UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA

CARRERA DE INGENIERÍA ELÉCTRICA

Trabajo de titulación previo a la obtención del título de Ingeniera Eléctrica

PROYECTO TÉCNICO:

"ANÁLISIS TÉCNICO, ECONÓMICO PARA DETERMINAR LA
VIABILIDAD DE REMPLAZAR TODAS LAS LUMINARIAS DE SODIO
UTILIZADAS EN EL SISTEMA DE ALUMBRADO PÚBLICO GENERAL
EN EL ÁREA URBANA DE LA CIUDAD DE CUENCA POR
LUMINARIAS DE TECNOLOGÍA LED (LIGHT EMITTING DIODE)"

AUTORA:

JOHANNA PAOLA NARVÁEZ MUÑOZ

TUTOR:

ING. PABLO DANIEL ROBLES LOVATO, MsC.

CUENCA - ECUADOR

CESIÓN DE DERECHOS DE AUTOR

Yo, Johanna Paola Narváez Muñoz con documento de identificación Nº 0105949283,

manifiesto mi voluntad y cedo a la Universidad Politécnica Salesiana la titularidad

sobre los derechos patrimoniales en virtud de que soy autora del trabajo de titulación:

"ANÁLISIS TÉCNICO, ECONÓMICO PARA DETERMINAR LA

VIABILIDAD DE REMPLAZAR TODAS LAS LUMINARIAS DE SODIO

UTILIZADAS EN EL SISTEMA DE ALUMBRADO PÚBLICO GENERAL EN

EL ÁREA URBANA DE LA CIUDAD DE CUENCA POR LUMINARIAS DE

TECNOLOGÍA LED (LIGHT EMITTING DIODE)", mismo que ha sido

desarrollado para optar por el título de: Ingeniera Eléctrica, en la Universidad

Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los

derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en mi condición de

autora me reservo los derechos morales de la obra antes citada. En concordancia,

suscribo este documento en el momento que hago entrega del trabajo final en formato

digital a la Biblioteca de la Universidad Politécnica Salesiana.

Cuenca, marzo del 2020

Johanna Paola Narváez Muñoz

C.I. 0105949283

II

CERTIFICACIÓN

Yo, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: "ANÁLISIS TÉCNICO, ECONÓMICO PARA DETERMINAR LA VIABILIDAD DE REMPLAZAR TODAS LAS LUMINARIAS DE SODIO UTILIZADAS EN EL SISTEMA DE ALUMBRADO PÚBLICO GENERAL EN EL ÁREA URBANA DE LA CIUDAD DE CUENCA POR LUMINARIAS DE TECNOLOGÍA LED (LIGHT EMITTING DIODE)", realizado por Johanna Paola Narváez Muñoz, obteniendo el *Proyecto Técnico*, que cumple con todos los requisitos estipulados por la Universidad Politécnica Salesiana.

Cuenca, marzo del 2020

Ing. Pablo Daniel Robles Lovato, MsC.

C.I. 0101663342

DECLARATORIA DE RESPONSABILIDAD

Yo, Johanna Paola Narváez Muñoz con documento de identificación N° 0105949283, autora del trabajo de titulación: "ANÁLISIS TÉCNICO, ECONÓMICO PARA DETERMINAR LA VIABILIDAD DE REMPLAZAR TODAS LAS LUMINARIAS DE SODIO UTILIZADAS EN EL SISTEMA DE ALUMBRADO PÚBLICO GENERAL EN EL ÁREA URBANA DE LA CIUDAD DE CUENCA POR LUMINARIAS DE TECNOLOGÍA LED (LIGHT EMITTING DIODE)", certifico que el total contenido del *Proyecto Técnico* es de mi exclusiva responsabilidad y autoría.

Cuenca, marzo del 2020

Johanna Paola Narváez Muñoz

C.I. 0105949283

AGRADECIMIENTO

Quiero agradecerle a Dios, por haberme regalado a los mejores padres del mundo, Luis y Juana quienes han sido el eje fundamental en el transcurso de mi vida universitaria.

Agradecerle a Xavier, mi hermano por su apoyo cercano.

Al ingeniero Santiago Pulla mi tutor, por la oportunidad, la paciencia y la enseñanza en el transcurso de mi tesis.

Al ingeniero Pablo Robles mi tutor, por la dedicación, enseñanza y espera.

Y cada uno de mis amigos, familiares y compañeros quienes me han brindado su apoyo incondicional en los momentos más difíciles del transcurso de mi vida, estudio y desarrollo de esta tesis.

Gracias totales.

Johanna Paola Narváez Muñoz.

DEDICATORIA

A ti, Johanna Paola Narváez Muñoz.

Por no darte por vencida.

Johanna Paola Narváez Muñoz.

RESUMEN

El presente estudio analiza cuan viable es el cambio de luminarias de sodio

por luminarias LED, dentro del alumbrado público general que conforma

la zona urbana de la ciudad de Cuenca, con el objetivo de que los

parámetros técnicos de las luminarias LED cumplan o a su vez superen

los parámetros de luminosidad que las de sodio instaladas actualmente.

También se realiza el análisis técnico económico, basados en un plan de

mantenimiento preventivo y consumo de energía a lo largo de la vida útil

de las luminarias.

ABSTRACT

The present study analyses the viability of changing sodium luminaires

for LED luminaires, within the general public lighting that makes up the

urban area of the city of Cuenca, with the aim of ensuring that the technical

parameters of the LED luminaires comply with the same lighting

parameters as the sodium ones, or in turn exceed their level referred. The

technical-economic analysis is also carried out, based on a preventive

maintenance plan and energy consumption throughout the life of the

luminaires.

PALABRAS CLAVES TEMATICAS

Sodio

Light Emiting Diode (LED)

Técnico

Económico

VII

ÍNDICE GENERAL

DEDICA	TORIA	VI
RESUMI	EN	VII
	CT	
INTROD	UCCIÓN	XIV
CAPÍTUL	0 1	1
FUNDAM	ENTOS TEÓRICOS DEL SISTEMA DE ALUMBRADO	
		1
PUBLICO)	1
1.1 Siste	mas de alumbrado público con iluminación LED a nivel mund	dial 1
1.2 Últin	no registro del sistema de alumbrado público en Ecuador	2
	mas de alumbrado público en el área urbana de la ciudad de	
		3
	ımbrado público	
1.4.1	Alumbrado Público General	
1.4.2	Alumbrado Público Ornamental.	4
1.4.3	Alumbrado Público Intervenido.	4
1.4.4	Alumbrado Urbano	4
1.5 RT	E INEN 069	4
	pectos técnicos del sistema de alumbrado público	
1.6.1	Parámetros fotométricos	
1.6.2	Disposición de los puntos de iluminación	
1.6.3	Luminarias	
1.6.4	Factor de Mantenimiento.	18
1.7 As ₁	oectos financieros para calcular rentabilidad de un proyecto	19
1.7.1	VAN	19
1.7.2	TIR	19
1.7.3	Tasa de crecimiento	19
1.7.4	Relación Beneficio Costo	20
CAPÍTUL	O 2	21
ESTADO	ACTUAL DEL SISTEMA DE ALUMBRADO PÚBLICO	21
2.1 Estad	la actual dal Alumbrada Dública an la Ciudad da Cuanca	21

2.2 Tipo	de luminarias utilizadas en Alumbrado Público General	22
2.2.1	Luminarias de sodio de alta presión	22
2.2.2	Luminarias LED	22
2.3 Dis	posición del alumbrado público	23
2.3.1	Distribución unilateral	
2.3.2	Distribución bilateral	23
2.3.3	Distribución central.	24
3.2.3	Distribución tresbolillo	24
CAPÍTUL	O 3	26
EVALUA (CIÓN TÉCNICA DE LAS LUMINARIAS DE SODIO VS LED	
DENTRO	EL ALUMBRADO PÚBLICO.	26
3.1 Deter	minación de los tipos de vías en el Cantón Cuenca	27
3.2 Deter	minación de las condiciones de montaje	27
3.3 Descr	ripción de las simulaciones	28
3.3.1	Simulaciones con las luminarias de sodio.	28
3.3.2	Simulaciones con las luminarias de led	29
CAPÍTUL	O 4	37
EVALUA	CIÓN ECONÓMICA DEL REEMPLAZO DE LAS LUMINARIA	S
DE NA PO	OR LAS LUMINARIAS LED	37
4.1 Det	erminación de parámetros de cálculo	39
4.1.1	Plan de mantenimiento para las luminarias	
4.1.2	Costo de los materiales	41
4.1.3	Costo de la mano de obra	42
4.1.4	Costos generales.	42
4.1.5	Tiempos promedio de mantenimiento por luminaria	43
4.1.6	Tasa de crecimiento	44
4.2 Me	todología de cálculo	45
4.2.1	Costo de mantenimiento preventivo de las luminarias	45
4.1.2	Costo de energía consumida por las luminarias de vapor de sodio y	
LED.		53
4.2.2	Costo anual de las luminarias LED frente a las luminarias de vapor o	de
sodio.		54
4.2.3	Rentabilidad de la sustitución de luminarias de sodio por LED	55
CAPÍTUL	O 5	64
CONCLU	SIONES Y RECOMENDACIONES	64

5.1 Conclusiones.	64
5.2 Recomendaciones	66
REFERENCIAS	68

ÍNDICE DE TABLAS

Tabla 1. 1Características de las vías según INEN 069 [11]	5
Tabla 1. 2. Parámetros fotométricos para vías [11]	6
Tabla 1. 3 Configuación para la disposición de luminarias [11]	8
Tabla 2. 1 Cantidad de luminarias de sodio de alta presión SNP y DNP[8]	. 22
Tabla 2. 2 Cantidad de luminarias LED [8].	. 22
Tabla 2. 3 Distribución unilateral [8]	23
Tabla 2. 4 Distribución bilateral [8]	. 23
Tabla 2. 5 Distribución central [8].	. 24
Tabla 2. 6 Distribución tresbolillo [8].	. 25
Tabla 3. 1. Resumen de las simulaciones con luminarias de sodio y LED para reemplazo de	
luminaria de 250 W.	. 31
Tabla 3. 2 Resumen de las simulaciones con luminarias de sodio y LED para la segunda vía	33
Tabla 3. 3 Resumen de las simulaciones con luminarias de sodio y LED para la tercera vía	35
Tabla 4.1 Programación de mantenimiento de luminarias de Na	. 39
Tabla 4. 2 Programación de mantenimiento en luminarias LED.	. 40
Tabla 4. 3 Precio inicial de las luminarias	41
Tabla 4. 4 Precio de los elementos a sustituir en las luminarias de Na	. 41
Tabla 4. 5 Precio de los elementos a sustituir en las luminarias LED	42
Tabla 4. 6 Costo por hora de la mano de obra	42
Tabla 4. 7 Costos generales de las luminarias	. 43
Tabla 4. 8 Tiempos establecidos para el cambio de elementos en las luminarias de Na	43
Tabla 4. 9 Tiempos establecidos para el cambio de elementos en luminarias LED	44
Tabla 4. 10 Tasa de crecimiento de la mano de obra	44
Tabla 4. 11 Tasa de crecimiento de materiales de construcción	. 45
Tabla 4. 12 Resultado de la proyección de los elementos de las luminarias de sodio a 15 años	46
Tabla 4. 13 Resultados de la proyección de los elementos de las luminarias LED en 20 años	47
Tabla 4. 14 Costo de mano de obra en luminarias de sodio según el tiempo empleado en las	
sustitución de materiales.	48
Tabla 4. 15 Costo de mano de obra en luminarias LED según el tiempo empleado en cambio d	de
materiales	48
Tabla 4. 16 Costo de mano de obra prolongada a 15 años	48
Tabla 4. 17 Costo de mano en luminarias LED prologada para 20 años	49
Tabla 4. 18Costo de mantenimiento en luminarias de sodio de SNP y DNP	50
Tabla 4. 19 Costo de mantenimiento en luminarias LED de SNP Y DNP	51
Tabla 4. 20 Costo de inversión inicial de sodio en 15 años	51
Tabla 4. 21 Costo de la luminaria LED en 20 años	52
Tabla 4-22 Costo de la luminaria LED en 15 años	52

Tabla 4. 23 Costo de la energía consumida por luminaria de Na 100 W y luminaria LED de 48
W de SNP53
Tabla 4. 24 Costo de la energía consumida por luminaria de Na de 150W y luminaria LED de
94W de DNP
Tabla 4. 25 Costo de la energía consumida por luminaria de Na de 250W y luminaria LED de
178W DNP54
Tabla 4. 26 Síntesis económico para el reemplazo de luminarias de sodio por luminarias LED. 54
Tabla 4. 27 Evaluación financiera del proyecto luminarias Na 250W y luminarias LED 178W
DNP
Tabla 4. 28 Tabla comparativa de inversión entre luminarias Na de 250 W y LED de 178 W 56
Tabla 4. 29 Sensibilidad financiera del cambio de luminaria de 178 W LED57
Tabla 4. 30 Evaluación financiera del proyecto luminarias Na 150W y luminarias LED 94 W
DNP57
Tabla 4. 31 Tabla comparativa de inversión entre luminarias Na de 150 W y LED de 94 W 58
Tabla 4. 32 Sensibilidad financiera del cambio de luminaria de 94 W LED59
Tabla 4. 33 Evaluación financiera del proyecto luminarias Na 100W y luminarias LED 42 W
DNP60
Tabla 4. 34 Tabla comparativa de inversión entre luminarias Na de 100 W y LED de 42 W 61
Tabla 4. 35 Sensibilidad financiera del cambio de luminaria de 42 W LED

ÍNDICE DE FIGURAS.

Figura 1. 1 Cantidad de luminarias distribuidas en el Ecuador	2
Figura 1. 2 Disposición unilateral.	
Figura 1. 3 Disposición bilateral opuesta	9
Figura 1. 4 Disposición central con separador menor a 1,5 m.	9
Figura 1. 5 Disposición Central – Lateral (3 luminarias)	10
Figura 1. 6 Disposición central – bilateral (4 luminarias).	10
Figura 1. 7 Disposición tresbolillo.	11
Figura 1. 8 Disposición Tresbolillo (4 luminarias).	11
Figura 1. 9 Disposición en curvas.	12
Figura 1. 10 Lámpara de vapor de sodio de alta presión.	15
Figura 1. 11 Lámpara de vapor de mercurio de alta presión con halogenuros metálicos	16
Figura 1. 12 Lámpara de descarga por inducción electromagnética	16
Figura 1. 13 Lámpara tipo LED.	18
Figura 2. 1 Paisaje nocturno de la ciudad de Cuenca.	2 1

INTRODUCCIÓN.

El alumbrado público forma parte importante dentro de un SEP (Sistema Eléctrico de Potencia), contituyendose uno de los referentes importantes dentro del consumo de energía a nivel nacional en la ultima década, debido a que su función es brindar iluminación de calidad, para el correcto desenvolvimiento de la sociedad.

Desde la implementación de los servicios de alumbrado público en la ciudad de Cuenca, la Empresa Regional Centro Sur C.A viene siguiendo la creciente evolución tecnológica en fuentes de alumbrado. Con la aparición de la tecnología LED, surgen incertidumbres acerca de la rentabilidad del cambio de esta nueva luminaria por la tradicional, a base de vapor de sodio, respetando los estándares de calidad y uniformidad lumínica que se encuentran en la actualidad.

El presente análisis se realiza con casos de vías que se encuentran en la zona urbana de la Ciudad de Cuenca, siendo una de las ciudades más importantes del Ecuador. La empresa distribuidora encargada de la concesión del sistema de alumbrado público en la Ciudad de Cuenca, es la Empresa Eléctrica Regional Centro Sur C. A., a través de su Departamento de Supervisión y Operación y el Departamento de Alumbrado Público, quienes se encargan de realizar las diferentes actividades para el correcto funcionamiento del mismo.

La Regulación del CONELEC 006/2018, dispone de los lineamientos necesarios que deben cumplir las empresas distribuidoras, por lo tanto, permite establecer parámetros para el funcionamiento del sistema de alumbrado público.

La eficiencia energética dentro de la iluminación LED,llega a tener un ahorro del 50 a 80 % de energía. Es por ello que dentro del alumbrado público es ideal un cambio de luminarias convencionales con bombillas de sodio por iluminación de estado sólido (LED). Por ello la empresa Regional Eléctrica Regional Centro Sur C. A busca lograr la eficiencia energética, no solo con la existencia de un plan de ahorro de energía, sino contar con un adecuado sistema de iluminación que garantice el desarrollo de los usuarios y de la ciudad, formando parte del cambio en ahorro energético a nivel local y mundial.

GLOSARIO

Na: Sodio

LED: Light Emiting Diode.

INEN: Instituto Ecuatoriano de Normalización.

RETILAP: Reglamento Técnico de Iluminación y Alumbrado Público.

RTE INEN 069: Reglamento Técnico Ecuatoriano 069.

MEER: Ministerio de Electricidad y Energías Renovales

CONELEC: Consejo nacional de elecricidad.

EERCS: Empresa Eléctrica Regional Centro Sur.

DNP: Doble nivel de potencia

SNP: Simple nivel de potencia

Qo: Coeficiente de reflectividad en la calzada

Lm: Luminancia promedio de la calzada

Uo: Uniformidad general de la luminancia de la calzada

UL: Uniformidad longitudinal de la calzada

TI: Deslumbramiento

cd: Candelas

lm: Lúmenes

lm/W: Lúmenes por vatios

VAN: Valor Actual Neto.

TIR: Tasa interna retornable.

RBC: Razón Beneficio Costo.

A.P: Alumbrado Público

"No hay emoción más intensa para un inventor que ver

una de sus creaciones funcionando."

Nikola Tesla.

CAPÍTULO 1.

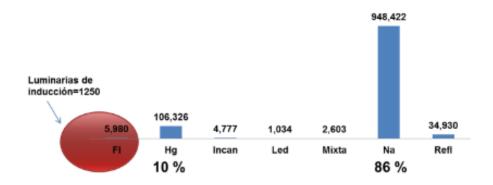
FUNDAMENTOS TEÓRICOS DEL SISTEMA DE ALUMBRADO PÚBLICO.

1.1 Sistemas de alumbrado público con iluminación LED a nivel mundial.

En los últimos años el desarrollo de nuevas tendencias en iluminación han tenido un gran impacto dentro de ciudades con un gran desarrollo tecnológico como: China, Estados Unidos, Alemania, Finlandia, Francia, Japón, entre otros. Mostrando una tendencia positiva hacia el uso de estas nuevas tecnologías[1].

En Estados Unidos de Norte America existe LED City™, una gran comunidad gubernamental e industrial que se encarga de promover la tecnología de iluminación LED en las municipalidades del país, probando así que la tecnología LED es 4 veces más eficientes que las luminarias de vapor de sodio usadas para la iluminación[1].

Corea del Sur también es parte del programa internacional LED City™, con disminución en su consumo de energía del 30% comparado con las lámparas fluorescentes que fueron reemplazadas. Este cambio le ahorra a la ciudad más de 234.000 Kw/h y reduce las emisiones de dióxido de carbono en 8.465 Kg anualmente[2].


Son más los países y ciudades asiáticos que que se han unido a los cambios de iluminación. como; Taiwán, Hong Kong, Macao, Japón, Mongolia, Filipinas, Tailandia, Malasia, Indonesia, Brunei, Darussalam, Singapur, Vietnam, Cambodia, Laos y Burma, Eslovenia, mientras que en latinoamerica países como Mexico, Colombia y Chile [3].

En la ciudad de Badajoz - España el sistema de alumbrado público es de tipo LED, el cuál permite a la ciudad un ahorro superior a 1,2 millones de euros anualmente, además cuentan con un sistema que regula la intensidad de iluminación de la ciudad por zonas, o en función de las estaciones del año, como también en ceremonias protocolarias[3].

En Bucaramanga - Colombia actualmente se ha logrado ahorros por consumo de energía de 1.061.417 Kw/h anualmente, equivalente al 30% de la carga que se tenía instalada en sodio, representando el 4% del total de la energía de todo el sistema de alumbrado público de la ciudad[4].

1.2 Último registro del sistema de alumbrado público en Ecuador.

En Ecuador hasta el año 2017 existen más de 1.104.072 luminarias, distribuidas principalmente por luminarias de Sodio de alta presión, mercurio y LED. Considerando que la demanda pico estimada del país es 3,720 MW, la demanda del Alumbrado Público representaría alrededor de un 6%, razón por la cual es importante optimizar la prestación y control de este servicio público.[5] En la Figura 1.1 se observa el índice de luminarias que se encuentran instaladas, donde muestra, que en luminarias de sodio se tiene un 86%, en luminarias de mercurio 10%, mientras que la luminaria LED presenta un índice muy bajo[6].

Total=1.104.072

Figura 1. 1 Cantidad de luminarias distribuidas en el Ecuador.

Fuente: [6].

1.3 Sistemas de alumbrado público en el área urbana de la ciudad de Cuenca.

"El sistema de alumbrado público brinda servicio a espacios públicos como: vías, plazas, parques, glorietas, espacios deportivos, como también sirve para la iluminación ornamental de edificios, templos, monumentos, etc."[7]

"Los sistemas de alumbrado público vial generalmente han sido constituidos utilizando la infraestructura de las redes de distribución eléctrica, no así los sistemas de iluminación para uso ornamental o para parques, plazas y áreas deportivas generalmente cuentan con sistemas expresos de alumbrado público". Existen pocos sistemas de iluminación vial con sistemas expresos, entre los que se puede citar: el sistema del Centro Histórico, la autopista Cuenca - Azogues, La Av. De las Américas, la vía Medio Ejido - San Joaquín, Sayausí [7].

Los registros que consta en el SIGADE para el mes de Noviembre del 2019, la CENTROSUR cuenta con 71434 luminarias distribuidas por zonas dentro de la ciudad, mostrando que el índice de luminaria LED es apenas de un 6,04%[8].

