

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE GUAYAQUIL CARRERA DE ELECTRÓNICA Y AUTOMATIZACIÓN

DISEÑO DE UN CONTROLADOR PID CON ANTIWINDUP PARA EL LLENADO DE UN TANQUE DE AGUA USANDO SIMULINK

Trabajo de titulación previo a la obtención del Título de Ingeniero en Electrónica

AUTORES:MARCOS HANNIBAL NORIEGA LEÓNEDUARDO MARCELO SINCHE TACURITUTOR:ING. RAFAEL FRANCO REINA, MSc.

Guayaquil – Ecuador 2024

CERTIFICADO DE RESPONSABILIDAD Y AUTORÍA DEL TRABAJO DE TITULACIÓN

Nosotros, Marcos Hannibal Noriega León con documento de identificación N° 0941655425 y Eduardo Marcelo Sinche Tacuri con documento de identificación N° 0963135836, manifestamos que:

Somos los autores y responsables del presente trabajo; y, autorizamos a que sin fines de lucro la Universidad Politécnica Salesiana pueda usar, difundir, reproducir o publicar de manera total o parcial el presente trabajo de titulación

Guayaquil, 14 febrero del año 2024.

Atentamente,

Marcost Noriega León

Marcos Hannibal Noriega León 0941655425 Eduardo Marcelo Sinche Tacuri 0963135836

CERTIFICADO DE CESIÓN DE DERECHOS DE AUTOR DEL TRABAJO DE TITULACIÓN A LA UNIVERSIDAD POLITÉCNICA SALESIANA

Nosotros, Marcos Hannibal Noriega León con documento de identificación N° 0941655425 y Eduardo Marcelo Sinche Tacuri con documento de identificación N° 0963135836, expresamos nuestra voluntad y por medio del presente documento cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores del Proyecto Técnico: "DISEÑO DE UN CONTROLADOR PID CON ANTIWINDUP PARA EL LLENADO DE UN TANQUE DE AGUA USANDO SIMULINK, el cual ha sido desarrollado para optar por el título de: Ingeniero en Electrónica, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En concordancia con lo manifestado, suscribimos este documento en el momento que hacemos la entrega del trabajo final en formato digital a la Biblioteca de la Universidad Politécnica Salesiana.

Guayaquil, 14 febrero del año 2024.

Atentamente,

Marcost Noriega León

Marcos Hannibal Noriega León 0941655425 Eduardo Marcelo Sinche Tacuri 0963135836

CERTIFICADO DE DIRECCIÓN DEL TRABAJO DE TITULACIÓN

Yo, Rafael Christian Franco Reina con documento de identificación N° 0923328629, docente de la Universidad Politécnica Salesiana, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: DISEÑO DE UN CONTROLADOR PID CON ANTIWINDUP PARA EL LLENADO DE UN TANQUE DE AGUA USANDO SIMULINK, realizado por Marcos Hannibal Noriega con documento de identificación N° 0941655425 y Eduardo Marcelo Sinche Tacuri con documento de identificación N° 0963135836, obteniendo como resultado final el trabajo de titulación bajo la opción de Proyecto Técnico que cumple con todos los requisitos determinados por la Universidad Politécnica Salesiana.

Guayaquil, 14 de febrero del año 2024.

Atentamente,

Ing. Rafael Christian Franco Reina, MSc. 0923328629

DEDICATORIA

A Dios, a mis padres Marcos Noriega y Beatriz León que siempre estuvieron ahí para enseñarme, apoyarme en cada momento importante de mi vida, darme su amor y motivarme para nunca rendirme y siempre seguir adelante y esforzarme en todo lo que me proponga, a mis hermanos que siempre me motivaron para que siga mi carrera, mis Maestros que me enseñaron todo lo que se. Este trabajo de titulación se lo dedico a ellos que han estado a lo largo de mi vida y que sin ellos no fuera lo que soy.

Marcos Hannibal N.

A mis amados padres Edmundo Sinche y Rosario Narcisa, por apoyarme y alentarme en mis proyectos, a mi hermana Lady Karolina y mis hermosas mascotas Sammy y Princesa que siempre han estado conmigo durante tantos años y ahora nuevamente están en mi momento más importante, a mis primos y tíos que siempre estuvieron tanto para mí como para mi familia, sin ellos no hubiera llegado donde estoy ahora.

Eduardo Marcelo S.

AGRADECIMIENTO

Agradezco infinitamente a Dios, la Virgen María, Don Bosco, La niña Narcisa de Jesús por brindarme una maravillosa familia y darme fuerzas para continuar con mis estudios. A mis padres que siempre estuvieron ahí para amarme, motivarme, apoyarme en todos mis propósitos e inculcarme siempre buenos valores. A mis hermanos que estuvieron ahí para motivarme. A mi padrino que me guio en mis primeros pasos.

Marcos Hannibal N.

Agradezco primero a Dios por siempre protegerme día a día y a mis queridos padres que siempre me han apoyado, y a mi hermana que a pesar de todos sus propios problemas siempre me ha ayudado. Mi familia que siempre estuvo ahí para amarme y apoyarme, motivarme en todas mis metas que me he propuesto a lo largo de mi carrera universitaria, sin Dios, la Santa Virgen María y el apoyo de mi familia nunca hubiera llegado al lugar en donde estoy. Eduardo Marcelo S.

Resumen

El presente proyecto de tesis tiene como objetivo abordar los desafíos asociados al control de un sistema de nivel de agua en un tanque, específicamente los problemas de saturación y desbordamiento que pueden surgir en el controlador. Este trabajo, se concentra en identificar y evaluar opciones para mejorar el rendimiento del controlador, con el objetivo de mitigar la saturación y evitar el desbordamiento del nivel de agua en el tanque. La investigación se enfoca en analizar las limitaciones de los actuadores utilizados en el sistema y propone soluciones para optimizar el controlador PID mediante la técnica Anti-Windup.

Para llevar a cabo este análisis, se investigó los métodos AntiWindup y se procedió a realizar la misión de diseñarlo, para ello se utilizó el programa TIA Portal para calcular el control PID y esos valores enviarlos a Simulink/Matlab mediante el software KEPServerEX, es así que, se identifica el sistema, simula e implementa el sistema de llenado de tanques para realizar una evaluación entre los métodos Antiwindup Back Calculation y Clamping con el fin de determinar el más adecuado para optimizar el sistema de control de nivel de agua en el tanque.

Palabras Clave: TIA PORTAL, Controlador PID, KEPServerEX, Simulink, Matlab, Antiwindup, Back Calculation, Clamping.

Abstract

The objective of this thesis project is to address the challenges associated with the control of a water level system in a tank, specifically the saturation and overflow problems that may arise in the controller. This work focuses on identifying and evaluating options to improve the performance of the controller, with the objective of mitigating saturation and avoiding overflow of the water level in the tank. The research focuses on analyzing the limitations of the actuators used in the system and proposes solutions to optimize the PID controller using the Anti-Windup technique. To carry out this analysis, the AntiWindup methods were investigated and the mission of designing it was carried out, for this the TIA Portal program was used to calculate the PID control and those values were sent to Simulink/Matlab through the KEPServerEX software, it is like this that, the system is identified, simulates and implements the tank filling system to carry out an evaluation between the Antiwindup Back Calculation and Clamping methods in order to determine the most appropriate one to optimize the water level control system in the tank.

Keywords: TIA PORTAL, Controlador PID, KEPServerEX, Simulink, Matlab, Antiwindup, Back Calculation, Clamping.

ÍNDICE DE CONTENIDO

Ι	INTRODUCCIÓN1
II	PROBLEMA
III	OBJETIVOS
3.	1 Objetivo General
3.	2 Objetivos Específicos
IV	FUNDAMENTO TEÓRICO4
4.	1 PID (Proporcional, Integral, Derivativo)4
4.	2 Windup5
4.	3 Antiwindup6
4.	4 Simulink7
4.	5 MATLAB
4.	6 Técnica Anti-Windup con el método Back Calculation9
4.	7 Técnica Anti-Windup con el método Clamping10
4.	8 Señal Analógica11
4.	9 Señal Digital12
4.	10 PEPPERL+FUCHS UB-800 GM4013
4.	11 Función de Transferencia14
4.	12 Sistemas de Control Lado Cerrado14
4.	13 Acción proporcional

	4.14	System Identification Matlab	16
	4.15	OPC SERVER KepServer EX 6.6	17
	4.16	Bomba Singflo FL-2402A	18
	4.17	Kaleja D-73553 ALFDORF	19
	4.18	PLC S7-1500 PLC	22
	4.19	TIA Portal	23
	4.20	Profinet	23
	4.21	PID-COMPACT	24
	4.22	Industrial Communication Toolbox	25
	4.23	Modulo AI 8xU/I/RTD/TC ST_1	26
	4.24	Tanques de FESTO	27
V	′ M	IARCO METODOLOGICO	29
	5.1 C	omparación entre los distintos tipos de Anti-Windup	30
	5.2 Pi	reparación de la planta	32
	5.3 D	imensionamiento de actuadores	34
	5.4 Se	elección del controlador Kaleja D-73553 Alfdorf	34
	5.5 C	alibración y procesamiento de la señal del sensor ultrasónico	35
	5.6C	onfiguración de las propiedades del módulo de salida analógica	37
	5.7 Pi	rocesamiento de señales con TIA Portal para el control de nivel del tanque	37
	5.8 T	écnica Antiwindup sobre el sistema de control basado en PID	38

5.9 Configuración del OPC Server41
5.10 Identificación del sistema en SIMULINK46
5.11 Aplicación de la técnica AntiWindup sobre el PID53
5.12 Implementación en Simulink de valores PID y técnica Antiwindup56
5.12.1 Modelado del PID aplicando el método AntiWindup Back Calculation57
5.12.2 Modelado del PID aplicando el método AntiWindup Clamping59
VI RESULTADOS61
6.1 Análisis entre los mecanismos de control PID Sin Antiwindup y Con Antiwindup
aplicando el método de Back calculation61
6.2 Análisis entre los mecanismos de control PID Sin Antiwindup y Con Antiwindup
aplicando el método de Clamping64
6.3 Análisis entre los mecanismos de control PID con Antiwindup usando los métodos
Back calculation y Clamping
6.4 Análisis de la Implementación del mecanismo de control PID con Antiwindup
aplicando el método de back calculation67
6.5 Análisis de la Implementación del mecanismo de control PID con Antiwindup
aplicando el método Clamping69
6.6 Análisis comparativo simulado vs implementado usando Antiwindup Back
calculation71
VII CRONOGRAMA
VIII PRESUPUESTO

IX	CONCLUSIONES	.74
Х	RECOMENDACIONES	.76
XI	REFERENCIAS	.78
XII	ANEXO	.84

INDICE DE FIGURA

FIGURA 1. MODELO DE ESTRUCTURA DE UN SISTEMA DE CONTROL EN LAZO CERRADO (CARLOS PARDO MARTÍN,

2018)	4
FIGURA 2. CONTROLADOR PI SIN APLICAR LA TÉCNICA ANTI-WINDUP (TUMMALA ET AL., 2017)	5
FIGURA 3. CONTROLADOR PI APLICANDO LA TÉCNICA ANTI-WINDUP (TUMMALA ET AL., 2017)	6
FIGURA 4. CREACIÓN DE UN MODELO SIMPLE USANDO SIMULINK (MATHWORKS, 2020)	7
FIGURA 5. EJEMPLO DE IMPLEMENTACIÓN DE FUNCIONES EN MATLAB (MATHWORKS, 2021)	8
FIGURA 6. DIAGRAMA DE BLOQUES DEL INTEGRADOR ANTI-WINDUP BACK CALCULATION (ENGIN, 2016)	9
FIGURA. 7 DIAGRAMA DE BLOQUES ANTI-WINDUP CON EL MÉTODO CLAMPING (JALIL ET AL., 2021)	10
FIGURA 8. SEÑAL ANALÓGICA (UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO, 2015)	11
FIGURA 9. SEÑAL DIGITAL (UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO, 2015)	12
FIGURA 10. SENSOR ULTRASÓNICO UB800 (PEPPERL+FUCHS, 2014)	13
FIGURA 11. CONEXIONES DE LOS PINES DEL SENSOR UB800 (PEPPERL+FUCHS, 2014)	14
FIGURA 12. DIAGRAMA DE BLOQUE DE UN SISTEMA EN LAZO CERRADO (DADEMUCHCONNECTION, 2020)	15
FIGURA 13. REPRESENTACIONES GRAFICAS QUE ILUSTRAN EL IMPACTO DE LA ACCIÓN PROPORCIONAL (CARLO	OS
FIGURA 13. REPRESENTACIONES GRAFICAS QUE ILUSTRAN EL IMPACTO DE LA ACCIÓN PROPORCIONAL (CARLO PARDO MARTÍN, 2018)	OS 16
FIGURA 13. REPRESENTACIONES GRAFICAS QUE ILUSTRAN EL IMPACTO DE LA ACCIÓN PROPORCIONAL (CARLO PARDO MARTÍN, 2018) FIGURA 14. APP SYSTEM IDENTIFICATION (MATHWORKS, 2020)	OS 16 17
FIGURA 13. REPRESENTACIONES GRAFICAS QUE ILUSTRAN EL IMPACTO DE LA ACCIÓN PROPORCIONAL (CARLO PARDO MARTÍN, 2018) FIGURA 14. APP SYSTEM IDENTIFICATION (MATHWORKS, 2020) FIGURA 15. CONFIGURACIÓN DE CONEXIONES DEL KEPSERVER (KEPWARE*KEPSERVEREX, 2019)	OS 16 17 18
FIGURA 13. REPRESENTACIONES GRAFICAS QUE ILUSTRAN EL IMPACTO DE LA ACCIÓN PROPORCIONAL (CARLO PARDO MARTÍN, 2018) FIGURA 14. APP SYSTEM IDENTIFICATION (MATHWORKS, 2020). FIGURA 15. CONFIGURACIÓN DE CONEXIONES DEL KEPSERVER (KEPWARE*KEPSERVEREX, 2019) FIGURA 16. BOMBA SINGFLO FL-2402A (SINGFLO, 2018).	OS 16 17 18 19
FIGURA 13. REPRESENTACIONES GRAFICAS QUE ILUSTRAN EL IMPACTO DE LA ACCIÓN PROPORCIONAL (CARLO PARDO MARTÍN, 2018) FIGURA 14. APP SYSTEM IDENTIFICATION (MATHWORKS, 2020). FIGURA 15. CONFIGURACIÓN DE CONEXIONES DEL KEPSERVER (KEPWARE*KEPSERVEREX, 2019) FIGURA 16. BOMBA SINGFLO FL-2402A (SINGFLO, 2018). FIGURA 17. ESPECIFICACIONES TÉCNICAS (SINGFLO, 2018)	OS 16 17 18 19 19
FIGURA 13. REPRESENTACIONES GRAFICAS QUE ILUSTRAN EL IMPACTO DE LA ACCIÓN PROPORCIONAL (CARLO PARDO MARTÍN, 2018) FIGURA 14. APP SYSTEM IDENTIFICATION (MATHWORKS, 2020) FIGURA 15. CONFIGURACIÓN DE CONEXIONES DEL KEPSERVER (KEPWARE*KEPSERVEREX, 2019) FIGURA 16. BOMBA SINGFLO FL-2402A (SINGFLO, 2018) FIGURA 17. ESPECIFICACIONES TÉCNICAS (SINGFLO, 2018) FIGURA 18. CONTROLADOR KALEJA D-73553 (KALEJA, 2018)	OS 16 17 18 19 19 21
 FIGURA 13. REPRESENTACIONES GRAFICAS QUE ILUSTRAN EL IMPACTO DE LA ACCIÓN PROPORCIONAL (CARLO PARDO MARTÍN, 2018) FIGURA 14. APP SYSTEM IDENTIFICATION (MATHWORKS, 2020). FIGURA 15. CONFIGURACIÓN DE CONEXIONES DEL KEPSERVER (KEPWARE*KEPSERVEREX, 2019) FIGURA 16. BOMBA SINGFLO FL-2402A (SINGFLO, 2018) FIGURA 17. ESPECIFICACIONES TÉCNICAS (SINGFLO, 2018) FIGURA 18. CONTROLADOR KALEJA D-73553 (KALEJA, 2018) FIGURA 19. CONEXIONES DEL CONTROLADOR KALEJA D-73553 (KALEJA GMBH, 2018) 	OS 16 17 18 19 19 21 21
 FIGURA 13. REPRESENTACIONES GRAFICAS QUE ILUSTRAN EL IMPACTO DE LA ACCIÓN PROPORCIONAL (CARLO PARDO MARTÍN, 2018) FIGURA 14. APP SYSTEM IDENTIFICATION (MATHWORKS, 2020). FIGURA 15. CONFIGURACIÓN DE CONEXIONES DEL KEPSERVER (KEPWARE*KEPSERVEREX, 2019) FIGURA 16. BOMBA SINGFLO FL-2402A (SINGFLO, 2018) FIGURA 17. ESPECIFICACIONES TÉCNICAS (SINGFLO, 2018) FIGURA 18. CONTROLADOR KALEJA D-73553 (KALEJA, 2018) FIGURA 19. CONEXIONES DEL CONTROLADOR KALEJA D-73553 (KALEJA GMBH, 2018) FIGURA 20. SIMATIC S7-1500 (SIEMENS, 2023) 	OS 16 17 18 19 21 21 22
 FIGURA 13. REPRESENTACIONES GRAFICAS QUE ILUSTRAN EL IMPACTO DE LA ACCIÓN PROPORCIONAL (CARLO PARDO MARTÍN, 2018) FIGURA 14. APP SYSTEM IDENTIFICATION (MATHWORKS, 2020)	OS 16 17 18 19 21 21 22 24
 FIGURA 13. REPRESENTACIONES GRAFICAS QUE ILUSTRAN EL IMPACTO DE LA ACCIÓN PROPORCIONAL (CARLO PARDO MARTÍN, 2018) FIGURA 14. APP SYSTEM IDENTIFICATION (MATHWORKS, 2020) FIGURA 15. CONFIGURACIÓN DE CONEXIONES DEL KEPSERVER (KEPWARE*KEPSERVEREX, 2019) FIGURA 16. BOMBA SINGFLO FL-2402A (SINGFLO, 2018) FIGURA 17. ESPECIFICACIONES TÉCNICAS (SINGFLO, 2018) FIGURA 18. CONTROLADOR KALEJA D-73553 (KALEJA, 2018) FIGURA 19. CONEXIONES DEL CONTROLADOR KALEJA D-73553 (KALEJA GMBH, 2018) FIGURA 20. SIMATIC S7-1500 (SIEMENS, 2023) FIGURA 21. CONEXIÓN TIPO PROFINET (PROFINET VERSUS OPC, 2020) FIGURA 22. DIAGRAMA DEL PID COMPACT (INFOPLC, 2020) 	OS 16 17 18 19 21 21 21 22 24 25

