UNIVERSIDAD POLITÉCNICA SALESIANA SEDE QUITO

CARRERA: INGENIERÍA ELECTRÓNICA

Trabajo de titulación previo a la obtención del título de: INGENIERO ELECTRÓNICO

TEMA:

DISEÑO E IMPLEMENTACIÓN DE UN MÓDULO PROTOTIPO DE PRUEBAS CON DIAGNÓSTICO DE PROBLEMAS, PARA MOTORES TRIFÁSICOS DE INDUCCIÓN, EN LA EMPRESA PÚBLICA METROPOLITANA DE TRANSPORTE DE PASAJEROS

AUTOR:

DANIEL ALEJANDRO VÁSQUEZ TULCHAN

TUTOR:

WILLIAM MANUEL MONTALVO LÓPEZ

Quito, abril de 2016

Cesión de derechos de autor

Yo Daniel Alejandro Vásquez Tulchan, con documento de identificación N° 1723465728, manifiesto mi voluntad y cedo a la Universidad Politécnica Salesiana la titularidad sobre los derechos patrimoniales en virtud de que soy autor del trabajo de titulación intitulado: Diseño e implementación de un módulo prototipo de pruebas con diagnóstico de problemas, para motores trifásicos de inducción en la Empresa Pública Metropolitana de Transporte de Pasajeros, mismo que ha sido desarrollado para optar por el título de: Ingeniero Electrónico, en la Universidad Politécnica Salesiana, quedando la Universidad facultada para ejercer plenamente los derechos cedidos anteriormente.

En aplicación a lo determinado en la Ley de Propiedad Intelectual, en mi condición de autor me reservo los derechos morales de la obra antes citada. En concordancia, suscribo este documento en el momento que hago entrega del trabajo final en formato impreso y digital a la Biblioteca de la Universidad Politécnica Salesiana.

anie Jasque

Nombre: Daniel Alejandro Vásquez Tulchan Cédula: 1723465728 Fecha: Abril 2016

Declaratoria de coautoría del docente tutor

Yo, declaro que bajo mi dirección y asesoría fue desarrollado el trabajo de titulación (Diseño e implementación de un módulo prototipo de pruebas con diagnóstico de problemas, para motores trifásicos de inducción en la Empresa Pública Metropolitana de Transporte de Pasajeros) realizado por (Daniel Alejandro Vásquez Tulchan), obteniendo un producto que cumple con todos los requisitos estipulados por la Universidad Politécnica Salesiana para ser considerados como trabajo final de titulación.

Quito, abril de 2016

William Manuel Montalvo López Cédula de identidad: 1712789989

DEDICATORIA

Este proyecto lo dedico esencialmente de todo corazón a Dios, por su luz en mi vida. Brindándome amor, ayuda, y ofrecerme la oportunidad de despertar mi interés por la electricidad y la electrónica desde la infancia. A mi madre querida Sandra Elizabeth, por su esfuerzo, respaldo, cariño único y dedicación a sus dos hijos. A mi hermano menor Esteban por su amistad y cúmulo de bonitos recuerdos. A mis abuelitas Elena y Adelaida porque han sido amor, alivio y apoyo incondicional. A mis familiares quienes convivimos, porque cada uno ha desempeñado un papel importante en mi formación. A mi tío Juan, por su ayuda y confianza de mis conocimientos aplicados en la industria. A mi padre por su oportuna ayuda.

A mis amigos del colegio Central Técnico, con los que compartimos experiencias y buenos momentos. A mis amigos que conocí en la universidad, por sus buenos deseos y alegría. A las personas que han participado conmigo en la formación personal y académica.

Me llena de mucho orgullo este logro familiar, pienso que, con fe, visión, honestidad, dedicación, orden y esfuerzo se puede culminar grandes proyectos.

AGRADECIMIENTO

Agradezco a la Universidad Politécnica Salesiana, porque tuve la oportunidad de estudiar en un lugar donde me forme íntegramente, a los ingenieros: Ing. Luisa Sotomayor, Ing. Verónica Soria, Ing. Walter Taipe, Ing. Carlos Carranco e Ing. Hugo Narváez.

Al ingeniero William Montalvo como tutor, quien apoyó la idea y se interesó desde un inicio por el proyecto. Dando sugerencias, corrigiendo detalles y tiempo dedicado.

ÍNDICE

INTR	ODUCCIÓN1
CAP	ÍTULO 12
ANT	ECEDENTES2
1.1	Tema2
1.2	Justificación2
1.3	Delimitaciones
1.3.1	Delimitación temporal3
1.3.2	Delimitación espacial4
1.4	Planteamiento del problema4
1.5	Objetivos5
1.5.1	Objetivo general
1.5.2	Objetivos específicos
1.6	Beneficiarios del proyecto
CAP	ÍTULO 27
MAR	CO TEÓRICO7
2	Estado del arte7
2.1	Introducción7
2.2	Motores asíncronos o de inducción
2.3	Clasificación de los motores de inducción9
2.4	Motor asíncrono trifásico jaula de ardilla10
2.4.1	Principio de funcionamiento11
2.4.2	Velocidad de sincronismo11
2.4.3	Deslizamiento
2.4.4	Circuito equivalente aproximado12
2.4.5	Ecuación del par electromagnético empleando el circuito aproximado14
2.4.6	Conexión de motores trifásicos de inducción17
2.4.7	Arranque de motores de inducción17
2.4.8	Potencia aparente de arranque
2.4.9	Tipos de arranque en motores de inducción19
2.5	Convertidor de frecuencia

2.6 Controlador lógico programable – PLC	22
2.6.1 Funcionamiento	23
2.6.2 Estructura de un controlador lógico	23
2.7 Sensores y transductores	24
2.7.1 Acelerómetros	24
2.7.2 Termopares	25
2.8 Mantenimiento de motores trifásicos de inducción	26
2.8.1 Diagnóstico	27
2.9 Sistemas de adquisición de datos, supervisión y control de datos (Scada)	29
2.9.1 Servidor web ABB	29
2.10 Protocolo de comunicación Modbus TCP/IP	30
CAPITULO 3	32
DISEÑO E IMPLEMENTACIÓN DEL MÓDULO PROTOTIPO DE PRUEBAS	
PARA MOTORES TRIFÁSICOS DE INDUCCIÓN	32
3.1 Descripción del módulo	32
3.1.2 Criterios de diseño eléctrico e instrumentación.	34
3.1.2 Descripción del software	38
3.2 Descripción de los elementos en el módulo	39
3.2.1 Elementos de control e instrumentación	39
3.2.2 Elementos auxiliares	44
3.3 Descripción de la comunicación Modbus TCP/IP	51
3.3.1 Parámetros de comunicación y control Modbus TCP/IP	52
3.4 Creación de un nuevo proyecto Automation Builder	56
3.4.1 Configuración de comunicación PLC en Automation Builder	62
3.4.2 Asignación de dirección al PLC y al dispositivo Fena-11	65
3.4.3 Programación en Codesys	67
3.4.4 Codesys DDE (Data Dynamic Exchange)	80
CAPITULO 4	81
PRUEBAS Y RESULTADOS	81
4.1 Modo de funcionamiento de la aplicación HMI	81
4.2 Prueba del módulo con un motor en buen estado	86
4.2.1 Registro del motor en buen estado	92
4.3 Prueba del módulo con un motor en mal estado	93
4.3.1 Registro del motor en buen estado	98

CONCLUSIONES	
RECOMENDACIONES	
REFERENCIAS	
ANEXOS	

ÍNDICE DE TABLAS

Tabla 1.	Letras de código NEMA de arranque nominales del motor	19
Tabla 2.	Plan de mantenimiento en motores eléctricos de inducción	27
Tabla 3.	Diagnóstico resumido en motores de inducción	28
Tabla 4.	Parámetros de comunicación y control	53
Tabla 5.	Datos técnicos motor en buen estado	87
Tabla 6.	Valores medidos, diagnóstico con motor en buen estado a velocidad media.	89
Tabla 7.	Valores medidos, diagnóstico con motor en buen estado a velocidad casi	
máxima.		90
Tabla 8.	Datos técnicos motor en mal estado	94
Tabla 9.	Valores medidos y diagnóstico con motor en mal estado	96

ÍNDICE DE FIGURAS

Figura 1. Estación Terminal Sur Empresa Pública Metropolitana de Transporte de
Pasajeros
Figura 2. Clasificación de motores trifásicos de inducción10
Figura 3. Motor asíncrono trifásico jaula de ardilla10
Figura 4. Deslizamiento de un motor trifásico de inducción12
Figura 5. Circuito equivalente aproximado de un motor trifásico de inducción 13
Figura 6. Curva Par-Velocidad en un motor de inducción trifásico16
Figura 7. Conexión de motores trifásicos configuración Dahlander17
Figura 8. Curva de par y corriente de un motor de inducción18
Figura 9. Convertidor de frecuencia ABB ACS355
Figura 10. Controlador lógico programable PM55423
Figura 11. Transmisor de vibración Vibrotector
Figura 12. Funcionamiento de un termopar tipo R
Figura 13. Aplicaciones del servidor web
Figura 14. Conexión y topología Modbus TCP/IP
Figura 15. Elementos que conforman el módulo prototipo de pruebas
Figura 16. Panel de control del módulo prototipo de pruebas
Figura 17. Controlador lógico programable (PM554 ETH)40
Figura 18. Variador de frecuencia ACS88040
Figura 19. Módulo de conexión Modbus TCP/IP Fena-1141
Figura 20. Módulo de expansión AI561
Figura 21. Módulo de expansión AI563
Figura 22. Transductor piezoeléctrico Vibrotector
Figura 23. Termopar tipo K acoplado al motor
Figura 24. Computador LG NC1000
Figura 25. Switch industrial de 5 puertos ethernet
Figura 26. Fuente de voltaje Phoenix Contact 24 V DC
Figura 27. Disyuntor ABB Tmax trifásico 16 A 46
Figura 28. Disyuntor bifásico Schneider 10 A47
Figura 29. Disyuntor monofásico Schneider 9 A
Figura 30. Contactor Ebasee 9A, 110 V AC

Figura 31. Luces piloto tipo led	49
Figura 32. Selector y pulsador de 22 mm	50
Figura 33. Pulsador de enclavamiento seta 22 mm	50
Figura 34. Tomacorrientes IP 44 (3+T y 2+T)	51
Figura 35. Topología Modbus TCP/IP Módulo Prototipo de Pruebas	52
Figura 36. Inicio del programa en Automation Builder	56
Figura 37. Pantalla de inicio en Automation Builder	57
Figura 38. Ventana de nuevo proyecto Automation Builder	57
Figura 39. Ventana de selección de PLC en un nuevo proyecto	58
Figura 40. Agregar un nuevo objeto al árbol del proyecto	59
Figura 41. Ventana agregar objeto IO_Bus	59
Figura 42. Configuración de un módulo de expansión ABB	60
Figura 43. Asignación E/S a un módulo de expansión ABB	61
Figura 44. Asignación E/S en entradas digitales del PLC	61
Figura 45. Asignación E/S en salidas digitales del PLC	62
Figura 46. Configuración del sistema y seguridad en Windows Seven	63
Figura 47. Configuración del Firewall de Windows	63
Figura 48. Desactivación del Firewall en Windows Seven en redes domésticas	64
Figura 49. Configuración a una red local para asignación de IP estática	64
Figura 50. Configuración de dirección IP estática	65
Figura 51. Configuración de dirección IP en dispositivos ABB	66
Figura 52. Asignación de un nombre sobre una variable del PLC	67
Figura 53. Creación de un nuevo objeto Codesys	68
Figura 54. Ventana nuevo módulo para creación de programa	69
Figura 55. Ventana de programación en lenguaje en escalera	69
Figura 56. Asignación de una variable de Automation Builder en Codesys	70
Figura 57. Creación de un objeto de visualización en Codesys	71
Figura 58. Nombre de la visualización principal en Codesys	71
Figura 59. Creación de un botón y asignación de un nombre en Codesys	72
Figura 60. Denominación de una variable entrada del PLC en un botón	73
Figura 61. Denominación de una variable salida del PLC en una forma	74
Figura 62. Pasos para añadir una librería en Codesys	75
Figura 63. Librería Modbus TCP/ IP en Codesys	75
Figura 64. Bloque de comunicación Modbus TCP/IP en Codesys	76

Figura 65. Sección Configuración de sistema destino77
Figura 66. Configuración del sistema destino hacia el PLC
Figura 67. Pasos para grabar un programa en el PLC78
Figura 68. Compilación de un programa en Codesys hacia al PLC PM55479
Figura 69. Compilación de un programa en Codesys hacia al PLC PM55479
Figura 70. Software Codesys Gateway DDE Server
Figura 71. Ruta de la aplicación web del PLC81
Figura 72. Mensaje de advertencia para uso de la aplicación
Figura 73. Pantalla principal del módulo de pruebas
Figura 74. Menú inicio de la aplicación en el módulo
Figura 75. Pantalla de recomendaciones antes de la puesta en marcha
Figura 76. Pantalla de recomendaciones antes de la puesta en marcha
Figura 77. Pantalla de funcionamiento del módulo de pruebas
Figura 78. Pantalla principal de control y diagnóstico de motores trifásicos de
inducción
Figura 79. Pantalla principal de control y diagnóstico de motores trifásicos de
inducción
Figura 80. Diagnóstico con motor en buen estado, accionado a velocidad media 88
Figura 81. Diagnóstico con motor en buen estado, accionado con alta velocidad 89
Figura 82. Detalle de causas, averías y posibles soluciones del motor en buen estado
Figura 83. Pantalla de visualización, velocidad, frecuencia, vibración y temperatura
Figura 84. Aplicación en Excel relacionada con Codesys DDE93
Figura 85. Aplicación en Excel relacionada con Codesys DDE
Figura 86. Diagnóstico con motor en mal estado, accionado a baja velocidad95
Figura 87. Diagnóstico con motor en mal estado, accionado a velocidad media 95
Figura 88. Detalle de causas, averías y posibles soluciones del motor en mal estado97
Figura 89. Diagnóstico con motor en mal estado, accionado el paro de emergencia 98
Figura 90. Aplicación en Excel relacionada con Codesys DDE
Figura 91. Aplicación en Excel relacionada con Codesys DDE

ÍNDICE DE ECUACIONES

Ecuación 1. Velocidad de sincronismo	11
Ecuación 2. Deslizamiento	12
Ecuación 3. Voltaje del estator igual a la fuerza electromotriz	13
Ecuación 4. Corriente de vacío mucho menor que la corriente en el estator	13
Ecuación 5. Corriente del rotor	14
Ecuación 6. Par electromagnético	14
Ecuación 7. Reactancia fasorial de dispersión total	15
Ecuación 8. Derivada de la función Par electromagnético	15
Ecuación 9. Deslizamiento en Par máximo	15
Ecuación 10. Par electromagnético máximo	15
Ecuación 11. Potencia aparente de arranque	19
Ecuación 12. Corriente en circuito doble monofásico	34
Ecuación 13. Corriente en un circuito monofásico	35

ÍNDICE DE ANEXOS

Anexo 1. Bloque de comunicación para control del variador de frecuencia	106
Anexo 2. Mapeo de registros del variador de frecuencia	107
Anexo 3. Diagnóstico de Comunicación Fena-11	108
Anexo 4. Hoja de datos del transmisor de vibración	109
Anexo 5. Norma ISO 2372	110
Anexo 6. Tabla de disyuntores ABB con ajuste de corriente máxima	111
Anexo 7. Sistemas de aislamiento en motores de inducción de baja tensión	112
Anexo 8. Proceso de funcionamiento del módulo prototipo	113
Anexo 9. Distribución y lista de materiales internos	114
Anexo 10. Distribución y lista de materiales externos	115
Anexo 11. Conexiones circuito monofásico y bifásico	116
Anexo 12. Conexiones de circuito trifásico y conexión de red	117
Anexo 13. Certificado de la empresa	118

RESUMEN

El presente proyecto surgió en la Empresa Pública Metropolitana de Transporte de Pasajeros, la cual propuso la factibilidad e implementación de un banco de pruebas para motores eléctricos del trolebús con potencia nominal de 230 kW. El mantenimiento de estos motores conlleva pérdida de dinero en el desmontaje y montaje, por lo tanto se necesita verificar los fallos y daños antes de la instalación en la unidad trolebús.

Por razones de tiempo y presupuesto anual de la empresa, se acordó el diseño e implementación de un módulo prototipo de pruebas con diagnóstico de problemas para motores trifásicos de inducción de menor potencia, usados en ventiladores con potencia nominal a 1.1 kW y menores a esta.

El diseño del módulo prototipo de pruebas puede ser escalado al mantenimiento de motores de mayor potencia, con la facilidad de comprender el control y diagnóstico electro mecánico. Este cuenta con una aplicación HMI web, para controlar y verificar el diagnóstico de fallas y dar posibles soluciones de forma rápida y compacta, cumpliendo el plan de mantenimiento establecido en la empresa.

