

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE GUAYAQUIL

FACULTAD DE INGENIERÍA

CARRERA: INGENIERÍA ELÉCTRICA

TESIS PREVIA A LA OBTENCIÓN DEL TÍTULO DE:

INGENIERO ELÉCTRICO

TEMA:

"DISEÑO E IMPLEMENTACIÓN DE UN BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE"

AUTORES:

ERICK WILSON ALVARADO PÉREZ RICHARD ISRAEL PROAÑO ANDRADE CHRISTOPHER XAVIER VERA SUÁREZ

DIRECTOR DE TESIS: ING. DAVID CÁRDENAS VILLACRÉS M.Sc

ABRIL 2015

GUAYAQUIL - ECUADOR

CERTIFICACIÓN

Yo Ing. David Cárdenas Villacrés M.Sc., declaro que el presente proyecto de tesis, previo a la obtención del título de ingeniero eléctrico, fue elaborado por los señores: Erick Wilson Alvarado Pérez, Richard Israel Proaño Andrade, Christopher Xavier Vera Suárez, bajo mi dirección y supervisión.

Ing. David Cárdenas Villacrés M.Sc.

DECLARATORIA DE RESPONSABILIDAD

La responsabilidad de las ideas y contenidos expuestos en esta tesis de grado corresponden exclusivamente a los autores.

Guayaquil, Abril del 2015

ERICK WILSON ALVARADO PÉREZ C.I. 0926684309

RICHARD ISRAEL PROAÑO ANDRADE C.I. 0918870999

CHRISTOPHER XAVIER VERA SUÁREZ C.I. 0921508552

AGRADECIMIENTOS

A Dios por brindarnos la vida, salud y capacidad para realizar nuestros estudios.

A nuestras familias y amistades cercanas que de diferentes maneras nos ayudaron en nuestro proceso de elaboración de tesis.

Al Ing. Otto Astudillo, al Ing. Carlos Chávez y al Ing. David Cárdenas por guiarnos y brindarnos sus conocimientos para iniciar y culminar este proyecto de tesis para la obtención de nuestro título.

A todos los docentes de la Universidad Politécnica Salesiana que formaron parte de nuestro proceso de aprendizaje durante toda nuestra carrera.

Al Ing. Jacinto Carillo E. por brindarnos la oportunidad de desarrollarnos en el ámbito laboral, compartir sus conocimientos, experiencias y guiarnos para ser mejores profesionales en nuestra carrera.

Erick Wilson Alvarado Pérez

Richard Israel Proaño Andrade

Christopher Xavier Vera Suárez

DEDICATORIAS

Dedico esta tesis a Dios, a mi padre Richard Proaño Villamarín, a mi madre Mónica Andrade Garay y a mi abuelita Sofía Garay Delgado por su amor, apoyo y respaldo durante todos mis estudios.

Richard Proaño A.

Dedico el presente trabajo a mis padres quienes con esfuerzo, dedicación y amor fueron parte fundamental de cada paso en mi vida, a mi hijo quien es fuente de inspiración para alcanzar cada una de mis metas propuestas.

Christopher Vera S.

Dedico esta tesis a Dios por su guía en esta etapa de mi vida, a mi familia por su apoyo emocional y a mis amigos que fueron un gran apoyo durante el transcurso de mi vida profesional.

Erick Alvarado P.

ÍNDICE GENERAL

CERTIFICACIÓN	ii
DECLARATORIA DE RESPONSABILIDAD	iii
AGRADECIMIENTOS	iv
DEDICATORIAS	v
ÍNDICE GENERAL	vi
ÍNDICE DE ILUSTRACIONES	xi
ÍNDICE DE TABLAS	xvi
ÍNDICE DE ECUACIONES	xix
RESUMEN	XX
ABSTRACT	xxi
CAPÍTULO I PLANTEAMIENTO DEL PROBLEMA	3
1.1. PROBLEMA	3
1.2. JUSTIFICACIÓN	3
1.3. OBJETIVOS	4
1.3.1. OBJETIVO GENERAL	4
1.3.2. OBJETIVOS ESPECÍFICOS	4
1.4. MÉTODO, TÉCNICA Y PROCEDIMIENTO	4
1.4.1. EXPERIMENTAL Y DE CONTROL	4
1.4.2. BENEFICIARIOS DE LA PROPUESTA	5
CAPÍTULO II FUNDAMENTOS TEÓRICOS	6
2.1. CONCEPTOS ELÉCTRICOS	6
2.1.1 CORRIENTE	
2.1.2 VOLTAJE	
2.1.3 RESISTENCIA	
2.1.4 FACTOR DE POTENCIA	
2.1.5 POTENCIA	
2.1.6 FRECUENCIA	
2.2.MOTORES ELÉCTRICOS	

2.2.1. PRINCIPIOS DE FUNCIONAMIENTO	9
2.2.2. CLASIFICACIÓN DE LOS MOTORES ELÉCTRICOS	12
2.2.3. CONEXIONES DE MOTORES TRIFÁSICOS	22
2.2.4. ESQUEMAS DE ARRANQUE PARA MOTORES	33
2.3. DISPOSITIVOS ELÉCTRICOS	47
2.3.1 CONTACTOR	47
2.3.2 RELÉ TÉRMICO	47
2.3.3 GUARDAMOTOR	48
2.3.4 TEMPORIZADORES	49
2.3.5 PLC	50
2.3.6 DISYUNTOR	50
2.3.7 PULSADORES DE PARO Y MARCHA	51
2.3.8 LAMPARAS DE SEÑALIZACIÓN	51
2.3.9 SELECTOR	51
2.3.10 TRANSFORMADORES DE CORRIENTE	52
2.3.11 VARIADORES DE FRECUENCIA	52
2.3.12 VARIAC	53
2.3.13 MEDIDOR DE PARÁMETROS ELÉCTRICOS	54
2.3.14 RELÉS DE INTERFAZ ENCHUFABLES	54
2.3.15 LOGO	56
CAPÍTULO III DISEÑO Y CONSTRUCCIÓN DEL BANCO PARA CONTROL INDUSTRIAL PROGRAMABLE	
3.1. SECUENCIA DE CONSTRUCCIÓN DE LA BASE PARA	EL BANCO DE
PRUEBAS	57
3.2. SECUENCIA EN LA ELABORACIÓN Y MONTAJE DE 1	LA LÁMINA DE
CONEXIONES	58
3.3. SECUENCIA EN LA INSTALACIÓN DE ELEMENTOS EN	N EL BANCO DE
PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE.	59
3.4. CONEXIÓN INTERNA DE LOS DISPOSITIVOS	ELÉCTRICOS.
3.5. INSTALACIÓN Y CONEXIÓN DE BORNERAS	71

3.6.SECUENCIA DE CONSTRUCCIÓN DEL FRENO MECÁNICO REGULABLE
PARA SIMULACIÓN DE CARGA75
3.7. INVENTARIO DE EQUIPOS QUE CONFORMAN EL BANCO DE
PRUEBAS
3.8. PRESUPUESTO DE LA CONSTRUCCIÓN DEL BANCO DE PRUEBAS
PARA CONTROL INDUSTRIAL PROGRAMABLE79
CAPÍTULO IV MANUAL DE PRÁCTICAS80
4.1 GUÍA DE PRÁCTICAS PARA PRUEBAS DEL BANCO DE PRUEBAS PARA
CONTROL INDUSTRIAL PROGRAMABLE80
4.2 PRÁCTICA NO. 1: MANTENIMIENTO Y SEGURIDAD DEL BANCO DE
PRUEBAS85
4.2.1 DATOS INFORMATIVOS
4.2.2 DATOS DE LA PRÁCTICA85
4.2.3 DESCRIPCIÓN Y RECOMENDACIONES DE LOS ELEMENTOS EN EL
BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE87
4.2.4 NORMAS DE SEGURIDAD PARA EL USO DEL BANCO DE PRUEBAS
PARA CONTROL INDUSTRIAL PROGRAMABLE110
4.2.5 NORMAS DE SEGURIDAD DENTRO DEL LABORATORIO112
4.3 PRÁCTICA NO. 2: VERIFICACIÓN DEL FUNCIONAMIENTO DE LOS
ELEMENTOS DEL BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL
PROGRAMABLE
4.3.1 DATOS INFORMATIVOS
4.3.2 DATOS DE LA PRÁCTICA
4.4 PRÁCTICA NO. 3: ARRANQUE DIRECTO PARA MOTOR ELÉCTRICO
TRIFÁSICO. 151
4.4.1 DATOS INFORMATIVOS
4.4.2 DATOS DE LA PRÁCTICA
4.5 PRÁCTICA NO. 4: ARRANQUE DIRECTO CON INVERSIÓN DE GIRO
PARA MOTOR ELÉCTRICO TRIFÁSICO
4.5.1 DATOS INFORMATIVOS 161
4.5.2 DATOS DE LA PRÁCTICA

4.6 PRÁCTICA NO. 5: ARRANQUE ESTRELLA – DELTA PARA MOTOR
ELÉCTRICO TRIFÁSICO
4.6.1 DATOS INFORMATIVOS
4.6.2 DATOS DE LA PRÁCTICA174
4.7 PRÁCTICA NO. 6: ARRANQUE Y PARO DEL MOTOR ELÉCTRICO
TRIFÁSICO UTILIZANDO EL VARIADOR DE FRECUENCIA CON
ALIMENTACIÓN 1F Y CARGA 3F EN LA MODALIDAD DE SISTEMA DE
CONTROL LOCAL. 184
4.7.1 DATOS INFORMATIVOS
4.7.2 DATOS DE LA PRÁCTICA
4.8 PRÁCTICA NO. 7: ARRANQUE Y PARO DEL MOTOR ELÉCTRICO
TRIFÁSICO UTILIZANDO EL VARIADOR DE FRECUENCIA CON
ALIMENTACIÓN 3F Y CARGA 3F EN LA MODALIDAD DE SISTEMA DE
CONTROL LOCAL. 195
4.8.1 DATOS INFORMATIVOS
4.8.2 DATOS DE LA PRÁCTICA195
4.9 PRÁCTICA NO. 8: ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA
MOTOR ELÉCTRICO TRIFÁSICO UTILIZANDO EL VARIADOR DE
FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL206
4.9.1 DATOS INFORMATIVOS
4.9.2 DATOS DE LA PRÁCTICA
4.10 PRÁCTICA NO. 9: ARRANQUE E INVERSIÓN DE GIRO DEL MOTOR
ELÉCTRICO TRIFÁSICO, UTILIZANDO EL VARIADOR DE FRECUENCIA EN
LA MODALIDAD DE SISTEMA DE CONTROL LOCAL226
4.10.1 DATOS INFORMATIVOS
4.10.2 DATOS DE LA PRÁCTICA
4.11 PRÁCTICA NO. 10: ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA
MOTOR ELÉCTRICO TRIFÁSICO UTILIZANDO SEÑALES DIGITALES, EN
LA MODALIDAD DE SISTEMA DE CONTROL REMOTO DEL VARIADOR DE
FRECUENCIA. 240
4.11.1 DATOS INFORMATIVOS
4.11.2 DATOS DE LA PRÁCTICA
4.12 PRÁCTICA NO. 11: ARRANQUE CON VARIADOR DE FRECUENCIA
PARA MOTOR ELÉCTRICO TRIFÁSICO, ENSAYANDO UN SISTEMA PARA

CONTROL DE CIERRE Y APERTURA DE PUERTA AUTOMÁTICA	A
TRAVÉS DEL PROCESO DE SEÑALES DIGITALES CON LOGO2	54
4.12.1 DATOS INFORMATIVOS	54
4.12.2 DATOS DE LA PRÁCTICA25	54
4.13 PRÁCTICA NO. 12: ARRANQUE CON VARIADOR DE FRECUENCI	ΙA
PARA MOTOR ELÉCTRICO TRIFÁSICO, ENSAYANDO UN SISTEMA PAR	RΑ
VENTILACIÓN FORZADA VARIABLE CON CONTROL DE TEMPERATUR	RΑ
A TRAVÉS DEL PROCESO DE SEÑALES DIGITALES CON PLC20	68
4.13.1 DATOS INFORMATIVOS20	68
4.13.2 DATOS DE LA PRÁCTICA20	68
BIBLIOGRAFÍA22	97
ANEXOS20	0ソ

ÍNDICE DE ILUSTRACIONES

Figura 1 Ley de Faraday	10
Figura 2 Flujo producido por un solenoide	11
Figura 3 Fuerza sobre una bobina de una máquina eléctrica	12
Figura 5. Sección del devanado del estator de un motor de inducción de jau	ıla de
ardilla, trifásico, de cuatro polos y paso 8/9	13
Figura 4 Clasificación de motores de AC y DC	14
Figura 6 Circuito equivalente para el diagrama circular	15
Figura 7 Circuito equivalente del motor polifásico de inducción	16
Figura 8 Circuitos equivalentes del motor de inducción, simplificados por el teo	rema
de Thévenin	20
Figura 9 Esquema de la conexión en estrella	23
Figura 10 Esquema de la conexión en triángulo	24
Figura 11 Diagrama esquemático de un motor trifásico tetrapolar	25
Figura 12 Diagrama esquemático de un motor trifásico tetrapolar conectado	lo en
triángulo/ serie	26
Figura 13 Diagrama esquemático de un motor trifásico tetrapolar conectado	lo en
estrella/ serie	27
Figura 14 Diagrama esquemático de un motor trifásico tetrapolar conectado	lo en
estrella/ doble paralelo. Cada fase ofrece vías al paso de la corriente, puesto que	e está
formada por dos ramas iguales unidas en paralelo.	27
Figura 15 Designación y conexión de terminales en motores Y para doble tension	ón de
servicio	29
Figura 16 Diagrama esquemático de un motor trifásico tetrapolar para doble te	nsión
de servicio, conectado en estrella. Las dos mitades de cada fase están unida	as en
serie. El motor queda así dispuesto a trabajar a la tensión mayor	30
Figura 17 Diagrama esquemático del mismo motor representado en la figura 15	5. Las
dos mitades de cada fase están ahora unidas en paralelo, para que el motor p	oueda
funcionar a la tensión menor. Obsérvese que la conexión conjunta de T4, T5	у Т6
forma un segundo centro de estrella exterior.	30
Figura 18 Designación y conexión de terminales en motores Δ para doble tension	
servicio	31

Figura 19 Diagrama esquemático de un motor trifásico para doble tensión de
servicio, conectado en triángulo. Las dos mitades de cada fase están unidas en serie
(tensión mayor)
Figura 20 Diagrama esquemático del mismo motor representado en la figura 19. Las
dos mitades de cada fase están unidas en paralelo (tensión menor)32
Figura 21 Designación y conexión de terminales en motores Y/Δ para doble tensión
de servicio
Figura 22 Esquema de un arranque directo
Figura 23 Esquema de un arranque estrella-triángulo
Figura 24 Esquema de un arranque mediante autotransformador35
Figura 25 Esquema de un arranque mediante resistencias rotóricas
Figura 26 Esquema de método de regulación de velocidad
Figura 27 Esquema de un frenado eléctrico mediante resistencia de frenado38
Figura 28 Esquema de frenado mediante inyección de cc
Figura 29 Esquema de un convertidor con puente de diodos y tiristores40
Figura 30 Esquema de un convertidor con puente de diodos y convertidor de
frecuencia
Figura 31 Estructura de un variador
Figura 32 Puentes inversores de tensión y corriente
Figura 33 Convertidor de frecuencia para motores asíncronos. Constitución del
circuito de potencia
Figura 34 Esquema regulador de tensión
Figura 35 Esquema de una inversión de giro y frenado por contracorriente46
Figura 36 Vista de contactores
Figura 37 Vista de relé térmico
Figura 38 Vista de guardamotor
Figura 39 Vista de temporizadores
Figura 40 Vista de controlador lógico programable
Figura 41 Vista de disyuntor
Figura 42 Vista de pulsadores
Figura 43 Vista de lámparas de señalización
Figura 44 Vista de selector
Figura 45 Vista de transformadores de corriente
Figura 46 Vista de variador53

Figura 47 Vista de variac53
Figura 48 Vista de Medidor de parámetros
Figura 49 Relé de Interfaz
Figura 50 Equipo Logo56
Figura 51 Vista posterior de la estructura metálica
Figura 52 Vista completa de estructura metálica completa
Figura 53 Revisión de perforaciones con el dibujo impreso
Figura 54 Revisión de perforaciones con el vinil impreso
Figura 55 Revisión de perforaciones, color inicial del tablero59
Figura 56 Color final del tablero
Figura 57 Calado de vinil para colocación de elementos
Figura 58 Instalación de botoneras, selectores y pulsantes
Figura 59 Instalación de riel din para soportería de equipos
Figura 60 Instalación de equipos parte frontal del banco de pruebas61
Figura 61 Instalación de equipos parte posterior del banco de pruebas61
Figura 62 Instalación de equipos varios
Figura 63 Instalación de transformadores de corriente y breakers para medidores de
parámetros eléctricos
Figura 64 Vista frontal del tablero con los elementos instalados
Figura 65 Instalación y nivelación de base para el Variac
Figura 66 Instalación de Variac en su respectiva base
Figura 67 Cableado de muestra para presentación al tutor
Figura 68 Muestra presentada de cableado y amarrado de conductores para
elementos
Figura 69 Corte de conductores y colocación de terminales antes de su cableado64
Figura 70 Amarrado de conductores en la parte posterior del tablero65
Figura 71 Cableado de elementos parte frontal del tablero
Figura 72 Cableado de elementos parte frontal del tablero
Figura 73 Avance en cableado y amarrado parte posterior del tablero66
Figura 74 Avance en cableado y amarrado parte frontal del tablero66
Figura 75 Conexión del medidor de parámetros eléctricos de la acometida principal
fija67
Figura 76 Tendido de los conductores de los variadores
Figura 77 Tendido de conductores de control para los relés de interfaz

Figura 78 Tendido de conductores de control del PLC y Logo68
Figura 79 Cableado de elementos de protección
Figura 80 Cableado de fuerza del variador de alimentación monofásica
Figura 81 Cableado de control del variador de alimentación monofásica69
Figura 82 Cableado de control del variador de alimentación trifásica69
Figura 83 Cableado de fuerza del variador de alimentación trifásica69
Figura 84 Amarrado de cableado realizado para contactores, guardamotores y relés
térmicos
Figura 85 Vista de conductores amarrados parte posterior del banco70
Figura 86 Arreglo y amarrado de conductores para logo y PLC70
Figura 87 Arreglo y amarrado de conductores para selectores
Figura 88 Arreglo de conductores del variador de alimentación monofásica71
Figura 89 Instalación y conexión de borneras, peinado de conductores en variadores
de frecuencia
Figura 90 Conexionado de borneras para pulsantes
Figura 91 Instalación de borneras para selectores
Figura 92 Instalación de terminales en conductores para conexionado de borneras
para PLC y logo73
Figura 93 Instalación de terminales en conductores para conexionado de borneras
para contactores
Figura 94 Instalación de terminales en conductores para conexionado de borneras
para guardamotores
Figura 95 Vista posterior del banco de pruebas con todos sus conductores peinados,
amarrados y conectados a las borneras
Figura 96 Vista frontal del banco de pruebas con todas las borneras instaladas y
conectadas
Figura 97 Construcción de mesa mecánica
Figura 98 Pintada de mesa para freno mecánico
Figura 99 Vista de piezas que conforman el freno mecánico regulable76
Figura 100 Vista del ensamble del freno mecánico76
Figura 101 Vista final de la contrucción de la mesa del motor con el freno mecánico
regulable76
Figura 102 Banco de pruebas para control industrial programable87
Figura 103 Tomacorriente tipo clavija de 32A

Figura 104	Breaker Q0 3P-32A	89
Figura 105	Variac trifásico	89
Figura 106	Breaker Q1 3P-32A	90
Figura 107	Breaker Q2 3P-32A	90
Figura 108	Medidor de parámetros #2	92
Figura 109	Borneras de fuente de voltaje fija	92
Figura 110	Borneras de fuente de voltaje variable	93
Figura 111	Luces pilotos	93
Figura 112	Vista de breaker Q7	94
Figura 113	Vista de breaker Q4	94
Figura 114	Vista de breaker Q8	95
Figura 115	Vista de fuente sitop	96
Figura 116	Vista de selector PE-1	96
Figura 117	Vista de selector PE-2	96
Figura 118	Vista de pulsador P1	97
Figura 119	Vista de pulsador P2	97
Figura 120	Vista de pulsante doble P5	98
Figura 121	Vista de simuladores de señales digitales	98
Figura 122	Vista de selectores S1 y S3	99
Figura 123	Vista de selectores S2 y S4	99
Figura 124	Vista de contactor K11	00
Figura 125	Vista de guardamotor G11	00
Figura 126	Vista de relé térmico F11	01
Figura 127	Vista de temporizador T1	01
Figura 128	Vista de LOGO1	02
Figura 129	Vista de PLC1	04
Figura 130	Vista de relé de interfaz1	04
Figura 131	Variador de frecuencia #2	05
Figura 132	Borneras para barra de tierra1	08
Figura 133	Motor con freno regulable	09

ÍNDICE DE TABLAS

Tabla 1 Definiciones de las constantes del circuito equivalente	17
Tabla 2 Características de arranques	34
Tabla 3 Listado de materiales	77
Tabla 4 Presupuesto de la elaboración de tesis	79
Tabla 5 Toma de valores – Breaker 32A (Q0, Q1, Q2)	118
Tabla 6 Toma de valores – Breaker 10A (Q4, Q5, Q6)	119
Tabla 7 Toma de valores – Breaker 2A (Q3, Q7)	120
Tabla 8 Toma de valores – Breaker 6A (Q8)	121
Tabla 9 Toma de valores - Borneras y conectores	122
Tabla 10 Toma de valores – Cables de prueba	123
Tabla 11 Toma de valores – Medidor de parámetros 1, 2	124
Tabla 12 Toma de valores – Fuente fija	126
Tabla 13 Toma de valores – Pulsador PE1 – PE2	127
Tabla 14 Toma de valores – Pulsadores P1, P2, P3, P4	128
Tabla 15 Toma de valores – Contactores K1, K2, K3, K4, K5, K6, K7	129
Tabla 16 Toma de valores – Guardamotores G1 – G2 – G3	130
Tabla 17 Toma de valores – Luces pilotos H1-H2-H3-H4-H5-H6-H7-H	8-H9-H10-
H11-H12	131
Tabla 18 Toma de valores – Relé térmico	132
Tabla 19 Toma de valores – Temporizador 6	133
Tabla 20 Toma de valores – Fuente SITOP	134
Tabla 21 Toma de valores – LOGO	135
Tabla 22 Toma de valores – PLC	136
Tabla 23 Toma de valores – Relés de interfaz	137
Tabla 24 Toma de valores – Variador de frecuencia monofásico	138
Tabla 25 Toma de valores – Variador de frecuencia trifásico	139
Tabla 26 Toma de valores – Switch ojo de cangrejo	140
Tabla 27 Toma de valores – Selector con retorno	141
Tabla 28 Toma de valores – Selector	142
Tabla 27 Toma de valores – Selector con retorno	142

Tabla 32 Toma de valores – Freno mecánico regulable	146
Tabla 33 Toma de valores – Motor trifásico	147
Tabla 34 Toma de valores – Tomacorriente clavija 1-2	148
Tabla 35 Toma de valores – Transformador de vorriente	149
Tabla 36 Toma de valores - Variac	150
Tabla 37 Práctica #3 Arranque directo para motor eléctrico trifásico, prueb	a sin carga
	155
Tabla 38 Práctica #3 Arranque directo para motor eléctrico trifásico, p	orueba con
carga	156
Tabla 39 Práctica #4 prueba sin carga - sentido de giro horario	166
Tabla 40 Práctica #4 prueba con carga - sentido de giro horario	167
Tabla 41 Práctica #4 prueba sin carga - sentido de giro antihorario	168
Tabla 42 Práctica #4 prueba con carga - sentido de giro antihorario	169
Tabla 43 Práctica #5 prueba sin carga - sentido de giro horario conexión e	strella.178
Tabla 44 Práctica #5 prueba sin carga - sentido de giro horario conexión d	elta179
Tabla 45 Práctica #6 prueba sin carga - sentido de giro horario	189
Tabla 46 práctica #6 prueba con carga - sentido de giro horario	190
Tabla 47 Práctica #7 prueba sin carga - sentido de giro horario	200
Tabla 48 Práctica #7 prueba con carga - sentido de giro horario	201
Tabla 49 Práctica #8 prueba sin carga - sentido de giro horario 15Hz	212
Tabla 50 Práctica #8 prueba sin carga - sentido de giro horario 30Hz	213
Tabla 51 Práctica #8 prueba sin carga - sentido de giro horario 45Hz	214
Tabla 52 Práctica #8 prueba sin carga - sentido de giro horario 60Hz	215
Tabla 53 Práctica #8 prueba con carga - sentido de giro horario 15Hz	216
Tabla 54 Práctica #8 prueba con carga - sentido de giro horario 30Hz	217
Tabla 55 Práctica #8 prueba con carga - sentido de giro horario 45Hz	218
Tabla 56 Práctica #8 prueba con carga - sentido de giro horario 60Hz	219
Tabla 57 Práctica #8 prueba sin carga - sentido de giro horario 0.2-0.3Hz.	220
Tabla 58 Práctica #8 prueba con carga - sentido de giro horario 10Hz	221
Tabla 59 Práctica #9 prueba sin carga - sentido de giro horario	232
Tabla 60 Práctica #9 prueba sin carga - sentido de giro antihorario	233
Tabla 61 Práctica #9 prueba con carga - sentido de giro horario	234
Tabla 62 Práctica #9 prueba con carga - sentido de giro antihorario	235
Tabla 63 Práctica #10 prueba sin carga - sentido de giro horario	246

Tabla 64 Práctica #10 prueba sin carga - sentido de giro antihorario	247
Tabla 65 Práctica #10 prueba con carga - sentido de giro horario	248
Tabla 66 Práctica #10 prueba con carga - sentido de giro antihorario	249
Tabla 67 Práctica #11 prueba sin carga - apertura de puerta	260
Tabla 68 Práctica #11 prueba sin carga - cierra de puerta	261
Tabla 69 Práctica #12 prueba sin carga - sentido de giro horario	275
Tabla 70 Práctica #12 prueba sin carga - sentido de giro horario 15 Hz	276
Tabla 71 Práctica #12 prueba sin carga - sentido de giro horario 30 Hz	277
Tabla 72 Práctica #12 prueba sin carga - sentido de giro horario 45 Hz	278
Tabla 73 Práctica #12 prueba sin carga - sentido de giro horario 60 Hz	279

ÍNDICE DE ECUACIONES

Ecuación 1 Corriente	6
Ecuación 2 Voltaje	6
Ecuación 3 Resistencia	7
Ecuación 4 Potencia eléctrica	7
Ecuación 5 Frecuencia	8
Ecuación 6 Ley de inducción de Faraday (a)	9
Ecuación 7 Ley de inducción de Faraday (b)	9
Ecuación 8 Ley de Mallas de Kirchhoff	10
Ecuación 9 Ley de Ampere	10
Ecuación 10 Ley de Biot Savart	11
Ecuación 11 Potencia transferida a través del entrehierro desde el estator	18
Ecuación 12 Perdida en el cobre del rotor	18
Ecuación 13 Potencia mecánica interna	18
Ecuación 14 Despeje de fórmula de potencia mecánica	18
Ecuación 15 Par electromagnético	19
Ecuación 16 Torque newton-metros	19
Ecuación 17 Torque pie-libras	19
Ecuación 18 Voltaje de la fuente equivalente	21
Ecuación 19 Expresión de Torque	21
Ecuación 20 Expresión de deslizamiento	21
Ecuación 21 Par máximo	22

RESUMEN

Tema: DISEÑO E IMPLEMENTACIÓN DE UN BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE

Autores: Erick Wilson Alvarado Pérez, Richard Israel Proaño Andrade, Christopher Xavier Vera Suárez.

Director de Tesis: Ing. David Cárdenas M.Sc.

Palabras Clave: Banco de pruebas, variadores de frecuencia, equipos, prácticas, diseño, implementación, conocimientos, programable.

El presente proyecto involucra el diseño, construcción e implementación de un banco de pruebas para control industrial programable, donde se podrán ejecutar diferentes tipos de arranque para motores eléctricos trifásicos asincrónicos, con la finalidad de analizar el comportamiento de diferentes parámetros eléctricos como corrientes, voltajes, potencias, frecuencia, factor de potencia. Estos últimos se ven afectados según el tipo de arranque utilizado. El módulo está formado por equipos electromecánicos como contactores, guardamotores, relés, disyuntores, temporizadores que en conjunto realizan la conectividad de distintos esquemas en fuerza y control. Elementos de maniobra como pulsadores, selectores, switches de tipo ojo de cangrejo que son usados para conmutar señales en circuitos de control, luces piloto para visualizar estados de operatividad, equipos de automatización, LOGO y PLC, con los que se realizarán programas lógicos de control, medidores de energía con los que se visualizan diferentes parámetros eléctricos, fuente de voltaje variable de 0 a 220VAC y una fuente de voltaje a 24VDC. Finalmente se consideran variadores de frecuencia con los que se realizan diversas aplicaciones en arranque de motores eléctricos trifásicos.

ABSTRACT

Topic: DESIGN AND IMPLEMENTATION OF A TEST BENCH FOR INDUSTRIAL CONTROL PROGRAMMABLE

Authors: Wilson Alvarado Erick Perez, Richard Israel Proaño Andrade,

Xavier Vera Christopher Suarez.

Thesis Director: Mr. David Cardenas M.Sc.

Keywords: Test bed, frequency, equipment, practices, design, implementation, knowledge, programmable.

This project involves the design, construction and implementation of a test bed for programmable industrial control. Where you can run different types of starter for three-phase asynchronous electric engines, in order to analyze the behavior of different electrical parameters such as current, voltage, power, frequency, power factor. These last mentioned are affected by the type of starter used. The module consists of electromechanical devices such as contactors, breakers, thermal relays, interface relays, circuit breakers, timers which together carry various connectivity schemes in strength and control. Control elements such as push buttons, selector switches eye crab type that are used for switching signals in control circuits. Pilot lights to display operational states. Automation equipment, LOGO and PLC, with which logical control programs were made. Energy meters with which visualize different electrical parameters. Variable supply voltage from 0 to 220VAC and a voltage source 24VDC. Finally we consider variable frequency variable which we realize various applications three phases electrical starter engines.

INTRODUCCIÓN

Tomando en cuenta que la industria dentro de sus procesos de fabricación utiliza numerosas variedades de equipos eléctricos que definen el funcionamiento de los motores eléctricos trifásicos, bajo estos criterios se crea la necesidad de realizar un análisis de los diferentes sistemas para control eléctrico, así también el comportamiento de los parámetros eléctricos que se ven afectados en los motores asincrónicos según las aplicaciones realizadas.

Los esquemas eléctricos tradicionales como son arranque directo, arranque estrella - delta (Y-D), arranque por autotransformador, que son ejecutados con equipos electromecánicos y son los más comunes en el medio laboral de la industria, tienen limitaciones para diversas aplicaciones, limitaciones que han sido suplidas con los avances tecnológicos a través del uso de equipos electrónicos de automatización y variadores de frecuencia.

Las prácticas propuestas para el banco de pruebas se detallan a continuación:

- 1. Mantenimiento y seguridad del banco de prueba para control industrial programable.
- 2. Verificación del fucionamiento de los elementos del Banco de Pruebas.
- 3. Arranque directo para motor eléctrico trifásico.
- 4. Arranque directo con inversión de giro para motor eléctrico trifásico.
- 5. Arranque en estrella delta para motor eléctrico trifásico.
- Arranque y paro de motor eléctrico trifásico utilizando el variador de frecuencia con alimentación 1F y carga 3F en la modalidad de sistema de control local.
- 7. Arranque y paro de motor eléctrico trifásico utilizando el variador de frecuencia con alimentación 3F y carga 3F en la modalidad de sistema de control local.
- 8. Arranque y variación de velocidad, para motor eléctrico trifásico utilizando el variador de frecuencia en la modalidad de sistema de control local.
- 9. Arranque e inversión de giro de motor eléctrico trifásico, utilizando el variador de frecuencia en la modalidad de sistema de control local.

- 10. Arranque y variación de velocidad, para motor eléctrico trifásico utilizando señales digitales, en la modalidad de sistema de control remoto del variador de frecuencia.
- 11. Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema, para control de cierre y apertura de puerta automática través del proceso de señales digitales con LOGO.
- 12. Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema para ventilación forzada variable con control de temperatura a través del proceso de señales digitales con un controlador lógico programable (PLC).

CAPÍTULO I PLANTEAMIENTO DEL PROBLEMA

1.1. PROBLEMA

Tomando en cuenta la falta de módulos de prueba en los laboratorios de la Universidad Politécnica Salesiana, sede de Guayaquil y dadas las necesidades de complementar los estudios teóricos con la práctica, es indispensable que se implemente un banco de pruebas para control industrial programable, en la que se desarrollen prácticas para que el estudiante se familiarice con los equipos y la tecnología actual usada en las industrias.

1.2. JUSTIFICACIÓN

En la actualidad las personas se encuentran inmersas en un mundo donde la tecnología y sus competencias crecen de manera acelerada en todas sus ramas, bajo estos acontecimientos consideramos que es de suma importancia que los futuros profesionales actualmente en formación, deben complementar sus conocimientos teóricos con la práctica, a través de módulos de prueba que contengan equipos y tecnología aplicada en el campo de la industria.

De esta manera, se garantiza que el estudiante refuerce los conocimientos adquiridos, obteniendo excelentes resultados en su preparación técnica, además de despertar el interés por la investigación funcional tecnológica.

Tomando en cuenta lo mencionado, se propuso como proyecto de tesis diseñar, construir e implementar un banco de prueba para control industrial programable, que llevará a cabo sus funciones en el Laboratorio de Instalaciones Eléctricas.

1.3. OBJETIVOS

1.3.1. OBJETIVO GENERAL

Diseñar e implementar un banco de pruebas para control industrial programable para el Laboratorio de Instalaciones Eléctricas de la Universidad Politécnica Salesiana, sede Guayaquil.

1.3.2. OBJETIVOS ESPECÍFICOS

- Diseñar y construir un banco de pruebas para realizar el análisis de parámetros eléctricos en los diferentes tipos de arranques para motores trifásicos.
- Diseñar y construir una mesa de simulación de carga con freno regulable para trabajar con el banco de pruebas.
- Diseñar doce prácticas aplicables al banco de pruebas aprovechando los elementos del mismo.
- Realizar un manual ilustrativo explicando con diagramas y pruebas realizadas las prácticas diseñadas para el banco de pruebas

1.4. MÉTODO, TÉCNICA Y PROCEDIMIENTO

Siguiendo los conceptos de (Gutiérrez, 1992, pág. 39), se indica que el método y la técnica forman la teoría y la práctica de la investigación; en efecto para este trabajo de tesis se ha utilizado como método de investigación, conocer los principios lógicos de funcionamiento de los equipos implementados; la técnica dentro del trabajo de tesis es la aplicación de estos principios de funcionamiento en base a normas correctas que se valen para ejecutar las operaciones de interés; y el procedimiento es el recurso o instrumento que se vale la técnica para la aplicación del método.

1.4.1. GRUPO EXPERIMENTAL Y DE CONTROL

Dado que la experimentación, es un método de laboratorio científico donde los elementos manipulados y los efectos observados pueden controlarse; dentro del

presente trabajo de tesis se podrán evidenciar elementos o equipos clasificados en grupo experimental y de control. El grupo experimental es aquel que está dispuesto a la influencia del factor experimental, es decir aquellos equipos cuyo efecto varía en función de la prueba realizada. El grupo de control es aquel que no está sometido al tratamiento experimental, es decir aquellos equipos cuyo efecto será siempre el mismo, este concepto fue tomado de (Gutiérrez, 1992, pág. 122).

1.4.2. BENEFICIARIOS DE LA PROPUESTA

Las personas beneficiarias serán los estudiantes de la carrera de ingeniería eléctrica en la Universidad Politécnica Salesiana sede Guayaquil.

CAPÍTULO II FUNDAMENTOS TEÓRICOS

2.1. CONCEPTOS ELÉCTRICOS

2.1.1 CORRIENTE

Como concepto se pude definir que "la corriente que circula a través de un circuito es igual al voltaje aplicado al mismo dividido entre su resistencia total" (HARPER, 1989, pág. 19).

Ecuación 1 Corriente

 $I = \frac{V}{R}$

Fuente: Los autores

Dónde:

I= corriente en Amperes

V= Voltaje aplicado en Volts

R= Resistencia del circuito en Ohms

2.1.2 VOLTAJE

"El voltaje aplicado a un circuito es igual a la corriente que circula a través del mismo, multiplicada por la resistencia del circuito" (HARPER, 1989, pág. 19).

Ecuación 2 Voltaje

V=I*R

Fuente: Los autores

2.1.3 RESISTENCIA

La resistencia de un circuito es igual al voltaje aplicado al circuito dividido entre la corriente que circula por el mismo.

Ecuación 3 Resistencia

 $R = \frac{V}{I}$

Fuente: Los autores

Las tres ecuaciones anteriores que relacionan al voltaje aplicado, con la

resistencia del circuito y la corriente que circula por el mismo fueron

establecidas por GEORGE OHM en 1827 y se conocen como "LA LEY DE

OHM".

En el caso de los circuitos eléctricos, la resistencia eléctrica está constituida

por la propia resistencia del conductor y la resistencia de la carga o elemento

al cual se alimenta. (HARPER, 1989, pág. 20)

2.1.4 FACTOR DE POTENCIA

En un circuito en serie que contiene resistencia e inductancia, o también

resistencia, inductancia y capacitancia, la oposición al paso de la corriente

está dada por la impedancia $Z = \sqrt{r^2 + x^2}$, la corriente que circula es I = V/Z

y la potencia en el circuito es P = V * I, pero la única parte que consume

potencia es la resistencia y su valor esta dado como $P = R * I^2$ que se conoce

como la potencia real consumida por el circuito.

Si se trata de un circuito formado por resistencia e inductancia, la onda de

corriente se encuentra fuera de fase con respecto al voltaje atrasándose un

ángulo entre 0 y 90°, en tal circuito la potencia promedio no es simplemente

P=V*I, se calcula esta potencia de acuerdo con la fórmula.

Ecuación 4 Potencia eléctrica

P=V*I* cos Ø

Fuente: Los autores

Siendo ø el ángulo que la onda de corriente se atrasa con respecto al voltaje,

el coseno de este ángulo se conoce como el factor de potencia del circuito, y

7

es una medida de la cantidad de potencia que es consumida por la resistencia

del circuito, tomando en consideración el efecto de la inductancia del circuito.

En otras palabras, el factor de potencia determina que porción de la potencia

P es la potencia real.

El valor del factor de potencia varía entre 0 y 1, es 1 cuando la carga es

puramente resistiva y 0 cuando la carga es puramente inductiva. (HARPER,

1989, pág. 50)

2.1.5 POTENCIA

La potencia eléctrica se designa comúnmente con las unidades Watt o

Kilowatt, el watt es la medida de la capacidad para desarrollar un trabajo

eléctrico, el Kilowatt es igual a 1000 watts y cuando se habla de la "Potencia

Eléctrica", se hace referencia por lo general a watts o Kilowatts de la carga de

un circuito. La potencia se puede expresar como P= V*I (Watts). (HARPER,

1989, pág. 28)

2.1.6 FRECUENCIA

Como concepto de frecuencia se puede indicar que es número de ciclos completos de

variación senoidal por unidad de tiempo.

En el estudio de la máquina elemental de dos polo, una vuelta completa de la

espira, genera un ciclo en la fuerza electromotriz inducida. El tiempo que

tarde en producirse dicho ciclo se denomina período y se expresa en

segundos. Así el número de ciclos por segundos se denomina frecuencia y se

mide en hercios. De esta forma se puede establecer una relación entre las dos

magnitudes. (Martín Castillo, 2012, pág. 173)

Ecuación 5 Frecuencia

 $T = \frac{1}{\epsilon}$

Fuente: Los autores

8

2.2. MOTORES ELÉCTRICOS.

2.2.1. PRINCIPIOS DE FUNCIONAMIENTO.

Primeramente se exponen los principios de funcionamiento de los motores eléctricos.

"El funcionamiento de todas las máquinas eléctricas está sujeto a las mismas leyes

fundamentales. Desde el punto de vista electromagnético es suficiente con la

comprensión de cuatro leyes para entender el comportamiento de las máquinas

eléctricas" (Liwschitz & Whipple, 1981, pág. 27). Estas leyes son:

Ley de inducción de Faraday.

Esta ley establece que una fem inducida en un circuito cerrado es igual a la

razón de decremento del flujo Ø entrelazado en un circuito cerrado.

Ecuación 6 Ley de inducción de Faraday (a)

 $e=-\frac{d\emptyset}{dt}*10^{-8}[volt]$

Fuente: Los autores

Cuando un conductor se mueve a velocidad v, con relación a un flujo

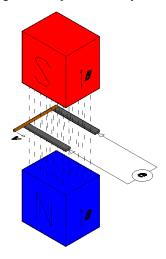
constante en el tiempo, la ley de Faraday refiere;

Ecuación 7 Ley de inducción de Faraday (b)

 $e=-B*l*v*10^{-8}$ [volt]

Fuente: Los autores

Siendo \boldsymbol{B} la densidad de flujo en gausses y \boldsymbol{l} la longitud del conductor dentro


del flujo. El signo menos refiere que la dirección de e es opuesta a las

direcciones de **Blv**, cuando estas son positivas en un sistema de coordenadas.

(Liwschitz & Whipple, 1981, pág. 28)

9

Figura 1 Ley de Faraday

Fuente: Los autores

Ley de Mallas de Kirchhoff

A continuación se describe la Ley de Mallas de Kirchhoff diciendo que "Esta ley establece que en cada malla de una red, la suma de todas las fems aplicadas e inducidas tomadas en consideración con los signos adecuados es igual a la suma de todas las caídas de tensión resistivas" (Liwschitz & Whipple, 1981, pág. 36).

Ecuación 8 Ley de Mallas de Kirchhoff

$$\sum (V+E) = \sum I*R$$

Fuente: Los autores

Ley de Ampere

Esta ley es importante pues "define la intensidad de campo magnético H_l en un medio dl, de un circuito magnético cerrado, formado por N espiras donde circula una corriente I, entrelazadas por un flujo magnético" (Liwschitz & Whipple, 1981, pág. 37).

Ecuación 9 Ley de Ampere

$$\oint H_l *dl = N*I$$

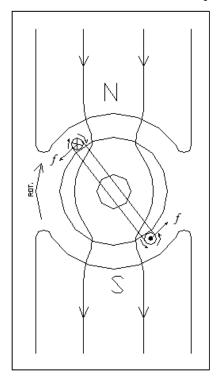
Fuente: Los autores

Figura 2 Flujo producido por un solenoide

Fuente: Los autores

Ley de Biot Savart

La ley de Biot Savart "define cuando un conductor con longitud $\mathbf{l_e}$ que conduce una corriente I está orientado propiamente en un campo magnético B se ejerce una fuerza sobre este" (Liwschitz & Whipple, 1981, pág. 42).


Ecuación 10 Ley de Biot Savart

f=8.85*10⁻⁸B*l_e*I lb

Fuente: Los autores

"Debido a la diferencia entre las permeabilidades del aire y hierro, las líneas de inducción en el entrehierro son perpendiculares al hierro, por lo tanto las fuerzas son tangenciales a la armadura. Las fuerzas en ambos lados actúan como un par que tiende a girar la bobina alrededor del eje de la armadura" (Liwschitz & Whipple, 1981, pág. 43).

Figura 3 Fuerza sobre una bobina de una máquina eléctrica

Fuente: Los autores.

2.2.2. CLASIFICACIÓN DE LOS MOTORES ELÉCTRICOS.

Los motores se clasifican en dos grupos específicamente según la tensión de alimentación, para mejor comprensión se puede observar la figura 4.

Para este ítem de clasificación de motores se enuncia únicamente los motores polifásicos de inducción.

Principio de operación de motor polifásico de inducción.

Un motor de inducción es sencillamente un transformador eléctrico cuyo circuito magnético está separado por un entrehierro en dos porciones con movimiento relativo, una que lleva el devanado primario y la otra, el secundario.

La corriente alterna que se alimenta al devanado primario desde un sistema de energía eléctrica, induce una corriente en oposición en el devanado secundario, cuando este último se pone en cortocircuito o se cierra a través de una impedancia externa. El movimiento relativo entre las estructuras primaria y secundaria se produce por las fuerzas electromagnéticas correspondientes a la energía transferida de esta manera a través del entrehierro por la inducción.

La característica esencial que distingue a la máquina de inducción de los otros tipos de motores eléctricos es que las corrientes secundarias se crean únicamente por la inducción, como en un transformador, en lugar de ser alimentadas por un excitador de corriente directa o alguna otra fuente externa de energía, como en las máquinas sincrónicas y de corriente directa.

Los motores de inducción se clasifican como de jaula de ardilla y de rotor devanado. Los devanados secundarios en los rotores de los motores de jaula de ardilla se arman a partir de barras conductoras puestas en cortocircuito por medio de anillos en sus extremos o se funden en su lugar con una aleación conductora.

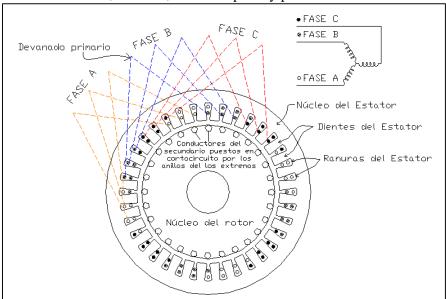


Figura 4. Sección del devanado del estator de un motor de inducción de jaula de ardilla, trifásico, de cuatro polos y paso 8/9

Fuente: Los autores

Los devanados secundarios de los motores de rotor devanado se bobinan con conductores discretos, con el mismo número de polos que el devanado primario del estator. Los devanados del rotor se terminan en anillos colectores que se encuentran en la flecha del motor. Los devanados se pueden poner en cortocircuito mediante escobillas que se apoyan sobre los anillos colectores o se pueden conectar a resistores o a convertidores de estado sólido, para el arranque y el control de la velocidad. (Fink & Wayne Beaty, 1996, págs. 20-23,20-24)

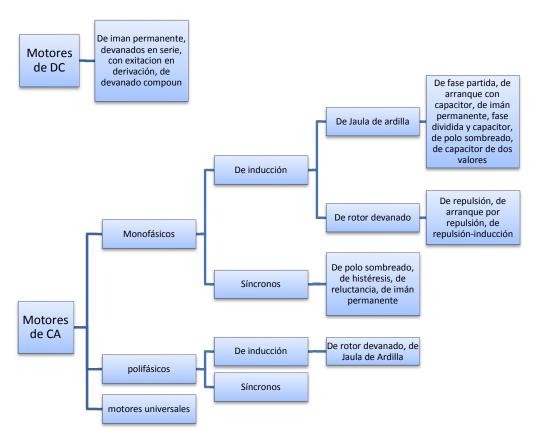


Figura 5 Clasificación de motores de AC y DC

Fuente: Los autores

Análisis de los motores de inducción.

Los motores de inducción se analizan por tres métodos:

1. Diagrama circular

- 2. Circuito equivalente
- 3. Máquina generalizada con circuito acoplado

Los dos primeros se aplican para condiciones de estado estable, el tercero se aplica para condiciones transitorias.

El diagrama circular resulta conveniente para visualizar el comportamiento global, pero es demasiado inexacto para los cálculos detallados en el diseño.

La corriente magnetizadora no es constante si no que disminuye con la carga, en virtud de la caída de impedancia primaria. Todas las constantes del circuito varían sobre el rango de operación por la saturación magnética y el efecto superficial.

El método del circuito equivalente predomina para el análisis y el diseño, en condiciones de estado estable. Las impedancias se pueden ajustar para adecuarse a las condiciones, en cada punto del cálculo.

Diagrama Circular. Las relaciones voltaje – corriente de la máquina polifásica de inducción se indican en forma aproximada por medio del circuito de la figura 6.

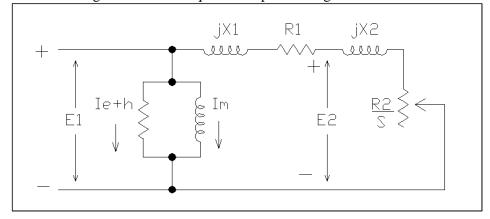


Figura 6 Circuito equivalente para el diagrama circular

Fuente: Los autores

La corriente magnetizadora I_M , proporcional al voltaje y atrasada 90° en fase, es casí constante sobre el rango de operación, en tanto que la corriente de carga varía en forma inversa con la suma de las impedancias primaria y secundaria. Conforme aumenta el deslizamiento s, tanto la corriente de carga como su ángulo de atraso respecto al voltaje aumentan. (Fink & Wayne Beaty, 1996, págs. 20-28,20-29)

Circuito equivalente.

En la figura 7 se muestra el circuito del motor polifásico que se suele emplear para el trabajo exacto, las ventajas de este circuito sobre el método del diagrama circular son que facilita la obtención de fórmulas sencillas para calcular el par, el facto de potencia y otras características del motor y que permite tomar en cuenta con rapidez los cambios en la impedancia debido a la saturación o jaulas de ardillas múltiples. (Fink & Wayne Beaty, 1996, págs. 20-29)

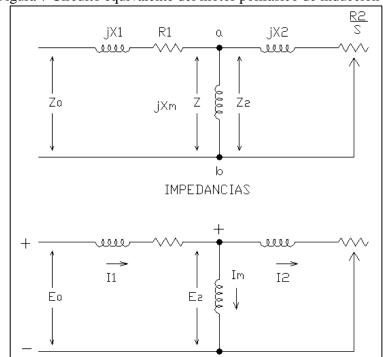


Figura 7 Circuito equivalente del motor polifásico de inducción

Tabla 1 Definiciones de las constantes del circuito equivalente

E	W. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
E_0	Voltaje aplicado (volts) = voltaje de línea + $\sqrt{3}$, Para motores trifásicos
I_1	Corriente primaria (amperes)
I_2	Corriente secundaria en términos de la primaria (amperes)
I_{M}	Corriente de magnetización (amperes)
R_1	Resistencia primaria (ohms)
R_2	Resistencia secundaria en términos de la primaria (ohms)
R_0	Resistencia en las terminales primarias (ohms)
X_1	Reactancia primaria de dispersión (ohms)
X_2	Reactancia secundaria de dispersión (ohms)
X_0	Reactancia a las terminales primarias (ohms)
X_{M}	Reactancia de magnetización (ohms)
Z_1	Impedancia primaria (ohms)
Z_2^-	Impedancia secundaria (ohms)
$\boldsymbol{Z_0}$	Impedancia en las terminales primarias (ohms)
Z	Impedancia combinada, secundaria y de magnetización (ohms)
S	Deslizamiento (expresada como una fracción de la velocidad sincrónica.
N	Velocidad sincrónica (revoluciones por minuto)
m	Número de fases
f	Frecuencia nominal (hertz)
f_t	Frecuencia usada en prueba de rotor bloqueado
T	Par (pie-libras)
W_0	Entrada de watts
W_H	Perdida en el núcleo (watts)
W_F	Fricción mecánica y del viento (watts)
W_{RL}	Entrada de watts a la luz indicadora
W_s	Perdida por cargas dispersas (watts)

Nota: A menos que se indique otra cosa, todas las cantidades, con excepción de los watts, par y salida de potencia, son por fase, para los motores bifásicos, y por fase para los motores trifásicos.

El examen del circuito revela varias relaciones sencillas, las cuales resultan útiles para fines de estimación. La corriente máxima ocurre en la parada y es algo menor que **E/X**.

El par máximo se presenta cuando $\mathbf{s=R_2/X}$, aproximadamente, en cuyo punto la corriente es más o menos el 70% de la corriente en la parada. De donde, el par máximo es poco más o menos igual a $\mathbf{s=E^2/2X}$. Esto da lugar a la regla básica de que el porcentaje máximo del par de un motor polifásico de bajo

deslizamiento, a un voltaje constante aplicado, es alrededor de la mitad del

porcentaje de la corriente de arranque.

Al seleccionar el valor de R_2 , se puede fijar el deslizamiento al que se

presenta el par máximo en cualquier valor deseado. El propio valor del par

máximo resulta afectado, no por los cambios en R_2 , si no solo por cambios

en, \mathbf{X} y, en pequeña cuantía, por cambios en $\mathbf{X}_{\mathbf{M}}$.

Por lo común la reactancia magnetizadora X_M es ocho o más veces mayor que

 ${\bf X}$, en tanto que ${\bf R_1}$ y ${\bf R_2}$ suelen ser mucho menores que ${\bf X}$, excepto en el caso

de motores especiales diseñados para servicios con arranques frecuentes.

El circuito equivalente de la figura 7 indica que la potencia total P_{g1} ,

transferida a través del entrehierro desde el estator es:

Ecuación 11 Potencia transferida a través del entrehierro desde el estator

$$P_{g1} = m*I_2^2*\frac{R_2}{s}$$

Fuente: Los autores

Evidentemente, la pérdida total en el rotor es

Ecuación 12 Perdida en el cobre del rotor

Pcu=
$$m*I_2^2*R_2$$

Fuente: Los autores

Por lo tanto, la potencia mecánica interna P, desarrollada por el motor es

Ecuación 13 Potencia mecánica interna

P=P_{g1}-Perdida en el cobre del rotor

Fuente: Los autores

Ecuación 14 Despeje de fórmula de potencia mecánica

$$P = m^* I_2^{2^*} \frac{R_2}{s} - m^* I_2^{2^*} R_2$$

18

$$P = m*I_2^2*R_2*\frac{1-s}{s}$$

$$P = (1-s) * P_{g1}$$

Entonces, se ve que de la potencia total entregada al rotor, la fracción (1-s) se convierte en potencia mecánica y la fracción s se disipa como perdida en el cobre del circuito del rotor. La potencia mecánica interna por fase del estator es igual a la potencia absorbida por la resistencia $R_2 \frac{1-s}{s}$. Se obtener el par electromagnético interno T, correspondiente a la potencia interna P, al recordar que la potencia mecánica es igual al par multiplicado por la velocidad angular. De este modo, cuando ω_s es la velocidad angular sincrónica del rotor, en radianes mecánicos por segundo.

Ecuación 15 Par electromagnético $P=(1-s)*\omega_{s*}T$

Fuente: Los autores

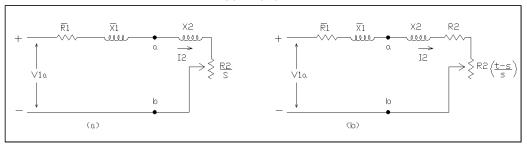
Con T en newton-metros, con la aplicación de la ecuación

Ecuación 16 Torque newton-metros

$$T = \frac{1}{\omega_s} * m * {I_2}^{2*} \frac{R_2}{s}$$

Fuente: Los autores

Para T en pie-libras y N, en revoluciones por minuto


Ecuación 17 Torque pie-libras

$$T = \frac{7.04}{N_s} * m * I_2^2 * \frac{R_2}{s}$$

Par y Potencia. Como lo enuncia (Fink & Wayne Beaty, 1996, págs. 20-31) se explica que el par y potencia:

Se obtiene una simplificación considerable con la aplicación del teorema de Thévenin de las redes al circuito equivalente de un motor de inducción.

Figura 8 Circuitos equivalentes del motor de inducción, simplificados por el teorema de Thévenin

Fuente: Los autores

El teorema de Thévenin permite el reemplazo de cualquier red de elementos lineales de circuito y fuentes de voltaje fasorial constante, según se observa desde dos terminales, por una sola fuente de voltaje fasorial **E**, en serie con una impedancia **Z**. El voltaje **E**, es el que aparece a través de las terminales **a** y **b** de la red origina, cuando estas terminales están en circuito abierto; la impedancia **Z**, es la que se observa desde las mismas terminales, cuando todas las fuentes de voltaje dentro de la red se ponen en corto circuito.

Para la aplicación al circuito equivalente del motor de inducción, los puntos **a** y **b**, se toman como los designados de esta manera en la figura 7. Entonces el circuito equivalente toma las formas dadas en la figura 8.

Por cuanto a lo que se refiere a los fenómenos a la derecha de los puntos \mathbf{a} y \mathbf{b} , los circuitos de las figuras 7 y 8 son idénticos, cuando el voltaje \mathbf{V}_{1a} y la impedancia $\mathbf{R}_1 + \mathbf{j} \mathbf{X}_1$ tienen los valores adecuados. Según el teorema de Thévenin, el voltaje de la fuente equivalente \mathbf{V}_{1a} es el voltaje que aparecería a través de los terminales \mathbf{a} y \mathbf{b} , de la figura 7, con los circuitos del rotor abiertos, y es:

Ecuación 18 Voltaje de la fuente equivalente

$$V_{1a} = E_0 - I_0(R_1 + jX_1) = E_0 \frac{jX_M}{R_1 + jX_{11}}$$

Fuente: Los autores

En donde I_M es la corriente de excitación con carga cero y X_{11} es la autorreactancia del estator por fase y es muy aproximadamente igual a la componente reactiva de la impedancia del motor con carga cero. Para la mayor parte de los motores de inducción, se tiene un error depreciable al depreciar la resistencia del estator en la ecuación de V_{1a} .

$$X_{11} = X_1 + X_M$$

La impedancia equivalente de Thévenin del estator, R_1+jX_1 , es la impedancia entre las terminales a y b de la figura 7, observada hacia la fuente en cortocircuito, y por lo tanto es

$$\overline{R_1} + \overline{jX_1} = R_1 + jX_1$$
 en paralelo con jX_M

Con base en el circuito equivalente de Thévenin de la figura 8 y la expresión del par $T = \frac{1}{\omega_s} m I_2^2 \frac{R_2}{s}$, se puede ver que

Ecuación 19 Expresión de Torque

$$T = \frac{1}{\omega_s} * \frac{m^* V_{1a}^2 * (R_2/s)}{(\overline{R_1} + R_2/s)^2 + (\overline{X_1} + X_2)^2}$$

Fuente: Los autores

El deslizamiento con el par máximo, s_{Tmax} , se obtienen al derivar la ecuación de par con respecto a s e igualar a cero:

Ecuación 20 Expresión de deslizamiento

$$s_{\text{Tmax}} = \frac{R_2}{\sqrt{\overline{R_1}^2 + (\overline{X_1} + X_2)^2}}$$

El par máximo correspondiente es

Ecuación 21 Par máximo

$$T_{\text{max}} = \frac{1}{\omega_{\text{s}}} \frac{0.5 \text{m V}_{1\text{a}}^{2}}{\overline{R_{1}} + \sqrt{{R_{1}}^{2} + (\overline{X_{1}} + X_{2})^{2}}}$$

Fuente: Los autores

2.2.3. CONEXIONES DE MOTORES TRIFÁSICOS.

El autor (Rosenberg, 1985, pág. 135) enuncia las conexiones fundamentales de los motores trifásicos:

Los motores eléctricos trifásicos están provistos de un arrollamiento estatórico en doble capa, es decir, con igual número de bobinas que de ranuras. Las bobinas van conectadas formando tres arrollamientos independientes denominados fases, las cuales se designan generalmente con las letras A, B, C (fase A, fase B, fase C). Las tres fases están conectadas siempre en estrella o en triángulo.

Conexión estrella: Se podría definir como concepto de la conexión estrella lo que describe (Rosenberg, 1985, pág. 135):

En la conexión estrella, los finales de las fases están unidos conjuntamente en un punto común (centro de estrella), y cada principio de fase va conectado a una de las líneas de alimentación de la red, en la figura 9. El nombre de estrella con que se designa dicha conexión es debido a la forma que adoptan las fases en el esquema de las misma, y se representa abreviadamente por el símbolo **Y**. (Robert Rosenberg, 1985, P135).

Red
Trifásica

final de C
FASE C

principio de B

principio de B

Figura 9 Esquema de la conexión en estrella

Conexión triángulo: Se podría definir como concepto de la conexión triángulo lo que describe (Rosenberg, 1985, pág. 136):

La conexión es en triángulo cuando el final de cada fase está unido al principio de la siguiente. En el esquema de la figura 10, que muestra esta conexión se aprecia que el final de la fase A esta unido al principio de la fase B, y el final de la fase B al principio de la fase C, y el final de la fase C al principio de la fase A. De cada punto de unión o vértice parte una conexión hacia la red. También se habría obtenido una conexión en triángulo uniendo el final de la fase A al principio de la fase C, el final de la fase C al principio de la fase B, y el final de la fase B al principio de la fase A. El examen de la figura 10 justifica el nombre dado a esta conexión, que abreviadamente se representa por el símbolo Δ .

principio de A final de C RedTrifásica FASE A final principio FASE B de A de C Ď Ò principio de B final de B

Figura 10 Esquema de la conexión en triángulo

Conexión estrella serie: Se define el concepto de la conexión estrella serie desde el resumen de (Rosenberg, 1985, pág. 139):

El diagrama esquemático de la figura 11 permite poner más claramente de manifiesto la clase y las características de conexión del motor considerado hasta ahora.

El número de fases y la disposición de las mismas con un extremo común o centro de estrella, muestran inmediatamente que estamos en presencia de un devanado trifásico conectado en estrella.

Puesto que cada fase está integrada por cuatro grupos de bobinas, se trata de un devanado de cuatro polos, es decir, tetrapolar.

Finalmente, el diagrama indica también que los grupos de cada fase están conectados en serie entre sí. En resumen se trata de un motor trifásico tetrapolar conectado en estrella / serie (1 Y).

Figura 11 Diagrama esquemático de un motor trifásico tetrapolar

Conexión triángulo serie.

Examinemos ahora el diagrama esquemático reproducido en la figura 12. Puesto que no existe en el ningún centro de estrella y las tres fases están unidas de modo que al final de la A coincida con el principio de la C, el final de la C con el principio de la B, y así sucesivamente, no cabe duda que la conexión es en triángulo.

Observando además que cada fase está formada por cuatro grupos de bobinas, y que dichos grupos se hallan unidos en serie entre sí, se podrá concluir que el diagrama corresponde ahora a un devanado trifásico tetrapolar conectado en triángulo / serie (1 Δ). (Rosenberg, 1985, pág. 139)

Grupos en serie

FASE A

FASE B

FASE C

Figura 12 Diagrama esquemático de un motor trifásico tetrapolar conectado en triángulo/ serie

Conexiones en paralelo.

Muchos motores trifásicos están concebidos de manera que cada una de sus fases este subdividida en varias ramas o derivaciones iguales, unidas entre sí en paralelo. Según el número de derivaciones existentes en cada fase se tiene una conexión de dos ramas (o doble paralelo), tres ramas (o triple paralelo), etc.

En las figuras 13 y 14 se han representado, a título comparativo, los diagramas esquemáticos de una conexión en estrella / serie (**1Y**) y de una conexión en estrella / doble paralelo (**2Y**), respectivamente. Una y otra constan del mismo número de grupos por fase, pero la disposición de los mismos es tal, que mientras la primera no ofrece más que solo una vía al paso de la corriente, la segunda presenta dos. (Rosenberg, 1985, pág. 141)

Figura 13 Diagrama esquemático de un motor trifásico tetrapolar conectado en estrella/ serie

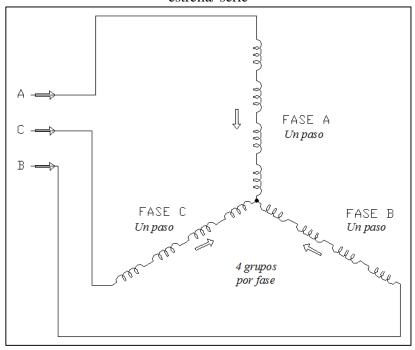
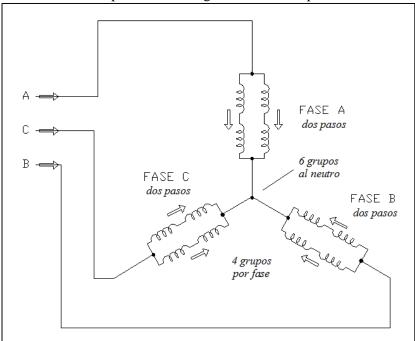
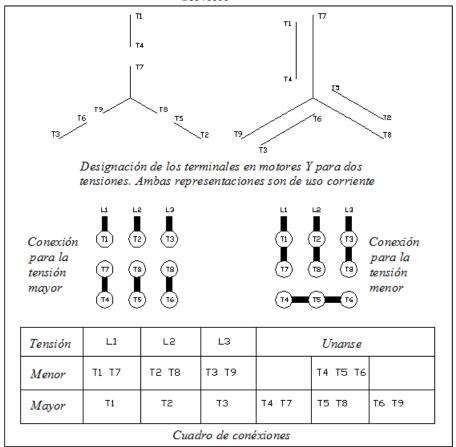



Figura 14 Diagrama esquemático de un motor trifásico tetrapolar conectado en estrella/ doble paralelo. Cada fase ofrece vías al paso de la corriente, puesto que está formada por dos ramas iguales unidas en paralelo.

Motores trifásicos para doble tensión de servicio.

Para este tema se expone lo que indica (Rosenberg, 1985, pág. 144):


La mayoría de los motores trifásicos de tamaño pequeño y mediano se construyen de manera que puedan conectarse en dos tensiones de alimentación distintas. La finalidad de ello es hacer posible el empleo de un mismo motor en localidades con red de suministro eléctrico a diferente tensión.

Por regla general, la unión conveniente de los terminales exteriores del motor permite conseguir una conexión en serie de los arrollamientos parciales (correspondiente a la tensión de servicio mayor) o una conexión en doble paralelo de los mismos es decir correspondiente a la tensión de servicio menor.

Motores conectados en estrella.

Casí todos los motores trifásicos previstos para doble tensión de servicio llevan nueve terminales exteriores que se identifican con las designaciones normalizadas de T1 hasta T9. La figura 15 reproduce estas designaciones, aplicadas al caso de motores conectados en estrella. En esta clase de motores se forman cuatro circuitos: tres con dos terminales y uno con tres terminales.

Figura 15 Designación y conexión de terminales en motores Y para doble tensión de servicio

Obsérvese que cada fase se halla subdividida en dos mitades, las cuales se unen en serie o en paralelo según que alimentación sea con la tensión mayor o con la tensión menor. En el primer caso se procede del modo siguiente como se observa en la figura 16: primero se empalman los terminales T6 y T9, luego los terminales T4 y T7, y finalmente los terminales T5 y T8. Una vez encintados dichos empalmes, se conectan los terminales T1, T2 y T3 a las respectivas líneas L1, L2 y L3 de la red trifásica de alimentación. En el segundo caso se procede del modo indicado en la figura 17: primero se une el terminal T7 al T1, y este a la línea L1; luego el terminal T8 al T2, y este a la línea L2; a continuación, el terminal T3 al T9, y este a la línea L3; finalmente se enlazan los terminales T4, T5, T6 para formar un centro de estrella exterior. (Rosenberg, 1985, pág. 145)

Figura 16 Diagrama esquemático de un motor trifásico tetrapolar para doble tensión de servicio, conectado en estrella. Las dos mitades de cada fase están unidas en serie. El motor queda así dispuesto a trabajar a la tensión mayor

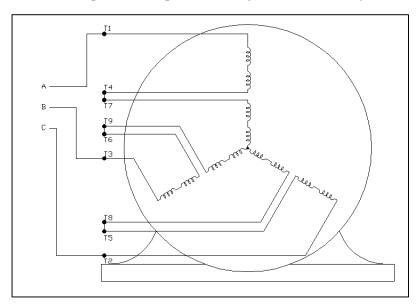
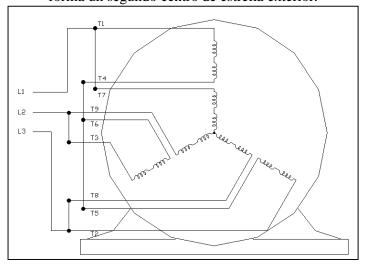



Figura 17 Diagrama esquemático del mismo motor representado en la figura 15. Las dos mitades de cada fase están ahora unidas en paralelo, para que el motor pueda funcionar a la tensión menor. Obsérvese que la conexión conjunta de T4, T5 y T6 forma un segundo centro de estrella exterior.

Motores conectados en triángulo.

La figura 18 reproduce las designaciones normalizadas T1...T9 de los nueve terminales exteriores que llevan los motores trifásicos para doble tensión de servicio, en caso de conexión en triángulo. Nótese que los circuitos formados son ahora solamente tres, provistos cada uno de tres terminales.