Para el alumbrado vial se utiliza principalmente luminarias de vapor de sodio de alta presión de 100 watt ,150 watt o 250 watt de simple y doble nivel de potencia, y en menor cantidad luminarias de mercurio. Los sistemas de control para el alumbrado vial son principalmente mediante hilo piloto. También se utilizan luminarias o controladas con fotocontroles. El control del alumbrado ornamental se realiza atráves de un reloj con omisión de días para programar el encendido y apagado de los sistemas de alumbrado, que mediante relés accionan el encendido y apagado de estos sistemas[9].

1.4 Alumbrado público.

"Constituye la iluminación de vías y espacios públicos destinados a la movilidad y ornamentación. El alumbrado público se clasifica en: alumbrado público general, alumbrado público ornamental y alumbrado público intervenido"[10].

1.4.1 Alumbrado Público General.

"Es la iluminación de vías públicas, para tránsito de personas y/o vehículos. Excluye la iluminación de las zonas comunes de unidades inmobiliarias declaradas como propiedad horizontal, la iluminación pública ornamental e intervenida" [10].

1.4.2 Alumbrado Público Ornamental.

"Es la iluminación de zonas como parques, plazas, iglesias, monumentos y similares, que difiere de los niveles establecidos por regulación para alumbrado público general, dado que éstos obedecen a criterios estéticos determinados por el gobierno autónomo descentralizado" [10].

1.4.3 Alumbrado Público Intervenido.

"Es la iluminación de vías que, debido a planes o requerimientos específicos de los gobiernos autónomos descentralizados, difieren de los niveles de iluminación establecidos por la regulación"[10].

1.4.4 Alumbrado Urbano.

"El alumbrado urbano presta un servicio de gran importancia para la sociedad, debido que permite la movilidad de las personas y vehículos en una ciudad, aportando seguridad a los ciudadanos, se debe normar los aspectos técnicos, económicos y financieros para la prestación del servicio a fin de garantizar la calidad del mismo"[11].

1.5 RTE INEN 069.

Uno de los reglamentos que son escenciales para este tipo de instalaciones es el uso del Reglamento Técnico Ecuatoriano INEN 069 "ALUMBRADO PÚBLICO" especificando las diferentes clases de iluminación, dependiendo de las características de las vías. Se busca prolongar la vida útil del sistema de alumbrado público, como se busca nuevas alternativas tecnológicas que aporten eficiencia energética, garantizando su correcto funcionamiento[11].

En la Tabla 1.1 se observa las características de las vías y los parámetros lumínicos que requieren dentro del alumbrado público según el reglamento para su aplicación.

Tabla 1. 1Características de las vías según INEN 069 [11].

Clases de Iluminación	Descripción de vía	Velocidad de circulación	Tránsito de vehículos T(Veh/h)		
M1	Autopista y carreteras	Extra alta	V>80	Muy importante	T>1000
M2	Vías de acceso controlado y vías rápidas	Alta	60 <v<80< th=""><th>Importante</th><th>500<t<1000< th=""></t<1000<></th></v<80<>	Importante	500 <t<1000< th=""></t<1000<>
М3	Vías principales y ejes viales	Media	30 <v<60< th=""><th>Media</th><th>250<t<500< th=""></t<500<></th></v<60<>	Media	250 <t<500< th=""></t<500<>
M4	Vías primarias o colectoras	Reducida	V<30	Reducida	100 <t<250< th=""></t<250<>
M5	Vías secundarias	Muy reducida	Al paso	Muy reducida	T<100

1.6 Aspectos técnicos del sistema de alumbrado público.

El sistema de alumbrado público deberá considerar parámetros y niveles para vías vehiculares y peatonales[11].

1.6.1 Parámetros fotométricos.

1.6.1.1 Luminancia promedio de la calzada (L_{av}) .

"La luminancia promedio se calcula como el promedio aritmético de las luminancias obtenidas en cada uno de los puntos de cálculo. Este es el valor mínimo que debe ser mantenido a lo largo de la vida útil de la instalación"[12].

1.6.1.2 Uniformidad general de luminancia de la calzada (U_0) .

"Es la relación entre la luminancia mínima y la luminancia promedio de la vía. Su valor depende de los mismos factores que inciden en la luminancia promedio, analiza el rendimiento visual de la iluminación, puesto que este criterio es importante, ya controla la visibilidad mínima de la vía"[12].

1.6.1.3 Coeficiente de uniformidad longitudinal (U_l) .

"Es la relación entre la luminancia mínima y la luminancia máxima, medidas sobre uno o varios ejes paralelos al eje principal de la vía, analizando la comodidad visual de la iluminación en la vía. La tabla 1.2 detalla los niveles que deben cumplir determinadas vías"[12].

Clases de iluminación	,	Tipo de Superficie				Relación de alrededor
		Seco			Ti (%)	SR
	$L_{av}(\frac{cd}{m^2})$	U_o	U_f	U_o		
M1	2,0	0,40	0,70	0,15	10	0,5
M2	1,5	0,40	0,70	0,15	10	0,5
М3	1,0	0,40	0,60	0,15	15	0,5
M4	0,75	0,40	0,60	0,15	15	0,5
M5	0,50	0,35	0,40	0,15	15	0,5
M6	0,30	0,35	0,40	0,15	20	0,5

Tabla 1. 2. Parámetros fotométricos para vías [11].

1.6.1.4 Deslumbramiento.

"Se considera que el deslumbramiento es un fenómeno de la visión que produce molestia y disminución en la capacidad para ver y distinguir objetos debido a la incorrecta distribución de la luminancia, o como efecto a lo del excesivo contraste" [12].

$$TI = \frac{k*E_e}{Lva*\theta^2} (\%) \tag{2.1}$$

En donde:

 \boldsymbol{k} : es un factor que varía con la edad del observador, su valor es de 650^3

 E_e : Es la iluminancia total inicial producida por las luminarias, en su estado nuevo, sobre el plano normal a la línea de visión y a la altura del ojo del observador. Lva: Es la luminancia inicial promedio.

θ: Es el ángulo en grados formado entre la línea de visión y el centro de cada luminria[12].

1.6.2 Disposición de los puntos de iluminación.

"En una vía la localización de las luminarias se relaciona con el ancho de las vía, los requisitos lumínicos de la vía, la altura de montaje, el perfil de la vía, la proximidad a las redes de alta y medio voltaje y el fácil acceso para el mantenimiento"[13].

"La interdistancia de localización de los postes de alumbrado, está dada por los estudios fotométricos de iluminación de la vía, esta distancia únicamente puede disminuirse ante la presencia de obstáculos inevitables, sumideros de alcantarillas, rampas de acceso a garajes existentes, interferencia con redes de servicio público existentes"[13].

Se puede optar por una interdistancia de mayor longitud mediante el análisis secuencial de las siguientes alternativas[13].

- a. Escoger la luminaria más apropiada.
- b. Calibrar el reglaje de la luminaria para aumentar su dispersión.
- c. Incrementar la inclinación de la luminaria (de 0° a 20°).
- d. Usar brazos de mayor longitud y por ende mayor alcance.
- e. Aumentar la longitud del brazo para que el avance de la luminaria sobre la calzada sea mayor.

"Una vez que se conoce las características de la vía y las propiedades fotométricas de las luminarias, se procede a elegir la configuración que mejor se adapte a las necesidades de las vías a iluminar"[11].La Tabla 1.3 muestra ciertas recomendaciones que se podrían tomar a la hora de escoger un tipo de configuración.

Tabla 1. 3 Configuación para la disposición de luminarias [11].

Clases de	Altura	Relación	Disposición de las luminarias		
Iluminación	(m)	S/H	Criterio	Disposición	
M1	12-14	3,5-4	Dos carriles de circulación	Unilateral	
M2	10-12	3,5-4	Dos carriles de circulación	Unilateral	
M3	8,5-10	3,5-4	Ancho de la Unilateral calzada menor		
M4	7-9	3,5-4	Unilateral		
M5	6	3,5-4	Al criterio del diseñador		

Existen diferentes disposiciones para la iluminación de las vías para el servicio de alumbrado público, el Reglamente Técnico Ecuatoriano RTE INEN 069 "ALUMBRADO PÚBLICO" detalla las disposiciones[12]:

1.6.2.1 Disposición Unilateral.

"Las luminarias son instaladas a un solo lado de la vía, para lo cual se debe emplear las luminarias que cumplan con los requisitos fotométricos exigidos para las alturas de montaje, interdistancia y menor potencia eléctrica requerida. Las luminarias pueden ser de 70W, 100W, 150W, 250W o 400W". Se utiliza principalmente en vías secundarias, como el centro de la ciudad, áreas residenciales, entre otros. En la Figura 1.2 la disposición unilateral de las luminarias en una vía.

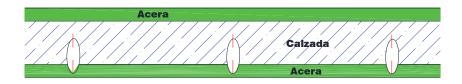


Figura 1. 2 Disposición unilateral.

1.6.2.2 Bilateral opuesta

"Es muy usada cuando el ancho de la vía es mucho más grande que la altura de montaje de la luminaria. (A >> H). Se utiliza en avenidas y vías principales". En la figura 1.3 se puede observar como está distribuida la disposición bilateral opuesta en una vía.

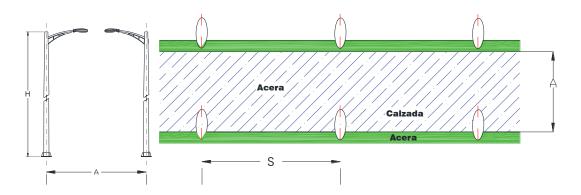


Figura 1. 3 Disposición bilateral opuesta.

Fuente: [Autor]

1.6.2.3 Central doble.

"Su uso es recomendable cuando se tiene dos vías separadas por un pequeño separador de no más de 1,5 m de ancho, se tiene un mayor ahorro económico si los postes comparten en el separador central a manera de dos disposiciones unilateral. Se utiliza en vías con parterre central". En la figura 1.4 se observa, como se encuentra distribuida la disposición central doble de una vía.

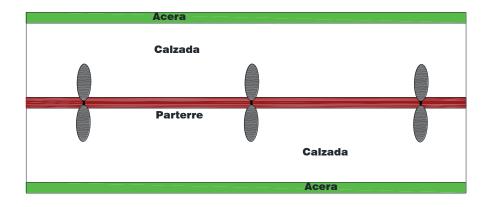


Figura 1. 4 Disposición central con separador menor a 1,5 m.

1.6.2.4 Central-Lateral (3 luminarias)

"En esta disposición se emplea dos luminarias por poste para el parterre central y una luminaria en cada poste junto a la vía, las luminarias pueden ser de 70W, 100W, 150W, 250W o 400W. Se utiliza en avenidas con parterre central". En la figura 1.5 se puede observar como se encuentran distribuidas las luminarias según la disposición mencionada.

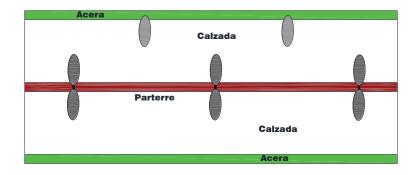


Figura 1. 5 Disposición Central – Lateral (3 luminarias).

Fuente: [Autor].

1.6.2.5 Central-Bilateral (4 Luminarias)

"Empleada en avenidas con parter central en donde se requiere de dos luminarias por poste en parterre central y una luminaria por poste en forma bilateral, las luminarias pueden ser de 70W, 100W, 150W, 250W o 400W"[11]. En la figura 1.6 se puede observar como se encuentran distribuidas las luminarias según la disposición mencionada.

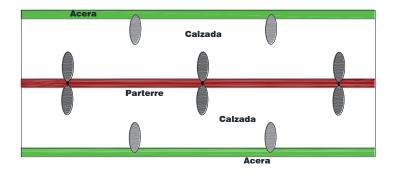


Figura 1. 6 Disposición central – bilateral (4 luminarias).

1.6.2.6 Tresbolillo

"Los puntos de luz están situados a ambos lados de la vía a tresbolillo (zig-zag), se emplea cuando el ancho de la vía es ligeramente superior que la altura de montaje de la luminaria (A > H). Esta configuración se utiliza en vías principales y avenidas. Las luminarias pueden ser de 70W, 100W, 150W, 250W o 400W. En la Figura 1.7 se puede observar como se encuentran distribuidas las luminarias según la disposición mencionada.

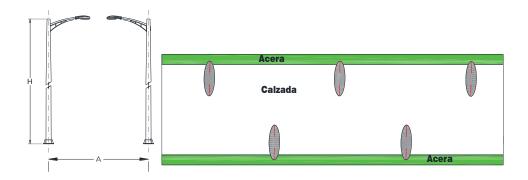


Figura 1. 7 Disposición tresbolillo.

Fuente: [Autor].

1.6.2.7 Tresbolillo (4 luminarias)

"Vías que tienen dos luminarias en los postes de un lado de la vía y una luminaria en los postes del lado contrario. Las luminarias pueden ser de 70W, 100W, 150W, 250W o 400W. Se utiliza en vías principales y avenidas que van junto a las riveras de los ríos para alumbrar vías peatonales". En la Figura 1.8 se puede observar como se encuentran distribuidas las luminarias según la disposición tresbolillo de 4 luminarias en una vía.

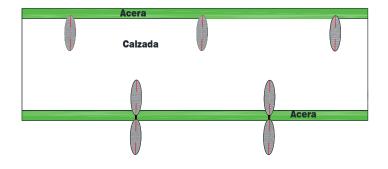


Figura 1. 8 Disposición Tresbolillo (4 luminarias).

1.6.2.8 Disposición en curvas.

"En estos casos la iluminación se debe reforzar disminuyendo la distancia entre las luminarias, por lo general las luminarias se colocan en la parte exterior de la curva a una distancia entre luminarias del 70% de la distancia obtenida en el tramo recto, y para curvas más cerradas la distancia entre luminarias se reduce al 50% de la obtenida en el tramo recto". En la Figura 2.9 se observa como se encuentran distribuidas las luminarias según la disposición tresbolillo en una vía.

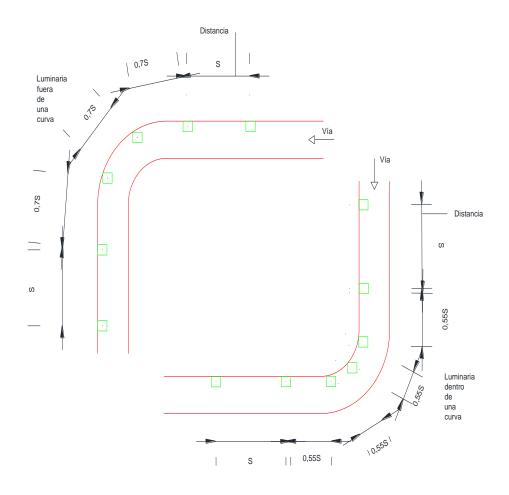


Figura 1. 9 Disposición en curvas.

1.6.3 Luminarias.

"Aparato de iluminación que distribuye, filtra o transforma la luz emitida por una o más lámparas o fuentes luminosas y que incluye todas las partes necesarias para soporte, fijación y protección de las lámparas"[10].

1.6.3.1 Elementos de la luminaria.

"Las luminarias de alumbrado público contienen elementos para dirigir, transformar y controlar la luz que es emitida por la bombilla, contiene todos los accesorios mecánicos, componentes eléctricos y de visualización óptica.

Estos componentes son indispensables para el soporte, protección de las bombillas y su conexión a la fuente de alimentación".[3]

La luminaria para alumbrado público está constituido por diferentes componentes:

- ➤ Carcaza: Es un elemento que protege y soporta los accesorios mecánicos y eléctricos de los agentes externos o de las inclemencias del medio, pueden ser de aluminio fundido o de algún otro elemento.
- ➤ Brazo o Soporte de Fijación: Es un elemento de soporte de la luminaria. Debe de ser resistente al peso de la luminaria y debe brindar flexibilidad para realizar sus diferentes mantenimientos.
- ➤ **Refractor:** Elemento traslúcido que se emplea para alterar la distribución espacial del flujo luminoso, mediante el proceso de refracción de la luz.
- **Bombilla:** Su funcionamiento es la transformación de la energía eléctrica en luz.
- ➤ **Reflector:** Redirige la luz emitida por la bombilla que se dirige en una dirección no deseada.
- ➤ **Balasto:** Este componente se usa para obtener las condiciones necesarias del circuito para el encendido y la operación correcta de la bombilla.
- ➤ Condensador: Este componente se utiliza para el almacenamiento de cargas eléctricas y se opone al cambio brusco, carga y descarga de la tensión, protegiendo al circuito eléctrico. También sirve como corrección del factor de potencia o para mayor aprovechamiento de la energía.

Fusible: Es un elemento que sirve de protección a todos los componentes de la

luminaria en caso de obtener altos mayores de corriente causado por un cortocircuito

o una sobrecarga de voltaje.

> Arrancador: Este elemento sirve para generar pulsos para encender la bombilla de

descarga, dando protección y sin ocasionar calentamiento de los electrodos.

Fotocontrol: Es un elemento que se utiliza para conectar y desconectar la luminaria

de forma automática.

Tipos y características de lámparas para el alumbrado público.[14]

1.6.3.2 Características de las lámparas de alumbrado público.

Las lámparas para alumbrado público deben caracterizarse por diferentes cualidades que

son necesarias e impuestas para el funcionamiento de las mismas, para esto se considera:

Eficacia luminosa: Es la "relación entre el flujo luminoso total emitido por una fuente

luminosa (lámpara) y la potencia de la misma. La eficacia de una fuente se expresa

en lúmenes/vatio (lm/W)"[10][15]

> Duración de la vida económica: Es el tiempo de vida óptima, obteniendo el precio

más bajo del lumen por hora (lm/h), este tiempo de vida depende de factores técnicos:

a. El tiempo de duración de la vida real de las lámparas en las condiciones de instalación

y de utilización.

b. El flujo luminoso de la luminaria y su evolución en el transcurso del tiempo.

c. Todo esto depende de factores económicos como el precio de la lámpara, costo de

instalación y de reemplazo.[15]:

d. Temperatura de color: color de la luz emitida por la lámpara

Cálido: aspecto blanco-amarillento Tc 3300° K.

Intermedio: apariencia blanco-neutro 3300° K <Tc ² 5300° K.

Frío: tonalidad blanco-azulado Tc > 5300° K[16].

14

1.6.3.3 Lámparas de vapor de sodio a alta presión.

Las lámparas de vapor de sodio de alta presión son más eficientes que las lámparas de sodio de baja presión, ya que contiene una gran cantidad de sodio en su interior, además este tipo de lámpara contiene mercurio y xenón para facilitar el encendido, esto hace que mejore la calidad de flujo luminoso[16]. En el encendido de las lámparas de vapor de sodio de alta presión se utilizan equipos auxiliares: arrancador, inductancia como estabilizador de la corriente y un condensador para el FD (factor de potencia)[3].

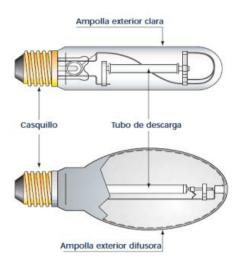


Figura 1. 10 Lámpara de vapor de sodio de alta presión.

Fuente: [17]

1.6.3.4 Lámpara de mercurio de alta presión con halogenuros metálicos.

Esta lámpara contiene un tubo de descarga que está compuesta de haluros metálicos y mercurio, los haluros metálicos se evaporan a una temperatura determinada cuyo vapor se disocia con la zona central caliente del arco de halógeno y metal, lo que permite obtener un aspecto apropiado para la iluminación. Son utilizados para el alumbrado ornamental, dado que son lámparas contaminantes su uso es limitado[16].



Figura 1. 11 Lámpara de vapor de mercurio de alta presión con halogenuros metálicos.

Fuente: [18]

1.6.3.5 Lámparas de descarga por inducción.

Las lámparas de descarga por inducción es la evolución de las lámparas fluorescentes, su funcionamiento no es a través de un electrodo, se realiza a través de un inductor de ferrita alrededor del cual se enrolla un cable [18].

Figura 1. 12 Lámpara de descarga por inducción electromagnética.

Fuente: [https://www.construnario.com/notiweb/45424/luminarios-para-alumbrado-publico-de-vialidades-con-lamparas-de-induccion-electromagnetica].

1.6.3.6 Luminarias Leds.

Se entiende por fuente de luz LED (Light Emitting Diode) como un diodo compuesto por la superposición de varias capas de material semiconductor que emite luz en una o más longitudes de onda cuando es polarizado correctamente. Un diodo es un dispositivo que permite el paso de la corriente en una única dirección y su correspondiente

circuito eléctrico se encapsula en una carcasa plástica, de resina epoxi o cerámica según las diferentes tecnologías[2].

1.6.3.6.1 Módulo LED.

Sistema comprendido por uno o varios LED individuales que puede incorporar otros elementos tales como circuitos impresos, disipadores térmicos, sistemas ópticos y conexiones eléctricas. Su diseño y características modificarán las cualidades y garantías que el propio fabricante de LED individual ofrece, haciendo así necesaria su certificación y pruebas de funcionamiento en su integración en la luminaria y para la correcta aplicación de sus características[2].

1.6.3.6.2 Sistema LED "Retrofit.

Elemento de tecnología LED para la sustitución directa de otras fuentes de luz y equipos auxiliares asociados, que precisa una justificación fotométrica, mecánica y térmica del comportamiento de todo el sistema donde se encuentra alojado (luminaria de instalación existente)[2].

1.6.3.6.3 Dispositivo de alimentación y control electrónico ("DRIVER").

Elemento auxiliar básico para regular el funcionamiento de un módulo LED que adecua la energía eléctrica de alimentación recibida por la luminaria a los parámetros exigidos para un correcto funcionamiento del sistema[19].

