UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO

CARRERA: INGENIERÍA ELÉCTRICA

Tesis previa a la obtención del título de: INGENIERO ELÉCTRICO

TEMA:
CONVERSIÓN DE PEQUEÑAS CENTRALES HIDROELÉCTRICAS EN
SISTEMAS REVERSIBLES USANDO ENERGÍA EÓLICA

AUTOR:
JUAN JAVIER INGA AGUILERA

DIRECTOR: ING. JUAN CARLOS HERRERA HEREDIA

Quito, 2 de marzo del 2015

DECLARATORIA DE AUTORÍA:

Yo, Juan Javier Inga Aguilera autorizo a la Universidad Politécnica Salesiana la

publicación total o parcial de este trabajo de grado y su reproducción sin fines de

lucro.

A través de la presente declaración cedo el derecho de propiedad intelectual

correspondiente de este trabajo a la Carrera de Ingeniería Eléctrica de la Universidad

Politécnica Salesiana según lo establecido por la ley de propiedad intelectual, por su

reglamento y por la normatividad institucional vigente.

Además declaro que los conceptos y análisis desarrollados y las conclusiones del

presente trabajo son de exclusiva responsabilidad del autor.

Quito, 2 de marzo del 2015

Juan Javier Inga Aguilera

Juan Javier Inga Aguilera CC: 1720234705

AUTOR

i

CERTIFICA:

Yo, Ing. Juan Carlos Herrera Heredia tutor, director de la tesis certificó haber dirigido y revisado prolijamente cada uno de los capítulos técnicos y financieros del informe de la monografía, así como el funcionamiento de la "Conversión de pequeñas centrales hidroeléctricas en sistemas reversibles usando energía eólica" realizada por el Sr. Juan Javier Inga Aguilera, previa a la obtención del título de Ingeniero Eléctrico en la Carrera de Ingeniería Eléctrica.

Por cumplir los requisitos autoriza su presentación.

Quito, 2 de marzo del 2015

Ing. Juan Carlos Herrera Heredia
DIRECTOR

DEDICATORIA.

Juan Javier Inga Aguilera

Este proyecto es dedicado con mucho amor

A mis Padres

Por su amor, comprensión y apoyo incondicional. Gracias por guiarme a lo largo de la vida, por sus enseñanzas, por su exigencia, por brindarme todo lo necesario. Sin ustedes no hubiese sido posible lograr este gran sueño.

A mis hermanos

Por su ejemplo, apoyo y cariño incondicional.

A una gran amiga

Por su apoyo incondicional a lo largo de mi vida estudiantil, sus consejos y paciencia durante el tiempo de realización de esta investigación, por el apoyo y cariño brindado.

AGRADECIMIENTO.

Juan Javier Inga Aguilera

En primer lugar a Dios por brindarme la salud y capacidad física e intelectual de afrontar este gran reto.

A la prestigiosa Universidad Politécnica Salesiana por brindarme la oportunidad de educarme tanto profesional como personalmente.

A mis maestros que intervinieron en mi formación profesional durante mi carrera impartiéndome sus conocimientos y experiencias.

Un agradecimiento especial al Ing. Juan Carlos Herrera por el apoyo incondicional, disponibilidad e interés para la presente investigación, aconsejándome y orientándome en cada momento, compartiendo su experiencia.

A mis amigos y compañeros que he conocido y compartido experiencias durante la vida Universitaria.

INDICE GENERAL

DECI	LARATORIA DE AUTORÍA:	i
CERT	ΓΙFICA:	ii
DEDI	ICATORIA	. iii
AGR	ADECIMIENTO	. iv
INDI	CE GENERAL	v
INDI	CE DE FIGURAS	vii
INDI	CE DE TABLAS	X
GLOS	SARIO DE TÉRMINOS	xii
RESU	JMEN	kiii
ABST	TRACT	xiv
INTR	ODUCCIÓN	1
CAPÍ	TULO I	2
1	ESTADO DEL ARTE	2
1.1	Características Principales de las Centrales Hidroeléctricas Reversibles	2
1.2	Pequeñas centrales hidroeléctricas conectadas al S.N.I	14
1.3	Potencia de Energía Eólica en el Ecuador	18
1.4	Hibridación Eólica-Hidroeléctrica en las Centrales Reversibles	21
CAPÍ	TULO II	24
2	PREFACTIBILIDAD TÉCNICA	24
2.1	Análisis de los emplazamientos asociados a la Pequeñas Centrales Hidroeléctricas conectadas al Sistema Nacional Interconectado (S.N.I)	24
2.2	Cuantificación del potencial eólico en los emplazamientos asociados a las Pequeñas Centrales Hidroeléctricas conectas al Sistema Nacional Interconectado (S.N.I).	42
2.3	Determinación de la complementariedad eólica-hidroeléctrica y priorización emplazamientos.	de
2.4	Descripción general de la Pequeña Central Hidroeléctrica Reversible (PCHR desarrollar	
CAPÍ	TULO III	61
3	ELEMENTOS DE DISEÑO	61
3.1	Elementos de diseño del circuito hidráulico asociado a la PCHR	61
3.2	Elementos de diseño de la instalación eoloeléctrico.	66
3.3	Elementos de diseño eléctrico de la PCHR.	78
CAPÍ	TULO IV	81
4	VIABILIDAD ECONÓMICA	81
4.1	Costos de inversión asociados a la PCHR estudiada	81

4.2	Estimación de los niveles de producción de la PCHR estudiada	82
4.3	Análisis de la viabilidad financiera del proyecto de transformación en PCHR	
CON	CLUSIONES	95
RECO	OMENDACIONES:	98
REFE	ERENCIAS	100
ANE	XOS	102
Anex	so 1	103
Anex	30 2	113

INDICE DE FIGURAS

Figura 1.1. Esquema de una central hidroeléctrica reversible	3
Figura 1.2. Piscina artificial como reservorio superior de la central	4
Figura 1.3. Esquema de una CHAB subterránea	5
Figura 1.4. Esquema de una CHAB con agua de mar.	5
Figura 1.5. Esquema de una central pura de acumulación por bombeo	6
Figura 1.6. Esquema de una central mixta de acumulación por bombeo	7
Figura 1.7. CHAB con grupo ternario de eje vertical	8
Figura 1.8. CHAB con grupo ternario de eje horizontal	9
Figura 1.9. Nivelación de carga en un sistema eléctrico.	11
Figura 1.10. Control de frecuencia ante un corte de 1300 MW.	12
Figura 1.11. Partes de una central hidroeléctrica reversible	14
Figura 1.12. Central Eólica Villonaco	20
Figura 1.13. Central Eólica Baltra.	20
Figura 1.14. Sistema de energía renovable hibrido	22
Figura 1.15. Hibridación eólica-hidroeléctrica para sistemas de almacenamiento	23
Figura 2.1. Ubicación geográfica. Central Hidroeléctrica Guangopolo	26
Figura 2.2. Casa de Máquinas, Central Guangopolo	26
Figura 2.3. Emplazamiento asociado a la central hidroeléctrica Guangopolo	27
Figura 2.4. Vista del emplazamiento	27
Figura 2.5. Ubicación geográfica. Central Hidroeléctrica Cumbayá	28
Figura 2.6. Casa de Máquinas, Central Cumbayá	28
Figura 2.7. Emplazamiento asociado a la central hidroeléctrica Cumbayá	29
Figura 2.8. Vista del emplazamiento	29
Figura 2.9. Ubicación geográfica. Central Hidroeléctrica Los Chillos	30
Figura 2.10. Casa de Máquinas, Central Los Chillos	31
Figura 2.11. Emplazamiento asociado a la central hidroeléctrica Los Chillos	31
Figura 2.12. Vista del emplazamiento	32
Figura 2.13. Ubicación geográfica. Central Hidroeléctrica Nayón	32
Figura 2.14. Central Hidroeléctrica Nayón	33
Figura 2.15. Emplazamiento asociado a la central hidroeléctrica Nayón	34
Figura 2.16. Vista del emplazamiento	34
Figura 2.17. Ubicación geográfica. Central Hidroeléctrica Papallacta	35

Figura 2.18. Casa de Máquinas, Central Papallacta	35
Figura 2.19. Emplazamiento asociado a la central hidroeléctrica Papallacta	36
Figura 2.20. Vista del emplazamiento	36
Figura 2.21. Ubicación geográfica. Central Hidroeléctrica El Carmen	37
Figura 2.22. Casa de Máquinas, Central El Carmen	38
Figura 2.23. Emplazamiento asociado a la central hidroeléctrica El Carmen	39
Figura 2.24. Vista del emplazamiento	39
Figura 2.25. Ubicación geográfica. Central Hidroeléctrica Recuperadora	40
Figura 2.26. Casa de Máquinas, Central Recuperadora	40
Figura 2.27. Emplazamiento asociado a la central hidroeléctrica Recuperadora	41
Figura 2.28. Vista del emplazamiento	41
Figura 2.29. Página Secretaría de Ambiente	43
Figura 2.30. Página de la NASA	44
Figura 2.31. Histograma-Estación Tumbaco	47
Figura 2.32. Histograma-Estación Los Chillos	49
Figura 2.33. Histograma-La NASA	50
Figura 2.34. Torre de medición	52
Figura 2.35. Complementariedad eólica-hidroeléctrica del mes de noviembre del 2	2013
	56
Figura 2.36. Casa de máquina-Central Cumbayá	59
Figura 2.37. Reservorio-Central Cumbayá	59
Figura 3.1. Canal de descarga-Central Cumbayá.	62
Figura 3.2. Curvas características – Bomba serie UGP-2325-03	63
Figura 3.3. Curvas características – Bomba serie UGP-3925-03	64
Figura 3.4. Bomba INDAR SP UGP.	65
Figura 3.5. Flujo de aire que atraviesa el rotor de un aerogenerador	66
Figura 3.6. Disposición Típica "tresbolillo"	68
Figura 3.7. Separación entre aerogeneradores en el parque eólico	69
Figura 3.8. Rosa de los vientos mensual	70
Figura 3.9. Rosa de los vientos anual	71
Figura 3.10. Esquema constructivo del aerogenerador AW-82/1500	
Figura 3.11. Distribución de los Aerogeneradores	77
Figura 3.12. Vista de la Ubicación de los Aerogeneradores	77

Figura 3.13. Representación de la línea eléctrica desde el parque eólico al centro de	e
bombeo.	79
Figura 3.14. Diagrama unifilar de la Central Reversible desarrollada	79
Figura 3.15. Diagrama esquemático de la central reversible desarrollada	80
Figura 4.1. Curva de potencia- AW-82/1500.	83
Figura 4.2. Sensibilidad respecto a la tarifa	91

INDICE DE TABLAS

Tabla 1.1. Clasificación de pequeñas centrales hidroeléctricas	15
Tabla 1.2. Clasificación de pequeñas centrales hidroeléctricas en Ecuador	16
Tabla 1.3. Centrales hidroeléctricas con potencias menores a 30 MW	17
Tabla 1.4. Provincia y localidad de sitios con potencial eólico	18
Tabla 1.5. Proyectos de generación de electricidad con base a energía eólica	19
Tabla 2.1. Ubicación geográfica de las pequeñas centrales hidroeléctricas conec	tadas
al S.N.I	25
Tabla 2.2. Ubicación geográfica-Estaciones Climatológicas Tumbaco y Los Child	los 43
Tabla 2.3. Promedio mensual de la velocidad del viento (m/s)-Estación Tumbaco	45
Tabla 2.4. Promedio mensual de la velocidad del viento (m/s)-Estación Los Chille	os 46
Tabla 2.5. Promedio mensual de la velocidad del viento (m/s)-Página La NASA	46
Tabla 2.6. Porcentaje acumulado de datos de viento-Estación Tumbaco	48
Tabla 2.7. Porcentaje acumulado de datos de viento-Estación Los Chillos	49
Tabla 2.8. Porcentaje acumulado de datos de viento-La NASA	50
Tabla 2.9. Características de la torre de medición	53
Tabla 2.10. Resumen de datos Meteorológicos	54
Tabla 2.11. Coeficiente de correlación-Centrales Cumbayá, Guangopolo y los Ch	hillos
	57
Tabla 2.12. Valores de α en función del tipo del terreno	58
Tabla 2.13. Datos relevantes para determinar la pequeña central de estudio	58
Tabla 2.14. Características principales de la Central Hidroeléctrica Cumbayá	60
Tabla 3.1. Bomba INDAR SP UGP- 2325-03.	62
Tabla 3.2. Bomba INDAR SP UGP-3925-03.	63
Tabla 3.3. Densidad del aire mensual del emplazamiento.	67
Tabla 3.4. Determinación de la dirección predominante del viento	72
Tabla 3.5. Tipos de clases-Aerogenerador AW-83/1500	72
Tabla 3.6. Características Generales del aerogenerador AW-82/1500	74
Tabla 3.7. Características técnicas del aerogenerador AW-82/1500	75
Tabla 3.8. Calculo del número de aerogeneradores	76
Tabla 3.9. Separación entre Aerogeneradores	76
Tabla 4.1. Inversión total del paraue eólico	81

Tabla 4.2. Inversión aplicable a la central de bombeo	82
Tabla 4.3. Energía adicional generada por bombeo en el mes de enero	85
Tabla 4.4. Análisis de la energía adicional entregada por la instalación eólica-bo	ombeo
en el mes de enero	86
Tabla 4.5. Tiempo de operación del centro de bombeo en resolución mensual	87
Tabla 4.6. Resumen anual de la energía adicional entregada por la instalación ed	ólica –
bombeo	87
Tabla 4.7. Costos asociados a la central de bombeo	88
Tabla 4.8. Análisis Financiero del Proyecto	89
Tabla 4.9. Análisis de sensibilidad financiera en relación con la tarifa	90
Tabla 4.10. Flujo de fondos neto de los costos variables (O&M) del proyecto	93
Tabla 4.11. Anualidades mínimas del proyecto.	93
Tabla 4.12. Capital neto a financiar con anualidades	94

GLOSARIO DE TÉRMINOS

S.N.I Sistema Nacional Interconectado.

USACE Cuerpo de Ingenieros del Ejército de los Estados Unidos.

MEER Ministerio de Electricidad y Energías Renovables.

CHAB Centrales Hidroeléctricas de Acumulación por Bombeo.

OLADE Organización Latinoamericana de Energía.

CONELEC Consejo Nacional de Electricidad.

CENACE Centro Nacional de Control de Energía.

EEQ Empresa Eléctrica Quito.

EMAAP Empresa Metropolitana de Agua Potable y Alcantarillado. NASA Administración Nacional de la Aeronáutica y del Espacio.

DMQ Distrito Metropolitano de Quito.PCH Pequeña Central Hidroeléctrica.

PCHR Pequeña Central Hidroeléctrica Reversible.

GWh Gigavatio-hora.

MWh Megavatio-hora.

MW Megavatio. KW Kilovatio. Ha Hectáreas.

msnm Metros sobre el nivel del Mar.

TIR Tasa Interna de Retorno.

VPN Valor Presente Neto.

RESUMEN

CONVERSIÓN DE PEQUEÑAS CENTRALES HIDROELÉCTRICAS EN SISTEMAS REVERSIBLES USANDO ENERGÍA EÓLICA

Juan, Javier, Inga, Aguilera jxavier000@hotmail.com Universidad Politécnica Salesiana

Resumen— "En esta tesis se investiga una metodología para realizar la conversión de pequeñas centrales hidroeléctricas en sistemas reversibles usando energía eólica, sustentada en análisis técnicos y financieros a nivel de prefactibilidad.

La estrategia investigada consiste en accionar un grupo de bombas para transportar de regreso al embalse el agua que ha sido turbinada por la central hidroeléctrica. La energía que acciona las bombas proviene del viento haciendo que el proceso de hibridación sea totalmente renovable.

Como un caso práctico, se seleccionará una pequeña central hidroeléctrica que se encuentre actualmente conectada al Sistema Nacional Interconectado de Ecuador - SNI, a la cual se le aplicará un procedimiento valorado técnica y económicamente con el fin de transformar la central en una reversible.

Este trabajo está en la línea de las disposiciones establecidas en la Constitución de la República del Ecuador y normativa de menor nivel que están orientadas al fomento de las energías renovables, especialmente en los sectores estratégicos de la economía".

Palabras Claves— Centrales hidroeléctricas reversibles, energía eólica, producción de energía eléctrica, metodología, viabilidad técnica y comercial.

ABSTRACT

CONVERSION OF SMALL HYDROELECTRIC POWER STATIONS IN REVERSIBLE SYSTEMS USING WIND ENERGY

Juan, Javier, Inga, Aguilera jxavier000@hotmail.com Universidad Politécnica Salesiana

Abstract— "In this thesis research is a methodology to perform the conversion of small hydroelectric power stations in reversible using wind energy, based on technical and financial analysis at pre-feasibility level.

Researched strategy consists of a group of pumps to transport back to the reservoir water that has been used by the hydroelectric power. The energy that powers the pumps comes from the wind making the hybridization process completely renewable.

As a case study, a small hydroelectric plant which is currently connected to the Interconnected National System of Ecuador will be selected, applies to which a procedure evaluated technically and economically in order to transform the station into a reversible.

This work is in the line of the provisions laid down in the Constitution of Republic of Ecuador and regulations of lower level which are aimed at the promotion of renewable energies, especially in strategic sectors of the economy".

Keywords— Reversible hydroelectric plants, wind energy, production of electrical energy, methodology, technical and commercial feasibility.

INTRODUCCIÓN

En la actualidad el abastecimiento de energía eléctrica en el Ecuador depende de centrales hidroeléctricas de grande, mediana y pequeña escala, también de las centrales termoeléctricas, de biomasa, eólica, fotovoltaicas en pequeña escala y de las importaciones de energía eléctrica desde Colombia y ocasionalmente Perú.

La estacionalidad hidrológica puede afectar la magnitud de los caudales de ingreso a las centrales hidroeléctricas sin importar su tamaño, pudiendo ser importante el impacto en las Pequeñas Centrales Hidroeléctricas – PCH que no poseen grandes embalses para almacenamiento de agua, es decir son de agua fluyente o de "pasada".

Ante esta realidad, surge la necesidad de buscar alternativas que permitan incrementar el nivel de firmeza de las centrales hidroeléctricas, siendo una opción convertir una pequeña central hidroeléctrica en una central reversible.

Las centrales reversibles o de bombeo tienen la capacidad de almacenar electricidad en forma de agua embalsada en el depósito superior, constituyendo en la actualidad una alternativa viable para el almacenamiento de energía eléctrica; además su infraestructura permite mejorías en la eficiencia económica de la explotación del sistema eléctrico y en determinadas circunstancias se verifica la reducción de costos de operación del sistema de bombeo.

Una central reversible contiene un mecanismo para devolver el agua turbinada al embalse superior de forma que pueda ser utilizada nuevamente en el proceso de producción de electricidad. La energía para el accionamiento del sistema recuperador del fluido usualmente proviene de la misma red, en horas en las cuales el costo de la energía del sistema es bajo, sin embargo, el balance general de energía puede no llegar a ser óptimo. Por lo tanto, el utilizar una fuente de energía renovable para el accionamiento del sistema recuperador de fluido puede representar ventajas desde el punto de vista técnico y económico.

CAPÍTULO I

El presente capitulo tratará sobre las características más relevantes de las centrales hidroeléctricas reversibles y de las pequeñas centrales hidroeléctricas que actualmente se encuentran conectadas al Sistema Nacional Interconectado (SNI). Se analizará el potencial de energía eólica en el Ecuador y se introducirá al estado del arte en la tecnología hibridación eólica-hidroeléctrica en las centrales reversibles.

ESTADO DEL ARTE

1.1 Características Principales de las Centrales Hidroeléctricas Reversibles

El suministro constante e ininterrumpido de energía eléctrica es una condición indispensable para el funcionamiento y el desarrollo económico de los países.

Un sistema de energía eléctrica tiene que cumplir con los requerimientos de la demanda, garantizando una capacidad disponible para cubrir el pico de demanda esperado, además debe disponer de una reserva operacional para abastecer las necesidades dinámicas del sistema, lo que ha dado lugar a la aparición de las centrales hidroeléctricas reversibles [1].

Una central hidroeléctrica reversible además de transformar la energía potencial del agua en electricidad posee la capacidad de aumentar la energía potencial del agua consumiendo para tal efecto energía de la red eléctrica, convirtiéndose en un modo de almacenar energía [2].

Este tipo especial de centrales dispone de dos embalses ubicados a diferentes cotas, el agua contenida en el embalse inferior es bombeada durante las horas de menor demanda al embalse superior, con el fin de turbinarla, posteriormente, para generar energía eléctrica en horas de mayor consumo energético [1].

En la Figura 1.1, se puede observar el esquema de una central reversible.

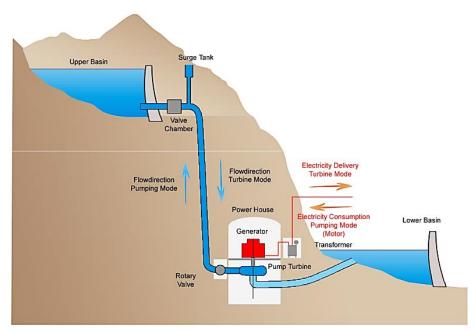


Figura 1.1. Esquema de una central hidroeléctrica reversible.

Fuente: Huber and C. Gutschi.

Clasificación de las centrales hidroeléctricas de acumulación por bombeo.

Las centrales de acumulación por bombeo se clasifican en tres grupos, tomando en cuenta los siguientes criterios [3]:

- 1. De acuerdo a la ubicación del reservorio inferior.
- 2. El United States Army Corps of Engineers (USACE), distingue dos tipos de centrales reversibles según el tipo de funcionamiento.
- 3. En base a la configuración de máquinas utilizadas por la central.

CLASIFICACIÓN SEGÚN LA UBICACIÓN DEL RESERVORIO INFERIOR

- Central hidroeléctrica de acumulación por bombeo convencional
- Central hidroeléctrica de acumulación por bombeo subterránea
- Central hidroeléctrica de acumulación por bombeo con agua de mar

Central hidroeléctrica de acumulación por bombeo convencional

En la actualidad este tipo de centrales son las que con mayor frecuencia se

implementan. La ubicación se los dos reservorios (superior e inferior) se encuentran en la superficie terrestre. En estas centrales, el reservorio inferior puede obtenerse ya sea mediante el uso de un lago o cauce natural existente en la zona de proyecto o mediante la construcción de una presa, creando un embalse artificial que permita acumular agua y de esta forma cumplir con los ciclos de bombeo y generación requeridos. Al utilizar un estanque o embalse existente como depósito inferior, los costos del proyecto se pueden reducir considerablemente. La casa de máquinas y el circuito hidráulico puede ser ubicados sobre o bajo la superficie del terreno y como depósito superior se puede utilizar un lago o construir una presa. Este último caso es válido, además, la construcción de un depósito artificial que permita acumular el agua y que sólo reciba los aportes provenientes del bombeo desde el depósito inferior y no de la cuenca donde se ubica [4]. Ver Figura 1.2.

Figura 1.2. Piscina artificial como reservorio superior de la central.

Fuente: http://en.wikipedia.org/wiki/File:USACE_Kinzua_Dam_downriver.jpg.

Central hidroeléctrica de acumulación por bombeo subterránea

En este tipo de centrales el reservorio inferior se encuentra en un sistema de cavernas excavadas bajo tierra o en un acuífero subterráneo. El reservorio superior se encuentra en la superficie terrestre y puede ser construido de igual manera que una central hidroeléctrica de acumulación por bombeo convencional. La casa de máquinas y el circuito hidráulico son ubicados necesariamente bajo la superficie del terreno [4]. Ver Figura 1.3.

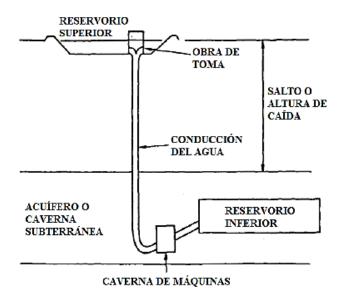


Figura 1.3. Esquema de una CHAB subterránea.

Fuente: Potential for Conventional and Underground Pumped-Storage, Allen 1977.

Central hidroeléctrica de acumulación por bombeo con agua de mar

Este tipo de centrales utilizan como reservorio inferior el océano. La primera planta construida en el mundo fue la *Okinawa Yanbaru sea-water pumped-storage station* ubicada en kunigami, Okinawa, Japón [3]. Ver Figura 1.4.

Figura 1.4. Esquema de una CHAB con agua de mar.

Fuente: Curso PSHPP-Tipos de centrales, MEER.

CLASIFICACIÓN SEGÚN LA USACE

- Central pura de acumulación por bombeo
- Central mixta de acumulación por bombeo

Central pura de acumulación por bombeo

Esta central se basa totalmente del agua que se bombea del depósito inferior al superior. No recibe más aportaciones de agua de las que proviene del embalse inferior a través del bombeo [5].

A continuación en la Figura 1.5, se presenta el esquema de una central pura de acumulación por bombeo.

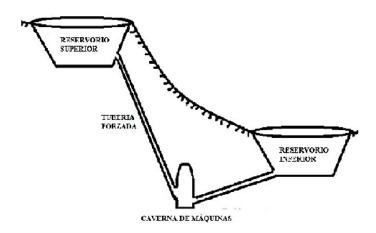


Figura 1.5. Esquema de una central pura de acumulación por bombeo.

