20,780	0,394	8,187
19,480	0,784	15,272	20,200	0,382	7,716
19,490	0,784	15,280	20,250	0,359	7,269
19,510	0,781	15,237	20,250	0,301	6,095
19,540	0,754	14,733	20,260	0,260	5,267
19,580	0,737	14,430	20,260	0,198	4,011
19,610	0,711	13,942	20,270	0,152	3,081
19,640	0,704	13,826	20,270	0,100	2,027
19,670	0,687	13,513			

- Irradiancia 440 [W/m²] Temperatura 32 °C •
- •

E.

Voltaje	Corriente	Potencia	
[V]	[A]	[W]	
0,022	1,792	0,039	
0,021	1,768	0,037	
0,022	1,804	0,039	
0,022	1,806	0,039	
0,023	1,807	0,041	
0,220	1,811	0,398	
0,021	1,813	0,038	
0,020	1,814	0,036	
0,023	1,816	0,041	
0,030	1,817	0,054	
0,031	1,819	0,056	
0,045	1,820	0,081	
0,822	1,820	1,496	
1,133	1,820	2,062	
1,133	1,820	2,062	
1,578	1,821	2,873	
1,623	1,822	2,957	
2,103	1,822	3,831	
2,271	1,821	4,135	
2,273	1,822	4,141	
2,870	1,822	5,229	
2,639	1,823	4,810	
3,063	1,822	5,580	
3,177	1,824	5,794	
3,182	1,825	5,807	
3,204	1,827	5,853	
3,296	1,827	6,021	
3,699	1,827	6,758	
3,976	1,827	7,264	
4,008	1,828	7,326	
4,219	1,829	7,716	
4,443	1,827	8,117	
4,446	1,827	8,122	
4,720	1,827	8,623	
4,880	1,827	8,915	
5,056	1,827	9,237	
5,508	1,823	10,041	
5,607	1,822	10,215	

5,704	1,822	10,392
5,864	1,823	10,690
5,861	1,819	10,661
6,102	1,840	11,227
6,965	1,863	12,975
6,650	1,866	12,408
6,800	1,867	12,695
6,990	1,868	13,057
7,100	1,868	13,262
7,350	1,865	13,707
7,390	1,865	13,782
7,590	1,867	14,170
7,750	1,876	14,539
7,770	1,876	14,576
7,770	1,878	14,592
8,170	1,874	15,310
8,440	1,860	15,698
8,630	1,852	15,982
8,840	1,852	16,371
9,090	1,851	16,825
9,350	1,844	17,241
9,360	1,840	17,222
9,660	1,827	17,648
9,710	1,809	17,565
10,170	1,804	18,346
10,680	1,786	19,074
11,510	1,805	20,775
11,570	1,805	20,883
11,980	1,805	21,623
12,080	1,810	21,864
12,660	1,844	23,345
13,210	1,853	24,478
13,390	1,855	24,838
13,650	1,854	25,307
14,000	1,875	26,250
14,240	1,881	26,785
14,460	1,882	27,213
14,820	1,882	27,891
14,980	1,882	28,192

15,340	1,885	28,915	19,580	0,906	17,739
15,440	1,884	29,088	19,650	0,875	17,193
15,690	1,877	29,450	19,650	0,875	17,193
16,050	1,877	30,125	19,770	0,824	16,290
16,050	1,875	30,093	19,830	0,796	15,784
16,220	1,865	30,250	19,860	0,750	14,895
16,470	1,865	30,716	19,910	0,711	14,156
16,510	1,847	30,493	19,950	0,693	13,825
16,970	1,805	30,630	20,000	0,677	13,540
17,060	1,796	30,639	20,040	0,638	12,785
17,200	1,796	30,891	20,090	0,638	12,817
17,340	1,764	30,587	20,060	0,624	12,517
17,380	1,756	30,519	20,120	0,608	12,232
17,630	1,722	30,358	20,130	0,579	11,655
17,760	1,722	30,582	20,150	0,557	11,223
17,780	1,673	29,745	20,200	0,556	11,230
17,850	1,650	29,452	20,220	0,558	11,282
17,900	1,621	29,015	20,230	0,538	10,883
17,910	1,546	27,688	20,260	0,528	10,697
17,300	1,487	25,725	20,280	0,503	10,200
17,420	1,463	25,485	20,310	0,492	9,992
17,880	1,473	26,337	20,350	0,451	9,177
17,740	1,318	23,381	20,380	0,423	8,620
18,010	1,393	25,087	20,420	0,410	8,372
18,200	1,393	25,352	20,440	0,387	7,910
17,660	1,327	23,434	20,490	0,368	7,540
17,520	1,327	23,249	20,520	0,341	6,997
18,130	1,365	24,747	20,580	0,341	7,017
18,270	1,365	24,938	20,580	0,299	6,153
18,620	1,337	24,894	20,590	0,205	4,220
18,370	1,106	20,317	20,590	0,146	3,006
18,370	1,106	20,317	20,600	0,099	2,039
19,300	1,045	20,168	20,600	0,051	1,050
19,400	0,991	19,225			
19,470	0.954	18.574			