Como nueva tendencia para el sistema de alumbrado público ha recibido un impulso inusitado en lo referente a la instalación de lámparas LED por sus diferentes prestaciones. En el país es previsible que la utilización de los LED se incremente, debido a que sus aplicaciones son superiores a las lámparas incandescentes y al tubo fluorescente, desde diversos puntos de vista. La iluminación con LED tiene ventajas para el alumbrado público como el ahorro energético que varía entre un 60% y 80% en relación con la iluminación tradicional[20].

Figura 1. 13 Lámpara tipo LED.

Fuente : [https://listado.mercadolibre.com.co/hogar-muebles/iluminacion-hogar/lampara-led-alumbrado-publico#!messageGeolocation].

Estas lámparas tiene sus ventajas y desventajas para su uso, donde tenemos:

Ventajas.

- > Ahorro energético.
- Larga vida útil.
- > Mayor velocidad de arranque.
- > Eficiente flujo luminoso.

Desventajas.

- Constante innovación de tecnología.
- > Precios relativamente altos[20].

1.6.4 Factor de Mantenimiento.

El factor de mantenimiento mantiene una consideración importante en las instalaciones de luminarias, ya que indica la rapidez con la que la luminaria disminuye su valor especificado o vida útil en dicha instalación.

El valor de la iluminancia inicial de una instalación se calcula con el valor de mantenimiento de la iluminancia y el factor de mantenimiento. El plan de mantenimiento

indica la periodicidad de la limpieza de las luminarias y del local, así como la del cambio de lámparas. Quiere decir que el valor de mantenimiento de la iluminancia depende de las luminarias, lámparas y de las condiciones del local.

1.7 Aspectos financieros para calcular rentabilidad de un proyecto.

1.7.1 VAN.

El VAN (Valor Actual Neto) se refiere al indicador financiero que mide flujos de los ingresos y egresos futuros que tendrán los proyectos, para realizar estudios y visualizar si luego de descontar la inversión inicial se establece una ganancia. La fórmula que nos permite calcular el VAN es[21]:

$$VAN = \sum_{n=0}^{N} \frac{I_n - E_n}{(1+i)^N}$$

1.7.2 TIR.

Se define mediante la tasa de interés con el cual el valor actual neto (VAN) de una inversión sea igual a cero. El método es aceptable si la TIR (Tasa interna de retorno o tasa interna de rentabilidad) de una inversión, resultante es igual o superior a la tasa exigida por el inversor (tasa de descuento) y según las alternativas, la más conveniente será la que ofrezca una TIR mayor.

Este método es un indicador de rentabilidad relativa del cualquier proyecto, ya que al realizar una comparación de tasas de rentabilidad interna de dos proyectos, no se tomara en cuenta en cuenta las posibles diferencias en las dimensiones de los mismos[21].

1.7.3 Tasa de crecimiento.

Los cálculos matemáticos que se obtienen de la tasa de crecimiento son la diferencia entre dos valores en el tiempo, teniendo en cuenta la referencia el porcentaje del primer valor, este tipo de indicador se aplica a ámbitos empresariales y económicos de tal manera que pueda averiguar el porcentaje de crecimiento de cualquier supuesto en un periodo determinado de tiempo[22].

1.7.4 Relación Beneficio Costo.

La RBC es la división del valor actualizado de los beneficios del proyecto con el valor actualizado de los costos a una tasa de actualización igual a la tasa de rendimiento mínima aceptable.

Los beneficios actualizados agrupan todos los ingresos actualizados del proyecto, donde se considera las ventas, recuperaciones, todas las entradas económicas y los costos actualizados que son todos los egresos actualizados o salidas del proyecto, como costos de operación, inversiones, pago de impuestos e intereses[23].

"La electricidad es el alma del Universo".

John Wesley.

CAPÍTULO 2.

ESTADO ACTUAL DEL SISTEMA DE ALUMBRADO PÚBLICO.

2.1 Estado actual del Alumbrado Público en la Ciudad de Cuenca.

Figura 2.1 Paisaje nocturno de la ciudad de Cuenca.

Fuente: [Autor]

De conformidad con la información que consta en los registros del SIGADE, alumbrado público de la CENTROSUR se encuentran instaladas en la zona urbana del cantón Cuenca un total de 71434 luminarias (registro Noviembre del 2019) entre ellas el 80,6 % son luminarias de sodio y el 6,4% en luminarias LED, mostrando un aumento del 2% en el último año.

2.2 Tipo de luminarias utilizadas en Alumbrado Público General.

2.2.1 Luminarias de sodio de alta presión

Luminarias de sodio de alta presión que forman parte del alumbrado público dentro de la zona urbana de la ciudad son de simple nivel de potencia (SNP) y doble nivel de potencia (DNP). En la tabla 2.1 se observa el tipo de luminarias instaladas y el nivel de potencia que trabaja cada una de ellas.

Potencia [W]	SNP	DNP	Total lum.		
100	6526	263	6789		
150	8069	18429	26498		
250	3138	21125	24263		
Total	17733	39817	57550		
Porcentaie	30,8%	69,2%	100%		

Tabla 2. 1 Cantidad de luminarias de sodio de alta presión SNP y DNP[8].

Es decir el 30,8 % son luminarias sodio son de simple nivel de potencia mientras que el 69,2 % son de doble nivel de potencia.

2.2.2 Luminarias LED

Las luminarias LED que forman parte del sistema de alumbrado público de la ciudad son de simple nivel de potencia (SNP) [8].En la tabla 2.2 se puede observar el tipo de luminarias instaladas y el nivel de potencia que trabaja las luminarias de LED.

Tabla 2.2 Cantidad de luminarias LED [8].

Potencia [W]	Luminarias
≤ 70	1.416
75	43
90	1.836
100	29
106	8
110	6
114	84
120	84
135	44

Potencia [W]	Luminarias
139	30
150	40
155	39
180	105
212	62
220	28
250	109
400	627
500	11

2.3 Disposición del alumbrado público.

El sistema de alumbrado público en la ciudad de Cuenca consta de las siguientes distribuciones de luminarias: unilateral, bilateral, tresbolillo y central[8].

2.3.1 Distribución unilateral

En cuanto a la distribución unilateral es utilizada en vías secundarias. En la tabla 2.3 se observa vías en que se encuentra instalada la distribución unilateral[8].

Tabla 2.3 Distribución unilateral [8].

UNILATERAL	Centro de la Ciudad
	Áreas residenciales

2.3.2 Distribución bilateral.

La distribución bilateral en avenidas y vías principales, en la tabla 2.4 se observa en que vías de la ciudad se encuentra instalada.

Tabla 2.4 Distribución bilateral [8].

BILATERAL	Av. De los Conquistadores
	Av. Carlos Arizaga Vega
	Av. Diez de Agosto
	Av. México
	Calle Unidad Nacional
	Av. Doce de Abril
	Av. Max Uhle
	Av. España
	Panamericana Norte
	Calle Del Pedregal
	Av. Héroes de Verdeloma

2.3.3 Distribución central.

La distribución central es aplicada en Avenidas, tomando en cuenta que existen también central lateral de 3 luminarias como central bilatera de 4 luminarias, en la tabla 2.5 se observa en que avenidas de la ciudad se encuentra instalada cada una de estas distribuciones.

Tabla 2.5 Distribución central [8].

CENTRAL	Circunvalación Sur
	Av. De las Américas
	Av. Isabela Católica
	Av. Enrique Arizaga Toral
	Av. Paraíso
	Av. Los Andes
	Av. González Suarez
	Av. Gil Ramírez Dávalos
	Calle Vieja
	Calle De las Laderas
	G III The state of
	Calle Turuhuaico
	Av. Del toril
CENTRAL-LATERAL (3 lum.)	Calle Ricardo Muñoz Dávila
CENTRAL-BILATERAL (4 lum.)	Calle Roberto Crespo Toral

3.2.3 Distribución tresbolillo.

La distribución tresbolillo se utiliza en avenidas y vías principales, tomando en cuenta que existe trebolillo de 4 y 6 luminarias, en la tabla 2.6se observa la distribución en ciertas avenidas de la ciudad.

Tabla 2.6 Distribución tresbolillo [8].

TRESBOLILLO	Camino a Baños
	Panamericana Sur
	Av. Loja
	Av. Nicolás Roche
	Av. Don Bosco
	Av. Doce de Octubre
	Av. Felipe II
	Calle José Ortega
	Calle Hernán Malo Gonzales
	Calle Daniel Fernández de Córdova
	Calle Leopoldo Dávila Cordero
	Calle Padre Julio Matovelle
	Calle Juan Bautista Vásquez
	Calle Cesar Dávila Andrade
	Calle Federico Proaño
	Camino Del Tejar
	Calle Abelardo J. Andrade
	Calle Paucarbamba
	Av. Paseo de los Cañarís
	Av. Hurtado de Mendoza
	Av. Huayna Cápac
	Calle Núñez de Bonilla
	Av. Remigio Crespo Toral
TRESBOLILLO (4 luminarias)	Av. Primero de Mayo
	Paseo Rio Yanuncay
	Av. Veinte y Cuatro de Mayo
	Av. Pumapungo
	Calle Ricardo Darquea Granda
	Calle Víctor Manuel Albornoz
	Av. Tres de Noviembre
	Av. Ordoñez Lazo

"La vida te va a pegar en la cabeza con un ladrillo.

Pero no pierdas la fe".

Steve Jobs.

CAPÍTULO 3.

EVALUACIÓN TÉCNICA DE LAS LUMINARIAS DE SODIO VS LED DENTRO EL ALUMBRADO PÚBLICO.

En el presente capítulo se determina que tipos de luminarias pueden sustituir de manera técnica a las luminarias existentes en el cantón Cuenca.

Para lo cual se determinó inicialmente los tipos de luminarias utilizadas en diferentes vías, se estableció las características de las vías, especificando: ancho de las vías, número de carriles, tipo de pavimento, etc. Así también se determina las condiciones actuales de montaje de las luminarias, como son: altura de montaje, longitud de los brazos, ángulo de inclinación, etc. Y se procedió a determinar los niveles de iluminación en tres tipos generales de vías utilizando luminarias de 250, 150 y 100 W.

Una vez establecidos los niveles de iluminación para estos tres tipos de luminarias, se buscó en el mercado local diferentes tipos de luminarias led, con las cuales se realizaron simulaciones que cumplan las condiciones de; niveles de iluminación, uniformidad y deslumbramiento que presentan actualmente las luminarias de sodio.

Determinando cuales son las luminarias led que técnicamente pueden sustituir a las de sodio, sin disminuir las prestaciones actuales de servicio de alumbrado público. Previendo que de darse las sustituciones no afecte a la percepción ciudadana de la calidad de servicio.

3.1 Determinación de los tipos de vías en el Cantón Cuenca.

Se define tres tipos de vías específicas basadas en casos reales dentro la ciudad, donde cada una de ellas muestra las siguientes condiciones generales.

Primera vía:

- Ancho de vía ocho metros y dos carriles.
- Se analiza con una luminaria de 250 W de sodio.

Segunda vía:

- Ancho de vía ocho metros y dos carriles.
- Se analiza con una luminaria de 150 W de sodio.

Tercera vía:

- Ancho de vía cuatro metros y un carril.
- Se analiza con una luminaria de 100 W de sodio.

Por otra parte, cabe mencionar, que el tipo de pavimento que se establece para las tres vías es rígido, con un coeficiente de reflectividad en la calzada de 0,07.[24]

3.2 Determinación de las condiciones de montaje.

Basados en las condiciones actuales de montaje en luminarias de sodio, se establece las siguientes condiciones generales.

Primera vía:

- Distancia entre postes, 35 metros.
- Altura de montaje, 10.4 metros.
- Longitud del brazo, 1.8 metros.

Segunda vía:

• Distancia entre postes, 35 metros.

• Altura de montaje, 8.6 metros.

• Longitud del brazo, 1.5 metros.

Tercera vía:

• Distancia entre postes, 30 metros.

• Altura de montaje, 8.6 metros.

• Longitud del brazo, 1.5 metros.

Se debe agregar que se estableció; la distancia del mástil a la calzada 0.35 metros, el factor de mantenimiento para luminaria de sodio 0.8 y el factor de mantenimiento para luminaria led 0.9, para los tres tipos vías respectivamente [24].

3.3 Descripción de las simulaciones.

3.3.1 Simulaciones con las luminarias de sodio.

En cuanto a las simulaciones de las luminarias de sodio se desarrollaron en el programa Ulysse, en donde se analizó tres diferentes luminarias instaladas en la ciudad con los escenarios antes mencionados. Por otra parte, los modelos de las luminarias implementadas son las siguientes:

Primera vía:

• ONYX 3/Glass Standard Bended/1399

Segunda vía:

• ONYX 2/Glass Standard Bended/1419/

Tercera vía:

• OPALO 2/PC Deep bowl.

3.3.2 Simulaciones con las luminarias de led.

Con respecto a las simulaciones de las luminarias LED, se desarrollaron en el

software Dialux EVO buscando varias luminarias que puedan prestar el servicio actual de las

luminarias de sodio. Se buscó y comparó las fotometrías, potencias y temperaturas de las

luminarias LED buscando la mejor tecnología que pueda sustituir a las luminarias

convencionales de sodio.

3.3.3 Resultados obtenidos de las simulaciones.

Las tablas siguientes muestran el resumen de las simulaciones con luminarias de sodio

y LED, mostrando las características del sistema de iluminación, descripción de las

luminarias, características de las luminarias y el resultado de las simulaciones.

Primera vía.

En la tabla 3.1 se presenta el caso de la sustitución de la luminaria de 250W de sodio.

La luminaria instalada muestra un flujo luminoso de 33000 lm y un rendimiento lumínico de

132 lm/W, dando como resultado de la simulación los siguientes niveles.

 $Lm = 2.42 \text{ cd/m}^2$

Uo = 0.57 %

UL = 0.57%

TI = 11%.

EIR = 0.76

29

Dentro del análisis con luminarias LED, existen cinco posibles luminarias que cumplen con los niveles establecidos de sodio. A su vez la luminaria que muestra las mejores características de iluminación, es la luminaria LED 4, potencia de 178 W, un flujo luminoso de 25920 lm y un rendimiento lumínico de 145.61 lm/W y ángulo de inclinación de 13 grados, mostrando el siguiente resultado:

$$Lm = 2.57 \text{ cd/m}^2$$

$$Uo = 0.67 \%$$

$$UL = 0.82\%$$

$$TI = 13\%$$
.

$$EIR = 0.64$$

Dentro de la misma tabla también se muestra las simulaciones realizadas con otras luminarias LED, las cuáles no cumplen con los niveles establecidos de iluminación para el reemplazo de las luminarias de 250 W de sodio.

Tabla 3. 1. Resumen de las simulaciones con luminarias de sodio y LED para reemplazo de luminaria de 250 W.

_	1		Γ															1
ျွ					1	1	Caracte	erísticas de l	as Iumina	rias	1		Resul	tado de s	simulacio	nes		
Especificaciones	Tipo	Características del sistema de iluminación		Tipo de luminaria	Potencia	Rendimiento Iumínico de la Iuminaria	Flujo luminoso de luminaria	Rendimiento Iumínico de Ia Iámpara	Flujo luminoso de la lámpara	Grado de eficacia de funcionamiento	Angulo de inclinación del brazo	Temperatura del color	Lm	Uo	UL	ті	Relación de alrededores	
					[W]	[lm/W]	[lm]	[lm/W]	[lm]	[%]	[grados]	[°K]	$[cd/m^2]$	[%]	[%]	[%]		
			Luminaria instalada	Sodio	250	132,0	33000	106,9	26730	81,0	15	2100	2,42	0,57	0,57	11,00	0,76	Anexo 3.1
			Luminarias LED que	LED 3	215	162,8	35000	144,3	31033	88,7	0	4000	2,90	0,63	0,82	10,00	0,80	Anexo 3.2
			pueden sustituir	LED 3	245	163,3	40000	145,4	35624	89,1	0	4000	2,66	0,67	0,83	8,00	0,88	Anexo 3.5
			,	LED 4	178	145,6	25920	119,8	21327	82,3	15	3000	2,57	0,67	0,82	13,00	0,64	Anexo 3.4
				LED 4	142	159,5	22656	132,9	18869	82,0	0	3000	2,59	0,54	0,84	6,70	0,70	Anexo 3.17*
l s			LED 2	180	150,0	27000	149,9	26973	99,9	15	3500 - 4000	2,57	0,58	0,80	11,00	0,73	Anexo 3.3*	
carriles	ral			LED 5	240	122,8	29360	122,3	29354	100,0	0	4000 - 5000	2,69	0,53	0,76	10,00	0,71	Anexo 3.6
2 ca	Disposición unilateral	Distancia entre postes 35 m		LED 1	230	140,6	32330	120,9	27804	86,0	15	5000	2,32	0,45	0,60	13,00	0,74	
8 H	iun r	Altura de montaje 10,4 m		LED 1	210	122,2	25670	105,1	22076	86,0	0	5000	2,00	0,50	0,55	12,00	0,83	
<u>×</u>	iciór	Distancia del brazo 1,8 m		LED 2	160	141,3	22605	141,1	22582	99,9	0	3500 - 4000	2,34	0,58	0,45	11,00	0,64	
Ancho de	sods	Distancia mástil a la		LED 3	170	173,8	29550	154,1	26202	88,7	0	4000	2,31	0,49	0,61	10,00	0,63	İ
nch	Ö	calzada 0,35 m	Luminarias LED que no cumplen con los	LED 3	190	160,4	30470	142,2	27018	88,7	0	4000	2,23	0,47	0,59	10,00	0,62	
~		Factor de mantenimiento Na: 0,8	niveles establecidos	LED 4	186	105,2	19560	86,5	16094	82,3	15	3000	2,42	0,54	0,46	8,00	0,75	
		Factor de mantenimiento LED: 0,9		LED 4	200	98,5	19690	81,0	16201	82,3	10	3000	2,46	0,45	0,53	10,00	0,82	
		Coef. de reflectividad		LED 4	165	98,8	16310	81,3	13420	82,3	0	3000	2,38	0,30	0,49	9,00	0,76	
		a la calzada Qo = 0,07		LED 5	238	117,0	27850	117,0	27844	100,0	5	4000 - 5000	2,40	0,40	0,54	11,00	0,70	*
				LED 1	215	119,4	25670	102,7	22076	86,0	0	5000	2,39	0,49	0,60	11,00	0,69	*
				LED 5	230	116,3	26760	116,3	26755	100,0	0	4000 - 5000	2,41	0,53	0,43	10,00	0,53	*

Nota: El número de LED muestra las diferentes marcas con las que se realiza la simulación. La luminaria de sodio de 250W implementada esta resaltada con color azul y las luminarias LED que pueden sustituir resaltada con color tomate. * Las luminarias con marcadas con asterisco tienen datos inconsistentes en las matrices.

Segunda vía.

De igual manera en la tabla 3.2 se presenta el caso de la sustitución de la luminaria de 150 W de sodio. La luminaria instalada muestra un flujo luminoso de 17000 lm y un rendimiento lumínico de 113,3 lm/W, dando como resultado de la simulación los siguientes niveles.

 $Lm = 1.52 \text{ cd/m}^2$

Uo = 0.421 %

UL = 0.706%

TI = 14.9%

EIR = 0.65

Dentro del análisis con luminarias LED, existen cuatro posibles luminarias que cumplen con los niveles establecidos de sodio. A su vez la luminaria que muestra las mejores características de iluminación, es la luminaria LED 4, potencia de 108 W, un flujo luminoso de 16272 lm y un rendimiento lumínico de 121.8 lm/W, y un ángulo de inclinación de 0 grados, mostrando el siguiente resultado:

 $Lm = 1.55 \text{ cd/m}^2$

Uo = 0.45 %

UL = 0.7%

TI = 10%

EIR = 0.5

Dentro de la misma tabla también se muestra las simulaciones realizadas con otras luminarias LED, las cuáles no cumplen con los niveles establecidos de iluminación para el reemplazo de las luminarias de 150 W de sodio.

Tabla 3. 2 Resumen de las simulaciones con luminarias de sodio y LED para la segunda vía.

