MEJORAMIENTO DE LA COORDINACIÓN DE AISLAMIENTO EN SUBESTACIONES MEDIANTE EL ESTUDIO Y ANÁLISIS DE VIABILIDAD EN REPRODUCIR LA REDUCCIÓN DE BIL

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO

CARRERA: INGENIERÍA ELÉCTRICA

TRABAJO PREVIO A LA OBTENCIÓN DEL TÍTULO DE: INGENIERO ELÉCTRICO

TEMA:

MEJORAMIENTO DE LA COORDINACIÓN DE AISLAMIENTO EN SUBESTACIONES MEDIANTE EL ESTUDIO Y ANÁLISIS DE VIABILIDAD EN REPRODUCIR LA REDUCCIÓN DE BIL

AUTOR:

PEDRO ANTONIO POSSO PEREIRA

TUTOR:

ROGELIO ALFREDO ORIZONDO MARTÍNEZ

Quito D.M., febrero del 2022

Pedro Antonio Posso Pereira MEJORAMIENTO DE LA COORDINACIÓN DE AISLAMIENTO EN SUBESTACIONES MEDIANTE EL ESTUDIO Y ANÁLISIS DE VIABILIDAD EN REPRODUCIR LA REDUCCIÓN DE BIL Universidad Politécnica Salesiana, Quito-Ecuador 2022 Ingeniería Eléctrica

Breve reseña historia e información de contacto:

Pedro Antonio Posso Pereira (Y'1998-M'04). Realizó sus estudios secundarios en el "Instituto Tecnológico Vicente Fierro", donde obtuvo el título de Bachiller Técnico en "Especialidad Instalaciones de equipos y máquinas eléctricas". Egresado de la Carrera de Ingeniería Eléctrica de la Universidad Politécnica Salesiana. Su trabajo se basa en el mejoramiento de la coordinación de aislamiento en subestaciones mediante el estudio y análisis de viabilidad en reproducir la reducción de BIL. <u>pposso@est.ups.edu.ec</u>

Dirigido por:

Rogelio Alfredo Orizondo Martínez (Y'1972). Nació en Caracas, Venezuela. Recibió su título en Ingeniería Eléctrica por la Universidad Simón Bolívar en 1999 y el MSc. en la Universidad Simón Bolívar en 2006. Actualmente es docente en la Universidad Politécnica Salesiana. Sus áreas de investigación incluyen electrónica de potencia, especialmente FACTS, sistemas de puesta a tierra y protección catódica. <u>rorizondo@ups.edu.ec</u>

Todos los derechos reservados:

Queda prohibida, salvo excepción prevista en la ley, cualquier forma de reproducción, distribución, comunicación pública y transformación de esta obra para fines comerciales, sin contar con la autorización de los titulares de propiedad intelectual. La infracción de los derechos mencionados puede ser constitutiva de delito contra la propiedad intelectual. Se permite la libre difusión de este texto con fines académicos o investigativos por cualquier medio, con la debida notificación a los autores.

DERECHOS RESERVADOS

©2022 Universidad Politécnica Salesiana

DECLARATORIA DE COAUTORÍA DEL DOCENTE TUTOR

Yo Rogelio Alfredo Orizondo Martínez, declaro que bajo mi dirección y asesoría fue desarrollado el Proyecto Técnico, *Mejoramiento de la coordinación de aislamiento en subestaciones mediante el estudio y análisis de viabilidad en reproducir la reducción de BIL* realizado por Pedro Antonio Posso Pereira, obteniendo un producto que cumple con todos los requisitos estipulados por la Universidad Politécnica Salesiana, para ser considerado como trabajo final de titulación.

Quito D.M., Febrero de 2022

Rogelio Alfredo Orizondo Martínez C.I. 1757424195

CESIÓN DE DERECHOS DE AUTOR

Yo Pedro Antonio Posso Pereira, con documento de identificación N° 040152652-0, manifiesto mi voluntad y cedo a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que soy autor del trabajo de titulación: *Mejoramiento de la coordinación de aislamiento en subestaciones mediante el estudio y análisis de viabilidad en reproducir la reducción de BIL*, mismo que ha sido desarrollado para optar por el título de Ingeniero Eléctrico, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en nuestra condición de autores nos reservamos los derechos morales de la obra antes citada. En concordancia, suscribimos este documento en el momento que hacemos entrega del trabajo final en formato digital a la Biblioteca de la Universidad Politécnica Salesiana.

Pedro Antonio Posso Pereira CI. 040152652-0

Quito, Febrero 2022.

ÍNDICE GENERAL

1	Introducción	9
2	Marco teórico	10
2.1	Subestación eléctrica	10
2.2	Aislamiento en las subestaciones	11
2.2.1	Coordinación de aislamiento	12
2.2.2	Sobretensiones en subestaciones eléctricas	13
2.2.3	Métodos de determinación de coordinación de aislamiento	14
2.3	Descargadores de sobretensión	14
2.4	IEC 60071-1 y IEC 60071-2	15
2.4.1	IEC 60071-1	15
2.4.2	IEC 60071-2 [13]	16
3	Metodología	16
4	Análisis del proceso de coordinación de aislamiento	17
4.1	Coordinación de aislamiento en subestaciones de 230 kV	17
4.1.1	Sobretensiones representativas	18
4.1.2	Sobretensión de frente lento	18
4.1.3	Sobretensión entre fases	19
4.1.4	Descargadores de Sobretensión o Pararrayos	20
4.1.5	Voltajes soportados de coordinación para sobretensiones temporales	21
4.1.6	Voltajes soportados de coordinación de frente lento	21
4.1.7	Voltajes soportados de coordinación de frente rápido	21
4.1.8	Factor de corrección por altitud Ka	21
4.1.9	Tensión soportada específica	22
4.2	Aislamiento normalizado	22
5	Resultados coordinación de aislamiento (diseño 1)	22
5.1	Sobretensiones representativas temporales	22
5.2	Sobretensión entre fases	23
5.3	Pararrayos	23
5.4	Sobretensión representativa de frente lento	24
5.5	Diseño de bahía	24
5.6	Voltajes tolerados de coordinación temporales	25
5.7	Tensiones soportadas de coordinación frente lento	25

5.8	Tensiones soportadas de coordinación frente rápido	26
5.9	Tensiones soportadas requeridas	26
5.10	Nivel de aislamiento normalizado2	27
6	Mejoramiento de coordinación de aislamiento (diseño 2)2	28
6.1	Resultados de mejora	28
6.2	Evaluación económica	30
7	Discusión	30
8	Conclusiones	33
9	Trabajos futuros	34
10	Referencias	34
11	Estado del arte	37
Anexo	s4	12
Anexo	1. Clasificación de las sobretensiones	42
Anexo	2. Referencial de relación (Vp ₂ /Ve ₂)	43
Anexo	3. Parámetros de Pararrayos PEXLIM	14
Anexo	4. Análisis del factor de coordinación Kcd	44
Anexo referen	5. Datos estandarizados del nivel básico de aislamiento para sistemas eléctricantes a la Gama I (1 kV < Vm \leq 245 kV)	os 45
Anexo referen	6. Datos estandarizados del nivel básico de aislamiento para sistemas eléctricantes a la Gama II (245 kV < Vm)	os 46

ÍNDICE DE FIGURAS

Figura 1. Análisis fundamental del diseño de una subestación eléctrica11
Figura 2. Estudios transitorios de una subestación eléctrica11
Figura 3. Diagrama de flujo sobre el análisis de coordinación de aislamiento16
Figura 4. Comparativa de tensiones soportadas por equipos de subestación diseño 1 y 2 (1
y 2 descargadores, respectivamente)
Figura 5. Comparativa de nivel básico de aislamiento BIL por equipos de subestación
diseño 1 y 2 (1 y 2 descargadores, respectivamente)31
Figura 6. Comparativa de precios referenciales (USD) de equipos que cambian su valor
en diseño 1 y 2
Figura 7. Comparativa de precios referenciales totales (USD) de diseños de bahía 1 y 2.

ÍNDICE DE TABLAS

Tabla 1. Valores de la voltaje máximo y tensión nominal	13
Tabla 2. Tipos de sobrevoltajes conforme su causa	14
Tabla 3. Magnitudes típicas de sobretensiones	
Tabla 4. Sobretensiones entre fases	19
Tabla 5. Sobretensiones de truncamiento para todos los dispositivos	20
Tabla 6. Sobretensiones de truncamiento para los dispositivos de acceso	20
Tabla 7. Elección de la distancia de fuga	20
Tabla 8. Datos del factor A de acuerdo con el número de conductores	21
Tabla 9. Resultados de la coordinación de asilamiento	22
Tabla 10. Sobretensiones representativas temporales	23
Tabla 11. Sobretensión entre fases	23
Tabla 12. Selección del pararrayos	24
Tabla 13. Datos del pararrayo	24
Tabla 14. Sobretensión representativa de frente lento	24
Tabla 15. Diseño de bahía	25
Tabla 16. Tensiones soportadas de coordinación temporales	25
Tabla 17. Voltajes tolerados de coordinación de frente lento (Vcw)	25
Tabla 18. Voltaje tolerado de coordinación de frente rápido	26
Tabla 19. Voltaje tolerado de coordinación de frente rápido	26
Tabla 20. Tensiones soportadas específicas y/o requeridas	
Tabla 21. Clase de aislamiento estandarizado	27
Tabla 22. Síntesis niveles de aislamiento normalizados	
Tabla 23. Parámetros del segundo pararrayos	
Tabla 24. Resultados de la coordinación de asilamiento mejorada	29
Tabla 25. Comparativa de resultados de la coordinación de asilamiento diseño 1 y	229
Tabla 26. Costos referenciales de equipos de subestaciones de alta tensión 245 k	V 1 y 2
pararrayos (UDS)	

MEJORAMIENTO DE LA COORDINACIÓN DE AISLAMIENTO EN SUBESTACIONES MEDIANTE EL ESTUDIO Y ANÁLISIS DE VIABILIDAD EN REPRODUCIR LA REDUCCIÓN DE BIL

Resumen

Este artículo tiene por objetivo mejorar la coordinación de aislamiento de una subestación eléctrica por medio de la viabilidad en la reducción de Basic Insulation Level o el correspondiente Standart Lightning Impulse Withstand Voltage definido en IEC 60071.

El mejoramiento se lo realizó a una subestación de 230 kV a partir de la metodología desarrollada en IEC 60071 (1 y 2) con un solo descargador de sobretensión por fase. Dado lo anterior, algunos de estos equipos deben cumplir requerimientos de tipo gama II. Bajo la misma metodología se realizó el cálculo de una coordinación de aislamiento mejorada, la cual implicó la modificación del diseño de bahía en los parámetros asociados a un segundo descargador de sobretensión añadido con las mismas características que el inicial. Así, se obtuvo una mejora en las tensiones requeridas soportadas en los equipos mencionados, reduciendo los niveles de BIL.

Se tiene como resultado, una factibilidad de ejecución del proyecto tanto técnica como financiera; evidenciando una reducción de las tensiones.

Abstract

This article aims to improve the insulation coordination of an electrical substation through the feasibility of reducing the Basic Insulation Level or the corresponding Standard Lightning Impulse Withstand Voltage defined in IEC 60071.

The upgrade was made to a 230 kV substation based on the methodology developed in IEC 60071 (1 and 2) with a single surge arrester per phase. Given the above, some of these equipment must meet type II requirements. Under the same methodology, the calculation of an improved insulation coordination was carried out. which implied the modification of the bay design in the parameters associated with a second added surge arrester with the same characteristics as the initial one. Thus, an improvement was obtained in the required tensions supported in the aforementioned equipment, reducing the BIL levels.

The result is a feasibility of both technical and financial project execution; evidencing a reduction in tensions.

Palabras Clave: Coordinación de aislamiento, sistema de protección, líneas de transmisión, descargas atmosféricas, sistema de energía eléctrica.

Keywords: Insulation coordination, protection system, transmission lines, lightning, electric power system.

1 Introducción

Se establece ciertas particularidades de aislamiento para la coordinación de aislamiento necesarias para los equipos de las subestaciones. Estos equipos están sujetos a sobretensiones que afectan su aislamiento y que pueden producir una falla [1].