FIGURA 24. MODULO AI 8XU/I/RTD/TC ST_1 (SIEMENS, 2014)	27
FIGURA 25. MODULO TANQUE TANQUE FESTO (TORRES & CHANOLUISA, 2015)	
FIGURA 26. ESQUEMA DE CONEXIONES	
FIGURA 27. MUESTRA LA COMPARACIÓN ENTRE EL PUNTO DE REFERENCIA Y LA SALIDA MEDI	DA SIN UTILIZAR
TÉCNICAS DE ANTIWINDUP (MATHWORKS, 2020)	
FIGURA 28. VISUALIZACIÓN DE LA CURVA CON LIMITACIÓN INMEDIATA	
FIGURA 29. IMPLEMENTACIÓN DEL MÓDULO DE LLENADO DE TANQUES	
FIGURA 30. DIAGRAMA DE CONEXIONES (REYES & ROLDÁN, 2021)	
FIGURA 31. BOMBA DE AGUA SINGFLO FL-2402A	
FIGURA 32. INSTALACIÓN DEL CONTROLADOR KALEJA D-73553 ALFDORF	
FIGURA 33. CALIBRACIÓN DEL SENSOR ULTRASÓNICO	
FIGURA 34. MANUAL DE CONEXIONES DEL MÓDULO AI 8XU/I/RTD/TC ST (SIEMENS, 2018)	
FIGURA 35. CONEXIÓN DE LA ENTRADA ANALÓGICA DE CORRIENTE DEL MÓDULO DEL PLC	
FIGURA 36. CONFIGURACIONES REALIZADAS EN EL CANAL 0	
FIGURA 37. BLOQUE DE NIVEL EN FUNCIÓN A LA DISTANCIA	
FIGURA 38. CONFIGURACIÓN DEL PID COMPACT	
FIGURA 39. CONFIGURACIÓN DEL PID COMPACT	
FIGURA 40. AJUSTE DE CONTROLADOR CON OPTIMIZACIÓN FINA	
FIGURA 41. PARÁMETROS DEL CONTROLADOR	
FIGURA 42. PROGRAMACIÓN FINAL DEL TIA PORTAL	
FIGURA 43. CONEXIÓN ENTRE SIMULINK Y MATLAB UTILIZANDO KEPSERVER	
FIGURA 44. CONFIGURACIÓN DE CONEXIÓN OPC USANDO EL CANAL SIEMENS TCP/IP ETHERN	IET ENTRE SIMULINK
Y TIA PORTAL	
FIGURA 45. ASIGNACIÓN DE CANAL	
FIGURA 46. VALORES PREDETERMINADOS SIN CAMBIO ALGUNO	
FIGURA 47. AJUSTES PREDETERMINADOS	
FIGURA 48. CONFIGURACIÓN DE BIG ENDIAN	

FIGURA 49. FINALIZACIÓN DEL PROCESO	45
FIGURA 50. CONFIGURACIÓN DE ETIQUETAS	45
FIGURA 51. CONFIGURACIÓN DE ETIQUETAS PARA EL PROGRAMA MATLAB	46
FIGURA 52. INSTALACIÓN DE LIBRERÍA COMMUNICATION TOOLBOX	46
FIGURA 53. BLOQUE OPC CONFIGURATION BLOCK	47
FIGURA 54. PARÁMETRO DE CONFIGURACIONES DEL OPC CLIENT	
FIGURA 55. TRANSFERENCIA DE DATOS	
FIGURA 56. OPC READ	
FIGURA 57. ETIQUETACIÓN EL SENSOR	49
FIGURA 58. MUESTRA FINAL DEL PROCESO DE SELECCIÓN	49
FIGURA 59. SEÑAL PRBS AGREGADO AL SISTEMA	50
FIGURA 60. MUESTREO DE GRAFICA USANDO LA SEÑAL PRBS (RAUL RIVAS-PEREZ, 2018)	50
FIGURA 61. DATOS OBTENIDOS DEL WORKSPACE	51
FIGURA 62. DATOS DE ENTRADA Y SALIDA	51
FIGURA. 63 SELECCIÓN DE DATOS EN EL DOMINIO DEL TIEMPO	52
FIGURA 64. AJUSTE DEL SISTEMA DE LA FUNCIÓN DE TRASFERENCIA	52
FIGURA 65. FUNCIÓN DE TRANSFERENCIA	52
FIGURA 66. PID NORMAL VS PID APLICANDO ANTIWINDUP BACK CALCULATION	53
FIGURA 67. PID SIN APLICAR EL MÉTODO ANTIWINDUP	53
FIGURA 68. PID CON ANTIWINDUP APLICANDO EL MÉTODO DE BACK CALCULATION	54
FIGURA 69. USO DEL ANTIWINDUP CON EL MÉTODO CLAMPING	55
FIGURA 70. CONTROLADOR PID CON ANTIWINDUP APLICANDO EL MÉTODO CLAMPING	55
FIGURA 71. COMPARACIÓN ENTRE MODELOS DE CONTROL ANTIWINDUP	56
FIGURA 72. MODELO SIN TÉCNICA ANTIWINDUP	57
FIGURA 73. APLICANDO EL MÉTODO BACK CALCULATION	58
FIGURA 74. CONTROLADOR PID CON ANTIWINDUP APLICANDO EL MÉTODO CLAMPING	60
FIGURA 75. ELIMINACIÓN DE PICOS EN EL SISTEMA	61

FIGURA 76. MEJORA DEL SISTEMA	64
FIGURA 77. MÉTODO CLAMPING	66
FIGURA 78. MÉTODO BACK CALCULATION	66
FIGURA 79. CONTROL PID SIN ANTIWINDUP	67
FIGURA 80. ESTABILIZACIÓN DEL CONTROL PID CON BACK CALCULATION	67
FIGURA 81. PID CON EL MÉTODO ANTIWINDUP CLAMPING	69
FIGURA 82. CRONOGRAMA DE ACTIVIDADES PARA EL DESARROLLO DEL PROYECTO DE TITULACIÓN	72

Índice de Tablas

TABLA 1	
TABLA 2	
TABLA 3	65
TABLA 4	
TABLA 5	70
TABLA 6	73

I INTRODUCCIÓN

Este trabajo de grado pretende analizar la eficiencia de los controladores Antiwindup al momento de presentarse una sobresaturación de la componente integral que se genera en los controladores PID o conocido como fenómeno Windup al momento de diseñar controladores PID de respuesta rápida. Hay métodos para diseñar un control AntiWindup en la investigación se identifica los métodos y se realiza su respectiva comparativa con el fin de determinar cuál método es el mejor para mitigar el fenómeno Windup del sistema de llenado de tanque de nivel. Además, se realiza una implementación del controlador AntiWindup en un tanque de llenado existente en la Universidad Politécnica Salesiana. En síntesis, se analizó los métodos AntiWindup y se realizó una comparativa entre la simulación y la implementación del tanque de llenado de agua.

II PROBLEMA

Un estudio de la empresa Ipromor, realizado entre sus clientes de maquinaria de envasado, revela que, en las industrias de embotellado, El desnivel de líquido en un envase es una de las principales causas de rechazo de este (Ipromor packing solutions, 2020), se toma en consideración las limitaciones de los actuadores, cuando esto ocurre la componente proporcional no tiene como inyectar más al sistema, en su lugar incrementa la parte integral en base a los datos previos del error que se almacenan en el sistema, este efecto se conoce como Windup. La aplicación de controladores PID en sistemas con limitaciones en los actuadores puede ocasionar un bajo rendimiento del sistema de control e inestabilidad en la respuesta en lazo cerrado. Por esta razón, se reconoce la necesidad de explorar y desarrollar estrategias de control mejoradas que aborden eficazmente esta situación.

III OBJETIVOS

3.1 Objetivo General

Diseñar e implementar el método AntiWindup en un controlador PID para el llenado de tanque de agua mediante el programa Simulink.

3.2 Objetivos Específicos

- Analizar las técnicas Anti-Windup para controladores de acción integral que se ajusten al modelo de llenado de tanque.
- Realizar la técnica Antiwindup sobre el sistema de control basado en PID para descargar la acción integral y conseguir una respuesta rápida de la variable controlada.
- Implementar el script en Simulink con los valores del PID y la técnica Anti-Windup.
- Evaluar el sistema de control de llenado de tanque de agua según los datos obtenidos con la finalidad de comparar el método Anti-Windup.

IV FUNDAMENTO TEÓRICO

4.1 PID (Proporcional, Integral, Derivativo)

El control PID, es un tipo de mecanismo de control el cual se utiliza para regular y estabilizar una variable de proceso en un sistema. La variable de proceso se refiere a una medida física del sistema, captada por un sensor especializado. En cada ciclo de control, el controlador PID realiza una evaluación del "error", que representa la discrepancia entre el valor de ajuste deseado "Set Point" y la salida del proceso. Con base en este cálculo, el controlador emite una señal al actuador correspondiente, con el objetivo de minimizar dicho error y optimizar el rendimiento global del sistema. Este enfoque de control proporciona una solución efectiva para regular variables de proceso en tiempo real, ya que el controlador PID tiene en cuenta tres componentes clave: proporcional, integral y derivativo, presente en la figura 1. La parte proporcional ajusta la salida del controlador en base al valor de error actual, mientras que la parte integral considera la suma acumulativa de los errores pasados para corregir desviaciones persistentes (VELÁSQUEZ & CARVAJAL, 2022).

Figura 1. Modelo de estructura de un sistema de control en lazo cerrado (Carlos Pardo Martín, 2018)

4.2 Windup

El "Windup", es un fenómeno presente en sistemas de control cuando la salida del controlador alcanza su valor máximo debido a las restricciones físicas del actuador. En estas circunstancias, la componente integral del controlador PID continúa integrando el error de control, lo que da lugar a un incremento significativo en la componente integral. A medida que la componente integral sigue acumulando integración, se genera un exceso de energía o acción correctiva en el controlador. Sin embargo, debido a las limitaciones impuestas por el actuador, la salida del controlador no puede superar su valor máximo establecido. Como resultado, la salida del controlador se satura, lo que impide que el sistema siga la respuesta deseada y puede ocasionar una respuesta lenta o inestable. Es importante destacar que este fenómeno de "Windup" puede tener consecuencias significativas en el rendimiento del sistema de control. La acumulación de energía o acción correctiva no utilizada puede generar una respuesta no deseada cuando las restricciones físicas del actuador limitan la capacidad del controlador para alcanzar los valores de salida deseados. Para mitigar el efecto del "Windup" y evitar problemas asociados, se han desarrollado diversas técnicas y estrategias en el ámbito del control PID (Okelola et al., 2021). En la figura 2 se aprecia el controlador PID sin ninguna técnica integrada.

Figura 2. Controlador PI sin aplicar la técnica Anti-Windup (Tummala et al., 2017)

4.3 Antiwindup

El AntiWindup es una estrategia utilizada en controladores PID para contrarrestar los efectos negativos del Windup. Su objetivo principal es evitar la acumulación desproporcionada de la componente integral del controlador cuando las limitaciones del sistema impiden que este alcance la salida deseada. En situaciones donde el actuador o el sistema se encuentran restringidos en su capacidad de respuesta, el controlador puede generar una señal de control que excede los límites permitidos. Esto puede ocurrir, por ejemplo, cuando el actuador alcanza su límite físico máximo o cuando existen restricciones operativas específicas. El método AntiWindup se implementa para abordar este problema al introducir técnicas que limitan o ajustan la acción integral del controlador, como se muestra en la figura 3, que muestra una gráfica aplicando la técnica AntiWindup en un controlador PID. Estas técnicas pueden incluir la modificación de los términos de ganancia, la saturación de la señal de control o la introducción de componentes adicionales al controlador para evitar la acumulación excesiva. Al aplicar el AntiWindup, se busca mantener la estabilidad y mejorar la capacidad de respuesta del sistema de control, incluso cuando se presentan restricciones o limitaciones (Okelola et al., 2021).

Figura 3. Controlador PI aplicando la técnica Anti-Windup (Tummala et al., 2017)

4.4 Simulink

El software Simulink es una herramienta versátil que se utiliza en conjunto con MATLAB para el modelado y análisis exhaustivo de sistemas dinámicos. Este entorno de simulación gráfica ofrece una interfaz intuitiva y eficiente al basarse en la interconexión visual de bloques que representan los distintos componentes del sistema en estudio. Con Simulink, los ingenieros y científicos tienen la capacidad de construir modelos sumamente complejos, abarcando una amplia gama de sistemas, desde sistemas de control hasta procesos físicos y sistemas electrónicos. La principal ventaja de Simulink radica en su enfoque visual, ya que su interfaz gráfica permite una representación clara y comprensible de los sistemas en estudio. Esto facilita la visualización y comprensión del comportamiento de los sistemas, lo que a su vez facilita la tarea de realizar diseños detallados y tomar decisiones fundamentadas. Al emplear Simulink, los usuarios pueden simular y analizar sistemas de diversa naturaleza, explorando su comportamiento en diferentes condiciones y escenarios. Esto resulta especialmente valioso en el ámbito de la ingeniería y la investigación científica, ya que permite evaluar el rendimiento, la estabilidad y la eficiencia de los sistemas antes de implementarlos en el mundo real (MathWorks, 2022). La figura 4 muestra un tipo de modelo que se puede realizar en Simulink.

Figura 4. Creación de un modelo simple usando Simulink (MathWorks, 2020)

4.5 MATLAB

MATLAB es un entorno de desarrollo integrado y software numérico ampliamente utilizado que ofrece una amplia gama de herramientas para análisis numéricos, visualización de datos y modelado matemático. Con su interfaz intuitiva y potentes capacidades, MATLAB se convierte en un laboratorio virtual que permite a los usuarios realizar una variedad de tareas relacionadas con cálculos y manipulación de datos. Además de su funcionalidad básica, MATLAB se destaca por su integración con Simulink, otro componente clave de la plataforma. Simulink amplía las capacidades de MATLAB al proporcionar un entorno gráfico para el modelado y la simulación de sistemas dinámicos, lo que permite a los usuarios crear modelos precisos y detallados de procesos complejos. La combinación de MATLAB y Simulink crea una plataforma integral que abarca desde el análisis numérico hasta la simulación avanzada (Moler & Little, 2020). La figura 5 muestra una de las modalidades que se puede programar en Matlab.

🔁 call_stats_block2 🕨 📣 MATLAB Function 🗸 🔻					
1	F	<pre>function [mean, stdev] = stats(vals)</pre>	\bigcirc		
2 3	¢.	% Calculates a statistical mean and a standard			
4	-	% deviation for the values in vals.			
6		<pre>len = length(vals);</pre>			
8		<pre>mean = avg(vals,len); stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);</pre>			
9	L	<pre>plot(vals,"-+");</pre>			
11	Ę	<pre>function mean = avg(array,size)</pre>			
12 13	L	mean = sum(array)/size;			

Figura 5. Ejemplo de Implementación de funciones en MATLAB (MathWorks, 2021)

4.6 Técnica Anti-Windup con el método Back Calculation

La técnica anti-Windup con el método Back Calculation, figura 6, implica una estrategia en la cual la señal de control se recalcula cuando se opera en los límites de saturación del actuador. Este enfoque permite obtener un nuevo valor para la integración, lo cual resulta en una salida que se encuentra dentro de los límites de saturación establecidos. Además del camino de control principal, este método incorpora un camino de retroalimentación adicional que mide la diferencia entre la salida del controlador y la salida real del actuador. Cuando el actuador no se encuentra saturado, la señal de retroalimentación adicional es nula, lo que indica que no tiene ningún impacto en el proceso de control. Sin embargo, cuando el actuador alcanza los límites de saturación, esta señal de retroalimentación adicional se vuelve relevante. En ese momento, se utiliza para recalcular la parte integral del controlador, lo que permite ajustar la señal de control y mantenerla dentro de los límites de saturación establecidos. De esta manera, se evita el fenómeno de Windup y se garantiza una respuesta de control más efectiva (Sony Cahya Pratama & Erwin Susanto, 2016).

Figura 6. Diagrama de bloques del integrador Anti-Windup Back Calculation (Engin, 2016)

4.7 Técnica Anti-Windup con el método Clamping

La técnica anti-Windup con el método Clamping implica la incorporación de componentes de conmutación a la sección integral del controlador PID. Estos componentes desempeñan un papel crucial al detener o limitar la integración cuando la señal del controlador excede un límite predefinido de saturación. Este enfoque tiene como objetivo mitigar los efectos negativos del fenómeno de Windup, que puede surgir cuando el controlador se ve superado por condiciones de operación extremas. Al aplicar el método Clamping, figura 7, se establece un umbral de saturación que actúa como una barrera para evitar que la señal del controlador se dispare más allá de un nivel aceptable. Cuando esta barrera es alcanzada, los elementos de conmutación entran en acción, interrumpiendo o limitando la integración de la parte integral del controlador. En este procedimiento, se procede a inactivar la mencionada acción al establecer su valor en cero una vez que se han alcanzado los límites predefinidos del controlador (David Páez Ramírez & Juan Pablo Romero Camacho, 2021).

Figura. 7 Diagrama de bloques Anti-Windup con el método Clamping (Jalil et al., 2021)

4.8 Señal Analógica

Una señal analógica se caracteriza por experimentar cambios continuos a lo largo del tiempo, a diferencia de las señales digitales que solo pueden tener valores discretos. Las señales analógicas son comunes en la representación de magnitudes físicas como temperatura, y humedad, ya que pueden tomar cualquier valor dentro de un rango específico. Por otro lado, las señales digitales se limitan a dos posibles valores. En el caso de las señales eléctricas analógicas, cuando los valores de voltaje o tensión fluctúan en forma de corriente alterna, se genera una señal eléctrica analógica. Estas señales se utilizan ampliamente en áreas como la electrónica, la comunicación y la instrumentación, debido a su capacidad para representar con precisión y de manera continua las variaciones en una magnitud física. Las señales analógicas se destacan por su representación más precisa y detallada de los cambios en una magnitud a lo largo del tiempo, ya que no están limitadas a valores discretos. Esto las hace especialmente adecuadas para aplicaciones en las que se requiere una medición precisa y una respuesta continua a las variaciones del entorno (Miyara & Nacional De Rosario, 2004).

En la figura 8 se puede apreciar que los valores de voltaje exhiben fluctuaciones características de una corriente alterna, lo cual genera una señal eléctrica analógica (Universidad Autónoma del Estado de Hidalgo, 2015).

Figura 8. Señal Analógica (Universidad Autónoma del Estado de Hidalgo, 2015)

4.9 Señal Digital

Una señal digital se distingue por su variación discontinua en el tiempo y su capacidad para tomar valores discretos. La forma más común de una señal digital es una onda cuadrada o pulsos, figura 9, y se representa en el dominio del tiempo. Las señales digitales se utilizan para transmitir información de diversas formas, dependiendo del número de estados distintos que puedan asumir. Cuando solo hay dos estados posibles, se llaman señales binarias; si hay tres estados posibles, se conocen como señales ternarias; si hay cuatro estados posibles, se llaman señales cuaternarias, y así sucesivamente. Estos diferentes modos de representación se basan en grupos de unos y ceros, que constituyen el contenido lógico de la información transmitida por la señal. Esta propiedad de la señal digital es fundamental en muchos sistemas de comunicación y procesamiento de información, ya que permite una codificación precisa y confiable de los datos. La representación de información en forma de señales digitales tiene varias ventajas, como una mayor resistencia al ruido, así como una capacidad eficiente de almacenamiento y procesamiento (Miyara & Nacional De Rosario, 2004).

Además, las señales digitales pueden ser fácilmente manipuladas y procesadas por dispositivos electrónicos, lo que brinda flexibilidad y versatilidad en su aplicación (Universidad Autónoma del Estado de Hidalgo, 2015).

Figura 9. Señal Digital (Universidad Autónoma del Estado de Hidalgo, 2015)

4.10 PEPPERL+FUCHS UB-800 GM40

El controlador PEPPERL+FUCHS UB800 representa una solución avanzada de barrera ultrasónica diseñada específicamente para aplicaciones industriales que requieren una detección precisa y confiable de objetos. Este controlador utiliza la tecnología de ultrasonido para detectar objetos dentro de su rango de alcance. Al emitir pulsos ultrasónicos y medir el tiempo que tarda en recibir el eco de vuelta, el UB800 puede determinar con precisión la distancia al objeto detectado. Esta tecnología ofrece ventajas significativas, como la capacidad de detectar objetos transparentes, inmunidad a la interferencia de la luz ambiente y operación confiable en entornos industriales exigentes. Además, el UB800 proporciona opciones de ajuste de sensibilidad, configuraciones de temporización y una variedad de modos de operación para adaptarse a diferentes requisitos de detección. También cuenta con salidas de relé y salidas analógicas, lo que permite una integración sencilla con otros sistemas y dispositivos de control. Es importante destacar que el sensor está equipado con indicadores LED de tres colores: verde para estado encendido, amarillo para estado permanente de censado y rojo para indicar averías (CARRIÓN VERDEZOTO & PAZMIÑO CÁCERES, 2018).En la figura 10 y 11 se muestra el sensor ultrasónico UB800 y su modo de conexiones y la representación de cada pin.

