UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO

CARRERA: INGENIERÍA ELECTRÓNICA

Tesis previa a la obtención del título de: INGENIEROS ELECTRÓNICOS

TEMA: DISEÑO DE UNA RED DE ALTA DISPONIBILIDAD PARA LA UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO CAMPUS SUR

AUTORES: MANUEL ALEJANDRO MORENO JIMÉNEZ LUIS ANDRÉS TIPÁN AGUAS

DIRECTOR: JORGE ENRIQUE LÓPEZ LOGACHO

Quito, abril del 2015

DECLARATORIA DE RESPONSABILIDAD Y AUTORIZACIÓN DE USO DEL TRABAJO DE TITULACIÓN

Nosotros, autorizamos a la Universidad Politécnica Salesiana la publicación total o parcial de este trabajo de titulación y su reproducción sin fines de lucro.

Además, declaramos que los conceptos, análisis desarrollados y las conclusiones del presente trabajo son de exclusiva responsabilidad de los autores.

Quito, abril del 2015

Manuel Alejandro Moreno Jiménez

C.I: 171712710-2

Luis Andrés Tipán Aguas

C.I: 172321681-6

DEDICATORIA

Dedico este trabajo de titulación a todos los que creyeron en mí, especialmente a mis

padres y hermanas que han sido un gran apoyo para poder culminar mi carrera, siendo

ellos mi motivación de seguir adelante y esforzarme cada día para seguir progresando

como persona y como profesional.

Gracias por ser como son, por todo ese cariño que me han sabido brindar durante estos

años.

Luis Andrés Tipán Aguas

Con todo mi cariño y mi amor para las personas que hicieron todo en la vida para que

yo pudiera lograr mis sueños, por motivarme y darme la mano cuando sentía que el

camino se terminaba, a ustedes por siempre mi corazón y mi agradecimiento Papá y

Mamá.

A tu paciencia y comprensión, preferiste sacrificar tu tiempo para que yo pudiera

cumplir con el mío. Por tu bondad y sacrificio me inspiraste a ser mejor para ti, ahora

puedo decir que este trabajo de titulación lleva mucho de ti, gracias por estar siempre

a mi lado, Rocío.

A mi hijo que algún día llegará a ser mejor que yo.

Manuel Alejandro Moreno Jiménez

ÍNDICE

INTRODUCCIÓN	1
CAPÍTULO 1	2
INTRODUCCIÓN CAPÍTULO 1. PARÁMETROS DEL PROYECTO 1.1. Estructura funcional de la Universidad Politécnica Salesiana 1.2. Planteamiento del problema 1.3. Objetivos 1.3.1. Objetivo general 1.3.2. Objetivos específicos 1.4. Justificación 1.5. Alcances CAPÍTULO 2 ESTADO DEL ARTE 2.1. Definición de una red de área local 2.1.1. Necesidad de una red de área local 2.1.2. Características de una red de área local 2.2. Topología física 2.2.1. Topología tipo bus 2.2.2. Topología tipo estrella 2.4.1. Funcionalidad 2.4.2. Escalabilidad 1.2.4.3. Adaptabilidad 2.4.4. Redundancia 2.4.5. Facilidad de administración. 1.5. Calidad de servicio (OoS)	2
1.1. Estructura funcional de la Universidad Politécnica Salesiana	2
1.2. Planteamiento del problema	4
1.3. Objetivos	4
1.3.1. Objetivo general	4
1.3.2. Objetivos específicos	4
1.4. Justificación	5
1.5. Alcances	5
CAPÍTULO 2	7
ESTADO DEL ARTE	7
2.1. Definición de una red de área local	7
2.1.1. Necesidad de una red de área local	7
2.1.2. Características de una red de área local	7
2.2. Topología física	8
2.2.1. Topología tipo bus	8
2.2.2. Topología tipo anillo	9
2.2.3. Topología tipo estrella	9
2.4.1. Funcionalidad	10
2.4.2. Escalabilidad	10
2.4.3. Adaptabilidad	11
2.4.4. Redundancia	11
2.4.5. Facilidad de administración	11
2.5. Calidad de servicio (QoS)	11
2.5.1. Parámetros de calidad de servicio	12

2.5.2. Requerimientos de calidad de servicio de las aplicaciones	12
2.5.3. Servicios QoS	13
2.5.3.1. Enrutamiento selectivo	13
2.5.3.2. Control de tráfico	13
2.5.3.3. Acceso remoto a redes de comunicaciones	13
2.5.3.4. Administración de ancho de banda	14
2.5.3.5. Balanceo de carga	14
2.6. Seguridad en las redes	14
2.6.1. Seguridad tipo física	15
2.6.2. Seguridad tipo lógica	15
2.6.3. Niveles de seguridad informática	16
2.7. Universidad Politécnica Salesiana sede quito campus Sur	17
2.7.1. Ubicación.	17
2.7.1.1 Bloque A	17
2.7.1.2 Bloque B	19
2.7.1.3 Bloque C	20
2.7.1.4 Bloque D	21
2.7.1.5 Bloque E	22
2.7.1.6 Bloque F	23
2.7.1.7 Bloque н	24
2.7.1.8 Bloque G	25
2.8. Diseño de red jerárquico	26
2.9. Análisis de la situación actual e infraestructura de la red	26
2.9.1 Capa de core y distribución	27
2.9.2. Capa distribución y acceso	27
2.9.2.1 Redes virtuales en el campus.	30
2.9.3. Topología inalámbrica	33
2.9.4. Cobertura de dispositivos (access point)	34
2.9.5. Cobertura access point exteriores	34
2.9.5.1. Bloque A	34

2.9.5.2. Bloque B	36
2.9.6. Cobertura access point interiores	38
2.9.6.1. Administración	38
2.9.6.2. Biblioteca	39
2.9.6.3. Análisis del tráfico actual	40
CAPÍTULO 3	41
DISEÑO DE LA RED LAN	44
3.1. Criterios de diseño lan para la red de alta disponibilidad	44
3.2. Número de usuarios en la red	44
3.2.1 Expansión futura	46
3.3. Equipos a usar	47
3.3.1. Marca de los equipos	47
3.3.2. Cantidad de equipos	48
3.3.2.1. Distribución de los equipos por bloque	48
3.4. Especificaciones técnicas de los equipos	50
3.4.1. Especificaciones técnicas del core-cisco 6506e	51
3.4.2. Especificaciones técnicas de distribución cisco 3750	53
3.4.3. Especificaciones técnicas acceso-cisco 2960	55
3.4.4 Especificaciones técnicas cisco asa 5515-x	56
3.4.5 Especificaciones técnicas cisco s380 web security appliance	57
3.4.6 Especificaciones técnicas cisco 2500 series wireless controller	58
3.4.7. Especificaciones técnicas antenas cisco aironet 1520 outdoor	60
3.4.8. Especificaciones técnicas antenas cisco aironet 2600 input	61
3.5. Uso de poe	62
3.6. Solución inalámbrica	63
3.6.1 Cobertura inalámbrica exterior todo el campus	63
3.6.1.1. Funcionalidad general de la red propuesta	
3.7. Servicios y aplicaciones	65

3.7.1. Seguridad a nivel de acls	67
3.7.2. Alta disponibilidad	67
3.7.2.1 Disponibilidad actual	68
3.7.2.2 Disponibilidad a obtenerse con la propuesta de diseño	69
3.8. Simulador gns3	69
3.8.1 Topología física	70
3.8.2 Topología lógica	71
3.8.3 Topología de conectividad en gns3	72
3.9 Configuración de la simulación	73
3.9.1. Pasos detallados de la configuración de GLBP	73
3.9.2. Configuración de dispositivos	76
3.9.3. Análisis de resultados	76
CAPÍTULO 4	81
DISEÑO DE LA RED LAN	81
4.1. Análisis técnico	81
4.2. Beneficios primordiales de orden técnico	82
4.3. Análisis económico	83
4.3.1 Valores referenciales	83
CONCLUSIONES	87
RECOMENDACIONES	88
LISTA DE REREFERNCIAS	89

ÍNDICE DE FIGURAS

Figura I. Organigrama Funcional TI-Rectorado	2
Figura 2. Topología de red tipo Bus	8
Figura 3. Topología de red tipo Anillo	9
Figura 4. Topología de red tipo Estrella	10
Figura 5. Amenazas para la seguridad en la red	14
Figura 6. Gráfico de distribución cuartos de comunicación bloque A	18
Figura 7. Gráfico de distribución cuartos de comunicación bloque B	20
Figura 8. Gráfico de distribución cuartos de comunicación bloque C	21
Figura 9. Gráfico de distribución cuartos de comunicación bloque D	22
Figura 10. Gráfico de distribución cuartos de comunicación bloque E	23
Figura 11. Gráfico de distribución cuartos de comunicación bloque F	24
Figura 12. Gráfico de distribución cuartos de comunicación bloque H	25
Figura 13. Modelo de diseño jerárquico	26
Figura 14. Infraestructura actual de la red Core y Bloque A	27
Figura 15. Infraestructura actual de la red Bloque B, C, D, E, F, H	28
Figura 16. Distribución de VLAN	32
Figura 17. Topología inalámbrica	33
Figura 18. Área física de la UPS, Sede Quito – Campus Sur	34
Figura 19. Área física de la UPS, Sede Quito – Campus Sur	35
Figura 20. Área física de la UPS, Sede Quito – Campus Sur	36
Figura 21. Área física de la UPS, Sede Quito – Campus Sur	37
Figura 22. Interior del bloque A.	38
Figura 23. Área física de la UPS, Sede Quito – Campus Sur	39
Figura 24. Análisis de tráfico en el Switch de core	40
Figura 25. Amenazas en la red	41
Figura 26. Vulnerabilidad tipo SQL injection	411
Figura 27. Vulnerabilidad tipo cross-site scripting	412
Figura 28. Vulnerabilidad tipo HTTP trace support detected	412
Figura 29. Recursos de contenido HTTP trace support detected	413
Figura 30. Usuarios conectados en la red inalambrica	466
Figura 31. Distribución de los equipos bloque A	49

Figura 32. Distribución de los equipos bloques B,C,D,E,F	. 49
Figura 33. Distribución de los equipos bloques H,G	. 50
Figura 34. Cuadrante de Gartnet	.51
Figura 35. Cobertura de la red inalámbrica realizada con covera zone	. 63
Figura 36. Cobertura inalámbrica exterior solución	. 64
Figura 37. Distancia de cobertura CISCO Aironet 1520	. 65
Figura 38. Topología de conectividad física	.71
Figura 39. Topología de conectividad lógica	.71
Figura 40. Topología física de la red LAN	. 72
Figura 41. Tráfico INT sin GLBP	.77
Figura 42. Tráfico INT con GLBP	.77
Figura 43. Ping Host-Host con GLBP	.78
Figura 44. Ping Host-Host sin GLBP	.78
Figura 45. Tiempos de latencia con GLBP	. 79
Figura 46. Tiempos de latencia sin GLBP	. 80

ÍNDICE DE TABLAS

Tabla 1. Parámetros de calidad de servicio QoSQoS	12
Tabla 2. Requerimientos de calidad de servicios	12
Tabla 3. Usos arquitectónicos	17
Tabla 4. Sistema de distribución MDF, SDF e IDF en el bloque A	17
Tabla 5. Sistema de distribución SDFs en el bloque B	19
Tabla 6. Sistema de distribución SDF en el bloque C	20
Tabla 7. Sistema de distribución SDF en el bloque D	21
Tabla 8. Sistema de distribución SDF en el bloque E	22
Tabla 9. Sistema de distribución SDF en el bloque F	23
Tabla 10. Sistema de distribución SDF en el bloque H	24
Tabla 11: Sistema de distribución SDF campus sur	28
Tabla 12. Sistema de distribución redes virtuales campus sur	30
Tabla 13. Intensidades de Señales bloque A parte frontal	35
Tabla 14: Intensidades de Señales bloque A parte posterior.	36
Tabla 15. Intensidades de Señales bloque A lateral sur.	37
Tabla 16. Intensidades de Señales bloque A lateral norte.	37
Tabla 17: Intensidades de Señales.	38
Tabla 18: Intensidades de Señales.	39
Tabla 19: Alertas software vega.	43
Tabla 20. Sistema de distribución de usuarios campus sur	45
Tabla 21. Puntos de red a futuro	46
Tabla 22. Plataforma tecnología	48
Tabla 23: Especificaciones técnicas del CORE-CISCO 6506e	52
Tabla 24. Especificaciones técnicas de distribución-CISCO 3750	53
Tabla 25. Especificaciones técnicas acceso-CISCO 2960	55
Tabla 26. Especificaciones técnicas CISCO ASA 5515-x	56
Tabla 27. Especificaciones técnicas CISCO s380 web security appliance	57
Tabla 28. Especificaciones técnicas CISCO 2500 series wireless controller	59
Tabla 29. Especificaciones técnicas antenas CISCO Aironet 1520 outdoor	60
Tabla 30. Especificaciones técnicas antenas CISCO aironet 2600 input	61
Tabla 31. Intensidades de Señales red inalámbrica	63
Tabla 32 Servicios y Anlicaciones Actuales	66

Tabla 33. Servicios y Aplicaciones Adicionales	66
Tabla 34. Acuerdo de nivel de servicio (SLA)	68
Tabla 35. Análisis de las características primordiales de orden técnico	81
Tabla 36. Costos referenciales de equipamiento cisco	83
Tabla 37. Costos referenciales de enlaces de Internet	84
Tabla 38. Costos referenciales de enlaces de Datos	84
Tabla 39. Análisis Económico	85
Tabla 40. Interpretación del VAN y TIR	86

ÍNDICE DE ECUACIONES

Ecuación 1. Fórmula de la disponibilidad	67
Ecuación 2. Fórmula del VAN	86
Ecuación 3. Fórmula del TIR	86

ÍNDICE DE ANEXOS

Anexo 1. Análisis de necesidades de renovación de equipos de cómputo (pc) de la
sede Quito campus Sur
Anexo 2. Gráficos ancho de banda usados en la Universidad Politécnica Salesiana
sede quito campus Sur usando el software PRTG
Anexo 3. ACLs y direccionamiento propuesto para la red propuesta de alta
disponibilidad
Anexo 4. Configuración de los equipos y gráficos del funcionamiento de la red
simulada utilizando el protocolo GLBP115

RESUMEN

El crecimiento de la red de datos en los próximos años con la implementación de los nuevos servicios propuestos por la Universidad Politécnica Salesiana Sede Quito Campus Sur obligan a contar con una red eficiente.

Por esta razón este proyecto plantea el diseño de una red de alta disponibilidad, que consiste en una red de datos basada en la infraestructura actual para lo cual se realizará un levantamiento de la topología física y lógica para efectuar un estudio de la carga de tráfico en los horarios críticos y así obtener datos de la demanda de tráfico actual que posee la Universidad Politécnica Salesiana, con esto se realizará un dimensionamiento de la red (velocidad de transmisión, cobertura inalámbrica, calidad de servicio, etc.) por medio de una simulación.

El proyecto tiene como objetivo principal el resolver los problemas de los usuarios en la red de datos y satisfacer las necesidades para el acceso a las aplicaciones y servicios que se tendrán en los próximos años en la Universidad Politécnica Salesiana Sede Quito Campus Sur.

ABSTRACT

The growth in data network in the coming years with the implementation of new services offered by the Salesian Polytechnic University South Campus Headquarters Quito force us to have an efficient network.

For this reason, this project proposes the design of a high availability network, which consists of a data network based on the existing infrastructure for which a survey of the physical and logical topology is made for a study of the traffic load in critical data and get current traffic demand having the Salesian University, with this a network dimensioning is performed (transmission speed, wireless coverage, service quality, etc.). Schedules through a simulation.

The project's main objective is to solve user problems in the data network and meet the needs for access to applications and services have in the coming years in the Salesian University South Campus headquarters Quito.

INTRODUCCIÓN

El aparecimiento de nuevas aplicaciones y servicios para los usuarios dentro de la red de datos que se va a tener en los próximos años en la Universidad Politécnica Salesiana Campus Sur propone diferentes retos para la administración de la información y las comunicaciones por la cual es necesario diseñar una red de alta disponibilidad que permita la integración de cualquier aplicación o sistema de servicios que ayude a cumplir con los requerimientos de los usuarios.

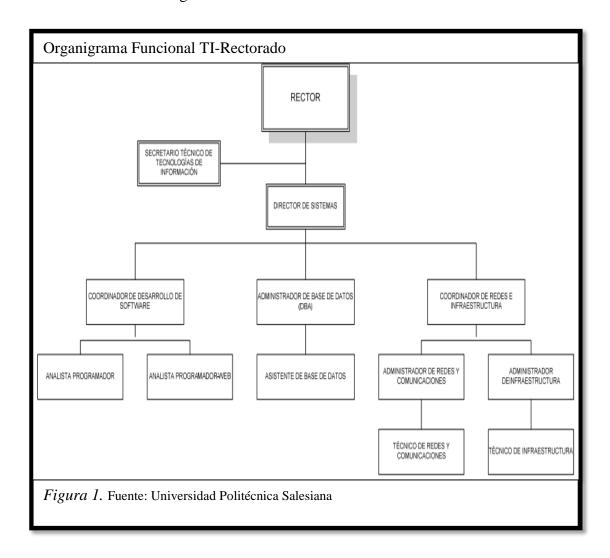
En el capítulo 1, se analizará el problema planteado, los objetivos generales y específicos, la justificación, alcances y el análisis del estado actual de la red de datos.

En el capítulo 2, se describe el análisis del estado inicial de la Universidad Politécnica Salesiana Sede Quito Campus Sur, igualmente contiene argumentos importantes para el diseño de red que se realizará posteriormente para conseguir una red de alta disponibilidad, de igual forma también se explica definiciones y conceptos afines a redes, sus principales características y la importancia de las mismas incluyendo de manera importante la seguridad.

El capítulo 3, contiene el análisis de los requerimientos para el diseño de la red de alta disponibilidad a partir de la situación actual de la red de la Universidad Politécnica Salesiana Sede Quito Campus Sur, se incluyen simultáneamente los criterios de diseño para la red tomando en cuenta una expansión a futuro de la red de 3 a 10 años.

En el capítulo 4, se realizará un análisis técnico-económico tomando en cuenta las áreas para las alternativas de diseño propuestas en el capítulo anterior. Además se incluye un análisis económico de la solución desarrollada, con el objetivo de conseguir una proximidad de los precios existentes en el mercado nacional.

Finalmente se incluyen las conclusiones y recomendaciones procedentes del presente estudio, para comprender varios aspectos importantes relacionados con el diseño de la red LAN donde se incluirán anexos que permitan visualizar de manera adecuada la mejora realizada por este proyecto.


CAPÍTULO 1

PARÁMETROS DEL PROYECTO

1.1. Estructura funcional de la Universidad Politécnica Salesiana

La Universidad Politécnica Salesiana creada mediante Ley N° 63 expedida por el Congreso Nacional y publicada en el registro oficial N° 499 del 5 de agosto de 1994, es una institución autónoma, de educación superior particular, católica, cofinanciada por el Estado. Es una persona jurídica de derecho privado, con finalidad social y sin fines de lucro. Su domicilio principal y matriz se halla en la ciudad de Cuenca, con sedes en las ciudades de Quito y Guayaquil. (Estatuto de la Universidad Politecnica Salesiana, 2014, pág. 1)

La Universidad Politécnica Salesiana tiene una estructura orgánica funcional del área de TI-Rectorado de la siguiente manera.

Las ocupaciones de los puestos mostrados en el organigrama se detallan a continuación:

Rector: coordinar y asesorar asuntos en el desarrollo tecnológico y científico de la Universidad Politécnica Salesiana.

Secretario técnico: apoyar a las diferentes áreas para conseguir una adecuada infraestructura.

Director de sistemas: garantizar la disponibilidad de los servicios de Tecnología de la Información de la Universidad Politécnica Salesiana.

Coordinador de desarrollo de software: asegurar la disponibilidad, coordinar el desarrollo y mantenimiento de las aplicaciones informáticas requeridas de la Universidad Politécnica Salesiana.

Administrador de base de datos: garantizar la disponibilidad de las Bases de datos de la Universidad Politécnica Salesiana.

Coordinador de redes e infraestructura: planificar, definir, coordinar y supervisar el mantenimiento de la operatividad de la infraestructura de telecomunicaciones, servidores y de equipos de usuario de la Universidad Politécnica Salesiana.

Analista Programador: desarrollar software de acuerdo a las necesidades de la Universidad Politécnica Salesiana.

Administrador de redes y comunicaciones: garantizar el funcionamiento de las comunicaciones, red y seguridad informática de la Universidad Politécnica Salesiana.

Administrador de Infraestructura: garantizar el correcto funcionamiento de la Infraestructura de telecomunicaciones de la Universidad Politécnica Salesiana.

Técnico de redes y comunicaciones: ofrecer soporte al usuario y mantener el control de los cambios realizados. (Salesiana, 2015)

Las Tecnologías de la Información (TI) bajo la dependencia mostrada en la figura 1 tiene como función principal prestar soporte técnico a toda la Universidad Politécnica Salesiana en el ámbito de la información y las comunicaciones.

1.2. Planteamiento del problema

Hoy en día, el crecimiento tecnológico ha dado lugar a la evolución de las aplicaciones, generando que las redes de datos requieran más disponibilidad, para así ser capaz de adaptarse a los cambios por el crecimiento del tráfico de información y así evitar que existan posibles problemas tales como: falencias a nivel físico (atenuación de la señal, insuficiente ancho de banda, interferencia inalámbrica), falencias a nivel de red (configuración de dispositivos incorrecta, problemas de autenticación y seguridad, ancho de banda insuficiente), falencias a nivel de Switches y VLAN (asignación de VLAN incorrectamente, problemas de prioridad de tráfico, uso excesivo).

1.3. Objetivos

1.3.1. Objetivo general

 Diseñar una red de alta disponibilidad, orientada a los servicios prestados por el Departamento de Tecnologías de la Información para la Universidad Politécnica Salesiana Sede Quito campus Sur.

1.3.2. Objetivos específicos

- Determinar los requerimientos del estado actual de la red de datos para satisfacer los servicios prestados por el Departamento de Tecnologías de la Información en la Universidad Politécnica Salesiana Sede Quito campus Sur.
- Identificar las vulnerabilidades que existen en la red actual tanto en equipos como a nivel de firewall.
- Diseñar la red de alta disponibilidad para la Universidad Politécnica Salesiana
 Sede Quito campus Sur.
- Verificar el desempeño de la red diseñada respecto a la red actual en base a: tráfico, cobertura, ancho de banda, velocidad de transmisión, QoS para llegar a la disponibilidad del 99.9%.
- Analizar la factibilidad técnica y económica del proyecto para su futura implementación.

1.4. Justificación

Actualmente, el uso creciente de la tecnología ha dado lugar a un incremento en la cantidad de usuarios en la red de telecomunicaciones, esto se debe básicamente al aumento en la cantidad de dispositivos en el mundo, por lo cual, se requiere mejoramiento en equipos de networking, mayor ancho de banda para el acceso a las aplicaciones y redundancia en la red de datos, que permita cumplir con los requerimientos de los usuarios.

Para que no existan consecuencias tales como el aumento de pérdida de paquetes, lentitud en la transferencia de archivos, aumento en la vulnerabilidad de la seguridad y congestión de la red de datos por el crecimiento de la red que se va a tener en los próximos años con la implementación de los nuevos servicios propuestos por la Universidad Politécnica Salesiana Sede Quito Campus Sur que son los siguientes: seguridad perimetral, masificación de cobertura inalámbrica, implementación de sistemas de control de accesos, incremento de equipos informáticos para usuarios, video conferencia, entre otros.

Esto genera la necesidad de contar con una red de alta disponibilidad para así ser capaz de adaptarse a los cambios por el crecimiento del tráfico de información a través de la infraestructura de la red actual.

1.5. Alcances

Este proyecto, genera un modelo de mejoras en la red de datos para satisfacer las necesidades de acceso a los nuevos servicios y aplicaciones que se implementaran en los próximos años en la Universidad Politécnica Salesiana sede Quito campus Sur siendo útil para todos los usuarios.

Para lo cual se diseñará una red de alta disponibilidad, orientada a los servicios prestados por el Departamento de Tecnologías de la Información que actualmente ofrece los siguientes servicios:

- Sistema de Matriculación
- AVAC
- VoIP

- WIFI
- Portal Institucional
- Cámaras IP

Debido a las vulnerabilidades que en la actualidad presentan las redes inalámbricas se debe considerar identificar las amenazas que existen en la red actual tanto en equipos como a nivel de firewall para que su desempeño sea óptimo. Por último, gracias a la alta disponibilidad de la red, se conseguirá que los usuarios puedan conectarse a Internet desde cualquier lugar en la Universidad Politécnica Salesiana Sede Quito Campus Sur, y en cualquier momento con una calidad de servicio eficaz.

CAPÍTULO 2

ESTADO DEL ARTE

En el capítulo presente se describe el análisis del estado inicial de la Universidad Politécnica Salesiana Sede Quito Campus Sur, igualmente contiene argumentos importantes para el diseño de red que se realizará posteriormente para conseguir una red de alta disponibilidad, de igual forma también se explica definiciones y conceptos afines a redes, sus principales características y la importancia de las mismas incluyendo de manera importante la seguridad.

2.1. Definición de una red de área local

Una red de área local o LAN (Local Área Network), es la interconexión de uno o varios equipos informáticos dentro de un área geográfica limitada, la cual permita a los usuarios compartir recursos e intercambiar datos y aplicaciones. Las redes de área local son comúnmente usadas en edificios, oficinas o campus ya que su objetivo principal es transferir archivos sin la necesidad de un disco físico, en rangos de datos mucho más rápidos que una conexión de Internet.

2.1.1. Necesidad de una red de área local

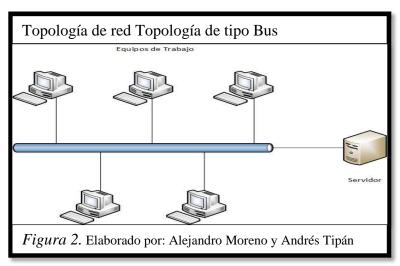
Hoy en día, el crecimiento tecnológico ha dado lugar a la evolución de las aplicaciones, generando recursos indispensables dentro de los diferentes campos ya sea científico, educativo, medico, de investigación, etc. Una gran ventaja de las redes de área local reside en que cada día es mayor la cantidad de información que se procesa de una manera local, por lo que surge la necesidad de interconectarlas entre sí para compartir información y recursos.

2.1.2. Características de una red de área local

Una red de área local tiene las siguientes características fundamentales:

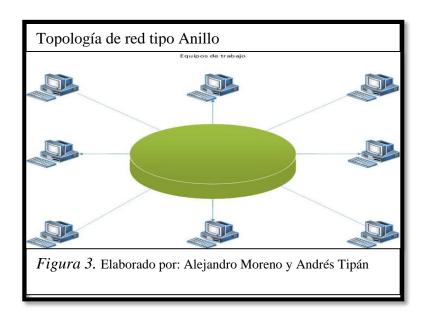
- Su índice de error es muy bajo, lo cual implica que es un sistema fiable.
- Trabaja centralmente en un área geográfica limitada.

- Suministra conectividad continúa a los servicios locales.
- Maneja la red de forma privada con administración local
- Admite el multiacceso a medios con un alto ancho de banda.
- Acopla dispositivos físicamente adyacentes

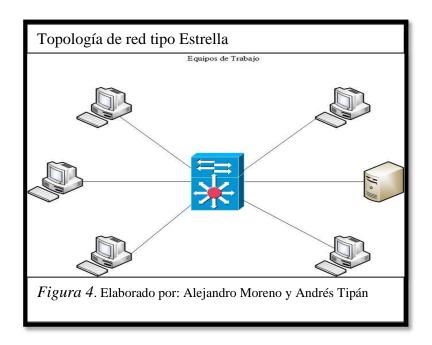

2.2. Topología física

Una topología física de red es una representación gráfica de cómo están combinados los host para comunicarse. Existe un número de componentes a tomar en cuenta para determinar cuál topología es la más adecuada para emplearse en las estaciones de trabajo para conectarse entre sí.

Existen otras clases generales de topología utilizadas en redes de área local: topología tipo bus, topología tipo anillo, topología tipo estrella. A partir de estas se derivan otras topologías que reciben su nombre dependiendo del uso que se le quiera dar a la red.