Las expectativas de este proyecto van encaminadas hacia el mantenimiento de motores trifásicos de inducción en la industria ecuatoriana, debido a la gran demanda de procesos industriales vinculados con este tipo de motores, añadiendo tecnología de fácil acceso y control como: velocidad, escalabilidad, acceso remoto, visualización de daños y registros. Con el propósito de cumplir el plan de mantenimiento.

ABSTRACT

This project arose in the Public Company Metropolitan Transport of Passengers, which proposed the feasibility and implementation of a test bench for electric motors of the trolleybus with a power rating of 230 kW. The maintenance of these engines entails the loss of money in the disassembly and assembly, therefore needed to verify faults and damage before installation on the unit trolleybus.

For reasons of time and annual budget of the company, it was agreed that the design and implementation of a prototype module tests with troubleshooting for lower power induction motors, used in fans with rated power 1.1 kW and less to this.

The testing prototype module design can be scaled to the maintenance of engines of higher power, with the ease of understanding of control and diagnostic electro mechanical. This account with a web application HMI, to control and verify the fault diagnosis and give possible solutions quickly and compact, fulfilling the maintenance plan established in the company.

The expectations of this project are intended to the maintenance of three-phase induction motors in the Ecuadorian industry, due to the great demand for industrial processes linked to this type of engines, adding technology of easy access and control as: speed, scalability, remote access, visualization of damage and records. In order to comply with the maintenance plan.

INTRODUCCIÓN

El diseño e implementación de un módulo prototipo de pruebas con diagnóstico de fallas en motores trifásicos de inducción, en la Empresa Pública Metropolitana de Transporte de Pasajeros, permite verificar los motores de baja potencia, siendo el límite hasta 1.1 kW, además permite una visión y escalabilidad en motores de mayor potencia como es el caso del motor eléctrico del trolebús Bazu 4651/4, con potencia nominal de 230 kW.

El presente proyecto está estructurado de la siguiente manera:

El capítulo 1, contiene los antecedentes del proyecto como: título del proyecto, justificación, delimitación, planteamiento del problema, objetivos y beneficiarios del proyecto.

El capítulo 2, contiene el marco teórico del proyecto enfocado al principio de funcionamiento de los motores trifásicos de inducción, sensores y actuadores empleados, mantenimiento de motores y adquisición de datos.

El capítulo 3, contiene el diseño y la implementación del proyecto, detallado por: descripción del módulo, descripción de los elementos, descripción de la comunicación y creación de un proyecto bajo el software Automation Builder.

El capítulo 4, presenta las pruebas y resultados obtenidos con el módulo de pruebas, distribuido de la siguiente manera: modo de funcionamiento, pruebas motor en buen estado y motor dañado.

CAPÍTULO 1

ANTECEDENTES

1.1 Tema

Diseño e implementación de un módulo prototipo de pruebas con diagnóstico de problemas, para motores trifásicos de inducción, en la Empresa Pública Metropolitana de Transporte de Pasajeros.

1.2 Justificación

Hoy en día es necesario encontrar mecanismos eléctricos y electrónicos que optimicen el tiempo de trabajo en la Empresa Pública Metropolitana de Trasporte de Pasajeros (EPMTP), en el departamento de mantenimiento se puede encontrar varios inconvenientes, como es el caso de la reparación de motores trifásicos de inducción.

El trolebús es un medio de trasporte público electromecánico. La energía eléctrica es transportada por una catenaria de dos cables superiores, el cual se une a un pantógrafo que está instalado en la parte superior de la unidad, la cual proporciona toda la potencia para que funcione el motor eléctrico asíncrono trifásico de 4 polos de potencia estándar 230 kW a 460 V y el sistema de enfriamiento por ventilación forzada.

Actualmente cuando una unidad trolebús genera un fallo en el sistema eléctrico, esta es enviada al departamento técnico, después es examinada con equipos de medición y la ayuda de un computador. Este computador posee un software conectado al módulo de control del trolebús, allí se puede verificar valores eléctricos de voltajes y corrientes de la unidad.

En el caso de ser erróneas las mediciones se dispone a verificar todos los componentes eléctricos y electrónicos siendo de manera común el fallo en los

motores de inducción, posteriormente se procede a desmontar el motor para su revisión.

El personal calificado en el mantenimiento de motores, por medio de su experiencia revisa el motor y cambia varios componentes entre funcionales y averiados, aumentando el costo de reparación.

Una vez revisado el motor y aparentemente resuelto cada uno de los problemas presentados en la revisión se vuelve a montar en la unidad trolebús, para verificar nuevamente los valores eléctricos, pero por lo general estos vuelven a dar fallos, con lo cual se pierde tiempo y recursos económicos en las reparaciones, con la limitante de que solo se puede hacer pruebas de los motores trifásicos de inducción Bazu 4651/4 montados en la unidad trolebús.

Otro problema encontrado en la reparación de los motores de inducción del trolebús, es cuando estos tienen que ser transportados fuera de la empresa y revisados en módulos básicos, los cuales no llegan a un diagnóstico amplio del motor; sin encontrar el problema completamente. Como resultado hay un acumulamiento de unidades averiadas por fallos en el motor eléctrico en el Área de mantenimiento y fuera de esta.

1.3 Delimitaciones

1.3.1 Delimitación temporal

Este proyecto se lleva a cabo desde el mes de abril del 2015 hasta el mes de octubre del 2015, en el cual se presentará el informe final.

1.3.2 Delimitación espacial

El desarrollo del proyecto se ejecutará en los talleres de mantenimiento de la Empresa Pública Metropolitana de Trasporte de Pasajeros (EPMTP), ubicado en la ciudad de Quito, provincia de Pichincha (ver Figura 1).

1.4 Planteamiento del problema

Actualmente la EPMTP, opera con 113 unidades, sin embargo, por efectos del paso del tiempo y la operación de 24 horas interrumpidas, algunas unidades de la flota no se encuentran operativas, por la demora en las reparaciones y cambios de algunos repuestos los mismos que se encuentran descontinuados en el mercado, por lo tanto es necesario desarrollar nuevas soluciones óptimas para disminuir las averías.

Al ser detectado este problema se propone el diseño e implementación de un módulo de pruebas para motores trifásicos de inducción de menor potencia que el Bazu 4651/4, una vez montado el prototipo se podrá escalar y parametrizar con mayor facilidad para dichos motores, lo que será de gran ayuda para la detección de fallas antes del montaje del mismo en la unidad, y garantizar el funcionamiento del motor,

con lo cual se logrará tener la flota de trolebuses activa y operativa con la reducción del proceso de mantenimiento.

Por el tiempo estimado para la realización del proyecto de titulación y presupuesto anual destinado al departamento de Mantenimiento del Trolebús, se dispone la implementación de este módulo que será de gran utilidad en motores trifásicos de inducción de potencia de 1.1 kW y menores a dicha potencia, los mismos que son usados por la empresa en ventiladores.

Este módulo será capaz de analizar posteriormente al motor de tracción asíncrono trifásico BAZu4651/4, previo a la compra de componentes de mayor potencia por parte de la empresa. Además brindará un diagnóstico rápido al motor y desplegará posibles soluciones para averías del mismo ahorrando los recursos.

Se recolectará los datos del motor para corregirlos antes del montaje a la unidad ya que actualmente solo se puede probar el buen funcionamiento del motor montado en la unidad trolebús.

1.5 Objetivos

1.5.1 Objetivo general

Diseñar e implementar un módulo prototipo de pruebas para motores trifásicos de inducción, destinado a la flota de unidades trolebús en la Empresa Pública Metropolitana de Trasporte de Pasajeros.

1.5.2 Objetivos específicos

• Diseñar un sistema de control que permita arrancar, variar la velocidad y adquirir los parámetros de los motores trifásicos de inducción.

- Modelar un módulo y generar el diagnóstico, a partir de valores eléctricos y mecánicos del motor trifásico de inducción.
- Construir el módulo de pruebas para verificar el funcionamiento y diagnóstico de los motores asíncrono trifásico de inducción.
- Implementar un sistema de visualización de datos eléctricos y análisis, para verificar el comportamiento del motor trifásico de inducción.

1.6 Beneficiarios del proyecto

 Departamento Técnico de la Empresa Pública Metropolitana de Transporte de Pasajeros de Quito

CAPÍTULO 2

MARCO TEÓRICO

Este capítulo contiene el estado del arte del proyecto técnico y los principios teóricos que permite la compresión y desarrollo del mismo, describiendo cada uno de los términos e instrumentos utilizados, con su respectiva descripción general , clasificación y el comportamiento de los diferentes dispositivos que forman parte del proyecto.

2 Estado del arte

2.1 Introducción

Actualmente el mantenimiento predictivo de máquinas eléctricas, está destinado para personal calificado que posee experiencia y conocimiento adquirido de manuales, su trabajo se basa en revisar daños mecánicos y eléctricos, una vez analizado el motor, proceden a repararlo y registrarlo en una bitácora de trabajo. Se puede citar a la compañía suiza ABB, con base en la automatización y eficiencia energética, la misma ofrece información detallada en su sitio web acerca del mantenimiento de motores de inducción.

En estos manuales se puede encontrar todo el procedimiento del mantenimiento predictivo de los motores trifásicos de inducción, el propósito de este tipo de mantenimiento es asegurar el funcionamiento de los motores en el menor tiempo posible.

Para efectos de prevención de daños en este tipo de motores, se recomienda que la supervisión sea periódica, y que se revise al motor de inducción bajo los siguientes

parámetros: temperatura, voltaje, corriente en los devanados, refrigeración, lubricación, y vibración.

2.2 Motores asíncronos o de inducción

Los motores de inducción hoy en día cuentan de gran importancia por sus características en construcción y robustez, por su diseño se dispone de un campo magnético rotatorio el cual posee una velocidad síncrona, definido por el número de polos del motor, y por la frecuencia en el estator. Desde sus inicios este tipo de motor no ha variado sustancialmente, el principio de funcionamiento es el mismo (Ponce & Sampé, 2008).

Este tipo de motores sobre todo el de tipo jaula de ardilla puede trabajar en circunstancias adversas, obteniendo buenos resultados con menor mantenimiento, por lo que más del 80 por 100 de los motores eléctricos de este tipo son empleados en la industria. Históricamente el inconveniente de este tipo de motores fue la regulación de velocidad, pero en la actualidad se encuentra solventado gracias a los accionamientos electrónicos (Mora, 2008).

Los motores asíncronos trifásicos pueden incluirse entre las máquinas eléctricas más fiables que existen; desarrollan su función durante muchos años con intervenciones de mantenimiento reducidas además se adaptan a distintas prestaciones en función de las exigencias, cubriendo tanto aplicaciones de producción como de servicio. Los motores se utilizan en los sectores industriales más variados, como por ejemplo en las industrias de ámbito: alimentaria, química, metalúrgica, papelera, minera o las instalaciones de tratamiento de aguas. Las aplicaciones incluyen máquinas con piezas móviles a velocidad fija o variable, como es el caso de los sistemas de elevación, de transporte, los sistemas de ventilación y climatización, sin dejar de lado el uso más

común en bombas y compresores. El consumo de energía de los motores eléctricos constituye aproximadamente el 75% del consumo total del sector industrial. Por lo tanto es tan importante para la economía empresarial y mejora de la eficiencia energética en general. El coste de un motor durante su vida útil se debe en aproximadamente un 98% al consumo de energía y el 2% restante a los gastos de compra y mantenimiento (ABB).

2.3 Clasificación de los motores de inducción

Los motores de inducción trifásicos de CA se clasifican en dos grupos, como muestra la Figura 2, ambos motores tienen distintas aplicaciones, difieren en su construcción y alimentación.

Rotor Jaula de Ardilla: No posee ningún acceso hacia el rotor y está aislado del estator, es de bajo costo, requiere poco mantenimiento, adicional su construcción es robusta.

Rotor de anillos deslizantes: Tiene acceso hacia el rotor por medio de escobillas, modificando parámetros de resistencia por ende de velocidad (Ponce & Sampé, 2008). Además los motores de devanado son más costosos que el tipo jaula de ardilla en su mantenimiento, pero son usados en casos especiales en los que se requiere mayor torque en el arranque tales como: molinos o winchas electicas.

2.4 Motor asíncrono trifásico jaula de ardilla

El rotor consta de un conjunto de chapas apiladas, conformando un cilindro con ranuras en la circunferencia exterior, donde se ubica el devanado. En el motor jaula de ardilla se dispone de una serie de conductores de cobre o aluminio, ubicados en corto circuito por dos anillos laterales. La posición inclinada de las ranuras mejora las propiedades de arranque y disminuye el ruido. En la Figura 3, se puede observar sus componentes (Mora, 2008).

2.4.1 Principio de funcionamiento

En una maquina asíncrona el devanado del estator está formado por tres arrollamientos desfasados 120° en el espacio y de 2 polos, cuando por estos circula una corriente de la red trifásica con frecuencia f, se produce una onda rotativa, distribuida sinusoidalmente por la periferia del entrehierro, para luego generar el campo magnético giratorio (ver velocidad de sincronismo), expresado en r.p.m (Mora, 2008).

2.4.2 Velocidad de sincronismo

Al aplicar un conjunto trifásico de voltajes al estator, fluye un conjunto trifásico de corrientes, estas corrientes producen un campo magnético que gira en sentido contrario al de las manecillas del reloj, como se define en la Ecuación 1 (Chapman, 2012).

Ecuación 1. Velocidad de sincronismo.

$$N_s = 120 \ \frac{f}{p}$$

Dónde:

 N_s = Velocidad de sincronismo / minuto

f = Frecuencia expresada en Hertz

p = Número de pares de polos

2.4.3 Deslizamiento

Se llama deslizamiento a la diferencia de velocidad entre la velocidad síncrona N_s y la velocidad del rotor N_r , expresada en porcentaje como se aprecia en la Figura 4.

Durante el funcionamiento de régimen esta diferencia es aproximadamente del 10 al 3%. El deslizamiento es una de las características más importantes de una máquina de inducción (Rockwell Automation, 2014).

Ecuación 2. Deslizamiento.

$$S = \frac{N_s - N_r}{N_s} * 100$$

Dónde:

S =Deslizamiento del motor

 N_s = Velocidad sincrónica

 N_r = Velocidad del rotor

2.4.4 Circuito equivalente aproximado.

Si se toma en consideración ciertos parámetros se puede llegar a un circuito equivalente, los parámetros están dados por la Ecuación 3 y 4.

Ecuación 3. Voltaje del estator igual a la fuerza electromotriz.

$$V_s = E_s$$

Ecuación 4. Corriente de vacío mucho menor que la corriente en el estator.

$$I_o \ll I_s$$

Tomando a consideración que las pérdidas en el devanado del estator son pequeñas, la reactancia del estator se minimiza, las laminaciones se hacen delgadas, como resultado se reduce perdidas en el núcleo, la Figura 5 manifiesta el circuito equivalente aproximado (Ponce & Sampé, 2008).

Dónde:

 V_s = Tensión de fase estator

- I_s = Corriente de estator
- I_o = Corriente de vacío

 I_m = Corriente magnetizante

 jX_m = Reactancia magnetizante

 R_o = Resistencia pérdidas hierro

 R_s = Resistencia cobre estator

 X_t = Reactancia dispersión total

 I_r = Corriente del estator

 $\frac{R'r}{s}$ = Resistencia cobre rotor más resistencia de potencia mecánica entregada

2.4.5 Ecuación del par electromagnético empleando el circuito aproximado.

Una vez encontrado el circuito equivalente aproximado de la Figura 5, por facilidad para determinar la corriente en el rotor y el valor de potencia en el entrehierro, se puede emplear dicho circuito y deducir la ecuación del par electromagnético a partir de la corriente del rotor a fin de sustituir este valor en la potencia del entrehierro (Ponce & Sampé, 2008).

Ecuación 5. Corriente del rotor.

$$I_r = \frac{V_s}{R_s + \frac{R_r}{s} + jX_t}$$

Ecuación 6. Par electromagnético.

$$T = \frac{3|V_s|^2}{\omega_s} * \frac{\frac{R_r}{s}}{\left(R_s + \frac{R_r}{s}\right)^2 + X_t^2}$$

Tomando en cuenta la Ecuación 7.

Ecuación 7. Reactancia fasorial de dispersión total.

$$jX_t = j(X_s + X_r)$$

Para hallar el par máximo se puede partir de la definición del máximo de una función, aplicando la derivada de la función par, con respecto al elemento $\left(\frac{R_r}{s}\right)$.

Ecuación 8. Derivada de la función Par electromagnético.

$$\frac{\partial T}{\partial \frac{R_r}{s}} = 0$$

Si: $R_s^2 + X_t^2 = \left(\frac{R_r}{s}\right)^2$

Entonces se obtiene la Ecuación 9.

