UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA

CARRERA DE INGENIERÍA ELÉCTRICA

Trabajo de titulación previo a la obtención del título de Ingeniero Eléctrico

PROYECTO TÉCNICO CON ENFOQUE INVESTIGATIVO

"ANÁLISIS DE LA CALIDAD DE LA ENERGÍA ELÉCTRICA EN LAS REDES DE BAJO VOLTAJE DE LA UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA POR LA CARGABILIDAD DE VEHÍCULOS ELÉCTRICOS"

AUTORES:

ANDRÉS FERNANDO PÁNCHEZ MOGROVEJO

FREDDY PAUL GUILLEN MONTERO

TUTOR:

ING. JOSÉ MANUEL ALLER CASTRO, DR

CUENCA – ECUADOR

2019

CESIÓN DE DERECHOS DE AUTOR

Nosotros, Andrés Fernando Pánchez Mogrovejo con documento de identificación N° 0105219406 y Freddy Paul Guillen Montero con documento de identificación N° 0301800165, manifestamos nuestra voluntad y cedemos a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que somos autores del trabajo de titulación : "ANÁLISIS DE LA CALIDAD DE LA ENERGÍA ELÉCTRICA EN LAS REDES DE BAJO VOLTAJE DE LA UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA POR LA CARGABILIDAD DE VEHÍCULOS ELÉCTRICOS", mismo que ha sido desarrollado para optar por el título de: *Ingeniero Eléctrico*, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en nuestra condición de autores nos reservamos los derechos morales de la obra antes citada. En concordancia, suscribimos este documento en el momento que hacemos la entrega del trabajo final en formato impreso y digital a la Biblioteca de la Universidad Politécnica Salesiana.

Cuenca, julio del 2019

Andrés Fernando Pánchez Mogrovejo C.I. 0105219406

Freddy Paul Guillen Montero C.I. 0301800165

CERTIFICACIÓN

Yo, declaro que bajo mi tutoría fue desarrollado el trabajo de titulación: "ANÁLISIS DE LA CALIDAD DE LA ENERGÍA ELÉCTRICA EN LAS REDES DE BAJO VOLTAJE DE LA UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA POR LA CARGABILIDAD DE VEHÍCULOS ELÉCTRICOS", realizado por Andrés Fernando Pánchez Mogrovejo y Freddy Paul Guillen Montero, obteniendo el *Proyecto Técnico con enfoque Investigativo*, que cumple con todos los requisitos estipulados por la Universidad Politécnica Salesiana.

Cuenca, julio del 2019

Ing. José Manuel Aller Castro, Dr.

C.I. 01051561800

DECLARATORIA DE RESPONSABILIDAD

Nosotros, Andrés Fernando Pánchez Mogrovejo con documento de identificación 0105219406 y Freddy Paul Guillen Montero con documento de identificación N° 0301800165, autores del trabajo de titulación: "ANÁLISIS DE LA CALIDAD DE LA ENERGÍA ELÉCTRICA EN LAS REDES DE BAJO VOLTAJE DE LA UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA POR LA CARGABILIDAD DE VEHÍCULOS ELÉCTRICOS", certificamos que el total contenido del *Proyecto Técnico con enfoque Investigativo* es de nuestra exclusiva responsabilidad y autoría.

Cuenca, julio del 2019

Andrés Fernando Pánchez Mogrovejo

C.I. 0105219406

Freddy Paul Guillen Montero C.I. 0301800165

Cuenca, julio de 2019

DEDICATORIA

Dedicó a mis padres Angel Pánchez, Genoveva Mogrovejo y mi abuela Carmelina Merchán por el apoyo brindado durante estos años, siendo el pilar fundamental para llegar a cumplir mis objetivos. Mi tía Claudia Mogrovejo e Ing. José Manuel Aller que entregaron parte de su tiempo para contribuir con el desarrollo de este proyecto técnico investigativo.

Andrés F. Pánchez M.

Cuenca, julio de 2019

DEDICATORIA

Dedico esta tesis a mi amada esposa Virginia Altamirano por el apoyo incondicional que supo brindarme durante este tiempo; a mi madre Doris Montero y a mi abuela Rosario Ortiz por el apoyo y guía que supieron darme desde el principio de mi vida estudiantil universitaria; al Ing. Marco Torres y al Ing. Juan Pablo Sotomayor por ayudar a iniciarme en el mundo laboral de la carrera de Ingeniería Eléctrica; y por último, al Ingeniero Jose Aller, por su ayuda y tiempo para contribuir con el desarrollo de este proyecto.

Freddy P. Guillen M.

AGRADECIMIENTOS

Agradecemos a nuestros padres por el apoyo durante toda nuestra carrera y desarrollo profesional, a nuestro profesor Ing. José Manuel Aller quien, con sus conocimientos, experiencia, y responsabilidad nos ha guiado de la mejor manera al desarrollo y culminación de este trabajo. .

Andrés F. Pánchez M.

Freddy P. Guillen M.

RESUMEN

El presente trabajo analizó el impacto que tiene el proceso de carga de baterías de un vehículo eléctrico en la calidad del servicio eléctrico, y determinó el efecto de los armónicos en la red de bajo voltaje. Mediante la obtención de las señales de voltaje y corriente en el punto de carga del vehículo eléctrico a través de un Convertidor Analógico Digital, se analizaron los armónicos de dichas señales con un programa diseñado en Matlab® . Posterior al levantamiento general de los circuitos eléctricos, se modelaron matemáticamente y se inyectaron los armónicos obtenidos del punto de carga del vehículo eléctrico, por medio de una simulación realizada mediante Simulink® . Respecto a corriente y voltaje, los armónicos generados durante la carga del vehículo eléctrico estuvieron dentro de la Norma. En el futuro, CENTROSUR debe explorar cómo medir los armónicos inyectados en la Red por los vehículos eléctricos, siendo estos una carga no lineal considerable, que puede afectar el Sistema Eléctrico.

ABSTRACT

This work analyses the impact in the power quality due to the battery charging process in electrical vehicles. Current and voltage signals are obtained with a A/D converter in the coupling point of the electrical vehicle, and their harmonic contents are analyzed with a program developed in Matlab®. After a general survey, the electric circuits of the Automotive Laboratory were mathematically modeled using Simulink®. Harmonics obtained in the charge point was injected in order to determine the effects at the low voltage network.

PREFACIO

Este trabajo estudia el efecto que tienen los armónicos generados por el rectificador de energía que posee el vehículo eléctrico, y que modifican la forma de la señal en un porcentaje con respecto a la onda fundamental, denominado Distorsión Total Armónica (THD), por sus siglas en inglés, tanto para voltaje como para corriente. Mientras se carga el vehículo en el circuito eléctrico del que se alimenta, se obtienen las señales de voltaje y corriente con el equipo de adquisición de datos NI-USB-6216BNC, para luego utilizar la Transformada Rápida de Fourier (FFT) y obtener los armónicos que se inyectaron en la red, mediante un programa en Matlab®.

Por otra parte, se realiza el levantamiento general de los circuitos eléctricos de los tomacorrientes, iluminación y especiales con sus respectivas distancias desde el tablero de distribución principal, el tipo de cable y el tipo de carga. Posteriormente, se modelan matemáticamente los circuitos, y se les simula utilizando Simulink® de Matlab®. Finalmente, se emplea el principio de superposición para resolver el circuito en un punto determinado.

Índice general

	INT	RODU	CCIÓN
1	CA 1.1 1.2 1.3	PÍTU Proble Grupo Objeti 1.3.1 1.3.2 Metod	JLO 1: Problema de Estudio y Objetivos 2 ema de Estudio 2 o Objetivo 2 vos 2 Objetivo General 2 Objetivos Específicos 2 cología Aplicada 3
2	CA 2.1 2.2 2.3 2.4 2.5 2.6	PÍTU Vehícu Baterí Calida Estaci Cargas Armón 2.6.1	JLO 2: Fundamentos Teóricos 4 alos Eléctricos 4 as Ion-litio 4 ad de Energía 4 ones de Carga para Vehículos Eléctricos 6 s Lineales y No Lineales 7 nicos 7 Armónicos en la Red Eléctrica 10
3	CA 3.1 3.2	PÍTU Carga 3.1.1 3.1.2 Armón 3.2.1 3.2.2 3.2.3	JLO 3: Desarrollo, Análisis y Simulación 12 de las Baterías de los Vehículos Eléctricos 12 Tipos de Carga 12 Tipos de Conectores 12 nicos Generados Durante la Carga del Vehículo Eléctrico 14 Equipo de Adquisición de Datos NI-USB-6216BNC 14 Adquisición de Datos 15 Descomposición Armónica de las Corrientes 15
	3.3 3.4	3.2.4 Levant 3.3.1 3.3.2 3.3.3 Model 3.4.1	Serie de Fourier de la Señal de Voltaje 19 tamiento del Sistema Eléctrico 22 Tablero de Distribución Principal y Alimentador Principal 25 Alimentadores Secundarios 26 Circuitos y Cargas 31 amiento del Sistema Eléctrico del Taller Automotriz 32
		$3.4.2 \\ 3.4.3 \\ 3.4.4 \\ 3.4.5 \\ 3.4.6$	Eléctrica 32 La Resistencia R (Ω) 32 La Inductancia L (H) 33 La Capacitancia C (F) 33 La Conductancia G (S) 34 Inductancia y Capacitancia de una Línea 34

		3.4.7 Modelamiento del Alimentador Principal	37
		3.4.8 Modelamiento de los Motores del Taller Automotriz	39
	3.5	Simulación del Modelamiento en Simulink® de Matlab ® $\ .\ .\ .$.	41
4	Co	nclusiones y Recomendaciones	48
5	AN	EXOS	50
	5.1	Anexo 1: Diagrama Unifilar de las Instalaciones Eléctricas del Ta-	
		ller de Automotriz	50
	5.2	Anexo 2: Tabla de Valores de la Modelación de los Circuitos	52
	5.3	Anexo 3: Tabla de Valores de la Modelación de Motores	54
	5.4	Anexo 4: Esquema de Simulación	56
	5.5	Anexo 5: Análisis de Fourier del sistema eléctrico del Taller Auto-	
		motriz mediante Simulink®	58
	5.6	Anexo 6: Cálculo de la Corriente de Cortocircuito	60
Bi	bliog	grafía	62

Índice de figuras

2.1.	Diagrama Simplificado de un Sistema Eléctrico de Potencia (SEP)
2.2	Señal periódica cuadrada
2.3.	Primer Término de la Serie de Fourier. Superpuesta a la Señal
	Periódica Cuadrada
2.4.	Suma de la Fundamental más el Tercer Armónico, Superpuestos a
2.5.	la Señal Periódica Cuadrada y el Tercer Armónico Suma de la Fundamental más el Tercer y Quinto Armónicos, Superpuestos a la Señal Periódica Cuadrada y el Quinto Armónico
2.6.	Armónicos impares del 1 al 21 superpuestos a la sumatoria de los mismos y a la señal cuadrada periódica
3.1.	KIA Soul EV propiedad de la Universidad Politécnica Salesiana.
3.2.	DAQ NI-USB-6216BNC utilizada en las mediciones de campo don- de se observa el sensor de voltaje diferencial
3.3.	Comparación de las corrientes de carga de la batería en diferentes niveles
3.4.	Corriente pico con una carga de 12%
3.5.	Período completo de la señal de corriente de carga del VE en las
	diferentes condiciones iniciales de la batería
3.6.	Contenido armónico de la corriente en el periodo 1
3.7.	Voltaje pico con una carga de 12%
3.8.	Periodo 1 en la señal de voltaje de las cargas del E.V
3.9.	Contenido armónico del voltaje en el periodo 1
3.10.	Plano de planta, planta baja laboratorio de automotriz UPS sede
	Cuenca
3.11.	Plano de planta, primera planta, laboratorio de automotriz UPS
	sede Cuenca.
3.12.	Tablero eléctrico principal
3.13.	Protección de cabecera
3.14.	Disposición de los alimentadores en planta
3.15.	Configuraciones de los circuitos eléctricos
3.16.	Distancia media geométrica para un circuito
3.17.	Distancia media geométrica para dos circuitos
3.18.	Configuración física del ducto
3.19.	Modelo de los motores de inducción operando en su punto nominal
3.20.	Señal de corriente armónica simulada
3.21.	Señal de voltaje armónica simulada
3.22.	Corriente total con armónicos vs corriente fundamental

3.23.	R_{RMS} entre la corriente total con armónicos vs corriente fundamen-	
	al	15
3.24.	Histograma de la señal de corriente	16
3.25.	Histograma de la señal de voltaje	17

Índice de cuadros

2.1.	Fenómenos principales que causan perturbaciones electromagnéti-	
	cas según la norma IEEE 1159-2009[2]	6
2.2.	Límites de distorsión de voltaje [3].	11
2.3.	Límites de distorsión para sistemas de 120 V a 69 k V [3]	11
3.1.	Especificaciones del suministro de energía para la carga del VE [4].	13
3.2.	Coeficientes de Fourier de la señal de corriente	18
3.3.	Coeficientes de Fourier de la señal de tensión	21
3.4.	Referencias de zonas del Laboratorio Automotriz UPS	23
3.5.	Referencias de zonas del Laboratorio Automotriz UPS	24
3.6.	Detalles de cargas de tableros eléctricos secundarios	28
3.7.	Detalles de cargas de tableros eléctricos secundarios	29
3.8.	Detalles de cargas de tableros eléctricos secundarios	30
3.9.	Radio medio geométrico para el número de conductores [5]	35
3.10.	Datos de placa típicos de un motor de inducción	39
3.11.	Coordenadas polares de la serie de Fourier de corriente	42
3.12.	Coordenadas polares de la serie de Fourier de voltaje	42
3.13.	Desfase de las señales de corriente con armónicos con respecto a la	
	fundamental	43
3.14.	Desfase de las señales de voltaje con armónicos con respecto a la	
	fundamental	43
5.1.	Modelo de los motores de inducción del Taller Automotriz	55

INTRODUCCIÓN

En la actualidad, el uso de equipos electrónicos es una realidad creciente, cada vez son más los dispositivos que se convierten en indispensables en la vida diaria del ser humano para su comunicación, confort, control y movilidad. A simple vista parece que su uso no afecta en lo absoluto al sistema eléctrico, sin embargo, se podría decir que es mejor usar equipos electrónicos, ya que estos son más livianos, de menor consumo, más económicos y en un contexto optimista "no contaminantes"; si analizamos detenidamente el funcionamiento de los equipos electrónicos en la actualidad, se aprecia que todos poseen un rectificador, el cual es un equipo que convierte un tipo de energía en otro (AC – DC – AC).

