

UNIVERSIDAD POLITÉCNICA SALESIANA

SEDE GUAYAQUIL

TRABAJO DE GRADO PREVIO A LA OBTENCIÓN DEL
TÍTULO DE:

INGENIERO DE SISTEMAS

CARRERA:

INGENIERÍA DE SISTEMAS

TEMA:
"ANÁLISIS DESCRIPTIVO DE LA INCIDENCIA DEL ENCAPSULAMIENTO,

DENTRO DEL PARADIGMA ORIENTADO A OBJETOS (POO), EN EL
RENDIMIENTO DE UN SOFTWARE CIENTÍFICO"

AUTOR:

Félix Xavier Barahona Cevallos

TUTOR:

Msg. Guillermo Pizarro Vásquez

Abril 2021
GUAYAQUIL-ECUADOR

2

DECLARATORIA DE RESPONSABILIDAD

Yo, Felix Xavier Barahona Cevallos, declaro que los conceptos y

análisis desarrollados y las conclusiones del presente trabajo son de
exclusiva responsabilidad del/los autor/es.

Firma
Felix Barahona

ANÁLISIS DESCRIPTIVO DE LA INCIDENCIA DEL
ENCAPSULAMIENTO, DENTRO DEL PARADIGMA ORIENTADO A

OBJETOS (POO), EN EL RENDIMIENTO DE UN SOFTWARE CIENTÍFICO

Abstract. Performance is considered more important feature rather than the ap-
plication of programming techniques for better software design in most scien-
tific software developers. Here a problem arises if software is written without
considering a specific paradigm or some programming technique when per-
forming maintenance, the tasks related to this activity are complicated, since
almost no one would understand the source code. The objective of this research
is to verify the performance of the software with or without encapsulation com-
ponent. An ex-post facto experimental methodology has been implemented, car-
rying out a descriptive analysis of the data and then concluding by verifying the
hypothesis by means of a robust test. This work was carried out by running al-
gorithms written in programming language Java, in three groups of data with
different conditions to analyze their behavior. The conclusion is that the appli-
cation of the encapsulation component of the object-oriented paradigm does af-
fect the execution of the scientific software performance.

Keywords: data science, software engineering, scientific software, encapsula-
tion, performance, design software.

1 Introduction

1.1 Object-Oriented Paradigm

Object-Oriented Paradigm (OOP) has been the design principle of many program-
ming languages. The idea behind OOP was derived mainly from the representation of
knowledge in the human brain according to the real world. According to this para-
digm, everything can be modeled as an object; which is composed of: identity, state
and behavior. This allows us to make software design more accessible by information
systems developers and architects.

Unhelkar [10] presents six fundamentals of Software Engineering, which are also
those of OOP; such as: classification, polymorphism, abstraction, inheritance, associa-
tion and encapsulation. Classification refers to the grouping of identified entities or
potential objects; polymorphism, as the runtime feature with respect to an instantiated
object when understanding a message sent by another object; abstraction, understood
as the classification of objects that are identified as classes; inheritance, which results
from classes that have been generalized; the association, as the characteristic that
allows to relate classes; and encapsulation, a feature that is taken into account in this
research work, such as the one that locates data and prevents it from being directly
exposed to the rest of the system, improving quality and reuse because the data is
accessed through calls to operations (methods or functions) of a class and shows the
set of "data and code" depending on its visibility (public, private or protected).

4

1.2 Software Scientific Development

Scientific software development refers to the analysis, design, implementation, test-
ing, and deployment of software applications for scientific research purposes; for
example in the field of physics, biology, medical analysis, data science, among others.
The need for continuous experimentation and validation of techniques (eg simula-
tions) prior to the publication of scientific results has led to the emergence of the field
of scientific software development as an important method for researchers to be suc-
cessful in multiple fields [5].

According to [1], most of the code implemented for scientific software does not
follow a guideline with respect to some paradigm that allows considering some non-
functional requirement; such as, coupling, scaling, modularity, among others; since
the efficiency of the execution of an algorithm prevails over design techniques.