Ecuación 9. Deslizamiento en Par máximo.

$$S_{max} = \frac{R_r}{\left(\sqrt{R_s^2 + X_t^2}\right)}$$

Ecuación 10. Par electromagnético máximo.

$$T_{m \dot{a} x} = \frac{3|V_{s}|^{2}}{\left(2\omega_{s} + \sqrt{R_{s}^{2} + X_{t}^{2}}\right)}$$

Dónde:

 $S_{máx}$ = Deslizamiento cuando ocurre el par electromagnético máximo

 $T_{m \acute{a} x}$ = Par electromagnético máximo

 V_s = Tensión de fase estator

 ω_s = Velocidad estator

- R_s = Resistencia cobre estator
- R_r = Resistencia rotor
- X_t = Reactancia dispersión total

En síntesis se puede observar que estos motores tienen un par de arranque que les permite trabajar sin ningún tipo de arrancadores auxiliares, en la Figura 6 se puede observar la relación par-velocidad, además el régimen de operación tanto como freno, motor y generador (Ponce & Sampé, 2008).

2.4.6 Conexión de motores trifásicos de inducción

Los motores de diseño normal poseen seis bornas y una para conexión de tierra. Los motores con dos devanados separados se conectan generalmente en configuración Δ/Δ . También se pueden conectar Y/Y, Y/Δ , o Δ/Y . Los motores con conexión Dahlander se conectan en Δ/YY cuando están diseñados para transmitir un par constante. Finalmente para el accionamiento de ventiladores la conexión es Y/YY (ver Figura 7) (AEG, 2009).

2.4.7 Arranque de motores de inducción

Se denomina arranque al proceso de puesta en marcha de una máquina eléctrica, para que este proceso se lleve a cabo es necesario que el par de arranque sea superior al par resistente de la carga, de esta manera se obtiene un momento de aceleración que exige al rotor girar a una velocidad cada vez más elevada, obteniendo el régimen permanente cuando se igualan los pares motor y resistente. Este proceso de arranque requiere un consumo elevado de corriente, ya que la resistencia de carga es nula en el momento inicial, debido a que el deslizamiento es la unidad, por lo que el motor ofrece una baja impedancia, estando convenientemente en cortocircuito, esta relación se muestra en la Figura 8 (Mora, 2008).

2.4.8 Potencia aparente de arranque

Debido a la corriente de arranque que necesita este tipo de motores no se deberían conectar directamente a la línea de potencia, porque puede causar una caída de voltaje en el sistema, aunque se pueda usarlos de esta manera. En el caso de los motores de inducción tipo jaula de ardilla, la corriente de arranque puede variar, tanto en la potencia nominal del motor, como en la efectividad de la resistencia del rotor en condiciones de arranque. Para determinar la potencia aparente de arranque del motor se aplica la Ecuación 11, por lo tanto se necesita saber el valor de letra código que dispone en su placa y que es diferente a la letra de clase de diseño del motor. En la Tabla 1, se observa los valores correspondientes a cada factor de letra código, los cuales representan los límites de corriente en condiciones de arranque (Chapman, 2012).

Ecuación 11. Potencia aparente de arranque.

$$S_{arranque} = (caballaje nominal) * (factor de letra código)$$

-	-		
Letra código	Rotor Bloqueado	Letra código	Rotor Bloqueado
nominal	KVA/HP	nominal	KVA/HP
А	0-3,15	L	9,00-10,00
В	3,15-3,55	М	10,00-11,00
С	3,55-4,00	N	11,20-12,50
D	4,00-4,50	Р	12,50-14,00
Е	4,50-5,00	R	14,00-16,00
F	5,00-5,60	S	16,00-18,00
G	5,60-6,30	Т	18,00-20,00
Н	6,30-7,10	U	20,00-22,40
J	7,10-8,00	V	22,40 y más
K	8,00-9,00		

Tabla 1.Letras de código NEMA de arranque nominales del motor

Nota. Arranques nominales dependiendo del tipo de letra de la norma NEMA Fuente: (Chapman, 2012) Elaborado por: Daniel Vásquez

2.4.9 Tipos de arranque en motores de inducción

• Arranque directo

Se emplea únicamente en motores de pequeña potencia refiriéndose a motores menores a 5 kW, cuando se trata de instalaciones conectadas directamente a la red urbana y no sobrepasando los valores máximos admitidos por el reglamento (Mora, 2008).

Arranque por autotransformador

Al intercalar un autotransformador entre la red y el motor, de tal forma que la tensión aplicada en el arranque sea solo una fracción de la asignada. Este proceso se realiza en dos o tres escalones y con tensiones no inferiores al 40,60 y 75 por 100 de la tensión en la línea. En la posición 1 del conmutador se alimenta el autotransformador con la tensión de la red, aplicando al motor solamente una fracción de esta tensión, cuando la máquina va aumentando su velocidad cercano al asignado el conmutador pasa a la posición 2. Finalmente pasa a la posición 3 quedando el estator del motor con la tensión de la red (Mora, 2008).

Conmutación estrella- triangulo

Solo se puede conectar en motores únicamente destinados para funcionar en triángulo con la tensión de la red. El motor se conecta en estrella en el momento de arranque y pasa a triángulo cuando está en funcionamiento. El proceso se lo realiza con tres contactores uno para la alimentación de los principios de bobina en los devanados del motor, otro para la conexión del devanado en estrella y el último para la conexión triangulo, mediante un circuito de control y otro de fuerza (Mora, 2008).

• Regulación por variación en la frecuencia

La variación de la frecuencia de alimentación se realiza por medio de convertidores de frecuencia rotativos. Sin embargo actualmente la conversión se realiza estáticamente por medio de SRC (Rectificadores Controlados de Silicio o Tiristores). Durante la regulación de la velocidad por medio de la
frecuencia se deba mantener el flujo constante para que el par se conserve y el motor disponga de una capacidad de sobrecarga suficiente (Mora, 2008).

En resumen los motores asíncronos, no presentan problemas en el arranque como en los motores síncronos, en el presente desarrollo se aplicara un arranque mediante un convertidor de frecuencia.

2.5 Convertidor de frecuencia

El método que se prefiere hoy en día para controlar la velocidad de los motores de inducción son los controladores de frecuencia variable para motores de inducción de estado sólido. El controlador es muy flexible, su potencia de entrada puede ser monofásica o trifásica. La forma de salida de este controlador es un conjunto de voltajes trifásicos cuya frecuencia puede variar entre 0 y 120 Hz y cuyo voltaje puede variar desde 0 al voltaje nominal del motor.

El voltaje de salida y control de frecuencia se lleva a cabo por medio de las técnicas de modulación de amplitud de pulso PWM todo esto lo realiza convertidor de frecuencia, la Figura 9 muestra un variador de frecuencia flexible de baja tensión (Chapman, 2012).

2.6 Controlador lógico programable – PLC

Un controlador lógico programable (PLC) (ver Figura 10), es un dispositivo electrónico digital, que guarda instrucciones en una memoria programable, a su vez sigue funciones lógicas, secuenciales, síncronas, de conteo y aritméticas, para controlar máquinas y procesos con la facilidad de ser programables, es un dispositivo lógico ya que su programación está orientada a la ejecución de operaciones lógicas y de conmutación.

Un PLC es similar a un computador pero con características específicas difieren en que son equipos robustos, diseñados para resistir vibraciones, temperatura, humedad y ruido. La interfaz para entradas y salidas están dentro del controlador (Bolton, 2010).

2.6.1 Funcionamiento

Los dispositivos de entrada y de salida una vez conectados al PLC están bajo control, después el controlador monitorea cíclicamente las entradas y salidas, para trabajar de acuerdo al programa almacenado. Como resultado se obtiene un sistema flexible capaz de controlar sistemas muy diversos en su naturaleza y complejidad (Bolton, 2010).

2.6.2 Estructura de un controlador lógico

La estructura interna básica de un PLC, consiste en una unidad central de procesamiento (CPU), memoria y circuitos de entrada y salida. La CPU controla y procesa todas las operaciones dentro del PLC. Cuenta con un temporizador cuya frecuencia típica esta entre 1 y 8 MHz. Esta frecuencia determina la velocidad de operación del mismo. Adicional un sistema de buses lleva información desde y hacia el CPU, la memoria y las unidades de entrada o salida. Su memoria está constituida por una ROM y RAM, la primera para la información del sistema operático y datos corregidos, la segunda para el programa del usuario y memoria buffer temporal de los canales de entrada y salida (Bolton, 2010).

2.7 Sensores y transductores

Un sensor es un elemento que produce una señal puede ser esta eléctrica y relacionada con la cantidad que se está midiendo. Así el transductor se define como un elemento que al someterlo a un cambio físico experimenta un cambio relacionado. Entonces los sensores son transductores, sin embargo un sistema de medición puede utilizar transductores y sensores para convertir señales de una forma dada a otra distinta. Los términos para definir un transductor son: intervalo, error, exactitud, sensibilidad, resolución, impedancia, etc (Bolton, 2010).

2.7.1 Acelerómetros

Son sensores cuya función es obtener una señal de salida, a partir de movimientos vibratorios por ende aceleraciones cambiantes cuyo aspecto es similar al movimiento inercial. Estos se clasifican por su ancho de banda expresado en Hertz y fuerza g (aceleración de la gravedad terrestre) (Pérez, Álvarez, Campo, Ferrero, & Grillo, 2008).

2.7.1.1 Acelerómetros piezoeléctricos

Se basan en el efecto piezoeléctrico y son probablemente los más usados en la medida de vibración. Su desventaja radica en su frecuencia máxima de trabajo y en la incapacidad de mantener un nivel permanente de salida ante una entrada continua, pueden aplicarse tanto en vibración, impacto y uso industrial (Pérez, Álvarez, Campo, Ferrero, & Grillo, 2008).

2.7.1.2 Transmisor de vibración

Vibrotector (VIB 5.731), es un sensor piezoeléctrico para todas las máquinas que funcionan bajo condiciones de operación aproximadamente constantes, tales como: sopladores, ventiladores, bombas y motores eléctricos. Este transmisor graba

vibraciones de la máquina y transfiere el valor característico resultante como señal de corriente (4-20 mA) al sistema de control de proceso. Este valor es comparado con el límite de alarmas definido. En caso de sobrepasar este límite, el personal operativo recibirá una alarma y la máquina podrá ser parada, en la Figura 11, se puede ver este sensor acoplado a una máquina rotativa (Pruftechnic).

2.7.2 Termopares

Un termopar se basa en el efecto de circulación de una corriente en un circuito formado por dos metales diferentes cuyas uniones se mantienen a distinta temperatura. Esta circulación de corriente obedece a dos efectos termoeléctricos combinados, el efecto Peltier causante de la liberación o absorción de calor en la unión de dos metales distintos cuando a través de la unión circula una corriente, por último el efecto Thomson basado en la liberación o absorción de calor cuando una corriente circula a través de un metal homogéneo en el que existe un gradiente de temperaturas, en la Figura 12, se muestra el funcionamiento de un Termopar tipo R (Creus, 2010).

2.8 Mantenimiento de motores trifásicos de inducción

Un programa de mantenimiento para motores eléctricos, incluye las siguientes recomendaciones (WEG):

- Mantener el motor y los equipos asociados limpios.
- Inspeccionar periódicamente niveles de aislamiento.
- Medir periódicamente la elevación de temperatura (bobinas, cojinetes y sistema de refrigeración).
- Verificar eventuales desgastes, el funcionamiento del sistema de lubricación y la vida útil de los cojinetes.
- Inspeccionar el sistema de ventilación, con relación al correcto flujo de aire.
- Inspeccionar el intercambiador de calor.
- Medir los niveles de vibración de la máquina.
- Inspeccionar todos los accesorios, protecciones y conexiones del motor.

• Para facilitar el intercambio de calor con el medio, la carcasa debe ser mantenida limpia, sin cúmulo de aceite o polvo en su parte externa.

Mediante un plan de mantenimiento resumido (ver Tabla 2), se podrá prevenir el deterioro de los motores de inducción.

Tabla 2. Plan de mantenimiento en motores eléctricos de inducción

Elementos del motor	Actividades		
Semanal			
Cojinetes	Control de ruido, vibración, pérdidas y temperatura		
Equipos de protección y control	Registro de valores		
Motor completo	Inspeccionar ruido y vibración		
Anual			
Cojinetes	Calidad del lubricante		
Rotor	Limpieza e Inspección		
	Resistencia de Aislamiento, limpieza y revisión de		
Estator	terminales		
Acoplamiento	Inspección de alineado y fijación del motor		
	Reajuste de conexiones, reajuste de tornillos,		
	ventilación, revisión de la caja de conexiones, revisión		
Motor completo	de la puesta a tierra		
Trienal			
Estator	Inspección en las ranuras del bobinado		
	Inspección del eje verificando incrustaciones o		
Rotor	desgaste		
Cojinetes	Inspección en los casquillos y pistas del eje		
Equipos de protección y control	Desmontar y probar su funcionamiento		

Nota. Plan Semanal, Anual y Trienal del mantenimiento de motores eléctricos de inducción Fuente: (WEG)

Elaborado por: Daniel Vásquez

2.8.1 Diagnóstico

Las instrucciones de la Tabla 3, presentan apenas una relación básica de causas,

averías y medidas correctivas (Ternium):

Tabla 3.			
Diagnóstico resu	mido en motores	s de	inducción

Causas Posibles	Averías Posibles	Verificación / Reparación
Zumbido al arrancar	Cortocircuito entre espiras en el estator	Se aprecia altas corrientes y se debe rebobinar
La tensión en las bornas del motor es demasiada baja	La tensión de suministro tiene tensión muy baja	Medir la tensión de la red en el tablero
	Gran caída de tensión en la línea del motor	Calcular la caída de tensión en la línea del motor
El rotor está trabado	Cojinetes trabados Rotor descentrado que roza	Tratar de girar el rotor sin carga.
	con el estator Transmisión trabada	Revisar cojinetes, transmisión del motor
Falla en el motor	Rotor bobinado abierto	Comprobar continuidad
	Jaula abierta	Variaciones cíclicas de corriente
	Arrollamiento estatórico a masa	Medir la resistencia de aislamiento entre la masa y el estator
	Arrollamiento estatórico abierto	Comprobar continuidad en cada fase del estator
Falla en los arrollamientos	Bobinado a masa	Comprobar con megger el aislamiento a masa
	Conexión interna equivocada de alguna bobina o cortocircuito entre espiras	Desarmar el motor a fin de revisar los arrollamientos
Falla en la transmisión	Desajuste en los engranajes	Revisar alineación, lubricación en los engranajes
Fallas mecánicas en el	Desajuste de los cojinetes	Cambiar cojinetes
motor	Deformación en la carcasa	Revisar roces entre elementos fijos y móviles
Fallas en la refrigeración	Defectos en el ventilador	Revisar el sentido de giro
	Obstrucción en las ranuras de ventilación	Limpiar suciedad

Nota. Resumen de causas, averías y reparaciones en motores de inducción Fuente: (Ternium) Adaptado por: Daniel Vásquez

2.9 Sistemas de adquisición de datos, supervisión y control de datos (Scada)

Recibe el nombre de SCADA a cualquier software que permita el acceso a datos remotos de un proceso y utilice las herramientas de comunicación para el control del mismo. No se trata de un sistema de control sino de una aplicación para monitorear o supervisar, enlazando los niveles de control (PLC) y los de gestión a un nivel superior. Sus principales características son: economía en la instalación, accesibilidad, mantenimiento, conectividad, flexibilidad, gestión etc (Rodríguez, 2012).

2.9.1 Servidor web ABB

Con un PLC AC500 es posible crear un servidor web a través de Control Builder Plus PS501 para poder controlar la instalación desde cualquier explorador Web de manera rápida y sencilla, el cual se descarga y almacena en la memoria de la CPU. En el servidor web se puede tanto obtener información de la aplicación, como modificar valores de la misma. Es muy importante configurar el router al cual esté conectado el PLC, conocer su puerta de enlace, y abrir el puerto al cual se asocia el PLC. Esta configuración dependerá de cada router. También es necesario disponer de una IP fija en la instalación, que será a la cual se conectará desde el exterior de la red de trabajo, como se muestra en la Figura 13 (ABB).

2.10 Protocolo de comunicación Modbus TCP/IP

Modbus TCP/IP también Modbus-TCP es simplemente el protocolo Modbus RTU con una interfaz TCP que se ejecuta en Ethernet. La estructura de mensajería Modbus es el protocolo de aplicación que define las reglas para organizar e interpretar los datos, con independencia del medio de transmisión de datos. TCP/IP se refiere al Protocolo de control de transmisión y protocolo de Internet, que proporciona el medio de transmisión para Modbus TCP/IP Messaging. Dicho simplemente, TCP/IP, permite que los bloques de datos binarios puedan ser intercambiados entre los equipos. Es también una norma mundial que sirve como base para la red informática mundial. La función principal de TCP es asegurar que todos los paquetes de datos que se reciben correctamente, mientras que IP comprueba que los mensajes estén bien dirigidos y enrutados. Tenga en cuenta que la combinación de TCP/IP es simplemente un protocolo de transporte, y no se define el significado de los datos o de cómo los datos se interpretan esto es el trabajo de la aplicación del protocolo Modbus (ver Figura 14) (ABB).

CAPITULO 3

DISEÑO E IMPLEMENTACIÓN DEL MÓDULO PROTOTIPO DE PRUEBAS PARA MOTORES TRIFÁSICOS DE INDUCCIÓN

En este capítulo se describe el diseño e implementación del módulo prototipo de pruebas con diagnóstico de fallos en motores trifásicos de inducción, donde se describe el funcionamiento, la configuración y programación implementada en el proyecto.