2.2.1. Topología tipo Bus

Consiste en conectar los host a un único canal de comunicación lo cual permite que todos los host reciban la información que se trasmite, es decir un host trasmite y todos los host restantes lo escuchan, pero solo recibe la información el host al cual va encaminada dicha información. Por otra parte este tipo de topología es muy simple pero presenta varias dificultades, debido que si se envía información a dos host a la vez la red colapsa y se interrumpe la comunicación dejando de funcionar la red.


2.2.2. Topología tipo anillo

Consiste en conectar los host en serie formando un anillo cerrado, es decir funciona por un único canal de comunicación es parecida a la lógica de la topología de tipo bus, ya que ambas manejan un solo canal de comunicación. Además en esta topología tipo anillo, el mensaje se trasmite en una sola dirección y es leído por cada uno de los host individualmente y retransmitido al anillo en caso de no ser el destinatario final de los mensajes, esta topología tiene un mensajero central llamado token el cual gira alrededor del anillo constantemente sin parar y en una sola dirección. Posee la misma desventaja que la topología de bus de que si se rompe el cable la red deja de funcionar.

2.2.3. Topología tipo estrella

Se caracteriza por ser una red en la cual sus estaciones de trabajo están conectadas directamente a un único punto central que dirige el tráfico al lugar adecuado. Este tipo de topología se utiliza sobre todo para redes de área local. Cabe mencionar que la Universidad Politécnica Salesiana sede Quito campus Sur posee este tipo de topología en su infraestructura de red.

2.2.4. Topología lógica

Una topología lógica de red es la forma en que los hosts se comunican a través del medio físico, los tipos más usuales de topologías lógicas son:

Broadcast (Ethernet), el cual permite que cada host envié sus datos hacia los demás host del medio de red.

Transmisión de tokens (Token Ring), el cual transmitir un token eléctrico de forma consecutiva a cada host del medio de red en caso de que el host no tenga ningún dato para enviar, trasmite el token hacia el siguiente host.

2.4. Requerimientos para el diseño de una red

2.4.1. Funcionalidad

La funcionalidad es el conjunto de características que hacen que la red trabaje de manera útil, es decir la red debe proveer conectividad que permita cumplir con los requerimientos de los usuarios y satisfacer las necesidades para el acceso a las aplicaciones con una velocidad y confiabilidad razonables.

2.4.2. Escalabilidad

La escalabilidad es la capacidad que tiene la red para expandirse rápidamente y adaptarse a cambios sin perder calidad en los servicios ofrecidos. La escalabilidad

tiene un factor importante en el crecimiento de la red. Si tiene como objetivo crecer en el número de usuarios tiene que mantener su rendimiento actual.

2.4.3. Adaptabilidad

La adaptabilidad es la capacidad para ajustarse a los cambios en la red, es decir, en el diseño de la red se debe tomar en cuenta las tecnologías futuras y equipos que permitan tener flexibilidad, para poder aumentar de tamaño sin alterar el rendimiento de la red.

2.4.4. Redundancia

La redundancia permite que las redes sean tolerantes a las fallas y puedan recuperarse rápidamente, en caso de que se produzcan dichas fallas, los dispositivos, servicios o conexiones redundantes puedan realizar el trabajo de aquellos en los que se produce la falla.

2.4.5. Facilidad de administración

La red debe ser eficiente, para administrar su funcionamiento y monitoreo con el objetivo de asegurar una estabilidad en la red y que facilite un servicio rápido que permita maximizar el trabajo.

2.5. Calidad de servicio (QoS)

Una red de comunicaciones es un factor importante en cualquier organización exitosa, debido a que estas redes transportan una gran cantidad de aplicaciones y datos. Por lo tanto las redes deben proporcionar servicios seguros y garantizados.

La Calidad de servicio QoS (Quality of Service), es el conjunto de técnicas para manejar los recursos de red y garantizar un valor límite de algunos de los parámetros de QoS para lograr una solución exitosa.

2.5.1. Parámetros de calidad de servicio

Tabla 1. Parámetros de calidad de servicio QoS

Parámetro	Unidades	Definición
Ancho de Banda	bps	Indica la máxima cantidad de datos que se puede enviar a través de una conexión
		de red.
Retardo o latencia	ms	El tiempo medio que tarda un dato en
		estar disponible desde que se realiza su
		petición.
Variación de retardo	ms	La variación que se puede producir en
(Jitter)		retardo entre paquetes de la misma
		comunicación.
Tasa de pérdidas (loss rate)	%	La proporción de paquetes perdidos respecto de los enviados

Nota. QoS=calidad de servicio

Elaborado por: Alejandro Moreno y Andrés Tipán

2.5.2. Requerimientos de calidad de servicio de las aplicaciones

Tabla 2. Requerimientos de calidad de servicios

Tipo de aplicación	Ancho de banda	Retardo	Jitter	Tasa de perdidas
Interactivo (telnet,www)	Bajo	Bajo	Medio/Alto	Media
Batch (e-mail, ftp)	Alto	Alto	Alto	Alta
Telefonía	Bajo	Bajo	Bajo	Baja
Video interactivo	Alto	Bajo	Bajo	Baja
Video unidireccional (streaming)	Alto	Medio/Alto	Bajo	Baja
Frágil (ej. emulación de circuitos)	Bajo	Bajo	Medio/Alto	Nula

Nota. (TANENBAUM, 2003, pág. 397)

Elaborado por: Alejandro Moreno y Andrés Tipán

2.5.3. Servicios QoS

Incontable tecnología ha sido desarrollada hoy en día para acceder a las redes de comunicaciones, por tal motivo QoS tiene un papel importante en el soporte de nuevas aplicaciones con demanda de servicios más precisos tales como:

- Enrutamiento selectivo
- Control de tráfico
- Acceso remoto a redes de comunicaciones
- Administración de ancho de banda
- Balanceo de carga

2.5.3.1. Enrutamiento selectivo

Debe ser capaz de manejar los cambios que provocan ciertos servicios de uso regular, como la transferencia de archivos, colas de impresión, correos pesados, ya que estos servicios pueden quitan ancho de banda disponible y causan congestión en las redes.

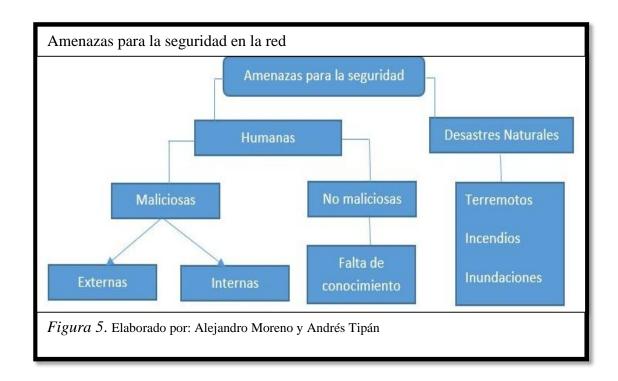
2.5.3.2. Control de tráfico

Es el proceso que permite identificar el tráfico existente en la red y dividirlo en diferentes categorías, según el tipo de servicio se asigna a una clase de tráfico específico. En función a la clasificación del tráfico es posible optar por un descarte selectivo de paquetes, para resguardar el tráfico de las clases de alta prioridad.

2.5.3.3. Acceso remoto a redes de comunicaciones

Mediante el control de acceso remoto a redes de comunicaciones se puede acceder a recursos que ofrece uno más host, como transferencia de archivos, dispositivos periféricos, configuraciones, etc. Además se debe contar con un sistema de seguridad confiable para garantizar que la red está protegida contra instrucciones maliciosas.

2.5.3.4. Administración de ancho de banda


Mediante el servicio de QoS se intenta asegurar el flujo de datos en la red, estableciendo prioridades del ancho de banda máximo del total disponible, es decir administrar adecuadamente el ancho de banda para cada servicio y obtener el máximo provecho de ellas.

2.5.3.5. Balanceo de carga

Permite una mejor utilización de los recursos de la red, estableciendo políticas de enrutamiento de tráfico definidas por el administrador de la red permite el balanceo de la carga en horas pico, para facilitar el intercambio de tareas y la carga de trabajo entre los distintos host de la red.

2.6. Seguridad en las redes

El concepto de seguridad en redes surge como resultado de la necesidad de reducir riegos debido a las amenazas sobre la red, una amenaza es todo aquello que puede vulnerar la seguridad de un entorno de sistemas de información.

Para lograr un sistema considerado seguro es preciso abordar los siguientes aspectos que se mencionan a continuación:

• Confidencialidad: Asegurar que nadie más lo vea

• Integridad: Garantizar que nadie más lo cambie

• Autenticación: Afirmar quien dice ser

Esto con la necesidad de impedir que usuarios no autorizados accedan a información no permitida evitando daños y minimizando riesgos, concernientes a la seguridad. También dependiendo de las amenazas o peligros, la seguridad se divide en seguridad física y seguridad lógica.

2.6.1. Seguridad tipo física

La seguridad física de los sistemas informáticos consiste en la protección de instalaciones y lo que contengan mediante barreras físicas que permitan detectar y defenderse de ataques con el objetivo de evitar o minimizar daños.

La seguridad física pretende conseguir los siguientes objetivos:

- Orientada a resolver las amenazas ocasionadas tanto por el hombre como por la naturaleza.
- Implementar blindajes contra robos.
- Control de acceso a los lugares donde se sitúan los host.
- Resguardar la seguridad de las personas y organizaciones.
- Reducir las pérdidas de datos a un mínimo nivel aceptable y asegurar la adecuada recuperación.

2.6.2. Seguridad tipo lógica

La seguridad lógica de los sistemas informáticos consiste en procedimientos adecuados del sistema para proteger el acceso a los datos y que la información solo pueda ser vista por aquellas personas autorizadas para hacerlo.

La seguridad lógica pretende conseguir los siguientes objetivos:

- Confirmar que los datos transmitidos sean recibidos sólo por el destinatario al cual ha sido enviada y que la información recibida sea la misma que la transmitida.
- Verificar que se estén utilizando los archivos y programas correctos.
- Restringir el acceso a los archivos y programas para que no puedan ser modificados.

2.6.3. Niveles de Seguridad Informática

Los niveles de seguridad informática representan los tipos de seguridad del sistema operativo y se especifican desde el mínimo nivel de seguridad al máximo. Estos niveles han sido la base del progreso de estándares europeos (ITSEC/ITSEM) e internacionales (ISO/IEC).

- Nivel D (protección mínima), está reservada para sistemas que no cumplen con ninguna especificación de seguridad.
- Nivel C1 (protección discrecional), se pide identificación de usuarios que permite el acceso a diferente información, cada usuario puede manejar su información privada.
- Nivel C2 (protección de acceso controlado), cuenta con características adicionales que crean un ambiente de acceso controlado.
- Nivel B1 (seguridad etiquetada), soporta seguridad multinivel, como la secreta y ultra secreta.
- Nivel B2 (protección estructurada), es la primera que empieza a referirse al problema de un objeto a un nivel más elevado de seguridad en comunicación con otro objeto a un nivel inferior.
- Nivel B3 (dominios de seguridad), refuerza a los dominios con la instalación de hardware.
- Nivel A (protección verificada), es el nivel más elevado, incluye un proceso de diseño, control y verificación, mediante métodos formales.

Esto con el objetivo de mantener la privacidad e integridad de la información que se maneja a través de las redes de comunicaciones. (Borguello, 2014)

2.7. Universidad Politécnica Salesiana sede Quito Campus Sur.

2.7.1. Ubicación.

La Universidad Politécnica Salesiana Campus Sur se encuentra localizada al Sur de la ciudad de Quito en la Av. Rumichaca y Av. Morán Valverde s/n, y está conformada de 8 bloques identificados como: Bloque A, Bloque B, Bloque C, Bloque D, Bloque E, Bloque F, Bloque H, Bloque G, este último bloque recientemente construido y por entregar.

2.7.1.1 Bloque A

El edificio Bloque A está conformado por: una planta baja y 5 pisos, en el cual los cuartos de comunicaciones se encuentran ubicados en el cuarto piso, quinto piso y en la planta baja ubicados en la sala de profesores y en la biblioteca, estas áreas están distribuidas según los siguientes usos arquitectónicos.

Tabla 3. Usos arquitectónicos

Símbolos	Nombres
	BACKBONE
	SDF o MDF
	CABLEADO HORIZONTAL
	ENTRADA o SALIDA

Nota. MDF=marco de distribución principal Elaborado por: Alejandro Moreno y Andrés Tipán

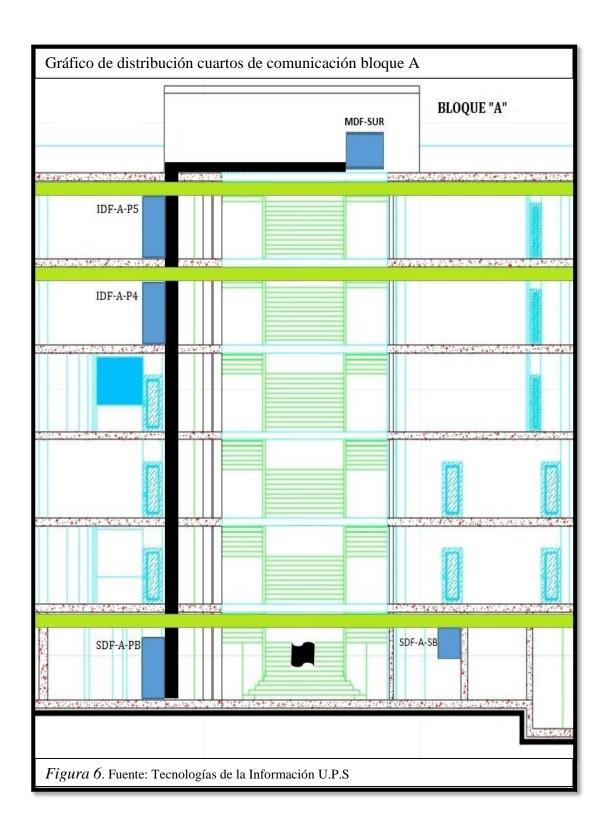

A continuación se detalla la simbología utilizada en la distribución de los cuartos de comunicación bloque A dónde:

Tabla 4. Sistema de distribución MDF, SDF e IDF en el bloque A

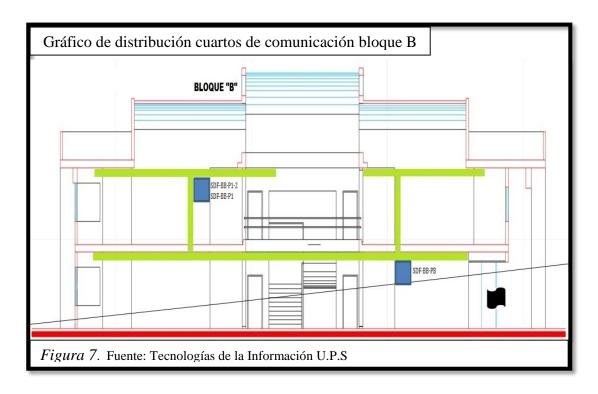
MDF, SDF e IDF	Departamentos bloque A
MDF-A	Centro de cómputo, informática
SDF-A-PB	Financiero, administrativo,
SDF-A-PB-24p	vicerrectorado
SDF-A-SB	Biblioteca
IDF-A-P4, P5	CECASIS

Nota. IDF=distribuidor intermedio

Elaborado por: Alejandro Moreno y Andrés Tipán

En el data center de la Universidad Politécnica Salesiana se encuentran instalados 5 armarios de rack de piso de 42 unidades de rack (UR) cada uno, en estos se encuentran instalados los equipos del núcleo de la red (core) de la infraestructura de red del campus y los servidores locales.

El backbone desde el MDF a sus IDFs y SDFs emplea fibra óptica multimodo (62.5/125 micrones), para una longitud de onda de 1300 nm. Un ancho de banda 500 MHz/Km y atenuación máxima 1.5 dB/Km a una velocidad de transmisión de 1 Gbps que atraviesa un ducto desde el quinto a la planta baja pasando por los cuartos de telecomunicaciones que cuentan con 2 racks de piso de 42 UR en el quinto y cuarto piso en la planta baja cuentan con un rack de piso de 42 UR e incluso biblioteca cuenta con un rack de pared de 12 UR, en el cableado horizontal la velocidad de transmisión es de 100Mbps utilizando UTP desde los cuartos de telecomunicaciones hacia los host en los laboratorios del CECASIS, sala de profesores, dirección administrativa, tesorería, CIMA, Sala de video conferencia.


2.7.1.2 Bloque B

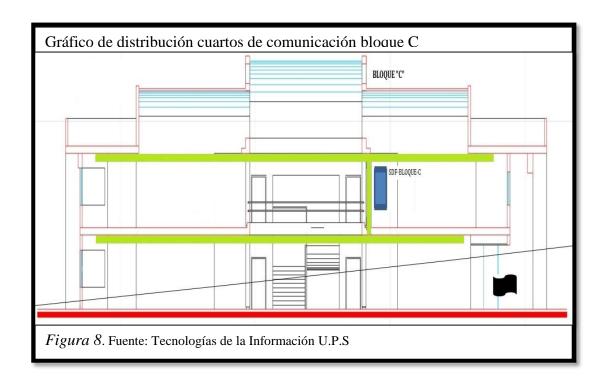
El edificio bloque B está conformado por: una planta baja y un piso donde se encuentra colocado un rack de pared situado en la sala de profesores en el primer piso, a continuación se detalla la simbología utilizada en la distribución de los cuartos de comunicación bloque B dónde:

Tabla 5. Sistema de distribución SDFs en el bloque B

SDFs	Departamentos bloque B
SDF-BB-P1-2	secretaria, direcciones de carrera
SDF-BF-P1	sala profesores
SDF-BB-PB	Bienestar estudiantil

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

Este bloque posee dos rack de pared de 12 UR el MDF se conecta al SDF del primer piso por medio de fibra óptica a una velocidad de transmisión de 1Gbps y este al SDF de planta baja por medio de UTP a una velocidad de transmisión de 100Mbps, desde el primer piso el cableado horizontal da servicio a: Sala de profesores 1, direcciones de carrera, secretaria, el de planta baja a: Sala de profesores 2, bienestar estudiantil.


2.7.1.3 Bloque C

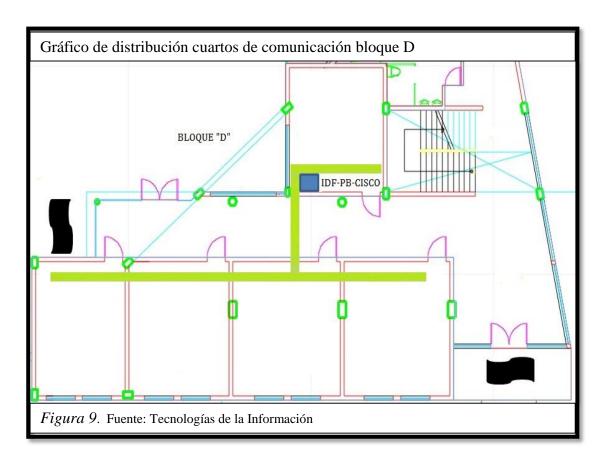
El edificio bloque C está conformado por: una planta baja y un piso donde se encuentra colocado un rack de pared situado en el departamento de idiomas en el segundo piso, a continuación se detalla la simbología utilizada en la distribución de los cuartos de comunicación bloque C dónde:

Tabla 6. Sistema de distribución SDF en el bloque C

SDF	Departamentos bloque C
SDF-C-P1	departamento de idiomas, laboratorio de idiomas, laboratorios de electrónica

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

Este bloque posee un rack de pared de 25 UR el MDF se conecta al SDF por medio de fibra óptica a una velocidad de transmisión de 1Gbps está ubicado en el departamento de idiomas, el cableado horizontal desde aquí da servicio por medio de UTP a una velocidad de transmisión de 100Mbps a todos los laboratorios de electrónica y al mismo departamento de idiomas.

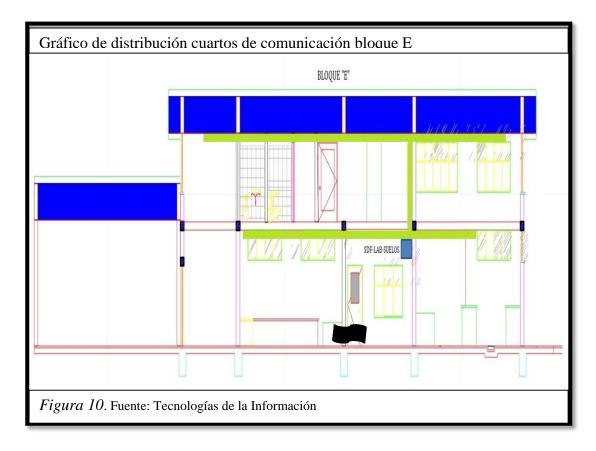

2.7.1.4 Bloque D

El edificio Bloque D está conformado por: una planta baja y un piso donde se encuentra colocado un rack de pared situado en el laboratorio 3 de CISCO en el primer piso, a continuación se detalla la simbología utilizada en la distribución de los cuartos de comunicación bloque D dónde:

Tabla 7. Sistema de distribución SDF en el bloque D

SDF	Departamentos bloque D
SDF-D-PB	CISCO, SUN, microsoft, auditorio

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

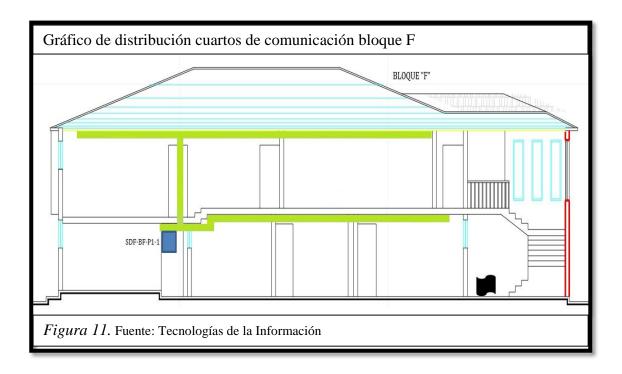

Este bloque posee un rack de pared de 12 UR el MDF se conecta al SDF por medio de fibra óptica a una velocidad de transmisión de 1Gbps está ubicado en el laboratorio 3 de CISCO en la planta baja, el cableado horizontal desde aquí da servicio por medio de UTP a una velocidad de transmisión de 100Mbps a todos los laboratorios de CISCO, BLADE, SUN, y Auditorio.

2.7.1.5 Bloque E

El edificio Bloque E está conformado por: un piso donde se encuentra colocado un rack de pared situado en el laboratorio de suelos en la planta baja, a continuación se detalla la simbología utilizada en la distribución de los cuartos de comunicación bloque E dónde:

Tabla 8. Sistema de distribución SDF en el bloque E

SDF	Departamentos bloque E
SDF-E-PB	laboratorio de civil

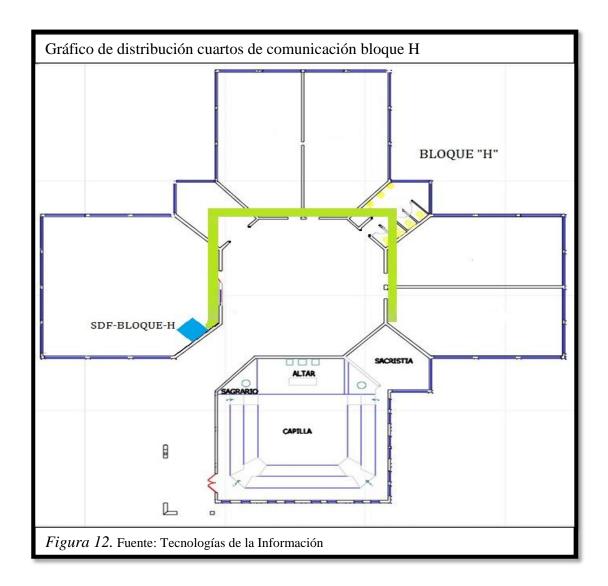

Este bloque posee un rack de pared de 6 UR se conecta al SDF del bloque C por medio de fibra óptica a una velocidad de transmisión de 1Gbps, está ubicado en el laboratorio de suelos en la planta baja, el cableado horizontal desde aquí da servicio por medio de UTP a una velocidad de transmisión de 100Mbps a todos los laboratorios y oficinas en este bloque.

2.7.1.6 Bloque F

El edificio Bloque F está conformado por: una planta baja y un piso donde se encuentra colocado un rack de pared situado en el departamento de ambiental planta baja, a continuación se detalla la simbología utilizada en la distribución de los cuartos de comunicación bloque F dónde:

Tabla 9. Sistema de distribución SDF en el bloque F

SDF	Departamentos bloque F
SDF-F-PB	laboratorios de ambiental

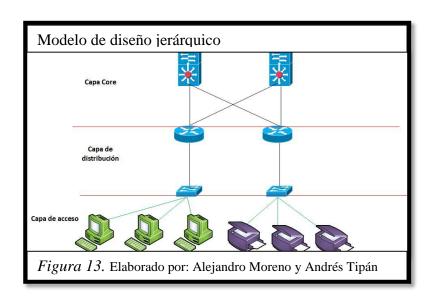

Este bloque posee un rack de pared de 12 UR se conecta al SDF del bloque C por medio de fibra óptica a una velocidad de transmisión de 1Gbps, está ubicado en el laboratorio de ambiental en la planta baja, el cableado horizontal desde aquí da servicio por medio de UTP a una velocidad de transmisión de 100Mbps a todos los laboratorios, oficinas y sala de profesores en este bloque.

2.7.1.7 Bloque H

El edificio Bloque H está conformado por: una planta baja y un piso donde se encuentra colocado un rack de pared situado en el departamento de pastoral en el primer piso, a continuación se detalla la simbología utilizada en la distribución de los cuartos de comunicación bloque H dónde:

Tabla 10. Sistema de distribución SDF en el bloque H

SDF	Departamentos bloque H
SDF-H-PB	pastoral


Este bloque posee un rack de pared de 12 UR el MDF se conecta al SDF por medio de fibra óptica a una velocidad de transmisión de 1Gbps, está ubicado en el departamento de pastoral, el cableado horizontal desde aquí da servicio por medio de UTP a una velocidad de transmisión de 100Mbps a todo el bloque.

2.7.1.8 Bloque G

El edificio Bloque G recientemente construido y por entregarse, actualmente se están realizando arreglos por lo que no se encuentra determinado planos de cuarto de comunicaciones.

2.8. Diseño de red jerárquico

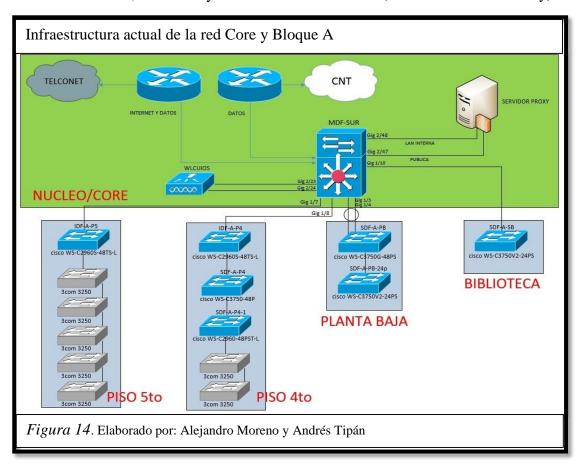
El diseño actual de la infraestructura de networking en la Universidad Salesiana Campus Sur sede Quito está establecida de acuerdo a la función que desempeña cada uno de los equipos dentro de las capas de diseño de networking que son: core, distribución y acceso, actualmente en la infraestructura existe un modelo colapsado core-distribución.

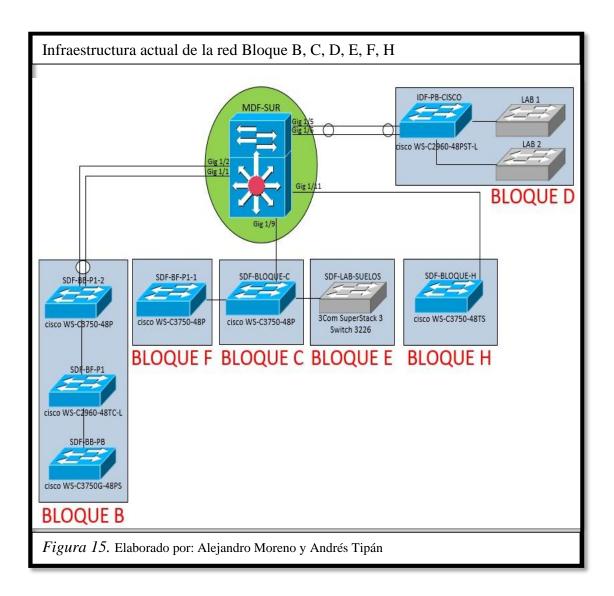
La capa core se encarga de proporciona transporte óptimo entre sitios es decir, desviar el tráfico lo más rápido posible hacia los servidores apropiados

La capa distribución proporciona conectividad basada en una determinada política es decir, determina cuándo y cómo los paquete pueden acceder a los servicios principales de la red.