Para alimentar el motor a la tensión mayor es preciso unir las dos mitades de cada fase en serie, como indica el diagrama esquemático de la figura 19. Esto se lleva a término empalmando sucesivamente los terminales T4 y T7, T5 y T8, T6 y T9; luego se conectan los terminales T1, T2 y T3 a las respectivas líneas L1, l2, y L3 de la red (Robert Rosenberg, 1985, P145).

Figura 18 Designación y conexión de terminales en motores Δ para doble tensión de servicio

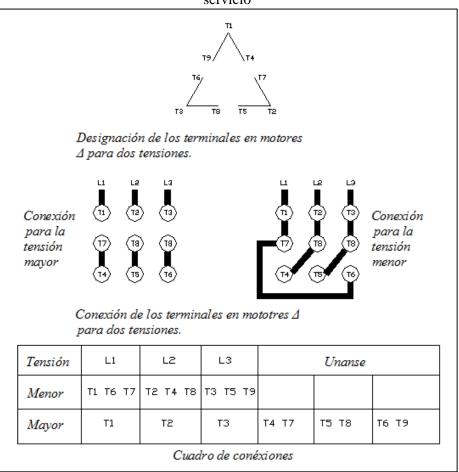
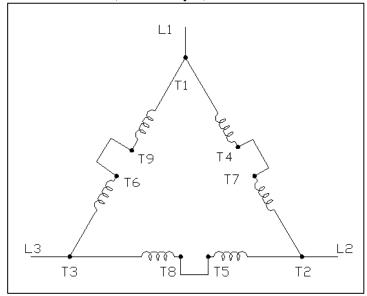
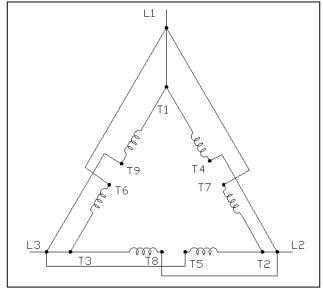
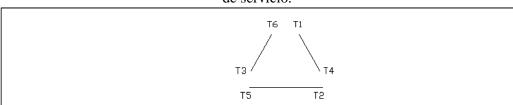




Figura 19 Diagrama esquemático de un motor trifásico para doble tensión de servicio, conectado en triángulo. Las dos mitades de cada fase están unidas en serie (tensión mayor).

Para alimentar el motor a la tensión menor se procede según el diagrama de la Figura 20 basta conectar los terminales T1, T7 y T6 a la línea L1, los terminales T2, T4 y T8 a la linea L2, y los terminales T3, T5 y T9 a la línea L3. (Rosenberg, 1985, pág. 146)


Figura 20 Diagrama esquemático del mismo motor representado en la figura 19. Las dos mitades de cada fase están unidas en paralelo (tensión menor).

Motores conectados en estrella / triángulo. Ciertos motores para dos tensiones de servicio tienen los terminales provistos de modo que el arrollamiento entero pueda conectarse en estrella (tensión mayor) o bien triángulo (tensión menor). En tal caso las tensiones mayor y menor deben hallarse en la relación $\sqrt{3}$: 1 (en vez de 2:1, como en los demás tipos).

La figura 21 indica la designación normalizada de los terminales y la manera de unirlos entre sí para conseguir una u otra clase de conexión. Obsérvese que ahora son seis terminales que salen al exterior, dos de cada fase. (Robert Rosenberg, 1985, P146)

Figura 21 Designación y conexión de terminales en motores Y/Δ para doble tensión de servicio.

Designación de los terminales en motores Δ para dos tensiones.

Tensión	L1	L2	L3	Unanse
Menor	T1	Т2	Т3	T4 T5 T6
Mayor	T1 T6	T2 T4	T3 T5	

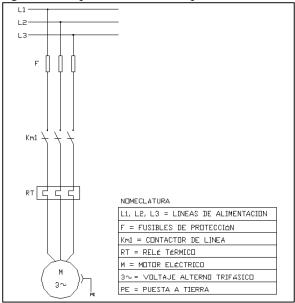
Cuadro de conéxiones

Fuente: Los autores

2.2.4. ESQUEMAS DE ARRANQUE PARA MOTORES.

Los arranques para motores eléctricos polifásicos, son seleccionados acorde al sistema de aplicación que se desee emplear considerando las ventajas y desventajas que el mismo esquema ofrece.

Entre los esquemas más usados tenemos: arranque directo; arranque estrellatriángulo; arranque mediante autotransformador; arranque mediante resistencia estatóricas; y arranque de motores mediante arrancadores y variadores. Las características se la presentan acorde a la siguiente tabla de los arranques:


Tabla 2 Características de arranques

Tuola 2 Caracteristicas de arrançaes								
Características	Arranque	Arranque	Arranque por	Arranque				
	directo	estrella-	autotransformador	rotórico				
		triángulo						
Intensidad de	4 a 8 In	1,2 a 2,5 In	1,5 a 2 In	1,5 a 2 In				
arranque								
Par de arranque	1,5 a 2 Cn	0,4 a 0,8 Cn	0,5 a 0,8 Cn	1,2 a 5 Cn				
Ventajas	Par de	Pequeña punta	Pequeña punta de	Buena				
	arranque	de arranque	arranque	relación par				
	elevado	_	_	intensidad				
Inconvenientes	Punta de	Pequeño par de	Pequeño par de	Coste				
	arranque muy	arranque	arranque	elevado				
	Elevada	•	1					
Aplicaciones	Motores	Motores con	Motores de gran	Arranques a				
	pequeños o con	arranque en	potencia	plena carga				
	amortiguación	vacío						
	del arranque							

Fuente: Los autores

Nota: Esta tabla contiene las características de los arranque de los motores extraída del libro como ser un buen profesional eléctrico.

Figura 22 Esquema de un arranque directo

NUMECLATURA

LL, L2, L3 = LINEAS DE ALIMENTACION

F = FUSIBLES DE PROTECCIÓN

KM1 = CONTACTOR DE LINEA

KM2 = CONTACTOR CONEXIÓN DELTA

KM2 = CONTACTOR CONEXIÓN DELTA

RT = RELÉ TÉRMICO

M = MOTOR ELECTRICO

3~ = VOLTAJE ALTERNO TRIFÁSICO

PE = PUESTA A TIERRA

Figura 23 Esquema de un arranque estrella-triángulo

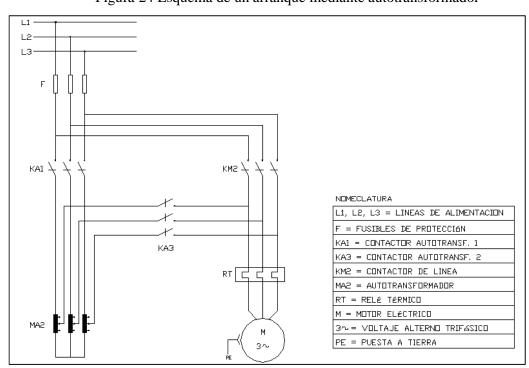


Figura 24 Esquema de un arranque mediante autotransformador

L1 · L3 F ка1 🕽 кма 🕹 NOMECLATURA L1, L2, L3 = LINEAS DE ALIMENTACION F = FUSIBLES DE PROTECCIÓN KA1 = CONTACTOR AUTOTRANSF. 1 КАЗ KA3 = CONTACTOR AUTOTRANSF. 2 KM2 = CONTACTOR DE LINEA MA2 = AUTOTRANSFORMADOR RT = RELÉ TÉRMICO M = MOTOR ELÉCTRICO 3~= VOLTAJE ALTERNO TRIFÁSICO PE = PUESTA A TIERRA

Figura 25 Esquema de un arranque mediante resistencias rotóricas

Arrancadores y variadores

Los inconvenientes más usuales motores el arranque directo de los motores asincrónicos son los siguientes:

- Incompatibilidad en el funcionamiento correcto del motor.
- Sacudidas mecánicas en el arranque.
- Imposibilidad de controlar la aceleración, la desaceleración y la velocidad.
- La corriente de arranque perturba otros sistemas.

Para eliminar estos inconvenientes se utilizan los arrancadores y variadores de velocidad.

Funciones de los arrancadores y variadores.

Como los expresan (Pérez Jiménez & Company Gironés, 2011, pág. 110) se indican las funciones de los arrancadores y variadores:

Aceleración controlada.

La aceleración de un motor se controla mediante una rampa de aceleración lineal con la que se puede incluso elegir el tiempo de aceleración.

Variación de velocidad.

Un variador no puede ser a su vez un regulador. En un sistema de mando de magnitudes con amplificación de potencia. La velocidad es un valor de tensión o corriente de entrada que se denominan consigna. A los márgenes de velocidad se le denomina velocidad nominal.

Regulación de velocidad.

Es un dispositivo con un sistema de mando con amplificación de potencia. El valor de la consigna es comparado con la señal de alimentación, permanentemente, computada por un generador de impulsos.

R S T NOMECLATURA

R, S, T = LINEAS DE ALIMENTACION

M = MOTOR ELÉCTRICO

CONSIGNA

Generador de impulsos

Figura 26 Esquema de método de regulación de velocidad

Fuente: Los autores

El detectar una variación de velocidad corrige la tensión y/o la frecuencia que llega al motor. Con la regulación, las perturbaciones de la red no influyen en la velocidad.

Control de desaceleración.

Independiente a la rampa lineal de aceleración se incorpora otra rampa lineal de desaceleración. Esta rampa es ajustable e tiempo para llegar a una velocidad intermediaria o nula desde la velocidad fijada.

 Si la desaceleración es más rápida que en rueda libre (parada natural del motor) se denomina frenado eléctrico. El motor desarrolla un par resistente adicional. El frenado eléctrico se efectúa reenviando energía a la red o disipándola mediante una resistencia de frenado.

Resistencia
ole frenado

NDMECLATURA

LI, L2, L3 = LINEAS DE ALIMENTACION
U, V, V = ALIMENTACION PARA MOTOR
Ol = BREAKER DE PROTECCIÓN
Knl = CONTACTOR DE LINEA
Al = VARIABOR DE FRECUENCIA
M = MOTOR ELECTRICO
3~ = VOLTAJE ALTERNO TRIFASICO
PE = PUESTA A TIERRA

Figura 27 Esquema de un frenado eléctrico mediante resistencia de frenado

Fuente: Los autores

 Si la desaceleración es más lenta que en rueda libre, el par motor será superior al par resistente para continuar moviendo la carga hasta la detención.

Inversión de giro.

La inversión de fases se realiza automáticamente por inversión de consigna o mediante una orden de lógica cableada.

Frenado.

Detener el motor sin controlar la rampa de desaceleración es posible mediante la aplicación de una corriente continua en el motor, realizando un frenado intermitente. En un variador de corriente continua se conectaría una resistencia en el inducido de motor.

NOMECLATURA

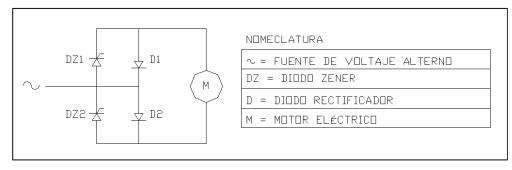
LI, L2, L3 = LINEAS DE ALIMENTACION
U, V, V = ALIMENTACION PARA MOTOR
Q1 = BREAKER DE PROTECCIÓN
Kn1 = CONTACTOR DE LINEA
Kn2 = CONTACTOR DE LINEA
Kn3 = CONTACTOR INVECCIÓN DE CC
TP = TRANSFORMADOR DE POTENCIAL
PR = PUENTE RECTIFICADOR
M = MOTOR ELECTRICO
3~ = VOLTAJE ALTERNO TRIFÁSICO
PE = PUESTA A TIERRA

Figura 28 Esquema de frenado mediante inyección de cc

Fuente: Los autores

Protecciones integradas.

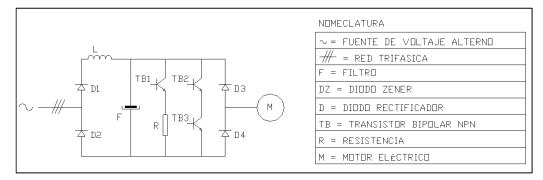
- Calentamiento excesivo del motor (protección térmica).
- Cortocircuitos y defectos francos.
- Sobretensiones y caídas de tensión.
- Desequilibrio de fases.
- Fallo de fases.


Clasificación

Sobre la clasificación de los variadores se describe lo que enuncia (Pérez Jiménez & Company Gironés, 2011, pág. 112):

Según el convertidor electrónico, los variadores se clasifican en unidireccionales (un sentido de rotación) o bidireccionales (ambos sentidos de rotación). Además se dividen en reversibles, cuando pueden recuperar la energía del motor en modo frenado retornándola a la red o disipándola mediante una resistencia de frenado, o pueden ser no reversibles.

- Variador unidireccional.
 Suele ser un variador no reversible cuyo uso común es:
 - Motor corriente continua: con un convertidor ca-cc con puentes de diodos y transistores.


Figura 29 Esquema de un convertidor con puente de diodos y tiristores

Fuente: Los autores

 Motor corriente alterna: con un convertidor indirecto con puente de diodos a la entrada seguido de un convertidor de frecuencia.

Figura 30 Esquema de un convertidor con puente de diodos y convertidor de frecuencia

 Variador bidireccional. Puede ser tanto un convertidor reversible como no reversible.

Estructura

Lo principal que se puede indicar sobre la estructura de los arrancadores y variadores es que se componen de dos módulos:

- Un módulo de control de funcionamiento
- Un módulo de potencia que alimenta el motor.

Para tener más claro sobre estos conceptos se expone lo que enuncia (Pérez Jiménez & Company Gironés, 2011, pág. 115):

Módulo de Control.

Todas las funciones se controlan a través de un microprocesador. Los límites de velocidad, de corriente, rampas y otras configuraciones se definen mediante un teclado integrado o mediante un dispositivo de programación lógica programable (PLC). Los parámetros, alarmas y defectos se visualizan mediante un display.

Módulo de Potencia.

Se constituye de componentes de:

- Componentes de potencia
- Sistemas de ventilación
- Controles para medidas de tensión y/o intensidades.

En la siguiente figura se muestra la estructura de un variador para motor asincrónico.

MODULO DE POTENCIA MODULO DE CONTROL Orden Ajuste Alimentacion Rectificador Encendido \Rightarrow Visulizacion Interface Convertidor de estado de Potencia Retorno Tratamiento Rele Informacion Memoria termica Interface de seguridad Seguridad de Retorno

Figura 31 Estructura de un variador

Fuente: Los autores

Variador para motor de corriente continua.

Para este tema de los variadores en motores de corriente continua se indica lo que exponen (Pérez Jiménez & Company Gironés, 2011, pág. 116):

Los variadores de velocidad se alimentan de una tensión de red alterna y suministran una tensión continua variable. Un puente de diodos permite alimentar el circuito de excitación.

El circuito de potencia es un rectificador controlado para poder suministrar una tensión variable.

Para los variadores alimentados mediante una batería de acumuladores el circuito de potencia varia la tensión de salida ajustando el tiempo de conducción.

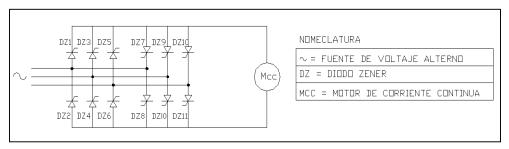
Regulación.

Consiste en mantener la velocidad exigida a pesar de variaciones en la entrada de red.

La consigna puede ser variable y se fija mediante una señal lógica digital o analógica.

Un bucle interno de regulación mantiene la corriente en unos rangos aceptables evitando así las sobrecargas.

La velocidad necesaria viene condicionada por los parámetros de las rampas al definir el tiempo de aceleración y de desaceleración. La velocidad se mide mediante un contador de impulsos y se compara la consigna, se corregirá la velocidad en caso de exceso o carencia


Inversión de giro y frenado por recuperación.

Para la inversión de giro se invierte la tensión al inducido mediante semiconductores, invirtiendo la polaridad de la salida.

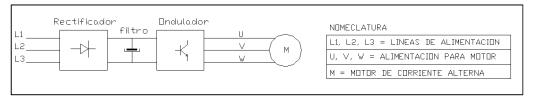
Cuando se realiza un frenado controlado hay que devolver la energía a la red. Mientras dura el frenado, el variador actúa como un ondulador que transmite potencia negativa.

Los variadores que realizan la inversión de giro y frenado por recuperación de energía llevan dos puentes conectados en antiparalelo. Cada puente invierte la tensión y la corriente.

Figura 32 Puentes inversores de tensión y corriente

Convertidores de frecuencia para motores asincrónicos.

En esta parte se profundiza sobre los convertidores de frecuencia para motores asíncronos y se toman los datos de (Pérez Jiménez & Company Gironés, 2011, págs. 117-120):


El convertidor suministra una alimentación de corriente alterna con tensión y frecuencia variable.

Para mantener un flujo constante que alimente correctamente un motor asincrónico es necesaria una variación simultánea de tensión y frecuencia en las mismas proporciones.

Constitución.

El circuito de potencia se constituye por un rectificador y un ondulador.

Figura 33 Convertidor de frecuencia para motores asíncronos. Constitución del circuito de potencia

El rectificador consta de un puente rectificador de diodos y de un circuito de condensadores que actúa como filtro. Un circuito limitador controla la corriente.

El ondulador, conectado a los condensadores del circuito de filtro, viene constituido por diodos IGBT y diodos asociados en freewheel.

Variación de velocidad.

La tensión de salida se genera mediante cortes de la tensión rectificada a través de impulsos y se obtiene una corriente alterna sinusoidal. La frecuencia de modulación ha de ser elevada para reducir el rizado de corriente pero sin aumentar las perdidas en el ondulador y en el puente de diodos.

Protecciones integradas.

El variador protege tanto el motor como a sí mismo.

Se desconecta en los siguientes casos:

- Calentamiento excesivo.
- Sobretensiones o subtensiones.
- Fallo de fase.

Regulador de tensión para motor asincrónico.

Solamente se puede utilizar en motores asincrónicos de anillos rozantes. Se utiliza como arrancador ralentizador progresivo, limita la corriente de conexión y las sacudidas mecánicas. El principio de funcionamiento consiste en reducir el par motor reduciendo la tensión, equilibra el par resistente con la velocidad. En el caso de existir deslizamiento, las pérdidas en el motor son proporcionales al par resistente. Existen tres tipos de arrancadores:

- Con una fase controlada por pequeña potencia.
- Con dos fases controladas por pequeña potencia.
- Con las tres fases directas.

Consta de dos tiristores en oposición. La velocidad varia modificando el tiempo de conducción de estos tiristores durante cada semiperíodo.

DZ1
DZ2
DZ3
DZ3
DZ4
DZ4
DZ5
DZ5
M = MOTOR ELÉCTRICO

Figura 34 Esquema regulador de tensión

Fuente: Los autores

Inversión de sentido de giro y frenado.

La inversión se efectúa mediante la inversión de fases de entrada al arrancador. El frenado se realiza a contracorriente, tal y como se muestra en el esquema siguiente, y la energía se disipa en el rotor del motor.

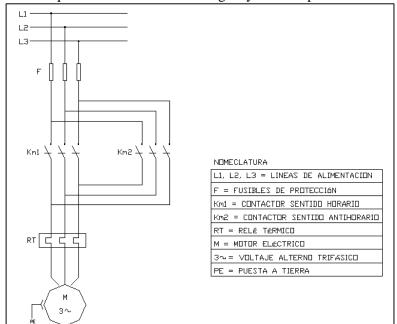


Figura 35 Esquema de una inversión de giro y frenado por contracorriente

Frenado por inyección de CC.

Se puede realizar un frenado por inyección de corriente continua usando la etapa de salida del arrancador como rectificador suministrando una cc en los arrollamientos del motor.

2.3. DISPOSITIVOS ELÉCTRICOS

2.3.1 CONTACTOR

Se señala el concepto del dispositivo utilizado en el banco:

El contactor es un dispositivo muy utilizado en los sistemas de automatismo. Se basa en el cierre de contactos por medio de la fuerza magnética de un electroimán, al aplicar corriente a la bobina, el núcleo se magnetiza y se convierte en imán y atrae una parte móvil del núcleo (armadura) que puede accionar un contacto o varios. (Donate, 1999, pág. 61)

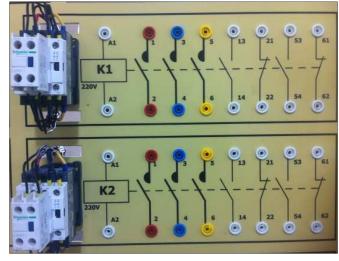


Figura 36 Vista de contactores

Fuente: Los autores

2.3.2 RELÉ TÉRMICO

Se señala el concepto del dispositivo en el banco:

Los relés térmicos cumplen la misión de proteger los motores y transformadores contra calentamientos excesivos debido a intensidades supriores a la de su servicio.

El relé térmico consta de dos partes fundamentales:

Laminas bimetálicas: Que son calentadas por la corriente principal del circuito directamente o a través de un arrollamiento de calefacción.

Contactos auxiliares: Que situados en el circuito de alimentación de la bobina del contactor (circuito de mando) efectuando la desconexión del contactor cuando se produce el disparo del relé. (Gutiérrez Colomer, Sánchez Braceli, García Mari, & Blaise-Ombrecht, 2003, pág. 105)

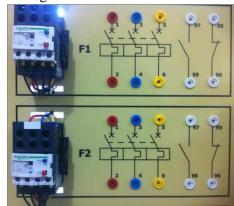
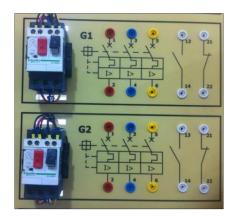


Figura 37 Vista de relé térmico

Fuente: Los autores

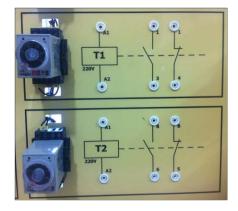

2.3.3 GUARDAMOTOR

Se señala el concepto del dispositivo utilizada en el banco:

Es un componente eléctrico que protege a los motores en el arranque directo. Se trata de un interruptor automático cuya característica de disparo es similar a la de los relés térmicos. La calibración de los térmicos depende de la intensidad de arranque del motor eléctrico. El disparo se produce también por falta de fase. El guarda motor reemplaza al conjunto de térmicos-fusibles. Si bien estas cualidades de protección se puede reunir en un solo aparato. Tiene

una limitada capacidad de ruptura, que impide ser colocada en cualquier instalación para motores eléctricos. (Calloni, 2003, pág. 159)

Figura 38 Vista de guardamotor


Fuente: Los autores

2.3.4 TEMPORIZADORES

Se señala el concepto del dispositivo utilizado en el banco:

Los temporizadores electrónicos son relés que incorporan un tiempo de retardo antes o después del encendido o apagado, los temporizadores de retardo (on delay y off delay). El primero inserta un tiempo de retardo entre la aplicación de una señal y el resultado de salida del relé. En el segundo caso, se puede dar un tiempo de salida determinado a partir solamente de la entrada de un impulso de energía. (Hyde, Regué, & Cuspinera, 1997, pág. 85)

Figura 39 Vista de temporizadores

2.3.5 PLC

Se señala el concepto del dispositivo utilizado en el banco:

La NEMA (National Electrical Manofacturers Association), definió al controlador lógico programable como un aparato electrónico digital que usa una memoria programable para almacenar internamente instrucciones para implementar funciones específicas, como lógicas, secuencia, sincronización, conteo y operaciones aritméticas para controlar, a través de módulos digitales o analógicos de entrada y salida, diversas clases de máquinas o procesos. (Kalpakjian & Schmid, 2002, pág. 1029)

ALIMENTACION 120-340 VAC

L1 N(13)

DE 11M .0 .1 .2 .3 .4 .5 .5 .2

L4 N .0 .1 .2 .3 .2 .4 .5

SALIDA
2M VOC DO 11 .0 .1 .2 .3 .2 .4 .5

ENTRADA ANALOGICH: 9-18 V

Figura 40 Vista de controlador lógico programable

Fuente: Los autores

2.3.6 DISYUNTOR

Se puede dar a conocer una definición de "un disyuntor que es un dispositivo capaz de proteger frente a cortocircuitos y/o sobrecargas; los disyuntores magnéticos protegen frente a cortocircuitos y disyuntores magneto térmicos o guarda motores protegen frente a cortocircuitos y sobrecargas" (Gallardo Vázquez, 2013, pág. 128).

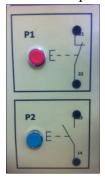


Figura 41 Vista de disyuntor

2.3.7 PULSADORES DE PARO Y MARCHA

Se pude indicar como definición del dispositivo que es un "elemento con varios contactos (NA o NC), según su tipo su función es invertir el estado inicial de los mismos" (Casals Torrens, 2010, pág. 55).

Figura 42 Vista de pulsadores

Fuente: Los autores

2.3.8 LAMPARAS DE SEÑALIZACIÓN

Se puede indicar como definición del dispositivo que son aquellos que "permiten conocer si un determinado elemento o circuito está activado" (Casals Torrens, 2010, pág. 55)

Figura 43 Vista de lámparas de señalización

Fuente: Los autores

2.3.9 SELECTOR

Se afirma que un selector "permite abrir o cerrar un contacto normalmente abierto o cerrado de acuerdo a la selección escogida" (Casals Torrens, 2010, pág. 55).

Figura 44 Vista de selector

2.3.10 TRANSFORMADORES DE CORRIENTE

Se conoce como "transformador de corriente a aquel cuya función principal es cambiar el valor de la corriente de uno más o menos elevado a otro con el cual se pueden alimentar instrumentos de medición, control o protección, como amperímetros, wáttmetros, instrumentos registradores, relevadores de sobrecorriente, etcétera" (Harper G. E., 2006, pág. 113).

Figura 45 Vista de transformadores de corriente

Fuente: Los autores

2.3.11 VARIADORES DE FRECUENCIA

Un variador de frecuencia es un dispositivo de electrónica de potencia, que como su propio nombre dice, es capaz de modificar la frecuencia en hercios de la alimentación de un motor.

Los variadores de frecuencia se utilizan con máquinas convencionales, que no necesitan ningún devanado especial.

Trabajan entre una frecuencia mínima y una máxima, pudiéndose regular en todo el rango con suma facilidad.

Los variadores disponen de un modo de funcionamiento de supervisión que permite observar algunos de los parámetros y magnitudes eléctricas cuando el motor está en marcha, como: tensión en bornes del motor, velocidad estimada, estado térmico de variador, corriente consumida, tensión de la red de alimentación, etc. (Martín & García, 2009, pág. 211)

Figura 46 Vista de variador

2.3.12 VARIAC

De acuerdo a lo encontrado en (SirioS.A., 2011) indica que un transformador variable también conocido como variac, es un autotransformador de voltaje continuo y ajustable que tiene una escobilla montada sobre un conmutador que se desplaza sobre el devanado de forma manual o motorizada. La rotación del conmutador ofrece un voltaje de salida que va desde cero hasta el voltaje de línea o por encima de este.

Figura 47 Vista de variac

2.3.13 MEDIDOR DE PARÁMETROS ELÉCTRICOS

En el banco se han instalado equipos medidores de parámetros eléctricos, estos dispositivos permiten obtener la medición eléctrica en la tensión y la corriente que circula por los conductores. Estas mediciones direccionan a tener los valores de potencia, energía, factor de potencia, etc.

Medición de tensión

Con una tensión reducida, el dispositivo de medición mide directamente la tensión.

Medición de corriente

La medición de corriente se lleva a cabo mediante los transformadores de corriente divididos o de núcleo cerrado situados alrededor de los conductores de fase o neutros según convenga. En función de la precisión requerida para la medición.

MEDIDOR DE PARAMETROS # 1

Figura 48 Vista de Medidor de parámetros

Fuente: Los autores

2.3.14 RELÉS DE INTERFAZ ENCHUFABLES

Como se indica en el catálogo del fabricante (Siemens, 2015) estos equipos son elementos acopladores que sirven para unir señales procedentes de los equipos y ser transmitidas a unidades de mando. Los relés son enchufables, lo que permite sustituirlos al final de su ciclo de vida sin necesidad de soltar el cableado.

Para que sea más fácil puentear las señales, cada borne es puenteable utilizando un peine externo al efecto.

Beneficios:

- Acopladores de zócalo enchufables con bornes por resorte, 6,2 mm de ancho
- Rápida sustitución con el cableado independiente (relés enchufables)
- Aparatos completos probados → menor tiempo de montaje
- Pueden suministrarse relés individuales como componentes
- Se accede a la entrada del conductor y a las conexiones desde el lado frontal. Esto acorta el tiempo de cableado y reduce los errores durante el mismo.
- Puenteo de tensión de alimentación y señales de mando con peine de conexión de 16 polos
- Placa de separación galvánica para aislar tensiones diferentes de aparatos próximos
- Protección de inversión de polaridad y diodo supresor CEM integrados
- Estado de funcionamiento del relés de interfaz (acoplador a relé). Claramente visible por el LED amarillo
- Separación segura según IEC 61140
- Variantes con contactos chapados en oro endurecido, logrando una gran fiabilidad de contacto
- Disponibles versiones para 230 V AC/DC

Figura 49 Relé de Interfaz

2.3.15 LOGO

De acuerdo como indica (Álvarez Pulido, 2004) un contador lógico es aquel que realiza las funciones lógicas, combinacionales y secuenciales, mediante la programación adecuada introducida a través de las teclas que dispone el equipo en su parte frontal o con la ayuda de un PC.

Figura 50 Equipo Logo

Fuente: Los autores

Existen dos divisiones para la clasificación de los controladores lógicos:

- Los controladores lógicos con funciones lógicas definidas en el equipo (LOGO).
- Los controladores lógicos con diagrama de contacto.

Los controladores lógicos, están compuestos de:

- Fuente de alimentación.
- Unidad de operación y visualización.
- Entradas y salidas.
- CPU.
- Interfaz para la conexión a PC y módulos de programa.

CAPÍTULO III DISEÑO Y CONSTRUCCIÓN DEL BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE.

3.1. SECUENCIA DE CONSTRUCCIÓN DE LA BASE PARA EL BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE.

Para este ítem se realizara una secuencia en la construcción del banco. Primero se efectuó la compra de los materiales que intervienen en la fabricación de la estructura para el banco de pruebas.

Se construyó la estructura base del banco de pruebas, para luego empezar el trabajo de perforación de la plancha para colocación de los elementos eléctricos y trabajo de pintura.

Figura 51 Vista posterior de la estructura metálica

Fuente: Los autores

Figura 52 Vista completa de estructura metálica completa

3.2. SECUENCIA EN LA ELABORACIÓN Y MONTAJE DE LA LÁMINA DE CONEXIONES.

Se realizó la impresión en escala 1:1 para verificar letras y números además de comprobar las perforaciones con los dibujos realizados en el plano, en total se realizaron tres veces las impresiones del dibujo antes de imprimir el vinil.

Se realizó la impresión del vinil y se comprobó que existían ciertos detalles que corregir con respecto a los dibujos y las perforaciones realizadas. Debido a esto se realizaron los ajustes para volver a imprimir el vinil.

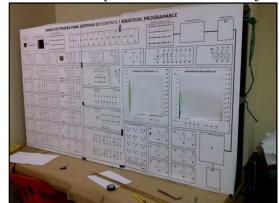
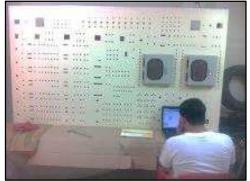


Figura 53 Revisión de perforaciones con el dibujo impreso

Fuente: Los autores

Figura 54 Revisión de perforaciones con el vinil impreso


Fuente: Los autores

Luego de obtener la mesa con su estructura y plancha perforada se trasladó desde el taller al lugar donde se realizaron los demás trabajos.

Se realizó la revisión de la cantidad de perforaciones realizadas al tablero y del respectivo color. Se realizaron ciertas perforaciones faltantes para ciertas borneras.

Se debió repintar la plancha perforada debido que el color obtenido inicialmente no era el solicitado.

Figura 55 Revisión de perforaciones, color inicial del tablero

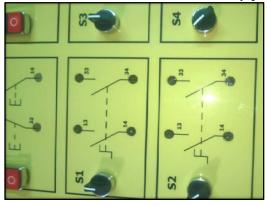
Fuente: Los autores

Figura 56 Color final del tablero

Fuente: Los autores

3.3. SECUENCIA EN LA INSTALACIÓN DE ELEMENTOS EN EL BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE.

Para el calado de vinil pegado en el tablero se realizó el encuadre del vinil en la base metálica del tablero, adicionalmente se inició el calado del vinil en las perforaciones para borneras de los elementos tanto de control como de fuerza.


Luego se comenzó el montaje y alineación de elementos eléctricos; se instaló un soporte tipo riel a la medida para montaje de cada elemento en el tablero.

Se instalaron todos los equipos eléctricos del tablero a excepción de las borneras, las cuales se están esperando que lleguen de importación.

Figura 57 Calado de vinil para colocación de elementos

Figura 58 Instalación de botoneras, selectores y pulsantes

Fuente: Los autores

Figura 59 Instalación de riel din para soportería de equipos

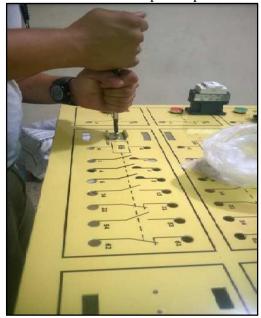


Figura 60 Instalación de equipos parte frontal del banco de pruebas

Figura 61 Instalación de equipos parte posterior del banco de pruebas

Fuente: Los autores

Figura 62 Instalación de equipos varios

Figura 63 Instalación de transformadores de corriente y breakers para medidores de parámetros eléctricos

Figura 64 Vista frontal del tablero con los elementos instalados

Fuente: Los autores

3.4. CONEXIÓN INTERNA DE LOS DISPOSITIVOS ELÉCTRICOS.

En esta parte se empieza la instalación del variac en el tablero. Se utilizó un variac trifásico modelo en el desarrollo del banco.

Se realizó el diseño de la base para el variac y se procedió a su construcción e instalación. Se instaló el variac trifásico en su respectiva ubicación en el tablero. En las siguientes ilustraciones se evidencia el trabajo.

Se procedió a realizar un ejemplo de cableado y amarrado en un contactor para la respectiva aprobación del tutor. Se presentó el cableado realizado y se validó la forma del cableado y amarrado de los elementos. En las siguientes ilustraciones se evidencian los trabajos.

Figura 65 Instalación y nivelación de base para el Variac

Fuente: Los autores

Figura 66 Instalación de Variac en su respectiva base

Figura 67 Cableado de muestra para presentación al tutor

Figura 68 Muestra presentada de cableado y amarrado de conductores para elementos.

Fuente: Los autores

Figura 69 Corte de conductores y colocación de terminales antes de su cableado

Figura 70 Amarrado de conductores en la parte posterior del tablero

Figura 71 Cableado de elementos parte frontal del tablero

Figura 72 Cableado de elementos parte frontal del tablero

Figura 73 Avance en cableado y amarrado parte posterior del tablero

Fuente: Los autores

Figura 74 Avance en cableado y amarrado parte frontal del tablero

Figura 75 Conexión del medidor de parámetros eléctricos de la acometida principal fija

Figura 76 Tendido de los conductores de los variadores

Fuente: Los autores

Figura 77 Tendido de conductores de control para los relés de interfaz

Figura 78 Tendido de conductores de control del PLC y Logo

Figura 79 Cableado de elementos de protección

Fuente: Los autores

Figura 80 Cableado de fuerza del variador de alimentación monofásica

Figura 81 Cableado de control del variador de alimentación monofásica

Figura 82 Cableado de control del variador de alimentación trifásica

Fuente: Los autores

Figura 83 Cableado de fuerza del variador de alimentación trifásica

Figura 84 Amarrado de cableado realizado para contactores, guardamotores y relés térmicos

Figura 85 Vista de conductores amarrados parte posterior del banco

Fuente: Los autores

Figura 86 Arreglo y amarrado de conductores para logo y PLC

Figura 87 Arreglo y amarrado de conductores para selectores

Figura 88 Arreglo de conductores del variador de alimentación monofásica

Fuente: Los autores

3.5. INSTALACIÓN Y CONEXIÓN DE BORNERAS

Se procedió a realizar la instalación y conexión de borneras, pruebas de continuidad del cableado realizado.

Figura 89 Instalación y conexión de borneras, peinado de conductores en variadores de frecuencia

Figura 90 Conexionado de borneras para pulsantes

Fuente: Los autores

Figura 91 Instalación de borneras para selectores

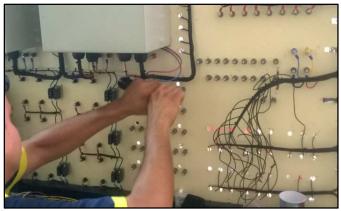


Figura 92 Instalación de terminales en conductores para conexionado de borneras para PLC y logo

Figura 93 Instalación de terminales en conductores para conexionado de borneras para contactores

Fuente: Los autores

Figura 94 Instalación de terminales en conductores para conexionado de borneras para guardamotores

Figura 95 Vista posterior del banco de pruebas con todos sus conductores peinados, amarrados y conectados a las borneras

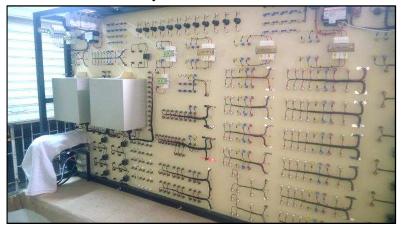


Figura 96 Vista frontal del banco de pruebas con todas las borneras instaladas y conectadas

3.6. SECUENCIA DE CONSTRUCCIÓN DEL FRENO MECÁNICO REGULABLE PARA SIMULACIÓN DE CARGA.

A continuación se hace una breve descripción de la construcción del freno mecánico regulable para simulación de carga para el banco de pruebas.

Como se observa en las siguientes ilustraciones se construyó la estructura metálica, luego se construyeron piezas que conforman el freno mecánico regulable que trabaja en conjunto con el motor para simular la carga del banco de pruebas.

Figura 97 Construcción de mesa mecánica

Fuente: Los autores

Figura 98 Pintada de mesa para freno mecánico

Figura 99 Vista de piezas que conforman el freno mecánico regulable

Figura 100 Vista del ensamble del freno mecánico

Fuente: Los autores

Figura 101 Vista final de la contrucción de la mesa del motor con el freno mecánico regulable

3.7. INVENTARIO DE EQUIPOS QUE CONFORMAN EL BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE.

Tabla 3 Listado de materiales

ÍTEM	DESCRIPCIÓN	CANTIDAD	UNIDAD
1	BREAKER RIEL DIN 3P-32 A IC60N SCHNEIDER ELECTRIC	3	U
2	MEDIDOR DE PARÁMETROS ELÉCTRICOS PM700	2	U
3	CT´S DE 40:5A MARCA CAMSCO	6	U
4	BREAKER RIEL DIN 3P-2 A IC60N SCHNEIDER ELECTRIC	2	U
5	BREAKER RIEL DIN 2P-2 A IC60N SCHNEIDER ELECTRIC	U	
6	BREAKER RIEL DIN 1P-6 A IC60N SCHNEIDER ELECTRIC		
7	SELECTOR OJO DE CANGREJO 2 CONTACTOS 15A MARCA CAMSCO		U
8	LUZ PILOTO COLOR VERDE 220V, COLOR VERDE MARCA CAMSCO	8	U
9	LUZ PILOTO COLOR VERDE 220V, COLOR ROJO MARCA CAMSCO	6	U
10	BREAKER RIEL DIN 3P- 10A IC60N SCHNEIDER ELECTRIC	3	U
11	CONTACTOR 9A - AC3 , BOBINA 220V - SCHNEIDER ELECTRIC	7	U
12	BLOQUE DE CONTACTOS FRONTAL 1NA + 1NC PARA CONTACTOR	7	U
13	RÉLE TÉRMICO DE 2,5 - 4A SCHNEIDER ELECTRIC	2	U
14	SOPORTE PARA CONEXIÓN POR SEPARADO DE RÉLE TÉRMICO	2	U
15	GUARDAMOTOR DE 2.5 - 4 A SCHNEIDER ELECTRIC	2	U
16	GUARDAMOTOR DE 6 - 10 A SCHNEIDER ELECTRIC	1	U
17	BLOQUE DE CONTACTOS FRONTAL 1NA + 1NC PARA GUARDAMOTOR	3	U
18	TEMPORIZADOR 220V, 0 - 10 SEG ON DELAY MARCA CAMSCO	2	U
19	PULSADOR RETORNO POR RESORTE - CABEZA CIRCULAR 1NA 22MM COLOR VERDE	2	U

20	PULSADOR RETORNO POR RESORTE - CABEZA CIRCULAR 1NC 22MM COLOR ROJO	2	U
21	PULSADOR DE EMERGENCIA DE HONGO ROJO 1NC	1	U
22	SWITCH SELECTOR CON LLAVE, ENCLAVAMIENTO EN IZQUIERDA 2 POSICIONES 1NC	1	U
23	PULSADOR RASANTE DOBLE RECTANGULAR VERDE / ROJO	3	U
24	SWITH SELECTOR 2 POSICIONES FIJAS 1NA + 1NC	2	U
25	SWITH SELECTOR MANIJA NEGRA POSICIONES 3/2 CON RETORNO AL CENTRO 2NA	2	U
26	SELECTOR OJO DE CANGREJO 1 CONTACTO NA - MARCA CAMSCO	15	U
27	FUENTE SITOP ALIMENTACIÓN 220V SALIDA 24VDC 5A - SIEMENS	1	U
28	LOGO 8DI/4DO ALIMENTACIÓN 24VDC - SIEMENS	1	U
29	PLC CPU 1212C 8DI/ 6DO/ 2AI ALIMENTACIÓN 120/220VDC, TIPO RÉLE, SALIDA ANALÓGICA DE 0-10V - SIEMENS	1	U
30	RELÉ DE INTERFAZ TIPO BORNERA 6.7M DE ANCHO 24VDC - SIEMENS	6	U
31	VARIADOR ALTIVAR 312 CODIGO ATV312H075M2	1	U
32	VARIADOR ALTIVAR 312 CODIGO ATV312H075M3	1	U
33	TOMACORRIENTE TIPO CLAVIJA 3P+T 32A (SUMINISTRADO POR UPS-G)	2	U
34	VARIAC 0-220V (SUMINISTRADO POR UPS-G)	1	U
35	BORNERAS CALTEST	500	U

3.8. PRESUPUESTO DE LA CONSTRUCCIÓN DEL BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE.

Tabla 4 Presupuesto de la elaboración de tesis

PRESUPUESTO ELABORACIÓN DE TESIS

ÍTEM	DESCRIPCIÓN	CANTIDAD	UNIDAD	PRECIO UNITARIO	PRECIO TOTAL
1	CONSTRUCCIÓN DE MESA DE BANCO DE PRUEBAS	1	GLB	\$ 1.107,33	\$ 1.107,33
2	CONSTRUCCIÓN DE MESA PARA SIMULACIÓN DE CARGA (MOTOR CON FRENO MECÁNICO REGULABLE)	1	GLB	\$ 999,26	\$ 999,26
3	MATERIALES ELÉCTRICOS (ELEMENTOS, EQUIPOS, CONDUCTORES, TERMINALES)	1	GLB	\$ 4.827,22	\$ 4.827,22
4	MATERIALES VARIOS (ACRILICOS, PERNOS, PINTURA, FORRO, VINIL, ETC.)	1	GLB	\$ 454,84	\$ 454,84
TOTAL PRESUPUESTADO					

CAPÍTULO IV MANUAL DE PRÁCTICAS

4.1 GUÍA DE PRÁCTICAS PARA PRUEBAS DEL BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE.

PRÁCTICA 1: Mantenimiento y seguridad del banco de pruebas para control industrial programable.

Objetivo General: Identificar, definir el uso y reglas de operación segura para cada uno de los equipos eléctricos que conforman el banco de pruebas.

Resumen: Es importante el conocimiento de las características técnicas de los equipos electromecánicos, autómatas programables y elementos de control con los que se cuenta para realizar cualquier tipo de conexión o maniobra en el banco de pruebas para control industrial programable, también se debe conocer las normas de seguridad para el uso de elementos y desarrollo de prácticas dentro del laboratorio y así evitar daños en el banco o que algún alumno sufra algún accidente.

PRÁCTICA 2: Verificación del funcionamiento de los elementos del banco de pruebas.

Objetivo General: Comprobar el correcto funcionamiento de los elementos y equipos correspondientes al banco de pruebas.

Resumen: Se debe verificar de forma visual y comprobar realizando pruebas el buen estado y correcto funcionamiento de los elementos y equipos que se encuentran dentro del banco de pruebas. Con esto se garantiza que el banco esta cien porciento operativo para cualquier tipo de operación y funcionamiento en la prácticas a desarrollarse en este.

PRÁCTICA 3: Arranque directo para motor eléctrico trifásico.

Objetivo General: Realizar un arranque directo para motor eléctrico trifásico utilizando los elementos y equipos del banco de pruebas.

Resumen: Aplicando los conocimientos adquiridos se debe desarrollar en el banco de pruebas un arranque directo para un motor trifásico de 1hp aplicación su uso con y sin carga, al tomar las respectivas mediciones verificar el comportamiento de este tipo de arranque para conocer sus ventajas y desventajas.

PRÁCTICA 4: Arranque directo con inversión de giro para motor eléctrico trifásico.

Objetivo General: Realizar un arranque directo con inversión de giro para motor eléctrico trifásico utilizando los elementos y equipos del banco de pruebas.

Resumen: Se debe desarrollar en el banco de pruebas el arranque directo con inversión de giro para un motor trifásico de 1hp aplicando su uso en vacío y simulando una carga, al tomar las respectivas mediciones verificar el comportamiento de este tipo de arranque y conocer sus ventajas y desventajas.

PRÁCTICA 5: Arranque estrella – delta para motor eléctrico trifásico.

Objetivo General: Realizar un arranque estrella - delta para un motor eléctrico trifásico utilizando los elementos y equipos del banco de pruebas.

Resumen: Desarrollando en el banco de pruebas el arranque estrella – delta para un motor trifásico de 1hp aplicando su uso en vacío, tomar las respectivas mediciones, verificar el funcionamiento de este tipo de arranque para conocer sus ventajas y desventajas.

PRÁCTICA 6: Arranque y paro de motor eléctrico trifásico utilizando el variador de frecuencia con alimentación 1F y carga 3F en la modalidad de sistema de control local.

Objetivo General: Arranque y paro de motor eléctrico trifásico utilizando el variador de frecuencia con alimentación 1F y carga 3F en la modalidad de sistema de control local.

Resumen: Conociendo los usos, aplicaciones, programación y parametrización del variador de frecuencia, desarrollar en el banco de pruebas la alimentación de un variador de frecuencia con entrada monofásica para operar un motor trifásico de 1hp en vacío y simulando una carga, tomar las respectivas mediciones verificar el funcionamiento de este equipo para conocer sus ventajas y desventajas.

PRÁCTICA 7: Arranque y paro de motor eléctrico trifásico utilizando el variador de frecuencia con alimentación 3F y carga 3F en la modalidad de sistema de control local.

Objetivo General: Utilizar el variador de frecuencia con alimentación 3F y carga 3F para realizar el arranque y paro de un motor trifásico.

Resumen: Conociendo los usos, aplicaciones, programación y parametrización del variador de frecuencia, desarrollar en el banco de pruebas la alimentación de un variador de frecuencia alimentación trifásica para operar un motor trifásico de 1hp en vacío y simulando una carga, tomar las respectivas mediciones, verificar el funcionamiento de este equipo para conocer sus ventajas y desventajas.

PRÁCTICA 8: Arranque y variación de velocidad, para motor eléctrico trifásico utilizando el variador de frecuencia en la modalidad de sistema de control local.

Objetivo General: Utilizar el variador de frecuencia con alimentación 3F y carga 3F para realizar el arranque, variación de velocidad y paro de un motor trifásico.

Resumen: Programando y parametrizando el variador en configuración local, desarrollar la práctica en el banco de pruebas para observar su comportamiento en el arranque, variación de velocidad y paro al operar un motor trifásico de 1 hp trabajando en vacío y simulando su uso con carga, tomar las mediciones, verificar el funcionamiento de este equipo para conocer sus ventajas y desventajas en esta aplicación.

PRÁCTICA 9: Arranque e inversión de giro del motor eléctrico trifásico, utilizando el variador de frecuencia en la modalidad de sistema de control local.

Objetivo General: Utilizar el variador de frecuencia con alimentación 3F y carga 3F para realizar el arranque, inversión de giro y paro de un motor trifásico.

Resumen: Programando y parametrizando el variador en configuración local en control de 2 hilos, desarrollar la práctica en el banco de pruebas para observar su comportamiento en el arranque, inversión de giro y paro al operar un motor trifásico de 1 hp trabajando en vacío y simulando su uso con carga, tomar las mediciones, verificar el funcionamiento de este equipo para conocer sus ventajas y desventajas en esta aplicación.

PRÁCTICA 10: Arranque y variación de velocidad, para motor eléctrico trifásico utilizando señales digitales, en la modalidad de sistema de control remoto del variador de frecuencia.

Objetivo General: Utilizar el variador de frecuencia con alimentación 3F y carga 3F para realizar el arranque, variación de velocidad con señales digitales y paro de un motor trifásico en configuración remoto.

Resumen: Programando y parametrizando el variador en configuración remoto en control de 2 hilos, desarrollar la práctica en el banco de pruebas para observar su comportamiento en el arranque, inversión de giro, variación de velocidad y paro al operar un motor trifásico de 1 hp trabajando en vacío y simulando su uso con carga, tomar las mediciones, verificar el funcionamiento de este equipo para conocer sus ventajas y desventajas en esta aplicación.

PRÁCTICA 11: Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema, para control de cierre y apertura de puerta automática a través del proceso de señales digitales con LOGO.

Objetivo General: Utilizar el variador de frecuencia con alimentación 3F y carga 3F en conjunto con el logo para realizar el cierre y apertura de una puerta de garaje en modo manual y automático.

Resumen: Aplicando los conocimientos aprendidos en variadores de frecuencia realizar una aplicación para apertura y cierre una puerta de garaje en modo manual y automático, se debe programar un logo para que trabaje en conjunto con el variador de frecuencia en configuración local en control de 2 hilos, trabajar con un motor de 1 hp, tomar las mediciones, verificar el funcionamiento de este equipo para conocer sus ventajas y desventajas en esta aplicación.

PRÁCTICA 12: Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema para ventilación forzada variable con control de temperatura a través del proceso de señales digitales con PLC.

Objetivo General: Utilizar el variador de frecuencia con alimentación 3F y carga 3F en conjunto con el PLC para realizar un sistema de ventilación forzada variable.

Resumen: Aplicando los conocimientos aprendidos en variadores de frecuencia realizar una aplicación para un sistema de ventilación forzada en modo manual y automático, se debe programar un PLC para que trabaje en conjunto con el variador de frecuencia en configuración remoto en control de 2 hilos y utilizar sus velocidades preseleccionadas, trabajar con un motor de 1 hp, tomar las mediciones, verificar el funcionamiento de este equipo para conocer sus ventajas y desventajas en esta aplicación.

4.2 PRÁCTICA NO. 1: MANTENIMIENTO Y SEGURIDAD DEL BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE.

4.2.1 DATOS INFORMATIVOS

- MATERIA: Laboratorio de Instalaciones Eléctricas
- PRÁCTICA Nº 1
- NÚMERO DE ESTUDIANTES: 20
- NOMBRE DOCENTE:
- TIEMPO ESTIMADO: 2 horas

4.2.2 DATOS DE LA PRÁCTICA

• **TEMA:** Mantenimiento y seguridad del banco de prueba para control industrial programable.

• OBJETIVO GENERAL:

Identificar, definir el uso y reglas de operación segura para cada uno de los equipos eléctricos que conforman el banco de pruebas.

• OBJETIVOS ESPECÍFICOS:

- Identificar los equipos eléctricos que posee el banco de pruebas.
- Identificar los elementos y equipos que posee el freno mecánico regulable (simulación de carga).
- Definir el funcionamiento de los equipos identificados.
- Establecer el procedimiento de trabajo y manipulación segura de los equipos eléctricos.

MARCO PROCEDIMENTAL

Estudiar las funciones de cada elemento del banco de pruebas para conocer sus características y formas de conexión.

Verificar de forma visual que los elementos se encuentran en buen estado y no hay cables desconectados antes realizar cualquier operación con el banco de pruebas.

Tomar las medidas de seguridad necesarias para evitar contactos con equipos o elementos energizados al momento de realizar las prácticas en el banco de pruebas.

• CONDICIONES DE FUNCIONAMIENTO

Conocer e identificar todos los elementos y equipos del banco de pruebas.

Conocer las aplicaciones que se pueden desarrollar en el banco de pruebas.

Tomar en cuenta las recomendaciones del docente encargado antes de utilizar el banco de pruebas.

Conocer las normas de orden, limpieza y seguridad al trabajar dentro del laboratorio.

Aplicar los conocimientos aprendidos en la materia para el correcto uso del banco de pruebas.

• RECURSOS UTILIZADOS

Banco de prueba para control industrial programable.

Equipos de medición: Fluke 374, PM 700 incorporado en el banco.

Formatos para registro de valores experimentales y resultados.

Motor trifásico de 1HP con freno mecánico regulable para simulación de carga.

Cable de extensión para alimentación del banco de pruebas.

Cables de conexiones para desarrollo de las distintas prácticas.

Figura 102 Banco de pruebas para control industrial programable

Fuente: Los autores.

4.2.3 DESCRIPCIÓN Y RECOMENDACIONES DE LOS ELEMENTOS EN EL BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE.

TOMACORRIENTE TRIFÁSICO TIPO CLAVIJA 3P-32A.

En el banco existen dos tomacorrientes tipo clavija de 32amp ubicados en la parte posterior del banco los cuales toman la energía mediante una extensión con enchufes desde los tomacorrientes tipo clavija ubicados abajo del panel de distribución del laboratorio, un tomacorriente recibe la energía que alimenta a la fuente trifásica fija de 220V, mientras el otro tomacorriente recibe la energía que alimenta al variac que suministra energía a la fuente variable trifásica de 0 a 220V.

Las recomendaciones de seguridad que debemos tener en cuenta antes de energizar el banco de pruebas son:

a) Para realizar la conexión de energía al tomacorriente trifásico tipo clavija del banco de pruebas tanto de la fuente fija como regulable, lo primero que se debe verificar es que el breaker del panel principal del laboratorio que alimenta el tomacorriente del cual nos vamos a conectar este en OFF, luego se realiza la conexión con el cable de extensión que tiene los enchufes tipo clavija tanto en el tomacorriente del lado del panel como en el lado del banco, con esto evitamos tener algún contacto directo o indirecto con terminales energizados mientras realizamos la conexión. Verificar que los breakers principales del banco de pruebas tanto el de la fuente fija como el del variac están en OFF antes de energizar.

Después de realizar la conexión con la extensión procedemos a colocar en ON el breaker del panel que alimenta al tomacorriente, para luego colocar en ON el breaker principal de la fuente con la que se vaya a trabajar.

- b) Verificar de forma visual que no existan conductores desconectados tanto en la parte posterior como el parte frontal del banco de pruebas.
- c) Si al conectar la alimentación al banco de pruebas, se acciona la protección del breaker, colocar en posición OFF al breaker y revisar si existe algúna falla en el cable de extensión, tomacorrientes o en la entrada de alimentación al banco.
- d) No operar ni conectar ningun equipo eléctrico con manos sucias y/o mojadas.
- e) Evitar el contacto con terminales expuestos en la parte posterior del banco de pruebas cuando esté energizado.

Figura 103 Tomacorriente tipo clavija de 32A

BREAKER TRIFÁSICO Q0 3P-32A.

Este breaker viene alimentado desde el tomacorriente trifásico tipo clavija #1 y su función es la de energizar, desenergizar y proteger al variac.

Figura 104 Breaker Q0 3P-32A

Fuente: Los autores

VARIAC TRIFÁSICO 4KVA 0-220V.

El variac viene alimentado desde el breaker Q0 y su función es alimentar al breaker Q1 y realizar la variación de voltaje a la fuente variable trifásica de 0 a 220V.

Para evitar contactos con los terminales del variac, este cuenta con una protección acrílica que lo cubre totalmente.

Figura 105 Variac trifásico

BREAKER PRINCIPAL Q1 3P-32A.

Este breaker viene alimentado desde el variac y su función es energizar, desenergizar y proteger las cargas que se conectarán a la fuente variable trifásica de 0-220V.

Q1

Figura 106 Breaker Q1 3P-32A

Fuente: Los autores.

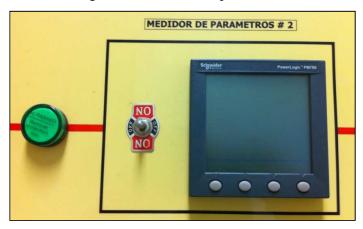
BREAKER PRINCIPAL Q2 3P-32A.

Este breaker viene alimentado desde el tomacorriente trifásico tipo clavija #2 y su función es la de energizar, desenergizar y proteger las cargas que se conectarán a la fuente fija trifásica de 220V.

Figura 107 Breaker Q2 3P-32A

MEDIDOR DE PARÁMETROS ELÉCTRICOS PM 700.

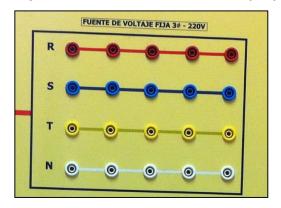
En el tablero se encuentran instalados dos medidores de parámetros eléctricos, la función de estos es poder visualizar las mediciones de cada fuente, tales como: voltajes, corrientes, potencias y factor de potencia.


En el medidor #1 se puede visualizar los parámetros de la fuente variable trifásica 0-220V y en el medidor # 2 se puede visualizar los parámetros de la fuente fija trifásica de 220V.

Para proteger la alimentación y señales de voltaje que ingresan al medidor se ha colocado breakers, los cuales se encuentran en la parte posterior del banco. Para encender o apagar el medidor se cuenta en la parte frontal del banco con un selector ojo de cangrejo y una luz piloto color verde para señalización cuando se encienda el equipo.

Para realizar las mediciones de corriente los medidores necesitan transformadores de corriente (CT´S) y así manejan corrientes pequeñas en el equipo. Los CT´S instalados en el banco de pruebas son de 40:5A.

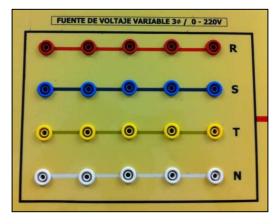
Considerando que el medidor de parámetros entrega valores enteros y para los datos de corriente y potencias debido que las corrientes son menores a los 10A era necesario tener valores más precisos, al momento de parametrizar el medidor en el valor de los CT´S, estos fueron programados de 4000:5A con esto conseguimos modificar la escala de presentación de valores de corriente y potencias. Referente al valor de corriente y potencia el valor visualizado se debe dividir para 100. Un ejemplo para entender esto es si visualizamos 180 Amp en el medidor en realidad lo que se tiene de corriente es 1,80Amp, con respecto a las potencias es el mismo caso, si visualizamos en el medidor una potencia activa "P" 20KW, en realidad tenemos una potencia activa de 0.20KW es decir 200W, lo mismo se aplica para potencia reactiva "Q" y potencia aparente "S". Con el resto de valores tales como voltajes y factor de potencia, lo visualizado es la medición correcta.


Figura 108 Medidor de parámetros #2

FUENTE DE VOLTAJE FIJA TRIFÁSICA DE 220V.

El banco cuenta con una fuenta de voltaje fija trifásica de 220V, esta cumple la función de alimentar a los diferentes elementos del banco de pruebas de acuerdo a las prácticas que se realicen. Cuenta con borneras para conexión de fases y neutro.

Figura 109 Borneras de fuente de voltaje fija

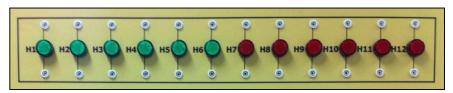


Fuente: Los autores.

FUENTE DE VOLTAJE VARIABLE TRIFÁSICA DE 0 A 220V.

El banco cuenta con una fuenta de voltaje variable trifásica de 0 a 220V, esta cumple la función de alimentar a los diferentes elementos del banco de pruebas de acuerdo a las prácticas que se realicen. Cuenta con borneras para conexión de fases y neutro.

Figura 110 Borneras de fuente de voltaje variable

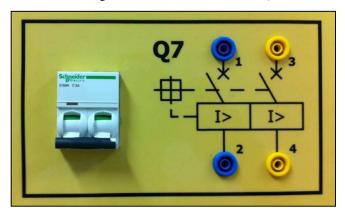


LUCES PILOTO 220V.

Dentro del banco existen doce luces piloto para el uso en las prácticas del banco de pruebas, estas seis son de color verde (H1 a H6) y seis son de color rojo (H7 a H12) la función de estas es dedicada para señalizar en las prácticas acciones de marcha, paro, fallas, etc.

Se debe tener en cuenta que únicamente trabajan a 220V. Si se ingresa otro voltaje se quemarán las luces piloto.

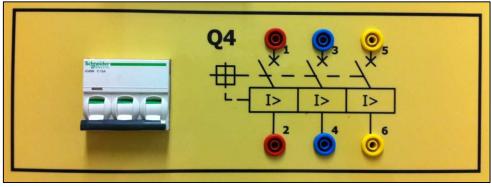
Figura 111 Luces pilotos



Fuente: Los autores.

BREAKER 2P-2A.

La función de los dos breakers riel din de 2p-2A que se encuentran en el banco para realizar prácticas es energizar, desenergizar y proteger los circuitos de control que se realicen. Estos breakers están denominados como Q3 y Q7.


Figura 112 Vista de breaker Q7

BREAKER 3P-10A.

La función de los tres breakers riel din de 3p-10A que se encuentran en el banco para realizar prácticas es energizar, desenergizar y proteger los circuitos de fuerza que se realicen. Estos breakers están denominados como Q4, Q5 y Q6.

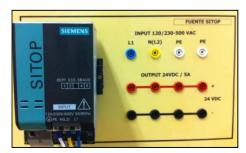
Figura 113 Vista de breaker Q4

Fuente: Los autores.

BREAKER 1P-6A.

Solo existe un breaker riel de 1p-6A denominado Q8, y su única función es proteger la salida de la fuente Sitop de 24VDC así como también energizar y desenergizar las cargas que se conecten a esta.

Figura 114 Vista de breaker Q8

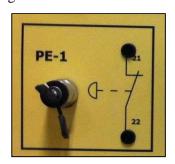

FUENTE SITOP 24VDC/5A.

Esta fuente cumple la función de alimentar únicamente circuitos de control de 24VDC.

La fuente tiene la posibilidad de conectar a diversos voltajes, en la opción #1 es de 120 a 230VAC y la opción #2 es de 230 a 500VAC, para seleccionar cualquiera de estas dos opciones en el lateral derecho de la fuente exsite un switch que menciona 120 para la opción #1 y 230 para la opción #2, considerando que para el control en VAC manejamos 220V se trabajará en la opción #1 tomando en cuenta que podemos trabajar en el banco con voltajes entre 120 y 220V.

Es obligatorio siempre conectar un breaker de protección para la alimentación de entrada y para la salida de la fuente, para esto se cuenta cerca de la fuente con un breaker 2p-2A (Q7) para la alimentación y un breaker 1p-6A para la salida de la fuente.

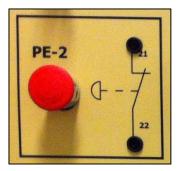
Figura 115 Vista de fuente sitop



ELEMENTOS PARA CIRCUITOS DE CONTROL.

En el banco se cuenta con diversos elementos para realizar las diversas prácticas, y estos son:

Un selector de dos posiciones con llave (PE-1), contiene un contacto normalmente cerrado.


Figura 116 Vista de selector PE-1

Fuente: Los autores.

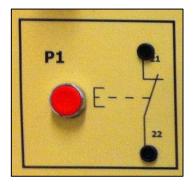
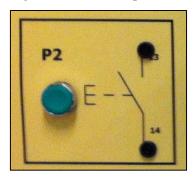

Un pulsante tipo hongo para paradas de emergencia (PE-2), contiene un contacto normalmente cerrado.

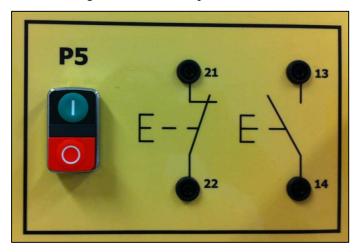
Figura 117 Vista de selector PE-2

Dos pulsantes de color rojo para parada (P1, P3), cada pulsante contiene un contacto normalmente cerrado.


Figura 118 Vista de pulsador P1

Fuente: Los autores.

Dos pulsantes de color verde para marcha (P2, P4), cada pulsante contiene un contacto normalmente abierto.


Figura 119 Vista de pulsador P2

Fuente: Los autores.

Tres pulsantes dobles para marcha y parada (P5, P6, P7), cada pulsante doble contiene un contacto normalmente abierto para pulsante color verde (marcha) y un contacto normalmente cerrado para pulsante rojo (parada).

Figura 120 Vista de pulsante doble P5

Quince selectores tipo ojo de cangrejo (SW1 a SW15), conteniendo cada selector un contacto normalmente abierto.

Figura 121 Vista de simuladores de señales digitales

Dos selectores con retorno de tres posiciones (S1, S3), cada selector contiene dos contactos normalmente abiertos.

Figura 122 Vista de selectores S1 y S3

Fuente: Los autores.

Dos selectores de dos posiciones (S2, S4), cada selector contiene dos contactos normalmente abiertos.

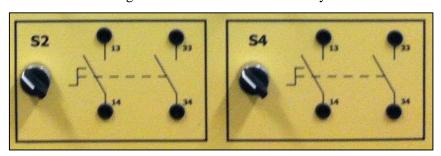


Figura 123 Vista de selectores S2 y S4

Fuente: Los autores.

Los elementos descritos deberán ser utilizados para manejar voltajes de control y estos pueden ser a 24VDC o 220VAC, no se deben utilizar estos elementos para circuitos de fuerza.

CONTACTOR DE 9 AMP.

El banco contiene siete contactores (K1 a K7). Para accionamiento de estos se cuenta con bobinas de 220VAC. No se deberá trabajar con ningún otro tipo de voltaje para activar o desactivar los contactores.

Cada contactor cuenta con tres contactos de fuerza de 9 amperios, y cuatro contactos auxiliares para control. De ellos dos son normalmente abiertos y dos normalmente cerrados.

Figura 124 Vista de contactor K1

Fuente: Los autores.

GUARDAMOTOR.

Se cuenta con tres guardamotores (G1,G2,G3) en el banco de pruebas, G1, G2. Tienen un rango de corriente de 2.5 a 4 amperios y G3 es de 6 a 10 amperios, y cumplen la función de proteger contra cortocircuitos y sobrecargas a los circuitos de fuerza que se desarrollen en el banco. Se debe calibrar su corriente de acuerdo con la carga con la que se trabaje.

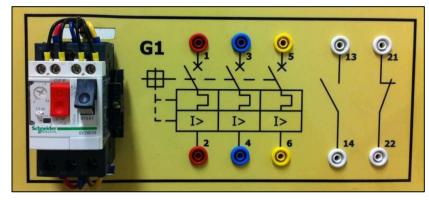


Figura 125 Vista de guardamotor G1

RELÉ TÉRMICO.

El banco contiene dos relés térmicos, con un rango de corriente de 2.5 a 4 amperios. Su función es proteger contra sobrecargas a los circuitos de fuerza que se desarrollen en el banco, y se debe calibrar su corriente de acuerdo con la carga con la que se trabaje.

Figura 126 Vista de relé térmico F1

Fuente: Los autores.

TEMPORIZADOR.

Se cuenta con dos temporizadores (T1 y T2). Para accionarlos se cuenta con bobinas de 220VAC. No se deberá trabajar con ningún otro tipo de voltaje para activar o desactivar los temporizadores.

Cada uno tiene operativo en el banco un contacto normalmente abierto y un contacto normalmente cerrado. Ambos temporizadores son On delay, lo que indica que sus contactos operan luego del tiempo programado al accionarse la bobina.

El T1 puede ser programado de 0 a 10 segundos, mientras que el T2 puede ser programado de 0 a 1 minuto.