Una sobretensión es un valor de tensión mayor a la nominal variable en el tiempo, estas se producen a causa de una falla, bien una maniobra o una descarga atmosférica. El análisis de las sobretensiones es esencial ya que permite establecer el nivel de aislamiento que se debe escoger para los diferentes eventos del sistema, se debe efectuar teniendo conocimiento de la conducta de los distintos aislamientos respecto a la variedad de sobretensiones [2].

Es inconcebible elegir el nivel de aislamiento del dispositivo para que pueda soportar cualquier posible sobretensión, ya que para la elección es necesario tener en cuenta los diversos medios de protección que se puedan utilizar, aceptando la posibilidad de fallo [2].

Las subestaciones eléctricas pueden controlar directamente el flujo de potencia en los sistemas eléctricos al estar asociadas a centrales generadoras, o bien puede enlazar caminos del flujo manteniendo niveles de tensión [3]. Esto permite trasladar la energía a grandes distancias, funcionando prácticamente como ejes del sistema de transporte de energía.

Existen ciertas normativas como la IEC 60071 que se usa en el diseño de sistemas de protección en subestaciones, la cual se toma como referencia para emplear su metodología, ya que está validada y aceptada internacionalmente. Sin embargo, se debe realizar la revisión del procedimiento de la norma cada vez que se requiera diseñar la coordinación de aislamiento de una subestación [2], [4].

Por lo mencionado, es de vital importancia las condiciones de aislamiento para la seguridad de la operación y servicio de las subestaciones, de modo que se vuelve fundamental el análisis de la selección del Nivel Básico de Aislamiento, Basic Insulation Level (BIL) [3].

En Quito existen varios estudios que han asociado los problemas y desconexiones de los sistemas eléctricos a las condiciones atmosféricas, las que son particularmente propensas a las descargas eléctricas, analizando en particular las condiciones de coordinación de aislamiento [4]–[6].

Sin embargo, unos altos niveles de BIL requieren de equipos adaptados a altos estándares de aislamiento, con características muy superiores a lo normal, lo que puede resultar costoso cuando las condiciones atmosféricas obligan a obtener BIL elevados [3].

La coordinación del aislamiento, por su parte, permite determinar cuáles son los niveles que requiere el equipamiento en las subestaciones, de modo que puedan resistir a los requerimientos que enfrentan en condiciones normales o en sobrevoltajes [7]. Es preciso que el aislamiento considere los aspectos económicos al tiempo que considera la seguridad de la instalación.

Este trabajo tiene por objetivo general determinar la capacidad de mejoramiento en la coordinación del aislamiento para subestaciones eléctricas por medio de la viabilidad en la reducción de BIL o el correspondiente *Standard Lightning Impulse Withstand Voltage* (LIW), definido en IEC 60071, en algunos equipos.

Para esto, es necesario, diagnosticar la coordinación del aislamiento presente en una subestación de 230 kV; para analizar la factibilidad de reducir el BIL/LIW añadiendo descargadores de sobretensión en las bahías a intervenir; por último, es necesario determinar cómo esto afecta a la coordinación del aislamiento.

Así, el estudio comprende un diagnóstico de la coordinación del aislamiento para una subestación eléctrica de 230 kV, según IEC 60071-1 y 60071-2, y se compara con variantes del diseño que contemplen la posibilidad de añadir descargadores de sobretensión a los tradicionalmente ubicados en la subestación.

El proyecto está conformado por un marco teórico donde se delimitan los fundamentos básicos para el desarrollo del artículo tratando sobre el aislamiento de subestaciones eléctricas, su coordinación, métodos de determinación para la coordinación de aislamientos, también se explica sobre la norma IEC 60071 con la que se trabaja, seguido de un apartado de metodología para describir el proceso aplicado.

A continuación, se expone el análisis del proceso de coordinación de aislamiento, una comparativa de los dos diseños planteados y finalmente una discusión de resultados que afiance lo expuesto dentro de todo el proyecto.

2 Marco teórico

En esta sección se detalla el procedimiento metodológico sobre la reducción del BIL / LIW, así como los fundamentos teóricos de la coordinación del aislamiento, la clasificación de las sobretensiones y los métodos de determinación de coordinación de aislamiento.

2.1 Subestación eléctrica

Las subestaciones eléctricas son un conglomerado de circuitos de ingreso y egreso que se conectan a una referencia llamado barraje; la cual transforma la energía en magnitudes apropiadas para su distribución con ciertas obligaciones de calidad. Está constituida de equipos de alta tensión como el interruptor de potencia, que actúa junto con otros seccionadores, transformadores v pararrayos, que se utilizan para asegurar la seguridad del módulo a través de elementos automatizados de resguardo y de igual manera controlar el flujo de energía [3], [8], [9].

Para su diseño, es imprescindible que las subestaciones logren soportar los esfuerzos ocasionados por las condiciones ambientales, la operación de un SEP, al igual que la propia demanda de energía que les es cada vez mayor, de manera que el desarrollo y mejora de las instalaciones en función de la eficiencia y equilibrio entre seguridad y costo son aspectos primordiales.

En el diseño de una subestación considerarse eléctrica: deben los siguientes estudios: el flujo de carga, que es una herramienta para determinar los flujos de potencia y las pérdidas en las líneas, así como los voltajes en los nodos del sistema eléctrico; el nivel de cortocircuito. para determinar la. capacidad de interrupción de los equipos; y de estabilidad, necesaria para que el sistema permanezca en sincronía al momento de experimentar una afectación. Finalmente, el estudio de coordinación del aislamiento que considera las posibles sobretensiones, que pueden originarse por las maniobras al interior de cualquier subestación, así como por factores atmosféricos como las descargas atmosféricas. Finalmente, un estudio de flujo armónico puede suministrar información sobre fenómenos como las resonancias [10]. Esto se describe en la Figura 1 y Figura 2.

Figura 1. Análisis fundamental del diseño de una subestación eléctrica

Figura 2. Estudios transitorios de una subestación eléctrica

Los parámetros que se consideran son:

- Nivel de tensión más alto para los materiales.
- Niveles de aislamiento.
- Intensidad del cortocircuito.
- Intensidad en circunstancias permanentes.

Cabe indicar que existen varios tipos de subestaciones eléctricas[3], [11], [12].

- Subestaciones de interconexión.
- Subestaciones de interconexión con transformador.
- Subestación de intemperie.
- Subestación interior.
- Subestación convencional.
- Subestación blindada.

En términos generales, las subestaciones eléctricas tienen como componentes los equipos de potencia, como transformadores, banco de condensadores, reactores, entre otros; además de equipos de maniobra, como interruptores, seccionadores, pararrayos, transformadores, entre otros [10].

El transformador de potencia se considera como el equipo principal en una subestación, el cual se encarga de modificar la tensión y la corriente [13], [8]. De igual manera se considera el interruptor de potencia que permite la protección contra condiciones de operación anormales, como las corrientes de cortocircuito.

Este dispositivo debe interrumpir corrientes de cortocircuito en condiciones de falla, además de soportar los esfuerzos térmicos a los que puede estar sometido para resolver la contingencia.

2.2 Aislamiento en las subestaciones

La rigidez dieléctrica que muestra un material aislante es considerada como una de las cualidades más importantes sin importar el estado que se encuentre el material ya sea de forma líquida, gaseosa o sólida [7]. La rigidez dieléctrica es la capacidad que exhibe un material para soportar un campo eléctrico sin ocasionar disrupciones. Una disrupción, por el contrario, es la transformación reversible o irreversible del material sometido a un eléctrico determinado. campo Esta propiedad va a depender de distintos factores atmosféricos como: la contaminación ambiental, clima, presión atmosférica, la humedad, la forma y naturaleza de los electrodos, la duración y polaridad del campo magnético y finalmente la forma de onda de la tensión [14].

2.2.1 Coordinación de aislamiento

Corresponde a la escogencia de sobrevoltajes de tal forma que los equipos de un sistema eléctrico de potencia [7], [15], [16], en este caso de subestaciones puedan soportar las sobretensiones que se puedan presentar.

La coordinación de aislamiento para una subestación implica la identificación y definición de los aislamientos que requieren los componentes que la conforman, de manera que se presenten condiciones de funcionamiento seguras. Además, para facilidad en su fabricación como en su selección, las empresas fabricantes de equipos en media y alta tensión han estandarizado los voltajes y sobrevoltajes [5].

Dado que un aislamiento determinado en un equipo implica un costo determinado, la finalidad de la coordinación de aislamiento implica encontrar un punto de equilibrio entre la seguridad de la operación con los costos.

Así, es importante considerar que esta se da a partir de la relación entre los costos de aislamiento, el costo de las protecciones y los costos que pueden ocasionar las averías o desperfectos [5].

En la coordinación de aislamiento implica seleccionar la rigidez electrostática en los equipos procediendo de los sobrevoltajes que ocurran según el sistema de los equipos. Esto implica tener en cuenta todas las características del lugar donde se encuentra la subestación y la protección de que se disponga a modo de protección para los sobrevoltajes [15].

La resistencia de un aislamiento concierne a la capacidad de resistir frente a una corriente eléctrica en movimiento. Esta se debe al efecto que se produce al mismo tiempo en el camino de la corriente de fuga del aislante (sobre la superficie y dentro del propio material) [17].

La existencia de una tensión moderada en ambos extremos aislantes, se entiende como rigidez dieléctrica. Se genera un campo eléctrico con una fuga de corriente entre sus electrones que quedan libres. Por tanto, rigidez dieléctrica corresponde a la intensidad máxima que puede presentar el campo eléctrico antes de su perforación o descarga[17].

Por lo mencionado, estudiar la coordinación del aislamiento en una subestación implica seleccionar la rigidez dieléctrica que presentarán los equipos [7], para lo que deben considerarse todos los factores que intervienen en las tensiones y sobretensiones que se presentan o se pueden presentar.

Los factores que influyen en la rigidez son el estado del aislamiento en términos físicos, es decir, los esfuerzos mecánicos, la presión, condiciones ambientales, etc.; el tipo de aislamiento y la presencia de impurezas y anormalidades; los efectos que tiene la superficie de los conductores, la alteración del aislamiento bajo trabajo, efectos químicos, etc.; y la polaridad, duración, forma y magnitud de la tensión aplicada.

Una falla de aislamiento, a su vez, se produce cuando se aumentan tanto los esfuerzos eléctricos que produce el cambio desde una resistividad alta a una similar a la de conductores. Esto se genera en tres momentos, la ionización en distintos sitios, el aumento de un conducto ionizado mediante la separación de aislamiento y el surgimiento del arco.

Así, las fallas de aislamiento del material, o descargas, pueden ser la perforación o pérdida permanente o temporal del aislante [17].

2.2.2 Sobretensiones en subestaciones eléctricas

Las subestaciones presentan diversos voltajes nominales en los que pueden estar sujetos los dispositivos. En la Tabla 1 se presenta los voltajes nominales para los dispositivos.

Tabla 1.	Valores d	le la voltaje	máximo y	tensión
		nominal		

Voltaje máximo Vm [kV]	Tensión nominal por fase [kV]
145.000	118.392
245.000	200.042
300.000	244.949
362.000	295.572
420.000	342.929
525.000	428.661

Las subestaciones están sometidas a diversas sobretensiones. Estas corresponden al aumento de la tensión que supera valores máximos entre las fases y fase y tierra, los cuales pueden generar graves problemas y accidentes, como incendios, deterioro en equipamiento, etc.

E1 aislamiento en los sistemas eléctricos es elegido de manera económica y técnica. En la parte económica se recomienda no exceder en el sobredimensionamiento debido a que se usan equipos de un elevado precio económico; por la parte técnica es de gran importancia ya que es dimensionada para resistir sobretensiones que se vayan presentando, de esta manera impiden disturbios frecuentes a lo largo de la operación [18].

Martínez J. [7], explica sobre una de la clasificación de la sobretensión que se fundamenta en cómo se crea o cual fue el motivo que la produjo, ya sea de forma externa o interna del sistema [18].

Los sobrevoltajes internos se originan internamente, y se fragmenta en: sobretensiones de maniobra y sobretensiones temporales. Las sobretensiones o también externas llamadas sobretensiones atmosféricas se originan fuera del sistema causadas por alguna descarga atmosférica [19].

Estas pueden clasificarse según su origen en:

- Sobretensiones de maniobra: sobretensión amortiguada y breve que se da cuando existen cambios abruptos de disposición de la red; presenta rangos de frecuencia de entre 20 y 10 kHz.
- Sobretensión atmosférica: ocurre cuando existen descargas directas de rayos en las instalaciones, lo que puede implicar un alza de la tensión de varias veces el máximo.

