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5.1 Introduction

This research proposes innovative control paradigms for DC motors control, inte-
grating variable coefficient fractional-order proportional-integral-derivative (PID),
model predictive control (MPC), and State Feedback with Ackerman and Bessel
Polynomial Strategies for Optimal Performance. The fractional order is utilized to
enhance the control performance of the system. The optimal tuning of the pro-
posed controller is achieved through a hybrid optimization algorithm that combines
the particle swarm optimization (PSO) and the genetic algorithm (GA). The PSO
algorithm searches for the optimal set of proportional, integral, and derivative gains,
while the GA is employed to optimize the fractional order and the controller coeffi-
cients. The hybrid algorithm can efficiently obtain the optimal controller parameters
and fractional order with a small number of iterations. The proposed variable coef-
ficient fractional order PID controller can be applied to several benchmark control
problems, including the inverted pendulum, magnetic levitation system, and water
level control. The simulation results show that the proposed controller outperforms
the conventional PID controller and the fixed coefficient fractional order PID con-
troller regarding tracking accuracy, disturbance rejection, and robustness. The

https://orcid.org/0000-0002-9319-8815
https://doi.org/10.17163/abyaups.44.350


148

proposed controller also exhibits good robustness against parameter variations
and external disturbances. This research paper proposes a novel variable coeffi-
cient fractional order PID controller design with optimal tuning. The article studies
the structure of variable-order fractional proportional-integral-derivative (VFPID)
controllers for linear dynamical systems. The proposed VFPID controller is designed
to regulate the joint variables of a mobile manipulator. The significant contribu-
tion of the paper is to fill this gap by presenting a novel approach. To justify the
claimed efficiency of the proposed VFPID controller, an improved VFPID controller
is also offered in this paper, building the nonlinear relation between the integral
gain Ki and derivative gain Kd. The proposed neural network (NNFPID) controller’s
parameters consist of derivative, integral, and proportional gains in addition to
fractional integral and fractional derivative orders. The chapter is organized as
follows, section 5.2 describes the related work, section 5.3 has the methodology,
section 5.4 is the results and analysis, and Section 5.5 has the conclusions.

5.2 Related Works

Figure 5.1 illustrates the key authors who have published notable works on fractional
PID applied to electrical problems, as observed during the literature review revision.

Figure 5.1: Bibliometric revision. Main authors that have published for fractional PID
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The article [1] aims to address the advantages of fractional-order PID (FOPID)
controllers over conventional integer-order (IO) PID controllers in terms of complex-
ity and implementation. It reviews recent literature, provides analysis, and offers
recommendations to understand the benefits of using FOPID controllers despite
approximation challenges. Podlubny demonstrated that fractional order PID per-
forms better than integer order PID controllers for fractional order dynamic control
systems [2]. Therefore, this research aims to improve the performance of mobile
manipulators by proposing a new formulation of fractional order proportional in-
tegral (PI)/proportional integral derivative (PID) controller [3], [4]. This research
presents an optimal fuzzy proportional-integral-derivative control for a two-wheeled
self-balancing robot [5]. The paper of [6] deals with using the graphical tool of
the diagrams of Bode, which is used to visualize the required actions so that the
proposed systems are stable by including various controllers like PI or PID. The re-
search [7]proposes an optimized Maximum Power Point Tracking (MPPT) controller
based on the Grey Wolf Optimization algorithm for Solar photovoltaic systems.
The proposed controller is compared to traditional Perturb, Observe, Incremental
Conductance, and four metaheuristic algorithms. The models are analyzed for
constant and variable irradiations, temperatures, and loads. The comparative re-
sults show that the MPPT controller optimized by the Grey Wolf Optimizer algorithm
has superior performance, giving an average 6% output power higher than the
other controllers under the test scenarios evaluated. The efficiency of the proposed
model was, on average, 3% higher than the Incremental Conductance and Perturb
& Observe controllers.