Hace algunos años, dichos rectificadores utilizaban transformadores grandes y pesados. Para resolver este inconveniente se optó por un tipo de solución llamado fuente conmutada el cual involucra electrónica de potencia para diseñar rectificadores, arrancadores suaves, moduladores de frecuencia, entre otros. Este proceso da como resultado aminorar el tamaño de los transformadores y aumentar la eficiencia de los rectificadores, siendo usados para fuentes de computadores, fuentes de televisores, drivers de iluminación LED, adaptadores de voltaje, cargadores de baterías, en general entre otros usos.

Los rectificadores, dependiendo de sus diseños, materiales y certificaciones entre otros parámetros de construcción, al ser cargas no lineales, inyectan a la red armónicos, modificando la forma de onda normal del sistema eléctrico, ocasionando un problema más complejo. Estas modificaciones en la forma de onda de corriente generan pérdidas, tanto económicas, como energéticas por efecto Joule (calor), en residencias o industrias. Considerando lo antes mencionado, se deberían sobredimensionar los equipos eléctricos para que soporten los efectos de los armónicos, que generan más inversión y por ende mayores pérdidas.

La masificación del uso de vehículos eléctricos requerirá la repotenciación y expansión de las redes de distribución y los transformadores que la alimentan, debido a las nuevas cargas y sus contenidos armónicos, que además, pueden afectar a los equipos sensibles.

1 CAPÍTULO 1: Problema de Estudio y Objetivos

1.1. Problema de Estudio

A nivel mundial el uso de los vehículos motorizados mediante combustibles fósiles ha sido una de las causas del aumento del efecto invernadero. La nueva matriz energética que en el Ecuador se ha venido adaptando, será escenario para el empleo de vehículos eléctricos (VE), los cuales contribuyen a reducir el efecto invernadero producido en el país [6].

La carga de las baterías de los VE en la red eléctrica, producen efectos negativos denominados armónicos [7].

Los equipos electrónicos que intervienen durante la carga de las baterías son considerados cargas no lineales, debido a los rectificadores de AC a DC [8].

Las cargas no lineales al inyectar armónicos en la red de distribución de energía eléctrica, causan problemas en equipos electrónicos y eléctricos, afectando la estabilidad del sistema.

1.2. Grupo Objetivo

El desarrollo de este proyecto permitirá identificar los armónicos inyectados a las redes de bajo voltaje de la Universidad Politécnica Salesiana mediante el uso de equipos de medición, necesarios para el análisis de los efectos que estos producen y comprobar el cumplimiento de normas de calidad de energía eléctrica.

1.3. Objetivos

1.3.1. Objetivo General

Analizar la calidad de la energía eléctrica en las redes de bajo voltaje de la Universidad Politécnica Salesiana sede Cuenca por la cargabilidad de vehículos eléctricos.

1.3.2. Objetivos Específicos

1. Conocer el funcionamiento de los sistemas eléctricos necesarios para la cargabilidad de las baterías de los VE.

- 2. Realizar las respectivas mediciones de los armónicos producidos por los VE en la red de bajo voltaje de la Universidad Politécnica Salesiana sede Cuenca.
- 3. Identificar los armónicos inyectados en la red eléctrica producidos por los VE de la red de bajo voltaje de la Universidad Politécnica Salesiana sede Cuenca.
- 4. Analizar los efectos producidos por el comportamiento de los armónicos de la red de bajo voltaje de la Universidad Politécnica Salesiana sede Cuenca.
- 5. Verificar el cumplimiento de las normas de calidad de la energía eléctrica de las redes de bajo voltaje de la UPS debido al ingreso de VE

1.4. Metodología Aplicada

Para el siguiente proyecto de investigación se emplearán los métodos deductivo y experimental, teniendo como objetivo obtener resultados a partir del análisis de los datos dividiéndose en las siguientes fases:

- 1. Recolección de datos concernientes a las normativas internacionales y regionales.
- 2. Revisión de fuentes bibliográficas concernientes al área, artículos científicos, y artículos referenciales disponibles en Internet.
- 3. Indagar sobre el funcionamiento de los sistemas eléctricos y electrónicos que forman parte de la carga de las baterías del vehículo.
- 4. Registrar las mediciones mediante equipos de calidad, de donde se obtendrán los datos de los armónicos.
- 5. Diseño de programa en Matlab® y su ejecución a partir de los datos de la fase anterior.
- 6. Levantamiento de los circuitos eléctricos del taller Automotriz de la UPS.
- 7. Modelamiento matemático de los circuitos de la fase 6.
- 8. Simulación del modelo de los circuitos mediante Simulink® de Matlab®.

2 CAPÍTULO 2: Fundamentos Teóricos

2.1. Vehículos Eléctricos

Existen dos aspectos importantes que el usuario de este tipo de vehículos debe tener en cuenta: Su disponibilidad en el mercado y la accesibilidad a los repuestos [9].

Actualmente en Ecuador se dispone de pocos modelos. KIA Soul es uno de los vehículos que se comercializa en este país, y una de estas unidades ha sido adquirida por la Universidad Politécnica Salesiana para realizar estudios de investigación.

El KIA Soul es un vehículo 100 % eléctrico, muy ágil y fácil de conducir. Consta de un motor síncrono de imán permanente con un par motor de $285 \frac{Nm}{rpm}$, el cual produce un ruido inferior con respecto a los vehículos de combustión interna, minimizando la contaminación acústica y siendo prácticamente imperceptible para el peatón. La potencia nominal del motor de este vehículo es de 107,5 Hp, con una relación de $81,4 \frac{kW}{rpm}$ [10].

2.2. Baterías Ion-litio

Las baterías de Ion-litio han tenido un desarrollo importante en los últimos tiempos, siendo este el punto clave para la creciente incorporación de los VE en los mercados mundiales. Este tipo de baterías tiene una elevada capacidad energética y una excelente resistencia a la descarga, están compuestas por celdas con componentes químicos, entre ellos la denominada sal de litio. Exteriormente tienen disipadores de calor [11].

La demanda de baterías de Ion-litio se ha incrementado especialmente a partir del año 2010, debido al aumento de demanda de vehículos eléctricos. Los fabricantes han priorizado su uso por encima de otras tecnologías y esto ha aumentado su desarrollo, para satisfacer las necesidades de los usuarios [12].

Una de las desventajas de estos acumuladores es la inseguridad que presentan, debido a su alto grado de inflamabilidad [12]. Las celdas de litio pueden ser conectadas en paralelo para aumentar la corriente que entrega la batería o pueden ser conectadas en serie para aumentar el nivel de tensión de salida. Al final se pueden integrar múltiples celdas de baterías en un módulo y múltiples módulos en una batería [12].

2.3. Calidad de Energía

Los sistemas eléctricos pueden subdividirse en tres etapas: generación, transmisión y distribución como se puede apreciar en la figura 2.1. En cada una de estas etapas se deberían mantener parámetros eléctricos estables tales como: voltaje, frecuencia y forma de onda. También debe ser balanceado. En la práctica esto no sucede, debido principalmente a que los usuarios residenciales, comerciales e industriales, conectan una amplia gama de equipos que introducen modificaciones en los parámetros de la calidad de energía.

Figura 2.1: Diagrama Simplificado de un Sistema Eléctrico de Potencia (SEP) [1]

Las cargas no lineales como rectificadores, inversores, variadores de frecuencia, arrancadores, entre otros, producen distorsión [13].

En resumen, la calidad de energía está compuesta por una amplia variedad de fenómenos electromagnéticos que influyen en el voltaje y la corriente. Para dispositivos eléctricos y electrónicos una buena calidad de energía se obtiene cuando las ondas de voltaje y corriente no poseen ruidos o perturbaciones que excedan lo establecido por la Norma IEEE 519-2014. Para los usuarios, la calidad de energía simplemente está en el correcto funcionamiento del dispositivo eléctrico o electrónico sin ningún tipo de averías [2].

La norma IEEE 1159-2009 enumera ciertos parámetros eléctricos influyentes como se puede observar en la tabla 2.1, aunque no está detallado el rango de lo que se considera como alta frecuencia y baja frecuencia.

Fabla 2.1: Fenómenos	principales que c	eausan perturbaciones	s electromagnéticas
según la norma IEEE	1159-2009[2].		

	Armónicos, interarmónicos		
	Sistemas de señal (portador		
Fonémonos	de línea eléctrica)		
renomenos	Fluctuaciones de voltaje		
conductivos de	Bajadas de voltaje e		
baja frecuencia	interrupciones		
	Desequilibrio de voltaje		
	Variaciones de frecuencia		
	${ m en SEP}$		
	Voltajes de baja frecuencia		
	inducidos		
	DC en redes de AC		
Fenómenos radiados	Campos magnéticos		
a baja frecuencia	Campos eléctricos		
Fenómenos	Ondas continuas inducidas		
aandustiwaa da alta			
conductivos de alta	de voltaje o corriente		
frecuencia	de voltaje o corriente Transitorios		
frecuencia	de voltaje o corriente Transitorios unidireccionales		
frecuencia	de voltaje o corriente Transitorios unidireccionales Oscilaciones transitorias		
frecuencia	de voltaje o corriente Transitorios unidireccionales Oscilaciones transitorias Campos magnéticos		
frecuencia Fenómenos	de voltaje o corriente Transitorios unidireccionales Oscilaciones transitorias Campos magnéticos Campos eléctricos		
Fenómenos radiados de alta	de voltaje o corriente Transitorios unidireccionales Oscilaciones transitorias Campos magnéticos Campos eléctricos Campos electromagnéticos		
Fenómenos radiados de alta frecuencia	de voltaje o corriente Transitorios unidireccionales Oscilaciones transitorias Campos magnéticos Campos eléctricos Campos electromagnéticos Ondas continuas		

2.4. Estaciones de Carga para Vehículos Eléctricos

Las estaciones de carga en el sistema eléctrico constan de cuatro etapas [8]:

- El sistema de distribución o la llamada fuente de energía
- El convertidor de (AC/DC) también denominado rectificador
- El control de la carga de la batería y,
- La supervisión de la carga de la batería.

Existen al menos, tres sistemas de carga para las baterías de los autos eléctricos: carga rápida, semirrápida y lenta.

- La carga lenta tiene un tiempo de carga de ocho horas en un domicilio típico
- La semirrápida tiene un tiempo de carga de cuatro horas
- La carga rápida tiene un tiempo de carga de 30 minutos.

Las estaciones de carga o electrolineras son de suma importancia para considerar la compra de vehículos eléctricos, debido a que el usuario dispondría de una carga eficaz y rápida.

Estas estaciones necesitan gran capacidad de energía de los sistemas eléctricos de distribución, para abastecer la demanda producidas por varios vehículos cargándose simultáneamente [14].

2.5. Cargas Lineales y No Lineales

Se considera carga a todo dispositivo que utiliza energía eléctrica para ejecutar un trabajo.

Una carga lineal no contiene componentes electrónicos activos, únicamente resistencias (R), inductores (L) y condensadores (C); así, por la Ley de Ohm, se define una relación lineal entre voltaje (U) y corriente (I), (U = ZI), donde la impedancia (Z) es un valor constante cuyo valor depende del dispositivo; por lo tanto, la corriente que se obtiene es sinusoidal con la misma frecuencia que el voltaje y con un ángulo de desfasamiento respecto al mismo. Entre algunos ejemplos de este tipo de carga están las bombillas incandescentes, calefactores, cargas resistivas, motores, transformadores, etc [15].

Una carga no lineal contiene componentes (electrónicas o magnéticas) que consumen una corriente no sinusoidal. La forma de onda en este caso queda distorsionada por los armónicos que circulan por las impedancia de la red [15].