						-	· · · · · ·	aracterísticas	do lac lu	minarias	-	-		Resultado	do cimu	agionos		1
Especificaciones	Tipo	Características del sistema de iluminación		Tipo de luminaria	S Potencia	Rendimiento Iumínico de la Iumínico de la	Flujo luminoso	Rendimiento	Flujo luminoso	Grado de [%] eficacia de funcionamiento	ଲୁ Ángulo de p inclinación del brazo	் Temperatura del தீ color	Lm [cd/m²]	Uo [%]	UL [%]	TI [%]	Relación de alrededores	
			Luminaria instalada	Sodio	150	113,33	17000	113,3	13600	80	15	2100	1,52	0,42	0,71	14,90	0,65	Anexo 3.7
			Luminarias LED que	LED 4	108	121,8	16272	122	13151	80,82	0	3000	1,55	0,45	0,70	10,00	0,50	Anexo 3.11
			pueden sustituir	LED 3	94	154	16000	170,2	14476	90,48	0	4000	1,55	0,54	0,74	11,00	0,70	Anexo 3.10
				LED 4	107	133	13593	105,8	11321	82	15	3000	1,67	0,46	0,58	7,10	0,70	Anexo 3.18*
		Distancia entre postes 35 m		LED 1	110	110	12100	110	12097	99,97	0	5000	1,50	0,47	0,75	15,00	0,59	Anexo 3.8*
es		Altura de montaje 8,6 m		LED 2	90	150	13500	149,9	13487	99,9	10	3500 - 4000	1,58	0,44	0,71	13,00	0,50	Anexo 3.9*
carriles	eral	Distancia del brazo 1,5 m		LED 1	100	116	11554	104	10399	90	0	5000	1,46	1,39	0,65	13,00	0,60	*
N	ilat	Distancia mástil		LED 1	90	126	11340	125	11227	99	0	5000	1,43	1,37	0,61	11,00	0,70	*
8	in u	a la calzada 0,35 m		LED 1	106	114	12034	111	11793	98	0	5000	1,49	1,45	0,69	10,00	0,40	*
vía	sicić	Factor de mantenimiento Na: 0,8		LED 2	84	147	12367	144	12120	98	15	3500 - 4000	1,36	1,43	0,70	10,00	0,45	*
Ancho de vía	Disposición unilateral	Factor de mantenimiento LED: 0,9		LED 2	80	150	12012	149	11892	99	15	3500 - 4000	1,34	1,31	0,80	11,00	0,76	*
Anch		Coef. de reflectividad a	no cumplen con los niveles establecidos	LED 2	70	160	11220	159	11108	99	15	3500 - 4000	1,49	1,43	0,60	12,00	0,56	*
`		la calzada Qo = 0,07	Inveres establesides	LED 3	100	143	14329	122	12180	85	0	4000	1,50	1,47	0,72	10,00	0,34	
				LED 3	88	153	13456	133	11707	87	15	4000	1,42	1,38	0,71	10,00	0,23	*
				LED 4	110	118	13012	96	10516	80,82	15	4000	1,50	1,43	0,50	11,00	0,56	
			LED 4	98	127	12456	103	10067	80,82	0	4000	1,38	1,32	0,60	12,00	0,65		
				LED 4	100	128	12789	103	10336	80,82	0	4000	1,46	1,39	0,67	10,00	0,60	
				LED 5	100	120	12045	120	12021	99,8	0	4000 - 5000	1,48	1,39	0,69	12,00	0,50	*

Nota: El número de LED muestra las diferentes marcas con las que se realiza la simulación. La luminaria de sodio de 150W implementada esta resaltada con color azul y las luminarias LED que pueden sustituir resaltada con color tomate. * Las luminarias con marcadas con asterisco tienen datos inconsistentes en las matrices.

Tercera vía.

La tabla 3.3 presenta el caso de la sustitución de la luminaria de 100 W de sodio. La luminaria instalada muestra un flujo luminoso de 11000 lm y un rendimiento lumínico de 110 lm/W, dando como resultado de la simulación los siguientes niveles.

 $Lm = 0.93 \ cd/m^2$

Uo = 0.7 %

UL = 0.6%

TI = 7.9%

EIR = 0.57

Dentro del análisis con luminarias LED, existen cuatro posibles luminarias que cumplen con los niveles establecidos de sodio. A su vez la luminaria que muestra las mejores características de iluminación, es la luminaria LED 4, potencia de 42 W, un flujo luminoso de 5906 lm y un rendimiento lumínico de 141 lm/W, y un ángulo de inclinación de 0 grados, mostrando el siguiente resultado:

 $Lm = 0.78 \text{ cd/m}^2$

Uo = 0.89 %

UL = 0.8 %

TI = 8%.

EIR = 0.74

Dentro de la misma tabla también se muestra las simulaciones realizadas con otras luminarias LED, las cuáles no cumplen con los niveles establecidos de iluminación para el reemplazo de las luminarias de 100 W de sodio.

Tabla 3. 3 Resumen de las simulaciones con luminarias de sodio y LED para la tercera vía.

							Caracte	erísticas de l	as lumina	rias			Resultado de simulaciones]
Especificaciones	Tipo	Características del sistema de iluminación		Tipo de luminaria		Rendimiento lumínico de la luminaria	Flujo luminoso de	Rendimiento lumínico de la lámpara	Flujo luminoso de	Grado de eficacia de funcionamiento	ଙ୍କି Ángulo de inclinación del ଚୁଚ brazo	Temperatura del color	Lm [cd/m²]	Uo [%]	UL [%]	TI [%]	Relación de alrededores	
			Luminaria instalada	Sodio	100	110	11000	88	8800	80	15	2100	0,93	0,7	0,6	7,9	0,57	Anexo 3.12
		Distancia entre postes 30 m	Luminarias LED que	LED 3	51	169	8600	144	7348	85,44	15	3700	1,25	0,76	0,84	11	0,77	Anexo 3.15
		Altura de montaje 8,6 m	pueden sustituir	LED 4	42	141	5906	115,2	4839	81,94	0	4000	1,16	0,81	0,87	8	0,74	Anexo 3.16
carril	<u>a</u>			LED 4	71	106	9062	96,4	94	82	0	4000	1,37	0,74	0,75	10,6	0,75	Anexo 3.19*
1 ca	Disposición unilateral	Distancia del brazo 1,5 m		LED 1	57	112	6393	109,4	6374	99,7	0	5000	1,16	0,8	0,85	10	0,85	Anexo 3.13*
Ancho de vía4m	iun c	Distancia mástil		LED 2	40	149,85	6000	150	5994	99,9	0	3500 - 4000	1,05	0,78	0,89	8	0,77	Anexo 3.14*
le vi	iciór	a la calzada 0,35 m		LED 1	60	107	6393	111	6374	99,7	0	5000	1,16	0,8	0,85	10	0,34	
o o cy	sods	Factor de mantenimiento Na: 0,8	Luminarias LED que	LED 2	30	192	5748	149	5742	99,9	0	3500 - 4000	0,94	0,8	0,85	9	0,23	*
Anc		Factor de mantenimiento LED: 0,9		LED 3	42	172	7210	113	6160	85,44	15	4000	0,92	0,69	0,76	10	0,56	
		Coef. de reflectividad a	niveles establecidos	LED 3	40	178	7129	110	6091	85,44	0	4000	0,95	0,76	0,86	8	0,65	
		la calzada Qo = 0,07		LED 4	45	110	4937	116	4045	81,94	15	4000	0,89	0,75	0,6	7	0,6	
				LED 4	38	112	4237	114	3472	81,94	0	4000	0,98	0,6	0,78	8	0,5	
				LED 5	50	69	3456	111	3449	99,8	0	4000 - 5000	1	0,5	0,54	9	0,76	*

Nota: El número de LED muestra las diferentes marcas con las que se realiza la simulación. La luminaria de sodio de 150W implementada esta resaltada con color azul y las luminarias LED que pueden sustituir resaltada con color tomate. * Las luminarias con marcadas con asterisco tienen datos inconsistentes en las matrices.

Conclusiones del capítulo.

Para determinar el reemplazo de una luminaria de Na por una luminaria LED, se fundamentó en el resultado de parámetros fotométricos como: luminancia promedio de la calzada, uniformidad general de la luminancia de la calzada, uniformidad longitudinal de la calzada, deslumbramiento, la relación de alrededores, el grado de eficiencia de funcionamiento, el rendimiento lumínico y el flujo luminoso, respetando el rango de temperatura entre los 2700°K y 4000 °K según lo solicitado por el MEER.

La sustitución de las luminarias de 250W de Na con un rango de dieciséis luminarias LED analizadas, en donde, solo tres se ajustan con los niveles de iluminación actuales de la ciudad. Siendo la de 178 W tipo LED la que presenta sus mejores características para la sustitución.

La regla de modelación propuesta permite determinar que para luminarias de 150 W de NA, con un grado de eficiencia de rendimiento entre los 80 y 91%, entrega como resultado para el reemplazo la luminaria LED de 94 W.

En el caso de las luminarias de 100 W frente a un testeo de once luminarias LED, solo dos luminarias se ajustan con los niveles de iluminación con los parámetros luminotécnicos adquiridos de las luminarias actualmente instaladas. El grado de eficiencia de funcionamiento de estas luminarias están entre los 81 y 85 % de rendimiento, siendo la luminaria LED de 42 W la que presenta una mejor eficiencia para la sustitución.

Es importante mencionar que la eficiencia de las luminarias LED no depende de la potencia, sino de la eficiencia del LED y las fotometrías de las mismas.

Las luminarias marcadas con un (*) dentro de la tabla resumen, muestran las luminarias con datos inconsistentes, como: rendimiento lumínico, flujo luminoso y factor de mantenimiento.

"Hoy en día, la gente sabe el precio de todo

y el valor de nada".

Oscar Wilde.

CAPÍTULO 4.

EVALUACIÓN ECONÓMICA DEL REEMPLAZO DE LAS LUMINARIAS DE NA POR LAS LUMINARIAS LED.

En el presente capítulo se determinó cuan viable es reemplazar las luminarias de sodio por luminarias LED, tras realizar un análisis técnico económico en base a: costo de inversión, costo de mantenimiento preventivo y costo de energía.

Para lo cual se estableció un plan de mantenimiento preventivo para los dos tipos de luminarias tomando en cuenta SNP y DNP, establecidos por la vida úil de cada uno de los elementos que lo conforman y referencia de periodos de cambio utilizados por la EERCS.

Establecido el plan de mantenimiento para los dos tipos de luminarias, se busca en el mercado local el costo de las luminarias y el costo de los elementos a sustituir.La tasa de crecimiento de materiales de construcción en los últimos años se proyecta para cada uno de los elementos con una tiempo de vida útil a 15 años para 250,150 y 100 W en sodio y tiempo de vida útil a 20 años para 178, 94 y 42 W en LED.

El costo horario de la mano de obra calificada en los grupos de trabajo y los costos indirectos generales de fabricación se obtuvieron del Departamento de Alumbrado Público de la EERCS.En el calculo del costo de la energía consumida por las luminarias de sodio y LED, se incluyen las pérdidas de energía propias de cada luminaria referenciadas por la Regulación 006/18 del ARCONEL;tomando como base el procedimiento para la

amortización no lineal de acuerdo al tiempo de vida útil y su costo anual en base al consumo de la energía.

Finalmente, para conocer si el proyecto de sustitución es rentable se realizó un análisis con los indicadores económicos VAN, TIR y RBC.

4.1 Determinación de parámetros de cálculo.

4.1.1 Plan de mantenimiento para las luminarias.

Se estableció un plan de mantenimiento preventivo para los dos tipos de luminarias, determinados por la vida útil de los elementos que conforman cada luminaria y referencia de los períodos de cambio utilizados en la EERCS[8].

Se determinó dos tipos de mantenimiento para las luminarias de Na: el primer mantenimiento parcial cada 4 años, donde se realiza un cambio de bombillo, inigtor, fotocélula y limpieza del difusor para luminarias de SNP y en el caso de luminarias de DNP se añade el relé programable. El segundo mantenimiento que se delimitó es total cada 8 años y se reemplaza; bombillo, inigtor, balastro, capacitor, fotocélula, relé programable para luminarias de DNP, se incluye la limpieza del difusor. La tabla 4.1 muestra el plan de mantenimiento preventivo en las luminarias de Na.

Tabla 4.1 Programación de mantenimiento de luminarias de Na.

PRO GRAMACIÓN DE CAMBIO DE ELEMENTOS EN LUMINARIAS DE SODIO									
ALUMBRADO PÚBLICO									
CAMBIOS DE ACCESORIOS DURANTE LA VIDA ÚTIL CONSIDERANDO MANTENIMIENTO PREVENTIVO									
						DNP			
Año	BOMBILLO	INIGTOR	BALASTRO	CAPACITOR	FOTOCÉLULA	RELÉ PROGRAMABLE			
Fin del 1er año									
Fin del 2do año									
Fin del 3er año									
Fin del 4to año	✓	✓			✓	✓			
Fin del 5to año									
Fin del 6to año									
Fin del 7mo año									
Fin del 8vo año	✓	✓	✓	✓	✓	✓			
Fin del 9no año									
Fin del 10mo año									
Fin del 11avo año									
Fin del 12avo año	✓	✓			✓	✓			
Fin del 13avo año									
Fin del 14avo año									
Fin del 15avo año		2				2			
Total de cambios	3	3	1	1	3	3			

Para las luminarias LED se definió un solo tipo de mantenimiento cada 5 años, donde se realiza un cambio de ; driver, limpieza de difusor y en caso de DNP se agrega el relé programable[8].

La tabla 4.2 continuación muestra el plan de mantenimiento para luminarias LED.

Tabla 4. 2 Programación de mantenimiento en luminarias LED.

	N DE CAMBIO DE ELE UMINARIAS LED.	MENTOS EN								
ALUMBRADO PÚBLICO										
CAMBIOS DE ACCESORIOS DURANTE LA VIDA ÚTIL CONSIDERANDO MANTENIMIENTO PREVENTIVO										
	DNP									
Año	DRIVER	RELÉ PROGRAMABLE								
Fin del 1er año										
Fin del 2do año										
Fin del 3er año										
Fin del 4to año										
Fin del 5to año	✓	✓								
Fin del 6to año										
Fin del 7mo año										
Fin del 8vo año										
Fin del 9no año										
Fin del 10mo año	✓	✓								
Fin del 11avo año										
Fin del 12avo año										
Fin del 13avo año										
Fin del 14avo año										
Fin del 15avo año	✓	✓								
Fin del 16avo año										
Fin del 17avo año										
Fin del 18avo año										
Fin del 19avo año										
Fin del 20avo año										
Total de cambios	3	3								

4.1.2 Costo de los materiales.

Sodio

Led

El precio inicial de las luminarias de sodio instaladas en la ciudad se obtuvo de los precios unitarios de la CENTROSUR, y para las luminarias LED el precio inicial se obtuvo de los principales distribuidores dentro del mercado local.

La tabla 4.3 muestra el costo inicial de las luminarias en SNP y DNP para luminarias de sodio y LED.

Tabla 4. 3 Precio inicial de las luminarias

178 W

Costos de las luminarias **DNP SNP** 250 W 150 W 100W

Tipo de luminaria 144,76 USD 223,6 USD 174,01 USD

94 W

42 W

582,4 USD 560 USD 470,4 USD

Por otra parte, los costos de cada uno de los elementos a reemplazar en el mantenimiento de las luminarias se obtuvieron atraves de locales comerciales de la ciudad. La tabla 4.4 muestra el precio de los elementos de las luminarias de Na y la

tabla 4.5 el precio de las luminarias LED, y la vida útil de los mismos[8].

Nota: Costo obtenido de distribuidores de luminarias en el mercado local.

Tabla 4. 4 Precio de los elementos a sustituir en las luminarias de Na.

COSTO ACCESO	COSTO ACCESORIOS DE LA LUMINARIA DE NA												
ELEMENTO S	Costo	Costo Unitario [USD]											
	100 W	150W	250W	años									
Costo bombilla	8,96	9,02	9,52	4,0									
Costo inigtor	5,80	5,80	5,80	4,0									
Costo balasto	8,90	10,00	15,00	10,0									
Costo Capacitor	2,22	3,10	4,00	10,0									
Costo fotocelula	6,20	6,20	6,20	5,0									
Relé programable	27,00	27,00	27,00	7,5									

Nota: Vida útil obtenida de catálogo de componentes, diferentes marcas.

La tabla siguiente muestra el precio del drive, el costo del relé programable y la vida útil de los elementos que conforman la luminaria LED[8].

Tabla 4. 5 Precio de los elementos a sustituir en las luminarias LED.

COSTO ACCESORIOS DE LA LUMINARIA LED											
	Cos	sto Unitario [[USD]	Vida Util							
ELEMENTO S	42W	94 W	178 W	años							
Costo driver	16,8	32	40,8	5,7							
Relé programable	27	27	27	7,5							

Nota: Catálogos de proveedores (vida útil) y costo distribuidores mercado local

4.1.3 Costo de la mano de obra

El costo de la mano de obra es variable considerado de acuerdo al tiempo empleado en el cambio de los elementos de las luminarias en cada mantenimiento, sin embargo, se tiene el costo por hora de los grupos de trabajo de la EERCS. El costo de la mano de obra por hora es igual para ambas luminarias, la tabla 4.6 indica el costo por hora y por minuto del supervisor de sistemas de distribución y electricista.

Tabla 4. 6 Costo por hora de la mano de obra.

COSTO HORARIO DELOS GRUPOS ALUMBRADO PÚBLI	DE TRABAJO TIPO DE LA	A EERCS.CA.	
CARGO	COST O/HORA HOMBRE/PROMEDIO	COST O/MINUT O HOMBRE/PROMEDIO	
SUPERVISOR DE SISTEMAS DE DISTRIBUCIÓN ELECTRICISTA	6,04 4,77		
COST O T OT AL DEL GRUPO	10,81	0,180	

Nota:Referencia del costo de EERCS.

4.1.4 Costos generales.

El costo del traslado del grupo de trabajo y las herramientas son considerados costos variables dentro del mantenimiento, de acuerdo al tiempo empleado en el cambio de los elementos para ambas luminarias, sin embargo, se tiene como

referencia el precio por hora de los costos generales, dato que se obtuvo del Departamento de Alumbrado Público de la CENTRO SUR[8].

La tabla 4.7 muestra el costo por hora del traslado del personal y herramientas.

Tabla 4. 7 Costos generales de las luminarias

COST OS GENERALES DE LUMINARIAS								
	COST O/HORA	COSTO/MINUTO						
	CGF/PROMEDIO	CGF/PROMEDIO						
COSTO VEHICULO "CARRO CANASTA FORD 350"	20,01							
HERRAMIENTAS	0,54							
COSTO TOTAL HORA DEL GRUPO	20,55	0,3425						

Nota: Referencia costo de EERCS.

4.1.5 Tiempos promedio de mantenimiento por luminaria.

El tiempo empleado en el cambio de los elementos de las luminarias es variable, dependiendo los elementos a sustituir; el tiempo empleado en los cambios tiene como referencia datos anteriores de los periodos de cambio realizados por los grupos de mantenimiento de la EERCS[8].

La tabla 4.7 muestra el tiempo empleado en el cambio de elementos de las luminarias de Na y el tiempo promedio de traslado al sitio de trabajo.

Tabla 4. 8 Tiempos establecidos para el cambio de elementos en las luminarias de Na.

Cambio de accesorios	Grupo	Minu	itos
Cambio de accesorios		Traslado	Trabajo
Luminaria			20
Bombilla	AP.		5
Inigtor	AP.		9
Balasto normal	AP.		10
Limpieza difusor	AP.		5
Balasto doble nivel	AP.		17
Capacitor reducido	AP.		14
Capacitor adicional	AP.		8
Fotocelula	AP.		4
		35	

Nota: Referencias de tiempo de trabajo de EERCS.

La tabla 4.8 muestra el tiempo empleado en el cambio del driver, limpieza del difusor y relé programable en luminarias de DNP, en el mantenimiento de una luminaria LED[25].

Tabla 4. 9 Tiempos establecidos para el cambio de elementos en luminarias LED.

Cambio de accesorios	Cruno	Minu	ıtos	Tiampa total
Cambio de accesorios	Grupo	Traslado	Trabajo	Tiempo total
Driver	AP.		17	17
Relé programable	AP.		12	12
Limpieza difusor	AP.		5	5
		35		

Nota: Relación de tiempo de trabajo de EERCS

4.1.6 Tasa de crecimiento.

Determinado el plan de mantenimiento para 15 años en luminarias de sodio y 20 años para luminarias LED, se estima un crecimiento porcentual para el costo de la mano de obra y el costo de los materiales durante el tiempo estimado.

La tasa de crecimiento para la mano de obra se analizó de acuerdo al promedio del salario básico unificado en los últimos 6 años dentro del país, el valor obtenido se muestra en la tabla 4.9 a continuación [26].

Tabla 4. 10 Tasa de crecimiento de la mano de obra.

AÑO	USD	%
2014	340	
2015	354	4,12%
2016	366	3,39%
2017	375	2,46%
2018	386	2,93%
2019	394	2,07%
2020	400	1,52%
		2,75%

La tasa de crecimiento para materiales de construcción se analizó de acuerdo al promedio del índice porcentual de materiales en los últimos años 5 años según datos del INEN, el valor obtenido se aprecia en la tabla 4.10[27].

Tabla 4. 11 Tasa de crecimiento de materiales de construcción.

AÑOS	DICIEMBRE	
2014	237,86	%
2015	244,17	6,31
2016	234,63	-9,54
2017	235,65	1,02
2018	239,15	3,50
2019	243,90	4,75
		1,21

Según referencia del INEN, existen datos hasta el año 2019.

4.2 Metodología de cálculo.

4.2.1 Costo de mantenimiento preventivo de las luminarias.

Establecido el plan de mantenimiento para cada luminaria y establecidos los parámetros de cálculo, se determinó el costo de mantenimiento.

Obtenidos los precios de los elementos y la tasa de crecimiento de materiales se calculó el costo de cada uno de los accesorios a 15 años para sodio y 20 años para LED.

La tabla 4.11 muestra el costo de seis accesorios evaluados en cada año proyectado para luminarias de sodio.

Tabla 4. 12 Resultado de la proyección de los elementos de las luminarias de sodio a 15 años.