Hypothesis. The hypothesis of this research work is the following: encapsulation
component within the Object Oriented Paradigm (OOP) impacts on the performance
of a scientific software.

The structure of this article is as follows: in the first section, a brief state of art
about performance of Scientific Software and the paradigms that have been taken into
design and implementation are mentioned; in the second section, the source of the
data and runtime environment are mentioned; in the third section, an exploratory
analysis of the data and its respective robust hypothesis test; in the fourth section, the
conclusions and recommendations regarding this research work in general.

2 Materials and Methods

2.1 Experimental Design

This research is based on code of Pizarro's Master's Thesis [9], not yet published; in
which, a randomized experimental study was carried out, with simulated data for the
generation of batches with orders (instances from [4]) and their respective collection
in a rectangular warehouse with one cross aisles (see Fig. 1).

The order grouping algorithms were: Random (batches are formed randomly), First
Come First Served (FCFS) batches are formed according to the orders come up to the
capacity of the cart, Strict Order Picking (SOP) a batch is formed with a single order,
Greedy 1 (G01) are ordered from highest to lowest number of items of each order and
batches are created, Greedy 2 (G02) are ordered from lowest to highest and batches
are created and Greedy 3 (G03) are grouped according to the closest orders and
batches are created.

Fig. 1. Rectangular warehouse with one cross aisles.

There is a heuristic that was applied to two groups of experimental data after hav-
ing a set of solutions obtained with the algorithms explained in the previous para-
graph, this heuristic is called Local Search (LS) with four variants: 1x0 two batches
are taken randomly and a single random order is taken out from each batch then ex-
changed if is into cart capacity; 1x1 two random batches are taken and a random order
is taken from each batch then exchanged; 2x1 two random batches are taken and two
random orders are taken from one batch and one random order from another batch is
then exchanged; and, 2x2 two random batches are taken and two random orders are
taken from one batch and another two random orders are taken from another batch,
then exchanged.

It should be noted that exchanges are made if the verification of the cart's capacity
is fulfilled; otherwise, the exchange is not made, another batch is sought until the
exchange can be made.

Routing algorithms were: S-Shape (the route through the warehouse is like a letter
S) and Largest Gap (the products are collected first at the top and then the products at
the bottom, in general).

2.2 Simulations

Three simulations were run running the order grouping algorithms together with the
routing algorithms in three groups:

Group 1. Constructive Algorithms (Random, SOP, FCFS, Greedy 01 – G01,
Greedy 02 - G02 and Greedy 03 - G03) with S-Shape and Largest Gap.

Group 2. Random constructive algorithm (Random) and an heuristic of Local
Search (1x0, 1x1, 2x1, 2x2) with S-Shape and Largest Gap;

Group 3. Greedy constructive algorithms (G01, G02 and G03) and the heuristic
Local Search (1x0, 1x1, 2x1, 2x2) with S-Shape and Largest Gap.

The specification of the detailed experimentation in the previous paragraphs can be
seen in Fig. 2:

6

Fig. 2. Scientific research design.

The source code of the warehouse configuration with several cross aisles for this
research is implemented in Java [8] based on a Perl code from the research works of
[12, 13, 11].

For data analysis, the statistical programming language named R was used and
RStudio [7] was used as IDE.

3 Results

3.1 Exploration Data Analysis

Before applying a hypothesis testing to the experimental data, it is necessary to verify
them in a descriptive way and thereby check the statistical results of the hypothesis
test.

In all boxplot plots (Fig. 3, 4 and 5), they have been applied the logarithm of base
10 with respect to the axis of the execution times (in nanoseconds), so that they can be
displayed in an adequate way, as shown in the graphs, since previously they could not
be appreciated in a better way due to the amount of aberrant data obtained in experi-
ments.

In these three groups, it can be observed data and its execution times with encapsu-
lation is slightly higher than execution times without encapsulation.

The following table shows the values of means, trimmed means to 10% and vari-
ances of execution times (in nanoseconds) of each group that were previously visual-
ized.

Fig. 3. Box Plot of Group 1 experimental data.

Fig. 4. Box Plot of Group 2 experimental data.

8

Fig. 5. Box Plot of Group 3 experimental data.