Figura 10. Sensor ultrasónico UB800 (PEPPERL+FUCHS, 2014)

Figura 11. Conexiones de los pines del sensor UB800 (PEPPERL+FUCHS, 2014)

4.11 Función de Transferencia

La representación de una función de transferencia se fundamenta en un sistema que es lineal e invariante en el tiempo, y se modela mediante ecuaciones diferenciales lineales con coeficientes constantes, figura 65. La función de transferencia es una herramienta eficaz para describir este tipo de sistemas. Surge a partir del concepto de convolución integral y se utiliza para caracterizar la respuesta del sistema ante cualquier señal de entrada arbitraria, a través del conocimiento de su respuesta al impulso. La función de transferencia permite relacionar la entrada y la salida de un sistema de manera matemática. Proporciona una representación simplificada del comportamiento del sistema, al expresar la relación entre la transformada de Laplace de la salida y la transformada de Laplace de la entrada. Al conocer la función de transferencia de un sistema, se pueden analizar sus propiedades, como la estabilidad, la respuesta en frecuencia y la respuesta transitoria (H Franco, 2018).

4.12 Sistemas de Control Lado Cerrado

En un sistema de control en lazo cerrado, se establece una conexión de retroalimentación continua entre el controlador y el proceso que está siendo controlado. Esta retroalimentación consiste en utilizar la información proveniente de la señal de realimentación, que brinda datos sobre el estado actual del sistema, con el fin de evaluar y corregir el rendimiento del controlador. La señal de error de actuación, que se obtiene al calcular la diferencia entre la señal de entrada y

la señal de realimentación, desempeña un papel fundamental en el ajuste y mejora del control del sistema. En este tipo de configuración, el sistema de control en lazo cerrado permite una mayor precisión y capacidad de respuesta en comparación con los sistemas de control en lazo abierto. La retroalimentación continua permite al controlador realizar ajustes en tiempo real con base en la información actualizada del sistema, lo que permite corregir desviaciones y mantener el sistema en un estado deseado (OGATA, 1997). En la figura 12 se muestra un diagrama de bloques de un sistema de control en lazo cerrado.

Figura 12. Diagrama de bloque de un sistema en lazo cerrado (dademuchconnection, 2020)

4.13 Acción proporcional

La acción proporcional explica que este tipo de acción de control es proporcional a una señal de error. La acción proporcional tiene como fin intentar disminuir el error del sistema. Cuando existe una discrepancia significativa entre el valor deseado y el valor real, la acción de control correspondiente es proporcionalmente mayor y está orientada a reducir al mínimo dicho error. Cuando se aplica una acción proporcional pequeña con un valor de Kp=2, el sistema se caracteriza por una respuesta lenta, ya que requiere aproximadamente 20 segundos para alcanzar la posición deseada. Además, el error de posición es considerable, con un valor de 50 milímetros. A medida que se incrementa la acción proporcional aumentando el valor de Kp, el error disminuye gradualmente y la velocidad de respuesta del sistema se incrementa. Por ejemplo, cuando se utiliza

una ganancia proporcional de Kp=20, el sistema se vuelve más rápido y solo requiere alrededor de 12 segundos para estabilizarse en la posición permanente deseada (Huamaní & EDERICK Villa El Salvador, 2017). Figura 13, graficas de control proporcional con los valores antes mencionados.

Figura 13. Representaciones graficas que ilustran el impacto de la acción proporcional (Carlos Pardo Martín, 2018)

4.14 System Identification Matlab

En el entorno de Matlab, incluye la herramienta System Identification Toolbox, la cual resulta invaluable en el proceso de identificación de sistemas, figura 14. Esta herramienta permite modelar sistemas dinámicos y analizar series temporales, para poder realizar predicciones. Se puede emplear datos en el dominio del tiempo o de la frecuencia para llevar a cabo estos análisis. Un aspecto destacado es que esta herramienta permite realizar pronósticos precisos en series de tiempo Y otros métodos de modelado autorregresivo, tanto lineal como no lineal. Esto brinda la capacidad de obtener predicciones confiables y precisas para las series de tiempo (MathWorks, 2020).

Figura 14. App System Identification (MathWorks, 2020).

4.15 OPC SERVER KepServer EX 6.6

El software KEPServerEx 6.6 es una plataforma de conectividad ampliamente utilizada que brinda la capacidad de establecer conexiones, administrar y controlar el monitoreo de dispositivos a través de una interfaz de usuario intuitiva. Esta herramienta es especialmente valiosa en entornos industriales donde se requiere una comunicación fluida entre diferentes sistemas. El software KEPServerEx 6.6 permite establecer una conexión sólida y confiable entre un PLC y el software Simulink de Matlab. En particular, se integra perfectamente con la librería OPC Toolbox, que ofrece una amplia gama de funciones para leer y escribir datos OPC desde y hacia los elementos de la planta. En primer lugar, se crea un canal de comunicación que actúa como un

enlace entre el PLC y Simulink. A continuación, se agrega el tipo de dispositivo correspondiente, que puede ser un PLC S7-1200 o S7-1500 en este caso. Esto garantiza una compatibilidad perfecta entre los sistemas y permite una transferencia de datos eficiente y precisa. Estas etiquetas están estrechamente vinculadas a los elementos físicos de la planta y facilitan la interacción con los datos mediante Simulink. Es importante destacar que el software KEPServerEx 6.6 es altamente versátil y puede utilizarse con una variedad de marcas de PLC. Esto brinda flexibilidad a los usuarios y les permite adaptar la solución a sus necesidades específicas (Elías Benavides et al., 2019). En la figura 15 se muestra el estado de conexiones del KEPServer al PLC.

E Kepware KEPS DataLogg DataLogg DataLogg	ServerEX.V6 jer jer.SIEMENS	Item ID Channel 1.opc. Channel 1. Device 1.rampa Channel 1. and Channel 1. Device 1.rampa	/ Data Type Long	Value 17	Timestamp	Quality	Update Count
- DataLogg - DataLogg - DataLogg - System - DataLogg - DataLogg	per per.SIEMENS	Channel1.opc.Channel1.Device1.rampa	Long	17	15-51-27 140		
DataLogg System Channel1.	per.SIEMENS	Channell and Channell Device 1 has 2		17	13.31:27.149	Good	16
- Channel 1.		Charmen opc.channel i Device i tagz	Word	0	15:51:12.114	Good	1
- Channel 1. - Channel 1. - Channel 1. - Channel 1.	System spc_System Lopic Channel 1						
Data	Tree	5 mit					
0 26/05/2017	15-51-12	Added on in Channel 1 Statistics' to Kenware KEPSance	EX VE				
	15.51.12	Public group Claiment, Claimenta to Reprinter. Les ServerS. Vol.					
26/05/2017	10.01.10	Added 12 items to group 'Channell', Statistica'					
26/05/2017	15:51:12	Added group Channel1 opc Channel1' to 'Keoware KEPServerEX V6'.					
26/05/2017 26/05/2017 26/05/2017	15:51:12	Added group 'Channel1 opc Channel1' to 'Kepware KEPSe	nverEX.V6'.				
26/05/2017 26/05/2017 26/05/2017 26/05/2017	15:51:12 15:51:12 15:51:12	Added group 'Channel1.opc.Channel1' to 'Kepware KEPSe Added 3 items to group 'Channel1. System'	siverEX.V6".				
26/05/2017 26/05/2017 26/05/2017 26/05/2017 26/05/2017 26/05/2017	15:51:12 15:51:12 15:51:12 15:51:12	Added group 'Channel1 opc.Channel1' to 'Kepware KEPSe Added 3 items to group 'Channel1System'. Added group 'Channel1.opcSystem' to 'Kepware KEPSe	erverEX.V6'. verEX.V6'.				
26/05/2017 26/05/2017 26/05/2017 26/05/2017 26/05/2017 26/05/2017 26/05/2017	15:51:12 15:51:12 15:51:12 15:51:12 15:51:12	Added group Channell opc.Channel1 to Kepware KEPSe Added 3 items to group Channell _System'. Added group 'Channell opcSystem' to Kepware KEPSe Added 3 items to group 'Channell opc.Channel1'.	erverEX.V6'. verEX.V6'.				

Figura 15. Configuración de conexiones del KepServer (Kepware*Kepserverex, 2019)

4.16 Bomba Singflo FL-2402A

La bomba Singflo FL-2402A, figura 16, es una bomba de diafragma de la marca Singflo. Estas bombas utilizan un diafragma flexible para generar presión y transferir líquidos. Son conocidas por su durabilidad, capacidad de autocebado y funcionamiento en seco. Proporcionan un flujo constante y suave, lo que las hace adecuadas para diversas aplicaciones como sistemas de agua potable, riego, filtración, lavado a presión, industria química y agricultura. Su versatilidad y construcción robusta las convierten en una opción popular en el campo del bombeo (Singflo, 2018). En la figura 17 se muestran sus detalles técnicos.

Figura 16. Bomba Singflo FL-2402A (Singflo, 2018)

Madala	Voltio	Tasa de flujo	Presión	Amperios dibujados	
Modelo		(LPM/GPM)	(PSI/Bar)	(A)	DERIVACIÓN
FLO-2201	12V	2.0(0.52)	55(3.79)	1,8	sí
FLO-2202	12V	3,8(1.0)	35(2.41)	3	sí
FLO-2202-1	12V	4,3(1.13)	35(2.41)	3,5	sí
FLO-2203	12V	2,6(0.68)	70(4.83)	2,1	sí
FLO-2203-1	12	3,1(0.82)	70(4.83)	2,2	sí
FLO-2202A	12	4,0(1.05)	80(5.52)	2,6	sí
FLO-2401	24	2,0(0.52)	55(3.79)	0,9	sí
FLO-2402	24	3,8(1.0)	35(2.41)	1,5	sí
FLO-2403	24	2,6(0.68)	70(4.83)	1,0	sí
FLO-2402A	24	4,0(1.05)	80(5.52)	1,3	SÍ

Figura 17. Especificaciones técnicas (Singflo, 2018)

4.17 Kaleja D-73553 ALFDORF

El controlador KALEJA D-73553, figura 18, es un sistema de control de motor con un solo cuadrante diseñado para motores que tengan corriente continua de 24VDC. Este controlador monitorea el estado y las condiciones operativas de la bomba, y en función de esta información,

activa o desactiva los contactos eléctricos necesarios para controlar el encendido y apagado de la bomba. Y la regulación IxR de la compensación de velocidad para motores de 24VDC. Además, se puede cambiar la amplificación básica mediante un puente en las terminales de conexión 5 a 3 o 5 a 4, como se ve en la figura 19, que muestra sus conexiones eléctricas (Mirna Manzanilla Romero et al., 2014).

Este controlador se basa en las siguientes características la cual cambia dependiendo el modelo del controlador y el propósito para el cual será utilizado.

- Voltaje nominal: 24VDC
- Rango de voltaje nominal: 18V a 35VDC
- Corriente de entrada durante el voltaje nominal: 10mA
- Entrada analógica rango de voltaje: 0V a 10VDC
- Rango de voltaje de conmutación / voltaje del motor: 18V a 35VDC
- Corriente máxima de carga permanente: 3,5A
- Control de velocidad: 0V a VCC
- Protección contra sobrecarga / cortocircuito / monitoreo de temperatura: No
- **Temperatura ambiente**: -20°C a +50°C
- **Dimensiones**: 22,5 mm x 75 mm x 102 mm (KALEJA, 2021).

Figura 18. Controlador KALEJA D-73553 (KALEJA, 2018)

Figura 19. Conexiones del controlador KALEJA D-73553 (KALEJA GmbH, 2018)

4.18 PLC S7-1500 PLC

Los controladores avanzados SIMATIC S7-1500, figura 20, ofrecen un rendimiento óptimo para máquinas de tamaño mediano a grande que requieren altos estándares de rendimiento, comunicación, flexibilidad y capacidades tecnológicas. El SIMATIC S7-1500 cuenta con un sistema integrado de seguridad que brinda protección en diferentes niveles, asegurando la integridad del equipo y de las comunicaciones. Al utilizar el SIMATIC S7-1500, se puede alcanzar una productividad y calidad óptimas del producto durante el proceso de producción, gracias a su bus de fondo de alta velocidad, el rendimiento eficiente de PROFINET, tiempos de respuesta reducidos y un tiempo de procesamiento de comandos extremadamente rápido de hasta 1 ns en la unidad central de procesamiento CPU (Editores SRL, 2014).

La interfaz PROFINET, con su comportamiento de tiempo determinístico, garantiza la reproducibilidad y precisión en intervalos de tiempo de microsegundos. El blindaje de las señales analógicas asegura una alta calidad de recepción y una robustez de la señal frente a interferencias electromagnéticas externas. (SIEMENS, 2023).

Figura 20. SIMATIC S7-1500 (SIEMENS, 2023)

4.19 TIA Portal

El TIA Portal brinda un acceso completo y sin limitaciones a una amplia gama de servicios de automatización digitalizada, en la figura 42 se aprecia la programación realizada en este programa. Este entorno de desarrollo permite integrar de manera eficiente y efectiva los componentes necesarios para abordar diversas áreas de automatización, como el control, la interfaz hombre-máquina (HMI), los motores y los periféricos descentralizados. Con su enfoque integral, el TIA Portal se convierte en una herramienta fundamental para el diseño y la implementación de sistemas de automatización, al proporcionar una plataforma unificada para la configuración, programación y supervisión de los diferentes componentes y dispositivos involucrados en los procesos industriales (SIEMENS, 2023).

4.20 Profinet

Las funciones de comunicación de PROFINET se utilizan en la automatización basada en componentes, aplicada en máquinas e instalaciones modulares con tecnología de instalación en tiempo real. Estas funciones permiten el control directo de dispositivos de campo descentralizados que están conectados a través de Industrial Ethernet. Una de las principales ventajas de PROFINET es su capacidad para proporcionar una formación teórica y práctica en la configuración de redes con tecnología PROFINET. En el contexto de la automatización industrial, PROFINET abarca la comunicación en diversos niveles, desde el control básico de automatización con sistemas de E/S hasta aplicaciones que involucran un control de movimiento más avanzado. (David Enrique Barrera Moncayo, 2008). En la figura 21 se muestra el tipo de conexión que es Profinet.

Figura 21. Conexión tipo Profinet (PROFINET VERSUS OPC, 2020)

4.21 PID-COMPACT

Cuando se aumenta el valor de salida, se espera un incremento correspondiente en el valor real, lo que se conoce como un sentido de regulación normal. Para cumplir con esta función, el PID-Compact es un componente tecnológico que ofrece un controlador PID continuo con optimización integrada, permitiendo también la configuración de un controlador de impulsos según sea necesario, con la opción de elegir entre los modos manual y automático. El PID-Compact realiza un seguimiento continuo del valor real medido dentro de un lazo de control, comparándolo con el valor deseado de referencia. A partir del error resultante en la regulación, el PID-Compact calcula un valor de salida que permite igualar de manera rápida y estable el valor real al valor de referencia (SIEMENS, 2023). En la figura 22 muestra el diagrama de bloques del PID COMPACT.

Figura 22. Diagrama del PID COMPACT (infoPLC, 2020)

4.22 Industrial Communication Toolbox

La Industrial Communication Toolbox ofrece una solución completa para acceder a datos en tiempo real de instalaciones industriales desde MATLAB y Simulink. Permite operaciones de lectura, escritura y registro de información de dispositivos OPC, incluyendo sistemas de control distribuido, supervisión y adquisición de datos, y controladores lógicos programables. Además, facilita el acceso a datos de planta desde servidores PI para tareas de supervisión, mejoras y mantenimiento predictivo. Compatible con estándares OPC UA, OPC Data Access y OPC Classic Historical Data Access, la Toolbox también incluye bloques de Simulink para modelar control en tiempo real y realizar pruebas de hardware en controladores. Permite validar algoritmos mediante conexión segura OPC UA y generar modelos de gemelos digitales para aplicaciones de Internet Industrial de las Cosas. (MathWorks, 2012). En la figura 23 se observa un ejemplo de la librería Industrial Communication Toolbox.

Figura 23. Ejemplo de la librería Industrial Communication Toolbox (MathWorks, 2012)

4.23 Modulo AI 8xU/I/RTD/TC ST_1

El módulo AI 8xU/I/RTD/TC ST_1, figura 24, es un dispositivo utilizado en la automatización industrial para la captura y conversión de señales analógicas. Su diseño está orientado a trabajar con diversos tipos de señales analógicas, como voltaje (U), corriente (I), resistencia de termómetro de resistencia y termopar. Este módulo cuenta con 8 canales de entrada analógica disponibles. El módulo es capaz de medir y capturar señales de voltaje, corriente, resistencia y señales de termopar. El módulo AI 8xU/I/RTD/TC ST_1 se destaca por su capacidad para realizar conversiones precisas y generar una representación digital de las señales analógicas adquiridas (SIEMENS, 2014).

Esto permite que los sistemas de automatización industrial procesen y utilicen esta información para controlar y monitorear diversos procesos. Este módulo puede ser utilizado en aplicaciones que requieren mediciones precisas de señales analógicas, como el monitoreo de temperatura, presión, nivel o flujo en diferentes procesos industriales. Al contar con 8 canales de entrada analógica, proporciona la capacidad de adquirir simultáneamente datos de múltiples fuentes (SIEMENS, 2014)

Figura 24. Modulo AI 8xU/I/RTD/TC ST_1 (SIEMENS, 2014).

4.24 Tanques de FESTO

El sistema utilizado en el proyecto está compuesto por dos tanques de agua de la marca Festo, con una capacidad máxima de 10 litros y unas dimensiones de 200 x 200 x 350 mm, figura 25. Estos tanques cuentan con orificios estratégicamente ubicados alrededor de su estructura, los cuales permiten la conexión de conductos para establecer una interconexión entre ambos tanques. Estos conductos posibilitan el flujo de agua entre los tanques, lo que facilita la simulación y control del nivel de agua en cada uno de ellos. Esta configuración de sistema es comúnmente empleada en aplicaciones de control de nivel de líquidos y proporciona una plataforma adecuada para el desarrollo de experimentos y pruebas en el ámbito de la ingeniería de control (Torres & Chanoluisa, 2015).

Figura 25. Modulo tanque Tanque Festo (Torres & Chanoluisa, 2015)

V MARCO METODOLOGICO

En los siguientes apartados, se proporcionará una exposición detallada acerca del diseño y la implementación de los controladores automáticos mencionados previamente, figura 26. Se describirán minuciosamente los datos recopilados de los sensores utilizados, así como también se presentarán los detalles relacionados con las bombas y los actuadores empleados. Además, se valuará el sistema de llenado de tanque en base a la técnica AntiWindup, destacando su relevancia y contribución al sistema en estudio.