	Lum	inaria	100 W	SNP				Lumii		OW DNI	•				Lumi	inaria 25	OW DNP	•	
Tasa	Гаsa crecim 1,21 %						Tasa crecim 1,21 %					Tasa cr	ecim	1,21	%				
		M	aterial	es					Mate	riales						Mat	eriales		
Año	Bombilla	Inigtor	Capacitor	Balasto	Fotocélula	Año	Bombilla	Inigtor	Balasto	Capacitor	Fotocélula	Relé programable	Año	Bombilla	Inigtor	Balasto	Capacitor	Fotocélula	Relé programable
0	8,96	5,80	2,22	8,90	6,20	0	9,02	5,80	10,00	3,10	6,20	27,00	0	9,52	5,80	15,00	4,00	6,20	27,00
1	9,07	5,87	2,25	9,01	6,28	1	9,13	5,87	10,12	3,14	6,28	27,33	1	9,64	5,87	15,18	4,05	6,28	27,33
2	9,18	5,94	2,27	9,12	6,35	2	9,24	5,94	10,24	3,18	6,35	27,66	2	9,75	5,94	15,37	4,10	6,35	27,66
3	9,29	6,01	2,30	9,23	6,43	3	9,35	6,01	10,37	3,21	6,43	27,99	3	9,87	6,01	15,55	4,15	6,43	27,99
4	9,40	6,09	2,33	9,34	6,51	4	9,46	6,09	10,49	3,25	6,51	28,33	4	9,99	6,09	15,74	4,20	6,51	28,33
5	9,52	6,16	2,36	9,45	6,58	5	9,58	6,16	10,62	3,29	6,58	28,67	5	10,11	6,16	15,93	4,25	6,58	28,67
6	9,63	6,23	2,39	9,57	6,66	6	9,69	6,23	10,75	3,33	6,66	29,02	6	10,23	6,23	16,12	4,30	6,66	29,02
7	9,75	6,31	2,41	9,68	6,74	7	9,81	6,31	10,88	3,37	6,74	29,37	7	10,36	6,31	16,32	4,35	6,74	29,37
8	9,86	6,39	2,44	9,80	6,83	8	9,93	6,39	11,01	3,41	6,83	29,73	8	10,48	6,39	16,52	4,40	6,83	29,73
9	9,98	6,46	2,47	9,92	6,91	9	10,05	6,46	11,14	3,45	6,91	30,09	9	10,61	6,46	16,71	4,46	6,91	30,09
10	10,11	6,54	2,50	10,04	6,99	10	10,17	6,54	11,28	3,50	6,99	30,45	10	10,74	6,54	16,92	4,51	6,99	30,45
11	10,23	6,62	2,53	10,16	7,08	11	10,30	6,62	11,41	3,54	7,08	30,82	11	10,87	6,62	17,12	4,57	7,08	30,82
12	10,35	6,70	2,56	10,28	7,16	12	10,42	6,70	11,55	3,58	7,16	31,19	12	11,00	6,70	17,33	4,62	7,16	31,19
13	10,48	6,78	2,60	10,41	7,25	13	10,55	6,78	11,69	3,62	7,25	31,57	13	11,13	6,78	17,54	4,68	7,25	31,57
14	10,60	6,86	2,63	10,53	7,34	14	10,67	6,86	11,83	3,67	7,34	31,95	14	11,27	6,86	17,75	4,73	7,34	31,95
15	10,73	6,95	2,66	10,66	7,43	15	10,80	6,95	11,98	3,71	7,43	32,34	15	11,40	6,95	17,97	4,79	7,43	32,34

Nota: El análisis de DNP a diferencia del SNP añade el relé programable en el mantenimiento.

En luminarias LED se realiza la misma proyección en el costo de dos materiales que se observan en la tabla 4.12.

Tabla 4. 13 Resultados de la proyección de los elementos de las luminarias LED en 20 años.

Luminaria L	ED 42 W SNP	Luminari	a LED 94	W DNP	Lumina	ria LED 1	78 W DNP
Tasa crecim	1,21	Tasa crecim	1,21	%	Tasa crecim	Tasa crecim 1,21	
	Materiales		Ma	teriales		Ma	teriales
Año	Driver	Año	Driver	Relé programa ble	Año	Driver	Relé programa ble
0	16,80	0	32,00	27,00	0	40,80	27,00
1	17,00	1	32,39	27,33	1	41,29	27,33
2	17,21	2	32,78	27,66	2	41,79	27,66
3	17,42	3	33,17	27,99	3	42,30	27,99
4	17,63	4	33,57	28,33	4	42,81	28,33
5	17,84	5	33,98	28,67	5	43,32	28,67
6	18,06	6	34,39	29,02	6	43,85	29,02
7	18,27	7	34,81	29,37	7	44,38	29,37
8	18,49	8	35,23	29,72	8	44,91	29,72
9	18,72	9	35,65	30,08	9	45,46	30,08
10	18,94	10	36,08	30,44	10	46,01	30,44
11	19,17	11	36,52	30,81	11	46,56	30,81
12	19,40	12	36,96	31,18	12	47,12	31,18
13	19,64	13	37,41	31,56	13	47,69	31,56
14	19,88	14	37,86	31,94	14	48,27	31,94
15	20,12	15	38,32	32,33	15	48,85	32,33
16	20,36	16	38,78	32,72	16	49,44	32,72
17	20,60	17	39,25	33,11	17	50,04	33,11
18	20,85	18	39,72	33,51	18	50,64	33,51
19	21,11	19	40,20	33,92	19	51,26	33,92
20	21,36	20	40,69	34,33	20	51,87	34,33

Para luminarias de sodio se muestran dos tipos de mantenimiento; un mantenimiento parcial y un mantenimiento total. El mantenimiento parcial se realiza cada 4 años y se ejecuta el cambio de tres elementos para luminarias de SNP en un tiempo promedio de 23 minutos y cuatro elementos para luminarias de DNP con un tiempo promedio de 30 minutos.

El mantenimiento total realiza un cambio de elementos cada 8 años y ejecuta el cambio de cinco elementos para SNP en un tiempo aproximado de 55 minutos y seis elementos para DNP en un tiempo aproximado de 61 minutos.

La tabla 4.14 muestra el costo de mano de obra total por mantenimiento según el tiempo empleado en cada material sustituido.

Tabla 4. 14 Costo de mano de obra en luminarias de sodio según el tiempo empleado en las sustitución de materiales.

L	uminaı	ia Na SN	NP		Lumina	ria Na Di	NP
Cost	o mano	de obra pa	arcial	Co	osto mano	o de obra p	arcial
[uim]	Traslado Mano de obra Costo de traslado Costo mano de obra		ii. Traslado	iii Mano de iii obra	Costo de Costo de traslado	Costo mano de obra	
35	23	11,988	4,143833	35	30	11,99	5,41
Cos	to mano	de obra t	otal	(Costo man	o de obra	total
35	55	11,988	9,909167	35	61	11,99	10,99

En luminarias LED se emplea un tipo de mantenimiento, el cual realiza un cambio total de elementos; driver, limpieza de difusor y relé programable en caso de DNP cada 5 años. Para luminarias de SNP se emplea un tiempo promedio de 22 minutos, mientras que para DNP se emplea un tiempo promedio de 34 minutos.

La tabla 4.14 muestra el costo por mantenimiento en luminarias LED.

Tabla 4. 15 Costo de mano de obra en luminarias LED según el tiempo empleado en cambio de materiales.

	Luminar	ia LED S	NP	I	uminar	ia LED l	DNP
C	osto mant	enimiento	total	Cos	sto mant	enimient	o total
Traslado	ano				Mano de obra	Costo de traslado	Costo mano de obra
[min]	[min]	[USD]	[USD]	[min]	[min]	[USD]	[USD]
35	22	11,988	3,96	35	34	11,99	6,125667

Obtenido el costo de mano de obra por mantenimiento parcial y total para luminarias de sodio en SNP y DNP, conjuntamente con la tasa de crecimiento de la mano de obra se proyectó el costo para 15 años.

La tabla 4.15 muestra el costo de la mano de obra en para mantenimiento parcial y total en las luminarias de SNP y DNP en cada año consecutivamente con la tasa de crecimiento del 2,75 %.

Tabla 4. 16 Costo de mano de obra prolongada a 15 años.

Costo	mano de o años	bra en 15	Costo 1	nano de ob años	ra en 15	
g o	SNP	0,03	c sa	DNP	0,03	
Tasa	2,75%		Tasa crec	2,75%		
Año	M.Parcial	M.Total	Año	M.Parcial	M.Total	
0	4,14	9,91	0	5,41	10,99	
1	4,26	10,18	1	5,55	11,29	
2	4,37	10,46	2	5,71	11,60	
3	4,50	10,75	3	5,86	11,92	
4	4,62	11,04	4	6,02	12,25	
5	4,75	11,35	5	6,19	12,59	
6	4,88	11,66	6	6,36	12,93	
7	5,01	11,98	7	6,53	13,29	
8	5,15	12,31	8	6,71	13,65	
9	5,29	12,65	9	6,90	14,03	
10	5,43	13,00	10	7,09	14,41	
11	5,58	13,35	11	7,28	14,81	
12	5,74	13,72	12	7,48	15,22	
13	5,90	14,10	13	7,69	15,64	
14	6,06	14,49	14	7,90	16,07	
15	6,22	14,88	15	8,12	16,51	

De igual manera para luminarias LED se realizó el mismo análisis, se proyectó el valor actual de mantenimiento a 20 años, para luminarias de SNP y DNP.

La tabla 4.16 muestra el detalle del costo de mano de obra por cambio de elementos en cada año consecutivamente.

Tabla 4. 17 Costo de mano en luminarias LED prologada para 20 años.

СМО	20 años	СМО	20 años
	SNP		SNP
Tasa	2,75%	Tasa crec	2,75%
Año	M.Total	Año	M.Total
0	3,96	0	6,13
1	4,07	1	6,29
2	4,18	2	6,47
3	4,30	3	6,64
4	4,42	4	6,83
5	4,54	5	7,02
6	4,66	6	7,21
7	4,79	7	7,41
8	4,92	8	7,61
9	5,06	9	7,82
10	5,20	10	8,03
11	5,34	11	8,25
12	5,49	12	8,48
13	5,64	13	8,72
14	5,79	14	8,95
15	5,95	15	9,20
16	6,12	16	9,45
17	6,29	17	9,71
18	6,46	18	9,98
19	6,64	19	10,26
20	6,82	20	10,54

Una vez obtenido el costo de mano de obra, costo de materiales y el costo de traslado por el grupo de trabajo y herramientas, se realizó un complemento que muestra el costo de mantenimiento por cada luminaria en los 4 y 12 años con mantenimiento parcial y a los 8 años mantenimiento total.

La tabla 4.17 muestra el costo de material, costo de mano de obra y costos generales el cual implica costo de traslado de los grupos y costo de herramientas, detallando el subtotal por cada año y el costo total de mantenimiento en los 15 años para luminarias de sodio en SNP y DNP.

Tabla 4. 18Costo de mantenimiento en luminarias de sodio de SNP y DNP.

		-			LUMINA	ARIAS N	Ī A			•	
LU	MINAR	IA 100W	SNP	LUI	MINARI	A 150W	DNP	LU	MINARI	A 250W	DNP
Costo de material	Costo mano obra	Costos generales	Subtotal	Costo de material	Costo mano obra	Costos generales	Subtotal	Costo de material	Costo mano obra	Costos generales	Subtotal
21,99	4,62	11,99	38,60	50,39	6,02	11,99	68,40	50,91	6,02	11,99	68,92
35,32	12,31	11,99	59,62	67,29	13,65	11,99	92,93	74,34	13,65	11,99	99,98
24,21	5,74	11,99	41,94	55,48	7,48	11,99	74,95	56,05	7,48	11,99	75,52
Total n	nant.	USD	140,16	Total n	ıant.	USD	236,3	Total m	ant.	USD	244,43

En luminarias LED se realizó un complemento que muestra el costo de mantenimiento por cada 5 años que se realiza un mantenimiento total.

La tabla 4.18 muestra el costo de material, costo de mano de obra y costos generales el cual implica costo de traslado de los grupos y costo de herramientas, detallando el subtotal por cada año y el costo total de mantenimiento en los 20 años para luminarias en SNP y DNP.

Tabla 4. 19 Costo de mantenimiento en luminarias LED de SNP Y DNP.

					LUMIN	ARIAS I	LED					
	5	SNP					Di	NP				
	LUMIN	ARIA 42V	V		LUMIN.	ARIA 94	W]	LUMINARIA 178 W			
Costo de material	Costo mano obra	Costos generales	Subtotal	Costo de material	Costo mano obra	Costos generales	Subtotal	Costo de material	Costo mano obra	Costos generales	Subtotal	
17,84	4,54	11,988	22,38	62,65	7,02	11,99	81,65	72,00	7,02	11,99	91,00	
18,94	5,20	11,988	24,14	66,53	8,03	11,99	86,55	76,45	8,03	11,99	96,47	
20,12	5,95	11,988	26,07	70,64	9,20	11,99	91,83	81,18	9,20	11,99	102,37	
Total m	ant	USD	72,59	Total m	ant	USD	260.02	Total m	ant	USD	289,8	

Con los datos obtenidos del mantenimiento y el precio de la luminaria se muestra el total del costo de las luminarias en 15 años para sodio y 20 años para luminarias LED, dentro la inversión inicial se añade otro costo fijo en este caso el precio del brazo. La tabla 4.19 muestra el costo de mantenimiento más el costo de inversión en los 15 años en las luminarias de 100, 150 y 250 W de SNP y DNP.

Tabla 4. 20 Costo de inversión inicial de sodio en 15 años.

Luminarias de Na									
G . 15 ~	SNP	DNP							
Costos 15 años	100 W	150 W	250 W						
Inversión de la luminaria	\$ 144,76	\$ 174,01	\$ 223,60						
Inversión del brazo	\$ 15,00	\$ 15,00	\$ 15,00						
Total 1	\$ 159,76	\$ 189,01	\$ 238,60						
Costo de mantenimiento	\$ 140,16	\$ 236,28	\$ 244,43						
Total 2	\$ 140,16	\$ 236,28	\$ 244,43						
Costo inver + mant.	\$ 299,92	\$ 425,29	\$ 483,03						

Nota: El costo del brazo se obtiene del Departamento de Alumbrado Público de la EERCS.

La tabla 4.20 muestra el costo de mantenimiento más el costo de inversión en los 20 años según la vida útil en las luminarias de 42, 94 y 178 W de SNP y DNP.

Tabla 4. 21 Costo de la luminaria LED en 20 años.

Costo de una	lun	ninaria LED	en	20 años			
Costos en 20 años		SNP	DNP				
		42 W		94 W		178 W	
Inversión inicial	\$	470,40	\$	560,00	\$	582,40	
Inversión del brazo	\$	15,00	\$	15,00	\$	15,00	
Total 1	\$	485,40	\$	575,00	\$	597,40	
Costo de mantenimiento	\$	72,59	\$	260,03	\$	289,84	
Total 2	\$	72,59	\$	260,03	\$	289,84	
Costo inver + mant.	\$	557,99	\$	835,03	\$	887,24	

Nota: El costo del brazo se obtiene del Departamento de Alumbrado Público de la EERCS.

La tabla 4.21 muestra el costo de mantenimiento más el costo de inversión en los 15 años según el consumo de energía en las luminarias de 42, 94 y 178 W de SNP y DNP.

Tabla 4. 22 Costo de la luminaria LED en 15 años.

Costo de un	a lun	ninaria LEI) en	15 años		
Costos en 15 años		SNP		Dì	NΡ	
Costos en 13 anos	42 W			94 W	178 W	
Inversión inicial	\$	470,40	\$	560,00	\$	582,40
Inversión del brazo	\$	\$ 15,00		15,00	\$	15,00
Total 1	\$	485,40	\$	575,00	\$	597,40
Costo de mantenimiento	\$	46,52	\$	168,20	\$	187,47
Total 2	\$	46,52	\$	168,20	\$	187,47
Inversión total [USD]	\$	531,92	\$	743,20	\$	784,87

Nota: El costo del brazo se obtiene del Departamento de Alumbrado Público de la EERCS.

Obtenidos el costo de las luminarias incluyendo el costo de mantenimiento que requiere en su vida útil, se calculó el costo de energía en los años establecidos.

Para el cálculo de la energía se consideró las pérdidas de las luminarias referidos en la Regulación 006/18 de Alumbrado Público del MERNNR, y se calculó el DNP en luminarias de sodio y luminarias LED.

4.1.2 Costo de energía consumida por las luminarias de vapor de sodio y LED.

Para determinar el costo de la energía en las luminarias de sodio de 100 W en SNP se consideró el 15 % de pérdidas de energía propias de la luminaria, mientras que en la luminaria LED de 48 W SNP se consideró 10 % de pérdidas de energía referidos por la Regulación 006/18 del ARCONEL. La tabla 4.22 muestra el costo de la energía consumida en un año por una luminaria, la misma que es prolongada a 15 años para sodio y 20 años para LED, establecido 0,10 ctvs. el precio kW/ hora en el año actual; el precio de la energía se mantiene para el periodo establecido debido a la incertidumbre que presenta para años futuros.

Tabla 4. 23 Costo de la energía consumida por luminaria de Na 100 W y luminaria LED de 48 W de SNP.

	COSTO DE LA ENERGÍA										
	Lumii	naria de Na 10	0 W SNP	Luminaria LED 48 W SNP							
Año	Kw/hora	USD/kW	Costo [USD]	kW/hora LED	Costo [USD]						
1 año	503,70	0,10	50,37	202,36	20,24						
15 años	503,70	0,10	755,55	202,36	303,53						
20 años		0,10		202,36	404,7						

Para determinar el costo de la energía en las luminarias de sodio de 150 W en DNP se consideró el 13 % de pérdidas de energía propias de la luminaria, mientras que en la luminaria LED de 94 W SNP se consideró 10 % de pérdidas de energía según la Regulación 006/18 del ARCONEL[10]. La tabla 4.23 muestra el costo de la energía consumida en un año, prolongada a 15 años y 20 años correspondiente a la vida útil de cada luminaria.

Tabla 4. 24 Costo de la energía consumida por luminaria de Na de 150W y luminaria LED de 94W de DNP.

	COSTO DE LA ENERGÍA										
Año	Lumin	aria de Na 150	Luminaria LED 94 W DNP								
Allo	Kw/hora	USD/kW	Costo [USD]	kW/hora	Costo [USD]						
1 año	601,66	0,10	60,17	367,03	36,70						
15 años	601,66	0,10	902,49	367,03	550,55						
20 años		0,10		367,03	734,06						

Para determinar el costo de la energía en las luminarias de sodio de 250 W en DNP se consideró el 12 % de pérdidas de energía propias de la luminaria, mientras que en la luminaria LED de 178 W DNP se consideró 10 % de pérdidas de energía

según la Regulación 006/18 del ARCONEL[10]. La tabla 4.24 muestra el costo de la energía consumida por las luminarias.

Tabla 4. 25 Costo de la energía consumida por luminaria de Na de 250W y luminaria LED de 178W DNP.

	COSTO DE LA ENERGÍA										
	Lumin	aria de Na 25	Luminaria LED 178 W DNP								
Año	Kw/hora	USD/kW	Costo [USD]	kW/hora	Costo [USD]						
1 año	993,90	0,1	99,3895	695,02	69,50						
15 años	993,90	0,1	1490,8425	695,02	1042,52						
20 años		0,1		695,02	1390,03						

4.2.2 Costo anual de las luminarias LED frente a las luminarias de vapor de sodio.

Determinados el costo de la luminaria, el mantenimiento y el costo de la energía para los dos tipos de luminaria. Se realizó un análisis entre las dos luminarias según la vida útil de las mismas y la energía consumida en el mismo período de tiempo para las dos luminarias. Se analizó costo anual de los tipos de luminarias, donde se muestra el costo anual según la vida útil de ambas luminarias y el costo anual por período de consumo de energía en 15 años. La tabla 4.25 muestra el costo en 15 años de las luminarias de sodio y el costo en 15 y 20 años de la luminaria LED.

Tabla 4. 26 Síntesis económico para el reemplazo de luminarias de sodio por luminarias LED.

Tipo de luminaria	Costos			•	Potencia	•	
i ipo de idiminaria	Costos		D	50W 150W 100 483,03 \$ 425,29 \$ 2 .490,84 \$ 902,49 \$ 7 .973,87 \$ 1.327,78 \$ 1.0 131,59 \$ 88,52 \$ 78W 94W 42 784,87 \$ 743,20 \$ 5 .042,52 \$ 550,55 \$ 3 .827,39 \$ 1.293,75 \$ 8 121,83 \$ 86,25 \$ 78W 94W 42 887,24 \$ 835,03 \$ 5 .390,03 \$ 734,06 \$ 4	SNP		
	Costos 15 años	250W			150W	100W	
	Inversión + mant	\$	483,03	\$	425,29	\$	299,92
SODIO	Energía	\$	1.490,84	\$	902,49	\$	755,55
	Total 15 años	\$	1.973,87	\$	1.327,78	\$	1.055,47
	Anual	\$	131,59	\$	88,52	\$	70,36
	Costos 15 años		178W		94W		42W
	Inversión + mant	\$	784,87	\$	743,20	\$	531,92
	Energía	\$	1.042,52	\$	550,55	\$	303,53
	Total 15 años	\$	1.827,39	\$	1.293,75	\$	835,45
LED	Anual	\$	121,83	\$	86,25	\$	55,70
	Costos 20 años		178W		94W		42W
	Inversión + mant	\$	887,24	\$	835,03	\$	557,99
	Energía	\$	1.390,03	\$	734,06	\$	404,71
	Total 20 años	\$	2.277,27	\$	1.569,10	\$	962,70
	Anual	\$	113,86	\$	78,45	\$	48,14

4.2.3 Rentabilidad de la sustitución de luminarias de sodio por LED.

4.2.3.1 Luminaria de sodio de 250W y luminaria LED de 178 W.

Se determinó la rentabilidad del cambio de luminarias atraves del análisis económico de los materiales y la mano de obra que interviene en las mismas, proyectado a 15 años (vida útil de luminaria de sodio), y el consumo de energía por cada luminaria en dicho período. La tabla 4.26 muestra un análisis detallado del estudio económico de la luminaria de 250 W de sodio y 178 W LED, mostrando el año en que la sustitución es rentable.

Tabla 4. 27 Evaluación financiera del proyecto luminarias Na 250W y luminarias LED 178W DNP.