La corriente consumida por la carga no lineal, es la suma entre una corriente sinusoidal denominada fundamental, cuya frecuencia es 50 Hz o 60 Hz, con otras corrientes sinusoidales de una magnitud diferente a la fundamental, cuya frecuencia es múltiplo de la frecuencia fundamental, el cual define el orden del armónico. Por ejemplo, en un sistema cuya frecuencia fundamental es de 60 Hz, su tercer armónico tendría una frecuencia de 180 Hz [15].

Muchas cargas no lineales utilizan electrónica de potencia, circuitos magnéticos o diferentes tipos de luminarias, y están presentes en muchos dispositivos de uso común tales como televisores, computadoras, iluminación LED, iluminación con vapor de algunos gases, hornos de inducción, etc [16]..

Un rectificador es considerado una carga no lineal y debe producir un voltaje de salida de Corriente Directa con un contenido armónico mínimo, y al mismo tiempo debe mantener la corriente de entrada tan sinusoidal como sea posible [17].

2.6. Armónicos

La norma IEEE 519-2014, define un armónico como un componente de orden superior a la unidad, en las series de Fourier de una cantidad periódica [3]. También se define como tensiones o corrientes sinusoidales con una frecuencia, que son un múltiplo entero de la frecuencia fundamental [15].

Las formas de onda de corriente y voltaje fundamentales se distorsionan cuando los armónicos se combinan con las mismas. Por lo general, un armónico se denota como X_k siendo k el orden del armónico. I_k hace referencia a un armónico de

corriente de orden k, y U_k hace referencia a un armónico de voltake de orden k [15].

Los armónicos generados por cargas no lineales se dividen en tres grupos:

- Secuencia positiva $(7^a 13^a 19^a \dots)$
- Secuencia negativa $(5^a 11^a 17^a \ldots)$
- Secuencia cero $(3^a 9^a 15^a 21^a ...)$

Los armónicos de secuencia positiva en un motor, produciría un campo magnético que gira en el mismo sentido de la componente fundamental, ocasionando un incremento de corriente y una velocidad de rotación del rotor, mayor a la prevista [18]. Considerando el ejemplo de un motor, los armónicos de secuencia negativa, producirían un campo magnético que gira en sentido contrario a la componente fundamental, ocasionando sobrecalentamiento y una velocidad de rotación del rotor, menor a la prevista [18]. Los armónicos de secuencia cero, 3 y múltiplos impares se suman en el conductor del neutro de un sistema trifásico, debido a que son múltiplos del número de fases y coinciden con sus desplazamientos de corrientes. El orden se define con 3(2k - 1) donde k es un numero entero [15].

Mediante las series de Fourier, se puede descomponer toda función periódica, en sumas de senos y cosenos; en donde el primero de los términos de la sumatoria se conoce como la fundamental, y los términos restantes se conocen como armónicos y son múltiplos de la frecuencia fundamental, [19]. En la Ecuación 2.1, se puede observar la representación de esta serie de Fourier [20]:

$$f(t) = a_0 + \sum_{k=1}^{\infty} [a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)]$$
(2.1)

donde ω_0 es la frecuencia fundamental de la señal periódica y las ecuaciones de cálculo para los coeficientes a_0 , a_k y b_k son:

$$a_k = \frac{2}{T} \int_0^T f(t) \cos(k_0 t) dt$$
(2.2)

$$b_{k} = \frac{2}{T} \int_{0}^{T} f(t) \operatorname{sen}(k_{0}t) dt$$
(2.3)

$$a_0 = \frac{1}{T} \int_0^T f(t) dt$$
 (2.4)

En la figura 2.2 se observa una señal periódica cuadrada, de una determinada magnitud y frecuencia.

Figura 2.2: Señal periódica cuadrada.

En la figura 2.3, se aprecia el primer término de la serie de Fourier, superpuesta a la señal periódica cuadrada.

Figura 2.3: Primer Término de la Serie de Fourier, Superpuesta a la Señal Periódica Cuadrada

En la figura 2.4, se aprecia la suma de la fundamental más el tercer armónico, superpuestos a la señal periódica cuadrada y el tercer armónico.

Figura 2.4: Suma de la Fundamental más el Tercer Armónico, Superpuestos a la Señal Periódica Cuadrada y el Tercer Armónico

En la figura 2.5, se aprecia la suma de la fundamental más el tercer y quinto armónicos, superpuestos a la señal periódica cuadrada y el quinto armónico.

Figura 2.5: Suma de la Fundamental más el Tercer y Quinto Armónicos, Superpuestos a la Señal Periódica Cuadrada y el Quinto Armónico

En la figura 2.6, se aprecian todos los armónicos impares del 1 al 21 superpuestos a la sumatoria de los mismos y a la señal cuadrada periódica. En donde se puede distinguir, que mientras mas armónicos se sumen, su resultante se aproxima a la señal cuadrada periódica.

Figura 2.6: Armónicos impares del 1 al 21 superpuestos a la sumatoria de los mismos y a la señal cuadrada periódica

2.6.1. Armónicos en la Red Eléctrica

Para analizar los armónicos en la red eléctrica, se debe considerar el Punto de Acoplamiento Común (PCC, por sus siglas en inglés), que es el punto eléctrico común donde múltiples cargas y/o usuarios de la red están conectados. En segundo lugar, considerar el peso de cada armónico respecto a la fundamental, según la siguiente formula:

$$H_k \% = \frac{H_k}{H_1} * 100 \% \quad donde \ k = 2, 3, 4...k$$
(2.5)

De igual manera y según la norma IEEE 519-2014, se tiene un porcentaje máximo de distorsión armónica individual y total recomendado, tanto para voltaje como para corriente. En la ecuación 2.6 se muestra como se calcula la distorsión armónica total para la corriente,

$$THDi\% = \frac{\sqrt{\sum_{h=2}^{H} I_h^2}}{I_1} * 100\%$$
(2.6)

Los rangos para voltajes en el PCC, según la norma IEEE 519-2014, se encuentran en la primera columna de la tabla 2.2. La segunda columna hace referencia al máximo porcentaje de distorsión para cada armónico (H_k %; y en la tercera columna se detalla el porcentaje máximo THD.

Voltaje del bus V en el PCC	Armónico individual (%)	Distorsión armónica total THD (%)
V ≤1.0kV	5	8,0
$1 \text{kV} < \text{V} \le 69 \text{kV}$	3	5,0
$9kV < V \le 161kV$	1,5	2,5
161kV <v< td=""><td>1,0</td><td>1,5</td></v<>	1,0	1,5

Tabla 2.2: Límites de distorsión de voltaje [3].

De acuerdo con la tabla 2.2, en el primer rango de voltaje que oscila entre 0 y 1000 V, se espera un máximo de 5% de distorsión para cada armónico y un8% de distorsión armónica de voltaje total.

Por otra parte, según la Norma IEEE 519 – 2014, se definen los rangos de distorsión armónica de corriente para sistemas de 120 V a 69 kV, definidos como la relación entre la corriente de corto circuito en el PCC (I_{SC} , por su notación en inglés) con respecto a la corriente de carga (I_L , por sus siglas en inglés) en condiciones normales, y adicionalmente los intervalos de orden de los armónicos impares, en conjunto con la máxima Distorsión Total de la Demanda (TDD, por sus siglas en inglés) permitida. Estos rangos, para cada intervalo de orden de los armónicos impares, se detallan en la tabla 2.3.

Tabla 2.3: Límites de distorsión para sistemas de 120 V a 69 k V $[3$	3]	ĺ.
--	----	----

I_{sc}/I_L	3 < h <	$11 \le h <$	$17 \leq h <$	$23 \le h <$	$35 \le h <$	TDD
	11	17	23	35	50	
<20	4	2	1,5	0,6	0,3	5
20<50	7	3,5	2,5	1	0,5	8
50<100	10	4,5	4	$1,\!5$	0,7	12
100<1000	12	$5,\!5$	5	2	1	15
<1000	15	7	6	2,5	1,4	20

Por ejemplo, la división de la corriente de cortocircuito en el PCC, para la corriente máxima de carga, define el rango en el que se debería considerar los máximos permitidos para cada uno de los cinco intervalos de armónicos establecidos. Si esta relación resulta en un factor inferior a 20, se especifican las amplitudas armónicas de la primera fila de la tabla 2.3. De forma similar para los otros rangos de la relación I_{sc}/I_L .

3 CAPÍTULO 3: Desarrollo, Análisis y Simulación

3.1. Carga de las Baterías de los Vehículos Eléctricos

En la carga de las baterías de los VE se contemplan las consideraciones siguientes:

3.1.1. Tipos de Carga

- Carga Lenta: La carga lenta hace referencia a un tipo de carga convencional que un usuario común realiza en su residencia, con un voltaje nominal de 220 V, una corriente de 16 A y un tiempo de carga de 5 a 8 horas [10].

-Carga Semirrápida: La carga semirrápida, en general se utiliza en los lugares públicos. Sus parámetros eléctricos nominales varían según el tipo de conector que esté instalado y el tipo de vehículo que disponga el usuario. Los valores utilizados de corriente están entre los 32 A y 80 A, con un voltaje de 220 V [10].

-Carga Rápida: La carga rápida se aplica en las estaciones de carga, también llamadas electrolineras, que contienen sistemas eléctricos en CC que se encargan de alimentar las baterías de manera directa. Tienen una capacidad de suministro de hasta 200 A en corriente continua [10].

3.1.2. Tipos de Conectores

Los conectores utilizados para la carga de los VE dependen del tipo de carga mencionado en el apartado anterior. Los conectores más utilizados son los siguientes:

-Shuko: Este conector se emplea en procesos de carga lenta, normalmente en los hogares de los usuarios [21].

-SAE J1772: Este conector tiene dos funcionalidades, carga semirrápida y carga rápida. Contiene cinco pines para realizar la carga lenta, donde puede suministrar hasta 16 A y para la carga semi-rápida consta de siete pines con los cuales puede suministar 80 A [21].

-MENNEKES: Tiene la misma funcionalidad que el conector SAE J1772. A carga lenta tiene la capacidad de 16 A y para carga semirrápida alcanza hasta 63 A [21].

-Conector CHAdeMO: Este tipo de conector está hecho para carga rápida en CC. Tiene diez pines y puede manejar una corriente de 200 A.

El VE disponible en la Universidad Politécnica Salesiana sede Cuenca es el Kia Soul. Como se puede observar en la figura 3.1, se caracteriza por tener la entrada del conector SAE J1772 con cinco pines. El laboratorio dispone de un sistema de carga semi-rápida con una duración de cinco horas. En la Tabla 3.1, se detallan las especificaciones.

Especificaciones	Datos
Conector	SAE J1772
Voltaje	220 VAC
Frecuencia	$60~\mathrm{Hz}$
Corriente consumida	$30 A \max$
Temperatura de operación	$-30^{\circ}\mathrm{C}$ a 50 $^{\circ}\mathrm{C}$

Tabla 3.1:	Especificacione	es del suministro	de energía	para la carga	del VE $[4]$.
	T T T T T T T T T T			r O	

Figura 3.1: KIA Soul EV propiedad de la Universidad Politécnica Salesiana.

3.2. Armónicos Generados Durante la Carga del Vehículo Eléctrico

Las baterías deben ser cargadas mediante la inyección de corriente continua controlada para evitar un deterioro prematuro de las mismas. Las fuentes de energía que suministran, están en corriente alterna y por este motivo se requiere un convertidor electrónico de potencia que inyecte la corriente continua requerida por la batería en los diversos métodos de carga a partir de fuentes en corriente alterna. Esto se puede hacer de muchas formas pero en la actualidad para impactar menos el sistema eléctrico se utilizan convertidores activos de corriente alterna a continua. Estos convertidores son similares a los inversores convencionales pero el flujo de energía se envía desde el lado alterno al continuo. Estos convertidores trabajan a frecuencias de comutación mucho más altas que la red, normalmente entre los 5 kHz y los 20 kHz. Las impedancias de la red filtran los armónicos de estas frecuencias, pero aún así aparecen algunas armónicas importantes en frecuencias múltiplos de la frecuencia fundamental del sistema de corriente alterna. Estas corrientes armónicas fluyen por las red eléctrica y producen distorsiones en los voltajes.

A continuación se describe el sistema de adquisición de datos utilizados para medir la inyección de armónicas a la red que se produce al cargar el VE.

3.2.1. Equipo de Adquisición de Datos NI-USB-6216BNC

La adquisición de datos de los parámetros eléctricos se realizó mediante el uso del dispositivo NI-USB-6216BNC, el cual es una DAQ multifunción de 16 bits, con conectores tipo BNC, que posee un tasa de muestreo de 400 $\frac{kS}{s}$ y 16 entradas analógicas [22].

Este dispositivo es óptimo para aplicaciones de medición, ofrece una adquisición de datos precisa, se puede conectar a una computadora mediante el puerto USB, se puede controlar la adquisición con programas tales como Labview® o Matlab® y permite la transmisión de datos bidireccionales [22].

Las entradas de tensión y corriente provenientes del cargador del VE se obtienen a partir de una punta diferencial de tensión y una de corriente, ambas basadas en detección de estas variables mediante efecto Hall y que han sido desarrolladas por el Grupo de Investigación en Energía de la Universidad Politécnica Salesiana.