Fuente: *Techno-economic review of existing and new pumped hydro energy storage plant.*

Central mixta de acumulación por bombeo

Para generar energía eléctrica esta central combina el agua bombeada del depósito inferior al superior y la entrada del flujo natural que fluye desde la cuenca al embalse superior. En estas centrales el embalse superior recibe aportes de agua tanto del bombeo realizado desde el embalse inferior como de medios naturales. Esto puede presentarse en centrales emplazadas a lo largo de un rio [5].

A continuación en la Figura 1.6, se presenta el esquema de una central mixta de acumulación por bombeo.

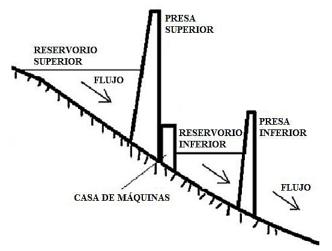


Figura 1.6. Esquema de una central mixta de acumulación por bombeo.

Fuente: *Techno-economic review of existing and new pumped hydro energy storage plant.*

CLASIFICACIÓN SEGÚN LA CONFIGURACIÓN DE MÁQUINAS UTILIZADAS

- Central separadas para bombeo y generación
- Central con grupos cuaternarios
- Centrales con grupos ternarios
- Centrales con grupos binarios
- Centrales mixtas de grupo ternarios y convencionales
- Centrales mixtas de grupos binarios y convencionales

Centrales separadas para bombeo y generación

Existe un recinto que aloja a los grupos motor-bomba y otro recinto separado que contiene a los grupos turbina-generador [3].

Centrales con grupos cuaternarios

En el mismo recinto se disponen los grupos motor-bomba (exclusivamente para bombeo) y los grupos turbina-generador (exclusivamente para generación). Pueden compartir la misma central o instalarse en centrales independientes.

Esta disposición suele emplearse en centrales de pequeña potencia, se requiere un

mayor tamaño de la central y los costos son mayores, pero permite el diseño óptimo independiente de cada grupo, adaptando a sus condiciones específicas de operación [3].

Centrales con grupos ternarios

Cada grupo se compone de tres equipos, un motor/generador síncrono, una turbina y una bomba.

La disposición de los grupos ternarios puede ser de eje vertical u horizontal.

Generalmente, los grupos ternarios verticales el alternador se sitúa en la parte superior para protegerlo contra fugas de agua, la turbina se ubica en la posición intermedia y la bomba en la parte inferior para disminuir el fenómeno de cavitación que se presenta con mayor intensidad en las bombas que en las turbinas. Este efecto se puede mitigar manteniendo una cierta presión estática en dicha zona, lo que se consigue situando la bomba a una cota que esté por debajo del nivel del embalse inferior [3]. Figura 1.7.

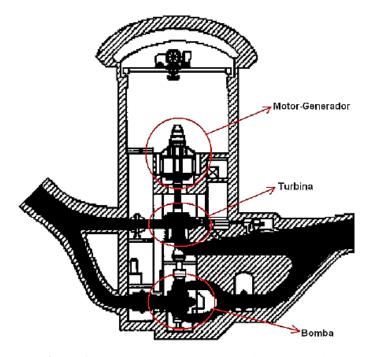


Figura 1.7. CHAB con grupo ternario de eje vertical

Fuente: Centrales Eléctricas I, Orille 1993

Generalmente, los grupos ternarios verticales disponen de un embrague o acoplamiento mecánico entre la turbina y la bomba con el fin de reducir las pérdidas por rozamiento y ventilación en el rodete de ésta última cuando el grupo funciona como generador. Cuando el grupo funciona como bomba, el motor síncrono arrastra también la turbina por lo que es necesario desanegar el rodete superior mediante inyección de aire comprimido.

En los grupos de eje horizontal, el alternador-motor se sitúa en la parte central pudiendo instalarse un embrague a cada lado del mismo con la misión antes indicada. Además en este caso se instala una pequeña turbina Pelton de lanzamiento cuyo objeto es llevar al rotor a la velocidad de sincronismo, ya que el par de arranque del motor síncrono es nulo [3]. Figura 1.8.

La principal ventaja de los grupos ternarios es su gran flexibilidad de funcionamiento y su gran rapidez para efectuar el cambio de turbina a bomba y viceversa, puesto que las dos máquinas hidráulicas son independientes, sus álabes se pueden disponer de forma que el sentido de giro en ambos casos sea el mismo. Sin embargo, los grupos ternarios presentan el inconveniente de que la inversión es más elevada, tanto en equipos (tres máquinas de la misma potencia aproximadamente, frente a dos) como en tuberías, válvulas y accesorios [3].

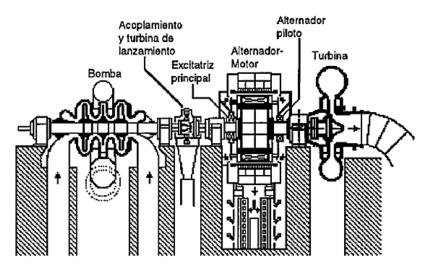


Figura 1.8. CHAB con grupo ternario de eje horizontal

Fuente: Centrales Eléctricas I, Orille 1993

Centrales mixtas de grupos ternarios y convencionales

Son grupos bomba + motor/generador + turbina y grupos turbina + generador [3].

Centrales mixtas de grupos binarios y convencionales

Son grupos moto/generador + bomba/turbina y grupos turbina + generador [3].

Servicios complementarios de las centrales reversibles

La principal función de una central reversible es la transferencia de energía de los periodos valle, de baja demanda, a los periodos punta, de alta demanda.

Por una parte, se proporciona potencia y energía firme, para la cobertura de las puntas y, por otra parte, se eleva el consumo mínimo en horas valle, permitiendo una utilización más eficaz y eficiente de otras tecnologías con menores posibilidades de variación de carga [6].

Nivelación de carga

Las centrales hidroeléctricas de acumulación por bombeo fueron introducidas en los sistemas de generación eléctrica en Europa en la década de 1910, con el objetivo de nivelar carga en la operación diaria o en los ajustes estacionales de la capacidad de generación del sistema [7].

Con una central de bombeo reversible, se puede generar una curva con fases alternas de consumo y generación. Esta característica especial de una central de acumulación por bombeo, de actuar como consumidor y generador indistintamente, permite alisar la curva de carga del sistema, transfiriendo energía sobrante, en valle, a energía de alta calidad en punta [6].

En la actualidad, el incremento de la participación de las plantas de generación de energías renovables intermitentes ha introducido un nuevo factor de viabilidad y desequilibrio entre generación y consumo, por lo que hace todavía más imprescindible

la función de nivelación de carga.

En la Figura 1.9, se presenta un esquema sobre la nivelación de carga.

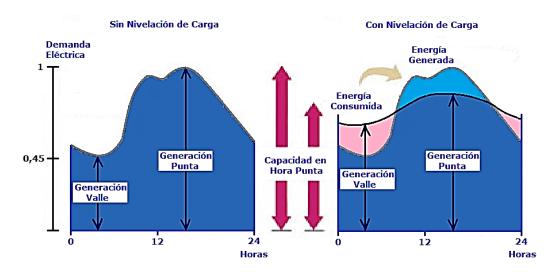


Figura 1.9. Nivelación de carga en un sistema eléctrico.

Fuente: Ministerio de Electricidad y Energía Renovable (MEER).

Regulación de frecuencia

Otra de las características relevantes de esta tecnología, es que permite regular la frecuencia de la red durante las horas pico de demanda o frente a situaciones inesperadas que afecten a la red [7].

La frecuencia de la red es una variable que está determinada y controlada por el balance segundo a segundo (tiempo real), entre la demanda del sistema y generación total. Si la demanda es mayor que la generación, la frecuencia cae, mientras que si la generación es mayor que la demanda, la frecuencia aumenta [7]

Si bien este servicio es compartido con centrales hidroeléctricas de regulación por embalse, en el caso de las CHAB se trata prácticamente de una característica intrínseca a la tecnología, ya que por tema de costos de instalación de la central, es usual diseñarlas con una gran diferencia de cota entre ambos depósitos y una corta distancia entre ellos. Considerando una potencia fija, la gran diferencia de cota entre ambos depósitos permite disminuir el tamaño de los reservorios, que es requerido para cumplir

con la carga del ciclo diario y, además, permite disminuir el coeficiente de inercia de la aducción de la central, lo que se traduce en rápidas respuestas ante cambios bruscos en la demanda. Si este criterio es optimizado, es posible responder ante los cambios en la demanda en cosa de minutos, manteniendo estable la frecuencia de la red [5].

Frequency after a 1300 MW Outage

50.00
Hz

49.98

49.96

49.92

-2

0

2

4

6

8

10

12 min 14

En la Figura 1.10, se presenta un esquema sobre el control de frecuencia.

Figura 1.10. Control de frecuencia ante un corte de 1300 MW.

time

Fuente: Huber and C. Gutschi

Capacidad de autopartida o arranque en cero

Este tipo de centrales tiene la capacidad de operar luego de presentarse un corte generalizado en el sistema, sin depender de energía eléctrica externa proveniente de la red.

Si bien, esta característica es compartida con las centrales hidroeléctricas convencionales, por lo general el aporte de las centrales de bombeo a la red cuando ésta ha decaído completamente, es más apreciado debido a las grandes potencias que estas centrales pueden inyectar en minutos, lo que permite volver a poner en funcionamiento a centrales térmicas y nucleares que requieren de energía eléctrica para su puesta en servicio desde cero [7].

• Partes y funcionamiento de una central hidroeléctrica reversible

Las partes constitutivas de una central hidroeléctrica reversible son: embalse superior, presa, galería de conducción, chimenea de equilibrio, tubería forzada, turbina, generador, transformadores, desagües, línea de transporte de energía eléctrica, embalse inferior o río. Figura 1.11.

Su funcionamiento es similar a una central hidroeléctrica convencional: el agua se acumula en el embalse superior (1) cerrado por una presa (2), fluye por la galería de conducción (3) hacia a la tubería forzada (5), llegando a la casa de máquinas. En algunos casos se construye la chimenea de equilibrio (4) para regular las presiones del agua entre las conducciones [8].

El agua adquiere energía cinética (velocidad) al fluir por la tubería forzada, que al chocar contra los álabes de la turbina hidráulica (6), se transforma en energía mecánica.

Esta energía se transmite al generador (7) para su transformación en electricidad. Por medio de los transformadores (8) se eleva la tensión que es enviada a la red mediante líneas de transporte de alta tensión (10). El agua una vez turbinada circula por el canal de desagüe (9) al embalse inferior (11), donde queda almacenada.

En horas de menor demanda, se aprovecha que la electricidad tiene un coste bajo, y se utiliza para accionar la bomba que traslada el agua desde el embalse inferior (11) hacia el embalse superior (1) [8].

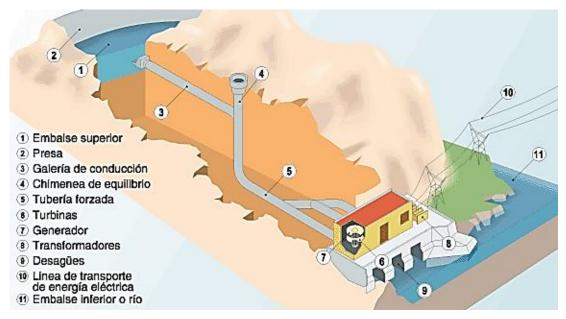


Figura 1.11. Partes de una central hidroeléctrica reversible.

Fuente: http://www.unesa.es/sector-electrico/funcionamiento-de-las-centrales-electricas/1342-central-bombeo.

En algunos casos se habla de caverna de máquinas en vez de casa de máquinas debido a que tanto el circuito hidráulico, como la sala de máquinas y la sala de transformadores se suelen instalar de forma subterránea, constituyendo un aspecto positivo ya que los impactos visuales son mínimos, quedando a la vista los embalses superior e inferior.

Cada central será prácticamente exclusiva en su diseño debido a que las partes y la configuración de la central dependerá tanto del lugar de emplazamiento, como criterios económicos, ambientales y sociales.

1.2 Pequeñas centrales hidroeléctricas conectadas al S.N.I

Las pequeñas centrales hidroeléctricas empezaron su expansión a principios del siglo XX, presentando grandes ventajas sobre las medianas y grandes centrales. El impacto ambiental es prácticamente nulo, bajo costo de operación y mantenimiento, fácil adaptación e instalación, tecnología sencilla y los sitios para el desarrollo de las mismas son abundantes. Estas centrales ofrecen una solución viable para pequeñas poblaciones o comunidades aisladas que no cuentan con suministro eléctrico. Reduciendo la necesidad de combustibles fósiles e impulsando el desarrollo socioeconómico en el

medio rural [9].

El Ecuador cuenta con un inmenso recurso hídrico, las pequeñas centrales constituyen una alternativa válida con gran proyección para su desarrollo a lo largo de todo el territorio nacional.

"El parque generador disponible en el Ecuador consta de 16 centrales hidroeléctricas estatales de pequeña, mediana y gran capacidad (1-1.100MW) y 39 centrales pequeñas pertenecientes a las empresas de distribución eléctrica, a municipios y a empresas privadas".

No existe una definición universal aceptada en cuanto se refiere a pequeñas centrales hidroeléctricas. Los criterios utilizados pueden variar de país a país.

La Tabla 1.1, muestra los rangos utilizados por la Organización Latinoamericana de Energía OLADE.

POTENCIA	TIPO	SALTO		
FUIENCIA		BAJO	MEDIO	ALTO
0.5 - 5 KW	Picocentral		N.A	
5 - 50 KW	Microcentral	< 15	15 - 50	> 50
50 - 500 KW	Minicentral	< 20	20 - 100	>100
500- 5000 KW	Peq. Central	< 25	25 - 130	>130

Tabla 1.1. Clasificación de pequeñas centrales hidroeléctricas.

Fuente: http://www.olade.org/es/publicaciones/biblioteca-virtual#.

Sin embargo, la clasificación que utiliza el Sector Eléctrico Ecuatoriano se muestra en la Tabla 1.2.

_

¹ PLAN MAESTRO DE ELECTRIFICACIÓN 2013 – 2022, resumen ejecutivo, capitulo 3 expansión de generación, 3.3. Potencia Instalada y Disponible del S.N.I, pág. 20, párrafo 1.

POTENCIA	TIPO	
50 MW o más	Grande Centrales	
Entre 5 y 50 MW	Medianas Centrales	
Entre 500 y 5000 KW	Pequeñas Centrales	
Entre 50 y 500 KW	Minicentrales	
< 5 KW	Picocentrales	

Tabla 1.2. Clasificación de pequeñas centrales hidroeléctricas en Ecuador

Fuente: CONELEC, "Plan de Expansión de la Generación"

En la Tabla 1.3, se presentan las centrales hidroeléctricas con potencias menores a 30 MW conectadas al S.N.I.

Nombre Agente	Nombre Central	Nombre Unidades	Potencia Efectiva por Unidad	Potencia Efectiva Central	
		PENINSULA U1	500	Central	
AMBATO GENERADOR	C. H. PENÍNSULA	PENINSULA U2	500	3.000	
AMBATO GENERADOR	C. H. PENINSULA	PENINSULA U3	500	3.000	
		PENINSULA U4	1.500		
	C.H.OCAÑA	OCAÑA U1	13.050	26.100	
	Chiochini	OCAÑA U2	13.050	20.100	
		SAUCAY U1	4.000		
	C. H. SAUCAY	SAUCAY U2	4.000	24.000	
	C. 11. 5. 10 C. 11	SAUCAY U3	8.000	2000	
		SAUCAY U4	8.000		
ELECA USTRO	C. H. SAYMIRÍN 5	SAYMIRÍN 5 U1	3.760	7.520	
ELECTOSTICS	C. II. S. I II. III.	SAYMIRÍN 5 U2	3.760	7.020	
		SAYMIRÍN U1	1.250		
		SAYMIRÍN U2	1.250		
	C. H. SAYMIRÍN	SAYMIRÍN U3	1.950	14.400	
	C. II. SATIMINA	SAYMIRÍN U4	1.950	14.400	
		SAYMIRÍN U5	4.000		
		SAYMIRÍN U6	4.000		
CNEL BOLÍVAR GENERADOR	C. H. RÍO CHIMBO	RÍO CHIMBO U1	450	1.350	
C. L. DOLI VAR GENERADOR	C. II. NO CIMVIDO	RÍO CHIMBO U2	900	1.330	
		ILLUCHI I U1	600		
	C. H. ILLUCHI I	ILLUCHI I U2	600	4.000	
COTODA VI CENIEDA DOD	C. H. ILLUCHI I	ILLUCHI I U3	1.400	4.000	
COTOPA XI GENERA DOR		ILLUCHI I U4	1.400		
		ILL2H0A	2.500	# 000	
	C. H. ILLUCHI II	ILL2H0A	2.500	5.000	
	a w pupuwu amu	PAPALLACTA U1	1.900	< 100	
ECOLUZ AUTOPRODUCTOR	C. H. PAPALLACTA	PAPALLACTA U2	4.200	6.100	
ECOLUZ GENERADOR	C. H. LORETO	LORETO U1	2.100	2.100	
	C. H. EL CARMEN	CARM_U_1_GEN.HIDR	8.300		
EPMAPS AUTOPRODUCTOR	C. H. RECUPERADORA	RECUPERADORA U1	14.500	14.500	
EPMAPS GENERADOR	MICROCENTRAL TANQUE ALTO CARCELÉN	TANQUE ALTO CARCELÉN U01	60	60	
There is a supplication of the supplication of	a way opp	CALOPE U1	9.000	40.000	
ENERMAX AUTOPRODUCTOR	C. H. CALOPE	CALOPE U2	9.000	18.000	
	a w www	AMBI U1	4.000	0.000	
	C. H. AMBI	AMBI U2	4.000	8.000	
		LA PLAYA U1	410		
EMELNORTE GENERADOR	C. H. LA PLAYA	LA PLAYA U2	410	1.230	
		LA PLAYA U3	410		
	C. H. SAN MIGUEL DE CAR	SAN MIGUEL U1	2.940	2.940	
	C.H. LA MERCED DE BUENOS AIRES	BUENOS AIRES U01	980	980	
		LOS CHILLOS U1	900		
	C. H. LOS CHILLOS	LOS CHILLOS U2	900	1.800	
		GUANGOPOLO HIDRO U1	2.000		
		GUANGOPOLO HIDRO U2	2.000		
		GUANGOPOLO HIDRO U3	1.700		
	C. H. GUANGOPOLO	GUANGOPOLO HIDRO U4	1.700	20.400	
QUITO GENERADOR		GUANGOPOLO HIDRO U5	2,000		
		GUANGOPOLO HIDRO U6	11.000		
	,	NA YÓN U1	14.400		
	C. H. NA YÓN	NA YÓN U2	14.400	28.800	
		PASOCHOA U1	2.300	+	
	C. H. PASOCHOA	PASOCHOA U1 PASOCHOA U2	2.300	4.600	
		ALAO U1	2.600		
		ALAO U2	2.570	10.440	
RIOBAMBA GENERADOR	C. H. ALAO				
RIODANIDA GENERADOR		ALAO U4	2.660		
	C II BÍO BLANCO	ALAO U4	2.610	2 000	
	C. H. RÍO BLANCO	RÍO BLANCO U1	3.000	3.000	
DECIONAL GUD CENTER : DO	G H GLEVOG MOD : GLEDVÁN	CARLOS MORA U1	600	2 100	
REGIONAL SUR GENERADOR	C. H. CARLOS MORA CARRIÓN	CARLOS MORA U2	600	2.400	
		CARLOS MORA U3	1.200		
HIDALGO HIDALGO	C. H. SIBIMBE	SIBIMBE U1	7.500	15.000	
		SIBIMBE U2	7.500		
HIDROIMBABURA	HIDROCAROLINA	HIDROCAROLINA U01	900	900	

Tabla 1.3. Centrales hidroeléctricas con potencias menores a 30 MW.

Fuente: CENACE.

1.3 Potencia de Energía Eólica en el Ecuador

Recursos Eólicos en el Ecuador

"En el Ecuador existen zonas de alto potencial eólico gracias a la existencia de la Cordillera los Andes y su cercanía al Océano Pacífico. Esta orografía accidentada promueve la formación de vientos locales, generados por las diferencias de temperatura asociadas a mesetas, valles, cauces de ríos, microclimas, entre otros"².

Los lugares estratégicos para la producción de energía eólica en el Ecuador se encuentran en las crestas de las montañas andinas y, en emplazamientos cerca de la costa y costa-afuera de las playas, estos últimos por la presencia de las brisas marinas. En la región de la amazonia debido a la escaza fuente de viento que existe no se han desarrollado proyectos de este tipo [10].

En Loja, se ha encontrado un gran potencial eólico para la generación de electricidad, en especial en las cercanías del cerro Villonaco [10]. En la Tabla 1.4, se muestra la provincia y localidad de sitios donde se presenta potencial eólico aprovechable.

PROYECTO	PROVINCIA
El Angel	Carchi
Salinas	Imbabura
Machachi, Malchnguí, Páramo Grande	Pichincha
Minitrac, Tigua	Cotopaxi
Chimborazo, Tixán, Altar	Chimborazo
Salinas, Simiatug	Bolívar
Huascachaca	Azuay-Loja
Saraguro, El Tablón, Manú	Loja
Villonaco Fase 2, Membrillo, Las Chincas	Loja
San Cristóbal, Santa Cruz, Baltra	Galápagos
Ducal Wind Farm	Loja
Gacía Moreno	Carchi

Tabla 1.4. Provincia y localidad de sitios con potencial eólico.

Fuente: CONELEC, Plan Maestro de Electrificación 2013-2022

² PLAN MAESTRO DE ELECTRIFICACIÓN 2012 – 2021, capitulo 5 Expansión de Generación, 5.3.2.2 Energía Eólica, pág. 159.

Los proyectos de generación eólica que se han estudiado se muestran en la Tabla 1.5:

PROYECTO	POTENCIA (MW)	ESTADO
Los Chinchas	10,5	En estudio
Salinas Etapa I	15	En estudio
Salinas Etapa II	25	En estudio
Vilonaco	15	En ejecución
Ducal Wind Farm	5,2	Certificado Otorgado
Santa Cruz /Baltra	3	Contrato firmado
San Cristóbal	2,4	En operación
Huascachaca	30	En estudio
Vilonaco Fase II	2,6	En estudio
Vilonaco Fase III	3,4	En estudio
Membrillo-Chinchas	110	En estudio

Tabla 1.5. Proyectos de generación de electricidad con base a energía eólica

Fuente: CONELEC, Plan Maestro de Electrificación 2013-2022

El Ministerio de Electricidad y Energía Renovable con el fin de fomentar la inversión pública y privada en generación de energía eólica, concluyo la ejecución del "Atlas Eólico del Ecuador" en el primer trimestre del 2013 [10].

"Según el citado Atlas Eólico, el Potencial Eólico Bruto del Ecuador es de 1.671 MW con una producción energética media de 2.869 GWh/año"³.

"Con relación al Potencial Eólico Factible a corto plazo del Ecuador, según al Atlas Eólico, es de 988 MW con una producción energética media de 1.697 GWh/año".

• Centrales y proyectos de generación eólica en Ecuador

Central Eólica Villonaco

La Central Eólica Villonaco ubicada en la provincia de Loja, Figura 1.12, con una potencia total de 16,5 MW, cuenta con 11 aerogeneradores de 1,5 MW, marca Goldwind. Esta central inicio su operación durante el primer semestre del 2013 [10].

³ PLAN MAESTRO DE ELECTRIFICACIÓN 2013 – 2022, Anexo 1, Estudios Complementarios de proyectos con Fuentes de Energía Renovable, 2.4.Recursos Eólicos, pág. 196, párrafo 5.

⁴ PLAN MAESTRO DE ELECTRIFICACIÓN 2013 – 2022, resumen ejecutivo, capitulo 3 expansión de generación, 3.3. Potencia Instalada y Disponible del S.N.I, pág. 196, párrafo 6.

Figura 1.12. Central Eólica Villonaco.

Fuente: CONELEC, Plan Maestro de Electrificación 2013-2022

Proyecto Eólico Baltra

El proyecto de energía eólico Baltra, ubicado al oriente de la isla Baltra, Figura 1.13, con 2,25 MW de potencia instalada, concluyó su construcción en el mes de julio de 2013 [10].

Figura 1.13. Central Eólica Baltra.

Fuente: CONELEC, Plan Maestro de Electrificación 2013-2022

Proyecto Eólico García Moreno

Este proyecto se encuentra en estudio, el objetivo del mismo es obtener datos

necesarios del viento y de esta manera realizar una correcta selección del lugar de

emplazamiento, para posteriormente determinar el diseño, configuración, costos y poder

especificar la alternativa técnica-económica óptima para la construcción del parque

eólico [10].

A continuación se presenta la inversión estimada, localización y beneficios que este

proyecto puede ofrecer a futuro:

Total de Preinversión: US\$ 793.420

Inversión Estimada: MUS\$ 22,500

Localización: Bolívar y Espejo, Provincia de Carchi

Beneficios: 15 MW

1.4 Hibridación Eólica-Hidroeléctrica en las Centrales Reversibles

Descripción de la tecnología

Un sistema de energía renovable hibrido es un sistema en el cual dos o más fuentes de

energía renovable (solar-térmica, solar-fotovoltaica, el viento, la biomasa, la

hidroeléctrica, etc.) se integran para proveer electricidad o calor, o ambos, a la misma

demanda [11].

En la Figura 1.14, se puede observar el aprovechamiento de energía solar, eólica e

hidráulica.