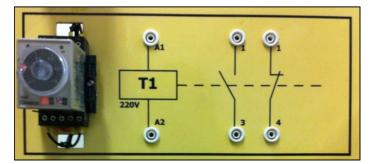


Figura 127 Vista de temporizador T1

LOGO

El logo con el que se cuenta en el banco es modelo 12/24RC con 8DI/4DO, donde 12/24 significa que su alimentación puede ser a 12V o 24VDC, como en el banco solo se cuenta con una fuente de 24VDC se trabajará unicamente con este voltaje.

8DI siginifica que tiene 8 entradas digitales y estas deben ser enviadas al logo utilizando la misma fuente de alimentación de 24VDC con la que se esta trabajando para evitar malos funcionamientos o que se quemen las entradas.

4DO significa que tiene 4 salidas tipo relé. Estas salidas al ser tipo relé pueden trabajar cada una independiente con un voltaje. Estas salidas pueden conmutar hasta 10 Amp con los siguientes voltajes 12/24 VAC/VDC, 115/120 VAC, 230/240 VAC. Es recomendable leer el manual del logo en mención para tener un mejor conocimiento de sus funciones y formas de trabajo.

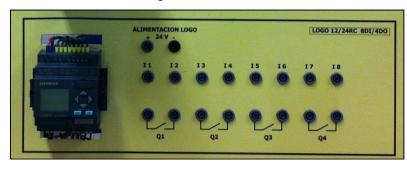


Figura 128 Vista de LOGO

Fuente: Los autores.

CONTROLADOR LÓGICO PPROGRAMABLE (PLC)

El PLC con el que cuenta el banco de pruebas es modelo 1212C con 8DI/6DO/2AI. Su alimentación es de 110/220VAC, y es necesario proteger al PLC con un breaker, tomando en cuenta que para este equipo se trabajará con 220VAC y se debe utilizar un breaker 2p-2A.

El PLC cuenta con una fuente propia de 24VDC la cual sirve para alimentar a las entradas digitales o para las salidas tipo relé. Se debe tener en cuenta que para

trabajar con esta fuente en las entradas y salidas digitales debe polarizarse correctamente a los que equipos con los que se trabajará. La fuente cuenta con una bornera +L y una bornera M, entre estas dos borneras se obtiene los 24VDC de la fuente, donde + L es el borne positivo y M el borne negativo.

8DI significa que tiene 8 entradas digitales A 24VDC. Para alimentar a estas entradas se debe colocar el negativo de la fuente con la que se va a trabajar en 1M y desde .0 hasta .7 se colocará el positivo de la fuente de 24VDC para activar cualquiera de estas entradas digitales.

6DO significa que tiene 6 salidas tipo relé. Del total de estas salidas se tiene 2 grupos de salidas cada una con un común de alimentación, el grupo #1 tiene como común 1L y alimenta las salidas digitales desde .0 hasta .3, el grupo #2 tiene como común 2L y alimenta las salidas digitales desde .4 hasta .5, las salidas digitales tipo relé pueden conmutar hasta 2 Amp con voltajes de hasta 30VDC y 250VAC. Se debe tener en cuenta que para cerrar el circuito hacia la carga se debe utilizar correctamente las fuentes de voltaje con las que se trabajará. El grupo de salidas digitales alimentadas por 1L puede trabajar a un voltaje diferente del grupo de salidas alimentadas por 2L si así se lo requiere porque son grupos de salidas independientes por eso tiene cada grupo su propio común de alimentación.

2AI significa que tiene 2 entradas analógicas, y su rango es de 0 a 10VDC, se cuenta con el borne 2M en el cual se debe conectar el borne negativo y en los bornes 0 y 1. Se podra conectar el borne positivo y así el PLC podra tomar los datos de estatus de los equipos conectados a estas entradas.

Es recomendable leer el manual del PLC en mención para tener un mejor conocimiento de sus funciones y formas de trabajo.

Figura 129 Vista de PLC

RELÉ DE INTERFAZ

El banco de pruebas cuenta con seis relés de interfaz. Para accionamiento de estos se cuenta con bobinas de 24VAC/VDC. No se deberá trabajar con ningún otro tipo de voltaje para activar o desactivar estos relés.

Cada relé cuenta con dos contactos, un normalmente cerrado y un normalmente abierto. Su capacidad de conmutación para 24VAC/VDC es de 1 Amp y para 230VAC es de 3 Amp.

Figura 130 Vista de relé de interfaz

VARIADOR DE FRECUENCIA

El banco contiene dos variadores de frecuencia, el variador # 1 modelo ATV312H075M2 es de 1HP con una alimentación monofásica a 220VAC y su salida hacia el motor es trifásica a 220VAC. El variador # 2 modelo ATV312H075M3 es de 1HP con una alimentación trifásica a 220VAC, para su salida hacia al motor se tiene 220VAC trifásicos.

Tomando en cuenta que los variadores están en un banco de pruebas didáctico para alumnos en proceso de formación, todos los bornes internos del variador se conectaron a borneras accesibles para realizar las diversas conexiones sin necesidad de realizar intervenciones en los terminales internos de los variadores. Se describe una breve descripción de la función de cada bornera del variador.

Figura 131 Variador de frecuencia #2

Funciones de los bornes de potencia

PE = bornera para aterrizamiento del variador y motor

L1 / L2 o L1 / L2 / L3 = Alimentación de entrada al variador de frecuencia

PO = Polaridad + del bus de CC

PA/+ = Salida a resistencia de frenado (polaridad +)

PB = Salida a resistencia de frenado

PC/- = Polaridad - del bus de CC

U/V/W = Salidas hacia el motor

RIESGO DE DAÑOS EN EL VARIADOR:

Antes de energizar el variador de frecuencia se debe verificar que los bornes PO y

PA/+ están conectados y nunca debe retirarse el enlace entre ambos.

Los tornillos del terminal PO y PA/+ deben estar totalmente apretados ya que a travez del enlace fluye un corriente alta.

Si no se siguen estas instrucciones se pueden producir daños en el equipo.

Estos datos fueron suministrado por el manual de instalación ATV312 Schneider Electric.

Funciones de los bornes de control

R1A = Contacto normalmente abierto con punto común (R1C) del relé programable R1

R1B = Contacto normalmente cerrado con punto común (R1C) del relé programable R1

R1C = Punto común para los contactos R1A y R1B

R2A = Contacto normalmente abierto con punto común (R2C) del relé programable R2

R2C = Punto común para los contactos R2A

Los contactos de estos relés programable tienen una capacidad de conmutacion máxima en carga de resistencia de 5 Amp para 250VDC y 30VDC, en carga inductiva de 1.5 Amp para 250VDC y 30VDC.

COM = punto común para entradas y salidas analógicas, también sirve para tomar referencia para los 24VDC del variador. Se cuenta con dos borneras con el mismo nombre y cumplen la misma función.

AI1 = Entrada analógica de 0 a 10VDC

10V = Alimentación eléctrica de consigna para potenciometro de referencia.

AI2 = Entrada analógica de 0 a +/- 10VDC. La polaridad + o – de la tensión en AI2 afecta a la dirección de la consigna y, por tanto, a la dirección de funcionamiento.

AI3 = Entrada analogica X - Y mA. X e Y pueden programarse entre 0 y 20mA.

AOV = Salida analogica de 0 a 10VDC

AOC = Salida analogica X - Y mA. X e Y pueden programarse entre 0 y 20mA.

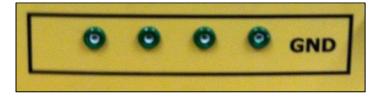
+24V = Alimentación para entradas lógicas del variador, para medir los 24VDC medir con respecto a bornera COM del variador.

LI1 a LI6 = Entradas lógicas programables a 24VDC

CL1 = Entrada lógica común.

RJ45 = puerto de comúnicación, este puerto únicamente se lo podrá encontrar en el variador no se encuentra visible en el banco de pruebas.

Estos datos fueron suministrados por el manual de instalación ATV312 Schneider Electric.


Siempre se debe conectar la bornera de tierra del variador (PE) a la barra de tierra del banco de pruebas (GND), así mismo debe conectarse a esta, la tierra del motor.

Es necesario para una mejor comprensión y entendimiento de su operación, funciones y aplicaciones con las que se puede trabajar en los variadores el usuario lea el catálogo del manual de instalación y guía de programación Altivar 312 de Schneider Electric.

BARRA DE TIERRA

El banco de pruebas cuenta con barra de tierra (GND) en la que debe aterrizarse todos los equipos que lo necesiten, y así evitar **descargas eléctricas** que puedan producir daños en los equipos y causar lesiones en personas.

Figura 132 Borneras para barra de tierra

Fuente: Los autores.

MOTOR ELÉCTRICO CON FRENO MECÁNICO REGULABLE

Para complementar al banco de pruebas para control industrial programable se cuenta con un motor eléctrico con un freno mecánico regulable con el cual se pueden realizar prácticas con y sin carga.

Para mayor comprensión de este equipo para simulación de carga, se deben revisar los planos en anexos donde se indican todas las partes que lo constituyen.

El motor es de inducción con una potencia de 1HP, trifásico de 1660RPM. Puede trabajar a 440V o 220V. Tomando en cuenta que en el laboratorio solo se dispone de 220V se dejó al motor con una conexión para este voltaje y se cuenta con bornes para alimentación del mismo sin necesidad de acceder a la placa de conexiones del motor. Para la alimentación del motor a 220V se cuenta con los bornes U, V, W, y para el aterrizamiento se cuenta con la bornera PE.

Para trabajar sin carga solo se necesita manipular la perilla circular y aflojar el freno hasta que el motor quede completamente libre. Para trabajar con carga es necesario ajustar la perilla circular para frenar el motor y con un amperimetro verificar la corriente del motor y ajustar hasta la corriente deseada para la simulación de carga.

Es necesario siempre trabajar como simulación de máxima carga con la corriente de operación al 100% del motor a 220V la cual es 3.5Amp.

Se debe tomar en cuenta que al contar el freno con un tambor metálico, que al ser frenado y subir la temperatura, se expande y se empezará a frenar mas con el tiempo, esto se visualiza con las corrientes medidas, para evitar dicho sucesos se debe frenar el motor hasta llegar a una corriente de 2.7 amperios aproximadamente y esperar unos segundos hasta que se estabilice la corriente. Si sobrepasamos despues de un tiempo los 3.5 amperios se debe aflojar la perilla circular hasta que la corriente se establice en lo que se necesite trabajar para realizar la simulación.

En todo momento se debe verificar las corrientes en el motor para constatar que la corriente esta estable y que no se ha sobrepasado de la corriente máxima del motor. Para esto se recomienda tener un amperímetro verificando únicamente la corriente del motor.

Siempre que se vayan a realizar las prácticas con el motor, se debe parametrizar correctamente las protecciones y con ello se evita daños en el motor.

Figura 133 Motor con freno regulable

4.2.4 NORMAS DE SEGURIDAD PARA EL USO DEL BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE.

Para seguridad de los estudiantes y para evitar daños en los equipos del banco de pruebas se deben tomar en consideración las siguientes normas y recomendaciones.

Para realizar conexiones y energizar los elementos del banco de pruebas se debe conocer las características y datos de placa de los equipos con la finalidad de evitar malos funcionamientos o averías.

Se debe consultar al docente en caso de tener alguna duda o inquietud para operar y conectar algún equipo del banco.

No realizar desconexiones o cambios en las conexiones de los elementos instalados hacia las borneras del banco.

Solo se debe realizar conexiones, desconexiones y operaciones en el lado frontal del banco de pruebas. No se debe realizar ninguna conexión u operación en el lado posterior debido que todos los terminales de los elementos o equipos se encuentran accesibles en la parte delantera mediante sus borneras. El único punto de conexión y desconexión que se puede manipular en el lado posterior son los tomacorrientes tipo clavija que dan energía al banco.

Antes de energizar el banco realizar una inspección visual, para verificar que no existan conductores desconectados, o conductores en las borneras haciendo conexiones inapropiadas que puedan producir averías en los equipos.

Revisar los cables de conexión que se requieran para realizar las diferentes prácticas y utilizar únicamente cables en buen estado para así evitar falsos contactos, cortocircuitos o contactos eléctricos directos a las personas que manipulen los cables mientras se realizan las prácticas.

Antes de empezar una práctica en el banco de pruebas se debe realizar y revisar el esquema de fuerza y control para iniciar con el cableado respectivo.

Toda práctica debe realizarse utilizando las protecciones adecuadas para los equipos con los que se trabajará.

No deben existir conexiones entre la fuente de voltaje fija y la fuente de voltaje variable. Cada fuente tiene su propio voltaje y protecciones adecuadas.

Antes de energizar alguna práctica realizada en el banco verificar que las conexiones son correctas y no existe alguna mala conexión a los equipos con los que se está trabajando.

Antes de energizar alguno de los dos variadores de frecuencia con los que cuenta el banco, se debe colocar un cable de conexión entre las borneras PO y PA+. Este puente no se debe retirar nunca mientras esté energizado u operando el variador por que se producirán daños en el equipo. Si al energizar el variador no está conectado PO y PA+ no encenderá.

En caso de ser necesario realizar algún cambio en las conexiones de la práctica que se está desarrollando deberá desenergizar el circuito conectado.

Evitar contacto directo o indirecto con terminales expuestos en la parte posterior del banco.

En caso de activarse alguna protección en el banco, verificar las causas del suceso y despejar la falla antes de volver a energizar el banco.

En caso de observar que algún equipo está operando incorrectamente, que emana olor a quemado o que está saliendo humo de él, desconectar la energía inmediatamente y comunicar al docente lo sucedido.

4.2.5 NORMAS DE SEGURIDAD DENTRO DEL LABORATORIO

No ingresar alimentos y/o bebidas al laboratorio.

No operar o conectar equipos del laboratorio si el docente no lo autoriza.

No desconectar ningún cable de los bancos de pruebas del laboratorio.

No operar los equipos del laboratorio con manos sucias y/o mojadas.

Mantener siempre limpio y en orden el laboratorio.

No ocasionar daños físicos a los equipos y/o bancos de pruebas del laboratorio.

No desmontar o retirar equipos de los bancos de pruebas.

No deben ingresar al laboratorio personas que no estén autorizadas por el docente.

ANEXOS

Diagrama de conexiones del banco de pruebas para control industrial programable (Lámina 2-P1, pág. 292).

Plano de conjunto del simulador de carga, motor eléctrico con freno mecánico regulable (Plano 1, pág. 293).

CRONOGRAMA/CALENDARIO

De acuerdo con la planificación del docente.

CUESTIONARIO

¿Especifique cómo conectar la alimentación eléctrica para el banco de pruebas?

¿Especifique cuáles serían los puntos a revisar antes de energizar el banco de pruebas?

¿Especifique que debe hacer antes de operar, conectar o energizar algún equipo del banco de pruebas?

¿Indique que cuidados debe tener antes de energizar un variador de frecuencia del banco de pruebas?

¿Cuál es la finalidad de utilizar la barra de tierra del banco de pruebas y cuáles son las ventajas de utilizarla?

OTROS

Sobre normas de seguridad:

Riesgos eléctricos.

Descargas eléctricas al cuerpo humano.

Sobre protección de dispositivos eléctricos:

Tipos, características, procedencia y costos para protección de los equipos del banco de pruebas.

Sobre diseño de circuitos eléctricos:

Marcas reconocidas en el medio de elementos y equipos eléctricos relacionados con el banco de pruebas, características técnicas y costos.

Proyecto:

Evaluar y cotizar la instalación de los elementos utilizados en el banco de pruebas para control industrial programable.

4.3 PRÁCTICA NO. 2: VERIFICACIÓN DEL FUNCIONAMIENTO DE LOS ELEMENTOS DEL BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE.

4.3.1 DATOS INFORMATIVOS

- MATERIA: Laboratorio de Instalaciones Eléctricas
- PRÁCTICA Nº 2
- NÚMERO DE ESTUDIANTES: 20
- NOMBRE DOCENTE:
- TIEMPO ESTIMADO: 2 horas

4.3.2 DATOS DE LA PRÁCTICA

 TEMA: Verificación del funcionamiento de los elementos del banco de pruebas.

• OBJETIVO GENERAL:

Comprobar el correcto funcionamiento de los elementos y equipos correspondientes al banco de pruebas.

OBJETIVOS ESPECÍFICOS:

Conocer el funcionamiento de cada elemento y equipo del banco de pruebas.

Comprobar la operación y correcto funcionamiento de los elementos y equipos del banco de pruebas.

MARCO TEÓRICO

Funcionamiento de cada elemento y equipo del banco de prueba.

Normas de seguridad para uso del banco de pruebas.

Normas de seguridad dentro del laboratorio.

Formatos para registro de valores experimentales.

Formatos para elaborar y presentar informes de laboratorio.

PROCEDIMIENTO

Revisar y analizar el correspondiente diagrama eléctrico del banco de pruebas.

Identificar cada uno de los elementos que forman parte del banco de pruebas.

Comprobar el correcto funcionamiento y operación de cada uno de los elementos y equipos.

Realizar y tomar las mediciones indicadas a los elementos y equipos del banco de pruebas. Completar las respectivas tablas de pruebas.

Establecer observaciones, comentarios y conclusiones de la práctica.

• CONDICIONES DE FUNCIONAMIENTO

Verificar el funcionamiento de todos los elementos y equipos del banco de prueba para control industrial programable.

Verificar de forma visual el buen estado de los elementos y equipos.

RECURSOS

Banco de pruebas para control industrial programable.

Instrumentación para: tensión, corriente.

Formatos para registro de valores experimentales y resultados.

Motor trifásico con freno mecánico regulable.

Cables de laboratorio.

REGISTRO DE RESULTADOS

Protocolo de mantenimiento preventivo de breakers 3P-2A.

Protocolo de mantenimiento preventivo de breakers 3P-10A.

Protocolo de mantenimiento preventivo de breakers 2P-2A.

Protocolo de mantenimiento preventivo de breaker 1P-6A.

Protocolo de mantenimiento preventivo de borneras y conectores.

Protocolo de mantenimiento preventivo de cables de pruebas.

Protocolo de mantenimiento preventivo de medidores de parámetros.

Protocolo de mantenimiento preventivo de fuente de voltaje fija.

Protocolo de mantenimiento preventivo de pulsadores PE1-2.

Protocolo de mantenimiento preventivo de pulsadores P1 a P4.

Protocolo de mantenimiento preventivo de contactores.

Protocolo de mantenimiento preventivo de guardamotores.

Protocolo de mantenimiento preventivo de luces piloto.

Protocolo de mantenimiento preventivo de relés térmicos.

Protocolo de mantenimiento preventivo de temporizadores.

Protocolo de mantenimiento preventivo de fuente sitop 24VDC.

Protocolo de mantenimiento preventivo de Logo.

Protocolo de mantenimiento preventivo de PLC.

Protocolo de mantenimiento preventivo de relés de interfaz.

Protocolo de mantenimiento preventivo de variador de frecuencia monofásico.

Protocolo de mantenimiento preventivo de variador de frecuencia trifásico.

Protocolo de mantenimiento preventivo de switchs ojo de cangrejo.

Protocolo de mantenimiento preventivo de selectores con retorno.

Protocolo de mantenimiento preventivo de selectores.

Protocolo de mantenimiento preventivo de pulsadores dobles.

Protocolo de mantenimiento preventivo de estructura mecánica banco de pruebas.

Protocolo de mantenimiento preventivo de estructura mecánica del motor.

Protocolo de mantenimiento preventivo de freno mecánico regulable.

Protocolo de mantenimiento preventivo de motor trifásico 1HP.

Protocolo de mantenimiento preventivo de tomacorrientes clavija.

Protocolo de mantenimiento preventivo de transformadores de corriente.

Protocolo de mantenimiento preventivo de variac.

ANEXOS

Diagrama de conexiones del banco de pruebas para control industrial programable (Lámina 2-P1, pág. 292).

Plano de conjunto del simulador de carga, motor eléctrico con freno mecánico regulable (Plano 1, pág. 293).

CRONOGRAMA/CALENDARIO

De acuerdo a la planificación del docente.

• **CUESTIONARIO**

- ¿Qué tipo de arranques para motores puede realizar en el banco de pruebas?
- ¿Qué tipo de motor es el instalado en el freno mecánico regulable?
- ¿Qué conexión tiene el motor del freno mecánico regulable y con qué voltaje debe trabajar de acuerdo a esta conexión?
- ¿Con que niveles de tensión se cuenta en el banco de pruebas en AC y DC?
- ¿Qué aplicaciones puede darle al banco de pruebas con los elementos que cuenta?

OTROS

Sobre protección de motores y dispositivos eléctricos:

Tipos, características, procedencia y costos para protección de los equipos del banco de pruebas.

Sobre fabricantes de motores y dispositivos eléctricos:

Marcas reconocidas en el medio, características técnicas y costos.

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / PROTECCIONES / : BREAKER 3Ø - 32AMP / SERIE: SCHNEIDER – IC60N FECHA : 25/02/14

PRUEBA REALIZADA : CIERRE Y APERTURA

ITEM	VARIABLE	PATRON / FLUKE 374		DIAGNÓSTICO		OBSERVACIONES
1	CONTACTOS 1,3,5	ACEPTABLE	2%			
2	CONTACTOS 2,4,6	ACEPTABLE	2%			
3	OTROS	ACEPTABLE	2%			
RECOMENDACIONES:		PORCENTAJE DE OPERATIVIDAD DEL DISPOSITIVO:				REALIZADO POR :
RESPONSABLE DEL DIAGNÓSTICO		RECIBIDO POR :				APROBADO POR :

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS PROTOCOLO DE MANTENIMIENTO PREVENTIVO EQUIPO / PROTECCIONES / : BREAKER 3Ø - 10AMP / SERIE: SCHNEIDER – IC60N FECHA: 25/02/14 PRUEBA REALIZADA: CIERRE Y APERTURA DIAGNÓSTICO **ITEM VARIABLE** PATRON / FLUKE 374 **OBSERVACIONES** CONTACTOS 1,3,5 1% **ACEPTABLE** CONTACTOS 2,4,6 **ACEPTABLE** 1% **OTROS ACEPTABLE** 1% **RECOMENDACIONES:** PORCENTAJE DE OPERATIVIDAD DEL **REALIZADO POR:** DISPOSITIVO: RESPONSABLE DEL DIAGNÓSTICO RECIBIDO POR: APROBADO POR:

RECIBIDO POR:

APROBADO POR:

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS

PROTOCOLO DE MANTENIMIENTO PREVENTIVO EQUIPO / PROTECCIONES / : BREAKER 2Ø - 2AMP / SERIE: SCHNEIDER – IC60N FECHA: 25/02/14 PRUEBA REALIZADA: CIERRE Y APERTURA DIAGNÓSTICO **ITEM VARIABLE** PATRON / FLUKE 374 **OBSERVACIONES** CONTACTOS 1,3,5 2% **ACEPTABLE** CONTACTOS 2,4,6 **ACEPTABLE** 2% **OTROS ACEPTABLE** 2% **RECOMENDACIONES:** PORCENTAJE DE OPERATIVIDAD DEL **REALIZADO POR:** DISPOSITIVO:

Fuente: Los autores

RESPONSABLE DEL DIAGNÓSTICO

Tabla 9 Toma de valores - Borneras y conectores

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

ELEMENTOS / BORNERAS Y CONECTORES / SERIE : AMERICANA FECHA : 25/02/14

PRUEBA REALIZADA: CONDUCTIVIDAD ELÉCTRICA Y ESFUERZO MECÁNICO

ITEM	VARIABLE	PATRON / FLUKE 374		DIAGNÓSTICO		OBSERVACIONES
1	SOPORTE	2 TUERCAS	5%			
2	AISLADOR EXTERNO DE BORNERA	FIJO	5%			
3	AISLADOR DE TERMINAL	FIJO	5%			
4	MACHINADO DE TERMINAL	ACEPTABLE	5%			
5	OTROS	ACEPTABLE	5%			
RECOMENDACIONES:		PORCENTAJE DE O DISPO	REALIZADO POR :			
RESPONSABLE DEL DIAGNÓSTICO		RECIBII	APROBADO POR :			

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

ELEMENTOS / CABLES DE PRUEBA / SERIE : SCI – WTE FECHA : 25/02/14

PRUEBA REALIZADA: CONDUCTIVIDAD ELÉCTRICA Y CONDICIÓN EXTERNA

TRUEDA REALIZADA : CONDUCTIVIDAD ELECTRICA I CONDICION EXTERNA						
ITEM	VARIABLE	PATRON / FLUKE 374		DIAGNÓSTICO	OBSERVACIONES	
1	CONDUCTIVIDAD (OHMS)	0	3%			
2	AISLAMIENTO DE PLUG	ACEPTABLE	3%			
3	AGARRE DEL CABLE	ACEPTABLE	3%			
4	OTROS	ACEPTABLE	3%			
REC	COMENDACIONES:	PORCENTAJE DE OPERATIVIDAD DEL DISPOSITIVO:			REALIZADO POR:	
RESPONSABLE DEL DIAGNÓSTICO		RECIBIDO POR :			APROBADO POR :	

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

INSTRUMENTACIÓN / MEDIDOR DE PARÁMETROS / FLUKE 374 / SERIE: FECHA : 25/02/15

SCHNEIDER ELECTRIC – PM 700

PRUEBA REALIZADA: TOMA DE VALORES UTILIZANDO EL MOTOR 3Ø - 220VAC CON CARGA VARIABLE

ITEM	VARIABLE	PATRON / F	LUKE 374	DIAGNÓSTICO	OBSERVACIONES
1	V R-S (V)	218	5%		
2	V S-T (V)	216	5%		
3	V T-R (V)	218	5%		
4	V R-N (V)	126	5%		
5	V S-N (V)	125	5%		
6	V T-N (V)	125	5%		
7	IR (A)	5	5%		
8	IS (A)	5	5%		
9	IT (A)	5	5%		
10	Р 3Ф (KW)	1	5%		
11	Q3Ф (KVAR)	1	5%		

12	S3Φ (KVA)	2	5%				
13	fp3Φ	0.82	5%				
14	TC-40/5 A	ACEPTABLE	5%				
15	OTROS	ACEPTABLE	5%				
RECOMENI	RECOMENDACIONES		PORCEN		OPERATIVIDAI POSITIVO	DEL	REALIZADO POR :
RESPONSA	BLE DEL DIAGN	NÓSTICO		RECI	BIDO POR		APROBADO POR :

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / FUENTE FIJA / SERIE : FECHA : 25/02/15

PRUEBA REALIZADA: TOMA DE VALORES DE VOLTAJE A DIFERENTES PORCENTAJES CON MULTÍMETRO FLUKE 374

TOTAL	THEFT	D. ED ON / DY LIVE	2=4	DI L GNIÁGET GO	ODGEDILL GLOVIEG	
ITEM	VARIABLE	PATRON / FLUKE	374	DIAGNOSTICO	OBSERVACIONES	
1	V R-S (V) IN	218.2	5%			
2	V S-T (V) IN	216.1	5%			
3	V T-R (V) IN	217.1	5%			
4	V R-S (V) OUT 100%	218.1	5%			
5	V S-T (V) OUT 100%	217.3	5%			
6	V T-R (V) OUT 100%	216.1	5%			
7	V R-S (V) OUT 0%	0	5%			
8	V S-T (V) OUT 0%	0	5%			
9	V T-R (V) OUT 0%	0	5%			
10	ESTRUCTURA METALICA	ACEPTABLE	4%			
RECOME	NDACIONES:	PORCENTAJE DE OPE DISPOSITIVO:	PORCENTAJE DE OPERATIVIDAD DEL DISPOSITIVO:		REALIZADO POR :	
RESPONS	ABLE DEL DIAGNÓSTICO	RECIBIDO POR :	RECIBIDO POR :			

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPOS / PULSADOR PE 1 - PE 2 / SCHNEIDER ELECTRIC /SERIE MT26 FECHA: 25/02/15

PRUEBA REALIZADA · CONTINUIDAD

INULDA	REALIZADA . CONTINUIDAD					
ITEM	VARIABLE	PATRON/FLUKE 37	4	DIAGN	ÓSTICO	OBSERVACIONES
1	CONTACTO 1	ACEPTABLE	2%			
2	CONTACTO 2	ACEPTABLE	2%			
3	BOTÓN EMERGENCIA	ACEPTABLE	2%			
4	OTROS	ACEPTABLE	2%			
	RECOMENDACIONES:	PORCENTAJE DE OF DISPOSI			DEL	REALIZADO POR :
]	RESPONSABLE DEL DIAGNÓSTICO	RECIBIDO	O POR	₹:		APROBADO POR :

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPOS / PULSADOR P1, P2, P3, P4 / SCHNEIDER ELECTRIC / SERIE ME 25 FECHA: 25/02/2015

PRUEBA REALIZADA : CONTINUIDAD

ITEM	VARIABLE	PATRON/FLUKE3	74	DIAGNÓSTICO	OBSERVACIONES
1	CONTACTO 1	ACEPTABLE	4%		
2	CONTACTO 2	ACEPTABLE	4%		
3	CONTACTO 3	ACEPTABLE	4%		
4	CONTACTO 4	ACEPTABLE	4%		
5	BOTON VERDE	ACEPTABLE	4%		
6	BOTON ROJO	ACEPTABLE	4%		
7	OTROS	ACEPTABLE	4%		
RECOMENDACIONES:			PORCENTAJE DE OPERATIVIDAD DEL DISPOSITIVO:		REALIZADO POR :
RESPO	ONSABLE DEL DIAGNÓSTICO	RECIBII	RECIBIDO POR :		

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / CONTACTOR K1, K2, K3, K4, K5, K6, K7 / SCHNEIDER ELECTRIC SERIE LC1

D09 FECHA: 25/02/15

PRUEBA REALIZADA : PRUEBA DE BOBINAS Y CONTACTOS (CONTINUIDAD)

ITEM	VARIABLE	PATRON / FLUKE	PATRON / FLUKE 374		ÓSTICO	OBSERVACIONES
1	BOBINAS DEL CONTACTOR	220V	3%			CORRIENTE A VACIO 0 AMP
2	CONTACTOS DE FUERZA	ACEPTABLE	3%			
3	CONTACTOS AUX NC	ACEPTABLE	3%			
4	CONTACTOS AUX NO	ACEPTABLE	3%			
5	OTROS	ACEPTABLE	3%			
	RECOMENDACIONES:	PORCENTAJE DE DISPO			D DEL	REALIZADO POR :
	RESPONSABLE DEL DIAGNÓSTICO	RECIB	IDO P	POR :		APROBADO POR :

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPOS / LUZ PILOTO H1-H2-H3-H4-H5-H6-H7-H8-H9-H10-H11-H12 / H1-H2-H3-H4-H5-H6-H7-H8-

H9-H10-H11-H12 CAMSCO / TIPO:AD16-220 – S FECHA: 25/02/15

PRUEBA REALIZADA: ENCENDIDO Y APAGADO

ITEM	VARIABLE	PATRON/FLUKE	374	DIAGNO	ÓSTICO	OBSERVACIONES
1	CONTACTO X1	ACEPTABLE	5%			
2	CONTACTO X2	ACEPTABLE	5%			
3	OTROS	220V	5%			
	RECOMENDACIONES:	PORCENTAJE DE DISPO	OPERATI OSITIVO:	VIDAD D	EL	REALIZADO POR :
RESPO	NSABLE DEL DIAGNÓSTICO	RECIB	DO POR :			APROBADO POR :

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / PROTECCIONES / : RELÉ TÉRMICO / SERIE: LR D08 FECHA : 25/02/15

PRUEBA REALIZADA: DISPARO POR SOBRE CORRIENTE

ITEM	VARIABLE	PATRON / FLUKE	LUKE 374 DIAGNÓSTIC		ÓSTICO	OBSERVACIONES
1	CONTACTOS DE FUERZA	ACEPTABLE	2%			RANGO: 2.5 AMP - 4 AMP
2	CONTACTO AUX NC	ACEPTABLE	2%			
3	CONTACTO AUX NO	ACEPTABLE	2%			
4	BORNES TIPO TOPE	ACEPTABLE	2%			
	RECOMENDACIONES:	PORCENTAJE DE (DISPC	_		D DEL	REALIZADO POR :
F	RESPONSABLE DEL DIAGNÓSTICO	RECIBI	DO P	OR:		APROBADO POR :

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / TEMPORIZADOR 1 - 2/ CAMSCO / SERIE : AH3 FECHA : 25/02/15

PRUEBA REALIZADA : ENCLAVAMIENTO DE BOBINA (CONTINUIDAD)

ITEM	VARIABLE	PATRON / FLUKE 374		DIAGNÓSTICO		OBSERVACIONES
1	BOBINAS DEL TEMPORIZADOR	220V	2%			
2	CONTACTOS AUX NO	ACEPTABLE	2%			
3	CONTACTOS AUX NC	ACEPTABLE	2%			
4	CONTACTOS COMÚNES	ACEPTABLE	2%			
5	BORNES TIPO TOPE	ACEPTABLE	2%			
	RECOMENDACIONES:	PORCENTAJE DE OI DISPOS	D DEL	REALIZADO POR :		
	RESPONSABLE DEL DIAGNÓSTICO	RECIBIDO POR :				APROBADO POR :

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / FUENTE SITOP / SERIE: 6EP1 333 – 3BADO FECHA: 25/02/15

PRUEBA REALIZADA: TOMA DE VALORES DE VOLTAJE CON MULTÍMETRO FLUKE 374

ITEM	VARIABLE	PATRON / FLUKE 3	74	DIAGNÓ	ÓSTICO	OBSERVACIONES
1	V R-S (V) IN	214	5%			SE ENERGIZO CON FUENTE VARIABLE VARIAC 3F 4KVA 0- 230V
2	V DC (V) OUT 100%	24,1	5%			
3	BORNES TIPO TOPE	ACEPTABLE	5%			
4	ESTRUCTURA METALICA	ACEPTABLE	5%			
RECOMENDACIONES:		PORCENTAJE DE OPER DISPOSITIVO:	L	REALIZADO POR :		
RESPONSA	ABLE DEL DIAGNÓSTICO	RECIBIDO POR : APROBADO PO			APROBADO POR :	

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / LOGO / SERIE : SZVD9NC6 FECHA : 25/02/15

PRUEBA REALIZADA: TOMA DE VALORES DE VOLTAJE CON MULTÍMETRO FLUKE 374

ITEM	VARIABLE	PATRON / FLUKE	374	DIAGNO	ÓSTICO	OBSERVACIONES	
1	V DC (V) IN	24,1	5%			SE ENERGIZO CON FUENTE SITOP 24VDC	
2	SALIDAS DIGITALES Q1-Q2-Q3-Q4	ACEPTABLE	5%				
3	ENTRADAS DIGITALES I1-I8	ACEPTABLE	5%				
4	BORNES TIPO TOPE	ACEPTABLE	5%				
5	ESTRUCTURA METALICA	ACEPTABLE	5%				
RECOMENDACIONES:		PORCENTAJE DE OPE DISPOSITIVO:	PORCENTAJE DE OPERATIVIDAD DEL DISPOSITIVO:				
RESPONS	ABLE DEL DIAGNÓSTICO	RECIBIDO POR :	RECIBIDO POR : APROBADO				

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

RESPONSABLE DEL DIAGNÓSTICO

EQUIPO / PLC / SERIE : 6ES7 212-1BE31-0XB0 FECHA : 25/02/15

PRUEBA 1	PRUEBA REALIZADA : TOMA DE VALORES DE VOLTAJE A DIFERENTES PORCENTAJES CON MULTIMETRO FLUKE 374						
ITEM	VARIABLE	PATRON / FLUKE 3	374	DIAGNÓST	TICO OBSERVACIONES		
1	V R-S (V) IN	212,7	5%		SE ENERGIZO CON FUENTE VARIABLE VARIAC 3F 4KVA 0- 230V		
2	VDC (V) OUT	25,5	5%				
3	ENTRADAS DIGITALES DE .07	ACEPTABLE	5%				
4	SALIDAS DIGITALES DE .05	ACEPTABLE	5%				
5	BORNES TIPO TOPE	ACEPTABLE	5%				
6	ESTRUCTURA METALICA	ACEPTABLE	5%				
LEECOMENIDACIONES:		PORCENTAJE DE OPER DISPOSITIVO:	 RATIV	IDAD DEL	REALIZADO POR :		

Fuente: Los autores

RECIBIDO POR:

APROBADO POR:

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / RELÉS DE INTERFAZ KA1-KA2-KA3-KA4-KA5-KA6 (267997EQQ) FECHA: 25/02/15

PRUEBA REALIZADA: PRUEBA DE BOBINAS Y CONTACTOS (CONTINUIDAD)

ITEM	VARIABLE	PATRON / FLUKE	374	DIAGNO	ÓSTICO	OBSERVACIONES	
1	BOBINAS DEL RELE	24V	3%			CORRIENTE A VACIO 0 AMP	
3	CONTACTOS AUX NC	ACEPTABLE	3%				
4	CONTACTOS AUX NO	ACEPTABLE	3%				
5	CONTACTOS COMÚNES	ACEPTABLE	3%				
6	BORNES TIPO TOPE	ACEPTABLE	3%				
RECOMENDACIONES:		PORCENTAJE DE DISPO			AD DEL	REALIZADO POR :	
RESPONSABLE DEL DIAGNÓSTICO		RECIB	IDO P	POR :		APROBADO POR :	

Tabla 24 Toma de valores – Variador de frecuencia monofásico

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / VARIADOR DE FRECUENCIA ENTRADA MONOFÁSICA / SERIE : ATV312HO75M2 FECHA : 25/02/15

PRUEBA REALIZADA: TOMA DE VALORES DE VOLTAJE CON MULTÍMETRO FLUKE 374

RESPONSABLE DEL DIAGNÓSTICO

ITEM	VARIABLE	PATRON / FLUKE 374		DIAGNÓST	ICO	OBSERVACIONES
1	V R-S (V) IN	214.2	5%			
2	V R-S (V) OUT	212.2	5%			SE REALIZA PRUEBA
3	V R-T (V) OUT	212.9	5%			CON MOTOR 1 HP EN VACIO
4	V S-T (V) OUT	212.3	5%			VACIO
5	I1 (A) IN	1.5	5%			
6	I2 (A) IN	1.5	5%			
7	I1 (A) OUT	2	5%			
8	I2 (A) OUT	2	5%			
9	I3 (A) OUT	1.9	5%			
10	ESTRUCTURA METÁLICA	ACEPTABLE	5%			
	RECOMENDACIONES:	PORCENTAJE DE OPERATIVIDAD DEL DISPOSITIVO:		L	REALIZADO POR :	

Fuente: Los autores

RECIBIDO POR:

APROBADO POR:

Tabla 25 Toma de valores – Variador de frecuencia trifásico

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / VARIADOR DE FRECUENCIA TRIFÁSICO / SERIE : ATV312HO75M3 FECHA : 25/02/15

PRUEBA REALIZADA: TOMA DE VALORES DE VOLTAJE CON MULTÍMETRO FLUKE 374

ITEM	VARIABLE	PATRON / FLUKE	PATRON / FLUKE 374 DIAGNÓS		OBSERVACIONES
1	V R-S (V) IN	214,5	5%		SE REALIZA ´PRUEBA
2	V R-T (V) IN	213,4	5%		CON MOTOR 1 HP EN
3	V S-T (V) IN	213,4	5%		VACÍO
4	V R-S (V) OUT	214,5	5%		
5	V R-T (V) OUT	214,3	5%		
6	V S-T (V) OUT	214,5	5%		
7	I1 (A) IN	1	5%		
8	I2 (A) IN	0,8	5%		
9	I3 (A) IN	0,7	5%		
10	I1 (A) OUT	2	5%		
11	I2 (A) OUT	2,1	5%		
12	I3 (A) OUT	2	5%		
13	ESTRUCTURA METALICA	ACEPTABLE	5%		
	RECOMENDACIONES:	PORCENTAJE DE OPERATIVIDAD DEL DISPOSITIVO: REALIZAI			
	RESPONSABLE DEL DIAGNÓSTICO	RECIBIDO POR : APROBADO PO			

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPOS / SW1.. - SW15 / SCHNEIDER ELECTRIC / SERIE 1121 15 A 250V FECHA: 02/03/2015

PRUEBA REALIZADA : CONTINUIDAD

ITEM	VARIABLE	PATRON/FLUKE37	74	DIAGNÓSTIC	CO OBSERVACIONES
1	CONTACTO 1 (NO)	ACEPTABLE	2%		
2	OTROS	ACEPTABLE	2%		
	RECOMENDACIONES:	PORCENTAJE DE O		VIDAD DEL	REALIZADO POR :
RESPO	ONSABLE DEL DIAGNÓSTICO	DISPOS			APROBADO POR :
KLSI	ONSABLE DEL DIAGNOSTICO	RECIBIL	OTOR.		AI KODADO I OK .

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPOS / S1-S3 / SCHNEIDER ELECTRIC / SERIE ZBE-101 FECHA: 02/03/2015

PRUEBA REALIZADA : CONTINUIDAD

ITEM	VARIABLE	PATRON/FLUKE37	' 4	DIAGNÓ	ÓSTICO	OBSERVACIONES
1	CONTACTO 1 (NO)	ACEPTABLE	1%			
2	CONTACTO 2 (NO)	ACEPTABLE	1%			
3	OTROS	ACEPTABLE	1%			
RECOMENDACIONES:		PORCENTAJE DE O DISPOS		VIDAD DE	EL	REALIZADO POR :
RESPO	ONSABLE DEL DIAGNÓSTICO	RECIBIDO POR :				APROBADO POR :

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPOS / S2-S4 / SCHNEIDER ELECTRIC / SERIE ZBE-101 FECHA: 02/03/2015

PRUEBA REALIZADA : CONTINUIDAD

ITEM	VARIABLE	PATRON/FLUKE37	' 4	DIAGNÓ	ÓSTICO	OBSERVACIONES
1	CONTACTO 1 (NO)	ACEPTABLE	1%			
2	CONTACTO 2 (NO)	ACEPTABLE	1%			
3	OTROS	ACEPTABLE	1%			
RECOMENDACIONES:		PORCENTAJE DE O DISPOS		VIDAD DE	EL	REALIZADO POR :
RESPO	ONSABLE DEL DIAGNÓSTICO	RECIBIDO POR :				APROBADO POR :

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPOS / P5-P6-P7 / SCHNEIDER ELECTRIC / SERIE ZBE -101 / ZB 102 FECHA: 02/03/2015

PRUEBA REALIZADA : CONTINUIDAD

ITEM	VARIABLE	PATRON/FLUKE3	74	DIAGNÓST	ICO	OBSERVACIONES
1	CONTACTO 1 (NC)	ACEPTABLE	3%			
2	CONTACTO 2 (NO)	ACEPTABLE	3%			
3	OTROS	ACEPTABLE	1%			
RECOMENDACIONES:		PORCENTAJE DE O DISPOS		VIDAD DEL		REALIZADO POR :
RESPO	ONSABLE DEL DIAGNÓSTICO	RECIBIDO POR :				APROBADO POR :

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / ESTRUCTURA MECÁNICA FECHA: 02/03/15

PRUEBA REALIZADA: NIVELACIÓN CON NIVEL DE BURBUJA Y ACABADO ESTÉTICO

ITEM	VARIABLE	PATRON / FLUKE	374	DIAGNÓSTICO	OBSERVACIONES
1	NIVEL HORIZONTAL	ACEPTABLE	4%		
2	NIVEL VERTICAL	ACEPTABLE	4%		
3	PERFIL DE PROTECCIÓN	ACEPTABLE	4%		
4	COBERTURA DE AMORTIGUACIÓN	ACEPTABLE	4%		
5	SOLDADURA	ACEPTABLE	4%		
6	PINTURA	ACEPTABLE	4%		
7	OTROS	ACEPTABLE	4%		
	RECOMENDACIONES:	PORCENTAJE DE OF ESTRU			REALIZADO POR :
	RESPONSABLE DEL DIAGNÓSTICO	RECIBII	DO P	OR :	APROBADO POR :

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / ESTRUCTURA MECÁNICA DEL MOTOR FECHA: 02/03/15

PRUEBA REALIZADA: NIVELACIÓN CON NIVEL DE BURBUJA Y ACABADO ESTETICO

ITEM	VARIABLE	PATRON / FLUKE	374	DIAGNÓSTICO	OBSERVACIONES
1	NIVEL HORIZONTAL	ACEPTABLE	2%		
2	NIVEL VERTICAL	ACEPTABLE	2%		
3	PERFIL DE PROTECCIÓN	ACEPTABLE	2%		
4	COBERTURA DE AMORTIGUACIÓN	ACEPTABLE	2%		
5	SOLDADURA	ACEPTABLE	2%		
6	PINTURA	ACEPTABLE	2%		
7	OTROS	ACEPTABLE	2%		
	RECOMENDACIONES:	PORCENTAJE DE OI ESTRU			REALIZADO POR :
	RESPONSABLE DEL DIAGNÓSTICO	RECIBI	DO PO	OR:	APROBADO POR :

Tabla 32 Toma de valores – Freno mecánico regulable

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / FRENO MECANICO REGULABLE FECHA: 02/03/15

PRUEBA REALIZADA: NIVELACIÓN CON NIVEL DE BURBUJA Y ACABADO ESTÉTICO

ITEM	VARIABLE	PATRON / FLUKE	374	DIAGNÓSTICO	OBSERVACIONES
1	NIVEL HORIZONTAL	ACEPTABLE	2%		
2	NIVEL VERTICAL	ACEPTABLE	2%		
3	PERFIL DE PROTECCIÓN	ACEPTABLE	2%		
4	COBERTURA DE AMORTIGUACIÓN	ACEPTABLE	2%		
5	SOLDADURA	ACEPTABLE	2%		
6	PINTURA	ACEPTABLE	2%		
7	OTROS: ZAPATAS, CHUMACERAS. ETC	ACEPTABLE	2%		
	RECOMENDACIONES:	PORCENTAJE DE OF ESTRU			REALIZADO POR :
	RESPONSABLE DEL DIAGNÓSTICO	RECIBII	DO P	OR:	APROBADO POR :

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / SERIE : SIMENS 1LA7 FECHA : 02/03/15

PRUEBA REALIZADA: MOTOR TRIFÁSICO DE 1 HP

ITEM	VARIABLE	PATRON / FLU	KE 374	DIAGNÓSTICO	OBSERVACIONES
1	V U-V (V)	214,3	2%		ARRANQUE DIRECTO EN VACIO
2	V V-W (V)	213	2%		
3	V W-U (V)	213,8	2%		
4	IU (A)	2	2%		
5	IV (A)	2	2%		
6	IW (A)	2	2%		
7	P 3Φ (W)	40	2%		
8	Q3Φ (VAR)	50	2%		
9	S3Φ (VA)	60	2%		
10	fp3Φ	0.64	2%		
	RECOMENDACIONES:	PORCENTAJE I DI	DE OPERATI SPOSITIVO		REALIZADO POR :
	RESPONSABLE DEL DIAGNÓSTICO	REC	IBIDO POR	:	APROBADO POR :

Tabla 34 Toma de valores – Tomacorriente clavija 1-2

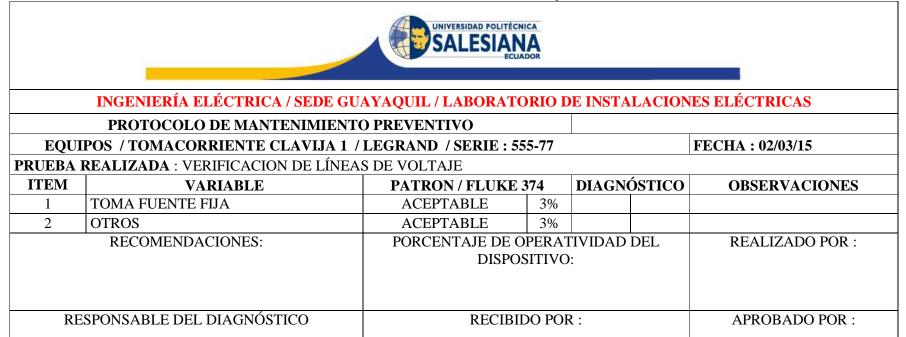


Tabla 35 Toma de valores – Transformador de corriente

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / PROTECCIONES / : TRANSFORMADOR DE CORRIENTE / SERIE: CAMSCO

THRU 1T FECHA: 02/03/15

PRUEBA REALIZADA: TRANSFORMACION DE CORRIENTE 40:5

ITEM	VARIABLE	PATRON / FLUKE 374	DIAGNÓ	OSTICO	OBSERVACIONES
1	LINEA	ACEPTABLE	3%		
2	S1-K	ACEPTABLE	3%		
3	S2-I	ACEPTABLE	3%		
4	OTROS	ACEPTABLE	3%		
	MENDACIONES:	PORCENTAJE DE OPERATIVIDAD DEL DISPOSITIVO:		TIVO:	REALIZADO POR :
RESPONSABLE DEL DIAGNÓSTICO		RECIBIDO POR :			APROBADO POR :

Tabla 36 Toma de valores - Variac

PROTOCOLO DE MANTENIMIENTO PREVENTIVO

EQUIPO / VARIAC / SERIE : 117 CU – 3 -01201- 303 **FECHA : 25/02/15**

PRUEBA REALIZADA: TOMA DE VALORES DE VOLTAJE A DIFERENTES PORCENTAJES CON MULTÍMETRO FLUKE 374

ITEM	VARIABLE	PATRON / FLUKE	PATRON / FLUKE 374		OBSERVACIONES
1	V R-S (V) IN	215	5%		
2	V S-T (V) IN	213	5%		
3	V T-R (V) IN	216	5%		
4	V R-S (V) OUT 100%	214	5%		
5	V S-T (V) OUT 100%	215	5%		
6	V T-R (V) OUT 100%	216	5%		
7	V R-S (V) OUT 50%	112	5%		
8	V S-T (V) OUT 50%	111	5%		
9	V T-R (V) OUT 50%	112	5%		
10	V R-S (V) OUT 0%	0	5%		
11	V S-T (V) OUT 0%	0	5%		
12	V T-R (V) OUT 0%	0	5%		
13	ESTRUCTURA METALICA	ACEPTABLE	5%		
RECOMENDACIONES:		PORCENTAJE DE OF DISPOSITIVO:	PORCENTAJE DE OPERATIVIDAD DEL DISPOSITIVO:		
RESPONS	ABLE DEL DIAGNÓSTICO	RECIBIDO POR :	RECIBIDO POR :		

4.4 PRÁCTICA NO. 3: ARRANQUE DIRECTO PARA MOTOR ELÉCTRICO TRIFÁSICO.

4.4.1 DATOS INFORMATIVOS

- MATERIA: Laboratorio Instalaciones Eléctricas.
- PRÁCTICA N° 3
- NÚMERO DE ESTUDIANTES: 20
- NOMBRE DOCENTE:
- TIEMPO ESTIMADO: 2 horas

4.4.2 DATOS DE LA PRÁCTICA

• **TEMA:** Arranque directo para motor eléctrico trifásico.

• OBJETIVO GENERAL:

Realizar un arranque directo para motor eléctrico trifásico utilizando los elementos y equipos del banco de pruebas.

• OBJETIVOS ESPECÍFICOS:

Diseñar los esquemas de fuerza y control para desarrollo de un arranque directo.

Identificar los elementos del banco de pruebas que se usarán para elaborar la práctica.

Desarrollar la práctica en el banco de pruebas.

Comprender el comportamiento y funcionamiento de un arranque directo.

MARCO TEÓRICO

Funcionamiento de cada elemento y equipo del banco de pruebas.

Normas de seguridad para uso del banco de pruebas.

Normas de seguridad dentro del laboratorio.

Formatos para registro de valores experimentales.

Formatos para elaborar y presentar informes de laboratorio.

PROCEDIMIENTO

Realizar los esquemas de fuerza y control para la práctica de arranque directo.

Verificar los elementos del banco de pruebas a utilizar para la práctica.

Realizar y verificar las conexiones de elementos y equipos en el banco de pruebas para elaborar la práctica utilizando los esquemas de fuerza y control.

Conectar, energizar el banco de pruebas, verificar voltajes y alimentar los esquemas de fuerza y control cableados.

Realizar pruebas de funcionamiento con y sin carga.

Tomar los datos de las mediciones correspondientes a la práctica y completar las respectivas tablas.

Indicar las observaciones, recomendaciones y conclusiones de la práctica.

• CONDICIONES DE FUNCIONAMIENTO

Diseñar y realizar los esquemas de control y fuerza para arrancar un motor trifásico con las siguientes condiciones:

Al activar el pulsante de marcha (verde), se activa el contactor K el cual queda enclavado y pone en funcionamiento al motor.

Para detener el funcionamiento del motor se presiona el pulsante de paro (rojo) y el motor se detiene.

El sistema debe contar con un paro de emergencia, el cual desconecta y apaga todo el sistema, para esto se usará un pulsante tipo hongo color rojo.

Para señalización de marcha se cuenta con una luz piloto verde y para señalización de paro o falla se cuenta con una luz piloto roja.

Se debe proteger el circuito de control con un breaker y el circuito de fuerza con un guardamotor.

RECURSOS

Banco de prueba para control industrial programable.

Equipos de medición para: tensión, corriente, potencias, fp (factor de potencia).

Formatos para registro de valores experimentales y resultados.

Motor trifásico con freno mecánico regulable.

Cables de laboratorio.

• REGISTRO DE RESULTADOS

TABLA Nº1 Arranque directo para motor eléctrico trifásico

• Prueba sin carga- sentido horario

TABLA Nº2 Arranque directo para motor eléctrico trifásico

• Prueba con carga- sentido horario

Cuestionario de preguntas

Observaciones, comentarios, conclusiones

ANEXOS

Diagrama del circuito de control. (Lámina 1-P3, pág. 157).

Diagrama del circuito de fuerza. (Lámina 2-P3, pág. 158).

Diagrama de conexiones del banco de pruebas para control industrial programable. (Págs. 159, 160).

Tablas para mediciones y resultados.

CRONOGRAMA/CALENDARIO

De acuerdo a la planificación del docente.

CUESTIONARIO

¿Cuál es la diferencia entre un guarda motor y un relé térmico?

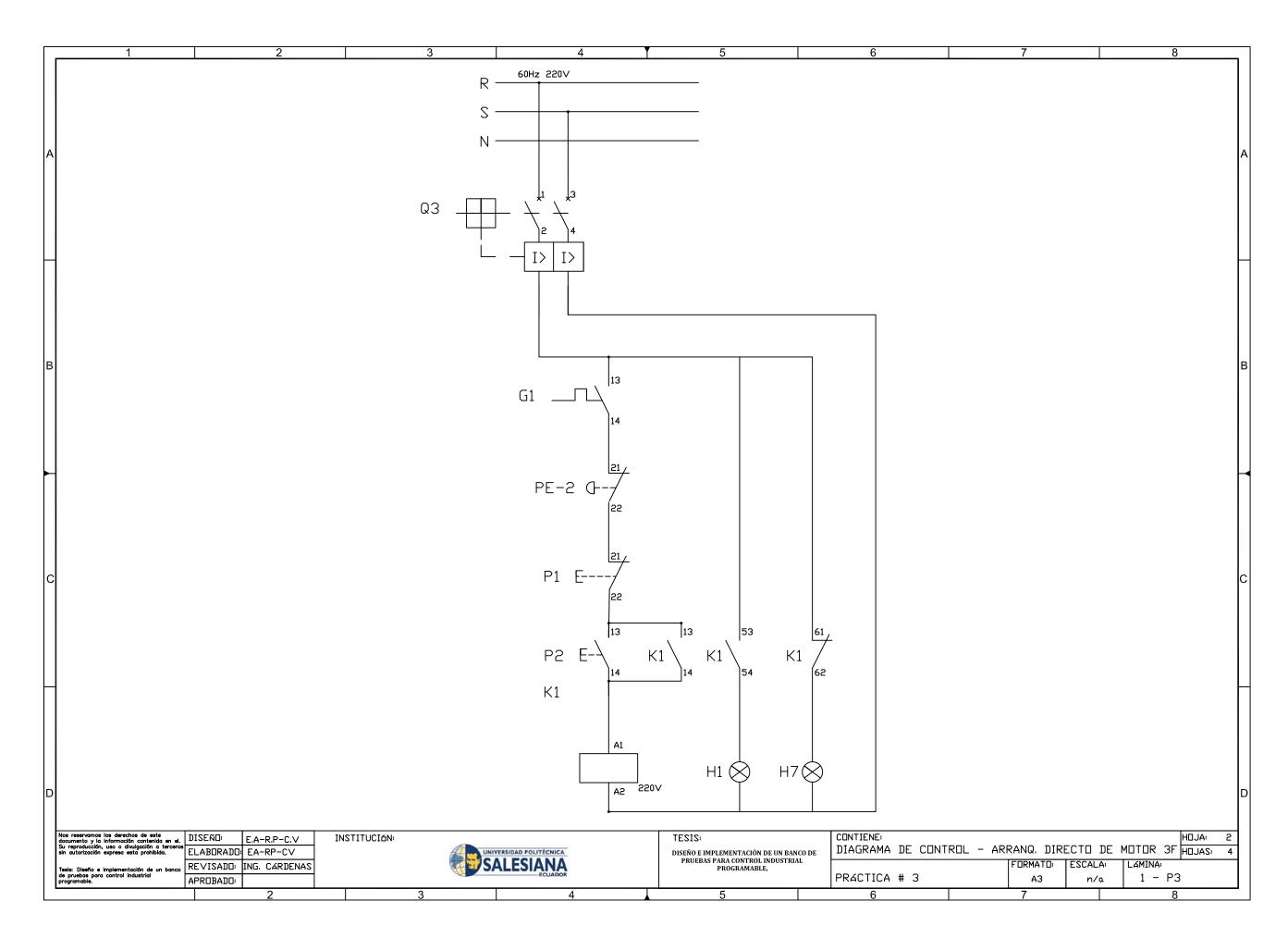
¿Describa cuál es la utilidad de los contactos auxiliares de un guarda motor y un relé térmico?

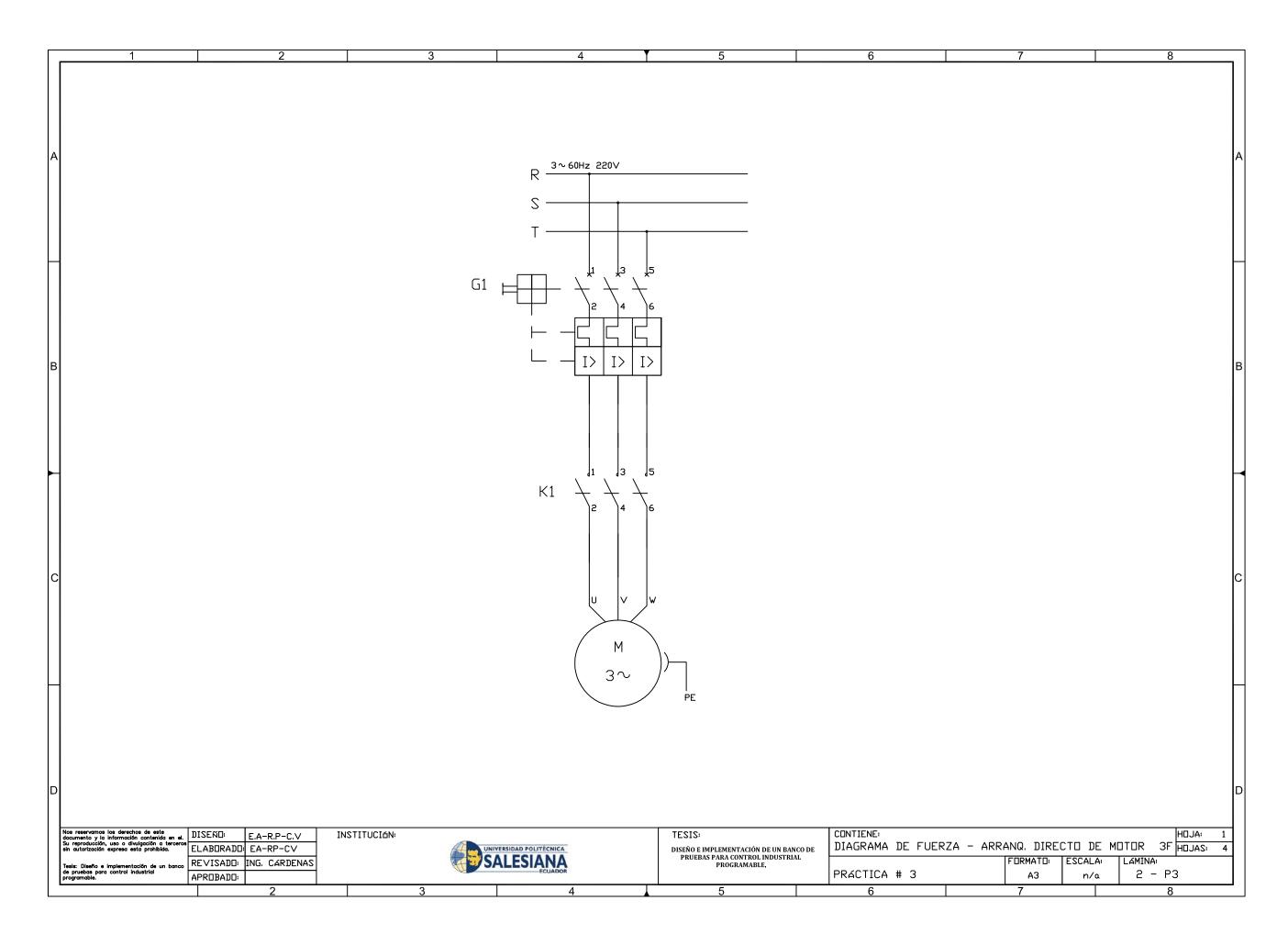
¿Por qué se utilizan protecciones para circuito de control y circuito de fuerza?

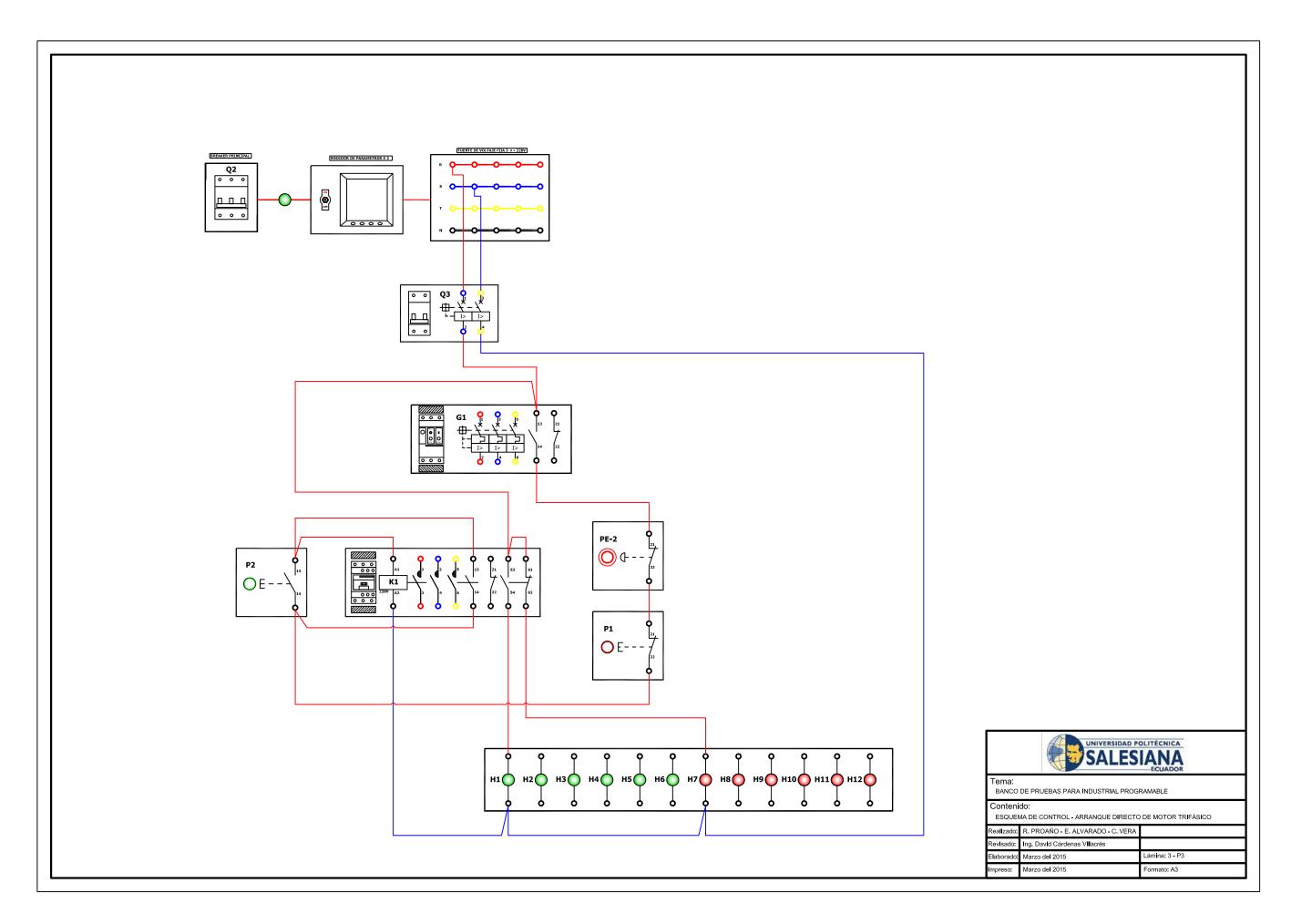
¿Cuándo se utiliza un arranque directo para motores trifásicos?

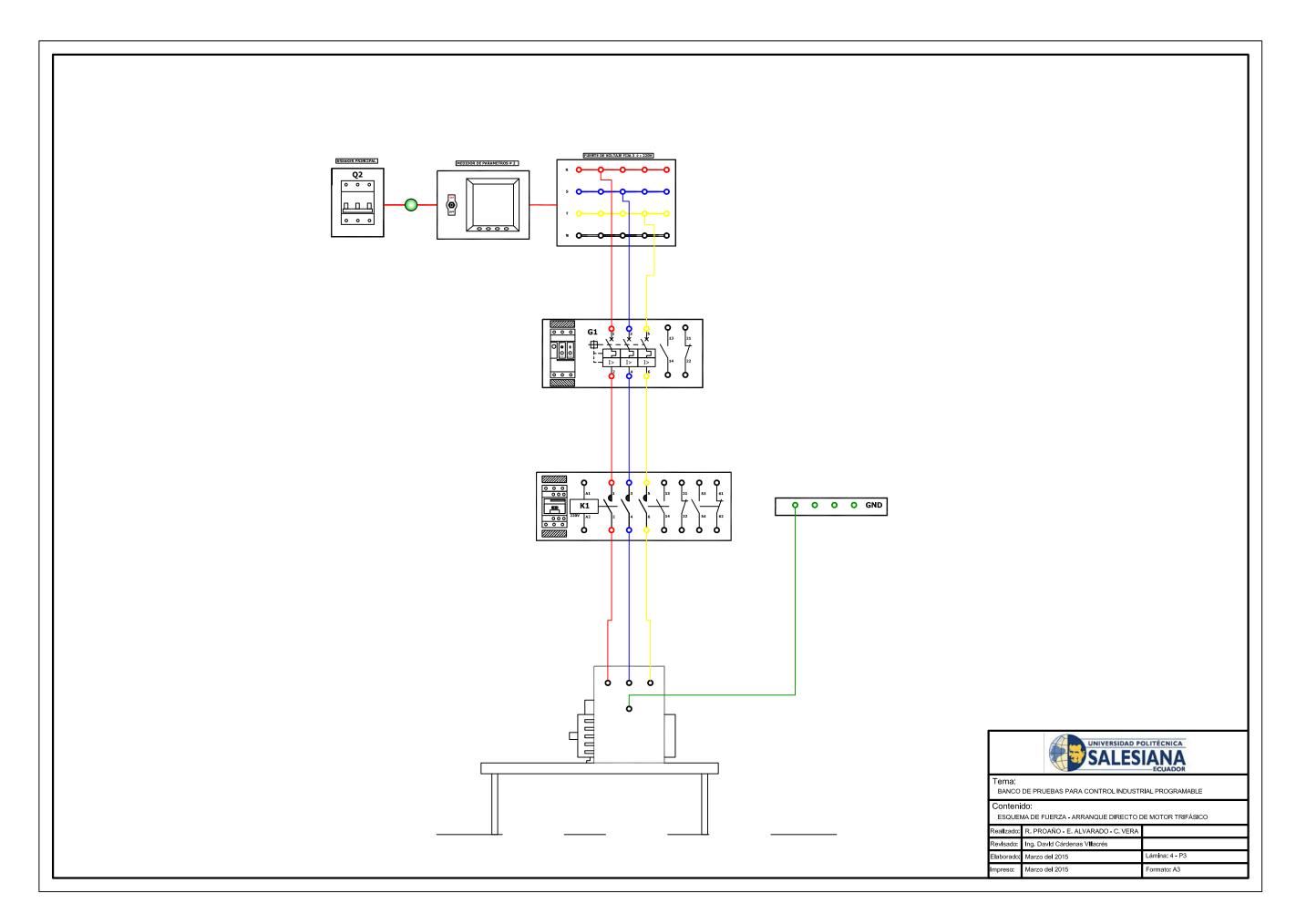
¿En base a que parámetro se calibra la corriente en un guarda motor o relé térmico?