 Sobretensión de frecuencia industrial: ocurren debido al aislamiento a tierra en las redes con neutro aislado, y no superan los 500 Hz.

Tabla 2. Tipos de sobrevoltajes conforme su
causa

	Sobrete nsión de maniobr a	Sobrete nsión atmosfér ica	Sobrete nsión a frecuenc ia industria l
Amortigua miento	Medio	Fuerte	Débil
Causa	Interrup ción del circuito	Caída directa de rayo	Defecto de aislamie nto
Amplitud	1.5 a 4.0	2.0 a 6.0	$\leq \sqrt{3}$
Duración	Corta 1 ms	$\begin{array}{c} Muy\\ corta \ 1\\ \approx 10 \ ms \end{array}$	Larga < 1 s

De igual manera, pueden clasificarse según la duración y forma de onda en tensiones temporales 0 continuas. sobrevoltajes de frente rápido V sobrevoltajes de frente extrarrápido. IEC 60071-1 coordina el trabajo al que se sujeta el equipo, según criterios adecuados procediendo del reusltado sobre el aislamiento o protección del equipo [15], [16].

Para la coordinación de aislamiento, el valor por unidad se consigue con la ecuación (1) [20]

$$p.u. = \frac{Vs}{Vh} \tag{1}$$

$$Vb = \frac{Vs * \sqrt{2}}{\sqrt{3}} \tag{2}$$

Donde:

Vb Voltaje límite del sistema

Vs Voltaje límite del dispositivo

Los valores por unidad (p.u.) se emplean en los cálculos de sobretensiones representativas de frente lento.

2.2.3 Métodos de determinación de

coordinación de aislamiento

Se define a IEC 60071[15] al proceso a seguir para el análisis de coordinación de aislamiento describiendo el proceso de elección de los niveles de aislamiento de una subestación eléctrica [18]. La finalidad de este análisis es el de establecer una tensión que permita reducir el riesgo de fallas y demostrar la agrupación de los niveles normalizados con los niveles asignados [18], [19].

- Métodos determinísticos [19]: método utilizado cuando no se dispone de información estadística sobre las tasas de fallo del equipamiento.
- Métodos estadísticos [14]: se utiliza cuando se disponen de datos estadísticos sobre la ocurrencia de fallos específicos. Utiliza consistencia de posibles sobrevoltajes destacados.

2.3 Descargadores de sobretensión

Los descargadores de tensión conforman principal protección ante la sobretensiones, teniendo en cuenta que las ejercen mayor esfuerzo sobre un pararrayo en sistemas de alta tensión. Además, estos descargadores permiten poner límites al valor de sobretensiones abruptas y proveen de protección al equipamiento de solicitaciones por descargas atmosféricas [21].

El rayo es uno de los importantes factores de fallas de los sistemas de líneas

de transmisión, los cuales suelen producir flameos en las cadenas de aisladores con bajos niveles de aislamiento. Cuando se está en zonas montañosas, estudios sugieren que la tensión inducida es mayor debido a un mayor campo eléctrico producido, en comparación con zonas de terreno plano [22].

Por tanto, es preciso disponer de protección a los equipos y líneas de distribución que permitan disipar las sobretensiones producidas por este tipo de descargas. Estos descargadores son uno de los principales equipos de seguridad con que cuentan los dispositivos de bahía, de modo que deben determinarse adecuadamente sus características [3].

Funcionamiento de un pararrayos:[3]

- Aislador en tanto la tensión que se le aplique no sea mayor a determinado valor como el voltaje nominal del conjunto.
- Es cable guía que descarga a tierra la vibración que produce la sobretensión.
- Cuando desaparece la sobretensión y se reestablece la tensión nominal, el pararrayos debe interrumpir la corriente a tierra.

Debe considerarse que los pararrayos no deben funcionar con sobretensiones temporales de frecuencia industrial.

Se clasifican de la siguiente manera:

- Cadena de aisladores
- Descargador AEG
- De óxido básicos

Estos descargadores para sobretensión deben considerar las tensiones y sobretensiones de tensión estándar de operación (el voltaje máximo del conjunto), las sobrevoltajes transitorios,

va sea por maniobra o de tipo atmosférico. En el anexo 1 se muestra la relación entre los rangos amplitud de las v sobretensiones con las tensiones limitadas por el pararrayos. De esta manera, en las sobretensiones cuyo origen es maniobra o atmosféricas, las amplitudes pueden superar la tensión que soportan los equipos. No obstante, el pararrayos tiene como función limitar esos valores, de modo que el resultado del aislamiento soporte tensiones menores en comparación con las que habría sin el uso de este [3].

2.4 IEC 60071-1 y IEC 60071-2

En este apartado se describen las normativas bajo las que se desarrolla el análisis de la coordinación del aislamiento.

2.4.1 IEC 60071-1

Para la coordinación, IEC 60071-1 tiene como objetivo principal determinar la tensión soportada nominal del equipo en RANGO I y en RANGO II [15].

definiciones Se presentan las relevantes, como los tipos de aislamiento, bornes, configuraciones, etc. Se detalla el procedimiento, además, para coordinar el aislamiento, indicando las generalidades y las determinaciones a realizar, las cuales corresponden sobretensiones а representativas, voltajes tolerados de coordinación. voltaies tolerados especificados, selecciones de niveles de aislamiento, gama para la tensión máxima y elección de los niveles de aislamiento normalizados. sumado de otras determinaciones como las condiciones medioambientales.

De igual manera, se implanta ciertas condiciones en el progreso de los ensayos según voltaje tolerado a un pequeño tiempo a frecuencia industrial, de voltaje tolerado con varias impulsiones, situaciones de pruebas, aislamiento en voltaje tolerado de fase a fase y la longitud de aislamiento para el equipo de rango I y rango II.

2.4.2 IEC 60071-2 [13]

Por su parte, IEC 60071-2 muestra la guía de aplicación y selección de la clase de aislamiento del equipo como la instalación de equipos en un sistema trifásico.

Con ella se ofrecen las recomendaciones para la coordinación del aislamiento en caso de sistemas trifásicos con tensiones mayores a 1kV (asignadas), para lo que sugiere valores adecuados para este sistema.

El estándar tiene un alcance sobre el aislamiento fase-tierra, fase-fase y longitudinal, se encuentra adecuada al proceso descrito en la IEC 60071-1.

Así, en ella se aborda primero una definición de términos y generalidades, para luego identificar las solicitaciones de tensión que son representativas en el contexto del servicio. En ese apartado se da detalle cabal de los tipos de solicitaciones de tensión, y de definen pararrayos.

De igual manera aborda la tensión de coordinación soportada, sus características, la polaridad (influencia) y las formas, los tipos de aislamiento, condiciones atmosféricas, probabilidades de descarga disruptivas, etc.

También se detalla la tensión soportada específica, la tensión normalizada y los procedimientos de ensayo, además de indicar ciertas consideraciones especiales para las líneas aéreas y para subestaciones.

3 Metodología

Figura 3. Diagrama de flujo sobre el análisis de coordinación de aislamiento

El trabajo tiene por objetivo general determinar la capacidad de mejoramiento en la coordinación del aislamiento para subestaciones eléctricas por medio de la viabilidad en la reducción de BIL o el correspondiente Standard Lightning Impulse Withstand Voltage (LIW), definido en IEC 60071.

Para el presente estudio se describen las particularidades estandarizadas del sistema:

Rango de voltaje estándar: 230 kV

Máxima tensión (Vm): 245 kV

Frecuencia: 59.999 Hz

Corriente de cortocircuito: 31.49 kA

Separación pequeña de fuga: 25 mm/kV

Tipo de conexión a tierra: sólidamente puesto a tierra

Identificación de fases: R, S, T

Es preciso, sobre la base del estudio modelo, analizar la factibilidad de reducir el BIL/LIW añadiendo descargadores de sobretensión en las bahías a intervenir; por último, es necesario determinar cómo esto afecta a la coordinación del aislamiento.

Por tanto, se realizó un diagnóstico de la coordinación del aislamiento para una subestación eléctrica de 230 kV, según IEC 60071-1 y 60071-2, y se comparó con variantes del diseño que contemplen la posibilidad de añadir descargadores de sobretensión a los tradicionalmente ubicados en la subestación modelo. Se buscó determinar si la(s) propuesta(s) pueden ofrecer un aporte técnico a la coordinación del aislamiento y determinar, de ser posible, su impacto económico respecto de la propuesta original.

Para desarrollar el estudio de coordinación de aislamiento se utilizaron las metodologías determinadas según IEC 60071-1 y 60071-2.

Así, se utilizaron los métodos determinístico y estadístico, lo que se considera como una metodología híbrida [3] dado que algunos parámetros determinísticos han sido utilizados para el desarrollo estadístico y viceversa.

Para desarrollar la reducción de BIL a partir del uso de descargadores extra en la subestación modelo analizada. se realizará el mismo procedimiento de análisis y determinación de coordinación aislamiento del manteniendo determinados parámetros constantes y modificando deben los que ser actualizados.

Para establecer el procedimiento, se analiza en el siguiente apartado el proceso de coordinación de aislamiento bajo la metodología mencionada, desarrollando cada una de las etapas para el estudio.

Una vez expuesto el análisis de la coordinación, se expondrá el mejoramiento a partir de la integración de nuevos descargadores de sobretensión, lo que se realizará basado en el mismo proceso de cálculo, de modo que se haya resumido en el apartado siguiente.

último, para evaluación Por la económica de ambas propuestas, se existentes definieron los valores estimados para cada uno de los equipos en cada caso y se evaluó la eficiencia en función de los costos ahorrados de una respecto a la otra. Cabe mencionar que los costos de los equipos son específicos para cada subestación en particular, de manera que se buscó identificar los precios referenciales más cercanos а los requeridos por el presente estudio para determinar qué propuesta es la más adecuada. Esto se indica, finalmente, en el último apartado del desarrollo.

4 Análisis del proceso de coordinación de aislamiento

Este análisis se fundamenta en la coordinación de la particularidad de intervención de los descargadores junto a las gráficas de tensión vs duración de los dispositivos con aislamiento, obteniendo una protección económica y eficaz ante sobretensiones transitorias [23].

4.1 Coordinación de aislamiento en subestaciones de 230 kV

A continuación, se hace un estudio en el que se usa la metodología sugerida por la norma IEC 60071.

El análisis de la coordinación de aislamiento interno se realiza mediante el método determinístico. Por su parte, se propone en IEC 60071-2 el método probabilístico que se usa en el análisis de la coordinación de aislamiento externo.

4.1.1 Sobretensiones representativas

En el cálculo de las sobretensiones se estima la tensión máxima del sistema (Vs) similar o igual a la capacidad límite de voltaje de funcionamiento del dispositivo (Vm). En este caso, el voltaje estándar del sistema es de 230 [kV], es decir, el voltaje límite del sistema es de 245 [kV].

Primero se obtiene el voltaje base, dado que la norma emplea el sistema en por unidad, valor por unidad de la amplitud de la sobretensión referido a la tensión del sistema, para así realizar el cálculo de las sobretensiones por salida de carga y por falla a tierra (ver ecuación 6 y ecuación 7).

$$Vb = \frac{245 * \sqrt{2}}{\sqrt{3}}$$
(3)
$$Vb = 200.042 [kV]$$

$$p.u. = \frac{Vb}{Vs} \tag{4}$$

En los sistemas del alcance de estudio es el de Rango I, la cantidad de voltaje máximo del sistema seleccionado es de 200.042 [kV]. Dado que los pulsos de tensión varían y son complejos en calificar, las variables como el efecto en el sistema, la amplitud y el tiempo son aproximaciones. Desde el punto de vista de los materiales aislantes, los riesgos provocados por sobretensiones representan la perdida de los equipos.

Las sobretensiones temporales representativas son:

Sobretensión originada por falla (Fase-Tierra).

$$Vrp = k * \frac{Vs}{\sqrt{3}} \tag{5}$$

Sobretensión originada por salida de carga (Fase-Tierra).

$$Vrp_{f-t} = 1.4 * \frac{Vs}{\sqrt{3}} \tag{6}$$

Sobretensión originada por salida de carga (Fase-Fase).

$$Vrp_{f-f} = 1.4 * Vs \tag{7}$$

Tabla 3. Magnitudes típicas de sobretensiones

Sobretensión Temporal a Frecuencia Industrial			
General	≤ 10 s		
Fallas SLG	< 1.5 p.u.		
Efecto ferranti	< 1.3 p.u.		
Rechazo de carga	< 1.4 p.u.		
Resonancia	> 2 p.u.		
Energización/Re-energización	< 1.5 p.u.		
Poste de interruptor atascado	< 2 p.u.		