21

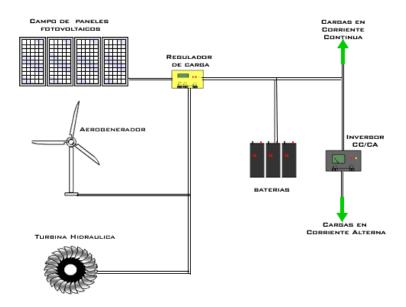


Figura 1.14. Sistema de energía renovable hibrido.

Fuente: Sistemas Híbridos.

La estación de bombeo más básica consta de varias bombas con similares características, alimentadas mediante energía eólica, que funcionan en paralelo y su función es bombear el agua contenida en el embalse inferior al superior, con el fin de turbinara posteriormente en horas de mayor demanda energética [11].

En la Figura 1.15, se tiene la hibridación eólica-hidroeléctrica para sistemas de almacenamiento.

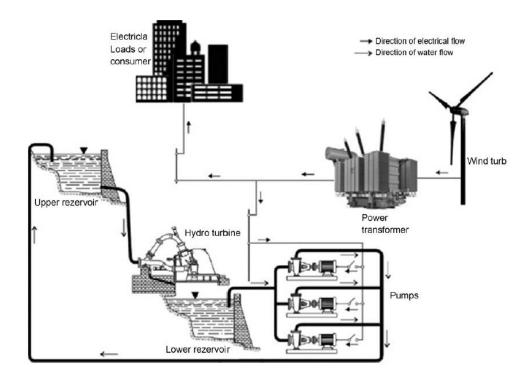


Figura 1.15. Hibridación eólica-hidroeléctrica para sistemas de almacenamiento.

Fuente: Investment in wind power and pumped storage in a real options model

CAPÍTULO II

En el presente capítulo se investigarán las características de los emplazamientos asociados a las pequeñas centrales hidroeléctricas conectadas al Sistema Nacional Interconectado con el fin de determinar el potencial eólico asociado así como la complementariedad eólica-hidroeléctrica. En función de este análisis se establecerán criterios para priorizar dichos emplazamientos y se determinará la PCH escogida para aplicar la hibridación.

2 PREFACTIBILIDAD TÉCNICA

2.1 Análisis de los emplazamientos asociados a la Pequeñas Centrales Hidroeléctricas conectadas al Sistema Nacional Interconectado (S.N.I)

En la Tabla 2.1, se presenta la potencia nominal y ubicación geográfica de las pequeñas centrales hidroeléctricas conectadas al S.N.I.

Nombre de la Central	Potencia Nominal (MW)	Latitud (λ)	Longitud (L)
Guangopolo	20,92	0°15′41.39"S	78°27′15.44"O
Cumbayá	40	0°11′10.86"S	78°25′08.92"O
Los Chillos	1,78	0°22′28.77"S	78°25′02.06"O
Nayón	29,7	0°09′49.51"S	78°24′46.34"O
Pasochoa	4,5	0°25′40.42"S	78°28′51.38"O
Papallacta	6.63	0°22′35.30"S	78°08′42.10"O
El Carmen	8,4	0°27′17.33"S	78°21′54.51"O
Recuperadora	14,7	0°16′04.47"S	78°17′12.93"O
Sibimbe	15,37	01°25′24.3"S	79°18′04.4"O
Saymirín	14,43	02°47′47.7"S	79°00′18.4"O
Saucay	24	02°45′05.9"S	79°00′38.5"O
Ocaña	26,1	02°29′53.3"S	79°14′42.6"O
Calope	16,6	00°59′26.1"S	79°14′12.9"O
Illuchi I	4	00°55′7.94"S	78°31′42.68"O
Illuchi II	5	00°56′6.84"S	78°32′49.93"O
Hidrocarolina	0,6	00°43′46.6"N	78°12′49.8"O
Península	3	01°14′20,1"S	78°36′18.8"O
Ambi	8	00°23′15.6"N	78°09′42.5"O
San Miguel de Car	2,95	00°48′24.1"N	77°48′01.2"O
La Playa	1,32	00°50′43.4"N	77°42′11.2"O
Alao	10,4	01°48′28,8"S	78°35′39.5"O
Río Blanco	3,13	01°39′26,6"S	78°32′15.5"O
Loreto	2,3	00°19′39,5"S	78°08′43.6"O
Río Chimbo	1,66	01°41′01,7"S	79°00′50.7"O
Buenos Aires	0,98	00°37′15,1"S	79°18′49.7"O

Tabla 2.1. Ubicación geográfica de las pequeñas centrales hidroeléctricas conectadas al S.N.I

Fuente: CONELEC. Dirección de estudios eléctricos y energéticos. Información Estadística y Geográfica.

A continuación se describirán las características de algunas de estas centrales, especialmente aquellas ubicadas en la provincia de Pichincha, atendiendo a la disponibilidad de mediciones de viento, necesarias para el estudio posterior.

• Central Hidroeléctrica Guangopolo

La central hidroeléctrica Guangopolo se encuentra ubicada en la parroquia Guangopolo, cantón Quito, provincia de Pichincha, sector La Armenia [12].

En la Figura 2.1, se puede observar la ubicación geográfica de la central.

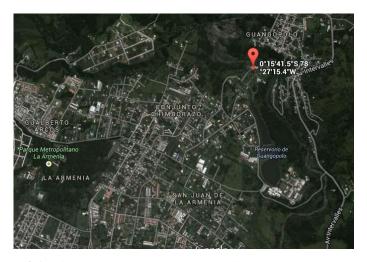


Figura 2.1. Ubicación geográfica. Central Hidroeléctrica Guangopolo.

Fuente: *Google Earth.*

Esta central opera desde 1937, genera mediante la captación de las aguas de los ríos San Pedro, Capelo y Pita, tiene una capacidad instalada de 20.92 MW. La central ocupa una extensión total de 54.7 Ha, perteneciendo a la Empresa Eléctrica Quito S.A [12].

En la Figura 2.2, se puede observar la casa de máquinas de la central hidroeléctrica Guangopolo.

Figura 2.2. Casa de Máquinas, Central Guangopolo

Fuente: [Propio del autor]

Emplazamiento asociado

El emplazamiento se ubica aproximadamente a 250 m de la casa de máquinas de la central en las coordenadas geográficas: 0°15′43.36" de latitud Sur y 78°27′23.10" de longitud Oeste. Figura 2.3 y Figura 2.4.

Figura 2.3. Emplazamiento asociado a la central hidroeléctrica Guangopolo

Fuente: Google Earth

Figura 2.4. Vista del emplazamiento

Fuente: Google Earth

• Central Hidroeléctrica Cumbayá

Las obras de la central se localizan en el Distrito Metropolitano, al este de la ciudad de Quito. La obra de toma se localiza junto a la casa de máquinas de la central Guangopolo; el reservorio esta junto a la población de Cumbayá y la casa de máquinas en el sector llamado San Pedro Cumbayá en el margen derecho del río Machángara, a unos 1.100 m aguas arriba de la junta con el río San Pedro [12].

En la Figura 2.5, se puede observar la ubicación geográfica de la central.

Figura 2.5. Ubicación geográfica. Central Hidroeléctrica Cumbayá

Fuente: Google Earth

La central hidroeléctrica Cumbayá tiene una potencia instalada de 40 MW, capta directamente las aguas turbinadas de la central Guangopolo, más los remanentes del río San Pedro que son captados previamente por una toma auxiliar ubicada frente a la casa de máquinas, aproximadamente en la cota 2.382 msnm. La central es propiedad de la Empresa Eléctrica Quito S.A [12].

En la Figura 2.6, se puede observar la casa de máquinas de la central hidroeléctrica Cumbayá.

Figura 2.6. Casa de Máquinas, Central Cumbayá

Fuente: [Propio del autor]

Emplazamiento Asociado

El emplazamiento se ubica aproximadamente a 165 m de la casa de máquinas de la central en las coordenadas geográficas: 0°11′13.58" de latitud Sur y 78°25′13.15" de longitud Oeste. Figura 2.7 y Figura 2.8.

Figura 2.7. Emplazamiento asociado a la central hidroeléctrica Cumbayá.

Fuente: Google Earth

Figura 2.8. Vista del emplazamiento

Fuente: Google Earth

Central Hidroeléctrica Los Chillos

Las obras de la central se encuentran ubicadas en el cantón Rumiñahui, Provincia de Pichincha. La captación se encuentran en el sector llamado Molinuco, la tubería de presión, el reservorio y la central se localizan en el sector Santa Rosa [12].

En la Figura 2.9, se puede observar la ubicación geográfica de la central.

Figura 2.9. Ubicación geográfica. Central Hidroeléctrica Los Chillos

Fuente: Google Earth

La central hidroeléctrica Los Chillos, cuenta con 1.78 MW de potencia instalada, capta las aguas de río Pita, aproximadamente en la cota 2.835 msnm.

Esta central comenzó su operación desde 1992 a cargo de la empresa The Quito Electric Light and Power Company, en 1932 estas instalaciones fueron vendidas a la Eléctrica Quito, y posteriormente pasó a propiedad de la Empresa Eléctrica Municipal, la que finalmente se transformó en la actual Empresa Eléctrica Quito S.A. en 1955 [12].

En la Figura 2.10, se puede observar la casa de máquinas de la central hidroeléctrica Los Chillos.

Figura 2.10. Casa de Máquinas, Central Los Chillos

Fuente: [Propio del autor]

Emplazamiento Asociado

El Emplazamiento se ubica aproximadamente a 195 m de la casa de máquinas de la central en las coordenadas geográficas: 0°22′28.20" de latitud Sur y 78°24′55.82" de longitud Oeste. Figura 2.11 y Figura 2.12.

Figura 2.11. Emplazamiento asociado a la central hidroeléctrica Los Chillos

Fuente: Google Earth

Figura 2.12. Vista del emplazamiento

Fuente: Google Earth

• Central Hidroeléctrica Nayón

Las obras de la central se encuentran ubicadas al este de la ciudad de Quito. La obra de toma se encuentra ubicada luego de la restitución de las aguas turbinadas de la central Cumbayá, la casa de máquinas se localiza en el margen izquierdo del río san Pedro a unos 100 m aproximadamente aguas arriba de la quebrada Cusua, cerca de la población de Nayón [12].

En la Figura 2.13, se puede observar la ubicación geográfica de la central.

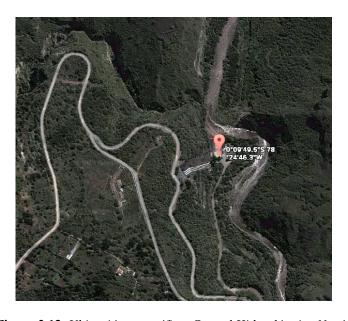


Figura 2.13. Ubicación geográfica. Central Hidroeléctrica Nayón

Fuente: Google Earth

La central hidroeléctrica Nayón, cuenta con 28.88 MW de potencia instalada, utiliza las aguas turbinadas de la central Cumbayá y el caudal del río Machángara que es captado previamente por una toma auxiliar ubicada frente a la casa de máquinas de Cumbayá. Su construcción finalizo en 1974 con la instalación de dos grupos de generadores. La central es propiedad de la Empresa Eléctrica Quito S.A [12].

En la Figura 2.14, se puede observar el ingreso a la central hidroeléctrica Nayón.

Figura 2.14. Central Hidroeléctrica Nayón

Fuente: https://www.google.com.ec/search?q=central+hidroelectrica+nayon

Emplazamiento Asociado

El Emplazamiento se ubica aproximadamente a 230 m de la casa de máquinas de la central, en las coordenadas geográficas: 0°09′45.92" de latitud Sur y 78°24′52.67" de longitud Oeste. Figura 2.15 y Figura 2.16.

Figura 2.15. Emplazamiento asociado a la central hidroeléctrica Nayón

Fuente: Google Earth

Figura 2.16. Vista del emplazamiento

Fuente: Google Earth

• Central Hidroeléctrica Papallacta

La central hidroeléctrica Papallacta se encuentra ubicada en la Parroquia Papallacta, cantón Quijos, provincia de napo, el rango de altitud varía entre 3600 y 4200 msnm. La temperatura media anual tiene un promedio de 6° C y 16° C [13].

En la Figura 2.17, se puede observar la ubicación geográfica de la central.

Figura 2.17. Ubicación geográfica. Central Hidroeléctrica Papallacta

Fuente: Google Earth

La central hidroeléctrica Papallacta, cuenta con 6.1 MW de potencia instalada. En el año de 1961, se instaló un grupo tipo Francis horizontal, marca Pelton fabricada en 1910 con una capacidad de generación de 1.9 MW, que opera desviando las aguas del río Papallacta, sin utilizar represa alguna. En 1965 se inician las operaciones del Grupo 1. En 1982 se construye en Grupo 2, tipo Francis horizontal, marca Sorumsand Verksted con capacidad de 4.2 MW [13].

En la Figura 2.18, se puede observar la casa de máquinas de la central hidroeléctrica Papallacta.

Figura 2.18. Casa de Máquinas, Central Papallacta

Fuente: http://www.ecoluzsa.com/index.php/equipos-papallacta-mainmenu-27#.

Emplazamiento Asociado

El Emplazamiento se ubica aproximadamente a 300 m de la casa de máquinas de la central, en las coordenadas geográficas: 0°22′37.87" de latitud Sur y 78°8′51.22" de longitud Oeste. Figura 2.19 y Figura 2.20.

Figura 2.19. Emplazamiento asociado a la central hidroeléctrica Papallacta

Fuente: Google Earth

Figura 2.20. Vista del emplazamiento

Fuente: Google Earth

• Central Hidroeléctrica El Carmen

La central hidroeléctrica El Carmen se encuentra ubicada a 60 km aproximadamente al sureste de la cuidad de Quito, en la parroquia Píntag, cantón Quito, provincia de Pichincha.

En la Figura 2.21, se puede observar la ubicación geográfica de la central.

Figura 2.21. Ubicación geográfica. Central Hidroeléctrica El Carmen

Fuente: Google Earth

La Empresa metropolitana de Agua Potable y Alcantarillado (EMAAP-Q) con el objetivo de abastecer el suministro de agua potable y alcantarillado a la zona extrema sur de la ciudad de Quito, construyo el proyecto La Mica Quito Sur [14].

En 1990 comenzó a operar el denominado "Proyecto Papallacta", permitió a la EMAAP-Q suministrar agua potable a la zona y contar con una instalación de una central de generación hidroeléctrica (Central Recuperadora) para suministrar energía a las estaciones de bombeo y la energía en exceso al Sistema Nacional Interconectado [14].

La experiencia obtenida con los sistemas de generación como parte de los sistemas de agua potable, permitió que en año 2000 ingrese en operaciones la Central "El Carmen",

Gráfico 32, de 8,3 MW, como parte del segundo proyecto Sistema Mica quito Sur (SMQS), el cual se creó con el objetivo de suministrar agua potable a la zona sur de la ciudad de Quito y producir energía eléctrica en la Central Hidroeléctrica El Carmen [14].

En la Figura 2.22, se puede observar la casa de máquinas de la central hidroeléctrica El Carmen.

Figura 2.22. Casa de Máquinas, Central El Carmen

Fuente: http://www.aguaquito.gob.ec/datos-generales#.

Emplazamiento Asociado

El Emplazamiento se ubica aproximadamente a 137 m de la casa de máquinas de la central, en las coordenadas geográficas: 0°27′15.41" de latitud Sur y 78°21′50.35" de longitud Oeste. Figura 2.23 y Figura 2.24.

Figura 2.23. Emplazamiento asociado a la central hidroeléctrica El Carmen

Fuente: Google Earth

Figura 2.24. Vista del emplazamiento

Fuente: Google Earth

• Central Hidroeléctrica Recuperadora

La Central hidroeléctrica Recuperadora se encuentra ubicada a 40 Km aproximadamente al sureste de la ciudad de Quito, en la parroquia Pifo, cantón Quito, sector Paluguillo.

En la Figura 2.25, se puede observar la ubicación geográfica de la central.

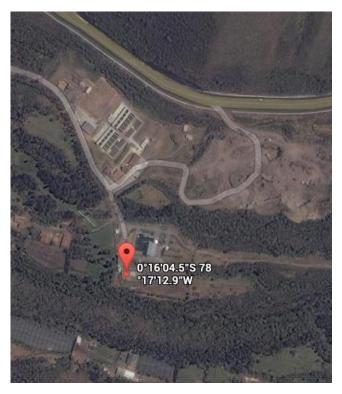


Figura 2.25. Ubicación geográfica. Central Hidroeléctrica Recuperadora

Fuente: Google Earth

La central hidroeléctrica Recuperadora, llamada así porque aprovecha el recurso hidráulico bombeado desde Papallacta y recupera la energía utilizada en el sistema de impulsión, se ubica entre las primeras centrales del país en la categoría de "buena gestión", de acuerdo con la última evaluación realizada por el CONELEC [12].

En la Figura 2.26 se puede observar la casa de máquinas de la central hidroeléctrica Recuperadora.

Figura 2.26. Casa de Máquinas, Central Recuperadora

Fuente: [Propio del autor]

Emplazamiento Asociado

En el Emplazamiento se ubica aproximadamente a 660 m de la casa de máquinas de la central, en las coordenadas geográficas: 0°16′22.64" de latitud Sur y 78°17′23.85" de longitud Oeste. Figura 2.27 y Figura 2.28.

Figura 2.27. Emplazamiento asociado a la central hidroeléctrica Recuperadora

Fuente: Google Earth

Figura 2.28. Vista del emplazamiento

Fuente: Google Earth

2.2 Cuantificación del potencial eólico en los emplazamientos asociados a las Pequeñas Centrales Hidroeléctricas conectas al Sistema Nacional Interconectado (S.N.I).

El potencial eólico se obtiene a partir de datos de velocidad y dirección del viento de estaciones de medición que cuentan con los equipos necesarios para proporcionar esta información.

En el caso de estudio se ha seleccionado tres emplazamientos asociados a las pequeñas centrales hidroeléctricas, debido a no contar con estaciones de medición cercanas a las pequeñas centrales hidroeléctricas antes mencionadas en el literal 2.1.

Para obtener los datos de viento se emplearan las páginas de la Secretaría de Ambiente y la NASA.

• Página de la Secretaria de Ambiente

La Secretaria de Ambiente cuenta con 9 estaciones climatológicas ubicadas a lo largo del DMQ, mediante las cuales se obtiene datos de velocidad y dirección del viento, temperatura media, entre otras [15].

Esta información mencionada se encuentra en resolución diez minutal, diaria, horaria, semihoraria y octohoraria con su respectivo reporte gráfico.

Las estaciones climatológicas disponibles son: Cotocollao, Carapungo, Belisario, Jipijapa, El Camal, Centro, Guamaní, Tumbaco y Los Chillos.

En la Figura 2.29, se puede observar la página de la Secretaría de Ambiente con sus respectivas opciones de búsqueda.

Figura 2.29. Página Secretaría de Ambiente

Fuente: http://190.152.144.75/reportes/Reporte10MinutosData.aspx

Para el caso de estudio se ha seleccionado las estaciones climatológicas Tumbaco y Los Chillos, por ser las más cercanas a la ubicación de los emplazamientos de las centrales hidroeléctricas Cumbayá y Los Chillos respectivamente.

En la Tabla 2.2, se describe las dos estaciones climatológicas seleccionadas con su respectiva ubicación [15].

Estación	Ubicación							
Nombre	Latitud (λ)	Longitud (L)	Altura (m.s.n.m)					
Tumbaco	-0.21	-78.40	2,331					
Los Chillos	-0.30	-78.46	2,453					

Tabla 2.2. Ubicación geográfica-Estaciones Climatológicas Tumbaco y Los Chillos

Fuente: Secretaría del Ambiente

• Página WEB de la NASA

La NASA, mediante el programa de investigación en ciencias de la Tierra apoya a los estudios realizados mediante satélite que proporcionan datos para el estudio de procesos climáticos.

Para obtener información de la página de la NASA, es necesario ingresar las

coordenadas geográficas (latitud y longitud), del emplazamiento a realizar el estudio. Esta página proporciona datos de velocidad del viento a 10 m, temperatura media del aire a 2 m, humedad relativa del aire a 2 m, entre otras, a partir del año 1983 a la actualidad con una resolución diaria.

La información obtenida de esta página tiene una cobertura de 1° de latitud por 1° de longitud de la red.

En la Figura 2.30, se presenta la pantalla de consulta de la NASA.

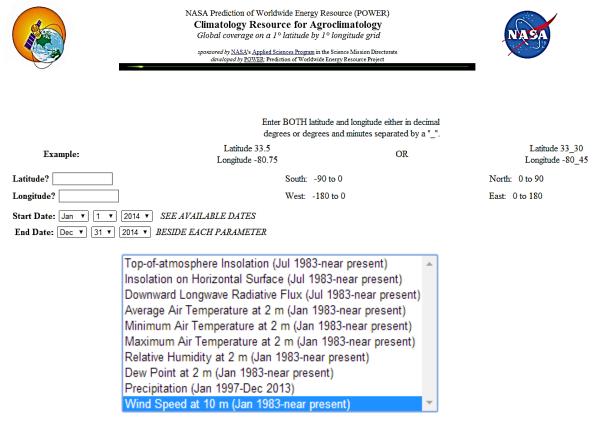


Figura 2.30. Página de la NASA

Fuente:http://power.larc.nasa.gov/cgibin/cgiwrap/solar/agro.cgi?&ms=1&p=&lat=&me=12&submit= Reajustar&ds=1&email=agro@larc.nasa.gov&lon=&de=31&ys=2014&step=1&ye=2014

Para el emplazamiento de la central hidroeléctrica Guangopolo se emplearan datos de la página NASA descrita a continuación:

http://power.larc.nasa.gov/cgi-

bin/cgiwrap/solar/agro.cgi?&ms=1&p=&lat=&me=12&submit=Reajustar&ds=1&email =agro@larc.nasa.gov&lon=&de=31&ys=2014&step=1&ye=2014

Potencial Eólico del emplazamiento asociado a la Central Hidroeléctrica Cumbayá.

En la Tabla 2.3, se presenta un promedio mensual de la velocidad del viento tomados de la Estación Tumbaco a partir de octubre del 2013 a septiembre del 2014.

Mes /Año	Promedio Mensual
oct-13	1.53
nov-13	1.47
dic-13	1.67
ene-14	1.59
feb-14	1.70
mar-14	1.36
abr-14	1.46
may-14	1.48
jun-14	1.69
jul-14	2.28
ago-14	1.15
sep-14	1.87
Promedio Anual	1.69

Tabla 2.3. Promedio mensual de la velocidad del viento (m/s)-Estación Tumbaco

Fuente: http://190.152.144.75/reportes/Reporte10MinutosData.aspx

Potencial Eólico del emplazamiento asociado a la Central Hidroeléctrica Los Chillos.

En la Tabla 2.4, se presenta un promedio mensual de la velocidad del viento tomado de la Estación Los Chillos a partir de octubre del 2013 a septiembre del 2014.

Mes/Año	Promedio Mensual
oct-13	1.72
nov-13	1.80
dic-13	1.86
ene-14	1.74
feb-14	1.73
mar-14	1.57
abr-14	1.68
may-14	1.60
jun-14	1.91
jul-14	2.09
ago-14	2.15
sep-14	1.91
Promedio Anual	1.81

Tabla 2.4. Promedio mensual de la velocidad del viento (m/s)-Estación Los Chillos

Fuente: http://190.152.144.75/reportes/Reporte10MinutosData.aspx

• Potencial Eólico del emplazamiento asociado a la Central Hidroeléctrica Guangopolo.

En la Tabla 2.5, se presenta un promedio mensual de la velocidad del viento tomado de la página de la NASA a partir de octubre del 2013 a septiembre del 2014.

Mes/Año	Promedio Mensual
oct-13	2.70
nov-13	2.26
dic-13	2.50
ene-14	2.36
feb-14	2.31
mar-14	2.25
abr-14	2.50
may-14	2.22
jun-14	3.37
jul-14	3.85
ago-14	4.48
sep-14	3.04
Promedio Anual	2.74

Tabla 2.5. Promedio mensual de la velocidad del viento (m/s)-Página La NASA

Fuente: http://190.152.144.75/reportes/Reporte10MinutosData.aspx

Análisis de datos de viento correspondiente a emplazamientos asociados

A continuación se presentará un análisis de los datos de viento correspondiente a los emplazamientos con el objetivo de determinar si los datos de viento obtenidos son viables para realizar el proyecto de hibridación.

Estación Tumbaco

De los datos obtenidos de un año con resolución diez minutal de la estación Tumbaco, se presentará un histograma, en el cual se observa en que porcentaje se encuentran los datos en determinada clase.

ESTACIÓN TUMBACO 16000 120,00% 14000 100,00% 12000 80,00% Frecuencia 10000 Frecuencia 8000 60,00% % acumulado 6000 40,00% 4000 20,00% 2000 0 0,00% Clase

Figura 2.31. Histograma-Estación Tumbaco

Fuente: [Propio del autor]

En la Figura 2.31, se puede observar la clase, que representa el rango en el cual se encuentran los datos de la velocidad del viento obtenidos durante un año a cada 10 minutos.

La frecuencia describe el número de datos que se encuentran entre cada rango de las diversas clases, también se lo representa en porcentaje.

En la Tabla 2.6, se puede observar que el 84,1% de los datos corresponden a valores entre 0 y 3 [m/s], y el 15,1% corresponden a valores entre 3 y 9 [m/s].