• OTROS


Proyecto:


Evaluar y cotizar la instalación de un arranque directo para un motor trifásico de 1HP.


Tabla 37 Práctica #3 Arranque directo para motor eléctrico trifásico, prueba sin carga


INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA #3 TABLA Nº1 ARRANQUE DIRECTO PARA MOTOR ELÉCTRICO | FECHA: TRIFÁSICO 16/03/15 **ELEMENTOS:** BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE **VARIABLE VALORES OBSERVACIONES MEDIDOS** PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO V 1 (V) V 2 (V) V 3 (V) I1 (A) **ENTRADA** I2 (A) (PM 700) I3 (A) **P** (W) Q (VAR) S (VA) FP VU-V(V)<u>V V-W</u> (V) V W-U (V)SALIDA IU(A) (FLUKE) se debe considerar el torque de IV (A) rozamiento originado por los rodamientos y acoples del freno IW (A)

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1									
PRÁCTICA # 3 TABLA N°2 ARRANQUE DIRECTO PARA MOTOR ELÉCTRICO TRIFÁSICO FECHA: 16/03/15									
	S: PRUEBAS PARA CON FÁSICO CON FRENO		IAL PROGRAM	ABLE Y					
VA	RIABLE	VALORES MEDIDOS	OBSERVACIONES						
PRUEBA CON CARGA - SENTIDO DE GIRO HORARIO									
	V 1 (V)								
	V 2 (V)								
	V 3 (V)								
	I1 (A)								
ENTRADA	I2 (A)								
(PM 700)	I3 (A)								
	P (W)								
	Q (VAR)								
	S (VA)								
	FP								
	V U-V (V)								
	V V-W (V)								
SALIDA	V W-U (V)								
(FLUKE)	IU(A)								
	IV (A)		Se reguló el freno del motor hasta medir una corriente de						
	IW (A)		3.1 a por fase						

4.5 PRÁCTICA NO. 4: ARRANQUE DIRECTO CON INVERSIÓN DE GIRO PARA MOTOR ELÉCTRICO TRIFÁSICO.

4.5.1 DATOS INFORMATIVOS

- MATERIA: Laboratorio de Instalaciones Eléctricas.
- PRÁCTICA N° 4
- NÚMERO DE ESTUDIANTES: 20
- NOMBRE DOCENTE:
- TIEMPO ESTIMADO: 2 horas

4.5.2 DATOS DE LA PRÁCTICA

• **TEMA:** Arranque directo con inversión de giro para motor eléctrico trifásico.

• OBJETIVO GENERAL:

Realizar un arranque directo con inversión de giro para motor eléctrico trifásico utilizando los elementos y equipos del banco de pruebas.

• OBJETIVOS ESPECÍFICOS:

Diseñar los esquemas de fuerza y control para desarrollo de un arranque directo con inversión de giro.

Identificar los elementos del banco de pruebas que se usarán para elaborar la práctica.

Desarrollar la práctica en el banco de pruebas.

Comprender el comportamiento y funcionamiento de un arranque directo con inversión de giro.

MARCO TEÓRICO

Funcionamiento de cada elemento y equipo del banco de pruebas.

Normas de seguridad para uso del banco de pruebas.

Normas de seguridad dentro del laboratorio.

Formatos para registro de valores experimentales.

Formatos para elaborar y presentar informes de laboratorio.

PROCEDIMIENTO

Realizar los esquemas de fuerza y control para la práctica de arranque directo con inversión de giro.

Verificar los elementos del banco de pruebas a utilizar para la práctica.

Realizar y verificar las conexiones de elementos y equipos en el banco de pruebas para elaborar la práctica utilizando los esquemas de fuerza y control.

Conectar, energizar el banco de pruebas, verificar voltajes y alimentar los esquemas de fuerza y control cableados.

Realizar pruebas de funcionamiento con y sin carga.

Tomar los datos de las mediciones correspondientes a la práctica y completar las respectivas tablas.

Indicar las observaciones, recomendaciones y conclusiones de la práctica.

CONDICIONES DE FUNCIONAMIENTO

Diseñar y realizar los esquemas de control y fuerza para arrancar un motor trifásico con las siguientes condiciones:

Al activar el pulsante de marcha sentido horario (verde), se activa el contactor K1 el cual queda enclavado y pone en funcionamiento al motor con sentido de giro horario. Para detener el funcionamiento del motor se presiona el pulsante de paro (rojo) y el motor se detiene.

Para invertir el giro del motor, se lo realiza únicamente cuando se detiene el motor, luego de esto se puede dar marcha sentido izquierdo (verde) y se activa el contactor K2 el cual queda enclavado y pone en funcionamiento al motor con sentido de giro anti-horario.

Mientras esté funcionando el motor en sentido horario aunque se presione el pulsante de marcha sentido anti-horario el motor no cambia de sentido de giro ni se detiene, el mismo funcionamiento debe tener en caso de estar trabajando en el otro sentido.

El sistema debe contar con un paro de emergencia, el cual desconecta y apaga todo el sistema, para esto se usará un pulsante tipo hongo color rojo.

Para señalización de marcha sentido horario se cuenta con una luz piloto verde 1, para señalización de marcha sentido anti-horario se cuenta con una luz piloto verde 2 y para señalización de paro o falla se cuenta con una luz piloto roja.

Se debe proteger el circuito de control con un breaker y el circuito de fuerza con un breaker y térmico.

RECURSOS

Banco de prueba para control industrial programable.

Equipos de medición para: tensión, corriente, potencias, fp (factor de potencia).

Formatos para registro de valores experimentales y resultados.

Motor trifásico con freno mecánico regulable.

Cables de laboratorio.

REGISTRO DE RESULTADOS

TABLA Nº1 Arranque directo con inversión de giro para motor eléctrico trifásico.

• Prueba sin carga- sentido horario

TABLA Nº2 Arranque directo con inversión de giro para motor eléctrico trifásico.

• Prueba con carga- sentido horario

TABLA Nº3 Arranque directo con inversión de giro para motor eléctrico trifásico.

• Prueba sin carga- sentido anti horario

TABLA Nº4 Arranque directo con inversión de giro para motor eléctrico trifásico.

• Prueba con carga- sentido anti horario

Cuestionario de preguntas.

Observaciones, comentarios, conclusiones.

ANEXOS

Diagrama del circuito de control. (Lámina 1-P4, pág. 170).

Diagrama del circuito de fuerza. (Lámina 2-P4, pág. 171).

Diagrama de conexiones del banco de pruebas para control industrial programable. (Págs. 172, 173).

Tablas para mediciones y resultados.

• CRONOGRAMA/CALENDARIO

De acuerdo a la planificación del docente.

CUESTIONARIO

¿Por qué al utilizar en un circuito de fuerza relé térmico se lo debe complementar con un breaker para la protección del circuito?

¿Conociendo las características y elementos para proteger un circuito de fuerza con el guardamotor o relé térmico, con cuál de los dos preferiría trabajar y porque?

¿Por qué se debe utilizar las luces piloto para señalización en los circuitos de las prácticas?

¿Por qué para realizar el cambio de sentido de giro en el motor se debe detener completamente?

¿Qué aplicación o uso le podría en el ámbito laboral a la práctica desarrollada?

• OTROS

Proyecto:

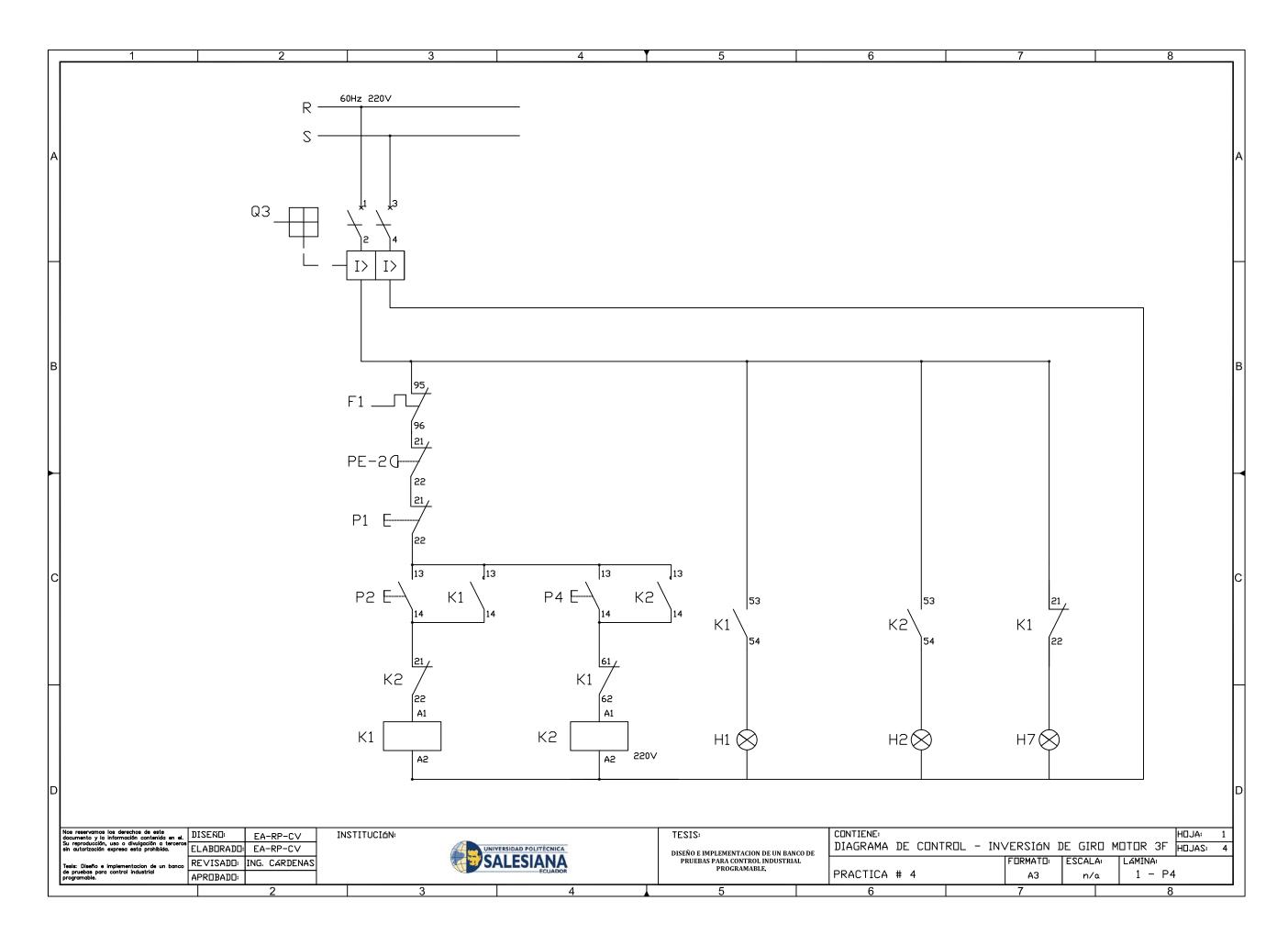
Evaluar y cotizar la instalación de un arranque directo con inversión de giro para un motor trifásico de 1HP.

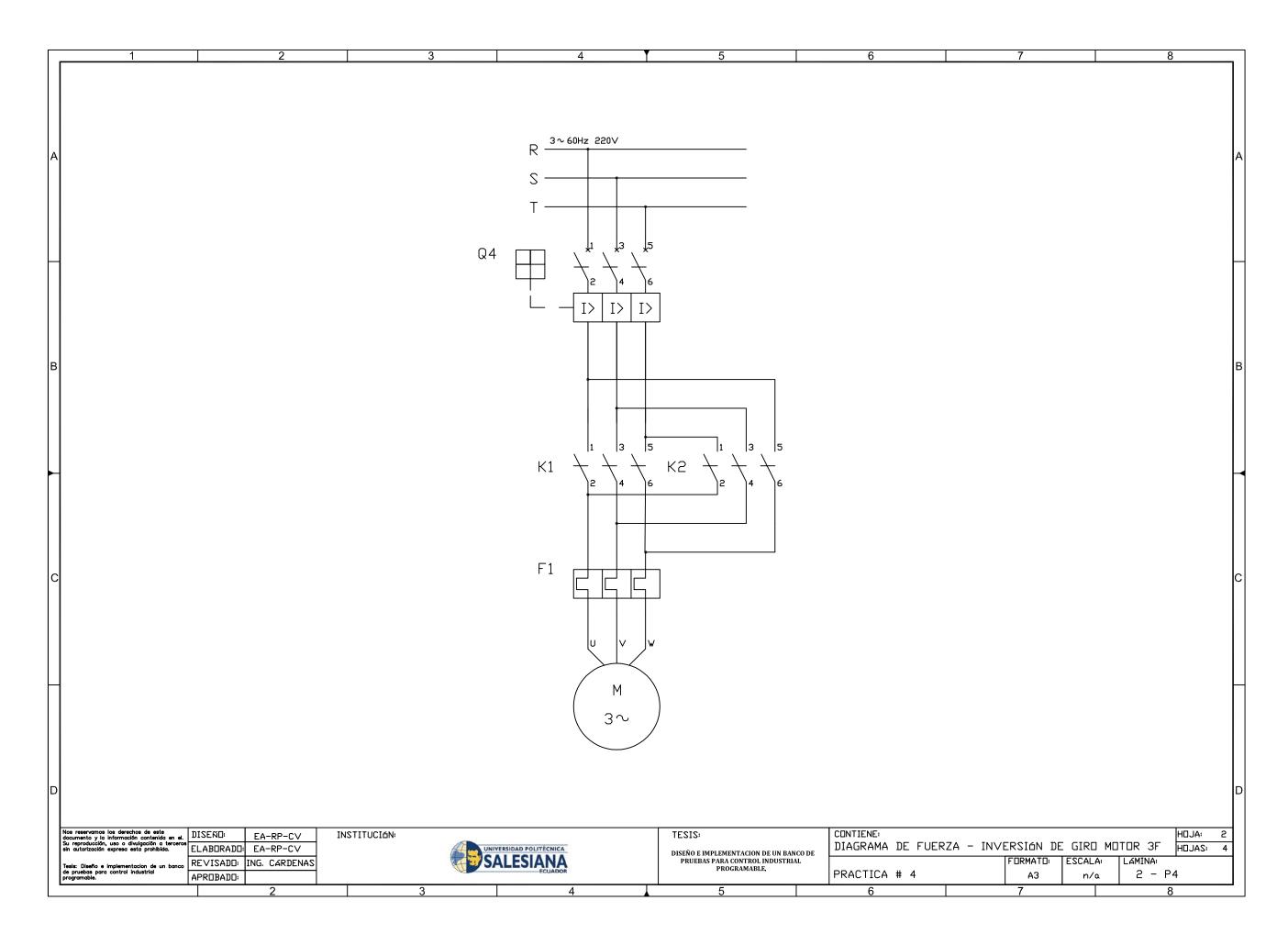
INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 4 TABLA Nº 1 ARRANQUE DIRECTO CON INVERSIÓN DE GIRO **FECHA:** PARA MOTOR ELÉCTRICO TRIFÁSICO. 16/03/15 **ELEMENTOS:** BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE **VALORES VARIABLE OBSERVACIONES MEDIDOS** PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO V1(V)V 2 (V) V 3 (V) I1 (A) **ENTRADA** (PM 700) I2 (A) I3 (A) $\overline{P(W)}$ Q (VAR) S (VA) FP <u>V</u> U-V (V) V V-W (V) V W-U (V) **SALIDA** IU(A) los acoples entre el eje (FLUKE) del motor y el freno IV (A)

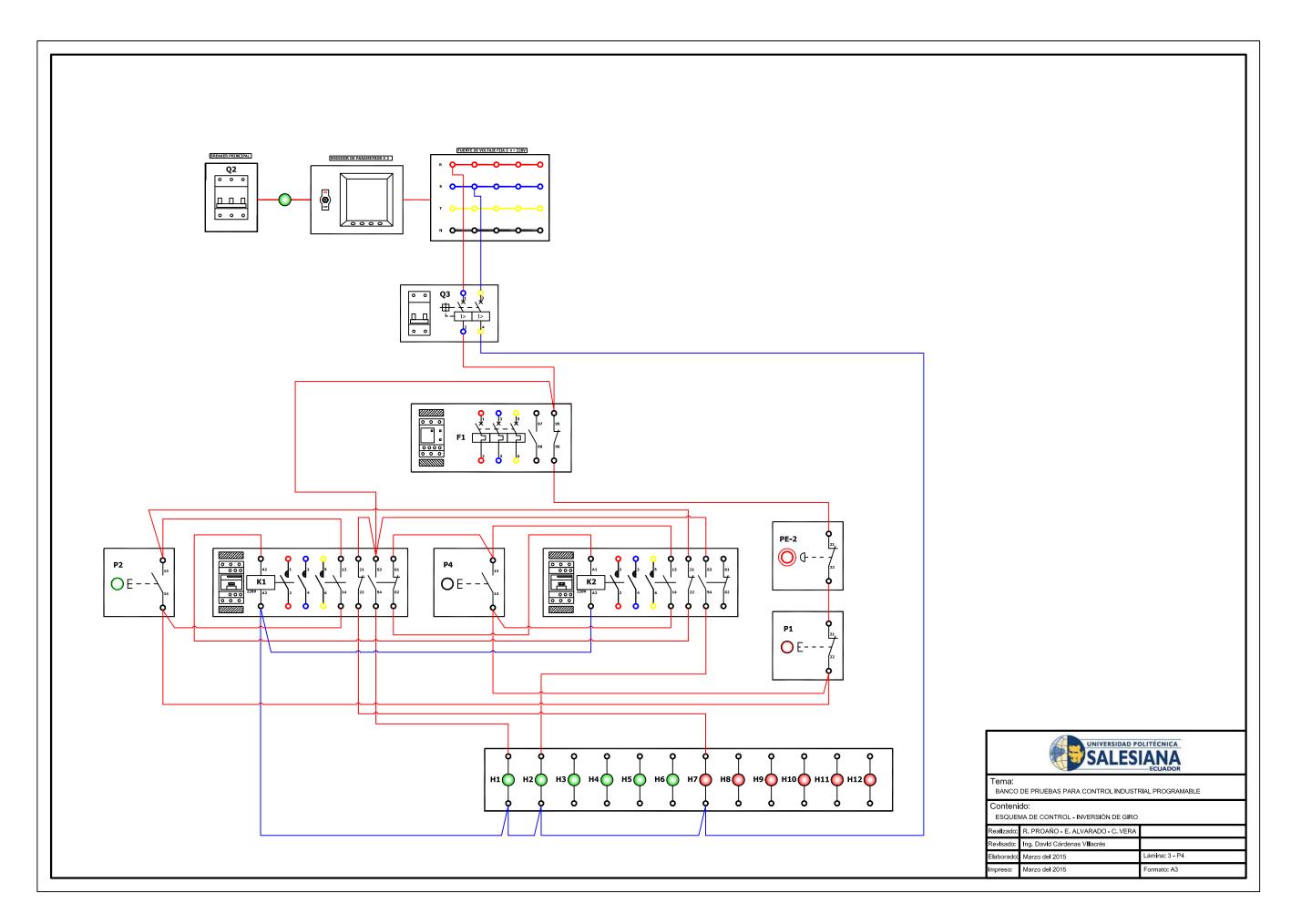
Fuente: Los autores

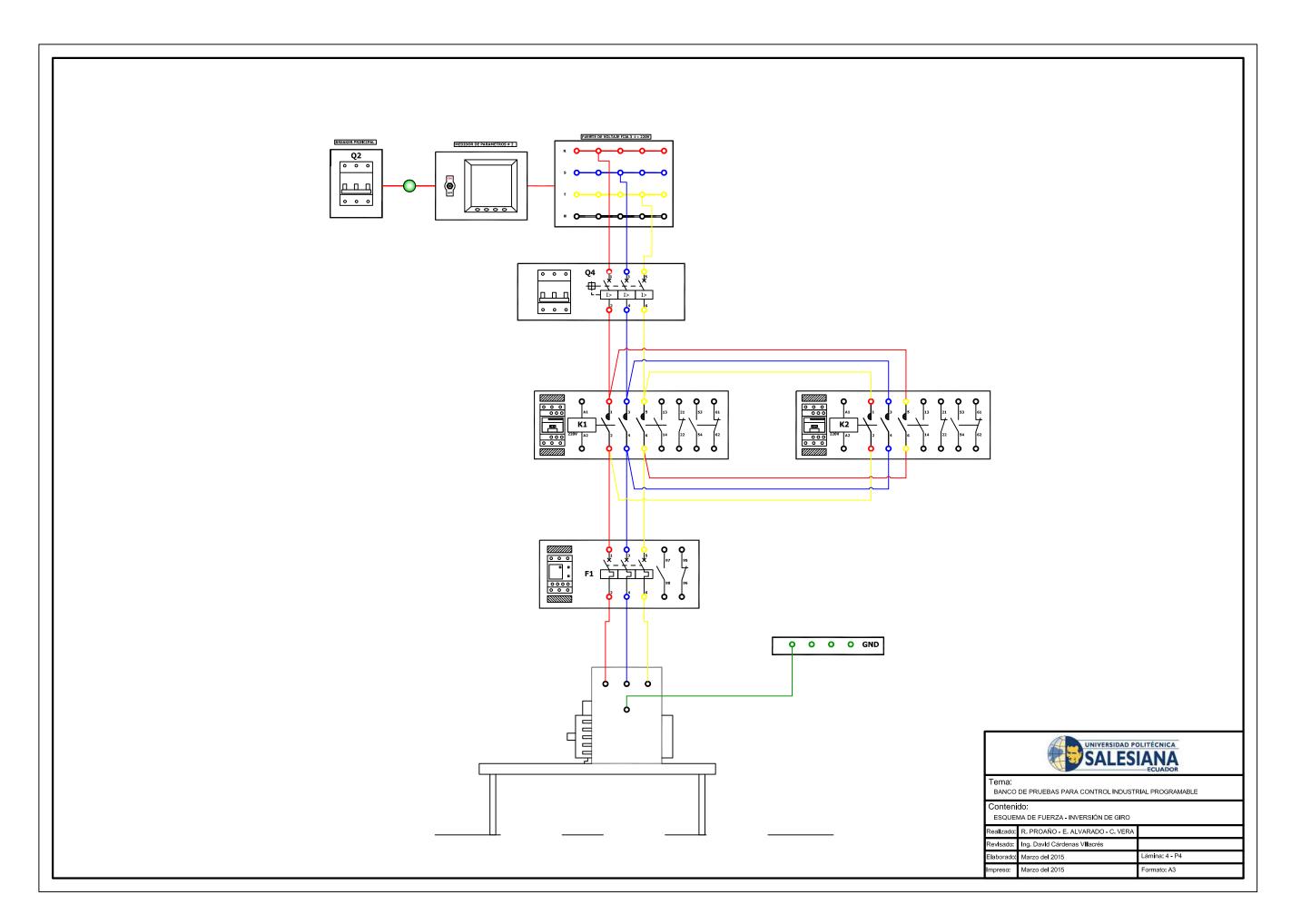
IW (A)

regulable se aprecia una


carga


INSTALACIO	NES ELÉCTRICA	DE GUAYAQUIL / I	LABORAT	ORIO DE
REGISTRO DI PRÁCTICA # 4				
TABLA Nº 2 A GIRO PARA M	RRANQUE DIRE OTOR ELÉCTRIC	CTO CON INVERSIÓ O TRIFÁSICO.	N DE	FECHA: 16/03/15
_		ITROL INDUSTRIAI O REGULABLE	_ PROGRA	MABLE Y
VARIABLE		VALORES MEDIDOS	OBSER	VACIONES
PRUI	EBA CON CARGA	A - SENTIDO DE G	IRO HORA	RIO
	V 1 (V)			
	V 2 (V)			
	V 3 (V)			
	I1 (A)			
ENTRADA	I2 (A)			
(PM 700)	I3 (A)			
	P (W)			
	Q (VAR)			
	S (VA)			
	FP			
SALIDA (FLUKE)	V U-V (V)			
	V V-W (V)			
	V W-U (V)			
	IU(A)			
	IV (A)			
	IW (A)			


Tabla 41 Práctica #4 prueba sin carga - sentido de giro antihorario


INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 4 TABLA Nº 3 ARRANQUE DIRECTO CON INVERSIÓN DE GIRO **FECHA:** PARA MOTOR ELÉCTRICO TRIFÁSICO. 16/03/15 **ELEMENTOS:** BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE **VALORES VARIABLE OBSERVACIONES MEDIDOS** PRUEBA SIN CARGA - SENTIDO DE GIRO ANTI HORARIO V 1 (V) V 2 (V) V 3 (V) I1 (A) **ENTRADA** (PM 700) I2 (A) I3 (A) $\overline{P(W)}$ Q (VAR) S (VA) FP <u>V U-V (V)</u> V V-W (V) V W-U (V) **SALIDA** IU(A) (FLUKE) IV (A) IW (A)

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS **REGISTRO DE PRUEBA Nº1** PRÁCTICA # 4 TABLA Nº 4 ARRANQUE DIRECTO CON INVERSIÓN DE GIRO **FECHA:** PARA MOTOR ELÉCTRICO TRIFÁSICO. 16/03/15 **ELEMENTOS:** BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE **VARIABLE VALORES OBSERVACIONES MEDIDOS** PRUEBA CON CARGA - SENTIDO DE GIRO ANTI HORARIO V 1 (V) V 2 (V) V 3 (V) I1 (A) I2 (A) **ENTRAD** Α I3 (A) (PM 700) P(W)Q (VAR) S(VA) FP V U-V (V) V V-W (V) V W-U (V)**SALIDA** (FLUKE) IU(A) IV (A) IW (A)

4.6 PRÁCTICA NO. 5: ARRANQUE ESTRELLA – DELTA PARA MOTOR ELÉCTRICO TRIFÁSICO.

4.6.1 DATOS INFORMATIVOS

- MATERIA: Laboratorio de Instalaciones Eléctricas.
- PRÁCTICA Nº 5
- NÚMERO DE ESTUDIANTES: 20
- NOMBRE DOCENTE:
- TIEMPO ESTIMADO: 2 horas

4.6.2 DATOS DE LA PRÁCTICA

• **TEMA:** Arranque estrella – delta para motor eléctrico trifásico.

• OBJETIVO GENERAL:

Realizar un arranque estrella - delta para un motor eléctrico trifásico utilizando los elementos y equipos del banco de pruebas.

• OBJETIVOS ESPECÍFICOS:

Diseñar los esquemas de fuerza y control para desarrollo de un arranque estrella - delta.

Identificar los elementos del banco de pruebas que se usarán para elaborar la práctica.

Desarrollar la práctica en el banco de pruebas.

Comprender el comportamiento y funcionamiento de un arranque estrella - delta.

MARCO TEÓRICO

Funcionamiento de cada elemento y equipo del banco de pruebas.

Normas de seguridad para uso del banco de pruebas.

Normas de seguridad dentro del laboratorio.

Formatos para registro de valores experimentales.

Formatos para elaborar y presentar informes de laboratorio.

PROCEDIMIENTO

Realizar los esquemas de fuerza y control para la práctica de arranque estrella - delta.

Verificar los elementos del banco de pruebas a utilizar para la práctica.

Realizar y verificar las conexiones de elementos y equipos en el banco de pruebas para elaborar la práctica utilizando los esquemas de fuerza y control.

Conectar, energizar el banco de pruebas, verificar voltajes y alimentar los esquemas de fuerza y control cableados.

Realizar pruebas de funcionamiento de la práctica.

Tomar los datos de las mediciones correspondientes a la práctica y completar las respectivas tablas.

Indicar las observaciones, recomendaciones y conclusiones de la práctica.

• CONDICIONES DE FUNCIONAMIENTO

Diseñar y realizar los esquemas de control y fuerza para arrancar un Motor Trifásico con las siguientes condiciones:

Al activar el pulsante de marcha (verde), se activa el contactor de línea K1 y el contactor de conexión estrella K2 el cual queda enclavado y pone en funcionamiento al motor en esta conexión, después de un tiempo "T = 5 seg." controlado por un temporizador se desconecta K2 (estrella) y se activa el contactor de conexión delta K3 entonces el motor cambia a esta conexión.

Para detener el funcionamiento del motor se presiona el pulsante de paro (rojo) y el motor se detiene.

El sistema debe contar con un paro de emergencia, el cual desconecta y apaga todo el sistema, para esto se usará un pulsante tipo hongo color rojo.

Para señalización de marcha se cuenta con una luz piloto verde 1, para señalización de conexión estrella se cuenta con una luz piloto verde 2, para señalización de

conexión delta se cuenta con una luz piloto verde 3 y para señalización de paro o falla se cuenta con una luz piloto roja.

Se debe proteger el circuito de control con un breaker y el circuito de fuerza con un breaker y térmico.

RECURSOS

Banco de pruebas para control industrial programable.

Equipos de Medición para: Tensión, Corriente, Potencias, fp (factor de potencia).

Formatos para registro de valores experimentales y resultados.

Motor trifásico de 1HP de 6 terminales.

Cables de laboratorio.

REGISTRO DE RESULTADOS

TABLA Nº1 Arranque estrella – delta para motor eléctrico trifásico

• Prueba sin carga- sentido horario-conexión estrella

TABLA Nº2 Arranque estrella – delta para motor eléctrico trifásico

• Prueba sin carga- sentido horario- conexión delta

ANEXOS

Diagrama del circuito de control. (Lámina 1-P5, pág. 180).

Diagrama del circuito de fuerza. (Lámina 2-P5, pág. 181).

Diagrama de conexiones del banco de pruebas para control industrial programable. (Págs. 182, 183).

Tablas para mediciones y resultados.

• CRONOGRAMA/CALENDARIO

De acuerdo a la planificación del docente.

CUESTIONARIO

¿Qué tipos de temporizadores existen y con qué tipo de temporizadores cuenta el banco de pruebas?

¿Cuándo el motor está en conexión estrella cual es el voltaje que reciben sus bobinas U-X, V-Y, W-Z?

¿Cuál es la ventaja de utilizar un arranque estrella – delta?

¿En serie a que contactor de los tres que se utiliza debe conectarse el relé térmico?

¿Cuál es la corriente que se debe calibrar en el relé térmico al tener un arranque estrella – delta y que corriente se calibraría si se usará un guardamotor?

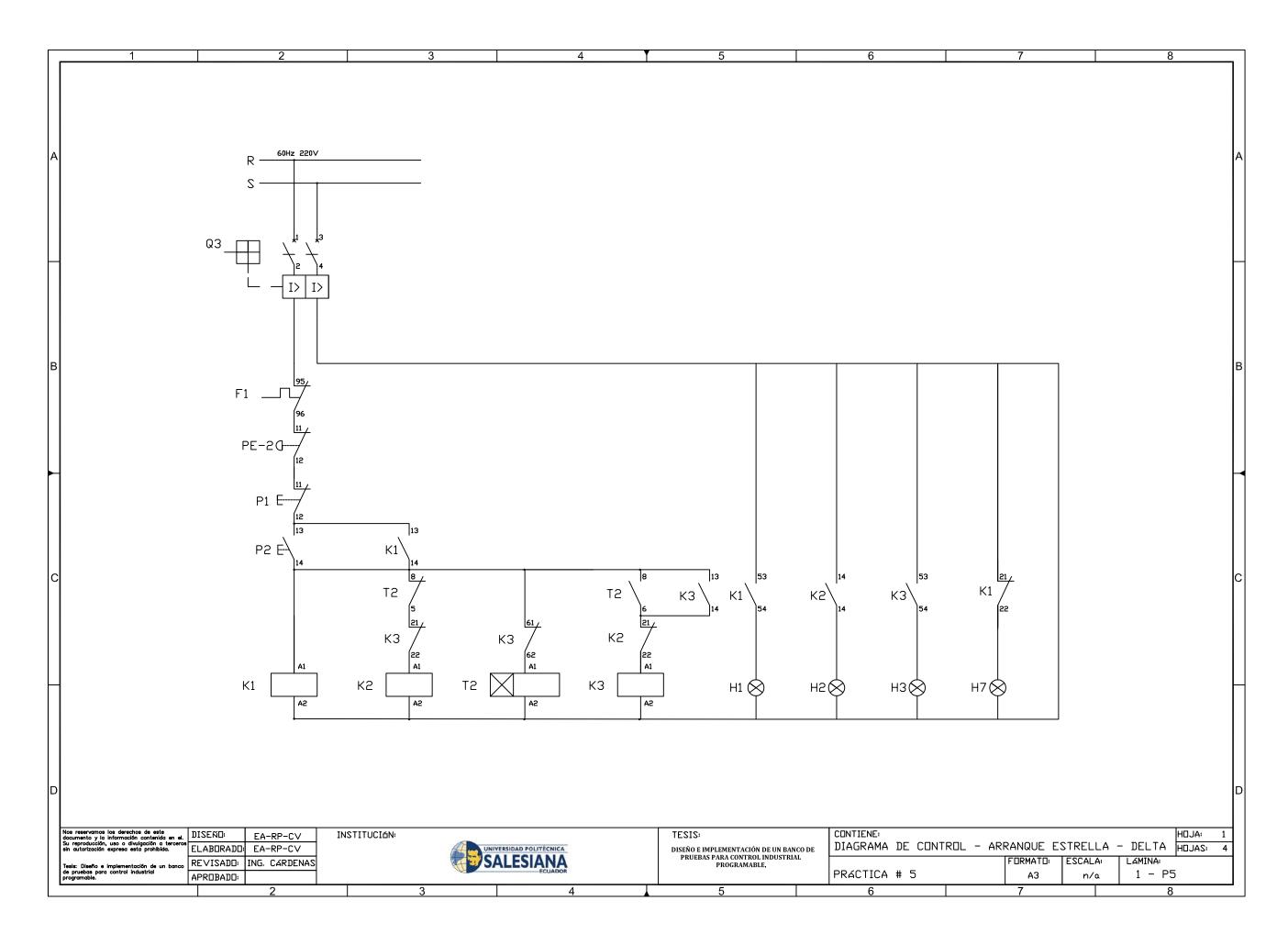
• OTROS

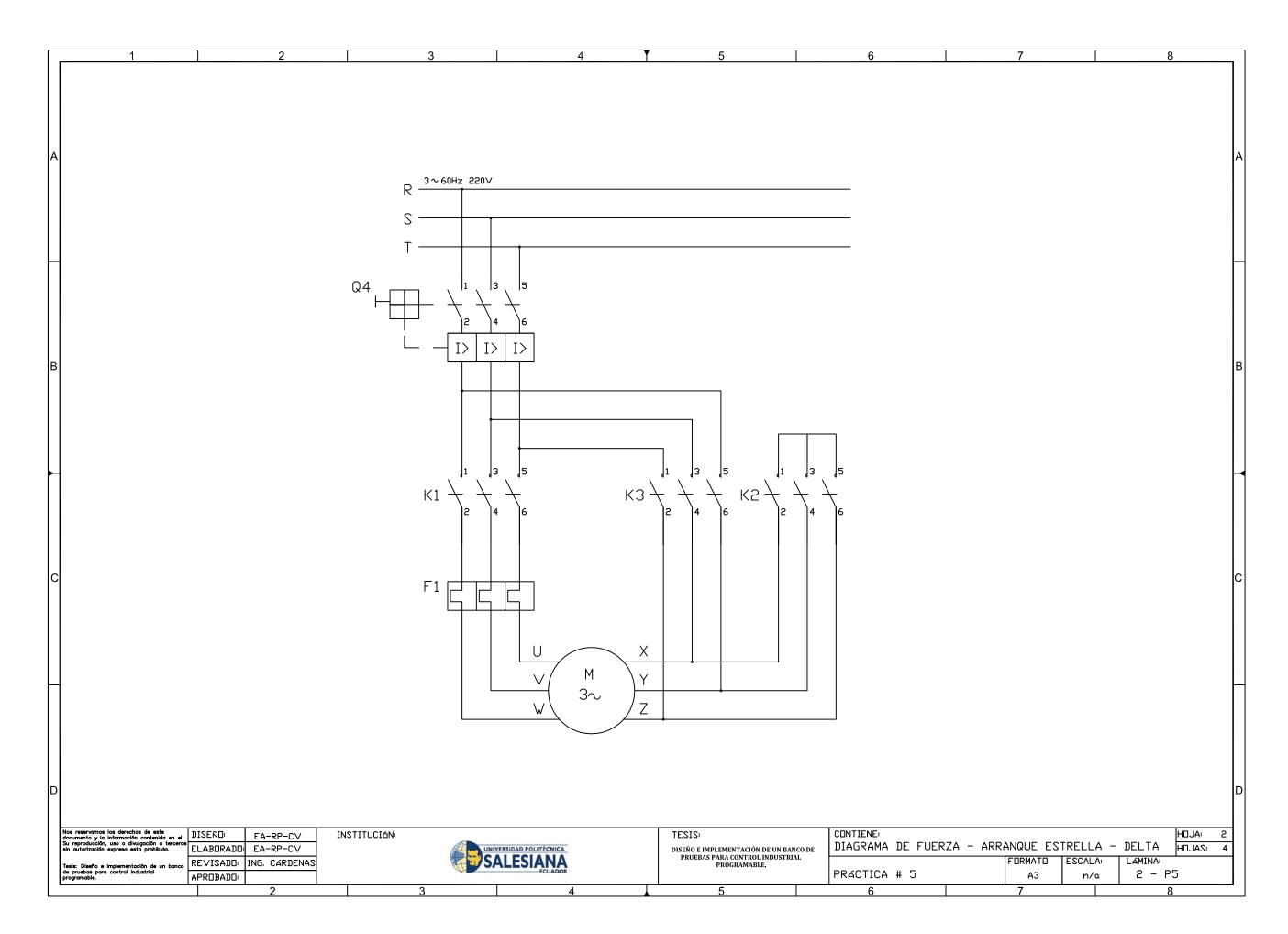
Proyecto:

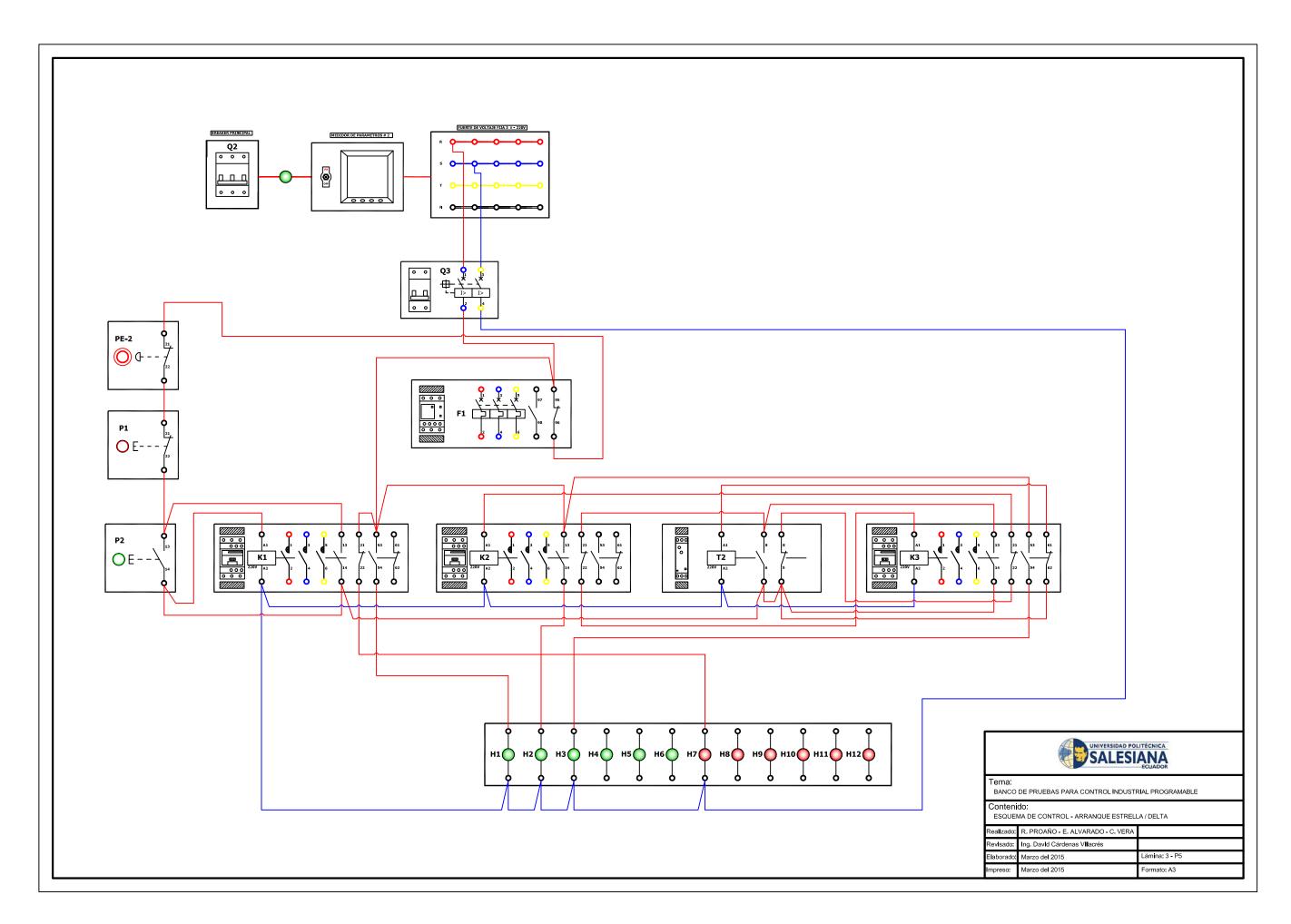
Evaluar y cotizar la instalación de un arranque estrella – delta para un motor trifásico de 1HP.

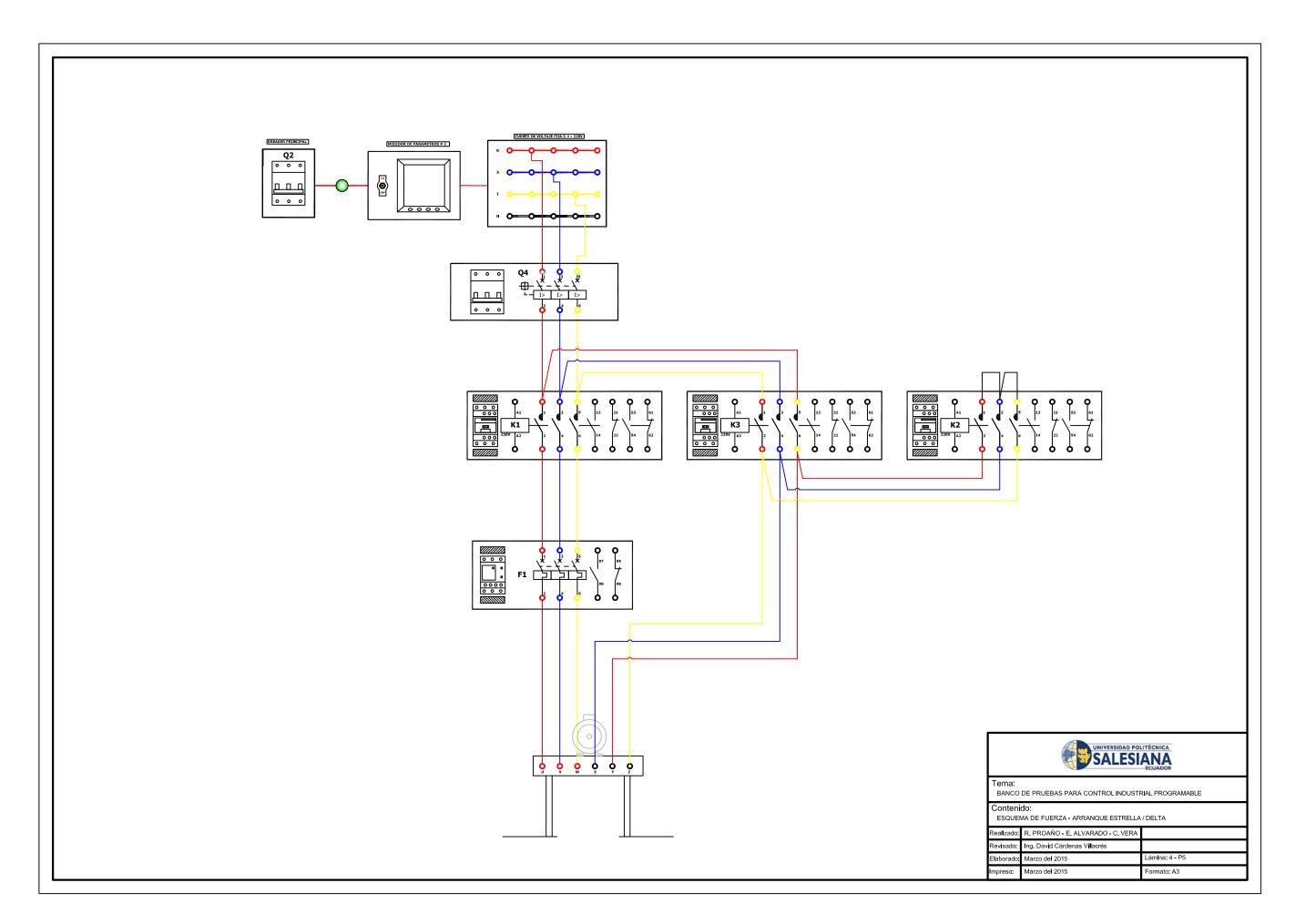
Tabla 43 Práctica #5 prueba sin carga - sentido de giro horario conexión estrella

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 5 TABLA Nº 1 ARRANQUE EN ESTRELLA – DELTA PARA FECHA: MOTOR ELÉCTRICO TRIFÁSICO. 16/03/15 **ELEMENTOS:** BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO DE 6 BORNES (1HP-SIEMENS) **VARIABLE VALORES OBSERVACIONES MEDIDOS** PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO **CONEXIÓN ESTRELLA** V 1 (V) V 2 (V) V 3 (V) I1 (A) **ENTRADA** I2 (A) (PM 700) I3 (A) P (W) Q (VAR) S (VA) FP V U-V (V) V V-W (V) V W-U (V) SALIDA VXY (V) (FLUKE) VYZ(V) VZX (V) IU(A) IV (A) IW (A) IX IY IZ


Tabla 44 Práctica #5 prueba sin carga - sentido de giro horario conexión delta INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 5 TABLA Nº 2 ARRANQUE EN ESTRELLA – DELTA PARA **FECHA:** MOTOR ELÉCTRICO TRIFÁSICO. 16/03/15 **ELEMENTOS:** BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO DE 6 BORNES (1HP-SIEMENS) **VARIABLE VALORES OBSERVACIONES MEDIDOS** PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO CONEXIÓN DELTA V 1 (V) V 2 (V) V 3 (V) I1 (A) I2 (A) **ENTRADA** (PM 700) I3 (A) **P**(**W**) Q (VAR) S(VA) FP <u>V U-V (V)</u> V V-W (V) V W-U (V)SALIDA (FLUKE) VXY (V) VYZ(V)


Fuente: Los autores


VZX (V)


IU(A)
IV (A)
IW (A)

IX IY IZ

4.7 PRÁCTICA NO. 6: ARRANQUE Y PARO DEL MOTOR ELÉCTRICO TRIFÁSICO UTILIZANDO EL VARIADOR DE FRECUENCIA CON ALIMENTACIÓN 1F Y CARGA 3F EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL.

4.7.1 DATOS INFORMATIVOS

- MATERIA: Laboratorio de Instalaciones Eléctricas.
- PRÁCTICA N° 6
- NÚMERO DE ESTUDIANTES: 20
- NOMBRE DOCENTE:
- TIEMPO ESTIMADO: 2 horas

4.7.2 DATOS DE LA PRÁCTICA

 TEMA: Arranque y paro del motor eléctrico trifásico utilizando el variador de frecuencia con alimentación 1F y carga 3F en la modalidad de sistema de control local

• OBJETIVO GENERAL:

Utilizar el variador de frecuencia con alimentación 1F y carga 3F para realizar el arranque y paro de un motor trifásico.

• OBJETIVOS ESPECÍFICOS:

Diseñar los esquemas de fuerza y control para desarrollo de un arranque con variador de frecuencia.

Conocer como programar y parametrizar un variador de frecuencia para el arranque y parada de un motor utilizando rampa de aceleración y desaceleración.

Visualizar los parámetros de supervisión en el variador de frecuencia.

Identificar los elementos del banco de pruebas que se usarán para elaborar la práctica.

Desarrollar la práctica en el banco de pruebas.

Comprender el comportamiento y funcionamiento de un variador de frecuencia.

MARCO TEÓRICO

Funcionamiento de cada elemento y equipo del banco de pruebas.

Normas de seguridad para uso del banco de pruebas.

Normas de seguridad dentro del laboratorio.

Formatos para registro de valores experimentales.

Formatos para elaborar y presentar informes de laboratorio.

PROCEDIMIENTO

Revisar la guía de inicio rápido – ATV312 para trabajar con el variador en configuración local. Para comprender y resolver dudas del variador se puede encontrar información más detallada en los manuales de instalación y programación para variadores Altivar 312 de Schneider Electric.

Realizar los esquemas de fuerza y control para alimentación del variador en configuración local.

Verificar los elementos del banco de pruebas a utilizar para la práctica.

Realizar y verificar las conexiones de elementos y equipos en el banco de pruebas para elaborar la práctica utilizando los esquemas de fuerza y control.

Conectar, energizar el banco de pruebas, verificar voltajes y alimentar los esquemas de fuerza y control cableados.

Tomando en cuenta que el variador de frecuencia se encuentra en un banco de pruebas para alumnos y se realizan prácticas en él, antes de iniciar cualquier parametrización o práctica con el variador, es recomendable colocar los parámetros de este a su configuración de fábrica inicial y así evitar conflictos con la nueva parametrización que se realice en cada práctica.

Realizar los ajustes de parámetros en el variador para trabajar en configuración local.

Para visualizar la rampa de aceleración y desaceleración mientras se realizan las pruebas colocar al variador en modo supervisión y poner el parámetro frecuencia o velocidad del motor.

Realizar pruebas de funcionamiento de la práctica.

Tomar los datos de las mediciones correspondientes a la práctica utilizando el medidor de parámetros del banco para alimentación de entrada, utilizar un equipo de

medición externa para mediciones de salida del variador y colocando en modo supervisión tomar los datos de variador y completar las respectivas tablas.

Indicar las observaciones, recomendaciones y conclusiones de la práctica.

RIESGO DE DAÑOS EN EL VARIADOR:

Antes de energizar el variador de frecuencia se debe verificar que los bornes PO y PA/+ están conectados y nunca debe retirarse el enlace entre ambos.

Los tornillos del terminal PO y PA/+ deben estar totalmente apretados ya que a travez del enlace fluye un corriente alta.

Si no se siguen estas instrucciones se pueden producir daños en el equipo.

• CONDICIONES DE FUNCIONAMIENTO

Diseñar, programar, parametrizar y realizar los esquemas de control y fuerza para arrancar un motor trifásico utilizando un variador de frecuencia alimentación monofásica y salida para carga trifásica con las siguientes condiciones:

Al presionar el botón Run del variador, el motor arranca desde 0 hz hasta 60 hz haciendo una rampa de aceleración de 3 segundos para alcanzar la velocidad máxima.

Al presionar el botón Stop/reset del variador, el motor procede a realizar una rampa de desaceleración de 60 a 0 hz en 3 segundos hasta que se detiene completamente el motor.

Se debe trabajar con el motor trifásico con freno mecánico regulable para realizar la práctica con y sin carga.

Se debe proteger al variador con un guardamotor.

RECURSOS

Banco de prueba para control industrial programable

Equipos de Medición para: Tensión, Corriente, Potencias, fp (factor de potencia)

Formatos para registro de valores experimentales y resultados.

Motor trifásico con freno mecánico regulable.

Cables de laboratorio.

REGISTRO DE RESULTADOS

TABLA Nº1 Arranque y paro de motor eléctrico trifásico utilizando el variador de frecuencia con alimentación 1F y carga 3F en la modalidad de sistema de control local.

• Prueba sin carga- sentido horario.

TABLA Nº2 Arranque y paro de motor eléctrico trifásico utlizando el variador de frecuencia con alimentación 1F y carga 3F en la modalidad de sistema de control local.

• Prueba con carga- sentido horario.

Cuestionario de preguntas.

Observaciones, comentarios, conclusiones.

ANEXOS

Diagrama del circuito de control. (Lámina 1-P6, pág. 191).

Diagrama del circuito de fuerza. (Lámina 2-P6, pág. 192).

Diagrama de conexiones del banco de pruebas para control industrial programable. (Págs. 193, 194).

Tablas para mediciones y resultados.

CRONOGRAMA/CALENDARIO

De acuerdo con la planificación del docente.

• **CUESTIONARIO**

¿Qué es un variador de frecuencia?

¿Qué funciones tiene un variador de frecuencia?

¿Con que tipo de motores puede trabajar un variador de frecuencia? ¿Cuál es la ventaja de trabajar con un variador con alimentación monofásica? ¿En base a que corriente se selecciona y calibra el guardamotor al trabajar con un variador de frecuencia, con la del motor o con la del variador?

• OTROS

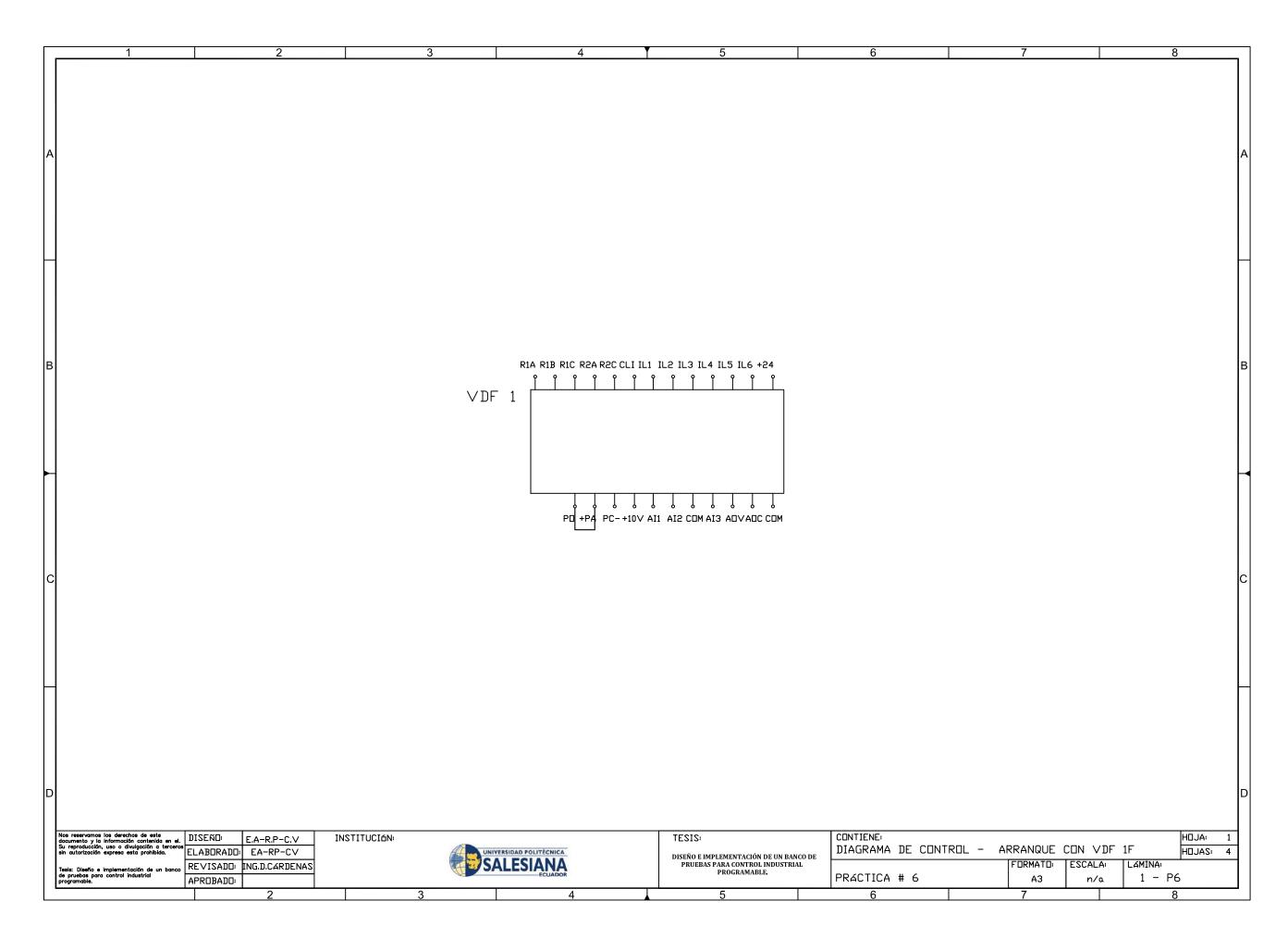
Proyecto:

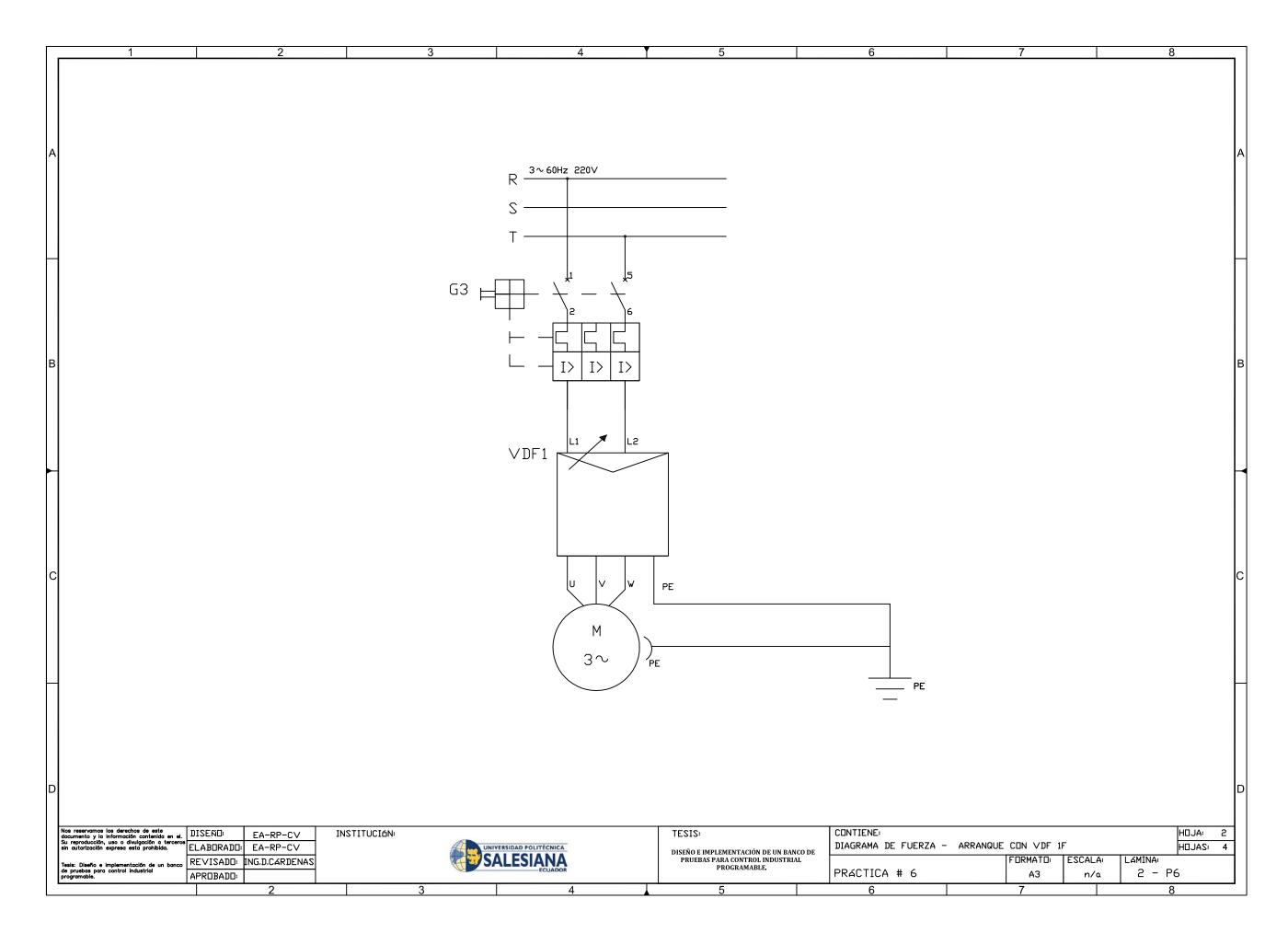
Evaluar y cotizar la instalación de un variador con alimentación monofásica para arrancar un motor trifásico de 1hp.

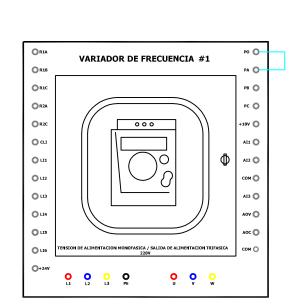
INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 6 TABLA Nº1 ARRANQUE Y PARO DE MOTOR ELÉCTRICO FECHA: TRIFÁSICO UTLIZANDO EL VARIADOR DE FRECUENCIA CON 16/03/15 ALIMENTACIÓN 1F Y CARGA 3F EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL.

ELEMENTOS:

BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

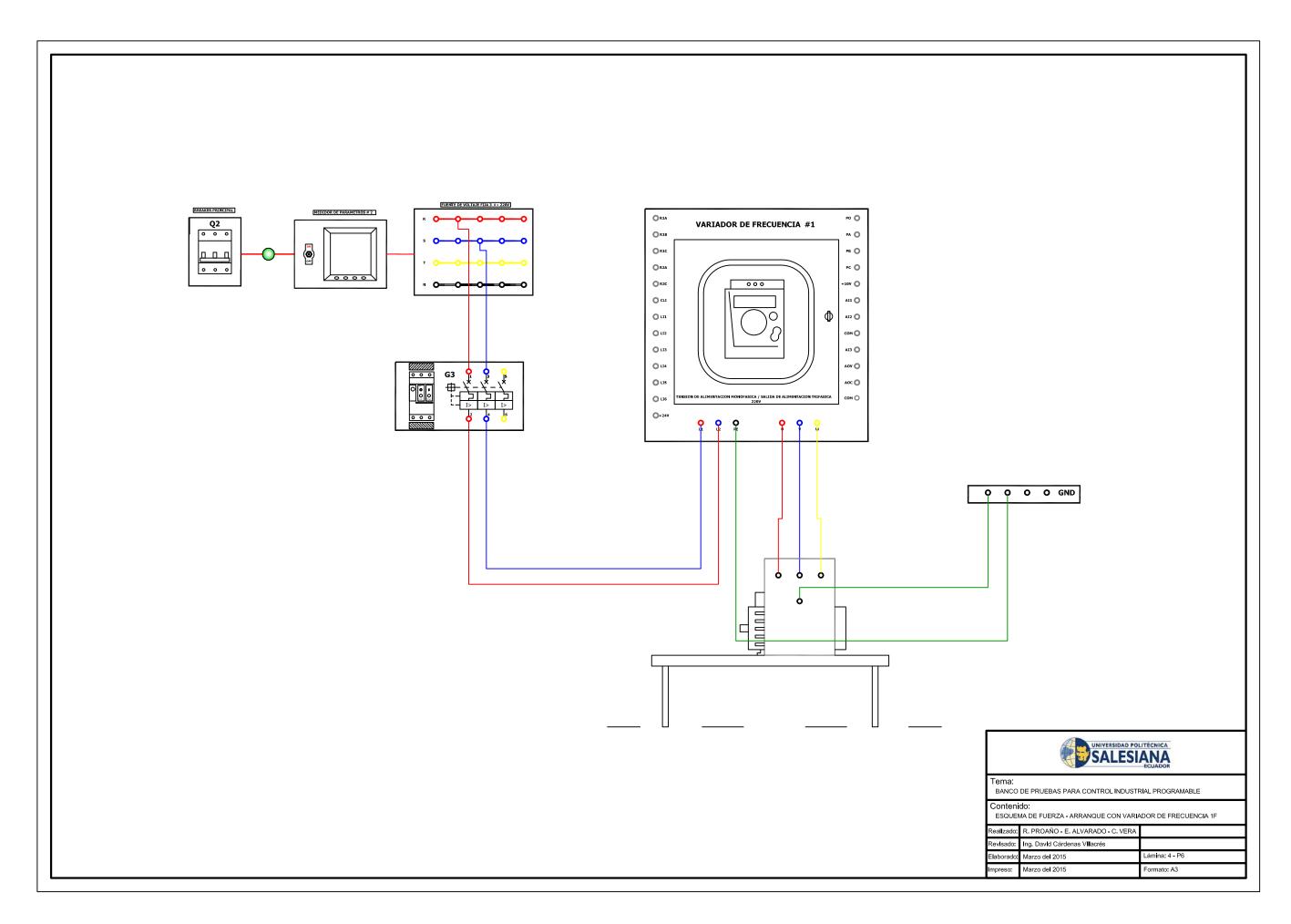

VARIABLE		VALORES MEDIDOS	OBSERVACIONES	
PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO				
ENTRADA	V 1 (V)			
	V 2 (V)			
	V 3 (V)			
	I1 (A)			
	I2 (A)			
(PM 700)	I3 (A)			
	P (W)			
	Q (VAR)			
	S (VA)			
	FP			
	V U-V (V)			
	V V-W (V)			
SALIDA	V W-U (V)			
(FLUKE)	IU(A)			
	IV (A)			
	IW (A)			
VDF (SUP)	FRECUENCIA (HZ)			
	VELOCIDAD (RPM)			
	I (A)			


Tabla 46 práctica #6 prueba con carga - sentido de giro horario


INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 6 TABLA Nº2 ARRANQUE Y PARO DE MOTOR ELÉCTRICO FECHA: TRIFÁSICO UTLIZANDO EL VARIADOR DE FRECUENCIA CON 16/03/15 ALIMENTACIÓN 1F Y CARGA 3F EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL. ELEMENTOS:

BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

VARIABLE		VALORES MEDIDOS	OBSERVACIONES
PRU	EBA CON CARGA	- SENTIDO DE GII	RO HORARIO
ENTRADA (PM 700)	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
	I2 (A)		
	I3 (A)		
	P (W)		
	Q (VAR)		
	S (VA)		
	FP		
	V U-V (V)		
SALIDA (FLUKE)	V V-W (V)		
	V W-U (V)		
	IU(A)		
	IV (A)		
	IW (A)		
VDF (SUP)	FRECUENCIA (HZ)		
	VELOCIDAD (RPM)		
	I (A)		



Tema: BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE

Contenido: ESQUEMA DE CONTROL - ARRANQUE CON VARIADOR DE FRECUENCIA 1F

Realizado:	R. PROAÑO - E. ALVARADO - C. VERA			
Revisado:	Ing. David Cárdenas VIIIacrés			
Elaborado:	Marzo del 2015	Lámina: 3 - P6		
Impreso:	Marzo del 2015	Formato: A3		

4.8 PRÁCTICA NO. 7: ARRANQUE Y PARO DEL MOTOR ELÉCTRICO TRIFÁSICO UTILIZANDO EL VARIADOR DE FRECUENCIA CON ALIMENTACIÓN 3F Y CARGA 3F EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL.