		Luminaria de	Na 250W DN	P	Luminaria LED 178W DNP					
Descripción	Año	Costo inversión + costo mant.	Energía consumida	TOTAL	Descripción	Costo inversión + costo mant.	Energía consumida	TOTAL	VAN	TIR
ial	0	\$ 483,03	\$ -	\$ 483,03	1	\$ 784,87	\$ -	\$ 784,87	\$-301,84	0,62
Costo incial	1	\$ 483,03	\$ 99,39	\$ 582,42	Costo inicial	\$ 784,87	\$ 69,50	\$ 854,37	\$-271,95	0,68
osto	2	\$ 483,03	\$ 198,78	\$ 681,81	to in	\$ 784,87	\$ 139,00	\$ 923,87	\$-242,06	0,74
ŭ	3	\$ 483,03	\$ 298,17	\$ 781,20	Cost	\$ 784,87	\$ 208,50	\$ 993,37	\$-212,17	0,79
ا نا	4	\$ 551,95	\$ 397,56	\$ 949,51		\$ 784,87	\$ 278,00	\$ 1.062,87	\$-113,36	0,89
ler mant.	5	\$ 551,95	\$ 496,95	\$ 1.048,90		\$ 875,87	\$ 347,50	\$ 1.223,37	\$-174,47	0,86
er r	6	\$ 551,95	\$ 596,34	\$ 1.148,29	ınt.	\$ 875,87	\$ 417,00	\$ 1.292,87	\$-144,58	0,89
	7	\$ 551,95	\$ 695,73	\$ 1.247,68	ler mant.	\$ 875,87	\$ 486,50	\$ 1.362,37	\$-114,69	0,92
ıt.	8	\$ 651,93	\$ 795,12	\$ 1.447,05	1е	\$ 875,87	\$ 556,00	\$ 1.431,87	\$ 15,18	1,01
2do mant.	9	\$ 651,93	\$ 894,51	\$ 1.546,44		\$ 875,87	\$ 625,50	\$ 1.501,37	\$ 45,07	1,03
op	10	\$ 651,93	\$ 993,90	\$ 1.645,83		\$ 972,34	\$ 695,00	\$ 1.667,34	\$ -21,51	0,99
-2	11	\$ 651,93	\$ 1.093,29	\$ 1.745,22	t	\$ 972,34	\$ 764,50	\$ 1.736,84	\$ 8,38	1,00
	12	\$ 727,46	\$ 1.192,68	\$ 1.920,14	man	\$ 972,34	\$ 834,00	\$ 1.806,34	\$ 113,80	1,06
ınt.	13	\$ 727,46	\$ 1.292,07	\$ 2.019,53	2do mant.	\$ 972,34	\$ 903,50	\$ 1.875,84	\$ 143,69	1,08
3er mant.	14	\$ 727,46	\$ 1.391,46	\$ 2.118,92	2	\$ 972,34	\$ 973,00	\$ 1.945,34	\$ 173,58	1,09
Зеі	15	\$ 727,46	\$ 1.490,85	\$ 2.218,31		\$ 972,34	\$ 1.042,50	\$ 2.014,84	\$ 203,47	1,10
то	TAL	\$ 9.657,47	\$ 11.926,80	\$21.584,27		\$ 14.137,73	\$ 8.340,00	\$ 22.477,73	RBC	0,92

Los resultados de la evaluación financiera en luminarias sodio, muestra que la inversión inicial y componente de mantenimiento en el que incluye los materiales y la mano de obra en los 15 años, nos da un valor de USD 727,46. Entre tanto para el costo por la energía consumida nos da un valor de USD 1490,85. Por lo que tenemos un valor total de inversión en los 15 años de USD 2218,31.

El análisis para luminarias LED registra un valor de USD 972,34 en costos de mantenimiento sumada mano de obra e inversión inicial, para el costo de la energía consumida un valor de USD 1042,52. Lo que nos da un valor total de inversión de

USD 2014,84. En relación al TIR, el año 11 muestra un valor de 1,00, el cuál determina el año en que se comienza a recuperar la inversión.

Para determinar el VAN del proyecto se realizó un análisis comparativo entre ambas luminarias, determinando la diferencia porcentual y monetaria entre ellas. La tabla 4.27 presenta los resultados del análisis financiero.

Tabla 4. 28 Tabla comparativa de inversión entre luminarias Na de 250 W y LED de 178 W.

Tabla comparativa entre luminarias.				
Costos 15 años	Vapor de sodio	LED	Diferencia	%
Costo de inversión y mano de obra	\$ 9.657,47	\$ 14.137,73	\$ -4.480,25	62,90
Costo de energía	\$ 11.926,80	\$ 8.340,00	\$ 3.586,80	37,10
Total	\$ 21.584,27	\$ 22.477,73	\$ -893,45	-25,79

Se puede observar, el proyecto con las condiciones establecidas dentro del análisis muestra; un ahorro del 29 % aproximadamente en potencia instalada; con relación a los precios de inversión, accesorios, tiempos de mantenimiento y costo de energía nos da como resultado final de la sustitución de luminarias de 250 W de sodio por luminaria de 178 W un VAN NEGATIVO de USD -893,45 para los 15 años de proyección. En relación con los costos de inversión muestra un valor (-) debido a la inversión inicial del proyecto (costo luminaria) en USD -4480,25. Financieramente muestra que el proyecto **NO ES RENTABLE** para los 15 años de horizonte, más bien resulta una inversión global mayor de un 25,79 %, esto debido principalmente a los altos costos iniciales de compra de los equipos led.

Con fundamentos en los resultados, se considera un análisis de sensibilidad financiera en relación de sus costos y consumo de energía.La tabla 4.28 muestra el análisis de la sensibilidad financiera mostrando el costo de la inversión inicial y el costo de la energía porcentuales de su valor, y la reducción de la potencia instalada en los mismos porcentajes[25].

Tabla 4. 29 Sensibilidad financiera del cambio de luminaria de 178 W LED.

Luminaria LED 178 W DNP										
					Reducción al consumo de la ener					n energía
VAN	VAN \$ -893,45					0%		10%		20%
Relación actual				tencia		178		160,2		142,4
		0%	\$	582,40	\$	-893,45	\$	-150,35	\$	586,35
Reducción del costo de la luminaria LED		10%	\$	524,16	\$	38,39	\$	775,09	\$	1.511,79
iuiiiiiaiia LED		20%	\$	465,92	\$	970,23	\$	1.706,93	\$	2.443,63

Como conclusión del análisis de sensibilidad podemos mencionar que el proyecto tiene mejores rendimientos financieros con el costo inicial de la luminaria (USD 38,39 Vs USD -150,35) que el costo de energía.

Mostrando los resultados siguientes: Se puede mencionar que el proyecto sería **RENTABLE** si el precio de las luminarias disminuyera un 10%.

4.2.3.2 Luminaria de sodio de 150 W y luminaria LED de 94 W.

De igual manera para las luminarias de 150 W de sodio y 94 W LED se determinó la rentabilidad atraves del análisis económico de los materiales y la mano de obra que interviene en las mismas, proyectado a 15 años (vida útil de luminaria de sodio), y el consumo de energía por cada luminaria en dicho período. La tabla 4.29 muestra la evaluación financiera en el periodo determinado y el año de retorno del proyecto.

Tabla 4. 30 Evaluación financiera del proyecto luminarias Na 150W y luminarias LED 94 W DNP.

		Lum	inaria de	Na	150W DN	P		Luminaria LED 94 W DNP					P		Año retorn	
Descripción	Año	Costo	inversión + costo mant.		Energía consumida		TOTAL	Descripción	Costo	inversión + costo mant.		Energía consumida		TOTAL	VAN	TIR
al	0	\$	425,29	\$	-	\$	425,29		\$	758,20	\$	-	\$	758,20	\$-332,91	0,56
inci	1	\$	425,29	\$	60,17	\$	485,46	icia	\$	758,20	\$	36,70	\$	794,90	\$-309,44	0,61
Costo incial	2	\$	425,29	\$	120,34	\$	545,63	Costo inicial	\$	758,20	\$	73,40	\$	831,60	\$-285,97	0,66
ŭ	3	\$	425,29	\$	180,51	\$	605,80	Cos	\$	758,20	\$	110,10	\$	868,30	\$-262,50	0,70
نبا	4	\$	493,69	\$	240,68	\$	734,37		\$	758,20	\$	146,80	\$	905,00	\$-170,63	0,81
nan	5	\$	493,69	\$	300,85	\$	794,54		\$	839,86	\$	183,50	\$	1.023,36	\$-228,82	0,78
ler mant.	6	\$	493,69	\$	361,02	\$	854,71	ınt.	\$	839,86	\$	220,20	\$	1.060,06	\$-205,35	0,81
	7	\$	493,69	\$	421,19	\$	914,88	ler mant.	\$	839,86	\$	256,90	\$	1.096,76	\$-181,88	0,83
jt l	8	\$	586,62	\$	481,36	\$	1.067,98	1e	\$	839,86	\$	293,60	\$	1.133,46	\$ -65,47	0,94
2do mant.	9	\$	586,62	\$	541,53	\$	1.128,15		\$	839,86	\$	330,30	\$	1.170,16	\$ -42,00	0,96
opa	10	\$	586,62	\$	601,70	\$	1.188,32		\$	926,41	\$	367,00	\$	1.293,41	\$-105,08	0,92
(1	11	\$	586,62	\$	661,87	\$	1.248,49	ıt.	\$	926,41	\$	403,70	\$	1.330,11	\$ -81,61	0,94
	12	\$	661,57	\$	722,04	\$	1.383,61	mar	\$	926,41	\$	440,40	\$	1.366,81	\$ 16,80	1,01
ant.	13	\$	661,57	\$	782,21	\$	1.443,78	2do mant.	\$	926,41	\$	477,10	\$	1.403,51	\$ 40,27	1,03
3er mant.	14	\$	661,57	\$	842,38	\$	1.503,95	(1	\$	926,41	\$	513,80	\$	1.440,21	\$ 63,74	1,04
36	15	\$	661,57	\$	902,55	\$	1.564,12		\$	926,41	\$	550,50	\$	1.476,91	\$ 87,21	1,06
TO	TAL	\$	8.668,68	\$	7.220,40	\$1	5.889,08		\$ 1	3.548,72	\$	4.404,00	\$	17.952,72	RBC	0,85

Los resultados de la evaluación financiera en luminarias sodio, muestra que la inversión inicial y componente de mantenimiento en el que incluye los materiales y la mano de obra en los 15 años, nos da un valor de USD 661,57. Entre tanto para el costo por la energía consumida nos da un valor de USD 902,55. Por lo que tenemos un valor total de inversión en los 15 años de USD 1564,12.

El análisis para luminarias LED registra un valor de USD 926,41 en costos de mantenimiento sumada mano de obra e inversión inicial, para el costo de la energía consumida un valor de USD 550,50. Lo que nos da un valor total de inversión de USD 1476,91. En relación al TIR, el año 12 muestra un valor de 1,01, el cuál determina el año en que se comienza a recuperar la inversión.

Para determinar el VAN del proyecto se realizó un análisis comparativo entre ambas luminarias, determinando la diferencia porcentual y monetaria entre ellas. La tabla 4.30 presenta el análisis resultante del análisis financiero.

Tabla 4. 31 Tabla comparativa de inversión entre luminarias Na de 150 W y LED de 94 W.

Tabla comparativa entre luminarias.									
Costos 15 años	Vapor de sodio	LED	Diferencia	%					
Costo de inversión y mano de obra	\$ 8.668,68	\$ 13.548,72	\$ -4.880,05	75,47					
Costo de energía	\$ 7.220,40	\$ 4.404,00	\$ 2.816,40	24,53					
Total	\$ 15.889,08	\$ 17.952,72	\$ -2.063,65	50,94					

Se puede observar, el proyecto con las condiciones establecidas dentro del análisis muestra; un ahorro del 37 % aproximadamente en potencia instalada; con relación a los precios de inversión, accesorios, tiempos de mantenimiento y costo de energía nos da como resultado final de la sustitución de luminarias de 150 W de sodio por luminaria de 94 W un VAN negativo de USD -2063,65 para los 15 años de proyección. En relación con los costos de inversión muestra un valor (-) debido a la inversión inicial del proyecto (costo luminaria) en USD -4880,05. Mostrando los resultados siguientes: Se puede mencionar que el proyecto **NO ES RENTABLE** al término de los 15 años.

Con fundamentos en los resultados, se considera un análisis de sensibilidad financiera en relación de sus costos y consumo de energía.La tabla 4.31 muestra el análisis de la sensibilidad financiera mostrando el costo de la inversión inicial y el costo de la energía porcentuales de su valor, y la reducción de la potencia instalada en los mismos porcentajes.

Tabla 4. 32 Sensibilidad financiera del cambio de luminaria de 94 W LED

Luminaria LED 94 W DNP									
			Reducción al consumo de la ener						
VAN	\$ -2.063,65		0%	10%	20%				
Relación actual	Potencia	94	84,6	75,2					
	0%	\$ 575,00	\$-2.063,65	\$ -1.623,25	\$-1.182,85				
Reducción del costo de la	10%	\$ 517,50	\$-1.143,65	\$ -703,25	\$ -262,85				
luminaria LED	20%	\$ 460,00	\$ -223,65	\$ -216,75	\$ 657,15				
	30%	\$ 402,50	\$ 696,35	\$ 1.136,75	\$ 1.577,15				

Como conclusión del análisis de sensibilidad podemos mencionar que el proyecto tiene mejores rendimientos económicos en costo de la inversión inicial (USD 696,35 Vs USD -1182,85) que el costo de la energía.

Mostrando los resultados siguientes: Se puede mencionar que el proyecto sería **RENTABLE** si el precio de las luminarias disminuyera un 30%.

4.2.3.3 Luminaria de sodio de 100 W y luminaria LED de 42 W.

Para las luminarias de 100 W de sodio y 42 W LED se determinó la rentabilidad atraves del análisis económico de los materiales y la mano de obra que interviene en las mismas, proyectado a 15 años (vida útil de luminaria de sodio), y el consumo de energía por cada luminaria en dicho período. La tabla 4.32 muestra la evaluación financiera en el periodo determinado y el año de retorno del proyecto.

Tabla 4. 33 Evaluación financiera del proyecto luminarias Na 100W y luminarias LED 42 W DNP.

	Luminaria de Na 100W DNP							Luminaria LED 42 W DNP					P		Año retorn	
Descripció n	Año	Costo	inversión + costo mant.		Energía consumida		TOTAL	Descripció n	Costo	inversión + costo mant.		Energía consumida		TOTAL	VAN	TIR
al	0	\$	299,92	\$	-	\$	299,92		\$	531,92	\$	-	\$	531,92	\$-232,00	0,56
inci	1	\$	299,92	\$	50,37	\$	350,29	icia	\$	531,92	\$	20,24	\$	552,16	\$-201,87	0,63
Costo incial	2	\$	299,92	\$	100,74	\$	400,66	Costo inicial	\$	531,92	\$	40,48	\$	572,40	\$-171,74	0,70
ŭ	3	\$	299,92	\$	151,11	\$	451,03	Cost	\$	531,92	\$	60,72	\$	592,64	\$-141,61	0,76
ند	4	\$	338,52	\$	201,48	\$	540,00	_	\$	531,92	\$	80,96	\$	612,88	\$ -72,89	0,88
ler mant.	5	\$	338,52	\$	251,85	\$	590,37		\$	554,30	\$	101,20	\$	655,50	\$ -65,13	0,90
er ı	6	\$	338,52	\$	302,22	\$	640,74	ant.	\$	554,30	\$	121,44	\$	675,74	\$ -35,00	0,95
	7	\$	338,52	\$	352,59	\$	691,11	ler mant.	\$	554,30	\$	141,68	\$	695,98	\$ -4,87	0,99
jt	8	\$	398,13	\$	402,96	\$	801,09	1ei	\$	554,30	\$	161,92	\$	716,22	\$ 84,87	1,12
2do mant.	9	\$	398,13	\$	453,33	\$	851,46		\$	554,30	\$	182,16	\$	736,46	\$ 115,00	1,16
opa	10	\$	398,13	\$	503,70	\$	901,83		\$	578,44	\$	202,40	\$	780,84	\$ 120,99	1,15
.,	11	\$	398,13	\$	554,07	\$	952,20	<u>;</u> ;	\$	578,44	\$	222,64	\$	801,08	\$ 151,12	1,19
	12	\$	440,07	\$	604,44	\$	1.044,51	mar	\$	578,44	\$	242,88	\$	821,32	\$ 223,19	1,27
ant.	13	\$	440,07	\$	654,81	\$	1.094,88	2do mant.	\$	578,44	\$	263,12	\$	841,56	\$ 253,32	1,30
3er mant.	14	\$	440,07	\$	705,18	\$	1.145,25	(4	\$	578,44	\$	283,36	\$	861,80	\$ 283,45	1,33
36	15	\$	440,07	\$	755,55	\$	1.195,62		\$	578,44	\$	303,60	\$	882,04	\$ 313,58	1,36
TO	TAL	\$	5.906,56	\$	6.044,40	\$1	1.950,96		\$	8.901,75	\$:	2.428,80	\$	11.330,55	RBC	1,02

Los resultados de la evaluación financiera en luminarias sodio, muestra que la inversión inicial y componente de mantenimiento en el que incluye los materiales y la mano de obra en los 15 años, nos da un valor de USD 440,07. Entre tanto para el costo por la energía consumida nos da un valor de USD 755,55. Por lo que tenemos un valor total de inversión en los 15 años de USD 1195,62.

El análisis para luminarias LED registra un valor de USD 578,44 en costos de mantenimiento sumada mano de obra e inversión inicial, para el costo de la energía consumida un valor de USD 303,60. Lo que nos da un valor total de inversión de USD 882,04. En relación al TIR, el año 8 muestra un valor de 1,12, el cuál determina el año en que se comienza a recuperar la inversión.

Para determinar el VAN del proyecto se realizó un análisis comparativo entre ambas luminarias, determinando la diferencia porcentual y monetaria entre ellas. La tabla 4.33 presenta el análisis resultante del análisis financiero.

Tabla 4. 34 Tabla comparativa de inversión entre luminarias Na de 100 W y LED de 42 W.

Tabla comparativa entre luminarias.								
Costos 15 años	Vapor de sodio	LED	Diferencia	%				
Costo de inversión y mano de obra	\$ 5.906,56	\$ 8.901,75	\$ -2.995,20	78,56				
Costo de energía	\$ 6.044,40	\$ 2.428,80	\$ 3.615,60	21,44				
Total	\$ 11.950,96	\$ 11.330,55	\$ 620,40	57,13				

Se puede observar, el proyecto con las condiciones establecidas dentro del análisis muestra; un ahorro del 57 % aproximadamente en potencia instalada; con relación a los precios de inversión, accesorios, tiempos de mantenimiento y costo de energía nos da como resultado final de la sustitución de luminarias de 100 W de sodio por luminaria de 94 W un VAN positivo de USD 620,40 para los 15 años de proyección. En relación con los costos de inversión muestra un valor (-) debido a la inversión inicial del proyecto (costo luminaria) en USD -2995,20

Con fundamentos en los resultados, se considera un análisis de sensibilidad financiera en relación de sus costos y consumo de energía.La tabla 4.34 muestra el análisis de la sensibilidad financiera mostrando el costo de la inversión inicial y el costo de la energía porcentuales de su valor, y la reducción de la potencia instalada en los mismos porcentajes.

Tabla 4. 35 Sensibilidad financiera del cambio de luminaria de 42 W LED

Luminaria LED 42 W DNP									
		Reducción al consumo de la energía							
VAN	\$ 620,40				0%		10%	20%	
Relación actual			encia		42		37,8	33,6	
D. 1	0%	\$	470,40	\$	620,40	\$	864,00	\$ 1.106,40	
Reducción del costo de la luminaria LED	10%	\$	423,36	\$	1.373,04	\$ 1	1.616,64	\$ 1.859,04	
idililiaria EED	20%	\$	376,32	\$	2.125,68	\$ 2	2.369,28	\$ 2.611,68	

Como conclusión del análisis de sensibilidad podemos mencionar que el proyecto tiene mejores rendimientos económicos en costo de la inversión inicial (USD 2125,68 Vs USD 1106,40) que el costo de la energía.

Mostrando los resultados siguientes: Se puede mencionar que el proyecto **ES RENTABLE** al término de los 15 años, a pesar que existe mayor influencia en el costo de la luminaria LED.

Conclusiones del capítulo.

El costo de reponer una luminaria de Na por una luminaria LED, se considera el resultado de parámetros económicos como; costo inicial, costo del brazo, costo de mantenimiento (interviene costo de mano de obra, costo de materiales, movilización) y el costo del consumo de la energía.

Considerando las condiciones actuales del país; el costo de la energía, los aranceles y la inflación tanto en la mano de obra como en los materiales, la sustitución de luminarias Na de 250 W por LED de 178 W muestra un ahorro anual del 7% entre costo de energía, mantenimiento y costo de inversión inicial comparando con las de Na; manifestando una mayor incidencia en el costo de la energía consumida. A partir del segundo trimestre del año11 se genera un retorno positivo de la inversión, sin embargo un obtieneVAN negativo resultante de \$-893,45 mostrando que la sustitución no es rentable.

La sustitución de luminarias Na de 150 W por LED de 94 W muestra un ahorro anual del 2,56% entre costo de energía, mantenimiento y costo de inversión inicial comparando con las de Na; manifestando una mayor incidencia en el costo de la energía consumida. A partir del segundo trimestre del año12 se genera un retorno positivo de la inversión, sin embargo se obtiene un VAN negativo resultante de \$ - 2063,65 mostrando que la sustitución no es rentable.

La sustitución de luminarias Na de 100 W por LED de 42 W muestra un ahorro anual del 20% entre costo de energía, mantenimiento y costo de inversión inicial comparando con las de Na; manifestando una mayor incidencia en el costo de la energía consumida. A partir del segundo trimestre del año 8 se genera un retorno positivo de la inversión, sin embargo se obtiene un VAN positivo resultante de \$620,40 mostrando que la sustitución es rentable.

La rentabilidad por luminaria LED en los últimos 5 años a disminuido un 40 %, y los niveles de eficiencia han mejorado un 11 %, tomando como referencia el precio y la eficiencia por luminaria del 2015[29].