4.1.2 Sobretensión de frente lento

La norma sugiere el empleo del método pico por fase establecido en la sección 2.3.3.1 y en el anexo D de la norma. De lo contrario, la misma norma recomienda por ejemplo la relación de simulaciones para obtener la distribución de probabilidades de las magnitudes de los sobrevoltajes.

IEC 60071-2 [16] indica que Ve2, que es igual a 2.900 por unidad para maniobras de energización, y, además, el valor igual a 3.660 por unidad para maniobras de reenergización trifásico. Estos datos se usan siempre y cuando se conozca las características de la subestación: si se trata de un sistema con resistencia de pre inserción o sin ella, si se trata de un sistema con alimentación compleja o sin ella, que cuente con compensación paralela o no. La figura 1 de la sección 2.3.3.1 de la norma contiene información que ofrece rangos de valores para cada uno de los 16 casos previstos en IEC.

Para cuando no se conoce la naturaleza de las subestaciones, se sugiere usar los valores a continuación [3]:

- Maniobras de energización 1.900 [p.u.]
- Maniobras de reenergización trifásico 3.000 [p.u.]

4.1.3 Sobretensión entre fases

En el Anexo 2 se muestra la curva por IEC 60071-2 para hallar la relación entre las sobretensiones entre fases y sobretensiones estadísticas (V_{p2}/V_{e2}) .

Para la sobretensión estadística de maniobra de energización se seleccionó una relación (V_{p2}/V_{e2}) de 1.526 [p.u.] y para las sobretensiones de reenergización trifásico es obtuvo una relación (V_{p2}/V_{e2}) de 1.500 [p.u.]. Se obtuvo mediante la ecuación (8) y la figura del Anexo 2, colocamos las sobretensiones para luego bosquejar el valor de la relación de (V_{p2}/V_{e2}) , tomando en cuenta que la curva inferior se toma para las sobretensiones de maniobra de energización y la curva superior es la para las sobretensiones de reenergización trifásico.

$$V_{p2} = (V_{e2}) * \left(\frac{V_{p2}}{V_{e2}}\right)$$
(8)

Tabla 4. Sobretensiones entre fases

Sobretensiones entre fase			
Maniobra de	Maniobra de		
energización	reenergización		
[p.u.]	trifásico [p.u.]		
2.889	4.500		

La norma IEC 60071-2 se presenta un análisis para obtener las sobretensiones conociendo los reglamentos del sistema en vista de los cambios indicados dentro una subestación eléctrica. de sin dispositivos de protección [3]. En ciertas ocasiones no existen pruebas para el uso de los métodos, se toman en cuentan ocasionados valores por eventos específicos para a conexión y desconexión de líneas. con la probabilidad del 2 % de ocasionar falla en el aislamiento [3].

En IEC 60071-2 se indica en el punto H.3.1.3 que no se considera las sobretensiones de frente rápido ante operaciones de maniobra.

El valor de las sobretensiones de truncamiento fase – fase se la obtiene usando la ecuación (9) y fase – tierra usando la ecuación (10), tanto para los dispositivos de acceso como para los demás dispositivos.

$$V_{pt} = (1p. u.) * (1.25 * V_{p2} - 0.43)$$
(9)
$$V_{et} = (1p. u.) * (1.25 * V_{e2} - 0.25)$$
(10)

Dato de truncamiento de la V_{pt} comercialización almacenada de las sobretensiones entre fases Dato de truncamiento de la

- V_{et} comercialización almacenada de las sobretensiones fase a tierra Valor de sobretensión fase - fase
- V_{p2} que tiene 2 % de probabilidades de ocasionar falla de aislamiento Donde:
- Ve₂ Valor de sobretensión fase a tierra que tiene 2.0 % de probabilidades de ocasionar falla de aislamiento

Tabla 5. Sobretensiones de truncamiento paratodos los dispositivos

Sobretensiones de truncamiento [kV]		
$\text{Fase}-\text{Tierra}\left(V_{\text{et}}\right)$	$Fase-Fase\left(V_{pt}\right)$	
425.089 [kV]	638.983 [kV]	
0.4706 [p.u.]	0.3131 [p.u.]	

Tabla 6. Sobretensiones de truncamiento para losdispositivos de acceso

Sobretensiones de truncamiento			
$Fase-Tierra\left(V_{et}\right)$	$Fase-Fase\left(V_{pt}\right)$		
700.146 [kV]	1039.216 [kV]		
0.2857 [p.u]	0.1925 [p.u]		

4.1.4 Descargadores de Sobretensión o Pararrayos

Existe diferentes modelos de pararrayos en todo tipo de marcas que brindan diferentes características dependiendo del voltaje y de la energía a absorber que requiere el sistema para así brindar protección. Para este análisis se tomó en cuenta los pararrayos de óxido de metales que se ubicará en las bahías de entrada de las líneas de la subestación.

La elección de los pararrayos PEXLIM será de acuerdo con el voltaje nominal, ABB. El voltaje de funcionamiento continuo del pararrayo seleccionado, es mayor o similar a 141.451 [kV], por lo tanto, los valores ofrecidos por el fabricante son válidos y seleccionables cumplen con las ecuaciones anteriores.

Para este análisis usamos la ecuación 11 para encontrar la tensión nominal mínima y la ecuación 12 para el cálculo de la tensión nominal en función de TOV (Sobretensión Temporal) y así poder comparar los dos valore y obtener el valor más alto. La tensión nominal es de 187.707 [kV] por tanto se tomó como valor nominal 192.000 [kV] (ver Anexo 3. Parámetros de Pararrayos PEXLIM).

$$V_{r',min} \ge 1.25 * Vc \tag{11}$$

$$V_{r'} \ge \frac{V_{TOV}}{K_{TOV}} \tag{12}$$

Para escoger la distancia de la trayectoria de fuga de los pararrayos, se comparan los valores obtenidos. Este debe ser menor con el valor recomendado por el fabricante, para este análisis se considera el nivel de polución, según los indicado en la sección 3, con la selección de la separación de fuga es de 25 [mm/kV].

Tabla 7. Elección de la distancia de fuga.

Voltaj	Voltaj	Α	В	С	D	Distanc	Mas
e	e del	má	m	m	m	ia de	a kg
nomin	sistem	х	m	m	m	fuga	
al kV	a kV	m				mm	
		m					
180	245	200	600	800	400	6434	79
VH		0					
192	245	210	600	800	400	6434	81
VH		5					
198	245	229	600	800	400	7077	88
VH		0					
210-							
216	245	229	-	600	300	7077	86
VH		0					
180-							
210	245	247	600	800	400	7077	96
VH		0					
216-							
228	245	247	-	600	300	7720	93
VH		0					

Cabe indicar que los voltajes representativos dependen del descargador de sobretensión. Vrp_{f-f} es igual a Vps que es llamada voltaje excedente de onda de corriente 30/60 microsegundos, NPM (nivel de seguridad a la impulsión de maniobra) y Vrp_{f-f} es decir dos veces Vps, según indica las secciones 2.3.3.1 y la 3.3.2.1 de la norma IEC 60071. Los valores del pararrayo se observan en la tabla 12.

4.1.5 Voltajes soportados de

coordinación para

sobretensiones temporales

IEC 60071-2 recomienda el uso del factor de coordinación Kc con un valor de 1. (Kc=1)para las sobretensiones temporales. aplicado El método corresponde uno de carácter а determinístico. Para este análisis usamos la ecuación 13.

$$Vcw = Kc * Vrp \tag{13}$$

4.1.6 Voltajes soportados de coordinación de frente lento

Es preciso considerar las curvas de los índices de coordinación según muestra IEC 60071 para encontrar el factor Kcd con la relación de Ra (Relación de Vps / Ve2 fase - tierra) y Rb (Relación de 2*Vps / Ve2 fase - fase).

4.1.7 Voltajes soportados de

coordinación de frente rápido

IEC define al factor A como el que determina cómo actúa la línea ante una descarga atmosférica, este depende del factor de amortiguamiento por efecto corona (Kco).

Tabla 8. Datos del factor A de acuerdo con el número de conductores

Configuración Conductor por Fase	Kco (μs/ (kV*m))	Factor A [kV]
Un conductor	1.5*10^-6	4500
Dos conductores	1*10^-6	7000
Cuatro conductores	0.6*10^-6	11000
Seis u ocho conductores	0.4*10^-6	17000

Teniendo los valores del diseño de la bahía procedemos a calcular el voltaje

soportado para cada equipo de la bahía: transformador de tensión, seccionador de línea, transformador de corriente, interruptor de potencia, seccionador de barra, aislador soporte de barra.

$$L = a1 + a2 + a3 + a4 \tag{14}$$

Donde:

- al Distancia del punto de conexión del pararrayo
- a2 Distancia desde el drenaje del pararrayo hasta tierra Distancia del punto de conexión
- a3 desde el servicio hasta el dispositivo a proteger
- a4 Elevación de aislamiento del pararrayo

$$Vcw = Vpl + \left(\frac{A}{n}\right) * \left(\frac{L}{(Lsp + La)}\right) \quad (15)$$

Donde:

X 71	NPR (Nivel de protección ante el
vpi	impulso atmosférico)

- Lsp Vano típico de la línea
 - n Cantidad de líneas que ingresan a una subestación
- La Longitud equivalente del conductor
- L Valor de la suma de (a1+a2+a3+a4)

4.1.8 Factor de corrección por altitud *Ka*

En esta etapa es preciso identificar las condiciones en las que se espera que funcione la subestación modelo analizada. Para el cálculo, se utilizará como referencia las curvas que presenta la norma IEC 60071 que permite determinar el factor Ka de corrección según el exponente m. En la figura, las curvas corresponden a a) aislamiento fase a tierra, b) aislamiento prolongado, c) aislamiento de fase a fase y d) separación desde la varilla al plano. De igual manera, en este caso se utilizará como altura de la subestación 4100 msnm (H=4100).

Para calcular el índice de rectificación Ka, se utilizará la siguiente expresión de la norma IEC 60071-2:

$$Ka = e^{m*\left(\frac{H}{8150}\right)} \tag{16}$$

0

$$Ka = e^{\beta} \tag{17}$$

Así encontraremos el factor de corrección para las tensiones soportadas de frente rápido (Tabla 20), a frecuencia industrial y de frente suave tanto para todos los dispositivos, así como para los equipos de entrada.

4.1.9 Tensión soportada específica

Según IEC 60071-2 menciona dos factores de seguridad (Ks) estos son: 1.150 se usa en aislamiento interno y 1.050 en los aislamientos externos.

La tensión soportada especifica la encontramos a través de la expresión matemática a continuación:

$$Vrw = Ka * Ks * Vcw \tag{18}$$

Donde:

Ka	Factor de corrección por altitud			
Ks	Factor de segui	ridad		
Van	Voltaje 1	olerado	de	
vew	coordinación de frente lento			

A continuación, se muestra la tabla 9 con los datos finales según IEC 60071-1 de acuerdo con Nivel Básico de Aislamiento (BIL).

Tabla 9. Resultados de la coordinación	de
asilamiento	

Dispositivo	Tensión	Nivel Básico de
nara proteger	soportada	Aislamiento
para proteger		
Transformador	886.068	950.000
de voltaje		
Seccionador	935.795	950.000
de línea		
Transformador	985.521	1050.000
de corriente		
Interruptor de	1035.247	1050.000
potencia		
Seccionador	1084.974	1175.000
de barra		
Aislador	1124.044	1175.000
sonorte de	1121.011	11/0.000
have		
barra		

4.2 Aislamiento normalizado

A partir de los factores sugeridos por el estándar para las tensiones, se realizó el cambio respectivo del Nivel Básico de Conmutación a Sobre Voltaje Temporal y del Nivel Básico de Conmutación a Nivel Básico de Aislamiento.

5 Resultados coordinación de

aislamiento (diseño 1)

Se indica los valores obtenidos mediante el análisis del primer caso matemático.