4.8.1 DATOS INFORMATIVOS

- MATERIA: Laboratorio de Instalaciones Eléctricas.
- PRÁCTICA Nº 7
- NÚMERO DE ESTUDIANTES: 20
- NOMBRE DOCENTE:
- TIEMPO ESTIMADO: 2 horas

4.8.2 DATOS DE LA PRÁCTICA

 TEMA: Arranque y paro del motor eléctrico trifásico utilizando el variador de frecuencia con alimentación 3F y carga 3F en la modalidad de sistema de control local

• OBJETIVO GENERAL:

Utilizar el variador de frecuencia con alimentación 3F y carga 3F para realizar el arranque y paro de un motor trifásico.

• OBJETIVOS ESPECÍFICOS:

Diseñar los esquemas de fuerza y control para desarrollo de un arranque con variador de frecuencia.

Conocer como programar y parametrizar un variador de frecuencia para el arranque y parada de un motor utilizando rampa de aceleración y desaceleración.

Visualizar los parámetros de supervisión en el variador de frecuencia.

Identificar los elementos del banco de pruebas que se usarán para elaborar la práctica.

Desarrollar la práctica en el banco de pruebas.

Comprender el comportamiento y funcionamiento de un variador de frecuencia.

MARCO TEÓRICO

Funcionamiento de cada elemento y equipo del banco de pruebas.

Normas de seguridad para uso del banco de pruebas.

Normas de seguridad dentro del laboratorio.

Formatos para registro de valores experimentales.

Formatos para elaborar y presentar informes de laboratorio.

PROCEDIMIENTO

Revisar la guía de inicio rápido – ATV312 para trabajar con el variador en configuración local. Para comprender y resolver dudas del variador se puede encontrar información más detallada en los manuales de instalación y programación para variadores Altivar 312 de Schneider Electric.

Realizar los esquemas de fuerza y control para alimentación del variador en configuración local.

Verificar los elementos del banco de pruebas a utilizar para la práctica.

Realizar y verificar las conexiones de elementos y equipos en el banco de pruebas para elaborar la práctica utilizando los esquemas de fuerza y control.

Conectar, energizar el banco de pruebas, verificar voltajes y alimentar los esquemas de fuerza y control cableados.

Tomando en cuenta que el variador de frecuencia se encuentra en un banco de pruebas para alumnos y se realizan prácticas en él, antes de iniciar cualquier parametrización o práctica con el variador es recomendable colocar los parámetros de este a su configuración de fábrica inicial y así evitar conflictos con la nueva parametrización que se realice en cada práctica.

Realizar los ajustes de parámetros en el variador para trabajar en configuración local.

Para visualizar la rampa de aceleración y desaceleración mientras se realizan las pruebas colocar al variador en modo supervisión y poner el parámetro frecuencia o velocidad del motor.

Realizar pruebas de funcionamiento de la práctica.

Tomar los datos de las mediciones correspondientes a la práctica utilizando el medidor de parámetros del banco para alimentación de entrada, utilizar un equipo de medición externa para mediciones de salida del variador y colocando en modo supervisión tomar los datos de variador y completar las respectivas tablas.

Indicar las observaciones, recomendaciones y conclusiones de la práctica.

RIESGO DE DAÑOS EN EL VARIADOR:

Antes de energizar el variador de frecuencia se debe verificar que los bornes PO y PA/+ están conectados y nunca debe retirarse el enlace entre ambos.

Los tornillos del terminal PO y PA/+ deben estar totalmente apretados ya que a travez del enlace fluye un corriente alta.

Si no se siguen estas instrucciones se pueden producir daños en el equipo.

• CONDICIONES DE FUNCIONAMIENTO

Diseñar, programar, parametrizar y realizar los esquemas de control y fuerza para arrancar un Motor Trifásico utilizando un variador de frecuencia alimentación trifásica y salida para carga trifásica con las siguientes condiciones:

Al presionar el botón Run del variador, el motor arranca desde 0 hasta 60 hz haciendo una rampa de aceleración de 6 segundos para alcanzar la velocidad máxima.

Al presionar el botón Stop/reset del variador, el motor procede a realizar una rampa de desaceleración de 60 a 0 hz en 3 segundos hasta que se detiene completamente el motor.

Se debe trabajar con el motor trifásico con freno mecánico regulable para realizar la práctica con y sin carga.

Se debe proteger al variador con un guardamotor.

RECURSOS

Banco de pruebas para control industrial programable.

Equipos de medición para: tensión, corriente, potencias, fp (factor de potencia).

Formatos para registro de valores experimentales y resultados.

Motor trifásico con freno mecánico regulable.

Cables de laboratorio.

REGISTRO DE RESULTADOS

TABLA Nº1 Arranque y paro de motor eléctrico trifásico utilizando el variador de frecuencia con alimentación 3F y carga 3F en la modalidad de sistema de control local.

• Prueba sin carga - sentido de giro horario.

TABLA Nº2 Arranque y paro de motor eléctrico trifásico utilizando el variador de frecuencia con alimentación 3F y carga 3F en la modalidad de sistema de control local.

• Prueba con carga - sentido de giro horario.

Cuestionario de preguntas.

Observaciones, comentarios, conclusiones.

ANEXOS

Diagrama del circuito de control. (Lámina 1-P7, pág. 202).

Diagrama del circuito de fuerza. (Lámina 2-P7, pág. 203).

Diagrama de conexiones del banco de pruebas para control industrial programable. (Págs. 204, 205).

Tablas para mediciones y resultados.

• CRONOGRAMA/CALENDARIO

De acuerdo con la planificación del docente.

CUESTIONARIO

¿Qué diferencias existe entre un variador con alimentación monofásica y uno con alimentación trifásica?

¿Cuáles son los parámetros que se pueden supervisar en el variador de frecuencia?

¿En qué aplicaciones se pueden utilizar variadores de frecuencia?

¿Cuáles son las dos tipos de configuraciones con las que se puede trabajar en el variador de frecuencia?

¿Describa brevemente las funciones de las borneras de potencia y control del variador de frecuencia?

OTROS

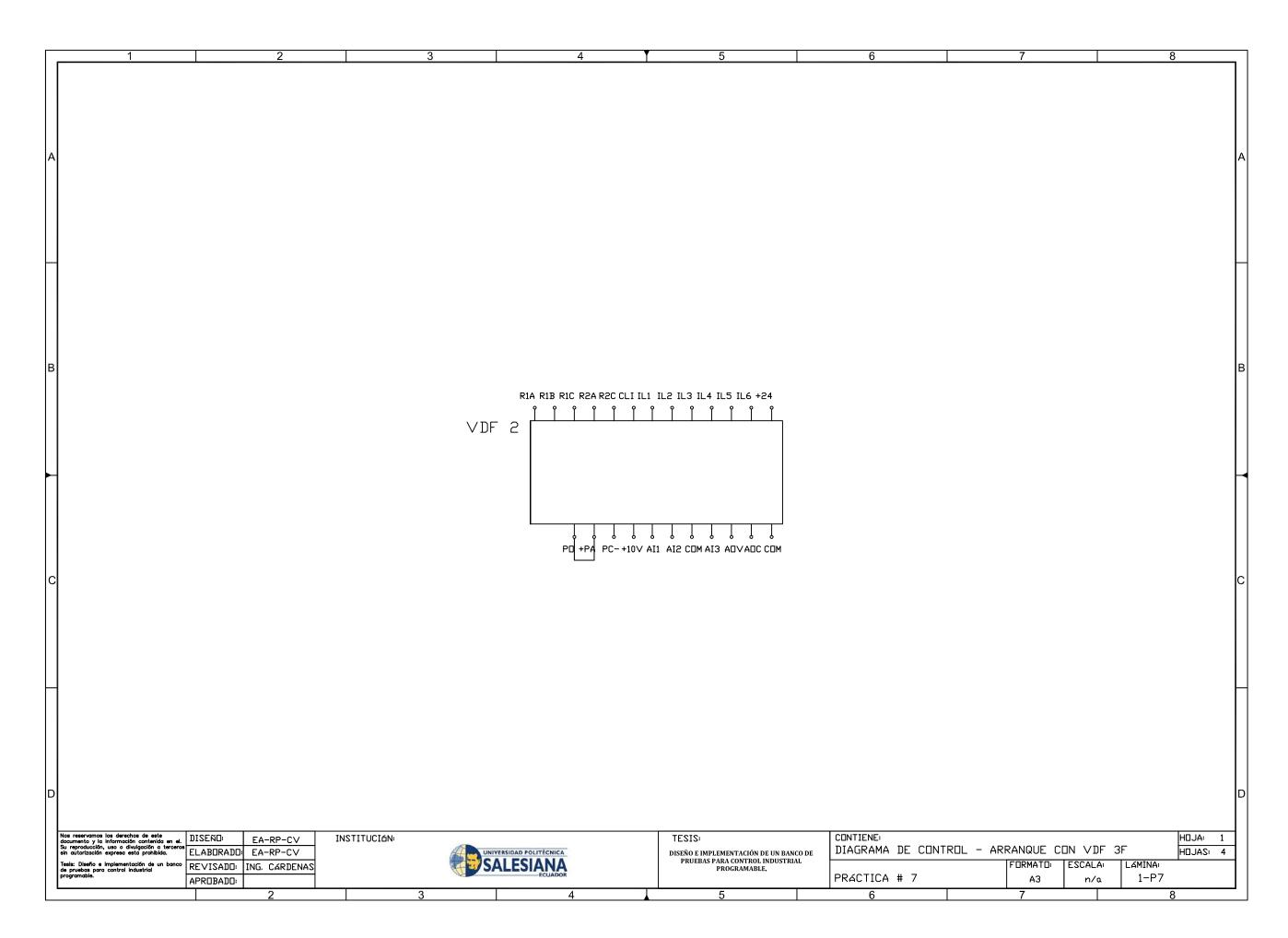
Proyecto:

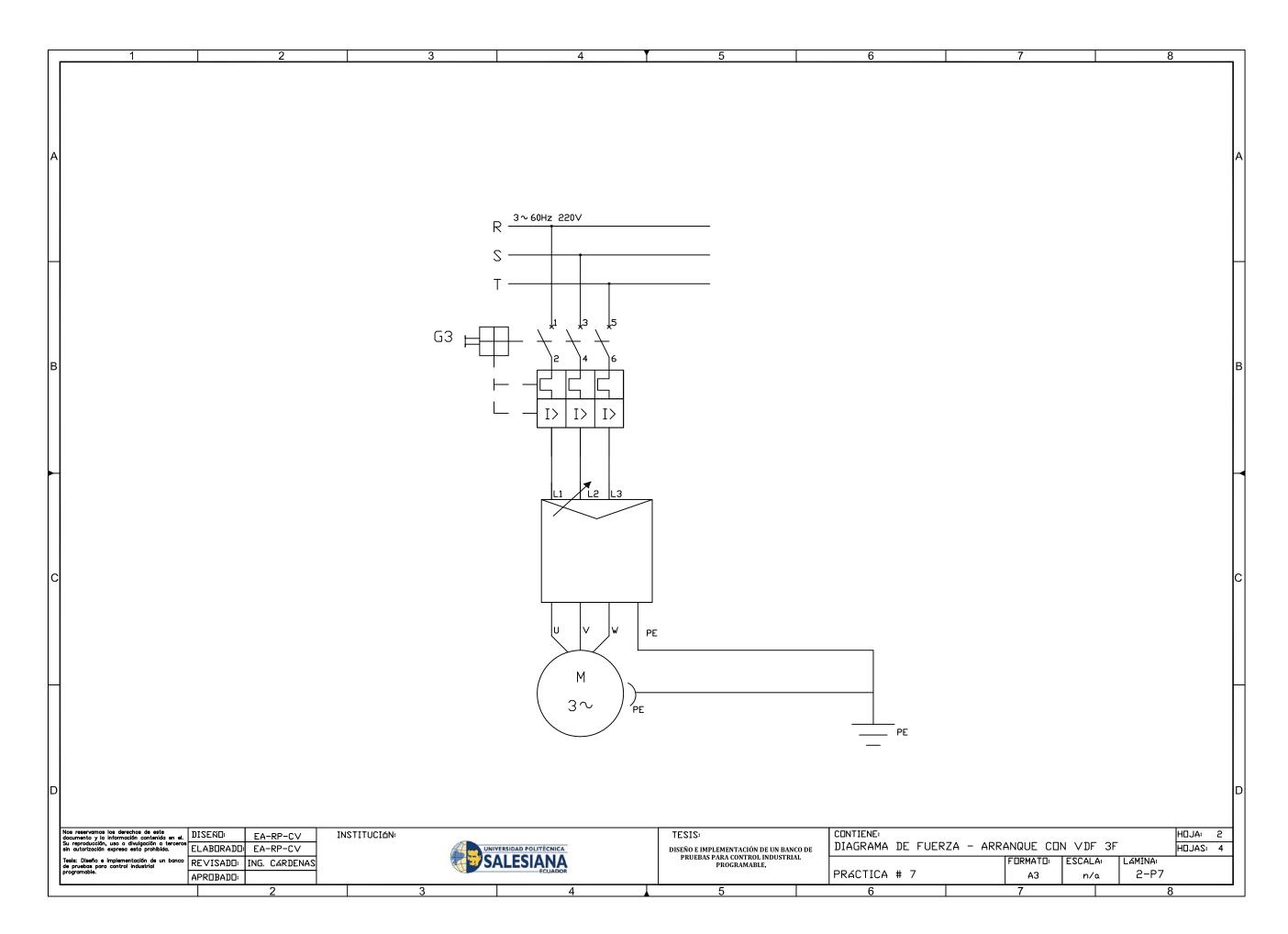
Evaluar y cotizar la instalación de un variador con alimentación trifásica para arrancar un motor trifásico de 1hp.

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 7 TABLA Nº1 ARRANQUE Y PARO DE MOTOR ELÉCTRICO FECHA: TRIFÁSICO UTLIZANDO EL VARIADOR DE FRECUENCIA CON 16/03/15 ALIMENTACIÓN 3F Y CARGA 3F EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL.

ELEMENTOS:

BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

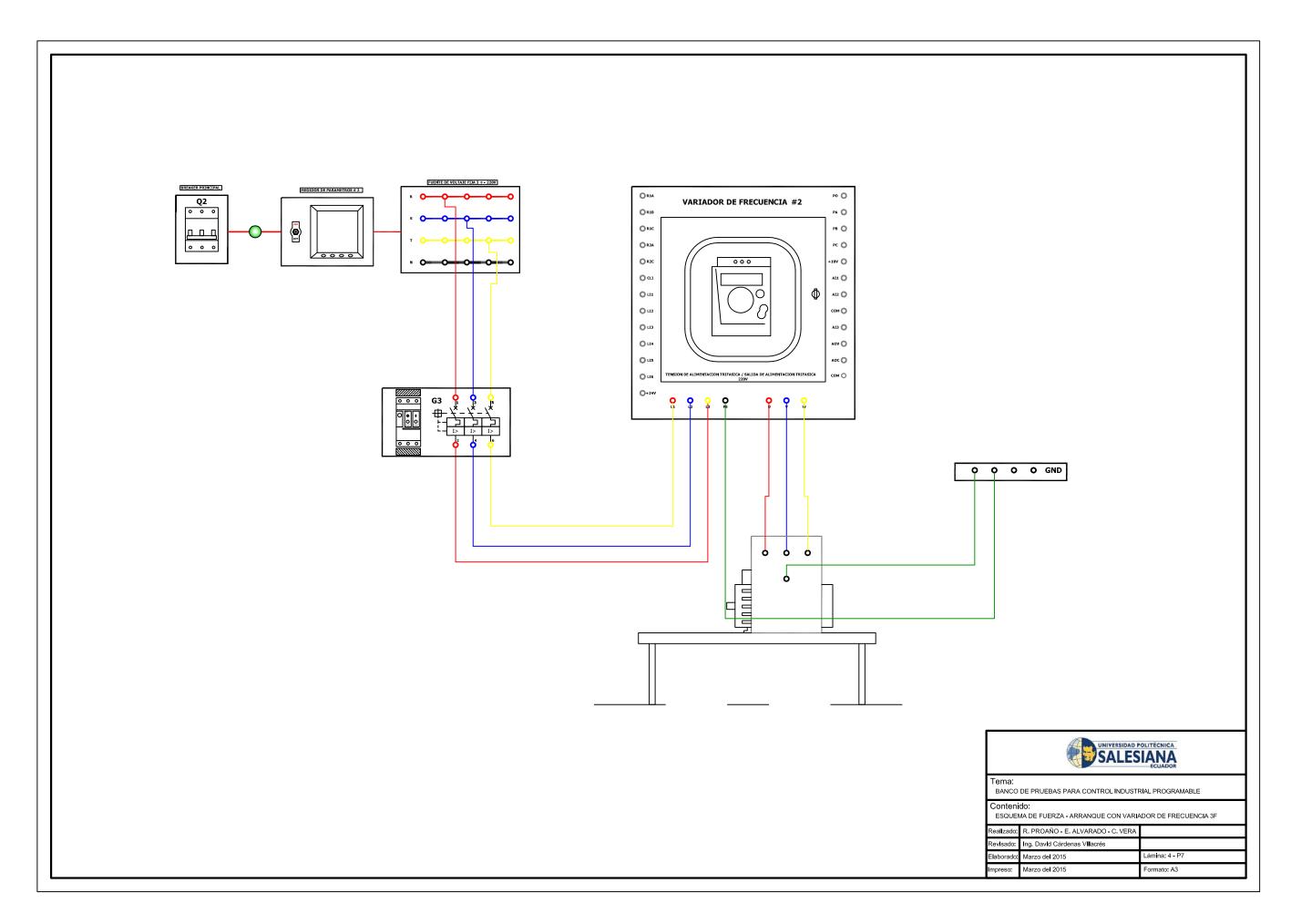

VARIABLE		VALORES MEDIDOS	OBSERVACIONES		
PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO					
	V 1 (V)				
	V 2 (V)				
	V 3 (V)				
	I1 (A)				
ENTRADA	I2 (A)				
(PM 700)	I3 (A)				
	P (W)				
	Q (VAR)				
	S (VA)				
	FP				
	V U-V (V)				
	V V-W (V)				
SALIDA	V W-U (V)				
(FLUKE)	IU(A)				
	IV (A)				
	IW (A)				
	FRECUENCIA (HZ)				
VDF (SUP)	VELOCIDAD (RPM)				
(SUP)	I (A)				


INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 7 TABLA Nº2 ARRANQUE Y PARO DE MOTOR ELÉCTRICO FECHA: TRIFÁSICO UTLIZANDO EL VARIADOR DE FRECUENCIA CON ALIMENTACIÓN 3F Y CARGA 3F EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL.

ELEMENTOS:

BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

VARIABLE		VALORES MEDIDOS	OBSERVACIONES
PRU	EBA CON CARGA	- SENTIDO DE GII	RO HORARIO
	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P (W)		
	Q (VAR)		
	S (VA)		
	FP		
	V U-V (V)		
	V V-W (V)		
SALIDA	V W-U (V)		
(FLUKE)	IU(A)		
	IV (A)		
	IW (A)		
VDF (SUP)	FRECUENCIA (HZ)		
	VELOCIDAD (RPM)		
	I (A)		



Tema: BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE

Contenido: ESQUEMA DE FUERZA - ARRANQUE CON VARIADOR DE FRECUENCIA 3F

	Realizado:	R. PROAÑO - E. ALVARADO - C. VERA		
Revisado		Ing. Davld Cárdenas VIIIacrés		
	Elaborado:	Marzo del 2015	Lámina: 3 -P7	
	Impreso:	Marzo del 2015	Formato: A3	

4.9 PRÁCTICA NO. 8: ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA MOTOR ELÉCTRICO TRIFÁSICO UTILIZANDO EL VARIADOR DE FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL.

4.9.1 DATOS INFORMATIVOS

- MATERIA: Laboratorio de Instalaciones Eléctricas.
- PRÁCTICA Nº 8
- NÚMERO DE ESTUDIANTES: 20
- NOMBRE DOCENTE:
- TIEMPO ESTIMADO: 2 horas

4.9.2 DATOS DE LA PRÁCTICA

 TEMA: Arranque y variación de velocidad, para motor eléctrico trifásico utilizando el variador de frecuencia en la modalidad de sistema de control local.

• OBJETIVO GENERAL:

Utilizar el variador de frecuencia con alimentación 3F y carga 3F para realizar el arranque, variación de velocidad y paro de un motor trifásico.

• OBJETIVOS ESPECÍFICOS:

Diseñar los esquemas de fuerza y control para desarrollo de un arranque y variación de velocidad utilizando un variador de frecuencia.

Conocer como programar y parametrizar un variador de frecuencia para el arranque, variación de velocidad y parada de un motor utilizando rampa de aceleración y desaceleración.

Visualizar los parámetros de supervisión en el variador de frecuencia.

Identificar los elementos del banco de pruebas que se usarán para elaborar la práctica.

Desarrollar la práctica en el banco de pruebas.

Comprender el comportamiento y funcionamiento de un variador de frecuencia.

MARCO TEÓRICO

Funcionamiento de cada elemento y equipo del banco de pruebas.

Normas de seguridad para uso del banco de pruebas.

Normas de seguridad dentro del laboratorio.

Formatos para registro de valores experimentales.

Formatos para elaborar y presentar informes de laboratorio.

PROCEDIMIENTO

Revisar la guía de inicio rápido – ATV312 para trabajar con el variador en configuración local. Para comprender y resolver dudas del variador se puede encontrar información más detallada en los manuales de instalación y programación para variadores Altivar 312 de Schneider Electric.

Realizar los esquemas de fuerza y control para alimentación del variador en configuración local.

Verificar los elementos del banco de pruebas a utilizar para la práctica.

Realizar y verificar las conexiones de elementos y equipos en el banco de pruebas para elaborar la práctica utilizando los esquemas de fuerza y control.

Conectar, energizar el banco de pruebas, verificar voltajes y alimentar los esquemas de fuerza y control cableados.

Tomando en cuenta que el variador de frecuencia se encuentra en un banco de pruebas para alumnos y se realizan prácticas en él, antes de iniciar cualquier parametrización o práctica con el variador es recomendable colocar los parámetros de este a su configuración de fábrica inicial y así evitar conflictos con la nueva parametrización que se realice en cada práctica.

Realizar los ajustes de parámetros en el variador para trabajar en configuración local.

Para visualizar la rampa de aceleración y desaceleración mientras se realizan las pruebas colocar al variador en modo supervisión y poner el parámetro frecuencia o velocidad del motor.

Realizar pruebas de funcionamiento de la práctica.

Tomar los datos de las mediciones correspondientes a la práctica utilizando el medidor de parámetros del banco para alimentación de entrada, utilizar un equipo de medición externa para mediciones de salida del variador y colocando en modo supervisión tomar los datos de variador y completar las respectivas tablas.

Indicar las observaciones, recomendaciones y conclusiones de la práctica.

RIESGO DE DAÑOS EN EL VARIADOR:

Antes de energizar el variador de frecuencia se debe verificar que los bornes PO y PA/+ están conectados y nunca debe retirarse el enlace entre ambos.

Los tornillos del terminal PO y PA/+ deben estar totalmente apretados ya que a travez del enlace fluye un corriente alta.

Si no se siguen estas instrucciones se pueden producir daños en el equipo.

• CONDICIONES DE FUNCIONAMIENTO

Diseñar, programar, parametrizar y realizar los esquemas de control y fuerza para arrancar y variar la velocidad de un motor trifásico utilizando un variador de frecuencia alimentación trifásica y salida para carga trifásica con las siguientes condiciones:

Al presionar el botón Run del variador, el motor arranca en 0 hz hasta 60 hz haciendo una rampa de aceleración de 5 segundos para alcanzar la velocidad máxima.

Cuando el motor alcanzo la velocidad máxima, con la rueda del variador variar la velocidad a 15 hz, después a 30 hz, luego a 45 hz y por último a 60 hz. Tomar las mediciones respectivas en cada velocidad que se varié la frecuencia de salida.

Al presionar el botón Stop/reset del variador, el motor procede a realizar una rampa de desaceleración de 60 a 0 hz en 5 segundos hasta que se detiene completamente el motor.

Se debe trabajar con el motor trifásico con freno mecánico regulable para realizar la práctica con y sin carga.

Se debe proteger al variador con un guardamotor.

RECURSOS

Banco de prueba para control industrial programable.

Equipos de medición para: tensión, corriente, potencias, fp (factor de potencia).

Formatos para registro de valores experimentales y resultados.

Motor trifásico con freno mecánico regulable.

Cables de laboratorio.

REGISTRO DE RESULTADOS

TABLA Nº1 Arranque y variación de velocidad, para motor eléctrico trifásico utlizando el variador de frecuencia en la modalidad de sistema de control local.

• Prueba sin carga - sentido de giro horario – 15 hz.

TABLA Nº2 Arranque y variación de velocidad, para motor eléctrico trifásico utlizando el variador de frecuencia en la modalidad de sistema de control local

• Prueba sin carga - sentido de giro horario – 30 hz.

TABLA Nº3 Arranque y variación de velocidad, para motor eléctrico trifásico utlizando el variador de frecuencia en la modalidad de sistema de control local.

• Prueba sin carga - sentido de giro horario – 45 hz.

TABLA Nº4 Arranque y variación de velocidad, para motor eléctrico trifásico utlizando el variador de frecuencia en la modalidad de sistema de control local

• Prueba sin carga - sentido de giro horario – 60 hz

TABLA Nº5 Arranque y variación de velocidad, para motor eléctrico trifásico utlizando el variador de frecuencia en la modalidad de sistema de control local.

• Prueba con carga - sentido de giro horario – 15 hz.

TABLA Nº6 Arranque y variación de velocidad, para motor eléctrico trifásico utlizando el variador de frecuencia en la modalidad de sistema de control local.

.

• Prueba con carga - sentido de giro horario – 30 hz.

TABLA Nº7 Arranque y variación de velocidad, para motor eléctrico trifásico utlizando el variador de frecuencia en la modalidad de sistema de control local.

• Prueba con carga - sentido de giro horario – 45 hz.

TABLA Nº8 Arranque y variación de velocidad, para motor eléctrico trifásico utlizando el variador de frecuencia en la modalidad de sistema de control local.

.

• Prueba con carga - sentido de giro horario – 60 hz.

TABLA Nº9 Arranque y variación de velocidad, para motor eléctrico trifásico utlizando el variador de frecuencia en la modalidad de sistema de control local.

 Prueba con carga - sentido de giro horario - UMBRAL DE INERCIA: FRECUENCIA 0,2-0,3 HZ.

TABLA Nº10 Arranque y variación de velocidad, para motor eléctrico trifásico utlizando el variador de frecuencia en la modalidad de sistema de control local.

.

 Prueba con carga - sentido de giro horario - UMBRAL DE INERCIA: frecuencia 10 hz. Cuestionario de preguntas.

Observaciones, comentarios, conclusiones.

ANEXOS

Diagrama del circuito de control. (Lámina 1-P8, pág. 222).

Diagrama del circuito de fuerza. (Lámina 2-P8, pág. 223).

Diagrama de conexiones del banco de pruebas para control industrial programable. (Págs. 224, 225).

Tablas para mediciones y resultados.

CRONOGRAMA/CALENDARIO

De acuerdo con la planificación del docente.

CUESTIONARIO

¿Mencionar cuáles son los puntos típicos de disparo del variador en caso de ser sometido el motor a una sobrecarga?

¿Qué sucede con los voltajes en los bornes del motor al variar la frecuencia?

¿Mencione tres formas con las que se puede variar la velocidad en un variador de frecuencia?

¿Cómo se resetea una falla por sobrecarga en el variador?

¿Explique por qué se debe aterrizar al variador de frecuencia y al motor?

OTROS

Proyecto:

Evaluar y cotizar la instalación de un variador con alimentación trifásica para arrancar un motor trifásico de 1HP.

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA#8 TABLA Nº1 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA MOTOR ELÉCTRICO TRIFÁSICO UTLIZANDO EL 16/03/15 VARIADOR DE FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL.

ELEMENTOS:

BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

VARIABLE		VALORES MEDIDOS	OBSERVACIONES			
PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO						
FRECUENCIA 15 HZ						
	V 1 (V)					
	V 2 (V)					
	V 3 (V)					
	I1 (A)					
ENTRADA	I2 (A)					
(PM 700)	I3 (A)					
	P(W)					
	Q (VAR)					
	S (VA)					
	FP					
	V U-V (V)					
	V V-W (V)					
SALIDA	V W-U (V)					
(FLUKE)	IU(A)					
	IV (A)					
	IW (A)					
	FRECUENCIA (HZ)					
VDF (SUP)	VELOCIDAD (RPM)					
	I (A)	Y				

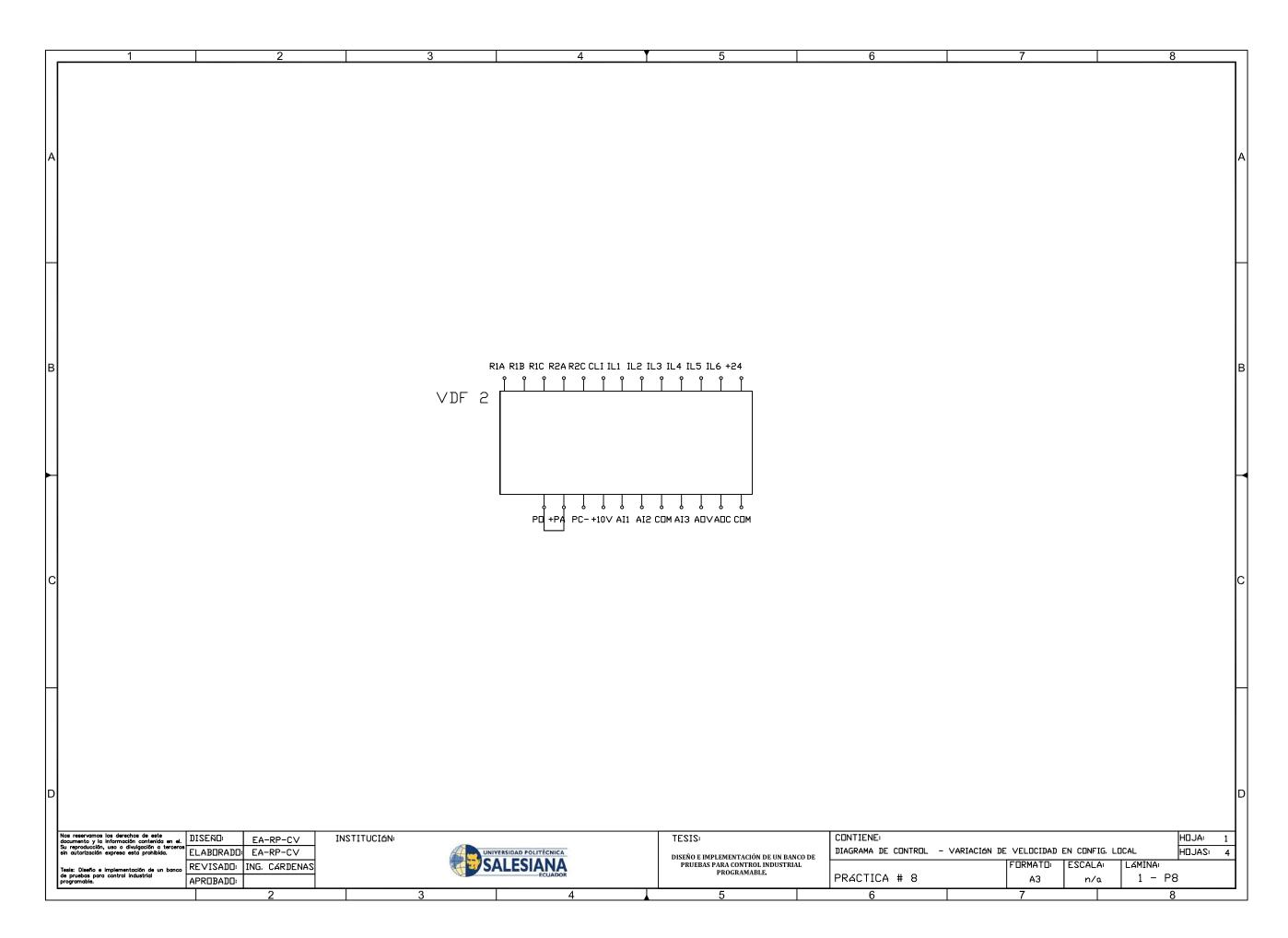
INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA #8 TABLA Nº2 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA **FECHA:** MOTOR ELÉCTRICO TRIFÁSICO UTLIZANDO EL VARIADOR 16/03/15 DE FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL. **ELEMENTOS:** BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE VARIABLE **VALORES OBSERVACIONES MEDIDOS** PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO FRECUENCIA 30 HZ V 1 (V) V 2 (V) V 3 (V) I1 (A) **I2 (A) ENTRADA** (PM 700) **I3** (A) **P** (W) Q (VAR) S (VA) FP VU-V(V)V V-W (V) V W-U (V)**SALIDA** (FLUKE) IU(A) IV (A) IW (A) **FRECUENCIA** (HZ)**VDF** VELOCIDAD (SUP) (RPM) **I** (**A**)

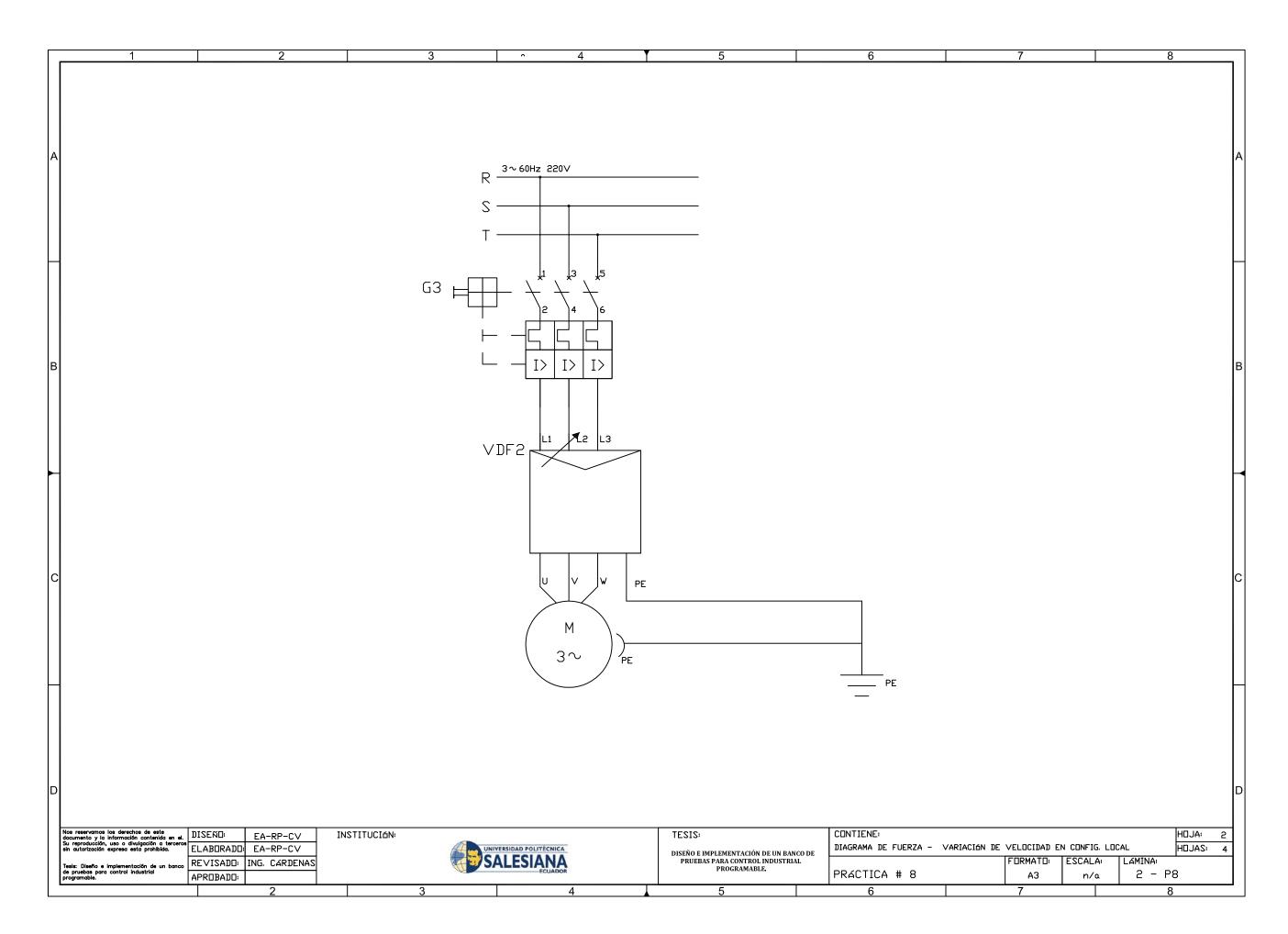
INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA #8 TABLA Nº3 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA **FECHA:** MOTOR ELÉCTRICO TRIFÁSICO UTLIZANDO EL VARIADOR 16/03/15 DE FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL. **ELEMENTOS:** BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE **VARIABLE VALORES OBSERVACIONES MEDIDOS** PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO FRECUENCIA 45 HZ V 1 (V) V 2 (V) V 3 (V) I1 (A) I2 (A) **ENTRADA** (PM 700) **I3** (A) **P** (**W**) Q (VAR) S(VA) FP VU-V(V)**V V-W (V) V W-U (V) SALIDA** (FLUKE) IU(A) IV (A) IW (A) **FRECUENCIA** (HZ)**VDF** VELOCIDAD (SUP) (RPM) **I** (**A**)

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA #8 TABLA Nº4 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA **FECHA:** MOTOR ELÉCTRICO TRIFÁSICO UTLIZANDO EL VARIADOR 16/03/15 DE FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL. **ELEMENTOS:** BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE **VARIABLE VALORES OBSERVACIONES MEDIDOS** PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO FRECUENCIA 60 HZ V 1 (V) V 2 (V) V 3 (V) **I1 (A) I2** (A) **ENTRADA** (PM 700) **I3** (A) **P**(**W**) Q (VAR) S(VA) FP VU-V(V)V V-W (V) V W-U (V)**SALIDA** (FLUKE) IU(A) IV (A) **IW** (A) **FRECUENCIA** (HZ)**VDF** VELOCIDAD (SUP) (RPM) **I** (A)

Tabla 53 Práctica #8 prueba con carga - sentido de giro horario 15Hz

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA#8 **TABLA №**5 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA **FECHA:** MOTOR ELÉCTRICO TRIFÁSICO UTLIZANDO EL VARIADOR 16/03/15 DE FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL. **ELEMENTOS:** BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE VARIABLE **VALORES OBSERVACIONES MEDIDOS** PRUEBA CON CARGA - SENTIDO DE GIRO HORARIO FRECUENCIA 15 HZ V 1 (V) V 2 (V) V 3 (V) I1 (A) I2 (A) **ENTRAD** A **I3** (A) (PM 700) **P**(**W**) Q (VAR) S (VA) FP VU-V(V)V V-W (V) V W-U (V)**SALIDA** (FLUKE) IU(A) IV (A) IW (A) **FRECUENCIA** (HZ)**VDF VELOCIDAD** (SUP) (RPM) **I** (**A**)

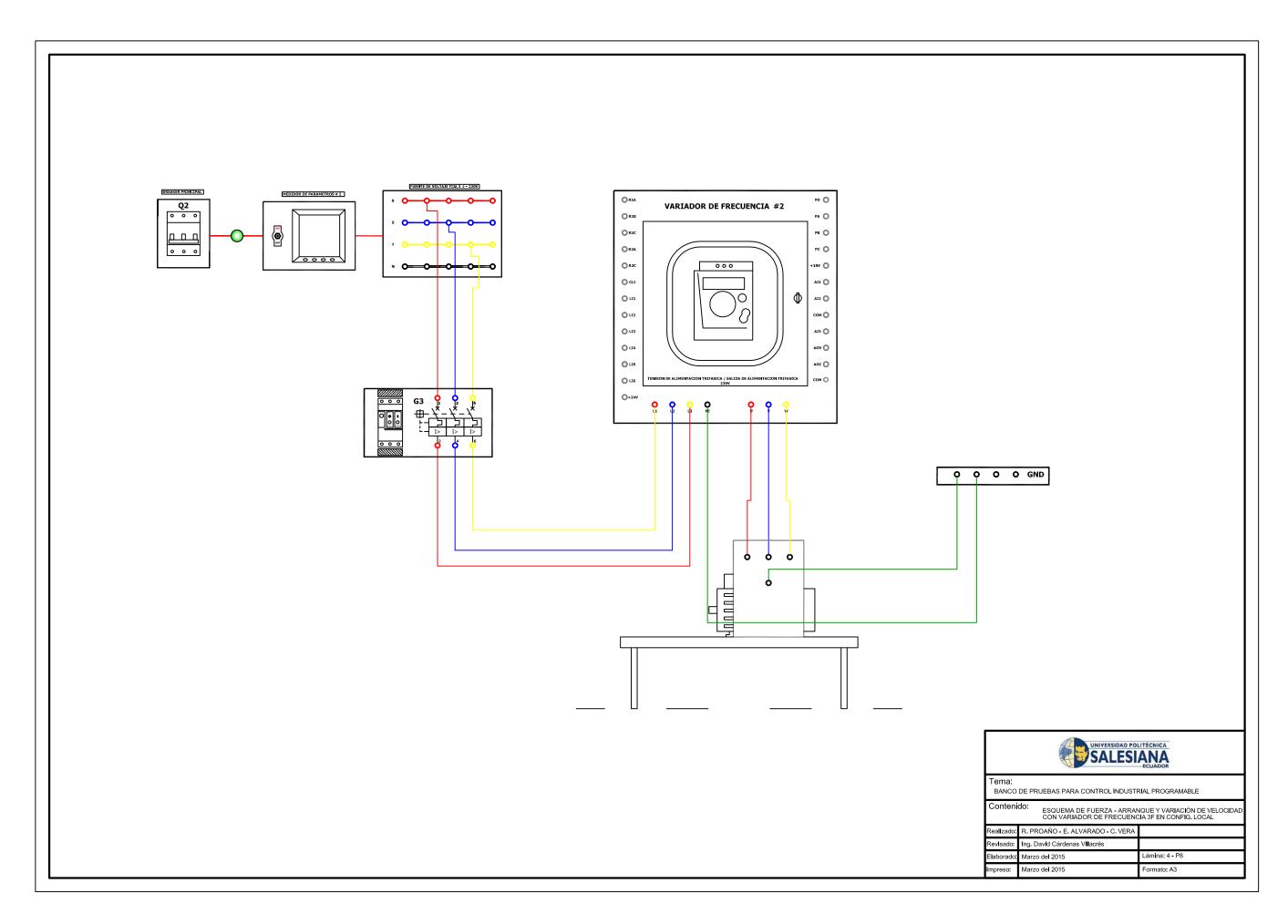

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA #8 TABLA Nº6 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA **FECHA:** MOTOR ELÉCTRICO TRIFÁSICO UTLIZANDO EL VARIADOR 16/03/15 DE FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL. **ELEMENTOS:** BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE **VARIABLE VALORES OBSERVACIONES MEDIDOS** PRUEBA CON CARGA - SENTIDO DE GIRO HORARIO FRECUENCIA 30 HZ V 1 (V) V 2 (V) V 3 (V) **I1 (A)** I2 (A) **ENTRADA** (PM 700) **I3** (A) **P** (**W**) Q (VAR) S(VA) FP VU-V(V)V V-W (V) **V W-U (V) SALIDA** (FLUKE) IU(A) IV (A) IW (A) **FRECUENCIA** (HZ)**VDF** VELOCIDAD (SUP) (RPM) **I** (**A**)


INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA #8 TABLA Nº7 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA **FECHA:** MOTOR ELÉCTRICO TRIFÁSICO UTLIZANDO EL VARIADOR 16/03/15 DE FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL. **ELEMENTOS:** BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE **VARIABLE** VALORES **OBSERVACIONES MEDIDOS** PRUEBA CON CARGA - SENTIDO DE GIRO HORARIO FRECUENCIA 45 HZ V 1 (V) V 2 (V) V 3 (V) **I1 (A) I2 (A) ENTRADA** (PM 700) **I3** (A) **P** (**W**) Q (VAR) S (VA) FP **V U-V (V)** V V-W (V) V W-U (V)**SALIDA** (FLUKE) IU(A) IV (A) IW (A) **FRECUENCIA** (HZ)**VDF** VELOCIDAD (SUP) (RPM) **I** (A)

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA #8 TABLA Nº8 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA **FECHA:** MOTOR ELÉCTRICO TRIFÁSICO UTLIZANDO EL VARIADOR 16/03/15 DE FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL. **ELEMENTOS:** BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE **VARIABLE VALORES OBSERVACIONES MEDIDOS** PRUEBA CON CARGA - SENTIDO DE GIRO HORARIO FRECUENCIA 60 HZ V 1 (V) V 2 (V) V 3 (V) **I1 (A)** I2 (A) **ENTRADA** (PM 700) **I3** (A) **P** (**W**) Q (VAR) S(VA) FP VU-V(V)V V-W (V) **V W-U (V) SALIDA** (FLUKE) IU(A) IV (A) IW (A) **FRECUENCIA** (HZ)**VDF** VELOCIDAD (SUP) (RPM) **I** (**A**)

INGENIERÍA ELÉCTRICA / SEDE GUAYAOUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA #8 TABLA Nº9 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA **FECHA:** MOTOR ELÉCTRICO TRIFÁSICO UTLIZANDO EL VARIADOR 16/03/15 DE FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL. **ELEMENTOS:** BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE VARIABLE **VALORES OBSERVACIONES MEDIDOS** PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO UMBRAL DE INERCIA: FRECUENCIA 0,2-0,3 HZ V 1 (V) V 2 (V) V 3 (V) **I1 (A) I2** (A) **ENTRADA** (PM 700) **I3** (A) **P** (**W**) Q (VAR) S(VA) FP VU-V(V)**V V-W (V) SALIDA V W-U (V)** (FLUKE) IU(A) IV (A) IW (A) FRECUENCIA (HZ)**VDF** VELOCIDAD (SUP) (RPM) **I** (**A**)

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA #8 TABLA Nº10 ARRANQUE Y VARIACIÓN DE VELOCIDAD, FECHA: PARA MOTOR ELÉCTRICO TRIFÁSICO UTLIZANDO EL 16/03/15 VARIADOR DE FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL. **ELEMENTOS:** BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE **VARIABLE VALORES OBSERVACIONES MEDIDOS** PRUEBA CON CARGA - SENTIDO DE GIRO HORARIO UMBRAL DE INERCIA: FRECUENCIA 10 HZ V 1 (V) V 2 (V) V 3 (V) I1 (A) I2 (A) **ENTRADA** (PM 700) I3 (A) **P** (**W**) Q (VAR) S(VA) FP VU-V(V)V V-W (V) **SALIDA V W-U (V)** (FLUKE) IU(A) IV (A) IW (A) **FRECUENCIA** (HZ)**VDF** VELOCIDAD (SUP) (RPM) **I** (**A**)



Tema: BANCO DE PRUEBAS PARA CONTROL INDUSTRIAL PROGRAMABLE

Contenido: ESQUEMA DE CONTROL - ARRANQUE Y VARIACIÓN DE VELOCIDAD CON VARIADOR DE FRECUENCIA 3F EN CONFIG. LOCAL Realizado: R. PROAÑO - E. ALVARADO - C. VERA

Revisado: Ing. David Cárdenas Villacrés Lámina: 3 - P8 Elaborado: Marzo del 2015 Marzo del 2015 Formato: A3

4.10 PRÁCTICA NO. 9: ARRANQUE E INVERSIÓN DE GIRO DEL MOTOR ELÉCTRICO TRIFÁSICO, UTILIZANDO EL VARIADOR DE FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL.

4.10.1 DATOS INFORMATIVOS

- MATERIA: Laboratorio de Instalaciones Eléctricas.
- PRÁCTICA Nº 9
- NÚMERO DE ESTUDIANTES: 20
- NOMBRE DOCENTE:
- TIEMPO ESTIMADO: 2 horas

4.10.2 DATOS DE LA PRÁCTICA

• **TEMA:** Arranque e inversión de giro del motor eléctrico trifásico, utilizando el variador de frecuencia en la modalidad de sistema de control local.

• OBJETIVO GENERAL:

Utilizar el variador de frecuencia con alimentación 3F y carga 3F para realizar el arranque, inversión de giro y paro de un motor trifásico.

• OBJETIVOS ESPECÍFICOS:

Diseñar los esquemas de fuerza y control para desarrollo de un arranque e inversión de giro utilizando un variador de frecuencia en configuración local y trabajar con cableado de control 2 hilos.

Conocer como programar y parametrizar un variador de frecuencia para el arranque, inversión de giro y parada de un motor.

Conocer las funciones de nivel, transición y prioridad FW del variador. Visualizar los parámetros de supervisión en el variador de frecuencia. Identificar los elementos del banco de pruebas que se usarán para elaborar la práctica.

Desarrollar la práctica en el banco de pruebas.

Comprender el comportamiento y funcionamiento de un variador de frecuencia.

MARCO TEÓRICO

Funcionamiento de cada elemento y equipo del banco de pruebas.

Normas de seguridad para uso del banco de pruebas.

Normas de seguridad dentro del laboratorio.

Formatos para registro de valores experimentales.

Formatos para elaborar y presentar informes de laboratorio.

• PROCEDIMIENTO

Revisar los manuales de instalación y programación para variadores Altivar 312 de Schneider Electric

Realizar los esquemas de fuerza y control para alimentación del variador en configuración local y utilizando control de 2 hilos.

Verificar los elementos del banco de pruebas a utilizar para la práctica.

Realizar y verificar las conexiones de elementos y equipos en el banco de pruebas para elaborar la práctica utilizando los esquemas de fuerza y control.

Conectar, energizar el banco de pruebas, verificar voltajes y alimentar los esquemas de fuerza y control cableados.

Tomando en cuenta que el variador de frecuencia se encuentra en un banco de pruebas para alumnos y se realizan prácticas en él, antes de iniciar cualquier parametrización o práctica con el variador es recomendable colocar los parámetros de este a su configuración de fábrica inicial y así evitar conflictos con la nueva parametrización que se realice en cada práctica.

Realizar los ajustes de parámetros en el variador para trabajar en configuración local y cableada de control de 2 hilos.

Para visualizar la rampa de aceleración y desaceleración mientras se realizan las pruebas colocar al variador en modo supervisión y poner el parámetro frecuencia o velocidad del motor.

Realizar pruebas de funcionamiento de la práctica utilizando las funciones de nivel, transición y prioridad FW.

Tomar los datos de las mediciones correspondientes a la práctica utilizando el medidor de parámetros del banco para alimentación de entrada, utilizar un equipo de medición externa para mediciones de salida del variador y colocando en modo supervisión tomar los datos de variador y completar las respectivas tablas.

Indicar las observaciones, recomendaciones y conclusiones de la práctica.

RIESGO DE DAÑOS EN EL VARIADOR:

Antes de energizar el variador de frecuencia se debe verificar que los bornes PO y PA/+ están conectados y nunca debe retirarse el enlace entre ambos.

Los tornillos del terminal PO y PA/+ deben estar totalmente apretados ya que a travez del enlace fluye un corriente alta.

Si no se siguen estas instrucciones se pueden producir daños en el equipo.

• CONDICIONES DE FUNCIONAMIENTO

Diseñar, programar, parametrizar y realizar los esquemas de control y fuerza para arrancar e invertir el sentido de giro de un motor y trifásico utilizando un variador de frecuencia alimentación trifásica y salida para carga trifásica en configuración local y cableado de 2 hilos con las siguientes condiciones:

Al activar el switch marcha adelante, el motor arranca en 0 hz hasta 60 hz haciendo una rampa de aceleración de 3 segundos para alcanzar la velocidad máxima.

Al activar el switch marcha para atrás, el motor se detiene y arranca en sentido contrario realizando la rampa parametrizada.

Al colocar el switch de marcha adelante o marcha atrás en OFF el motor se apaga realizando la rampa de desaceleración de 60 a 0 hz en 3 segundos hasta que se detiene completamente el motor.

Se debe trabajar con el motor trifásico con freno mecánico regulable para realizar la práctica con y sin carga.

Se debe proteger al variador con un guardamotor.

RECURSOS

Banco de prueba para control industrial programable.

Equipos de medición para: tensión, corriente, potencias, fp (factor de potencia).

Formatos para registro de valores experimentales y resultados.

Motor trifásico con freno mecánico regulable.

Cables de laboratorio.

• REGISTRO DE RESULTADOS

TABLA Nº1 Arranque e inversión de giro de motor eléctrico trifásico, utlizando el variador de frecuencia en la modalidad de sistema de control local.

• Prueba sin carga- sentido horario

TABLA Nº2 Arranque e inversión de giro de motor eléctrico trifásico, utlizando el variador de frecuencia en la modalidad de sistema de control local.

• Prueba sin carga- sentido anti horario

TABLA Nº3 Arranque e inversión de giro de motor eléctrico trifásico, utlizando el variador de frecuencia en la modalidad de sistema de control local.

• Prueba con carga- sentido anti horario

TABLA Nº4 Arranque e inversión de giro de motor eléctrico trifásico, utlizando el variador de frecuencia en la modalidad de sistema de control local.

• Prueba con carga- sentido anti horario

Cuestionario de preguntas.

Observaciones, comentarios, conclusiones.

ANEXOS

Diagrama del circuito de control. (Lámina 1-P9, pág. 236).

Diagrama del circuito de fuerza. (Lámina 2-P9, pág. 237).

Diagrama de conexiones del banco de pruebas para control industrial programable. (Págs. 238, 239).

Tablas para mediciones y resultados.

• CRONOGRAMA/CALENDARIO

De acuerdo con la planificación del docente.

CUESTIONARIO

Explicar el uso de las funciones del variador: nivel (LEL), transición (TRN) y prioridad FW (PFO)

¿Qué nivel de voltaje manejan las entradas lógicas LI1 a LI6 y con qué fuente debe alimentarse estas entradas?

¿Qué sucede si al trabajar en cableado de 2 hilos se trabaja con pulsantes para marcha adelante y marcha atrás?

¿Qué cambios debería realizar en la parametrización del variador y qué elementos debería cambiar para trabajar en cableado de 3 hilos?

¿Dónde y cómo conectaría luces piloto en el variador para señalización de encendido y apagado del motor, también indicar que debe parametrizar en el variador para lograr esta señalización?

• OTROS

Proyecto:

Evaluar y cotizar la instalación de un variador con alimentación trifásica para arranque, inversión de giro y paro de un motor trifásico de 1HP utilizando un cableado de 3 hilos con su respectiva señalización de encendido y apagado del motor.

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 9 TABLA Nº1 ARRANQUE E INVERSIÓN DE GIRO DE MOTOR ELÉCTRICO TRIFÁSICO, UTLIZANDO EL VARIADOR DE 16/03/15 FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL

ELEMENTOS:

BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

VAR	RIABLE	VALORES MEDIDOS	OBSERVACIONES
PRU	EBA SIN CARGA	- SENTIDO DE GIF	RO HORARIO
	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P (W)		
	Q (VAR)		
	S (VA)		
	FP		
	V U-V (V)		
	V V-W (V)		
SALIDA	V W-U (V)		
(FLUKE)	IU(A)		
	IV (A)		
	IW (A)		
	FRECUENCIA (HZ)		
VDF (SUP)	VELOCIDAD (RPM)		
	I (A)		

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1

REGISTRO DE PRUEBA Nº1 PRÁCTICA # 9

TABLA Nº2 ARRANQUE E INVERSIÓN DE GIRO DE MOTOR
ELÉCTRICO TRIFÁSICO, UTLIZANDO EL VARIADOR DE
FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL
LOCALFECHA:
16/03/15

ELEMENTOS:

BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

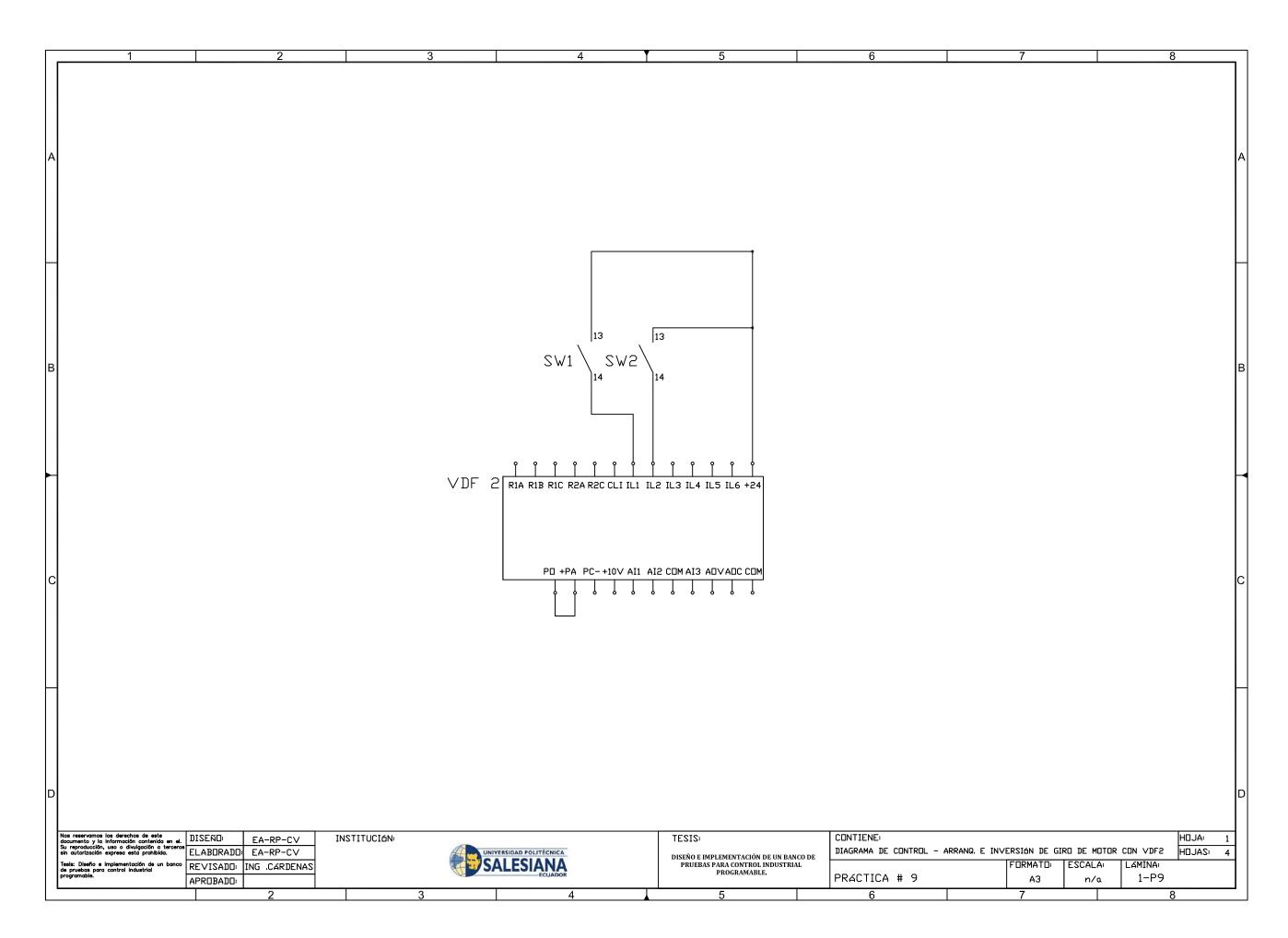
VAR	RIABLE	VALORES MEDIDOS	OBSERVACIONES
PRUEBA	A SIN CARGA - SI	ENTIDO DE GIRO A	NTI HORARIO
	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P (W)		
	Q (VAR)		
	S (VA)		
	FP		
	V U-V (V)		
	V V-W (V)		
SALIDA	V W-U (V)		
(FLUKE)	IU(A)		
	IV (A)		
	IW (A)		
VDF (SUP)	FRECUENCIA (HZ)		
	VELOCIDAD (RPM)		
	I (A)		

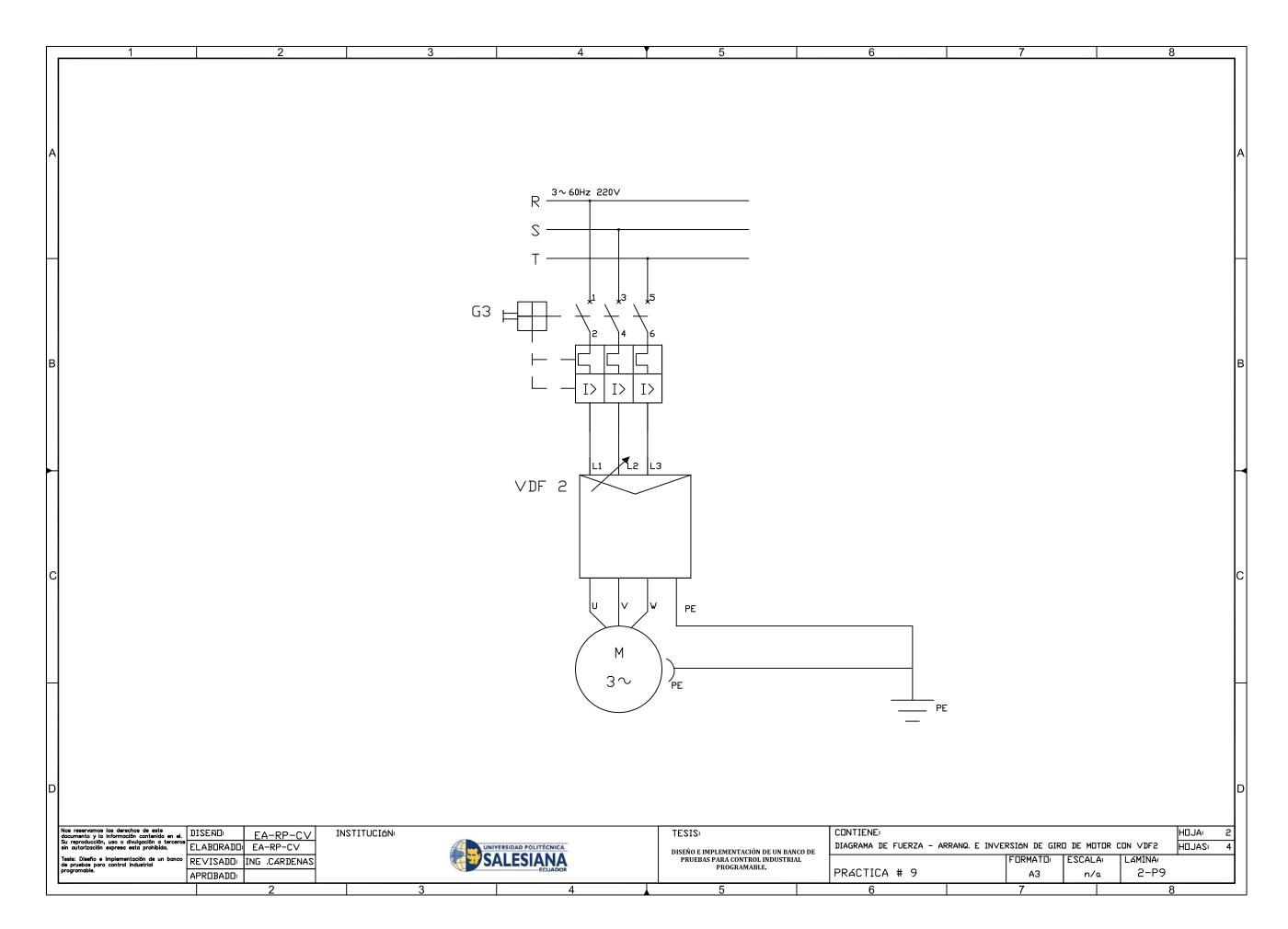
Tabla 61 Práctica #9 prueba con carga - sentido de giro horario

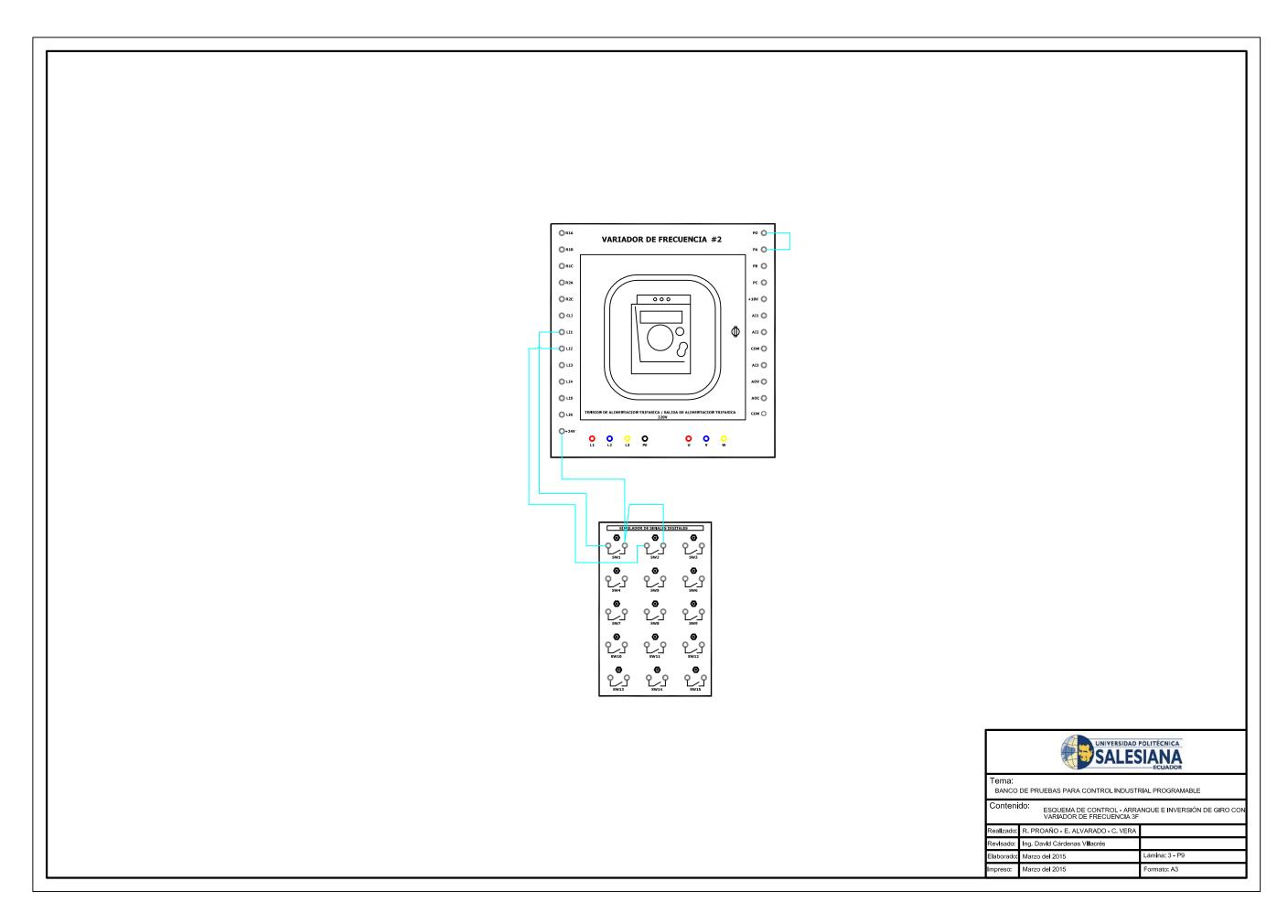
INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 9 TABLA Nº3 ARRANQUE E INVERSIÓN DE GIRO DE MOTOR ELÉCTRICO TRIFÁSICO, UTLIZANDO EL VARIADOR DE 16/03/15 FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL

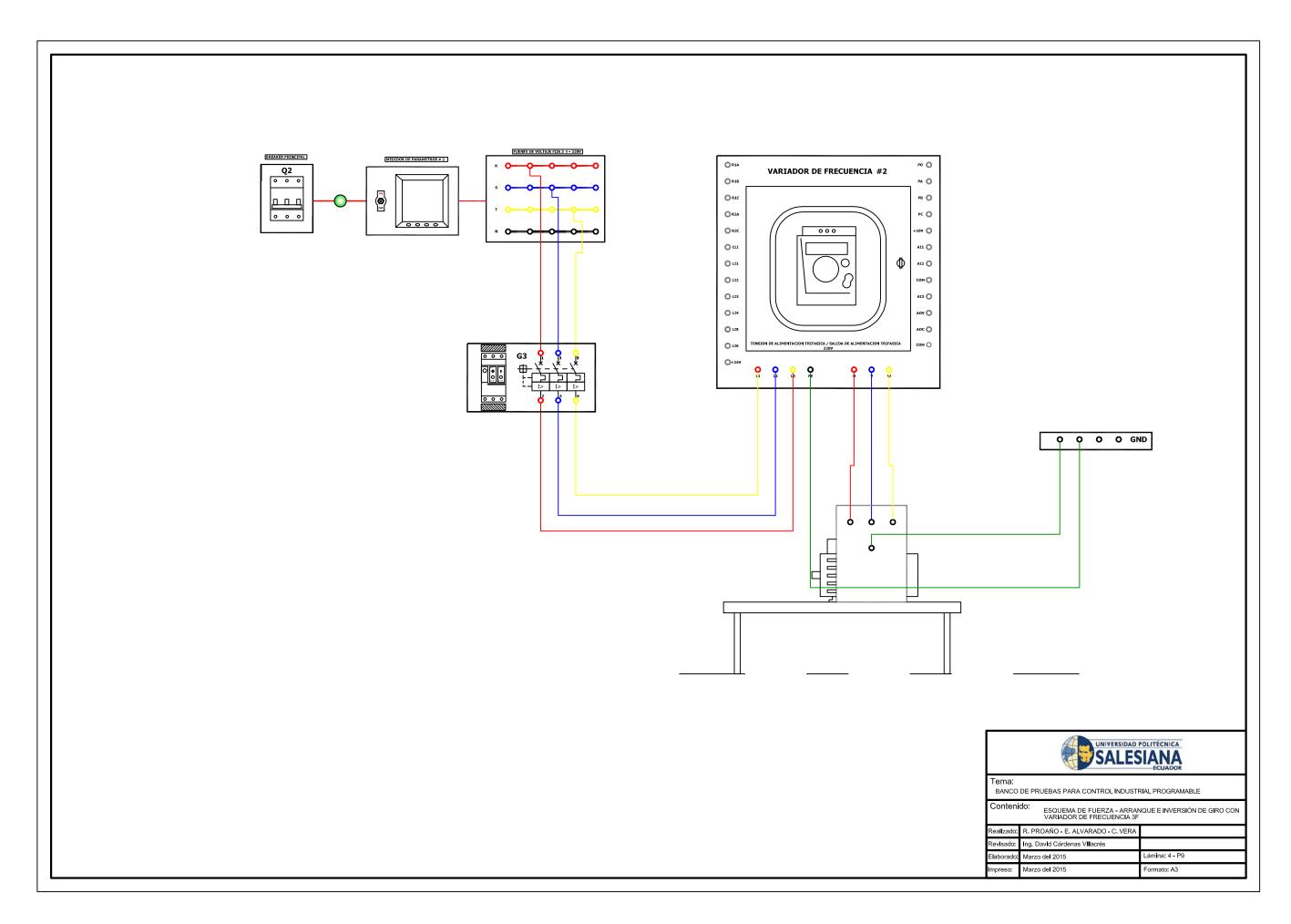
ELEMENTOS:

BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE


•	VARIABLE	VALORES MEDIDOS	OBSERVACIONES
PRU	UEBA CON CARGA -	SENTIDO DE GII	RO HORARIO
	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P(W)		
	Q (VAR)		
	S (VA)		
	FP		
	V U-V (V)		
	V V-W (V)		
SALIDA	V W-U (V)		
(FLUKE)	IU(A)		
	IV (A)		
	IW (A)		
	FRECUENCIA		
VDF (SUP)	(HZ) VELOCIDAD		
	(RPM)		
	I (A)		
		r I oc autorec	


INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 9 TABLA Nº4 ARRANQUE E INVERSIÓN DE GIRO DE MOTOR ELÉCTRICO TRIFÁSICO, UTLIZANDO EL VARIADOR DE 16/03/15 FRECUENCIA EN LA MODALIDAD DE SISTEMA DE CONTROL LOCAL


ELEMENTOS:


BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

VARIABLE		VALORES MEDIDOS	OBSERVACIONES
PRUEBA	CON CARGA - S	ENTIDO DE GIRO	ANTI HORARIO
	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P (W)		
	Q (VAR)		
	S (VA)		
	FP		
	VU-V(V)		
	V V-W (V)		
SALIDA	V W-U (V)		
(FLUKE)	IU(A)		
	IV (A)		
	IW (A)		
	FRECUENCIA (HZ)		
VDF (SUP)	VELOCIDAD (RPM)		
	I (A)		

4.11 PRÁCTICA NO. 10: ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA MOTOR ELÉCTRICO TRIFÁSICO UTILIZANDO SEÑALES DIGITALES, EN LA MODALIDAD DE SISTEMA DE CONTROL REMOTO DEL VARIADOR DE FRECUENCIA.