3.1 Descripción del módulo

El módulo está diseñado para realizar un diagnóstico rápido de posibles fallos eléctricos y mecánicos comunes de un motor trifásico de inducción, basándose en reglas programadas. Esta información es adquirida de los manuales de mantenimiento de motores trifásicos de inducción, también de la norma ISO 2372 "Rangos de Severidad para la Vibración de Maquinas" (ver Anexo 4), en conjunto con la adquisición de señales de los sensores acoplados al motor (ver Anexo 9 y 10). Para ingresar a la aplicación HMI es necesario un explorador de internet y enlazarse a la dirección IP del PLC. El hardware está conformado por diferentes componentes como: Fuente 24V DC, Disyuntores, Computador, Controlador lógico programable, Módulos de expansión del PLC, Variador de frecuencia, Sensor de vibración, Sensor de temperatura, Selector, Pulsador NA, Luces piloto, etc (ver Figura 15 y 16).

Módulo prototipo de pruebas

Figura 15. Elementos que conforman el módulo prototipo de pruebas Fuente:(Módulo prototipo de pruebas para motores trifásicos de inducción)

3.1.2 Criterios de diseño eléctrico e instrumentación.

• Disyuntor 16 A Tmax ABB

El diseño del circuito trifásico consta del variador de frecuencia y motor conectado con cable AWG 12 (ver Anexo 12), en este caso el variador de frecuencia trabaja a 6.6 A hasta 8 A, el disyuntor aproximado para este amperaje según el fabricante se puede ver en la tabla del Anexo 6, este recomienda usar un disyuntor de la línea Tmax por su capacidad de respuesta, como el XT1N 160 el mismo que se ajusta desde 1,6 A hasta 16 A.

• Disyuntor bifásico 10 A Scheneider

Para el circuito bifásico conformado por los dispositivos: fuente de alimentación, switch industrial, plc. Se tiene una carga aproximada entregada por la fuente de 130 W conectados con cable AWG 14 (ver Anexo 11).

Ecuación 12. Corriente en circuito doble monofásico.

$$I_L = \frac{P}{2 * V_F * \cos\varphi}$$

Dónde:

 I_L = Corriente de línea absorbida

P = Potencia activa en (W)

 $cos \varphi$ = Factor de potencia

 V_F = Tensión entre fases

Entonces:

$$I_L = \frac{130 W}{2 * 220 * \cos(1)} \approx 0.30 A$$

El disyuntor implementado es de 10A bifásico, por ser el de menor potencia comercializado.

• Disyuntor monofásico 10 A Scheneider

El circuito monofásico está conformado por el CPU LG y monitor, los que consumen una corriente de 11500 W y 30 W en total se tiene una carga eléctrica de 11530 W (ver Anexo 11).

Ecuación 13. Corriente en un circuito monofásico.

$$I_L = \frac{P}{V * \cos\varphi}$$

Dónde:

 I_L = Corriente de línea absorbida

P = Potencia activa en (W)

 $cos \varphi$ = Factor de potencia

V = Tensión de fase

Entonces:

$$I_L = \frac{11530 W}{110 * \cos(1)} \approx 1 A$$

El disyuntor implementado es de 10A monofásico, por ser el de menor potencia comercializado.

• Transmisor de vibración Pruftechnic VIB 5.731

Para la selección del sensor de vibración se tomó muy en cuenta el rango máximo de velocidad soportada, expresada en mm/s (ver Anexo 4), a su vez que opere desde una frecuencia de 10 Hz, la misma que es usada por otros transmisores de vibración del mercado, adicional el mismo tendría que abarcar vibraciones de motores de clase II de la norma ISO 2372 (ver Anexo 5), como es el caso del motor Bazu 4651/4. Con el fin de aprovechar el funcionamiento del transmisor, tanto para los motores de clase I y clase II.

• Sensor de temperatura termopar tipo K

En el caso de la selección del sensor se utilizó el sistema de aislamiento clase F y un incremento de temperatura de clase B. El mismo que toma como referencia la máxima temperatura ambiente a la que puede trabajar un motor normalmente (ver Anexo 7), además este sensor es común en la industria para diferentes aplicaciones por su rango de operación que va desde -200 °C a +1372 °C.

A continuación se especifica los diferentes componentes del módulo prototipo de pruebas para diagnóstico de fallos en motores trifásicos de inducción:

- Controlador lógico programable (PLC) de la marca ABB versión PM554 con conexión Ethernet
- Fuente 220 V a 24 V DC Phoenix Contact
- Switch Industrial de 5 puertos Ethernet 24V DC Phoenix Contact
- Disyuntor riel-din Trifásico ABB Tmax 16A
- Disyuntor riel-din Bifásico Schneider 10A
- Disyuntor riel-din Monofásico Schneider 10A
- Contactor Ebasee EBS1C Bobina 110 V AC 9A
- Módulos de expansión de entradas analógicas AI561, AI563
- Tarjeta micro SD 1 Gb
- Adaptador reloj de tiempo real ABB
- CPU LG NC1000 windows embedded
- Monitor LG Lcd Flatron 19 Pulgadas
- Borneras riel-din AWG 12-14
- Cable UTP CAT 5
- Cable Flexible AWG 14
- Cable vulcanizado 3x12 AWG
- Luces Piloto Led 24 V DC
- Selector 2 posiciones 22 mm
- Pulsador normalmente abierto 22 mm
- Toma Corriente Industrial IP44 2+T Macho y Hembra 220 V, 16A
- Toma Corriente Industrial IP44 3+T Macho 380 V, 32A
- Pulsador de Seta a 22 mm

- Variador de frecuencia de la marca ABB de alta gama versión ACS 880, 1.1 kW, 6.6 A 240-360 V AC.
- Acelerómetro de trasmisión de vibración de la marca Pruftechnic VIB5.731
- Termopar: TIPO K
- Adaptador FENA-11 para comunicación Modbus TCP/IP
- Software: Automation Builder Basic versión 1.1.0
- Software: Codesys versión 2.3.9.47
- Software: Drive composer pro versión 1.9
- Software: Matlab R2013b
- Software: Java Platform SE binary, versión 8 actualización 66

3.1.2 Descripción del software

A continuación se detalla el software usado en el módulo de pruebas:

- Automation builder: Es un integrador industrial de comunicación para procesos industriales y de producción que simplifica el aprendizaje e intercomunicación con varios módulos y diferentes tipos de sensores para configurar, programar, y poner en marcha proyectos de automatización.
- Codesys: Es un software de programación de fácil uso con 6 tipos de lenguaje de programación para el PLC PM554 y diseño gráfico, compatible con automation builder.
- Drive composer: Es un software de programación y puesta en marcha del variador de frecuencia, se usa para visualizar y definir los parámetros del variador de frecuencia ACS880, integrado en el módulo de pruebas para motores de baja potencia.

- Matlab: Es un software de modelamiento matemático que ofrece un entorno de desarrollo integrado con un lenguaje de programación propio, utilizado en este caso para definir la ecuación lineal o cuadrática de los sensores del módulo de pruebas para motores de baja potencia.
- Java Platform SE: Es una máquina virtual, para ejecutar aplicaciones compiladas en lenguaje Java, en este caso, aplicaciones sobre la Web.
 Permite el entorno gráfico de la aplicación HMI creada en el PLC con Codesys.

3.2 Descripción de los elementos en el módulo

3.2.1 Elementos de control e instrumentación

A continuación se determina los diferentes elementos utilizados en el tablero de control del módulo de pruebas para motores trifásicos de inducción de baja potencia.

 Controlador lógico programable (PLC): El equipo PM554 de la marca ABB, se encarga de procesar las señales eléctricas enviadas por los sensores tanto el de vibración como el de temperatura, a su vez con el adaptador Fena-11 conectado en el variador de frecuencia, se puede adquirir los datos eléctricos enviados al Bus de Campo, consumiendo 16 bits cada dato del motor en tiempo real para finalmente procesar esta información y desplegar el diagnóstico del motor. (ver Figura 17).

• Variador de Frecuencia: El equipo ASC880 de la marca ABB (ver Figura 18), es un sistema que permite el control de velocidad en motores trifásicos de inducción en este caso de potencia nominal a 1.1 kW, mediante el control de frecuencia hacia la alimentación suministrada del motor, adquiere conectividad Modbus TCP/IP mediante el módulo Fena-11 y es capaz de actuar como cliente o servidor para otros variadores de frecuencia.

Módulo adaptador Fena-11: Este dispositivo de la marca ABB (ver Figura 19), se conecta al variador de frecuencia ACS880 y su salida es un puerto Ethernet, permite la comunicación Modbus TCP/IP entre controlador lógico programable PM554 y el variador de frecuencia, el módulo dispone de varias configuraciones de comunicación, puede ser usado también bajo EtherNet/IP o Profinet.

Módulo de expansión de entrada analógica AI561: Este dispositivo, tiene capacidad para 4 entradas analógicas, es configurable para entradas de voltaje o corriente. En este proyecto es usado para la adquisición de la señal del sensor de vibración Vibrotector (VIB 5.731), configurado en el programa Automation Builder como entrada de 4 a 20 mA (ver Figura 20).

 Módulo de expansión de entrada analógica AI563: Al disponer de un módulo dedicado para sensores de temperatura, se facilita la calibración de esta magnitud, con el software Automation Builder se puede escoger el tipo de termopar conectado al módulo. En este proyecto se conectó un termopar de tipo K, igualmente dispone de 4 entradas analógicas (ver Figura 21).

 Transductor piezoeléctrico: Este modelo VIB 5.731 de la marca Pruftechnic (ver Figura 22), cuando es sometido a movimiento (aceleración), genera una tensión eléctrica debido a la presión ejercida sobre un cristal u oscilador. Con un desplazamiento relativamente pequeño se puede adquirir una amplia gama de valores análogos en el PLC. Estos instrumentos de medición son utilizados en la industria para monitorear maquinas rotativas en funcionamiento y conocer su estado de operación normal, en caso de no serlo se puede hacer un paro de emergencia, adicional es usado axialmente, horizontalmente o verticalmente, para un completo análisis de vibración en máquinas.

Termopar tipo K: Es un sensor de temperatura que varía de los (-200 °C a +1372 °C), está construido con dos alambres de distinto material que son Níquel y Cromo o Níquel y Aluminio, al aplicar una temperatura elevada en la unión de los metales se genera un voltaje muy pequeño (efecto Seebeck) en el rango de milivoltios y puede aumentar a mayor temperatura (ver Figura 23). En este proyecto su función es determinar la temperatura en las aletas de refrigeración del o cerca de los cojinetes en el motor.

3.2.2 Elementos auxiliares

El módulo prototipo de pruebas con diagnóstico de problemas en motores trifásicos de inducción cuenta con varios elementos auxiliares externos para la protección, control y escalabilidad del mismo.

A continuación se detalla todos los elementos y su funcionalidad en el módulo.

 CPU: Su función principal es ingresar a la aplicación HMI por medio de Java SE, y visualizar valores eléctricos conjunto al diagnóstico del motor (ver Figura 24). Otra función es guardar en Excel en una bitácora los datos eléctricos del motor y el cambio realizado en el mismo para posterior revisión.

 Switch industrial: Facilita interconectar los diferentes dispositivos en una sola red (ver Figura 25), permitiendo la comunicación Modbus TCP/IP entre el computador, variador de frecuencia y el controlador lógico programable (PLC), sus puntos de red en el módulo se distribuyen de la siguiente manera:

Puerto 1: Controlador lógico programable (PLC) PM554.

Puerto 2: Computador.

Puerto 4: Variador de frecuencia ACS880.

• Fuente de alimentación ajustable: Este dispositivo de la marca Phoenix Contact. Permite obtener en su salida un voltaje de (0 a +24V DC) con un voltaje de entrada de (110-220V AC), esta fuente alimenta al PLC, a las luces piloto, y al sensor de vibración (ver Figura 26).

 Disyuntor Tmax trifásico ABB de 16A: Este elemento de protección, permite el paso de la corriente hacia el variador de frecuencia ACS880.
Es un elemento para cortar el arco eléctrico de forma rápida, este es generado por corrientes de cortocircuito muy elevadas (ver Figura 27).

 Disyuntor riel-din bifásico Schneider 10A: Este elemento está encargado de proteger al circuito que comienza en la fuente de alimentación (ver Figura 28). En este caso hacia el PLC PM554-ETH y sus módulos de expansión, el sensor de vibración, las luces piloto y el sensor de temperatura.

• Disyuntor riel-din monofásico Schneider 9A: Este elemento (ver Figura

29), está destinado a la protección del computador y monitor, ya que estos dispositivos usan un voltaje nominal de 110 V.

 Contactor Ebasee 9A: Este elemento en conjunto al selector ubicado en el panel de control forman un circuito para encender o apagar el módulo prototipo de pruebas, su bobina se energiza con un voltaje de 110 V AC (ver Figura 30).

- Luces piloto: Estos elementos de señalización de tipo led (ver Figura 31), permite al operario tener una percepción más clara de lo que está ocurriendo con el módulo, y saber en qué estado se encuentra, están distribuidos de la siguiente manera:
 - Emergencia: Se activa cuando se ha presionado un paro de emergencia
 - Arranque: Se activa cuando el motor está en funcionamiento
 - Red en línea: Se activa para verificar que la red Modbus TCP/IP esté activa.

• Selector y pulsador de 22 mm: Mediante el selector se puede energizar los componentes del módulo, este elemento tiene dos posiciones, la primera como normalmente abierto y la segunda como enclavamiento (ver Figura 32 lado izquierdo). El pulsador normalmente abierto permite encender y apagar el computador este elemento es independiente ya que cuando se apaga un computador este debe esperar, hasta cerrar sus programas (ver Figura 32 lado derecho).

 Pulsador de enclavamiento seta 22 mm: Este elemento de seguridad es muy popular por su facilidad de uso en casos de emergencia (ver Figura 33). Es indispensable en el módulo para evitar cualquier riesgo que ocurra con los motores, a su vez cuando es presionado activa la luz piloto de emergencia.

Tomacorriente IP44: Este tipo de tomacorriente es usado en aplicaciones industriales, por su capacidad de amperaje y seguridad de aislamiento. En el módulo de pruebas se utiliza dos de estos conectores el primero para la alimentación del módulo de tipo (3+T) (ver Figura 34 lado izquierdo).

El segundo un tomacorriente (2 + T), ubicado en el tablero de control, para la conexión de salida del variador de frecuencia hacia el motor respectivamente (U, V y W) (ver Figura 34 lado derecho).

3.3 Descripción de la comunicación Modbus TCP/IP

Está comunicación se basa en la arquitectura cliente/servidor por medio del protocolo Ethernet, destinada en la supervisión y control de equipos de automatización, cuenta con una implementación compacta en bloques de datos, además permite conexiones simultáneas. En el módulo se utiliza el adaptador Fena-11 para la comunicación del variador de velocidad ACS880 con el PLC, mediante un switch industrial se interconecta el PLC, el variador de frecuencia ACS880 y el PC, todos en una topología tipo estrella, adicional se adquiere la información de los sensores de vibración y temperatura conectados a los módulos de expansión del PLC, la Figura 35, muestra las conexiones de red. Finalmente en la programación el mencionado PLC toma decisiones y despliega el diagnóstico del motor.

3.3.1 Parámetros de comunicación y control Modbus TCP/IP

En la Tabla 4, se resume la configuración de los parámetros de comunicación y control en el módulo prototipo de pruebas con diagnóstico de problemas para motores trifásicos de inducción. Los parámetros están ordenados conforme se realizó el proyecto, tomando en cuenta que los parámetros del adaptador Fena-11, son los únicos que no varían desde al inicio hasta la fase de pruebas del módulo.