El control de la adquisición se realiza mediante un programa en Matlab® que inicia el sistema de adquisición de datos, define los canales a ser utilizados, selecciona las escalas de las medidas, fija la frecuencia de la adquisición y el tiempo de medida. Posteriormente este programa recibe los datos de tensiones y corrientes obtenidos a partir de los transductores y los escala a los valores reales. Los datos también se almacenan en archivos para su posterior procesamiento.

Figura 3.2: DAQ NI-USB-6216BNC utilizada en las mediciones de campo donde se observa el sensor de voltaje diferencial

3.2.2. Adquisición de Datos

Se realizó la adquisición de datos mediante el sistema DAQ y los transductores en cuatro diferentes niveles de carga de batería 12%, 14%, 16% y 20% de la plena carga del VE.

Cada registro de medición almacenó 16,666 muestras de tensión y corriente que corresponden a diez ciclos de la frecuencia fundamental (adquisición a $100 \, kHz$), garantizando así que la información obtenida sea lo más precisa posible. De esta forma se obtuvieron las gráficas de voltaje y corriente durante la carga del vehículo en cada una de las condiciones iniciales indicadas anteriormente.

En la figura 3.3, se muestran las formas de onda de voltaje y corriente para las condiciones de carga consideradas en este proyecto. Al ser comparadas entre sí estas variables, se observa que no existen diferencias apreciables. En otras palabras, las corrientes que requiere el cargador de la batería no son prácticamente influenciadas por el nivel de carga previo de la batería.

3.2.3. Descomposición Armónica de las Corrientes

Con el fin de obtener los armónicos de corriente de las señales obtenidas a las diferentes condiciones de carga de los registros de diez ciclos de la onda fundamental

Figura 3.3: Comparación de las corrientes de carga de la batería en diferentes niveles

mostrada en la figura 3.4, se selecciona un solo ciclo de la fundamental, tal como se ilustra en la figura 3.5, donde se observa en mayor detalle la coincidencia de las corrientes en las diferentes condiciones de carga. El valor pico de la corriente es de 42,8 A y si esta señal fuese sinusoidal, correspondería aproximadamente a un valor efectivo de 30,26 A, que es muy cercano al indicado por el fabricante. Un cálculo más preciso del valor efectivo se puede obtener después de realizar la descomposición armónica de la corriente mediante la expresión:

$$I_{rms} = \sqrt{\sum_{n=1}^{\infty} I_{n_{rms}}^2} \tag{3.1}$$

Figura 3.4: Corriente pico con una carga de 12%

Figura 3.5: Período completo de la señal de corriente de carga del VE en las diferentes condiciones iniciales de la batería

Cada término de la serie de Fourier es un armónico, siendo el primer término la componente fundamental, la cual tiene la frecuencia de la red (60 Hz) y la magnitud nominal. En el mejor de los casos, la señal de corriente debería ser sinusoidal. Sin embargo, debido a la presencia de armónicos de orden mayor

a uno, la señal de corriente no es 100% sinusoidal como se puede apreciar en la figura 3.5, en donde se observan algunas deformaciones. Estas armónicas de corriente circulan por la red produciendo distorisones en las tensiones.

Mediante las expresiones (2.2), (2.3) y (2.4) se calculan los coeficientes a_0 , a_n y b_n de la Serie de Fourier. La figura 3.6, muestra las amplitudes de las principales armónicas de corriente obtenidas.

Figura 3.6: Contenido armónico de la corriente en el periodo 1

La Tabla 3.2 presenta, los coeficientes obtenidos de la serie de Fourier de la señal de corriente.

Coeficientes de Fourier (Amplitud)						
	$\cos\left(n\omega t\right)$	$sen(n\omega t)$	$\cos\left(n\omega t\right)$	$sen(n\omega t)$		
n	$A_n(\mathbf{A})$	$B_n(\mathbf{A})$	A_n/I_1	B_n/I_1		
0	0.1129	0	0.002825	0		
1	1.3074	39.94	0.0327	0.9995		
2	-0.1067	0.1692	00267	0.00423		
3	-1.793	-0.3112	-0.04487	-0.00779		
4	-0.0068	0.076	-0.00017	0.001902		
5	0.68	-0.413	0.01702	-0.01034		
6	0.0057	0.047	0.000143	0.001176		
7	-0.45	0.028	-0.01126	0.000701		
8	-0.026	0.071	-0.00065	0.001778		
9	0.1812	0.1626	0.004534	0.00407		
10	0.0119	0.0075	0.000297	0.000187		
11	-0.176	0.1923	-0.004404	.004812		
RMS	28.3 A		1.001359			

Tabla 3.2: Coeficientes de Fourier de la señal de corriente

3.2.4. Serie de Fourier de la Señal de Voltaje

En la figura 3.7., se presenta el registro de tensión de alimentación del cargador de batería. El valor de la tensión pico optenida es de 309 V que en aproximación corresponde aproximadamente a un valor de 218,5 V efectivos si se considera que la onda es sinusoidal.

Figura 3.7: Voltaje pico con una carga de 12%

En la figura 3.8, se puede observar la superposición de un periodo de las ondas de voltaje en los diferentes niveles de carga obtenidas, incluida la señal promedio. Las variaciones que existen entre cada una de las señales son mínimas.

Figura 3.8: Periodo 1 en la señal de voltaje de las cargas del E.V

Se determinan los componentes armónicos del voltaje utilizando el mismo procedimiento aplicado para las corrientes. Los resultados obtenidos se presentan en la figura 3.9.

Figura 3.9: Contenido armónico del voltaje en el periodo 1

La Tabla 3.3, muestra los coeficientes obtenidos de la serie de Fourier de la señal

de voltaje promedio de un período de la onda de tensión.

Coeficientes de Fourier (Amplitud)						
	$\cos\left(n\omega t\right)$	$sen(n\omega t)$	$\cos\left(n\omega t\right)$	$sen(n\omega t)$		
n	$A_n(\mathbf{V})$	$B_n(\mathbf{V})$	A_n/I_1	B_n/I_1		
0	-3.65	0	-0.01193	0		
1	3.05	305.9	0.00997	0.99995		
2	-0.014	-0.63	-0.000046	-0.002059		
3	0.8125	-0.096	0.002656	-0.000314		
4	0.0047	-0.2838	0.000015	0.000928		
5	2.361	-1.562	0.007718	-0.005106		
6	-0.0738	-0.1351	-0.000241	-0.000442		
7	-1.275	-0.057	-0.004168	-0.000186		
8	-0.042	-0.077	-0.000014	0.000252		
RMS	216.34 V		1.000127			

Tabla 3.3: Coeficientes de Fourier de la señal de tensión
3.3. Levantamiento del Sistema Eléctrico

El sistema eléctrico de los Taller Automotriz tiene un área aproximada de 3900 m^2 , dividida en: patio de taller, laboratorios, aulas en la primera planta y zona de oficinas en la segunda planta. Con la finalidad de ubicar los tableros y cargas de las respectivas áreas, se solicitaron los planos de planta con el número de identificación de zona que el Departamento de Mantenimiento les ha asignado, tal somo se presenta en las figuras 3.10 y 3.11. En las Tablas 3.4 y 3.5, se indican los nombres de las respectivas zonas.

Figura 3.10: Plano de planta, planta baja laboratorio de automotriz UPS sede Cuenca.

Figura 3.11: Plano de planta, primera planta, laboratorio de automotriz UPS sede Cuenca.

REFERENCIAS DE ZONAS LABORATORIO			
AUTON	MOTRIZ UPS SEDE CUENCA		
PLANTA BAJA			
REFERENCIA	DESCRIPCIÓN		
1	ENTRADA / SALIDA AL EXTERIOR		
2	ENTRADA / SALIDA (PASILLO		
	TALLER GENERAL)		
3	BODEGA 1 DEL LABORATORIO DE		
	MOTORES		
4	BODEGA 2 Y 3 DEL LABORATORIO DE		
	MOTORES		
5	SERVICIO HIGIÉNICO		
6	SERVICIO HIGIÉNICO		
7	SERVICIO HIGIÉNICO		
8	BODEGA GENERAL PARA		
	HERRAMIENTAS Y MATERIALES		
9	LABORATORIO DIÉSEL		
10	LABORATORIO 1 TREN DE FUERZA		
	MOTRIZ Y SISTEMA TRASLACIÓN		
	CON BODEGA AUXILIAR		
11	SERVICIO HIGIÉNICO		
12	ENTRADA / SALIDA REFERENCIA		
	RECTORADO		
13	LABORATORIO DE MOVILIDAD		
	ELÉCTRICA "EMOLAB"		
14	LABORATORIO 2 TREN DE FUERZA		
	MOTRIZ Y SISTEMA TRASLACIÓN		
15	CUARTO DE EQUIPO		
16	PORTONES 1,2,3 Y4 DEL TALLER		
	GENERAL		
17	LABORATORIO DINAMOMETRICO		
	"ARMFIELT"		
18	CUARTO LAVADOR PARA PIEZAS Y		
	CONJUNTOS MECANICOS		
19	LABORATORIO DE MOTORES		
20	CUARTO COMPRESOR		
21	LABORATORIO SAE		

Tabla 3.4: Referencias de zonas del Laboratorio Automotriz UPS

REFERENCIAS DE ZONAS LABORATORIO				
AUTOMOTRIZ UPS SEDE CUENCA				
PRIMERA PLANTA				
22	ENTRADA / SALIDA BALCÓN			
23	SALA DE TUTORIA			
24	LABORATORIO 1 DE ELECTRICIDAD			
	AUTOMOTRIZ			
25	LABORATORIO DE CÁMARA			
	SEMIANECOICA			
26	SALA PARA NIVELACIÓN			
27	LABORATORIO DE ELECTRÓNICA			
28	GLiT			
29	LABORATORIO MATERIALES			
30	LABORATORIO AUTOTRONICA 1			
31	LABORATORIO AUTOTRONICA 2			
32	AULA 1			
33	AULA 2			
ÁREAS	Y SECCIONES ESPECIALES			
REFERENCIA	DESCRIPCIÓN			
34	BANCO DINAMOMETRICO "MAHA"			
35	FRENOMETRO			
36	BANCO ALINEADORA			
37	SEGURIDAD GENERAL, PREVENCIÓN			
	DE ACCIDENTES Y ENFERMEDAD			
38	SEÑALIZACIÓN			
39	SECCION SOLDADURA ELÉCTRICA			
40	SECCIÓN PARQUEO INTERNO			
	VEHICULAR			
41	PASILLO INTERNO TALLER			
42	PARQUEO EXTERIOR			
43	PARQUEO EXTERIOR			

Tabla 3.5: Referencias de zonas del Laboratorio Automotriz UPS.

Una vez identificada cada zona, se procedió a ubicar físicamente lo siguiente:

- 1. Tablero de distribución principal y alimentador principal
- 2. Tableros secundarios y alimentadores secundarios
- 3. Cargas, tipo de cargas y alimentadores de cargas.

3.3.1. Tablero de Distribución Principal y Alimentador Principal

El Tablero de distribución principal, Figura 3.12, está ubicado en la entrada del laboratorio (zonas 16 y 35, portones); contiene el alimentador principal proveniente del transformador de media tensión, el cual tiene una distancia lineal de 66 metros en configuración 3x250 MCM (4/0 AWG) TTU 600 / 1000 V.

Dentro del tablero principal existe un juego de barras trifásicas de 1/4" x 3/4" x 70 cm cada una. De este tablero salen los alimentadores para los tableros de distribución secundarios.

Figura 3.12: Tablero eléctrico principal.

El tablero principal tiene una protección termomagnética, es un disyuntor o interruptor automático de cabecera de 250 A, el cual se observa en la figura 3.13. Se dispone de siete alimentadores que salen desde las barras del tablero con sus respectivas protecciones termomagnéticas, una de 150 A, cuatro de 100 A y dos de 70 A.

Figura 3.13: Protección de cabecera.

3.3.2. Alimentadores Secundarios

Existen siete alimentadores que salen del tablero de distribución principal, y que a su vez energizan también siete tableros de distribución secundarios. En la figura 3.14 se muestra la disposición en planta de cada uno de ellos. Cabe destacar que uno de los tableros secundarios está fuera de la zona del Laboratorio de Automotriz y está energizando el tablero de distribución de las oficinas del Rectorado de la Universidad.

En las Tablas 3.6, 3.7 y 3.8, se detallan los circuitos más importantes de cada tablero, para su modelamiento matemático y posterior simulación en Simulink® de Matlab® .