In Table 1, 2 and 3, it can be seen how the experimental data where encapsulation
was applied in the source code is greater than the experimental data in which encapsu-
lation was not applied.

Table 1. Descriptive experimental data from Group 1.

 With Encapsulation Component Without Encapsulation Component
 Media Trimmed

mean
Variance Media Trimmed

mean
Variance

SOP 1024637.6 984356.9 1.07E+12 862458.2 804322.5 1.52E+12

Random 718507.1 686736.8 8.47E+11 599995.9 576146.4 4.37E+11

FCFS 738722.7 722968.7 1.28E+11 647044.9 605959.2 8.28E+11

G01 1555259.4 1087353.7 3.56E+14 952754.1 862217.4 2.40E+12

G02 1320236.1 1017183.3 1.09E+14 848957.1 814291.2 8.64E+11

G03 5504069.7 4530229.5 1.20E+14 4935173.2 4415207.6 2.52E+13

Table 2. Descriptive experimental data from Group 2.

 With Encapsulation Component Without Encapsulation Component
 Media Trimmed

mean
Variance Media Trimmed

mean
Variance

LS 1x0 9557378 8472821 2.69E+14 7483487 6780018 4.16E+13

LS 1x1 2154638 2064382 1.98E+12 1801292 1707401 2.00E+12

LS 2x1 18266779 15728281 4.20E+14 14671111 12794689 2.18E+14

LS 2x2 38733059 29950634 3.52E+15 30546922 24013919 1.71E+15

Table 3. Descriptive experimental data from Group 3.

 With Encapsulation Component Without Encapsulation Component
 Media Trimmed Variance Media Trimmed Variance

mean mean

LS 1x0 19684438 15891130 1.25E+15 16845381 13864973 4.58E+14

LS 1x1 4103574 3677788 1.32E+13 3971539 3346910 1.89E+13

LS 2x1 23209315 20085973 8.91E+14 20067883 17582944 4.41E+14

LS 2x2 40754879 31027295 4.21E+15 34820637 26843721 2.46E+15

In the figures of the density of execution times (Fig. 6, 7 and 8), both with encap-

sulation and without encapsulation, it’s evident that they don’t have a normal distribu-
tion, which allows us to deduce that an alternative other than a parametric hypothesis
testing.

Fig. 6. Density diagram of the experimental data from Group 1.

Fig. 7. Density diagram of the experimental data from Group 2.

10

Fig. 8. Density diagram of the experimental data from Group 3.

3.2 Hypothesis Testing

Graphically, these three groups of experimental data don’t have a normal distribution;
which was verified in the three groups of experimental data, using Lilliefors normality
test (Kolmogorov-Smirnov) [3], the null hypothesis being that “the data have a nor-
mal distribution”:

In Groups 1, 2 and 3, the following conclusion is reached: “with a value of signifi-
cance close to zero (<2.2e-16), it can be concluded that the null hypothesis is reject-
ed; therefore, the data do not have a normal distribution”.

Since these three groups of data do not have a normal distribution; now the re-
quirement to apply the non-parametric hypothesis test must be proved, verifying the
null hypothesis: “homogeneity of the variance in the data”, using the Bartlett homo-
scedasticity test [2]:

In Groups 1, 2 and 3, the following conclusion is reached: “with a value of signifi-
cance close to zero (<2.2e-16), it can be concluded that the null hypothesis is reject-
ed; therefore, the variance is not homogeneous ”.

Since it does not meet the two previous requirements: neither the assumption of
normality nor homogeneity in the variance, now it will be statistically verified if the
mean of the execution times with the code implemented with encapsulation is greater
than the mean of the execution times with the source code without encapsulation,
using Yuend [6] robust hypothesis test of two dependent groups, with null hypothesis:
"the mean of the execution times of each group is equal":

In Groups 1, 2 and 3, the following conclusion is reached: “with a significance val-
ue close to zero and a difference of means bounded with a positive value, it can be
concluded that the null hypothesis is rejected; therefore, the bounded mean of each
group is different and that the mean of the execution times with encapsulation is
greater than the mean of the execution times without encapsulation”.