La capa de acceso también se le conoce como capa de puesto de trabajo porque es el punto en el que cada usuario se conecta a la red.

2.9. Análisis de la situación actual e Infraestructura de la red


Con el objetivo de diseñar una topología de red de alto desempeño para la Universidad Politécnica Salesiana Sede Quito campus Sur, se realizará un estudio a través del cual se logre identificar las debilidades y limitaciones que posee la actual infraestructura de red.


2.9.1 Capa de Core y distribución

La actual infraestructura cuenta con un MDF(Main Distribution Facility) un switch cisco WS-C6506-E con el nombre MDF-SUR este es un switch multicapa el cual cuenta con 48 interfaces para SFP's (transceivers) de fibra óptica y con 48 interfaces GigabitEthernet para UTP, este se encuentra ubicado en el quinto piso del bloque A, de la misma manera en este equipo se encuentran creadas la redes virtuales (VLANs), desde aquí se brinda los servicios de Backbone (Núcleo de la red) conectándose a los IDFs y SDFs dentro del campus sur y se conectan los routers de frontera para salida de datos hacia otros campus e Internet.

2.9.2. Capa distribución y acceso

En estas capas los switch de distribución son cisco WS-C2960 de 48 puertos los IDF (Intermediate Distribution Facility) se encuentran en el bloque D en el laboratorio de CISCO con el nombre IDF-PB-CISCO y en el 4to y 5to piso del bloque A con los nombres IDF-A-P4, IDF-A-P5 y los de acceso son los SDF (Sub-Distribution Facility).

La topología de conectividad que se utiliza en esta red, es de tipo estrella extendida, la propia que está conformada en su mayoría por switch's de Capa 3, ya que utilizan VLANs para una mejor organización de las estaciones para usuarios.

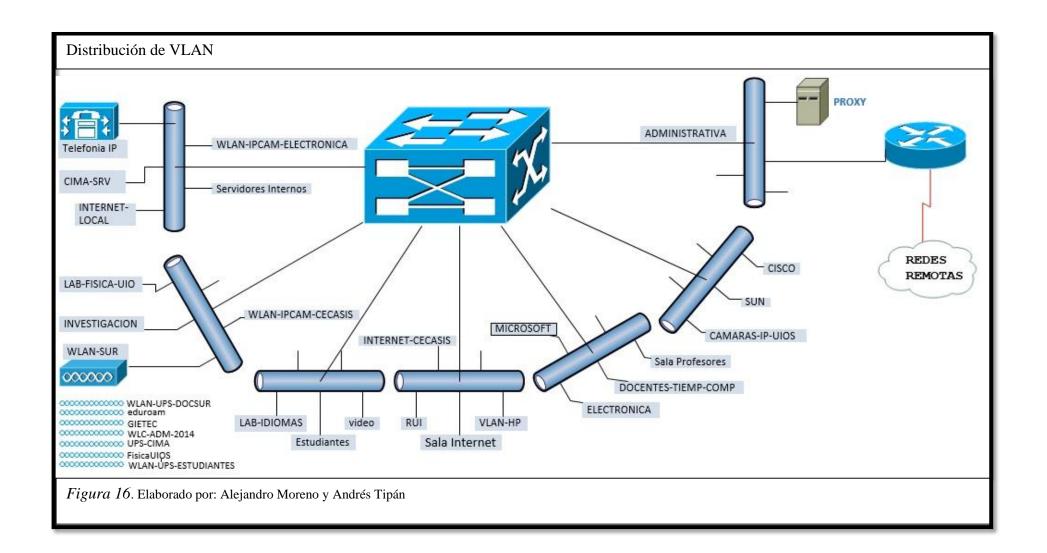
Tabla 11: Sistema de distribución SDF campus sur

CECASIS CUARTO PISO "BLOQUE A"		
IDF-A-P4	WS-C2960	48P-4P_FO
SDF-A-P4	CISCO, CATALYST 3750 POE	48P-10/100Mbps 4P-FO 48
SDF-A-P4-1	CISCO CATALYST 2960 POE	48P-10/100Mbps 4P-FO

	3COM 3250	48P 10/100
	3COM 3250	48P 10/100
CECASIS	 UINTO PISO"BLO	OTTE A 22
CECASIS Q	UINTO PISO"BLO	QUE A
IDF-A-P5	CISCOWS-C2960	48P-4P_FO
		10-10110
	3COM 3250	48P 10/100
SALA DE PI	L ROFESORES "BLO	OUE A"
	COLEGORES DEC	QCL II .
SDF-A-PB	CISCO	48P_4P-FO
	CATALYST	
	3750G POE	
		24P
	cisco WS-	
	C3750V2-24PS	
BIBLIC	OTECA "BLOQUE	A".
SDF-A-SB	CISCO	24P_4P-FO
	CATALYST 3750	
	V2 POE	
SECRE	CTARIA "BLOQUE	B".
SDF-BB-P1-2	CISCO	48P 4P-FO
	CATALYST 3750	
	POE	
SDF-BB-P1	CISCOWS-C2960	48P 4P-FO
SDF-BB-PB	CISCO	48P_4P-FO
	CATALYST	
	3750G POE	
LABORATORIOS I	 	A "RI OOUE C"
LADUKATUKIUS	DE ELECTRONICA	A BLOQUE C.
SDF-BLOQUE-C	CATALYST 3750	48P 4P-FO
	POE	
* . non . = ==	IOG DE CYCCO (TE	CONTENT
LABORATORIOS DE CISCO "BLOQUE D"		
IDF-PB-CISCO	CISCOWS-C2960	48P_4P-FO
	2500	

LABORATORIO DE SUELOS"BLOQUE E".		
SDF-LAB-SUELOS	3COM 3226	24P
AMBIENTAL"BLOQUE F".		
SDF-BF-P1-1	CATALYST 3750 POE	48P 4P-FO
PASTORAL"BLOQUE H".		
SDF-BLOQUE-H	CATALYST 3750	48P_4P-FO

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán


2.9.2.1 Redes virtuales en el campus.

Actualmente el campus dispone de 32 redes virtuales o VLAN enrutadas en el core cuya distribución se encuentran en la figura 16 y direccionamiento en la tabla 12, separando los segmentos lógicos de la red y permitiendo dar acceso de Internet en cualquier punto del campus.

Tabla 12. Sistema de distribución redes virtuales campus sur


VLAN	NOMBRE	DIRECCIÓN IP GATEWAY	MASCARA
Vlan1	Default	172.17.32.1	255.255.255.0=24
Vlan2	DMZ	172.17.33.254	255.255.255.0=24
Vlan3	ADMINISTRATIVA	172.17.34.254	255.255.255.0=24
Vlan4	ESTUDIANTES	172.17.37.253	255.255.254.0=23
Vlan5	CISCO	172.17.39.254	255.255.254.0=23
Vlan6	SUN	172.17.40.254	255.255.255.0=24
Vlan7	SALAPROF	172.17.131.254	255.255.254.0=23
Vlan8	SALA-INTERNET	172.17.41.126	255.255.255.192=26
Vlan9	MICROSOFT	172.17.43.254	255.255.255.0=24
Vlan10	WIRELESS	172.17.211.254	255.255.252.0=22

Vlan11	IPT	172.17.45.254	255.255.255.0=24
Vlan12	SALA-CECASIS	172.17.41.190	255.255.255.192=26
Vlan13	VLAN-VIDEO	172.17.41.254	255.255.255.192=26
Vlan14	VLAN-HP	172.17.42.254	255.255.255.128=25
Vlan15	ELECTRONICA	172.17.47.254	255.255.255.0=24
Vlan16	VLAN-TELCONET		
Vlan17	WLAN-IPCAM-CECASIS		
Vlan18	WLAN-IPCAM- ELECTRONICA	172.17.128.126	255.255.255.192=26
Vlan19	INVESTIGACION	172.17.128.62	255.255.255.192=26
Vlan20	INTERNET-LOCAL	172.17.128.190	255.255.255.192=26
Vlan21	CIMA-SRV	172.17.128.254	255.255.255.192=26
Vlan22	RUI	172.17.129.62	255.255.255.192=26
Vlan23	LAB-IDIOMAS	172.17.132.254	255.255.255.0=24
Vlan24	WLAN-SUR	172.17.133.254	255.255.255.0=24
Vlan25	CAMARAS-IP-UIOS	172.17.134.126	255.255.255.128=25
Vlan26	EVENTOS	172.17.135.254	255.255.255.0=24
Vlan27	###LAB-FISICA-UIO###	172.17.136.126	255.255.255.128=25
Vlan28	INTERNET-CECASIS	172.17.136.254	255.255.255.128=25
Vlan29	GIETEC	172.17.140.254	255.255.255.0=24
Vlan30	DOCENTES-TIEMP-COMP	172.17.143.254	255.255.254.0=23
Vlan31	EDUROAM	172.17.145.254	255.255.254.0=23
Vlan138	CAMARAS-APS	172.17.139.254	255.255.255.0=24

2.9.3. Topología inalámbrica

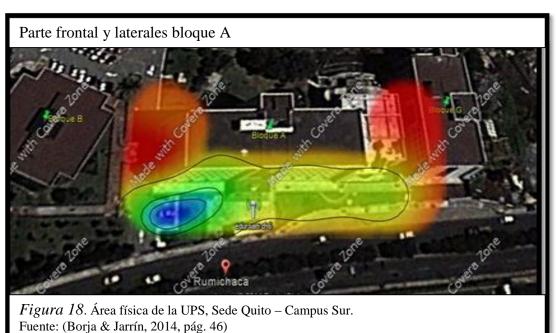
La Universidad Politécnica Salesiana Sede Quito Campus Sur en los últimos años ha tenido un crecimiento significativo de estudiantes, por lo que al menos el 70% de los estudiantes tienen acceso a la red por medio de dispositivos móviles como laptops, celulares, tabletas, entre otros. "El ingeniero Juan Carlos Domínguez Ayala manifestó en la entrevista realizada que el crecimiento de números de usuarios en la red LAN ha sido alta en los últimos años, esto se detalla en el anexo 2" (Dominguez, 2014), por tal motivo es totalmente necesario la implementación de tecnología inalámbrica para mejorar el rendimiento de los servicios y aplicaciones a través de la red. A continuación se puede observar en la figura 17 la topología física de la red inalámbrica de la Universidad Politécnica Salesiana sede Quito Campus Sur.

Los Access Point que integran la red inalámbrica, se encuentran ubicados tanto en la parte exterior de los bloques como en la parte interior de cada uno de estos.

A continuación se especifican los diferentes tipos de Access Point que brindan el servicio de red inalámbrica en el Campus.

Son 13 Access Point, los cuales están conformados por tres series:

- 2 Access Point de la serie 1252
- 2 Access Point de la serie 1131
- 9 Access Point de la serie 1310

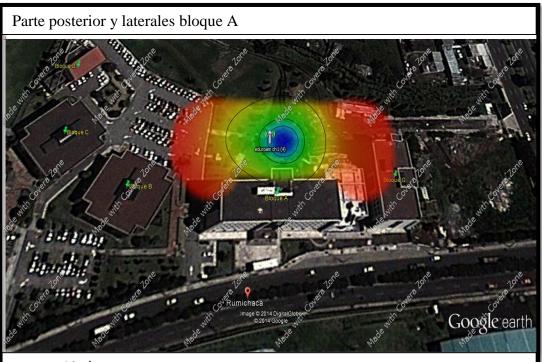

2.9.4. Cobertura de dispositivos (Access Point)

A continuación se realizará un análisis de cobertura en la Universidad Politécnica Salesiana sede Quito campus Sur, donde se indica el nivel de intensidad de la señal que tiene cada uno de los access point en los diferentes bloques, esto con el propósito de indicar el lugar donde existe menor cobertura y así poder instalar los access point necesarios para brindar una mayor cobertura.

2.9.5. Cobertura access point exteriores

2.9.5.1. Bloque A

Análisis de la cobertura de la parte exterior del bloque A, donde se encuentran 3 AP_Outdoor, ubicados en la parte superior del poste de luz situado en la entrada y en el sector posterior del bloque A.



En el tabla 13 se puede apreciar los niveles de intensidad de la señal, donde el color azul muestra una intensidad de señal fuerte, el color verde muestra una intensidad de señal menos fuerte, el color verde claro muestra una intensidad de señal baja, el amarillo muestra una intensidad muy baja y el color rojo muestra una intensidad de señal escasa con poca opción de conectarse a la red.

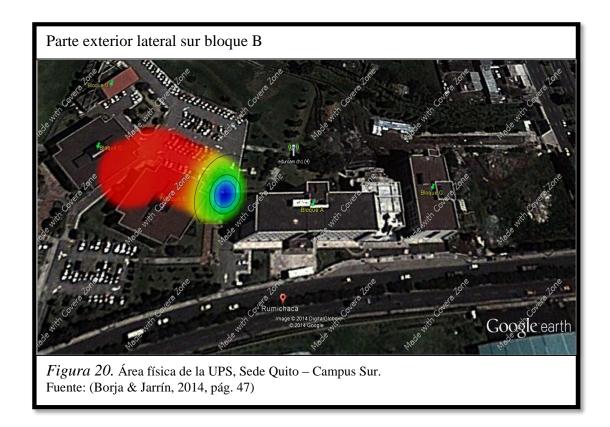
Tabla 13. Intensidades de Señales bloque A parte frontal.

Color de la Intensidad de la	
Señal	Potencia
Azul	-47dBm
Verde	-51dBm
Verde claro	-56dBm
Amarillo	-73dBm
Rojo	-91dBm

Nota: (Borja & Jarrín, 2014, pág. 45)

Figura 19. Área física de la UPS, Sede Quito – Campus Sur. Fuente: (Borja & Jarrín, 2014, pág. 46)

Intensidades de la señal para la parte posterior y laterales del bloque A.

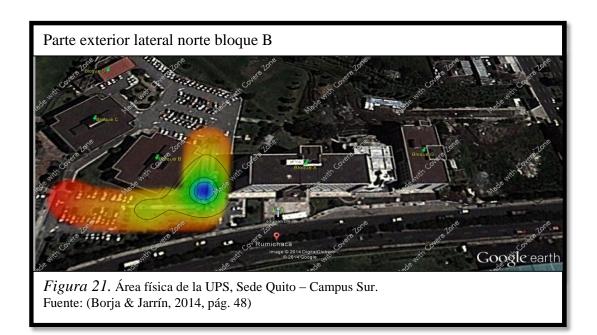

Tabla 14: Intensidades de Señales bloque A parte posterior.

Color de la Intensidad de la	
Señal	Potencia
Azul	-64dBm
Verde	-66dBm
Verde claro	-68dBm
Amarillo	-75dBm
Rojo	-82dBm

Nota: (Borja & Jarrín, 2014, pág. 46)

2.9.5.2. Bloque B

Análisis de la cobertura de la parte exterior del bloque B, donde se muestra la intensidad de señal propagada por el AP_Outdoor, dirigida a estos sectores que se encuentra ubicado en la parte superior del poste de luz situado a la entrada y en sector posterior del bloque A.



Intensidades de la señal para la parte exterior y lateral sur del bloque B.

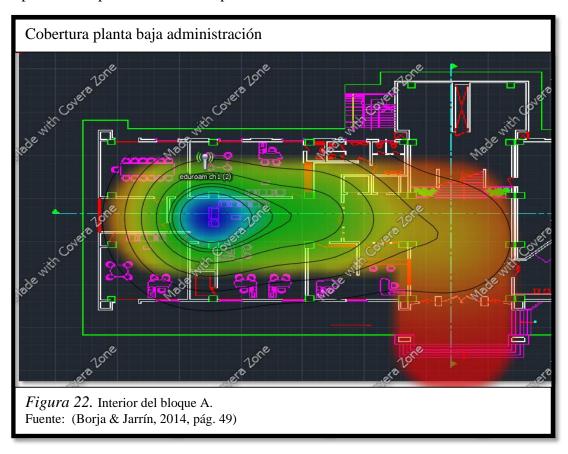
Tabla 15. Intensidades de Señales bloque A lateral sur.

Color de la Intensidad de la	
Señal	Potencia
Azul	-69dBm
Verde	-70dBm
Verde claro	-71dBm
Amarillo	-75dBm
Rojo	-80dBm

Nota: (Borja & Jarrín, 2014, pág. 47)

Intensidades de la señal para la parte exterior y lateral norte del bloque B.

Tabla 16. Intensidades de Señales bloque A lateral norte.


Color de la Intensidad de la	
Señal	Potencia
Azul	-55dBm
Verde	-58dBm
Verde claro	-62dBm
Amarillo	-75dBm
Rojo	-89dBm

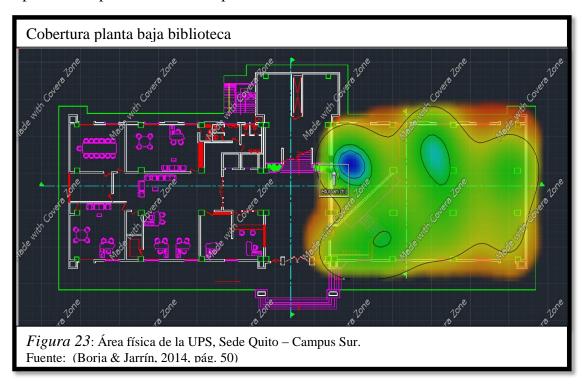
Nota: (Borja & Jarrín, 2014, pág. 48)

2.9.6. Cobertura access point interiores

2.9.6.1. Administración

Análisis de cobertura realizado en la planta baja del bloque A, donde se muestra la intensidad de señal propagada por el AP_Indoor, el cual está ubicado en la parte superior de la pared en la sala de profesores.

A continuación se detalla la intensidades de la señal que se adquirió en el análisis de cobertura realizado en el área de sala de profesores, administración.


Tabla 17: Intensidades de Señales.

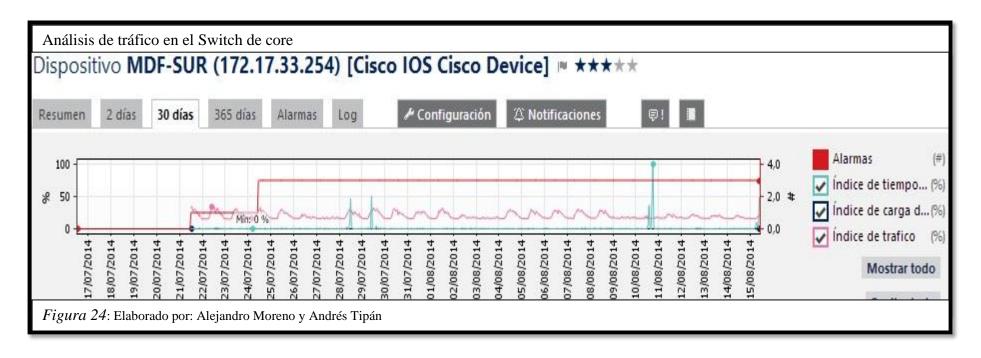
Color de la Intensidad de la	
Señal	Potencia
Azul	-27dBm
Verde	-32dBm
Verde claro	-37dBm
Amarillo	-58dBm
Rojo	-78dBm

Nota: (Borja & Jarrín, 2014, pág. 49)

2.9.6.2. Biblioteca

Análisis de cobertura realizado en la planta baja del bloque A, donde se muestra la intensidad de señal propagada por el AP_Indoor, el cual está ubicado en la parte superior de la pared en la sala de profesores.

A continuación se detalla la intensidad de la señal que se adquirió en el análisis de cobertura realizado en el área de sala de biblioteca.

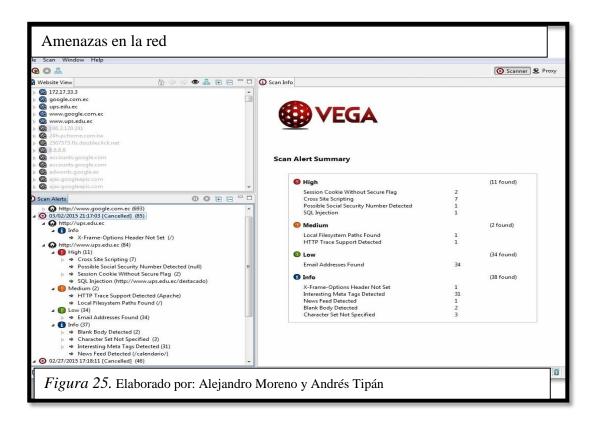

Tabla 18: Intensidades de Señales.

Color de la Intensidad de la	
Señal	Potencia
Azul	-27dBm
Verde	-32dBm
Verde claro	-37dBm
Amarillo	-55dBm
Rojo	-74dBm

Nota. (Borja & Jarrín, 2014, pág. 50)

2.9.6.3. Análisis del tráfico actual

En la figura 24 se observa el tráfico de ancho de banda en las horas pico de la Universidad Politécnica Salesiana sede Quito campus Sur, los cuales son: en horario matutino a las 12:30 PM, en horario vespertino a las 5:00 PM, esto se efectúo por el periodo de un mes donde se observa que el indice de tráfico no supera el 50% de lo que soporta el switch de core.



Con el software PRTG se ha escaneado la granja de servidores para ver el tráfico de ancho de banda que se genera en cada uno de los puertos del switch de core esto se encuentra detallado en el anexo 2

2.9.6.4. Vulnerabilidades

Las vulnerabilidades son amenazas que afectan la disponibilidad e integridad de la red, por tal motivo es importante identificar las vulnerabilidades para dimensionar los riegos a los cuales está expuesta la red de datos y especificar las medidas de seguridad apropiadas para su corrección.

En la figura 25 se observa la presencia de elementos que perjudican el uso adecuado de la red de la Universidad Politécnica Salesiana sede Quito campus Sur.

Esta aplicación escaneó las vulnerabilidades de código abierto que prueban la seguridad de aplicaciones web, donde se puede determinar la existencia de vulnerabilidades como Inyecciones SQL, Cross-Site Scripting (XSS), Shell Injection, Local File Inclusion, Integer Overflow, entre otras.

En la figura 26 se muestra una vulnerabilidad detectada tipo SQL Injection, estas vulnerabilidades están presentes cuando se utiliza entrada suministrada externamente para construir una consulta SQL. Si no se toman precauciones, la entrada suministrada externamente (por lo general de parámetros GET y POST) puede modificar la cadena de consulta de manera que realiza acciones no deseadas. Estas acciones incluyen la

obtención no autorizada de leer o escribir el acceso a los datos almacenados en la base de datos, así como la modificación de la lógica de la aplicación.

Vulnerabilidad tipo SQL Injection		
Classification	Input Validation Error	
Resource	http://www.ups.edu.ec/destacado	
Parameter	entryld	
Method	GET	
Detection Type	Blind Arithmetic Evaluation Differential	
Risk	High	
Figura 26. Elaborado	por: Alejandro Moreno y Andrés Tipán	

En la figura 27 se muestra una vulnerabilidad detectada de tipo Cross-site scripting (XSS), son un tipo de vulnerabilidades que afectan a las aplicaciones web que pueden resultar que los controles de seguridad implementados en los navegadores sean eludidas.

Vulnerabilidad tipo Cross-site scripting (XSS)		
Classification	Input Validation Error	
Resource	/http:/	
Parameter	p_p_lifecycle	
Method	GET	
Risk	High	
Figura 27. Elaborado por: Alejandro Moreno y Andrés Tipán		

En la figura 28 se muestra una vulnerabilidad detectada de tipo HTTP TRACE es un método HTTP que solicita que el servidor de eco de la petición TRACE al cliente. Esto incluye las cabeceras que se enviaron junto con la solicitud.

Vulnerabilidad tipo HTTP Trace Support Detected		
Classification	Configuration Error	
Resource	Apache	
Method	TRACE	
Risk	Medium	
Figura 28. Elaborado por: Alejandro Moreno y Andrés Tipán		

Se identificó la existencia de una vulnerabilidad tipo TRACE/ la misma que se evidencia en la figura 29.

```
Recursos de contenido HTTP Trace Support Detected

TRACE / HTTP/1.1
Connection: keep-alive
SQUEEM1SH: OSS1FR4GE
Accept-Encoding: gzip, deflate
Host: www.ups.edu.ec
User-Agent: UserAgent
Cookie2: $Version=1
Cookie: COOKIE_SUPPORT=true; GUEST_LANGUAGE_ID=es_ES;
JSESSIONID=6F7B21AAC074A4340D68B888F7F7F8C1.worker6
X-IMForwards: 20
Via: 1.1 wsasur.ups.edu.ec:80 (Cisco-WSA/8.5.0-497)

Figura 29. Elaborado por: Alejandro Moreno y Andrés Tipán
```

Para el análisis de las vulnerabilidades se utilizó el software Vega, que funciona como un escáner automatizado y como un proxy de interceptación, ambos tipos de módulos son capaces de generar alertas.

Tabla 19: Alertas software vega.

High	código malicioso puede ser capaz de manipular el contenido de la página
Médium	ataques que pueden ser capaces de utilizar sitios web para obtener información de los cookies.
Low	ataques dirigidos para adivinar nombres de usuarios en la red

CAPÍTULO 3

DISEÑO DE LA RED LAN

El capítulo 3, contiene el análisis de los requerimientos para el diseño de la red de alta disponibilidad a partir de la situación actual de la red de la Universidad Politécnica Salesiana Sede Quito Campus Sur, se incluyen simultáneamente los criterios de diseño para la red tomando en cuenta una expansión a futuro de la red de 3 a 10 años.

3.1. Criterios de diseño LAN para la red de alta disponibilidad

Para el diseño de la red de alta disponibilidad se tomaran los aspectos que se indican a continuación.

- Número de usuarios en la red de datos.
- Expansión futura que se tendrá con la implementación de nuevas aplicaciones y servicios.
- Equipos a usar en el diseño.
- Cobertura de dispositivos (access point) en la infraestructura física.
- Aplicaciones y servicios que correrán sobre la infraestructura de la red.
- Seguridad a nivel de acls.
- Alta disponibilidad

3.2. Número de usuarios en la red

Usuario en informática, se dice a todo dispositivo que se conecta a la red, por tal motivo es importante para el diseño de la red conocer el número exacto de usuarios que tiene la red.

A continuación se indicará la densidad de usuarios con puntos de red fijos que posee cada bloque, esto es importante para establecer cuántos puertos deben tener los Switch de acceso en los pisos para el diseño de la red.