29

5.1 Comparación entre los distintos tipos de Anti-Windup

El método de Back Calculation es una técnica que aborda el fenómeno de Windup en sistemas de control PID. Proporciona una mejora significativa en el rendimiento y la estabilidad del controlador PID al obtener un nuevo valor para la integración. A diferencia del método de Clamping, que incorpora componentes de conmutación en la sección integral del controlador PID, el método de Back Calculation ofrece una ventaja adicional al limitar la integración cuando la señal del controlador excede un límite predefinido de saturación. Esto permite un mayor control y evita problemas potenciales de desbordamiento o inestabilidad en el sistema de control. Al elegir el método de Back Calculation, se garantiza un controlador eficiente para abordar el fenómeno de Windup y asegurar el correcto funcionamiento del sistema (Rodríguez-Castellanos & Cote-Ballesteros, 2019).

Por otro lado, el método de Clamping es una técnica comúnmente utilizada para prevenir el Windup en sistemas de control digital. Cuando el integrador del controlador PID se satura, el Clamping detecta esta condición y establece la parte integral del controlador en cero, evitando la acumulación de errores durante la saturación. El Clamping utiliza un interruptor simple para desconectar la ruta integral del controlador cuando se produce la saturación. Si bien el Clamping es rápido y directo, su principal limitación radica en que no considera la entrada del controlador ni la dinámica del sistema, lo que puede afectar su robustez y desempeño en ciertos escenarios (Matlab, 2020).

En términos de comparación, el Clamping se destaca por su velocidad y facilidad de implementación, lo que lo hace una opción robusta. Por otro lado, el Back Calculation puede ofrecer mejores dinámicas si se ajusta adecuadamente, aunque puede ser más lento debido al

30

cálculo del coeficiente Kb. En los casos donde el tiempo de muestreo es mayor que la constante de tiempo del sistema se prefiere el Clamping. Sin embargo, en aplicaciones críticas, el Back Calculation con un valor apropiado de Kb sería una mejor opción (Matlab, 2020). En el caso del método de Back Calculation, se puede observar una respuesta suave y progresiva a medida que el sistema se ajusta y controla el efecto Windup. En la, figura 27, se apreciará una disminución gradual de la saturación a medida que se recalcula el coeficiente Kb y se aplica la compensación apropiada.

Figura 27. Muestra la comparación entre el punto de referencia y la salida medida sin utilizar técnicas de AntiWindup (MathWorks, 2020)

Por otro lado, en el método de Clamping, la respuesta en el gráfico se caracteriza por ser más abrupta y directa. Se puede visualizar en la, figura 28, cómo la curva muestra una limitación inmediata de la señal de control al alcanzar los límites de saturación. Este proceso previene la acumulación de errores en el integrador durante la saturación.

Figura 28. Visualización de la curva con limitación inmediata

La elección del método de cálculo inverso (back calculation) se justifica en base a esta investigación, ya que resulta altamente adecuado para el sistema propuesto. Este método brinda la capacidad de obtener un nuevo valor para la integración, lo cual tiene un impacto positivo en el rendimiento y la estabilidad del controlador PID.

5.2 Preparación de la planta

El diagrama de los actuadores y sensores que forman parte del módulo se encuentra en la tesis de los autores del módulo de llenado de tanques, de las cuales se utilizaron los siguientes componentes: dos tanques Festo de 10L, acoples y tubos de ³/₄ y Kaleja D-73553 ALDORF (Reyes & Roldán, 2021); el resto de material a utilizar en la implantación, consistió en una bomba Singflo FL-2402A, mangueras y acoples de ³/₄, PLC S7-1500 y HMI KTP700, figura 29.

Figura 29. Implementación del módulo de llenado de tanques

El diagrama de conexión con los componentes que se utilizó en la implementación de la planta, se

detalla en la figura 30.

Figura 30. Diagrama de conexiones (Reyes & Roldán, 2021)

5.3 Dimensionamiento de actuadores

Los actuadores utilizados en el proceso deben tener la capacidad de suministrar el flujo necesario para lograr un punto de estabilización óptimo en el sistema. En relación con el control de nivel, originalmente se empleaba una bomba con un caudal de 15 litros por minuto. Sin embargo, debido a problemas de mantenimiento, esta bomba mostrada en la figura 31, fue reemplazada por una con un caudal de 1.07 litro por minuto. Al considerar que los recipientes tienen una capacidad máxima de 10 litros, se concluye que la nueva bomba está correctamente dimensionada para satisfacer las necesidades del sistema.

Figura 31. Bomba de Agua SINGFLO FL-2402A

5.4 Selección del controlador Kaleja D-73553 Alfdorf

El relevador KALEJA D-73553 Alfdorf, figura 32. Es un componente de control elegido para simplificar el funcionamiento de la bomba. Este relevador gestiona el ajuste del accionamiento de la bomba, garantizando su funcionamiento óptimo y eficiente. Al emplear el relevador KALEJA D-73553 Alfdorf como controlador, se logra supervisar y regular con precisión las operaciones de la bomba (KALEJA, 2021).

Figura 32. Instalación del controlador Kaleja D-73553

5.5 Calibración y procesamiento de la señal del sensor ultrasónico

El sensor PEPPERL-FUCHS UB-800 es un transmisor de nivel que genera una señal analógica de corriente. Esta señal se recibe a través del módulo de entradas analógicas y se utiliza en el PLC para su lectura. Sin embargo, el rango de operación predeterminado del transmisor no coincide con el rango necesario para el proceso, por lo que es necesario calibrarlo de acuerdo con las condiciones específicas de la planta. En el proceso, los límites de nivel son de 0 cm en la parte más baja y de 28.5 cm en la parte más alta.

Figura 33. Calibración del sensor ultrasónico

Para llevar a cabo la calibración, figura 33. Se utilizó la función de aprendizaje del transmisor, específicamente el terminal número 2.

- Iniciar energizando el sensor y verificar la activación del LED verde, lo cual indica que el sensor está en óptimas condiciones y no presenta defectos de fábrica.
- Proceder a vaciar el tanque hasta alcanzar el nivel mínimo de lectura del sensor.
- Conectar el terminal de aprendizaje a 0V hasta que el sensor comience a parpadear un LED amarillo. De esta manera, se indica al sensor que este nivel corresponde al punto más bajo del sistema, lo que resultará en una corriente de 4mA para esta medida.
- Llenar el tanque hasta alcanzar el límite máximo del sistema, que será detectado por el sensor.

 Por último, conectar el terminal de aprendizaje a 24V hasta que el LED amarillo del sensor vuelva a parpadear. De este modo, se indica al sensor que este es el punto más alto de medición, al cual siempre responderá con una corriente de 20mA.

A continuación, se realizó la adecuada interconexión del sensor ultrasónico siguiendo rigurosamente las pautas y directrices establecidas en el manual de usuario correspondiente. Asimismo, se basó en las especificaciones del módulo de entrada analógica AI 8xU/I/RTD/TC ST (6ES7531-7KF00-0AB0) para realizar una correcta configuración. Según las instrucciones suministradas figura 34. Se procedió a conectar el sensor utilizando las entradas 1 y 2 del canal 0, Designadas específicamente para la conexión de sensores de corriente, proporcionando un enfoque técnico adecuado para el proceso de conexión, figura 35.

Figura 34. Manual de conexiones del módulo AI 8xU/I/RTD/TC ST (SIEMENS, 2018)

Figura 35. Conexión de la entrada analógica de corriente del módulo del PLC

5.6 Configuración de las propiedades del módulo de salida analógica

Después de completar la conexión mencionada anteriormente, se procedió a realizar la configuración necesaria en la entrada del canal 0 a las propiedades del módulo de salida analógica, figura 36, con un tipo de medición de 2 hilos.

AI 8xU/I/RTD/TC ST_1 [AI 8xU/I/	RTD/TC ST]		Q Propiedades	🗓 Información 🔒	😟 Diagnóstico	
General Variables IO	Constantes de sistema Te	extos				
✓ General Información del proyecto	Canal 0	·				
Información de catálogo Identification & Maintenance	Canal 0					
Parámetros del módulo Entradas 0 - 7	Ajustes de parámetros:	Manual				
General	Diagnóstico					
Vista general de configur						
✓ Entradas		Falta tensión de alimentación L+				
Canal O		Rebase por exceso				
Canal 1		Rebase por defecto				
Canal 2		Error en modo común				
Canal 3						
Canal 4						
Canal 5		Rotura de hilo				
Canal 6	Límite de intensidad para					
Canal 7	diagnóstico Rotura de hilo:					-
Temperatura de refere						
Direcciones E/S	Medición					
	Tipo de medición:	Intensidad (transductor de medida a 2 hilos)				-
	Rango de medición:	420mA				-
	Coeficiente de temperatura:					
	Unidad de temperatura:					-
	Unión fría:					-
	Temperatura de referencia fija:					
< III >	Supresión de frecuencias perturbadoras:	50				Hz 💌

Figura 36. Configuraciones realizadas en el canal 0

5.7 Procesamiento de señales con TIA Portal para el control de nivel del tanque

Utilizando el software TIA PORTAL, se llevó a cabo el proceso de acondicionamiento de la señal proveniente del sensor. Para ello, se utilizaron bloques normalizados y escalados con el fin de obtener la señal deseada. Además, se utilizó un bloque adicional para obtener el nivel correspondiente en función de la distancia medida cuando el tanque se encuentra vacío. Estos procesos se encuentran claramente representados en la figura 37, proporcionando una representación visual de las etapas mencionadas.

Figura 37. Bloque de nivel en función a la distancia

En una etapa posterior, se conectó el controlador PID COMPACT. Para ello, se utilizó la señal tratada como entrada, una marca específica del PLC como punto de ajuste (setpoint) y otra marca como salida. En otro segmento, se realizó el acondicionamiento necesario para convertir esta salida en una señal analógica, con el propósito de controlar la bomba de 24V.

5.8 Técnica Antiwindup sobre el sistema de control basado en PID

En una fase posterior, se procedió a la conexión del controlador PID COMPACT. Para lograr esto, se utilizó la señal procesada como entrada, se estableció un punto de ajuste específico utilizando una marca designada del PLC y se utilizó otra marca como salida. En otro segmento, se realizó el procesamiento necesario para convertir esta salida en una señal analógica, con el objetivo de controlar la bomba de 24V. La figura 38, exhibe la sección correspondiente al controlador PID COMPACT, proporcionando una representación visual de esta configuración.

Figura 38. Configuración del PID COMPACT

En base de la configuración del controlador PID COMPACT, se establecieron los parámetros pertinentes. Estos incluyen la unidad de medida en centímetros para la distancia, los límites correspondientes del sensor y el tipo de optimización seleccionado, que en este caso se definió

como "fina". Todos estos ajustes como se muestra en la figura 39, proporcionan una representación clara de los parámetros configurados.

🚏 🛍 🔛	
▼ Ajustes básicos	
Tipo de regulación	Ilpo de regulación
Parámetros de entrad	
 Ajustes del valor real 	📀 Longitud 💌 cm 💌
Límites del valor real	Invertir sentido de regulación
Escala del valor real	
 Ajustes avanzados 	Activar Mode tras rearrancar la CPU
Monitorización del val	Poner Mode a: Optimización inicial
Limitaciones PWM	
Límites del valor de sa	
Parámetros PID	
	•

Figura 39. Configuración del PID COMPACT

En el proceso de ajuste del controlador, se elige la opción de optimización fina y se inicia el procedimiento para que el controlador sea adaptable a un tiempo real. Esta actividad se presenta de manera evidente, figura 40, donde se observa el controlador en pleno funcionamiento, llevando a cabo los ajustes necesarios para optimizar su rendimiento.

Figura 40. Ajuste de controlador con optimización fina

Una vez finalizada la sintonización del controlador PID, se procedió a la sección de configuración para obtener sus parámetros. Estos parámetros resultarán de utilidad tanto para llevar a cabo simulaciones como para implementar el método Antiwindup. En la figura 41, se presentan de manera clara los parámetros obtenidos del controlador.

Ganancia proporcional:	10.39163	0 1
Tiempo de integración:	4.868983E-2	5 0 5
Tiempo derivativo:	5.977189E-3	5 0 3
Coeficiente retardo derivativo:	0.1	0
Ponderación de la acción P:	1.0	0:
Ponderación de la acción D:	0.0	0
Tiempo muestreo algoritmo PID:	5.0875E-3	5 0 5
Reola para la optimización		
Faturtus del analador	PID	-

Figura 41. Parámetros del controlador

Al final en el segmento 4 de la figura 38 se cambió la dirección %MD8 por la %MW2 que es de tipo Int y esta será procesada para la salida %QW4 que va conectada a la bomba Singflo. y se eliminó el PID Compact para un correcto envió de datos, figura 42.

•	Segmento 1:				
	Comentario				
	18337 — MN "MW "Tag_1" — VALUE 32767 — MAX	NORM_X Int to Real ENO "dbgeneral". OUT nivelnorm	SCALE_X Real to Real EN EN MN *dbgeneral". nivelnorm – VALUE 23.0 – MAX	OUT — #OUT_SCALEX	SUB Auto (Real) EN EN ENO 23.0 IN1 %MD4 #OUT_SCALEX IN2 OUT *OUT_LVL*
•	Segmento 2:				
	Comentario				
	en MN *MV2 *controlsimulink 100 MAX	NORM_X Int to Real ENO OUT OUT bomba*	SCALE_X Real to Int EN MIN *MO52 *normalizado bomba* VALUE 27648 MAX	OUT "bomba"	

Figura 42. Programación final del TIA Portal

5.9 Configuración del OPC Server

Se estableció una conexión OPC entre Simulink y TIA PORTAL utilizando la herramienta de software KEPServerEX 6.6. Para dar inicio a este proceso, se generó un archivo nuevo. Esta integración tecnológica posibilita una comunicación fluida y eficiente entre ambos entornos, facilitando así la transferencia de datos y la sincronización en tiempo real entre los sistemas. La figura 43 ilustra esta interconexión.

Figura 43. Conexión entre Simulink y Matlab utilizando KEPServer

Se llevó a cabo una actualización y se agregó el tipo de canal requerido para establecer la conexión OPC, figura 44. En este escenario específico, se optó por utilizar la opción Siemens TCP/IP Ethernet como dispositivo para esta conexión. Este tipo de canal se fundamenta en la tecnología de comunicación TCP/IP, lo cual facilita una transferencia eficiente de datos entre Simulink y TIA PORTAL, asegurando un funcionamiento adecuado de esta conexión.

KEPServerEX 6 Configuration [Connected to Run	itime]					- 0 X
File Edit View Tools Runtime Help						
🗋 📸 🗟 😫 🤔 📲 🤌 👗 🛍 👗 🔛						
🖃 👰 Project	Channel Name	Driver	Connection	Sharing	Virtual Network	Description
다 [2] Connectivity 문급 Channell 수 Aliases 네 Advanced Tags 다 Alams & Events	Channel1	Siemens TCP/IP Ethernet	Ethernet (192.168.0.2.intel(R) Ethernet C	N/A	NJA	
Data Logger Ligd Add Log Group DF MExporter Ligd Add Poll Group DF for Splank DF for Splank De for Splank Solution Connection Solution Connecontervite Solution Connecontervite Solutio		Add Channel Wizard Select the type of channel to b	e created:	x		
Generation Scheduler L∰ Add Schedule G ≪ SNMP Agent L		ABB Totallow SattBus Serial Scanivalve Ethernet Siemens \$5 (3964R) Siemens \$5 (AS511)	•			
Date Time Source () 15/2/2024 11.49.48 KEPServeiEX[Runtime () 15/2/2024 11.51.11 KEPServeiEX[Runtime () 15/2/2024 11.51.13 Siemens TOPIP Ethen () 15/2/2024 11.51.13 KEPServeiEX[Runtime () 15/2/2024 11.51.13 KEPServeiEX[Runtime	Event Uccal Historian Plug-in V66 3300 UCcal Historian Plug-in V66 3300 UCF for Splunk V66 3500 Scheduler Plug-in V66 3500 In T Gateway V66 3500 Kepware Industrial Connectivity Plat The specified network adapter is in Siemens TCP/IP Ethemet device of Runtime service started. Starting Siemens TCP/IP Ethemet Device D Advanced Tags Plug-in V66 3300 Datal Long-Plug-in V66 3300 Datal Long-Plug-in V66 3300	Siemens S7 MP1 Siemens S7 200 Siemens S7 200 Siemens TCPJP Erhemet Simatc/T150 Echemet Simatch 155 Senial Simulator SIXXET Euer/TAK SIXXET LUCR sixXeT LUCR sixXeT LUCR sixXeT SquareD Senial	net			
(1) 13/2024 113/13 kEPServeEX[Anthme (1) 15/2024 115/13 KEPServeEX[Anthme (1) 15/2024 13/422 KEPServeEX[Anthme (1) 15/2024 13/422 KEPServeEX[Anthme (1) 15/2024 13/422 KEPServeEX[Anthme (1) 15/2024 13/422 KEPServeEX[Anthme	Alams Stevens Plug in V66.3300 Alams Stevens Plug in V66.3300 SNMP Agent Plug in V66.3300 Media Level Redundancy Plug in V66.3300 Connection Sharing Plug in V66.3300 Connection Sharing Plug in V66.3300 Local Historian Plug in V66.3500 DF for Splunk V66.3500 DF for Splunk V66.3500 Configuration session started by AS cation The specified network adapter is im	LO US as Def raild on cha	Siguiente	Cancelar		I
Ready						Default User Clients: 0 Active tags: 0 of 0

Figura 44. Configuración de conexión OPC usando el canal Siemens TCP/IP Ethernet entre Simulink y TIA PORTAL

El objeto correspondiente fue nombrado como "channel 1", figura 45. En la siguiente etapa, se especificó el adaptador de red utilizado para establecer la conexión entre el ordenador y el S7-1500. Luego, se procedió a avanzar al siguiente paso haciendo clic en "siguiente".

D RIPSowell)	(& Carliger	tus Connected to Dastin	-					- 0 X
File Edit 10	les Tools	Runtime Hep						
1010	10 11	国メロウト						
Proved	ectivity A to add a clu cod Taga 4. Events SAves. again SPan Gove. agains SPan Gove. Spatial	ered	Osamu/Hami Dx	er Conne 6- Add Channel Wissett Specify the whenty of the steped. Water:	den i	* •	Weathease	Description
Dates 0 4 + 22004 4 + 22005 4 + 2005 4 + 2005	Time 1258200 1258000000000000000000000000000000000000	States ED States CARaton ED States CARaton ED Taxas CARaton ED States CARaton	Einst Madia Lawai Readinadescy Plager Vill, 3 1978 Tayasee Vill, 31920 Consold of Standy Player Vill, 3380 Daniel Friedrick Vill, 3100 Lock Heisen Plager Vill, 3100 Schudder Plager Vill, 3260 Schudder Plager Vill, 3260 Schudder Plager Vill, 3260 Schudder Plager Vill, 3100 Schudder Plager Vill, 3100 Schudder Plager Vill, 3100 Schudder Plager Vill, 3100 Schudder Plager Vill, 3100 Schuder Vill, 3100 Activent Tar Plager Vill, 3106					
1 41/004 1 42/004 1 42/004	15.00 11 15.00 11 15.00 11 15.00 11 15.00 11 15.00 11 15.00 11 15.00 11 15.00 11 15.00 11	TEP Serve EXPlusion SEP Serve EXPlusion	Date Logge Physics VER 5104 Almost & Sent Physics VER 5500 DMM Agent/Physics VER 5100 Marks Leven Thirds Marks Physics VER 510 EVH Departm VER 5105 Connector Sharing Physics VER 5105 Local Histocom Physics VER 5105 EVH Sentember Physics VER 5105 Schwaber Physics VER 5105	510	Gjuens	Carcolia		

Figura 45. Asignación de canal

Estos valores se ajustan según la velocidad de comunicación, aunque en general se mantienen sin cambios para evitar errores de datos o fallas en la comunicación. Después de realizar los ajustes necesarios, se procede a hacer clic en "Siguiente", figura 46.