VELOCIDAD	FRECUENCIA (10	PORCENTAJE
(m/s)	minutos)	(%)
0	10	0.0%
0.5	4,418	8.4%
1	14,263	35.6%
1.5	12,916	60.1%
2	6,422	72.4%
2.5	3,449	78.9%
3	2,703	84.1%
3.5	2,530	88.9%
4	2,121	92.9%
4.5	1,590	95.9%
5	1,021	97.9%
5.5	552	98.9%
6	303	99.5%
6.5	161	99.8%
7	66	99.9%
7.5	25	100.0%
8	7	100.0%
8.5	1	100.0%
9	1	100.0%
Total	52,559	100.0%

Tabla 2.6. Porcentaje acumulado de datos de viento-Estación Tumbaco

Fuente: [Propio del autor]

Estación Los Chillos

De los datos obtenidos de un año con resolución diez minutal de la estación Los Chillos, en la Figura 2.32 y Tabla 2.7, se verifica que el 78.34% de los datos de la velocidad del viento son menores a 3 [m/s]. Un 21.66% de datos se encuentran entre 3 y 9 [m/s].

ESTACIÓN LOS CHILLOS

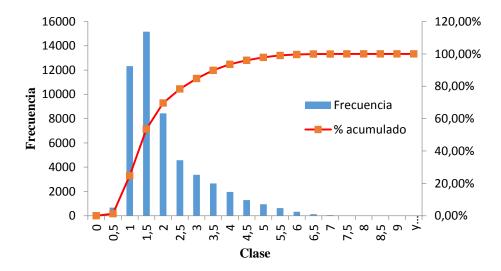


Figura 2.32. Histograma-Estación Los Chillos

Fuente: [Propio del autor]

VELOCIDAD (m/s)	FRECUENCIA (10 minutos)	PORCENTAJE (%)
0	2	0.0%
0.5	667	1.3%
1	12,328	24.7%
1.5	15,161	53.6%
2	8,440	69.6%
2.5	4,578	78.3%
3	3,379	84.8%
3.5	2,667	89.8%
4	1,967	93.6%
4.5	1,293	96.0%
5	943	97.8%
5.5	624	99.0%
6	320	99.6%
6.5	123	99.9%
7	49	99.966%
7.5	11	99.987%
8	6	99.998%
8.5	0	99.998%
9	1	100.000%
Total	52,559	100.000%

Tabla 2.7. Porcentaje acumulado de datos de viento-Estación Los Chillos

Fuente: [Propio del autor]

Página WEB La NASA

De los datos obtenidos de un año con resolución diaria de la página WEB de la NASA, en la Figura 2.33 y Tabla 2.8, se observa que el 51.78% de los datos de la velocidad del viento son menores a 3 [m/s]. Un 48.22% de datos se encuentran entre 3 y 5.5 [m/s].

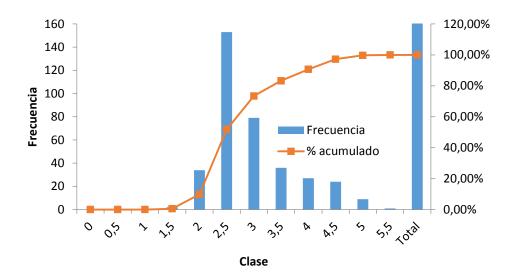


Figura 2.33. Histograma-La NASA

Fuente: [Propio del autor]

VELOCIDAD	FRECUENCIA	PORCENTAJE
(m/s)	(día)	(%)
0	0	0.0%
0.5	0	0.0%
1	0	0.0%
1.5	2	0.5%
2	34	9.9%
2.5	153	51.8%
3	79	73.4%
3.5	36	83.3%
4	27	90.7%
4.5	24	97.3%
5	9	99.7%
5.5	1	100.0%
Total	365	100.0%

Tabla 2.8. Porcentaje acumulado de datos de viento-La NASA

Fuente: [Propio del autor]

Conclusiones sobre la campaña de recolección de datos

De acuerdo al análisis realizado mediante histogramas para las tres opciones de emplazamiento, se concluye que la velocidad del viento de los emplazamientos estudiados se encuentra por debajo de los 3 [m/s] un gran porcentaje de tiempo, resultando esta característica en una restricción bloqueante para el desarrollo de un parque eólico técnica y económicamente viable tal que pueda aportar con potencias significativas a las diferentes centrales.

Esta limitación obliga a que en el desarrollo de este trabajo se considere una serie de vientos obtenida de una instalación de medición ubicada en un emplazamiento que posee recurso eólico favorable. Se considera que adoptar esta decisión se enmarca en el alcance de la tesis y permite aplicar la metodología propuesta para la implementación de la central reversible.

Para tal efecto se ha considerado mediciones realizadas en una torre de medición similar a la que se muestra en la Figura 2.34 :

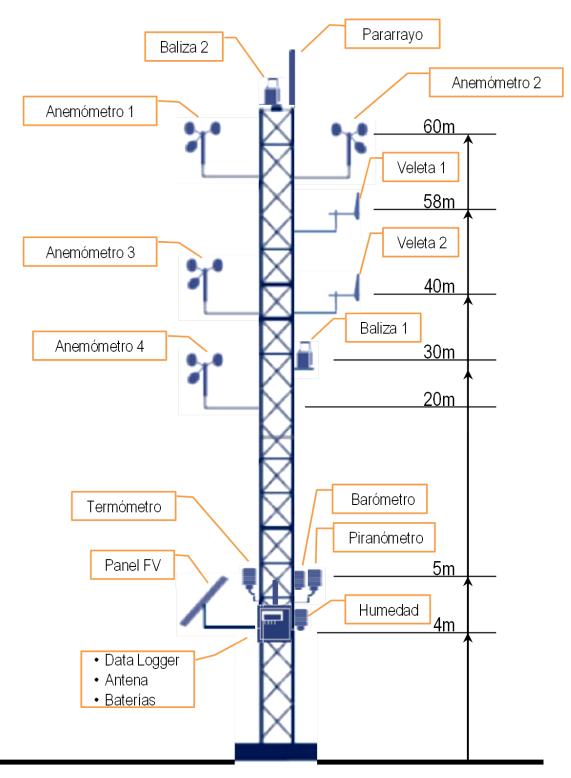


Figura 2.34. Torre de medición

Fuente: Diseño de un Parque Eólico en la Plataforma de Caraburo de la Parroquia de Tababela.

Los datos fueron medidos con los equipos descritos en la Tabla 2.9:

Equipo	Altura (m)	Unidad	Descripción	Observaciones
Anemómetro 1	60	m/s	NRG # 40	Precisión: 0.2 m/s para el rango de 5 a 25 m/s. Velocidad Mínima: 0.7 m/s Método de Operación: AC generador
Anemómetro 2	60	m/s	•	Señal: Onda sinual Según los resultados del Proyecto CUPCLASS y ACCUWIND, el
Anemómetro 3	40	m/s	NRG Maximum 40 (NRG)	anemómetro NRG es el más apropiado para uso en terrenos planos.
Anemómetro 4	20	m/s		
Veleta 1	58	deg	#200P	
Veleta 2	40	deg	#200P	
Baliza 1	30			
Baliza 2	80			
Pararrayo	80			
Termómetro	5	C	NRG #110S	
Piranómetro	5	W/m2	Licor Pyran	
Barómetro	5	mb	BP-20	
Panel FV	4			
Hum. Relativa	4	%RH	RH-5	
Data Logger	4		NRG SYMPHONIE	 El data logger SYMPHONIE (Plus) de la empresa NRG SYSTEMS de EE.UU. es una de los más vendidos mundialmente. Viene con 9 entradas digitales y 6 análogas - parte de ellas son configurables por tarjetas SCM a diferentes sensores anemómetros digitales, piranómetros, barómetros etc. Graba los datos en una tarjeta MMC/SD Comprando adicionalmente "iPacks" se puede utilizar IRIDIUM, GPRS, PV Muy bajo consumo Pantalla de 4 líneas Voltaje de operación: 3V (2x1.5 V,
Antena	4			Pilas D)

Tabla 2.9. Características de la torre de medición

Fuente: Diseño de un Parque Eólico en la Plataforma de Caraburo de la Parroquia de Tababela.

Este equipamiento permite determinar las siguientes magnitudes:

- Velocidad promedio (m/s): un dato promedio cada 10 minutos.
- Desviación estándar de la velocidad del viento (m/s): un dato cada 10 minutos.
- Dirección del viento: un dato promedio cada 10 minutos, por lo menos en dos alturas: entre 1.5 y 5 m por debajo del anemómetro.
- Velocidades máximas y mínima del viento: en cada intervalo de 10 minutos.
- Temperatura ambiente (C): un dato promedio cada 10 minutos, por lo menos en dos alturas, entre 1.5m y 8m por debajo del anemómetro. Las mediciones deben ser confiables hasta la décima de (C).
- Presión atmosférica (Pa): un dato promedio cada 10 minutos.

Los datos obtenidos se resumen en la Tabla 2.10:

Promedio / Mes	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Viento (m/s)	4,44	4,25	3,94	3,34	3,13	3,43	3,71	3,62	4,92	4,34	4,80	4,74
Viento Máx. (m/s)						14	4,2					
Dirección Viento (grados)	212	207	207	196	188	182	169	195	197	205	204	203
Temperatura (°C)	17,05	17,07	16,41	17,26	16,89	17,12	17,61	16,99	16,54	16,41	16,43	16,99
Radiación Solar (W/m2)	231,95	246,80	181,72	111,32	89,33	93,75	127,41	132,35	198,64	207,33	246,68	241,70
Densidad del Aire (kg/m3)	0,92	0,92	0,93	0,92	0,92	0,92	0,92	0,92	0,93	0,93	0,93	0,92

Tabla 2.10. Resumen de datos Meteorológicos

Fuente: [Propio del autor]

2.3 Determinación de la complementariedad eólica-hidroeléctrica y priorización de emplazamientos.

El análisis de la complementariedad entre la energía eólica e hidroeléctrica permitirá determinar si una forma de energía coexiste al mismo tiempo con la otra o si por el contrario la una está presente cuando la otra escasea. De esta manera se pueden determinar estrategias de operación de ambas instalaciones de forma de aprovechar ambos recursos de la mejor manera. Por ejemplo, si la central hidroeléctrica se encuentra generando a su potencia nominal o a un valor cercano a ésta se entiende que tendría caudal suficiente, por lo cual sería innecesario bombear el agua una vez turbinada hacia el embalse superior si es que ésta no puede ser almacenada.

La central hidroeléctrica puede disminuir la producción de energía debido a muchos factores entre ellos el escaso caudal en el embalse o labores de mantenimiento.

Con el objetivo de compensar el bajo caudal en el embalse se empleará energía eólica, la cual accionará un grupo de bombas que trasladará el agua una vez turbinada hacia el embalse en un proceso continuo mientras exista recurso eólico.

Para determinar la complementariedad eólica-hidroeléctrica se emplearán datos reales de velocidad del viento de los emplazamientos [m/s] y la energía generada diaria de cada central [MWh] con la ayuda del coeficiente de correlación.

• Coeficiente de Correlación (r)

El coeficiente de correlación es un índice que se puede utilizar para medir el grado de relación entre dos variables siempre y cuando ambas sean cuantitativas. Este coeficiente es independiente de la escala de medida de las variables [16].

El valor del índice de correlación (r) varía en el intervalo [-1,1]:

Si r = 1, existe una correlación positiva perfecta. El índice indica una dependencia total entre las dos variables denominada relación directa: cuando una de ellas aumenta, la otra también lo hace en proporción constante.

Si 0 < r < 1, existe una correlación positiva.

Si r = 0, no existe relación lineal. Pero esto no necesariamente implica que las variables son independientes: pueden existir todavía relaciones no lineales entre las dos variables.

Si -1 < r < 0, existe una correlación negativa.

Si r = -1, existe una correlación negativa perfecta. El índice indica una dependencia total entre las dos variables llamada relación inversa: cuando una de ellas aumenta, la otra disminuye en proporción constante.

De manera explicativa en la Figura 2.35, se puede observar la curva de la velocidad del viento y la producción de energía en el mes de noviembre del 2014.

Se puede apreciar que existe una complementariedad entre ambas variables, mientras algunos valores de energía son altos, los valores de velocidad del viento son bajos o viceversa en el mismo día.

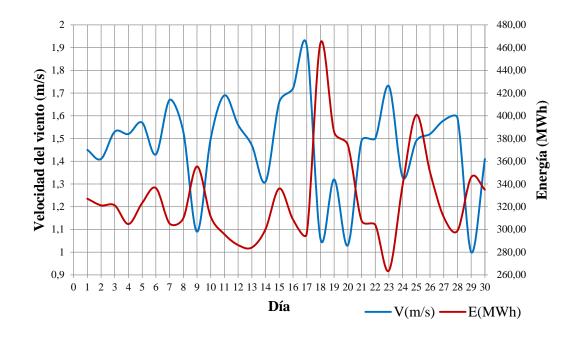


Figura 2.35. Complementariedad eólica-hidroeléctrica del mes de noviembre del 2013

Fuente: [Propio del autor]

En el Anexo 1, se muestra la complementariedad eólica-hidroeléctrica diaria de los 12 meses del año desde octubre del 2013 de las centrales Cumbayá, Guangopolo y Los Chillos.

En la Tabla 2.11, se presenta los resultados del coeficiente de correlación mensual entre las variables de la velocidad del viento y producción de energía de cada central durante un año.

Man	Factor de Correlación						
Mes	C.H. Cumbayá	C.H. Guangopolo	C.H. Los Chillos				
oct-13	-0.4024	-0.4582	-0.3709				
nov-13	-0.6436	-0.2812	-0.0909				
dic-13	-0.3514	-0.2886	0.1061				
ene-14	-0.4002	-0.3097	-0.5738				
feb-14	-0.3146	-0.0786	0.1549				
mar-14	-0.3135	0.2507	0.0215				
abr-14	-0.1462	-0.1664	-0.4126				
may-14	-0.1353	0.1881	0.0238				
jun-14	-0.1913	-0.164	0.1224				
jul-14	-0.2687	-0.0341	-0.0691				
ago-14	0.0455	0.1833	0.5881				
sep-14	-0.5296	-0.3963	-0.5866				
Valor Max.	0.0455	0.2507	0.5881				
Valor Min.	-0.6436	-0.4582	-0.5866				
Coeficiente de correlación	-0.4692	-0.3366	0.0241				

Tabla 2.11. Coeficiente de correlación-Centrales Cumbayá, Guangopolo y los Chillos

Fuente: [Propio del autor]

De los resultados obtenidos en la Tabla 2.11, se puede observar que la central Cumbayá presenta el mejor valor de coeficiente de correlación al ser un valor negativo y el más cercano a -1 lo cual indica una relación inversa, mientras una variable aumenta, la otra disminuye, lo cual constituye una señal favorable para la hibridación de esta central.

• Priorización de emplazamientos

La selección de la pequeña central hidroeléctrica y el emplazamiento, se basa en cuatro datos importantes descritos a continuación:

Distancia de la central al emplazamiento (m): el emplazamiento debe ubicarse lo más cercano a la central con el objetivo de evitar pérdidas por larga distancia.

Complementariedad eólica-hidroeléctrica: mediante el coeficiente de correlación obtenemos un valor que nos representa la relación entre ambas variables.

Velocidad del viento (m/s): este dato es muy importante, de este depende la

producción de energía necesaria para alimentar las bombas.

Factor de rugosidad: este valor está tabulado en función del tipo de terreno. Tabla 2.12.

Tipo de Terreno	α
Terrenos llanos con hielo o hierba	0.008 - 0.12
Llanos (mar, costas suaves)	0.14
Terrenos poco accidentados	0.13 - 0.16
Zonas Rurales	0.2
Terrenos accidentados y bosques	0.2 - 0.26
Terrenos muy accidentados y ciudades	0.25 - 0.4

Tabla 2.12. Valores de α en función del tipo del terreno

Fuente: Ingeniería de la Energía Eólica, Villarrubia 2012.

A continuación se resume los datos más relevantes previos a la elección de la pequeña central hidroeléctrica a desarrollar el estudio. Tabla 2.13.

Central Hidroeléctrica	Distancia de la central al emplazamiento (m)	Coeficiente de correlación	Promedio de viento anual	Orografía (Factor de rugosidad)
Cumbayá	165	-0,4692	1,69	0,2
Guangopolo	250	-0,3366	2,73	0,2
Los Chillos	195	0,0241	1,81	0,2

Tabla 2.13. Datos relevantes para determinar la pequeña central de estudio

Fuente: [Propio del autor]

Del análisis precedente se concluye que la central Cumbayá es el emplazamiento que mejores características presenta para implementar la hibridación con la central eólica y de aquí en adelante el estudio se centrará en esta.

2.4 Descripción general de la Pequeña Central Hidroeléctrica Reversible (PCHR) a desarrollar.

• Central Hidroeléctrica Cumbayá

La construcción de la central se efectuó en 1958 y se realizó en dos etapas. La primera etapa se realizó hasta 1961, se realizaron las obras comunes de ingeniería civil.

La segunda etapa, se concluyó en 1967, consistió en la construcción y montaje de una tubería de presión y la instalación de los equipos necesarios para 20MW adicionales, con dos turbinas, se incluye además en esta etapa una segunda línea de transmisión. La energía que produce la central es evacuada hacia la subestación de Tumbaco y a las subestaciones Norte 1 y Norte 2 en Quito. Figura 2.36 y Figura 2.37.

Figura 2.36. Casa de máquina-Central Cumbayá

Fuente: [Propio del autor]

Figura 2.37. Reservorio-Central Cumbayá

Fuente: [Propio del autor]

• Características principales de la central Cumbayá.

En la Tabla 2.14, se presenta las características más relevantes de la Central Hidroeléctrica Cumbayá.

Captación	Tanque de presión
Río de Captación: Río San Pedro	Tipo de sección: trapezoidal
Cota de Captación: 2882 msnm	Rejilla: con desbasurador manual
Cota de Descarga: 2240 msnm	Número de compuertas: 2
	Dimenciones compuertas BxH: 3,65x3,14
Turbinas	Conducción
Tipo: Francis/horizontal	Tipo: túnel y canal
Numero de unidades:4	Sección: herradura
Potencia de cada una: 10 MW	Longitud: 8707,05 m
Caudal de diseño por unidad: 9 m3/s	Caudal de diseño: 21 m3/s
Caída de diseño: 133 m	Diámetro interior: 3,5 m
Velocidad de rotación de c/u: 514 rpm	Sección del canal: trapezoidal
	Longitud del canal: 162 m
Tuberia de presión	Chimene de equilibrio
Tipo: superficial, hormigon/blindada	Tipo: torre de hormigón armado
Número:2	Número: 2
Longitud: 309,11 m	Altura: 30 m
Diámetro: 2,44 m	Diámetro interno: 5 m
Generadores	Casa de máquinas
Número de unidades: 4	Tipo: superficial
Potencia cada unidad: 11,11 MVA	Dimenciones: BxLxH: 20x45x26 m
Obras de toma	Valvula de guardia
Tipo de captación: Azud de derivación	Tipo: mariposa
Compuertas tipo: Radiales	Numero: 4
Subestación Patio de maniobras	Línea de transmisión
Transformadores de potencia:	Longitud: 2,2, km
Trifásicos	Número de circuitos: 1
Potencia: 12500 MKVA	Voltaje: 46 KV
Relación de transformación: 4,16/46	

Tabla 2.14. Características principales de la Central Hidroeléctrica Cumbayá.

Fuente: Generación de un Catálogo de las Centrales Hidroeléctricas del Ecuador mediante una herramienta SIG

CAPÍTULO III

En el presente capítulo tratará acerca de los elementos de diseño que intervienen en el desarrollo de la pequeña central hidroeléctrica reversible (PCHR), se abordara los elementos de diseño del circuito hidráulico, de la instalación Eolo eléctrico y del circuito eléctrico.

3 ELEMENTOS DE DISEÑO

3.1 Elementos de diseño del circuito hidráulico asociado a la PCHR.

Como elemento principal en el diseño del circuito hidráulico está la bomba, este elemento tiene el trabajo de transportar el agua una vez turbinada por la central hacia el embalse.

• Selección de la bomba hidráulica

Para la selección de la bomba hidráulica es importante contar con datos como el caudal de bombeo, el tiempo de trabajo de la bomba y la altura.

• Centro de bombeo

El centro de bombeo estará instalado a la salida de la casa de máquinas, en el canal de descarga, donde se concentra el agua una vez turbinada por la central hidráulica. Figura 3.1.

Figura 3.1. Canal de descarga-Central Cumbayá.

Fuente: [Propio del autor]

De acuerdo a los requerimientos, se ha seleccionado dos tipos de bombas de la serie UGP de la familia INDAR SP.

La selección de este tipo de bomba ha sido debido a su capacidad de bombeo en m3/s, su nivel de potencia y voltaje.

En la Tabla 3.1, se presenta las características referidas por el fabricante de la bomba UGP- 2325-03.

Prestaciones	Rangos	
Serie	UGP-2325-03	
Caudal	0,5 m3/s - 1800 m3/h	
Altura	107 m	
Potencia	628 KW / 842 HP	
Tensión	220 V - 11 KV	
Velocidad	1750 rpm	
Materiales	Hierro, bronce, inoxidble (304, 316, 904L,	
Materiales	duplex, súper dúplex	
	Vertical, vertical con camisa, horizontal con	
Tipo de instalación	camisa, inclinada e invertida	

Tabla 3.1. *Bomba INDAR SP UGP- 2325-03.*

Fuente: http://www.indarpumpselectionprogram.com/ofertas/oferta.asp?idioma=0&tipo=UGP

En la Figura 3.2, se presentan las curvas características de la bomba UGP-2325-03.

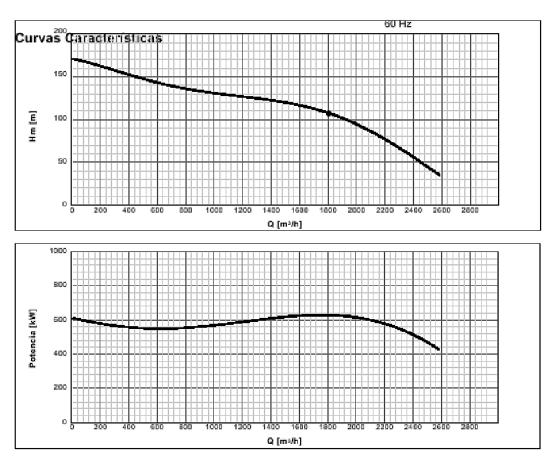
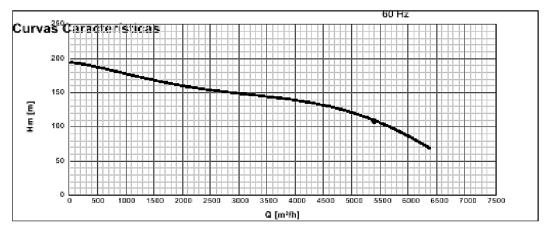


Figura 3.2. Curvas características – Bomba serie UGP-2325-03.

Fuente: http://www.indarpumpselectionprogram.com/ofertas_codigo/pdfs/UGP/pump173897.jpg


En la Tabla 3.2, se presenta las características referidas por el fabricante de la bomba UGP- 3925-03.

Prestaciones	Rangos
Serie	UGP-3925-03
Caudal	1,5 m3/s - 5400 m3/h
Altura	107 m
Potencia	1886 KW / 2527 HP
Tensión	220 V - 11 KV
Velocidad	1160 rpm
Materiales	Hierro, bronce, inoxidble (304, 316, 904L,
Materiales	duplex, súper dúplex
	Vertical, vertical con camisa, horizontal con
Tipo de instalación	camisa, inclinada e invertida

Tabla 3.2. *Bomba INDAR SP UGP-3925-03.*

 $\textbf{Fuente:} \ \textit{http://www.indarpumpselectionprogram.com/ofertas/oferta.asp?idioma=0\&tipo=UGP \\ \textbf{Comparison} \ \textit{for the property of the pro$

En la Figura 3.3, se presentan las curvas características de la bomba UGP-3925-03.

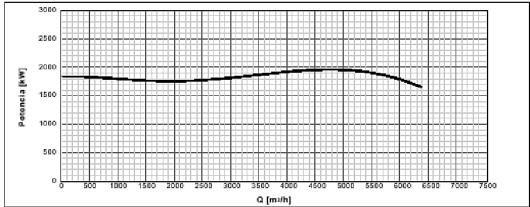


Figura 3.3. Curvas características – Bomba serie UGP-3925-03.

Fuente: http://www.indarpumpselectionprogram.com/ofertas_codigo/pdfs/UGP/pump173929.jpg

A continuación en la Figura 3.4, se puede observar un esquema de las bombas serie UGP de la familia INDAR SP.

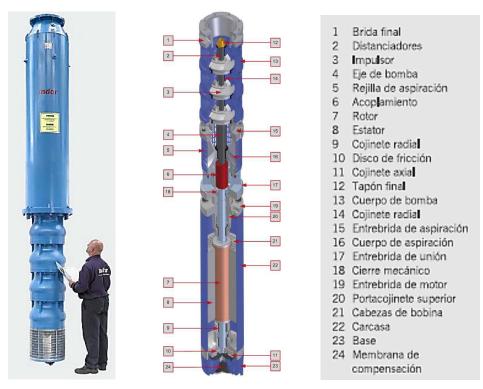


Figura 3.4. Bomba INDAR SP UGP.

Fuente: INDAR, SBP18__Ficha INDAR SP UGP.