5.1 Sobretensiones representativas temporales

Este tipo de sobretensiones dependen del factor de sobretensión temporal (K), fue considerado de la norma IEC 60071-2, sección H.1.1.1.2 para sistemas sólidos conectados a tierra. Para estos cálculos se realizó con las ecuaciones 3, 5, 6 y ecuación 7 con un factor de 1.3 para sobretensiones originadas por fallas a tierra y un factor de 1.4 para sobretensiones originadas por salida de carga.

	Falla a tierra y rechazo de carga TOV (Vrp)				
Amplitud de sobretensión [p.u]	Falla Fase - Tierra [kV]	Repulsión de Carga Fase - Fase [kV]	Repulsión de Carga Fase - Tierra [kV]		
200.042	183.886	343.000	198.031		

Tabla 10. Sobretensiones representativas temporales

5.2 Sobretensión entre fases

Se indica el cuadro de resultados obtenidos para sobretensiones de frente lento basándose en lo establecido en la norma sección 2.3.3.1 y en el anexo D de la norma. También se presenta los resultados de las sobretensiones entre fases usando la figura del Anexo 2 y la ecuación 8; usamos la ecuación 9 para las sobretensiones de truncamiento fase – fase y la ecuación 10 para sobretensiones de truncamiento fase – tierra.

Tabla 11. Sobretensión entre fases

(Vp2/Ve2) [p.u.]	Ve2 [p.u.]	Sobretensión estadística (Vp2) [p.u.]			Sobretensione	es de maniobra	
		Maniahna da		Todos los e	quipos [kV]	Equipo de e	entrada [kV]
1.526	1.900	energización [p.u]	2.899	Sobretensiones de	Sobretensiones de	Sobretensiones de	Sobretensiones de
		Maniobra de		truncamiento Fase - Tierra (Vet)	truncamiento Fase - Fase (Vpt)	truncamiento Fase - Tierra (Vet)	truncamiento Fase - Fase (Vpt)
1.500	3.000	Reenergización Trifásico [p.u]	4.500	425.089	638.983	700.146	1039.216

5.3 Pararrayos

Se presenta en la tabla 12 los valores conseguidos de los voltajes obtenidos con la ecuación 11 y ecuación 12 teniendo en cuenta el factor de seguridad del 5 %. Para la correcta selección del pararrayo según el fabricante se hace una comparación entre los dos voltajes nominales y se toma el valor más alto para poder ubicar en la tabla 7 y el anexo 3 y así analizar todos los valores requeridos para una buena elección del pararrayo.

	Voltaje nominal [kV]				
Voltaje continuo	Según fabricantes ABB		Según IEC 60071-2		
de operación (Vc) [kV]	Voltaje nominal mínimo (Vr, min)	Voltaje nominal en función de TOV (Vr')	Sin factor de seguridad (Veq)	Con factor de seguridad (Veq)	
148.523	185.654	187.707	198.0311	207.933	
-	187.7	7072439			

Tabla 12. Selección del pararrayos

Se indica el cuadro con los datos finales del pararrayo los cuales se encuentran en catálogos y satisface las características requeridas para este análisis.

Tensión estándar de fabricación [kV]	192
Tensión de maniobra continua (IEC) [kV]	154
Tensión estándar (IEC) [kV]	211
Grado de seguridad de impulsión de clase maniobra NPM [Vps] [kV]	388
Grado de seguridad de impulsión de clase atmosférica NPR [Vpl] [kV]	437
Separación de las líneas de fuga [mm]	6434
Elevación del aislante del a4 pararrayos [mm]	2105

5.4 Sobretensión representativa de frente lento

seguridad de empuje del tipo de maniobra NPM, este valor se tomó de los datos del pararrayo.

La sobretensión representativa de frente lento se obtuvo mediante el grado de

Tabla 14. Sobretensión representativa de frente lento

Cualquier equipo de la subestación Fase-Tierra [kV]	Equipo de entrada de la línea Fase- Fase [kV]	Dispositivo de la subestación salvo en el ingreso de las líneas Fase - Tierra [kV]
388.000	776.000	638.983

5.5 Diseño de bahía

Para el diseño de una bahía se debe considerar dos factores fundamentales como la confiabilidad y la seguridad. El primer valor tomado en cuenta es la cantidad de líneas acopladas a la subestación para el análisis fue hecho con 2 líneas de transmisión. El siguiente valor es el vano típico de la línea, es el valor típico recomendado por la norma IEC 60071-2 que indica la separación de la subestación al vano de la línea.

El índice de fallas representa al número de salidas de la línea ocasionadas por fenómenos meteorológicos. El valor típico que se establece en la norma IEC 60071-2 es de 1/100 km al año. Así mismo la norma establece un valor típico del índice de fallas. Para la longitud de línea equivalente consideramos la relación de la tasa de fallas aceptable con el índice de fallas.

Parámetros determinísticos de Bahía						
Número de líneas conectadas (n)	Vano típico de la línea (Lsp) [m]	(Rkm) Tasa de fallas (1/100) [km/año]	Tasa de fallas aceptable (Ra) (1/400) [año]	Longitud equivalente (La) [m]		
2	300	0.01	0.0025	250		

Tabla 15. Diseño de bahía

5.6 Voltajes tolerados de

coordinación temporales

Para el análisis de esta tensión usamos la ecuación 13 y el factor de coordinación establecido por la norma IEC 60071-2.

Tabla 16. Tensiones soportadas de coordinación temporales

Factor de coordinación (Kc)	(Vcw) Fase - Fase [kV]	(Vcw) Fase - Tierra [kV]
1.000	343.000	198.031

5.7 Tensiones soportadas de

coordinación frente lento

El voltaje tolerado de coordinación de frente lento encontramos con la ecuación

Tabla 17. Voltajes tolerados de coordinación de frente lento (Vcw)

Equipo de entrada			Resto de equipos				
Rela ción para el equi po de entr	(Vc w Fas e- Tier ra) [kV]	Rela ción para el equi po de entr	(Vc w Fas e- Fas e) [kV]	Rela ción para el rest o de equi	(Vc w Fas e- Tier ra) [kV]	Rela ción para el rest o de equi	(Vc w Fas e- Fas e) [kV]

12 y la relación Vps/Ve2 en la gráfica del Anexo 4, en la curva (a) analizaremos la relación Ra (Relación de Vps / Ve2) y en la curva (b) analizamos Rb (Relación de 2*Vps / Ve2 fase - fase).

ada de la líne		ada de la líne		pos (Ra)		pos (Rb)	
а		а					
(Ra)		(Rb)					
0.64	426.	0.86	782.	1.02	400.	1.33	638.
7	800	2	984	1	804	8	983

5.8 Tensiones soportadas de

coordinación frente rápido

A continuación, se muestra el valor de las longitudes de a1, a2, a3 y a4.

				Diseño de Longitu a3 [mm]	d			
a1 [mm]	a2 [mm]	Transformador de tensión [mm]	Seccionador de línea [mm]	Transformador de corriente [mm]	Interruptor de potencia [mm]	Seccionador de barra [mm]	Aislador de soporte barra [mm]	a4 [mm]
6105.000	2500.000	7200.000	14200.000	21200.000	28200.000	35200.000	40700.000	2105.000

Tabla 18. Voltaje tolerado de coordinación de frente rápido

Los cálculos a continuación tomaron en cuenta los valores determinísticos del diseño de a la bahía calculados en el apartado 5.5 y la ecuación 14 y ecuación 15.

Tabla 19.	Voltaie tolerado	de coordinación	de frente rá	pido
1 a01a 17.	vonaje toterado	ue coorumación	a de meme ra	piùo

Voltaj	e tolerado de coordinación de frente	rápido
Equipos a proteger	L [m]	Vcw [kV]
Transformador de tensión	17.910	510.268
Seccionador de línea	24.910	538.905
Transformador de corriente	31.910	567.541
Interruptor de potencia	38.910	596.177
Seccionado de barra	45.910	624.814
Aislador de soporte de barra	51.410	647.314

5.9 Tensiones soportadas requeridas

En la tabla 20 se indica los valores del factor de corrección por altitud hallados

con la ecuación 16. A continuación, se presenta el valor del voltaje tolerado específico a frecuencia industrial aislada de manera externa e interna.

	Exponente m	Altitud [msnm]	Factor de corrección por altitud (Ka)
Componente de acceso Fase - Tierra	0.938	4100	1.603
Equipo de entrada Fase - Fase	1.000	4100	1.654
Resto de componentes Fase - Tierra	0.950	4100	1.613
Resto de equipos Fase - Fase	1.000	4100	1.654
Exponente m para tensión soportada			
Frecuencia industrial	1.000	4100	1.654
Frente rápido	1.000	4100	1.654

Tabla 20. Tensiones soportadas específicas y/o requeridas

	Voltaje tolerado específico a fr	ecuencia industrial aislada V	rw
Ex	terno	Int	erno
Fase-Fase [kV]	Fase-Tierra [kV]	Fase-Fase [kV]	Fase-Tierra [kV]
595.611	343.876	394.450	227.736
	Frente Lento para aislam	iento - Equipo de entrada	
1359.633	718.369	900.432	490.820
	Frente Lento para aislan	niento - Resto de equipos	
1109.579	678.698	734.831	460.925
	Frente Rápido para aislamien	to - Transformador de tensión	n
886.068	886.068	586.808	586.808
	Frente Rápido para aislami	ento - Seccionador de línea	
935.795	935.795	586.808	586.808
	Frente Rápido para aislamient	o - Transformador de corrien	te
985.521	985.521	586.808	586.808
	Frente Rápido para aislamie	ento - Interruptor de potencia	
1035.247	1035.247	586.808	586.808
	Frente Rápido para aislami	ento - Seccionador de barra	
1084.974	1084.974	586.808	586.808
	Frente Rápido para aislamien	to - Aislador soporte de barra	3
1124.044	1124.044	586.808	586.808

5.10 Nivel de aislamiento normalizado

Temporal TOV y el Nivel Básico de Conmutación BSL a Nivel Básico de Aislamiento BIL.

Se realizó la conversión de Nivel Básico de Conmutación BSL a Sobre Voltaje

	Nivel Básico de Conmutación (BSL) – Sobre Voltaje Temporal TOV (FI) (SDW)			Nive Bá	l Básico de Co sico de Aislan	onmutación (l niento (BIL)	BSL) – Nivel (LIW)	
	Aislamient	o externo	Aislamier	nto interno	Aislamier	nto externo	Aislamier	nto interno
	Fase – Tierra [kV]	Fase – Fase [kV]	Fase – Tierra [kV]	Fase – Fase [kV]	Fase – Tierra [kV]	Fase – Fase [kV]	Fase – Tierra [kV]	Fase – Fase [kV]
Equipo de entrada Resto de	491.733	961.339	245.410	450.216	840.296	1633.015	539.902	990.475
equipos	461.411	762.689	230.462	367.415	789.405	1301.854	507.017	808.314

Tabla 21. Clase de aislamiento estandarizado

Datos de voltaje a corto plazo de frecuencia industrial con rms [kV]		Aislamiento Externo				Aislamiento Interno	
		- Equipo de Entrada		Todos los Equipos			
Datos de voltaj impulsos tipo rayo [kVp	e para picos de y conmutación]	Vrw (Valor de resistencia mínimo requerido) [kV]	Vrw (Valor convertido) [kV]	Vrw (Valor de resistencia mínimo requerido) [kV]	Vrw (Valor convertido) [kV]	Vrw (Valor de resistencia mínimo requerido) [kV]	Vrw (Valor convertido) [kV]
Corta duración a Frecuencia	Fase-Tierra	267.409	491.733	267.409	461.411	227.74	230.462
Industrial	Fase-Fase	463.152	961.339	463.152	762.689	394.45	367.415
Sobretensiones de	Fase-Tierra	718.523	-	718.523	-	460.925	-
Frente Lento	Fase-Fase	1360.307		1360.307		734.831	
Sobretensiones de	Fase-Tierra	1124.044	840.296	1124.044	789.405	586.808	507.017
Frente Rápido	Fase-Fase	1124.044	1633.015	1124.044	1301.854	586.808	808.314

Tabla 22. Síntesis niveles de aislamiento normalizados

6 Mejoramiento de coordinación de

aislamiento (diseño 2)

En este apartado se exponen los cambios realizados en el cálculo normal previo para añadir un segundo pararrayos que permita reducir BIL en la planta modelo analizada. Para esto, fue preciso definir las posiciones de los descargadores considerando los voltajes de coordinación soportados y los voltajes específicos calculados anteriormente, reduciendo su tensión nominal, y, por reducir tensiones tanto. las de coordinación y las requeridas BIL.