REPServer	EX & Configur	ation [Connected to Nuntion	e					- 0 ×
rie Cun	view loos	runiane rieip	1.000					
		102 49923	122					
Constant			Device Name	/ Model	a		Description	
	Logger dd Log Broup Exporter dd Poll Broup or Splank dd Splank Com Steway dd Agent, I Holoran dd Datastas, colar e dd Sched de P Agent	nation .		Add Device Wizard Delice for manner amount of time, in each mercia device. Convertient for its offer longe device. Convert Trenset (c): 3	ses, allowed to establish a connection to a then communication request time for a	×		
Date (1) 4/2/2024 (1) 4/2/2024 (1) 4/2/20	Time 12 55 20 12 58 20 14 59 50 14 59 50 14 59 50 14 59 50 15 01 11 15 01 11 16 01 11	Starte KPR-aver KAluntine KPR-aver KAluntine KPR-aver KAluntine KPR-aver KAluntine KPR-aver KAluntine KPR-aver KAluntine KPR-aver KAluntine KPR-aver KAluntine KPR-aver KAluntine KPR-aver KAluntine	Event FIM Expected VI6.3360 Connection Date of Diago VI6.3360 Secure VI6.4680 Pages VI6.3360 Local International Page VI6.3500 Diff: Signay VI6.3300 Bithodalar Pages VI6.3300 Diff: Signay VI6.3300 D	Specify an interval, in millineaside, to determ from the target device to interval (mil) Request Timous (mil) 2000 P Julicite how many times the device boots a o the request to bitled and the device to be Alteretia Extern Timous; 2 P	ne too long the driver waits for a response communications request before considering in arrise.			
() 4/2/2024 () 4/	15 01:11 15 01:11	KEPServetX-Runtime KEPServetX-Runtime KEPServetX-Runtime KEPServetX-Runtime KEPServetX-Runtime KEPServetX-Runtime KEPServetX-Runtime KEPServetX-Runtime KEPServetX-Runtime KEPServetX-Runtime KEPServetX-Runtime	Dab. Logart Play in WE 5300 Akima & Event Play in WE 5300 BMP Agent Play in WE 5300 EMM Agent Play in WE 5300 EMM Expert VE 5300 Emeration Strong Play at VE 5300 Enter Control (VE 5300 Emeration VE 5300 DF for Sphark VE 5300 Scholden Play in VE 5300 Brit Galaxy VE 5500 Rotems arguit replaced Scholden Play in VE 5300 Brit Galaxy VE 5500 Rotems arguit replaced Scholden Play in VE 5300	and	Siguiente Cence	tar		

Sin realizar cambios, se optó por mantener los ajustes existentes y se procedió a hacer clic en "Siguiente", siguiendo la figura 47 como referencia. Es importante asegurarse de que el "Byte Order" esté configurado en Big Endian, figura 48.

KEPServio	rEX 6 Conligue	ition (Connected to Rol-firme	1			- 0 X
File Edit	View Tools	Runtime Help	1 80			
Project Sorreit S	The set of the s		i ma Davies Name ≧ Cick to add a dwrce	/ Model	D X	Description
	Exporter did Poll Group for Splank Cone Gateway did Agent al Historian edder vid Datastore edder vid Schedale IP Agent	esten		Add Device Witzard Specify the maximum length PDU, in bytes, who Maximum YBM Store Install I I I I I I I I I I I I I I I I I I	d is to be requested from the device.	
Date (0.4/2/2024	Time 12:53:20	Source KEPServerEX/Runtime	Event EFM Exporter VG 6:350.0	Specify the local (PO unique address for this at Encode TEAP).	recordentia n'researcinal	
() 4/2/2024 () 4/2/2024 () 4/2/2024 () 4/2/2024 () 4/2/2024	12 58 20 12 58 20 12 58 20 12 58 20	KEPServerEXFluiture KEPServerEXFluiture KEPServerEXFluiture KEPServerEXFluiture	Connection Sharing Plag-in V6.6.350.0 Socurity Politicis Plag-in V6.6.350.0 Local Historian Plag-in V6.6.350.0 IDF for Splank V6.6.350.0	Space/h the remote (device) unique actress for Remote TSAP	the connection in honodestinal.	
 4/2/2024 4/2/2024 	12 58 20	KEPServerEX/Runtime KEPServerEX/Runtime	Scheduler Plug is V6.6.350.0 IoT Gelevary V6.6.350.0	4057		
4/2/2024 4/2/2024 4/2/2024	14 59 50	KEPServerEX/Runtime KEPServerEX/Configuration	Configuration session started by ASUS a The specified network adapter in invalid	Select the type of connection link to be used in-	communications.	
0 4/2/2024 0 4/2/2024	16.01:11 15.01:11	KEPServerEX/Runtime KEPServerEX/Runtime	Stopping Siemens TCP/IP Ethemet.devi Created backup of project 'C !ProgramD	Link Type:		
() 4/2/2024 () 4/2/2024	1501:11	KEPSeverEX/Runtime KEPSeverEX/Runtime	Advanced Tags Plug-in V6.6.350.0 Data Logger Plug-in V6.6.350.0		Similaria Cancelar	
D 4/2/2024	15.01.11	KEPServerEX/Runtime	SNMP Agent Plug in V6.6.350.0			
0 4/2/2024	1501-11	KEPServerEX/Runtime	Nedia Level Redundancy Plag-in V6 6.350	0		
0 4/2/2024	15 01 11	KEPServerEXHuntime KEPServerEXHuntime	EPM Exporter V6.6.3500			
(1) 42/2024	15.01.11	KEPSessetEXBustine	Securb Policies Puper VE 5 1500			
0 4/2/2024	15.01:11	KEPSeverEX/Funtime	Local Historian Pluc-in V6.6 350.0			
0 4/2/2024	15.01:11	KEPServerEX/Runtime	IDF for Solunk V6.6.350.0			
(D 4/2/2024	15.01.11	KEPServerEX/Runtime	Scheiduler Platz in V6.6.350.0			
0 4/2/2024	15.01.11	KEPServerEX/Runtime	IoT Catenay V8-5353.0			
0 4/2/2024	15.01.11	KEPSeverEX/Funtime	Runtime project replaced			
D 4/2/2024	15:03:20	KEPServerEX/Runtime	Siemens TCP//P Ethemet device driver los	ded		

Figura 47. Ajustes predeterminados

🐯 KEPServerEX 6 Configura	tion [Connected to Runtime	-]			- 0 X
File Edit View Tools	Runtime Help				
🗋 💕 🗟 🛃 🍪 🚳	🛍 🚰 🔊 👗 🖏 🕅 🗙	BC.			
E Droject		Device Name	/ Model	D	Description
Connectivity		Click to add a device.			
Channel1					
- III Click to add a c	Jewce.				
- M Advanced Tags					
🖶 🏭 Alarma & Events					
Add Area					
🕀 📴 Deta Logger				×	
GI Add Log Group					
-B Add Poll Group			 Add Device Wizard 		
B B IDF for Splunk					
- O Add Splunk Conne	ction.				
⊜ ∰e loT Gateway					
- 25 Add Agent.			Select the byte order for 16-bit and 32-bit v	alues. Big Endian (Motorola) is the default	
Add Datastore			byte order for alemens ar controllers, clube	chulai (akei) is also analasie.	
Bcheduler			ayle order:		
Add Schedule			Big Endian 🗸 😻		
SNMP Agent					
Date Ÿ Time	Source	Event			
0 4/2/2024 12:58:20	KEPServerEX)Runtime	EFM Exporter V6.6 350.0			
0 4/2/2024 12:58:20	KEPServerEX)Runtime	Connection Sharing Plug in V6.6.350.0			
0 4/2/2024 12:58:20	KEPServerEX)Runtime	Security Policies Plug-in V6.6.350.0			
0 4/2/2024 12:58:20	KEPServerEX)Runtime	Local Historian Plugrin V6.6.350.0			
0 4/2/2024 12:58:20	KEPServerEX)Runnme	IDP for Splunk V6.6.350.0			
0 4/2/2024 12:58:20	KEPServerEX/Runame	Scheduler Plug-In V5.6.350.0			
0 4/2/2024 12:00:20 A 4/2/2024 14:00:20	KEP3erverEAl/tunime	Configuration contrian study of by ARLIN a			
4/2/2024 14:59:50	KEPServerEXIConfiguration	The specified network adapter is invalid			
0 4/2/2024 15:01:11	KEPServerEXIRuntime	Stopping Siemens TCP/IP Ethemet devi			
0 4/2/2024 15:01:11	KEPServerEXIRuntime	Created backup of project 'C:(ProgramD			
0 4/2/2024 15:01:11	KEPServerEX)Runtime	Advanced Tags Plug-in V6.6.360.0			
0 4/2/2024 15:01:11	KEPServerEX0,Runtime	Data Logger Plug-in V5.6.350.0			
0 4/2/2024 15:01:11	KEPServerEX)Runtime	Alarms & Events Plug-in V6.6.350.0		Siguiente Cancelar	
0 4/2/2024 15:01:11	KEPServerEX)Runtime	SNMP Agent Plug-in V6.6.350.0			
0 4/2/2024 15:01:11	KEPServerEX)Runtime	Media Level Redundancy Plug-in V6.6.350	0		
D 4/2/2024 15:01:11	KEPServerEX)Hunitme	EPM Exponer V6.6350.0			
D 4/2/2024 15:01:11	KEPServerEX(Humme	Connection Straining Plug-in V&6.350.0 Security Delicies Plug-in V&6.350.0			
0.4/2/2024 15:01:11	KEPServerEX(Hundime	Local Historian Plug-In V6.6.350.0			
0 4/2/2024 15:01:11	KEPServerEX/Runtime	IDE for Solunk V6.6.350.0			
0 4/2/2024 15:01:11	KEPServerEX0Runtime	Scheduler Plug-in V6.6.350.0			
0 4/2/2024 15:01:11	KEPServerEX)Runtime	IoT Gateway V6.6.350.0			
0 4/2/2024 15:01:11	KEPServerEXIRuntime	Runtime project replaced.			
0 4/2/2024 15:03:20	KEPServerEX/Runtime	Siemens TCP/IP Ethernet device driver los	ded		
early					Default liter Clienter 0 Active teatr 0

Figura 48. Configuración de Big Endian

Luego de verificar la configuración realizada sea la correcta, se selecciona la opción "Finalizar" para completar el proceso, figura 49. Es importante asegurarse de que todos los ajustes estén correctos antes de finalizar el proceso de configuración.

-				10 ALC 10 C			
Conv Conv Conv Conv Conv Conv Conv Conv	Named I Clock to add and res second Tage to & Events cit Area.		Dente Name Bolich to add a device.	/ Model	D		Description
0 CHA	Logger All Log Drop. Exporter All Patt Group. In Splank de Splank Comm	cton.		6- Add Device Wizard		×	
8. A	dd Agent.			in Mantheater			
0 Dires	#Trinknight			Name	+2 1930		
	dt/ Dataeture .			Chescription			
1000	nduler			Driver	Samara 1073P Ethemat		
	E Anest			Model	5.7-1500		
				Channel Assignment	Oamell		
fe	Time	Source	Event	10	192 168.0 1		
420004	12:58:20	xEPSeveEX/Latine	EPM Exporter VE6.3500	Operating Mode			
422024	125829	XEPSeneCKPuttre	Connection Sharing Plug-in VEA 352.0	Data Collection	Enable		
422524	12:58:20	KEPSenneEXPLation	Security Policies Physic VE6.350.0	Simulated	No		
12/2524	12:58:20	XEPSeveCKPuttre	Local Meterian Plug-in V6.6.350.0	1) Scan Mode			
422024	12:58:29	KEPSeverEX/Lastine	Of for Splank VE& 352.0	Scan Mode	Respect Chart Specified Scan Pate		
4/2/2024	125820	KEPSenreCKParkme	Scheduler Phag-in VEE.300.0	Initial Updates Note Cache	Death		
422224	12:58:20	KEPSeveEKPurkne	Io T Gateway VE&350.0	Communication Timeouts			
422204	14:53:50	KEPSeveEKPurkne	Configuration session started by ASUEs				
420524	14:59:50	XEPSeveEXCorkpetito	The specified release adapter is invalid				
12/2024	1501.15	AEPSeverCK/Harkne	Stopping Samera TOP/IP (themat deal				
422524	15-01.11	XEPSeveCK/Latine	Greated backup of project 'C Program@	1			
12/2024	15.01.11	KEPSeveCKPuttre	Advanced Tage Plug-in VE6.35E0				
122024	15.01.11	KEPSenneK/Jurime	Data Logger Plug-in VE6.362.0		English Canada		
12/2024	16-01/11	REPTerrent/Autore	Alarma & Events Plug-ar VE 6 300.0		-Maraar Carcera		
422204	15.01.11	N2PSenre(X)Auréne	SPANF Agent Ptug-in VE6.352.0				
422254	16-01.11	REPTIeserCKHarkne	Media Level Hedundancy Physic VEE35	10			
1.1.1.1	100111	NOT SERVICE A PLASTING	Crimic Aporterio Activity 2010				

Figura 49. Finalización del proceso

Una vez configurado el canal y el dispositivo, se procedió a añadir las etiquetas correspondientes provenientes del TIA Portal. En este caso, se enfocaron en dos variables específicas: la señal procesada del sensor de distancia %MD4 que es de tipo Real y la variable de salida %MW2 de tipo Int que será procesada para la salida %QW4 que va conectada a la bomba Singflo. Estas etiquetas son de especial interés para el proceso en desarrollo. Desde la tabla de variables del proyecto en TIA Portal, se seleccionaron las direcciones MD4 y MW2, figura 50.

36	Sier	nens - C	::Users\ASUS\Downloa	ds\TESISACTUAL\tesisa	ill3\tesisall3												
Pro	yect	o Edici	ión Ver Insertar O ardar proyecto 📑 🐰	nline Opciones Herr	amientas 🛝	/entana A	iyuda 🍠 Establed	er conexió	n online	🖉 Desha	er conexión online	år 18 18	* =	Examinar proye	cto> 🖬	7	Fotally Integrated Auto
	tesi	isall3 🕨	PLC_1 [CPU 1516-3	PN/DP] • Variables	PLC 🕨 Tabl	a de varial	bles estár	idar [70]									
														Q Variables	Cons	tantes de usuario	Constantes de si
		=0 🕞	B 00 B														
		Tabla de	e variables estándar														
		No	mbre	Tipo de datos	Dirección	Rema	Acces.	Escrib	Visibl	Supervis	Comentario						
18	1	-00	OUT_LVL	Real	\$MD4												
	2	-63	nivelnorm	Real	%MD90												
	3	-00	sensor	Int	%JW44												
	4		normalizado_sensor	Real	%MD85												
	5	-00	salidapid	Int	%MW16												
	6	-00	setpoint	Real	%MD51												
	7		bomba	Int	%QW4												
	8	-00	control del plc	Bool	%M0.1												
	9	-00	control plc	Bool	%10.2												
	10	-00	stop	Bool	%IO.1												
	11	-00	control simulink	Bool	%10.3												
	12	-00	control del simulink	Bool	%M0.2												
	13	-00	normalizado_bomba	Real	%MD52												
	14	-00	pidcompacto	Real	%MD8												
	15	-	setpointpid	Real	%MD12												
	16	-00	SELECTOR	Bool	%M0.3												
	17	-	controlpidplc	Int	566401												
	18	-	controlsimulink	Int	%MW2												

Figura 50. Configuración de etiquetas

Se configuró la primera etiqueta con el nombre "SENSOR", el tipo de dato se estableció como Float y el Client Access se configuró en modo de solo lectura, figura 51. Una vez que las etiquetas con las que se trabajará fueron configuradas, se abrió el programa de Matlab para continuar con el proceso.

KEPServer	EX 6 Configurat	tion [Connected to Run	itime]							- 0 X
File Edit	View Tools	Runtime Help								
1 💕 🖬 🖗	2 😳 🗂 😜	🔁 🔙 😋 🐨 🖌 🖌	🖦 🕰 🗙 🕺							
🖃 👩 Project			Tag Name	Address	Data Type	Scan Rate	Scaling	Description		
🖨 🕼 Com	ectivity		SENSOR	MD4	DWord	100	None			
	hannel1		GI SMULINK	MW2	Word	100	None			
Dr Aligo	87-1500									
Adva Adva	nced Tags		Property Editor - Ch	annel1.s7-1500.SENSOR				>	<	
😑 😩 Alam	is & Events		D	🗆 Identification						
- 🗠 A	dd Area		Propeny Groups	Mama		2EM2AD				
🕀 🐸 Data	Logger		General	Description		3214305				
O O FEM	Expoder		scang	Data Properties						
	dd Poll Group.			Address		MD4				
E S IDF 6	or Splunk			Data Type		Float				
- O A	dd Splunk Conne	action		Client Access		Read Onl	y			
G 纳 IoT G	iatoway			Scan Rate (ms)		100				
- Diana	Ulistorian									
	dd Datastore									
E Sche	duler									
- CB 🔨	dd Schedule									
SNM	P Agent									
Date 1	Time	Source								
1 4/2/2024	12:58:20	KEPServerEX/Runtime		Data Type						
① 4/2/2024	12.58/20	KEPServerEX/Runtime		Select the format of the	incoming tag data.					
1 4/2/2024	12:58:20	KEPServerEX/Runtime								
4/2/2024	12:58:20	KEPServerEX/Runtims					and a second	10 August 10 August		
① 4/2/2024	12:58:20	KEPServerEX/Runtime		Defaults			OK Cancel	Apply		
0 4/2/2024	14.69.50	KEPServerEX/Runtime	Configuration s	ession started by ASUS as	Def.					
4/2/2024	14.59.50	KEPServerEX(Configu	aton The specified	network adapter is invalid o	h cha					
0.4/2/2024	15:01:11	KEPServerEX/Runtime	Stopping Sterr	ions TOP/IP Ethemet devic	niko					
0 4/2/2024	1501:11	KEPServerEX/Partime	Advanced Tax	an Plansin VS 6 350.0	arrw					
0 4/2/2024	15:01:11	KEPSecverEX/Buntime	Data Logger P	lue in VS 6 350.0						
0 4/2/2024	15 01:11	KEPServerEX/Runtime	Alarms & Ever	ts Plug in V5 6 350.0						
D 4/2/2024	15:01:11	KEPServerEX/Runtime	SNMP Agent F	lug in V6.6.350.0						
1 4/2/2024	15:01:11	KEPServerEX/Runtime	Media Level R	edundancy Plug-in V6.6.35	10					
① 4/2/2024	15:01:11	KEPServerEX/Runtime	EFM Exporter	V6.6.350.0						
1 4/2/2024	15:01:11	KEPServerEX/Runtime	Connection Sh	aring Plug-in V6.6.360.0						
1 4/2/2024	15:01:11	KEPServerEX/Runtime	Security Polici	es Plug-in V6.6.350.0						
1 4/2/2024	15:01:11	KEPServerEX/Runtime	Local Historian	Plug-in V6.6.360.0						
0 4/2/2024	15:01:11	KEPServerEX/Runtime	IDF for Splunk	V6.6.350.0						
CD 4/2/2024	15:01:11	KEPServerEX/Runtime	Scheduler Plu	g-in V6.6.350.0						
0 4/2/2024	15:01:11	KEPServerEX/Runtime	IoT Gateway V	6.6.350.0						
0 4/2/2024	15/01:11	KEPServerEX/Runtime	Nuntime projet	ctreptaced.						
04/2/2024	15/05/20	KEPServetEX) ountime	Stemens ICP/	 Enternet device driver lo 	dec.					
A 10 10 10 10 10 10 10 10 10 10 10 10 10	10.00.12	ALF OWNER A HOUSE ME	ataring seeme	its to the calemet device	arrent.					