Tabla 20. Sistema de distribución de usuarios campus sur

Bloque A	#usuarios	Total
Soporte Técnico	2	
FEUPS	3	
Dirección Administrativa	2	
Información	2	371
Tesorería	3	
CECASIS	340	
Biblioteca	19	
Bloque B	#usuarios	Total
Secretaria Campus Sur	7	
Sala de Profesores Bloque B	12	
Dirección Civil	1	
Dirección Sistemas	1	
Dirección Electrónica	1	
Dirección Ambiental	1	34
Secretaria Direcciones de Carrera	3	34
Sala Reuniones tras direcciones de		
Carrera	3	
Gerencia	1	
Fiscalización Civil	2	
Bienestar	2	
L		
Bloque C	#usuarios	Total
Bloque C Idiomas	#usuarios 29	
•		Total 79
Idiomas	29	
Idiomas Laboratorios de electrónica	29 50	79
Idiomas Laboratorios de electrónica BLOQUE D	29 50 #USUARIOS	79
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1	29 50 #USUARIOS 16	79 TOTAL
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1 Laboratorio CISCO 2	29 50 #USUARIOS 16 16	79 TOTAL
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1 Laboratorio CISCO 2 Laboratorio CISCO 3	29 50 #USUARIOS 16 16 18	79 TOTAL 50
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1 Laboratorio CISCO 2 Laboratorio CISCO 3 Bloque E	29 50 #USUARIOS 16 16 18 #usuarios	79 TOTAL 50 Total
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1 Laboratorio CISCO 2 Laboratorio CISCO 3 Bloque E Estudio Suelos	29 50 #USUARIOS 16 16 18 #usuarios 8	79 TOTAL 50 Total 8
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1 Laboratorio CISCO 2 Laboratorio CISCO 3 Bloque E Estudio Suelos Bloque F	29 50 #USUARIOS 16 16 18 #usuarios 8	79 TOTAL 50 Total 8 Total
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1 Laboratorio CISCO 2 Laboratorio CISCO 3 Bloque E Estudio Suelos Bloque F Sala de profesores del bloque f planta baja	29 50 #USUARIOS 16 16 18 #usuarios 8 #usuarios 4 3	79 TOTAL 50 Total 8
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1 Laboratorio CISCO 2 Laboratorio CISCO 3 Bloque E Estudio Suelos Bloque F Sala de profesores del bloque f planta baja Auxiliar Laboratorio Ambiental Sala de profesores del bloque f primer piso	29 50 #USUARIOS 16 16 18 #usuarios 8 #usuarios 4 3	79 TOTAL 50 Total 8 Total 12
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1 Laboratorio CISCO 2 Laboratorio CISCO 3 Bloque E Estudio Suelos Bloque F Sala de profesores del bloque f planta baja Auxiliar Laboratorio Ambiental Sala de profesores del bloque f primer piso Bloque G	29 50 #USUARIOS 16 16 18 #usuarios 8 #usuarios 4 3 5 #usuarios	79 TOTAL 50 Total 8 Total
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1 Laboratorio CISCO 2 Laboratorio CISCO 3 Bloque E Estudio Suelos Bloque F Sala de profesores del bloque f planta baja Auxiliar Laboratorio Ambiental Sala de profesores del bloque f primer piso Bloque G Centro de Graduación	29 50 #USUARIOS 16 16 18 #usuarios 8 #usuarios 4 3 5 #usuarios	79 TOTAL 50 Total 8 Total 12
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1 Laboratorio CISCO 2 Laboratorio CISCO 3 Bloque E Estudio Suelos Bloque F Sala de profesores del bloque f planta baja Auxiliar Laboratorio Ambiental Sala de profesores del bloque f primer piso Bloque G Centro de Graduación Docentes Civil	29 50 #USUARIOS 16 16 18 #usuarios 8 #usuarios 4 3 5 #usuarios 1 2	79 TOTAL 50 Total 8 Total 12 Total
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1 Laboratorio CISCO 2 Laboratorio CISCO 3 Bloque E Estudio Suelos Bloque F Sala de profesores del bloque f planta baja Auxiliar Laboratorio Ambiental Sala de profesores del bloque f primer piso Bloque G Centro de Graduación Docentes Civil Bloque H	29 50 #USUARIOS 16 16 18 #usuarios 8 #usuarios 4 3 5 #usuarios 1 2 #usuarios	79 TOTAL 50 Total 8 Total 12 Total 3 Total
Idiomas Laboratorios de electrónica BLOQUE D Laboratorio CISCO 1 Laboratorio CISCO 2 Laboratorio CISCO 3 Bloque E Estudio Suelos Bloque F Sala de profesores del bloque f planta baja Auxiliar Laboratorio Ambiental Sala de profesores del bloque f primer piso Bloque G Centro de Graduación Docentes Civil	29 50 #USUARIOS 16 16 18 #usuarios 8 #usuarios 4 3 5 #usuarios 1 2	79 TOTAL 50 Total 8 Total 12 Total 3

3.2.1 Expansión futura

En el diseño de red se tiene previsto un crecimiento del 50 % de usuarios finales, debido a la expansión actual y futura que se está teniendo con la implementación de los nuevos servicios y aplicaciones que se implementaran en la Universidad Politécnica Salesiana Sede Quito Campus Sur.

El 50 % se obtuvo del análisis de las necesidades de renovación de equipos de cómputo de la Universidad Politécnica Salesiana Sede Quito Campus Sur y el número de usuarios conectados en las redes inalámbricas, esto se detalla en el anexo 2.

Tabla 21. Puntos de red a futuro

Total de putos de red actual	565
Expansión futura de 50% de puntos de red	282,5
Total de puntos de red futura	847,5

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

Top WLANs		
Profile Name	# of Clients	
WLAN-UPS-ESTUDIANTES	248	<u>Detail</u>
WLAN-UPS-DOCSUR	80	Detail
WLC-BIBLIOTECA-UIOS	15	Detail
RED-ADM	4	<u>Detail</u>
GIETEC	3	Detail

Es decir que los puntos de red a futuro vendrán a aumentar en un 50%, así pasará de 565 a 848 puntos de red.

3.3. Equipos a usar

Para realizar el diseño de red, acorde a la necesidad de los usuarios de la Universidad Politécnica Salesiana sede Quito campus Sur, se ha considerado una estimación de tráfico actual y futuro, además de la expansión futura que se provee tener en los próximos años con la implementación de nuevos servicios y aplicaciones, por lo que se utilizará equipos marca CISCO.

3.3.1. Marca de los equipos

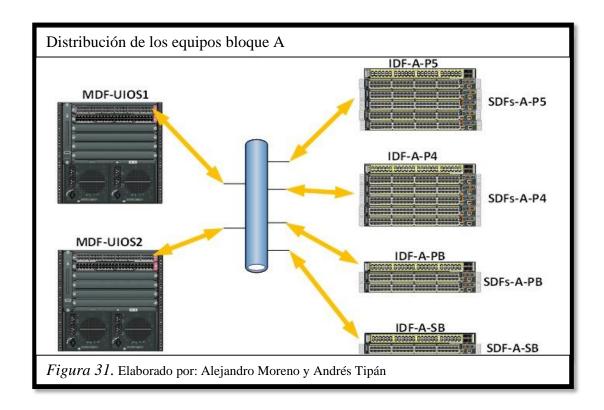
Para la adquisición de equipos se ha tomado en cuenta la marca CISCO por las siguientes razones:

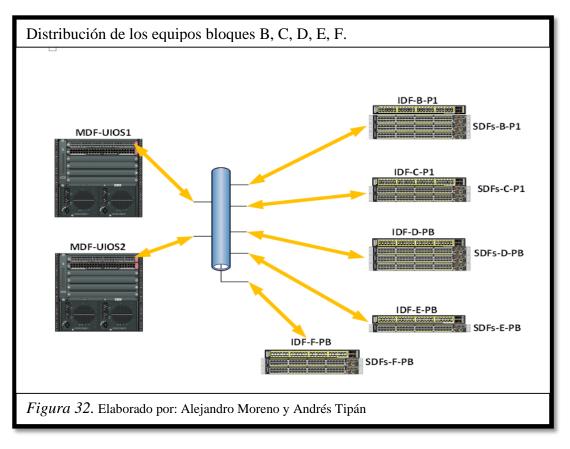
- CISCO es una empresa líder en equipamiento de infraestructura de red a nivel mundial.
- Tiene varios socios a nivel nacional, algunos de estos son: IBM, DESCA, SINETCOM, COMWARE, CIBERCALL, entre otros
- Documentación clara y muy difundida.
- Nivel de core muy usado en Latinoamérica y en empresas del país.
- Cuenta con academias de educación, donde se capacita y certifica a profesionales de networking.

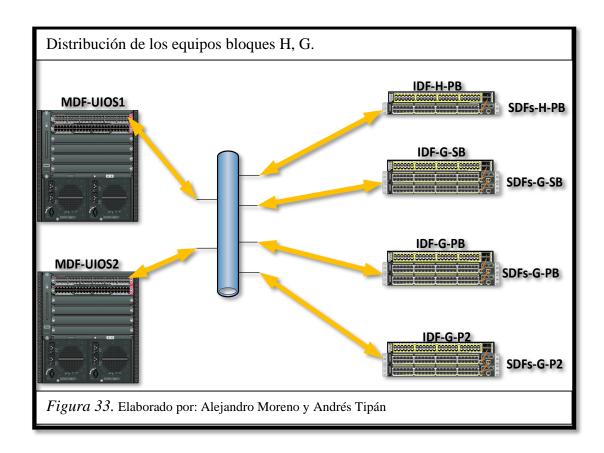
Además es importante mencionar, que la actual infraestructura de red cuenta en la mayor parte de su diseño con esta marca por lo que sería de gran ventaja para un rediseño el poder ocupar estos equipos y ahorrar costos.

3.3.2. Cantidad de equipos

Tabla 22. Plataforma tecnología


Equipos	Cantidad
Switch de core CISCO 6506e	2
Switch de distribución CISCO 3750	12
Switch de acceso CISCO 2960	29
CISCO aironet 1520 outdoor	9
CISCO aironet 2600 input	42
CISCO 2500 wireless controller	1


Nota. Elaborado por: Alejandro Moreno y Andrés Tipán


3.3.2.1. Distribución de los equipos por bloque

El diseño de la red de alta disponibilidad tiene el fin de optimizar la comunicación entre host y los servicios de la red LAN en la Universidad Politécnica Salesiana sede Quito campus Sur. Por lo que finalmente, se decidió adicionar otro switch de core CISCO 6506e para ofrecer redundancia en caso de haber fallos con el switch de core principal, también se propone utilizar switch de distribución CISCO 3750 y switch de acceso CISCO 2960, esto con el propósito de hacer uso de los equipos que posee actualmente la red LAN y disminuir precios en la inversión de la nueva infraestructura de red.

A continuación en las figuras 31, 32, 33 se muestra como estarán distribuidos los equipos por bloques, los cuales van a estar conectados desde los MDF hacia los IDF a través de fibra óptica multimodo (62.5/125 micrones), para una longitud de onda de 1300 nm, ancho de banda 500 (MHz/Km) y atenuación máxima 1.5 (dB/Km) a una velocidad de transmisión de 1 Gbps que atraviesa un ducto desde el quinto a la planta baja y hacia los demás bloques, pasando por los cuartos de telecomunicaciones desde aquí da servicio por medio de UTP a los SDF a una velocidad de transmisión de 1 Gbps.

3.4. Especificaciones técnicas de los equipos

En el mercado actual existen varias marcas para equipos de networking así como son CISCO, HUAWEI, HP, ALCATEL, DLINK, etc.

Aun que se ha escogido la marca CISCO por todas las características y especificaciones adjuntas, también es conocido que CISCO es una de las empresas mejor nombradas como líder en el cuadrante de Gartner como se observa en la figura 34.

3.4.1. Especificaciones técnicas del core-CISCO 6506e.

El equipo ofrece máxima disponibilidad con redundancia rápida y reconexión dinámica a través de motores de supervisión.

Tabla 23: Especificaciones técnicas del CORE-CISCO 6506e

General	Especificación	
Tipo de dispositivo	Conmutador	
Tipo incluido	Montable en bastidor- 12 U	
Cantidad de módulos instalados (Max.)	2(instalados)/6 max.	
Anchura	43.7 cm	
Profundidad	46 cm	
Altura	51.1 cm	
Conexión de redes		
Cantidad de puertos	48 x Ethernet, 10 Base-T, Ethernet 100 Base-Tx, Ethernet 1000Base-T	
Protocolo de interconexión de datos	Ethernet, Fast Ethernet, Gigabit Ethernet	
Protocolo de gestión remota	SNMP, RMON	
Tecnología de conectividad	Cableado	
Tamaño de tabla de dirección MAC	128k de entradas	
Cumplimiento normas	IEEE 802.3, IEEE 802.3U, IEEE 802.3ab	
Memoria		
Memoria flash	32 MB flash	
Características		
Alta disponibilidad		
Gateway Load Balancing Protocol		
Hot Standby Router Protocol (HSRP)		
Multimodule EtherChannel technology		
Rapid Spanning Tree Protocol (RSTP)		
Multiple Spanning Tree Protocol (MSTP	")	
Per-VLAN Rapid Spanning Tree		
Rapid convergence Layer 3 protocols		

Módulos de servicios avanzados
Content services gateway
CSM
Firewall module
IDS module
IP Security (IPSec) VPN module
Network analysis module
Persistent storage device
SSL module
Wireless LAN services module

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

Como se puede observar en la tabla 23 este equipo posee características de gran desempeño además, ofrece una innovación adicional el Virtual Switching System (VSS) lo cual permitirá tener ampliación de la capacidad del ancho de banda del sistema de hasta 1,4 Tbps, por tal motivo se decidió ocupar el equipo CISCO 6506e en el core de la red propuesta.

3.4.2. Especificaciones técnicas de distribución CISCO 3750

Los equipos CISCO Catalyst 3750 son switches apilables (stackable), y soportan la tecnología de Cisco Energy-Wise lo que ayuda a reducir costos de energía y la huella de carbono.

Tabla 24. Especificaciones técnicas de distribución-CISCO 3750

General	Especificación
Tipo de dispositivo	Conmutador
Tipo incluido	Montable en rack- 1U
Anchura	44.5 cm
Profundidad	46 cm
Altura	4.5 cm
Conexión de redes	

Cantidad de puertos	24 y 48 10/100/1000	
Protocolo de interconexión de datos	Ethernet, Fast Ethernet, Gigabit Ethernet	
Protocolo de gestión remota	SNMP 1, SNMP 2, RMON 1, RMON 2, RMON 3, RMON 9, Telnet, SNMP 3, SNMP 2c, TFTP, SSH, CLI,TFTP	
Tecnología de conectividad	Cableado	
Alimentación	CA 120/230 V (50/60 Hz) - PoE	
Cumplimiento normas	IEEE 802.3, IEEE 802.3u, IEEE 802.1D, IEEE 802.1Q, IEEE 802.3ab, IEEE 802.1p, IEEE 802.3af, IEEE 802.3x, IEEE 802.3ad (LACP).	
Memoria		
Memoria RAM	256 MB	
Memoria flash	32 MB flash	

Características

Conmutación Layer 2, asignación dirección dinámica IP, soporte de DHCP, Ethernet (PoE), soporte ARP, soporte VLAN, soporte para Syslog, Broadcast Storm Control, Multicast Storm Control, Unicast Storm Control, admite Rapid Spanning Tree Protocol (RSTP), snooping DHCP, soporte de Dynamic Trunking Protocol (DTP), soporte de Access Control List (ACL), Quality of Service (QoS), Dynamic ARP Inspection (DAI), PoE+, Per-VLAN Spanning Tree Plus (PVST+), EIGRP Stub Routing, Uni-Directional Link Detection (UDLD), Shaped Round Robin (SRR), Protocolo de control de adición de enlaces (LACP), Remote Switch Port Analyzer (RSPAN)

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

Dadas a las especificaciones técnicas y características de la tabla 24 se observa el gran desempeño que ofrece el equipo CISCO 3750 y la documentación clara y muy difundida que posee, por esta razón se decidió ocupar en la capa distribución de la red propuesta.

3.4.3. Especificaciones técnicas acceso-CISCO 2960

El switch CISCO 2960 ofrece una extensa gama de procesos de autenticación, cifrado de datos, y Network admisión control (NAC), sobre la base de usuarios, puertos y direcciones MAC.

Tabla 25. Especificaciones técnicas acceso-CISCO 2960

General	Especificación
Tipo de dispositivo	Conmutador
Tipo incluido	Montable en rack- 1U
Anchura	44.5 cm
Profundidad	29.9 cm
Altura	4.5 cm
Conexión de redes	
Cantidad de puertos	24 y 48 10/100/1000
Protocolo de interconexión de datos	Ethernet, Fast Ethernet, Gigabit Ethernet
Protocolo de gestión remota	SNMP 1, SNMP 2, RMON 1, RMON 2, RMON 3, RMON 9, Telnet, SNMP 3, SNMP 2c, HTTP, HTTPS, TFTP, SSH
Tecnología de conectividad	Cableado
Alimentación	Poe - CA 120/230 V (50/60 Hz)
Cumplimiento normas	EEE 802.3, IEEE 802.3u, IEEE 802.3z, IEEE 802.1D, IEEE 802.1Q, IEEE 802.3ab, IEEE 802.1p, IEEE 802.3x, IEEE 802.3ad (LACP), IEEE 802.1w
Memoria	
Memoria RAM	128 MB
Memoria flash	64 MB flash
Q	

Características

Conmutación Layer 2, auto-sensor por dispositivo, asignación dirección dinámica IP, negociación automática, soporte BOOTP, soporte ARP, equilibrio de carga, soporte VLAN, señal ascendente automática (MDI/MDI-X automático), snooping IGMP, soporte para Syslog, soporte DiffServ, Broadcast Storm Control, soporte IPv6,

Multicast Storm Control, Unicast Storm Control, admite Rapid Spanning Tree Protocol (RSTP), admite Multiple Spanning Tree Protocol (MSTP), snooping DHCP, soporte de Dynamic Trunking Protocol (DTP), soporte de Port Aggregation Protocol (PAgP), soporte de Access Control List (ACL), Quality of Service (QoS), Protocolo de control de adición de enlaces (LACP), Port Security, MAC Address Notification, Remote Switch Port Analyzer (RSPAN)

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

Como se aprecia en las especificaciones técnicas de la tabla 25, este equipo posee grandes características, además que el equipo CISCO 2960-X es un es un nuevo modelo propuesto por CISCO que son Switches de acceso rentable, escalable, inteligente, por lo cual se recomienda ocupar en la capa acceso.

3.4.4 Especificaciones técnicas CISCO ASA 5515-x

Es un dispositivo que proporciona servicios de seguridad altamente integrados para redes de todos los tamaños, además de VPN de próxima generación.

Tabla 26. Especificaciones técnicas CISCO ASA 5515-x

General	Especificación
Tipo de dispositivo	Dispositivo de seguridad
Altura (unidad de bastidor)	1U
Anchura	42.9 cm
Profundidad	39.5 cm
Altura	4.2 cm
Peso	6.1 kg
Memoria RAM	8 GB
Cantidad de puertos	6
Protocolo de interconexión de datos	Gigabit Ethernet
Alimentación	CA 120/230 V (50/60 Hz)
Capacidad	
Peers VPN IPSec : 250	
Peers VPN SSL : 2	

Sesiones concurrentes: 250000

Interfaces virtuales (VLAN): 100

Contextos de seguridad : 2

Características

Capacidad del cortafuegos: 1.2 Gbps

Capacidad de VPN (3DES/AES): 250 Mbps

Tasa de conexiones : 15000 conexiones por segundo

Rendimiento del cortafuegos + prevención de intrusiones : 400 Mbps

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

En la tabla 26, se observa que el CISCO ASA 5515-X ha sido diseñado para ofrecer un rendimiento superior con una eficiencia operativa excepcional dando soluciones de seguridad de alto rendimiento rentable que puede crecer con necesidades cambiantes de la red.

3.4.5 Especificaciones técnicas CISCO s380 web security appliance

El equipo CISCO s380, ayuda a asegurar y controlar el tráfico de Internet, al tiempo que simplifica la implementación y reducción de costos en la red.

Tabla 27. Especificaciones técnicas CISCO s380 web security appliance

General	Especificación
Tipo de dispositivo	Dispositivo de seguridad
Factor de forma	Montable en bastidor-2U
Anchura	48.3 cm
Profundidad	73.7 cm
Altura	8.9 cm
Procesador	1xIntel xeon Es-2600 series 2Ghz
Memoria RAM	16 GB
Disco duro	600 GBx4- SATA 3Gb/s

	Ethernet, Fast Ethernet, Gigabit
Protocolo de interconexión de datos	Ethernet
Protocolo de gestión remota	Telnet, HTTP, HTTPS, SSH, CLI
Interfaces	4 x 1000Base-T - RJ-45
	1 x management - RJ-45
	2 x USB 2.0 - Type A
	1 x 1000Base-T (administración)
Alimentación	CA 120/230 v

Capacidad

Conexión / cantidad de usuarios: 1500-6000

Características

Negociación automática, soporte LDAP, análisis de antivirus, protección anti-spam, Prevención de pérdida de datos (DLP)

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

Como se aprecia en las especificaciones técnicas de la tabla 27, este dispositivo proporciona seguridad web, control de aplicaciones, proxy-cache, además protege a todos los usuarios independientemente de su ubicación esto a través de la integración con Cisco AnyConnect, también es capaz de generar informes de cómo está funcionando la red.

3.4.6 Especificaciones técnicas CISCO 2500 series wireless controller

El equipo CISCO 2500 serie wireless controller, es un controlador inalámbrico que proporciona la comunicación en tiempo real entre los puntos de acceso CISCO Aironet para simplificar el despliegue y operación de redes inalámbricas.

Tabla 28. Especificaciones técnicas CISCO 2500 series wireless controller

General	Especificación
Tipo de dispositivo	Dispositivo de gestión de red
Factor de forma	Externo- 1U
Anchura	20.32 cm
Profundidad	27.15 cm
Altura	4.39 cm
Cantidad de puertos	4
Memoria RAM	16 GB
Protocolo de interconexión de datos	Ethernet, Fast Ethernet, Gigabit Ethernet
Protocolo de conmutación	Ethernet
Protocolo de trasporte	TCP/IP, UDP/IP, ICMP/IP, IPSec, ARP, BOOTP, DHCP
Protocolo de gestión remota	SNMP 1, RMON, Telnet, SNMP 3, SNMP 2c, HTTP, HTTPS, SSH
Interfaces	1 x management - RJ-45
	2 x 1000Base-T - RJ-45
Alimentación	CA 120/230 v, admite POE

Método de autentificación

RADIUS, certificados X.509, TACACS, Extensible Authentication Protocol (EAP)

Características

Soporte de DHCP, soporte ARP, soporte VLAN, soporte IPv6, Sistema de prevención de intrusiones (IPS), soporte SNTP, soporte Wi-Fi Multimedia (WMM), soporte de Trivial File Transfer Protocol (TFTP), Quality of Service (QoS)

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

En la tabla 28 de las especificaciones técnicas, se observa que este controlador proporciona las políticas de seguridad necesarias, sistema de prevención de intrusiones inalámbricas (WIPS), gestión de RF y Calidad de Servicio (QoS) para voz y video.

3.4.7. Especificaciones técnicas antenas CISCO Aironet 1520 outdoor

Las antenas CISCO aironet 1520, son una plataforma de malla flexible, segura y escalable que está diseñado para despliegues en grandes áreas de gran tamaño.

Tabla 29. Especificaciones técnicas antenas CISCO Aironet 1520 outdoor

General	Especificación
Tipo de dispositivo	Punto de acceso inalámbrico
Factor de forma	Externo
Anchura	30.5 cm
Profundidad	19.8 cm
Altura	16.3 cm
Velocidad de transferencia de datos	300 Mbps
Protocolo de interconexión de datos	IEEE 802.11b, IEEE 802.11a, IEEE 802.11g, IEEE 802.11n
Banda de frecuencia	2.4 Ghz, 5 Ghz
Alimentación	РоЕ
Cumplimiento de normas	IEEE 802.11b, IEEE 802.11a, IEEE 802.3af, IEEE 802.11g, IEEE 802.1x, IEEE 802.11i, Wi-Fi CERTIFIED, IEEE 802.11n
Interfaces	1 x 1000Base-T - RJ-45 1 x antena - N connector
Algoritmos de cifrado	LEAP, AES, TLS, PEAP, TTLS, TKIP, WPA, WPA2
M(4-1-144:0::/	

Método de autentificación

Certificados X.509, Extensible Authentication Protocol (EAP)

Características

Auto-sensor por dispositivo, filtrado de dirección MAC, soporte DFS, pasarela VPN, tecnología MIMO, Quality of Service (QoS), modo de puente inalámbrico, tecnología CleanAir, tecnología ClientLink

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

Con el objetivo de mejorar el uso de todos los dispositivos y aplicaciones móviles que se utilizan en el entorno de la Universidad Politécnica Salesiana, se utilizará CISCO Aironet 1520 outdoor por sus especificaciones técnicas observadas en la tabla 29.

3.4.8. Especificaciones técnicas antenas CISCO Aironet 2600 input

La serie CISCO Aironet 2600 establece un nuevo estándar para la tecnología inalámbrica, ofreciendo un gran rendimiento, funcionalidad y fiabilidad a un precio competitivo.

Tabla 30. Especificaciones técnicas antenas CISCO aironet 2600 input

General	Especificación
Tipo de dispositivo	Punto de acceso inalámbrico
Factor de forma	Externo
Anchura	22.1 cm
Profundidad	22.1 cm
Altura	5.4 cm
Memoria RAM	256 MB
Memoria Flash	32 MB
Velocidad de transferencia de datos	450 Mbps
Protocolo de interconexión de datos	IEEE 802.11a,b,g,n
Banda de frecuencia	2.4 Ghz, 5 Ghz
Directividad	Omnidireccional
Antena	Interna integrada
Nivel de ganancia	4 dBi
Cumplimiento de normas	IEEE 802.11b, IEEE 802.11a, IEEE 802.3af, IEEE 802.11d, IEEE 802.11g
Interfaces	1 x 1000Base-T - RJ-45
meriaces	1 x management - RJ-45
Algoritmos de cifrado	AES, TLS, PEAP, TKIP, WPA,WPA2
Método de autentificación	

MS-CHAP v.2, Extensible Authentication Protocol (EAP), EAP-FAST

Características

Soporte DFS, tecnología MIMO, soporte Wi-Fi Multimedia (WMM), tecnología CleanAir, Maximum Ratio Combining (MRC), tecnología ClientLink 2.0

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

El equipo CISCO Aironet 2600 input, debido a las características mencionadas en la tabla 30, este dispositivo mejora notablemente el rendimiento de las redes inalámbricas, reduciendo los huecos de cobertura inalámbrica y además permitirá incrementar la productividad en el entorno de la Universidad Politécnica Salesiana.

3.5. Uso de POE

Power over ethernet (POE), tecnología que permite la suministro de energía eléctrica a los dispositivos de una LAN, es decir es la alimentación eléctrica que se suministra a los switch's y router's.

Las ventajas de la utilización de POE son las siguientes:

- No necesita instalación de punto eléctrico cerca del dispositivo que debe ser energizado.
- Se puede apagar o reiniciar los dispositivos finales mediante el uso de comandos en el puerto.
- Uso del Protocolo Simple de Administración de Red (SNMP).
- Uso de un cable de red UTP para ofrecer servicio de red y alimentación eléctrica. Es posible conectar teléfonos IP, wireless, switch, router y demás dispositivos que con tecnología POE

3.6. Solución inalámbrica

3.6.1 Cobertura inalámbrica exterior todo el campus

Como se observa en la figura 31 la cobertura no es uniforme y se centraliza más en el bloque A, por tal motivo la red inalámbrica a proponerse debe ofrecer una mayor cobertura en el campus para lo cual se tomará las siguientes medidas.

Se proyectará y bosquejará el esquema de red inalámbrica a implementarse, para determinar la ubicación física de las antenas y así brindar una mayor cobertura en el campus.

Se realizarán las mejoras de seguridades de acceso a la red inalámbrica a través de los protocolos de acceso existentes para estas tecnologías y se integrará al nuevo esquema de la red LAN propuesta.

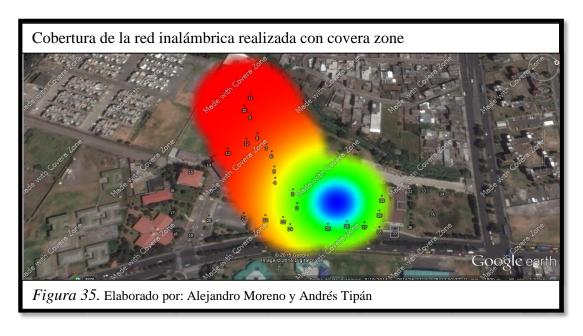
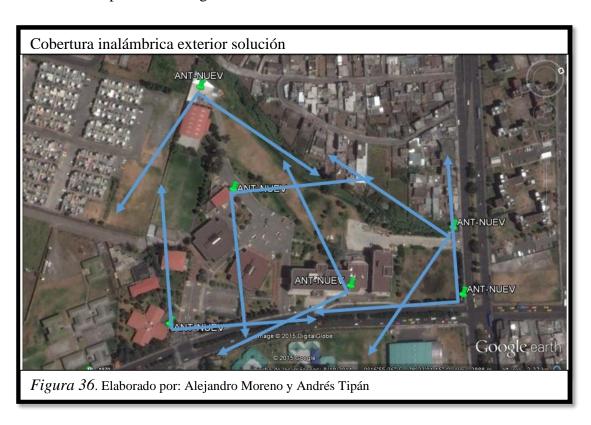


Tabla 31. Intensidades de Señales red inalámbrica


Color de la Intensidad de la	
Señal	Potencia
Azul	-69dBm
Verde	-71dBm
Verde claro	-73dBm
Amarillo	-80dBm
Rojo	-87dBm

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

La red inalámbrica a proponerse debe permitir establecer políticas de seguridad y QoS de manera general, ya que las redes inalámbricas son más susceptibles a los ataques de intrusos.