6.1 Resultados de mejora

Parámetros del pararrayos

Tabla 23. Parámetros del segundo pararrayos

Parámetro	Pararrayo 1	Pararrayo 2
Tensión nominal según (Marca ABB) (Vr)	192 [kV]	192.000 [kV]
Tensión de operación continua (Vc)	154[kV]	154.000 [kV]

Tensión nominal según (IEC) (Veq)	211 [kV]	211.000 [kV]
Impulso de maniobra 2 kA por 30/60 µs (NPM)	388 [kV]	388.000 [kV]
Impulso de maniobra 10 kA por 8/20 μs (NPM)	437 [kV]	437.000 [kV]
Distancia de línea de fuga (Lfuga)	6434[mm]	6434.000 [mm]
Altura de asilamiento (a4)	2105 [mm]	2205.000 [mm]

El cálculo del distanciamiento entre pararrayos 1 y 2 ha sido uno de los parámetros modificados, lo cual implicó la modificación en:

- Voltaje soportado de frente rápido en el transformador de corriente
- Voltaje soportado de frente rápido para interruptor de potencia
- Voltaje soportado de frente rápido para seccionador de barra
- Voltaje soportado de frente rápido para aislador de soporte barra

Dado lo anterior, se modifica igualmente:

- Voltaje soportado requerido de frente rápido en aislamiento externo para transformador de corriente (fase – tierra)
- Voltaje soportado requerido de frente lento en aislamiento externo para transformador de corriente (fase – fase)
- Voltaje requerido de frente rápido en aislamiento externo para interruptor de potencia (fase – tierra)
- Voltaje soportado requerido de frente lento en aislamiento externo para interruptor de potencia (fase – fase)
- Voltaje soportado requerido de frente rápido en aislamiento externo para seccionador de barra (fase – tierra)
- Voltaje soportado requerido de frente lento en aislamiento externo para seccionador (fase – fase)
- Voltaje soportado requerido de frente rápido en aislamiento externo para aislador de soporte de barra (fase – tierra)
- Voltaje soportado requerido de frente lento en aislamiento externo para aislador de soporte de barra (fase – fase)

Así, el resultado del cálculo de la coordinación de aislamiento bajo el mejoramiento añadiendo un pararrayos adicional es:

Tabla 24. Resultados de la coordinación de asilamiento mejorada

Dispositivo a proteger	Tensión soportada [kV]	Nivel Básico de Aislamiento BIL [kV]
Transformador de tensión	886.068	950.000

Seccionador de línea	935.795	950.000
Transformador de corriente	891.119	950.000
Interruptor de potencia	841.387	850.000
Seccionador de barra	841.387	850.000
Aislador soporte de barra	891.119	950.000

A continuación (Tabla 25) se muestran los valores comparados del diseño 1 y el diseño 2 (1 y 2 descargadores respectivamente).

Tabla 25. Comparativa de resultados de la coordinación de asilamiento diseño 1 y 2

DISEÑO	DE		DISEÑO	DE
COORDI	NACIÓ		COORDI	NACIÓ
N 1			N 2	
Dispositi vo a proteger	Tensión soportad a [kV]	Nivel Básic o de Aisla mient o BIL [kV]	Tensión soportad a [kV]	Nivel Básico de Aislamie nto BIL [kV]
Transfor mador de tensión	886.068	950.0 00	886.068	950.000
Secciona dor de línea	935.795	950.0 00	935.795	950.000
Transfor mador de corriente	985.521	1.050. 000	891.119	950.000
Interrupt or de potencia	1.035.24 7	1.050. 000	841.387	850.000
Secciona dor de barra	1.084.97 4	1.175. 000	841.387	850.000
Aislador soporte de barra	1.124.04 4	1.175. 000	891.119	950.000

Como se observa, se han reducido los valores de tensión soportada para los componentes de la subestación. A partir de las reducciones de las longitudes entre los equipos y los descargadores, se ha logrado reducir las tensiones soportadas de dichos equipos debido a que eran los que presentaban valores más elevados en la coordinación original.

6.2 Evaluación económica

La estimación de los precios para los diferentes equipos en una subestación de alta tensión no es sencilla debido a que las cotizaciones se realizan con base en los parámetros reales de las instalaciones y con compromisos de compra. No obstante, existen cálculos sobre el valor relativo de cada equipo respecto del total del costo de una subestación, de manera que se puede conocer el peso en términos de porcentaje de cada equipo[3],[24]

Para este trabajo, lo central no es determinar el costo de cada uno de los equipos mejorados; más bien, se buscó desarrollar una comparación de la eficiencia de la colocación de un descargador de sobretensiones más en una subestación modelo, eficiencia medida en términos técnicos V económicos. Por tanto, con calcular el costo porcentual de ambos diseños permitirá cumplir con los objetivos.

Tabla 26. Costos referenciales de equipos de subestaciones de alta tensión 245 kV 1 y 2 pararrayos (UDS)

Dispositiv	Ponderación	Valor 1	Valor 2
0	1 onderación	parariayo	parariayo
Transforma dor de tensión	0.0625	13000	13000
Seccionado r de línea	0.08654	18000	18000
Transforma dor de corriente	0.10096	21000	21000
Interruptor de potencia	0.64904	135000	135000
Seccionado r de barra	0.06731	21700	14000
Aislador soporte de barra	0.01202	3875	2500
Pararrayos 1	0.02163	4500	4500
Pararrayos 2		N.A.	4500

TOTAL	1	217075	212500
TOTAL	1	217075	212500

La Tabla 26 observan los costos de referencia de los equipos de la subestacion, según costos de la empresa ABB para equipos de hasta 245 kV, 1 y 2 pararrayos. El costo del segundo diseño (2 pararrayos) considera la reducción considerable de costos debido a la reducción del aislamiento necesario en el aislador de soporte de barra y seccionador de barra.

7 Discusión

La coordinación de aislamiento en subestaciones eléctricas es una cuestión particular, que cambia dependiendo de las condiciones concretas en la que se emplaza [24]. Las sobretensiones son distintas de acuerdo a las condiciones particulares de los sistemas eléctricos y de las propias condiciones atmosféricas a las que están expuestos los equipos[2]. En Ecuador, dada su diversidad, está presente también una diversidad de condiciones atmosféricas que generan mapas isoceráunicos con altas concentraciones de descargas [25]

En el país, la mayoría de las subestaciones eléctricas corresponden a las de 230 kV, de las cuales la mayor parte son de circuito doble. Como menciona Montaluisa [4], la principal fuente de sobre descargas y desconexión de los sistemas eléctricos en muchas de las subestaciones de Quito corresponden a las descargas atmosféricas.

Así, resulta fundamental analizar los niveles de aislamiento coordinados de los equipos de subestaciones eléctricas y evaluar las posibilidades de mejorarlos, sobre todo para el caso de países como Ecuador, en cuyo territorio se observan variables y relativamente altos niveles de descargas de sobretensiones externas, ya sean de frente lento o rápido. Por lo mencionado, se optó por mejorar la coordinación de aislamiento a partir de la inclusión de un descargador extra en bahía con los mismos parámetros del descargador original.

Respecto a los resultados del estudio, se puede mencionar que el mejoramiento del aislamiento implica, por una parte, una mejora sustancial respecto a los niveles de BIL requeridos para cada uno de los equipos, tal como se observa en la figura.

Figura 4. Comparativa de tensiones soportadas por equipos de subestación diseño 1 y 2 (1 y 2 descargadores, respectivamente).

Como se aprecia, bajo el segundo diseño las tensiones requeridas para el transformador de corriente, el interruptor de potencia, el seccionador de barra y el aislador soporte de barra disminuyen considerablemente, lo que permite reducir los niveles de aislamiento sugeridos, tal como se observa en la Figura 5. El seccionador de barras es uno de los equipos que más baja su nivel básico de aislamiento, seguido por el aislador soporte de barra y por el interruptor de potencia y transformador de corriente. Esto permite considerar el paso de estos equipos de gama II a gama I, viendo con ello reducidos sus costes[3].

Estos resultados coinciden con los obtenidos por Lasteros [3], Ligueros [24], Mejía [26], Chávez y Gamarra [13] o Montaluisa [4]. En todos estos estudios apareció como más eficiente la inclusión de descargadores extra o mejora en sus parámetros para reducir niveles de BIL y mejorar el aislamiento.

Con respecto a la evaluación económica, es preciso mencionar que esta no es una actividad sencilla debido a la especificidad de los equipos; empresas como ABB o SIEMENS determinan el precio de sus productos a partir de las condiciones concretas de operación, lo que se establece en un proceso de cotización con compromisos establecidos de compra.

No obstante, para este trabajo se revisaron los valores utilizados en investigaciones previas y se seleccionaron los precios referenciales de la investigación de Lasteros [3] debido a que es la que más se acerca a las condiciones particulares del presente estudio.

Como resultados, se obtuvo la siguiente relación económica entre los dos diseños planteados (Figura 6):

Figura 6. Comparativa de precios referenciales (USD) de equipos que cambian su valor en diseño 1 y 2.

De los equipos que vieron modificados sus niveles de BIL, dos de ellos presentan modificaciones sustanciales en sus precios, debido a que estos niveles fueron reducidos para bajar de gama II a I: el aislador que se encarga del soporte de la barra y el seccionador de la barra. Los otros equipos que mejoraron sus niveles de BIL, según consta en las investigaciones de Lasteros [3] y Mejía [26], no presentan grandes cambios debido a la reducción de BIL en las cotizaciones. Por otra parte, se considera igualmente el costo adicional que representa el pararrayos en el diseño total de bahía.

Figura 7. Comparativa de precios referenciales totales (USD) de diseños de bahía 1 y 2.

De lo anterior es posible evidenciar un costo menor en un 2.107 % del segundo diseño de coordinación de aislamiento (Figura 7), siendo este más eficiente en términos económicos respecto de la coordinación con solo un descargador de sobretensiones. Igualmente es importante destacar, como Ligueros [24] menciona, existe además que -la posibilidad de adecuar las distancias para reducir completamente la dimensión de la bahía, lo cuales son costos que pueden reducirse a la vez que se mejora en aislamiento y, por tanto, seguridad en la subestación, evitando con ello el corte de suministro este tipo de por sobretensiones.

Ante estos resultados, es claro que deben realizarse estudios sistemáticos de mejoramiento para subestaciones de gama I, dada su importancia para el suministro de la corriente eléctrica. La reducción de los costos que deriva del mejoramiento de la coordinación es considerable, sobre todo para el escenario especifico de aquellas subestaciones las cuales se encuentran en los emplazamientos de elevada altitud y de exposición a condiciones atmosféricas de algo grado isoceráunico, ya que respectivamente (IEC 60071-1 y 2) instan a contar con altos niveles de BIL

en estas condiciones para asegurar el funcionamiento seguro y adecuado de las subestaciones.

Por lo mencionado, es claro que añadir descargadores de sobretensiones adicionales permite compensar el costo del equipo adicional con la propia reducción de los costos de los otros equipos debido a las importantes bajas en BIL. Además de las mejoras técnicas respecto del aislamiento y la seguridad, esto representa una reducción de costo de equipos y, a su vez, la potencial reducción de las longitudes de espaciamiento entre ellos y por tanto de la totalidad del diseño de bahía, lo que añade más eficiencia.

Por último, estos resultados son relevantes dado que ofrecen una alternativa de mejoramiento que no modifica en su totalidad los equipos o su redistribución, siendo por tanto relativamente sencilla y aplicable en conocimiento de todos los parámetros en casos

8 Conclusiones

El objetivo de este estudio fue determinar la posibilidad de mejorar la coordinación del aislamiento para subestaciones eléctricas por medio de la viabilidad en la reducción de BIL o el correspondiente Standard Lightning Impulse Withstand Voltage (LIW), definido en IEC 60071, en algunos equipos. Así, fue necesario, parte, diagnosticar por una la coordinación del aislamiento presente en una subestación modelo; también es preciso, sobre la base del estudio modelo. analizar la factibilidad de reducir el BIL/LIW añadiendo descargadores de sobretensión en las bahías a intervenir; por último, es necesario determinar cómo esto afecta a la coordinación del aislamiento y a la evaluación económica de ambos diseños.