Entre las principales aplicaciones de la serie INDAR SP UGP se tiene: bombeo de agua desde acuíferos subterráneos, captación de agua de río, bombeo desde depósitos, bombeo desde ríos o presas artificiales, bombeo de agua de mar para servicio contra incendio, bombeo de agua de mar para servicios secundarios, etc.[17]

• Tiempo de trabajo de las Bombas hidráulicas

De acuerdo a la potencia eólica disponible, se puede decidir cual de los dos tipo de bombas se puede poner en operación y de esta manera determinar el tiempo que opera cada bomba . En la Tabla 4.4 se observa la disposición de operación de los dos tipos de bombas seleccionadas, por ejemplo una bomba de 1.886 kW (1B), opera en forma continua 276 horas en el mes de enero, mientras que una bomba de 625 kW (1A), opera 333 horas en el mismo mes.

3.2 Elementos de diseño de la instalación eoloeléctrico.

Aerogeneradores

La potencia teórica contenida en el viento es proporcional al cubo de su velocidad (V), a la densidad del aire ρ (en condiciones atmosféricas estándar de 15°C y 1010 mBar es 1.225 kg/m3) y al área de exposición (A), Ecuación 3.1.[18]

$$Potencia = 0.5 \,\rho \,A \,V^3 \tag{3.1}$$

Un Aerogenerador es una turbina que transforma la energía cinética del viento en energía eléctrica a través de un generador. Existen dos tipos de aerogeneradores: de eje horizontal (2,3 o más palas) y eje vertical (2 y 3 palas). El viento mueve las palas de la hélice que transmite el movimiento a través de un eje, hasta una caja de engranes. Allí, la velocidad de giro del eje se regula para garantizar la mayor producción energética, ya que desde la caja de engranajes el movimiento se transmite hasta el generador, el cual produce electricidad.[18]

• Ley de Betz

Cuando un aerogenerador extrae del viento la mayor cantidad de energía, la ralentización que sufre el viento que deja el aerogenerador es mayor, Figura 3.5.[19]

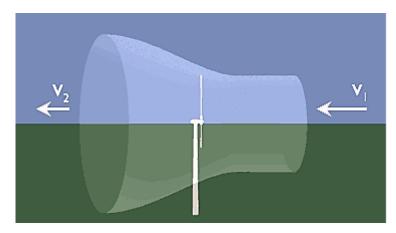


Figura 3.5. Flujo de aire que atraviesa el rotor de un aerogenerador.

Fuente: http://ingenieroandreotti.blogspot.com/2013/08/ley-de-betz.html

Si fuese posible extraer toda la energía del viento, el aire saldría con una velocidad nula, es decir, el aire no podría abandonar la turbina. En este caso no sería posible extraer ninguna energía, ya que tampoco entraría aire en el rotor del aerogenerador. En otro caso extremo, el viento podría pasar a través del rotor sin impedimento. En este caso, tampoco será posible extraer energía del viento.

Del total de la potencia contenida en el viento, el máximo que puede ser aprovechado es el 59%, límite que se conoce como el "límite de Betz".[19]

• Altura del emplazamiento y densidad del aire

Para obtener la densidad del aire se requiere de la temperatura (t) y altura (H) del emplazamiento. Para obtener datos de la temperatura mensual del emplazamiento se empleó la página de la Secretaría del Ambiente y para determinar la altura la aplicación Google Earth.

Se calcula la densidad del aire mediante la ecuación (3.2):

$$\rho = 1.225 \left[\frac{288}{t + 273} \right] e^{-\left(\frac{H}{8435} \right)}$$
 (3.2)

En la Tabla 3.3, se presentan los datos de la densidad del aire con una resolución mensual.

Mes	Temperatura (°C)	Densidad del aire
nov-13	16,43	0,926
dic-13	16,99	0,924
ene-14	17,05	0,924
feb-14	17,07	0,923
mar-14	16,41	0,926
abr-14	17,26	0,923
may-14	16,89	0,924
jun-14	17,12	0,923
jul-14	17,61	0,922
ago-14	16,99	0,924
sep-14	16,54	0,925
oct-14	16,41	0,926
Prom.	16,90	0,924

Tabla 3.3. *Densidad del aire mensual del emplazamiento.*

Fuente: [Propio del autor]

• Disposición de los Aerogeneradores

En esta fase de debe optimizar la disposición de los aerogeneradores para el aprovechamiento de la superficie disponible del parque. Los aerogeneradores deben separarse entre sí una distancia que impida la influencia entre ellos mismos de las sombras eólicas o de las turbulencias que generan (efecto estela) y disminuirán la producción del parque. Por otra parte conviene que los aerogeneradores estén próximos entre sí para optimizar la superficie disponible y minimizar los costos de la red eléctrica al interior del parque así como las pérdidas de energía en dicha red.[18]

En la distribución del parque y separación de los aerogeneradores deben tenerse en cuenta el régimen de vientos, la topografía del terreno, la superficie disponible y el tipo de aerogenerador a instalar.

En superficies donde es factible la colocación de varias filas de aerogeneradores, generalmente se colocan en "tresbolillo", como se muestra en la Figura 3.6.

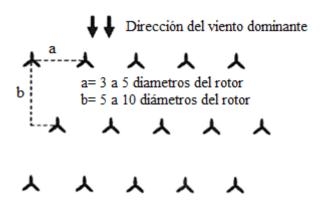


Figura 3.6. Disposición Típica "tresbolillo"

Fuente: Diseño de un Parque Eólico en la Plataforma de Caraburo de la Parroquia de Tababela.

Se debe tener en cuenta que un aerogenerador genera aguas debajo de su rotor una estela que puede producir interferencias con otras máquinas próximas. Este efecto puede ser importante si no se proyecta el parque eólico de forma que la ubicación y separación entre aerogeneradores sea tal que minimice este efecto.[20]

A más de las pérdidas de energía, dado que el nivel de turbulencia en una estela es mayor que en el viento libre, aumentan las cargas variables sobre las máquinas situadas a sotavento de la generación de estelas, ocasionándose que la vida útil de estos aerogeneradores se acorte por la fatiga de materiales.[20]

En la Figura 3.7, se presenta otra disposición de separación entre aerogeneradores.

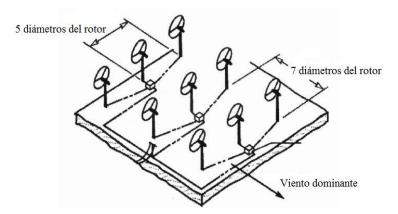


Figura 3.7. Separación entre aerogeneradores en el parque eólico.

Fuente: Ingeniería de la Energía Eólica

Dependiendo de las circunstancias del terreno disponible se tomarán decisiones con el objetivo de optimizar el uso de la superficie disponible procurando atender siempre las reglas básicas de disposición de los aerogeneradores con el fin de evitar el efecto estela.

• Dirección del viento

Para mostrar la dirección del viento se utilizará la rosa de los vientos, que es un diagrama polar que permite representar las direcciones dominantes de los vientos. En general, no coincide la dirección dominante con la mayor intensidad del viento ya que en muchos casos los vientos más intensos no son los que soplan más horas al año procedentes de una determinada dirección. Este aspecto es muy importante en la colocación de los aerogeneradores.

En la Figura 3.8, se representa la rosa de los vientos mensual en el emplazamiento.

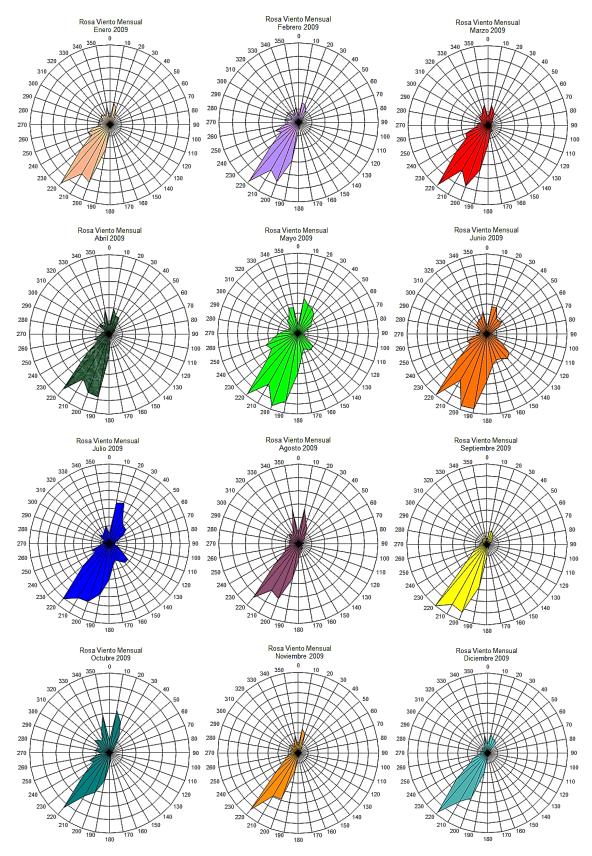


Figura 3.8. Rosa de los vientos mensual

Fuente: [Propio del autor]

Mediante el análisis de la rosa de los vientos mensual se puede concluir que el viento muestra una dirección predominante entre el sur-oeste y el sur-sur-oeste, es decir entre los 220° y los 190°.

En la Figura 3.9, se puede observar la rosa de vientos anual, dominantes durante el año.

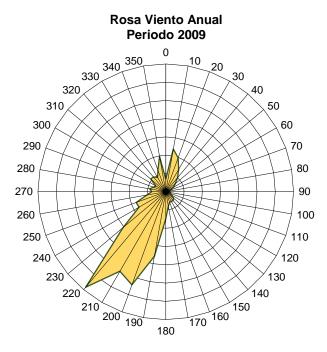


Figura 3.9. Rosa de los vientos anual

Fuente: [Propio del autor]

En la Tabla 3.4, se determina una dirección representativa del viento en el emplazamiento, en la que se pondera la dirección del viento mensual promedio con la dirección dominante, obteniendo como resultado una dirección representativa de 198°, valor que será considerado al momento de realizar el diseño del parque eólico.

Mes	V (m/s)	° Deg
Ene	4,4	212
Feb	4,2	207
Mar	3,9	207
Abr	3,3	196
May	3,1	188
Jun	3,4	182
Jul	3,7	169
Ago	3,6	195
Sep	4,9	197
Oct	4,3	205
Nov	4,8	204
Dic	4,7	203
Dir. Pon	198	

Tabla 3.4. Determinación de la dirección predominante del viento

Fuente: [Propio del autor]

• Modelo del Aerogenerador

De acuerdo al recurso eólico disponible, el aerogenerador escogido para el trabajo es el AW-83/1500 del fabricante ACCIONA. Este modelo es muy versátil y permite trabajar a partir de un régimen de velocidades de viento muy bajas (3 m/s) consiguiendo una generación de energía importante.

Este modelo (clase IEC IIIb) permite satisfacer las condiciones de viento y turbulencia registrados en el emplazamiento y conforme a la norma IEC 61400-1, 2a edición, que define:

Clase	I	II	III	IV	S
Vref (m/s)	50	42,5	37,5	30	Valores a especificar por el diseñador
V (m/s)	10	8,5	7,5	6	Valores a especificar por el diseñador
A I15 (-)	0,18	0,18	0,18	0,18	Valores a especificar por el diseñador
a (-)	2	2	2	2	Valores a especificar por el diseñador
B I15 (-)	0,16	0,16	0,16	0,16	Valores a especificar por el diseñador
a (-)	2	2	2	2	Valores a especificar por el diseñador

Tabla 3.5. Tipos de clases-Aerogenerador AW-83/1500

Fuente: Norma IEC 61400-1

A continuación se presenta el esquema constructivo del aerogenerador AW-82/1500. Figura 3.10.

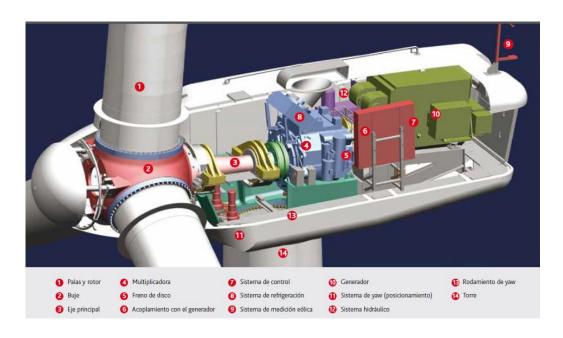


Figura 3.10. Esquema constructivo del aerogenerador AW-82/1500.

Fuente: http://www.acciona-energia.com/media/315810/AW1500_brochure.pdf

El AW-1500 es un aerogenerador de eje horizontal, con tres palas a barlovento, velocidad variable, potencia nominal de 1.500 kW, tensión nominal de 12 kV y disponible para la generación eléctrica en frecuencias de 50 o 60 Hz. Tabla 3.6.

Elemento	Descripción
Rotor	 Disponible en tres diámetros, adecuados para emplazamientos con diversas condiciones de viento: 82 metros (clase IEC IIIb). Altura de buje de 80m, con torre tubular de acero. Giro en sentido horario, con una inclinación (tilt) de 5°con respecto a la vertical. Buje en fundición nodular. Aloja los elementos que componen el sistema de pitch. Cuenta con un sistema hidráulico de bloqueo de palas en caso de parada de emergencia. Diseñado para un cómodo acceso al interior del buje.
Palas	 Fabricadas en fibra de vidrio reforzada con poliéster o resina epoxi y dotadas de un recubrimiento superficial de protección. Longitud de 40,0 m. Dotadas de sistema de pitch independiente, que permite variar el ángulo de paso de cada pala al girar sobre su eje longitudinal, lo que optimiza la regulación de la potencia generada con altos vientos y eleva la seguridad del sistema de frenado aerodinámico.
	 Carcasa fabricada en poliéster reforzado con fibra de vidrio. Interior espacioso con cómodo acceso al buje y a la parte superior. Grúa para elevación de materiales de hasta 250 kg. Doble bastidor de gran solidez que permite reducir las tensiones sobre el tren

Barquilla	 de potencia. Generador asíncrono trifásico de inducción, doblemente alimentado, de rotor devanado y excitación por anillos rozantes. Genera a media tensión (12kV), lo que reduce pérdidas y ahorra transformadores. Sistema de orientación (yaw) mediante corona dentada solidaria a la torre y cuatro motorreductoras solidarias a la barquilla.
Torre	Frenado activo hidráulico.
Torre	Troncocónica tubular de acero, compuesta de tres tramos con diseños específicamente concebidos para la altura del buje y clases de viento.
Sistema de engrase automático	Sistema de engrase automático del sistema de orientación, rodamientos del eje principal, rodamientos de las palas y rodamientos del generador (opcional.)
Unidad de Control y Potencia	Basada en el sistema INGECON-W, monitoriza y controla todas las funciones críticas del aerogenerador, para optimizar constantemente su funcionamiento en todo el rango de velocidades de viento.
Sistema de Monitoreo de Condición	Sistema de mantenimiento predictivo con sensores en la multiplicadora, rodamientos del eje principal y rodamientos del generador (Opcional).

Tabla 3.6. Características Generales del aerogenerador AW-82/1500

 $\textbf{Fuente: } \textit{http://www.acciona-energia.com/media/315810/AW1500_brochure.pdf.}$

En la Tabla 3.7, se presentan las características técnicas del aerogenerador AW-82/1500

	AW-82/1500	RODAMIENTOS EJE	
Diámetro de rotor	82 m	Tipo	Doble hilera rodillos es féricos
Clase de viento (IEC)	IEC IIIb	FRENO DE PARKING	
		Tipo	Disco con dos pinzas de freno
		Emplazamiento	Eje alta velocidad
DATOS DE FUNCIONAMIENTO		SISTEMA DE GIRO	
Velocidad de arranque	3 m/s	Tipo	Cuatro puntos de contacto
Velocidad viento nominal	10,5 m/s	Corona dentada	Exterior
		Relación piñon	
Velocidad viento de parada	20 m/s	reductor/corona	11,6:1
Potencia nominal	1.500 kW	Sistema de frenado	Disco y pinzas de freno
DATOS DE COMPONENTES		MOTORREDUCTORAS ORIE	NTACIÓN
Número de palas	3	Tipo	4 etapas planetarias
Orientación	Barlovento	Ratio	1 : 1451
Diámetro	82 m	Velocidad de giro de góngola	0,08 rpm
Área barrida	5.289 m2	Tipo de motor	Asíncrono, cuatro polos
Sentido del giro	Horario	Voltaje/frecuencia	230/400V-50 Hz
Velocidad nominal de rotación	16,7 rpm	N° de motorreductoras	4 x 1,5 kW
Regulación de potencia control de	Giro de pala desde posición de bandera	GRUPO HIDRÁULICO	
sobrevelocidad	hasta máxima resistencia del viento		
Ángulo inclinación del rotor sobre		T: 1	10.51.W
horizontal	5°	Tipo de motor	18,5 kW
Velocidad nominal de punta de pala	71,7 m/s	Voltaje/frecuencia	380V/50 Hz
Angulo de coincidencia	0°	GENERADOR	
PALAS	T		
Modelo	40,3	Tipo	6 polos, doble alimentación
Material	GFRP	Clase de aislamiento (stator/rotor)	H/H
Longitud total	40,3 m	Potencia	1.500 kW
Peso	5.780 kg/pala	Grado de protección	IP 54
Paso de pala	Longitud total de pala	Frecuencia	50/60 Hz
Freno aerodinámico	A posición de bandera	Voltaje	12.000V
BUJE	A posicion de bandera	SISTEMA DE CONTROL	12.000 V
Tipo	Rígido	Tipo	Ingecon-W
Material	Fundición GJS 400 18U LT	Procesador	80-386,32 bits
Protección	Metalizado Zn + Epoxy	Interfaz Scala	OPMT
	Wietanzado Zii + Epoxy	Corrección de factor de	OI WI
SISTEMA PASO DE PALA		potencia	Programable mediante software
Rodamientos	Doble hilera, cuatro puntos de contacto	TORRE	-
	1		Tubular de acero para 60 m 71,5 m y
Accionamiento	Hidráulico	Material	80 m de altura de buje
Mecanismo	Colindros hidraúlicos	Altura de torre (buje a 60/80 m)	56,9 m /76,9 m
Seguridad	Acumuladores en buje	Acceso a torre	Puerta con cerradura de seguridad
TREN DE POTENCIA		Acceso a barquilla	Escalera o elevador
Multiplicadora	3 etapas: 2 planetario/helicoidal	Peso (de acero 60/80 m de buje)	
Potencia nominal multiplicadora	1.500 kW	Peso (de hormigón, buje 80 m)	511 t
		(Barras de anclaje embebidas en la
			cimentación y mortero de alta
Relción de transmisión	1:65 (50 Hz)/ 1:78 (60 Hz)	Unión a cimentación	resistencia
Velocidad nominal de entrada	16,7 rpm	PESOS	
Velocidad nominal de salida	1.100 (50 Hz)/1.320 (60 Hz)		
	Por salpicado y bomba de recirculación,		
Lubricación	intercanbiador aceite/aire y filtro de aceite	Rarquilla	52.5.+
		Barquilla buis	52,5 t
Volumen de aceite multiplicadora Condition Monitoring System	270 litros	Barquilla + buje	67,5 t
Condition Monitoring System EJE LENTO	Incluido	DIMENCIONES BARQUILLA	+BUJE
	Eig favig J - L	Loniitud	12.5
Tipo Matarial	Eje forjado hueco	Lonjitud	12,5 m
Material	34 Cr Ni Mo 6	Anclura	4,2 m
Soporte	2 rodamientos	Altura	4,0 m

Tabla 3.7. Características técnicas del aerogenerador AW-82/1500

Fuente: http://www.acciona-energia.com/media/315810/AW1500_brochure.pdf.

Parque Eólico

El parque eólico a diseñarse tendrá una potencia nominal de 7,5 MW y empleará el generador AW-82/1500.

Se ha escogido esta potencia para el parque eólico considerando un porcentaje razonable de la potencia instalada de la central hidroeléctrica (alrededor del 20%). Como se verá más adelante, las limitaciones de orden económico influyen de manera relevante en la decisión.

En cuanto a número de aerogeneradores se debe considerar las siguientes condiciones, Tabla 3.8:

Características	Magnitud	Observaciones
Potencia del parque (MW)	7,5	Condición de diseño
Potencia Unitaria (MW)	1,5	Dato de fábrica
Número de		El coeficiente entre la potencia del parque y
Aerogeneradores requerido	5	la potencia nominal del aerogenerador es 5.

Tabla 3.8. Calculo del número de aerogeneradores

Fuente: [Propio del autor]

Se debe tener en consideración las separaciones entre hileras de aerogeneradores y entre máquinas, Tabla 3.9.

Características	Magnitud	Observaciones
Diámetro del Rotor (D)	82 m	Dato de fábrica del aerogenerador
Separaciones entre		
Aerogeneradores	246 m	Considerando una separación de 3D
Separación entre hileras de		
aerogeneradores	410 m	Considerando una separación de 5D

Tabla 3.9. Separación entre Aerogeneradores

Fuente: [Propio del autor]

Teniendo en cuenta los parámetros de la Figura 3.11 y Figura 3.12, se realizará la distribución de los aerogeneradores en el emplazamiento.

Se ha considerado la dirección predominante del viento para colocar los aerogeneradores, intentando en todo momento aprovechar el espacio físico que presenta restricciones del área.

Figura 3.11. Distribución de los Aerogeneradores

Fuente: Google Earth

Figura 3.12. Vista de la Ubicación de los Aerogeneradores

Fuente: Google Earth

• Sistemas de Supervisión de la Central Eólica

Los parques eólicos necesitan implementar un sistema diseñado para supervisar y controlar la producción en todo momento, proporcionando comunicación con los

dispositivos de campo [18]. Estos sistemas cuentan con:

- Supervisión remota de instalaciones y equipos: que permite al operador conocer el estado de desempeño de la central y los equipos, lo que permite dirigir las tareas de mantenimiento y estadística de fallas.
- Control remoto de instalaciones y equipos: para activar desactivar los equipos remotamente de manera automática y también manual.
- Visualización gráfica dinámica: brinda imágenes que representen el comportamiento del proceso.
- Representación se señales de alarma: para alertar al operador frente a una falla o la presencia de una condición perjudicial o fuera de lo aceptable. Estas señales pueden ser tanto visuales como sonoras.

3.3 Elementos de diseño eléctrico de la PCHR.

• Esquema eléctrico y cableado

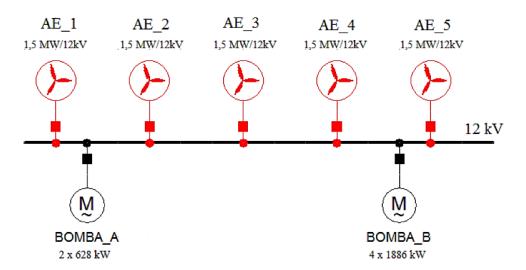

Para el transporte de la energía eléctrica producida por cada aerogenerador se utilizara la siguiente configuración mostrada en la Figura 3.13, la cual parte desde el grupo de aerogeneradores directamente a las bombas, al tener el mismo nivel de voltaje entre el tipo de aerogenerador y el tipo de bomba a emplearse en el proyecto de investigación.

Figura 3.13. Representación de la línea eléctrica desde el parque eólico al centro de bombeo.

Fuente: [Propio del autor]

En la Figura 3.14, se puede observar el diagrama unifilar de la central reversible desarrollada.

Figura 3.14. Diagrama unifilar de la Central Reversible desarrollada.

Fuente: [Propio del autor]

En la Figura 3.15, se puede apreciar el diagrama esquemático de la conversión de una central hidroeléctrica a una central reversible con los elementos que la componen.

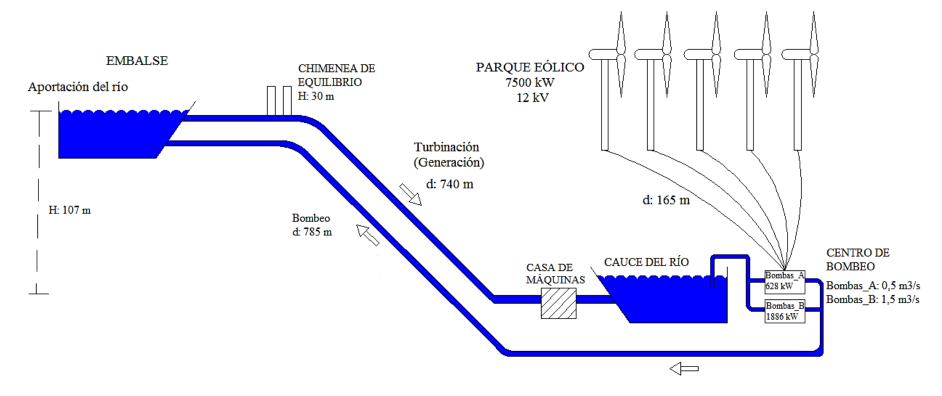


Figura 3.15. Diagrama esquemático de la central reversible desarrollada.

Fuente: [Propio del autor]

CAPÍTULO IV

En el presente capítulo se abordará la estimación de los niveles de producción que

aportará la PCHR hibridada, los costos de inversión que se encuentran asociados a la

PCHR y finalmente el análisis de la viabilidad financiera del proyecto de

transformación de la PCH en PCHR.

4 VIABILIDAD ECONÓMICA

4.1 Costos de inversión asociados a la PCHR estudiada.

Los costos de inversión que intervienen en la pequeña central hidroeléctrica reversible

incluyen el costo de los aerogeneradores, bombas hidráulicas, transporte, fundaciones,

montaje del aerogenerador, canalizaciones, montaje de equipos eléctricos, Ingeniería y

estudio ambiental.

En la Tabla 4.1, se puede observar que el costo unitario en dólares por kW es de

3.400, al tener proyectado un parque eólico de 7,5 MW se obtiene una inversión total

del parque de 25.500.000 dólares, con costos totales que incluyen la central

hidroeléctrica, el parque eólico y la instalación de bombeo.