Tabla 4. Parámetros de comunicación y control

Número y Nombre del			
parámetro	Ajuste ACS880	Descripción	
	Parametros rena-11		
		Permite la comunicación	
		entre el convertidor y el	
		adaptador de bus de campo	
50.01 FBA A Habilitar	1 = Ranura Opción 3	А.	
50.02 FBA A Función		Reacción del convertidor a	
comunicación perdida	1 = Fallo	un fallo de comunicación.	
		Define el retardo de tiempo	
		antes de comenzar la acción	
50.03 FBA A Retardo de		definida en el parámetro	
comunicación perdida	3.0 s	50.02.	
		Muestra el tipo de módulo	
51.01 FBA A tipo	128 = Ethernet	conectado al convertidor.	
		Selecciona el protocolo	
		Modbus / TCP	
51.02 Perfil / Protocolo	1 = MB/TCP ABB E	ABB Mejorado.	
		Velocidad Ethernet es	
51.03 Negociación	0 = Auto	negociada automáticamente	
		Definición de la IP estática	
51.04 Configuración IP	0 = IP estática	del convertidor	
50.02 FBA A Función		Reacción del convertidor a	
comunicación perdida	1 = Fallo	un fallo de comunicación.	
		Define el retardo de tiempo	
		antes de comenzar la acción	
50.03 FBA A Retardo de		definida en el parámetro	
comunicación perdida	3.0 s	50.02.	
		Primer octeto de la dirección	
51.05 Dirección IP 1	192	IP	

Tabla 4. Parámetros de comunicación y control

Número y Nombre del		
parámetro	Ajuste ACS880	Descripción
	Parámetros Fena-11	
		Segundo octeto de la dirección
51.06 Dirección IP 2	168	IP
51.07 Dirección IP 3	0	Tercer octeto de la dirección IP
51.08 Dirección IP 4	16	Cuarto octeto de la dirección IP
		Establece la máscara de red
		como
51.09 Subnet CIDR	24	255.255.255.0
51.20 Tiempo espera	10	Establece 1 segundo de espera
		Refresca los parámetros de
51.27 FBA A par refrescado	1 = Refrescar	configuración.
Parámetros Modbus TCP/IP		
		Selecciona la interfaz de bus de
		campo A como la fuente
20.01 Ext1 Marcha/Paro/Dir	12 = Fieldbus A	permiso de marcha.
		Selecciona la fuente de la señal
20.12 Fuente Permiso Marcha	FBA A MCW bit 3	de permiso de marcha externa.
		Selecciona la referencia de bus
		de campo A como la fuente de
22.11 Fuente Velocidad Ref1	4 = FB A ref1	referencia de velocidad 1.
		Establece el orden la palabra de
51.22 Orden palabra	Hi-lo	control.
	30 = FBA A MCW bit	Selecciona la palabra de control
31.11 Selección reseteo Fallo	7	para restaurar fallos.
52.01 FBA A data in1	Parámetro 1.2	Velocidad del motor estimada
52.02 FBA A data in2	Parámetro 1.21	Corriente de Fase U
52.03 FBA A data in3	Parámetro 4.21	Palabra de fallo 1
52.04 FBA A data in4	Parámetro 1.6	Frecuencia de salida

Tabla 4. Parámetros de comunicación y control

Número y Nombre del			
parámetro	Ajuste ACS880	Descripción	
Parámetros Modbus TCP/IP			
52.05 FBA A data in5	Parámetro 1.7	Corriente del motor	
52.06 FBA A data in6	Parámetro 1.10	Torque del motor	
52.07 FBA A data in7	Parámetro 1.11	Voltaje DC	
52.08 FBA A data in8	Parámetro 1.13	Voltaje de salida	
52.09 FBA A data in9	Parámetro 1.14	Potencia de salida	
52.10 FBA A data in10	Parámetro 1.22	Corriente de fase V	
52.11 FBA A data in11	Parámetro 1.23	Corriente de fase W	
52.12 FBA A data in12	Parámetro 4.22	Palabra de fallo 2	
53.01 FBA A data out1	Ref 1	Velocidad constante 1	
Parámetros del motor			
99.03 Tipo de motor	0 = Motor asíncrono	Selecciona el tipo de motor	
99.04 Modo control motor	0 = DTC	Control directo de par	
		Define la intensidad nominal	
99.06 Corriente nominal	2.6	(A)	
		Define la tensión nominal	
99.07 Voltaje nominal	220	(V)	
99.08 Frecuencia nominal	60	Define la frecuencia (Hz)	
		Define velocidad nominal	
99.09 Velocidad nominal	2820	(rpm)	
99.10 Potencia nominal	1.1	Define la potencia en (kW)	
99.12 Torque nominal	2.0	Define el par nominal del eje	

Nota. Parámetros finales de comunicación y control en el convertidor ACS880 Fuente: (Módulo prototipo de pruebas para motores trifásicos de inducción) Elaborado por: Daniel Vásquez

3.4 Creación de un nuevo proyecto Automation Builder

Para realizar un nuevo proyecto en el software Automation Builder 1.1.0, se puede trabajar con la versión básica definida en la instalación a continuación se realizan los siguientes pasos:

Paso 1: Abrir la aplicación (ver Figura 36), "Automation Builder", y esperar que cargue el programa.

Paso 2: Para comenzar, en la página inicio se escoge la opción "Nuevo proyecto" (ver Figura 37).

Paso 3: En la ventana de "Nuevo proyecto" (ver Figura 38), se escoge primero la opción de AC500, para un PLC, después se asigna el nombre del proyecto, finalmente aceptar.

Ventana nue	evo proyecto
	1 Nuevo proyecto
	Categorías: Plantillas: (General) Proyecto ACS80 Proyecto ACS80 Proyecto DCX880 Proyecto Vacio
	Un proyecto con un PLC Nombre: Project1 2 Ubicación: C: Users Darry Documents • • • • • • • • • • • • • • • • • • •
Figura 38. Ven	atana de nuevo proyecto Automation Builder
Fuente: (Softw Elaborado por:	are Automation Builder) : Daniel Vásquez

A continuación se abrirá una ventana del nuevo proyecto (ver Figura 39), para poner un nombre al objeto creado en el proyecto, el tipo de CPU del PLC, en este caso un PLC PM554-ETH, el nombre de objeto puede ser el que se crea por defecto, finalmente se agrega el PLC al proyecto.

Ventana selección PLC					
Nuevo proyecto				×	
Ruta del objeto: C:\Users\Danny\Documents\Proyec Nombre de objeto: ?LC_AC500	cto_prueba.project]	
Categorías 👻					
B-PLC-AC500	Nombre ACS00 PM554 ACS00 PM554 ETHI ACS00 PM556 ETHI ACS00 PM566 ETHI ACS00 PM576 ETHI ACS00 PM576 ETHI ACS00 PM572 ACS00 PM572 ACS00 PM572 ACS00 PM530 ETHI ACS00 PM530 ETHI ACS00 PM590 ARC ACS00 PM590 ETHI ACS00 PM590 ETHI ACS00 PM591 EETHI	Versión 2.4.1.0 2.4.1.	Referencia 1TNE968900R0xx0 1TNE968900R0x0 1SAP121200R0071 1TNE968900R1x0 1SAP12100R0071 1SAP130020R0200 1SAPx40300R0271 1SAPx40300R0271 1SAP15000R0271 1SAP15000R0271 1SAP15000R0271	- III	
Cierre este cuadro de diálogo desp Reiniciar filtro	Mostrar todas las ver	regar PLC	Cerrar		
Figura 39. Ventana de selección de PLC en un nuevo proyecto					
Fuente: (Software Automation Build Elaborado por: Daniel Vásquez	Fuente: (Software Automation Builder) Elaborado por: Daniel Vásquez				

Cuando ha terminado de guardar la ventana anterior (ver Figura 39), se crea un árbol del proyecto, en el cual se puede agregar los módulos de expansión del PLC, siguiendo los pasos de la Figura 40. A continuación se especifica los pasos:

Paso 1: Clic derecho sobre "IO_Bus".

Paso 2: Agregar objeto.

Agregar objeto	S		
	ABB Proyecto_prueba.project - Automation Builde	Basic V1	
	Archivo Edición Ver Proyecto Enlinea He	rramientas Ventana Ayuda	
	Dispositivos 🗸 J	Ethernet OBIO X P	LC_A
	Proyecto_prueba	8ED+6SD Configuración 8ED+6SD Asignación	E/S
	Application	Parámetro	Т
	OBIO (8ED+6SD)	😁 🖗 Run on config fault	Er
		🗐 🖆 Digital inputs	
	Interfaces Copiar	Input 0, input delay	Er
		Input 0, channel configuration	Er
		Input 0, fast counter	Er
	Ethernet × Borrar	Input 1, input delay	Er
	ETH1 Renombrar	Input 1, channel configuration	Er
	Proto	Pinput 2, input delay	
	Z Agregar objeto	Input 2, channel conliguration	Fr
	Actualizar objeto	Input 3, channel configuration	Er
	Agregar carpeta.	 Input 4, input delay 	Er
	🗂 Modificar objeto	Input 5, input delay	Er
	Comparar objeto:	Input 6, input delay	Er
		🖉 🖗 Input 7, input delay	Er
		🖹 🛅 Digital outputs	
		Output 2, channel configuration	Er
Figura 40. Agrega	r un nuevo objeto al árbol c	lel proyecto	
	, , , , , , , , , , , , , , , , , , ,	1 2	
Fuente: (Software	Automation Builder)		
Elaborado por: Da	niel Vásquez		

En la ventana "Agregar objeto IO_Bus" de la Figura 41, se escoge el módulo de expansión, a su derecha se puede visualizar el tipo de módulo, finalmente se presiona en el botón "Agregar objeto".

Agregar IO_	Bus Agregar objeto a continuación: IO_Bus	1.00 2.00	X	Γ
	Ruta del objeto: PLC_AC50010_Bus Nombre de objeto: \1561			
	Categorías 👻			
	(₽- Módulos E/S S500 (₽- Módulos E/S S500 eCo	Nombre Versión Referencia ↓A523 2.4.1.0 15AP250300R0001 ↓A531 2.4.1.0 15AP250300R0001 ↓A1561 2.4.1.0 15AP250300R0001 ↓A1561 2.4.1.0 1TNE968902R1101 ↓A552 2.4.1.0 1TNE968902R1102 ↓A653 2.4.1.0 1SAPx50200R0001 ↓A0521 2.4.1.0 1SAPx50200R0001 ↓A0521 2.4.1.0 1SAPx5000R0001 ↓AX521 2.4.1.0 1SAPx5000R0001 ↓AX501 2.4.1.0 1SAPx6000R0001 ↓DA501 2.4.1.0 1SAPx40500R0001 ↓DA502 2.4.1.0 1SAPx4050R0001 ↓DC522 2.4.1.0 1SAPx4050R0001 ↓DC522 2.4.1.0 1SAPx4050R0001	Descripción breve 16AJ, U//RTD, 12bt 8AJ, U//RTD, 12bt 8AJ, U//RTD/Termo 4AJ, U/, 12bts-sign 4AJ, temopar, 15bts- 16AO, U/, 12bts-sign 4AJ/2AO, U/, 12bts- 4AJ/2AO, U/, 12bts- 2AO, U/, 12bts- 16D0/8DC/4AU/2AO, 16D0/8DC/8DC/8DC/4AU/2AO, 16D0/8DC/8DC/8DC/8DC/8DC/8DC/8DC/8DC/8DC/8DC	
	Cierre este cuadro de diálogo después d	Mostrar todas las versiones 2		
	Reiniciar filtro	Agregar objeto	o Cerrar	
Figura 41. Ver	itana agregar objeto IC)_Bus		99
Elaborado por:	Daniel Vásquez	er)		

Regresando al árbol del proyecto (ver Figura 42), se debe asignar al módulo de expansión, el valor de entrada, para lo cual se describe los siguientes pasos:

Paso 1: Seleccionar el módulo de expansión en este caso "AI561".

Paso 2: Ir a la pestaña "AI561 Configuración".

Paso 3: En la Entrada 0, seleccionar el tipo de salida del sensor conectado al módulo.

A continuación como se muestra en la Figura 43, se escoge la pestaña "AI561 Asignación E/S", donde se puede dar un nombre a la dirección "%IW0", por facilidad de búsqueda de esta variable en la programación de Codesys, ha sido nombrada como: "Sensor Vibración".

E/S de un módulo de e	xpansión				
ABB Proyecto_prueba.project* - Automation Builder Basic	: V1			-	Marca I.
Archivo Edición <u>V</u> er Proyecto En linea <u>H</u> erramien 管 교 문 문 응 아이 셔츠 않 ₈ 다	tas Venta <u>n</u> a A <u>y</u> uda				
Dispositivos 👻 म् 🗙	Ethernet X 🖬 O 1	C_AC500 IO_Bus	👔 ETH1	/1	AI561 X
Proyecto_prueba	AI561 Configuración AI561 Asignación E/S	sta de mapeado E/S Informa	ación		
PLC_AC500 (PM554-ETH)	Canales				
OBIO (8ED+6SD)	Variable Asignació	n Canal	Dirección	Tipo	Unidad
IO_Bus	Sensor_Vibración	Entrada analógica I0+	%IW0	INT	
AI561 (AI561)	*	Entrada analógica I1+	%IW1	INT	
□ Interfaces		Entrada analógica I2+	%IW2	INT	
ζ 📃 COM1_Online_Access (COM1 - Acceso	↓	Entrada analógica I3+	%IW3	INT	
・ S 型 COM2_None (COM2 - Ninguno) 室 設置 Ethernet 町 ETH1 (ETH1) 質 Protocols (Protocolos)					
Figura 43. Asignación E/S	a un módulo de expansión	ABB			
Fuente: (Software Automat Elaborado por: Daniel Váso	ion Builder) Juez				

Para uso de las entradas y salidas digitales del PLC, se sigue el mismo procedimiento

de la Figura 44, en la que se muestra los siguientes pasos:

Paso 1: Seleccionar "OBIO (8ED+6SD)".

Paso 2: Seleccionar la pestaña "8ED+6SD Asignación E/S".

Paso 3: Dar un nombre a la entrada digital "%IX4000.0", en este caso "inicio".

Archivo Edición Ver Proyecto En línea Herramien	ntas Venta <u>n</u> a A <u>v</u> uda						
Dispositivos 👻 🕂 🗙	PLC AC500	+ 2		Configuració	in IP		
Proyecto_prueba	8ED+6SD Configuración 8ED+	6SD Asignación E/	S Lista de m	aneado E/S			
E TO PLC_AC500 (PM554-ETH)	Canales	,-	Lista de li	арсаао сло			
Application	Variable	Asignación	Canal	Dirección	Tipo	Unidad	Descripción
	🖃 📴 Entradas digitales						
	 		Entrada	%IB4000	BYTE		
COM1 Online Access (COM1 - Access	2 inicio		Entrada	%IX40	BOOL		
COM2 None (COM2 - Ninguno)			Entrada	%IX40	BOOL		
			Entrada	%IX40	BOOL		
	¥ø		Entrada	%IX40	BOOL		
Protocols (Protocolos)			Entrada	%IX40	BOOL		
	* ø		Entrada	%IX40	BOOL		
	- *		Entrada	%IX40	BOOL		
	- * ø		Entrada	%IX40	BOOL		
	L		Interrup	%IB4001	BYTE		
	🖲 🚞 Salidas digitales						
	🖳 📴 PWM						
	🗄 🚞 Contador rápido						
Figura 44. Asignación E/S	en entradas digita	les del Pl	LC				

De igual manera se puede asignar un nombre a las salidas digitales del PLC (ver Figura 45), desplegando la carpeta "Salidas digitales", finalmente se agrega un nombre en este caso "luz piloto".

3.4.1 Configuración de comunicación PLC en Automation Builder

Previo a la comunicación entre el PC y el PLC se debe configurar ciertos criterios en

el computador los cuales se describen a continuación (ver Figura 46):

Paso 1: Ir a inicio, después "Panel de control".

Paso 2: Seleccionar la opción "Sistema y Seguridad", a continuación seleccionar,

"Firewall de Windows".

Una vez ingresado en la sección "Firewall de Windows" (ver Figura 47), se debe presionar en "Activar o desactivar Firewall de Windows", en este caso la red doméstica o de trabajo conectada al puerto Ethernet del computador.

🕒 🗢 🖉 🕨 Panel de control	 Sistema y seguridad Firewall de Window 	s 🔹 🛃	Buscar en el Panel de control
Ventana principal del Panel de control	Ayude a proteger su equipo con l	Firewall de Windows	
Permitir un programa o una	Firewall de Windows ayuda a impedir que h través de Internet o de una red.	ackers o software malinten	icionado obtengan acceso al equipo a
Firewall de Windows	¿Cómo me ayuda un firewall a proteger mi	equipo?	
😌 Cambiar la configuración de	¿Qué son las ubicaciones de red?		
Activar o d 1 ar Firewall de	Redes domésticas o de tr	abajo (privadas)	No conectado 📎
Restaurar valores predeterminados	Redes públicas		Conectado 🐼
Configuración avanzada	Redes en lugares públicos como aeropuer	tos o cafeterías	
Solución de problemas de red	Estado de Firewall de Windows:	Activado	
	Conexiones entrantes:	Bloquear todas no estén en la li	las conexiones a los programas que ista de programas permitidos
Figure 17 Configure	ción dol Eirowall do Win	lowe	

En la sección "Configuración de ubicación de red doméstica o del trabajo", se presiona la desactivación del "Firewall de Windows" (ver Figura 48).

En el siguiente paso (ver Figura 49), se debe asignar una IP estática a la "red de área local", con los siguientes pasos:

Paso 1: Ir al panel de control, Redes e Internet, Conexiones de red.

Paso 2: Dar clic derecho en "Conexión de área local", a continuación en "Propiedades".

Propiedades de un	na red local
•	🗢 😰 > Panel de control > Redes e Internet > Conexiones de red > 🚺
Organ	zar 🔻 Deshabilitar este dispositivo de red 🛛 Diagnosticar esta conexión 🛛 Ca
	Conexión de área local Cable de red desconectado Realtek PCIe GBE Family Con Conexión de red inalámbrica PED VASCUEZ. Compartido Desactivar Estado Diagnosticar Conexiónes de puente Crear acceso directo Eliminar Cambiar nombre Propiedades
Figura 49. Configura	ción a una red local para asignación de IP estática
Fuente: (Windows Se Elaborado por: Danie	even Professional) el Vásquez

En la ventana de la Figura 50, "Propiedades de Conexión de área local", se procede con los siguientes pasos:

Paso 1: Escoger la opción "TCP/IPv4", y presionar doble clic.