Figura 3.14: Disposición de los alimentadores en planta

DETALLE DE CARGAS DE TABLEROS ELECTRICOS SECUNDARIOS					
número de tablero	IMA - 940102				
zona de instalación	16 - 35				
tipo de tablero	trifásico				
numero de espacios	30				
configuración de	3x1/0(1/0 des.)				
alimentador	AWG TTU 600 $/$				
	1000 v				
distancia al tablero	5 mts				
principal					
circuitos	#fases	calibre	distancia	carga	
		[awg /	a la carga	[W]	
		mcm]	[mts]		
iluminación zona 42	2	8	12	1600	
iluminación zona taller	2	8	12	3200	
alimentador tablero	3	8	52	2816	
oficinas					

Tabla 3.6: Detalles de cargas de tableros eléctricos secundarios

numero de tablero	TD-7			
zona de instalación	16			
tipo de tablero	trifásico			
numero de espacios	30			
configuración de	3x1/0(1/0 des.)			
alimentador	AWG TTU 600 $/$			
	1000 v			
distancia al tablero	18 MTS			
principal				
]		
circuitos	#fases	calibre	distancia	carga
circuitos	#fases	calibre [awg /	distancia a la carga	carga [W]
circuitos	#fases	calibre [awg / mcm]	distancia a la carga [mts]	carga [W]
circuitos iluminación para mesas	#fases	calibre [awg / mcm] 14	distancia a la carga [mts] 8	carga [W] 108
circuitos iluminación para mesas de trabajo laterales	#fases	calibre [awg / mcm] 14	distancia a la carga [mts] 8	carga [W] 108
circuitos iluminación para mesas de trabajo laterales zona 16	#fases	calibre [awg / mcm] 14	distancia a la carga [mts] 8	carga [W] 108
circuitos iluminación para mesas de trabajo laterales zona 16 tomacorrientes para	#fases 1 1 1	calibre [awg / mcm] 14 12	distancia a la carga [mts] 8 6	carga [W] 108 280
circuitos iluminación para mesas de trabajo laterales zona 16 tomacorrientes para mesas de trabajo	#fases 1 1 1	calibre [awg / mcm] 14 12	distancia a la carga [mts] 8 6	carga [W] 108 280

DETALLE DE CARGAS DE TABLEROS ELECTRICOS SECUNDARIOS				
numero de tablero	IMA-940105			
zona de instalación	ENTRE 16 Y 17			
tipo de tablero	trifásico			
numero de espacios	30			
configuración de alimentador	3x1/0(1/0 des.) AWG			
	TTU 600 / 1000 v			
distancia al tablero principal	$35 \mathrm{MTS}$			
circuitos	#fases	calibre	distancia a la	carga [W]
		[awg /	carga [mts]	
		mcm]		
iluminación zona 17, 18 y 19	1	14	13	264
tomacorrientes regulares zona	1	12	15	560
17,18 y19				
alimentador banco	3	10	27	9000
dinamométrico MAHA zona				
34				
taladro pedestal	3	10	4	373
tablero de distribución	3	8	8	1923.6
IMA-940121				
toma corrientes zona 32 y 33 $$	1	12	13	560
toma corrientes zona 32 y 33 $$	1	12	31	840
iluminación zona 32, 33, 23,	1	14	23	523.6
24, 25 y pasillo				

Tabla 3.7: Detalles de cargas de tableros eléctricos secundarios

numero de tablero	IMA-990101			
zona de instalación	ENTRE 15 Y 39			
tipo de tablero	trifásico			
numero de espacios	30			
configuración de alimentador	3x1/0(1/0 des.) AWG			
	TTU 600 / 1000 v			
distancia al tablero principal	37 MTS			
circuitos	#fases	calibre	distancia a la	carga [W]
		[awg /	carga [mts]	
		mcm]		
tomacorrientes zona 30	1	8	20	630
tomacorrientes zona 31	1	8	25	630
toma trifasico expreso para 15	3	10	8	500
1 de 2				
toma trifasico expreso para 15	3	10	10	500
2 de 2				
tablero de distribución	3	8	8	1626.8
IMA-940115				
toma corrientes zona 26 y 27 $$	1	12	13	420
tomacorrientes zona 28 y 29	1	12	31	560
iluminación zona 26, 27, 28,	1	14	23	646.8
29, 30, 31 y pasillo				

DETALLE DE CARG.	AS DE TABLEROS	ELECTRI	COS SECUN	DARIOS
numero de tablero	IMA-940113			
zona de instalación	13			
tipo de tablero	trifásico			
numero de espacios	76			
configuración de	3x1/0(1/0 des.)			
alimentador	AWG TTU 600 /			
	1000 v			
distancia al tablero	76 MTS			
principal				
circuitos	#fases	calibre	distancia a	carga
		[awg /	la carga	$[\mathbf{W}]$
		[awg / mcm]	la carga [mts]	$[\mathbf{W}]$
elevadores de vehículos	3	[awg / mcm] 10	la carga [mts] 60	[W]
elevadores de vehículos elevador alineadora 36	3 2	[awg / mcm] 10 8	la carga [mts] 60 20	[W] 11145 2984
elevadores de vehículos elevador alineadora 36 iluminación zona exterior	3 2 1	[awg / mcm] 10 8 14	la carga [mts] 60 20 15	[W] 11145 2984 252
elevadores de vehículos elevador alineadora 36 iluminación zona exterior 13, 14 y 15	3 2 1	[awg / mcm] 10 8 14	la carga [mts] 60 20 15	[W] 11145 2984 252
elevadores de vehículos elevador alineadora 36 iluminación zona exterior 13, 14 y 15 tomacorriente cargador	3 2 1 3	[awg / mcm] 10 8 14 10	la carga [mts] 60 20 15 7	[W] 11145 2984 252 11431.86
elevadores de vehículos elevador alineadora 36 iluminación zona exterior 13, 14 y 15 tomacorriente cargador carro electrico	3 2 1 3	[awg / mcm] 10 8 14 10	la carga [mts] 60 20 15 7	[W] 11145 2984 252 11431.86
elevadores de vehículos elevador alineadora 36 iluminación zona exterior 13, 14 y 15 tomacorriente cargador carro electrico tomacorrientes	3 2 1 3 1	[awg / mcm] 10 8 14 10 10 12	la carga [mts] 60 20 15 7 10	[W] 11145 2984 252 11431.86 420
elevadores de vehículos elevador alineadora 36 iluminación zona exterior 13, 14 y 15 tomacorriente cargador carro electrico tomacorrientes monofasicos	3 2 1 3 1	[awg / mcm] 10 8 14 10 12	la carga [mts] 60 20 15 7 10	[W] 11145 2984 252 11431.86 420

Tabla 3.8:	Detalles	de cargas	de tableros	eléctricos	secundarios

numero de tablero	IMA-090106			
zona de instalación	ENTRE 3 Y 4			
tipo de tablero	trifásico			
numero de espacios	30			
configuración de	3x1/0(1/0 des.)			
alimentador	AWG TTU 600 $/$			
	1000 v			
distancia al tablero	$54 \mathrm{MTS}$			
principal				
circuitos	#fases	calibre	distancia a	carga
		[awg /	la carga	$[\mathbf{W}]$
		mcm]	[mts]	
COMPRESOR	3	10	14	14920
cámara semianenoica	3	10	34	12000
lamparas ufo 200 w $1~{\rm de}~4$	2	10	23	1200
taller principal				
lamparas ufo 200w 2 de 4	2	10	32	1200
taller principal				
lamparas ufo 200w 3 de 4	2	10	41	1200
taller principal				
lamparas ufo 200w 4 de 4	2	10	52	1200
taller principal				
iluminación zona 3, 4, 5,	1	12	45	739.2
7, 8, 9 y 10				
reflectores exterior trasero	2 30	10	34	2400

De acuerdo a los datos de las Tablas 3.6, 3.7 y 3.8, se continua con la identificación de las cargas conectadas a la red con su respectivo alimentador, previa revisión de las distancias de los alimentadores que parten del tablero de distribución principal a los tableros de distribución secundarios (instalados en tuberías soterradas o sobrepuestas), distinguiendo la configuración del alimentador, el calibre de los cables, la posición de estos en la trayectoria, el tipo de aislamiento y el número de hebras, .

3.3.3. Circuitos y Cargas

Se deben obtener las características (distancia, configuración, calibre de los cables y posición) de los alimentadores que parten desde los centros de carga o distribución secundarios hacia los dispositivos de iluminación, tomacorrientes y circuitos especiales, con el fin de modelarlos matemáticamente y obtener un circuito equivalente, que posteriormente se simulará en la herramienta Simulink® de Matlab®.

Los dispositivos conectados a la red eléctrica del Laboratorio de Automotriz se encuentran detallados por tablero en las tablas 3.6, 3.7 y 3.8.

3.3.3.1. Diagrama Unifilar

De acuerdo con la tablas 3.6, 3.7 y 3.8, se obtiene el diagrama unifilar que representa el Sistema Eléctrico, como resultado del levantamiento que se realizó en el Laboratorio de la Carrera Automotriz de la Universidad Politécnica Salesiana Sede Cuenca. Este diagrama se ha representado en el Anexo 5.1.

3.4. Modelamiento del Sistema Eléctrico del Taller Automotriz

3.4.1. Parámetros Fundamentales de una Línea de Distribución Eléctrica

Un circuito eléctrico de baja o media tensión, está formado por los siguientes elementos: resistencia, inductancia, capacitancia y conductancia. Estos componentes conforman los sistemas eléctricos, desde un simple circuito hasta los más complejos sistemas de potencia. Estos elementos eléctricos se clasifican en función de la forma en que influyen dentro del sistema. Se pueden clasificar en parámetros longitudinales y transversales [5]:

Parámetros eléctricos longitudinales: Están constituidos por la resistencia eléctrica y la inductancia en serie, cuyas unidades son respectivamente Ω y H.

Parámetros eléctricos transversales: determinados por la capacitancia y conductancia en paralelo y cuyas unidades son los $F \ge \mathcal{O}$, respectivamente. Se utilizan algunos parámetros complejos que determinan relaciones entre tensiones y corrientes en alterna tales como son las siguientes:

• Impedancia serie:

$$Z = (R + jX) [\Omega] \tag{3.2}$$

• Admitancia paralelo:

$$Y = (G + jB) [\mho] \tag{3.3}$$

• Reactancia inductiva:

$$X_L = L\omega = 2\pi f L \ [\Omega] \tag{3.4}$$

• Reactancia capacitiva:

$$X_C = \frac{1}{\omega C} = \frac{1}{2\pi f C} \left[\Omega\right] \tag{3.5}$$

• Suceptancia:

$$B = C\omega = 2\pi f C \tag{3.6}$$

3.4.2. La Resistencia R (Ω)

Se define como la oposición al paso de corriente sobre cualquier material. Conceptualmente la resistencia de cualquier elemento conductor depende de sus dimensiones físicas (longitud L y sección transversal S), de la resistividad ρ de este y se expresada en la Ecuación 3.7

$$R = \rho \frac{L}{S} \left[\Omega \right] \tag{3.7}$$

La resistencia de un conductor es directamente proporcional a su longitud. Entre los materiales más empleados está el cobre debido a su baja resistividad y alta maleabilidad. Los conductores actuales están formados por varios hilos de cobre de sección pequeña unidos en un haz helicoidal para mantener la consistencia mecánica, la flexibilidad y la torsión necesaria para su uso [5].

3.4.3. La Inductancia L (H)

Es la propiedad de un elemento del circuito que relaciona la corriente eléctrica que circula por el conductor con el enlace de flujo magnético que se produce por dicha corriente [5]:

$$L = \frac{\lambda}{i} = \frac{\int_{S} \boldsymbol{B} \cdot d\boldsymbol{S}}{i} = \frac{\int_{S} \mu \boldsymbol{H} \cdot d\boldsymbol{S}}{i}$$
(3.8)

donde \boldsymbol{H} se determina a través de la aplicación de la ley de Ampere: $\int_C \boldsymbol{H} \cdot d\boldsymbol{l} = \int_S \boldsymbol{J} \cdot d\boldsymbol{S}$.

Las líneas de flujo magnético forman anillos cerrados que rodean cada conductor. Cualquier variación del campo magnético induce una fuerza electromotriz (f.e.m) en el circuito [5].

La reactancia inductiva es la multiplicación de la inductancia por la frecuencia (en radianes por segundo) [5]:

$$X_L = \omega L = 2\pi f L \ (\Omega)$$

3.4.4. La Capacitancia C (F)

La capacitancia de una línea de transmisión es la relación existente entre la carga y el potencial que existe entre conductores. Dicha diferencia de potencial origina que los conductores se carguen de la misma forma que las placas de un condensador y está relacionada directamente con la sección de los conductores e inversamente con la distancia de separación entre ellos [5].

La capacitancia se determina a partir de la ley de Gauss para campos eléctricos. Esta ley establece que la carga eléctrica dentro de una superficie cerrada es igual al flujo eléctrico que sale de la superficie. La capacitancia de una línea con dos conductores puede calcularse de forma indirecta, conocidas la carga y la diferencia de potencial al que se encuentran sometidos [5]:

$$C = \frac{q}{V} [f] \tag{3.9}$$

donde (q) es la carga sobre la línea en Coulombios y (V) es la diferencia de potencial entre los conductores en voltios. La capacitancia depende de la geometría de los conductores y del tipo de material existente entre los electrodos [5]:

$$C = \frac{S}{d} * \varepsilon \ [f] \tag{3.10}$$

3.4.5. La Conductancia G (S)

Este parámetro representa la facilidad que un material aislante ofrece al paso de corriente. Su unidad es el Siemens y su unión con la susceptancia forma la admitancia transversal de un sistema eléctrico [5].

$$G = \frac{I}{V} = \frac{P}{V^2} \left(\frac{siemens}{km * fase}\right)$$
(3.11)

La conductancia tiene en cuenta las corrientes de fuga tanto de los aisladores que sostienen las líneas aéreas como las perdidas ocasionadas por las cargas eléctricas que fluyen a través del aire. La conductancia depende de varios factores, tales como presión, temperatura, contaminación, humedad, que pueden ser difíciles de predecir y que no necesariamente se mantienen constantes a lo largo de toda la línea [5].