3.6.1.1. Funcionalidad general de la red propuesta

La red inalámbrica a proponerse debe dar redundancia de cobertura para poder tener mayor conectividad y moverse dentro de toda la red de campus sin perder conectividad para lo cual se utilizará las antenas CISCO Aironet 1520 outdoor y se ubicaran de acuerdo a lo expuesto en la figura 36.

Las antenas estarán ubicadas a una altura referencial de 20 m por encontrarse en una zona urbana y cubrirán un área de cobertura aproximada de 150 m aproximadamente, esto con la finalidad de estar dentro del rango de cobertura de un 85% al 100%, los 150m se obtuvo de Cisco Systems For Cisco Aironet 1520 Series 2,4 GHz Outdoor Links ONLY.

alialia		For	Cisco Sys		or Links ONLY!				
cisco			order Parollet 1520 Serie	D ENGIL OUIGO	or Emino One 1				
Regulatory Domain	ersi								
			Site 1			Sa	e 2		
Select Device	AR-LAPESSAG	E-K3	•	Se	lect Device		CPE or Client Devices		•
Select Datarate	12Mbps								
Modulation Type	OFDM		low 🔻						****
Select Antenna 1 here		type—unter gain bei	low T		lect Antenna 2 Here		For other setams type		abij below
For other Antenna - Enter Gain He		(Bb) 00.			r other Antenna- Ent			(dB)	
Enter Antenna Height Here Note: For most accurate results, t		.00 (meters) se two antenn	a heights shall not exce		ter Antenna Height h maximum shall not			(meters)	
Select Conducted Power level	14		¥	Se	lect Conducted Pow	er level	14	٠	
Power level:	s permitted are	based on ant	enna gain, modulation n	node (based on o	data rate), channel n	umber, and	regulatory doma	in	
Select Cable 1	SOF1 standard ca	olo ->		Se	lect Cable 2		50Ft standard cubis	·>	
For 'OTHER' Cable					'OTHER' Cable			Transaction .	
Enter Cable Loss dB/100 ft here Enter in Length Here		(,25 (dB/100H) 100 (H)			ter Cable Loss dB/10 ter in Length Here	0 It here		(d8/100H)	
Effective Isotropic Radiated Powe	r (d	15,65		EH	ective Isotropic Rad	iated Powe		15,65	
Max Achievable Radio Ran	ge		NLOS Suburban		9126	Feet		2781	Meters
			NLOS Urban and	Dense Foliag	495	Feet		151	Meters
Receive Antenna Height Fac	ctor								
Distance per CCIR Path Loss	Formula								
	,8927303								
AP_height_factor 17,	98023454								
A_factor_suburbar 56,	07455476								
A_factor_urban 13,	02028098								
Cm_term_suburbar	0								
Cm_term_urban	3								
Distance (urban 0	, <mark>15076287</mark> (k	m)							
Distance (subur 2,1	781493417 (k	m)							

3.7. Servicios y Aplicaciones

Continuamente se tiene problemas de saturación de la red, esto se debe muchas veces a la gran cantidad de carga que produce los servicios y aplicaciones que corren por la red, es por eso que es importante conocer los servicios, aplicaciones actuales y futuras que se va a tener en la red los cuales se pueden observar en las tablas 32, 33 esto con el fin de mejorar el rendimiento con el diseño de red propuesto.

Tabla 32. Servicios y Aplicaciones Actuales

SERVICIOS Y APLICACIONES ACTUALES				
SERVICIOS	APLICACIONES			
SNA	SNA	Sistema Nacional Académico		
		Sistema Integrado de Gestión Administrativa		
SIGAC	SIGAC	Contable		
SQUAD	SQUAD	Sistema de gestión de talento humano		
	SACET	Monitoreo de Llamadas		
Vigilancia	NUO	Monitoreo de Seguridad		
	ACCESS TOOL	Control Asistencia Administrativo y Docente		
ACTVE	WIN SERVER	Active Directory		
DIRECTORY	2008	Active Directory		
	TIVOLI	Respaldo en cintas		
respaldos	FILE SERVER	File Server		
	WIN SERVER	Domain Name System		
DNS	2008	Bolliam Name System		
DHCP		Protocolo de Configuración Dinámica de Host		
		Protocolo Simple de Administración de Red o		
SNMP		SNMP		
FTP		Protocolo de transferencia de archivos		
telefonía IP	TELEFONIA	Telefonía a través de red IP		
Antivirus	Fsecure	Servidor local antivirus		

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

Tabla 33. Servicios y Aplicaciones Adicionales

SERVICIOS Y APLICACIONES ADICIONALES				
SERVICIOS	APLICACIONES			
Control de		Control de Asistencia Estudiantes y		
Asistencia		Docentes		
Aumento a la DMZ	Servidores	Aumento de servidores		
Cobertura				
inalámbrica	Access Point	Aumento en cobertura Inalámbrica		
Vigilancia		Aumento de cámaras		
Control web	WSA	Web security apliance		
Monitoreo de trafico	Blue Coat	Paket shaper		

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

Por lo tanto el diseño de red debe dotar a la Universidad Politécnica Salesiana sede Quito campus Sur de sistemas de redundancia y alta disponibilidad de red que impida la caída de los servicios y aplicaciones.

3.7.1. Seguridad a nivel de acls

ACL (access control list), lista de control de acceso es una forma de establecer permisos de acceso apropiados a un determinado objeto, además las ACL permiten aumentar la productividad y la eficiencia de los equipos de red y su principal objetivo es filtrar tráfico de red, por tal motivo en el diseño de red propuesto se ha configuradas ACLs extendidas nombradas en el core las cuales se detalla en el anexo3.

3.7.2. Alta disponibilidad

La alta disponibilidad se refiere a garantizar el grado necesario de continuidad de servicio en que una aplicación o servicio está disponible para que los usuarios puedan utilizarlos en condiciones óptimas y sin interrupciones.

Para medir la disponibilidad se debe tomar en cuenta, que todo sistema debe haber establecido un acuerdo de nivel de servicio (SLA) donde se describa el tiempo y horarios que se debe estar conectado a la red. La disponibilidad de un sistema se la puede calcular mediante la siguiente ecuación.

Disponibilidad =
$$\left(\left(\frac{A-B}{A}\right) \times 100\%\right)$$

Ecuación1. Fórmula de la disponibilidad

Esto quiere decir que la disponibilidad es el tiempo activo real para el tiempo esperado por el 100 %, donde:

A= Horas implicadas de disponibilidad o que esta trabajado el sistema

B= Número de horas fuera de servicio o caída del sistema

El valor del resultado se expresar en función de la cantidad de nueves que brinda la solución.

Tabla 34. Acuerdo de nivel de servicio (SLA)

Porcentaje de disponibilidad	Tiempo de inactividad al año	Tiempo de inactividad al mes	Tiempo de inactividad al día
99%	3.7 días	7.3 hrs	14.4 min
99.5%	1.8 días	3.66 hrs	7.22 min
99.9%	8.8 hrs	43.8 min	1.46 min
99.95%	4.4 hrs	21.9 min	43.8 s
99.99%	52.6 min	4.4 min	8.6 s
99.999%	5.26 min	26.3 s	0.86 s

Nota. (Activa, 2014)

Elaborado por: Alejandro Moreno y Andrés Tipán

Cabe aclarar que los porcentajes de disponibilidad que pasan del 99.5 % son difíciles alcanzarlos ya que es necesario invertir más capital en adquisición de equipos para crear redundancia en la red y poder mejorar la disponibilidad.

3.7.2.1 Disponibilidad actual

Para el cálculo de disponibilidad actual en la Universidad Politécnica Salesiana sede Quito campus Sur, se la ha realizado de la siguiente manera.

Se tomó en cuanta SLA de 24x365 para aplicaciones y servicios con mayor disponibilidad y exigencia por ejemplo las cámaras de video vigilancia. Esto quiere decir que son servicios que tienen que estar disponibles las 24 horas del día por los 365 días del año entonces:

Disponibilidad =
$$\left(\left(\frac{A-B}{A}\right) \times 100 \%\right)$$

Donde A = (24x365) = 8.760 Horas/año

Para el caculo de B que son las horas fuera de servicio se ha tomado en cuenta los siguientes problemas:

- Mantenimiento preventivo 4 horas
- Mantenimiento correctivo no planeado 8 horas
- Migraciones de equipos 6 horas
- Fallas en disco horas 4 horas
- Fallas eléctricas 2 horas

Donde
$$B = (4+8+6+4+2) = 24$$
 horas

Disponibilidad =
$$((\frac{8.760-24}{8.760}) \times 100 \%)$$

Disponibilidad = 99,7 %

Lo que significa que el tiempo de inactividad del sistema al año es de 26,3 hrs.

3.7.2.2 Disponibilidad a obtenerse con la propuesta de diseño

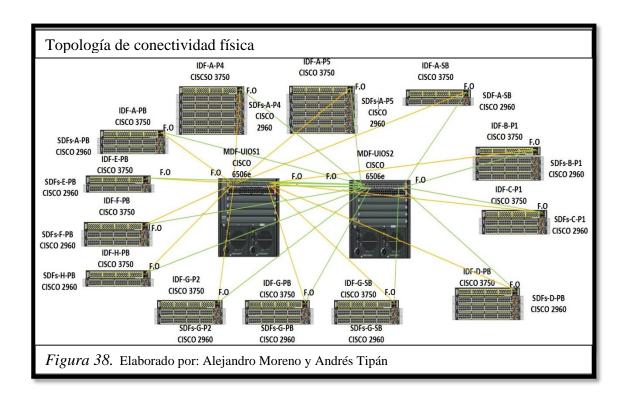
Con el presente diseño se quiere conseguir un mayor desempeño de la red para llegar a la disponibilidad del 99.9%, esto quiere decir que el tiempo de inactividad al año sería de 8 a 9 horas, esto con el fin específico del mejoramiento de la red, para satisfacer las necesidades de acceso a los nuevos servicios y aplicaciones que se implementaran en los próximos años en la Universidad Politécnica Salesiana sede Quito campus Sur siendo útil para todos los usuarios.

3.8. Simulador GNS3

GNS3 es un emulador gráfico de enrutadores, el cual permite diseñar topologías de red, configurar dispositivos, insertar paquetes y simulaciones de conectividad todo aquello desde las propias consolas incluidas.

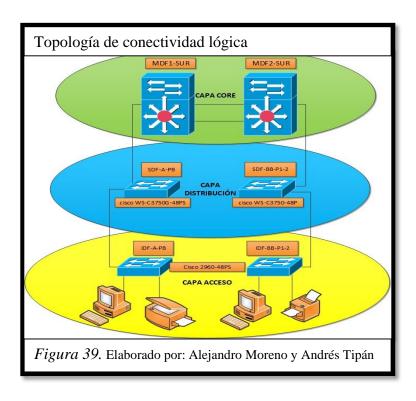
Para ello GNS3 está basado en Dynamips, emulador de routers CISCO, dando soporte a plataformas 1700, 2600, 3600, 3700 y 7200, permitiendo ejecutar imágenes del IOS estándar, esto con el fin de proporcionar simulaciones complejas y precisas.

GNS3 incluye varias características tales como:

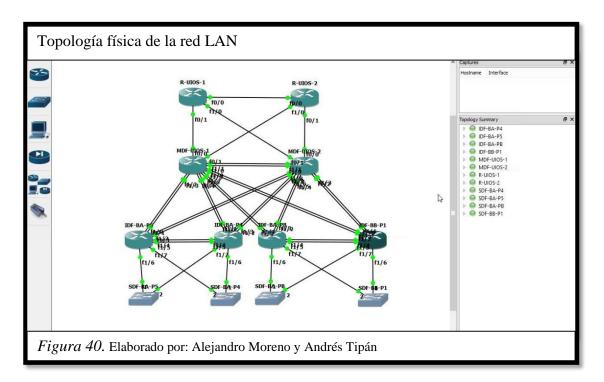

- Captura de paquetes de datos utilizando Wireshark, el cual permite monitorear la red.
- Diseño de alta calidad y topologías de red complejas.
- La emulación de varias plataformas de CISCO IOS del router, IPS, firewalls PIX y ASA.
- Simulación de la simple Ethernet, ATM y Frame Relay interruptores.
- La conexión de la red simulada en la infraestructura real.

Además, GNS3 tiene el propósito de ser usado como un producto educativo, debido a que es un programa gratuito para la enseñanza de cómo funcionan las redes como administrarlas.

El equipo usado para la simulación de la red de alta disponibilidad es un pc con procesador core i7, con una memoria de 8 GB, esto debido a que el emulador GNS3 consume gran cantidad de memoria por la utilización de los IOS, lo cual permite tener un entorno de trabajo real.


3.8.1 Topología física

La topología física de conectividad que se utiliza en la red de alta disponibilidad es de tipo estrella extendida como se muestra en la figura 38, la propia que está conformada en su mayoría por switch's core-CISCO 6506e, distribución-CISCO 3750, acceso-CISCO 2960, los cuales están conectados a través de fibra óptica (F.O).


3.8.2 Topología lógica

La topología lógica de conectividad utiliza el diseño de red jerárquico, establecida de acuerdo a la función que desempeña cada uno de los equipos dentro de las capas de diseño de networking como se muestra en la figura 39.

3.8.3 Topología de conectividad en GNS3

La topología de la simulación en GNS3 permitirá conocer cómo están conectados los equipos, con las interfaces de cada uno de los dispositivos que se utilizará para la simulación de la red de alta disponibilidad.

Los dispositivos de infraestructura que se utilizaron en la topología física para la simulación son los siguientes:

- Router 7200: Con velocidades de procesamiento de hasta 2 millones de paquetes por segundo, así como un número sin precedentes de servicios IP de alto contacto, ideales para redes WAN / MAN, dispositivo de borde para empresas.
- Switch 3600: Con acceso de multiservicios modulares para oficinas de grandes dimensiones, medianas, pequeñas y proveedores de servicios de Internet.
 Brinda soluciones para datos, vídeo de voz, y enrutamiento de datos multiprotocolo.
- **PC:** Con lo necesario para que soporte la simulación, con un procesador core i7, con una memoria RAM de 8 GB y disco duro de 500gb.

3.9 Configuración de la simulación

GLBP (gateway load balancing protocol) permite balancear la carga determinando diferentes direcciones MAC a una misma IP virtual, esto con la finalidad de tener una manera privilegiada de gestionar redundancia de enrutamiento IP, por esta razón en los equipos de la simulación se configuró el protocolo GLBP, ya que este protocolo permite gestionar redundancia de enrutamiento IP y además posee balanceo de carga el cual permite que todas mis conexiones y equipos estén trabajando de manera óptima.

3.9.1. Pasos detallados de la configuración de GLBP

Paso 1: enable, habilita el modo EXEC privilegiado.

Ejemplo:

MDF-UIOS > enable

Paso 2: configure terminal, entra en el modo de configuración global.

Ejemplo:

MDF-UIOS # configure terminal

Paso 3: interface type number, especifica un tipo de interfaz y el número, y entra en el modo de configuración de interfaz.

Ejemplo:

MDF-UIOS (config)# interface vlan 2

Paso 4: ip address *ip-address mask* [**secondary**], especifica una dirección IP primaria o secundaria para una interfaz.

Ejemplo:

MDF-UIOS (config-if)# ip address 172.17.1.254 255.255.255.0

Paso 5: glbp *group* **timers** [**msec**] *hellotime* [**msec**] *holdtime*, configura el intervalo entre los paquetes sucesivos de saludo enviados por el AVG (Active Virtual Gateway) en un grupo GLBP

Ejemplo:

MDF-UIOS config-if)# glbp 2 timers 5 18

- El tiempo de mantenimiento argumento específica el intervalo en segundos antes de que la puerta de entrada virtual y promotor de la información virtual en el paquete de saludo se considera válido.
- El opcional (msec) palabra clave especifica que el siguiente argumento se expresará en milisegundos, en lugar de los segundos predeterminados.

Paso 6: glbp *group* **timers redirect** *redirect timeout*, configura el intervalo de tiempo durante el cual el AVG (Active Virtual Gateway) continúa para redirigir a los clientes a una AVF(Active Virtual Forward). El valor predeterminado es 600 segundos (10 minutos).

Ejemplo:

MDF-UIOS (config-if)# glbp 2 timers redirect 1800 28800

 El tiempo de espera argumento específica el intervalo en segundos antes de que un promotor virtual secundario deja de ser válida. El valor predeterminado es 14.400 segundos (4 horas).

Nota

• El valor cero para la redirección argumento no se puede quitar de la gama de valores aceptables porque las configuraciones preexistentes del software Cisco IOS que ya utilizan el valor cero podrían verse afectados negativamente durante una actualización. Sin embargo, no se recomienda un ajuste de cero y, si se usa, se traduce en un temporizador de redireccionamiento que nunca caduca. Si el temporizador de redirección no caduca, y el dispositivo falla, sigan asignadas al dispositivo que ha fallado en lugar de ser redirigido a la copia de seguridad nuevos huéspedes.

Paso 7: glbp group load-balancing [host-dependent | round-robin | weighted], especifica el método de balanceo de carga utilizado por la GLBP. Ejemplo:

MDF-UIOS (config-if)# glbp 2 load-balancing host-dependent

Paso 8: glbp *group* **priority** *level*, establece el nivel de prioridad de la puerta de entrada dentro de un grupo GLBP.

Ejemplo:

MDF-UIOS (config-if)# glbp 10 priority 254

• El valor predeterminado es 100.

Paso 9: glbp *group* **preempt** [**delay minimum** *seconds*], configura el dispositivo para asumir como Active Virtual Gatewaypara un grupo GLBP si tiene una prioridad más alta que la actual de Active Virtual Gateway.

Ejemplo:

MDF-UIOS (config-if)# glbp 2 preempt delay minimum 60

- Este comando está desactivado por defecto.
- Use la opción de retardo y mínimos de palabras clave y el segundo argumento para especificar un intervalo mínimo de retardo en segundos antes de que el sobreseimiento de la Active Virtual Gateway se lleva a cabo.

Paso 10: glbp *group* **client-cache maximum** *number* [**timeout** *minutes*], Utilice el número de argumento para especificar el número máximo de clientes que el caché celebrará para este grupo GLBP. El rango es de 8-2000

Ejemplo:

MDF-UIOS (config-if)# glbp 2 client-cache maximum 1200 timeout 245

(Opcional) Activa la caché del cliente GLBP.

- Este comando está desactivado por defecto.
- Use la opción de tiempo de espera minuto palabra clave y los argumentos par para configurar la cantidad máxima de tiempo que una entrada de cliente puede permanecer en la caché del cliente GLBP después de la información de los clientes de la última actualización. El rango es de 1 a 1440 minutos (un día).

Nota

 Para las redes IPv4, Cisco recomienda establecer un valor de tiempo de espera caché del cliente GLBP que es ligeramente más largo que el máximo esperado al valor de tiempo de espera de caché por el Protocolo de resolución de direcciones (ARP).

Paso 11: glbp *group* **name** *redundancy-name*, permite redundancia IP mediante la asignación de un nombre al grupo GLBP

Ejemplo:

MDF-UIOS (config-if)# glbp 2 name abc123

 El cliente redundancia GLBP debe configurarse con el mismo nombre de grupo GLBP para que el cliente la redundancia y el grupo GLBP pueden conectarse.

Pasó 12: exit, sale del modo de configuración de interfaz, y devuelve el dispositivo al modo de configuración global

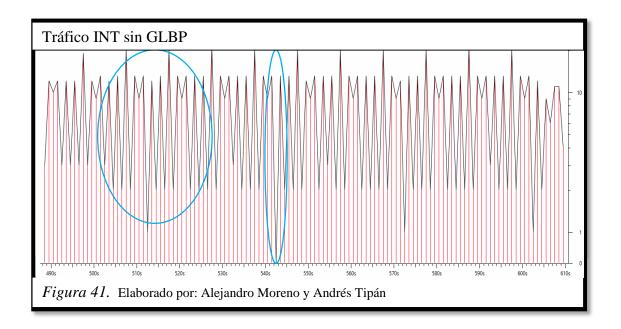
Ejemplo:

MDF-UIOS (config-if)# exit

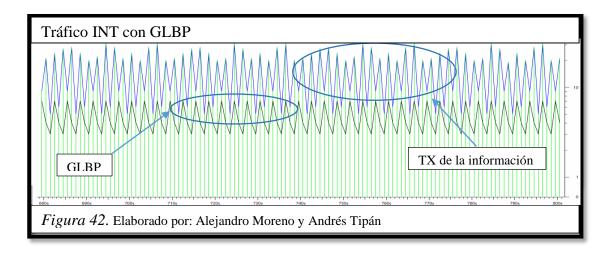
Pasó 13: no glbp sso, (Opcional) Desactiva apoyo GLBP de SSO.

Ejemplo:

MDF-UIOS (config)# no glbp sso

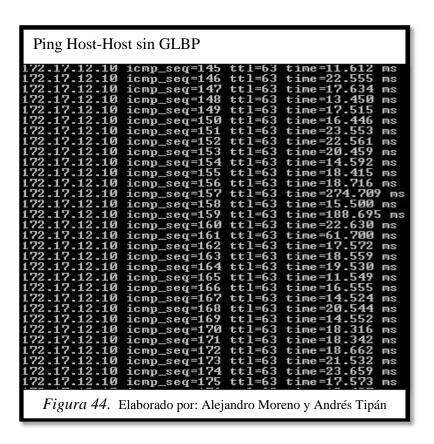

3.9.2. Configuración de dispositivos

En la consola de los dispositivos se podrá observar las configuraciones que se han utilizado en cada uno de los dispositivos de la simulación y como están funcionando cada uno de estos. Esto se encuentra en el Anexo 4.


3.9.3. Análisis de resultados

A continuación en la figura 41 se observa el tráfico desde el enlace de distribución y acceso sin GLBP, haciendo ping de host a host dentro de la red de campus con carga de 1554 y con un número de paquete aproximado de 1000 donde se observa un flujo de tráfico constante pero desordenado e incluso existen perdidas, por tal motivo se observa los picos y valles.

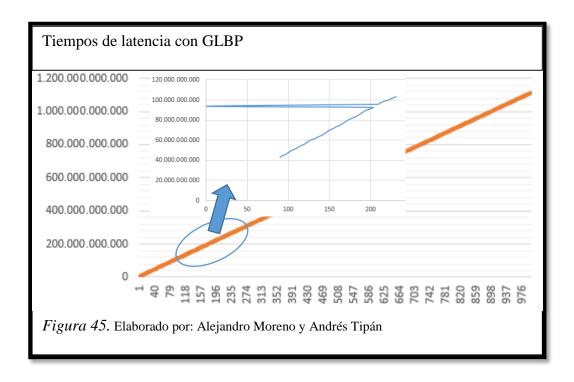
Con el propósito de evitar picos y valles en el tráfico de red, STP reconfigura la red y redirecciona las rutas de datos a través de la activación de la ruta en espera.


A continuación en la figura 42 se observa el tráfico desde el enlace de distribución y acceso con GLBP, haciendo ping de host a host dentro de la red de campus con carga de 1554 y número de paquete aproximado de 1000, donde se observa que el uso del protocolo GLBP durante toda la transmisión de la información realiza balanceo de carga, por lo tanto no existe pérdidas considerables obteniendo un flujo de información estable.

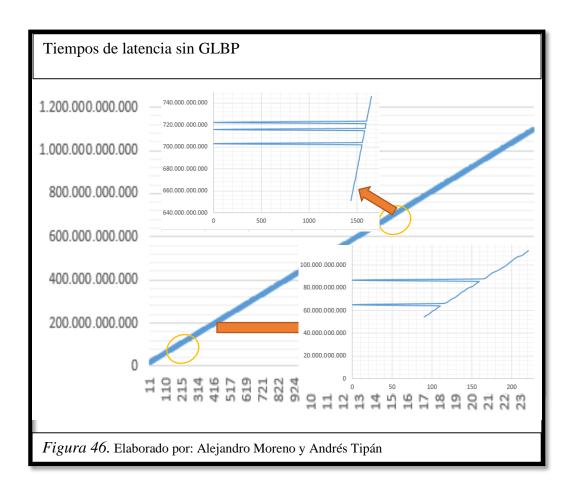
La figura 43 es una muestra del ping realizado de host-host donde se observa un tiempo de respuesta considerablemente bajo con una media de 2.135(ms) utilizando GLBP.

Ping Host-He	ost con GLBP			
172.17.6.10	icmp_seq=886	tt1=64	time=2.233	ms
172.17.6.10	icmp_seq=887	tt1=64	time=2.471	ms
172.17.6.10	icmp_seq=888	tt1=64	time=2.278	ms
172.17.6.10	icmp_seq=889	tt1=64	time=2.171	ms
172.17.6.10	icmp_seq=890	tt1=64	time=1.895	ms
172.17.6.10	icmp_seq=891	tt1=64	time=2.338	ms
172.17.6.10	icmp_seq=892	tt1=64	time=2.173	ms
172.17.6.10	icmp_seq=893	tt1=64	time=1.889	ms
172.17.6.10	icmp_seq=894	tt1=64	time=1.754	ms
172.17.6.10	icmp_seq=895	tt1=64	time=2.197	ms
172.17.6.10	icmp_seq=896	tt1=64	time=2.049	ms
172.17.6.10	icmp_seq=897	tt1=64	time=2.049	ms
172.17.6.10	icmp_seq=898	tt1=64	time=2.242	ms
172.17.6.10	icmp_seq=899	tt1=64	time=2.319	ms
172.17.6.10	icmp_seq=900	tt1=64	time=1.900	ms
172.17.6.10	icmp_seq=901	tt1=64	time=2.293	ms
172.17.6.10	icmp_seq=902	tt1=64	time=2.264	ms
172.17.6.10	icmp_seq=903	tt1=64	time=2.262	ms
172.17.6.10	icmp_seq=904	tt1=64	time=2.165	ms
172.17.6.10	icmp_seq=905	tt1=64	time=2.503	ms
172.17.6.10	icmp_seq=906	tt1=64	time=1.797	ms
172.17.6.10	icmp_seq=907	tt1=64	time=1.961	ms
172 17 6 10	RNP=nes cmoi	t+1=64	time=1 907	me
Figura 43. El	laborado por: Aleja	ndro More	no y Andrés Tipa	án

La figura 44 es una muestra del ping realizado de host-host sin GLBP donde se observa un tiempo de respuesta considerablemente alto con respecto al obtenido el cual tiene una media de 38.219(ms).



En el análisis de resultados se observa el funcionamiento de la red de alta disponibilidad con las configuraciones de STP (spanning tree protocol), que evita se formen bucles en topologías de red debido a la presencia de enlaces redundantes que son necesarios para tener una alta disponibilidad del servicio, además


El uso de GLBP con su Active Virtual Gateway (AVG) ayuda a que no existan o disminuyan considerablemente las pérdidas de paquetes a través de la red usada.

En el análisis de resultados se utilizó el software wireshark, que es un analizador de paquetes de red que permite la captura de tramas y paquetes que transitan por las interfaces de red.

En las figuras 45 y 46 se observa la relación de tiempo versus número de paquetes en los cuales se puede apreciar prácticamente una línea recta, esto ocurre porque al momento de graficarla descarta los paquetes que pasan por cero ya que son despreciables.

En la figura 45, se encuentra un intervalo pequeño donde se observar el único pasó por cero o paquete perdido, los demás puntos se encuentran oscilando en la línea recta ya que sus diferencias son mínimas.

En la figura 46, se encuentran dos intervalos pequeños donde se observar los pasos por cero o paquetes perdidos, los demás puntos se encuentran oscilando en la línea recta a pesar que sus diferencias son mayores como se lo indica en la figura 44.

CAPÍTULO 4

DISEÑO DE LA RED LAN

En el presente capítulo, se realizará un análisis técnico-económico tomando en cuenta las áreas para las alternativas de diseño propuestas en el capítulo anterior. Además se incluye un análisis económico de la solución desarrollada, con el objetivo de conseguir una proximidad de los precios existentes en el mercado nacional.

Finalmente se incluyen las conclusiones y recomendaciones procedentes del presente estudio, para comprender varios aspectos importantes relacionados con el diseño de la red LAN donde se incluirán anexos que permitan visualizar de manera adecuada la mejora realizada por este proyecto.

4.1. Análisis técnico

En este análisis se procederá a establecer las características primordiales de orden técnico para la adquisición de equipos CISCO planteadas para el diseño de red de alta disponibilidad para la Universidad Salesiana sede Quito campus Sur.