- Irradiancia 800 [W/m²] Temperatura 37 °C •
- •

E

Voltaje	Corriente	Potencia	
[V]	[A]	[W]	
0,150	4,082	0,612	
0,151	4,075	0,615	
0,157	4,081	0,640	
0,155	4,079	0,632	
0,177	4,078	0,721	
0,178	4,080	0,726	
0,195	4,088	0,797	
0,201	4,087	0,821	
1,001	4,105	4,109	
1,381	4,105	5,669	
1,435	4,114	5,903	
1,507	4,114	6,199	
1,530	4,114	6,294	
1,508	4,107	6,193	
1,499	4,100	6,145	
1,998	4,095	8,181	
1,546	4,095	6,330	
1,533	4,095	6,277	
1,524	4,095	6,240	
1,532	4,091	6,267	
2,015	4,087	8,235	
1,729	4,086	7,064	
1,803	4,085	7,365	
1,889	4,085	7,716	
1,784	4,085	7,287	
1,933	4,085	7,896	
4,311	4,084	17,606	
4,595	4,055	18,632	
4,428	4,057	17,964	
4,298	4,057	17,436	
4,286	4,057	17,388	
4,270	4,057	17,323	
4,295	4,050	17,394	
4,362	4,057	17,696	
4,485	4,057	18,195	
4,911	4,047	19,874	
4,932	4,047	19,959	
4,923	4,046	19,918	

4,922	4,042	19,894
4,908	4,041	19,833
5,341	4,032	21,534
5,356	4,030	21,584
5,077	4,033	20,475
5,094	4,035	20,554
8,100	3,999	32,391
7,990	3,988	31,864
7,700	3,982	30,661
7,910	3,984	31,513
7,970	3,985	31,760
8,750	3,982	34,842
8,930	3,984	35,577
8,890	3,989	35,462
8,840	3,996	35,324
9,110	3,996	36,403
9,920	3,992	39,600
10,920	3,980	43,461
11,000	3,979	43,769
10,980	3,975	43,645
11,730	3,962	46,474
11,600	3,965	45,994
11,530	3,966	45,727
11,640	3,964	46,140
12,360	3,953	48,859
13,120	3,937	51,653
13,630	3,928	53,538
13,600	3,928	53,420
14,560	3,905	56,856
14,610	3,902	57,008
14,930	3,896	58,167
15,590	3,856	60,115
15,880	3,826	60,756
16,440	3,704	60,893
16,490	3,705	61,095
16,430	3,705	60,873
16,580	3,670	60,848
16,780	3,610	60,575
16,750	3.615	60.551