The paper [8] reviews scenario analysis methods to address uncertainty in
modern power systems due to renewable energy sources and load variations. It
covers scenario generation methods, scenario reduction methods, and scenario
quality evaluation indices. The paper discusses new trends in scenario analysis
methods and suggests potential research directions for scenario analysis of 100%
renewable integrated power systems and integrated multiple energy systems.

The article [9] presents an experimental validation of fractional-order PID (FOPID)
controllers on a two coupled tanks system. The paper [10] proposes a charging
guiding strategy for electric vehicles (EVs) based on third-generation prospect
theory (PT3) and a real-time coupling relationship model. The proposed method
analyzes uncoordinated issues and balances the coupling system by guiding EVs
based on a dynamic reference point and a full-state prospect description model.
An algorithm based on a multi-time scale is used for real-time traffic distribution
network simulation. The proposed method can coordinate the distribution of the
charging load and relieve traffic pressure. The paper [11] presents a state feedback
controller design for open-loop unstable systems using the sand cat swarm opti-



150

mization (SCSO) algorithm. The SCSO algorithm is a newly proposed metaheuristic
algorithm that can efficiently find optimal solutions for optimization problems. The
proposed SCSO-based state feedback controller optimizes control parameters with
efficient convergence curve speed for three nonlinear control systems: an Inverted
pendulum, a Furuta pendulum, and an Acrobat robot arm. Simulation results show
that the proposed control method outperforms or has competitive effects com-
pared to well-known metaheuristic-based algorithms. This research [12] proposes
an adaptive cooperative co-evolutionary differential evolution method, QGDECC,
to schedule railway train delays effectively. The QGDECC utilizes the quantum
variable decomposition strategy and increment mutation method to improve con-
vergence speed and strengthen the algorithm’s robustness. The proposed method
is applied to railway train delay scheduling to eliminate the impact of train delays
on the network and minimize the gap between the rescheduled and original train
schedules. The experimental results on benchmark functions and actual train oper-
ation data show that QGDECC has higher adaptability, faster convergence speed,
and accuracy. The paper [13] proposes using the Twin Delay Deep Deterministic
(TD3) policy gradient method to optimize the classical Proportional Integral (PI)
controller for DC motor speed control using Reinforcement Learning (RL). The TD3
algorithm learns the optimal PI controller dynamics from a simulation environment,
incorporating a reward mechanism that minimizes the optimal control objective
function. The performance of the RL-based PI controller is compared with integer
and fractional order PI controllers tuned by popular metaheuristic optimization
algorithms. The results show that the proposed RL-PI method improves control
performance, demonstrating the benefits of RL in industrial control applications.

5.3 Methodology

The following practical problem is considered about the speed control of a DC
motor. The equation expresses the transfer function relating the output speed to
the input voltage.

θ̇

V
=

K

(Js+ b)(Ls+R) +K2

Where:

J Motor inertia
b Damping frequency of the mechanical system
K Constant of electromotive force
R Electrical resistance
L Electrical inductance
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The parameters below are well known; J = 0.5, b = 0.01 y K = 0.5.
A DC motor is subjected to a unit step input voltage (1V). Figure 5.2 shows the

speed response to the step set.
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Response to step, parameters b=0, R = 0.1636 and L = 0.2452

Figure 5.2: DC motor speed response to 1 V step input

Given these parameters, identify the model of the system and, thus, calculate
the inductance and resistance of the DC motor. Tip: you have to fix equation 1
to a similar form of the general second-order equation. What is the possibility of
simplifying the model assuming b=0? Try to compare it with the initial model. What
impact does it have on calculating the value of R and L?

Based on the model obtained, the student must implement a PID controller as
a second part of the problem. The controller parameters must be tuned by any
method. It is required that the system response reaches a steady state as soon as
possible without an overshoot greater than 10 %.