Paso 2: En la ventana de "Propiedades TCP/IPv4", se asigna una IP estática de clase C, en este caso 192.168.0.4.

Paso 3: Finalmente se acepta todos los cambios.

Propiedades de Conexión de área local	Propiedades: Protocolo de Internet versión 4 (TCP/IPv4)
Funciones de red	General
Conectar usando:	Puede hacer que la configuración IP se asigne automáticamente si la red es compatible con esta funcionalidad. De lo contrario, deberá consultar con el administrador de red cuál es la configuración IP apropiada. Obtener una dirección IP automáticamente © Usar la siguiente dirección IP:
Cliente para redes Microsoft	Dirección IP: 192 . 168 . 0 . 4
Compartir impresoras y archivos para redes Microsoft A Protocolo de Internet versión 6 (TCP/IPv6)	Máscara de subred: 255 . 255 . 255 . 0
Protocolo de Internet versión 4 (TCP/IPv4)	Puerta de enlace predeterminada:
 Respondedor de detección de topologías de nivel de 	Obtener la dirección del servidor DNS automáticamente
	O Usar las siguientes direcciones de servidor DNS: Servider DNS esefecide:
Desinstalar Propiedade	Servidor DNS alternativo:
Protocolo TCP/IP. El protocolo de red de área extensa predeterminado que permite la comunicación entre varias redes conectadas entre sí.	Validar configuración al salir Opciones avanzadas
Aceptar Can	celar Cancelar Cancelar
igura 50. Configuración de direcc	ión IP estática

3.4.2 Asignación de dirección al PLC y al dispositivo Fena-11

Una vez que se ha establecido la dirección estática al computador se procede a designar las direcciones IP de los dispositivos en Red, en el proyecto nuevo (ver Figura 51), para lo cual se sigue los pasos:

Paso 1: Seleccionar en el árbol del proyecto, en la sección "Ethernet", a continuación desplegar las opciones, entre ellas "ETH1 (ETH1)", y abrir la opción.

Paso 2: Seleccionar la pestaña "Configuración IP".

Paso 3: Presionar el botón "Scan", para encontrar los dispositivos conectados a la red.

Paso 4: Cambiar si se desea las direcciones Ip de los dispositivos encontrados, en este caso "FENA-11" y "PM554-TP-ETH".

Cuando ya se ha realizado todos los pasos de asignación de nombres a las variables de entradas y salidas del PLC, designación de nombres a las direcciones de los módulos de expansión, además de la comunicación del PC con los dispositivos. Se puede comenzar a programar en el software "Codesys", para ello se dirige a la sección "Application", en el árbol del proyecto y se presiona dos veces, como en la Figura 52.

3.4.3 Programación en Codesys

En este punto de la creación de un nuevo proyecto, se debe comenzar con la creación

de objetos como se muestra en la Figura 53. Para ello se sigue los pasos:

Paso 1: Ir a la primera pestaña inferior llamada "Módulos".

Paso 2: Dar clic derecho sobre el programa raíz llamado "PLC_PRG (PRG)", y presionar "Insertar objeto".

En la ventana "Nuevo módulo" (ver Figura 54), se procede con los siguientes pasos:

Paso 1: Dar un nombre al programa.

Paso 2: Selección "tipo del módulo", en este caso como "Programa", puede ser también como función cuando se hace una llamada de un subprograma.

Paso 3: Seleccionar el lenguaje de programación, en este caso "LD", que menciona al

lenguaje "ladder" o comúnmente llamado "escalera".

Paso 4: Finalmente se presiona "Aceptar", para crear el módulo.

Con la creación del módulo "sensores" (ver Figura 55), se puede comenzar con la programación descrita por los siguientes pasos:

Paso 1: Presionar dos veces en la sección "sensores".

Paso 2: Ir a la barra de "insertar", la que proporciona distintos contactos y bobinas, en este caso un "contacto normalmente abierto".

Ventana de programación
CoDeSys - Application.ACSOOPRO* Archive Edición Proyecto Insetar Herramientas En línes Ventana Ayuda Modulos
Figura 55. Ventana de programación en lenguaje en escalera
Fuente: (Software Codesys) Elaborado por: Daniel Vásquez

Para la designación de nombres a los contactos o bobinas (ver Figura 56), se facilita ingresar los nombres anteriormente asignados a las entradas y salidas creadas en la Figura 44, de Automation Builder, el procedimiento es:

Paso 1: en el nombre vacío del contacto se presiona, ".", seguido del nombre la variable del PLC, en este caso "inicio".

Paso 2: Cuando se ha encontrado la variable buscada y concluir con la designación, se presiona la tecla "Tabulador".

Variables en Automation Builder		
CoDeSys - Application.AC500PRO - [sensores (PRG-LD)]		
Figura 56. Asignación de una variable de Automation Builder en Codesys		
Fuente: (Software Codesys) Elaborado por: Daniel Vásquez		

En el caso de usar visualizaciones en el programa, primero se debe crear un objeto destinado para este propósito (ver Figura 57), el procedimiento es el siguiente:

Paso 1: Ir a la pestaña inferior llamada "Visualizaciones".

Paso 2: Dar clic derecho sobre la carpeta "Visualizaciones", a continuación se debe

presionar en "Insertar objeto".

	,
Objeto de visualizació	5n
CoDeSys - Applic Archive Edición	iation ACS00PRO* Provento Incentar Herramientas En línea Ventana Avurda
	en gezo anserva i renamientas crimina voltana vystas en les
Stationes 🗠 🖓	
	0001 PROGRAM sensores
	0002/VAR 0003END_VAR
	0001
2	Insertar objecto
	Cambiar nombre del objeto
	Copiar objeto
	Borrar objeto
	Convertir objeto
	Propiedades del obieto
	Base de datos del proyecto
	Añadir acción
	Carpeta nueva
	Expandir nodo
	Aprir instancia Emitir árbol de llamada Bm Files (x86)/Common Files/CAA-Targets/ABB_AC500/AC500_V
	am Files (x86)/Common Files/CAA-Targets/ABB_AC500/AC500_V Guardar como plantilla
<u> </u>	
Crea un objeto nuevo	i y lo insetta en la lista de objetos
Figura 57. Creación de un	objeto de visualización en Codesys
Fuente: (Software Codesy	(2)
Fill a Software Codesy	5)
Elaborado por: Daniel Vás	squez
-	

En este paso es muy importante que se designe a la visualización principal con el nombre "PLC_VISU" (ver Figura 58), por comodidad y evitar editar el archivo de llamada para el servidor web.

Nom	bre de la visualización				
	Nueva visualización	×			
	Nombre de la nueva visualización: PLC_VISU	Aceptar Cancelar			
Figura	Figura 58. Nombre de la visualización principal en Codesys				
Fuent Elabo	e: (Software Codesys) rado por: Daniel Vásquez				

Con la creación de este objeto destinado a la visualización se puede comenzar con el diseño de botones, figuras, mapa de bits, deslizadores, gráfica de tendencias etc. (ver Figura 59), los pasos a seguir son:

Paso 1: Seleccionar en la barra de insertar, en esta cuestión un "botón".

Paso 2: En la categoría para comenzar se puede seleccionar la opción "Texto".

Paso 3: Se asigna un nombre al botón, en este caso "INICIO".

Paso 4: Para concluir con la edición se presiona "Aceptar".

Si bien es conveniente llamar al botón con el nombre de la variable, a continuación se especifica los pasos para asignar una variable al elemento mencionado (ver Figura 60):

Paso 1: Presionar dos veces sobre el botón.

Paso 2: Seleccionar la categoría "Entrada".

Paso 3: Habilitar la opción "Conmutar variable".

Paso 4: Presionar ".", seguido del nombre de la variable de entrada del PLC, en esta

ocasión "inicio", después presionar la tecla "tabulador".

Paso 5. Se guarda los cambios presionando "Aceptar".

Ahora bien, se puede de igual manera asignar una variable de salida del PLC para visualizar un cambio de color o movimiento sobre un dibujo en este caso en un círculo (ver Figura 61). El procedimiento es el siguiente:

Paso 1: Presionar dos veces sobre el objeto para asignar una variable del PLC.

Paso 2: Seleccionar la categoría "Variables de color".

Paso 3: Presionar ".", seguido del nombre de la variable del PLC, en este caso "luz piloto".

Paso 4: Finalmente "Aceptar", para visualizar el cambio.

Complementario a la comunicación del protocolo Modbus TCP/IP, se debe agregar una biblioteca, la misma que contiene los bloques de programación para el módulo diseñado como se muestra en la Figura 62. Los pasos a seguir son:

Paso 1: Presionar sobre la pestaña inferior llamada "Recursos".

Paso 2: Ir a la sección y abrir la opción "Administrador de bibliotecas".

Paso 3: Presionar clic derecho en la sección donde se encuentran las bibliotecas de Codesys, y presionar "Otras bibliotecas".

Lo que resta es añadir la biblioteca que contiene los bloques de comunicación de Modbus TCP/IP, los pasos se describen en la Figura 63:

Paso 1: Seleccionar la biblioteca "ACSDrivesComModTCP_AC500_V22.lib".

Paso 2: Presionar en el botón "Abrir", para añadir la nueva biblioteca a Codesys.

Librería Modbus TCP/IP	
S Abrir	
Buscar en: Buscar en: Buscar en:	▼ 🗢 🗈 📸 ▼
Nombre	Fecha de modifica Tipo
ACSDrivesBase_AC500_V20.lib	16/01/2013 8:59 Archive
ACSDrivesComModTCP_AC500_V22.lib	1 4/12/2012 3:27 Archive
Mombre: ACSDrivesComModTCP_AC500_V2 Tipo: CoDeSys biblioteca (*.lib) Directorio de biblioteca:	2 2 Abrir Cancelar
gura 63. Librería Modbus TCP/ IP en Cod	esys
Fuente: (Software Codesys) Elaborado por: Daniel Vásquez	

Ahora se puede ver la biblioteca añadida y comenzar a usar los bloques de programación para la comunicación Modbus TCP/IP (ver Figura 64).

Antes de cargar el proyecto hacia el PLC es necesario seguir con los pasos de configuración del sistema destino mostrados en la Figura 65. El procedimiento es:

Paso 1: Ir a la pestaña inferior y seleccionar la opción "Recursos".

Paso 2: Presionar sobre la categoría "Configuraciones del sistema de destino".

Ahora bien en la ventana "Configuraciones del sistema de destino" (ver Figura 66), se procede de la siguiente manera:

Paso 1: Ir a la pestaña "Visualización".

Paso 2: Seleccionar la resolución destino para las visualizaciones programadas, las

mismas que se verán a través del servidor Web.

Paso 3: Habilitar la opción "Visualización Web".

Paso 4: Finalmente se presiona "Aceptar", para guardar los cambios realizados.

Configuración: AC500 PM554-ETH 2 y	
Distributed de destine Distributión de exemple Conservid	
Ancho de visualización en píxeles: 800 Altura de visualización en píxeles: 480 C Emplear formato de archivo 8.3 Tratamiento de alarmas dentro del mando	Tipos de fuentes soportados en el sistema de destino:
Registro de datos de tendencias dentro del mando	
Activar variable de sistema "LurrentVisu" Tratamiento de introducción simplificado	Visualizacion de destino
3 ▼ Visualización Web □ Compresión	Desactivar generación de tarea
Impedir la descarga de los archivos de visualización	🔽 Operación de teclado para tabla 🛛 🔒
	Configuraciones previas Aceptar Cancelar
gura 66. Configuración del sistema de	stino hacia el PLC

Para cargar el programa diseñado hacia el PLC PM554-ETH (ver Figura 67), se presiona en la Barra de Menú de Codesys, en la sección "En línea", a continuación de la primera opción "Inicio de sesión".

Archivo Edición Proyecto Insertar Herramie	En línea Ventana Ayuda		
🖬 🖽 🚳 🛹 🖽 🚔 🚔 👗 🛍 👗	Inicio de sesión 2	Alt+F8	
	Cierre de sesión	Ctrl+F8	
Recursos	Carmar	PLC_VISU	
Biblioteca Ethernet_AC500_V10.lib 21.8.15			
🖽 🛄 Biblioteca lecsfc.lib 2.6.14 10:37:46: variabli		ю	
₩- Biblioteca OnBoardIO_AC500_V13.lb 21.8.1	00 Parada	Mayús+F8	
	00 Restablecer		
Biblioteca SysLibinitLibrary.iib 21.8.15 14:02	Restablecer (en frío)	THICKO	
En Distance Cyclib Time Ib 21.0.15 14:02:50:1	Restablecer (original)	INICIO	
Biblioteca Util lib 21.8.15 14:02:36: variabled	Breakpoint ON/OFF	F9	
T - W Herramientas	Diálogo Breakpoint		
E- Variables globales	Paso individual sobre	F10	
Administrador de bibliotecas	Paco individual en	FR FR	
Administrador de watch v de fórmulas	Cide in dividual	011.55	
	Cicio Individual	Ctri+F5	
	Escribir valores	Ctrl+F7	
	Forzar valores	F7	
😳 🏢 Configuración del mando	Dechacer formede	Maurice 57	
🗂 Explorador PLC		WidyUS+F7	
	Dialogo escritura/forzado	Ctrl+Mayus+F7	
🔯 Registro Trace	Jerarguía de llamada		

Cuando se ha presionado la opción "Inicio de sesión", comienza a compilar el programa para posteriormente subir el programa hacia el PLC PM554-ETH (ver Figura 68).

Compilación de un programa	
The second se	
entas En línea Ventana Ayuda	
▞▆▆▏┉⋄▁▕▖▝▋ᢒᠺᢂ⋊┦▞▞▓⊒뺔▓▤▓▦▙≟▞ᢁᄩ	
🍤 sensores (PRG-LD)	
0001 PROGRAM sensores 0002 VAR 0003 END_VAR 0004 0005 0005 0005	
0001 inicio CoDeSys	
Compilando Implementación del módulo 'ETH_0W/N_IP' Cancelar	
Figura 68. Compilación de un programa en Codesys hacia al PLC PM554	
Fuente: (Software Codesys)	
Elaborado por: Daniel Vásquez	

Finalmente el software Codesys preguntará si se desea cargar el nuevo programa hacia el PLC PM554-ETH (ver Figura 69), para lo cual primero comprueba la existencia de un proyecto anterior, como en este caso.

CoDeSys	X
	¡El programa ha sido modificado! ¿Desea cargar el nuevo programa?
	<u>S</u> í <u>N</u> o <u>C</u> ancelar <u>D</u> etalles >>

3.4.4 Codesys DDE (Data Dynamic Exchange)

Codesys DDE (ver Figura 70), es una herramienta de intercambio dinámico de datos y forma parte del software Codesys, este puede adquirir los valores de las variables usadas en el módulo y llevarlas a una hoja de cálculo en Excel. Finalmente con un macro creado en Excel, se puede guardar la información.

Gateway DDE Server	
💖 GatewayDDEServer - C:Wocuments and Settings\Administrator.0EM-MF3M162HBFUWesktop\Registro Motores\ 🔳 🔲 🔀	
File Online Help Ga Logout Parameters Devrce: Local_ [Tcp/lp, 3S Tcp/lp driver] Address = 192.168.0.10 Port = 1201 Motorola byteorder = Yes	
Figura 70. Software Codesys Gateway DDE Server	
Fuente: (Módulo prototipo de pruebas para motores trifásicos de inducción) Elaborado por: Daniel Vásquez	

CAPITULO 4

PRUEBAS Y RESULTADOS

En este capítulo se especifica el funcionamiento y las pruebas realizadas en el módulo prototipo de pruebas con diagnóstico de fallas en motores trifásicos de inducción, además se describe los pasos de funcionamiento en la interfaz web, análisis de fallas y finalmente el registro de información con el programa Codesys DDE.

4.1 Modo de funcionamiento de la aplicación HMI

El primer paso para ingresar en la aplicación requiere de un explorador web, en este caso Internet Explorer 7 (ver Figura 71), una vez abierto el explorador de Windows, el siguiente paso es ingresar la dirección IP del PLC PM554, más la ruta para la visualización, de la siguiente manera: http://192.168.0.10/webvisu.htm.

Una vez que se ha ingresado en la dirección IP anteriormente mencionada, el programa creado en Codesys comienza a cargar sobre Java Platform SE, a continuación preguntará si se desea correr la aplicación en este sitio, entonces se debe aceptar para que la aplicación funcione (ver Figura 72).

Entonces se puede ingresar a la primera pantalla creada en Codesys, la misma que fue nombrada "PLC_VISU" en la Figura 3.44, y que a su vez es la pantalla de inicio en la aplicación (ver Figura 73).

La pantalla de inicio cuenta con un menú para el operario, clasificado de la siguiente manera (ver Figura 74):

Sección 1: Pasos Previos, este enlace de la aplicación dirige hacia la conexión del motor con el módulo.