17,11	0 3,486	59,645	20,240	1,258	25,461
17,20	0 3,460	59,512	20,270	1,228	24,891
17,19	0 3,459	59,460	20,300	1,196	24,278
17,25	0 3,441	59,357	20,340	1,155	23,492
17,50	0 3,329	58,257	20,360	1,141	23,230
17,92	0 3,127	56,035	20,390	1,170	23,856
18,16	0 2,988	54,262	20,400	1,093	22,297
18,24	0 2,965	54,081	20,440	1,052	21,502
18,39	0 2,846	52,337	20,490	1,019	20,879
18,50	0 2,770	51,245	20,470	1,019	20,858
18,67	0 2,651	49,494	20,500	0,984	20,172
18,69	0 2,639	49,322	20,520	0,959	19,678
18,75	0 2,584	48,450	20,540	0,931	19,122
18,78	0 2,578	48,414	20,570	0,907	18,656
18,87	0 2,497	47,118	20,590	0,880	18,119
19,06	0 2,350	44,791	20,630	0,840	17,329
19,10	0 2,318	44,273	20,640	0,828	17,089
19,18	0 2,296	44,037	20,650	0,817	16,871
19,24	0 2,199	42,308	20,680	0,789	16,316
19,34	0 2,109	40,788	20,700	0,771	15,959
19,37	0 2,093	40,541	20,720	0,744	15,415
19,45	0 2,019	39,269	20,740	0,719	14,912
19,48	0 1,985	38,667	20,780	0,678	14,088
19,62	0 1,870	36,689	20,850	0,579	12,072
19,66	0 1,827	35,918	20,880	0,545	11,379
19,70	0 1,786	35,184	20,890	0,533	11,134
19,72	0 1,770	34,904	20,900	0,525	10,972
19,73	0 1,772	34,961	20,920	0,501	10,480
19,86	0 1,649	32,749	20,920	0,489	10,229
19,90	0 1,607	31,979	20,940	0,477	9,988
19,99	0 1,521	30,404	20,960	0,462	9,683
20,01	0 1,499	29,994	21,030	0,359	7,549
20,04	0 1,462	29,298	21,040	0,348	7,321
20,09	0 1,417	28,467	21,160	0,163	3,449
20,11	0 1,398	28,113	21,180	0,143	3,028
20,15	0 1,352	27,242	21,160	0,107	2,264
20,17	0 1,323	26,684	21,18	0,098	2,075
20,18	0 1,316	26,556			

-

- Irradiancia 1123 [W/m²] Temperatura 50 °C •
- •

E

Voltaje	Corriente	Potencia
[V]	[A]	[W]
0,160	4,633	0,741
0,160	4,649	0,743
0,160	4,653	0,744
0,160	4,660	0,745
0,161	4,667	0,751
0,161	4,672	0,752
0,161	4,679	0,753
0,161	4,681	0,753
0,161	4,687	0,754
0,162	4,687	0,759
0,162	4,696	0,760
0,162	4,701	0,761
0,162	4,711	0,763
0,162	4,715	0,763
0,163	4,718	0,769
0,163	4,720	0,769
0,163	4,723	0,769
0,163	4,726	0,770
0,163	4,733	0,771
0,169	4,742	0,801
0,165	4,746	0,783
0,169	4,755	0,803
0,168	4,764	0,800
0,170	4,766	0,810
0,172	4,772	0,820
0,172	4,776	0,821
0,172	4,777	0,821
0,172	4,777	0,821
0,173	4,784	0,827
0,173	4,794	0,829
0,171	4,799	0,820
0,170	4,801	0,816
0,170	4,809	0,817
0,169	4,817	0,814
0,169	4,821	0,814
0,169	4,824	0,815
0,169	4,829	0,816
1,433	4,829	6,919