Costo Unitario (US\$/kW) 3.400 Potencia Total Eòlica (MW): 7,5

Inversión Parque (US\$):

25.500.000

Tabla 4.1. Inversión total del parque eólico

Fuente: Costos de inversión de un parque eólico.

En la Tabla 4.2, se presenta la distribución de costos de inversión, teniendo en cuenta

suministros, montaje de aerogeneradores y obras eléctricas.

Se observa que los aerogeneradores representan el 44% de la inversión total del

parque eólico, el montaje el 4%, el montaje de equipos eléctricos el 1%, obteniendo una

inversión del parque eólico de 20.910.000 dólares.

81

Debido a los tipos de bombas seleccionas se requiere una inversión de 7.238.000 dólares.

Como inversión total se calcula 28.148.000 dólares conforme al detalle que se muestra a continuación:

Equipo	% Costo	US\$
Aerogeneradores	44%	11.220.000
Transporte	9%	2.295.000
Fundaciones	7%	1.785.000
Montaje Aerogenerador	4%	1.020.000
Canalizaciones	14%	3.570.000
Montaje equipos eléctricos	1%	255.000
Ingeniería y Estudio Ambiental	3%	765.000
PARQUE EÓLICO		20.910.000
BOMBAS		7.238.000
Inversión Total		28.148.000

Tabla 4.2. Inversión aplicable a la central de bombeo

Fuente: Costos de inversión de un parque eólico.

4.2 Estimación de los niveles de producción de la PCHR estudiada.

La energía producida por un aerogenerador depende esencialmente de:

- La curva de potencia del aerogenerador Figura 4.1.
- La distribución del viento a la altura del buje del rotor y por lo tanto de la potencia eólica disponible.
- La altura y condiciones climáticas del emplazamiento, que influye en la densidad del viento y por lo tanto en la energía contenida en la masa de aire que se mueve.

A continuación se muestra la curva de potencia del aerogenerador escogido y en la cual se observa la potencia que es capaz de entregar el aerogenerador en función del viento que recibe:

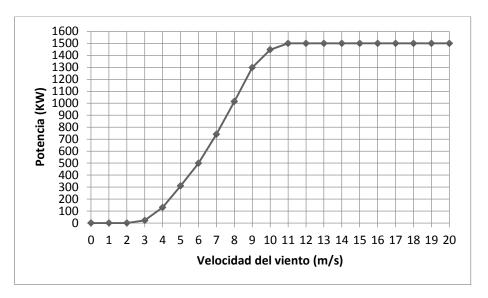


Figura 4.1. Curva de potencia- AW-82/1500.

Fuente: [Propio del autor]

• Energía Eólica producida por 5 Aerogeneradores

Mediante los datos de la curva de potencia del Aerogenerador Acciona AW-82/1.500 y la frecuencia en horas para cada mes del año se determina la energía producida por el aerogenerador, para seguidamente obtener la energía producida por los cinco aerogeneradores. La ecuación 4.1, nos permite encontrar esta energía:

$$E = \frac{P*t}{1000} \tag{4.1}$$

E= Energía eólica (5 aerogeneradores) en MWh

P= dato de curva de potencia del aerogenerador en kW para cada nivel de potencia

t = frecuencia en (h) para cada velocidad, resultante del análisis estadístico.

De esta manera se obtiene que la energía producida por los cinco aerogeneradores. Por ejemplo para el mes de enero es de 1.484,48 MWh.

• Energía entregada a las bombas

La potencia eólica disponible por el parque en cada intervalo de velocidad, se obtienen multiplicando los datos de la curva de potencia del aerogenerador (kW), por el número de aerogeneradores.

Por ejemplo, si el viento permite al aerogenerador entregar una potencia de 110 kW, no puede operar ninguna bomba, ya que estas disponen de un nivel mayor de potencia de acuerdo a los requerimientos del proyecto de investigación.

Al contar con una potencia eólica disponible de 653 kW, opera una bomba INDAR UGP de 628 kW. Al tener una potencia eólica disponible de 1.550 kW, operan dos bombas INDAR UGP de 628 kW.

Si se dispone de una potencia eólica disponible de 5.070 kW, pueden operar dos bombas INDAR UGP de 628 kW y dos bombas INDAR UGP de 1.886 kW, obteniendo una potencia operable en bombas de 5.028 kW.

De esta manera se obtiene la potencia operable en bombas, de acuerdo a los diversos valores de potencia eólica disponible.

La energía entregada a las bombas en MWh, se obtiene de la ecuación 4.1, donde:

E= energía entregada a la bombas (MWh)

P= Potencia operable en bombas (kW)

t= frecuencia en horas

Por ejemplo, para el mes de enero la energía entregada a las bombas de 1.380,8 MWh.

• Energía Eléctrica Adicional generada por bombeo.

Para determinar la energía eléctrica adicional generada por bombeo, se necesita calcular la potencia eléctrica de los dos tipos de bombas mediante la ecuación 4.2

$$P = 9.81 * Q * H * \eta t * \eta G$$
 (4.2)

P= Potencia eléctrica por bomba (kW)

Q = Caudal (m3/s)

H= Altura (m)

 η t= Rendimiento de la turbina

η G= Rendimiento del generador

Mediante esta ecuación se determina que la potencia eléctrica de cada bomba, por ejemplo para el mes de enero se obtiene:

Bomba
$$A = 443,558 \text{ kW} = 0,444 \text{ MW}$$

Bomba
$$B = 1.330,673 \text{ kW} = 1,331 \text{ MW}$$

Al multiplicar la potencia eléctrica de cada bomba por el tiempo de operación, se obtiene la energía eléctrica adicional generada por cada bomba. En la Tabla 4.3, podemos observar el cálculo de la potencia eléctrica por bomba, el tiempo de operación de cada bomba, la energía generada por cada bomba y la energía total adicional.

Bomba (A)		Bomba (B)	
Altura (m):	107	Altura (m):	107
Rend. Turb:	0,9	Rend. Turb:	0,9
Rend. Gen:	0,94	Rend. Gen:	0,94
Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
Pot. Eléctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331

Energía Eléctrica Adicional generada por bombeo (MWh)	Pot. Eléc.(M W)	Tiempo Oper. (h)	Energía (MWh)
Bomba 1 (A)	0,44	333	147,705
Bomba 2 (A)	0,44	187	82,945
Bomba 1 (B)	1,33	276	367,266
Bomba 2 (B)	1,33	184	244,844
Bomba 3 (B)	1,33	66	87,824
Bomba 4 (B)	1,33	33	43,912
		Total:	974,5

Tabla 4.3. Energía adicional generada por bombeo en el mes de enero.

Fuente: [Propio del autor]

En el Anexo 2, se encuentra el análisis completo para cada mes del año con la energía adicional entregada por la instalación eólica-bombeo.

Mes: ENERO

Volocidad	Frecuencia	Curva de	Energía Eólica 1	Energía Eólica 5
		Potencia	Aerogenerador	Aerogeneradores
(m/s)	(h)	(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	51	0	0,00	0,00
2	81	0	0,00	0,00
3	97	22	2,13	10,67
4	113	131	14,75	73,73
5	126	310	39,06	195,30
6	92	499	45,91	229,54
7	57	741	42,24	211,19
8	61	1.014	61,85	309,27
9	33	1.298	42,83	214,17
10	26	1.447	37,62	188,11
11	7	1.500	10,50	52,50
12	0	1.500	0,00	0,00
13	0	1.500	0,00	0,00
14	0	1.500	0,00	0,00
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	744		296,90	1.484,48

ANÁLISIS MENSUAL DE LA ENERGÍA ADICIONAL ENTREGADA POR LA INSTALACIÓN EÓLICA- BOMBEO

Potencia Eólica	(A) Potencia	(A) Potencia	(B) Potencia	(B) Potencia	(B) Potencia	(B) Potencia	Potencia	Energía entregada
Disponible (kW)	1 Bomba (kW)	2 Bombas (kW)	1 Bomba (kW)	2 Bombas (kW)	3 Bombas (kW)	4 Bombas (kW)	Operable en	a las Bombas
Disponible (KVV)	628	1.256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)
110	-	-	-	-	-	-		
653	Opera	-	-	-	-	-	628	71
1.550	Opera	Opera	-	-	-	-	1.256	158
2.495	-	-	Opera	-	-	-	1.886	173,5
3.705	-	-	Opera	Opera	-	-	3.772	215,0
5.070	Opera	Opera	Opera	Opera	-	-	5.028	306,7
6.490	Opera	-	Opera	Opera	Opera	-	6.286	207,4
7.235	-	-	Opera	Opera	Opera	Opera	7.544	196,1
7.500	-	-	Opera	Opera	Opera	Opera	7.544	52,8
								0,0
								0,0
							Total:	1.380,8

Tabla 4.4. Análisis de la energía adicional entregada por la instalación eólica-bombeo en el mes de enero

Fuente: [Propio del autor]

En la siguiente tabla se observa el tiempo de operación de cada bomba en cada mes del año:

Tiempo de operación (h)	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
Bomba 1 (A)	333	284	319	241	247	297	285	280	283	336	295	308	3.508
Bomba 2 (A)	187	169	159	123	108	142	131	134	128	183	146	164	1.774
Bomba 1 (B)	276	233	209	157	112	119	190	173	299	235	303	313	2.619
Bomba 2 (B)	184	160	126	87	56	66	120	107	229	145	216	223	1.719
Bomba 3 (B)	66	39	42	1	4	17	28	29	143	68	114	103	654
Bomba 4 (B)	33	21	16	0	2	6	9	15	92	44	71	56	365
Total	1.079	906	871	609	529	647	763	738	1.174	1.011	1.145	1.167	10.639

Tabla 4.5. Tiempo de operación del centro de bombeo en resolución mensual.

Fuente: [Propio del autor]

En la Tabla 4.6, se puede observar la energía eléctrica adicional generada por cada bomba en cada mes del año, así como también la energía eléctrica total adicional generada por bombeo, que es igual a 9.471,3 MWh.

Energía Eléctrica Adicional generada por bombeo (MWh)	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
Bomba 1 (A)	147,7	126,0	141,5	106,9	109,6	131,7	126,4	124,2	125,5	149,0	130,8	136,6	1.556,0
Bomba 2 (A)	82,9	75,0	70,5	54,6	47,9	63,0	58,1	59,4	56,8	81,2	64,8	72,7	786,9
Bomba 1 (B)	367,3	310,0	278,1	208,9	149,0	158,4	252,8	230,2	397,9	312,7	403,2	416,5	3.485,0
Bomba 2 (B)	244,8	212,9	167,7	115,8	74,5	87,8	159,7	142,4	304,7	192,9	287,4	296,7	2.287,4
Bomba 3 (B)	87,8	51,9	55,9	1,3	5,3	22,6	37,3	38,6	190,3	90,5	151,7	137,1	870,3
Bomba 4 (B)	43,9	27,9	21,3	0,0	2,7	8,0	12,0	20,0	122,4	58,5	94,5	74,5	485,7
Total	974,5	803,7	735,0	487,5	389,0	471,5	646,3	614,8	1.197,6	884,9	1.132,4	1.134,2	9.471,3

Tabla 4.6. Resumen anual de la energía adicional entregada por la instalación eólica – bombeo

Fuente: [Propio del autor]

4.3 Análisis de la viabilidad financiera del proyecto de transformación de la PCH en PCHR.

Los costos de la transformación de la PCH en una PCHR se pueden resumir en:

 Costos Variables: son los costos anuales asociados a la explotación del parque eólico y al centro de bombeo. Incluye Costos de Operación y Mantenimiento, mantenimientos preventivos y correctivos [21]. Costos de Desmantelamiento: son costos asociados al desmantelamiento de la PCHR, al final de su vida operativa (desmontaje de los aerogeneradores, bombas y obra civil, restauración paisajística de los terrenos). Se debe tomar en cuenta el valor residual (desmantelamiento) de los equipos desmantelados.

Para el presente análisis se considerarán los siguientes costos, Tabla 4.7:

Costos	Valor	Observaciones
Costos de Inversión	3.400 U\$ / kW	Valor Aproximado para proyectos con
Costos de Hiversion	3.400 U\$ / KW	aerogeneradores Acciona de 1,5 MW
Costos Variables	2,055 U\$ / MWh	Referencia [15]
Costos de		
Desmantelamiento	2% de la inversión	-
Valor residual	5% de la inversión	-

Tabla 4.7. Costos asociados a la central de bombeo

Fuente: Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

Para realizar el análisis financiero se ha considerado una vida útil económica de 20 años.

Cuando el generador entre a participar en el Mercado Eléctrico Ecuatoriano será objeto de despacho preferente como generador no convencional durante su vida útil y mientras estuvo vigente la Regulación No. CONELEC – 004/11 "Tratamiento para la energía producida con Recursos Energéticos Renovables No Convencionales" hubiese recibido un pago por la energía que produzca de 9,13 c\$/kWh. [22]

En la Tabla 4.8, se puede observar que el flujo de fondos neto realizado bajo estas consideraciones. Los resultados muestran que el proyecto no es viable económicamente, denotando que la tarifa regulada definida para centrales eólicas conectadas a la red es insuficiente para cubrir los costos y utilidad razonable de una central reversible.

FLUJO DE FONDOS NETO

CONCEPTO	VALOR	OBSERVACIONES
Potencia Nominal (MW)	7,50	
Inversión (US\$)	28.148.000	
Desmantelamiento	2%	Porcentaje de la inversión
Valor Rescate (% Inversión)	5%	Valor de la planta al final de la vida útil económica
Tasa de descuento	7,41%	Tasa de interés
Costos Variables (\$/MWh)	2,055	
Energía Generada Anual (kWh):	9.471.290	
Costos Variables Anuales (US\$)	19.462	
Tarifa Regulada (c\$/kWh)	9,13	Regulación No. CONELEC – 004/11
Energía Generada Anual (kWh):	9.471.290	
Ingresos por Venta de Energía (US\$)	864.729	Valores anuales

FLUJO DE FONDOS NETO DEL PROYECTO

	. •																				
US\$	Año 0	Año 1	Año 2	Año 3	Año 4	Año 5	Año 6	Año 7	Año 8	Año 9	Año 10	Año 11	Año 12	Año 13	Año 14	Año 15	Año 16	Año 17	Año 18	Año 19	Año 20
Inversión	-28.148.000																				
Ingresos Anuales		864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729	864.729
Valor de Rescate																					1.407.400
Desmantelamiento																					-562.960
Costos Variables		-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462
Utilidad		845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	1.689.707
FLUJO DE FONDOS NETO (US\$)	-28.148.000	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	845.267	1.689.707

TASA INTERNA DE RETORNO	-3,9%
VALOR PRESENTE NETO (US\$)	-19.269.482

Proyecto No Viable económicamente

Tabla 4.8. Análisis Financiero del Proyecto

Fuente: [Propio del autor]

Proyecto No Viable económicamente

• Análisis de sensibilidad financiera en relación con la tarifa

A continuación se procederá a realizar un análisis de sensibilidad modificando la tarifa regulada con el objetivo de encontrar en valor en el cual el proyecto sea económicamente viable.

En la Tabla 4.9, se puede apreciar el análisis de sensibilidad financiera en relación con la tarifa regulada.

Tarifa Regulada (c\$/kWh)	TIR(%)	VPN (MUS\$)	Viabilidad
9,13	-3,9%	-20,6	No
12,00	-1,7%	-18,25	No
16,00	0,8%	-14,94	No
20,00	3,1%	-11,63	No
24,00	5,1%	-8,32	No
26,00	6,1%	-6,66	No
28,00	7,0%	-5,01	No
30,00	7,9%	-3,35	No
32,00	8,7%	-1,70	No
34,00	9,6%	-0,04	No
34,05	9,6%	0,00	-
35,00	10,0%	0,79	Sí

Tabla 4.9. Análisis de sensibilidad financiera en relación con la tarifa

Fuente: [Propio del autor]

Se concluye que con una tarifa de 34,05 c\$/kWh el proyecto no producirá ni ganancias ni pérdidas, y con valores de tarifa regulada superiores a 34,05 c\$/kWh y una TIR de 10% el proyecto es económicamente viable.

En la Figura 4.2, se presenta un gráfico ilustrativo de la sensibilidad respecto a la tarifa regulada.

Sensibilidad respecto a la Tarifa 11.5% 2,0 10,5% 0,0 9,5% 13 15 17 21 23 25 27 8,5% -2,07,5% 6,5% -4,0 5,5% -6,0 4,5% 3,5% -8,0 2,5% 1,5% -10,0 0,5%

-0,5% -1,5%

-2,5%

-3,5%

Figura 4.2. Sensibilidad respecto a la tarifa

TIR(%)

VPN (MUS\$)

-12.0

-14,0

-16,0

Fuente: [Propio del autor]

Aplicación particular del análisis financiero para el Sector Eléctrico Ecuatoriano

Las regulaciones emitidas en apego al Mandato Constituyente No. 15, en especial la Regulación CONELEC 004/09, establecen un reconocimiento económico para los generadores de capital estatal, como es el caso de la central Cumbayá, que operan en el Sector Eléctrico consistente en dos rubros: costos variables y costos fijos. Los costos variables dependen directamente de la producción de la central y para el caso de las centrales hidroeléctricas son de 0,2 c\$/kWh producido, Los costos fijos no está relacionados con la producción y contemplan valores para mantenimientos, repuestos y ampliaciones pequeñas. No están considerados los costos de inversión.

Considerando estas acotaciones, a continuación se establece un análisis financiero en el que se considera el pago de costos variables de 0,2 c\$/kWh producido y costos fijos que sí consideran la inversión, en el entendido de hacer sostenible la operación de la instalación hibridada.

A continuación en la Tabla 4.10, el flujo de fondos neto de los costos variables de operación y mantenimiento del proyecto. Teniendo en cuenta que el análisis financiero se ha considerado una vida útil económica de 20 años.

En la Tabla 4.11, se presenta el cálculo de las anualidades mínimas que genera el proyecto.

Finalmente se obtiene el capital neto a financiar con anualidades por cada año. Tabla 4.12.

Estos valores, tanto variables como fijos, deberán incluirse en la tarifa al usuario final.

FLUJO DE FONDOS NETO DE LOS COSTOS VARIABLES (O&M) DEL PROYECTO

CONCEPTO	VALOR
Tasa de descuento	7,41%
Costos Variables (\$/MWh)	2,055
Energía Generada Anual (kWh):	9.471.290
Costos Variables Anuales (US\$)	19.462
Tarifa Regulada (c\$/kWh)	0,20
Energía Generada Anual (kWh):	9.471.290
Ingresos por Venta de Energía (US\$)	18.943

	Año 1	Año 2	Año 3	Año 4	Año 5	Año 6	Año 7	Año 8	Año 9	Año 10	Año 11	Año 12	Año 13	Año 14	Año 15	Año 16	Año 17	Año 18	Año 19	Año 20
Ingresos Anuales	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943	18.943
Costos Variables	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462	-19.462
FLUJO DE FONDOS NETO (US\$)	-519	-519	-519	-519	-519	-519	-519	-519	-519	-519	-519	-519	-519	-519	-519	-519	-519	-519	-519	-519

VALOR PRESENTE NETO (US\$)	-5.327

Tabla 4.10. Flujo de fondos neto de los costos variables (O&M) del proyecto.

Fuente: [Propio del autor]

CÁLCULO DE LAS ANUALIDADES MÍNIMAS DEL PROYECTO (REGULACIÓN CONELEC 004/09)

CONCEPTO	VALOR	US\$	OBSERVACIONES
Potencia Nominal (MW)	7,50		
Inversión (US\$)	28.148.000		
Desmantelamiento	2%	562.960	Porcentaje de la inversión al final de la vida útil económica (20 años)
Valor Rescate (% Inversión)	5,00%	1.407.400	Valor de la planta al final de la vida útil económica (20 años)
Tasa de descuento	7,41%		Tasa de interés
Vida Útil Económica (años)	20		

Tabla 4.11. Anualidades mínimas del proyecto.

Fuente: [Propio del autor]

CAPITAL NETO A FINANCIAR CON ANUALIDADES

CONCEPTO	VALOR
Inversión	28.148.000
Valor Presente Desmantelamiento	134.767
Valor Presente del V. Rescate	336.917
Valor Presente de Déficits Operativos	5.327
Capital Neto a cubrir con Anualidades	27.951.177
Anualidad al Inicio del 1er año	1.397.559

ANUALIDADES (US\$)

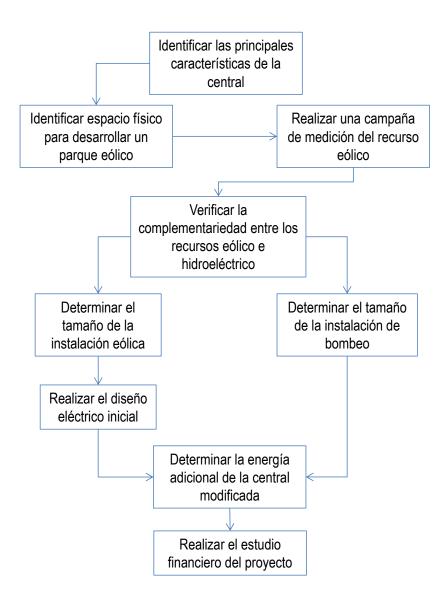

	0	Anualidad 1.397.559	Anualidad Equivalente
		1 397 559	
Año '	1	1.007.000	2.996.252
	1	1.501.118	2.996.252
Año 2	2	1.612.351	2.996.252
Año :	3	1.731.826	2.996.252
Año 4	4	1.860.154	2.996.252
Año :	5	1.997.992	2.996.252
Año (6	2.146.043	2.996.252
Año :	7	2.305.065	2.996.252
Año 8	8	2.475.870	2.996.252
Año 9	9	2.659.332	2.996.252
Año 1	10	2.856.388	2.996.252
Año 1	1	3.068.047	2.996.252
Año 1	2	3.295.389	2.996.252
Año 1	13	3.539.577	2.996.252
Año 1	14	3.801.860	2.996.252
Año 1	15	4.083.578	2.996.252
Año 1	16	4.386.171	2.996.252
Año 1	17	4.711.186	2.996.252
Año 1	8	5.060.285	2.996.252
Año 1	19	5.435.252	2.996.252

 Tabla 4.12. Capital neto a financiar con anualidades.

Fuente: [Propio del autor]

CONCLUSIONES

1. La metodología desarrollada para verificar la viabilidad técnica y financiera de para la conversión de pequeñas centrales hidroeléctricas en reversibles se resume en:

- 2. Sin perjuicio de lo anotado, deberán también considerarse, entro otros, los siguientes aspectos:
 - Estudios de ingeniería
 - Topografía.
 - Proyecto de drenaje pluvial.
 - Estudio geotécnico.
 - Estudios de conexión a la red eléctrica
 - Gestión de los terrenos

- Identificación de los propietarios.
- Firma de los contratos.
- Estudios ambientales.
 - Estudio de Impacto Ambiental. Informe.
 - Recuperación de áreas alteradas.
 - Proyecto de control de la erosión.
 - Proyecto de gestión de los residuos.
 - Monitorización de la fauna.
 - Proyecto de levantamiento de sitios arqueológicos.
- 3. La estrategia adoptada de emplear una instalación de bombeo para incrementar la firmeza de la central hidroeléctrica se constituye en una alternativa para el aprovechamiento de la energía eólica con fines de producción de electricidad, puesto que en la actualidad las Regulaciones emitidas por el CONELEC no contemplan un modelo transaccional para la energía eólica. Sin embargo, por las condiciones del modelo de mercado actual, esta estrategia deviene en costos adicionales y en la disminución de la eficiencia del proceso productivo.
- 4. Una forma de recuperar la inversión en este tipo de centrales, cubrir los costos de operación y obtener una rentabilidad razonable consistiría en colocar comercialmente la energía producida con la central reversible en el bloque de energía hidroeléctrica que se estaría exportando a otros países, a raíz del cambio de la Matriz Energética. Los costos de las instalaciones reversibles, diluidos en el gran bloque de energía hidroeléctrica a exportar, seguramente incrementarían muy poco el precio de oferta de exportación con lo cual la oferta seguiría siendo atractiva para terceros países. Este es un tema que debería desarrollarse en futuras investigaciones.
- 5. Para realizar la conversión de una pequeña central hidroeléctrica en una central reversible, es necesario disponer de información confiable y suficiente para realizar un análisis detallado que se relacione con la generación de la central hidroeléctrica, el potencial eólico, la complementariedad eólica-hidroeléctrica, entre otras variables.

- 6. Para la mayoría de emplazamientos asociados a las pequeñas centrales hidroeléctricas analizadas no se dispone de información del recurso eólico exacto, ni de estaciones de medición cercana, lo que ha no ha permito incluirlas en el análisis realizado en la presente investigación. Por tal motivo se decidió optar por emplazamientos asociados a las centrales hidroeléctricas Cumbayá, Los Chillos y Guangopolo para las que se cuenta con cierto grado de información que si bien es cierto no satisface en su totalidad los requerimientos, permite realizar un análisis preliminar.
- 7. Para el desarrollo del tema de investigación se seleccionó la central Cumbayá, en base a cuatro variables consideradas las más relevantes como son: la distancia del emplazamiento al centro de bombeo, la complementariedad eólica-hidroeléctrica, la orografía del terreno y la velocidad del viento.
- 8. El Ecuador no dispone de un mapa eólico actualizado en el que se encuentre datos que muestre la capacidad eólica existente con resoluciones diarias, horarias o diez minutales, ya que no cuenta con suficientes estaciones meteorológicas para la evaluación de sitios con posibilidad de generación eólica.
- 9. Los factores que limitan la penetración en el mercado de la energía eólica son la variabilidad del recurso y el impacto en la red eléctrica.
- 10. Los aspectos económicos han sido la principal barrera para conseguir una mayor participación de la energía eólica correspondiente al potencial existente. Esta situación se ha ido cambiando con una mayor sensibilización social y principalmente política hacia el aprovechamiento de éste tipo de energías, motivada por las sucesivas crisis energéticas sucedidas y la firma de acuerdos de reducción de emisiones de gases de efecto invernadero (CO2 principalmente).
- 11. La tecnología eólica es muy confiable, con alta disponibilidad y una vida de veinte años o más. Por otra parte, los costos de los aerogeneradores han disminuido en los últimos años y a la par se ha incrementado la fiabilidad técnica.
- 12. Los factores que actualmente limitan la penetración en el mercado de la energía

eólica son la variabilidad del recurso y su impacto en la red eléctrica.