4.11.1 DATOS INFORMATIVOS

- MATERIA: Laboratorio de Instalaciones Eléctricas.
- PRÁCTICA Nº 10
- NÚMERO DE ESTUDIANTES: 20
- NOMBRE DOCENTE:
- TIEMPO ESTIMADO: 2 horas

4.11.2 DATOS DE LA PRÁCTICA

 TEMA: Arranque y variación de velocidad, para motor eléctrico trifásico utilizando señales digitales, en la modalidad de sistema de control remoto del variador de frecuencia.

• OBJETIVO GENERAL:

Utilizar el variador de frecuencia con entrada trifásica y carga trifásica para realizar el arranque, variación de velocidad con señales digitales y paro de un motor trifásico en configuración remoto.

• OBJETIVOS ESPECÍFICOS:

Diseñar los esquemas de fuerza y control para desarrollo de un arranque, inversión de giro y variación de velocidad utilizando señales digitales en el variador de frecuencia en configuración remota.

Conocer como programar y parametrizar un variador de frecuencia para el arranque, inversión de giro, variación de velocidad y parada de un motor.

Visualizar los parámetros de supervisión en el variador de frecuencia.

Visualizar el parámetro de frecuencia en la salida analógica de 0 a 10V del variador. Identificar los elementos del banco de pruebas que se usarán para elaborar la práctica.

Desarrollar la práctica en el banco de pruebas.

Comprender el comportamiento y funcionamiento de un variador de frecuencia.

MARCO TEÓRICO

Funcionamiento de cada elemento y equipo del banco de pruebas.

Normas de seguridad para uso del banco de pruebas.

Normas de seguridad dentro del laboratorio.

Formatos para registro de valores experimentales.

Formatos para elaborar y presentar informes de laboratorio.

PROCEDIMIENTO

Revisar los manuales de instalación y programación para variadores Altivar 312 de Schneider Electric.

Realizar los esquemas de fuerza y control para alimentación del variador en configuración remoto y utilizando control de 2 hilos.

Verificar los elementos del banco de pruebas a utilizar para la práctica.

Realizar y verificar las conexiones de elementos y equipos en el banco de pruebas para elaborar la práctica utilizando los esquemas de fuerza y control.

Conectar, energizar el banco de pruebas, verificar voltajes y alimentar los esquemas de fuerza y control cableados.

Tomando en cuenta que el variador de frecuencia se encuentra en un banco de pruebas para alumnos y se realizan prácticas en él, antes de iniciar cualquier parametrización o práctica con el variador es recomendable colocar los parámetros de este a su configuración de fábrica inicial y así evitar conflictos con la nueva parametrización que se realice en cada práctica.

Realizar los ajustes de parámetros en el variador para trabajar en configuración remota y cableada de control de 2 hilos.

Para visualizar la rampa de aceleración y desaceleración mientras se realizan las pruebas colocar al variador en modo supervisión y poner el parámetro frecuencia o velocidad del motor.

Tomar los datos de las mediciones correspondientes a la práctica utilizando el medidor de parámetros del banco para alimentación de entrada, utilizar un equipo de medición externa para mediciones de salida del variador y colocando en modo supervisión tomar los datos de variador y completar las respectivas tablas.

Comprobar el estatus de frecuencia en la salida de analógica de 0 a 10V del variador. Indicar las observaciones, recomendaciones y conclusiones de la práctica.

RIESGO DE DAÑOS EN EL VARIADOR:

Antes de energizar el variador de frecuencia se debe verificar que los bornes PO y PA/+ están conectados y nunca debe retirarse el enlace entre ambos.

Los tornillos del terminal PO y PA/+ deben estar totalmente apretados ya que a travez del enlace fluye un corriente alta.

Si no se siguen estas instrucciones se pueden producir daños en el equipo.

• CONDICIONES DE FUNCIONAMIENTO

Diseñar, programar, parametrizar y realizar los esquemas de control y fuerza para arrancar, invertir el sentido de giro y variar la velocidad de un motor trifásico utilizando un variador de frecuencia alimentación trifásica y salida para carga trifásica en configuración remota y cableado de 2 hilos con las siguientes condiciones:

Al activar el switch marcha adelante, el motor arranca en 0 hz hasta 60 hz haciendo una rampa de aceleración de 5 segundos para alcanzar la velocidad máxima.

Al activar el switch marcha para atrás, el motor se detiene y arranca en sentido contrario realizando la rampa parametrizada.

Al colocar el switch de marcha adelante o marcha atrás en OFF el motor se apaga realizando la rampa de desaceleración de 60 a 0 hz en 3 segundos hasta que se detiene completamente el motor.

Con el selector # 2 para menos velocidad, al activarlo se disminuye la velocidad del motor y se puede llegar hasta 0 hz.

Con el selector #1 para más velocidad, al activarlo se incrementa la velocidad del motor y se puede llegar hasta la velocidad máxima a 60 hz.

El incremento o disminución de velocidad se puede realizar en cualquiera de los dos sentidos de giro.

Se debe trabajar con el motor trifásico con freno mecánico regulable para realizar la práctica con y sin carga.

Se debe proteger al variador con un guardamotor.

RECURSOS

Banco de prueba para control industrial programable

Equipos de medición para: tensión, corriente, potencias, fp (factor de potencia)

Formatos para registro de valores experimentales y resultados.

Motor trifásico con freno mecánico regulable.

Cables de laboratorio.

REGISTRO DE RESULTADOS

TABLA Nº1 Arranque y variación de velocidad, para motor eléctrico trifásico

utilizando señales digitales, en la modalidad de sistema de control remoto del

variador de frecuencia.

• Prueba sin carga- sentido horario

TABLA Nº2 Arranque y variación de velocidad, para motor eléctrico trifásico

utilizando señales digitales, en la modalidad de sistema de control remoto del

variador de frecuencia.

• Prueba sin carga- sentido anti horario

TABLA Nº3 Arranque y variación de velocidad, para motor eléctrico trifásico

utilizando señales digitales, en la modalidad de sistema de control remoto del

variador de frecuencia.

• Prueba con carga- sentido horario

TABLA Nº4 Arranque y variación de velocidad, para motor eléctrico trifásico

utilizando señales digitales, en la modalidad de sistema de control remoto del

variador de frecuencia.

• Prueba con carga- sentido anti horario

Cuestionario de preguntas.

Observaciones, comentarios, conclusiones.

ANEXOS

Diagrama del circuito de control. (Lámina 1-P10, pág. 250).

Diagrama del circuito de fuerza. (Lámina 2-P10, pág. 251).

Diagrama de conexiones del banco de pruebas para control industrial programable. (Págs. 252, 253).

Tablas para mediciones y resultados.

• CRONOGRAMA/CALENDARIO

De acuerdo con la planificación del docente.

• CUESTIONARIO

¿Se puede trabajar con cableado de 3 hilos en la modalidad de más/menos de velocidad por entradas digitales en el variador, explique por qué?

Indicar como visualizar el estatus de velocidad del motor sin utilizar la pantalla del variador.

Indicar tres asignaciones que se le puede programar a los relés R1 Y R2 del variador ¿Qué opciones existe para realizar la variación de velocidad en configuración remota?

¿Qué sucede si al estar en configuración remoto se cambia a configuración local?

OTROS

Proyecto:

Evaluar y cotizar la instalación de un variador con alimentación trifásica para arranque, inversión de giro, variación de velocidad y paro de un motor trifásico de 1HP utilizando un cableado de 2 hilos con su respectiva señalización de encendido y apagado del motor.

Tabla 63 Práctica #10 prueba sin carga - sentido de giro horario

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE			
INSTALACIONES ELÉCTRICAS			
REGISTRO DE PRUEBA Nº1			
PRÁCTICA # 10			
TABLA Nº1 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA			
MOTOR ELÉCTRICO TRIFÁSICO UTILIZANDO SEÑALES	16/03/15		
DIGITALES, EN LA MODALIDAD DE SISTEMA DE CONTROL			
REMOTO DEL VARIADOR DE FRECUENCIA.			
ELEMENTOS:			

BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

VA	ARIABLE	VALORES MEDIDOS	OBSERVACIONES
PRU	EBA SIN CARGA - S	SENTIDO DE GIR	O HORARIO
	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P (W)		
	Q (VAR)		
	S (VA)		
	FP		
	V U-V (V)		
	V V-W (V)		
SALIDA	V W-U (V)		
(FLUKE)	IU(A)		
	IV (A)		
	IW (A)		
	FRECUENCIA		
VDF	(HZ)		
(SUP)	VELOCIDAD		
	(RPM) I (A)		

Tabla 64 Práctica #10 prueba sin carga - sentido de giro antihorario

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 10 TABLA Nº1 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA MOTOR ELÉCTRICO TRIFÁSICO UTILIZANDO SEÑALES 16/03/15 DIGITALES, EN LA MODALIDAD DE SISTEMA DE CONTROL REMOTO DEL VARIADOR DE FRECUENCIA.

ELEMENTOS:

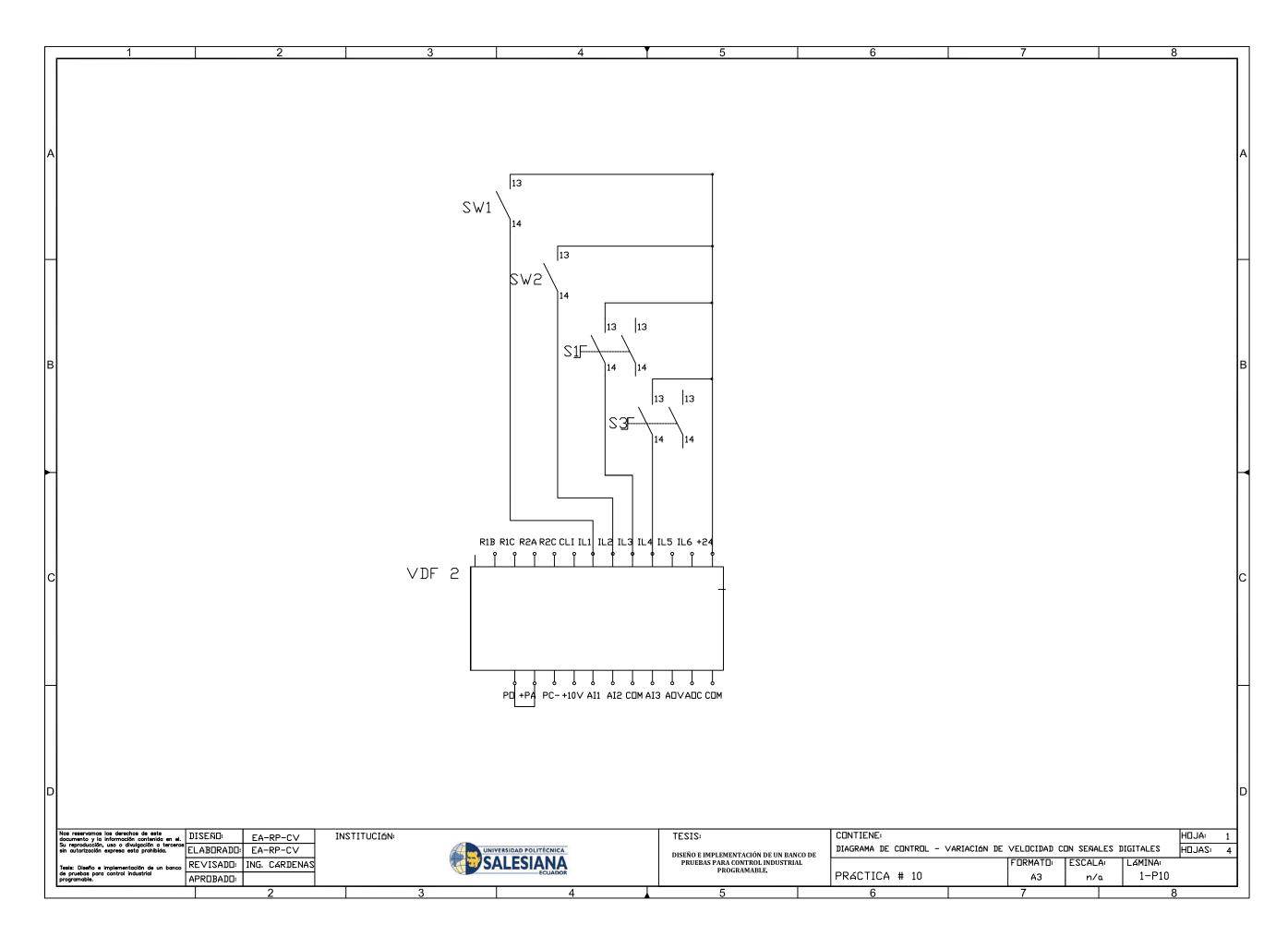
BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

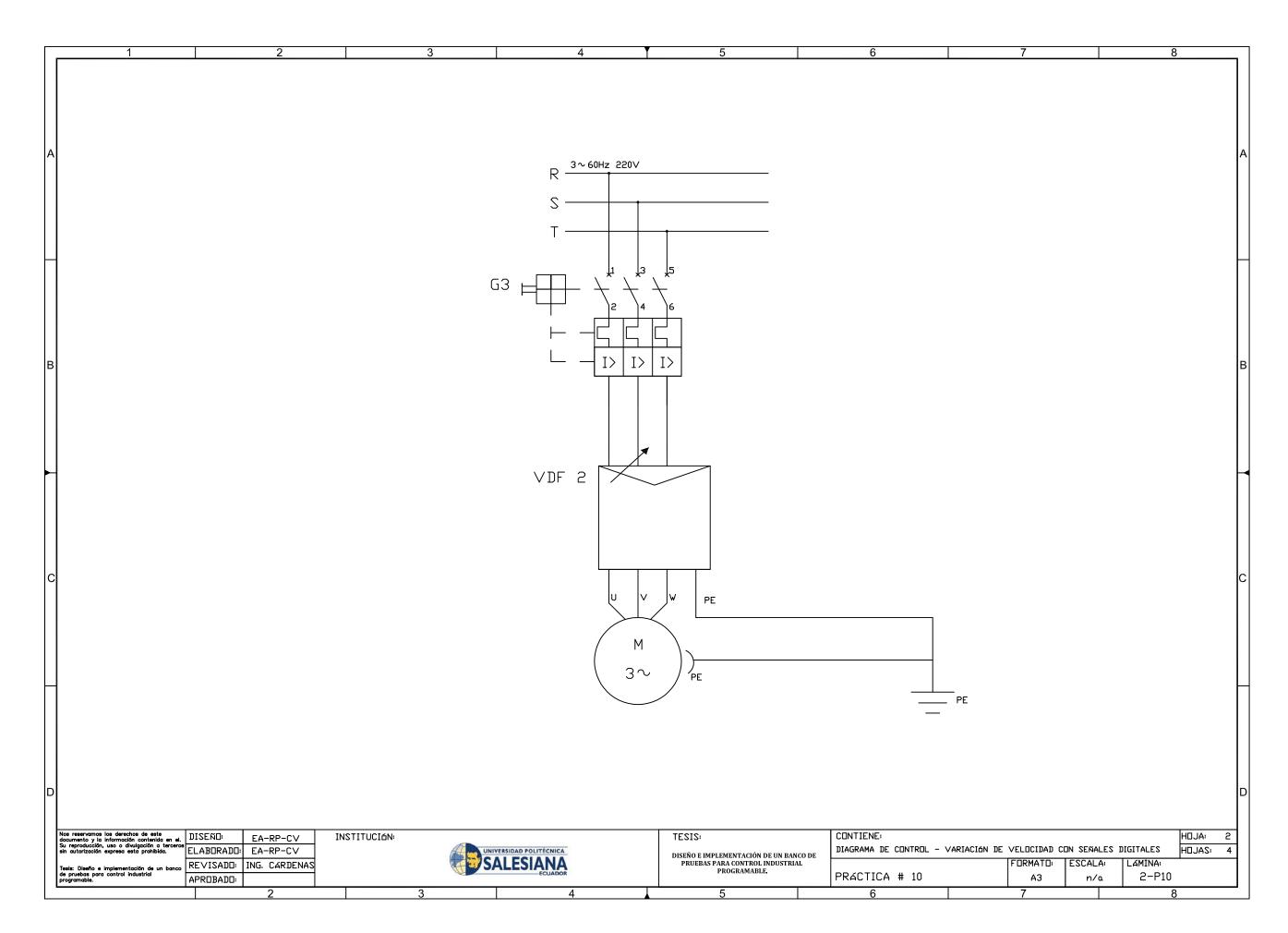
PRUEBA SIN CARGA - SENTIDO DE GIRO ANTIHORARIO V 1 (V) V 2 (V) V 3 (V) II (A) I2 (A) I3 (A) P (W) Q (VAR) S (VA) FP V U-V (V) V V-W (V) V V-W (V) IU(A) IV (A) FRECUENCIA (HZ)	ONES	OBSERVACIO	VALORES MEDIDOS	ARIABLE	V.
V 2 (V) V 3 (V) II (A)		NTIHORARIO	IDO DE GIRO A	A SIN CARGA - SENT	PRUEB
ENTRADA (PM 700) ENTRADA (PM 700) I2 (A) I3 (A) P (W) Q (VAR) S (VA) FP V U-V (V) V V-W (V) V V-W (V) IU(A) IV (A) IW (A) FRECUENCIA				V 1 (V)	
ENTRADA (PM 700) I1 (A) I2 (A) I3 (A) P (W) Q (VAR) S (VA) FP V U-V (V) V V-W (V) V V-W (V) IU(A) IV (A) IW (A) FRECUENCIA				V 2 (V)	
ENTRADA (PM 700) I2 (A) I3 (A) P (W) Q (VAR) S (VA) FP V U-V (V) V V-W (V) V V-W (V) IU(A) IV (A) IW (A) FRECUENCIA				V 3 (V)	
Table Tabl				I1 (A)	
IS (A) P (W) Q (VAR) S (VA) FP V U-V (V) V V-W (V) V V-W (V) IU(A) IV (A) IW (A) FRECUENCIA FRECUENCIA				I2 (A)	
Q (VAR) S (VA) FP V U-V (V) V V-W (V) V W-U (V) IU(A) IV (A) IW (A) FRECUENCIA				I3 (A)	(PM 700)
S (VA) FP				P (W)	
FP				Q (VAR)	
V U-V (V) V V-W (V) V V-W (V) V W-U (V)				S (VA)	
SALIDA (FLUKE) V V-W (V) V W-U (V) IU(A) IV (A) IW (A) FRECUENCIA				FP	
SALIDA (FLUKE) V W-U (V)				V U-V (V)	
IU(A) IV (A) IW (A) FRECUENCIA				V V-W (V)	
IV (A) IW (A) FRECUENCIA				V W-U (V)	
IW (A) FRECUENCIA				IU(A)	(FLUKE)
FRECUENCIA				IV (A)	
				IW (A)	
(HZ)					
				(HZ)	VDF (SUP)
I (A)					

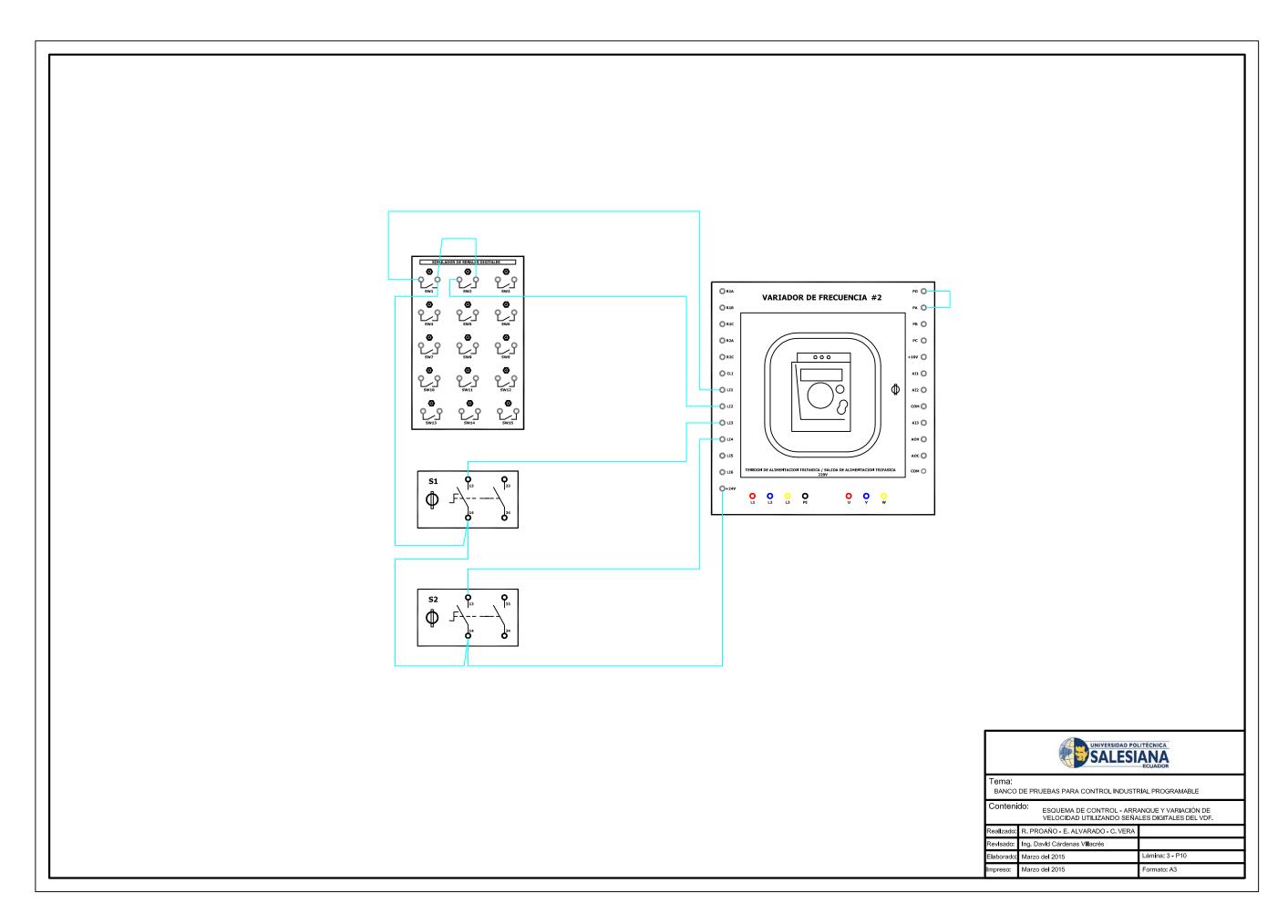
INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 10 TABLA Nº3 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA MOTOR ELÉCTRICO TRIFÁSICO UTILIZANDO SEÑALES 16/03/15 DIGITALES, EN LA MODALIDAD DE SISTEMA DE CONTROL REMOTO DEL VARIADOR DE FRECUENCIA.

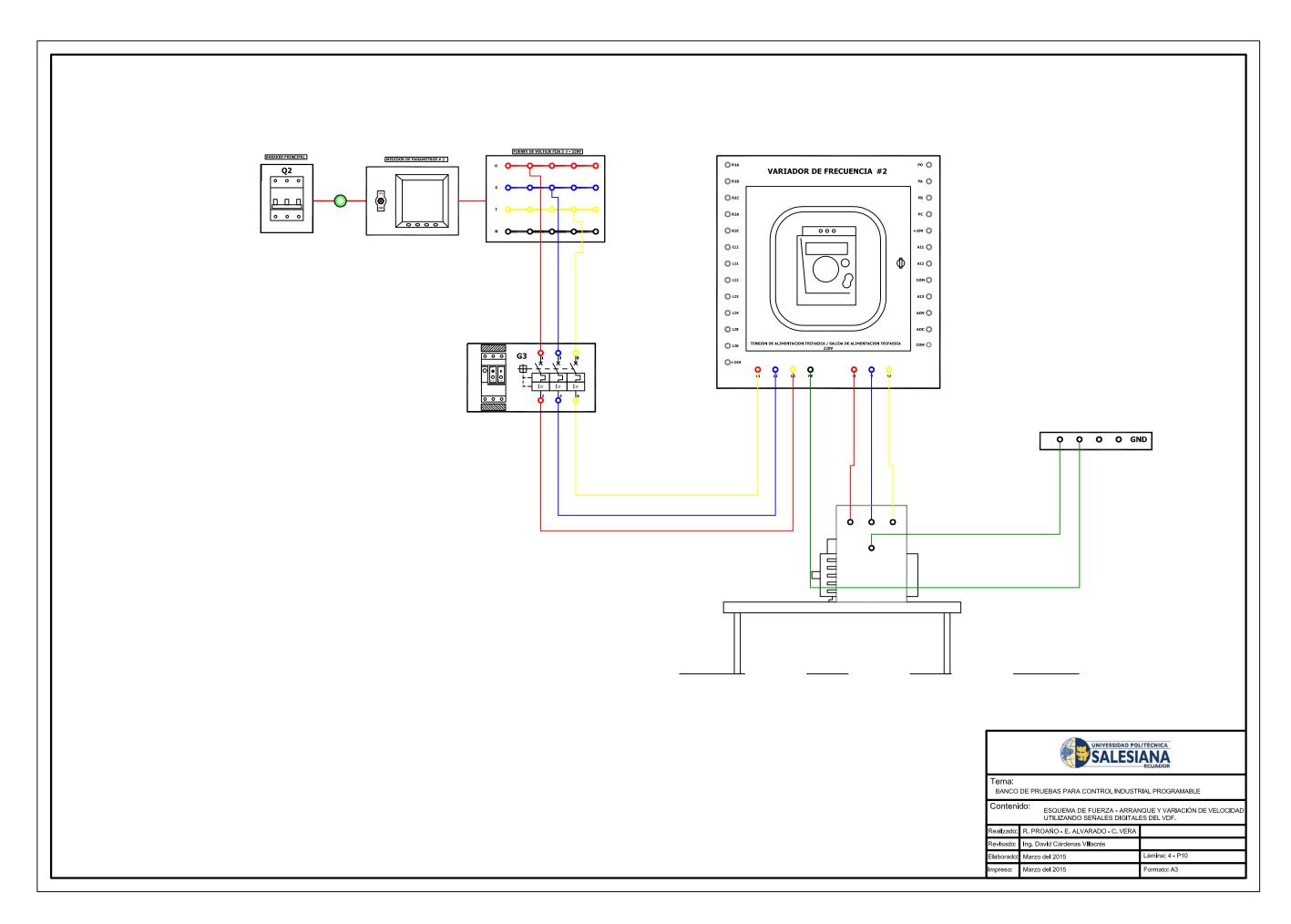
ELEMENTOS:

BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE


VAR	RIABLE	VALORES MEDIDOS	OBSERVACIONES
PRUI	EBA CON CARGA	- SENTIDO DE GII	RO HORARIO
	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P (W)		
	Q (VAR)		
	S (VA)		
	FP		
	V U-V (V)		
	V V-W (V)		
SALIDA	V W-U (V)		
(FLUKE)	IU(A)		
	IV (A)		
	IW (A)		
VDF (SUP)	FRECUENCIA (HZ)		
	VELOCIDAD (RPM)		
	I (A)		


INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 10 TABLA Nº4 ARRANQUE Y VARIACIÓN DE VELOCIDAD, PARA MOTOR ELÉCTRICO TRIFÁSICO UTILIZANDO SEÑALES 16/03/15 DIGITALES, EN LA MODALIDAD DE SISTEMA DE CONTROL REMOTO DEL VARIADOR DE FRECUENCIA.


ELEMENTOS:


BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

VA	RIABLE	VALORES MEDIDOS	OBSERVACIONES
PRUEBA	CON CARGA - SE	NTIDO DE GIRO A	NTI HORARIO
	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P (W)		
	Q (VAR)		
	S (VA)		
	FP		
	V U-V (V)		
	V V-W (V)		
SALIDA	V W-U (V)		
(FLUKE)	IU(A)		
	IV (A)		
	IW (A)		
	FRECUENCIA (HZ)		
VDF (SUP)	VELOCIDAD (RPM)		
	I (A)		

4.12 PRÁCTICA NO. 11: ARRANQUE CON VARIADOR DE FRECUENCIA PARA MOTOR ELÉCTRICO TRIFÁSICO, ENSAYANDO UN SISTEMA PARA CONTROL DE CIERRE Y APERTURA DE PUERTA AUTOMÁTICA A TRAVÉS DEL PROCESO DE SEÑALES DIGITALES CON LOGO.

4.12.1 DATOS INFORMATIVOS

- MATERIA: Laboratorio de Instalaciones Eléctricas.
- PRÁCTICA Nº 11
- NÚMERO DE ESTUDIANTES: 20
- NOMBRE DOCENTE:
- TIEMPO ESTIMADO: 2 horas

4.12.2 DATOS DE LA PRÁCTICA

• **TEMA:** Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema para control de cierre y apertura de puerta automática a través del proceso de señales digitales con LOGO.

• OBJETIVO GENERAL:

Utilizar el variador de frecuencia con alimentación 3F y carga 3F en conjunto con el logo para realizar el cierre y apertura de una puerta de garaje en modo manual y automatico.

• OBJETIVOS ESPECÍFICOS:

Diseñar los esquemas de fuerza y control para desarrollo de apertura, cierre en modo manual y automático para una puerta de garaje en el variador de frecuencia en configuración local en conjunto con el logo.

Conocer cómo utilizar y programar el logo.

Conocer cómo programar y parametrizar un variador de frecuencia para la simulación de la práctica solicitada.

Visualizar los parámetros de supervisión en el variador de frecuencia.

Identificar los elementos del banco de pruebas que se usarán para elaborar la práctica.

Desarrollar la práctica en el banco de pruebas.

Comprender el comportamiento y funcionamiento de un variador de frecuencia.

MARCO TEÓRICO

Funcionamiento de cada elemento y equipo del banco de pruebas.

Normas de seguridad para uso del banco de pruebas.

Normas de seguridad dentro del laboratorio.

Formatos para registro de valores experimentales.

Formatos para elaborar y presentar informes de laboratorio.

PROCEDIMIENTO

Revisar los manuales de instalación y programación para variadores Altivar 312 de Schneider Electric.

Revisar el manual del logo de Siemens.

Realizar los esquemas de fuerza y control para alimentación del variador y logo.

Verificar los elementos del banco de pruebas a utilizar para la práctica.

Realizar y verificar las conexiones de elementos y equipos en el banco de pruebas para elaborar la práctica utilizando los esquemas de fuerza y control.

Conectar, energizar el banco de pruebas, verificar voltajes y alimentar los esquemas de fuerza y control cableados.

Realizar la programación del logo de acuerdo a lo solicitado en la práctica para operar con el variador de frecuencia.

Tomando en cuenta que el variador de frecuencia se encuentra en un banco de pruebas para alumnos y se realizan prácticas en él, antes de iniciar cualquier parametrización o práctica con el variador es recomendable colocar los parámetros de este a su configuración de fábrica inicial y así evitar conflictos con la nueva parametrización que se realice en cada práctica.

Realizar los ajustes de parámetros necesarios en el variador para desarrollar la práctica en conjunto con el logo.

Tomar los datos de las mediciones correspondientes a la práctica utilizando el medidor de parámetros del banco para alimentación de entrada, utilizar un equipo de medición externa para mediciones de salida del variador y colocando en modo supervisión tomar los datos de variador y completar las respectivas tablas.

Indicar las observaciones, recomendaciones y conclusiones de la práctica.

RIESGO DE DAÑOS EN EL VARIADOR:

Antes de energizar el variador de frecuencia se debe verificar que los bornes PO y PA/+ están conectados y nunca debe retirarse el enlace entre ambos.

Los tornillos del terminal PO y PA/+ deben estar totalmente apretados ya que a travez del enlace fluye un corriente alta.

Si no se siguen estas instrucciones se pueden producir daños en el equipo.

• CONDICIONES DE FUNCIONAMIENTO

Diseñar, programar, parametrizar y realizar los esquemas de control y fuerza operar una puerta de garaje en modo manual o automático utilizando un logo, un variador de frecuencia alimentación trifásica y salida para carga trifásica en configuración local con las siguientes condiciones:

Se puede seleccionar el modo manual o automático.

En modo manual:

Al presionar el pulsante de cierre, la puerta comienza a operar hasta que se deje de

presionar el pulsante o hasta que llegue al final de cierre activando un final de

carrera.

Al presionar el pulsante de apertura, la puerta comienza a operar hasta que se deje de

presionar el pulsante o hasta que llegue al final de apertura activando un final de

carrera.

En modo automático:

Al presionar el pulsante de cierre, el motor opera y cierra la puerta, se detiene al

llegar al final de cierre al activar el final de carrera.

Al presionar el pulsante de apertura, la puerta opera y abre la puerta, se detiene al

llegar al final de apertura al activar el final de carrera.

Se cuenta con un sensor de movimiento el cual al detectar la presencia de alguna

persona detiene el funcionamiento de la puerta para no ocasionar accidentes.

Considerando que no se cuenta con finales de carrera ni sensores de movimiento,

estas señales se las simulará con selectores o switchs del banco.

La velocidad para la apertura y cierre se la podrá manipular únicamente con la rueda

del variador de frecuencia.

Se debe trabajar con el motor trifásico con freno mecánico regulable para realizar la

práctica sin carga.

Se debe proteger al variador con un guardamotor.

RECURSOS

Banco de prueba para control industrial programable

Equipos de medición para: tensión, corriente, potencias, fp (factor de potencia)

257

Formatos para registro de valores experimentales y resultados.

Motor trifásico con freno mecánico regulable.

Cables de laboratorio.

• REGISTRO DE RESULTADOS

TABLA Nº1 Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema, para control de cierre y apertura de puerta automática través del proceso de señales digitales con logo.

• Prueba sin carga- Apertura de la puerta

TABLA Nº2 Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema, para control de cierre y apertura de puerta automática través del proceso de señales digitales con logo.

• Prueba sin carga- Cierre de la puerta

Cuestionario de preguntas.

Observaciones, comentarios, conclusiones.

ANEXOS

Programa LOGO. (Lámina 2-P11, pág. 263).

Diagrama del circuito de control. (Lámina 3-P11, pág. 264).

Diagrama del circuito de fuerza. (Lámina 4-P11, pág. 265).

Diagrama de conexiones del banco de pruebas para control industrial programable. (Págs. 266, 267).

Tablas para mediciones y resultados.

• CRONOGRAMA/CALENDARIO

De acuerdo con la planificación del docente.

CUESTIONARIO

¿Qué ventajas tiene trabajar en configuración local y remoto?

¿Qué significa consigna y estatus?

¿Se puede modificar que la entrada lógica para marcha adelante en el variador sea diferente de IL1, explicar por qué?

En caso de no necesitar la inversión de giro indique como desactivar la reversa en el variador para no usar esta función.

Indicar como restaurar todos los parámetros del variador a los ajustes iniciales de fábrica.

OTROS

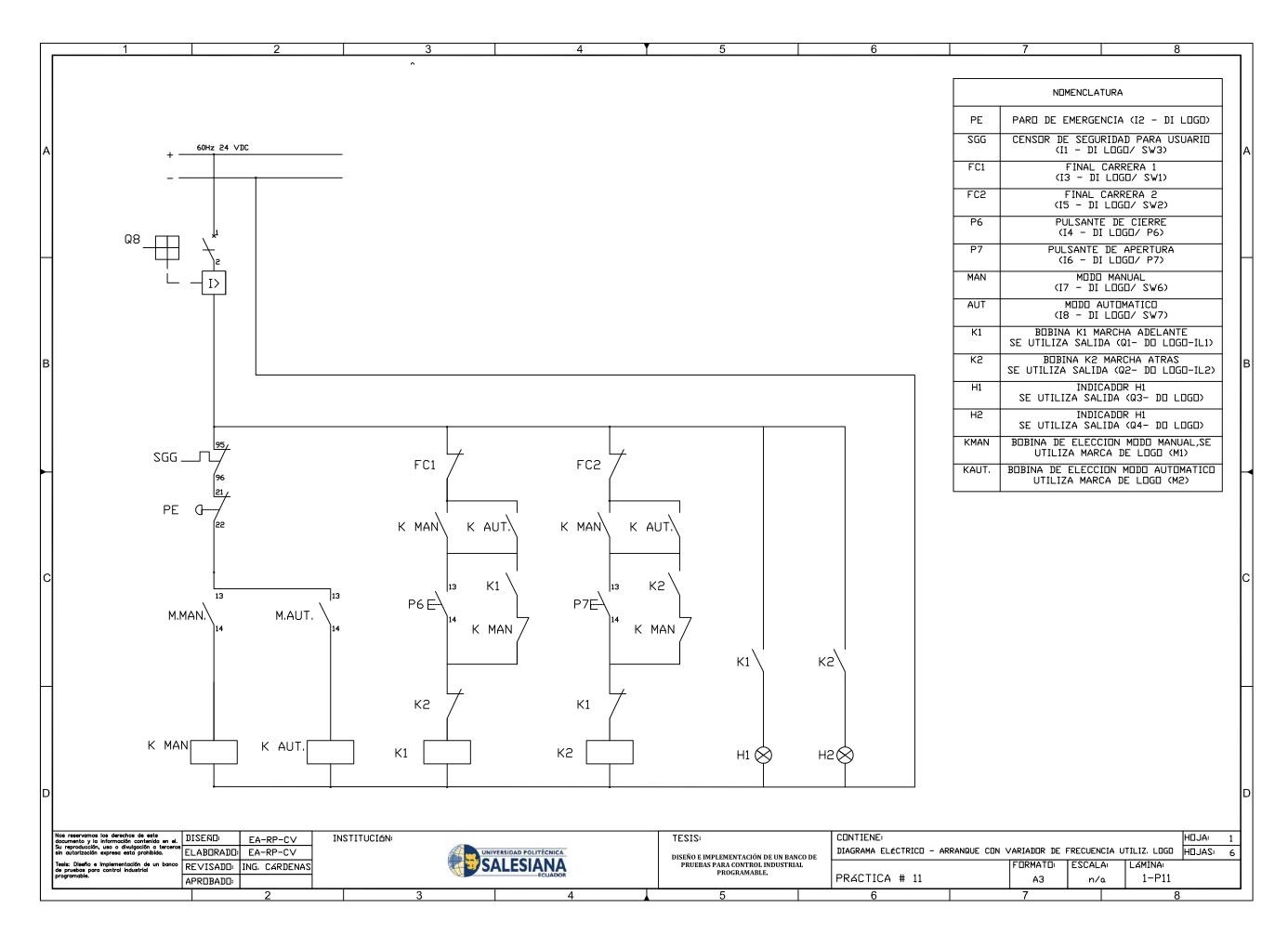
Proyecto:

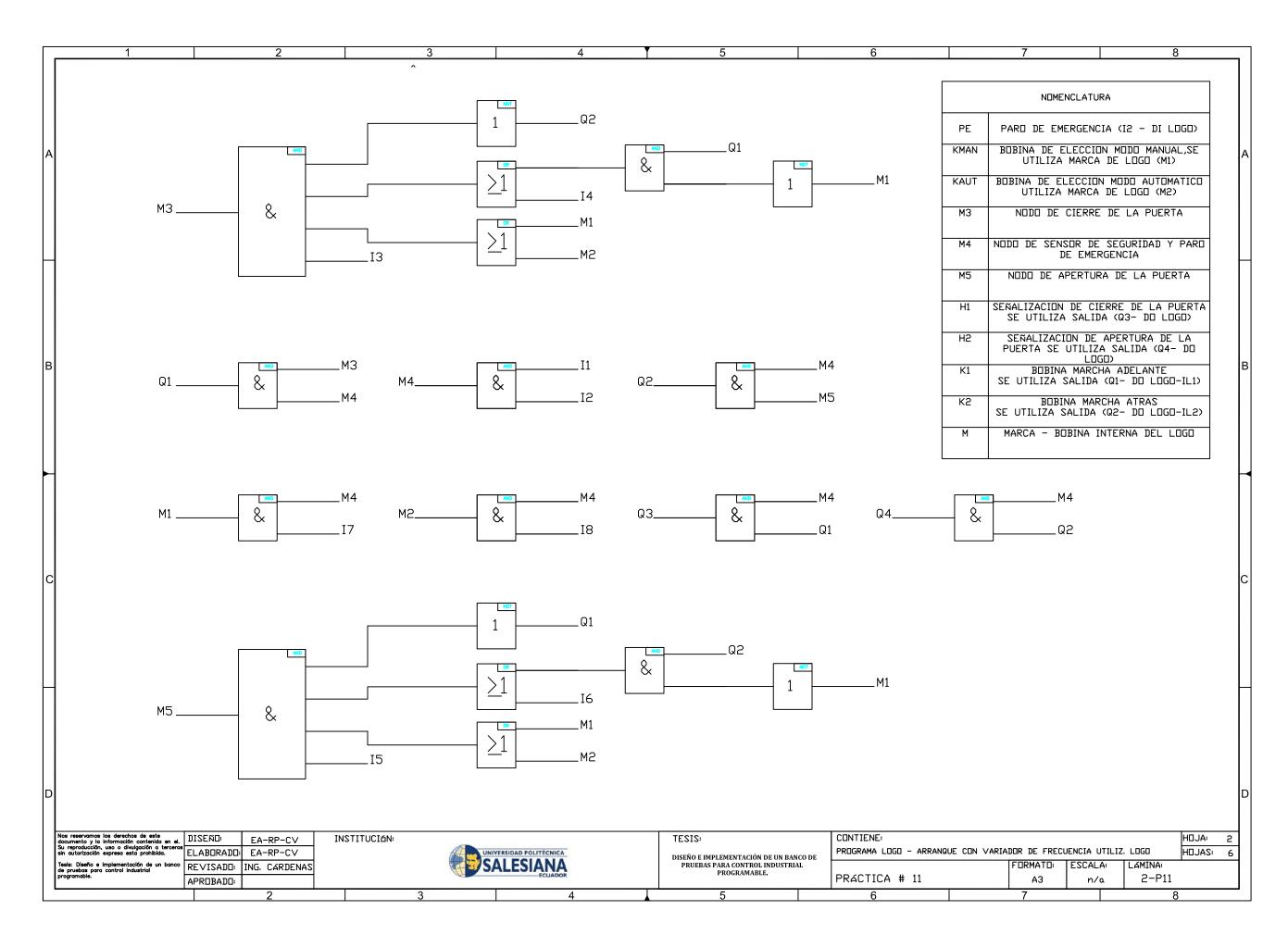
Evaluar y cotizar la instalación de un variador y logo para apertura y cierre de una puerta de garaje en modo manual y automático.

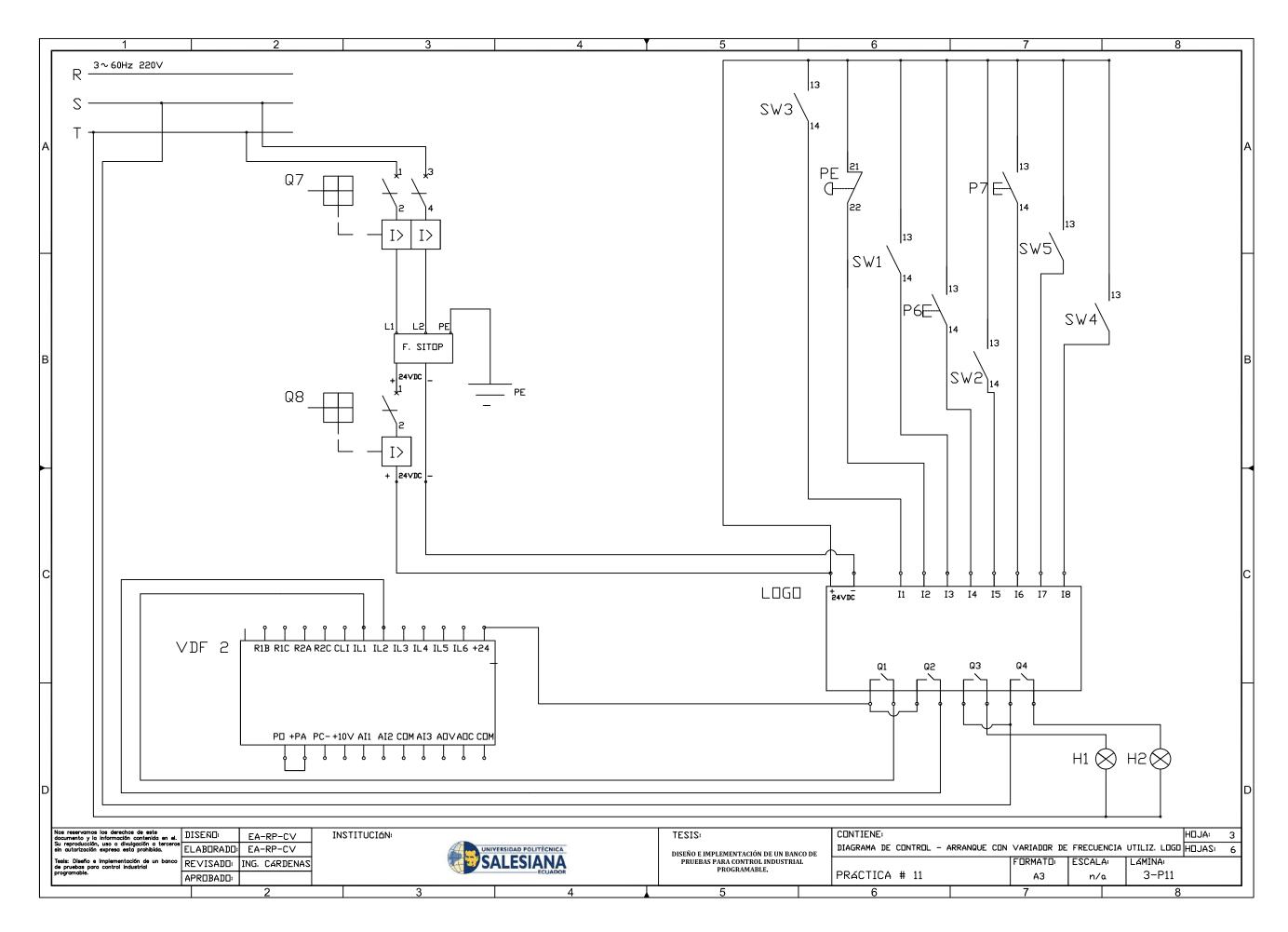
INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 11 TABLA Nº1 ARRANQUE CON VARIADOR DE FRECUENCIA FECHA: PARA MOTOR ELÉCTRICO TRIFÁSICO, ENSAYANDO UN 16/03/15 SISTEMA, PARA CONTROL DE CIERRE Y APERTURA DE PUERTA AUTOMÁTICA A TRAVÉS DEL PROCESO DE SEÑALES DIGITALES CON LOGO.

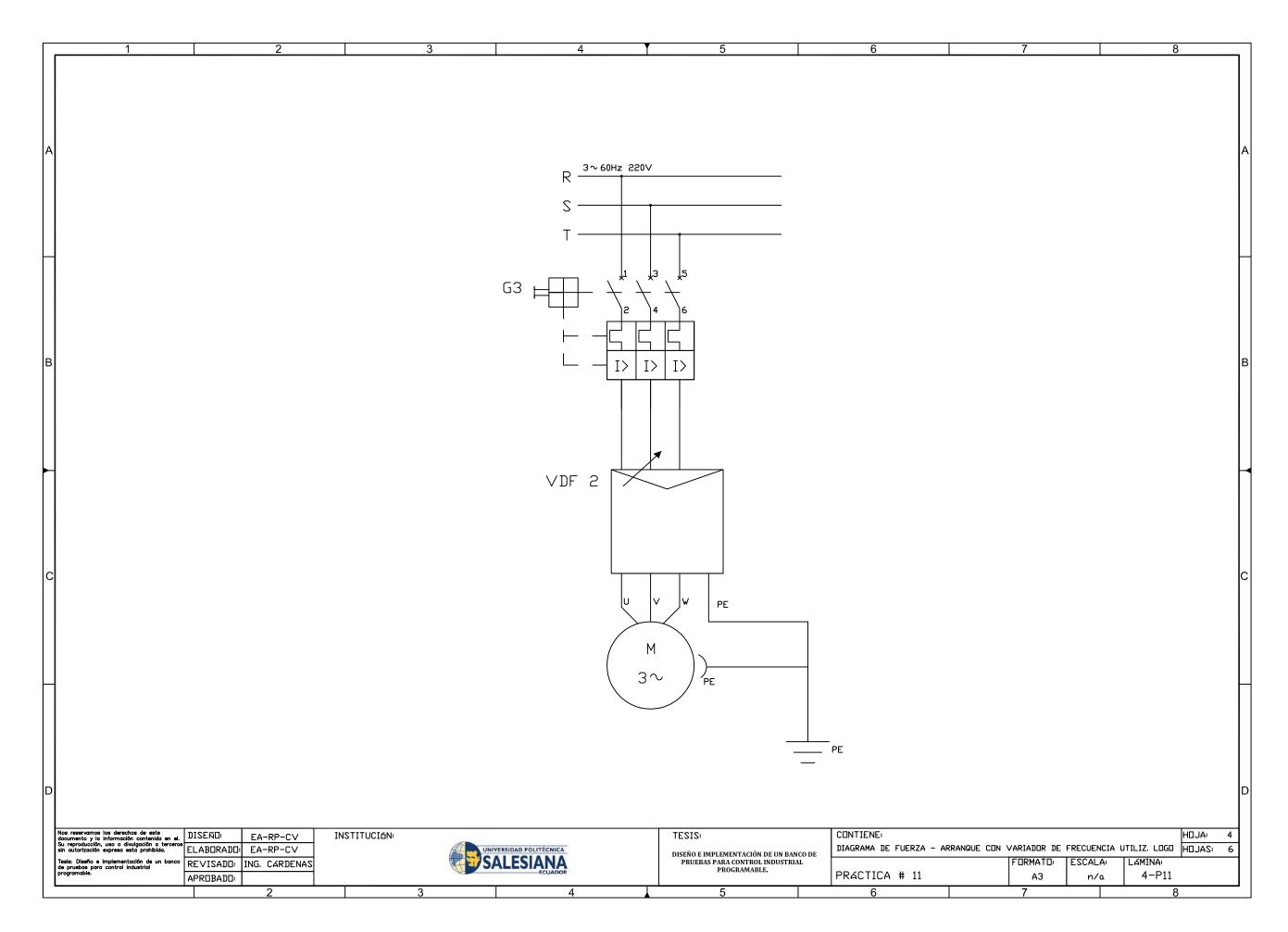
ELEMENTOS:

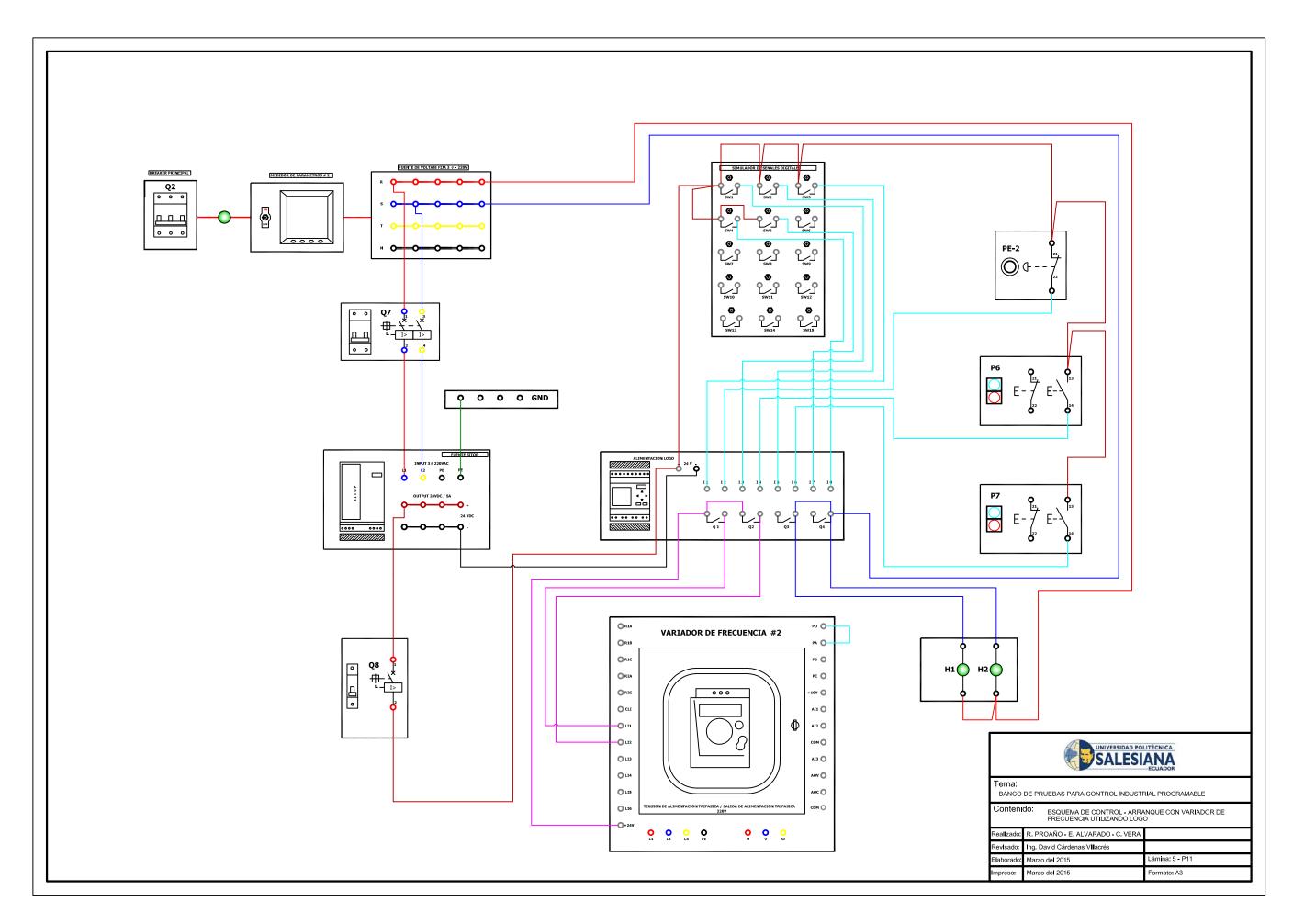
BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

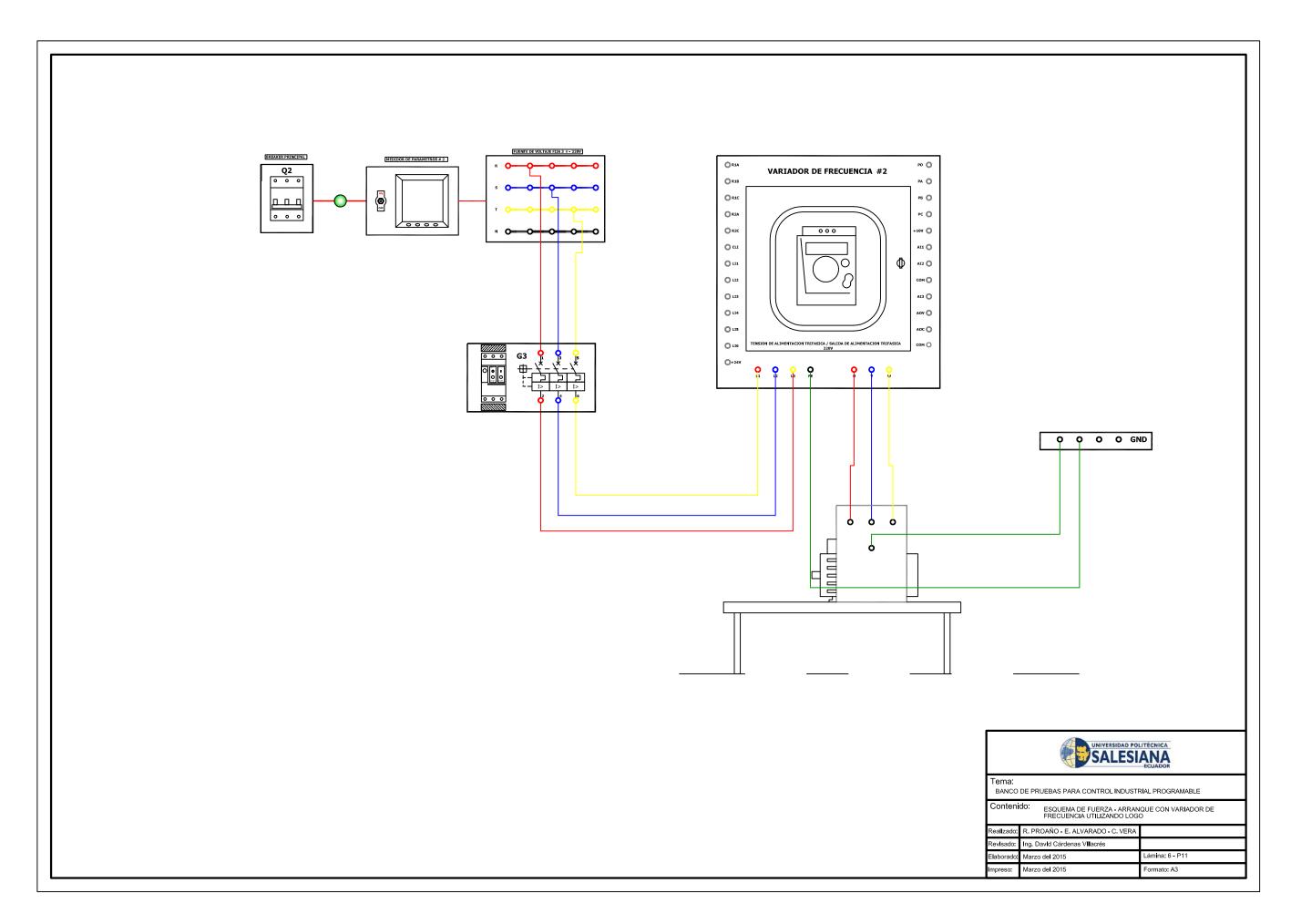

VA	ARIABLE	VALORES MEDIDOS	OBSERVACIONES
P	RUEBA SIN CARGA	- APERTURA DE	PUERTA
	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P(W)		
	Q (VAR)		
	S (VA)		
	FP		
	V U-V (V)		
	V V-W (V)		
SALIDA	V W-U (V)		
(FLUKE)	IU(A)		
	IV (A)		
	IW (A)		
	FRECUENCIA (HZ)		
VDF	VELOCIDAD (RPM)		
(SUP)	I(A)		


INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE INSTALACIONES ELÉCTRICAS REGISTRO DE PRUEBA Nº1 PRÁCTICA # 11 TABLA Nº2 ARRANQUE CON VARIADOR DE FRECUENCIA FECHA: PARA MOTOR ELÉCTRICO TRIFÁSICO, ENSAYANDO UN SISTEMA, PARA CONTROL DE CIERRE Y APERTURA DE PUERTA AUTOMÁTICA A TRAVÉS DEL PROCESO DE SEÑALES DIGITALES CON LOGO.


ELEMENTOS:


BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE


VA	ARIABLE	VALORES MEDIDOS	OBSERVACIONES
	PRUEBA SIN CARG	A - CIERRE DE P	UERTA
	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P (W)		
	Q (VAR)		
	S (VA)		
	FP		
	V U-V (V)		
	V V-W (V)		
SALIDA	V W-U (V)		
(FLUKE)	IU(A)		
	IV (A)		
	IW (A)		
VDF (SUP)	FRECUENCIA (HZ)		
	VELOCIDAD (RPM)		
	I(A)		



4.13 PRÁCTICA NO. 12: ARRANQUE CON VARIADOR DE FRECUENCIA PARA MOTOR ELÉCTRICO TRIFÁSICO, ENSAYANDO UN SISTEMA PARA VENTILACIÓN FORZADA VARIABLE CON CONTROL DE TEMPERATURA A TRAVÉS DEL PROCESO DE SEÑALES DIGITALES CON PLC.

4.13.1 DATOS INFORMATIVOS

- MATERIA: Laboratorio de Instalaciones Eléctricas.
- PRÁCTICA Nº 12
- NÚMERO DE ESTUDIANTES: 20
- NOMBRE DOCENTE:
- TIEMPO ESTIMADO: 2 horas

4.13.2 DATOS DE LA PRÁCTICA

 TEMA: Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema para ventilación forzada variable con control de temperatura a través del proceso de señales digitales con PLC.

• OBJETIVO GENERAL:

Utilizar el variador de frecuencia con alimentación 3F y carga 3F en conjunto con el PLC para realizar un sistema de ventilación forzada variable.

• OBJETIVOS ESPECÍFICOS:

Diseñar los esquemas de fuerza y control para un sistema de ventilación forzada variable con control de temperatura a través de señales digitales utilizando las velocidades preseleccionadas del variador en configuración remota trabajando en conjunto con el PLC.

Conocer cómo utilizar y programar el PLC.

Conocer cómo programar y parametrizar un variador de frecuencia para la simulación de la práctica solicitada.

Visualizar los parámetros de supervisión en el variador de frecuencia.

Visualizar el parámetro de frecuencia de la salida analógica de 0 a 10V del variador en el PLC.

Identificar los elementos del banco de pruebas que se usarán para elaborar la práctica.

Desarrollar la práctica en el banco de pruebas.

Comprender el comportamiento y funcionamiento de un variador de frecuencia.

• MARCO TEÓRICO

Funcionamiento de cada elemento y equipo del banco de pruebas.

Normas de seguridad para uso del banco de pruebas.

Normas de seguridad dentro del laboratorio.

Formatos para registro de valores experimentales.

Formatos para elaborar y presentar informes de laboratorio.

PROCEDIMIENTO

Revisar los manuales de instalación y programación para variadores Altivar 312 de Schneider Electric.

Revisar el manual del PLC de Siemens.

Realizar los esquemas de fuerza y control para alimentación del variador y PLC.

Verificar los elementos del banco de pruebas a utilizar para la práctica.

Realizar y verificar las conexiones de elementos y equipos en el banco de pruebas para elaborar la práctica utilizando los esquemas de fuerza y control.

Conectar, energizar el banco de pruebas, verificar voltajes y alimentar los esquemas de fuerza y control cableados.

Realizar la programación del PLC de acuerdo a lo solicitado en la práctica para operar con el variador de frecuencia.

Tomando en cuenta que el variador de frecuencia se encuentra en un banco de pruebas para alumnos y se realizan prácticas en él, antes de iniciar cualquier parametrización o práctica con el variador es recomendable colocar los parámetros de este a su configuración de fábrica inicial y así evitar conflictos con la nueva parametrización que se realice en cada práctica.

Realizar los ajustes de parámetros necesarios en el variador para desarrollar la práctica en conjunto con el PLC.

Tomar los datos de las mediciones correspondientes a la práctica utilizando el medidor de parámetros del banco para alimentación de entrada, utilizar un equipo de medición externa para mediciones de salida del variador y colocando en modo supervisión tomar los datos de variador y completar las respectivas tablas.

Indicar las observaciones, recomendaciones y conclusiones de la práctica.

RIESGO DE DAÑOS EN EL VARIADOR:

Antes de energizar el variador de frecuencia se debe verificar que los bornes PO y PA/+ están conectados y nunca debe retirarse el enlace entre ambos.

Los tornillos del terminal PO y PA/+ deben estar totalmente apretados ya que a travez del enlace fluye un corriente alta.

Si no se siguen estas instrucciones se pueden producir daños en el equipo.

• CONDICIONES DE FUNCIONAMIENTO

Diseñar, programar, parametrizar y realizar los esquemas de control y fuerza para operar un sistema de ventilación forzada con control de temperatura a través de señales digitales que puede trabajar en modo manual o automático utilizando un

PLC, un variador de frecuencia alimentación trifásica y salida para carga trifásica en configuración remota, cableado de 2 hilos y aplicando el uso de sus velocidades preseleccionadas tomando en cuenta las siguientes condiciones:

Se puede seleccionar el modo manual o automático.