Sección 2: Motor 1.1 kW, este enlace dirige a la aplicación de control principal.

Sección 3: Motor 230 kW, si bien el prototipo solo está destinado hacia motores de potencia nominal a 1.1 kW y menores a esta, el enlace estará habilitado cuando se complete el módulo.

Sección 4: Manual de Usuario, este enlace de la aplicación dirige hacia un tutorial rápido para comprender los iconos, y pasos a seguir para un correcto funcionamiento.

Siguiendo el orden de los enlaces, la primera opción "Pasos Previos", redirigirá hacia la pantalla de la Figura 75, donde se da recomendaciones previas al arranque del módulo y manual de usuario:

Pantalla de recomendaciones
Pasos Previos
A continuación se detalla los pasos previos para su funcionamiento
1 Conectar U, V y W respectivamente en Conexión Estrella.
Bornes Cortocircuitados Caja de conexiones
2 Fijar el motor para evitar datos erróneos de vibración.
3 Conectar el sensor de temperatura y vibración al motor.
4 Continuar con el "Manual Usuario".
Figura 75. Pantalla de recomendaciones antes de la puesta en marcha Fuente: (Módulo prototipo de pruebas para motores trifásicos de inducción)

Una vez que se ha conectado el motor con las recomendaciones de los "Pasos Previos", el icono de ayuda enlaza hacia la pantalla de la Figura 76, donde se especifica el significado de cada botón o elemento de control.

Presionando el botón siguiente, la aplicación se enlazará con la pantalla donde se explica cómo usar el módulo, para hacer un diagnóstico de los motores de manera rápida pero confiable (ver Figura 77).

Ahora bien, con el botón siguiente, se puede ingresar hacia la pantalla de la Figura 78, donde se muestra la aplicación principal de control y diagnóstico de los motores, la misma que está distribuida de la siguiente manera:

Sección 1: Botón de arranque y desaceleración del motor.

Sección 2: Botón de reseteo del módulo, dedicado para el programa y comunicación.

Sección 3: Tabla de datos eléctricos adquiridos del motor en funcionamiento.

Sección 4: Indicador de conexión Modbus TCP/IP en el módulo.

Sección 5: Deslizador para cambio de velocidad en el motor analizado.

Sección 6: Valores calibrados de los sensores de vibración y temperatura.

Sección 7: Botones de enlace hacia el menú inicio y manual de usuario.

Sección 8: Análisis del motor en funcionamiento.

Sección 9: Botón de enlace hacia la pantalla detalle del diagnóstico.

Sección 10: Botón de enlace hacia la tendencia gráfica de los sensores.

Sección 11: Botón Paro de Emergencia.

4.2 Prueba del módulo con un motor en buen estado

En esta prueba se utilizó un motor en buen estado, el mismo que fue revisado minuciosamente por el personal de mantenimiento de la Empresa Pública Metropolitana de Transporte de Pasajeros. Los datos técnicos de placa se pueden ver en la Tabla 5.

Tabla 5. Datos técnicos motor en buen estado

Marca	AEG
Número	44813455 H
Tipo	AMV 80 4/2
Numero de Fases	3
Frecuencia	50 Hz
Voltaje	400 V
Potencia	1.1 kW
Amperaje	3.15 A
Revoluciones por minuto	2820 RPM

Nota. Datos de placa de un motor en buen estado revisado minuciosamente Fuente: (Manual de Motores AEG) Elaborado por: Daniel Vásquez

En la Figura 79, se puede visualizar la pantalla principal, antes del arranque con el botón "INICIO", el mismo que recomienda "Revisar la alimentación", ya que todavía no hay ningún consumo de energía en el motor.

Cuando se ajustado el deslizador a una velocidad media para poder arrancar el motor se presionó sobre el botón "INICIO", entonces la sección de diagnóstico se estabiliza mostrando los siguientes mensajes de la Figura 80.

En la Tabla 6, se resume los valores adquiridos a una velocidad media.

Tabla 6.

valores mediads, diagnostico con motor en ouen estado a verocidad media	Valores medidos,	diagnóstico con	motor en buen	estado a	velocidad	media
---	------------------	-----------------	---------------	----------	-----------	-------

Nombre de la Variable	Valor Medido	Diagnóstico
Corriente	(0.59) A	
Velocidad estimada	(678.8) RPM	
Corriente Fase U	(- 0.76) A	Intensidad Correcta
Corriente Fase V	(0.48) A	
Corriente Fase W	(- 0.80) A	
Torque del motor	(- 1.5) %	Torque Correcto
Voltaje DC	(315.7) V	
Voltaje de Salida	(66.0) V	Tensión Correcta
Potencia de Salida	(0.0) W	
Frecuencia	(22.6) Hz	
Sensor de Vibración	(0.6) mm/s	Vibración Correcta
Sensor de Temperatura	(20.0) °C	Ventilación correcta

Nota. Valores adquiridos del motor en buen estado con el módulo a una velocidad media Fuente: (Módulo prototipo de pruebas para motores trifásicos de inducción) Elaborado por: Daniel Vásquez

En el siguiente paso se ajusta la velocidad al nivel casi máximo, se puede ver en la Figura 81, obteniendo un diagnóstico satisfactorio, pero con diferentes valores medidos.

En la Tabla 7, se resume los valores adquiridos con el motor a velocidad casi máxima.

Tabla 7.

Nombre de la Variable	Valor Medido	Diagnóstico
Corriente	(0.56) A	
Velocidad estimada	(1067.6) RPM	
Corriente Fase U	(- 0.41) A	Intensidad Correcta
Corriente Fase V	(-0.35) A	
Corriente Fase W	(- 0.48) A	
Torque del motor	(0.8) %	Torque Correcto
Voltaje DC	(315.7) V	
Voltaje de Salida	(97.0) V	Tensión Correcta
Potencia de Salida	(0.01) W	
Frecuencia	(35.6) Hz	
Sensor de Vibración	(0.8) mm/s	Vibración Correcta
Sensor de Temperatura	(20.1) °C	Ventilación correcta

Valores medidos, diagnóstico con motor en buen estado a velocidad casi máxima

Nota. Valores adquiridos del motor en buen estado con el módulo a una velocidad casi máxima Fuente: (Módulo prototipo de pruebas para motores trifásicos de inducción) Elaborado por: Daniel Vásquez

Para visualización en detalle de los fallos de los motores, causas y soluciones se puede desplegar la siguiente pantalla (ver Figura 82), la que en este caso no enciende ningún indicador.

Al momento de arrancar el motor se verificó con el botón "Tendencia", el comportamiento de los sensores, se puede ver en la Figura 83, la misma que contiene tres gráficos, el primero velocidad y frecuencia vs tiempo, el segundo vibración vs tiempo y finalmente temperatura vs tiempo.

4.2.1 Registro del motor en buen estado

Para finalizar el mantenimiento del motor en buen estado, es necesario llevar un registro, ya que si el motor regresa al mantenimiento se dispondrá del cambio que se realizó anteriormente, llevando la historia completa del motor, con ello se cumple el plan de mantenimiento de motores trifásicos de inducción de baja potencia. La herramienta usada es Codesys DDE, más el archivo macro de Excel (ver Figura 84 y Figura 85).

	D	С	D	E	F	G	н	1	J	
Serie Motor	Fecha y Hora	Velocidad (RPM)	Corriente (A)	Potencia (Kw)	Corriente Fase U (A)	Corriente Fase V (A)	Corriente Fase W (A)	Vibración (mm/s)	Temperatura (°C)	0
ad	21-1-16 5:01 PM	0	0	0	0,0067	0,0037	-0,0009	0,3848	19,287	cambiotttt
aggggg	21-1-16 5:01 PM	0	0	0	-0,0038	-0,0007	0,002	0,3848	19,287	cambio
gjjjjj	21-1-16 5:04 PM	0	0	0	-0,0032	-0,0032	0,0017	0,3848	19,287	cambio
xvb6666666kkkkkkk	21-1-16 5:00 PM	0	0	0	0,0054	-0,0003	-0,0027	0,3848	19,367	buscar rep
bbb	18-1-16 3:15 PM	0	0	0	-0,0065	0,005	0,0039	0,452	18,727	rodamien
it900	22-1-16 11:54 AM	772,6	0,6105	0	-0,0494	-0,094	-0,7019	0,5416	20,007	cambio e
m90	26-1-16 12:06 PM	1423,6	0,5545	0,01	-0,57	0,7356	-0,4114	1,1716	19,527	cambio e
kkvvvvvvvv0	21-1-16 5:05 PM	0	0	0	-0,0001	-0,0064	0,0041	0,3848	19,207	cambio
:olp	21-1-16 4:31 PM	0	0	0	-0,003	-0,0015	-0,0027	0,3848	19,767	Iz
olp	21-1-16 4:25 PM	0	0	0	-0,0033	-0,0174	0,0043	0,3848	19,847	Iz
t	21-1-16 5:11 PM	670	0,6305	0	-0,8813	0,88	-0,5654	0,4968	19,127	cambio re
45	18-1-16 3:31 PM	640	0,6359	0	0,3076	-0,4678	0,9376	0,5192	23,447	cambio re
n-001	8-2-16 2:35 PM	947,4	1,38	0,16	1,994	1,3965	0,4123	1,1268	24,807	cambio d
n-002	8-2-16 2:51 PM	1520	0,5543	0,01	-0,7521	0,2358	-0,8138	0,9476	20,727	motor en
222	18-1-16 3:22 PM	0	0	0	-0,0112	-0,0045	0,0016	0,4296	23,767	Bobinar

4.3 Prueba del módulo con un motor en mal estado

En esta prueba se utilizó un motor en mal estado, el mismo que fue revisado por el personal de mantenimiento de la Empresa Pública Metropolitana de Transporte de Pasajeros, con el afán de validar al módulo, el daño que tenía no fue mencionado, pero con la prueba y el diagnóstico se corroboró este fallo.

Los datos técnicos de placa se pueden ver en la Tabla 8.

Tabla 8. Datos técnicos motor en mal estado

Marca	AEG
Número	0605287916 F
Tipo	AMV 80 4/2
Numero de Fases	3
Frecuencia	50 Hz
Voltaje	400 V
Potencia	1.1 kW
Amperaje	3.15 A
Revoluciones por minuto	2820 RPM

Nota. Datos de placa de un motor en mal estado revisado por el personal de mantenimiento Elaborado por: Daniel Vásquez

Fuente: (Manual de Motores AEG de baja potencia)

En la Figura 86, se puede visualizar la pantalla principal, cuando se arrancó el módulo con el motor dañado, en este caso el diagnóstico apunto hacia un daño en el bobinado ya que las corrientes de fase estaban desbalanceadas, además el eje demandaba mayor torque debido al mal estado de los rodamientos o el sistema de tracción.

Después de alrededor de 6 minutos en funcionamiento se comprobó otro fallo en la temperatura con el mensaje "Sobrecalentamiento del motor", debido al daño en el bobinado, se puede ver en la Figura 87.

Los datos adquiridos del motor dañado a velocidad media se pueden ver en la Tabla

9.

Tabla 9.

Nombre de la Variable	Valor Medido	Diagnóstico
Corriente	(1.10) A	
Velocidad estimada	(457.8) RPM	
Corriente Fase U	(1.54) A	Rebobinar Motor
Corriente Fase V	(-1.60) A	
Corriente Fase W	(0.77) A	
Torque del motor	(26.5) %	Revisar Transmisión
Voltaje DC	(310.4) V	
Voltaje de Salida	(61.0) V	Tensión Correcta
Potencia de Salida	(0.09) W	
Frecuencia	(16.1) Hz	
Sensor de Vibración	(1.2) mm/s	Vibración Aceptable
Sensor de Temperatura	(30.2) °C	Revisar Aislamiento

Valores medidos y diagnóstico con motor en mal estado

Nota. Valores adquiridos del motor dañado con el módulo a una velocidad media Elaborado por: Daniel Vásquez

Fuente: (Módulo prototipo de pruebas para motores trifásicos de inducción)

En la pantalla "Detalle Fallos Motor", se verificó las posibles soluciones (ver Figura

88).

A continuación se ejecutó en el programa un "Paro de Emergencia", para guardar los datos del motor en mal estado y evitar que siga recalentándose, se puede ver en la Figura 89, donde además aparece un mensaje que solo se muestra cuando el variador de frecuencia se detiene para evitar daños, y varía dependiendo de la circunstancia, en este caso el mensaje mostrado indica "Falta Permiso Marcha".

4.3.1 Registro del motor en buen estado

Finalmente se guarda la información con el programa Codesys DDE mas el archivo macro de Excel, se puede ver en la Figura 90 y Figura 91.

Excel y Codesys DDE

A	В	С	D	E	F	G	н	1	J.	
Serie Motor	Fecha y Hora	Velocidad (RPM)	Corriente (A)	Potencia (Kw)	Corriente Fase U (A)	Corriente Fase V (A)	Corriente Fase W (A)	Vibración (mm/s)	Temperatura (ºC)	Obse
ad	21-1-16 5:01 PM	0	0	0	0,0067	0,0037	-0,0009	0,3848	19,287	cambiottttt
ggggg	21-1-16 5:01 PM	0	0	0	-0,0038	-0,0007	0,002	0,3848	19,287	cambio
giiiii	21-1-16 5:04 PM	0	0	0	-0,0032	-0,0032	0,0017	0,3848	19,287	cambio
xvb6666666kkkkkkk	21-1-16 5:00 PM	0	0	0	0,0054	-0,0003	-0,0027	0,3848	19,367	buscar repues
bbb	18-1-16 3:15 PM	0	0	0	-0,0065	0,005	0,0039	0,452	18,727	rodamientos
dt900	22-1-16 11:54 AM	772,6	0,6105	0	-0,0494	-0,094	-0,7019	0,5416	20,007	cambio eje
m90	26-1-16 12:06 PM	1423,6	0,5545	0,01	-0,57	0,7356	-0,4114	1,1716	19,527	cambio eje
kkvvvvvvvv0	21-1-16 5:05 PM	0	0	0	-0,0001	-0,0064	0,0041	0,3848	19,207	cambio
olp	21-1-16 4:31 PM	0	0	0	-0,003	-0,0015	-0,0027	0,3848	19,767	Iz
olp	21-1-16 4:25 PM	0	0	0	-0,0033	-0,0174	0,0043	0,3848	19,847	Iz
rt	21-1-16 5:11 PM	670	0,6305	0	-0,8813	0,88	-0,5654	0,4968	19,127	cambio rodan
545	18-1-16 3:31 PM	640	0,6359	0	0,3076	-0,4678	0,9376	0,5192	23,447	cambio rodam
sn-001	8-2-16 2:35 PM	947,4	1,38	0,16	1,994	1,3965	0,4123	1,1268	24,807	cambio de roc

CONCLUSIONES

- El módulo implementado cumple con todos los parámetros establecidos y acordados con la Empresa Pública Metropolitana de Trasporte de Pasajeros (EPMTP), teniendo como alcance completar el módulo para los motores eléctricos del trolebús Bazu 4651/4.
- Este proyecto es de gran utilidad para motores de baja potencia, los mismos que son usados en ventiladores por la Empresa Pública Metropolitana de Transporte de Pasajeros (EPMTP). Este módulo marca el inicio en la implementación de equipos a mayor potencia.
- El proyecto fue pensado en la tendencia mundial acerca de los procesos de automatización, los cuales dejan de ser procesos centralizados y no se limitan a una tecnología cerrada, como paneles HMI, sino como parte de una red, la cual puede ser monitoreada en cualquier parte del mundo con acceso a la Internet, abaratando precios y aprovechando la tecnología de un computador.
- La utilización de equipos de automatización de la marca ABB, en este proyecto se planteó un reto de investigación, pero a cambio generó conocimiento valioso que será de ayuda en el futuro. Se tuvo la oportunidad de trabajar con un variador de frecuencia de alta gama tecnológica, cambiando la forma de ver los equipos de control y dejando de lado la concepción que se tiene de un PLC, como único equipo programable de control robusto.

100

- La comunicación Modbus TCP/IP, tiene muchas ventajas con respecto a la comunicación Modbus RTU; cuenta con facilidad para escalar a redes WLAN, gran velocidad de transmisión de paquetes, adición simple de nuevos equipos a la red. Estos equipos están conectados mediante cables Ethernet con su respectiva dirección IP en una topología estrella.
- El mantenimiento de motores trifásicos de inducción requiere de experiencia en fallos complicados, en este caso el módulo posee ventajas, ya que recopila toda la información de los sensores y valores eléctricos del variador de frecuencia, generando un análisis rápido y compacto con reglas programadas. Adicional cuenta con la capacidad para detener el proceso, en caso de que un motor en mal estado comprometa daños a otros equipos.
- Un buen diagnóstico en un módulo de pruebas para motores trifásicos de inducción depende de varios sensores acoplados al motor. Estos deben estar minuciosamente calibrados y modelados matemáticamente, en este caso se usaron dos sensores, uno de vibración y otro de temperatura, pero si a estos se le sumara un sensor de sonido el diagnóstico se ampliaría a fallas más complejas.