Tabla 35. Análisis de las características primordiales de orden técnico

Factores determinantes del éxito	Peso	Calificación	Ponderación
Fortalezas			
Equipamiento de infraestructura de red a nivel mundial	0.1	4	0.4
Documentación clara y muy difundida.	0.04	2	0.08
Nivel de core muy usado en Latinoamérica.	0.1	3	0.3
Tiene varios socios a nivel nacional. (IBM, SINETCOM, DESCA, entre otros)	0.1	3	0.3
Calidad superior y certificación	0.1	4	0.4

Debilidades			
Constante desarrollo de tecnología	0.1	2	0.2
Costo de sus equipos	0.2	3	0.6
Aumento de calidad de servicios nuevos	0.06	1	0.06
Las licencias tienen un precio alto	0.2	3	0.6
Total	1		2.94

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

Como se observa en la tabla 35 el valor del peso ponderado es de 2.94, lo cual establece que si la calificación supera a 2.5 la atractivita del proyecto es favorable.

4.2. Beneficios primordiales de orden técnico

El diseño de red de alta disponibilidad tiene un fin específico, el mejoramiento de la red de datos para satisfacer las necesidades de acceso a los nuevos servicios y aplicaciones que se implementaran en los próximos años en la Universidad Politécnica Salesiana sede Quito campus Sur siendo útil para todos los usuarios ya que permitirá:

- Mejorar los procesos de matrículas, administración de red, video conferencias, acceso a bases de datos, etc.
- Optimizar el acceso a consultas en la biblioteca y aulas virtuales, para beneficio de los estudiantes de la Universidad Politécnica Salesiana con el fin de brindar una mejor calidad de educación.
- Ofrecer las condiciones necesarias en las aulas como en los laboratorios de la Universidad Politécnica Salesiana, de tal forma que se garantice una educación acorde a los requerimientos actuales.

4.3. Análisis económico

En la planificación para la red de alta disponibilidad se ha realizado un análisis económico para conocer la rentabilidad y factibilidad del mismo, además con este análisis se podrá determinar qué tan rentable es el proyecto antes de una toma de decisiones referentes a actividades de inversión.

4.3.1 Valores referenciales

En la tabla 36 se mostrará los costos referenciales de equipamiento, esto tiene como objetivo el mostrar una idea del precio que podrá alcanzar el proyecto antes de tomar una decisión.

Resumen de costos

Tabla 36. Costos referenciales de equipamiento cisco

Producto	Precio Unit.	Unidad	Total			
Requerimiento actual de Switches de core						
CISCO 6506 chasis	18.017,00	2	36034			
Requerimiento actual de Switc	hes de distribución					
CISCO 3750	4.555,00	12	54660			
Requerimiento actual de Switc	hes de acceso					
CISCO 2960	2.285,00	29	66265			
Requerimiento actual de anten	as exteriores					
CISCO aironet 1520 outdoor	2.199,00	9	19791			
Requerimiento actual de anten	as interiores					
CISCO aironet 2600 input	483,00	42	20286			
Requerimiento actual dispositivos de gestión de red						
CISCO 2500 wireless controller	5.895,00	1	5895			
Requerimiento actual dispositivos de seguridad						
CISCO asa 5515-x	5.084,00	1	5084			

CISCO s380 web security appliance	8.992,04	1	8992,04
CISCO 2801	838,00	2	1676
Total en equipos			218.683,04

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

En las tablas 37 y 38, se mostrará los costos referenciales de los enlaces de datos e internet cuyos valores fueron obtenidos de cotizaciones de los proveedores de la Universidad Politécnica Salesiana.

Tabla 37. Costos referenciales de enlaces de Internet

Proveedor	Localidad	Medio físico	Interfaz	Ancho de banda (kbps)	Renta mensual servicio
Andinanet	U.P.S	F.O.	RJ45	4076	\$ 4.000,00
Telconet	U.P.S	F.O.	RJ45	4076	\$ 4.000,00
	\$ 4.000,00				
	\$ 480				
	4.480,00				

Nota. (Juan Carlos Dominguez, 2008, pág. 169)

Tabla 38. Costos referenciales de enlaces de Datos

Campus A	Campus B	Tipo	Medio físico	Interfaz	Ancho de banda (kbps)	Inscripción e instalación	Renta mensual servicio
Girón							
UPS	Sur UPS						
Quito	Quito	Local	TDM	F.O.	2048	900	700.00
	Total sin impuestos						700.00
	IVA (12%)						
			Т	otal			784.00

Nota. (Juan Carlos Dominguez, 2008, pág. 169)

Tabla 39. Análisis Económico

	año 0	año 1	año 2	año 3	año 4	año 5	año 6	año 7	año 8	año 9	año 10
Ingresos											
Número de viajes ahorrados		83	85	88	90	93	96	99	102	105	108
Costo por viaje		390	390	390	390	390	390	390	390	390	390
Ahorros por viajes		32.271,65	33.239,80	34.236,99	35.264,10	36.322,02	37.411,68	38.534,03	39.690,06	40.880,76	42.107,18
Número de minutos		365.678,52	376.684,87	387.948,34	399.586,79	411.574,39	423.921,63	436.639,27	449.738,45	463.230,61	477.127,52
Costo minuto		0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
Ahorro en telefonía		7.313,57	7.532,98	7.758,97	7.991,14	8.231,49	8.478,43	8.732,79	8.994,77	9.264,61	9.542,55
Ahorros duplicación hadware	65.525,19										
Ahorro mantenimiento		7.901,87	7.901,87	7.901,87	7.901,87	7.901,87	7.901,87	7.901,87	7.901,87	7.901,87	7.901,87
Total de ahorros previstos	65.525,19	47.487,09	48.674,65	49.879,83	51.157,71	52.455,38	53.791,99	55.168,69	56.586,69	58.047,24	59.551,60
Ingreso por valor de desecho					14.878,37						
Total Ingresos	65.525,19	47.487,09	48.674,65	49.897,83	66.035,48	52.455,38	53.791,99	55.168,69	56.586,69	58.047,24	59.551,60
	año 0	año 1	año 2	año 3	año 4	año 5	año 6	año 7	año 8	año 9	año 10
Egresos											
Inversion en equipos	218.683,04										
Inversion por instalacion telf											
Inversion por instalacion datos	100										
Inversion por instalacion internet	100										
Inversion en capital de trabajo	1000										
Gastos en capacitación		4.000,00	4.000,00	4.000,00	4.000,00	4.000,00	4.000,00	4.000,00	4.000,00	4.000,00	4.000,00
Gastos enlace de datos		47.040,17	48.451,37	49.904,91	51.402,06	52.944,12	54.532,45	56.168,42	57.853,47	59.589,08	61.376,75
Gastos movilizaciones		1.040,00	1.040,00	1.040,00	1.040,00	1.040,00	1.040,00	1.040,00	1.040,00	1.040,00	1.040,00
Total Egresos	219.883,04	52.080,17	53.491,37	54.944,91	56.442,06	57.984,12	59.572,45	61.208,42	62.893,47	64.629,08	66.416,75
FLUJO NETO	-154.357,85	-4.593,08	-4.816,72	-5.047,08	9.593,42	-5.528,74	-5.780,46	-6.039,73	-6.306,78	-6.581,84	-6.865,15
	año 0	año 1	año 2	año 3	año 4	año 5	año 6	año 7	año 8	año 9	año 10
Ahorros Intangibles											
Ahorroen dólares		71.643,14	73.792,43	76.006,21	78.286,39	80.634,99	83.054,03	85.545,66	88.112,03	90.755,39	93.478,05
Flujo con ahorros intangibles	-154.357,85	76.236,22	78.609,15	81.053,29	68.692,97	86.163,73	88.834,49	91.585,38	94.418,80	97.337,22	100.343,20
Calculo del VAN	\$ 65.775,87										
Calculo del TIR	50%										

Nota. (DOMÍNGUEZ AYALA JUAN CARLOS, 2008, pág. 188)

El presupuesto referencial, se lo realizó con un sobredimensionamiento de los equipos pensando en una expansión futura de la red de 3 a 10 años en la Universidad Politécnica Salesiana sede Quito campus Sur con la finalidad de obtener equipos adicionales por cualquier aspecto emergente. Además se realizará los cálculos del flujo de caja para obtener el VAN (valor neto actual) y TIR (Tasa interna de retorno), con el propósito de ver la viabilidad de la red propuesta.

$$VAN = \sum_{t=1}^{n} \frac{Vt}{(1+k)^t} - Io$$

Ecuación 2. Fórmula del VAN

$$TIR = \frac{-I + \sum_{i=1}^{n} Fi}{\sum_{i=1}^{n} i * Fi}$$

Ecuación 3. Fórmula del TIR

Tabla 40. Interpretación del VAN y TIR

Fórmula	Interpretación
	VAN> 0; la inversión produce
VAN	ganancias
	VAN<0; la inversión produce perdidas
	VAN= 0; la inversión no produce ni
	perdidas ni ganancias
	$TIR \ge r$; se aceptara el proyecto
TIR	TIR< r; se rechazara el proyecto

Nota. Elaborado por: Alejandro Moreno y Andrés Tipán

Al realizar el análisis económico del proyecto, se observa en la tabla 39 que el VAN (valor neto actual) es un valor positivo, lo que significa que la inversión que se requiere para la implementación de la red de alta disponibilidad es completamente justificada.

CONCLUSIONES

- Después de realizar el análisis técnico-económico de la nueva infraestructura de red, se concluye que todos los bloques de la Universidad Politécnica Salesiana Sede Quito Campus Sur podrán contar con un servicio de red de alta disponibilidad gracias a la topología tipo estrella extendida que se diseñó y simuló entre los Switches de Core y los Switch de Acceso mediante el protocolo spanning-tree el cual controla los enlaces redundantes de la topología mencionada.
- En base al análisis realizado de la red simulada, se observó de manera detallada gráficas estadísticas indicado la mejorar que se obtuvo a través de enlaces redundantes y con la implementación del protocolo GLBP, siendo esto de ayuda para observar el funcionamiento de la red propuesta vs la red actual ya que GLBP es una manera privilegiada de gestionar redundancia de enrutamiento IP y está diseñado para permitir una administración transparente de la puerta de enlace predeterminada, además GLBP posee balanceo de carga el cual permite que todas las conexiones y equipos estén trabajando de manera óptima.
- La importancia de una red de alta disponibilidad en la actualidad propone diferentes retos para la administración de la información y las comunicaciones por la cual es necesario que permita la integración de aplicación o sistema de servicios que ayude a cumplir con los requerimientos de los usuarios, por tal motivo la inversión que se requiere para la implementación de la red de alta disponibilidad es justificable por los beneficios que brindará la misma, como la escalabilidad, mayor velocidad, mayor seguridad, accesibilidad total, mejor administración, entre otras ventajas que brindará esta red.

RECOMENDACIONES

- Se recomienda se haga uso del protocolo llamado VSS (virtual switching system) en el core CISCO 6506 e, ya que permite comunicar los MDF a velocidades de transmisión aproximada de 10 Gbps, además de crear un equipo virtual que me permite tener una administración unificada, esto con la finalidad de eliminar uno de los puntos simples de falla, es decir que si un equipo deja de funcionar en la red los host no lo notarían porque el Gateway que se crea es virtual.
- En la configuración del protocolo GLBP se debe tomar en cuenta que previo a su configuración la red debe estar funcionando al 100%, es decir con el uso de STP y los protocolos de enrutamiento (OSPF, EIGRP y rutas estáticas).
- En caso de adquirir nuevos equipos de conectividad, se recomienda la verificación de los IOS y compatibilidad con el equipamiento puesto en la infraestructura de red propuesta por la red de alta disponibilidad.
- Es importante implementar políticas de seguridad internas que estén acordes al nuevo equipamiento e infraestructura de red, y de esta manera poder evitar que usuarios no autorizados puedan acceder a las configuraciones y cambiarlas.
- Se recomienda el cambio del cableado estructurado existente dado que el tiempo de vida útil de 10 años estaría por culminar y este debe soportar de 2 a 3 generaciones de equipos activos sin generar pérdidas ni atenuaciones por lo cual se recomienda cambiar a un cableado actual certificado para poder aprovechar de mejor manera la nueva infraestructura de la red LAN en la Universidad Politécnica Salesiana Sede Quito Campus Sur.
- Se recomienda que a futuro se realice investigaciones acerca de las nuevas tecnologías inalámbricas tales como: IrDA, Wi-Max, SMART WIRELESS, ya que el uso de redes inalámbricas proporciona mayores ventajas que las redes cableadas.

LISTA DE REREFERNCIAS

- Borja, R., & Jarrín, J. (2014). Implementación e integración de la red wlan de la Universidad Politécnica Salesiana (ups), Sede Quito-Campus Sur, al proyecto internacional EDUROAM. Quito.
- CISCO. (18 de 06 de 2014). First Hop Redundancy Protocols Configuration Guide,

 Cisco IOS Release 15M&T. Obtenido de Contents:

 http://www.cisco.com/c/en/us/td/docs/ios
 xml/ios/ipapp_fhrp/configuration/15-mt/fhp-15-mt-book/fhp-hsrp-gshut.html
- CISCO. (12 de 1 de 2015). *Cisco Catalyst 2960 Series Switches*. Obtenido de http://www.cisco.com/c/en/us/products/switches/catalyst-2960-series-switches/index.html
- CISCO. (12 de 1 de 2015). *Cisco Catalyst 3750 Series Switches*. Obtenido de http://www.cisco.com/c/en/us/products/switches/catalyst-3750-series-switches/index.html
- CISCO. (12 de 1 de 2015). *Cisco Catalyst 6506-E Switch*. Obtenido de http://www.cisco.com/c/en/us/products/switches/catalyst-6506-e-switch/index.html
- CISCO. (21 de 01 de 2015). *GLBP Gateway Load Balancing Protocol*. Obtenido de http://www.cisco.com/en/US/docs/ios/12_2t/12_2t15/feature/guide/ft_glbp.ht ml
- Domínguez Ayala, Juan Carlos, c. I. (2008). Análisis y diseño técnico económico de la red de interconexion de las redes en los Campus Girón, Sur, Kennedy y Cayambe de la Universidad Politecnica Salesiana Sede Quito. Quito.
- Educacion.ucv.cl. (15 de 06 de 2014). Obtenido de Diseño de redes: http://educacion.ucv.cl/prontus_formacion/site/artic/20070627/asocfile/ASO CFILE220070627174213.pdf
- Felipe, M. Á. (15 de 06 de 2014). *Implantación de soluciones de Alta Disponibilidad*. Obtenido de Seguridad y Alta Disponibilidad: http://mgarciafelipe.files.wordpress.com/2012/03/ud-6-implantacic3b3n-desoluciones-de-alta-disponibilidad-miguelangelgarcia.pdf

Kenneth D. Stewart III, A. A. (2009). *Diseño y soporte de redes de computadoras*. Madrid (España): PEARSON EDUCACIÓN, S.A.

McGraw-Hill, O. M. (2002). *Manual de referencia Redes*. Madrid (España): INTERAMERICANA DE ESPAÑA, S.A.U.

ANEXOS

Anexo 1. Análisis de necesidades de renovación de equipos de cómputo (pc) de la Sede Quito Campus Sur

Dirección técnica de tecnologías de la información

Renovación de equipos de escritorio (Computadoras) para laboratorios, administrativos y personal docentes de dedicación a la UPS sede Quito.

a. Tabla de resumen. Número de personal docente a tiempo completo de la Sede-Quito

Rol	Campus	Dedicación	Subtotal
		Exclusiva o	
Docente	Sur	tiempo completo	35

A continuación en la tabla siguiente usted puede visualizar datos en detalle con el número de máquinas Core i5, i7, i3 y dual Core. De los docentes tiempo completo instalados actualmente en la sala de profesores.

Tabla resumen					
MAQ. SEDE-					
QUITO	SUBTOTAL				
I5-I7-I3	43				
DUAL CORE	34				
TOTAL	77				

En esta tabla puede visualizar el número de máquinas restando las que actualmente estas instaladas (i3, i5, i7).

Referencias:

DOCENTES-TC: Total de Docentes a tiempo completo

DOCENTES-M: total de máquinas (I3, I5, I7) instaladas actualmente en la sala de profesores.

Descripción	Subtotal
DOCENTES-TC	390
DOCENTES-M	43
TOTAL	347

b. Detalle la ubicación de equipos en los laboratorios.

Descripción máq.	Campus-áreas	# Lab	Número
Core 2 Quad	SUR-SECASIS	6	28
Core 2 Quad	SUR-SECASIS	8	28
Core 2 Quad	SUR-SECASIS	13	28
		Total	84
Core 2 Quad	SUR-ELECTRÓNICA	ANALÓGICA	
Core 2 Quad	SUR-ELECTRÓNICA	ELÉCTRICA	
Core 2 Quad	SUR-ELECTRÓNICA	AUTOMATIZACIÓN	
Core 2 Quad	SUR-ELECTRÓNICA	TELECOMUNICACIONES	
Core 2 Quad	SUR-ELECTRÓNICA	MPS	
Core 2 Quad	SUR-ELECTRÓNICA	CONTROL	
	SUR-ELECTRÓNICA	CIR. ELÉCTRICOS	
	SUR-ELECTRÓNICA	INST. CIVILES	
	SUR-ELECTRÓNICA	INST. INDUSTRIALES	
	SUR-ELECTRÓNICA	ELECT. DE POTÉNCIA	
		Total	
Pentium 4	SUR-AMBIENTAL	QUIMICA ANALÍTICA 2	
Pentium 4	SUR-AMBIENTAL	QUIMICA ANALÍTICA 1	
		Total	

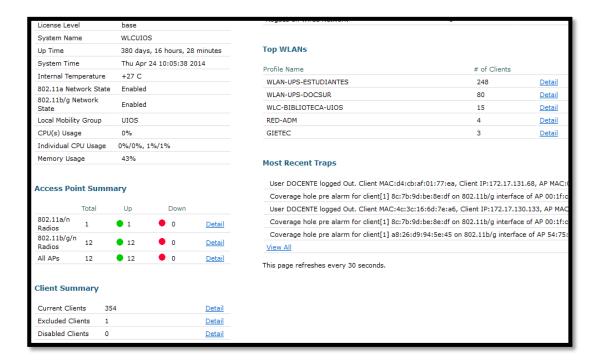
Tabla de resumen. Número de máquinas de c/laboratorios por áreas de la Sede-Quito

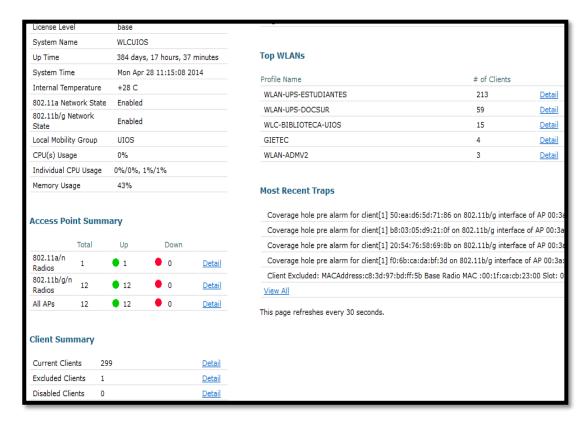
Tabla de resumen

Campus	Áreas	Subtotal
Sur	SECASIS	84
Sur	Eléctrica	33
Sur	Ambiental	2

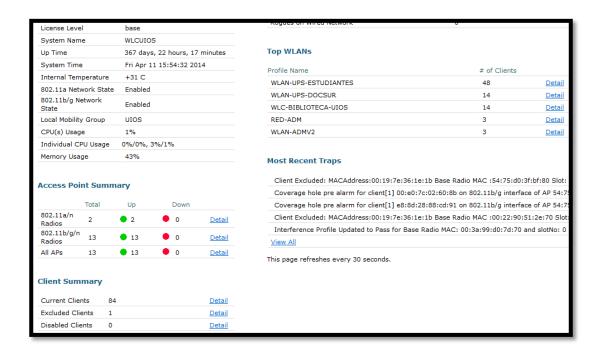
c. Tabla en detalle de equipos para el área administrativa.

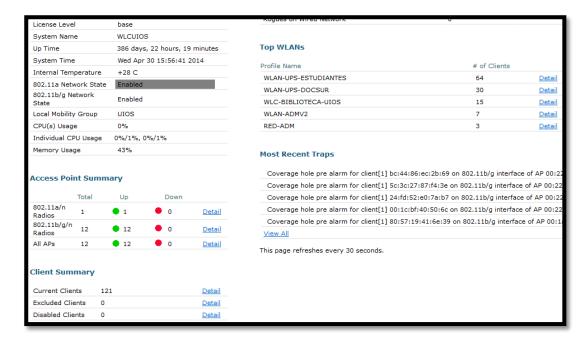
Descripción maq.	Campus	Campus-lab	Número
Core 2 duo	Sur	Administrativos	5


Tabla de resumen área administrativa.


Tabla de resumen personal administrativo		
Campus	Descripción	Subtotal
Sur	Administrativos.	5

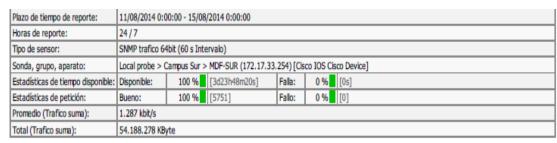
Resumen

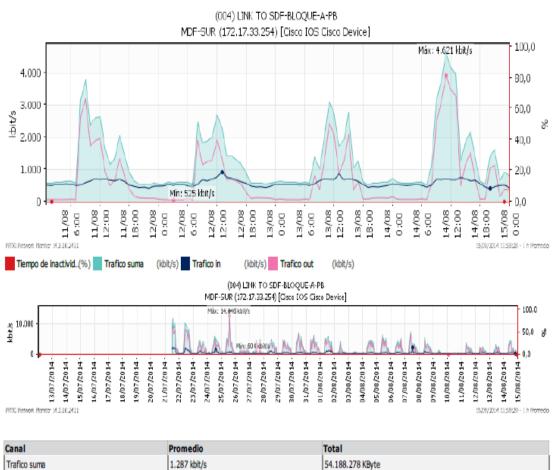

- El número total, de máquinas para los laboratorios de la Sede-Quito es: 336 computadoras.
- El número de máquinas para usuarios administrativos sede-Quito es: 68 computadoras.
- El número de docentes a tiempo completo de la Sede-Quito es: 347 equipos para docentes.
- El número de equipos para STOCK recomendados son 19 equipos
- El número total de equipos a adquirir en la sede Quito son: 7


Números de usuarios conectados en las redes inalámbricas 12 PM

Números de usuarios conectados en las redes inalámbricas 5 PM

Anexo 2. Gráficos ancho de banda usados en la Universidad Politécnica Salesiana sede Quito campus Sur usando el software PRTG.

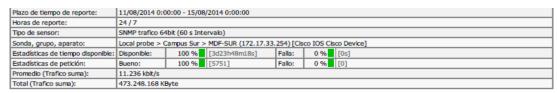

SWITCH DE CORE

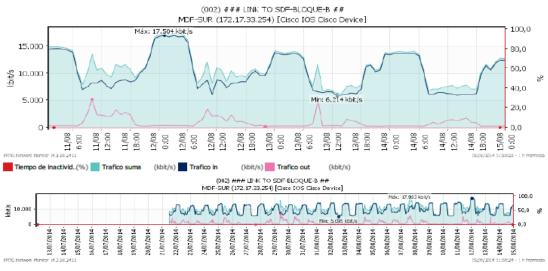

Con el sofware PRTG, se realizo un estuidio al switch de core escaneando sus todos sus puertos, para ver el consuno de ancho de banda que se obtiene mientras trabajan normalmente en la Universidad Politecnica Salesiana sede Quito campus Sur.

Bloque A-PB

Trafico in

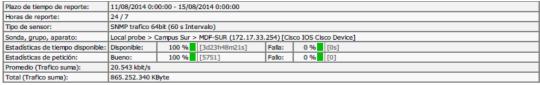
Trafico out

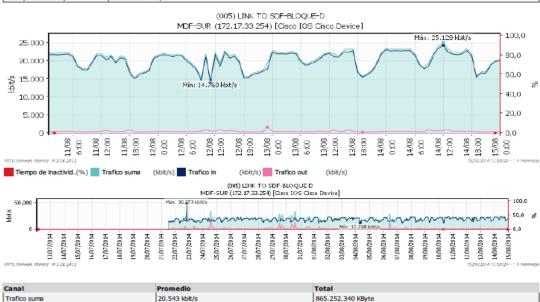

24.338.062 KByte


29.850.216 KByte

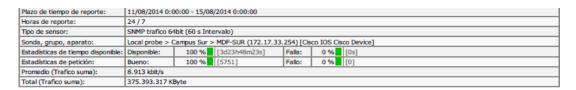
578 kbit/s

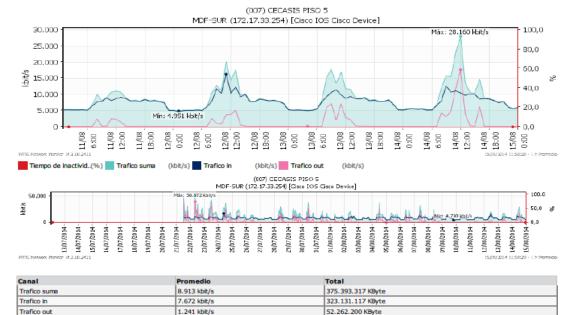
709 kbit/s


Bloque B

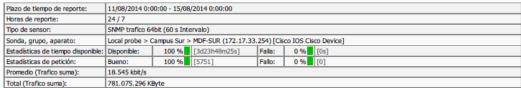


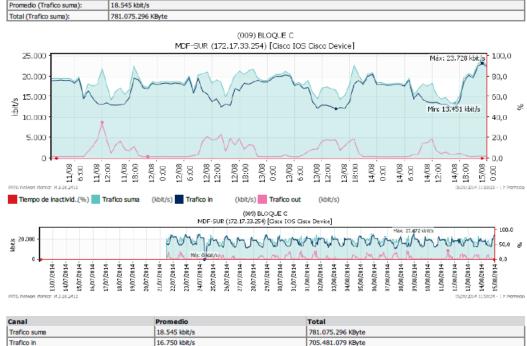
Canal	Promedio	Total
Trafico suma	11.236 kbit/s	473.248.168 KByte
Trafico in	10.304 kbit/s	433.974.127 KByte
Trafico out	932 kbit/s	39.274.041 KByte


Bloque D



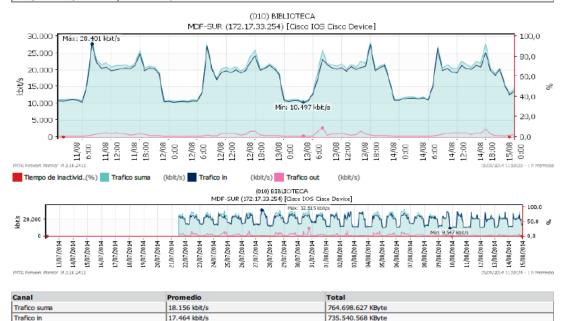
Canal	Promedio	Total
Trafico suma	20.543 kbit/s	865.252.340 KByte
Trafico in	20.043 kbit/s	844.186.366 KByte
Trafico out	500 kbit/s	21.065.973 KByte


CACASIS-P5



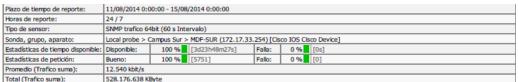
Bloque C

Trafico out



75.594.217 KBvte

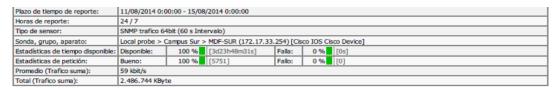
1.795 kbit/s

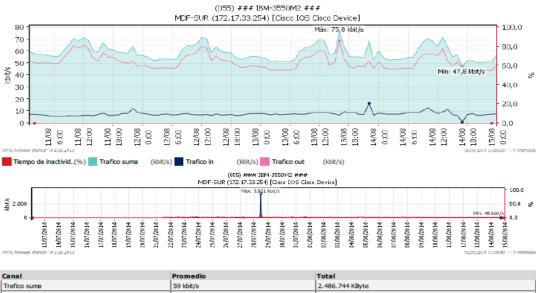

Biblioteca

Plazo de tiempo de reporte:	11/08/2014 0:0	11/08/2014 0:00:00 - 15/08/2014 0:00:00				
Horas de reporte:	24/7					
Tipo de sensor:	SNMP trafico 64	SNMP trafico 64bit (60 s Intervalo)				
Sonda, grupo, aparato:	Local probe > 0	Local probe > Campus Sur > MDF-SUR (172.17.33.254) [Cisco IOS Cisco Device]				
Estadísticas de tiempo disponible:	Disponible:	100 %	[3d23h48m26s]	Falla:	0 % [0s]	
Estadísticas de petición:	Bueno: 100 % [5751] Fallo: 0 % [0]					
Promedio (Trafico suma):	18.156 kbit/s					
Total (Trafico suma):	764.698.627 K	Byte				