3.4.6. Inductancia y Capacitancia de una Línea

La inductancia por unidad de longitud de una línea monofásica se puede determinar mediante la expresión[23]:

$$L = 2 * 10^{-7} \ln \frac{DM}{RMG} \left[\frac{H}{m}\right]$$
(3.12)

donde:

DMG es la distancia,

RMG es el radio medio geométrico

La capacitacia de una línea monofásica por unidad de longitud se determina mediante la siguiente expresión[23]:

$$C_n = \frac{2\pi\varepsilon_0}{\ln\left(\frac{DMG}{RMG}\right)} \tag{3.13}$$

3.4.6.1. Radio Medio Geométrico

Con el fin de obtener el radio medio geométrico o radio equivalente RMG, de las configuraciones más utilizadas, se tiene:

$$RMG = R\sqrt[n]{\frac{r*n}{R}}$$
(3.14)

Tabla 3.9: Radio medio geométrico para el número de conductores [5]

3.4.6.2. Distancia Media Geométrica

La distancia media geométrica, DMG, se define como la raíz nm de los productos de las distancias desde todos los n hilos del conductor X a todos los m hilos del conductor Y. Cabe recalcar que $n \ge m$ son el numero de conductores por fase y que X y Y son fases [23].

El producto de las m distancias para cada uno de los n hilos da como resultado mn términos, por consiguiente, la DMG se obtiene como la raíz mn-ésima del producto de las mn distancias que intervienen [23].

En la figura 3.15, se puede observar las configuraciones de los circuitos eléctricos más importantes, cabe recalcar, que esta sería la disposición de los cables en las torres eléctricas, en nuestro caso en particular tomaremos una de estas configuraciones para representar las disposiciones de los alimentadores en baja tensión [23].

Figura 3.15: Configuraciones de los circuitos eléctricos

Para aplicar la formula de la inductancia de una línea, es necesario conocer la distancia media geométrica entre fases, el radio equivalente y el numero de cables que existen por fases [23].

En la figura 3.16, se observa la disposición de la distancia media para un circuito.

$$DMG_{\theta 1} = \sqrt[3]{d_{RS} * D_{st} * d_{RT}}$$
(3.15)

Figura 3.16: Distancia media geométrica para un circuito

La figura 3.17, muestra la composición de la distancia media para dos circuitos.

$$DMG_{\theta 2} = \sqrt[3]{d_R * d_S * d_T} \tag{3.16}$$

Figura 3.17: Distancia media geométrica para dos circuitos

3.4.7. Modelamiento del Alimentador Principal

Transformador – Tablero principal de distribución del Laboratorio Automotriz de la UPS, sede Cuenca

Configuración alimentador:

Cu 3x250 MCM (4/0 AWG) aislamiento TTU 600 / 1000 V

En la Figura 3.18, se observa la configuración física en ducto.

Figura 3.18: Configuración física del ducto

El valor de la resistencia, radio medio geométrico y de la distancia media, se obtuvieron mediante las tablas establecidas en [23]:

$$RMG = 0,01813 \ [pies]$$

 $DMG = 0,0191 \ [m]$
 $r = 0,0072 \ [m]$
 $resistencia = 0,010 \ [\Omega]$

La longitud de la linea es de $66\,m.$

- Cálculo de la inductancia, se aplica la Ec.3.12,

$$L_{K1} = 2 \times 10^{-7} \ln\left(\frac{0,0191}{0,01813}\right)$$
(3.17)
$$L_{K1} = 2,47 \times 10^{-7} \left[\frac{H}{m}\right]$$
$$L_{K1} = 2,47 \times 10^{-7} \left[\frac{H}{m}\right] \cdot 66 [m]$$
$$L_{K1} = 1,6367 \times 10^{-5} [H]$$

- Cálculo de la capacitancia, se aplica la Ec. 3.13,

$$C_{K1} = \frac{2\pi \times 8,85 \times 10^{-12}}{\ln\left(\frac{0.019}{0.0072}\right)}$$
(3.18)
$$C_{K1} = 5,774 \times 10^{-11} \left[\frac{F}{m}\right]$$
$$C_{K1} = 5,774 \times 10^{-11} \left[\frac{F}{m}\right] \times 66 [m]$$
$$C_{K1} = 3,8111 \times 10^{-9} [F]$$

El cálculo de la conductancia es el valor inverso de la resistencia, obteniendo lo siguiente,

$$G = \frac{1}{R} \begin{bmatrix} S \end{bmatrix} \tag{3.19}$$

$$G = \frac{1}{0,010} \tag{3.20}$$

$$G = 94,87\left[S\right]$$

En el Anexo 5.2, se detalla los cálculos realizados para los circuitos establecidos en el Taller Automotriz.

3.4.8. Modelamiento de los Motores del Taller Automotriz

Las máquinas de inducción son las más utilizadas en la industria. El Taller Automotriz tienen este tipo de motores para el funcionamiento de los elevadores de puentes u otros sistemas más útiles. La energía eléctrica genera un campo magnético rotatorio y esto hace que se induzcan corrientes en el rotor. La iteracción del campo magnético del estator con el inducido por las corrientes del rotor producen el par eléctrico de accionamiento de esta máquina [24].

El número de polos y la frecuencia de la alimentación determinan la velocidad del campo magnético. Esta velocidad se conoce como sincrónica, la cual se puede expresar en rad/s o rpm. La diferencia entre la velocidad sincrónica y la de operación, en por unidad de la velocidad sincrónica, es el deslizamiento de la máquina de inducción [24]:

$$s_{op} = \frac{\frac{60 \times f}{p} - n_{op}}{\frac{60 \times f}{p}} \tag{3.21}$$

Con los datos de placa de la máquina sincrónica se puede establecer un modelo inductivo resistivo aproximado, cuando la velocidad se mantiene constante. Los datos de placa del motor suelen ser los mostrados en la Tabla 3.10.

Tabla 3.10: Datos de placa típicos de un motor de inducción

Datos de Placa				
$P_n(eje)$	$V_n(linea - línea)$	$I_n(linea) \circ \eta_n$	$\cos \varphi_n$	n_n

La determinación de un circuito pasivo equivalente a la velocidad nominal se realiza mediante el siguiente procedimiento:

1. Si el rendimiento nominal η_n no es un dato de placa, este se obtiene mediante la siguiente expresión:

$$\eta_n = \frac{P_n(eje)}{P_{en}} = \frac{P_n(eje)}{\sqrt{3}V_n(linea - linea) I_n(linea) \cos\varphi_n}$$
(3.22)

en caso de que se desconozca la corriente de línea, esta se determina como:

$$I_n(linea) = \frac{P_n(eje)}{\sqrt{3}V_n(linea - linea)\eta_n \cos\varphi_n}$$
(3.23)

$$P_n(estator) = \frac{P_n(eje)}{\eta_n} = 3R_{eq}I_n^2(linea) \quad \Rightarrow \quad R_{eq} = \frac{P_n(eje)}{3\eta_n I_n^2(linea)} \quad (3.24)$$

2. Para determinar la reactancia equivalente del modelo de la máquina se calcula primero la potencia reactiva:

$$Q_n(estator) = \sqrt{S_n^2(estator) - P_n^2(estator)} = \sqrt{3V_n^2 I_n^2 - \left(\frac{P_n(eje)}{\eta_n}\right)^2}$$

(3.25)

Finalmente se determina la reactancia equivalente como:

$$X_{eq} = \frac{Q_n(estator)}{3I_n^2(linea)} \quad \Rightarrow \quad L_{eq} = \frac{X_{eq}}{2\pi f} \tag{3.26}$$

En el Anexo 5.3, se han indicado los diferentes motores existentes, sus datos de placa y el modelo circuital equivalente. En la figura 3.19, se representa el modelo equivalente del motor de inducción utilizado en el estudio armónico, considerando que está operando en su punto nominal.

Figura 3.19: Modelo de los motores de inducción operando en su punto nominal

3.5. Simulación del Modelamiento en Simulink® de Matlab®

La simulación del sistema eléctrico, permite determinar el comportamiento de las variables eléctricas, y en caso necesario encontrar soluciones a posibles problemas operativos. También es posible preveer posibles fallas, las cuales pueden reducir la operatividad del sistema.

La simulación eléctrica del Taller Automotriz se realizaron con el fin de obtener los armónicos de tensión y corriente que afectan en la red eléctrica.

El modelamiento del sistema eléctrico se realizó en Simulink®, luego de obtener los valores de las resistencias, capacitancias e inductancias de los alimentadores y las cargas. En el Anexo 5.4, se observa cómo está realizada esta simulación.

En la sección 3.2, se obtuvieron la descomposición en Series de Fourier de las corrientes del cargador y de las tensiones de la red sin la inyección armónica.

La fuente de voltaje, se representó como una fuente principal de energía y la fuente de corriente se representó en la carga del VE. En el circuito modelado se considera que todos los equipos disponibles en el laboratorio están en funcionamiento al mismo tiempo.

Se crearon varios subsistemas del circuito del sistema eléctrico, con la finalidad de simular los valores de armónicos presentados en la red obtenidos en las Tablas 3.2 y 3.3. En cada unos de los subsistemas, se fueron modificando los valores en la fuente de voltaje y en la fuente de corriente, con el bloque *add* que se dispone en Simulink®. Se sumaron todas las señales de los armónicos, más el valor de continua A_0 representados en la serie de Fourier. Esto se puede visualizar en el Anexo 5.5.

El análisis de Fourier representa una función periódica como una suma infinita de funciones sinusoidales, que a su vez se incorpora en coordenadas polares ya que, mediante el principio de superposición con los elementos del sistema eléctrico en función de la frecuencia, se puede representar la excitación de un circuito. Los valores de cada uno de los armónicos en coordenadas polares se representan en las Tablas [3.11, 3.12]; estos valores dados por las tablas, son los puntos en los que se encuentran cada una de las señales armónicas en su máximo valor con su respectivo ángulo.

Coordenadas polares de la serie de Fourier				
en corriente				
	Módulo	Ángulo		
Primer armónico	39,92	90°		
Segundo armónico	0,27	$64,35^{\circ}$		
Tercer armónico	1,81	9,51°		
Quinto armónico	0,76	-31°		
Séptimo armónico	0,41	3,04°		
Noveno armónico	0,23	$43,\!55^{\circ}$		
Treceavo armónico	0,30	79,48°		
Onceavo armónico	0,26	$42,46^{\circ}$		
Diecisieteavo armónico	0,19	53,20°		

Tabla 3.11: Coordenadas polares de la serie de Fourier de corriente

Tabla 3.12: Coordenadas polares de la serie de Fourier de voltaje

Coordenadas polares de la serie de Fourier					
en voltaje					
Módulo Ángulo					
Primer armónico	305,91	90°			
Quinto armónico	2,83	-31°			
Séptimo armónico	1,27	2,55°			

En la simulación, se introducen en las fuentes, los valores de magnitudes de cada una de las señales tanto de voltaje como de corriente, con sus respectivos ángulos de desfasaje. Mediante la intervención del método numérico de modelo Binomial se determinó la raíz de la función más próxima al valor cero en el eje, para cada una de las señales armónicas, con el propósito de encontrar el valor del desfasaje, para luego establecer la diferencia entre el angulo de desfase de la señal fundamental y cada una de las señales armónicas. En las Tablas 3.13 y 3.14, se encuentran los ángulos de desfase de cada una de las señales.

Desfase de las señales de corriente con armónicos									
con respecto a la fundamental									
	Ángulo de desfase con	Ángulo de desfase con							
	respecto a cero	respecto a la fundamental							
Primer armónico	$-1,87^{\circ}$	0°							
Segundo armónico	16,12°	17,99°							
Tercer armónico	33,29°	$35,16^{\circ}$							
Quinto armónico	47,73°	49,60°							
Séptimo armónico	12,35°	14,22°							
Noveno armónico	$34,\!65^{\circ}$	36,52°							
Décimo primer armónico	3,86°	5,73°							
Décimo tercer armónico	26,89°	28,76°							
Décimo séptimo armónico	19,01°	20,88°							

 Tabla 3.13: Desfase de las señales de corriente con armónicos con respecto a la fundamental

 Tabla 3.14: Desfase de las señales de voltaje con armónicos con respecto a la fundamental

Desfase de las señales de voltaje con armónicos con respecto a la fundamental								
	Ángulo de desfase con respecto a cero	Ángulo de desfase con respecto a la fundamental						
Primer armónico	-0,57°	0°						
Quinto armónico	47,30°	47,87°						
Séptimo armónico	13,22°	13,79°						

En las figuras 3.20 y 3.21, se puede observar la señal de la corriente y la señal de voltaje después de realizar la simulación con los armónicos establecidos.

Figura 3.20: Señal de corriente armónica simulada

Figura 3.21: Señal de voltaje armónica simulada

Después de la obtención de las dos señales, tanto de corriente como de voltaje se realizó la comparación entre la señal fundamental de la corriente y la señal total de corriente con los armónicos, como se puede observar en la figura 3.22.