4 Conclusions

The impact on how the source code is implemented, considering encapsulation or not,
on the execution times of scientific software; It has been shown statistically that the
execution times of the source code with encapsulation are greater than the execution
times of the source code without encapsulation.

According to a study [1] where it has not been considered as a matter of interest by
the scientific software development community to consider programming techniques;
In this research work, it is shown that if considered, it would affect the performance
of the software, specifically if encapsulation is included in all defined classes.

In scientific software one of the most important feature is performance; therefore, a
paradigm more in line with this type of computer solution must be sought; as the pro-
cedural paradigm. From this, it is recommended to carry out future research imple-
menting a solution following the object-oriented paradigm and the same solution to
implement it considering the procedural paradigm.

5 Acknowledgment

Thanks to Universidad Politécnica Salesiana, due to the financial contribution to this
research work, which is within the framework of the research project: "ACISoft -
Computational Analysis in Software Engineering" carried out in the Research Group
of Software Engineering and Knowledge Engineering (GIISIC).

References

1. Arvanitou, E.M., Ampatzoglou, A., Chatzigeorgiou, A., Carver, J.C.: Software engineering
practices for scientific software development: A systematic mapping study. Journal of Sys-
tems and Software 172, 110848 (2021).
https://doi.org/https://doi.org/10.1016/j.jss.2020.110848.

2. Bartlett, M.S., Fowler, R.H.: Properties of sufficiency and statistical tests. Proceedings of
the Royal Society of London. Series A - Mathematical and Physical Sciences 160(901),
268–282 (1937). https://doi.org/10.1098/rspa.1937.0109,
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1937.0109

3. Dallal, G.E., Wilkinson, L.: An analytic approximation to the distribution of lilliefors’s test
statistic for normality. The American Statistician 40(4), 294–296 (1986),
http://www.jstor.org/stable/2684607

4. Henn, S., Koch, S., Doerner, K.F., Strauss, C., Wäscher, G.: Metaheuristics for the Order
Batching Problem in Manual Order Picking Systems. Business Research 3(1), 82–105
(2010). https://doi.org/10.1007/BF03342717 LNCS Homepage,
http://www.springer.com/lncs, last accessed 2016/11/21.

5. Hourani, H., Wasmi, H., Alrawashdeh, T.: A Code Complexity Model of Object Oriented
Programming (OOP). In: 2019 IEEE Jordan International Joint Conference on Electrical
Engineering and Information Technology (JEEIT). pp. 560–564. IEEE (2019).
https://doi.org/10.1109/JEEIT.2019.8717448

12

6. Mair, P., Wilcox, R.: Robust statistical methods in r using the wrs2 package. Behavior Re-
search Methods 52(2), 464–488 (2019). https://doi.org/10.3758/s13428-019-01246-w

7. Pizarro-Vasquez, G.O.: Statistical analysis source code repository in R.
https://github.com/omarjcm/poo-research, [Online; accedido 25-Febrero-2021]

8. Pizarro-Vasquez, G.O.: Repository of source code of the TFM research project in Java.
https://github.com/omarjcm/warehouse, [Online; accedido 25-Febrero-2021]

9. Pizarro-Vasquez, G.O., Pardo, E.G.: Resolution of the problem of optimization of the
batching and routing of orders in warehouses with multiple transversal aisles (un-
published), unpublished.

10. Unhelkar, B.: Software Engineering with UML. CRC Press (2017)
11. Valle, C.A., Beasley, J.E.: Order batching for picker routing using a distance approxima-

tion. arXiv preprint arXiv:1808.00499 (2018)
12. Valle, C.A., Beasley, J.E., da Cunha, A.S.: Modelling and Solving the Joint Order Batch-

ing and Picker Routing Problem in Inventories, pp. 81–97. Springer International Publish-
ing, Cham (2016). https://doi.org/10.1007/978-3-319-45587-7

13. Valle, C.A., Beasley, J.E., da Cunha, A.S.: Optimally solving the joint order batching and
picker routing problem. European Journal of Operational Research 262(3), 817–834
(2017). https://doi.org/10.1016/j.ejor.2017.03.069