Pastoral

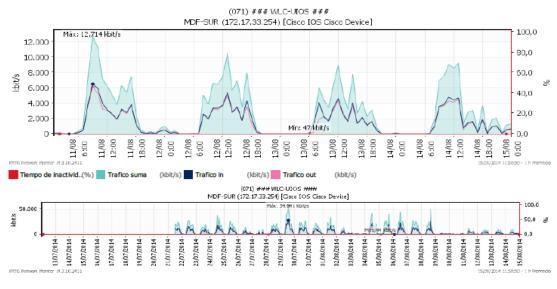
Trafico out



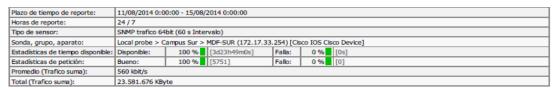

29.158.059 KByte

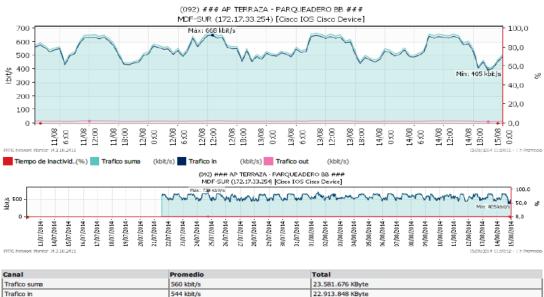
692 kbit/s

IBM-3550M2



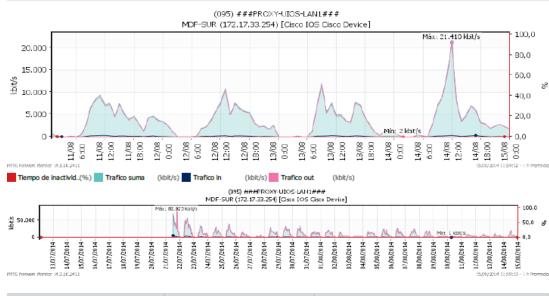
Canal	Promedio	Total
Trafico suma	59 kbit/s	2.486.744 KByte
Trafico in	8 kbit/s	328.551 KByte
Trafico out	51 kbit/s	2.158.193 KByte


WLC-UIOS


Plazo de tiempo de reporte:	11/08/2014 0:0	11/08/2014 0:00:00 - 15/08/2014 0:00:00					
Horas de reporte:	24/7						
Tipo de sensor:	SNMP trafico 64	SMMP trafico 64bit (60 s Intervalo)					
Sonda, grupo, aparato:	Local probe > 0	Local probe > Campus Sur > MDF-SUR (172.17.33.254) [Cisco IOS Cisco Device]					
Estadísticas de tiempo disponible:	Disponible:	Disponible: 100 % [3d23h48m42s] Falla: 0 % [0s]					
Estadísticas de petición:	Bueno:	Bueno: 100 % [5751] Fallo: 0 % [0]					
Promedio (Trafico suma):	2.847 kbit/s						
Total (Trafico suma):	119.897.428 K	Byte				<u> </u>	

Canal	Promedio	Total
Trafico suma	2.847 kbit/s	119.897.428 KByte
Trafico in	1.473 kbit/s	62.043.519 KByte
Trafico out	1.374 kbit/s	57.853.909 KByte

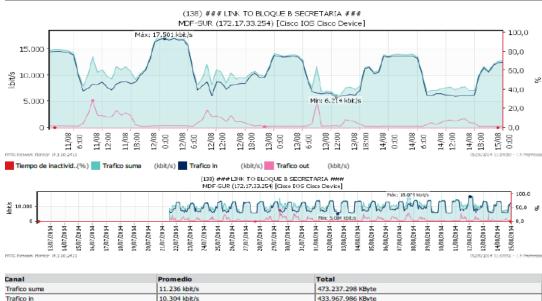
AP-Terraza



PROXY-UIOS

Trafico out

Plazo de tiempo de reporte:	11/08/2014 0:0	11/08/2014 0:00:00 - 15/08/2014 0:00:00							
Horas de reporte:	24/7								
Tipo de sensor:	SNMP trafico 64	SNMP trafico 64bit (60 s Intervalo)							
Sonda, grupo, aparato:	Local probe > C	Local probe > Campus Sur > MDF-SUR (172.17.33.254) [Cisco IOS Cisco Device]							
Estadísticas de tiempo disponible:	Disponible:	Disponible: 100 % [3d23h50m3s] Falla: 0 % [0s]							
Estadísticas de petición:	Bueno: 100 % [5753] Fallo: 0 % [0]								
Promedio (Trafico suma):	3.608 kbit/s								
Total (Trafico suma):	152.005.621 KE	lyte				152.005.621 KByte			

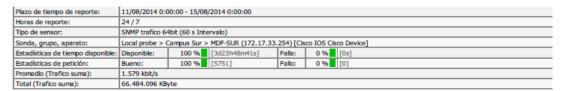

667.828 KByte

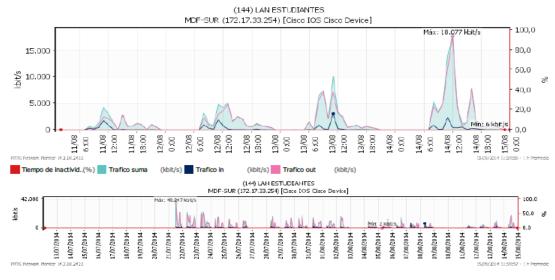
Canal	Promedio	Total
Trafico suma	3.608 kbit/s	152.005.621 KByte
Trafico in	100 kbit/s	4.213.761 KByte
Trafico out	3.508 kbit/s	147.791.860 KByte

Secretaría

Plazo de tiempo de reporte:	11/08/2014 0:0	11/08/2014 0:00:00 - 15/08/2014 0:00:00				
Horas de reporte:	24/7					
Tipo de sensor:	SNMP trafico 64	SNMP trafico 64bit (60 s Intervalo)				
Sonda, grupo, aparato:	Local probe > 0	Local probe > Campus Sur > MDF-SUR (172.17.33.254) [Cisco IOS Cisco Device]				
Estadísticas de tiempo disponible:	Disponible:	Disponible: 100 % [3d23h48m36s] Falla: 0 % [0s]				
Estadísticas de petición:	Bueno: 100 % [5751] Fallo: 0 % [0]					
Promedio (Trafico suma):	11.236 kbit/s					
Total (Trafico suma):	473.237.298 KI	Byte				

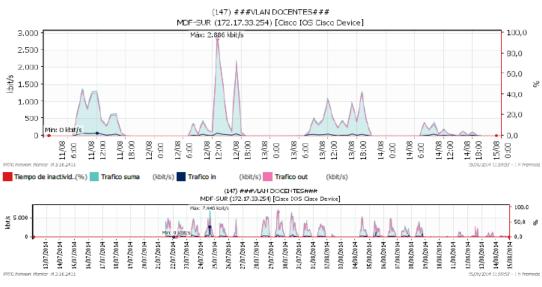
39.269.313 KByte


LAN-Administrativa


Trafico out

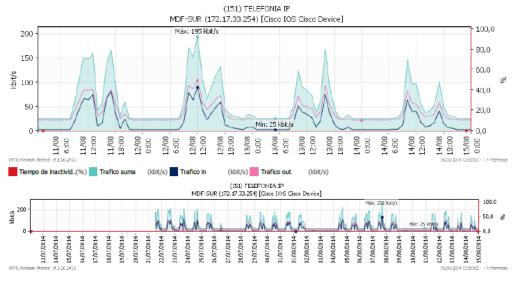
932 kbit/s

LAN-Estudiantes



Canal	Promedio	Total
Trafico suma	1.579 kbit/s	66.484.096 KByte
Trafico in	193 kbit/s	8.142.903 KByte
Trafico out	1.385 kbit/s	58.341.193 KByte

VLAN-Docentes



Canal	Promedio	Total
Trafico suma	261 kbit/s	10.991.369 KByte
Trafico in	14 kbit/s	584.368 KByte
Trafico out	247 kbit/s	10.407.001 KByte

Telefonia IP

Canal	Promedio	Total
Trafico suma	56 kbit/s	2.342.727 KByte
Trafico in	18 kbit/s	778.686 KByte
Trafico out	37 kbit/s	1.564.040 KByte

Anexo 3. ACLs y direccionamiento propuesto para la red propuesta de alta disponibilidad.

ip access-list extended SUN	permit udp any any eq 5353	permit udp any any eq 20000
permit tcp any any eq 443	permit udp any any eq 10002	permit tcp any any range 50000 52000
permit tcp any any eq www	permit udp any any eq 10003	permit ip any 172.17.4.0 0.0.1.255 log
permit udp any any eq domain	permit tcp any any eq 10004	permit tcp any any eq 3144
permit udp any any eq bootpc	permit udp any any range 50000 52000	permit tcp any any eq 5307
permit udp any any eq bootps	permit tcp any any eq 22	permit ip any 172.17.46.0 0.0.0.255 log
permit tcp any any eq ftp	permit udp any any eq 22	permit ip any 172.17.28.128 0.0.0.127 log
permit tcp any any eq ftp-data	permit icmp any any	permit ip any host 172.17.2.99
permit tcp any any range 8000 8006	permit tcp any any eq 11000	
permit tcp any any eq 5909	permit tcp any any eq 8030	ip access-list extended acl-CECASIS
permit udp any any eq 5909	permit udp any any eq 8030	permit ip 172.17.4.0 0.0.1.255 172.17.28.128
permit tcp any any eq 5353	permit tcp any any eq 20000	0.0.0.127
		permit udp any any eq bootpc

permit udp any any eq bootps permit ip any host 172.17.1.10 log permit tcp any any eq 8080 permit tcp any any eq 3128 permit tcp any any eq 4646 permit ip any 172.17.40.0 0.0.0.255 permit udp any any eq 4646 permit ip any 172.17.29.0 0.0.1.255 log permit udp any any eq 5093 permit ip any host 172.17.4.1 log permit ip any host 172.17.4.5 log permit tcp any any eq 5093 permit tcp any host 172.17.1.10 eq 3128 permit tcp any any eq 8085 permit udp any any eq domain permit tcp any host 172.17.1.10 eq www permit ip any 172.17.46.0 0.0.0.255 log permit tcp any host 172.17.1.10 eq 443 permit ip any 172.17.23.0 0.0.3.255 log permit tcp any host 172.17.4.5 eq domain permit udp any host 172.17.4.5 eq domain permit icmp any any permit ip any 172.17.8.0 0.0.1.255 log permit tcp any host 172.17.4.5 eq 88 permit tcp any any eq 22 log permit udp any host 172.17.4.5 eq 88

permit tcp any host 172.17.4.5 eq 135 permit tcp any host 172.17.4.5 eq 389 permit udp any host 172.17.4.5 eq 389 permit tcp any host 172.17.4.5 eq 445 permit udp any host 172.17.4.5 eq 445 permit tcp any host 172.17.4.5 eq 636 permit tcp any host 172.17.4.5 eq 3268 permit tcp any host 172.17.4.5 eq 137 permit udp any host 172.17.4.5 eq netbios-ns permit tcp any host 172.17.4.5 eq 138 permit udp any host 172.17.4.5 eq netbios-dgm permit tcp any host 172.17.4.5 eq 139 permit udp any host 172.17.4.5 eq netbios-ss

ip access-list extended acl-CISCO permit udp any any eq bootps permit tcp host 172.17.35.37 any eq 443 permit udp host 172.17.35.37 any eq domain permit udp any any eq domain permit tcp any any eq 15871 permit udp any any eq bootpc permit ip any 172.17.46.0 0.0.0.255 log permit tcp host 172.17.35.33 any eq www permit udp any any eq bootps permit tcp any any eq telnet permit tcp host 172.17.35.33 any eq 443 permit tcp any any eq 22 permit ip host 172.17.7.253 any log permit udp host 172.17.35.33 any eq domain permit tcp any any eq telnet permit icmp any any permit tcp host 172.17.35.34 any eq www permit tcp any any eq 22 permit tcp any host 172.17.1.5 eq www log permit tcp host 172.17.35.34 any eq 443 permit ip any host 172.17.1.6 permit ip any host 172.17.2.99 permit udp host 172.17.35.34 any eq domain permit ip any 172.17.46.0 0.0.0.255 log deny ip any host 69.195.138.144 permit tcp host 172.17.35.35 any eq www deny ip host 69.195.138.144 any permit tcp host 172.17.35.35 any eq 443 ip access-list extended acl-RUI permit tcp any 172.17.0.0 0.0.255.255 eq www permit udp host 172.17.35.35 any eq domain permit udp any any eq domain permit tcp any 172.17.0.0 0.0.255.255 eq 443 permit tcp host 172.17.35.39 any eq www permit udp any any eq bootpc permit tcp host 172.17.35.37 any eq www permit tcp host 172.17.35.39 any eq 443

permit udp host 172.17.35.39 any eq domain	ip access-list extended acl-salabiblio	permit tcp 172.17.12.64 0.0.0.63 host
permit tcp host 172.17.35.41 any eq www	permit tcp 172.17.12.64 0.0.0.63 host	172.17.2.100 eq 5800
permit tcp host 172.17.35.41 any eq 443	172.17.2.50 eq 4646	permit tcp 172.17.12.64 0.0.0.63 host
permit uch host 172.17.35.41 any eq 443 permit udp host 172.17.35.41 any eq domain	permit udp 172.17.12.64 0.0.0.63 host	172.17.1.6 eq domain
permit dup nost 172.17.35.41 any eq domain	172.17.2.50 eq 4646	permit udp 172.17.12.64 0.0.0.63 host
	permit tcp 172.17.12.64 0.0.0.63 host	172.17.1.6 eq domain
ip access-list extended acl-copp-match-igmp	172.17.2.50 eq 5900	permit tcp 172.17.12.64 0.0.0.63 host
permit igmp any any	permit tcp 172.17.12.64 0.0.0.63 host	172.17.1.6 eq 88
	172.17.2.50 eq 3600	permit udp 172.17.12.64 0.0.0.63 host
ip access-list extended acl-copp-match-pim-	permit tcp 172.17.12.64 0.0.0.63 host	172.17.1.6 eq 88
data	172.17.2.50 eq 5800	permit tcp 172.17.12.64 0.0.0.63 host
deny pim any host 224.0.0.13	permit tcp 172.17.12.64 0.0.0.63 host	172.17.1.6 eq 135
	172.17.2.100 eq 5900	permit tcp 172.17.12.64 0.0.0.63 host
permit pim any any	permit tcp 172.17.12.64 0.0.0.63 host	172.17.1.6 eq 389
	172.17.2.100 eq 3600	permit udp 172.17.12.64 0.0.0.63 host
		172.17.1.6 eq 389

permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host
172.17.1.6 eq 445	172.17.1.6 eq 139	172.17.1.1 eq 389
permit udp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host
172.17.1.6 eq 445	172.17.1.6 eq netbios-ss	172.17.1.1 eq 445
permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host
172.17.1.6 eq 636	172.17.1.1 eq domain	172.17.1.1 eq 445
permit tcp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host
172.17.1.6 eq 3268	172.17.1.1 eq domain	172.17.1.1 eq 636
permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host
172.17.1.6 eq 137	172.17.1.1 eq 88	172.17.1.1 eq 3268
permit udp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host
172.17.1.6 eq netbios-ns	172.17.1.1 eq 88	172.17.1.1 eq 137
permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host
172.17.1.6 eq 138	172.17.1.1 eq 135	172.17.1.1 eq netbios-ns
permit udp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host
172.17.1.6 eq netbios-dgm	172.17.1.1 eq 389	172.17.1.1 eq 138

permit udp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host
172.17.1.1 eq netbios-dgm	172.17.1.3 eq 389	172.17.1.3 eq 138
marroit ton 172 17 12 64 0 0 0 62 hast	normait under 172 17 12 64 0 0 0 62 hoost	marrie v.dr. 172 17 12 64 0 0 0 62 haat
permit tcp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host
172.17.1.1 eq 139	172.17.1.3 eq 389	172.17.1.3 eq netbios-dgm
permit udp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host
172.17.1.1 eq netbios-ss	172.17.1.3 eq 445	172.17.1.3 eq 139
permit tcp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host
172.17.1.3 eq domain	172.17.1.3 eq 445	172.17.1.3 eq netbios-ss
. 1 172 17 12 (4 0 0 0 621		170 17 10 (10 0 0 (2)
permit udp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host
172.17.1.3 eq domain	172.17.1.3 eq 636	172.17.2.99 eq 445
permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host
•	•	•
172.17.1.3 eq 88	172.17.1.3 eq 3268	172.17.2.99 eq 445
permit udp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host
172.17.1.3 eq 88	172.17.1.3 eq 137	172.17.2.99 eq 137
permit tcp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host	permit udp 172.17.12.64 0.0.0.63 host
172.17.1.3 eq 135	172.17.1.3 eq netbios-ns	172.17.2.99 eq netbios-ns

permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host	permit udp any any eq domain
172.17.2.99 eq 138	172.17.2.99 eq 8081	permit udp any any eq bootpc
permit udp 172.17.12.64 0.0.0.63 host 172.17.2.99 eq netbios-dgm	permit udp 172.17.12.64 0.0.0.63 host 172.17.2.99 eq 8081	permit udp any any eq bootps
permit tcp 172.17.12.64 0.0.0.63 host	permit tcp 172.17.12.64 0.0.0.63 host	permit top any any eq ftp
172.17.2.99 eq 139	172.17.2.99 eq 5900	permit tcp any any eq ftp-data
permit udp 172.17.12.64 0.0.0.63 host 172.17.2.99 eq netbios-ss	permit tcp 172.17.12.64 0.0.0.63 host 172.17.2.99 eq 3600	permit ip any 172.17.46.0 0.0.0.255 log
permit tcp 172.17.12.64 0.0.0.63 host 172.17.2.99 eq 8080	permit tcp 172.17.12.64 0.0.0.63 host 172.17.2.99 eq 5800	ip access-list extended acl-salaprofesores
172.17.2.99 eq 8080 permit udp 172.17.12.64 0.0.0.63 host	•	ip access-list extended acl-salaprofesores permit tcp 172.17.10.0 0.0.1.255 172.16.1.128 0.0.0.127 eq 8888
172.17.2.99 eq 8080	172.17.2.99 eq 5800	permit tcp 172.17.10.0 0.0.1.255 172.16.1.128 0.0.0.127 eq 8888
172.17.2.99 eq 8080 permit udp 172.17.12.64 0.0.0.63 host	172.17.2.99 eq 5800 permit ip any host 172.17.1.5	permit tcp 172.17.10.0 0.0.1.255 172.16.1.128
172.17.2.99 eq 8080 permit udp 172.17.12.64 0.0.0.63 host 172.17.2.99 eq 8080 permit tcp 172.17.12.64 0.0.0.63 host	172.17.2.99 eq 5800 permit ip any host 172.17.1.5 permit tcp any any eq 4646	permit tcp 172.17.10.0 0.0.1.255 172.16.1.128 0.0.0.127 eq 8888 permit tcp 172.17.10.0 0.0.1.255 172.16.1.128

permit tcp 172.17.10.0 0.0.1.255 172.16.1.128	permit tcp 172.17.10.0 0.0.1.255 host	permit tcp 172.17.10.0 0.0.1.255 host
0.0.0.127 eq 443	172.17.2.99 eq 138	172.17.2.99 eq 8081
permit tcp 172.17.10.0 0.0.1.255 172.16.1.128	permit udp 172.17.10.0 0.0.1.255 host	permit udp 172.17.10.0 0.0.1.255 host
0.0.0.127 eq lpd	172.17.2.99 eq netbios-dgm	172.17.2.99 eq 8081
permit ip 172.17.10.0 0.0.1.255 host	permit tcp 172.17.10.0 0.0.1.255 host	permit tcp 172.17.10.0 0.0.1.255 host
172.16.1.147	172.17.2.99 eq 139	172.17.2.99 eq 5900
		172 17 10 0 0 0 1 255 have
permit ip 172.17.10.0 0.0.1.255 host	permit udp 172.17.10.0 0.0.1.255 host	permit tcp 172.17.10.0 0.0.1.255 host
172.16.1.131	172.17.2.99 eq netbios-ss	172.17.2.99 eq 3600
permit tcp 172.17.10.0 0.0.1.255 host	permit tcp 172.17.10.0 0.0.1.255 host	permit tcp 172.17.10.0 0.0.1.255 host
172.17.2.99 eq 445	172.17.2.99 eq 8080	172.17.2.99 eq 5800
	1	1
permit udp 172.17.10.0 0.0.1.255 host	permit udp 172.17.10.0 0.0.1.255 host	permit tcp 172.17.10.0 0.0.1.255 host
172.17.2.99 eq 445	172.17.2.99 eq 8080	172.17.2.100 eq 5900
150 15 10 0 0 0 1 0551	172 17 10 0 0 0 1 2771	172 17 10 0 0 0 1 2551
permit tcp 172.17.10.0 0.0.1.255 host	permit tcp 172.17.10.0 0.0.1.255 host	permit tcp 172.17.10.0 0.0.1.255 host
172.17.2.99 eq 137	172.17.2.99 eq www	172.17.2.100 eq 3600
permit udp 172.17.10.0 0.0.1.255 host	permit udp 172.17.10.0 0.0.1.255 host	permit tcp 172.17.10.0 0.0.1.255 host
•		•
172.17.2.99 eq netbios-ns	172.17.2.99 eq 80	172.17.2.100 eq 5800

permit udp any any eq bootpc permit udp any any eq bootps permit tcp 172.17.10.0 0.0.1.255 host 172.17.1.1 eq domain permit udp 172.17.10.0 0.0.1.255 host 172.17.1.1 eq domain permit tcp any any eq 443 permit tcp any any eq www permit udp any any eq domain permit tcp any any eq ftp permit tcp any any eq ftp-data permit tcp any any eq 8080 permit tcp any any eq 8085 permit tcp any any range 8080 8085

permit ip any 172.17.46.0 0.0.0.255 log

ip access-list extended acl-wlanS

permit udp any any eq domain

permit udp any any eq bootpc

permit udp any any eq bootps

permit tcp any any eq 443

permit tcp any any eq www

permit ip any 172.17.46.0 0.0.0.255 log

ip access-list extended hp

permit udp any any eq domain

permit udp any any eq bootpc

permit udp any any eq bootps

permit ip any 172.17.8.0 0.0.0.255 log permit ip any host 172.17.2.99 permit ip any 172.17.46.0 0.0.0.255 log

VLAN	NOMBRE	DIRECCIÓN IP GATEWAY	MASCARA	RED	/MASK
Vlan1	Default	172.17.0.254	255.255.255.0=24	172.17.0.0	/24
Vlan2	DMZ	172.17.1.254	255.255.255.0=24	172.17.1.0	/24
Vlan3	ADMINISTRATIVA	172.17.3.254	255.255.254.0=23	172.17.2.0	/23
Vlan4	LABORATORIOS-EST	172.17.5.254	255.255.254.0=23	172.17.4.0	/23
Vlan5	CISCO	172.17.7.254	255.255.254.0=23	172.17.6.0	/23
Vlan6	SUN	172.17.9.254	255.255.254.0=23	172.17.8.0	/23
Vlan7	SALA DOCENTES	172.17.11.254	255.255.254.0=23	172.17.10.0	/23
Vlan8	SALA-INTERNET	172.17.12.62	255.255.255.192=26	172.17.12.0	/26
Vlan10	WIRELESS EST	172.17.20.254	255.255.248.0=21	172.17.13.0	/21
Vlan11	WIRELESS DOCENTES	172.17.22.254	255.255.254.0=23	172.17.21.0	/23
Vlan12	CECASIS	172.17.26.254	255.255.252.0=22	172.17.23.0	/22
Vlan13	VLAN-VIDEO	172.17.27.62	255.255.255.192=26	172.17.27.0	/26
Vlan14	VLAN-HP	172.17.28.126	255.255.255.128=25	172.17.28.0	/25
Vlan15	ELECTRONICA	172.17.30.254	255.255.254.0=23	172.17.29.0	/23
Vlan16	VLAN-TELCONET	172.17.31.254	255.255.255.0=24	172.17.31.0	/24
Vlan19	INVESTIGACION	172.17.32.254	255.255.255.0=24	172.17.32.0	/24
Vlan20	Vo-IP	172.17.34.254	255.255.254.0=23	172.17.33.0	/23
Vlan22	RUI	172.17.35.254	255.255.255.0=24	172.17.35.0	/24
Vlan24	WLAN-SUR	172.17.36.254	255.255.255.0=24	172.17.36.0	/24
Vlan25	CAMARAS-IP-UIOS	172.17.37.254	255.255.255.0=24	172.17.37.0	/24
Vlan26	EVENTOS	172.17.38.254	255.255.255.0=24	172.17.38.0	/24
Vlan27	###LAB-FISICA-UIO###	172.17.39.254	255.255.255.0=24	172.17.39.0	/24
Vlan28	INTERNET-CECASIS	172.17.40.254	255.255.255.0=24	172.17.40.0	/24
Vlan29	GIETEC	172.17.41.254	255.255.255.0=24	172.17.41.0	/24
Vlan30	EDUROAM	172.17.43.254	255.255.254.0=23	172.17.42.0	/23
Vlan31	OUT-LAN	172.17.44.254	255.255.255.0=23	172.17.44.0	/24

Anexo 4. Configuración de los equipos y gráficos del funcionamiento de la red simulada utilizando el protocolo GLBP.

Configuración de los router de core.