Figura 3.22: Corriente total con armónicos vs corriente fundamental

En la figura 3.23 se muestra la diferencia entre la señal armónica y la señal fundamental, obteniendo una señal I_{RMS} de 3,026 A.

Figura 3.23: I_{RMS} entre la corriente total con armónicos v
s corriente fundamental

Mediante el bloque Powergui, disponible en Simulink de Matlab®, y la función *fft analysis*, se han generando los histogramas en función de la frecuencia de cada uno de los armónicos, tanto para voltaje como para la señal de corriente. Además, se obtiene el valor correspondiente de THD. En las figuras 3.24 y 3.25, se muestran los histogramas mencionados.

Figura 3.24: Histograma de la señal de corriente

Figura 3.25: Histograma de la señal de voltaje

4 Conclusiones y Recomendaciones

Los vehículos eléctricos son fundamentales dentro del proceso de cambio de la matriz energética porque en algún momento pueden reemplazar a los vehículos con motor de combustión interna, debido a la contaminación que producen y a su ineficiencia. Este proceso de cambio requiere el análisis del impacto al cargar las baterías de miles de vehículos eléctricos en el sistema de potencia. En este trabajo, se analizó el impacto de un cargador de las baterías de un vehículo eléctrico en la red de la Universidad Politécnica Salesiana, Sede Cuenca.

Se determinó en este proyecto que el contenido armónico que el cargador inyecta a la red es independiente del nivel de carga de la batería. Esto es debido a las prestaciones del sistema electrónico de carga, que ajusta el contenido armónico a una especificación fija. De esta forma, la corriente en magnitud y el espectro armónico, se mantienen constantes para todas las condiciones de carga de la batería.

El estándar IEEE 519 – 2014, en la Tabla 2.2, presenta las recomendaciones para los límites máximos de distorsión de voltaje, señalando que esta no debe exceder un THD_V de 8% y que ninguna armónica supere 5%. En las medidas y modelos realizados el THD_V se determinó en 1,03% como máximo, y por lo tanto estaría dentro de los límites recomendados.

El estándar IEEE 519-2014, en la Tabla 2.3, indica los límites tolerables de distorsión armónica de corriente. En el estudio realizado se determinó que la relación entre la corriente de cortocircuito y la corriente de carga I_{sc}/I_L es 62.5, y de acuerdo con la recomendación IEEE, para este rango, tal como se observa en la Tabla 2.3, deben ser inferiores al 10%. Como las armónicas totales en corriente son inferiores al 4%, la inyección del cargador del vehículo está comprendida dentro de los límites recomendados.

En la ciudad de Cuenca, el ente comercializador del servicio eléctrico es la Empresa Eléctrica Regional Centro Sur, la cual mide y registra todos los parámetros eléctricos. Sin embargo, el único parámetro regularizado que guarda relación directa con la calidad de energía es el factor de potencia, que según los pliegos tarifarios emitidos por ARCONEL, incluido el de 2019, presenta penalizaciones para aquellos abonados que tengan un FP menor a 0,92, y para los que tengan un FP menor al 0,60, podrían ser sancionados con la suspensión del servicio eléctrico. La inyección de armónicas en la red, reduce el factor de potencia de la carga debido a que la distorsión armónica es potencia reactiva, y por lo tanto debe ser controlada para evitar estas sanciones. En el estudio realizado, la inyección de reactivos a la red por el cargador de baterías no es significativo como para alterar en forma preocupante el factor de potencia de la UPS.

Se debe tener en cuenta que los armónicos inyectados pueden llegar a entrar en resonancia con equipos pasivos de compensación de reactivos o cables de distribución, que podría ocasionar voltajes y corrientes perjudiciales para los equipos y la red de potencia.

La incorporación masiva de vehículos eléctricos puede tener un efecto importante en la calidad del servicio eléctrico residencial, comercial e industrial. Por tal motivo es aconsejable realizar estudios armónicos en las redes de distribución de las ciudades que incorporen estas nuevas tecnologías vehiculares, tratando de reducir la inyección de armónicos y el incremento de reactivos en estas redes.

5 ANEXOS

5.1. Anexo 1: Diagrama Unifilar de las Instalaciones Eléctricas del Taller de Automotriz

5.2. Anexo 2: Tabla de Valores de la Modelación de los Circuitos

																							- (-)
	Calibra (MCM o AWG)	Longitud (m)	DMG [m]	PMC [plac]	PMC [m]	Diametro est (m)	Radio (m)	Partistancia (O/milia)	Partistancia (0)	1 (H/m)	1 (11)	YI (0)	C (5/m)	((s)	C (E)/2	YC (0*m)	Ixc (0)	Real (G)	Y [S]	Real (G)	1/2 [S]	Real (R)	2 [0] Imaginaria (iwi)
Acometica Principal	250 MCM	congreed ping	0.019	1 0.01813	0.00552744	0.014583333	0.007291667	0.257	0.010539724	2 479935-07	1.63675E-05	0.00617041	5 77453E-11	3.811195-09	1 905595-09	45935904.48	695998 553	94 8791416	143678E-06	47 4395708	7 183925-03	0.01053972	0.00617041
	1/0 AWG [Trifasico]	5	0.013	4 0.01113	0.00339329	0.009349593	0.004674797	0.607	0.001885866	2 74691E-07	1 37345E-06	0.00051778	5 28039E-11	2 6402E-10	1 3201E-10	50234557 31	10046911 5	530 26029	9.95331E-08	265 130148	4 97665E-08	0.00188587	0.00051778
	1/0 AWG [Trifasico]	18	0.013	4 0.01113	0.00339329	0.009349593	0.004674797	0.607	0.006789119	2 746915-07	4 944435-05	0.001854008	5 28039E-11	9 504715-10	4 75235E-10	50234557 31	2790808.74	147 29452	3 583195-07	73 6472634	1 79165-07	0.00678912	0.001864008
Tablaror Eléctricor	1/0 AMG [Trifarico]	25	0.012	4 0.01112	0.00220220	0.009249592	0.004674797	0.607	0.012201064	2 746915-07	9.614195.06	0.00262446	5 290205-11	1 949145-00	9.240695-10	50724557 21	1425272.07	75 7514706	6 967225-07	27 9757255	2 492665.01	0.01220106	0.00262446
secundarios	1/0 AWG [Trifarico]	35	0.012	4 0,01113	0.00220220	0,000249592	0.004674797	0,607	0.01205541	2,746915-07	1 016265-05	0.002921572	5 290205-11	1.052755.00	9.769725-10	50724557 21	1257690 74	71 6567969	7 265455.07	25 9792094	2 692725-02	0.01205541	0.002821572
	1/0 AWG [Thiasico]	3/	0,015	4 0,01113	0,00339329	0,009349595	0,004674797	0,007	0,01355341	2,746912-07	1,018582-05	0,003831372	5,280395-11	1,955/52-09	3,768732-10	50234557,52	1337690,74	71,6567568	1,505450-07	33,8283384	3,082722-07	0,01393341	0,003831372
	1/0 AWG [Thiasico]	76	0,015	4 0,01113	0,00339329	0,009349595	0,004674797	0,007	0,028665167	2,746912-07	2,087632-05	0,007870233	5,280395-11	4,01512-09	2,008332-09	50234557,52	02020050	40.000176	1,51290-00	1/,442//25	7,504512-07	0,02866317	0,007870233
	1/0 AWG [ITIIIISICO]	34	0,015	4 0,01113	0,00339329	0,003349393	0,004674757	0,607	0,020367336	2,740912-07	1,485555005	0,003392023	5,280396-11	2,031412-09	1,425712-09	50254557,51	4030209,58	35 49,0981/36	2,074982-08	24,5450878	3,5/4/92-0/	0,02036736	0,003392023
1144040103	8 AWG [bitasico]	12	0,005	5 0,00417	0,00127134	0,003264736	0,001632368	3,0	0,028334397	2,929332-07	3,515222-08	0,001323207	4,57771E-11	5,495256-10	2,740032-10	57545025,03	4828802,09	35,2925435	2,07091E-07	17,0402715	1,055452-07	0,0283340	0,001525207
1004540102	8 AWG [birasico]	12	0,005	5 0,00417	0,00127134	0,003264736	0,001632368	3,8	0,028334597	2,92935E-07	3,51522E-06	0,001325207	4,5///1E-11	5,49325E-10	2,74663E-10	57945625,03	4828802,09	35,2925435	2,07091E-07	17,6462719	1,03545E-07	0,0283346	0,001325207
	8 AWG [bifasico]	52	0,005	5 0,0041/	0,00127134	0,003264736	0,001632368	3,8	0,122783253	2,92935E-07	1,52326E-05	0,005742564	4,5///1E-11	2,38041E-09	1,1902E-09	57945625,03	1114338,94	8,144433	8,97393E-07	4,0722166	4,48697E-07	0,12278325	0,005/42564
TD7	8 AWG [bifasico]	8	0,005	5 0,00417	0,00127134	0,003264736	0,001632368	3,8	0,018889731	2,92935E-07	2,34348E-06	0,000883471	4,5///1E-11	3,66217E-10	1,83108E-10	57945625,03	7243203,13	52,9388158	1,3806E-07	26,4694079	6,9030ZE-08	0,01888973	0,000883471
	8 AWG [birasico]	6	0,005	5 0,0041/	0,00127134	0,003264736	0,001632368	5,8	0,01416/298	2,92935E-07	1,/5/61E-06	0,000662604	4,5///1E-11	2,74663E-10	1,5/351E-10	57945625,03	965/604,1/	/ /0,58508/	1,03545E-07	35,2925435	5,1//2/E-U8	0,01416/3	0,000662604
	14 AWG [Monofasico]	13	0,0026	9	0,000814	0,001628	0,000814		0,00828	2,39067E-07	3,10787E-06	0,001171641	4,65193E-11	6,04751E-10	3,02375E-10	57021124,84	4386240,37	120,77294	2,27986E-07	60,3864734	1,13993E-07	0,00828	0,001171641
	12 AWG [Monorasico]	15	0,0033	8	0,001026	0,002052	0,001026		0,00521	2,38442E-07	3,57662E-06	0,001348355	4,664146-11	6,9962E-10	3,4981E-10	568/1902,98	3/91460,2	191,93858	2,63/51E-0/	95,9692898	1,318/SE-0/	0,00521	0,001348355
	10 AWG [trifasico]	2/	0,0042	6	0,00129	0,00258	0,00129		0,00328	2,58925E-07	6,450998-06	0,002431964	4,65469E-11	1,25677E-09	6,28383E-10	56987295,56	2110640,58	304,878045	4,/3/9E-0/	152,439024	2,36895E-07	0,00328	0,002431964
IMA-940105	10 AWG [trifasico]	4	0,0042	6	0,00129	0,00258	0,00129		0,00328	2,38925E-07	9,55702E-07	0,000360291	4,65469E-11	1,86188E-10	9,30938E-11	56987295,56	14246823,9	304,878049	7,01911E-08	152,439024	3,50955E-08	0,00328	0,000360291
	8 AWG [trifasico]	8	0,005	5 0,0041/	0,00127134	0,003264736	0,001632368	3,8	0,018889731	2,92935E-07	2,34348E-06	0,000883471	4,5///1E-11	3,66217E-10	1,83108E-10	57945625,03	/243203,13	52,9388158	1,5806E-07	26,4694079	6,9030ZE-08	0,01888973	0,000883471
	12 AWG [Monotasico]	13	0,0033	8	0,001026	0,002052	0,001026		0,00521	2,38442E-07	3,09974E-06	0,001168575	4,664146-11	6,06338E-10	3,03169E-10	568/1902,98	43/4/61,//	191,93858	s 2,28584E-07	95,9692898	1,14292E-07	0,00521	0,001168575
	12 AWG [Monorasico]	31	0,0033	8	0,001026	0,002052	0,001026		0,00521	2,38442E-07	7,39169E-06	0,002785501	4,66414E-11	1,44588E-09	7,22941E-10	568/1902,98	1834577,52	191,93858	5,45085E-07	95,9692898	2,72542E-07	0,00521	0,002/86601
	14 AWG [Monorasico]	23	0,0028	2 0.00417	0,000814	0,001628	0,000814		0,00828	2,350872-07	5,49855200	0,002072903	4,031936-11	1,089946-09	5,54972E-10	57021124,84	24/91/9,54	120,77254	4,05559E-07	60,5864734	2,01682-07	0,00828	0,002072903
	8 AWG (monorasico)	20	0,005	5 0,00417	0,00127134	0,003264736	0,001632368	3,0	0,047224328	2,929332-07	5,85872'00	0,002208679	4,57771E-11	9,155426-10	4,577712-10	57545025,03	203/201,25	21,1/55205	5,45151E-07	10,5877652	1,725762-07	0,04722433	0,002208679
	8 AWG (monorasico)	25	0,005	5 0,0041/	0,00127134	0,003264736	0,001632368	3,8	0,05903041	2,92935E-07	7,32338E-06	0,002750848	4,5///1E-11	1,14443E-09	5,72214E-10	5/945625,03	231/825	16,9404211	4,31439E-07	8,47021053	2,15/19E-07	0,05903041	0,002760848
	10 AWG (triasco)	0	0,0042		0,00125	0,00238	0,00129		0,00328	2,58925E-07	1,91146-08	0,000720582	4,03409011	3,723756-10	1,001002-10	30387293,30	7123411,94	304,878043	1,403822-07	152,455024	7,019112-08	0,00328	0,000720582
IMA-990101	TO AWG (triasco)	0	0,0042	0 0 0 0 1 7	0,00123	0,00238	0,00129	2.0	0,00328	2,58925E-07	1,91146-06	0,000720582	4,03409011	3,723756-10	1,0015535-10	50567255,50	/123411,94	40 83476043	1,405822-07	152,435024	7,019112-02	0,00328	0,000720582
	A ANG [(hase)	6,5	0,003	5 0,00417	0,00127134	0,003264736	0,001632368	3,6	0,020070335	2,929532-07	2,48993500	0,000338688	4,5///1011	5,89105E-10	1,945552-10	5/943025,03	001/132,50	49,8247678	3 305045 07	24,9123833	7,534402-02	0,02007034	0,000356666
	12 AWG [Monorasico]	15	0,0033	o	0,001026	0,002052	0,001026		0,00521	2,504422-07	3,039742-08	0,001168575	4,00414011	0,003386-10	3,031092-10	56871902,98	43/4/81,//	191,93858	2,26564E-07	95,9092898	2,142926-07	0,00521	0,001108575
	12 AWG [Monofasico]	31	0,0035	0	0,001028	0,002032	0,001026		0,00321	2,384422-07	5.409555.06	0,002786601	4,00414011	1,445665-09	5 249775-10	57071174.94	2470170 24	191,9383	1 022505-07	60 2964724	2,725426-07	0,00321	0,002780001
	10 AWG [trifacio]	60	0,0012	2 2	0.00129	0.00258	0,000129		0,00020	2,390355.07	1.422555.05	0.005404265	4,001000-11	2 202015-00	1 296415-00	56097305 56	040799 250	204 979049	1.052975-06	152 429024	5 264225-02	0,000228	0.005404265
	R AMG [trifarico]	20	0.005	5 0.00417	0.00127124	0.002264726	0.001622268	2.0	0.047224228	2,000255-07	5 95975.06	0.002208679	4,034030-11	9 155425-10	4 577715-10	57945675.03	2907291 25	21 175526	2 451516-07	10 5977627	1 725765-07	0.04722422	0.002208679
	14 AMG [Monofarico]	15	0,003	0,0041/	0,00127134	0,003264736	0,001632368	3,6	0,047224328	2,929532-07	3,83872.08	0,002208879	4,57771E-11	6 977995-10	4,57771E-10 2.49995E-10	57943025,03	2897281,25	120 77294	2 62065-07	60 2964724	1,725762-07	0,04722433	0,002208879
IMA-940113	10 AWG [trifacio]	7	0,0012	-	0.00129	0.00758	0.00129		0,00020	2,390355.07	1 672495-06	0.000520509	4,001000-11	2 259295-10	1 679145-10	56097705 56	8141042.22	204 979049	1 229245-07	152 429024	6 141775-05	0,000228	0.000530509
	12 AWG [Monofarica]	10	0.0022		0.001026	0.002052	0.001076		0,00521	2 284475-07	2 284425-06	0.000292904	4,00403C-11	A 66414E-10	2 222075-10	56971002.05	5697100 2	101 02955	1 759246-07	05 0607909	9 701605-05	0,00521	0.00000000000
	12 AWG [trifasico]	10	0,0033	8	0.001026	0.002052	0,001026		0.00521	2 384425-07	1 907535-06	0.000719123	4 66414E-11	3 731315-10	1.86565E-10	56871902.98	7108987.87	191 93853	1,406675-07	95,9692898	7 03335E-08	0.00521	0.000719123
IMA-090106	10 AMG [trifacio]	14	0.0042	- -	0.00129	0.00258	0.00129		0,00228	2 299755-07	2 244965.06	0.001261018	4 654605-11	6 516575-10	2 259295-10	56097105 56	4070521.11	204 979049	2 456605-07	152 429024	1 229245-02	0.00228	0.001261018
	10 AWG [trifacio]	24	0.0042	e	0.00129	0.00258	0.00129		0,00320	2 299755-07	9 172465.06	0.002062472	4,004000-11	1 592505-00	7 917975-10	56097105 56	1676006.02	204 979049	5 966245-07	152 429024	2 992125-02	0,000228	0.002062472
	10 AWG [bifasico]	23	0.0042	6	0.00129	0.00258	0.00129		0.00328	2 389255-07	5.495285-05	0.002071673	4 654695-11	1.07058E-09	5 35289E-10	56987295 56	2477708 5	304 878049	4.035995-07	152 439024	2 017995-07	0.00328	0.002071673
	10 AMG [bifarica]	27	0.0042	-	0.00129	0.00258	0.00129		0.00228	2 299755-07	7 645615.06	0.007997279	A 65460E-11	1 49955-09	7.447515-10	56097105 56	1790952.00	204 979049	5 615295-07	152 429024	2 907645-02	0.00228	0.002992229
	10 AWG [bifasico]	41	0.0042	6	0.00129	0.00258	0,00129		0,00328	2 389255-07	9 795945-05	0.003692983	4 654695-11	1 908425-09	9542125-10	56987295 56	1389934.04	304 878049	7 194595-07	152 439024	3 597295-03	0.00328	0.003692983
	10 AWG [bifasico]	52	0.0042	6	0.00129	0.00258	0.00129		0.00328	2 38925E-07	1 242415-05	0.004683783	4 654695-11	2,200422-09	1 210225-09	56987295 56	1095909 53	304 87804	9 124845-07	152 439024	4 56742E-07	0.00328	0.004683783
1	10 AWG [bifasico]	34	0.0042	6	0.00129	0.00258	0,00129		0,00328	2 389255-07	8 123465-06	0.003062473	4 654695-11	1 582595-09	7 91297E-10	56987295 56	1676096 93	304 878049	5 966245-07	152 439024	2 983125-07	0.00328	0.003062473
1	12 AMG [Monofarica]	45	0.0022	-	0.001026	0.002052	0.001076		0,00521	2 284425-07	1.073995.05	0.004045066	A 66414E-11	2,002352-00	1.049425-09	56971002.05	1262920.07	101 02955	7 9125 25-07	05 0607909	2 956765.07	0.00521	0.004045066