Figura 51. Configuración de etiquetas para el programa Matlab

5.10 Identificación del sistema en SIMULINK

Dentro del entorno de programación MATLAB, se requiere descargar e instalar la librería Industrial Communication Toolbox, figura 52. Esta librería proporciona funcionalidades específicas para la comunicación industrial, incluyendo la integración con sistemas como OPC para facilitar el intercambio de datos entre dispositivos y aplicaciones.

			Contribute	Manage Add-Ons
🔺 🐔 R2023b no	w available	Search for add-ons		Q
Installed	Industrial Communication Toolbox			
	Exchange data over OPC UA, Modous, MQTT, and other industrial protocols	Learn	More Open Documentation	Manage
Overview Functi	ions Apps Examples			
Industrial Communicat	ion Toolbox ^{**} provides access to live and historical industrial plant data directly from MATLAB [®] and Simulinl	.e. You can read, write, and log	Categories	
OPC Unified Architectu controllers. You can als	re (UA) data from devices such as distributed control systems, supervisory control and data acquisition systems so access plant and manufacturing data directly from AVEVA" PI System", and use this data for process ma	Test and Measurement > Industrial Commun > Get Started with Industrial Communication	ication Toolbox Toolbox	
and predictive mainten OPC Classic Historical modes, encryption alor	ance applications. You can work with data from live servers and data historians that conform to the OPC UA Data Access (HDA) standards. When communicating over OPC UA, you can securely connect to OPC UA as withing and user subtantication mathods. The totlbox includes Simulah blocks that use model and in as	, OPC Data Access (DA), and vers using a variety of security	Test and Measurement > Industrial Commun > OPC Standards Communication	ication Toolbox
hardware in the loop controller testing. In both MATLAB and Simulink, you can verify algorithms by establishing a secure OF UA connection to your plant and build connected digital twin models for IIoT applications. The toolbox also supports communication with edge devices and cloud servers over Modbus and MQTT		Test and Measurement > Industrial Commun > AVEVA PI Server Access	ication Toolbox	
protocols.			Test and Measurement > Industrial Commun	ication Toolbox
	Figura 52. Instalación de librería Commu	inication Toolbox	- mouse commendation	

Luego de instalar la librería Industrial Communication Toolbox en MATLAB, se crea un nuevo modelo en blanco en Simulink. A continuación, se utilizan los bloques de la librería, como el OPC Configuration Block, para configurar y establecer la conexión OPC con el dispositivo específico que se desea conectar, figura 53. Estos bloques permiten configurar la comunicación y establecer la conexión OPC entre Simulink y el dispositivo seleccionado.

Figura 53. Bloque OPC Configuration Block

Dentro de la configuración en tiempo real del OPC Config, se selecciona "Configure OPC Clients", figura 54. En esta etapa, se agrega el OPC Client Manager, que en este caso será el KEPServerEX 6.6. Al añadir el OPC Client Manager, se establece la conexión entre Simulink y el servidor OPC, permitiendo una comunicación bidireccional y una transferencia eficiente de datos entre ambos sistemas, figura 55.

🎦 untitled * - Simuli	ink academic use			- 0 X
SIMULATION	DEBUG MODELING	FORMAT APPS	ELOCK	🖥 🐄 🗢 🔍 🔍 = 📀 = 💿 -
SIMULATION Nexv Sinve - Sinve - Pice Pice Average Sinve - Litherary timeser Average Average Sinve - S	DOCUSE MACIONALISE ICOR Image: Imag	COMMT APPS Common	Rock Configuration	
 Frager Leger, Frager Leger, Tranger Acquire Tranger Acquire Tranger Acquire Tranger Acquire Tranger Acquire Ort: Configuration Ort: Confi	the intervention of the second	(m) 約 2	Product real-fine velocities: (Wan Product real-fine velocities: (Wan Product real-fine velocities: (Product real-fine velo	

Figura 54. Parámetro de configuraciones del OPC Client

OPC Client Manager (reallevelactualbacck)	-	
OPC client manager Define and configure OPC clients for use throughout changes in this dialog are applied immediately.	the model. A	ny
-OPC Clients	Connected]	
Add Delete Edit	Connect	Disconnect
	Help	Close

Figura 55. Transferencia de datos

En la sección "Open Read" de la configuración, se marca la casilla "Add Items" como se muestra en la figura 56. Luego, se selecciona la etiqueta "Sensor" del KEPServerEX y se confirma haciendo clic en "OK". De esta manera, se configura la lectura de datos del sensor específico desde el KEPServerEX a través de la conexión OPC. Esta configuración permitirá acceder y utilizar los valores del sensor en el modelo de Simulink para realizar las operaciones necesarias, figura 57.

		BIOCK Properties OFC Read	
PC Read block		OPC Read block	
Read data from an OPC server. Reads can be synchronous (fr or asynchronous (from the device). The output ports are vector number of kernes specified in the block. Value is output as a v data type. The optional Quality port is a UINT16 vector. The op is a double vector.	iom the cache or device) rs the same size as the ector of the specified ptional Timestamp port	Read data from an OPC server. Reads can be synchronous (from the cac or asynchronous (from the device). The output ports are vectors the same number of Barms specified in the block. Value is output as a vector of the data type. The optional Quality port is a UINT16 vector. The optional Time is a double vector.	the or device size as the specified stamp port
Import from Workspace		Import from Workspace	
arameters		Parameters	
Client: localhost/Kapware KEPServerEX.V6	~ ·	Client: localhost/Kepware KEPServerEX.V6	
Cod	ioura OPC Clienta	Configure OPC 0	Clients
hem Ds		tem Ds	
Chip items defined >		Channel1.1500 SENSOR	
Move up Move down Add items	v Delete	More up More down Add tems C	Delete
Move up Move down Add items Read mode: Synchronous (cache)	- Delete	More up More down Add Items C Read mode: Synchronous (cache)	Delete
Move up Move down Add items Read mode: Synchronous (cache) Sample time: 0.5	U Delete	More up More down Add items C Read mode: Synchronous (cache) Sample time: 0.5	Delete
Move up Move down Add items Read mode: Synchronous (cache) Sample time: 0.5 Value port data type: single	Uplete	More up More down Add items C Read mode: Synchronous (cache) Sample time: 0.5 Value port data type: single	Delete
Move up Move down Add items Read mode: Synchronous (cache) Sample time: 0.5 Value pot data type: single	Uelete	More up More down Add items C Read mode: Synchronous (cache) Sample time: 0.5 Value port data type: single Show quefty port	Delete
Move up Move down Add items Read mode: Synchronous (cache) Sample time: 0.5 Value port data type: single Show quality port Show timestamp port as:	Usiete V	More up More down Add Items C Read mode: Synchronous (cache) Sample time: 0.5 Value port data type: single Show quefty port Show timestamp port as:	Delete
Move up Move down Add items Read mode: Synchronous (cache) Sample time: 0.5 Value port data type: single Show quality port Show timestamp port as: Show timestamp port as: Seconds since start	Usiete V	More up More down Add Items C Read mode: Synchronous (cache) Sample time: 0.5 Value port data type: single Show quality port Show timastamp port as: Show timastamp port as: Seconds since start	Delete
Move up Move down Add items Read mode: Synchronous (cache) Sample time: 0.5 Value port data type: single Show quality port Show timestamp port as: Show timestamp port as: Show timestamp port as: Show timestamp port as:	Delete	More up More down Add Items C Read mode: Synchronous (cache) Sample tima: 0.5 Value port data type: single Show quality port Show timastamp port as: Seconds since start Secial date number	Dalata
Move up Move down Add items Read mode: Synchronous (cache) Sample time: 0.5 Value port data type: single Show quality port Show timestamp port as: Show timestamp port as: Show timestamp port as: Show timestamp port as: Show timestamp port as:	Delete	More up More down Add Items C Read mode: Synchronous (cache) Sample tima: 0.5 Value port data type: single Show quality port Show timastamp port as: Seconds since start Secial date number	Delete

Figura 56. OPC Read

Antes de acceder a OPC Write y agregar los elementos, se debe seleccionar la etiqueta específica que se desea escribir y luego confirmar seleccionando "OK" y quedaría tal como se muestra en la figura 58. Esto se realiza para asegurarse de que solo se escribirá en la etiqueta seleccionada y no en otras. Es importante tener cuidado al seleccionar la etiqueta correcta para evitar cualquier escritura incorrecta de datos.

OPC Config Real-Time			
	-		
VOPC Read (Cache): ChanneSENSOR		OF (Di	C Write isabled)
ר	>		

Figura 58. Muestra final del proceso de selección

A continuación, se establece la siguiente conexión con el objetivo de registrar los datos de entrada y salida para la identificación del sistema. Para ello, se utiliza una señal PRBS como entrada, los bloques OPC Read y Write para recibir y enviar datos hacia el PLC, bloques de conversión de dato para el OPC Write, y el bloque Record para capturar los datos y enviarlos al espacio de trabajo de MATLAB. Esto se realiza con el propósito de almacenar y analizar los datos obtenidos durante el proceso de identificación del sistema. La configuración de esta conexión se muestra en la figura 59.

Figura 59. Señal PRBS agregado al sistema

Se seleccionó este tipo de señal como entrada debido a que tiene una mejor respuesta a perturbaciones permitiendo obtener un sistema más exacto. La elección de utilizar una señal PRBS como entrada se basó en su capacidad para proporcionar una mejor respuesta ante perturbaciones, lo que a su vez permite obtener un sistema más preciso en términos de identificación, figura 60.

Figura 60. Muestreo de grafica usando la señal PRBS (Raul Rivas-Perez, 2018)

Los datos obtenidos de la grabación fueron exportados al espacio de trabajo (Workspace) de MATLAB, figura 61.

data 🛪	Name 🔺	Value
tx1 Dataset	💷 data	1x1 Dataset
Index - Value Name BlockPath Class		
I 1x1 Signal Gain1 dataaquislevelproyecto/Re Simulink.SimulationData.Signal Image: 2 1x1 Signal OPC Read:1 dataaquislevelproyecto/Re Simulink.SimulationData.Signal		
1		

Figura 61. Datos obtenidos del Workspace

Se extrajo los datos como dos objetos separados, denominados "entrada" y "salida", figura 62. A continuación, se ejecuta el comando "systemIdentification" y en la opción "import data" se selecciona los datos en el dominio del tiempo, donde se introducen los datos correspondientes al sistema, figura 63.

Name 📥	Value
😰 data	1x1 Dataset
🛨 entrada	271x1 double
🛨 salida	271x1 double

Figura 62. Datos de entrada y salida

承 Import Data	- 🗆 🗙			
Data Format for Signals				
Time Domain Signals				
Workspac	ce Variable			
Input	entrada			
Output	salida			
Data Information				
Data Name	mydata			
Start Time	0			
Sample time 0.05				
	More			
Import	Reset			
Close	Help			

Figura. 63 Selección de datos en el dominio del tiempo

Se selecciona en estimar Transfer Function Models y posteriormente se le asigna 4 polos y

2 ceros ya que con estos valores se obtuvo el mejor ajuste el cual será la función de transferencia

tal como se aprecia en las figuras 64 y 65.

K Estimate Transfer Functions	-	Х	RESULT
Model Structure Estimation Options Model name tf1			Termination condition: Maximum number of iterations reached Number of iterations: 20, Number of function evaluations: 63
Orders and Domain Number of poles 4			Status: Estimated using IFEST Fit to estimation data: 97.46%, FPE: 0.00546783
Number of zeros 2			
Continuous-time			Stop Close

tfl =
From input "ui" to output "yi":
0.0001832 - 0.0001775 z^-1 + 6.867e-05 z^-2
1 - 1.587 z^-1 + 0.5686 z^-2 + 0.1271 z^-3 - 0.2734 z^-4 + 0.4133 z^-5 - 0.452 z^
-6 + 0.3341 z^-7 - 0.6333 z^-8 + 0.7129 z^-9 - 0.2099 z^-10

Figura 65. Función de transferencia

5.11 Aplicación de la técnica AntiWindup sobre el PID

Luego, se exporta la función de transferencia a Simulink mediante un bloque LTI System para hacer el diseño de dos sistemas de control uno sin AntiWindup y otro con AntiWindup aplicando Back Calculation, figura 66.

Figura 66. PID normal vs PID aplicando Antiwindup Back Calculation

Donde el modelo superior, figura 67, representa el control PID sin AntiWindup que se conecta a un LTI System que importa la función de transferencia presente en el Workspace.

Figura 67. PID sin aplicar el método Antiwindup

Y en el modelo inferior representa el control PID que en su salida tiene un controlador AntiWindup aplicando el método de back calculation que se conecta a un LTI System. Esta comparación se realizó para evaluar las respuestas de ambos sistemas como se muestra en la figura 68.

Figura 68. PID con Antiwindup aplicando el método de Back Calculation

En la sección 6.1 se encuentra el análisis entre los mecanismos de control PID Sin Antiwindup y Con Antiwindup aplicando el método de Back Calculation.

En el siguiente bloque de Simulink, Figura 69. Se realizó un modelo que representa la comparación entre el control PID sin Antiwindup y el método de "Clamping".

Figura 69. Uso del AntiWindup con el método clamping

En la parte superior del bloque, se muestra el control PID sin Antiwindup, figura 70. Mientras que en la parte inferior se muestra el control con Antiwindup utilizando el método Clamping. En la sección 6.2 se realizó el análisis de los métodos.

Figura 70. Controlador PID con AntiWindup aplicando el método Clamping

Adicional, se realizó otro diseño, figura 71, para llevar a cabo la comparación de los dos modelos de control Antiwindup.

Figura 71. Comparación entre modelos de control AntiWindup

En base a los análisis efectuados en la sección 6.3, se puede observar que el método de Back Calculation demuestra ser más adecuado para el sistema de llenado. Este método logra suprimir el sobre pico del sistema y mantener el tiempo de estabilización, lo que resulta en un mejor rendimiento y control del proceso de llenado.

5.12 Implementación en Simulink de valores PID y técnica Antiwindup

Una vez realizado el diseño y simulación del controlador PID con Antiwindup se procede a realizar el código que va a ser implementado para el control de la planta. En la figura 72, se realizó el modelo sin control Antiwindup para el cual se utilizó el bloque PID Conntroller e
introducir los valores PID obtenidos del PID-COMPACT. La salida del controlador se conecta a una serie de bloques de comparación y switch para ajustarla a un rango de valores de 0 a 100 que es el valor que ha sido escalado en la bomba, la salida de estos bloques de comparación hay 2 bloques de conversión que se encargan de ajustar el dato que sale del Simulink a un valor que sea leído por el PLC y lo envíe a OPC Write que está configurado para que mande los valores a la variable que va conectada en el TIA portal por medio de KEPServerEX 6.6. En la parte de la realimentación se encuentra el bloque OPC Read que está configurado para que lea la variable del nivel del sensor del TIA portal. Y en la entrada se tiene un bloque step para configurar el setpoint.

Figura 72. Modelo sin técnica AntiWindup

5.12.1 Modelado del PID aplicando el método AntiWindup Back Calculation

Durante la fase de implementación, se lleva a cabo el Antiwindup mediante la aplicación del método de Back Calculation, figura 73. Al controlador PID, para la manipulación de las ganancias proporcional, integral y derivativa, se las represento en forma de bloques en base al mecanismo de control PID, y sus valores son los mismos que se extrajo del PID Compact, Sección 5.8. En la salida del controlador va conectado a un bloque saturador que en base a lo obtenido en el scope de salida del PID Controller de la figura 72 se obtiene los límites de la salida y se restara con la entrada del saturador para enviarlo al bloque de ganancia Antiwindup que se enviara a sumar

a la ganancia integral para evitar que el sistema se sobresature, en la sección 6.4 se encuentra el análisis los resultados del sistema.

Figura 73. Aplicando el método Back Calculation

La ganancia Antiwindup es igual a $\frac{1}{Tt}$ donde Tt es la constante de tiempo, el valor de Tt tiene que tener un valor menor que el tiempo de integral Ti, pero mayor que el tiempo derivativo Td. por esta razón se emplea la siguiente formula:

$$Tt = \sqrt{Ti * Td} \ (1)$$

Cuando ingresa la señal de error al integrador, la salida del integrador se ajusta para anular la entrada del mismo. Esto se lo puede representar mediante esta ecuación:

$$\frac{1}{Tt}e_s + \frac{k}{Ti}e(2)$$

Donde;

Tt: es la constante de tiempo,

K: es la componente proporcional.

e: es la señal de error que ingresa al controlador.

 e_s : es la señal de la resta de la salida menos la entrada del saturador

Cuando es estable esta ecuación adquiere un valor de 0 y la e_s

$$e_{s} = u - v$$
 (3)

Donde u es la salida del saturador y v es la entrada del saturador.

Cuando hay saturación v adquiere este valor:

$$v = u_{lim} + \frac{KTt}{Ti}e \ (4)$$

La correcta configuración y ajuste de estos elementos resulta crucial en el control de sistemas, ya que tienen un papel fundamental en garantizar un control eficiente y estable del sistema (Jaén & Cantos, 2017).

5.12.2 Modelado del PID aplicando el método AntiWindup Clamping

En la figura 74, se realizó en el sistema el control PID AntiWindup, pero ahora aplicando el método Clamping obteniendo la gráfica del sistema, figura 81. El sistema añade un mecanismo de conmutación que al momento de que la componente Integral se sobresature este va a reducir haciendo que llegue al valor de setpoint. Este método consiste en una limitación de la salida de control por medio del bloque saturación que va a ser una comparativa que la salida no debe ser igual a la entrada y esta salida se va a un bloque lógico AND que va a comparar esa señal con un bloque que está comparando la entrada del proporcional con la salida del controlador PID. La salida del Bloque AND va a un switch que va a commutar entre la señal de error y 0, en la sección 6.5, se encuentra el análisis los resultados del sistema.

Figura 74. Controlador PID con Antiwindup aplicando el método Clamping

VI RESULTADOS

6.1 Análisis entre los mecanismos de control PID Sin Antiwindup y Con Antiwindup aplicando el método de Back calculation

Estos análisis se realizaron enviando una señal de tipo step como entrada, tabla 1. Se aprecia una reducción del porcentaje del sobre pico del sistema y que ambos sistemas se estabilizan en el mismo tiempo. Esto indica que la aplicación del método de Antiwindup, utilizando el enfoque de back calculation, ha logrado mejorar la respuesta de nivel del sistema al eliminar el sobre pico y alcanzar la estabilidad de manera similar en comparación con el control PID sin Antiwindup, mostrado, donde se realiza la comparación de los dos métodos, figura 75.

Figura 75. Eliminación de picos en el sistema

Para las comparativas se realizó unas tablas de resultados en la que se experimentó con distintos valores de amplitud de la señal step que es el setpoint de entrada del sistema de llenado de un tanque de agua, obteniendo para cada valor un valor de salida con respecto a esta, el valor de asentamiento mínimo es el valor en el que la señal se empieza a estabilizar, el valor de asentamiento máximo es el valor pico de la señal de salida, el porcentaje de overshoot es el

porcentaje del valor pico del sistema, y el tiempo de estabilización es el tiempo en el que la señal se estabiliza.

En la tabla 1, se realizó la experimentación del sistema con el controlador PID inyectando valores de setpoint de 10 a 1 pulgadas que son los valores de distancia de llenado que se desea ajustar en el tanque de nivel y se aprecia que en las respuestas de distancia del sistema de nivel de llenado del tanque tiene un porcentaje de overshoot de 2.68% con respecto a los valores de setpoint de entrada, el tiempo en el que se estabilizan todos los valores del sistema es de 157.10 segundos.