Script configuración del equipo R-UIOS-1 hostname R-UIOS-1 interface FastEthernet0/0 ip address 10.0.0.33 255.255.255.248 interface FastEthernet0/1 ip address 10.0.0.2 255.255.255.248 interface FastEthernet1/0 ip address 10.0.0.26 255.255.255.248 interface FastEthernet2/0 ip address 10.0.0.41 255.255.255.248 router ospf 2 log-adjacency-changes network 10.0.0.0 0.255,255.255 area 1 network 172.17.0.0 0.0.255.255 area 1 End

Script configuración del equipo R-UIOS-2

```
hostname R-UIOS-2
!
interface FastEthernet0/0
ip address 10.0.0.34 255.255.255.248
!
interface FastEthernet0/1
ip address 10.0.0.18 255.255.255.248
!
interface FastEthernet1/0
ip address 10.0.0.10 255.255.255.248
!
interface FastEthernet2/0
ip address 10.0.0.49 255.255.255.248
!
router ospf 2
log-adjacency-changes
network 10.0.0.0 0.255.255.255 area 1
network 172.17.0.0 0.0.255.255 area 1
!
End
```

Configuración de los switch de core

Script configuración del equipo MDF-	vlan 8	interface Port-channel2
UIOS	name sala-intern	switchport trunk native vlan 99
	!	switchport mode trunk
hostname MDF-UIOS	!	!
!	spanning-tree vlan 2 priority 4096	interface Port-channel1
vlan accounting input	spanning-tree vlan 3 priority 4096	switchport trunk native vlan 99
!	spanning-tree vlan 4 priority 4096	switchport mode trunk
vlan 99	spanning-tree vlan 5 priority 4096	!
name MNG	spanning-tree vlan 6 priority 4096	interface FastEthernet0/0
!	spanning-tree vlan 7 priority 4096	ip address 10.0.0.1 255.255.255.248
vlan 2	spanning-tree vlan 8 priority 4096	!
name DMZ	spanning-tree vlan 99 priority 10	interface FastEthernet0/1
!	!	ip address 10.0.0.9 255.255.255.248
vlan 3	vtp mode server	!
name ADM	vtp domain UIOS	interface FastEthernet1/0
!	!	switchport trunk native vlan 99
vlan 4	interface Port-channel5	switchport mode trunk
name EST	switchport trunk native vlan 99	channel-group 1 mode on
!	switchport mode trunk	!
vlan 5	!	interface FastEthernet1/1
name CISCO	interface Port-channel4	switchport trunk native vlan 99
!	switchport trunk native vlan 99	switchport mode trunk
vlan 6	switchport mode trunk	channel-group 1 mode on
name SUN	!	!
!	interface Port-channel3	interface FastEthernet1/2
vlan 7	switchport trunk native vlan 99	switchport trunk native vlan 99
name sala-profes	switchport mode trunk	switchport mode trunk
!	!	channel-group 5 mode on

! interface FastEthernet1/3 switchport trunk native vlan 99 switchport mode trunk channel-group 5 mode on ! interface FastEthernet1/4 switchport trunk native vlan 99 switchport mode trunk channel-group 4 mode on ! interface FastEthernet1/5 switchport trunk native vlan 99 switchport mode trunk channel-group 4 mode on ! interface FastEthernet1/6 switchport trunk native vlan 99 switchport trunk native vlan 99 switchport mode trunk channel-group 3 mode on	channel-group 2 mode on ! interface FastEthernet1/9 switchport trunk native vlan 99 switchport mode trunk channel-group 2 mode on ! interface Vlan2 ip address 172.17.1.254 255.255.255.0 glbp 2 ip 172.17.1.252 glbp 2 priority 250 glbp 2 preempt glbp 2 load-balancing host-dependent ! interface Vlan3 ip address 172.17.3.254 255.255.254.0 glbp 3 ip 172.17.3.252 glbp 3 priority 250 glbp 3 preempt glbp 3 load-balancing host-dependent	ip address 172.17.7.254 255.255.254.0 glbp 5 ip 172.17.7.252 glbp 5 priority 250 glbp 5 preempt glbp 5 load-balancing host-dependent! interface Vlan6 ip address 172.17.9.254 255.255.254.0 glbp 6 ip 172.17.9.252 glbp 6 priority 250 glbp 6 preempt glbp 6 load-balancing host-dependent! interface Vlan7 ip address 172.17.11.254 255.255.254.0 glbp 7 ip 172.17.11.252 glbp 7 priority 250 glbp 7 preempt glbp 7 load-balancing host-dependent! interface Vlan8
interface FastEthernet1/7 switchport trunk native vlan 99 switchport mode trunk channel-group 3 mode on ! interface FastEthernet1/8 switchport trunk native vlan 99 switchport mode trunk	interface Vlan4 ip address 172.17.5.254 255.255.254.0 glbp 4 ip 172.17.5.252 glbp 4 priority 250 glbp 4 preempt glbp 4 load-balancing host-dependent ! interface Vlan5	ip address 172.17.12.62 255.255.255.192 glbp 8 ip 172.17.12.60 glbp 8 priority 250 glbp 8 preempt glbp 8 load-balancing host-dependent! interface Vlan99 ip address 10.1.1.1 255.255.255.0

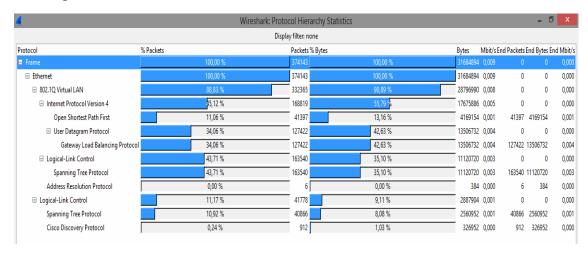
glbp 1 ip 10.1.1.254	spanning-tree vlan 7 priority 8192	!
glbp 1 priority 250	spanning-tree vlan 8 priority 8192	interface FastEthernet0/1
glbp 1 preempt	spanning-tree vlan 99 priority 100	ip address 10.0.0.25 255.255.255.248
glbp 1 load-balancing host-dependent	!	!
!	vtp mode client	interface FastEthernet1/0
router ospf 2	vtp domain UIOS	switchport trunk native vlan 99
log-adjacency-changes	!	switchport mode trunk
network 10.0.0.0 0.255.255.255 area 1	interface Port-channel1	channel-group 1 mode on
network 172.17.0.0 0.0.255.255 area 1	switchport trunk native vlan 99	!
!	switchport mode trunk	interface FastEthernet1/1
End	!	switchport trunk native vlan 99
	interface Port-channel5	switchport mode trunk
	switchport trunk native vlan 99	channel-group 1 mode on
Script configuración del equipo MDF-	switchport mode trunk	!
UIOS-2	!	interface FastEthernet1/2
	interface Port-channel4	switchport trunk native vlan 99
hostname MDF-UIOS-2	switchport trunk native vlan 99	switchport mode trunk
!	switchport mode trunk	channel-group 5 mode on
!	!	!
vlan accounting input	interface Port-channel3	interface FastEthernet1/3
!	switchport trunk native vlan 99	switchport trunk native vlan 99
vlan 99	switchport mode trunk	switchport mode trunk
name MNG	!	channel-group 5 mode on
!	interface Port-channel2	!
spanning-tree vlan 2 priority 8192	switchport trunk native vlan 99	interface FastEthernet1/4
spanning-tree vlan 3 priority 8192	switchport mode trunk	switchport trunk native vlan 99
spanning-tree vlan 4 priority 8192	!	switchport mode trunk
spanning-tree vlan 5 priority 8192	interface FastEthernet0/0	channel-group 4 mode on

ip address 10.0.0.17 255.255.255.248

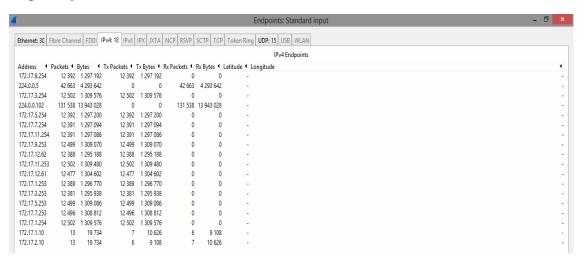
spanning-tree vlan 6 priority 8192

interface FastEthernet1/5 switchport trunk native vlan 99 switchport mode trunk channel-group 4 mode on ! interface FastEthernet1/6 switchport trunk native vlan 99 switchport mode trunk channel-group 3 mode on ! interface FastEthernet1/7 switchport trunk native vlan 99 switchport mode trunk channel-group 3 mode on ! interface FastEthernet1/8 switchport trunk native vlan 99 switchport trunk native vlan 99 switchport mode trunk channel-group 2 mode on ! interface FastEthernet1/9 switchport trunk native vlan 99 switchport mode trunk channel-group 2 mode on !	! interface Vlan2 ip address 172.17.1.253 255.255.255.0 glbp 2 ip 172.17.1.252 glbp 2 load-balancing host-dependent ! interface Vlan3 ip address 172.17.3.253 255.255.254.0 glbp 3 ip 172.17.3.252 glbp 3 load-balancing host-dependent ! interface Vlan4 ip address 172.17.5.253 255.255.254.0 glbp 4 ip 172.17.5.252 glbp 4 load-balancing host-dependent ! interface Vlan5 ip address 172.17.7.253 255.255.254.0 glbp 5 ip 172.17.7.252 glbp 5 load-balancing host-dependent ! interface Vlan6 ip address 172.17.9.253 255.255.254.0 glbp 6 ip 172.17.9.253 255.255.255.254.0	glbp 6 load-balancing host-dependent! interface Vlan7 ip address 172.17.11.253 255.255.254.0 glbp 7 ip 172.17.11.252 glbp 7 load-balancing host-dependent! interface Vlan8 ip address 172.17.12.61 255.255.255.192 glbp 8 ip 172.17.12.60 glbp 8 load-balancing host-dependent! interface Vlan99 ip address 10.1.1.2 255.255.255.0 glbp 1 ip 10.1.1.254 glbp 1 load-balancing host-dependent! router ospf 2 log-adjacency-changes network 10.0.0.0 0.255.255.255 area 1 network 172.17.0.0 0.0.255.255 area 1 ! End
channel-group 2 mode on	glbp 6 ip 172.17.9.252	

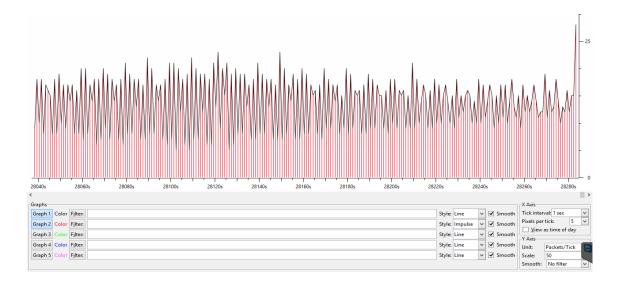
Configuración de los switch de distribución

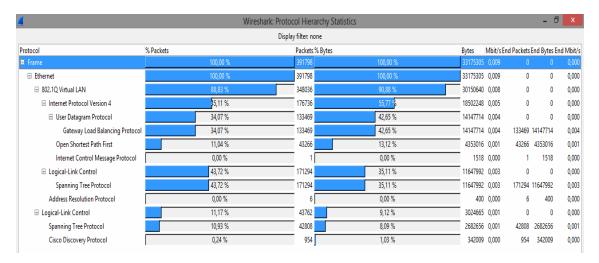

Script configuración del equipo IDF-BA-P5 hostname IDF-BA-P5 ! vlan 99 name MNG	! interface FastEthernet1/2 switchport trunk native vlan 99 switchport mode trunk channel-group 5 mode on ! interface FastEthernet1/3	ip address 10.1.1.3 255.255.255.0 ! router ospf 2 log-adjacency-changes network 10.0.0.0 0.255.255.255 area 1 network 172.17.0.0 0.0.255.255 area 1
vtp mode client vtp domain UIOS	switchport trunk native vlan 99 switchport mode trunk channel-group 5 mode on	End Script configuración del equipo IDF-
interface Port-channel5 switchport trunk native vlan 99 switchport mode trunk	! interface FastEthernet1/4 switchport trunk native vlan 99	BAP4 hostname IDF-BAP4 !
! interface Port-channel2 switchport trunk native vlan 99 switchport mode trunk	switchport mode trunk channel-group 2 mode on ! interface FastEthernet1/5 switchport trunk native vlan 99	vlan 99 name MNG ! vtp mode client
interface Port-channel1 switchport mode trunk ! interface FastEthernet1/0	switchport trunk native vian 99 switchport mode trunk channel-group 2 mode on ! interface FastEthernet1/6	vtp domain UIOS ! interface Port-channel4 switchport trunk native vlan 99 switchport mode trunk
switchport mode trunk channel-group 1 mode on ! interface FastEthernet1/1 switchport mode trunk channel-group 1 mode on	switchport mode trunk ! interface FastEthernet1/7 switchport mode trunk ! interface Vlan99	! interface Port-channel3 switchport trunk native vlan 99 switchport mode trunk ! interface Port-channel1

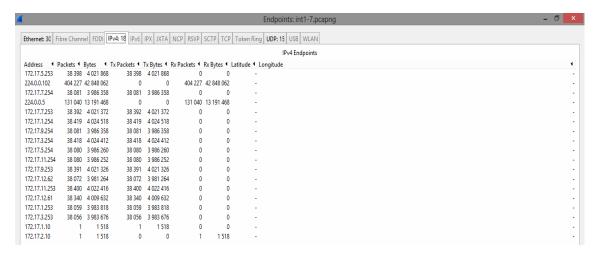
switchport mode trunk	!	switchport trunk native vlan 99
!	interface FastEthernet1/6	switchport mode trunk
interface FastEthernet1/0	switchport mode trunk	!
switchport mode trunk	!	interface Port-channel4
channel-group 1 mode on	interface FastEthernet1/7	switchport trunk native vlan 99
!	switchport mode trunk	switchport mode trunk
interface FastEthernet1/1	!	!
switchport mode trunk	interface Vlan99	interface Port-channel1
channel-group 1 mode on	ip address 10.1.1.4 255.255.255.0	switchport mode trunk
!	· ·	!
interface FastEthernet1/2	router ospf 2	interface FastEthernet1/0
switchport trunk native vlan 99	log-adjacency-changes	switchport mode trunk
switchport mode trunk	network 10.0.0.0 0.255.255.255 area 1	channel-group 1 mode on
channel-group 4 mode on	network 172.17.0.0 0.0.255.255 area 1	!
!	!	interface FastEthernet1/1
interface FastEthernet1/3	End	switchport mode trunk
switchport trunk native vlan 99		channel-group 1 mode on
switchport mode trunk	Script configuración del equipo IDF-BA-	!
channel-group 4 mode on	PB	interface FastEthernet1/2
!	!	switchport trunk native vlan 99
interface FastEthernet1/4	hostname IDF-BA-PB	switchport mode trunk
switchport trunk native vlan 99	!	channel-group 3 mode on
switchport mode trunk	vlan 99	!
channel-group 3 mode on	name MNG	interface FastEthernet1/3
!	!	switchport trunk native vlan 99
interface FastEthernet1/5	vtp mode client	switchport mode trunk
switchport trunk native vlan 99	vtp domain UIOS	channel-group 3 mode on
switchport mode trunk	!	!
channel-group 3 mode on	interface Port-channel3	interface FastEthernet1/4
9		

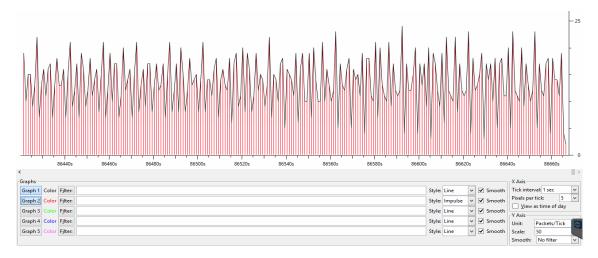

switchport trunk native vlan 99	!	switchport trunk native vlan 99
switchport mode trunk	vtp mode client	switchport mode trunk
channel-group 4 mode on	vtp domain UIOS	channel-group 2 mode on
!	! •	!
interface FastEthernet1/5	interface Port-channel2	interface FastEthernet1/4
switchport trunk native vlan 99	switchport trunk native vlan 99	switchport trunk native vlan 99
switchport mode trunk	switchport mode trunk	switchport mode trunk
channel-group 4 mode on	!	channel-group 5 mode on
!	interface Port-channel5	!
interface FastEthernet1/6	switchport trunk native vlan 99	interface FastEthernet1/5
switchport mode trunk	switchport mode trunk	switchport trunk native vlan 99
!	!	switchport mode trunk
interface Vlan99	interface Port-channel1	channel-group 5 mode on
ip address 10.1.1.5 255.255.255.0	switchport mode trunk	!
!	!	interface FastEthernet1/6
router ospf 2	interface FastEthernet1/0	switchport mode trunk
log-adjacency-changes	switchport mode trunk	!
network 10.0.0.0 0.255.255.255 area 1	channel-group 1 mode on	interface FastEthernet1/7
network 172.17.0.0 0.0.255.255 area 1	!	switchport mode trunk
!	interface FastEthernet1/1	!
End	switchport mode trunk	interface Vlan99
	channel-group 1 mode on	ip address 10.1.1.6 255.255.255.0
Script configuración del equipo IDF-BB-	!	!
P1	interface FastEthernet1/2	router ospf 2
!	switchport trunk native vlan 99	log-adjacency-changes
hostname IDF-BB-P1	switchport mode trunk	network 10.0.0.0 0.255.255.255 area 1
!	channel-group 2 mode on	network 172.17.0.0 0.0.255.255 area 1
vlan 99	!	!
name MNG	interface FastEthernet1/3	End

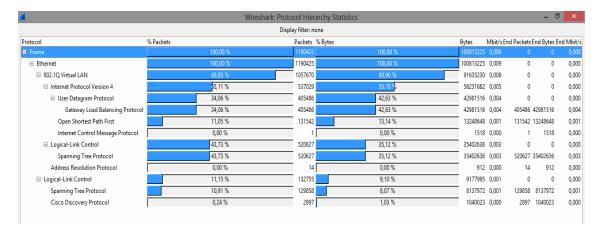
Graficas de funcionamiento de la simulación.

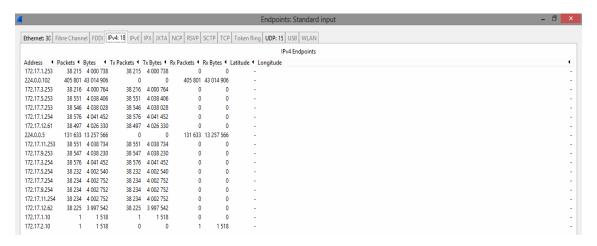

Uso de protocolos en IDF-BA-P5 INT F1/7

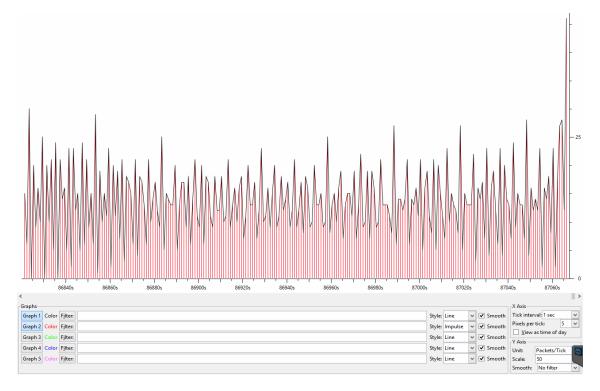

Paquetes y direcciones IP en IDF-BA-P5 INT F1/7

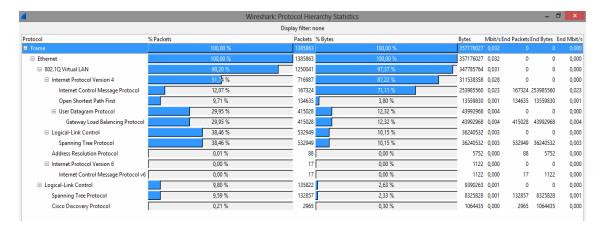

Flujo de información en IDF-BA-P5 INT F1/7

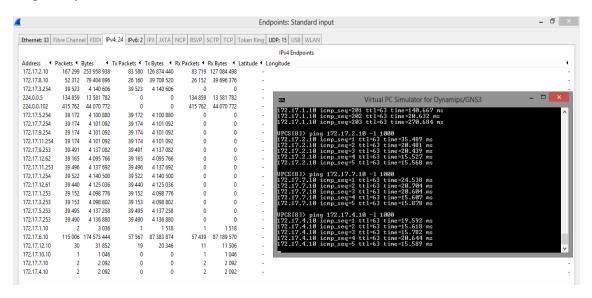

Uso de protocolos en IDF-BA-P4 INT F1/7

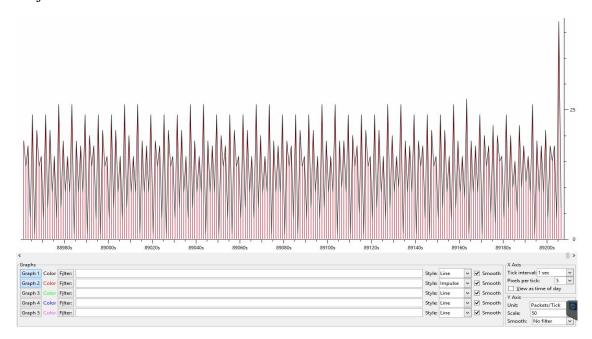

Paquetes y direcciones IP en IDF-BA-P4 INT F1/7

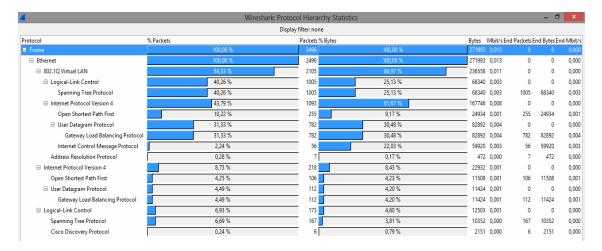

Flujo de información en IDF-BA-P4 INT F1/7

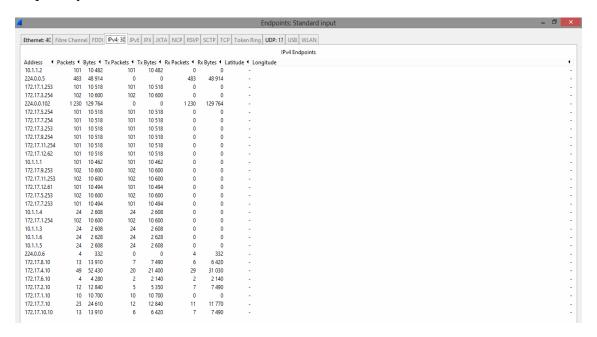

Uso de protocolos en IDF-BA-PB INT F1/6

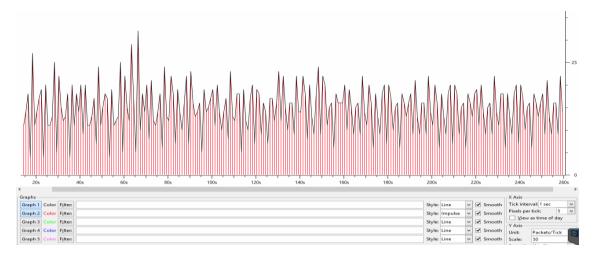

Paquetes y direcciones IP en IDF-BA-PB INT F1/6

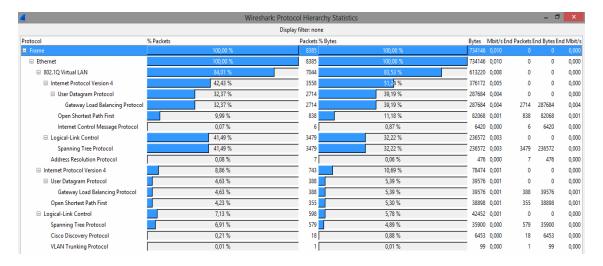

Flujo de información en IDF-BA-PB INT F1/6

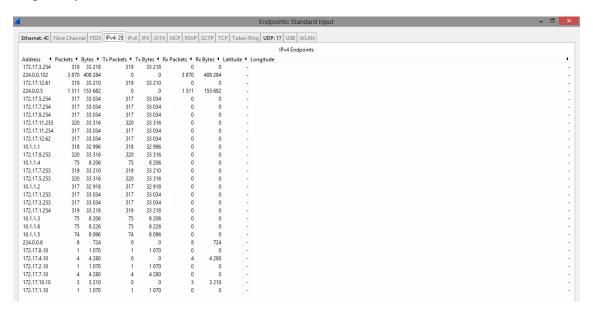

Uso de protocolos en IDF-BB-P1 INT F1/7

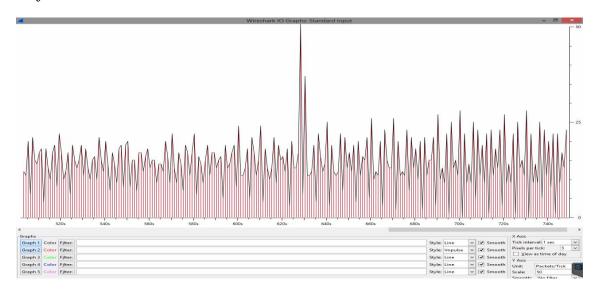


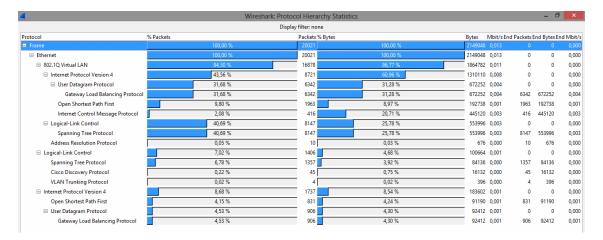

Paquetes y direcciones IP en IDF-BB-P1 INT F1/7

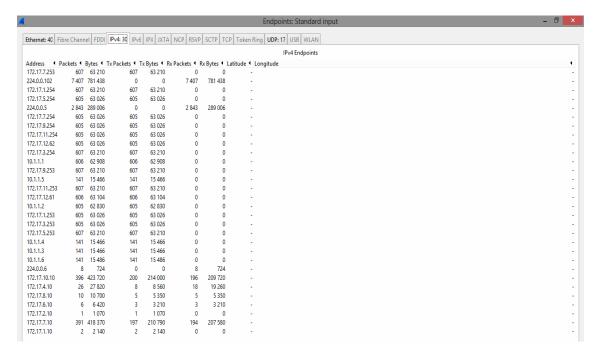

Flujo de información en IDF-BB-P1 INT F1/7

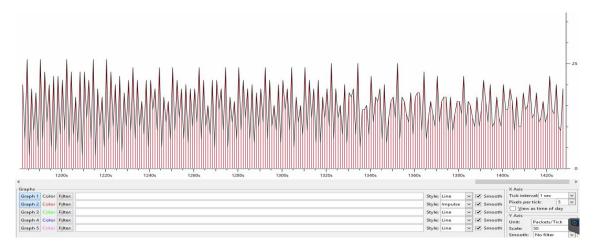


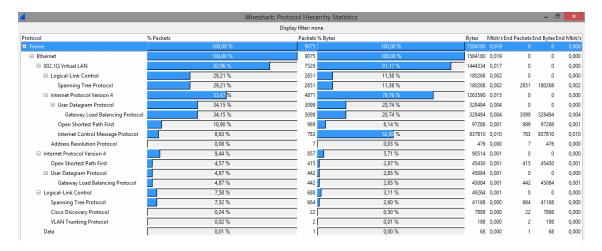


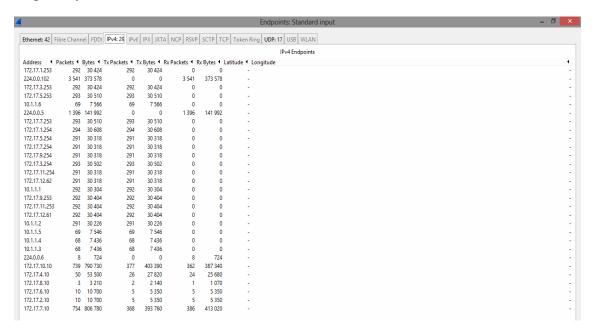

Flujo de información en MDF-UIOS INT F1/3

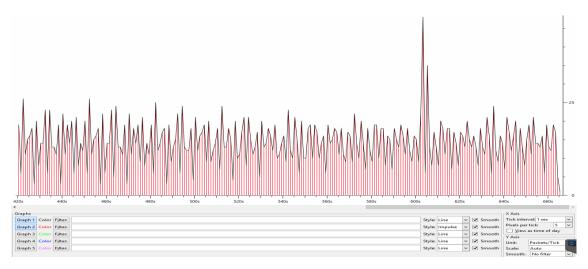


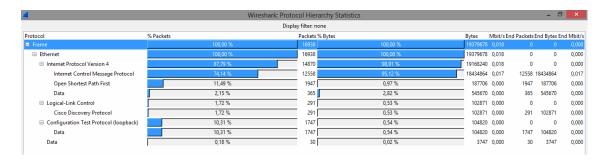


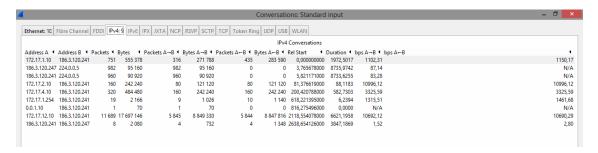

Flujo de información en MDF-UIOS INT F1/7

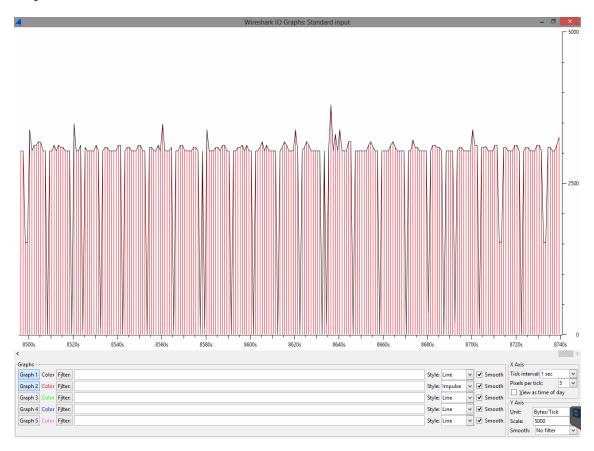





Flujo de información en MDF-UIOS INT F1/9




Flujo de información en MDF-UIOS INT F1/1


Uso de protocolos en enlace GATEWAY-OUT-INTERNET

Paquetes y direcciones IP en enlace GATEWAY-OUT-INTERNET

Flujo de información en enlace GATEWAY-OUT-INTERNET