5.3. Anexo 3: Tabla de Valores de la Modelación de Motores

[odelo equivalente
$X_{eq}[\Omega]$
$e_q[\Omega] X$ 5.25 (6
$ \begin{array}{c c} R_{eq}[\\ \hline z & 5.2! \\ \hline z & 5.2! \end{array} $
$n_n[\text{rpm}]$ 1405@50Hz
$\cos \varphi_n \\ 0.64$
de plac
Datos
Nombre

Automotriz
Taller
del
ducción
ш.
de
motores
\log
de
Modelo
5.1:
Tabla

5.4. Anexo 4: Esquema de Simulación

5.5. Anexo 5: Análisis de Fourier del sistema eléctrico del Taller Automotriz mediante Simulink®

Corriente 1 Corriente 1 Voltaje 10

orriente 1 Voltaje 1

•

Fuentes de corrientes abierta

•

5.6. Anexo 6: Cálculo de la Corriente de Cortocircuito

C	TOCTO BT TRANSFORM	ADOR 150kVA	
$P_{ac} = Pn(potencia nominal)$	Ptr [KVA] =	150.00	
$Pcc = \frac{ud\%}{ud\%} * 100$	ud%=	2.00	
$Ictocto = \frac{pcc}{\sqrt{2} + U}$	vL [KV] =	0.22	
VS * UL	Po=	447	
Α	Pc=	1959	
	Pt=	2406.00	
er	fc=	0.80	factor de carga
VB B	fp=	0.92	factor de potencia
/6	Pcc=	7500.00 kVA	
/5	lsc=	19682.40 A	
	Pcc/Pn=	50.00	
$\frac{P_{cc}}{P_{cc}} \approx \frac{I_{cc}}{P_{cc}}$	icu=	50190.11 A	
rn in	K=	1.71	
A 13			
0.9	u=	0.65	
0.8	ud=	0	
0.7	io=	0 00 A	
0.6		12793 56 A	
0.5	Pr=	4875.00 k\/A	
	, i -	4070.00 1077	
0.2		244.02.4	
0.1	IL=	314.92 A	
0.1 0.2 0.3 1 2 3 4 7 10	l Max =	681.82 A	
$\frac{l_{cc}}{l_{b}} \approx \frac{P_{cc}}{P_{c}} \rightarrow \frac{P_{cc}}{P_{c}}$	corriente (isob) sobrecarga	755.61	
in In	sobrecarga	9.77%	
	irush	5454.55 <para 1500="" 8="" a="" es="" in<="" irush="" kva,="" la="" menor="" potencia="" td="" veces=""></para>	
	irush sobrecarga	6044.90 A	
	t [seg]=	0.0041667 1/4 de ciclo)
	1 01		

Bibliografía

- [1] T. Edition, Leonard L. Grigsby Electric Power Generation, Transmission, and Distribution, Third Edition.
- [2] IEEE Transmission and Distribution Committee, *IEEE Recommended Prac*tice for Monitoring Electric Power Quality. 2009.
- [3] E. P. Systems, "IEEE Recommended Practice and Electric Power Systems," vol. 2014, 2014.
- [4] C. D. E. Ingeniería, M. Automotriz, M. Yubi, and J. Cesar, "Caracterización de los sistemas del vehículo eléctrico Kia Soul EV.," 2018.
- [5] R. M. Mujal, "Cálculo de líneas y redes eléctricas.pdf," 2013.
- [6] C. Enriquez, D. Chacón-Troya, H. Romero, and F. Quizhpi, "Simulation of harmonics produced by electroliners in the electrical network of cuenca city," 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2017 - Proceedings, vol. 2017-Janua, no. CD, pp. 1–6, 2017.
- [7] Y. Xu, Y. Xu, Z. Chen, F. Peng, and M. Beshir, "Harmonic Analysis of Electric Vehicle Loadings on Distribution System," *IEEE Transactions on Power Systems*, 2014.
- [8] G. Zhao and Y. Yue, "Harmonic Analysis and Suppression of Electric Vehicle Charging Station," pp. 347–351, 2017.
- [9] T. Becker, I. Sidhu, and B. Tenderich, "Electric vehicles in the United States: a new model with forecasts to 2030," *Center for* ..., p. 36, 2009.
- [10] M. Serrano, M. Eduardo, M. Aguirre, and S. Xavier, "Análisis del impacto de Vehículos Eléctricos en las Redes de Distribución del Cantón Cuenca," 2016.
- [11] Q. Kellner, D. Worwood, A. Barai, W. D. Widanage, and J. Marco, "Dutycycle characterisation of large-format automotive lithium ion pouch cells for high performance vehicle applications," *Journal of Energy Storage*, vol. 19, no. May, pp. 170–184, 2018.
- [12] D. Deng, "Li-ion batteries: Basics, progress, and challenges," *Energy Science and Engineering*, vol. 3, no. 5, pp. 385–418, 2015.
- [13] C. Nicola, V. Voicu, S. Popescu, M. C. Nitu, D. Iovan, M. Duta, A. Benea, and S. Andreescu, "Quality analysis of electric energy using an interface developed in LabVIEW environment," 2016 International Conference on Applied and Theoretical Electricity, ICATE 2016 - Proceedings, 2016.
- [14] M. Etezadi-Amoli, K. Choma, and J. Stefani, "Rapid-charge electric-vehicle stations," *IEEE Transactions on Power Delivery*, vol. 25, no. 3, pp. 1883– 1887, 2010.

- [15] Schneider Electric, "Eliminación de armónicos en instalaciones," pp. 1–21, 2015.
- [16] L. Kutt, E. Saarijarvi, M. Lehtonen, H. Molder, and J. Niitsoo, "Current harmonics of EV chargers and effects of diversity to charging load current distortions in distribution networks," 2013 International Conference on Connected Vehicles and Expo, ICCVE 2013 - Proceedings, pp. 726–731, 2013.
- [17] M. H. Rashid, "Electronica de Potencia," 2001.
- [18] O. J. P. Huaringa, "Studying and simulating transformer configuration to improve power quality," vol. 31, no. 2, pp. 125–130, 2011.
- [19] F. H. Martinez S, "El Fenómeno de distorsión armónica en redes eléctricas," Con-Ciencias, vol. 02, no. 1, pp. 46–54, 2005.
- [20] S. C. Chapra and R. P. Canale, "Numerical Methods for Engineers," 2006.
- [21] P. Ibáñez, "Tipos de conectores, tipos de recarga y modos de carga," 2012.
- [22] N.-d. Base, "Bus-Powered M Series Multifunction D ... Bus-Powered M Series Multifunction DAQ for USB 16-Bit , up to 400 kS / s , up to 32 Analog Inputs , Isolation Bus-Powered M Series Multifunction D ...," no. 866, pp. 1– 14, 2010.
- [23] J. J. G. W. D. Stevenson, "Análisis de Sistemas de Potencia Grainger y Stevenson.pdf," 1996.
- [24] J. M. Aller, MÁQUINAS ELÉCTRICAS ROTATIVAS: Introducción a la Teoría General Departamento de Conversión y Transporte de Energía.