RECOMENDACIONES

- Si se desea implementar un módulo de pruebas para motores de inducción con diferente potencia, se debe tener en cuenta que el variador de frecuencia debe ser dimensionado para la potencia más alta, pero se requiere mayor impacto en la programación ya que este dispondrá de varios programas en uno solo, pero con condiciones diferentes, porque cada motor requiere diferente calibración en los sensores y datos eléctricos adquiridos al PLC, teniendo en cuenta la capacidad de procesamiento del mismo.
- En un módulo de pruebas para motores de inducción, se requiere mucho conocimiento de distintos manuales de mantenimiento, estos conocimientos eléctricos y mecánicos deben ser comprendidos en su totalidad ya que para un buen diagnóstico son complementarios, siempre basándose en las normas internacionales.
- Un diagnóstico fiable no solo depende de una buena programación y calibración de sensores, sino que también depende de los materiales usados, de preferencia deben ser de gama alta, por otro lado también depende del armado eléctrico en el tablero.
- Para obtener buenos resultados en la adquisición de señales eléctricas hacia el PLC, es necesario conectar todos los equipos hacia tierra del armario en conjunto con la conexión de la malla eléctrica de los sensores.

- La adquisición de un sensor de vibración depende de la clase de máquina en la que será montado, ya que este equipo trabaja a determinada frecuencia de resonancia y comprende rangos de operación que van desde 1 Hz a 10 KHz, en este caso se implementó un sensor con un rango que abarca máquinas de clase 1 y 2.
- Es necesario minimizar e insertar todas las imágenes en las pantallas de visualización usadas para aplicación web, de preferencia al mínimo sin que estas pierdan definición en pixeles, debido a que el PLC cuenta con una memoria RAM limitada y el mayor problema es tener muchas imágenes sumadas a fondos de pantalla.
- Se recomienda cargar el programa del PLC desde el computador que será destinado para la aplicación del servidor web, para evitar tiempo en configuraciones en la puerta de enlace, resolución de la aplicación de salida y llamada de imágenes usadas en fondos de pantallas de la aplicación.
- En un proyecto de estas características se debe estudiar completamente el diseño del módulo y sus componentes, y así disponer de todos los materiales necesarios, para no incurrir en gastos extras y perder tiempo destinado al proyecto, tiempo comprendido para la comunicación de los equipos, programación, diseño gráfico de la aplicación, calibración de sensores, armado del tablero eléctrico, perforación de agujeros para elementos, etc.

REFERENCIAS

- ABB. (2013). *PS553-DRIVES Library for AC500*. Obtenido de archivo PDF: http://goo.gl/7ABqLJ
- ABB. (s.f.). *Communication Protocol MODBUS-TCP*. Obtenido de archivo PDF: https://goo.gl/KLWRzC
- ABB. (s.f.). *Cuaderno N°6 de Aplicaciones Técnicas ABB*. Obtenido de archivo PDF: https://goo.gl/zKmIAp
- ABB. (s.f.). *Guía del motor: Información técnica básica de motores de inducción de baja potencia*. Obtenido de archivo PDF: http://goo.gl/GF86rt
- ABB. (s.f.). *Guía técnica N°5 Servidor Web integrado en Control Builder*. Obtenido de archivo PDF: http://goo.gl/ndUfb6
- AEG. (2009). *Alta eficiencia Motores trifásicos LV*. Obtenido de archivo PDF: http://www.lafert.es/descargas/aegesp.pdf
- Bolton, W. (2010). Mecatrónica (Cuarta ed.). España: Marcombo.
- Chapman, S. (2012). Máquinas Eléctricas (Quinta ed.). México: Mc Graw Hill.
- Creus, A. (2010). Instrumentación Industrial (Octava ed.). México: Alfaomega.
- Fornas, V. (2012). *El motor asíncrono*. Obtenido de https://2ci1evforcol.wordpress.com/2012/02/01/el-motor-asncrono/
- Google. (12 de Agosto de 2015). Google Maps. Obtenido de https://goo.gl/zLgPeX
- Mora, J. (2008). Máquinas Eléctricas (Sexta ed.). España: Mc Graw Hill.
- Pérez, M., Álvarez, J., Campo, J., Ferrero, F., & Grillo, G. (2008). Instrumentación Electrónica (Segunda ed.). México: Thomson.
- Ponce, P., & Sampé, J. (2008). *Máquinas Eléctricas y Técnicas Modernas de Control*. México: Alfaomega.
- Pruftechnic. (s.f.). Vibrotector: Vibration transmitter for effective machine protection. Obtenido de archivo PDF: http://www.mlt.se/uploads/broschyrer/VIBROTECTOR_brochure_LIT.57.40 0.EN.pdf
- Rockwell Automation. (2014). *Conceptos básicos sobre el uso de los motores de inducción trifásicos*. Obtenido de archivo PDF: http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/icg-wp000_-es-p.pdf

Rodríguez, A. (2012). Sistemas SCADA (Tercera ed.). España: Marcombo.

- Ternium. (s.f.). *Máquinas Asincrónicas*. Obtenido de archivo PDF: http://www.sistemamid.com/panel/uploads/biblioteca/2014-08-07_12-45-16107407.pdf
- Universidad del Valle de México. (2012). *Apuntes Científicos: Máquinas Eléctricas*. Obtenido de http://apuntescientificos.org/circuito-equivalente.html
- WEG. (s.f.). Motores eléctricos de inducción trifásicos de alta y baja tensión. Obtenido de archivo PDF: http://ecatalog.weg.net/files/wegnet/WEG-motorde-induccion-trifasico-de-alta-y-baja-tension-rotor-de-anillos-11171348manual-espanol.pdf

ANEXOS

Anexo 1. Bloque de comunicación para control del variador de frecuencia

Anexo 2. Mapeo de registros del variador de frecuencia

102 Modbus/TCP - Communication protocol

ABB Drives profile - Enhanced

The ABB Drives profile - Enhanced communication profile provides register mapped access to the control, status, reference and actual values of the ABB Drives profile. The mapping of the registers has been enhanced to allow writing of control and reading of status in a single Read/Write Multiple Register request.

	Register Address 1), 2)	Register Data (16-bit)
]	(4)00001	ABB Drives Profile Control
	(4)00002	ABB Drives Profile Reference 1
	(4)00003	ABB Drives Profile Reference 2
]	(4)00004	DATA OUT 1
	(4)00005	DATA OUT 2
	(4)00006	DATA OUT 3
]	(4)00007	DATA OUT 4
]	(4)00008	DATA OUT 5
	(4)00009	DATA OUT 6
]	(4)00010	DATA OUT 7
	(4)00011	DATA OUT 8
	(4)00012	DATA OUT 9
	(4)00013	DATA OUT 10
	(4)00014	DATA OUT 11
м	(4)00015	DATA OUT 12
	(4)00051	ABB Drives Profile Status
	(4)00052	ABB Drive Profile Actual 1
	(4)00053	ABB Drive Profile Actual 2
	(4)00054	DATA IN 1
	(4)00055	DATA IN 2
	(4)00056	DATA IN 3
	(4)00057	DATA IN 4
	(4)00058	DATA IN 5
	(4)00059	DATA IN 6

Anexo 3. Diagnóstico de Comunicación Fena-11

110 Modbus/TCP - Diagnostics

LEDs

The adapter module is equipped with three bicolor diagnostic LEDs. The LEDs are described below.

Name	Color	Function	
	Blinking green	Establishing communication to host	
	Green	Connection to host OK	
HOST	Blinking red	Communication to host lost temporarily	
1031	Flashing orange, alternating with the MODULE flashing orange	Internal file system error. The error may be cleared by cycling drive power. If the error persists, contact your local ABB representative.	

Modbus/TCP - Diagnostics 111

Name	Color	Function		
	Off	There is no power applied to the device.		
	Flashing orange	Device is attempting to obtain IP configuration from the DHCP server.		
	Orange	Device is executing Duplicate Address Detection.		
	Flashing green	Device is waiting for a Modbus request.		
	Green	Device has received a Modbus request within the Modbus/TCP Timeout period.		
MODULE	Flashing red	Ethernet link is down.		
	Red	Ethernet interface is disabled. Duplicate Address Detection may have detected a duplicate address. Check the IP configuration and either initiate a Fieldbus Adapter parameter refresh or cycle power to the drive.		
	Flashing orange, alternating with	Internal file system error. The error may be cleared by cycling drive power. If the	м	
	the HOST flashing orange	error persists, contact your local ABB representative.		
NETWORK	Off	Ethernet link is down.		
/NET	Flashing green	Ethernet link is up at 100 Mbps. Flashing indicates activity on interface.		
	Flashing orange	Ethernet link is up at 10 Mbps. Flashing indicates activity on interface.		

Anexo 4. Hoja de datos del transmisor de vibración

VIBROTECTOR® - robust machine vibration transmitter

VIBROTECTOR[®] is the ideal vibration monitor for all machines which run under approximately constant operating conditions such as, e.g.:

- Fans
- Ventilators
- Pumps
- Electric motors

VIBROTECTOR® records broadband machine vibrations and transfers the resulting overall value as a current signal (4-20 mA) to the connected process

control system. This value is compared with specified alarm thresholds and an alarm issued to the operating personnel if a value is exceeded.

10 great reasons to monitor your machine vibrations with VIBROTECTOR®

Continuous vibration monitoring

Direct alarm notification in the control system

Simple to mount on the machine

Low installation costs

No additional hardware required

No additional supply voltage required

Robust compact design

4-20 mA output

Ideal for OEMs

Conforms to ISO 10816-3 & 10816-7

Order information

VIBROTECTOR* is available in two vers fer in frequency range. Both versions a with intrinsic safety.	ions which dif- re also available
VIBROTECTOR®, 10 Hz-1kHz	VIB 5.731
Intrinsically safe version	VIB 5.731 EX
VIBROTECTOR®, 2 Hz-1kHz	
Intrinsically safe version	VIB 5.736 EX
Limiting device for hazardous areas	0 2088 0010
Connection cables for industrial areas:	
- with straight plug	VIB 5.740-X
- with angled plug	VIB 5.741-X
Connection cables for hazardous area	s:
- with straight plug	VIB 3.570-L
L: cable l	length in meters

Technical data

Output signalCurrent level	(4-20mA)
Resonance frequency	17 kHz
Measurement range up to	20 mm/s
Frequency range ±10%	
VIB 5.731 (rot. speed > 600 rpm) 10 H	z to 1 kHz
VIB 5.736 (rot. speed > 120 rpm)2 H	z to 1 kHz
Insulation	.complete
Temperature range30°C	to + 80°C
Temperatur sensitivity	0.4 µA/K
Supply voltage (loop power)	/DC(±5%)
Loop resistance 90 to	360 Ohm
Weight	
Protection class (w. special cable)	67 (IP68)
Cable connector type Cannon, M	vii-C5015
HousingVA 1.4305 (stain	less steel)
Mounting	M8 thread

Norma ISO 2372-1974

VIBRACIÓN MECÁNICA DE MÁQUINAS CON VELOCIDADES DE OPERACIONES ENTRE 100 Y 200 REV/S.

Bases para la especificación de estándares de evaluación.

Las características más relevantes de la norma ISO 2372 son:

- Es aplicable a los equipos rotativos cuyo rango de velocidades de giro está entre 600 y 12.000 RPM.
- Los datos que se requieren para su aplicación son el nivel global de vibración en velocidad valor eficaz RMS, en un rango de frecuencia entre 10 y 1.000 Hz, distinguiendo varias clases de equipos rotativos según la <u>Tabla 3</u>.

Para utilizar la norma ISO 2372, basta con clasificar la máquina en estudio dentro de la clase correspondiente y una vez obtenido el valor global de vibración entre 600 y 60.000 CPM localizar en la <u>Tabla 4</u> la zona en la que se encuentra.

Clase	Descripción
Clase I	Equipos pequeños hasta 15 kW.
Clase II	Equipos medios, de 15 a 75 kW o hasta 300 kW con cimentación especial.
Clase III	Equipos grandes, por encima de 75 kW con cimentación rígida o de 300 kW con cimentación especial.
Clase IV	Turbomaquinaria (equipos con RPM > velocidad crítica).

Velocidad		Tipos de	máquinas	
(mm/s, rms)	Clase I	Clase II	Clase III	Clase IV
0,18 a 0,28				
0,28 a 0.45		Δ		
0,45 a 0,71		<u> </u>		
0,71 a 1,12				
1,12 a 1,8		R	1	
1,8 a 2,8				
2,8 a 4,5		C		
4,5 a 7,1		U U		
7,1 a 11,2				
11,2 a 18		D		
18 a 28				
A	Buena		C Inat	isfactoria
B	Satisfactor	ia	D Inac	eptable
Tabla 4: Seve	eridad de l	a vibración	en ISO 23	72.

Tabla 3: Clasificación de equipos en ISO 2372.

Anexo 6. Tabla de disyuntores AB	B con ajuste de corriente máxima
----------------------------------	----------------------------------

X11 160 - 11	MF/TMD 10	5÷100 A						
XT1B 160		l1 (400Hz)			13			
XT1C 160	In	MIN	MED	MAX	13 (50Hz)	km	13 (400Hz)	
XT1N 160	16	10	12	14	450	2	900	
	20	13	15	18	450	2	900	
	25	16	20	23	450	2	900	
	32	20	25	29	450	2	900	
	40	25	31	36	450	2	900	
	50	32	38	45	500	2	1000	
	63	40	48	57	630	2	1260	
	80	50	61	72	800	2	1600	
	100	63	77	90	1000	2	2000	

XT2 160 -	TMD/TMA	1,6÷10	00	A
XT2N 160			11	(4

2N 160		l1 (400Hz)			13		
	In	MIN	MED	MAX	13 (50Hz)	km	13 (400Hz)
	1,6	1	1,2	1,4	16	1,2	19,2
	2	1,3	1,5	1,8	20	1,2	24
	2,5	1,6	2	2,3	25	1,2	30
	3,2	2	2,5	2,9	32	1,2	38,4
	4	2,5	3,1	3,6	40	1,2	48
	5	3,2	3,8	4,5	50	1,2	60
	6,3	4	4,8	5,7	63	1,2	75,6
	8	5	6,1	7,2	80	1,2	96
	10	6,3	7,7	9	100	1,2	120
	12,5	7,9	9,6	11,3	125	1,2	150
	16	10	12	14	300	1,2	360
	20	13	15	18	300	1,2	360
	25	16	20	23	300	1,2	360
	32	20	25	29	320	1,2	384
	40	25	31	36	300400	1,2	360480
	50	32	38	45	300500	1,2	360600
	63	40	48	57	300630	1,2	360756
	80	50	61	72	400800	1,2	480960
	100	63	77	90	5001000	1,2	6001200

Anexo 7. Sistemas de aislamiento en motores de inducción de baja tensión

ABB Motors utiliza sistemas de aislamiento clase F, la cual, con un aumento de temperatura B, es actualmente el requisito más frecuente de la industria.

Sistema de aislamiento clase F

- Temperatura ambiente máxima 40º C
- Incremento de temperatura máximo permisible 105 K
- Margen de temperatura límite + 10 K

Incremento clase B

- Temperatura ambiente máxima 40º C
- Incremento de temperatura máxima permisible 80 K
- Margen de temperatura límite + 10 K

Clase de temperatura del sistema de aislamiento

- Clase F 155^o C
- Clase B 130º C
- Clase H 180^o C

Gracias a la utilización del sistema de aislamiento clase F con incremento de temperatura clase B, los productos de ABB Motors tienen un margen de seguridad de 25º C, lo cual puede utilizarse para incrementar la carga hasta un 12% durante períodos limitados, funcionar a temperaturas ambiente elevadas o a grandes altitudes, o con mayores tolerancias de tensión y de frecuencia. También puede utilizarse para prolongar la vida del aislamiento. Por ejemplo, una disminución de temperatura de 10 K prolongará la vida del aislamiento, 3 años a proximadamente.

4. Diseño Eléctrico

4.2 Temperaturas ambiente / grandes altitudes

Tabla de potencia permitida en temperaturas ambiente elevadas o a grandes altitudes.

Los motores básicos están diseñados para funcionar a una temperatura ambiente máxima de 40° C y a una altitud máxima de 1000 metros por encima del nivel del mar. Si un motor debe funcionar a temperaturas ambiente más elevadas, generalmente debería reducirse su potencia según la tabla siguiente. Rogamos tomen nota de que cuando se reduce la potencia de salida de un motor estándar, los valores relativos de los catálogos, como los referentes a I_s/I_{sv} , también variarán.

1	Temperatura ambiente, ° C	30	40	45	50	55	60	70	80
	Potencia permitida,								
% de potencia nominal		107	100	96.5	93	90	86.5	79	70
ł	Altura sobre el nivel del mar, m	1000	1500	2000	2500	3000	3500	4000	
	Potencia permitida,			~~	~ ~			-	
1		100	96	92	88	84	80	76	

Anexo 9. Distribución y lista de materiales internos

Anexo 10. Distribución y lista de materiales externos

Anexo 11. Conexiones circuito monofásico y bifásico

Anexo 12. Conexiones de circuito trifásico y conexión de red

Anexo 13. Certificado de la empresa