As the third part of the problem, based on the model obtained, the student
should propose a state feedback controller to control the motor speed. This
controller can be tuned with any method available in the literature. It is required
that the system response reaches the steady state as soon as possible without an
overshoot more significant than 10%.

Finally, the student must propose a control technique different from those previ-
ously offered. Similarly, the same design conditions should be imposed.

Submit a report and present the simulation of the identification and control in
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SIMULINK/MATLAB.

5.3.1 First part: System Identification

The equation is:

G1(s) =
K1

(Js+ b)(Ls+R) +K2
1

(5.1)

and the equation of a second-order system:

G2(s) =
K2ω

2

s2 + 2ζωs+ ω2
(5.2)

Developing equation (5.1) we have:

G1(s) =
K1

JLs2 + (JR+ bL)s+ (bR+K2
1 )

(5.3)

G1(s) =
K1

JL

s2 + (JR+bL)
JL s+ (bR+K2

1 )
JL

(5.4)

Comparing equations (5.2) and (5.4) we have the following equalities:

K1

JL
= K2ω

2 (5.5)

(bR+K2
1 )

JL
= ω2 (5.6)

(JR+ bL)

JL
= 2ζω (5.7)

From (5.5) y (5.6) he have:

K1

K2JL
=

(bR+K2
1 )

JL
(5.8)

Solving the equation R:

R =
K1

bK2
− K2

1

b
(5.9)

Replacing in (5.9) the given values and calculating K2 ≈ 1.987 (value where the
system stabilizes, see Figure 5.2), we have R = 0.1636Ω.

Therefore, to obtain the value of the inductance, it is necessary to know the
value of ζ, known as the damping coefficient, which is related to the percentage
of damping, MP , according to the equation:

MP = 100e
−ζπ√
1−ζ2 (5.10)
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The value of MP is obtained from the plot of the system response to a step signal,
as shown in Figure 5.3, which was calculated to be approximately 47%.
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Figure 5.3: System response to a step of 1 V

Solving (5.10) from ζ, it is obtaining ζ = 0.2336.

Then, solving the value of ω de (5.5), ω =
√

K1
K2JL

, and replacing it in (5.7)

(JR+ bL)

JL
= 2ζ

√
K1

K2JL
(5.11)

of the equation (5.11), all values are known except L. Therefore, we will try to solve
it for this variable.

Solving (5.11), with the data values of J,K, b and the calculated values of R and
ζ, yields the following values of L.

L1 = 0.2592H L2 = 258.0144H (5.12)

Figure 5.4 shows the system response for the two values of L, with L1 being the
inductance that gives the closest answer to the desired system.
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System step response considering L = L_1

System step response considering L = L_2

Figure 5.4: Response of the system to the step for the two values of L

Thus, the transfer function of the system is:

G(s) =
θ̇

V
=

3.58

s2 + 0.651s+ 1.941
(5.13)

5.3.2 System identification with b = 0
Initially in b = 0 it is obtained:

G1(s) =
K1
JL

s2 + R
Ls+

K2
1

JL

(5.14)

Being the equalities:

K1

JL
= K2ω

2 (5.15)

K2
1

JL
= ω2 (5.16)

R

L
= 2ζω (5.17)

From (5.15) y (5.16) it is obtained:

K2 =
1

K1
= 2
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Now, from (5.16) and (5.17) we have:

L =
JR2

ζ2
(5.18)

Thus, we have a parametric equation, L, as a function of R; therefore, it is
impossible to directly determine the values of R and L. However, if we take the
value of R found in the previous point (R = 0.16346Ω), we have L = 0.2452H, and
the response of the system is similar to that in Figure 5.4, as shown in 5.5.
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Response to step, parameters b=0, R = 0.1636 and L = 0.2452

Figure 5.5: Response of the system, with b = 0, to the step

Thus, the transfer function of the system is:

G(s) =
θ̇

V
=

4.078

s2 + 0.6671s+ 2.039
(5.19)

It is then concluded that the value of b does not influence the system too much,
which was expected, since some authors ignore it to simplify the modeling of a DC
motor.