En modo automático:

Al presionar el pulsante de marcha, si la temperatura es menor igual a 30°C el ventilador enciende a una frecuencia de 15 hz, cuando existe un incremento en la temperatura y esta es mayor a 30°C el ventilador incrementa su velocidad y trabaja a 30hz, cuando la temperatura es mayor a 45°C el ventilador incrementa su velocidad y trabaja a 45 hz, en el momento de tener una temperatura de 60°C el ventilador incrementa su velocidad al máximo y trabaja a su frecuencia nominal de 60hz.

Se cuenta con un sensor de temperatura el cual al detectar cada temperatura envía una señal digital al PLC para controlar la velocidad del ventilador.

Considerando que no se cuenta con sensores ni controladores de temperatura, estas señales se las simulará con los switchs del banco.

En modo manual:

Al presionar el pulsante de marcha, el ventilador enciende y realiza su rampa de aceleración hasta llegar a su máxima velocidad y trabaja a 60hz. En el modo manual no se toma en cuenta la temperatura.

Al presionar el pulsante de paro el ventilador se detiene.

Se debe trabajar con el motor trifásico con freno mecánico regulable para realizar la práctica sin carga.

Se debe proteger al variador con un guardamotor.

RECURSOS

Banco de prueba para control industrial programable

Equipos de medición para: tensión, corriente, potencias, fp (factor de potencia)

Formatos para registro de valores experimentales y resultados.

Motor trifásico con freno mecánico regulable.

Cables de laboratorio.

REGISTRO DE RESULTADOS

TABLA Nº1 Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema para ventilación forzada variable con control de temperatura a través del proceso de señales digitales con PLC.

Prueba sin carga - sentido de giro horario – Modo Manual

TABLA Nº2 Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema para ventilación forzada variable con control de temperatura a través del proceso de señales digitales con PLC.

 Prueba sin carga - sentido de giro horario - Modo Automático -Velocidad 1- 15hz

TABLA Nº3 Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema para ventilación forzada variable con control de temperatura a través del proceso de señales digitales con PLC.

 Prueba sin carga - sentido de giro horario - Modo Automático -Velocidad 2- 30hz **TABLA Nº4** Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema para ventilación forzada variable con control de temperatura a través del proceso de señales digitales con PLC.

 Prueba sin carga - sentido de giro horario - Modo Automático -Velocidad 3- 45hz

TABLA Nº5 Arranque con variador de frecuencia para motor eléctrico trifásico, ensayando un sistema para ventilación forzada variable con control de temperatura a través del proceso de señales digitales con PLC.

 Prueba sin carga - sentido de giro horario - Modo Automático -Velocidad 4- 60hz

Cuestionario de preguntas.

Observaciones, comentarios, conclusiones.

ANEXOS

Programa PLC. (Pág. 280 - 282).

Diagrama del circuito de control. (Lámina 1-P12, pág. 283).

Diagrama del circuito de fuerza. (Lámina 2-P12, pág. 284).

Diagrama de conexiones del banco de pruebas para control industrial programable. (Págs. 285, 286).

Tablas para mediciones y resultados.

CRONOGRAMA/CALENDARIO

De acuerdo con la planificación del docente.

• CUESTIONARIO

¿Qué es un controlador lógico programable?

Indicar cuantas entradas y salidas digitales tiene el PLC del banco de pruebas ¿Cuál es el nivel de voltaje que pueden recibir las entradas analógicas del PLC?

• OTROS

Proyecto:

Evaluar y cotizar la instalación de un variador y PLC para operar un sistema de ventilación forzada variable con control de temperatura que pueda trabajar en modo manual y automático.

Tabla 69 Práctica #12 prueba sin carga - sentido de giro horario

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE			
INSTALACIONES ELÉCTRICAS			
REGISTRO DE PRUEBA Nº1			
PRÁCTICA # 12			
TABLA N°1 ARRANQUE CON VARIADOR DE FRECUENCIA			
PARA MOTOR ELÉCTRICO TRIFÁSICO, ENSAYANDO UN	16/03/15		
SISTEMA PARA VENTILACIÓN FORZADA VARIABLE CON			
CONTROL DE TEMPERATURA A TRAVÉS DEL PROCESO DE			
SEÑALES DIGITALES CON PLC.			
ELEMENTOS.			

ELEMENTOS:

BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

VARIABLE		VALORES MEDIDOS	OBSERVACIONES
PR	PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO		
		NUAL: MODO	LOCAL
	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P (W)		
	Q (VAR)		
	S (VA)		
	FP		
	V U-V (V)		
SALIDA (FLUKE)	V V-W (V)		
	V W-U (V)		
	IU(A)		
	IV (A)		
	IW (A)		
VDF (SUP)	FRECUENCIA (HZ)		
	VELOCIDAD (RPM)		
	I (A)		

Tabla 70 Práctica #12 prueba sin carga - sentido de giro horario 15 Hz

1 6			
INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE			
INSTALACIONES ELÉCTRICAS			
REGISTRO DE PRUEBA Nº1			
PRÁCTICA # 12			
TABLA N°2 ARRANQUE CON VARIADOR DE FRECUENCIA			
PARA MOTOR ELÉCTRICO TRIFÁSICO, ENSAYANDO UN	16/03/15		
SISTEMA PARA VENTILACIÓN FORZADA VARIABLE CON			
CONTROL DE TEMPERATURA A TRAVÉS DEL PROCESO DE			
SEÑALES DIGITALES CON PLC.			
ELEMENTOS:			
BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMA	BLE Y		
,			

MOTOR TRIFÁSICO CON FRENO REGULABLE

VARIABLE		VALORES MEDIDOS	OBSERVACIONES	
	PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO			
MODO		VELOCIDAD 1	I - FRECUENCIA 15 HZ	
	V 1 (V)			
	V 2 (V)			
	V 3 (V)			
	I1 (A)			
ENTRADA	I2 (A)			
(PM 700)	I3 (A)			
	P(W)			
	Q (VAR)			
	S (VA)			
	FP			
	VU-V(V)			
	V V-W (V)			
SALIDA	V W-U (V)			
(FLUKE)	IU(A)			
	IV (A)			
	IW (A)			
VDF (SUP)	FRECUENCIA			
	(HZ)			
	VELOCIDAD (RPM)			
	I (A)			

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE			
INSTALACIONES ELÉCTRICAS			
REGISTRO DE PRUEBA Nº1			
PRÁCTICA # 12			
TABLA Nº3 ARRANQUE CON VARIADOR DE FRECUENCIA			
PARA MOTOR ELÉCTRICO TRIFÁSICO, ENSAYANDO UN	16/03/15		
SISTEMA PARA VENTILACIÓN FORZADA VARIABLE CON			
CONTROL DE TEMPERATURA A TRAVÉS DEL PROCESO DE			
SEÑALES DIGITALES CON PLC.			

ELEMENTOS:

BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

V	ARIABLE	VALORES MEDIDOS	OBSERVACIONES
PRUEBA SIN CARGA - SENTIDO DE GIRO HORARIO MODO AUTOMÁTICO: VELOCIDAD 2 - FRECUENCIA 30 HZ			
MODC	V 1 (V)	LOCIDAD 2 - FR	ECUENCIA 30 HZ
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P(W)		
	Q (VAR)		
	S (VA)	_	
	FP		
	V U-V (V)		
	V V-W (V)		
SALIDA	V W-U (V)		
(FLUKE)	IU(A)	_	
	IV (A)	_	
	IW (A)		
VDF (SUP)	FRECUENCIA (HZ)		
	VELOCIDAD		
	(RPM) I (A)		
	- (11)		

Tabla 72 Práctica #12 prueba sin carga - sentido de giro horario 45 Hz

INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE			
INSTALACIONES ELÉCTRICAS			
REGISTRO DE PRUEBA Nº1			
PRÁCTICA # 12			
TABLA Nº4 ARRANQUE CON VARIADOR DE FRECUENCIA			
PARA MOTOR ELÉCTRICO TRIFÁSICO, ENSAYANDO UN	16/03/15		
SISTEMA PARA VENTILACIÓN FORZADA VARIABLE CON			
CONTROL DE TEMPERATURA A TRAVÉS DEL PROCESO DE			
SEÑALES DIGITALES CON PLC.			

ELEMENTOS:

BANCO DE PRUEBA PARA CONTROL INDUSTRIAL PROGRAMABLE Y MOTOR TRIFÁSICO CON FRENO REGULABLE

VA	ARIABLE	VALORES MEDIDOS	OBSERVACIONES
PRUEBA SIN CARGA - SI			
MODO	AUTOMÁTICO: VE	ELOCIDAD 3 - FRE	CCUENCIA 45 HZ
	V 1 (V)		
	V 2 (V)		
	V 3 (V)		
	I1 (A)		
ENTRADA	I2 (A)		
(PM 700)	I3 (A)		
	P (W)		
	Q (VAR)		
	S (VA)		
	FP		
	V U-V (V)		
	V V-W (V)		
SALIDA (FLUKE)	V W-U (V)		
	IU(A)		
	IV (A)		
	IW (A)		
	FRECUENCIA (HZ)		
VDF	VELOCIDAD (RPM)		
(SUP)	I (A)		

Tabla 73 Práctica #12 prueba sin carga - sentido de giro horario 60 Hz						
INGENIERÍA ELÉCTRICA / SEDE GUAYAQUIL / LABORATORIO DE						
INSTALACIONES ELÉCTRICAS						
REGISTRO D PRACTICA #	REGISTRO DE PRUEBA Nº1					
	ARRANQUE CON	AVDIVDOD DE	EDECLIENCIA	FECHA:		
	R ELÉCTRICO TI			16/03/15		
	RA VENTILACIÓN			10/03/13		
	TEMPERATURA A					
SEÑALES DIG	SITALES CON PLC.					
ELEMENTOS						
	RUEBA PARA CON		RIAL PROGRAN	MABLE Y		
MOTOR TRIFA	ÁSICO CON FRENC	O REGULABLE				
VAI	RIABLE	VALORES	OBSERVA	CIONES		
		MEDIDOS				
	JEBA SIN CARGA					
<u>MODO</u>	AUTOMATICO: V	/ELOCIDAD 4	- FRECUENCIA	60 HZ		
	V 1 (V)					
	V 2 (V)					
	V 3 (V)					
	I1 (A)					
ENTRADA	I2 (A)					
(PM 700)	I3 (A)					
	P (W)					
	Q (VAR)					
	S (VA)					
	FP					
	V U-V (V)					
	V V-W (V)					
SALIDA	V W-U (V)					
(FLUKE)	IU(A)					
	IV (A)					
	IW (A)					
	FRECUENCIA (HZ)					

Fuente: Los autores

VDF

(SUP)

VELOCIDAD

(RPM) I (A)

Programa PLC – Práctica #12

▼ Título del bloque: "Main Program Sweep (Cycle)"

```
    Programación de funciones y variables para sistema de ventilacion controlado por temperatura a
traves de simulador de señales digitales

       Segmento 1: Función Marcha paro del Ventilador
      La señal de falla la valida el variador, las señales de marcha y paro son de tipo pulsante
                                                                                         %M0.0
           %10.0
                               %10.2
                                                  %10.3
         "MARCHA"
                              "PARO"
                                              "FALLA SEÑAL"
                                                                                       "M MARCHA"
                                                                                          ( )-
          %M0.0
        "M MARCHA"
     Segmento 2: Función Manual / Automatico
 ▶ La señal viene dada por un solo selector quien de acuerdo a su estado define la seleccion de
       "MANUAL/
                                                                                     %M0.1
     AUTOMATICO"
                                                                                   "MANUAL"
       "MANUAL/
                                                                                     %M0.2
     AUTOMATICO"
                                                                                 "AUTOMATICO"
                                                                                     ( )-
     Segmento 3: Función de máxima velocidad en modo manual
  🕨 La marca da consigna a tres salidas al mismo tiempo que seran enviadas al variador y activar la
         %M0.0
                             %M0.1
                                                                                        %M0.4
       "M MARCHA"
                           "MANUAL"
                                                                                        "Tag_2"
     Segmento 4: Funcion de mínima velocidad en modo automático (Velocidad 1)
  ▶ Combinación minima velocidad, sin seleccion de temperatura elevada, envia señal de consigna de
         %M0.0
                             %M0.2
                                                                                        %M0.5
      "M MARCHA"
                         "AUTOMATICO"
                                                                                       "Tag_3"
                                                                                         ( )-
```

▼ Segmento 5: Funcion de Velocidad 2 a temperatura 1

▶ La señal de temperatura 2, da consigna a la primera combinacion para establecer las señales del

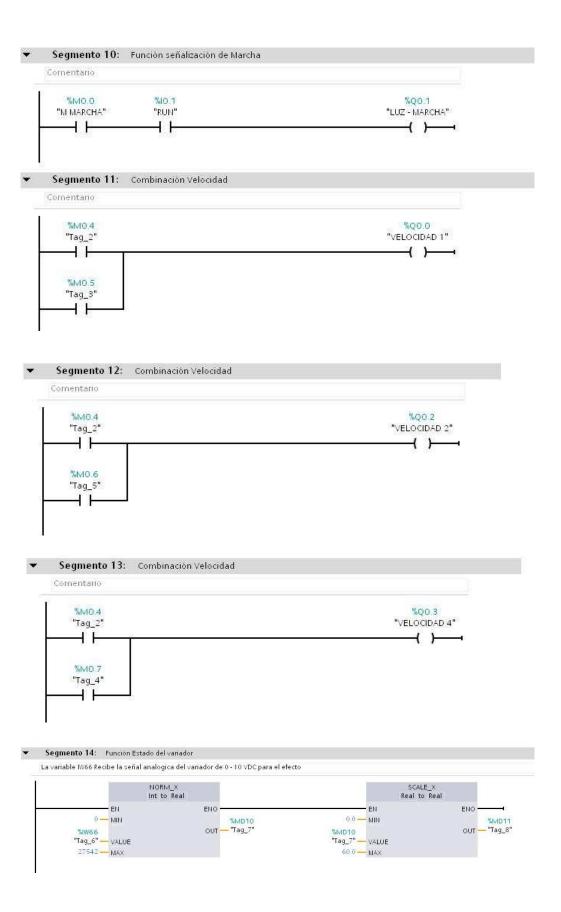
▼ Segmento 6: Funcion de Velocidad 3 a temperatura 2

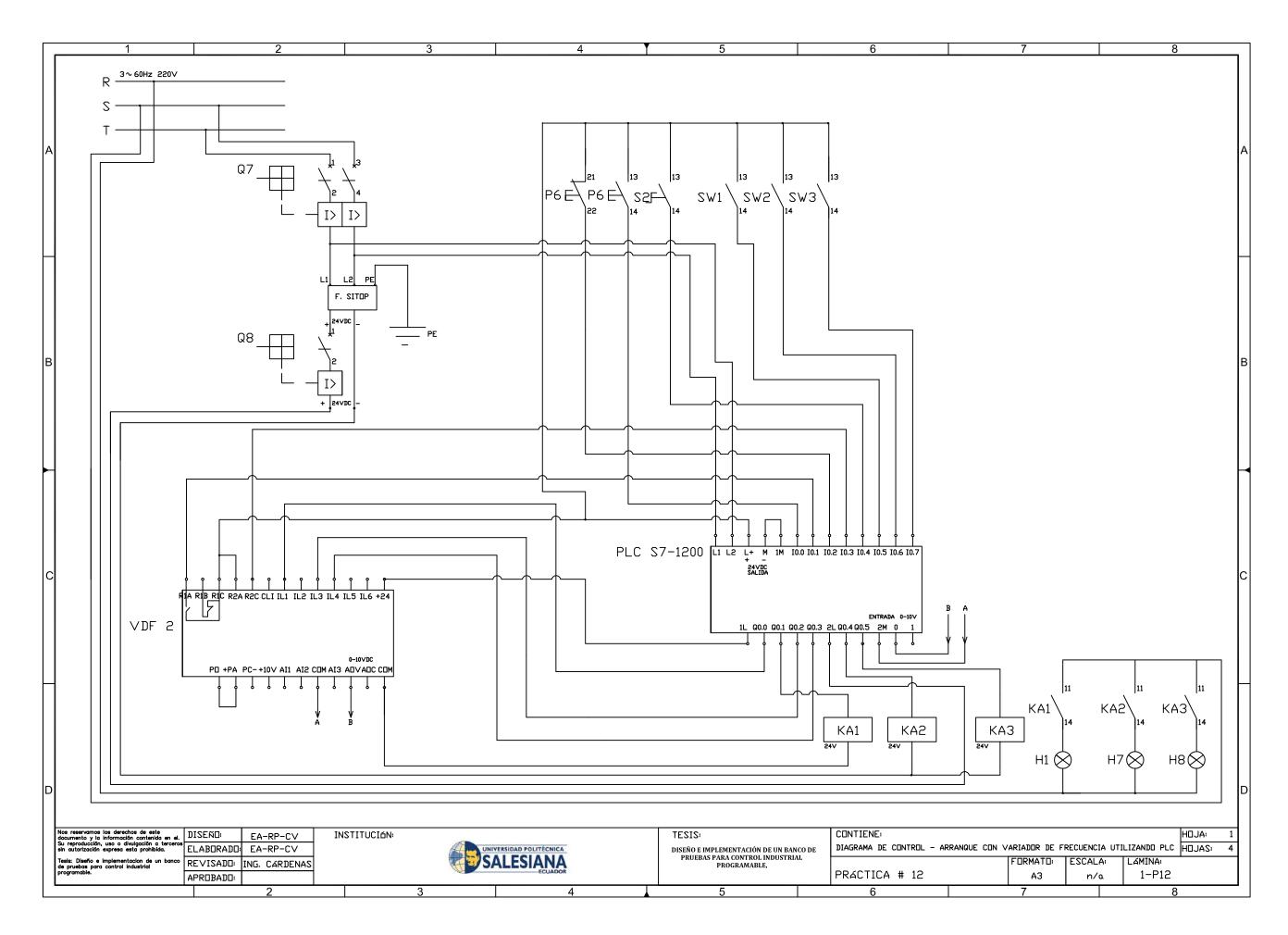
▶ La señal de temperatura 2+ temperatura 3, dan consigna a la primera combinacion para establecer

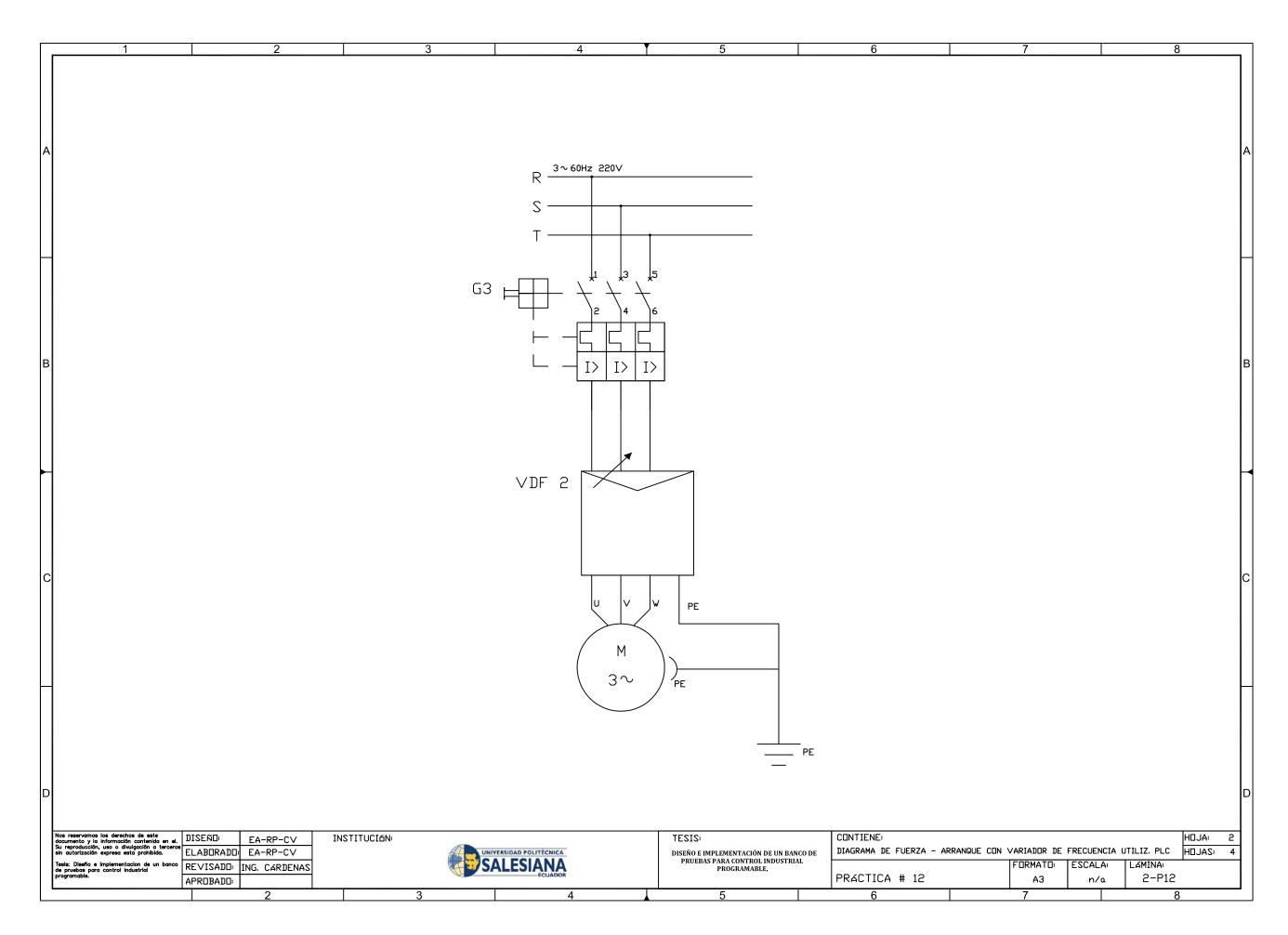
▼ Segmento 7: Funcion de Velocidad 4 a temperatura 3

La señal de temperatura 2+ temperatura 3+ temperatura 3, dan consigna a la primera combinacion

▼ Segmento 8: Función de Falla

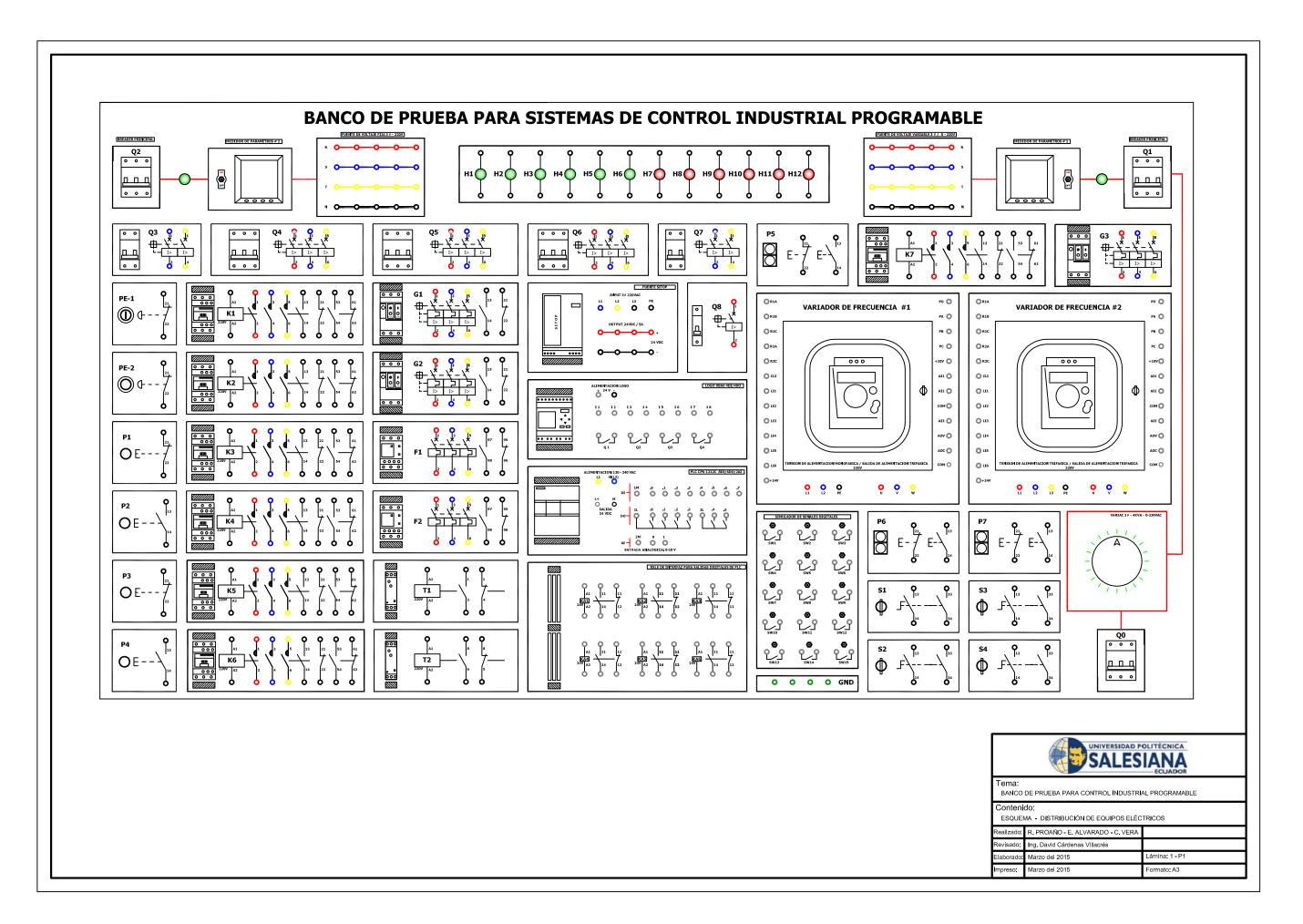

Indica estado de Falla cuando el variador envia dicha consigna a traves de su salida tipo rele

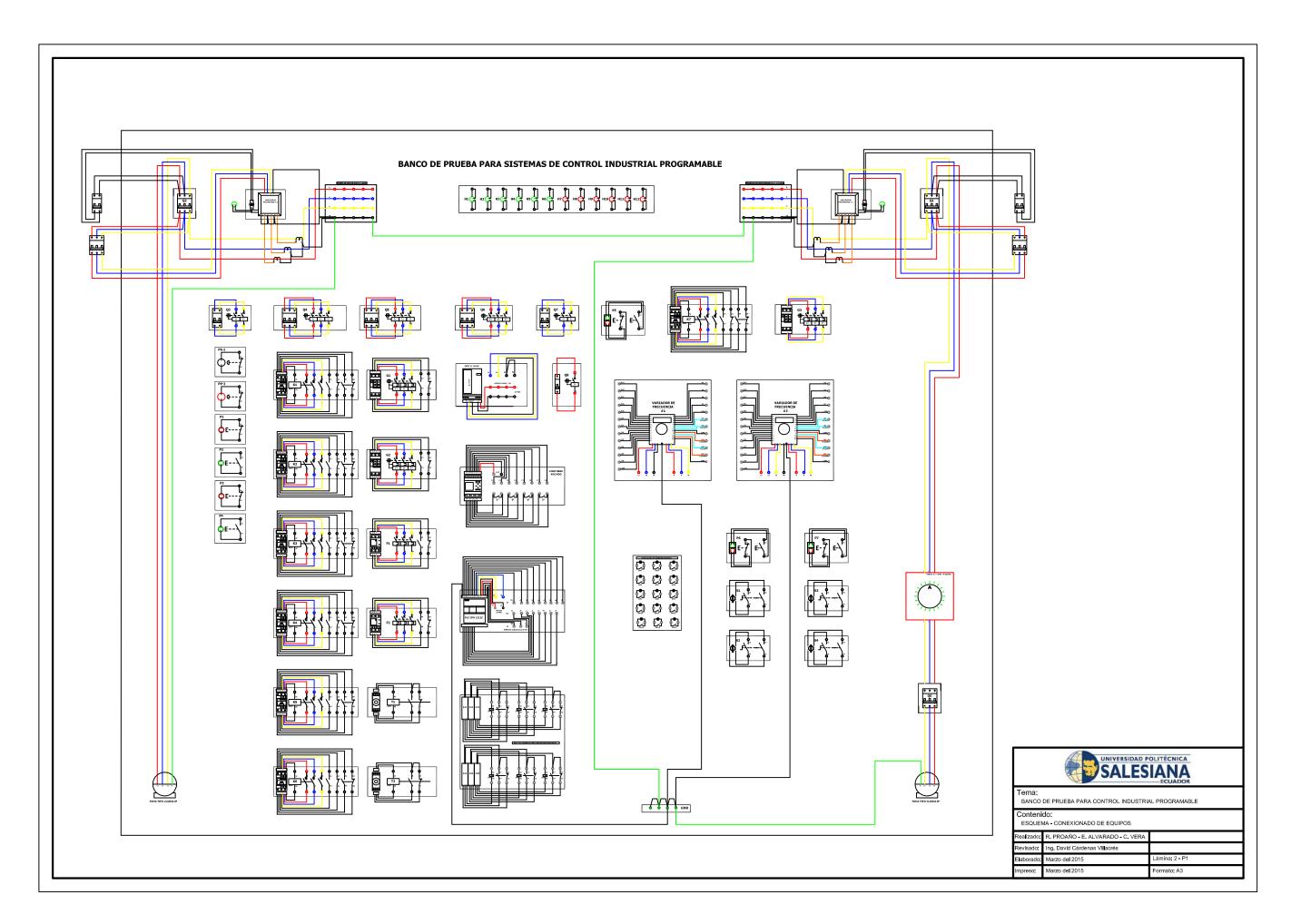

```
%IO.3
"FALLA SEÑAL"
"FALLA"

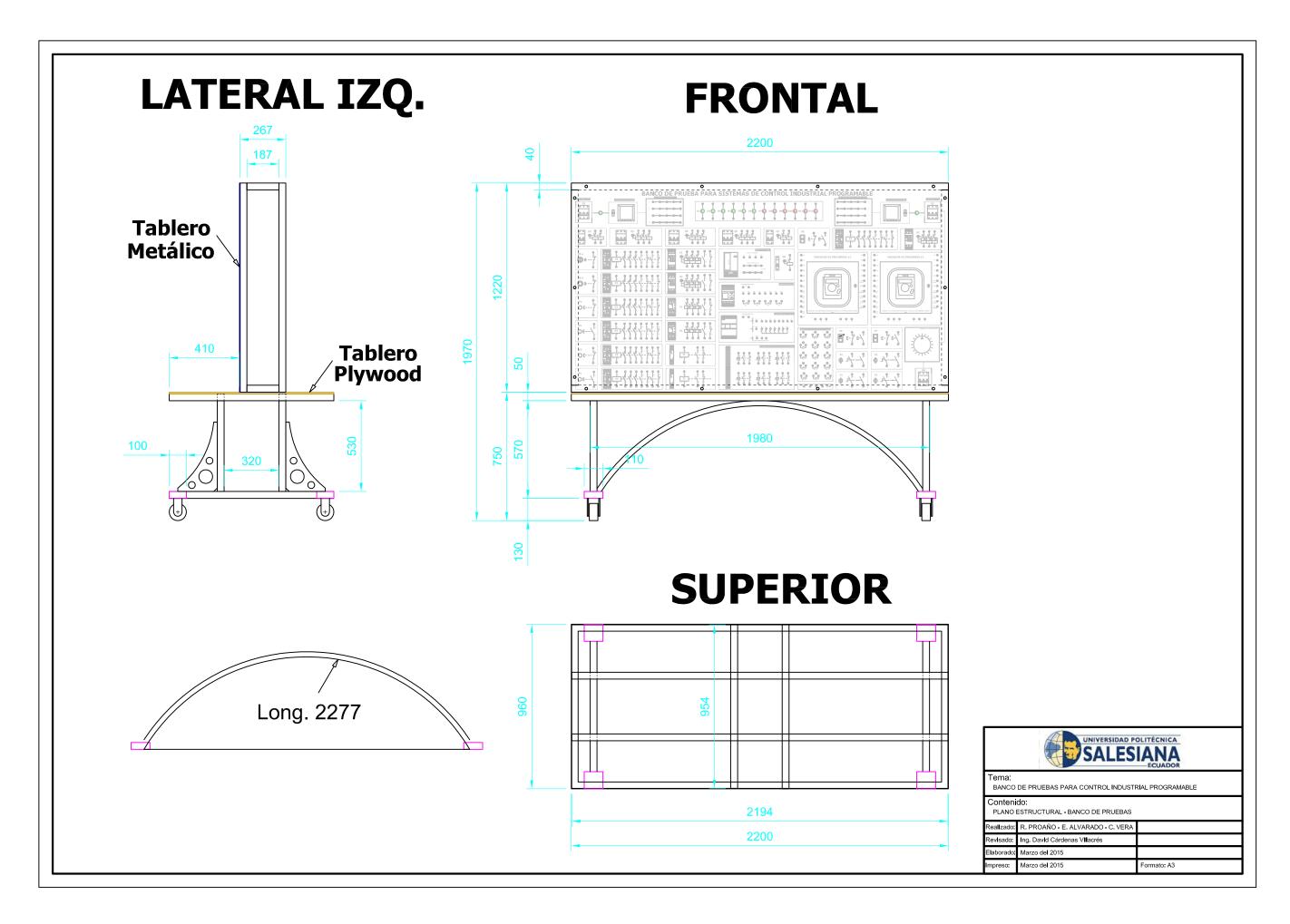

( )
```

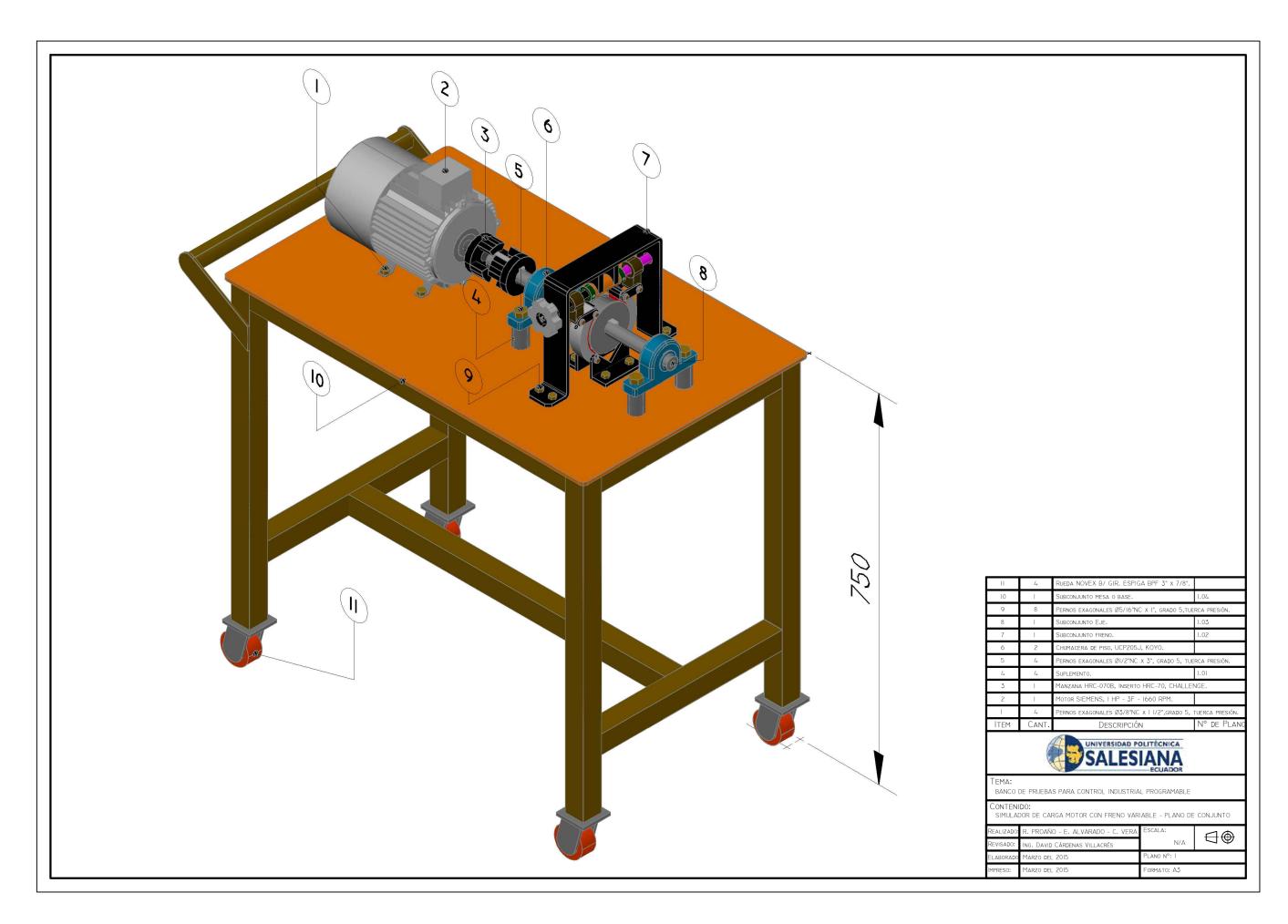
▼ Segmento 9: Función señalizacion de Paro

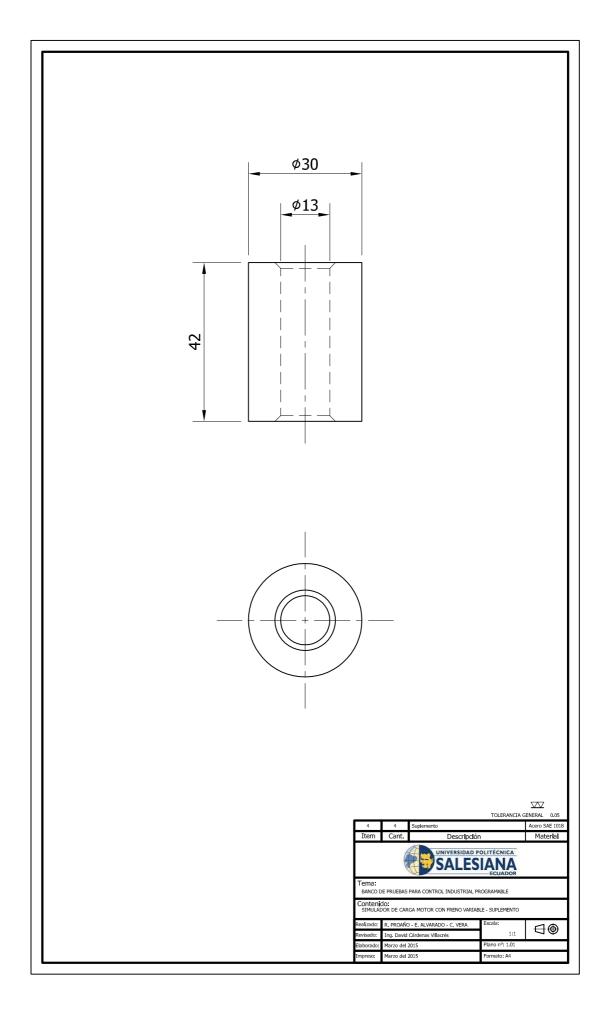
```
Comentario
    %IO.2
                                                                       %Q0.5
    "PARO"
                                                                     "LUZ - PARO"
     4 F
                                                                        (s)—
    %M0.0
  "M MARCHA"
     1/1
   0.0M%
                                                                       %Q0.5
  "M MARCHA"
                                                                     "LUZ - PARO"
     -11
                                                                        (R)—
```

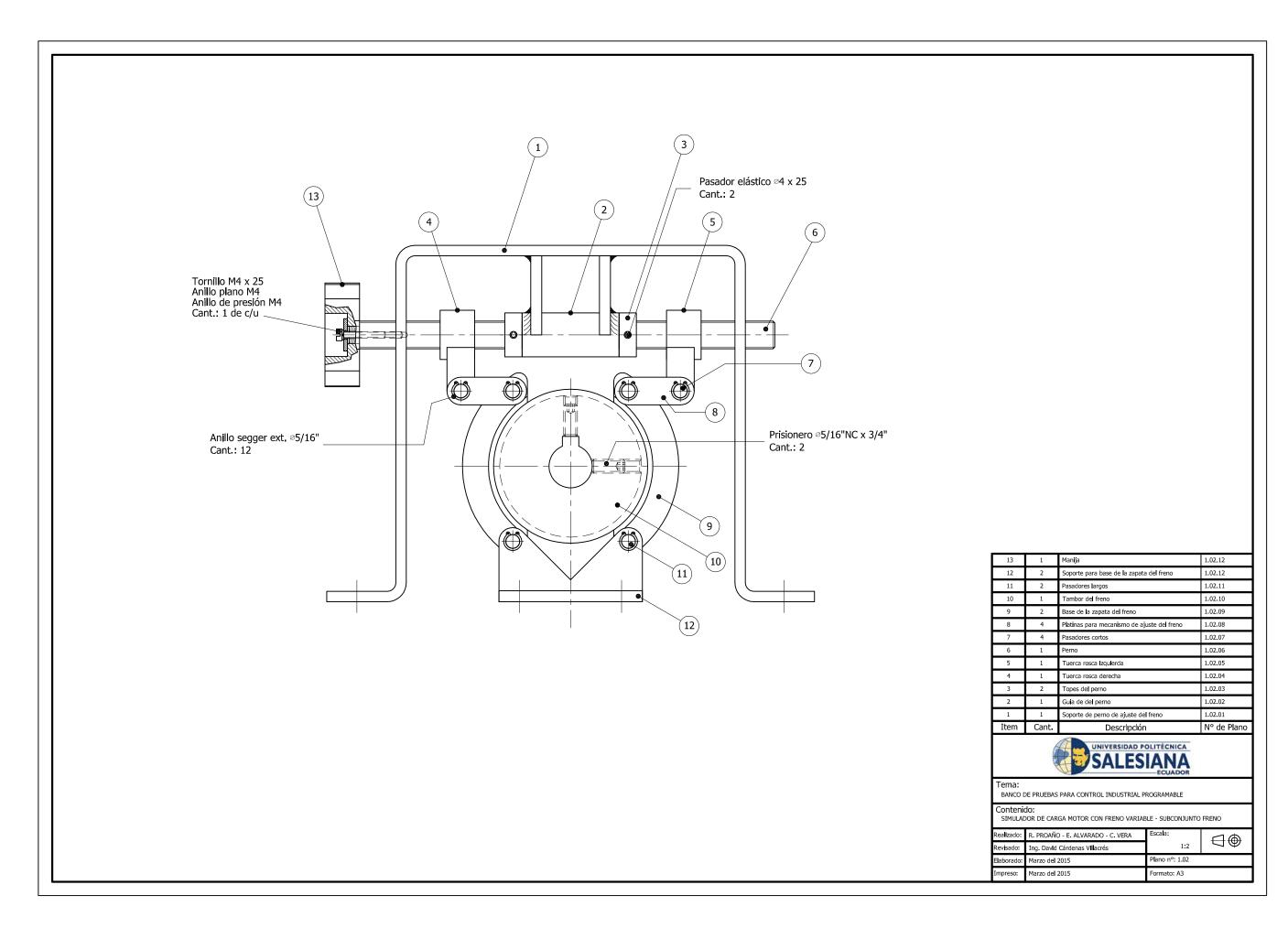


BIBLIOGRAFÍA

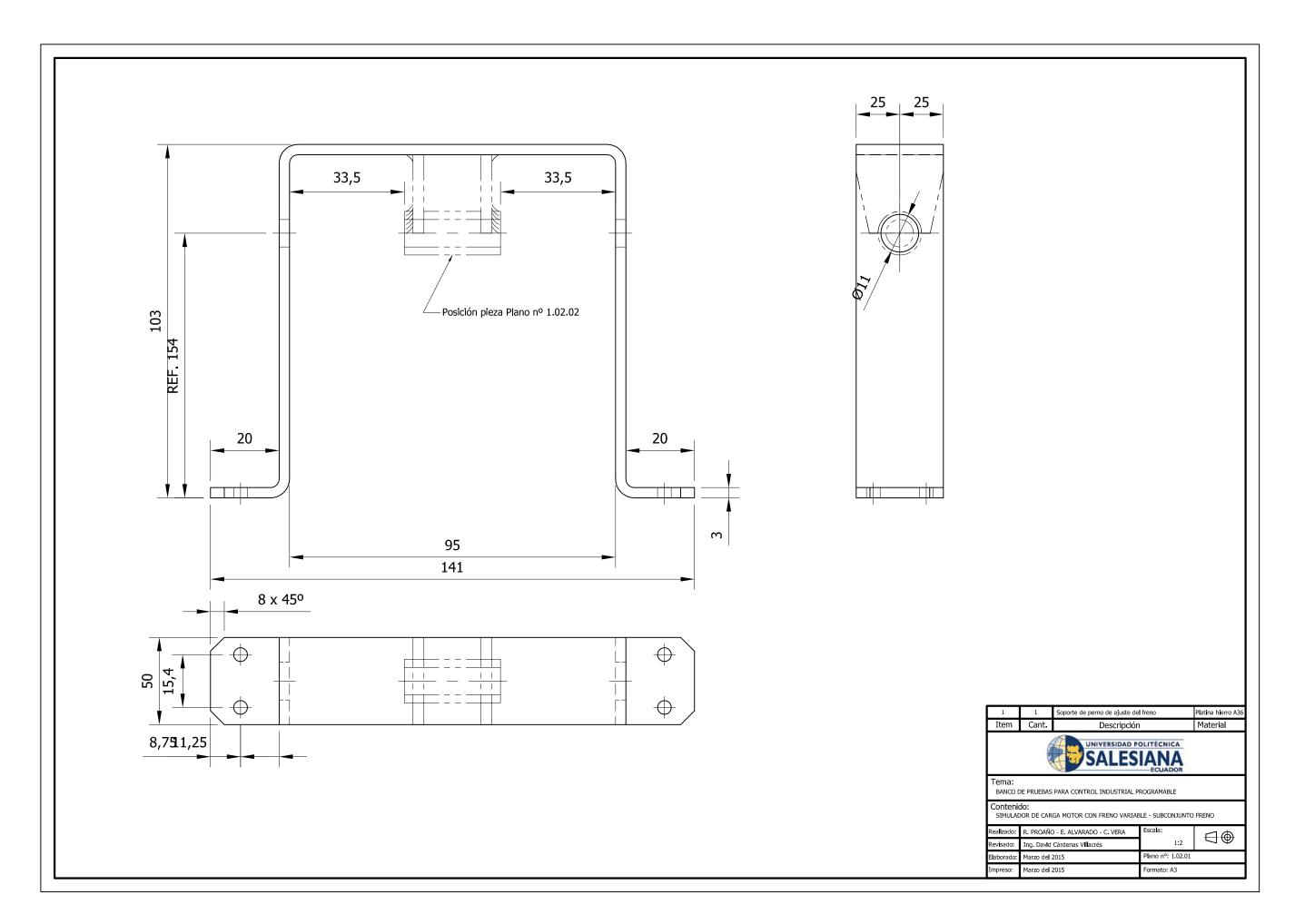

- [1] Álvarez Pulido, M. (2004). Controladores Lógicos. Marcombo.
- [2] Calloni, J. C. (2003). *Mantenimiento eléctrico y mecánico para pequeñas y medianas empresas*. Buenos Aires: Nobuko.
- [3] Casals Torrens, P. (2010). Máquinas Eléctricas, aplicaciones de Ingeniería Eléctrica a Instalaciones Navales y Marinas. Prácticas. Barcelona: Universidad Politécnica de Catalunya.
- [4] Donate, A. H. (1999). *Principios de eléctricidad y electrónica II*. Barcelona: Marcombo Boixareu Editores.
- [5] Fink, D. G., & Wayne Beaty, H. (1996). *Manual de Ingeniería Eléctrica Tomo III*. México: McGraw-Hill.
- [6] Gallardo Vázquez, S. (2013). *Técnicas y procesos en instalaciones domóticas y automáticos*. Madrid: Paraninfo.
- [7] Gutiérrez Colomer, R. P., Sánchez Braceli, J. I., García Mari, E., & Blaise-Ombrecht, C. A. (2003). *Prácticas de Electrotecnica y electrificación rural*. Valencia: Editorial de la UPV.
- [8] Gutiérrez, A. (1992). Curso de Metodos de Investigación y elaboración de la Monografia. Quito: Serie Didactica AG.
- [9] Harper, E. (2005). Fundamentos de Instalaciones eléctricas de mediana y alta tensión. México: Limusa.
- [10] HARPER, G. E. (1989). El ABC de las Instalaciones Eléctricas Industriales. Mexico D.F.: Limusa S.A.
- [11] Hyde, J., Regué, J., & Cuspinera, A. (1997). *Control Electroneumática y Electrónico*. Barcelona: Norgren Biblioteca Técnica.
- [12] Kalpakjian, S., & Schmid, S. (2002). *Manufactura Ingeniería y tecnología*. México: Prentice Hall.
- [13] Liwschitz, M., & Whipple, C. C. (1981). *Maquinas de Corriente Alterna*. Mexico: Mc Graw-Hill Interamericana.

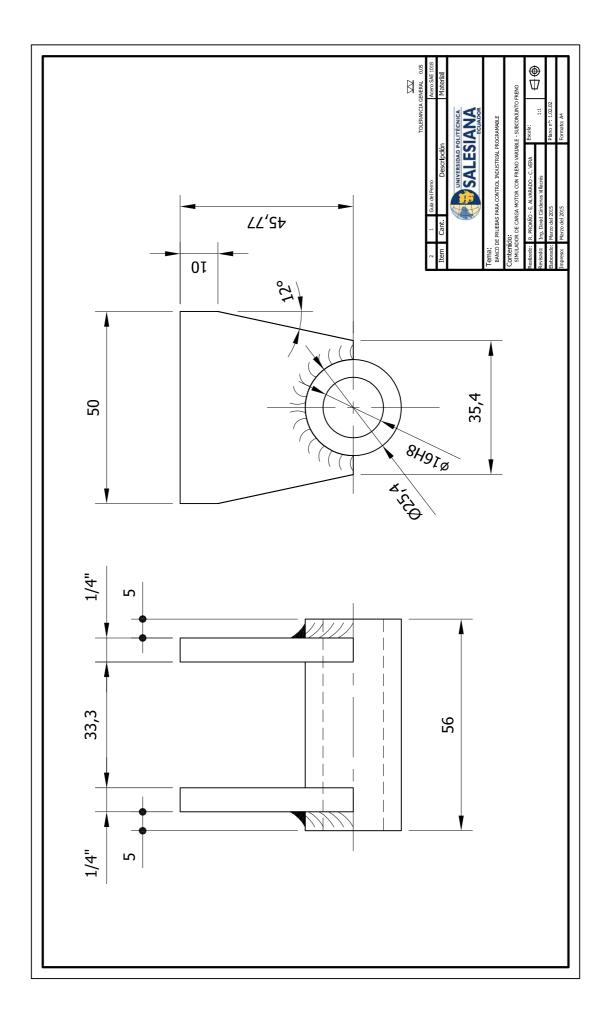

- [14] Martín Castillo, J. C. (2012). Máquinas rotativas de corriente alterna (Máquinas eléctricas). Editex.
- [15] Martín, J. C., & García, M. P. (2009). Automatismo Insdustriales. Editex.
- [16] Pérez Jiménez, Ó., & Company Gironés, R. (2011). Cómo ser un buen profesional eléctrico Mantenimiento eléctrico y solución de averías. Bogotá: Ediciones de la U.
- [17] Rosenberg, R. (1985). Reparación de motores eléctricos. México: C. Gili, S.A.
- [18] Siemens. (24 de Marzo de 2015). *Catalogo de Productos*. Obtenido de Industry Mall: https://mall.industry.siemens.com/mall/es/WW/Catalog/Products/10017276
- [19] SirioS.A. (2011). *Transformadores y Soluciones Magnéticas*. Obtenido de Transformadores Variables o Variacs: http://sirio.com.co/transformadores-variables-o-variacs/

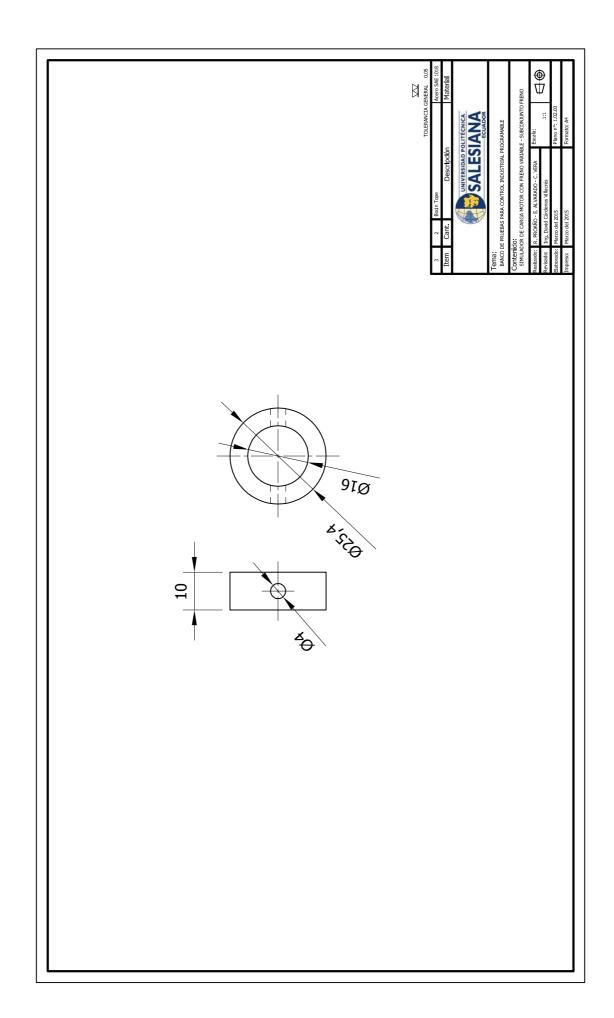

ANEXOS

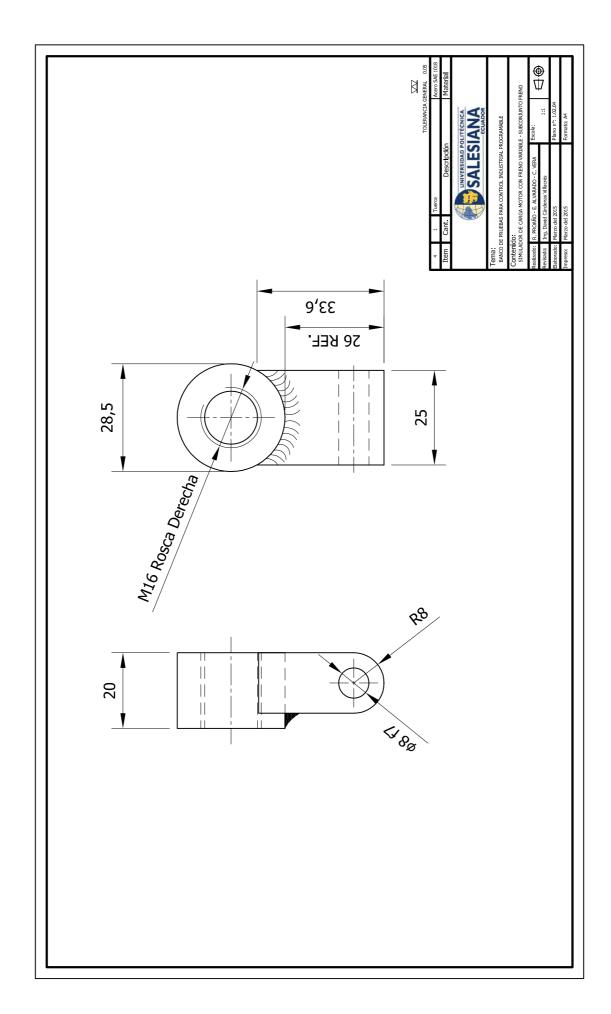

- Esquema de distribución de equipos
- Esquema de conexión de equipos
- Plano Estructural del banco de pruebas para control industrial programable
- Planos constructivos de mesa con motor y freno regulable
- Catálogo de equipos instalados