En función de lo anterior, se puede concluir, en primer lugar, que el mejoramiento de la coordinación de aislamiento en subestaciones gama I en el contexto del Ecuador es fundamental, debido a que es requerido un gran margen de aislamiento por el estándar respectivo, lo que representa altos costos en equipos. Dado que el Ecuador, en gran su territorio. presenta parte de condiciones atmosféricas de elevados niveles isoceráunicos, lo que hace que las subestaciones de hasta 230 kV presenten coordinaciones de aislamiento con BIL elevados.

De esta manera, en una subestación de 230kV gama I modelo (estándar) ubicada a gran altura, presenta una coordinación de aislamiento en que varios de sus equipos presentan elevados requerimientos de aislación, como son: el aislador de soporte de la barra, seccionador de la barra, el interruptor de potencia o el transformador de corriente. Las tensiones soportadas por estos respectivamente, equipos son, de 1.084.974, 1.035.247 y 1.124.044, 985.795. Siguiendo los requerimientos de IEC 60071 (1 y 2), se puede obtener una coordinación adecuada según las condiciones de la subestación modelo; sin embargo, los niveles de BIL resultantes son elevados y requieren de equipos más costosos.

Para mejorar el diseño de bahía, se un pararrayos de iguales añadió características al del diseño 1, y se modificaron los parámetros de su ubicación, de manera que se realizó nuevamente el cálculo de coordinación con estos valores. El resultado fue una coordinación de aislamiento con tensiones requeridas soportadas significativamente menores para los cuatro equipos mencionados previamente, reduciendo con ello el nivel básico de aislamiento. Así, para los equipos mencionados, las nuevas tensiones requeridas soportadas fueron de 1.175.000, 1.175.000, 1.050.000 y 1.050.000, respectivamente.

Lo anterior permite reducir los costos de dos equipos (transformados a equipos de gana II en equipos gama I), y, por tanto, reducir el costo total de la subestación, aun cuando el descargador adicional implique un costo extra. Por tanto, añadir un pararrayos aumenta la eficiencia económica de una subestación modelo de 230 kV, reduciendo su coste en un 2.107 %. Cabe mencionar que, mejoramiento además de este económico, el diseño global de bahía podría ser mejorado, disminuyendo con ello otros costos debido al espaciamiento y a otros aspectos de operación.

9 Trabajos futuros

A partir de la realización del presente trabajo, es posible definir nuevos temas de investigación que complementen los resultados aquí expuestos:

- Es recomendable realizar el estudio de la mejora global de las disposiciones de equipo en bahía a partir de la incorporación de nuevos descargadores de sobretensión. Con ello se puede aumentar la eficiencia económica y técnica de las subestaciones.
- Se recomienda, igualmente, ampliar el estudio a otro tipo de subestación modelo, cuyos parámetros recojan otras magnitudes (como altitud, niveles isoceráunicos, etc.), de modo que se evalúe la mejora de

un segundo pararrayos en otras condiciones.

Las subestaciones eléctricas de 230 kV son las más numerosas en Ecuador; sin embargo, existen y aumenta cada vez más la importancia de las subestaciones de 500 kV, de modo que se recomienda realizar estos estudios para diferentes circunstancias que se exhiben en el país, de manera de generar mejoras tanto técnicas como económicas en sus diseños.

10 Referencias

- [1] N. E. Morales Mariño, "Coordinación de aislamiento en subestaciones a nivel de 500 kV," *Proy. Técnico*, p. 271, 2008, [Online]. Available: http://bibdigital.epn.edu.ec/bitstre am/15000/729/1/CD-1673%282008-09-17-11-12-42%29.pdf.
- [2] D. Cadrazco de la Rosa and G. E. Ropain Segura, "Diseño de software para la coordinación de aislamiento en subestaciones dde alta y extra alta tensión," *Angew. Chemie Int. Ed. 6(11), 951–952.,* 2019.
- E. E. Lasteros [3] Manzaneda. "Optimización del Aislamiento en Subestaciones Eléctricas de Alta Tensión ubicadas a elevadas altitudes sobre los 4000 m.s.n.m., mediante análisis automatizado de programa de Cálculo de Coordinación de Aislamiento en Subestaciones de Alta Tensión -CASAT," Tesis, vol. 1503, pp. 1-425, 2014.
- [4] D. G. Montaluisa Montaluisa, "Análisis de coordinación de

aislamiento para primarios de distribución," Tesis, p. 188, 2010.

- [5] P. R. Barrionuevo Guerra, "Ayuda computacional para la coordinacion de aislamiento en el diseño de subestaciones eléctricas," *Proy. Técnico*, p. 264, 2014.
- [6] B. A. Escobar Lomas and L. Ruales, "Coordinación de aislamiento en forma determinística, ante descargas atmosféricas en subestaciones aisladas en SF6. Aplicación: patio de 230 kV de la subestación Sopladora," Artículo, p. 283, 2014.
- [7] M. Velasco and J. A.,
 "Coordinación de aislamiento en redes eléctricas de alta tensión," *Coastal And Estuarine Processes.* pp. 1–360, 2009, doi: 10.1142/7114.
- [8] D. Viteri Toquica, C. Garzón Bustos, and A. Narváez Cubillos, "Análisis de confiabilidad en subestaciones eléctricas tipo maniobra implementando el transformador de tensión con núcleo de potencia," *Revista Ingeniería*, Bogotá - Colombia, 2016.
- [9] M. Villegas and C. F. Ramirez, "Subestaciones de Alta y Extra Alta Tensión." pp. 1–808, 1991.
- [10] A. V. Ardón Marroquiín, "Evaluación de la implementación de una subestación de transformación de 230/13.8 kV contra una de 69/13,8 kV en Escuintla. Guatemala." *Emecanica.Ingenieria.Usac.Edu.* Gt, no. 53, pp. 1–208, 2018,

[Online]. Available: http://emecanica.ingenieria.usac.e du.gt/sitio/wpcontent/subidas/6ARTÍCULO-III-INDESA-SIE.pdf.

- [11] V. D. Carrera Analuisa,
 "Integración del patio de 138 kV de la subestación selva alegre al sistema scada de la EEQ.SA," *Tesis*, p. 141, 2012.
- Tafolla [12] R. Ramírez, "Consideraciones generales para optimizar el diseño electromecánico de subestaciones de transmisión," Tesis, p. 96, [Online]. 2014. Available: http://www.novapdf.com/%0Ahtt p://www.geocities.com/alaro2001 /espanyol/historia cast.htm.4ww w.epec.com.ar/PaginaOficial2/do cs/.../fichaguerra ctes.pd%0Ahttp ://www.ptolomeo.unam.mx:8080/ jspui/bitstream/132.248.52.100/1 439/1/tesis.pdf.
- [13] karla pacheco-roman Yalinet, "Aplicación y optimización de la coordianción de aislamiento en equipos de alta tensión de la ampliación de la subestación eléctrica Cotaruse 220 kV -Apurimac," *Tesis*, p. 130, 2014, [Online]. Available: http://hdl.handle.net/20.500.1295 2/5053.
- [14] D. M. Villalba Noriega, "Comparación entre normas IEEE e IEC sobre coordinación de aislamiento (en sistemas de distribución hasta 69 kV)," *Proy. Técnico*, p. 214, 2016.
- [15] U. Iec, "UNE 60071-1 Norma Española Parte 1 : Definiciones , principios y reglas," *Norma*, 2020.

- [16] M. Carl, "INTERNATIONAL STANDARD IEC 60071-2," *Policy*, vol. 4.0, no. 910020181, pp. 1–21, 2018.
- [17] M. A. Rodríguez Pozueta, "Aislantes conductores У utilizados en las Máquinas Eléctricas," Artículo, p. 18, 2015, [Online]. Available: http://personales.unican.es/rodrig ma/primer/publicaciones.htm.
- [18] J. L. Zamora Estela, "Aplicación de la norma IEC 60071 en el estudio de coordinación de aislamiento en subestaciones eléctricas de alta tensión," *Tesis*, no. 505, p. 92, 2012, [Online]. Available: http://cybertesis.uni.edu.pe/bitstre am/uni/1130/1/lopez gj.pdf.
- [19] K. L. Torres Vargas, "Estudio de coordinación de aislamiento de la subestación Raura 10/12 MVA – 33/10 KV de la Compañía Minera Raura," *Tesis*, 2019.
- [20] K. Atencio Coronado and I. Palacio Herrera, "Elementos de diseño de subestaciones de alta y extra alta tensión," *Tesis*, p. 282, 2008.
- [21] R. Escobar Apasi, "Control de sobretensión aplicado a equipos de cómputo y telecomunicaciones, para prevenir su deterioro, en el distrito de Pampas," pp. 1–118, 2017, [Online]. Available: http://repositorio.unh.edu.pe/hand le/UNH/2747.
- [22] E. Soto, D. Martínez, and D. Verdugo, "Comportamiento de

descargadores de sobretensión ante tensiones inducidas por rayos sobre líneas de distribución ubicadas en zona montañosa," *Artículo Investig.*, vol. 22, no. 45, 2019, doi: 10.22430/22565337.1161.

- [23] D. U. Pozo Alarcón, "Aplicación de sistemas expertos a la coordinación de aislamiento para el diseño de subestaciones eléctricas de alto voltaje," *Tesis*, p. 121, 2018.
- [24] A. Celeste and R. Jorquera, "Desarrollo de un programa computacional que permita analizar diferentes alternativas para la correcta coordinación de aislamiento en los equipos de una subestación de alta tensión," *Tesis*, p. 96, 2019.
- M. A. Zurita Álvarez, "Mapa [25] isoceráunico georreferenciado para la coordinación de protecciones frente a descargas atmosféricas," Tesis, pp. 1-142, 2020. [Online]. Available: http://dspace.ups.edu.ec/bitstream /123456789/5081/1/UPS-CYT00109.pdf.
- [26] A. I. Mejía Quitoa, "Rediseño de la coordinación de aislamiento de la subestación Escuintla I, Escuintla," *Tesis*, no. 8.5.2017, p. 240, 2017.

11 Estado del arte

		DATOS			1	fem/	ÁTIC <i>₄</i>	4			FORM 1	MULA FUNC	CIÓN XONE	DEL S OB	PROI JETIV	BLEM 70	A	R	ESTI I	RICC PROE	IONI SLEM	ES DI IA	EL	RI	PR ESOI	OPUI .VER	ESTA EL I	S PA PROI	RA BLEN	1A			SOI PRO	LUCI PUE	ÓN STA		
ITEM	AÑO	TÍTULO DEL ARTÍCULO	CITAS	MEJORAMIENTO DE COORDINACIÓN DE AISLAMIENTO	DESCARGADORES DE SOBRETENSIÓN	AISLAMIENTO EN ALTURA	AISLAMIENTO DE EQUIPAMIENTO	AUTOMATIZACIÓN DE COORDINACIÓN DE AISLAMIENTO	EVALUACIÓN DE SUBESTACIONES	OPTIMIZAR LA COORDINACIÓN DE AISLAMIENTO	ANALIZAR METODOLOGÍA DE CÁLCULOS	COORDINAR AISLAMIENTO MEDIANTE SISTEMAS EXPERTOS	DISEÑAR SOFTWARE PARA COORDINACIÓN	ESTUDIAR OPTIMIZACIÓN DE COMPONENTES	COMPARAR LA COORDINACIÓN DE DOS O MÁS SUBESTACIONES	ESTUDIAR DESEMPEÑO DE DESCARGADOR EN ZONA MONTAÑOSA	ELABORAR MAPA ISOCERÁUNICO	COSTO	DISPONIBILIDAD DE INFORMACIÓN	ACCESIBILIDAD A TOMA DE MUESTRAS	TIEMPOS DE COMPILACIÓN ELEVADOS	OBSERVABILIDAD	MÉTODO DE CÁLCULO	INFORMACIÓN BASADA EN ESTADÍSTICAS	USO DE ENTORNO WINDOWS PARA PROGRAMACIÓN	SIMULACIÓN	DISEÑO DE SOFTWARE	USO DE METODOLOGÍA NORMALIZADA	ACTUALIZACIÓN DE COSTOS	HEURÍSTICA	DESCARGADOR DE SOBRETENSIÔN ADICIONAL	REDUCCIÓN DE NIVELES DE SOBRETENSIÓN	MEJORA TÉCNICA EN CÁLCULO DE COORDINACIÓN DE AISLAMIENTO	SOFTWARE PARA AUTOMATIZACIÓN DE COORDINACIÓN DE AISLAMIENTO	IMPLEMENTACIÓN DE TRANSFORMADOR	MODIFICACIÓN DE KV	SISTEMATIZACIÓN DE CÁLCULOS
1	2008	Coordinación de aislamiento en subestaciones a nivel de 500 kV	6		æ	æ					æ			æ				×	æ				æ	₩							¥						₩
2	2019	Diseño de software para la coordinación de aislamiento en subestaciones de alta y extra alta tensión	0					æ		¥		¥	¥						¥	¥						¥	¥					¥		¥			
3	2014	Optimización del aislamiento en subestaciones eléctricas de alta tensión ubicadas a elevads altitudes sobre los 4000 m.s.n.m, mediante análisis automatizado de programa de cálculo de oordinación de aislamiento en subestaciones de alta tensión	0	æ			¥			æ	¥					æ		¥		₽			¥	¥			¥		¥		¥		¥	æ			
4	2010	Análisis de coordinación de aislamiento para primarios de distribución	3	×	æ			₩				×		×				×						¥						₩		×					*