5.3.3 Part two: PID control
It was decided to develop a PID controller to implement the system in Simulink.
Then, to do so, the system was discretized using the command c2d(TF, T), where
TF is the system’s transfer function in continuous time, and T is the sampling period.
In this case, T = 0.05 seconds was used. Thus the transfer function is:

G(z) =
0.004769z + 0.004717

z2 − 1.963z + 0.968
(5.20)
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The system, already with the PID controller, is shown in Figure 5.6.

step input

Controller

Plant

Figure 5.6: System simulation in Simulink

A MATLAB function block is used to program the PID. This block contains the
following code.

function [uk,ek2,ek1] = f1(ek,uk1,ek2,ek1)
kp = 1;
ki = 4;
kd = 2;
T = 0.05;
uk = uk1 + (kp + ki*T/2 + kd/T)*ek + (-kp + ki*T/2 - 2*kd/T)*ek1 + kd/T*ek2;
ek2 = ek1;
ek1 = ek;

end

The PID calibration was manual. First, the derivative constant was set to 0 and
the integral constant to a minimal value, then the proportional constant was varied
until the system reached the reference. The next step was to increase the value
of the integrating constant to have a PI control; however, the system became
unstable, so giving a discount to the derivative constant was necessary. In this way,
the best results were obtained with:

Kp = 1; Ki = 4; Kd = 2

The controller result is shown in Figure 5.7. Whose percentage of overshoot is
0.9743%.
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Figure 5.7: System response with PID controller

Figure 5.8 shows the system’s response to reference changes. It is clear that the
system quickly follows the reference.
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Figure 5.8: Response of the system with PID controller to reference changes
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5.3.4 Part three: feedback control

For this part, a control known as an integrating follower was implemented, whose
control scheme is shown in Fig. 5.9.

Integral Controller

Plant

Figure 5.9: Tracking control system with integrator

Being the control law:

u(k) = −K2x(k) +K1v(k) (5.21)

This type of controller raises the degree of the system by 1. In this case, the system
is of order 2, which will become of order 3 when using the integrating follower.

The controller gains K1 and K2 are calculated using Ackerman’s formula and
Bessel polynomials to bring the poles to a specific location, depending on the
desired settling time.

In this case, having seen the response of the PID controller, a settling time of 0.1
seconds is assumed, and the Bessel polynomials of degree 3, taken from Figure 5.1,
are used.

Table 5.1: Variables of Roots of Bessel polynomials
Polynomial order Roots

1 −4.6200
2 −4.0530± 2.34j
3 −5.0093,−3.9669± 3.7845j
4 −4.0156± 5.0723j,−5.5281± 1.653j
5 −6.4480,−4.1104± 6.3142j,−5.9268± 3.0813j
6 −4.2169± 7.53j,−6.2613± 4.4018j,−7.1205± 1.4540j,
7 −8.0271,−4.3361± 8.7519j,−6.5714± 5.6786j,−7.6824± 2.8081j

To obtain the state-space system, the command tf2ss(num, den) is used, which
returns the state-space matrices of the transfer function, whose numerator and
denominator are num and den, respectively.

The system’s response is shown in Figure 5.10, where it is observed how fast the
plant follows the reference (settling time of 0.1 seconds); there is an overshoot of
0.6425%.
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Figure 5.10: System response with integrating follower controller

As a final part, an MPC(Model predictive control) is proposed for the speed
control of a DC motor. It is an advanced process control method used by the
process industry in chemical plants and oil refineries since the 1980s. In recent years
it has also been used in stability models for power systems. MPC can anticipate
future events and take control actions accordingly.

This control scheme requires the system in state space to calculate gains that
will be used to determine the control variable. The control law for this scheme is:

u(k + 1) = u(k) + ∆U(k + 1)

Being the equations governing the system:

Y = Fx(ki) + Φ∆U

F =


CA
CA2

...
CANp



Φ =


CB 0 0 · · · 0
CAB CB 0 · · · 0
C2AB CAB CB · · · 0

...
...