- 13. El proceso de diseño de un parque eólico es complejo y toma mucho tiempo, por lo cual requiere de inversiones de riesgo, especialmente en la etapa de prospección, medición y estudios de prefactibilidad. Por otra parte, la Constitución Ecuatoriana vigente promueve activamente el uso de energías renovables, por lo cual deberían establecerse mayores incentivos en la normativa de menor nivel para promover la inversión en centrales eólicas, no solo a través de tarifas preferentes sino apoyos a los inversionistas en las etapas iniciales asociadas a las inversiones de riesgo descritas.
- 14. Para el desarrollo del trabajo se han empleado las herramientas matemáticas y metodologías que permiten un diseño sistemático del parque eólico. Son muchos los factores involucrados: ingeniería de la energía eólica, ingeniería civil, ingeniería ambiental, ingeniería financiera, etc; lo que permite concluir que un estudio serio de proyectos reales deben ser realizados por empresas especializadas y con la mayor experiencia, integradas por equipos multidisciplinarios y con la capacidad de realizar inversiones iniciales de riesgo.

RECOMENDACIONES:

- 1. Es necesario que, con el apoyo estatal, se emprenda en una campaña de medición del recurso eólico tal que permita contar con información relevante proveniente de estaciones metereológicas modernas, destinadas a proyectos de expansión de generación proveniente de energía renovables. Esta campaña de medición se realizará en sitios previamente priorizados empelando el mapa eólico disponible. También podría pensarse en la dotación por parte del Estado de equipos de medición que puedan ser administrados por Universidades y Centros de Investigación.
- 2. Para la conversión de una PCH en una PCHR, el emplazamiento asociado a la pequeña central hidroeléctrica debe situarse lo más cercano al centro de bombeo, evitando de esta manera las perdidas por largas distancias y la reducción de costos

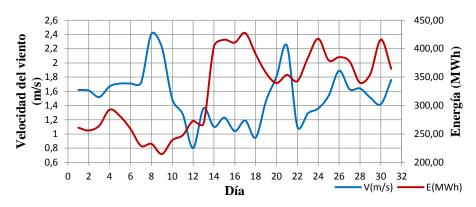
en cuanto a materiales.

3. Se recomienda que el CONELEC desarrolle un esquema normativo para el tratamiento de las energías renovables, que por el momento han quedado sin espacio productivo en el Sector Eléctrico Ecuatoriano, tal como la energía fotovoltaica, la eólica y las tecnologías de hibridación con energías renovables, como es el caso de lo tratado en el presente trabajo de tesis. Esta recomendación está en la línea de lo establecido en la Constitución de la República del Ecuador vigente.

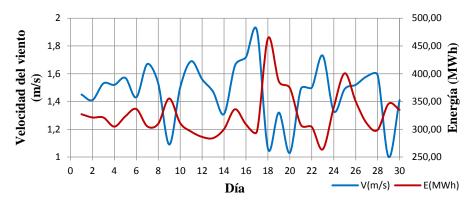
REFERENCIAS

- [1] G. Ardizzon, G. Cavazzini, and G. Pavesi, "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," *Renew. Sustain. Energy Rev.*, vol. 31, pp. 746–761, Mar. 2014.
- [2] S. Mirsaeidi, "Power System Load Regulation by Pumped Storage Power Plants," pp. 1–5, 2012.
- [3] M. de E. y E. R. (MEER), "Tipos de centrales hidroeléctricas de bombeo," 2014, vol. REV2, p. 38.
- [4] A. Allen, "Potential for conventional and underground pumped-storage," *Power Appar. Syst. IEEE Trans.* ..., vol. PAS-96, N°, no. 3, pp. 993–998, 1977.
- [5] J. P. Deane, B. P. Ó Gallachóir, and E. J. McKeogh, "Techno-economic review of existing and new pumped hydro energy storage plant," *Renew. Sustain. Energy Rev.*, vol. 14, no. 4, pp. 1293–1302, May 2010.
- [6] M. de E. y E. R. (MEER), "Funcionamiento y descripción de una PSHPP," 2014, p. 150.
- [7] U. S. A. C. of E. N. D. H. D. Center, "Technical Analysis of Pumped Storage and Integration with Wind Power in the Pacific Northwest," 2009.
- [8] "Central hidroeléctrica de Bombeo." [Online]. Available: http://www.unesa.es/sector-electrico/funcionamiento-de-las-centrales-electricas/1342-central-bombeo. [Accessed: 09-Dec-2014].
- [9] C. G. Fabio Sierra, Adriana Sierra, "Pequeñas y microcentrales hidroeléctricas : alternativa real de generación eléctrica .," pp. 73–85, 2011.
- [10] CONELEC, "Plan Maestro de Electrificación 2013-2022," vol. 4, p. 380, 2013.
- [11] W. H. Reuter, S. Fuss, J. Szolgayová, and M. Obersteiner, "Investment in wind power and pumped storage in a real options model," *Renew. Sustain. Energy Rev.*, vol. 16, no. 4, pp. 2242–2248, May 2012.
- [12] R. M. R. Aguilera, "Generación de un Catálogo de las Centrales Hidroeléctricas del Ecuador mediante una herramienta SIG.," p. 270, 2013.
- [13] "Equipo Papallacta." [Online]. Available: http://www.ecoluzsa.com/index.php/equipos-papallacta-mainmenu-27#. [Accessed: 11-Dec-2014].
- "Datos generales | EPMAPS AGUA QUITO." [Online]. Available: http://www.aguaquito.gob.ec/datos-generales#. [Accessed: 11-Dec-2014].
- [15] "Secretaria de Ambiente." [Online]. Available: http://www.quitoambiente.gob.ec/. [Accessed: 11-Dec-2014].

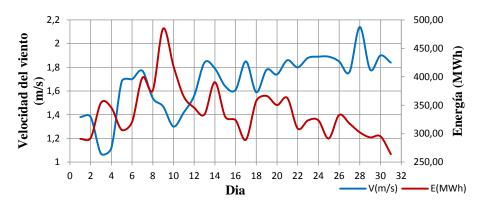
- [16] J. E. Hanke and D. Wichern, *Pronosticos en los Negocios*, Octava edi. Mexico, 2006, p. 552.
- [17] INDAR, "SBP18_Ficha INDAR SP UGP.pdf." p. 2, 2014.
- [18] F. J.Herrera, F. Ochoa, J. Campos, M, Ricaurte, M, "Diseño de un parque eólico en la plataforma de Carburo de la parroquia de Tababela." p. 56, 2014.
- [19] A. P. Talayero Navales, *Energía Eólica*, 1era ed. 2008, p. 302.
- [20] M. Villarrubia, "Ingeniería de la Energía Eólica," Marcombo. España, 2012.
- [21] U. EIA, "Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants," *US Energy Inf. Adm.*, no. April, 2013.
- [22] CONELEC, "REGULACIÓN No. CONELEC 004/11." p. 17, 2012.

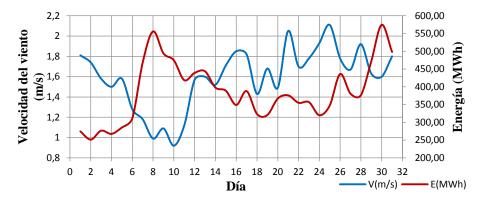

ANEXOS

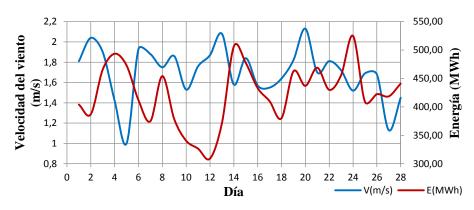
Anexo 1

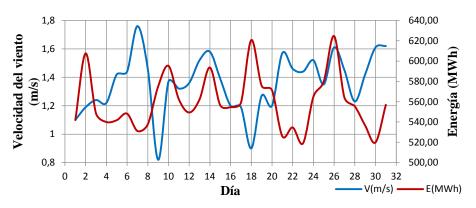

A continuación se presenta las figuras de complementariedad eólica-hidroeléctrica con resolución mensual de las centrales Cumbayá, Guangopolo y Los Chillos.

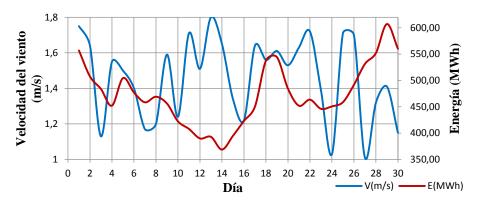
• Central Hidroeléctrica Cumbayá.

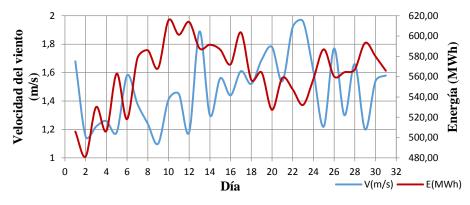

Octubre 2013

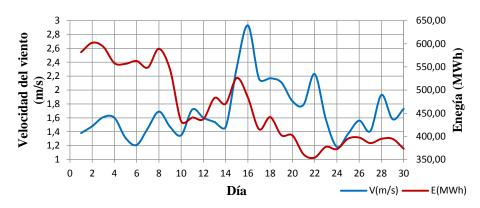

Noviembre 2013


Diciembre 2013

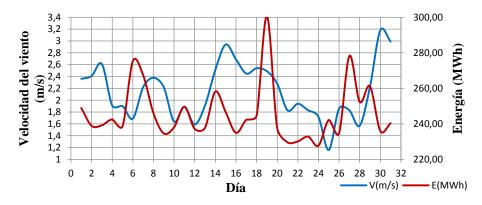

Enero 2014

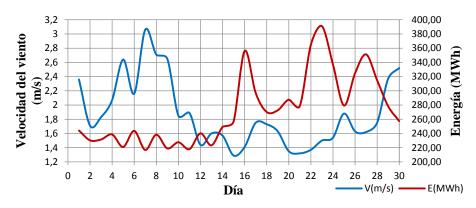

Febrero 2014


Marzo 2014

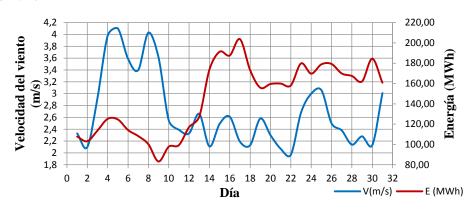

Abril 2014


Mayo 2014

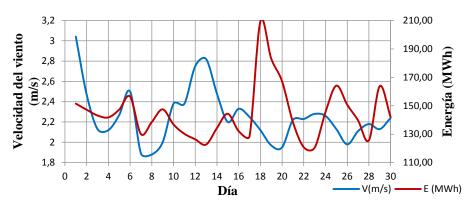

Junio 2014


Julio 2014

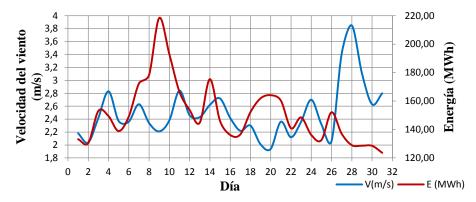
Agosto 2014



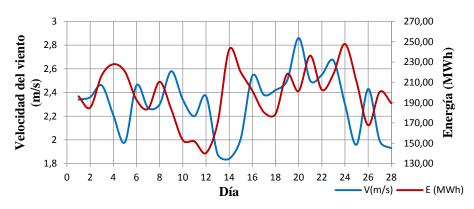
Septiembre 2014

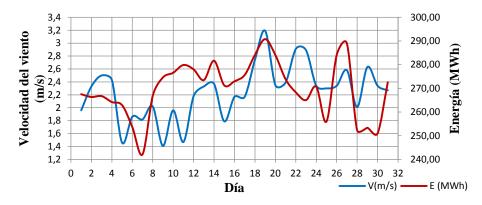


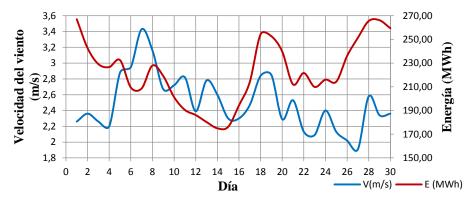
• Central Hidroeléctrica Guangopolo.

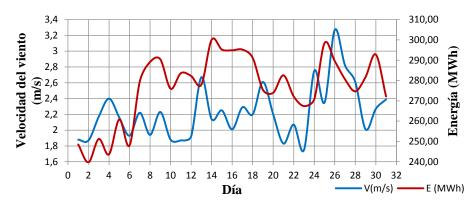

Octubre 2013

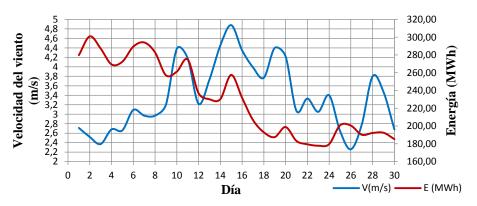
Noviembre 2013


Diciembre 2013

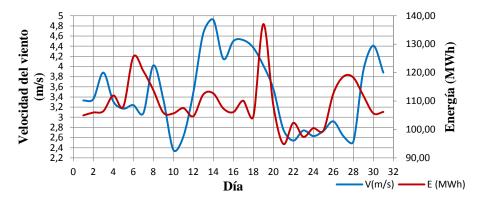

Enero 2014

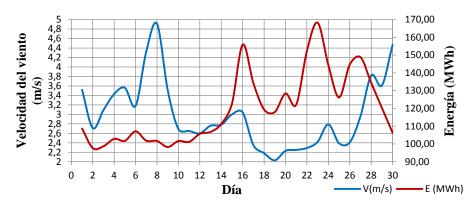

Febrero 2014


Marzo 2014


Abril 2014

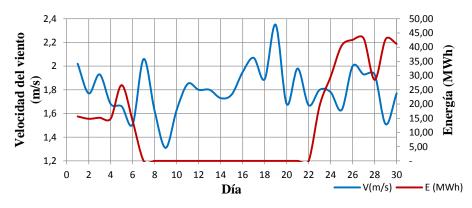

Mayo 2014


Junio 2014

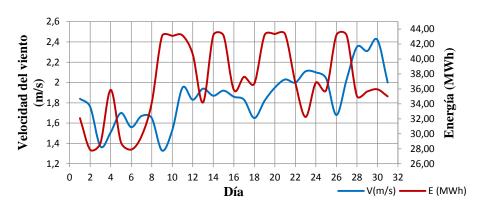

Julio 2014

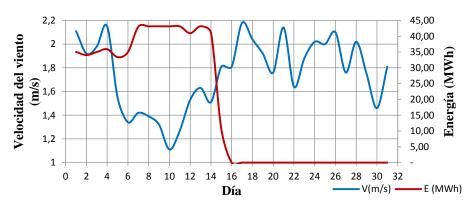
Agosto 2014

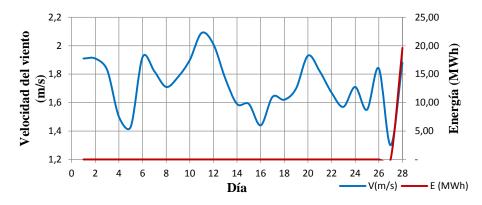
Septiembre 2014

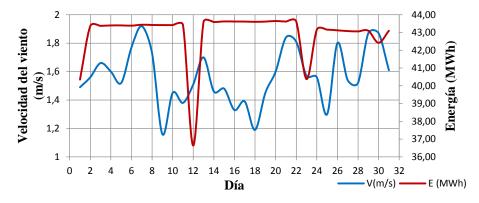


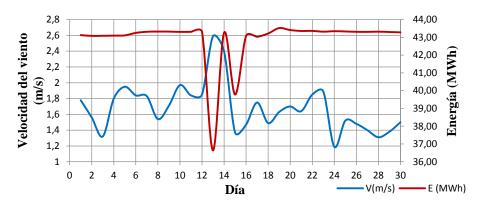
• Central Los Chillos

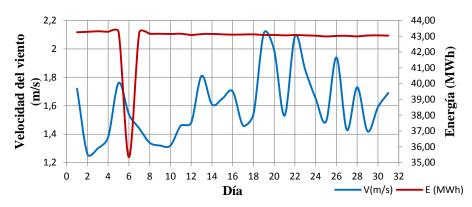

Octubre 2013

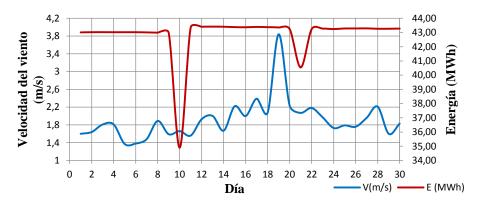

Noviembre 2013

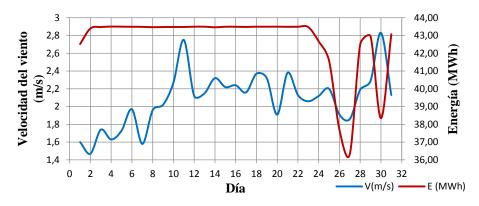

Diciembre 2013

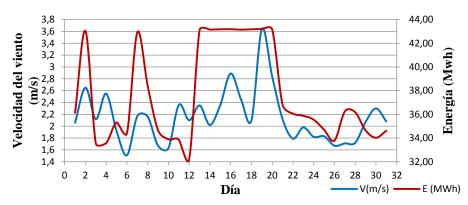

Enero 2014

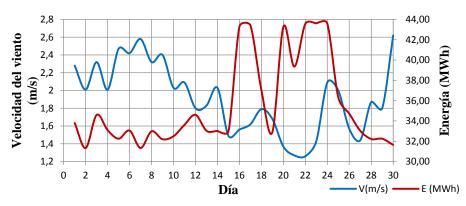

Febrero 2014


Marzo 2014


Abril 2014


Mayo 2014


Junio 2014


Julio 2014

Agosto 2014

Septiembre 2014

Anexo 2

A continuación se presenta el análisis de cada mes de la energía adicional entregada por la instalación eólica-bombeo.

• Enero

Mes: ENERO

			E / E/II /	E / E/II E
Velocidad	Frecuencia	Curva de	Energía Eólica 1	Energía Eólica 5
(m/s)	(h)	Potencia	Aerogenerador	Aerogeneradores
(()	(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	51	0	0,00	0,00
2	81	0	0,00	0,00
3	97	22	2,13	10,67
4	113	131	14,75	73,73
5	126	310	39,06	195,30
6	92	499	45,91	229,54
7	57	741	42,24	211,19
8	61	1.014	61,85	309,27
9	33	1.298	42,83	214,17
10	26	1.447	37,62	188,11
11	7	1.500	10,50	52,50
12	0	1.500	0,00	0,00
13	0	1.500	0,00	0,00
14	0	1.500	0,00	0,00
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	744		296,90	1.484,48

Potencia Eólica Disponible (kW)	Potencia 1 Bomba (kW)	Potencia 2 Bomba (kW)	Potencia 1 Bomba (kW)	Potencia 2 Bombas (kW)	Potencia 3 Bombas (kW)	Potencia 4 Bombas (kW)		Energía entregada a las Bombas
Disponible (KW)	628	1.256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)
110	-	-	-	-	-	-		
653	Opera	-	-	-	-	-	628	71
1.550	Opera	Opera	-	-	-	-	1.256	158
2.495	-	-	Opera	-	-	-	1.886	173,5
3.705	-	-	Opera	Opera	-	-	3.772	215,0
5.070	Opera	Opera	Opera	Opera	-	-	5.028	306,7
6.490	Opera	-	Opera	Opera	Opera	-	6.286	207,4
7.235	-	-	Opera	Opera	Opera	Opera	7.544	196,1
7.500	-	-	Opera	Opera	Opera	Opera	7.544	52,8
								0,0
								0,0
							Total:	1.380,8

Bomba (A)		Bomba (B)	
Altura (m):	107	Altura (m):	107
Rend. Turb:	0,9	Rend. Turb:	0,9
Rend. Gen:	0,94	Rend. Gen:	0,94
Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
Pot. Eléctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331

i				
	Energía Eléctrica Adicional	Pot.	Tiempo Oper. (h)	Energía
	generada por bombeo (MWh)	Eléc.(MW)	r lettipo Oper. (II)	(MWh)
	Bomba 1 (A)	0,44	333	147,705
	Bomba 2 (A)	0,44	187	82,945
	Bomba 1 (B)	1,33	276	367,266
1	Bomba 2 (B)	1,33	184	244,844
	Bomba 3 (B)	1,33	66	87,824
	Bomba 4 (B)	1,33	33	43,912
			Total:	974.5

• Febrero

Mes: FEBRERO

		Curva de	Energía Eólica 1	Energía Eólica 5
	Frecuencia	Potencia	Aerogenerador	Aerogeneradores
(m/s)	(h)	(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	55	0	0,00	0,00
2	79	0	0,00	0,00
3	87	22	1,91	9,57
4	97	131	12,66	63,29
5	121	310	37,51	187,55
6	73	499	36,43	182,14
7	73	741	54,09	270,47
8	48	1.014	48,67	243,36
9	18	1.298	23,36	116,82
10	12	1.447	17,36	86,82
11	7	1.500	10,50	52,50
12	2	1.500	3,00	15,00
13	0	1.500	0,00	0,00
14	0	1.500	0,00	0,00
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	672	***************************************	245,50	1.227,51

ANÁLISIS MENSUAL DE LA ENERGÍA ADICIONAL ENTREGADA POR LA INSTALACIÓN EÓLICA-BOMBEO

Potencia Eólica	Potencia	Potencia	Potencia	Potencia	Potencia	Potencia	Potencia	Energía entregada	Bomba (A)
	1 Bomba (kW)	2 Bomba (kW)	1 Bomba (kW)	2 Bombas	3 Bombas	4 Bombas	Operable en	a las Bombas	
Disponible (kW)	628	1256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)	
110	-	-	-	-	-	-			
653	Opera	-	-	-	-	-	628	60,916	Cauc
1.550	Opera	Opera		-	-	-	1256	151,976	Pot. Eléctr.
2.495	-	-	Opera	-	-	-	1.886	137,7	***************************************
3.705			Opera	Opera			3.772	275.4	Energía Elé
3.705	-	- -	Opera	Орега	-	-	3.112	215,4	generada po
5.070	Opera	Opera	Opera	Opera	-	-	5.028	241,3	Bom
6.490	Opera	-	Opera	Opera	Opera	-	6.286	113,1	Bom
7.235	-	-	Opera	Opera	Opera	Opera	7.544	90,5	Bom
7.500	-	-	Opera	Opera	Opera	Opera	7.544	52,8	Bom
7.500	-	-	Opera	Opera	Opera	Opera	7.544	15,1	Bom
								0,0	Bom
							Total:	1.138,8	

į	Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
	Pot. Eléctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331
	Energía Eléctrica Adicional	a Adicional Pot. Tiempo Oper. (h)		Energía
	generada por bombeo (MWh)	Eléc.(MW)	r lettipo Oper. (II)	(MWh)
į	Bomba 1 (A)	0,44	284	125,970
	Bomba 2 (A)	0,44	169	74,961
į	Bomba 1 (B)	1,33	233	310,047
	Bomba 2 (B)	1.33	160	212.908

107

0,9

1,33

1,33

Altura (m): Rend. Turb:

Bomba 3 (B)

Bomba 4 (B)

Rend. Gen: 0,94

Bomba (B)

Altura (m):

Rend. Turb:

39

21

Rend. Gen: 0,94

107

0,9

51,896

27,944

Total: 803,7

• Marzo

Mes: MARZO

\/wlocidad	Frecuencia	Curva de	Energía Eólica 1	Energía Eólica 5
	1	Potencia	Aerogenerador	Aerogeneradores
(m/s) (h)		(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	52	0	0,00	0,00
2	109	0	0,00	0,00
3	111	22	2,44	12,21
4	134	131	17,49	87,44
5	129	310	39,99	199,95
6	83	499	41,42	207,09
7	54	741	40,01	200,07
8	30	1.014	30,42	152,10
9	26	1.298	33,75	168,74
10	12	1.447	17,36	86,82
11	4	1.500	6,00	30,00
12	0	1.500	0,00	0,00
13	0	1.500	0,00	0,00
14	0	1.500	0,00	0,00
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	744		228,88	1.144,41