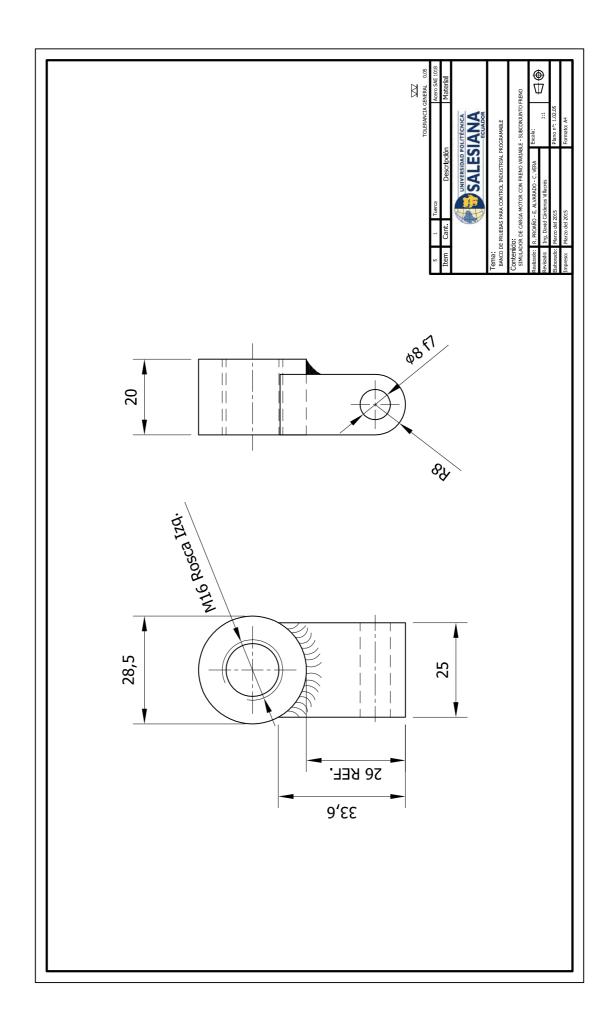


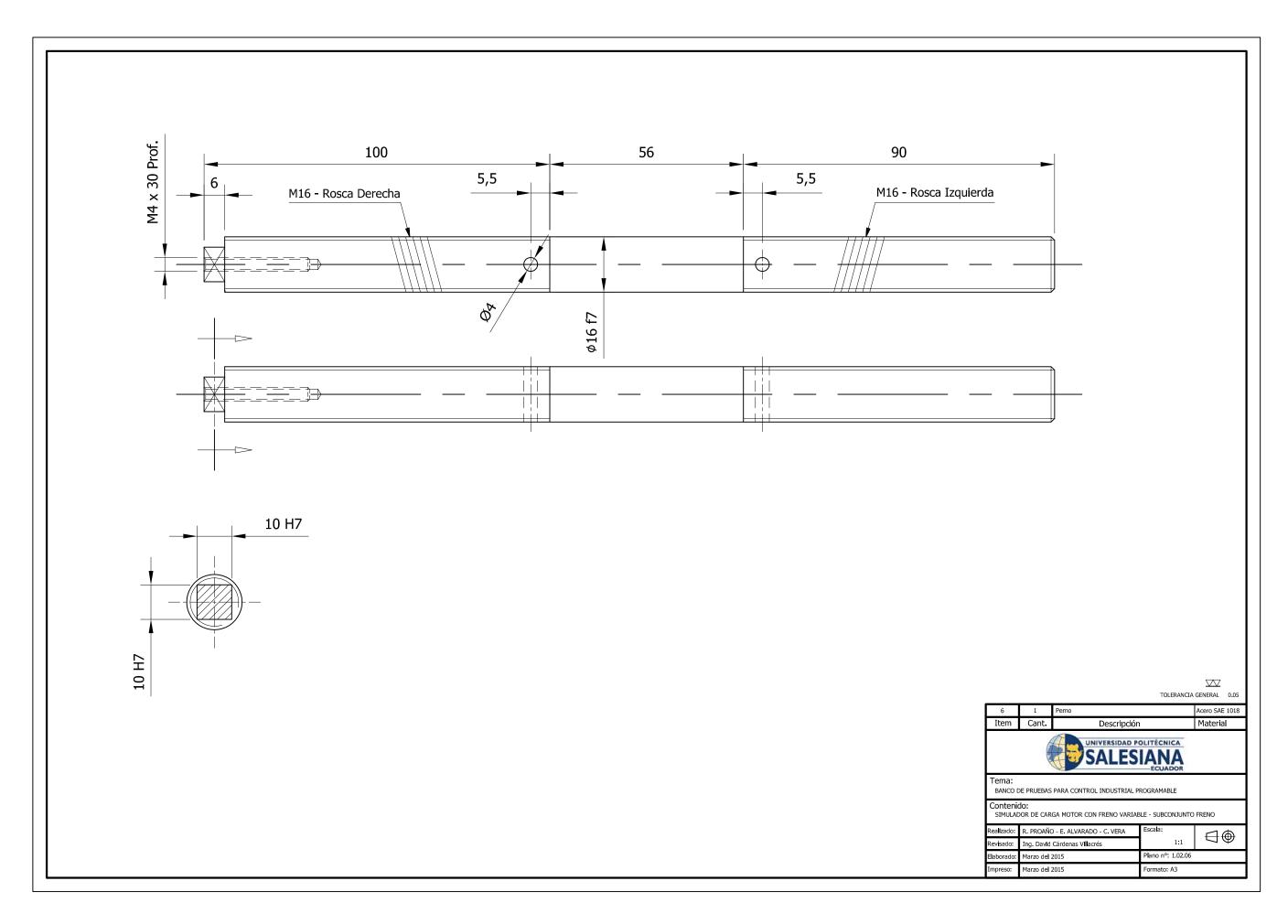


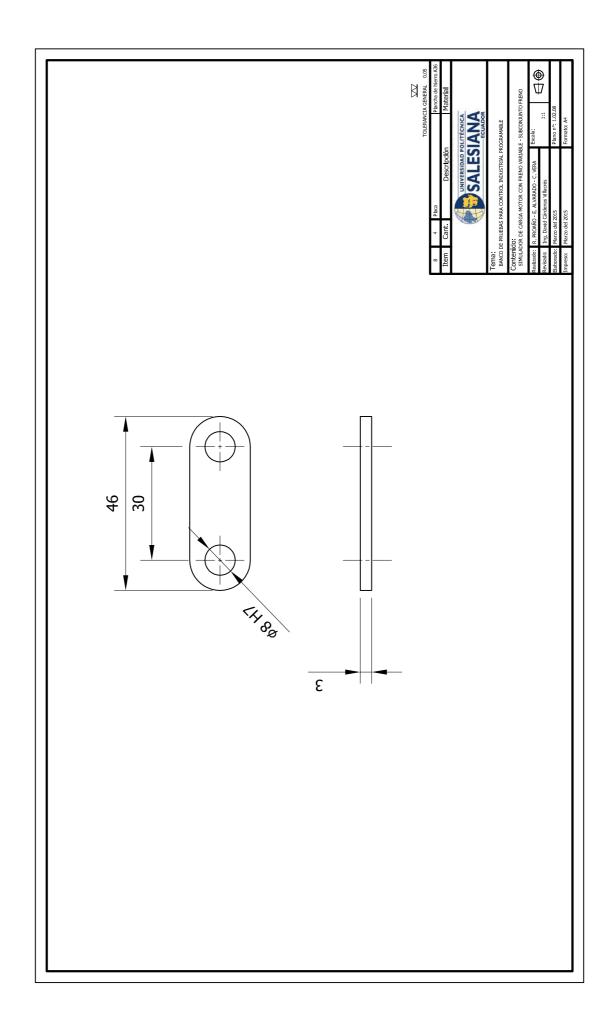


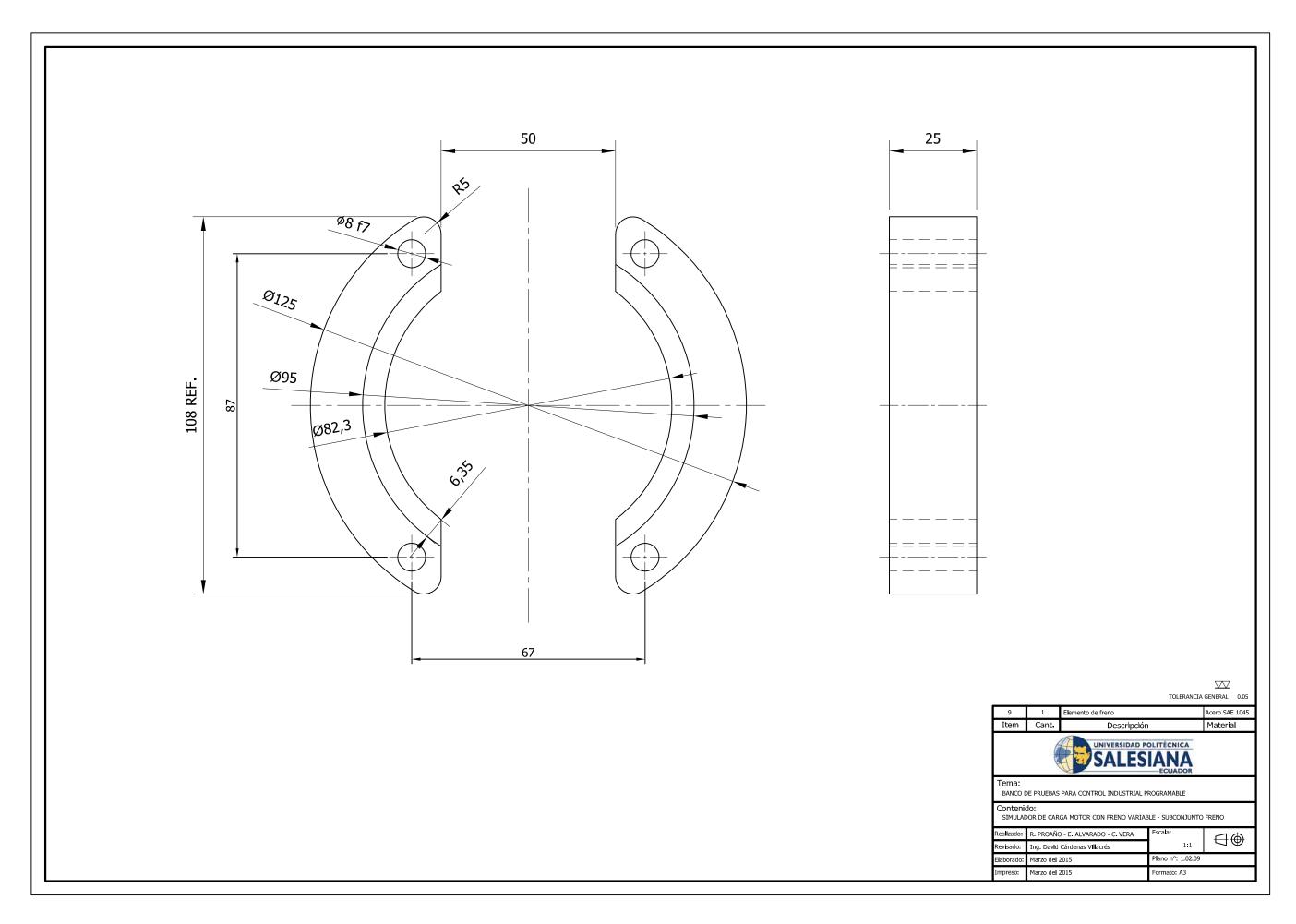


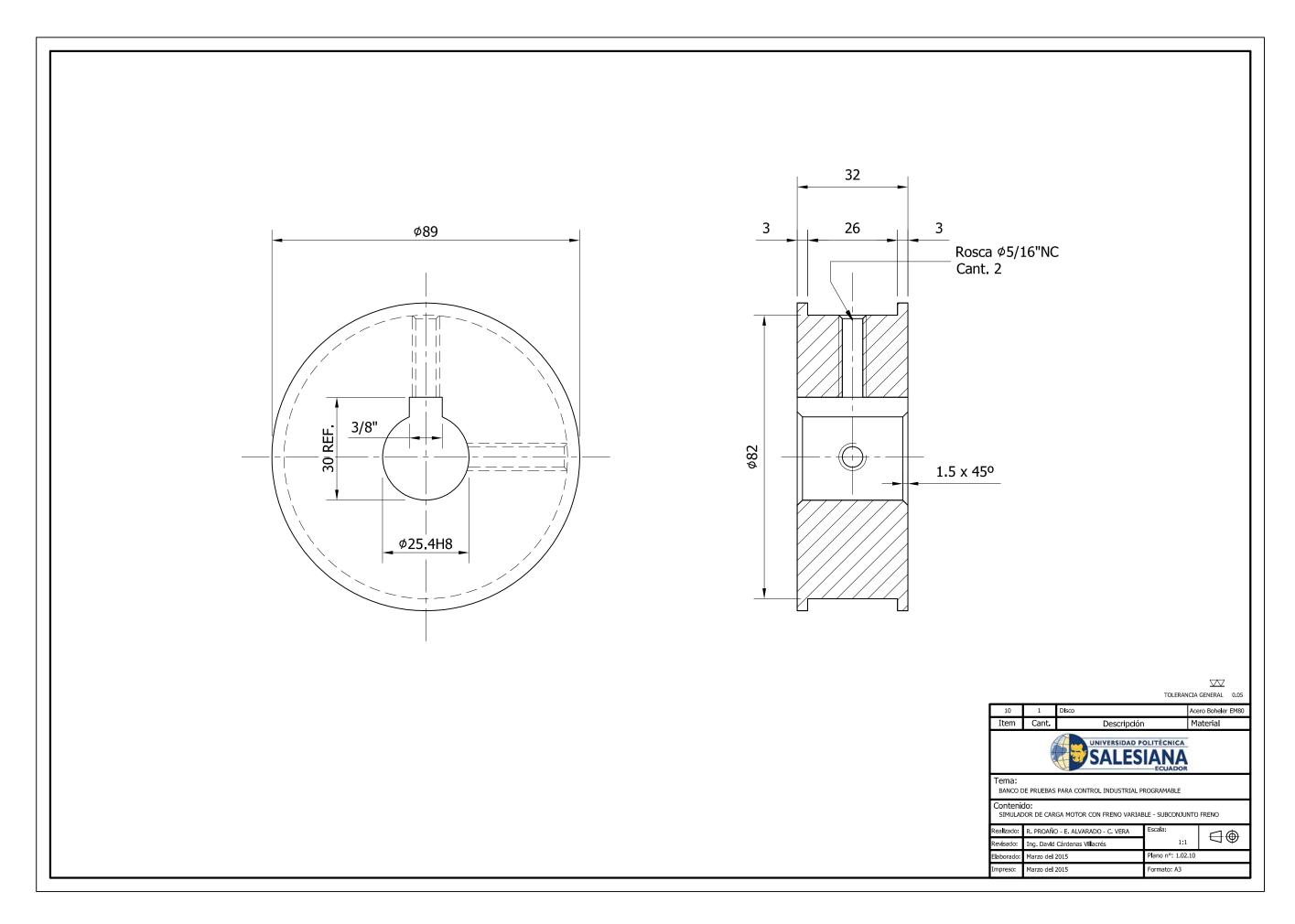


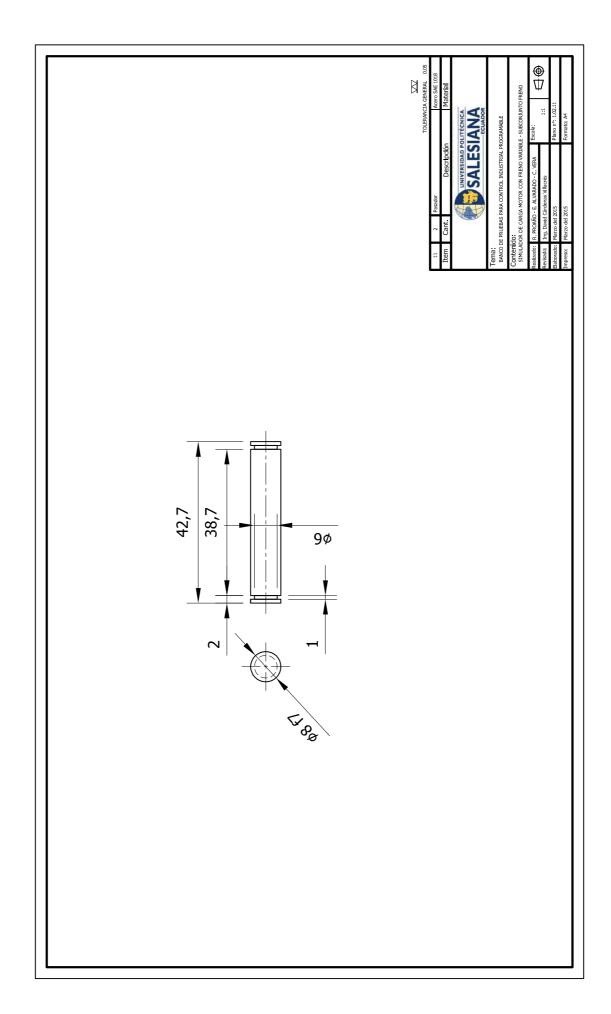


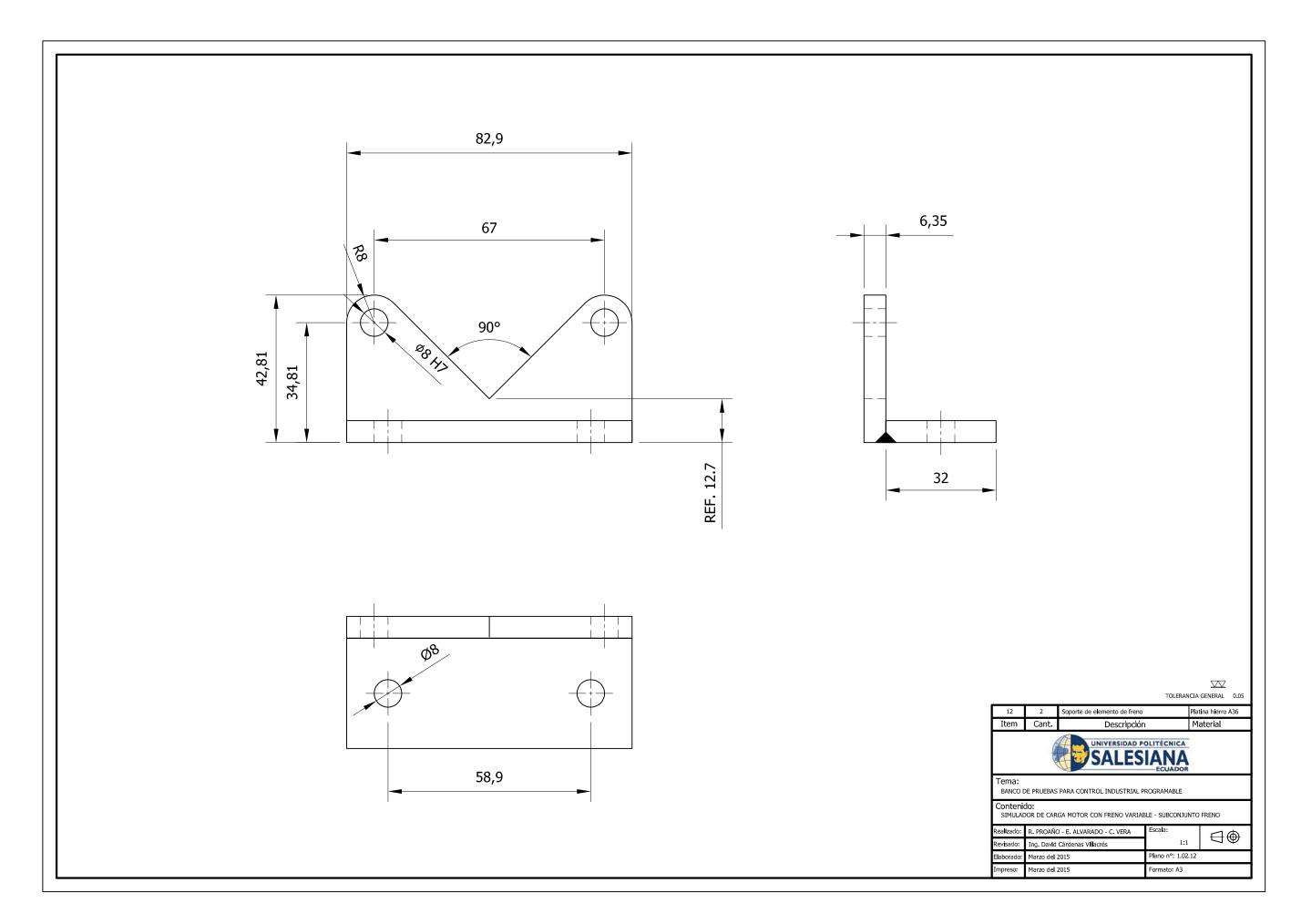


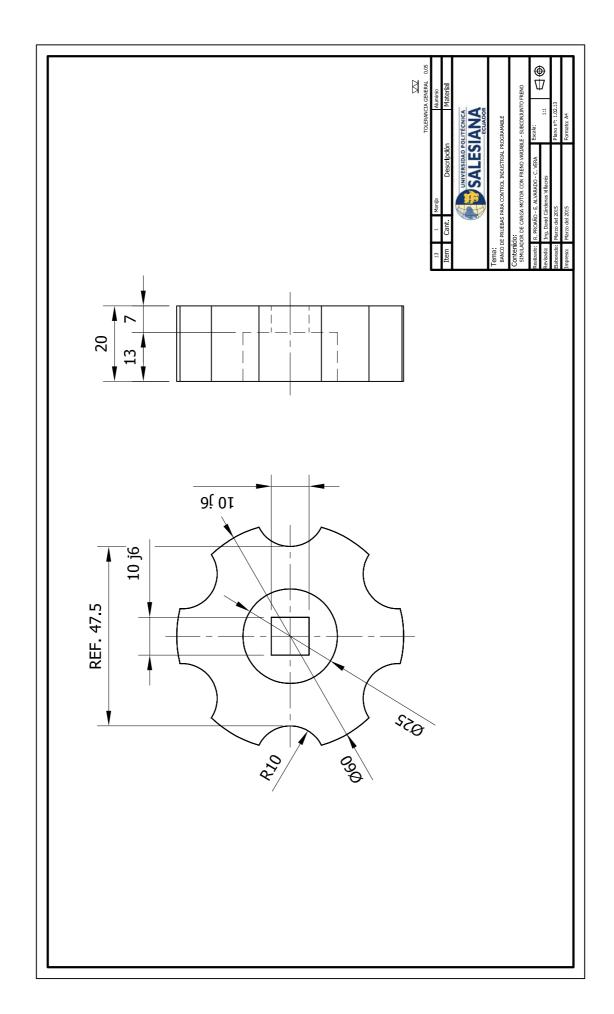


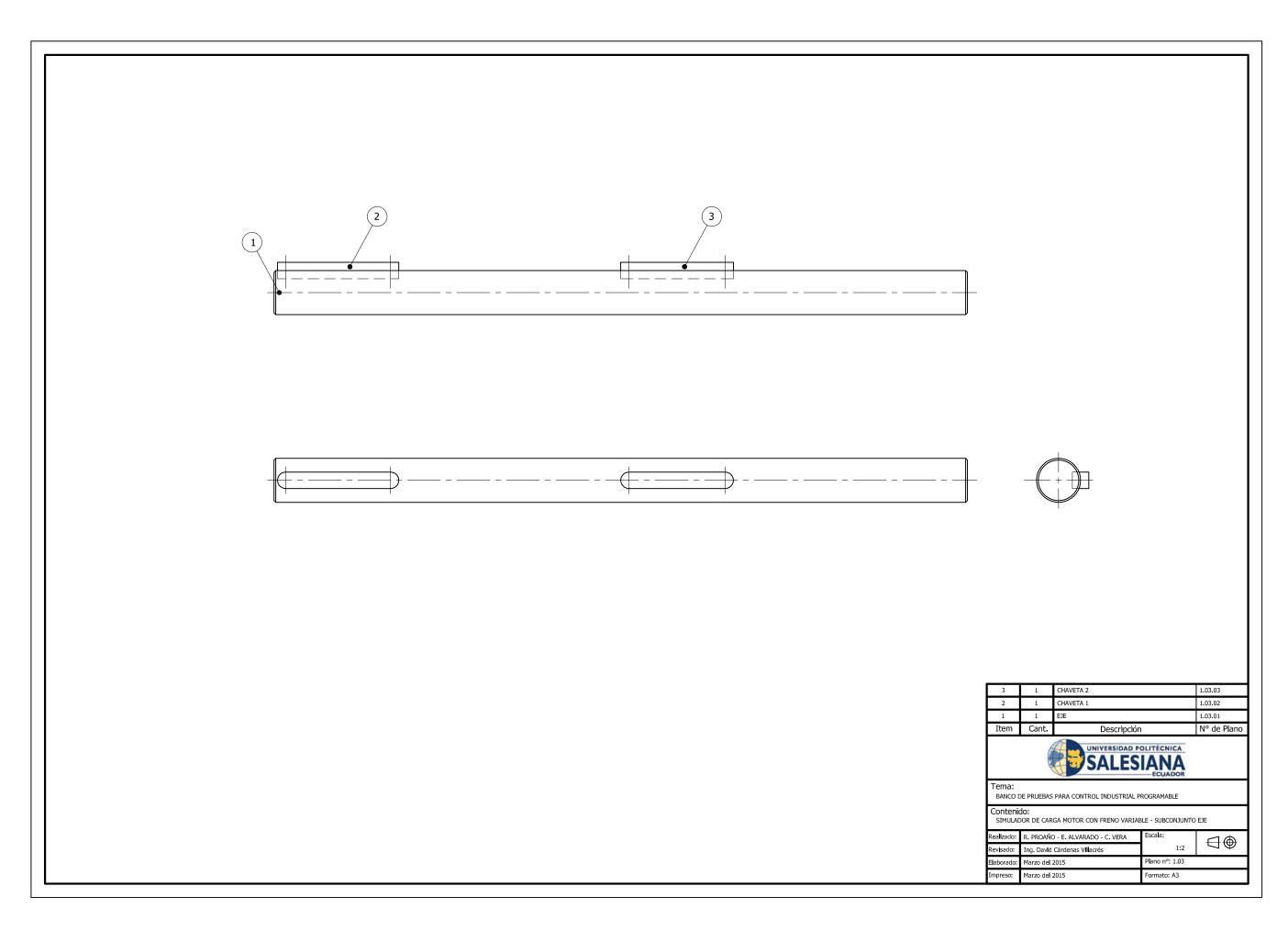


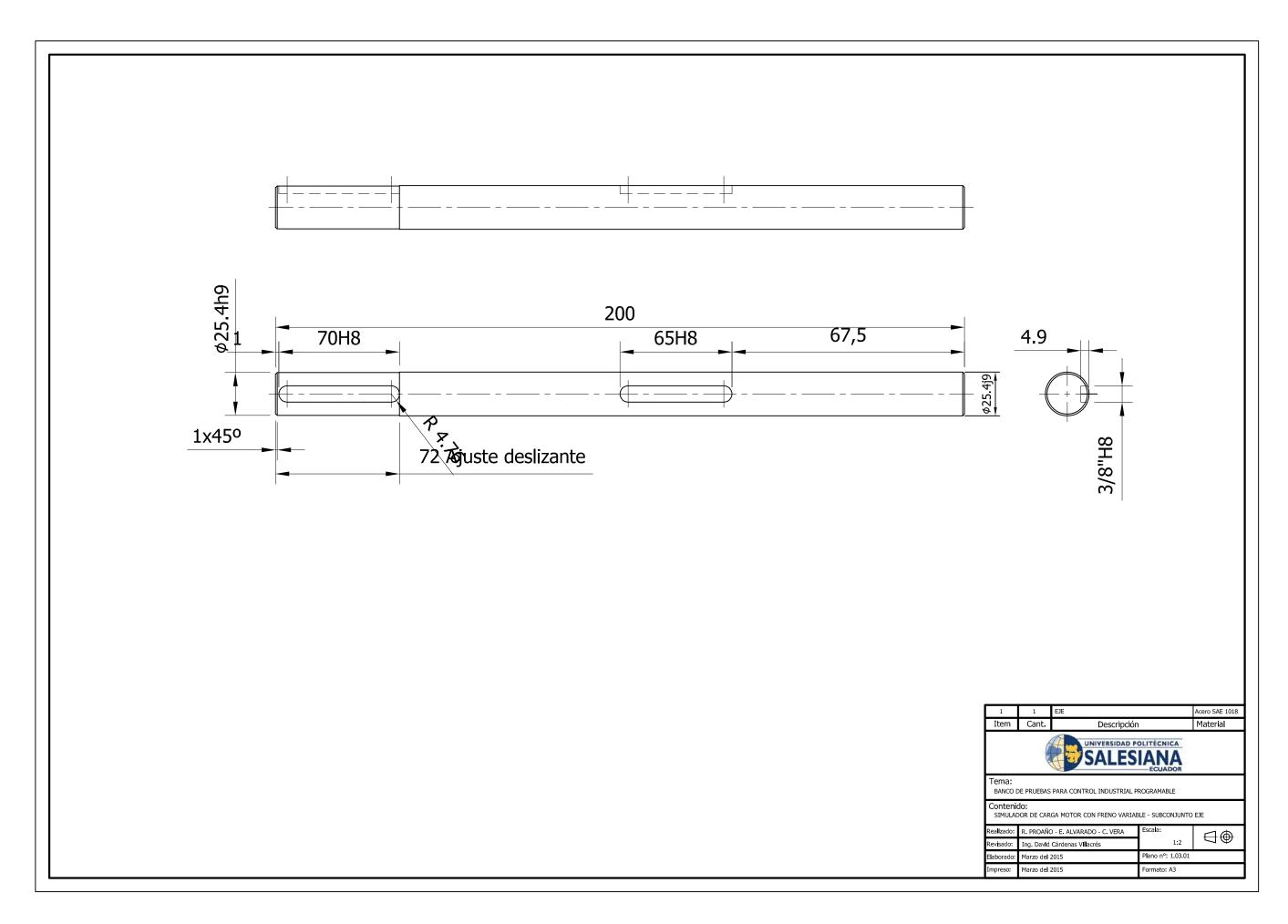


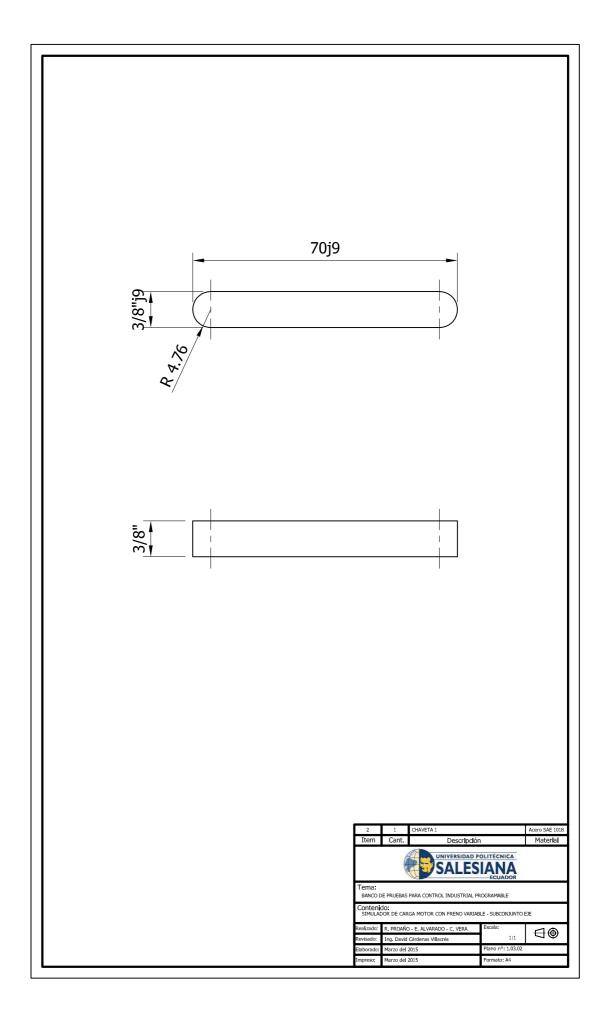


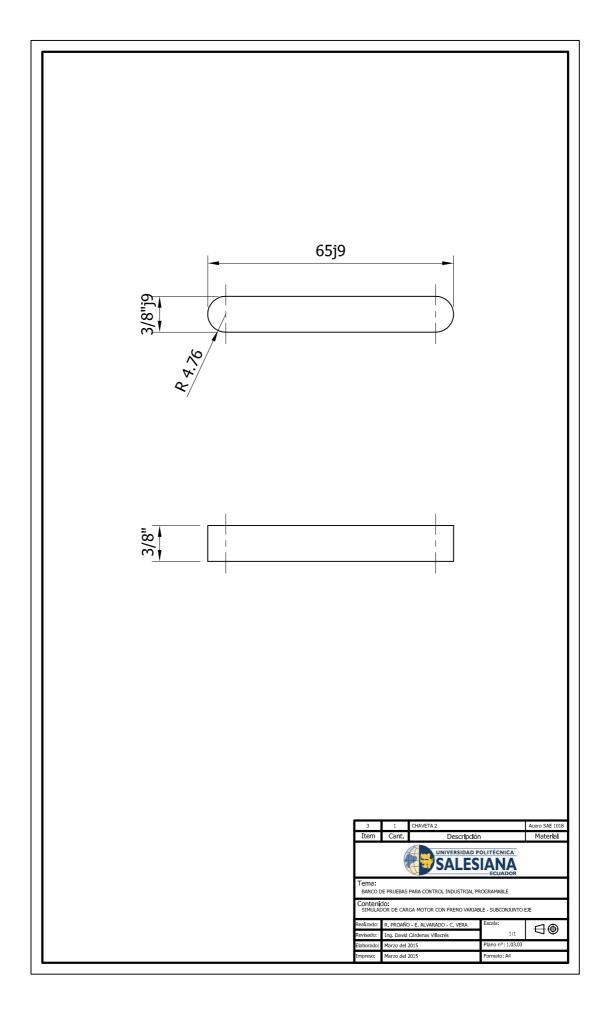












iC60N circuit breakers (curve B, C, D)

CEI/EN 60947-2 BS/EN 60898-1

- Disbo iC60N circuit breakers are multi-stand and circuit breakers which combine the following functions:

 □ circuit protection against short-circuit currents,
 □ circuit protection against overload currents,
 □ suitable for industrial isolation according to IEC/EN 60947-2, standard.
 □ fault tripping indication by a red mechanical indicator in circuit bre aker front face.

Breaking							
		Voltage (U	breaking				
Ph/Ph (2P,	3P, 4P)	12 to 133 V	220 to 240 V	380 to 415 V	440 V	capacity (Ics)	
Ph/N (1P, 1P+N)		12 to 60 V	100 to 133 V	220 to 240 V		(103)	
Rating (In)	0.5 to 4 A	50 kA	50 kA	50 kA	25 kA	100 % of la	
	6 to 63 A	36 kA	20 kA	10 kA	6 kA	75 % of lou	
Breaking	capacity (i	cn) accordi	ng to IEC/EN	60898-1			
		Voltage (U	e)				
Ph/Ph		400 V					
Ph/N		230 V					
Rating (In)	0.5 to 63 A	6000 A					

Direct current	(DC)					,
Breaking capacit	y (lcu) ac	cord	ing to IEC/EN	60947-2		Service
	Voltage (Ue)				breaking
Between +/-	12 to 48 V	72 V	100 to 133 V		220 to 250 V	(lcs)
Number of poles	1P		2P (in series)	3P (in series)	4P (in series)	1007
Rating (In) 1 to 63 A	15 kA	BkA	6 KA	15 kA	6 KA	100 % of la

Mid-range metering

PM700 series

Functions and characteristics

PowerLogic PM700.

The PowerLogic PM700 series meters offer all the measurement capabilities required to monitor an electrical installation in a single 96 x 96 mm unit extending only 50 mm behind the mounting surface.

With its large display, you can monitor all three phases and neutral at the same time. The anti-glare display features large 11 mm high characters and powerful backlighting for easy reading even in extreme lighting conditions and viewing angles.

The PowerLogic PM700 series meters are available in four versions to better fit PM700, basic metering with THD and min/max readings
PM700, basic metering with THD and min/max readings
PM700P, same functions as the PM700, plus two solid-state pulse outputs for

- energy metering
- PM710, same functions as the PM700, plus one RS 485 port for Modbus communication
- PM750, same functions as the PM710, plus two digital inputs, one digital output and alarms

Applications

Panel instrumentation.

Sub-billing and cost allocation.

Remote monitoring of an electrical installation. Harmonic monitoring (THD).

Alarming with under/over conditions and I/O status (PM750).

Characteristics

Requires only 50 mm behind mounting surface

The PM700 series meters can be mounted on switchboard doors to maximise free space for electrical devices.

Large back lit display with integrated bar charts

Displays 4 measurements at a time for fast readings. Uses only two clips for installation; no tools necessary.

Intuitive use

Easy navigation using context-sensitive menus.

Bar charts

Graphical representation of system loading and Status of Inputs/Outputs (PM750 and PM700P) provide system status at a glance.

Power and current demand, THD and min/max reading in basic version A high-performance solution for trouble-free monitoring of your electrical installation.

Active energy class IEC 62053-22 class 0.5\$ (PM750) and IEC 62053-21 class 1 (PM700, PM700P, PM710)

Suitable for sub-billing and cost-allocation applications.

IEC 61557-12 Performance Standard

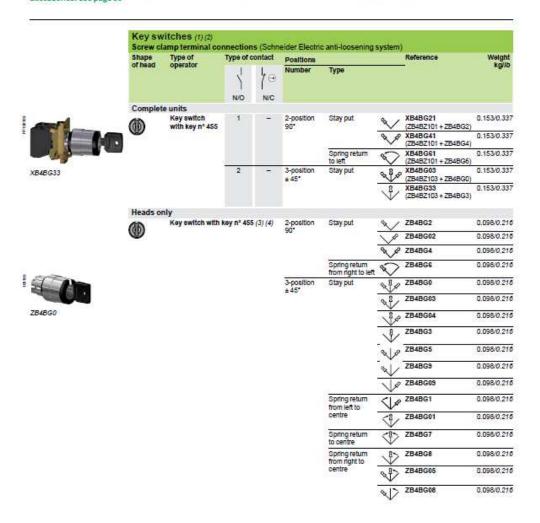
Meet IEC 61557-12 PMD/S/K55/0.5 (PM750) and IEC61557-12 PMD/S/K55/1 (PM700, PM700P, PM710) requirements for combined Performance Measuring and monitoring Devices (PMD).

Innovative Power Meter

RS 485 communications, alarming and digital I/O in a single Power Meter (PM750).

PM700 series

Functions and characteristics (cont.)

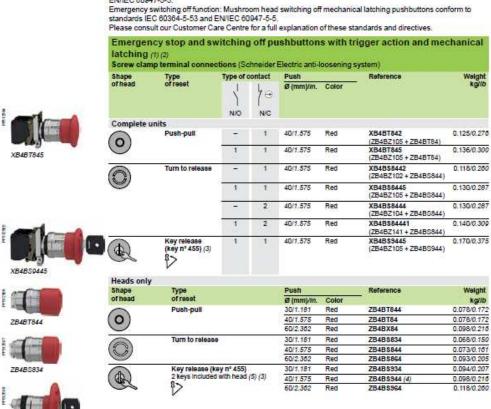

Rear view of PM750.

Type of measur	rement		True rms up to the 15th harmonic on three-phase				
111	3000000		(3P, 3P + N) two-phase and single-phase AC				
			systems 32 samples per cycle				
Measurement accuracy	Current		± 0.5% from 1Ato 6 A (PM700, PM700P, PM710) ± 0.4% from 1Ato 6 A (PM750)				
	Voltage		± 0.5% from 50V to 277V (PM700, PM700P, PM710 ± 0.3% from 50V to 277V (PM750)				
	Power Factor		± 0.0034, from 1A to 6A and from -0.5 to +0.5				
	Power		±1% (PM700, PM700P, PM710) ±0.5% (PM750)				
	Frequency		± 0.02 Hz from 45 to 65 Hz				
	Active Energy	£	IEC 62053-21 Class 1 (10) IEC 62053-22 Class 05. S (2)				
	Reactive Ene	rgy	IEC 62053-23 Class 2				
Data update ra	te	25012	15				
input-voitage characteristics	Measured vol	tage	10 to 480 V AC (direct Ph-Ph) 10 to 277 V AC (direct Ph-N) up to 1.6 MV AC (with external VT) the lower limit of the measurement range depends on the PT ratio				
	Metering over	r-range	1.2 Un (20%)				
	Impedance		2 MΩ (Ph-Ph) / 1 MΩ (Ph-N)				
	Frequency ra	nge	45 to 65 Hz				
input-current	CT ratings	Primary	Adjustable from 1 A to 32767 A				
characteristics	ges summann	Secondary	1Aor5A				
	Measuremen	t Input range	5 mAto 6 A				
	Permissible o	verload	15 A continuous, 50 A for 10 seconds per hour, 120 A for 1 second per hour				
	Impedance		<0.12Ω				
	Load		<0.15 VA				
Power supply	AC		100 to 415 ±10 % V AC, 5 VA; 50-60 Hz				
	DC		125 to 250 ±20 % V DC, 3 W				
	Ride-through	time	100 ms at 120 VAC				
Input	Digital inputs (PM750)		12 to 35 V DC, 24 V DC nominal, 12 kΩ impedance, 2.5 kV rms isolation, max. frequency 25 Hz, response time 10 ms				
Output	Pulse outputs	(PM700P)	3 to 240 V DC or 6 to 240 V AC, 100 mA at 25 °C, derate 0.55 mA per °C above 25 °C, 2.41 kV rms isolation, 30 Ω on-resistance at 100 mA				
	Digital or puls (PM750)	e output	8 to 36 V DC, 24 V DC nominal at 25 °C, 3.0 kV rms isolation, 28 Ω on-resistance at 100 mA				

Assembly of other products using: body/contact assemblies: see page 38 accessories: see page 50

Control and signaling units Ø 22

Harmony XB4, metal Key switches Key n° 455, 421E, 458A, 520E, 3131A


Assembly of other products using: body/contact assemblies: see page 38 accessories: see pages 57 and 58

Control and signaling units Ø 22

Harmony XB4, metal

Emergency stop and Emergency switching off functions Conforming to EN/IEC 60204-1, 60364-5-53, EN/ISO 13850 and Machinery Directive 2006/42/EC

Emergency stop function: Mushroom head Emergency stop trigger action and mechanical latching pushbuttons conform to standards EN/IEC 60204-1 and EN/ISO 13850, to Machinery Directive 2006/42/EC and to standard EN/IEC 60947-5-5.

Control and signaling units Ø 22 Harmony XB4, metal Spring return pushbuttons, unmarked

Assembly of other products using: body/confact assemblies; see page 38 accessories; see page 50

Shape	Туре	Type of	s (Schneider Elec oontaat	Color	Reference	Weight
of head	of push	NIO	y s NG	of push		kg/lb
Complet	te units					
0	Fluch	1	-	White	XB48A11 (Z848Z101+Z848A1)	0.080/0.176
•				Black	XB4BA21 (ZB4BZ101+ZB4BA2)	0.080/0.176
				Green	XB4BA31 (ZB4BZ101 + ZB4BA3)	0.080/0.176
				Yellow	XB4BA61 (ZB4BZ101 + ZB4BA5)	0.080/0.176
				Blue	XB4BA61 (ZB4BZ101 + ZB4BA6)	0.080/0.176
	200	20.00	-1	Red	XB4BA42 (ZB4BZ102 + ZB4BA4)	0.080/0.176
Heads o	Mithout cap	(2)		-	ZB4BA0	0.028/0.062
	200000000		500,000	7162473604	32 20 20 20 E	
0	Flush, with a	et of 8 octored	oaps	6 colors (3)	ZB4BA9	0.038/0.084
	Flush			White	ZB4BA1	0.029/0.064
				Black	ZB4BA2	0,029/0.064
				Green	ZB4BA3	0.029/0.064
				Red	ZB4BA4 ZB4BA6	0.029/0.064
				Blue Gray	ZB4BA8 ZB4BA8	0.029/0.064
_	Ehirh with fr	ansparent cap	i	White	ZB4BA18	0.028/0.062
0		of legend (4)		Green	ZB4BA38	0.028/0.062
•				Red	ZB4B448	0.028/0.062
				Yellow	ZB4BA58	0.028/0.062
				Blue	ZB4BA88	0.028/0.062
A	Flush (high t	ezel)		White	ZB48A14	0.034/0.076
0		-		Black	ZB4BA24	0.034/0.076
				Green	ZB4BA34	0.034/0.076
				Red	ZB4BA44	0.034/0.076
				Yellow	ZB4BA54	0.034/0.076
Pushb	uttons with	projection	a push m	Blue	ZB4BA84	0.034/0.076
Screw ci	iamp terminal	connection	(Schneider Elec	tric anti-loosening sy		200002
Shape of head	Type of push	Type of	oontact	Color	Reference	Weight kg/ib
		NO	Y G			
Complet						
0	Projecting	100	3	Red	XB48L42 (ZB48Z 102 + ZB48L4)	0.081/0.179
Heads or						
a	Projecting			White	ZB4BL1	0.030/0.066
				Black	ZB4BL2	0.030/0.065
				Green	ZB4BL3	0,030/0.066
				Red	ZB4BL4	0.030/0.066
				Yellow	ZB4BL6	0.030/0.066
				Blue	ZB4BL6	0.030/0.066

User assembly of other units, using: body-contact assemblies: see page 38 combined sub-assemblies: see page 44

Control and signaling units Ø 22 Harmony XB4 metal Multiple-headed pushbuttons, spring return

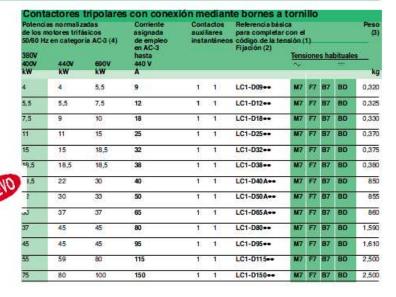
	-headed pushbo			er Electric anti-loosening sys	tomi		
Shape	Description	Type of		Color and marking	(letti)	Reference	Weight
of head		1	10	of cape (2)			kg/lb
Complet	a unito	NO	NC				
	2 pushes (1 flush Black + 1 projecting Red)	4	10	White "I" on Green background White "0" on Red background		XB4BL73416	0.115/0.268
Heads or	niv vin						
0	2 flush Black pushe	6		White and Black background, unmarked		ZB48A7120	0.056/0.123
0				Black "/" on White background White "0" on Black background		ZB48A7121	0.056/0.123
				Green and Red background, unmarked	-	ZB4BA7340	0.056/0.123
				White "I" on Green background White "D" on Red background		ZB4BA7341	0.056/0.123
				Without cap (3)	-	ZB48A79	0,056/0.123
	1 flush Black push 1 projecting Red pu	sh .		Green and Red background, unmarked	- 2	ZB48L7840	0.056/0.123
0				White "1" on Green background White "0" on Red background		ZB48L7341	0.056/0.123
Shape	amp terminal conne Decorption	ctions (er Electric anti-loosening sys Color and marking	tem) PBot	Reference	Welcht
of head		1	70	of cape (2)	light voltage	The state of the	kg/lb
of head		NO	Y⊕ NIC		Hight	The state of the s	
Complet			1.5	of cape (2)	light voltage V	5	kg/lb
	e units 1 fluch Black puch 1 projecting Red puch	NO 1	1.5	of cape (2) White "I" on Green background	light voltage V	XB4BW73731B6	kg/b 0.130/0.267
	1 fluch Black puch 1 projecting		1.5	of cape (2) White 'T' on Green	light voltage V	5	0.130/0.267
Complet	1 fluch Black puch 1 projecting Red puch 1 White central pilot light block		1.5	of cape (2) White "I" on Green background	light voltage V 24	XB48W73731B6 XB48W7373106	0.130/0.267
Complet	1 fluch Black puch 1 projecting Red puch 1 White central pilot light block hty (5) 2 fluch Black puche	1	1.5	of cape (2) White "I" on Green background	light voltage V 24 120 240	XB48W73731B6 XB48W7373106	0.130/0.267
Complet	1 fluch Black puch 1 projecting Red puch 1 White central plict light block	1	1.5	white "I" on Green background White "O" on Red background White and Black background, unmarked Black "on White background,	light voltage V 24 120 240	XB4BW73731B6 XB4BW7373106 XB4BW73731M6	0.130/0.267 0.130/0.267
Complet	1 fluch Black puch 1 projecting Red puch 1 White central pilot light block hty (5) 2 fluch Black puche	1	1.5	White "I" on Green background White "O" on Red background White "O" on Red background unmarked Black "I" on White background White "I" on Black background White "I" on Black background Green and Red background Green and Red background.	light voltage V 24 120 240	XB4BW73731B6 XB4BW7373106 XB4BW73731M6 ZB4BW7A1720	0.130/0.267 0.130/0.267 0.130/0.267 0.056/0.723
Complet	1 fluch Black puch 1 projecting Red puch 1 White central pilot light block hty (5) 2 fluch Black puche	1	1.5	White "I" on Green background White "O" on Red background White "O" on Red background unmanked Black "P" on White background, unmanked white "O" on Black background, unmanked White "P" on Green background white "P" on Green background White "P" on Green background	light voltage V	XB4BW73731B6 XB4BW73731M6 XB4BW73731M6 ZB4BW7A1720 ZB4BW7A1721	0.130/0.267 0.130/0.267 0.130/0.267 0.056/0.123
Complet	1 fluch Black puch 1 projecting Red puch 1 White central pilot light block hty (5) 2 fluch Black puche	1	1.5	White "I" on Green background White "O" on Red background White 50" on Red background, unmanked Black "Y on White background, white "Y" on Black background, unmanked White "Y" on Green background, white "Y" on Green background White "Y" on Green background White "Y" on White background Black "Y" on White background	Hight voltage V	XB4BW73731B6 XB4BW7373106 XB4BW73731M6 ZB4BW7A1720 ZB4BW7A1721 ZB4BW7A3740	0.130/0.267 0.130/0.267 0.130/0.267 0.056/0.123 0.056/0.123
Complet	1 fluch Black puch 1 projecting Red puch 1 White central pilot light block hty (5) 2 fluch Black puche	1	1.5	White "I" on Green background White "O" on Red background umanted Black "I" on White background umanted White "O" on Black background umanted White "O" on Black background umanted White "O" on Red background Black "I" on White background	light voltage V	XB48W73731B6 XB48W73731M6 XB48W73731M6 ZB48W7A1720 ZB48W7A1721 ZB48W7A3740 ZB48W7A3741	0.130/0.267 0.130/0.267 0.130/0.267 0.056/0.123 0.056/0.123 0.056/0.123
Complet	1 fluch Black puch 1 projecting Red puch 1 White central pilot light block hty (5) 2 fluch Black puche	1	1.5	White "I" on Green background White "O" on Red background White and Black background unmarked Black "I" on White background, unmarked White "O" on Red background, unmarked White "I" on Green background White "I" on Green background White "I" on Green background White "I" on White background White "I" on White background White "I" on Black background White "I" on Black background Black "I" on Black background	light voltage V	XB4BW73731B6 XB4BW73731M6 XB4BW73731M6 ZB4BW7A1720 ZB4BW7A1721 ZB4BW7A3740 ZB4BW7A3741 ZB4BW7A3741	0.130/0.267 0.130/0.267 0.130/0.267 0.056/0.723 0.056/0.723 0.056/0.723 0.056/0.723
Complet	1 fluch Black puch 1 projecting Red puch 1 White central pilot light block hty (5) 2 fluch Black puche	t G light (4)	1.5	white "I" on Green background white "O" on Red background white and Black background, unmarked Black "I" on White background, white "I" on Black background, white "I" on Green background white "I" on Green background black "I" on White background white "I" on Black background Black "I" on White Background	light voltage V	XB48W73731B6 XB48W73731M6 XB48W73731M6 ZB48W7A1720 ZB48W7A1721 ZB48W7A3740 ZB48W7A3741 ZB48W7A1724 ZB48W7A1716	0.130/0.267 0.130/0.267 0.130/0.267 0.056/0.123 0.056/0.123 0.056/0.123 0.056/0.123

Control and signaling units Ø 22

Assembly of other products using: body/contact assembles: see page 38 accessories: see page 50 Harmony XB4, metal Selector switches with standard handle

Selector switches with standard handle (1) Screw dramp terminal connections (Schneider Electric anti-loosening system) Type of operator \ }⊕ N/O NC Complete units 2-position Stay put 90° XB4BD21 (ZB4BZ101 + ZB4BD2) XB4BD41 (ZB4BZ101 + ZB4BD4) XB4BD26 Stay put (ZB48Z105 + ZB48O2) XB4BD83 Stay put 0.095/0.200 (ZB4BZ103 + ZB4BD3) XB4BD63 (ZB4BZ103 + ZB4BD6) 0.095/0.209 0.040/0.065 Spring reta from right to left 0.045/0.099 ZB4504 0.040/0.088 Stay put 0.040/0.055 **ZB4BD6** Spring return from left to centre 0.040/0.055 Spring return from right to centre ZB4808 0.040/0.088 Heads only with other colored handles Standard handle, white add suffix 01 to the reference, example: ZB4BD201 add suffix 03 to the reference, example: ZB4BD203 Standard handle, red Standard handle, yellow acid suffix 04 to the reference, example: ZB4BD204 acid suffix 06 to the reference, example: ZB4BD206 Standard handle, blue add suffix 06 to the reference, example: ZB4BD206

Selección: 1/32 Características: 1/34 Referencias: 1/38 Accesorios: 1/42 Dimensiones: 1/48 Escuemas: 1/49


Contactores Telemecanique TeSys

Contactores serie D, para motores hasta 75 kW bajo 400 V, en AC-3

Referencias

Corriente alterna				2000000	200
Voltios	24	48	110	220	380
LC1-D09D150 (bobins	as D115 y D150 antiparasita	das de fábrica)	452509	110-27	8855
50/60 Hz	B7	E7	F7	M7	07
Corriente continua				******	
Corriente continua Voltos	24	48	110	220	
Voltios	24 as antiparasitadas de fábrici		110	220	

⁽¹⁾ Tensiones del circuito de mando existentes

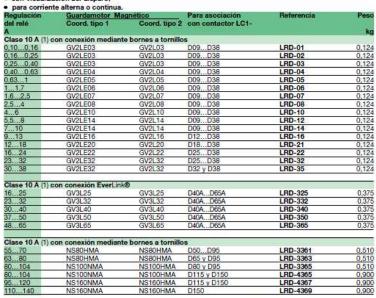
Presentación: 1/14 Características: 1/15 Referencias: 1/16 Dimensiones: 1/24 Esquemas: 1/27

Componentes de protección Telemecanique TeSys

Guardamotores magnetotérmicos modelos GV2-ME y GV2-P

GV2-ME mando mediante pulsadores

de le 50/6	Potencias normalizadas de los motores trifásicos 60/60 Hz en categoría AC-3 100/415 V 500 V			s trifásicos ategoría AC-3			690 V		os AC-3		Rango de reglaje de los dispara-	Corriente de disparo magnético	Referencia	Peso
P	lcu	lcs (1)	P	lcu	lcs (1)	P	lcu	ics (1)	dores térmicos (2)	ld ± 20%				
kW	kA		kW	kA		kW	kA	Month	A	A		ko		
Gua	rdan	otore	es con	mai	ndo d	e pul	sado	res	AND DESCRIPTION	2.000.00				
0,06		*	-	023300	0000000	SHIPS NO.	-	<u>-</u>	0,160,25	2,4	GV2-ME02	0,260		
0,09	*	*	-	-	-	-	-	-	0.250.40	5	GV2-ME03	0,260		
0.12	*	*	-	-	-	0.37	*	*	0.400.63	8	GV2-ME04	0,260		
0,18	*	*	-	-	-	-	-	-	0.400.63	8	GV2-ME04	0,260		
0,25	*	*	-	-	-	0,55	*	*	0.631	13	GV2-ME05	0.260		
0,37	*	*	0,37	*	*	-	-		11.6	22.5	GV2-ME06	0,260		
0.55	*	*	0,55	*	*	0.75	*	*	11,6	22.5	GV2-ME06	0,260		
0.75		*	1.1	*	*	1.5	3	75	1.62.5	33.5	GV2-ME07	0.260		
1.1	*	*	1.5	*	*	2.2	3	75	2.54	51	GV2-ME08	0,260		
1,5	*	*	2.2	*	*	3	3	75	2.54	51	GV2-ME08	0.260		
2,2	*	*	3	50	100	4	3	75	46.3	78	GV2-ME10	0,260		
3	*	*	4	10	100	5.5	3	75	610	138	GV2-ME14	0,260		
4	*	*	5.5	10	100	7.5	3	75	610	138	GV2-ME14	0,260		
5.5	15	50	7.5	6	75	9	3	75	914	170	GV2-ME16	0.260		
7,5	15	50	9	6	75	15	3	75	1318	223	GV2-ME20	0,260		
9	15	40	11	4	75	18,5	3	75	1723	327	GV2-ME21	0,260		
11	15	40	15	4	75		-	-	2025	327	GV2-ME22 (3)	0,260		
15	10	50	18.5	4	75	22	3	75	2432	416	GV2-ME32	0.260		


Descripción: 1/74 Caracteristicas: 1/74 Referencias: 1/78 Accesorios: 1/80 Dimensiones: 1/82

Componentes de protección Telemecanique TeSys

Relés tripolares de protección térmica serie D

Relés de protección térmica diferenciales para asociar a guardamotores magnéticos

- Relés compensados, con rearme manual o automático,
 con visualización del disparo,

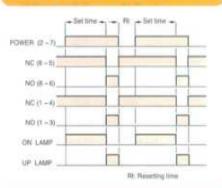
La norma IEC 947-4-1 define la duración del disparo en 7,2 veces la intensidad de reglaje l_n: clase 10 A: entre 2 y 10 segundos, clase 20: entre 6 y 20 segundos.
 Consultar por Relés térmicos clase 20

LRD-21

M+Y RATED VOLTAGE 24V-240V AC/DC AVAILABLE

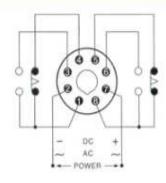
CHARACTERISTICS

- Exclusive CMOS IC assures high performance stability, and accuracy.
- 4 Time range can be changed with ease by merely exchanging DIP switch.
 Easy to monitor DIP switch positions, time series
- Easy to monitor DIP switch positions, time series and operation voltage.
- Five time series with wide timing ranges from 0.1 sec. to 30 hrs.
- Output contact: Time delay contacts 2C (DPDT)
 10A


TIME RANGE

Four time are available for each timer by satting the DIP switches to required positions

Time	Pos	ition of time	range sele	ector
range	1 11	N	13 E	00 m
Α	1S	10S	60S	10M
	(0.05S-1S)	(0.1S-10S)	(0.5S-60S)	(10S-10M)
В	3S	305	3M	30M
	(0.05S-3S)	(0.5S-305)	(1S-3M)	(30S-30M)
С	65	60S	6M	60M
	(0.1S-6S)	(0.5S-60S)	(1S-6M)	(30S-60M)
D	605	10M	60M	10H
	(0.5S-60S)	(10S-10M)	(30S-60M)	(10M-10H)
E	3M (1S-3M)	30M (30S-30M)	(HE-ME)	30H (1H-30H)


OPERATION TIME CHART

SPECIFICATIONS

RATED VOLTAGE	AC 110V, 225V, 380V, 440V, DC 12V, 24V,
Rated frequency	50/60Hz.
ORERATING VOLTAGE	AC 85-110% of rated voltage. DC 80-110% of rated voltage.
CONSUMED POWER	About 2VA FOR AC. About 2W FOR DC.
CONTROL METHOD	Time-limit operation Self-resotting
CONTACT RATING	250V AC 10A(P.F.=1)
AMBIENT TEMP.	-10°C-+55°C
AMBIENT HUMIDITY	45-85% RH

CONNECTION DIAGRAM

Home ▶ Products ▶ Jacks ▶ Jacks Banana Jacks ▶ Safety ▶ CT2236: Banana Jack Panel Mount

CT2236: BANANA JACK PANEL MOUNT

4MM SAFETY BANANA JACK (SOCKET) ACCEPTS SHEATHED (SHROUDED) BANANA PLUGS, M4 THREAD TERMINATION SAFETY

4mm Safety Jack (socket) accepts sheathed or shrouded banana plugs and meets the latest international safety standard IEC 61010-031 to 1,000 V CAT III and 600 V CAT IV. Round panel nut allows for compact placement and assembly.

Termination is with a M4 threaded stud with 2 hex nuts.

- Materials: Body: Polyamide (Nylon); Jack and Nut: Brass, Nickel Plt
- Body Thread: M12 x 0.75mm
- Maximum Panel Thickness: .40" (10mm)
- Available in 9 colors
- Use assembly tool Model CT2246A
- Sold in package of 50

ECIFICATIONS	DOWNLOADS	PRODUCT SELECTION	ON TOOL
SPECIFICATIONS			
IEC Rating	1,000 V CAT II	II / 600 V CAT IV	
Current Max	3	6 A	
Resistance Max	(12	2 mΩ	
Temperature	-20° t	o +80°C	
RoHS (2011/65/EU)	Con	npliant	

SITOP 24 V monofásicas y bifásicas

Intensidad de salida 5 A

Sinopsis

SITOP modular

SITOP smart

Campo de aplicación

La fuente de alimentación modular con entrada de rango amplio monofasica y bifásica para aplicación universal; con característica de salida conmutable; ampliación funcional mediante módulos adicionales al efecto.

5 A

Fuente monofásica para aplicación universal; conforme con la directiva de la UE 94/9/CE (ATEX 100a); caja estrecha; 50 % de potencia extra por 5 s y 120 % de potencia nominal de forma continua hasta 45 °C; sin limitación de armónicos en red según EN 61000-3-2 con 6EP1333-2AA01.

5 A

Datos técnicos

Fuente de alimentación, tipo

racine at aminemation, npo			
Referencia	6EP1 333-3BA00	6EP1 333-2AA01	6EP1 333-2BA01
Entrada Tension nominal V _{e nom}	monofasica y bifasica AC 120/-230/230-500 V AC ajustable por conmutador integrado	monofasica AC 120/230 V AC ajustable por conmutador integrado	monofasica AC 120/230 V AC ajustable por conmutador integrado
Rango de tensión	85 264/176 500 V AC	85 132 V/170 264 V AC	85 132 V/170 264 V AC
Resistencia a sobretensiones	1300 V _{plop} , 1,3 ms	2,3 x V _{e nom} , 1.3 ms	2,3 x V _{e nom} , 1,3 ms
Puenteo de fallos de red con I _{s nom} Frecuencia nominal de red; rango Intensidad nominal I _{e nom} Limitación de intensidad de conexión (+ 25 °C)	> 25 ms con V _e = 120/230 V 50/60 Hz; 47 63 Hz 2,2-1,2/1,2-0,61 A < 35 A	> 20 ms con V _e = 93/187 V 50/60 Hz; 47 63 Hz 2,1/1,15 A < 32 A, tip. 3 ms	> 20 ms con V _e = 93/187 V 50/60 Hz; 47 63 Hz 2,1/1,15 A < 32 A, ttp. 3 ms
Pt Fusible de entrada incorporado Magnetotermico (IEC 898) recomendado en la línea de alimentación	< 1,7 A ² s 3,15 A, lento (no accesible) a partir de 6 A (10 A), curva C (B); con entrada bifasica: magnetoter- mico con dos polos acoplados o guardamotor 3RV1021-1EA10	< 0.8 A ² s 3.15 A/250V, lento (no accesible) a partir de 6 A, curva C	< 0,8 A ² s 3,15 A/250V, lento (no accesible) a partir de 6 A, curva C
Salida	tension continua estabilizada	tension continua estabilizada	tensión continua estabilizada
Tensión nominal V _{s nom} Tolerancia total • Comp. estática variación de red • Comp. estática variación de carga	y aislada galvanicamente 24 V DC ±3 % aprox. 0,1 % aprox. 0,1 %	y aislada galvanicamente 24 V DC ±3 % aprox. 0,1 %, aprox. 0,5 %	y aislada galvanicamente 24 V DC ±3 % aprox. 0,1 % aprox. 0,5 %
Ondulación residual Spikes (ancho de banda: 20 MHz) Rango de ajuste Indicador de funcionamiento Comportamiento al conectar/ desconectar	< 50 mV _{pp} < 200 mV _{pp} < 200 mV _{pp} 24 29,8°V (max. 120 W) LED verde para 24 V O.K. rebase transitorio de V _s en aprox. 3 %	< 150 mV _{pp} (tlp. 50 mV _{pp}) < 240 mV _{pp} (tlp. 150 mV _{pp}) 22.8 28 V LED verde para 24 V O.K. rebase transitorio de V _s en aprox. 4 %	< 150 mV _{pp} (tip. 50 mV _{pp}) < 240 mV _{pp} (tip. 150 mV _{pp}) 22.8 28 V LED verde para 24 V O.K. rebase transitorio de V _s en aprox. 4 %
Retardo/subida de tensión en	< 1 s/< 50 ms	< 0.1 s con 230 V AC/tip. 50 ms	< 0,1 s con 230 V AC/tip. 50 ms
arranque Intensidad nominal / _{s nom} Rango de intensidad	5 A	5 A	5 A
• hasta + 45 °C • hasta + 60 °C	0 5 A 0 5 A	0 6 A 0 5 A	06 A 05 A
Sobrecorriente dinàmica con • arranque contra cortocircuito • cortocircuito en funcionamiento Posibilidad de conex, en paralelo para aumento de potencia	intensidad constante, aprox. 5,5 A tip. 15 A durante 25 ms sl. 2 unidades (caracteristica conmutable)	tip. 17 A durante 100 ms tip. 17 A durante 200 ms si, 2 unidades	tip. 17 A durante 100 ms tip. 17 A durante 200 ms st, 2 unidades

LOGO! Basic and LOGO! Pure

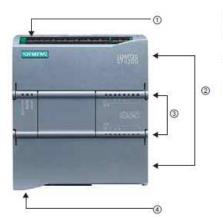
- Different voltages, i.e. 12 V DC, 24 V AC/DC, 115/240 V AC/DC
 - Can be used for a wide range of applications
- Automatic changeover for configured daylight saving time
 - Reduces maintenance overhead
- · Password protection
 - Protects your engineering IP
- 38 integrated, pre-tested functions
 - No additional devices, such as elapsed time counter, are required
- · Linking of 200 functions is possible
 - Extensive applications can be implemented without restrictions
- Eight digital inputs (incl. four Als at 12/24 V DC) and four digital outputs on

- · Retentive data memory
 - Protects current values against loss in the event of a power failure
- Flexibly expandable up to 24 DIs, 16 DOs, 8 AIs and 2 AOs
 - Protects original investment
 - Suitable for a wide variety of applications
- Software LOGO! Soft Comfort V6 for user-friendly generation of control programs on PC; suitable for a variety of operating systems, such as Windows 95/98, NT 4.0, Me, 2000, XP, Vista, MAC OS X 10.4 with J2SE 1.5.0 and SUSE LINUX 10.0.
- Connection facility for remote text display on all OBA6 basic devices

LOGO! modular – the technical details

Basic units	LOGO! 12/24RC ¹⁾ , LOGO! 12/24RCo ²⁾	LOGO! 24%, LOGO! 240%	
Inputs	8	8	
of these usable as analog inputs	4 (0 to 10 V)	4 (0 to 10 V)	
Input/supply voltage	DC 12/24 V	DC 24 V	
Permissible range On "0" signal On "1" signal Input current	10.8 V DC to 28.8 V DC Max. 5 V DC Min. 8.5 V DC 1.5 mA (I3 to I6), 0.1 mA (I1, I2, I7, I8)	20.4 V DC to 28.8 V DC Max. 5 V DC Min. 12 V DC 2 mA (I3 to I6), 0.1 mA (I1, I2, I7, I8)	
Outputs	4 relays	4 transistors	
Continuous current	10 A for resistive load; 3 A for inductive load	0.3 A	
Short-circuit protection	External fuse required	Electronic (approx. 1 A)	
Operating frequency	2 Hz for resistive load; 0.5 Hz for inductive load	10 Hz	
Power consumption	0.7 to 2.1 W (12 V) 1.0 to 2.4 W (24 V)	0.7 to 1.3 W 1.0 to 1.8 W	
Cycle time	< 0.1 ms/function	< 0.1 ms/function	
Real-time clock/calendar/ retentive data memory backup	Yes/typ. 80 h (2 years with battery module)	5	
Connecting cables	2 x 1.5 mm ² or 1 x 2.5 mm ²		
Ambient temperature	0 to +55 °C		
Storage temperature	-40 °C to +70 °C		
Radio interference suppression	To EN 55011 (limit-value class B)		
Degree of protection	IP20		
Approvals	To VDE 0631, IEC 1131, UL, FM, CSA, ship-buil	lding certifications	
Mounting	On 35-mm DIN rail, 4 WM wide, or wall mount	ting	
Dimensions	72 (4 WM) x 90 x 55 mm (W x H x D)		

Digital modules	LOGO! DM8 12/24R	LOGO! DM8 24 DM16 24		
Inputs	4	4/8		
Input/supply voltage	12/24 V DC	24 V DC		
Permissible range	10.8 to 28.8 V DC	20.4 to 28.8 V DC		
On "0" signal On "1" signal	Max. 5 V DC Min. 8.5 V DC	Max. 5 V DC Min. 12 V DC		
Input current	1.5 mA	2 mA		
Outputs	4 relays	4/8 transistors		
Continuous current I _{th} (per terminal)	5 A for resistive load 3 A for inductive load	0.3 A		
Short-circuit protection required	External fuse required	Electronic (approx. 1 A)		
Operating frequency	2 Hz for resistive load	10 Hz		
	0.5 Hz for inductive load			
Power consumption	0.3 to 1.7 W at 12 V DC 0.4 to 1.8 W at 24 V DC	0.8 to 1.1 W * 0.8 to 1.7 W **		
Dimensions (W x H x D)	36 (2 WM) x 90 x 53 mm	36 (2 WM) x 90 x 53 mm 72 (4 WM) x 90 x 53 mm		


Presentamos el potente y flexible S7-1200

El controlador S7-1200 ofrece la flexibilidad y potencia necesarias para controlar una gran variedad de dispositivos para las distintas necesidades de automatización. Gracias a su diseño compacto, configuración flexible y amplio juego de instrucciones, el S7-1200 es idóneo para controlar una gran variedad de aplicaciones.

La CPU incorpora un microprocesador, una fuente de alimentación integrada, circuitos de entrada y salida, PROFINET integrado, E/S de control de movimiento de alta velocidad y entradas analógicas incorporadas, todo ello en una carcasa compacta, conformando así un potente controlador. Una vez descargado el programa, la CPU contiene la lógica necesaria para vigilar y controlar los dispositivos de la aplicación. La CPU vigila las entradas y cambia el estado de las salidas según la lógica del programa de usuario, que puede incluir lógica booleana, instrucciones de contaje y temporización, funciones matemáticas complejas, así como comunicación con otros dispositivos inteligentes.

Para comunicarse con una programadora, la CPU incorpora un puerto PROFINET integrado. La CPU puede comunicarse con paneles HMI o una CPU diferente en la red PROFINET.

Para garantizar seguridad en la aplicación, todas las CPUs S7-1200 disponen de protección por contraseña, que permite configurar el acceso a sus funciones.

- Conector de corriente
- Conectores extraíbles para el cableado de usuario (detrás de las tapas)
- LEDs de estado para las E/S integradas
- Conector PROFINET (en el lado inferior de la CPU)

Función	CPU 1211C	CPU 1212C	CPU 1214C
Dimensiones físicas (mm)	90 x 100 x 75	90 x 100 x 75	110 x 100 x 75
Memoria de usuario Memoria de trabajo Memoria de carga Memoria remanente	• 25 KB • 1 MB • 2 KB	• 25 KB • 1 MB • 2 KB	• 50 KB • 2 MB • 2 KB
E/S integradas locales	6 entradas 4 salidas 2 entradas	8 entradas 6 salidas 2 entradas	14 entradas 10 salidas 2 entradas
Tamaño de la memoria imagen de proceso • Entradas • Salidas	1024 bytes 1024 bytes	• 1024 bytes • 1024 bytes	1024 bytes 1024 bytes
Área de marcas (M)	4096 bytes	4096 bytes	8192 bytes
Ampliación con módulos de señales	Ninguno	2	8
Signal Board	1	1	1
Módulos de comunicación	3	3	3
Contadores rápidos Fase simple Fase en cuadratura	3 3 a 100 kHz 3 a 80 kHz	3 a 100 kHz 1 a 30 kHz 3 a 80 kHz 1 a 20 kHz	6 3 a 100 kHz 3 a 30 kHz 3 a 80 kHz 3 a 20 kHz
Salidas de impulsos ¹	2	2	2
Memory Card (opcional)	Sí	Sí	Sí
Tiempo de respaldo del reloj en tiempo real	Típico: 10 días / Míni	mo: 6 días a 40 °C	
Velocidad de ejecución de funciones matemáticas con números reales	18 μs/instrucción		
Velocidad de ejecución booleana	0,1 µs/instrucción		

SIEMENS

Hoja de datos 3TX7014-1BM00

INTERFACE DE SALIDA CON RELE ENCHUFABLE, 1CONMUT. BORNE DE TORNILLO 24V DC ANCHO DE CAJA 6,2 MM

îpo de comiente		DC	
Tensión de alimentación del circuito de mando			
• con DC valor asignado			
— mínima	v	24	
— máxima	v	24	
Comportamiento de conmutación	ž.	monoestable	
Número de contactos NC para contactos auxillares		0	
Número de contactos NA para contactos auxiliares		0	
Número de contactos conmutados para contactos auxiliares		1	
Intensidad de empleo de los contactos auxiliares			
• con DC-13			
— con 24 V	A	1.	
— con 110 V	A	0,2	
— con 230 V	A	0,1	
• con AC-15			
— con 230 V	A	3	
Identificadores de los equipos según DIN 40719, ampliado según IEC 204-2 según IEC 750		к	
Identificadores de los equipos según EN 61346-2		К	
alos mecánicos:		2	
Tipo de conexión eléctrica	i i	conexión por tornillo	
Tipo de conexión eléctrica zócalo enchufable		sí	
Tipo de bobina de relé		con polaridad	
Tipo de función de maniobra con apertura positiva		No	
Componente del producto zócalo enchufable		sí	
Anchura	mm	6,2	
Altura	mm	89,5	
Profundidad	mm	92	
ondiciones ambiente:		- 175.500	
Grado de protección IP		IP20	

Presentación: 2/9 Características: 2/2 Referencias: 2/11 Esquemas: 2/12 Dimensiones: 2/13

Variadores de velocidad para motores asíncronos **Altivar**

Guía de Selección

Variadores estándares - Baja tensión

Máquinas simples	Máquinas complejas		
Máquinas simples para la industria (pequeñas aplicaciones de manipulación, envasado, bombas, ventiladores, etc.) Máquinas comerciales simples (barreras de acceso, carteles publicitarios rotativos, camas médicas, cintas rodantes, amasadoras, etc.) Vitos fipos de aplicación: Máquinas móviles y pequeñas aplicaciones equipadas con toma de corriente, Aplicaciones que usan tradicionalmente otras soluciones (motores CC de 2 velocidades, accionamientos mecânicas, etc.).	Máquinas industriales simples (manipulación y envasado de materiales, máquinas textiles, máquinas especiales, bombas y ventiladores).	Máquinas industriales: montacargas, envasado, manipuleo de materiales, máquinas especiales (máqui- nas para trabajo de madera, maquinaria para procesamiento de metales, etc.)	
Altivar 12	Altivar 312	Altivar 32	

			The same of the sa			
			Variador de velocidad para pequeñas máquinas con motor asincrónico trifásico de 240V.	Variador de velocidad para motores asincrónicos trifásicos.	Variador de velocidad para motores asincrónicos y sincróni- cos de un solo lazo	
Descripción			Compacto Fácil de poner en marcha (Plug & Play). Solución conflable y económica para máquinas compactas.	Abierto: gran número de tarjetas de comunicación disponibles como opcionales. Amigable con el usuario: inter- faz simplificada. Autosintonía: máxima perfor- mance.	Compacto: formato «Book». Funciones de seguridad integradas conforme a la norma IEC 61508 SIL3 y PL-e. Abierto: tarjetas de comunicación opcionales. Funciones lógicas programables integradas. Ajuste simple. Ahorro de energía: Control de efficiencia energética permanente	
Información técnica	Rango de potencia para alimentación 5060 Hz		0,184 kW	0,1815 kW	0,1815 kW	
	Tensión		Monofásico 100240 V Trifásico 200240 V	Monofásico 200240 V Trifásico 200600 V	Monofásico 200240 V Trifásico 380480 V	
	Variador / Frecuencia de salida		0,5400 Hz	0,5500 Hz	0,1599 Hz	
	Tipo de motor	Asincrónico	SI	Si	Si	
		Sincrónico	No	No	Si	
Comunicación	Integrado		Modbus	Modbus y CANopen	Modbus y CANopen	
	Opcional			CANopen Daisy chain, DeviceNet, Profibus DP, Modbus TCP, Fipio	EtherNet/IP, Modbus TCP, Profibus DP V1, EtherCAT, Devicenet	
Normas y certificaciones		IEC/EN 61800-5-1, IEC/EN 61800 a C3) CE, UL, CSA, C-Tick, GOST, I	IEC/EN 61800-5-1, IEC/EN 61800-3 (enforms 1 y 2, Cat. C2 y C3), UL50 EN 954-1 Cat. 3, ISO/EN 1384-5, Cat. 3 (Pud), IEC 61800-5-2, IEC/ 61508 (partes 1 y 2) nivel SL1 SIL2 SIL3, norma borrador EN 50495E, C UL, CSA, C-Tok, GOST, NOM.			
Uso previsto			Máguinas		The state of the s	

Su motor es muy valioso

Protéjalo únicamente con productos Siemens.

SINAMICS

MICROMASTER

Motor 4 polos Tipo 1LA7 160

Motor 4 polos Tipo 1LA5 180

Eficiencia IE1	Tipo	Tamaño Constructivo	HP Pot	encia kW	Eficiencia %	F.Servicio FS	220 VAC	nte (A) 440 VAC
	VELOCIDAD 1.800	rpm (4 polos)						
100160473	1LA7070 - 4YA60	71	0.5	0.37	63.6	1.15	1.9	0.95
100160477	1LA7073 - 4YA60	71	0.75	0.56	64.0	1.15	2.9	1.45
100160482	1LA7080 - 4YA60	80	1.0	0.75	64.2	1.15	3.5	1.75
100160488	1LA7083 - 4YA60	80	1.5	1.12	65.9	1.15	5.0	2.5
100172346	1LA7096 - 4YB60	90	2.0	1.50	82.3	1.15	7.0	3.5
100172353	1LA7097 - 4YB60	90	3.0	2.20	83.0	1.15	9.6	4.8
100160505	1LA7112 - 4YB60	112	4.0	3.00	85.5	1.15	13.0	6.5
100160510	1LA7112 - 4YC60	112	5.0	3.73	85.3	1.15	15.8	7.9
100172355	1LA7115 - 4YB60	112	7.5	5.60	87.5	1.15	23.2	11.6
100172358	1LA7132 - 4YB70	132 S/M	10.0	7.5	88.3	1.15	28.8	14.4
100160530	1LA7135 - 4YB70	132 S/M	15.0	11.2	89.8	1.15	43.0	21.5
100172361	1LA7164 - 4YB70	160 M/L	20.0	14.9	90,9	1.15	56.8	28.4
100172363	1LA7167 - 4YB70	160 M/L	25.0	18.7	91.8	1.15	66.0	33.0
100160439	1LA5183 - 4YB80	180 M	30.0	22.4	91.8	1.05	78.0	39.0
100160447	1LA5187 - 4YB80	180 L	40.0	29.8	92.5	1.05	104.0	52.0
100160699	1LA5207 - 4YB80	200 L	50.0	37.3	92.5	1.15	126.0	63.0
100160701	1LA5220 - 4YB80	225 S	60.0	44.5	93.0	1.15	148.0	74.0
100160457	1LA5223 - 4YB80	225 M	75.0	56.0	93.3	1.15	188.0	94.0