1,525	4,829	7,364			
1,528	4,824	7,371			
1,518	4,825	7,324			
1,508	4,829	7,282			
1,505	4,835	7,276			
1,513	4,840	7,322			
1,538	4,843	7,448			
1,530	4,845	7,412			
1,556	4,845	7,538			
1,557	4,848	7,548			
1,557	4,849	7,549			
1,552	4,853	7,531			
1,550	4,854	7,523			
1,558	4,856	7,565			
1,552	4,858	7,539			
2,249	4,858	10,925			
2,310	4,847	11,196			
3,310	4,848	16,046			
3,335	4,850	16,174			
3,216	4,850	15,597			
4,006	4,847	19,417			
4,969	4,845	24,074			
6,148	4,848	29,805			
6,744	4,840	32,640			
8,390	4,828	40,506			
8,400	4,831	40,580			
8,190	4,834	39,590			
8,190	4,843	39,664			
8,200	4,845	39,729			
8,200	4,851	39,778			
8,220	4,854	39,899			
8,230	4,856	39,964			
9,230	4,846	44,728			
9,270	4,848	44,940			
10,520	4,834	50,853			
10,630	4,833	51,374			
10,630	4,835	51,396			
11,920	4,822	57,478			
11,400	4,811	54,845			
11,810	4,812	56,829	18,390) 1,779	32,715
--------	-------	--------	--------	---------	--------
11,820	4,816	56,925	18,410) 1,761	32,420
12,680	4,771	60,496	18,440) 1,732	31,938
13,560	4,649	63,040	18,460) 1,708	31,529
14,290	4,569	65,291	18,480) 1,695	31,323
14,300	4,475	63,992	18,480) 1,690	31,231
14,280	4,476	63,917	18,530) 1,686	31,241
14,290	4,477	63,976	18,530) 1,643	30,444
14,300	4,478	64,035	18,560) 1,624	30,141
14,300	4,481	64,078	18,560) 1,617	30,011
14,980	4,406	66,001	18,570	1,603	29,767
15,310	4,397	67,318	18,610) 1,577	29,347
15,330	4,390	67,298	18,620) 1,560	29,047
15,470	4,000	66,521	18,620) 1,552	28,898
16,050	3,869	62,097	18,670) 1,513	28,247
16,060	3,690	59,261	18,700) 1,510	28,237
16,380	3,498	57,297	18,700) 1,486	27,788
16,380	3,485	57,084	18,710) 1,475	27,597
16,380	3,483	57,051	18,760) 1,411	26,470
16,390	3,473	56,922	18,790	1,407	26,437
16,500	3,426	56,529	18,890) 1,391	26,275
16,580	3,393	56,255	18,890) 1,373	25,935
16,530	3,385	55,954	18,830) 1,356	25,533
16,530	3,384	55,937	18,890) 1,329	25,104
16,740	3,378	56,547	18,920) 1,282	24,255
16,780	3,198	53,662	18,920	1,246	23,574
16,780	3,107	52,135	18,940) 1,233	23,353
17,000	3,028	51,476	18,950) 1,215	23,024
17,010	2,961	50,366	18,980) 1,206	22,889
17,140	2,917	49,997	18,980) 1,192	22,624
17,140	2,909	49,860	18,990) 1,188	22,560
17,220	2,840	48,904	19,000) 1,178	22,382
17,330	2,756	47,761	19,060) 1,146	21,842
17,340	2,640	45,777	19,060) 1,106	21,080
17,540	2,609	45,761	19,080) 1,097	20,930
17,650	2,474	43,666	19,110) 1,070	20,447
17,750	2,354	41,783	19,110) 1,062	20,294
17,910	2,235	40,028	19,160) 1,039	19,907
18,010	2,146	38,649	19,170	1,013	19,419
18,060	2,096	37,853	19,170	1,005	19,265
18,070	1,986	35,887	19,210	0,952	18,287
18,190	1,968	35,797	19,240	0,936	18,008
18,290	1,900	34,751	19,260	0,897	17,276
18,390	1,836	33,764	19,290	0,859	16,570
18,350	1,806	33,140	19,330	0,844	16,314

19,330	0,815	15,753	19,790	0,369
19,360	0,807	15,623	19,750	0,349
19,390	0,797	15,453	19,750	0,345
19,440	0,733	14,249	19,770	0,341
19,440	0,710	13,802	19,770	0,328
19,440	0,683	13,277	19,770	0,315
19,480	0,669	13,032	19,780	0,312
19,490	0,658	12,824	19,790	0,299
19,520	0,628	12,258	19,810	0,289
19,530	0,609	11,893	19,810	0,279
19,540	0,576	11,255	19,810	0,272
19,580	0,570	11,160	19,830	0,258
19,580	0,554	10,847	19,830	0,255
19,580	0,546	10,690	19,830	0,249
19,580	0,525	10,279	19,830	0,239
19,610	0,516	10,118	19,840	0,231
19,610	0,515	10,099	19,850	0,224
19,620	0,495	9,711	19,850	0,222
19,630	0,491	9,638	19,880	0,211
19,630	0,453	8,892	19,890	0,182
19,670	0,451	8,871	19,910	0,149
19,670	0,442	8,694	19,920	0,139
19,690	0,425	8,368	19,930	0,123
19,710	0,408	8,041	19,940	0,111
19,710	0,393	7,746	19,960	0,098
19,720	0,386	7,611	19,970	0,091

19,750	0,345	6,813
19,770	0,341	6,741
19,770	0,328	6,484
19,770	0,315	6,227
19,780	0,312	6,171
19,790	0,299	5,917
19,810	0,289	5,725
19,810	0,279	5,526
19,810	0,272	5,388
19,830	0,258	5,116
19,830	0,255	5,056
19,830	0,249	4,937
19,830	0,239	4,739
19,840	0,231	4,583
19,850	0,224	4,446
19,850	0,222	4,406
19,880	0,211	4,194
19,890	0,182	3,619
19,910	0,149	2,966
19,920	0,139	2,768
19,930	0,123	2,451
19,940	0,111	2,213
19,960	0,098	1,956
19,970	0,091	1,817

7,302

6,892

ANEXO C: IMÁGENES

IMAGEN 1

IMAGEN 2

IMAGEN 3

IMAGEN 4

IMAGEN 5