Potencia Eólica	Potencia	Potencia	Potencia	Potencia	Potencia	Potencia	Potencia	Energía entregada
Disponible (kW)	1 Bomba (kW)	2 Bomba (kW)	1 Bomba (kW)	2 Bombas	3 Bombas	4 Bombas	Operable en	a las Bombas
Disponible (KVV)	628	1256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)
110	-	-	-	-	-	-		
653	Opera	-	-	-	-	-	628	84,2
1.550	Opera	Opera	-	-	-	-	1256	162,0
2.495	-	-	Opera	-	-	-	1.886	156,5
3.705	-	-	Opera	Opera	-	-	3.772	203,7
5.070	Opera	Opera	Opera	Opera	-	-	5.028	150,8
6.490	Opera	-	Opera	Opera	Opera	-	6.286	163,4
7.235	-	-	Opera	Opera	Opera	Opera	7.544	90,5
7.500	-	-	Opera	Opera	Opera	Opera	7.544	30,2
								0,0
								0,0
							Total:	1.041,4

Bomba (A)		Bomba (B)	
Altura (m):	107	Altura (m):	107
Rend. Turb:	0,9	Rend. Turb:	0,9
Rend. Gen:	0,94	Rend. Gen:	0,94
Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
Pot. Eléctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331

Energía Eléctrica Adicional	Pot.	Tiempo Oper. (h)	Energía
generada por bombeo (MWh)	Eléc.(MW)	r lempo Oper. (n)	(MWh)
Bomba 1 (A)	0,44	319	141,495
Bomba 2 (A)	0,44	159	70,526
Bomba 1 (B)	1,33	209	278,111
Bomba 2 (B)	1,33	126	167,665
Bomba 3 (B)	1,33	42	55,888
Bomba 4 (B)	1,33	16	21,291
		Total:	735,0

• Abril

Mes: ABRIL

		Curva de	Energía Eólica 1	Energía Eólica 5
	Frecuencia	Potencia	Aerogenerador	Aerogeneradores
(m/s)	(h)	(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	80	0	0,00	0,00
2	140	0	0,00	0,00
3	128	22	2,82	14,08
4	117	131	15,27	76,34
5	98	310	30,38	151,90
6	70	499	34,93	174,65
7	61	741	45,20	226,01
8	25	1.014	25,35	126,75
9	1	1.298	1,30	6,49
10	0	1.447	0,00	0,00
11	0	1.500	0,00	0,00
12	0	1.500	0,00	0,00
13	0	1.500	0,00	0,00
14	0	1.500	0,00	0,00
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	720		155,24	776,22

Potencia Eólica	Potencia	Potencia	Potencia	Potencia	Potencia	Potencia	Potencia	Energía entregad
Disponible (kW)	1 Bomba (kW)	2 Bomba (kW)	1 Bomba (kW)	2 Bombas (kW)	3 Bombas (kW)	4 Bombas (kW)	Operable en	a las Bombas
Disponible (KW)	628	1256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)
110	-	-	-	-	-	-		
653	Opera	-	-	-	-	-	628	73,5
1.550	Opera	Opera	-	-	-	-	1.256	123,1
2.495	-	-	Opera	-	-	-	1.886	132,0
3.705	-	-	Opera	Opera	-	-	3.772	230,1
5.070	Opera	Opera	Opera	Opera	-	-	5.028	125,7
6.490	Opera	-	Opera	Opera	Opera	-	6.286	6,3
								0,0
								0,0
								0,0
								0,0
							Total:	690,7

Bomba (A)		Bomba (B)	
Altura (m):	107	Altura (m):	107
Rend. Turb:	0,9	Rend. Turb:	0,9
Rend. Gen:	0,94	Rend. Gen:	0,94
Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
Pot. Eléctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331

Energía Eléctrica Adicional	Pot.	Tiempo Oper. (h)	Energía
generada por bombeo (MWh)	Eléc.(MW)	r lenipo Oper. (II)	(MWh)
Bomba 1 (A)	0,44	241	106,897
Bomba 2 (A)	0,44	123	54,558
Bomba 1 (B)	1,33	157	208,916
Bomba 2 (B)	1,33	87	115,769
Bomba 3 (B)	1,33	1	1,331
Bomba 4 (B)	1,33	0	0,000
		Total:	487,5

• Mayo

Mes: MAYO

	······································		-	
Vwlocidad	Frecuencia	Curva de	Energía Eólica 1	Energía Eólica 5
(m/s)	(h)	Potencia	Aerogenerador	Aerogeneradores
(111/3)	(11)	(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	61	0	0,00	0,00
2	152	0	0,00	0,00
3	193	22	4,25	21,23
4	137	131	17,88	89,39
5	89	310	27,59	137,95
6	56	499	27,94	139,72
7	33	741	24,45	122,27
8	19	1.014	19,27	96,33
9	2	1.298	2,60	12,98
10	2	1.447	2,89	14,47
11	0	1.500	0,00	0,00
12	0	1.500	0,00	0,00
13	0	1.500	0,00	0,00
14	0	1.500	0,00	0,00
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	744		126,87	634,34

Potencia Eólica	Potencia	Potencia	Potencia	Potencia	Potencia	Potencia	Potencia	Energía entregada
Disponible (kW)	1 Bomba (kW)	2 Bombas (kW)	1 Bomba (kW)	2 Bombas (kW)	3 Bombas (kW)	4 Bombas (kW)	Operable en	a las Bombas
Disponible (KVV)	628	1256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)
110	-	-	-	-	-	-		
653	Opera	-	-	-	-	-	628	86,0
1.550	Opera	Opera	-	-	-	-	1256	111,8
2.495	-	-	Opera	-	-	-	1.886	105,6
3.705	-	-	Opera	Opera	-	-	3.772	124,5
5.070	Opera	Opera	Opera	Opera	-	-	5.028	95,5
6.490	Opera	-	Opera	Opera	Opera	-	6.286	12,6
7.235	-	-	Opera	Opera	Opera	Opera	7.544	15,1
								0,0
								0,0
								0,0
							Total:	551,1

Bomba (A)		Bomba (B)	
Altura (m):	107	Altura (m):	107
Rend. Turb:	0,9	Rend. Turb:	0,9
Rend. Gen:	0,94	Rend. Gen:	0,94
Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
Pot. Eléctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331

Energía Eléctrica Adicional	Pot.	Tiempo Oper. (h)	Energía
generada por bombeo (MWh)	Eléc.(MW)	r lempo Oper. (ii)	(MWh)
Bomba 1 (A)	0,44	247	109,559
Bomba 2 (A)	0,44	108	47,904
Bomba 1 (B)	1,33	112	149,035
Bomba 2 (B)	1,33	56	74,518
Bomba 3 (B)	1,33	4	5,323
Bomba 4 (B)	1,33	2	2,661
		Total:	389 N

• Junio

Mes: JUNIO

Wwlocidad	Frecuencia	Curva de	Energía Eólica 1	Energía Eólica 5
(m/s)	(h)	Potencia	Aerogenerador	Aerogeneradores
(111/5)	(11)	(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	45	0	0,00	0,00
2	129	0	0,00	0,00
3	159	22	3,50	17,49
4	144	131	18,79	93,96
5	124	310	38,44	192,20
6	53	499	26,45	132,24
7	31	741	22,97	114,86
8	18	1.014	18,25	91,26
9	11	1.298	14,28	71,39
10	6	1.447	8,68	43,41
11	0	1.500	0,00	0,00
12	0	1.500	0,00	0,00
13	0	1.500	0,00	0,00
14	0	1.500	0,00	0,00
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	720		151,36	756,80

ANÁLISIS MENSUAL DE LA ENERGÍA ADICIONAL ENTREGADA POR LA INSTALACIÓN EÓLICA-BOMBEO

Potencia Eólica	Potencia	Potencia	Potencia 1	Potencia	Potencia 3	Potencia 4	Potencia	Energía entregada	Bomba (A)
	1 Bomba (kW)	2 Bomba (kW)	Bomba (kW)	2 Bombas	Bombas (kW)	Bombas (kW)	Operable en	a las Bombas	
Disponible (kW)	628	1256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)	
110	-	-	-	-	-	-			
653	Opera	-	-	-	-	-	628	90,4	Caud
1.550	Opera	Opera	-	-	-	-	1.256	155,7	Pot. Eléctr.
2.495	-	-	Opera	-	-	-	1.886	100,0	
3.705		0	Opera 3.772				116,9	Energía Elé	
3.705		Opera	Opera	Opera	-	-	3.112	110,9	generada poi
5.070	Opera	Opera	Opera	Opera	-	-	5.028	90,5	Bom
6.490	Opera	-	Opera	Opera	Opera	-	6.286	69,1	Bom
7.235	-	-	Opera	Opera	Opera	Opera	7.544	45,3	Bom
								0,0	Bom
								0,0	Bom
								0,0	Bom
							Total:	668,0	

Rend. Turb:	0,9	Rend. Turb:	0,9
Rend. Gen:	0,94	Rend. Gen:	0,94
Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
Pot. Eléctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331
Energía Eléctrica Adicional	Pot.	Tiempo Oper. (h)	Energía
generada por bombeo (MWh)	Eléc.(MW)	r leilipo Oper. (II)	(MWh)
Bomba 1 (A)	0,44	297	131,737
Bomba 2 (A)	0,44	142	62,985
D 1 1 (D)	4.00	440	450.050

107

Altura (m):

Bomba (B)

Altura (m):

107

• Julio

Mes: JULIO

\/wlocidad	Frecuencia	Curva de	Energía Eólica 1	Energía Eólica 5
(m/s) (h)		Potencia	Aerogenerador	Aerogeneradore
(111/5)	(11)	(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	54	0	0,00	0,00
2	117	0	0,00	0,00
3	154	22	3,39	16,94
4	135	131	17,62	88,09
5	94	310	29,14	145,70
6	70	499	34,93	174,65
7	55	741	40,76	203,78
8	37	1.014	37,52	187,59
9	19	1.298	24,66	123,31
10	4	1.447	5,79	28,94
11	4	1.500	6,00	30,00
12	1	1.500	1,50	7,50
13	0	1.500	0,00	0,00
14	0	1.500	0,00	0,00
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	744		201,30	1.006,49

Potencia Eólica	Potencia	Potencia	Potencia	Potencia	Potencia	Potencia	Potencia	Energía entregada
	1 Bomba (kW)	2 Bombas (kW)	1 Bomba (kW)	2 Bombas (kW)	3 Bombas (kW)	4 Bombas (kW)	Operable en	a las Bombas
Disponible (kW)	628	1256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)
110	-	-	-	-	-	-		
653	Opera	-	-	-	-	-	628	84,8
1.550	Opera	Opera	-	-	-	-	1256	118,1
2.495	-	-	Opera	-	-	-	1.886	132,0
3.705	-	-	Opera	Opera	-	-	3.772	207,5
5.070	Opera	Opera	Opera	Opera	-	-	5.028	186,0
6.490	Opera	-	Opera	Opera	Opera	-	6.286	119,4
7.235	-	-	Opera	Opera	Opera	Opera	7.544	30,2
7.500	-	-	Opera	Opera	Opera	Opera	7.544	30,2
7.500	-	-	Opera	Opera	Opera	Opera	7.544	7,5
								0,00
							Total:	915,7

Bomba (A)		Bomba (B)	
Altura (m):	107	Altura (m):	107
Rend. Turb:	0,9	Rend. Turb:	0,9
Rend. Gen:	0,94	Rend. Gen:	0,94
Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
Pot. Eléctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331

Energía Eléctrica Adicional	Pot.	Tiempo Oper. (h)	Energía
generada por bombeo (MWh)	Eléc.(MW)	r tempo Oper. (n)	(MWh)
Bomba 1 (A)	0,44	285	126,414
Bomba 2 (A)	0,44	131	58,106
Bomba 1 (B)	1,33	190	252,828
Bomba 2 (B)	1,33	120	159,681
Bomba 3 (B)	1,33	28	37,259
Bomba 4 (B)	1,33	9	11,976
		Total:	646.3

• Agosto

Mes: AGOSTO

				3
Vwlocidad	Frecuencia	Curva de	Energía Eólica 1	Energía Eólica 5
(m/s)	(h)	Potencia	Aerogenerador	Aerogeneradores
(11110)	()	(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	66	0	0,00	0,00
2	123	0	0,00	0,00
3	147	22	3,23	16,17
4	132	131	17,23	86,13
5	103	310	31,93	159,65
6	66	499	32,93	164,67
7	47	741	34,83	174,14
8	31	1.014	31,43	157,17
9	14	1.298	18,17	90,86
10	12	1.447	17,36	86,82
11	3	1.500	4,50	22,50
12	0	1.500	0,00	0,00
13	0	1.500	0,00	0,00
14	0	1.500	0,00	0,00
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	744		191,62	958,11

	Determine.	Determine 1	Deterrie	Deterrie	Deterrie	D. t	Determin	(F
Potencia Eólica	Potencia	Potencia	Potencia	Potencia	Potencia	Potencia	{	Energía entregada
Disponible (kW)	1 Bomba (kW)	2 Bombas (kW)	1 Bomba (kW)	2 Bombas (kW)	3 Bombas (kW)	4 Bombas (kW)	Operable en	a las Bombas
Dioponible (KTT)	628	1256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)
110	-	-	-	-	-	-		
653	Opera	-	-	-	-	-	628	82,9
1.550	Opera	Opera	-	-	-	-	1256	129,4
2.495	-	-	Opera	-	-	-	1.886	124,5
3.705	-	-	Opera	Opera	-	-	3.772	177,3
5.070	Opera	Opera	Opera	Opera	-	-	5.028	155,9
6.490	Opera	-	Opera	Opera	Opera	-	6.286	88,0
7.235	-	-	Opera	Opera	Opera	Opera	7.544	90,5
7.500	-	-	Opera	Opera	Opera	Opera	7.544	22,6
								0,0
								0,0
							Total:	871,1

Bomba (A)		Bomba (B)	
Altura (m):	107	Altura (m):	107
Rend. Turb:	0,9	Rend. Turb:	0,9
Rend. Gen:	0,94	Rend. Gen:	0,94
Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
Pot. Eléctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331

Energía Eléctrica Adicional	Pot.	Tiempo Oper. (h)	Energía
generada por bombeo (MWh)	Eléc.(MW)	r leilipo Oper. (II)	(MWh)
Bomba 1 (A)	0,44	280	124,196
Bomba 2 (A)	0,44	134	59,437
Bomba 1 (B)	1,33	173	230,206
Bomba 2 (B)	1,33	107	142,382
Bomba 3 (B)	1,33	29	38,590
Bomba 4 (B)	1,33	15	19,960
		Total:	614.8

• Septiembre

Mes: SEPTIEMBRE

\/wlocidad	Frecuencia	Curva de	Energía Eólica 1	Energía Eólica 5
(m/s)	(h)	Potencia	Aerogenerador	Aerogeneradores
(111/5)	(11)	(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	41	0	0,00	0,00
2	102	0	0,00	0,00
3	87	22	1,91	9,57
4	104	131	13,57	67,86
5	87	310	26,97	134,85
6	70	499	34,93	174,65
7	45	741	33,35	166,73
8	41	1.014	41,57	207,87
9	51	1.298	66,20	330,99
10	40	1.447	57,88	289,40
11	21	1.500	31,50	157,50
12	17	1.500	25,50	127,50
13	13	1.500	19,50	97,50
14	1	1.500	1,50	7,50
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	720		354,38	1.771,92

ANÁLISIS MENSUAL DE LA ENERGÍA ADICIONAL ENTREGADA POR LA INSTALACIÓN EÓLICA-BOMBEO

Potencia Eólica	Potencia 1	Potencia 2	Potencia 1	Potencia	Potencia 3	Potencia 4	Potencia	Energía entregada
Disponible (kW)	Bomba (kW)	Bombas (kW)	Bomba (kW)	2 Bombas	Bombas (kW)	Bombas (kW)	Operable en	a las Bombas
Disponible (KW)	628	1256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)
110	-	-	-	-	-	-		
653	Opera	-	-	-	-	-	628	65,3
1.550	Opera	Opera	-	-	-	-	1256	109,3
2.495	-	-	Opera	-	-	-	1.886	132,0
3.705	-	-	Opera	Opera	-	-	3.772	169,7
5.070	Opera	Opera	Opera	Opera	-	-	5.028	206,1
6.490	Opera	-	Opera	Opera	Opera	-	6.286	320,6
7.235	-	-	Opera	Opera	Opera	Opera	7.544	301,8
7.500	-	-	Opera	Opera	Opera	Opera	7.544	158,4
7.500	-	-	Opera	Opera	Opera	Opera	7.544	128,2
7.500	-	-	Opera	Opera	Opera	Opera	7.544	98,1
7.500	-	-	Opera	Opera	Opera	Opera	7.544	7,5
						~~~	Total:	1.697,1

Bomba (A)		Bomba (B)	
Altura (m):	107	Altura (m):	107
Rend. Turb:	0,9	Rend. Turb:	0,9
Rend. Gen:	0,94	Rend. Gen:	0,94
Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
Pot. Eléctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331

Energía Eléctrica Adicional generada por bombeo (MWh)	Pot. Eléc.(MW)	Tiempo Oper. (h)	Energía (MWh)
Bomba 1 (A)	0,44	283	125,527
Bomba 2 (A)	0,44	128	56,775
Bomba 1 (B)	1,33	299	397,871
Bomba 2 (B)	1,33	229	304,724
Bomba 3 (B)	1,33	143	190,286
Bomba 4 (B)	1,33	92	122,422
······		Total:	1197,6

0,7056671

0,957791993 0,6758823

## • Octubre

#### Mes: OCTUBRE

14	Frecuencia	Curva de	Energía Eólica 1	Energía Eólica 5
(m/s)	(h)	Potencia	Aerogenerador	Aerogeneradores
(111/8)	(11)	(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	35	0	0,00	0,00
2	89	0	0,00	0,00
3	106	22	2,33	11,66
4	129	131	16,83	84,17
5	150	310	46,50	232,50
6	90	499	44,91	224,55
7	44	741	32,60	163,02
8	33	1.014	33,46	167,31
9	24	1.298	31,15	155,76
10	21	1.447	30,39	151,94
11	14	1.500	21,00	105,00
12	9	1.500	13,50	67,50
13	0	1.500	0,00	0,00
14	0	1.500	0,00	0,00
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	744		272,68	1.363,41

Potencia Eólica	Potencia 1	Potencia 2	Potencia 1	Potencia	Potencia 3	Potencia 4	Potencia	Energía entregada
Disponible (kW)	Bomba (kW)	Bombas (kW)	Bomba (kW)	2 Bombas	Bombas (kW)	Bombas (kW)	Operable en	a las Bombas
Disponible (KW)	628	1256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)
110	-	-	-	-	-	-		
653	Opera	-	-	-	-	-	628	81,0
1.550	Opera	Opera	-	-	-	-	1256	188,4
2.495	-	-	Opera	-	-	-	1.886	169,7
3.705	-	-	Opera	Opera	-	-	3.772	166,0
5.070	Opera	Opera	Opera	Opera	-	-	5.028	165,9
6.490	Opera	-	Opera	Opera	Opera	-	6.286	150,9
7.235	-	-	Opera	Opera	Opera	Opera	7.544	158,4
7.500	-	-	Opera	Opera	Opera	Opera	7.544	105,6
7.500	-	-	Opera	Opera	Opera	Opera	7.544	67,9
								0,0
								0,0
							Total:	1.253,8

Bomba (A)		Bomba (B)	
Altura (m):	107	Altura (m):	107
Rend. Turb:	0,9	Rend. Turb:	0,9
Rend. Gen:	0,94	Rend. Gen:	0,94
Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
Pot. Eléctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331

Energía Eléctrica Adicional	Pot.	Tiempo Oper. (h)	Energía
generada por bombeo (MWh)	Eléc.(MW)	Tiempo Oper. (ii)	(MWh)
Bomba 1 (A)	0,44	336	149,035
Bomba 2 (A)	0,44	183	81,171
Bomba 1 (B)	1,33	235	312,708
Bomba 2 (B)	1,33	145	192,948
Bomba 3 (B)	1,33	68	90,486
Bomba 4 (B)	1,33	44	58,550
		Total:	884.9

## • Noviembre

#### Mes: NOVIEMBRE

\/wlocidad	Frecuencia	Curva de	Energía Eólica 1	Energía Eólica 5
(m/s)	(h)	Potencia	Aerogenerador	Aerogeneradores
(111/5)	(11)	(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	36	0	0,00	0,00
2	91	0	0,00	0,00
3	88	22	1,94	9,68
4	106	131	13,83	69,17
5	96	310	29,76	148,80
6	87	499	43,41	217,07
7	52	741	38,53	192,66
8	50	1.014	50,70	253,50
9	43	1.298	55,81	279,07
10	40	1.447	57,88	289,40
11	22	1.500	33,00	165,00
12	8	1.500	12,00	60,00
13	1	1.500	1,50	7,50
14	0	1.500	0,00	0,00
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	720		338,37	1.691,84

Potencia Eólica	Potencia 1	Potencia 2	Potencia 1	Potencia	Potencia 3	Potencia 4	Potencia	Energía entregada
	Bomba (kW)	Bombas (kW)	Bomba (kW)	2 Bombas	Bombas (kW)	Bombas (kW)	Operable en	a las Bombas
Disponible (kW)	628	1256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)
110	-	-	-	-	-	-		
653	Opera	-	-	-	-	-	628	66,6
1.550	Opera	Opera		-	-	-	1256	120,6
2.495	-	-	Opera	-	-	-	1.886	164,1
3.705	-	-	Opera	Opera	-	-	3.772	196,1
5.070	Opera	Opera	Opera	Opera	-	-	5.028	251,4
6.490	Opera	-	Opera	Opera	Opera	-	6.286	270,3
7.235	-	-	Opera	Opera	Opera	Opera	7.544	301,8
7.500	-	-	Opera	Opera	Opera	Opera	7.544	166,0
7.500	-	-	Opera	Opera	Opera	Opera	7.544	60,4
7.500	-	-	Opera	Opera	Opera	Opera	7.544	7,5
								0,0
							Total:	1.604.7

Bomba (	A)		Bomba (B)	
	Altura (m):	107	Altura (m):	107
	Rend. Turb:	0,9	Rend. Turb:	0,9
	Rend. Gen:	0,94	Rend. Gen:	0,94
	Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
Pot. E	léctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331

Energía Eléctrica Adicional	cional Pot. Tiempo Oper. (h		Energía
generada por bombeo (MWh)	Eléc.(MW)	r leilipo Oper. (II)	(MWh)
Bomba 1 (A)	0,44	295	130,850
Bomba 2 (A)	0,44	146	64,759
Bomba 1 (B)	1,33	303	403,194
Bomba 2 (B)	1,33	216	287,425
Bomba 3 (B)	1,33	114	151,697
Bomba 4 (B)	1,33	71	94,478
		Total:	1132.4

## • Diciembre

#### Mes: DICIEMBRE

\Aulooidad	Frecuencia	Curva de	Energía Eólica 1	Energía Eólica 5
(m/s)	(h)	Potencia	Aerogenerador	Aerogeneradores
(111/5)	(11)	(kW)	(MWh)	(MWh)
0	0	0	0,00	0,00
1	53	0	0,00	0,00
2	73	0	0,00	0,00
3	90	22	1,98	9,90
4	97	131	12,66	63,29
5	118	310	36,58	182,90
6	90	499	44,91	224,55
7	74	741	54,83	274,17
8	46	1.014	46,64	233,22
9	47	1.298	61,01	305,03
10	33	1.447	47,75	238,76
11	17	1.500	25,50	127,50
12	6	1.500	9,00	45,00
13	0	1.500	0,00	0,00
14	0	1.500	0,00	0,00
15	0	1.500	0,00	0,00
16	0	1.500	0,00	0,00
17	0	1.500	0,00	0,00
18	0	1.500	0,00	0,00
19	0	1.500	0,00	0,00
20	0	1.500	0,00	0,00
Total	744		340,86	1.704,32

Potencia Eólica	Potencia 1	Potencia 2	Potencia 1	Potencia	Potencia 3	Potencia 4	Potencia	Energía entregada
Disponible (kW)	Bomba (kW)	Bombas (kW)	Bomba (kW)	2 Bombas	Bombas (kW)	Bombas (kW)	Operable en	a las Bombas
Disponible (KVV)	628	1256	1.886	3.772	5.658	7.544	Bombas (kW)	(MWh)
110	-	-	-	-	-	-		
653	Opera	-	-	-	-	-	628	60,9
1.550	Opera	Opera	-	-	-	-	1256	148,2
2.495	-	-	Opera	-	-	-	1.886	169,7
3.705	-	-	Opera	Opera	-	-	3.772	279,1
5.070	Opera	Opera	Opera	Opera	-	-	5.028	231,3
6.490	Opera	-	Opera	Opera	Opera	-	6.286	295,4
7.235	-	-	Opera	Opera	Opera	Opera	7.544	249,0
7.500	-	-	Opera	Opera	Opera	Opera	7.544	128,2
7.500	-	-	Opera	Opera	Opera	Opera	7.544	45,3
								0,0
								0,0
							Total:	1.607,2

Bomba (A)		Bomba (B)	
Altura (m):	107	Altura (m):	107
Rend. Turb:	0,9	Rend. Turb:	0,9
Rend. Gen:	0,94	Rend. Gen:	0,94
Caudal/Bomba (m3/s):	0,5	Caudal/Bomba (m3/s):	1,5
Pot. Eléctr. por Bomba (MW):	0,444	Pot. Eléctr. por Bomba (MW):	1,331

Energía Eléctrica Adicional	Pot.	Tiempo Oper. (h)	Energía
generada por bombeo (MWh)	Eléc.(MW)	r leilipo Oper. (II)	(MWh)
Bomba 1 (A)	0,44	308	136,616
Bomba 2 (A)	0,44	164	72,743
Bomba 1 (B)	1,33	313	416,501
Bomba 2 (B)	1,33	223	296,740
Bomba 3 (B)	1,33	103	137,059
Bomba 4 (B)	1,33	56	74,518
		Total:	1134,2