Tras el análisis de sensibilidad, el proyecto muestra mejores resultados si el costo de la luminaria LED disminuyera un 10% en relación al costo actual para el

reemplazo de luminarias de 250 W y disminuyera un 30% en relación al costo actual para el reemplazo de luminarias de 150 W con lo cúal se incrementaría los beneficios del reemplazo (retorno de la inversión temprana y ahorro de la potencia instalada).

pero la fruta es dulce"

Aristóteles.

CAPÍTULO 5

CONCLUSIONES Y RECOMENDACIONES.

5.1 Conclusiones.

Tras realizar el análisis técnico dentro del presente estudio, se pudo determinar que los parámetros fotométricos que muestran las luminarias de vapor de sodio instaladas actualmente en la zona urbana de la Ciudad de Cuenca, pueden ser reemplazadas por luminarias LED de menor potencia, conservando o mejorando minimamente los niveles de iluminación actuales.

La propuesta de cambio de las luminarias de vapor de sodio de 250 W, a una potencia de 178 W tipo LED conllevaría a un ahorro económico anual del 7 % entre costo de energía, mantenimiento y costo de inversión inicial, teniendo una mayor incidencia de ahorro el costo de la energía consumida. La sustitución de la luminaria LED frente a la de sodio muestra un retorno positivo de la inversión de USD 8,38 a partir del segundo trimestre del año 11, sin embargo el análisis del VAN para los 15 años de proyección del estudio muestra un resultado negativo, teniendo una mayor incidencia económica el costo incial de la luminaria LED, por lo que se determina que la sustitución, no sería rentable. El análisis técnico propuesto determina un ahorro de potencia del 30 % en la luminaria LED frente a la de vapor de sodio instalada actualmente.

La propuesta de cambio de las luminarias de vapor de sodio de 150 W, a una potencia de 94 W tipo LED conllevaría a un ahorro económico anual del 2,56 % entre costo de energía, mantenimiento y costo de inversión inicial frente a las de sodio, teniendo una mayor incidencia de ahorro en el costo de la energía consumida. La sustitución de la luminaria LED frente a la de sodio muestra un retorno positivo de la inversión de USD 16,80 a partir del segundo trimestre del año 12, sin embargo el

análisis del VAN para los 15 años de proyección del estudio muestra un resultado negativo, teniendo una mayor incidencia económica el costo incial de la luminaria LED, por lo que se determina que la sustitución, no sería rentable. El análisis técnico propuesto determina un ahorro de potencia del 38 % en la luminaria LED frente a la de vapor de sodio instalada actualmente.

La propuesta de cambio de las luminarias de vapor de sodio de 100 W, a una potencia de 42 W tipo LED conllevaría a un ahorro económico anual del 20 % entre costo de energía, mantenimiento y costo de inversión inicial frente a las de sodio, teniendo una mayor incidencia de ahorro el costo de la energía consumida. La sustitución de la luminaria LED frente a la de sodio muestra un retorno positivo de la inversión de USD 84,87 a partir del segundo trimestre del año 8, el análisis del VAN para los 15 años de proyección del estudio muestra un resultado positivo, teniendo una mayor incidencia económica en el costo de la energía consumida de la luminaria LED, por lo que se determina que la sustitución, sería rentable. El análisis técnico propuesto determina un ahorro de potencia del 59 % en la luminaria LED frente a la de vapor de sodio instalada actualmente.

El análisis económico propuesto determina la rentabilidad de cada caso según la potencia de cada luminaria, en donde la sustitución de luminarias de 250 W y 150 W de vapor de sodio , no es rentable ; mientras que en el caso de la sustitución de luminarias de 100 W, sería factible con un retorno de inversión desde el segundo trimestre del año 8.

Las luminarias LED han tenido un avance tecnológico considerable en los últimos cinco años, y una disminución en su costo del 35 % al 40 % aproximadamente, tomando como referencia lo indicado en el estudio "Eficiencia energética en el servicio de Alumbrado Público del Ecuador" [29].

Tras el análisis de sensibilidad financiera de las luminarias LED, muestra que se podría reemplazar las luminarias de 250W si el costo de la luminaria disminuyera el 10 % del costo actual de las luminarias, y para las luminarias de 150W si el costo de la luminaria disminuyera el 30 % del costo actual de las luminarias.

Cuenca es un caso especial a nivel país, ya que la mayor parte de iluminación de vías superan los niveles de iluminación referidos en la Regulación 006/18, por lo

que para la simulación de las luminarias LED y las de sodio se considero datos reales de las instalaciones actuales, tanto en: altura de montaje, distancia entre postes, distancia del brazo, distancia del mástil a la calzada, factor de mantenimiento, ancho de vía y tipo de disposición.

El tipo de luminarias tomadas para simulación fueron obtenidas del mercado local y de la web donde, la existencia de luminarias LED con mejores prestaciones faculta la posibilidad de un uso adecuado con aquellas que su análisis no se ha sido efectuado.

5.2 Recomendaciones.

Se plantea que se elabore un proyecto piloto, donde se verfifiquen los temas expuestos dentro del estudio, para realizar puebas en campo de la sustitución de las luminarias LED en base al modelo propuesto para obtener a ciencia cierta datos reales de la implementación (medición de Luminancia, Iluminancia, vida útil de los componentes, depreciación de flujo y falla de componentes y equipos), como también para plantear un plan de mantenimiento.

Efectuar un análisis técnico – económico antes de la implementación del proyecto piloto, para determinar la utilidad de realizar el cambio propuesto de sustitución.

Recopilar información del costo de las luminarias LED anualmente y realizar una base de datos que permita actualizar, si el costo en el que se encuentra la luminaria es accesible, para poder realizar la sustitución.

De realizarse el cambio de luminarias, se recomienda ejecutar un análisis ambiental del impacto ecológico que causaría los componentes y equipos que son desechables (balasto, ignitores, capacitores, fotocélula, bombillas, carcasa, entre otros), y un análisis sobre la polución lumínica que generaría este nuevo sistema.

Realizar un análisis comparativo entre los arranques de las luminarias LED frente a los arranques de las luminarias de vapor de sodio, y analizar como el funcionamiento de esta nueva tecnología puede afectar a la red existente, así como los

múltiples problemas que pueden sucitarse al realizar una sustitución total de las luminarias (sobrecorrientes, caídas de tensión, armónicos, sistemas de protección, etc).

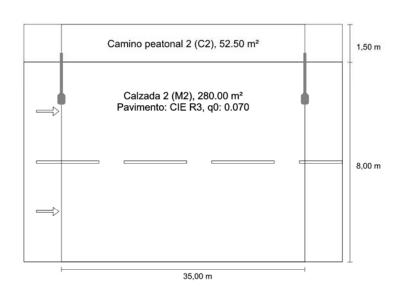
Analizar los equipos a sustituir en laboratorios acreditados, para determinar y comprobar los parámetros eléctricos y fotométricos ofertados por los distribuidores; y que la documentación entregada por el oferente, esté debidamente certificada.

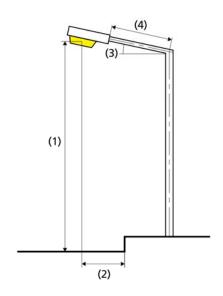
Se recomienda incetivar a las instituciones educativas a la investigación de nuevos estudios acerca de las nuevas tecnologías para alumbrado público con mejores prestaciones de servicio.

REFERENCIAS.

- [1] P. C. Acuña, "Impacto del Alumbrado Publico con LEDs en la Red de Distribución Paula Catalina Acuña"," 2011.
- [2] D. E. A. Exterior, "PARA LUMINARIAS CON TECNOLOGÍA LED."
- [3] I. Pública and E. N. Antioquia, "No Title," pp. 1–114, 2009.
- [4] G. Durán, "Informe Eficiencia Energética AP Bga," 2015.
- [5] I. D. E. Sustento, "SERVICIO DE ALUMBRADO PÚBLICO GENERAL»," 2018.
- [6] L. A. C. D. E. Cuenca, "UNIVERSIDAD DE CUENCA Facultad de Ciencias Químicas Maestría en Planificación y Gestión Energéticas," 2013.
- [7] D. E. Cuenca, F. Mauricio, and M. Zhunio, "Universidad de Cuenca."
- [8] EMPRESA ELECTRICA REGIONAL CENTRO SUR, "Información del depatamento de Alumbrado Público." 2018.
- [9] L. Leonardo, C. Auqui, I. Fabián, and G. Cabrera, "Facultad de Ingeniería Autores," pp. 1–158, 2015.
- [10] ARCONEL, "Prestación del Servicio de Alumbrado Público General." Ecuador, 2015.
- [11] C. de la R. del Ecuador., "Reglamento Técnico Ecuatoriano RTE INEN 069.".
- [12] "RETILAP", "Reglamento Técnico de Iluminación y Alumbrado," pp. 1–258.
- [13] Galo Andres Flores Fueres, "Factibilidad del sistema de alumbrado público empleando luminarias led y alimentación solar fotovoltaica," *UPS*. pp. 5–7, 2016.
- [14] A. Salamea, F. Patricio, M. Novillo, and A. Sebastián, "Optimización de

- transformadores en función de su perfil y crecimiento de la demanda," 2016.
- [15] T. D. E. I. Eléctrico, L. Israel, and C. Franco, Gestión de mantenimiento para el alumbrado público del centro urbano de la ciudad de Cuenca. 2017.
- [16] F. Patricio and G. Delgado, "Mas de alumbrado publico."
- [17] E. L. Sistema and D. E. T. Y. Telegestión, "Sistemas de gestión del alumbrado vial Sistemas de gestión del alumbrado vial Sistema de control y telegestión."
- [18] "Estudio de lámparas led para alumbrado público y diseño de un sistema scada con control automático on/off."
- [19] E. Universitaria and D. C. Empresariales, "PROYECTO DE MEJORA DE LA ILUMINACION" 2014.
- [20] B. Alumbrado and P. Y. Urbano, "Bloque 4 alumbrado público y urbano 4.1," pp. 135–184.
- [21] C. Augusto and B. Cardona, "Public Light Emitting Diode," 2015.
- [22] C. Restaurant and E. Unidos, "Publicación de la Asociación Argentina de Luminotecnia Edición N° 123 Julio/Agosto 2014," 2014.
- [23] D. D. E. Trabajo, "Orientación sobre la metodología para realizar análisis costes-beneficios," 2013.
- [24] MEER, "ESPECIFICACIONES TÉCNICAS DE MATERIALES Y EQUIPOS DEL SISTEMA DE DISTRIBUCIÓN," 2018.
- [25] "Maestría en sistemas eléctricos de potencia," "Iván Patricio Genovez."2 "Eficiencia energética en el servicio de Alumbrado Público del Ecuador" 2015.
- [26] "Revistagestion.ec," Los salarios son un tema de discusión entre los empresarios. [Online]. Available: https://revistagestion.ec/economia-y-finanzas-analisis.
- [27] S. E. de N. INEN, [Online]. Available: https://www.normalizacion.gob.ec/.




✓ Interpolación cuadrática	
Proyecto	
Información general : Norma C.I.E. 140	
Detalles de la carretera	
Disposición : Conducción : Sentido : Sentido : Número de 2 Ancho de carril : 4,000 m Ancho de 8,000 m Tabla R : C2007 Qo : 0,070 Cálculo : Luminancia	
Interdistancia: 35,000 m Altura: 10,400 m Retranqueo: 1,450 m Retroceso: 0,350 m	
Inclinación : 15,0 ° Tipo : Protector : Configuración : -31.0/145.0/10.0°/C5	
Fuente : SON-T Potencia : 250 W Flujo : 33,0 klm FM : 0,85	
• Luminancia	
1 2 Obs Y 2,000 6,000 m Lmed: 2,61 2,42 cd/m² Uo: 57,6 57,8 % UI: 74,4 57,9 % TI: 11,0 % Posición del 7,608; 6,000; 1,500 m • Iluminancia Emín: 11,6 lux Emed: 32,5 lux Esquema	
10,400 0,350 1,450 C2007 (0,07) 35,000 2 x 4,000 = 8,000	

Nota: Se ha eliminado el fichero de las luminarias para no identificar el tipo de luminaria en prueba.

Ulysse Usuario : Toshiba Página 1 / 8

Resultados para campos de evaluación Factor de degradación: 0.90

Camino peatonal 2 (C2)

Em [lx]	Uo
≥ 20.00	≥ 0.40
✓ 33.42	✓ 0.51

Calzada 2 (M2)

Lm [cd/m²] ≥ 1.50	Uo ≥ 0.40	UI ≥ 0.70	EIR ≥ 0.35	TI [%]
✓ 2.90	✓ 0.63	✓ 0.82	✓ 0.80	* 10

^{*} Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

Densidad de consumo de energía

0.016 W/lxm²

Lámpara:

Flujo luminoso (luminaria): 31033.49 lm Flujo luminoso (lámpara): 35000.00 lm

Horas de trabajo

4000 h: 100.0 %, 215.0 W

W/km: 6235.0

Organización: unilateral arriba
Distancia entre mástiles: 35.000 m
Inclinación del brazo (3): 0.0°
Longitud del brazo (4): 1.800 m
Altura del punto de luz (1): 10.400 m
Saliente del punto de luz (2): 1.450 m

ULR: 0.00 ULOR: 0.00

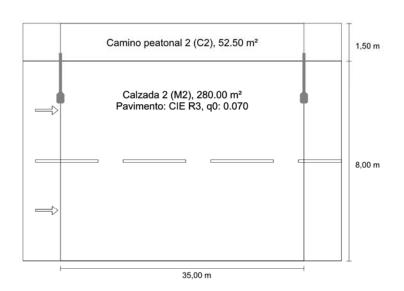
Valores máximos de la intensidad lumínica

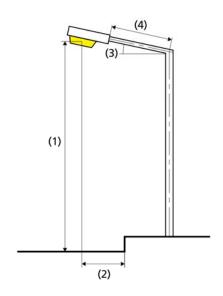
 sobre 70°
 586 cd/klm *

 sobre 80°
 99.5 cd/klm *

 sobre 90°
 0.00 cd/klm *

Clase de potencia lumínica: G*3


Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).


* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento D.5

DIALux

Calle 1 hacia EN 13201:2015

Resultados para campos de evaluación

Factor de degradación: 0.90

Camino peatonal 2 (C2)

Em [lx]	Uo
≥ 20.00	≥ 0.40
✓ 27.67	✓ 0.58

Calzada 2 (M2)

	Lm [cd/m²] ≥ 1.50	Uo ≥ 0.40	UI ≥ 0.70	EIR ≥ 0.35	ТІ [%]
3	✓ 2.57	✓ 0.58	✓ 0.80	✓ 0.73	* 11

^{*} Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

Densidad de consumo de energía

0.015 W/lxm²

Lámpara:

Flujo luminoso (luminaria): 26973.22 lm Flujo luminoso (lámpara): 27000.00 lm

Horas de trabajo

4000 h: 100.0 %, 180.0 W

W/km: 5220.0

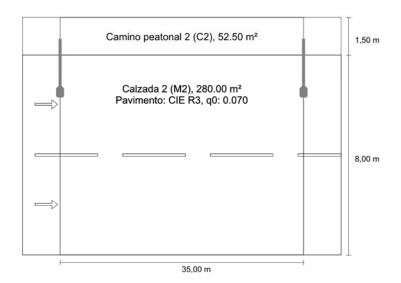
Organización: unilateral arriba
Distancia entre mástiles: 35.000 m
Inclinación del brazo (3): 15.0°
Longitud del brazo (4): 1.800 m
Altura del punto de luz (1): 10.400 m
Saliente del punto de luz (2): 1.450 m

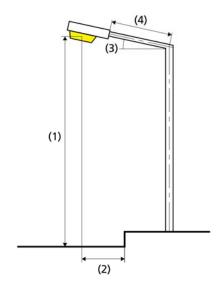
ULR: 0.00
ULOR: 0.00
Valores máximos de la intensidad lumínica

 sobre 70°
 397 cd/klm *

 sobre 80°
 187 cd/klm *

 sobre 90°
 15.7 cd/klm *


Clase de potencia lumínica: G*1


Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).

* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento D.4

Resultados para campos de evaluación Factor de degradación: 0.90

Camino peatonal 2 (C2)

Em [lx]	Uo
≥ 20.00	≥ 0.40
✓ 20.11	✓ 0.50

Calzada 2 (M2)

ті [%]	EIR ≥ 0.35	UI ≥ 0.70	Uo ≥ 0.40	Lm [cd/m²] ≥ 1.50
* 13	✓ 0.64	✓ 0.82	✓ 0.67	✓ 2.57

^{*} Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

Densidad de consumo de energía

0.017 W/lxm²

Flujo luminoso (luminaria): 21328.00 lm Flujo luminoso (lámpara): 25920.00 lm

Horas de trabajo

4000 h: 100.0 %, 178.0 W

W/km: 5162.0

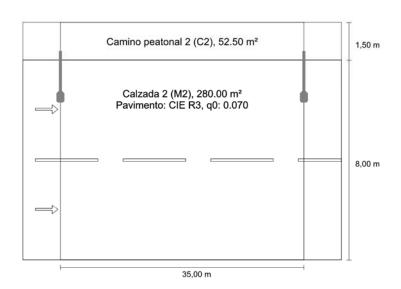
Organización: unilateral arriba
Distancia entre mástiles: 35.000 m
Inclinación del brazo (3): 15.0°
Longitud del brazo (4): 1.800 m
Altura del punto de luz (1): 10.400 m
Saliente del punto de luz (2): 1.450 m

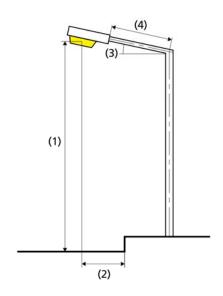
ULR: 0.00 ULOR: 0.00 Valores máximos de la intensidad lumínica

 sobre 70°
 756 cd/klm *

 sobre 80°
 297 cd/klm *

 sobre 90°
 17.0 cd/klm *


Clase de potencia lumínica:


Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).

* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento D.5

Resultados para campos de evaluación

Factor de degradación: 0.90

Camino peatonal 2 (C2)

Em [lx]	Uo
≥ 20.00	≥ 0.40
✓ 31.76	✓ 0.54

Calzada 2 (M2)

Lm [cd/m²] ≥ 1.50	Uo ≥ 0.40	UI ≥ 0.70	EIR ≥ 0.35	TI [%]
v 2.66	✓ 0.67	✓ 0.83	✓ 0.88	* 8

^{*} Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

Densidad de consumo de energía

0.019 W/lxm²

Flujo luminoso (luminaria): 35624.07 lm Flujo luminoso (lámpara): 40000.00 lm

Horas de trabajo

4000 h: 100.0 %, 245.0 W

W/km: 7105.0

Organización: unilateral arriba
Distancia entre mástiles: 35.000 m
Inclinación del brazo (3): 0.0°
Longitud del brazo (4): 1.800 m
Altura del punto de luz (1): 10.400 m
Saliente del punto de luz (2): 1.450 m

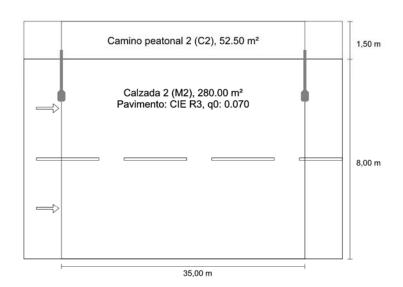
ULR: 0.00 ULOR: 0.00

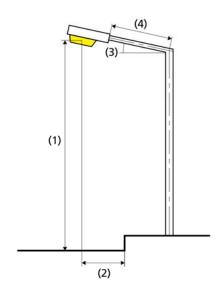
Valores máximos de la intensidad lumínica

 sobre 70°
 483 cd/klm *

 sobre 80°
 68.3 cd/klm *

 sobre 90°
 0.00 cd/klm *


Clase de potencia lumínica: G*4


Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).

* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento $\mathsf{D.6}$

Resultados para campos de evaluación

Factor de degradación: 0.90

Camino peatonal 2 (C2)

Em [lx]	Uo
≥ 20.00	≥ 0.40
✓ 29.82	✓ 0.62

Calzada 2 (M2)

Lm [cd/m²] ≥ 1.50	Uo ≥ 0.40	UI ≥ 0.70	EIR ≥ 0.35	TI [%]
✓ 2.69	✓ 0.53	✓ 0.76	✓ 0.71	* 10

^{*} Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

Densidad de consumo de energía

0.019 W/lxm²

Flujo luminoso (luminaria): 29354.84 lm Flujo luminoso (lámpara): 29360.00 lm

Horas de trabajo

4000 h: 100.0 %, 239.1 W

W/km: 6933.9

Organización: unilateral arriba
Distancia entre mástiles: 35.000 m
Inclinación del brazo (3): 0.0°
Longitud del brazo (4): 1.800 m
Altura del punto de luz (1): 10.400 m
Saliente del punto de luz (2): 1.450 m

ULR: 0.00
ULOR: 0.00
Valores máximos de la intensidad lumínica

 sobre 70°
 441 cd/klm *

 sobre 80°
 66.3 cd/klm *

 sobre 90°
 1.03 cd/klm *

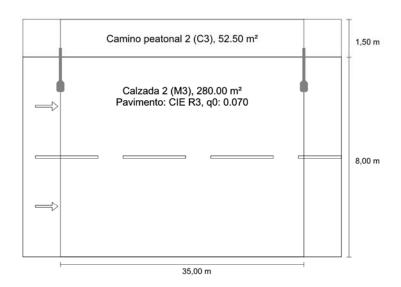
Clase de potencia lumínica: G*4

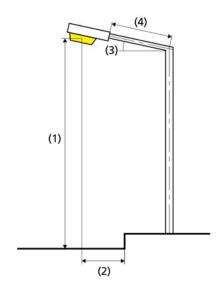
Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).

* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento D 6

interpolacion cuadratica
Proyecto
Información general : Norma C.I.E. 140
Detalles de la carretera
Disposición : Conducción : Sentido :
Número de 2 Ancho de carril : 4,000 m Ancho de 8,000 m
Tabla R : C2007 Qo : 0,070
Cálculo : 🗾 Luminancia (Z Positivo) 🔲 Ilum. Semicilíndrica 🗾 TI
Detalles de las luminarias
Interdistancia : 35,000 m Altura : 8,600 m Retranqueo : 1,150 m Retroceso : 0,350 m
Inclinación : 15,0 °
Tipo : Protector :
Reflector : Configuración :
Fuente : SON-T Potencia : 150 W Flujo : 17,0 klm FM : 0,80
Resumen
• Luminancia
1 2 Obs Y 2,000 6,000 m Lmed: 1,62 1,52 cd/m² Uo: 45,1 42,1 % UI: 74,7 70,6 % TI: 14,9 % Posición del -19,525; 6,000; 1,500 m
Iluminancia
Emín : 10,8 lux
Emed: 19,8 lux Esquema
Eddama
15,0° 1,150 35,000


Nota:Se ha eliminado el fichero de las luminarias para no identificar el tipo de luminaria en prueba.


Ulysse Usuario : Toshiba

C2007 (0,07)

2 x 4,000 = 8,000

Resultados para campos de evaluación

Factor de degradación: 0.93

Camino peatonal 2 (C3)

Em [lx]	Uo
* 16.95	* 0.48

Calzada 2 (M3)

Lm [cd/m²] ≥ 1.00	Uo ≥ 0.40	UI ≥ 0.60	TI [%] ≤ 15	EIR ≥ 0.30
✓ 1.50	✓ 0.47	✓ 0.75	✓ 15	✓ 0.59

^{*} Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

0.018 W/lxm²

Densidad de consumo de energía

Flujo luminoso (luminaria): 12096.69 lm Flujo luminoso (lámpara): 12100.00 lm

Horas de trabajo

4000 h: 100.0 %, 110.2 W

W/km: 3195.8

Organización: unilateral arriba
Distancia entre mástiles: 35.000 m
Inclinación del brazo (3): 0.0°
Longitud del brazo (4): 1.500 m
Altura del punto de luz (1): 8.600 m

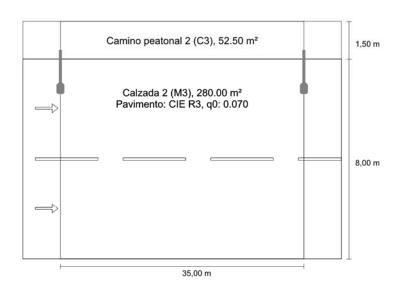
Saliente del punto de luz (2): 1.150 m

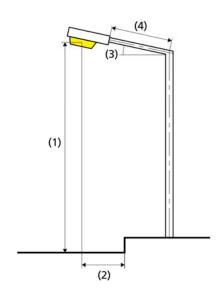
ULR: 0.01 ULOR: 0.01 Valores máximos de la intensidad lumínica

 sobre 70°
 645 cd/klm *

 sobre 80°
 250 cd/klm *

 sobre 90°
 4.94 cd/klm *


Clase de potencia lumínica:


Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).

* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento D.5

Resultados para campos de evaluación

Factor de degradación: 0.93

Camino peatonal 2 (C3)

Em [lx]	Uo
* 22.28	* 0.40

Calzada 2 (M3)

Lm [cd/m²] ≥ 1.00	Uo ≥ 0.40	UI ≥ 0.60	TI [%] ≤ 15	EIR ≥ 0.30
✓ 1.58	✓ 0.44	✓ 0.71	✓ 13	✓ 0.48

^{*} Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

Densidad de consumo de energía

0.011 W/lxm²

Lámpara:

Flujo luminoso (luminaria): 13486.61 lm Flujo luminoso (lámpara): 13500.00 lm

Horas de trabajo

4000 h: 100.0 %, 90.0 W

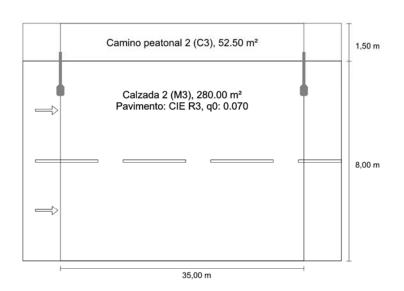
W/km: 2610.0

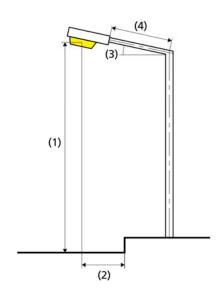
Organización: unilateral arriba
Distancia entre mástiles: 35.000 m
Inclinación del brazo (3): 5.0°
Longitud del brazo (4): 1.500 m
Altura del punto de luz (1): 8.600 m
Saliente del punto de luz (2): 1.150 m

ULR: 0.00 ULOR: 0.00 Valores máximos de la intensidad lumínica

sobre 70° 364 cd/klm *

sobre 80° 105 cd/klm * sobre 90° 3.18 cd/klm *


Clase de potencia lumínica: G*2


Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).

* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento D.5

Resultados para campos de evaluación

Factor de degradación: 0.90

Camino peatonal 2 (C3)

Em [lx]	Uo
* 18.75	* 0.41

Calzada 2 (M3)

Lm [cd/m²] ≥ 1.00	Uo ≥ 0.40	UI ≥ 0.60	TI [%] ≤ 15	EIR ≥ 0.30
✓ 1.55	✓ 0.54	✓ 0.74	✓ 11	✓ 0.70

^{*} Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

Densidad de consumo de energía

0.013 W/lxm²

Lámpara:

Flujo luminoso (luminaria): 14476.26 lm Flujo luminoso (lámpara): 16000.00 lm

Horas de trabajo

4000 h: 100.0 %, 94.0 W

W/km: 2726.0

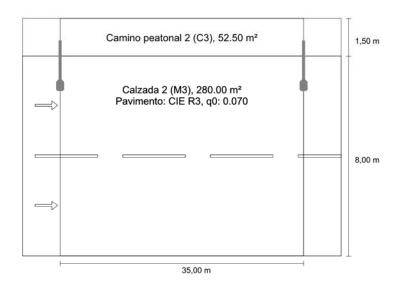
Organización: unilateral arriba
Distancia entre mástiles: 35.000 m
Inclinación del brazo (3): 0.0°
Longitud del brazo (4): 1.500 m
Altura del punto de luz (1): 8.600 m
Saliente del punto de luz (2): 1.150 m

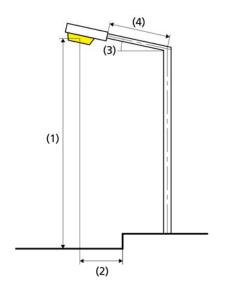
ULR: 0.00 ULOR: 0.00 Valores máximos de la intensidad lumínica

 sobre 70°
 586 cd/klm *

 sobre 80°
 99.5 cd/klm *

 sobre 90°
 0.00 cd/klm *


Clase de potencia lumínica: G*3


Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).

* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento $\mathsf{D.6}$

Resultados para campos de evaluación Factor de degradación: 0.93

Camino peatonal 2 (C3)

Em [lx]	Uo
* 18.80	* 0.34

Calzada 2 (M3)

Lm [cd/m²] ≥ 1.00	Uo ≥ 0.40	UI ≥ 0.60	TI [%] ≤ 15	EIR ≥ 0.30
✓ 1.55	✓ 0.45	✓ 0.70	✓ 10	✓ 0.30

^{*} Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

Densidad de consumo de energía

0.014 W/lxm²

Lámpara:

Flujo luminoso (luminaria): 13150.70 lm Flujo luminoso (lámpara): 16272.00 lm

Horas de trabajo

4000 h: 100.0 %, 108.0 W

W/km: 3132.0

Organización: unilateral arriba
Distancia entre mástiles: 35.000 m
Inclinación del brazo (3): 0.0°
Longitud del brazo (4): 1.500 m
Altura del punto de luz (1): 8.600 m
Saliente del punto de luz (2): 1.150 m

ULR: 0.00 ULOR: 0.00 Valores máximos de la intensidad lumínica

 sobre 70°
 523 cd/klm *

 sobre 80°
 54.0 cd/klm *

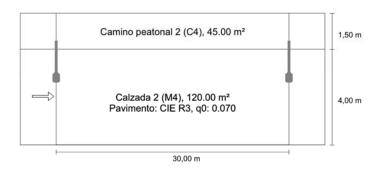
 sobre 90°
 0.00 cd/klm *

Clase de potencia lumínica: G*3

Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).

* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento D.6


✓ Interpolación cuadrática
Proyecto
Información general : Norma C.I.E. 140
Detailes de la carretera
Disposición : Conducción :
Interdistancia: 30,000 m Altura: 8,600 m Retranqueo: 1,150 m Retroceso: 0,350 m
Inclinación : 15,0 ° Tipo :
Luminancia
Obs Y 2,000 m Lmed: 0,93 cd/m² Uo: 70,9 % UI: 63,0 % TI: 7,9 % Posición del -19,525; 1,000; 1,500 m • Iluminancia Emín: 5,1 lux Emed: 12,0 lux Esquema
8,600 0,350 1,150 C2007 (0,07) 30,000

1 x 4,000 = 4,000

Nota:Se ha eliminado el fichero de las luminarias para no identificar el tipo de luminaria en prueba.

Ulysse

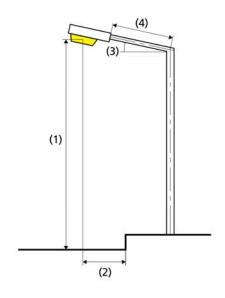
Resultados para campos de evaluación Factor de degradación: 0.90

Camino peatonal 2 (C4)

Ī	Em [lx]	Uo	
L	≥ 10.00	≥ 0.40	
Ī	✓ 10.11	✓ 0.58	

Calzada 2 (M4)

Lm [cd/m²] ≥ 0.75	Uo ≥ 0.40	UI ≥ 0.60	TI [%] ≤ 15	EIR
✓ 1.16	✓ 0.80	✓ 0.85	√ 10	* 0.85


^{*} Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

0.030 W/lxm²

Densidad de consumo de energía

Lámpara:

Flujo luminoso (luminaria): 6391.39 lm Flujo luminoso (lámpara): 6393.00 lm

Horas de trabajo

4000 h: 100.0 %, 57.4 W

W/km: 1894.5

Organización: unilateral arriba

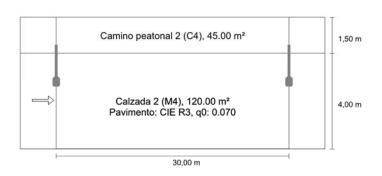
Distancia entre mástiles: 30.000 m
Inclinación del brazo (3): 0.0°
Longitud del brazo (4): 1.500 m
Altura del punto de luz (1): 8.600 m
Saliente del punto de luz (2): 1.150 m

ULR: 0.01 ULOR: 0.01 Valores máximos de la intensidad lumínica

 sobre 70°
 645 cd/klm *

 sobre 80°
 250 cd/klm *

 sobre 90°
 4.94 cd/klm *


Clase de potencia lumínica: /

Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).

* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento D.6

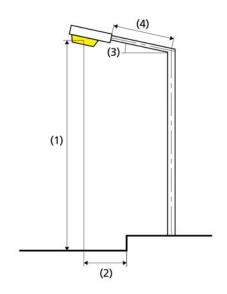
Resultados para campos de evaluación Factor de degradación: 0.90

Camino peatonal 2 (C4)

Uo ≥ 0.40	Em [lx]
✓ 0.48	* 12.07

Calzada 2 (M4)

Lm [cd/m²] ≥ 0.75	Uo ≥ 0.40	UI ≥ 0.60	TI [%] ≤ 15	EIR
✓ 1.05	✓ 0.78	✓ 0.89	∨ 8	* 0.77


* Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

0.018 W/lxm²

Densidad de consumo de energía

Lámpara:

Flujo luminoso (luminaria): 5994.05 lm Flujo luminoso (lámpara): 6000.00 lm

Horas de trabajo

4000 h: 100.0 %, 40.0 W

W/km: 1320.0

Organización: unilateral arriba
Distancia entre mástiles: 30.000 m
Inclinación del brazo (3): 0.0°
Longitud del brazo (4): 1.500 m
Altura del punto de luz (1): 8.600 m
Saliente del punto de luz (2): 1.150 m

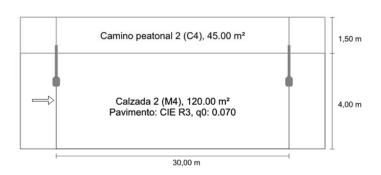
ULR: 0.00

ULOR: 0.00

Valores máximos de la intensidad lumínica

sobre 70° 355 cd/klm *

sobre 80° 99.1 cd/klm *


sobre 90° 0.00 cd/klm *

Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).

* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento D.5

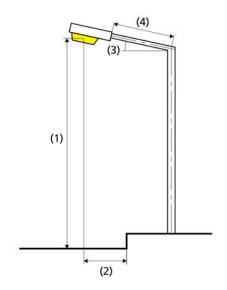
Resultados para campos de evaluación Factor de degradación: 0.90

Camino peatonal 2 (C4)

Uo ≥ 0.40	Em [lx]
✓ 0.66	* 10.24

Calzada 2 (M4)

Lm [cd/m²] ≥ 0.75	Uo ≥ 0.40	UI ≥ 0.60	TI [%] ≤ 15	EIR
√ 1.25	✓ 0.76	✓ 0.84	√ 11	* 0.77


* Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

0.027 W/lxm²

Densidad de consumo de energía

Lámpara:

Flujo luminoso (luminaria): 7347.79 lm Flujo luminoso (lámpara): 8600.00 lm

Horas de trabajo

4000 h: 100.0 %, 51.0 W

W/km: 1683.0

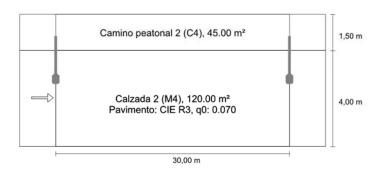
Organización: unilateral arriba
Distancia entre mástiles: 30.000 m
Inclinación del brazo (3): 15.0°
Longitud del brazo (4): 1.500 m
Altura del punto de luz (1): 8.600 m
Saliente del punto de luz (2): 1.150 m

ULR: 0.01 ULOR: 0.00 Valores máximos de la intensidad lumínica

 sobre 70°
 368 cd/klm *

 sobre 80°
 373 cd/klm *

 sobre 90°
 141 cd/klm *


Clase de potencia lumínica:

Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).

* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento D 6

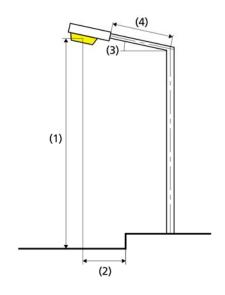
Resultados para campos de evaluación Factor de degradación: 0.90

Camino peatonal 2 (C4)

Uo	Em [lx]	
* 0.42	* 8.37	

Calzada 2 (M4)

	Lm [cd/m²] ≥ 0.75	Uo ≥ 0.40	UI ≥ 0.60	TI [%] ≤ 15	EIR
Ί	✓ 1.16	✓ 0.81	✓ 0.87	∨ 8	* 0.74


^{*} Informativo, no es parte de la evaluación

Resultados para indicadores de eficiencia energética

Indicador de la densidad de potencia (Dp)

0.022 W/lxm²

Densidad de consumo de energía

Lámpara:

Flujo luminoso (luminaria): 4839.36 lm Flujo luminoso (lámpara): 5906.00 lm

Horas de trabajo

4000 h: 100.0 %, 42.0 W

W/km: 1386.0

Organización: unilateral arriba

Distancia entre mástiles: 30.000 m
Inclinación del brazo (3): 0.0°
Longitud del brazo (4): 1.500 m
Altura del punto de luz (1): 8.600 m
Saliente del punto de luz (2): 1.150 m

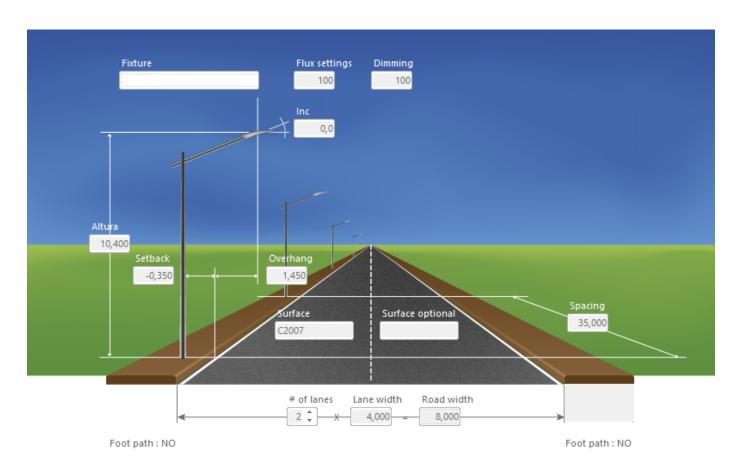
ULR: 0.00 ULOR: 0.00 Valores máximos de la intensidad lumínica

 sobre 70°
 590 cd/klm *

 sobre 80°
 224 cd/klm *

 sobre 90°
 0.00 cd/klm *

Clase de potencia lumínica:


Respectivamente en todas las direcciones que forman los ángulos especificados con las verticales inferiores (con luminarias instaladas aptas para el funcionamiento).

* Luminous intensity values in [cd/klm] for calculating luminous intensity class refer to the output flux of the luminaire, according EN 13201:2015.

La disposición cumple con la clase del índice de deslumbramiento D.6

Calculations according to CIE 140

Selected lighting class Carretera : C1 - IL : Ave = 30,00 lux Uo = 40 % TI : 10 %

4.2. Resultados

Potencia por Km 4,050 kW

Carretera (IL-HS)

Iluminancia

Med 32,5 lx	igstar	30,0 lx
Min 17,6 lx	$N_{/A}$	
Uo 54 %		40,0 %

Carretera (LU)

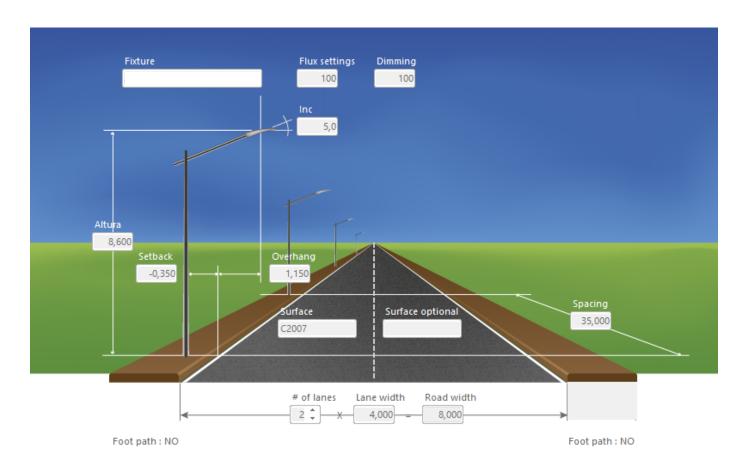
Luminance

UI 1 84 % NA NA NA

Luminancia

Med 2,59 cd/m² Na
Min 0,85 cd/m² Na
Uo 33 %

Valores


TI 6,7

06/02/2020 8/15

Calculations according to CIE 140

Selected lighting class Carretera : C2 - IL : Ave = 20,00 lux Uo = 40 % TI : 10 %

3.2. Resultados

Potencia por Km 3,046 kW

Carretera (IL-HS)

Iluminancia

Carretera (LU) **Luminance**

Luminancia

UI 1 82 % N/A
UI 2 58 % N/A

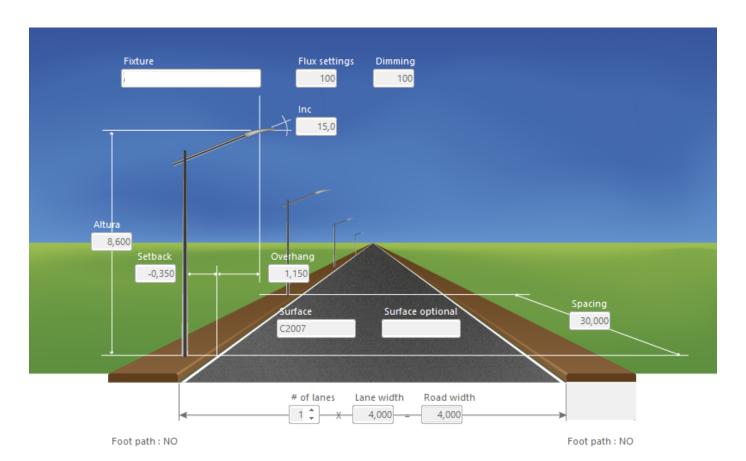
Med 1,67 cd/m² N/A
Min 0,49 cd/m² N/A

Uo 29 %

Valores

 N_{A}

TI 7,1



20,0

06/02/2020 7/14

Calculations according to CIE 140

Selected lighting class <code>Carretera:C3-IL:Ave=15,00 lux Uo=40 % TI:15 %</code>

4.2. Resultados

Potencia por Km 2,382 kW

Carretera (IL-HS)

Iluminancia

Med 15,2 lx Min 7,2 lx	⊘ N _{/A}	15,0 lx
Uo 48 %	②	40,0 %
VerticalIlluminance		
Med 9,5 lx	$N_{/\!\!\!A}$	
Min 1,3 lx	$N_{/A}$	
Carretera (LU)		
Luminance		
UI 1 75 %	$N_{V_{A}}$	
Luminancia		

Med 1,37 cd/m² **Min** 1,01 cd/m²

Nota:Se ha eliminado el fichero de las luminarias para no identificar el tipo de luminaria en prueba.

 $N_{\!/\!A}$

 N_{A}