Tabla 1

PID Sin Antiwindup

 Setpoint	Salida	Valor de asentamiento	Valor de asentamiento	%Overshoot	Tiempo de
		máximo	mínimo		estabilización
 10 [Inch]	10.2952 [Inch]	10.2952 [Inch]	9.0238 [Inch]	2.68%	157.10 [s]
9 [Inch]	9.2656 [Inch]	9.2656 [Inch]	8.1214 [Inch]	2.68%	157.10 [s]
8 [Inch]	8.2361 [Inch]	8.2361 [Inch]	7.2191 [Inch]	2.68%	157.10 [s]
7 [Inch]	7.2066 [Inch]	7.2066 [Inch]	6.3167 [lnch]	2.68%	157.10 [s]
6 [Inch]	6.1771 [Inch]	6.1771 [lnch]	5.4143 [Inch]	2.68%	157.10 [s]
5 [Inch]	5.1476 [Inch]	5.1476 [Inch]	4.5119 [lnch]	2.68%	157.10 [s]
4 [Inch]	4.1181 [Inch]	4.1181 [lnch]	3.6095 [Inch]	2.68%	157.10 [s]
3 [Inch]	3.0885 [Inch]	3.0885 [Inch]	2.7071 [Inch]	2.68%	157.10 [s]
2 [Inch]	2.0590 [Inch]	2.0590 [Inch]	1.8048 [Inch]	2.68%	157.10 [s]
1 [Inch]	1.0295 [Inch]	1.0295 [lnch]	1.0295 [Inch]	2.68%	157.10 [s]

En la tabla 2 se realizó la experimentación del sistema con el controlador PID con Antiwindup aplicando el método de back calculation inyectando valores de setpoint de 10 a 1 pulgadas que son los valores de distancia de dosificado que se desea ajustar en el tanque de nivel y se aprecia que en las respuestas del sistema de nivel el porcentaje de overshoot con respecto a la entrada varían desde el 0% cuando tiene un setpoint de 10 y 2.3% a 2.68% con valores de 7 a 1 pulgadas, el tiempo en el que se estabilizan todos los valores del sistema es de 157.10 segundos.

Tabla 2

Setpoint	Salida	Valor de	Valor de	%Overshoot	Tiempo de
		asentamiento	asentamiento		estabilización
		máximo	mínimo		
10 [Inch]	9.9634 [Inch]	9.9634 [Inch]	8.9691 [Inch]	0%	220.35 [s]
9 [Inch]	8.9960 [Inch]	8.9960 [Inch]	8.0965 [Inch]	0%	61.35
8 [Inch]	8.2025 [Inch]	8.2025 [Inch]	7.2172 [Inch]	2.3%	130.10 [s]
7 [Inch]	7.2066 [Inch]	7.2066 [Inch]	6.3167 [Inch]	2.68%	157.10 [s]
6 [Inch]	6.1771 [Inch]	6.1771 [Inch]	5.4144 [Inch]	2.68%	157.10 [s]
5 [Inch]	5.1476 [Inch]	5.1476 [Inch]	4.5120 [Inch]	2.68%	157.10 [s]
4 [Inch]	4.1181 [Inch]	4.1181 [Inch]	3.3096 [Inch]	2.68%	157.10 [s]
3 [Inch]	3.0885 [Inch]	3.0885 [Inch]	2.7072 [Inch]	2.68%	157.10 [s]
2 [Inch]	2.0590 [Inch]	2.0590 [Inch]	1.8048 [Inch]	2.68%	157.10 [s]
1 [Inch]	1.0295 [Inch]	1.0295 [Inch]	0.9024 [Inch]	2.68%	157.10 [s]

AntiWindup con el método Back Calculation

6.2 Análisis entre los mecanismos de control PID Sin Antiwindup y Con Antiwindup aplicando el método de Clamping

Al comparar la respuesta de salida de los dos sistemas en base a una señal de tipo step de entrada, Tabla 3, se puede observar que en todos los valores de setpoint de 10 a 1 pulgada de nivel del sistema, ambos métodos lograron eliminar los valores de overshoot presentes en la tabla 1 del controlador PID, pero ganaron Undershoot de 2.003% lo cual genera perdida de nivel de agua. Esto indica que en el controlador Antiwindup con el método Clamping con respecto al control PID sin Antiwindup se logró mejorar el tiempo de estabilización de la respuesta del sistema a cambio de una ganancia de Undershoot como se muestra en el scope de salida de la figura 76 al inyectar una señal de tipo step de valor 10 de amplitud como entrada.

Figura 76. Mejora del sistema

En la tabla 3 se realizó la experimentación del sistema usando el controlador PID con Antiwindup aplicando el método Clamping inyectando valores de setpoint de 10 a 1 pulgadas del nivel de agua en el tanque y se aprecia que en las respuestas del sistema de llenado el porcentaje de overshoot con respecto a la entrada es del 0% por ello no se lo menciona pero en su lugar gano porcentaje de Undershoot que se da cuando los valores de salida son inferiores a los valores de setpoint, el tiempo en el que se estabilizan todos los valores del sistema es de 52.56 segundos.

Tabla 3

Antiwindup con el método Clamping

Setpoint	Salida	Valor de asentamiento	Valor de asentamiento	%Undershoot	Tiempo de	
		máximo	mínimo		estabilización	
10 [Inch]	9.74 [Inch]	9.74 [Inch]	8.77 [Inch]	2.003%	52.56 [s]	
9 [Inch]	8.77 [Inch]	8.77 [lnch]	7.89 [lnch]	2.003%	52.56 [s]	
8 [Inch]	7.79 [Inch]	7.79 [inch]	7.01 [inch]	2.003%	52.56 [s]	
7 [Inch]	6.82 [Inch]	6.82 [Inch]	6.14 [Inch]	2.003%	52.56 [s]	
6 [Inch]	5.85 [Inch]	5.85 [lnch]	5.26 [lnch]	2.003%	52.56 [s]	
5 [Inch]	4.87 [Inch]	4.87 [Inch]	4.38 [Inch]	2.003%	52.56 [s]	
4 [Inch]	3.89 [Inch]	3.89 [Inch]	3.51 [Inch]	2.003%	52.56 [s]	
3 [Inch]	2.92 [Inch]	2.92 [inch]	2.63 [Inch]	2.003%	52.56 [s]	
2 [Inch]	1.95 [Inch]	1.95 [Inch]	1.75 [lnch]	2.003%	52.56 [s]	
1 [Inch]	0.97 [Inch]	0.97 [inch]	0.87 [inch]	2.003%	52.56 [s]	

6.3 Análisis entre los mecanismos de control PID con Antiwindup usando los métodos Back calculation y Clamping

En la tabla 2 y tabla 3, se observa mediante el análisis de los mecanismos de control Antiwindup. Que el método Clamping logra una estabilización más rápida con una diferencia 89.66 segundos promediando las restas de los valores diferentes de tiempo de estabilización, a expensas de una reducción en los valores de salida con respecto al setpoint de entrada presente en la tabla 3. Pero, por otro lado, el método de back calculation alcanza la estabilidad en el mismo tiempo que el sistema sin Antiwindup de 157.10 segundos, tabla 1 y tabla 2, y llega al valor de setpoint establecido como se muestra en la figura 77 y 78.

Figura 77. Método Clamping

Figura 78. Método Back Calculation

6.4 Análisis de la Implementación del mecanismo de control PID con Antiwindup aplicando el método de back calculation.

En la figura 79, En el gráfico del scope del mecanismo de control PID sin Antiwindup, se puede observar que al inyectar una señal step de amplitud 10 como entrada, la respuesta del sistema muestra un overshoot de 2.68%, lo cual concuerda con lo observado en la simulación.

Figura 79. Control PID sin Antiwindup

En la figura 80 del control PID con AntiWindup aplicando el método de back calculation se aprecia una reducción significativa del overshoot del sistema de 2.68% que con un setpoint de 10 de amplitud logra estabilizar en el punto deseado, lo cual su resultado se asemeja al análisis en la simulación, sección 6.1.

Figura 80. Estabilización del control PID con Back Calculation

En la tabla 4 se realizó la experimentación del sistema implementado usando el controlador PID con Antiwindup aplicando el método back calculation inyectando valores de setpoint de 10 a 1 pulgadas y se aprecia que en las respuestas del sistema el porcentaje de overshoot con respecto a la entrada es del 0% por ello no se lo menciona pero en su lugar gano porcentaje de Undershoot descrito en la tabla que se da cuando los valores de salida son inferiores a los valores de setpoint, el tiempo promedio en el que se estabilizan todos los valores del sistema es de 200.185 segundos. **Tabla 4**

Tabla de Resultados de la implementación del controlador PID con AntiWindup aplicando el método de back calculation mediante el software Simulink.

		Valor de asentamiento	Valor de asentamiento	%Overshoot	Tiempo de
Setpoint	Salida	máximo	mínimo		estabilización
10 [Inch]	10.3667 [Inch]	10.2035 [Inch]	9.0805 [Inch]	1.54%	400 [s]
9 [Inch]	9.3052 [Inch]	9.3052 [Inch]	8.1177 [Inch]	1.90%	350 [s]
8 [Inch]	8.4046 [Inch]	8.4046 [Inch]	7.5248 [Inch]	2.44%	400 [s]
7 [Inch]	7.2730 [Inch]	7.2730 [Inch]	6.4489 [Inch]	2.87%	310.23[s]
6 [Inch]	6.2529 [Inch]	6.2529 [Inch]	5.4719 [Inch]	1.67%	528.8 [s]
5 [Inch]	5.1850 [Inch]	5.1850 [Inch]	4.4836 [Inch]	2%	350.50 [s]
4 [Inch]	4.1441 [Inch]	4.1441 [Inch]	3.5911 [Inch]	2.64%	454.62 [s]
3 [Inch]	3.1543 [Inch]	3.1543 [Inch]	2.4529 [Inch]	1.2%	528.82 [s]
2 [Inch]	2.1247[Inch]	2.1247[Inch]	1.4233 [Inch]	1.50%	420.3 [s]
1 [Inch]	1.1537[inch]	1.1537[Inch]	0.384[Inch]	1.25%	302.50 [s]

6.5 Análisis de la Implementación del mecanismo de control PID con Antiwindup aplicando el método Clamping.

En la figura 81, el control PID con AntiWindup aplicando el método de Clamping se experimentó con un setpoint de 10 se aprecia que el sistema llega a la estabilidad en el valor 8.056 inch, correspondiente al nivel del tanque, este valor es menor que el del setpoint ajustado a 10 inch, por ello no es conveniente para el sistema a diferencia del sistema con AntiWindup aplicando back calculation.

Figura 81. PID con el método Antiwindup Clamping

En la tabla 5 se realizó la experimentación del sistema implementado usando el controlador PID con Antiwindup aplicando el método Clamping se inyecto valores de setpoint de 10 a 1 pulgadas y se aprecia que en las respuestas del sistema el porcentaje de overshoot con respecto a la entrada es del 0% por ello no se lo menciona pero en su lugar gano porcentaje de Undershoot descrito en la tabla que se da cuando los valores de salida son inferiores a los valores de setpoint, este fenómeno no se desea en el sistema ya que genera pérdidas de nivel del tanque de agua el tiempo promedio en el que se estabilizan todos los valores del sistema es de 267.010 segundos.

Tabla 5

Tabla de Resultados de la implementación del controlador PID con AntiWindup aplicando el método de Clamping mediante el software Simulink.

		Valor de asentamiento	Valor de asentamiento	%Undershoot	Tiempo de
Setpoint	Salida	máximo	mínimo		estabilización
10 [Inch]	8.056 [Inch]	8.056 [Inch]	7.840 [Inch]	19.44%	265.242 [s]
9 [Inch]	7.850 [Inch]	7.850 [Inch]	7.240 [Inch]	13.78%	300.000 [s]
8 [Inch]	6.945 [Inch]	6.945 [Inch]	6.432 [Inch]	12.18%	240.350 [s]
7 [Inch]	6.173 [Inch]	6.173 [Inch]	5.755 [Inch]	5.87%	220.500 [s]
6 [Inch]	5.254 [Inch]	5.254 [Inch]	4.828 [Inch]	5.67%	275.485 [s]
5 [Inch]	4.179 [Inch]	4.179 [Inch]	3.779 [Inch]	5.87%	264.510 [s]
4 [Inch]	3.123 [Inch]	3.123 [Inch]	2.932 [Inch]	5.68%	280.951 [s]
3 [Inch]	2.345 [Inch]	2.345 [Inch]	1.938 [Inch]	5.64%	310.320 [s]
2 [Inch]	1.424 [Inch]	1.424 [Inch]	0.857 [Inch]	5.63%	267.400 [s]
1 [Inch]	0.450 [Inch]	0.450 [Inch]	0.370 [Inch]	5.63%	245.340 [s]

6.6 Análisis comparativo simulado vs implementado usando Antiwindup Back calculation.

De estos resultados se analizó que el mejor método Antiwindup para el sistema de llenado de tanques, es el que fue sacado por Back Calculation y con este mecanismo se hará las comparativas entre los resultados de la planta simulada presente en la tabla 2 y la planta implementada presente en la tabla 4. Aunque los resultados difieran un poco debido a que el sistema implementado no es 100% preciso con respecto al sistema simulado, se obtuvo unos resultados que son aproximados al valor de setpoint que es lo que se desea.

VII CRONOGRAMA

En la figura 82, se presenta la propuesta del cronograma de actividades dispuesto por semanas, haciendo un total de 12 semanas de trabajo, para el desarrollo del Proyecto de Titulación en los meses de mayo a septiembre correspondientes al periodo académico 62, aspirando que en la primera semana de septiembre se culmine con la sustentación.

Figura 82. Cronograma de actividades para el desarrollo del Proyecto de Titulación

VIII PRESUPUESTO

En la tabla 6, se observará los costos de los componentes y estimado de horas trabajadas en la realización del proyecto. Estos valores varían de acuerdo al lugar de compra, serán efectuados en su costo por los autores.

Tabla 6.

Costos de componentes y horas trabajadas.

Detalle	Cantidad	Costo unitario	Total
Horas de ingeniería	40	2.80	112
Material de trabajo	1	270	270
TOTAL	41	272.80	382

IX CONCLUSIONES

- Mediante los datos obtenidos, se realizó la elección del método de Back Calculation, para el sistema propuesto de llenado de tanque. Este método ofrece un mayor control sobre el fenómeno de Windup y garantiza un rendimiento eficiente y estable del controlador PID. Sin embargo, es importante ajustar adecuadamente los coeficientes para lograr las mejores dinámicas posibles.
- La implementación del script en Simulink con los valores del controlador PID y la técnica Anti-Windup ha demostrado ser efectiva en el control de la planta, mediante el modelado y la simulación del controlador PID con Anti-Windup, esto llevó a diseñar un sistema que permite ajustar la salida del controlador a un rango de valores específico. Se utilizó el bloque PID Controller para introducir los valores obtenidos del PID Compact y se realizaron ajustes adicionales mediante bloques de comparación y switch.
- Con base en la evaluación comparativa del sistema de control de llenado de tanques de agua, se concluye que la aplicación del método Anti-Windup ha demostrado mejoras significativas en la respuesta del sistema. Tanto el método de Back Calculation como el método de Clamping lograron eliminar el overshoot del controlador PID, sin embargo, el método de Back Calculation mostró una mejor reducción del overshoot y una mayor precisión en la estabilización en comparación con el método de Clamping. Aunque existen ligeras diferencias entre la simulación y la implementación real, se obtuvieron resultados aproximados al valor de setpoint deseado, respaldando la eficacia del método Anti-Windup, en especial, mediante el uso del método de Back Calculation en la mejora del sistema de control de llenado de tanques de agua.

En conclusión, en base al análisis realizado, la técnica Antiwindup aplicada al sistema de control basado en PID con el método de Back Calculation, ha demostrado ser efectiva para descargar la acción integral y lograr una respuesta rápida de la variable controlada. Los resultados obtenidos respaldan la importancia del diseño del controlador Antiwindup en Simulink, así como la configuración y ajuste adecuados del controlador PID COMPACT. Además, la utilización del OPC Server para establecer la comunicación entre los sistemas ha permitido mejorar significativamente el rendimiento y control del proceso de llenado en aplicaciones industriales. Estos hallazgos resaltan la relevancia de la técnica Antiwindup y el método de Back Calculation en la optimización de sistemas de control basados en PID.

X RECOMENDACIONES

- Antes de establecer la conexión de cualquier dispositivo, es esencial realizar una revisión exhaustiva del manual y la ficha técnica correspondientes, con el objetivo de evitar posibles daños al equipo.
- Para garantizar un funcionamiento óptimo del sensor, se recomienda realizar una calibración previa ajustada a las dimensiones del tanque que se utilizará, antes de iniciar el proceso de programación.
- Es esencial verificar y asegurarse de que el PLC esté configurado adecuadamente para admitir la entrada del sensor de corriente al conectarlo. Esto garantiza una integración correcta y un funcionamiento óptimo del sistema.
- Basándose en la investigación realizada en este proyecto, se sugiere llevar a cabo la evaluación utilizando el método de Clamping.
- Es recomendable realizar la investigación de cada bloque en Simulink para saber su uso y su conexión
- Al conectar los bloques en Simulink hay que asegurarse que el tipo de dato con el que se trabaja sea el mismo o sea compatible con el que se trabaja ya que el Software puede mandar error.
- Después de un tiempo de estar activo el KEPServerEX este puede llegar a bloquear la comunicación entre el PLC y el HMI esto se da porque el programa es de prueba por eso Es necesario verificar antes de conectar el Simulink con el TIA PORTAL que el KEPServerEX este detectando y sincronizando las variables que se van a comunicar y cuando ocurra el bloqueo reiniciar el ordenador.

- El sensor Ultrasónico fallaba en su lectura en ciertos niveles del tanque por ello se calibro el sensor para la medida de 1 a 10 pulgadas que es el rango de medición aceptable.
- En el system identification de matlab hay que asegurarse de que los datos de entrada sean del mismo tamaño que los de salida. Al Importar los datos en el system identification hay que asegurarse de colocar bien el tiempo de muestreo ya que puede generar error en la función de transferencia

XI REFERENCIAS

Ayyarao, Tummala. (1 de 6 de 2017). A Novel Gain Tuning of Anti-Windup PID Controller using Ant Lion Optimization. *International Journal of Control Theory and Applications*, 85-94. Obtenido de https://www.researchgate.net/figure/Speed-output-with-anti-windup-controllerregained-to-reference-speed-within-05-s-But_fig1_317490264

Carlos Pardo Martín. (12 de 10 de 2018). Obtenido de https://www.picuino.com/es/controlpid.html

dademuch connection. (9 de 8 de 2020). Obtenido de

https://dademuchconnection.wordpress.com/2020/08/09/funcion-de-transferencia-a-lazo-abiertoy-lazo-cerrado-ejemplos/

Engin, E. (3 de 7 de 2016). VISION-AIDED LANDING FOR FIXED WING UNMANNED AERIAL VEHICLE.

infoPLC. (28 de 11 de 2020). *Control lazo Cerrado PID con Siemens S7-1500 y TIA Portal (En)*. Obtenido de https://www.infoplc.net/descargas/107-siemens/software-step7-tiaportal/tiaportal/3167-control-lazo-cerrado-pid-siemens-s7-1500-tia-portal

Jalil, R. H. (2021). PID with Clamping Anti-windup Performance on Temperature Regulation of Glycerin Bleaching Process.