...
. . .

...
CANp−1B CANp−2B ANp−3B · · · CANp−NcB


After formulating the mathematical model, the next step in designing an MPC

control system is calculating the predicted plant output with the future control
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signal as the adjustable variable. This prediction is described within an optimization
window, with the length of the optimization window being the variable Np (the
number of samples).

The future control path is denoted by:

∆u(ki),∆u(ki + 1), . . . ,∆u(ki +Nc − 1) (5.22)

Where Nc is called the control horizon, which determines the number of parame-
ters used to calculate the future trajectory of the system, there is also the parameter
rw, which is used as a tuning parameter for the controller performance.

5.4 Results and Analysis

The system’s response with the MPC controller is shown below, where it is clear that
it has a settling time of about 0.3 seconds, and there is no overshoot. Figure 5.11
shows the system’s behavior to changes in the reference.
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Figure 5.11: System response with MPC controller

It is observed in Figure 5.11 that the system is somewhat slow, almost 1 second in
reaching the reference; this is because, although it does not occur here, in Simulink,
an over impulse was presented, and if the system with a faster response was made,
the over impulse grew to more than 10%.



5.4 Results and Analysis 161

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

Reference
Output signal

Time [s]

Vo
lta

ge
 [V

]

Figure 5.12: Response of the system with MPC controller to reference changes

As said previously, in Figure 5.12, there is no overshoot; when simulating the
system in Simulink, there was one, as shown in Figure 5.13. It is approximately 3.6%.
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Figure 5.13: System response to a 1V step, in Simulink
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The table 5.2 indicates the main results of the controllers. Here it is observed that
the integrating follower controller shows the best performance, followed by the PID
and finally the MPC.

Table 5.2: Controller results
PID Integrator MPC

Settling time (s) 0.5 0.1 1
% of the maximum peak 0.9743 0.6425 3.6

Finally, the three controllers are shown in Figure 5.14. It can be seen how the
integrator is the first to reach the reference, followed by the PID and then the MPC,
with a small pulse sip. The PID shows some oscillation around the reference but
quickly stabilizes. In conclusion, all three controllers manage to reach the target.
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Figure 5.14: Controller response to reference changes

5.5 Conclusions

A practical model for the Direct Current (DC) motor could be developed by utilizing
the available data and analyzing the time response graph. This model accurately
represents the behavior of the motor and provides valuable insights into its perfor-
mance. The successful modeling of the DC motor enhances our understanding of
its dynamics and facilitates further analysis and optimization in various applications.

Three distinct controllers were developed for the DC motor system through the
design process. Each controller exhibited varying performance characteristics,
demonstrating suitability for specific application requirements. This achievement
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highlights the versatility and adaptability of the control system, enabling optimiza-
tion based on desired outcomes. The availability of multiple controller options
enhances flexibility in addressing diverse operational needs and paves the way for
efficient and effective DC motor control in various contexts.

The Model Predictive Controller (MPC) exhibited relatively poorer performance
than the other two controllers. However, this does not imply its inefficiency, as
further testing is required to ascertain its optimal performance. Therefore, it is
recommended to implement the MPC controller on an entire system to evaluate its
effectiveness and determine its true potential. This additional experimentation will
provide valuable insights and contribute to the ongoing development of efficient
control strategies for practical applications.

In summary, fractional order proportional-integral-derivative (FOPID) controllers
replace traditional proportional-integral-derivative (PIDs) in real-time control systems.
FOPID controllers provide more degrees of freedom than traditional PIDs since their
architecture has fractional-order components. This capability, which classical
PIDs lack, enables improved controller parameter adjustment, improving closed-
loop performance or transient responsiveness when the controllers are applied to
nonlinear systems.
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