5	2014	Ayuda computacional para la coordinación de aislamiento en el diseño de subestaciones eléctricas	0					¥	æ		*		₩						₩		₩			₩	₩		¥						×	æ			
6	2014	Coordinación de aislamiento enforma determinística, ante descargas atmosféricas en subestaciones aisladas en SF6. Aplicación: patio de 230 kV de la subestación Sopladora	2	æ		æ			¥		¥			¥				æ				₩	承			æ		₩			Æ				¥		æ
7	2009	Coordinación de aislamiento en redes eléctricas de alta tensión	92	¥			æ		æ						×				¥			¥		¥		₩					×					₩	
8	2016	Análisis de confiabilidad en subestaciones eléctricas tipo maniobra implementando el transformador de tensión con núcleo de potencia	10				¥				₩			¥						¥			æ							æ			¥				₩
9	1991	Subestaciones de alta y extra alta tensión	6		×											×						₩				¥					×						
10	2018	Evaluación de implementación de una subestación de transformación de 230/13,8 kV contra una de 69/13,8 kV en Escuintla, Guatemala	0					æ					æ	¥				¥	¥					¥					×	¥			×				₩
11	2012	Integracción del patio de 138 kV de la subestación selva alegre al sistema scada de la EEQ.SA.	0	¥				æ					æ				¥						₩	¥								æ		¥			
12	2014	Consideraciones generales para optimizar el diseño electromecánico de subestaciones de transmisión	0		æ					æ					æ		æ		æ					æ				×						æ			
13	2014	Aplicación y optimización de la coordinación de aislamiento en equipos de alta tensión de la ampliación de la subestación eléctrica Cotaruse 220 kV - Apurimac	0	₩			₩		₩	₩		×				₩			₩					₩					æ		₩						₩
14	2016	Comparación entre normas IEEE e IEC sobre coordinación de aislamiento (en sistemas de distribución hasta 69 kV)	2	æ						æ	¥				æ		æ		¥			₩		æ				æ		¥		æ	æ				₩
15	2020	UNE 60071-1 Norma Española Parte 1: Definiciones, Principios y Reglas		æ			æ			æ		¥				¥			¥					æ							æ					æ	¥
16	2018	INTERNATIONAL STANDARD IEC 60071-2		₩			æ			₩		×				×			¥					₩							₩					Æ	₩
17	2015	Aislantes y conductores utilizados en las Máquinas Eléctricas	2			æ				æ				×							×							×				×					
18	2012	Aplicación de la norma IEC 60071 en el estudio de coordinación de aislamiento en subestaciones eléctricas de alta tensión	0	æ			æ			æ		¥			₩				¥			₩						æ		¥							₩
19	2019	Estudio de coordinación e aislamiento de la subestación Raura 10/12 MVA - 33/10 KV de la Compañía Minera Raura	0	¥					æ		₩				æ	₩				₩		¥				æ							æ				æ
20	2008	Elementos de diseño de subestaciones de alta y extra alta tensión	6		×			¥				æ		æ							¥	₩					¥							₩			æ
21	2017	Control de sobretensiones aplicado a equipos de cómputo y telecomunicaciones, para prevenir su deterioro, en el distrito de Pampas	0	¥					₩				¥		₩			¥	₩						¥		¥							¥			
22	2019	Comportamiento de descargadores de sobretensión ante tensiones inducidas por rayos sobre lineas de	0	₩	₩							₩				¥			₩				₩		₩					₩	₩	₩					₩

		distribución ubicadas en zona montañosa																																			
23	2018	Aplicación de sistemas expertos a la coordinación de aislamiento para el diseño de subestaciones eléctricas de alto voltaje	1			¥	¥				æ			¥						¥		¥		¥									×				¥
24	2019	Desarrollo de un programa computacional que permita analizar diferentes alternativas para la correccta coordinación de aislamiento en los equipos de una subestación de alta tensión	0	¥		¥	₩						¥		æ				¥		₩			¥		₩	¥				₽			¥			
25	2020	Mapa isoceráunico georreferenciado para la coordinación de protecciones frente a descargas atmosféricas	0	₩				¥			₩						¥			₩							₩										₩
26	2017	Rediseño de la coordinación de aislamiento de la subestación Escuintla I, Escuintla	0	¥	₩		¥		₩	₩				æ	₩			¥					₩	₩				₩			¥		₩				¥
			CANTIDAD:	16	7	5	10	7	7	10	9	8	6	9	8	7	4	7	14	6			7	15	3	6	7	6	3	6	11	6	8	8	1	3	3 16

Anexos

Anexo 1. Clasificación de las sobretensiones

C Sobr	Clase de etensión	Forma	Gama de formas (frecuencia, frente de subida, duración)	Forma normalizada	Ensayo de tensión soportada normalizada
recuencia	Permanente	V(%) solution	f = 50 Hz o f = 60 Hz $Tt \ge 3600 s$	f = 50 Hz o f = 60 Hz Tt (*)	(*)
Baja F	Temporal	VOS see est	$\begin{array}{l} 10 \; Hz < f < 500 \; Hz \\ 3600 \; s \geq Tt \geq 0.03s \end{array}$	$\begin{array}{c} 48 \ \text{Hz} \leq f \leq 62 \\ \text{Hz} \text{Tt} = 60 \ \text{s} \end{array}$	Ensayo a Frecuencia Industrial de corta duración
	Frente Lento		5000 μs > Tp > 20 μs T2 ≤ 20 ms	Tp = 250 μs T2 = 2500 μs	Ensayo de impulso tipo maniobra
Transitoria	Frente Rápido	V(6)	20 μs > Tp > 0.1 μs T2 ≤ 300 μs	T1 = 1.2 μs T2 = 50 μs	Ensayo de impulso tipo rayo
	Frente Extra Rápido		$100 \text{ ns} \ge \text{Tp} > 3 \text{ ns} \\ 0.3 \text{ MHz} < \text{f1} < 100 \text{ MHz} \\ 30 \text{ kHz} < \text{f2} < 300 \text{ KHz} \\ \text{T2} \le 3 \text{ ms} \end{cases}$	(*)	(*)

Max. system	Rated	Max. co operatin	ntinous g voltage ¹⁾	τον		Max. res	idual volta	ge (U _{res})	with currer	it wave		
voltage,	voltage,	as per	as per	capabili	ty ²⁾	30/60 µs	j.		8/20 µs			- 4
kV _{rms}	vr k∨ _{rms}	U _c kV _{rms}	MCOV kV _{rms}	1 s kV _{rms}	10 s kV _{rms}	1 kA kV _{crest}	2 kA kV _{crest}	3 kA kV _{crest}	5 kA kV _{crest}	10 kA kV _{crest}	20 kA kV _{crest}	40 kA kV _{crest}
145	150	92	121	172	165	293	304	311	325	342	374	410
	162	92	131	186	178	316	328	336	351	369	404	443
	168	92	131	193	184	328	340	348	364	383	419	459
170	132	106	106	151	145	258	267	274	286	301	329	361
	144	108	115	165	158	281	291	299	312	328	359	394
	150	108	121	172	165	293	304	311	325	342	374	410
	162	108	131	186	178	316	328	336	351	369	404	443
	168	108	131	193	184	328	340	348	364	383	419	459
	192	108	152	220	211	375	388	398	415	437	479	525
245	180	144	144	207	198	351	364	373	390	410	449	492
	192	154	154	220	211	375	388	398	415	437	479	525
	198	156	160	227	217	387	400	410	428	451	494	541
	210	156	170	241	231	410	425	435	454	478	524	574
	216	156	175	248	237	422	437	448	467	492	539	590
	219	156	177	251	240	427	443	454	474	499	546	598
	222	156	179	255	244	433	449	460	480	506	554	607
	228	156	180	262	250	445	461	473	493	519	568	623
300	216	173	175	248	237	422	437	448	467	492	539	590
	240	191	191	276	264	468	485	497	519	546	598	656
	258	191	209	296	283	504	522	535	558	587	643	705
	264	191	212	303	290	515	534	547	571	601	658	721
	276	191	220	317	303	539	558	572	597	628	688	754

Anexo 3. Parámetros de Pararrayos PEXLIM

Anexo 4. Análisis del factor de coordinación Kcd

Tensión más elevada para el material Vm [kV] (Valor eficaz)	Tensión soportada normalizada de corta duración a Frecuencia Industrial [kV]	Tensión soportada normalizada a impulso tipo rayo [kV]
,	(Valor eficaz)	(Valor cresta)
26	10	20
3.0	10	40
	20	40
7.2	20	60
		60
12	28	75
		95
		75
17.5	38	95
		95
24	50	125
		145
		145
36	70	170
52	90	250
72.5	140	325
	185	450
123	230	550
	185	450
145	230	550
	275	650
	230	550
170	275	650
	325	750
	275	650
	325	750
245	360	850
210	395	950
	460	1050

Anexo 5. Datos estandarizados del nivel básico de aislamiento para sistemas eléctricos referentes a la Gama I (1 kV < Vm ≤ 245 kV)

Anexo 6. Datos estandarizados del nivel básico de aislamiento para sistemas eléctricos referentes a la Gama II (245 kV < Vm)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tensión Máxima del Equipo Vm [kV] (Valor Eficaz)	Tensión Nominal Soportada a Impulso de Maniobra [kV] (Valor Cresta)		Tensión Nominal de Soporte a Impulso Tipo Rayo [kV] (Valor Cresta)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Fase - Tierra	Fase - Fase	
$ \frac{1175}{300} = \frac{1175}{950} = \frac{950}{950} \\ \frac{850}{1300} = \frac{950}{1050} \\ \frac{850}{1300} = \frac{950}{1050} \\ \frac{950}{1425} = \frac{1050}{1175} \\ \frac{950}{1425} = \frac{1050}{1425} \\ \frac{1175}{1175} \\ \frac{420}{1050} = \frac{1050}{1550} \\ \frac{1050}{1425} \\ \frac{1175}{1300} \\ \frac{1175}{1425} \\ \frac{100}{1550} \\ \frac{1200}{1550} \\ \frac{1175}{150} \\ \frac{1175}{150$	300 —	750	1175	850
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				950
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		850	1300	950
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1050
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	362 -	850	1300	950
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1050
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		950	1425	1050
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1175
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	420	950	1425	1050
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1175
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1050	1550	1175
1425 1050 1675 1300 525 1425 1425 1175 1800 1425 1175 1800 1425 1175 1800 1425 1175 1800 1425 1175 1800 1425 1175 1800 1425 1175 1800 1550				1300
525 1050 1675 1300 1175 1300 1425 1175 1800 1425 1175 1800 1425 1175 1800 1425 1175 1800 1425 1175 1800 1550				1425
525 1050 1675 1300 1175 1800 1425 1175 1800 1425 1550 1425	525 -	1050	1675	1175
525 <u>1425</u> 1300 1175 1800 1425 1550 1425 1550				1300
525 1175 1800 1425 1550 1425 1425 1425 1425				1425
1175 1800 1425 1550 1425 1425		1175	1800	1300
1550 1425 1200 2550 1550				1425
1425				1550
1200 2550 1550	765	1300	2550	1425
1500 2550 1550				1550
1800				1800
1550		1425	2400	1550
765 1425 2400 1800				1800
2100				2100
1800		1550	2550	1800
1550 2550 1950				1950
2400				2400