KALEJA. (2018). Obtenido de https://www.kaleja.com/fileadmin/user_upload/06.04.048_Maxi-1Q-4-30_en.pdf

KALEJA GmbH. (16 de 8 de 2018). KALEJA. Obtenido de

https://www.kaleja.com/fileadmin/user_upload/06.04.048_Maxi-1Q-4-30_en.pdf

Kepware*Kepserverex. (30 de 7 de 2019). Kepware*Kepserverex. Obtenido de

https://www.kepserverexopc.com/guia-de-instalacion-de-kepseverex/

MathWorks. (7 de 8 de 2020). Obtenido de https://la.mathworks.com/help/simulink/slref/antiwindup-control-using-a-pid-controller.html

MathWorks. (25 de 10 de 2021). Obtenido de

https://la.mathworks.com/help/simulink/ug/debugging-a-matlab-function-block.html

MathWorks. (4 de 9 de 2023). Obtenido de https://es.mathworks.com/help/icomm/ug/mbeapp.gif

PEPPERL+FUCHS. (24 de 4 de 2014). *PEPPERL+FUCHS*. Obtenido de https://www.pepperlfuchs.com/global/es/classid_186.htm?view=productdetails&prodid=39570#overview

PROFINET VERSUS OPC. (4 de 8 de 2020). Obtenido de https://us.profinet.com/profinetversus-opc-2/

Raul Rivas-Perez. (2018). Direct Continuous-Time System Identification of the Purification Process of the Nimotuzumab, a Humanized Monoclonal Antibody.

SIEMENS. (8 de 2018). SIEMENS. Obtenido de

https://cache.industry.siemens.com/dl/files/205/59193205/att_902257/v1/s71500_ai_8xu_i_rtd_t c_st_manual_es-ES_es-ES.pdf

SIEMENS. (7 de 5 de 2023). PLC S7-1500.

CARRIÓN VERDEZOTO, J. F., & PAZMIÑO CÁCERES, A. B. (2018). *REPOTENCIACIÓN EN LA MEDICIÓN DE DATOS DE LA MÁQUINA UNIVERSAL DE ENSAYOS DEL LABORATORIO DE RESISTENCIA DE MATERIALES DE LA FACULTAD DE MECÁNICA*. David Enrique Barrera Moncayo. (2008). *Diseño e implementación de un sistema de entrenamiento PROFINET para el Laboratorio de PLCs y Robótica del Departamento de Eléctrica y Electrónica de la ESPE*. David Páez Ramírez, & Juan Pablo Romero Camacho. (2021). *SINTONIZACIÓN DE UN CONTROLADOR PID MEDIANTE ALGORITMOS BIO-INSPIRADOS PARA LA CORRECCIÓN DEL FACTOR DE POTENCIA DE UN CONVERTIDOR ELEVADOR*. 24–26. Editores SRL. (2014). *Simatic S7-1500 + TIA Portal: la nueva dimensión de la automatización*. 1–4.

Elías Benavides, B., Félix, O., & Sigcha Tepan, J. (2019). "DESARROLLO DE UN MANUAL DE PRÁCTICAS ORIENTADO AL APRENDIZAJE DE LA IDENTIFICACIÓN Y CONTROL DE PROCESOS DENTRO DEL LABORATORIO LACTI DE LA UNIVERSIDAD POLITÉCNICA SALESIANA."

H Franco. (2018). Función de transferencia y sistemas de primer orden. *Https://Dctrl.Fi-b.Unam.Mx/Lab_control/Docs/Asys/P03_LASyS.Pdf*.

Huamaní, B., & EDERICK Villa El Salvador, A. (2017). SISTEMA DE CONTROL PROPORCIONAL INTEGRADOR Y DERIVATIVO, COMO ALTERNATIVA PARA MEJORAR LA PRECISIÓN DE TEMPERATURA, APLICADO AL PROCESO DE ELABORACION DE PINTURAS, PARA LA EMPRESA MARA SA.

Ipromor packing solutions. (2020, August 4). *Sistema de rechazo progresivo de envases*. https://ipromor.com/maquinaria/sistema-de-rechazo-progresivo-de-envases/ Jaén, J., & Cantos, A. (2017). ESTUDIO DEL DESEMPEÑO DE CONTROLADORES AVANZADOS EN EL CONTROL DE SISTEMAS CON SATURACIÓN EN EL ACTUADOR. *ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL*. KALEJA. (2021, June 21). *Motor controls*. Https://Www.Kaleja.Com/En/Products/Motor-

Controls.Html.

MathWorks. (2020, September 19). System Identification Toolbox.

Https://La.Mathworks.Com/Products/Sysid.Html.

MathWorks. (2022). Simulink - Simulation and Model-Based Design - MATLAB & Simulink.

Simulation and Model-Based Design, MathWorks.

https://la.mathworks.com/products/simulink.html

Matlab. (2020). Control anti-windup usando el bloque PID Controller.

Mirna Manzanilla Romero, M., Rosa Centurión Yah Subdirectora Académica, A., Jorge Carlos

Canto Esquivel, M., Iván Manuel Gil Domínguez, I., Artemio Alpizar Carrillo, I., Alberto Lujan

Ramírez, C., Maria Margarita Álvarez Cervera, M., Ricardo Orlando Álvarez Gamboa, B.,

Octavio Guerrero Martinez, B., & Edgar Omar Solís Yam Editores Coeditores, B. (2014).

CONTROL INVERSO NEURODIFUSO APLICADO A UN PROTOTIPO DE CONTROL DE CAUDAL.

Miyara, F., & Nacional De Rosario, U. (2004). CONVERSORES D/A Y A/D / D.

http://www.fceia.unr.edu.ar/enica3

Moler, C., & Little, J. (2020). A history of MATLAB. *Proceedings of the ACM on Programming Languages*, 4(HOPL). https://doi.org/10.1145/3386331

OGATA, K. (1997). Introducción a los sistemas de control.

Okelola, M. O., Aborisade, D. O., & Adewuyi, P. A. (2021). Performance and Configuration Analysis of Tracking Time Anti-Windup PID Controllers. *Jurnal Ilmiah Teknik Elektro*

Komputer Dan Informatika, 6(2). https://doi.org/10.26555/jiteki.v6i2.18867

Pepperl+Fuchs. (2023, July 13). UB800-18GM40-I-V1. Pepperl+Fuchs.

Reyes, A., & Roldán, G. (2021). DISEÑO E IMPLEMENTACIÓN DE UN CONTROLADOR DE NIVEL UTILIZANDO LÓGICA DIFUSA CON PLC S7-1500. Universidad Politecnica Salesiana.

Rodríguez-Castellanos, J. E., & Cote-Ballesteros, J. E. (2019). Estrategia anti-windup por recálculo y seguimiento en controladores PID difusos directos. *Revista Facultad de Ingeniería*

(Rev. Fac. Ing, 28(53), 119–139.

https://doi.org/10.19053/10.19053/01211129.v28.n53.2019.9925

SIEMENS. (2014). *Módulo de entradas analógicas AI 8xU/I/RTD/TC ST (6ES7531-7KF00-0AB0)*.

SIEMENS. (2023a). SIMATIC S7-1200, S7-1500 Regulación PID.

SIEMENS. (2023b, January 18). Totally Integrated Automation (TIA).

Https://Www.Siemens.Com/Global/En/Products/Automation/Topic-

Areas/Tia.Html#TIAPortfolio.

SIEMENS. (2023c, May 31). SIMATIC S7-1500.

Https://Www.Siemens.Com/Es/Es/Productos/Automatizacion/Sistemas/Simatic/Controladores-Simatic/Simatic-S7-1500.Html.

Singflo. (2018). Bomba Eléctrica Con Pulverizador De Mochila Bomba De Mochila Agrícola Alimentada Con Batería De 12 Voltios.

Sony Cahya Pratama, & Erwin Susanto, A. S. W. (2016). *Design and Implementation of Water Level Control Using Gain Scheduling PID Back Calculation Integrator Anti Windup*.

Torres, L., & Chanoluisa, X. (2015). DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE CONTROL EN UNA PLANTA DE LLENADO DE TANQUES A ESCALA USANDO UN TRANSMISOR DE NIVEL Y ALGORITMO PID PARA PRUEBAS EN EL LABORATORIO DE AUTOMATIZACIÓN INDUSTRIAL. UNIVERSIDAD POLITÉCNICA SALESIANA SEDE GUAYAQUIL FACULTAD DE INGENIERÍAS CARRERA INGENIERÍA ELECTRÓNICA. Universidad Autónoma del Estado de Hidalgo. (2015). Comunicaciones en redes. VELÁSQUEZ, M. A., & CARVAJAL, J. L. (2022). DISEÑO E IMPLEMENTACIÓN DE UN PROTOTIPO PARA UN SISTEMA DE PID DE TEMPERATURA CON CELDA PELTIER PARA TERMO PORTÁTIL.

XII ANEXO

Documentación bibliográfica del proyecto

Módulo de llenado de tanques

Procesamiento de señal en Tia Portal

Configuración del PID COMPACT para la extracción de los valores PID

Segmento 1:

Comentario				
NORM_X Int to Real		Re	SCALE_X al to Real	SUB Auto (Real)
EN 18337 - MN *XWA *Tag_1* - VALUE 32767 - MAX	*dbgeneral*. OUT — nivelnorm	0.0 — MIN "dbgeneral". nivelnorm — VALUE 23.0 — MAX	OUT	SCALEX 23.0 INI #OUT_SCALEX IN2 OUT - "OUT_LVL"

Segmento 2: Comentario

	NORM_X Int to Real			SCALE_X Real to Int
EN	ENO		EN	ENO
0 — MIN		%MD52	0 — MIN	%QW4
%MW2 *controlsimulink* — VALUE	- 10	"normalizado_ _ bomba"	%MD52	OUT — bomba
100 - MAX			bomba" — VALUE	
			27648 — MAX	

Programa realizado en Tia Portal

KEPServerl	EX 6 Configura	ation [Connected to Runtin	ne]						-	-	0	×
File Edit	View Tools	Runtime Help										
0 💕 🗟 🖥	2 😳 😁 🖻	🤊 🎽 🗞 🚬 🧱										
🕀 💽 Project			Channel Name /	Driver	Connection		Sharing	Virtual Network	Description			_
⊖ ti Com ⇒ Aias ⊸ Aias → Aias → Aias → Aias → Aias	nectivity hannel1 aces anced Tags ns & Events dd Avea		Charnell	Siemens TCP/IP Ethernet	Efternet (192.168	.0.2 Intel(R) Ethernet C	NA	N/A				
E 😸 Data	Logger dd Log Group						×					
⊖ © EFM	Exporter						~					
BNS DFK ②A BNS bTG	dd Poll Group . or Splunk dd Splunk Conn Bateway	iecion		← Add Chann	el Wizard							
S Ar	dd Agent I Historian			Colorithe hand a	debased to be readed							
A 6	dd Datastore			Seleccale type of	or channel to be created.							
⊟ ∰ Sche	duler			ABB Totalfow		<u>-</u> @						
⊟ Ø SNM	IP Agent			SatBus Serial Scanivalva Etx	ernet							
🗔 A	dd Agent			Siemens S5 (39	64R)							
Date 7	Time	Source	Event	Siemens So (A) Siemens S7 MP	S611) N							_
(1) 15/2/2024	11:49:48	KEPServerEX/Runtime	Security Policies Plug-in V6.6.350.0	Siemens S7-20	0							
(1) 15/2/2024	11:49:48	KEPServerEX/Runtime	Local Historian Plug-in V6.6 350.0	Siemens TCP/I	P Slove Ethemot							
(1) 15/2/2024	11:49:48	KEPServerEX(Runtime	IDF for Splunk V6.6.350.0	Simatic/TI 505 E	themet							
15/2/2024	11:49:48	KEPServerEX\Runtime	Scheduler Plug-in V6.6.350.0	Simate/TI 505 S	Serial							
(15/2/2024	11:49:48	KEPServerEX\Runtime	IoT Gateway V6.6.350.0	Simulator SIXNET EtherT	DAK							
(1) 15/2/2024	11:51:11	KEPServerEX(Runtime	Kepware Industrial Connectivity Platte	SIXNET UDR								
15/2/2024	11:51:13	KEPServerEX/Runtime	The specified network adapter is inva	slid SNWP								
(15/2/2024	11:51:13	KEPServerEX\Runtime	Siemens TCP/IP Ethernet device driv	er SquareD Serial								
15/2/2024	11:51:13	KEPServerEX(Runtime	Runtime service started.									
(1) 15/2/2024	11:51:13	KEPServerEX\Runtime	Starting Siemens TCP/IP Ethernet de	vio								
(1) 15/2/2024	11:51:13	Siemens TCP/IP Ethemet	Siemens TCP/IP Ethemet Device Dri	ver								
15/2/2024	11:51:13	KEPServerEX\Runtime	Advanced Tags Plug-in V6.6.350.0									
0 15/2/2024	11:51:13	KEPServerEX(Runtime	Data Logger Plug-in V6.6.350.0			Similanta	Cancelar					
0 15/2/2024	11:51:13	KEPServerEX(Runtime	Alarms & Events Plug-in V6.6.350.0			Sigurence	Cancelar					
0 15/2/2024	11:51:13	KEPServerEX(Huntime	SNMP Agent Plug-in Vb.6.350.0	0.052.0								
0 15/2/2024	115113	KEPServerEX(Hurame	Media Level Redundancy Plug in V5	6.350.0								
0 15/2/2024	11:51:13	KEPSeiverEX(Kuntime	EPM Experter Vo.6.3500									
0 15/2/2024	1151.15	KEPSelvelEX(Runame	Connection Shalling Plug-In V66.350	J								
0 15/2/2024	11:51:13	KEPServerEX(Runame	Securey Policies Plug-In V6.6.350.0									
0 15/2/2024	1101013	KCP ServerEX(Runame VEDPassarEX)Ductime	De for Robot M & 200.0									
0 10/2/2024	11.01.10	KEPC-serverEX(Runame	Calculation Diversion MC 6 200 0									
0 15/2/2024	116213	KERParene X Running	Scheduler Prügen V6.6.560.0									
0 10/2/2024	12/2/22	KERCONNEX PUBLIC	Configuration consists started by API	IC as Def								1.1
15/2/2024	13:42:23	KEPSenseEXConfigurate	The specified asheed advates is into	da estret.								
an experience	137623	Nor Janva EA (Goinga and	and the spectred helivork adapter is invo	ing on one								
Ready									Default User Cliente	su Ac	Ne tags: U	1010

Conexión del KEPServerEX

Grafica del sistema sin antiwindup

Grafica del sistema con antiwindup aplicando el método back calculation

	(4) ∓▼ Trace Selection 7 ×
	LTI System1 V
	T ▼ Cursor Measurements
	► Settings
	▼ Measurements
s /	1 5.168 2.926e+00
	2 400.784 1.007o+01
4	ΔT 395.616 s ΔY 7.142e+00
	1 / ΔT 2.528 mHz
2	ΔΥ / ΔΤ 18.053 (/ks)
	;
8	

Grafica de la comparativa entre el sistema con control PID solo y aplicando el control antiwindup aplicando el método back calculation

Implementación del control antiwindup en Simulink aplicando el método de back calculation

Fotos del trabajo realizado en el modulo

Hojas generales de especificaciones técnicas

Connection: 2-wire transmitters for current measurement

The example in the following figure shows the pin assignment for current measurement with 2-wire transmitters.

- ② Analog-to-Digital Converter (ADC)
- ③ Backplane bus interface
- ④ Supply voltage via power supply element
- 5 Equipotential bonding cable (optional)

Figure 3-4 Block diagram and pin assignment for current measurement

Diagrama para la conexión de las entradas de corriente del PLC s7-1500.

KALEJA Elektronik GmbH D-73553 Alfdorf Motor-speed control for brush sticking direct current motor 24VDC. Obsolete product consider 06.34.001 instead Implementation for switching current up to 5A. With speed control, starting ramp. With change of rotation. To snap onto DIN - rail EN 50022 and EN 50035. Construction width: 22,5mm	f S2 − 22.5 − −
Short designation / type	Rated voltage: 24VDC Maxi-MR-5-30
Art No.	06.04.016
Technical data: input circuit	
Rated voltage / threshold voltage	24 VDC
Range of rated voltage min. / max.	19V to 35VDC
Input current during rated voltage	10mA
Analogue input - range of voltage	0V to 10VDC
Status indicator	LED 3mm yellow
Technical data: output circuit	MOS-FET
Range of switching voltage / motor voltage	19V to 35VDC
Max. permanent load current	6A
Current limitation till thermal switch-off come	35A
Speed	0V to VCC adjustable
Starting ramp	50 . 4000ms adjustable
Power driver	MOS-FET
Other data	
ambient temperature range	-20°C to + 50°C
Absence of vibration a/r (10500Hz)	> 20 / 5
Overload protected / short-circuit-proof / temperature monitoring	
eventeere provoteer anothere of early for a temperature monitoring	Ves / ves / ves
DIN VDE-determinations	VDE 0110, 0160 in parts
DIN VDE-determinations Position of installation / mounting	yes / yes / yes VDE 0110, 0160 in parts can be snapped. addable
DIN VDE-determinations Position of installation / mounting Mode of connection: screw terminal	yes / yes / yes VDE 0110, 0160 in parts can be snapped, addable single wire 4mm ² , fine wire 2.5mm ²

Ficha técnica del controlador KALEJA D-73553

UB800-18GM40-I-V1

Sensor ultrasónico

Datos técnicos		
LED amarillo		amarilla parmananto: objeto on rango ovaluación
LED amanito		amarillo intermit.: función TEACH-IN, objeto detectado
LED rojo		rojo permanente: Avería rojo intermitente: función TEACH-IN, objeto no detectado
Datos eléctricos		
Tensión de trabajo	UB	10 30 V CC , rizado 10 % _{SS}
Corriente en vacío	Ιo	≤ 20 mA
Entrada		
Modo de entrada		1 entrada teach-in limite de evaluación inferior A1: -U _B +1 V, límite de evaluación superior A2: +4 V +U _B Impedancia de entrada: > 4,7 kΩ, Impulso teach-in: ≥ 1 s
Salida		
Tipo de salida		1 salida analógica 4 20 mA, a prueba de cortocircuito/sobrecarga
Preajuste		Límite de evaluación A1: 70 mm Límite de evaluación A2: 800 mm
Resolución		0,4 mm con máx. rango de detección
Desviación de la línea característica		± 1 % del valor final
Reproducibilidad		± 0,5 % del valor final
Impedancia de carga		0 300 Ω con U_B > 10 V; 0 500 Ω con U_B > 15 V
Influencia de la temperatura		± 1,5 % del valor final
Conformidad con Normas y Directivas		
Conformidad con la normativa		
Estándares		EN IEC 60947-5-2:2020 IEC 60947-5-2:2019 EN 60947-5-7:2003 IEC 60947-5-7:2003
Autorizaciones y Certificados		
Autorización UL		cULus Listed, Class 2 Power Source
Autorización CCC		Los productos cuya tensión de trabajo máx. ≤36 V no llevan el marcado CCC, ya que no requieren aprobación.
Condiciones ambientales		
Temperatura ambiente		-25 70 °C (-13 158 °F)
Temperatura de almacenaje		-40 85 °C (-40 185 °F)
Datos mecánicos		
Tipo de conexión		Conector macho M12 x 1 , 4 polos
Diámetro de la carcasa		18 mm
Grado de protección		IP67
Material		
Carcasa		latón, niquelado
Transductor		resina Epoxy/Mezcla de esferas de vidrio; espuma Poliuretano, tapa PBT
Masa		25 g

Conexión

Símbolo normalizado/Conexión: (versión I)

Color del conductor según EN 60947-5-2.

Fecha de publicación: 2023-07-13 Fecha de edición: 2023-07-14 : 205340_spa.pdf

Ficha técnica del sensor UB800-18GM40-I-V1 (Pepperl+Fuchs, 2023)

Diagrama general de conexiones de la planta